blob: bb64e643b0325eca2d1936c4f649827b43b74cae [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
drhe53831d2007-08-17 01:14:38 +000046#ifndef SQLITE_OMIT_SHARED_CACHE
47/*
danielk1977502b4e02008-09-02 14:07:24 +000048** A list of BtShared objects that are eligible for participation
49** in shared cache. This variable has file scope during normal builds,
50** but the test harness needs to access it so we make it global for
51** test builds.
drh7555d8e2009-03-20 13:15:30 +000052**
53** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000054*/
55#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000056BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000057#else
drh78f82d12008-09-02 00:52:52 +000058static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000059#endif
drhe53831d2007-08-17 01:14:38 +000060#endif /* SQLITE_OMIT_SHARED_CACHE */
61
62#ifndef SQLITE_OMIT_SHARED_CACHE
63/*
64** Enable or disable the shared pager and schema features.
65**
66** This routine has no effect on existing database connections.
67** The shared cache setting effects only future calls to
68** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
69*/
70int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000071 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000072 return SQLITE_OK;
73}
74#endif
75
drhd677b3d2007-08-20 22:48:41 +000076
danielk1977aef0bf62005-12-30 16:28:01 +000077
78#ifdef SQLITE_OMIT_SHARED_CACHE
79 /*
drhc25eabe2009-02-24 18:57:31 +000080 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
81 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000082 ** manipulate entries in the BtShared.pLock linked list used to store
83 ** shared-cache table level locks. If the library is compiled with the
84 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000085 ** of each BtShared structure and so this locking is not necessary.
86 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000087 */
drhc25eabe2009-02-24 18:57:31 +000088 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
89 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
90 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000091 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000092 #define hasSharedCacheTableLock(a,b,c,d) 1
93 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000094#endif
danielk1977aef0bf62005-12-30 16:28:01 +000095
drhe53831d2007-08-17 01:14:38 +000096#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000097
98#ifdef SQLITE_DEBUG
99/*
drh0ee3dbe2009-10-16 15:05:18 +0000100**** This function is only used as part of an assert() statement. ***
101**
102** Check to see if pBtree holds the required locks to read or write to the
103** table with root page iRoot. Return 1 if it does and 0 if not.
104**
105** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000106** Btree connection pBtree:
107**
108** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
109**
drh0ee3dbe2009-10-16 15:05:18 +0000110** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000111** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000112** the corresponding table. This makes things a bit more complicated,
113** as this module treats each table as a separate structure. To determine
114** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000115** function has to search through the database schema.
116**
drh0ee3dbe2009-10-16 15:05:18 +0000117** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000118** hold a write-lock on the schema table (root page 1). This is also
119** acceptable.
120*/
121static int hasSharedCacheTableLock(
122 Btree *pBtree, /* Handle that must hold lock */
123 Pgno iRoot, /* Root page of b-tree */
124 int isIndex, /* True if iRoot is the root of an index b-tree */
125 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
126){
127 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
128 Pgno iTab = 0;
129 BtLock *pLock;
130
drh0ee3dbe2009-10-16 15:05:18 +0000131 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000132 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000133 ** Return true immediately.
134 */
danielk197796d48e92009-06-29 06:00:37 +0000135 if( (pBtree->sharable==0)
136 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000137 ){
138 return 1;
139 }
140
drh0ee3dbe2009-10-16 15:05:18 +0000141 /* If the client is reading or writing an index and the schema is
142 ** not loaded, then it is too difficult to actually check to see if
143 ** the correct locks are held. So do not bother - just return true.
144 ** This case does not come up very often anyhow.
145 */
146 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
147 return 1;
148 }
149
danielk197796d48e92009-06-29 06:00:37 +0000150 /* Figure out the root-page that the lock should be held on. For table
151 ** b-trees, this is just the root page of the b-tree being read or
152 ** written. For index b-trees, it is the root page of the associated
153 ** table. */
154 if( isIndex ){
155 HashElem *p;
156 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
157 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000158 if( pIdx->tnum==(int)iRoot ){
159 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000160 }
161 }
162 }else{
163 iTab = iRoot;
164 }
165
166 /* Search for the required lock. Either a write-lock on root-page iTab, a
167 ** write-lock on the schema table, or (if the client is reading) a
168 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
169 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
170 if( pLock->pBtree==pBtree
171 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
172 && pLock->eLock>=eLockType
173 ){
174 return 1;
175 }
176 }
177
178 /* Failed to find the required lock. */
179 return 0;
180}
drh0ee3dbe2009-10-16 15:05:18 +0000181#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000182
drh0ee3dbe2009-10-16 15:05:18 +0000183#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000184/*
drh0ee3dbe2009-10-16 15:05:18 +0000185**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000186**
drh0ee3dbe2009-10-16 15:05:18 +0000187** Return true if it would be illegal for pBtree to write into the
188** table or index rooted at iRoot because other shared connections are
189** simultaneously reading that same table or index.
190**
191** It is illegal for pBtree to write if some other Btree object that
192** shares the same BtShared object is currently reading or writing
193** the iRoot table. Except, if the other Btree object has the
194** read-uncommitted flag set, then it is OK for the other object to
195** have a read cursor.
196**
197** For example, before writing to any part of the table or index
198** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000199**
200** assert( !hasReadConflicts(pBtree, iRoot) );
201*/
202static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
203 BtCursor *p;
204 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
205 if( p->pgnoRoot==iRoot
206 && p->pBtree!=pBtree
207 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
208 ){
209 return 1;
210 }
211 }
212 return 0;
213}
214#endif /* #ifdef SQLITE_DEBUG */
215
danielk1977da184232006-01-05 11:34:32 +0000216/*
drh0ee3dbe2009-10-16 15:05:18 +0000217** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000218** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000219** SQLITE_OK if the lock may be obtained (by calling
220** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000221*/
drhc25eabe2009-02-24 18:57:31 +0000222static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000223 BtShared *pBt = p->pBt;
224 BtLock *pIter;
225
drh1fee73e2007-08-29 04:00:57 +0000226 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000227 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
228 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000229 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000230
danielk19775b413d72009-04-01 09:41:54 +0000231 /* If requesting a write-lock, then the Btree must have an open write
232 ** transaction on this file. And, obviously, for this to be so there
233 ** must be an open write transaction on the file itself.
234 */
235 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
236 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
237
drh0ee3dbe2009-10-16 15:05:18 +0000238 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000239 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000240 return SQLITE_OK;
241 }
242
danielk1977641b0f42007-12-21 04:47:25 +0000243 /* If some other connection is holding an exclusive lock, the
244 ** requested lock may not be obtained.
245 */
drhc9166342012-01-05 23:32:06 +0000246 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000247 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
248 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000249 }
250
danielk1977e0d9e6f2009-07-03 16:25:06 +0000251 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
252 /* The condition (pIter->eLock!=eLock) in the following if(...)
253 ** statement is a simplification of:
254 **
255 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
256 **
257 ** since we know that if eLock==WRITE_LOCK, then no other connection
258 ** may hold a WRITE_LOCK on any table in this file (since there can
259 ** only be a single writer).
260 */
261 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
262 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
263 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
264 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
265 if( eLock==WRITE_LOCK ){
266 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000267 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000268 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000269 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000270 }
271 }
272 return SQLITE_OK;
273}
drhe53831d2007-08-17 01:14:38 +0000274#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000275
drhe53831d2007-08-17 01:14:38 +0000276#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000277/*
278** Add a lock on the table with root-page iTable to the shared-btree used
279** by Btree handle p. Parameter eLock must be either READ_LOCK or
280** WRITE_LOCK.
281**
danielk19779d104862009-07-09 08:27:14 +0000282** This function assumes the following:
283**
drh0ee3dbe2009-10-16 15:05:18 +0000284** (a) The specified Btree object p is connected to a sharable
285** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000286**
drh0ee3dbe2009-10-16 15:05:18 +0000287** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000288** with the requested lock (i.e. querySharedCacheTableLock() has
289** already been called and returned SQLITE_OK).
290**
291** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
292** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000293*/
drhc25eabe2009-02-24 18:57:31 +0000294static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000295 BtShared *pBt = p->pBt;
296 BtLock *pLock = 0;
297 BtLock *pIter;
298
drh1fee73e2007-08-29 04:00:57 +0000299 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000300 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
301 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000302
danielk1977e0d9e6f2009-07-03 16:25:06 +0000303 /* A connection with the read-uncommitted flag set will never try to
304 ** obtain a read-lock using this function. The only read-lock obtained
305 ** by a connection in read-uncommitted mode is on the sqlite_master
306 ** table, and that lock is obtained in BtreeBeginTrans(). */
307 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
308
danielk19779d104862009-07-09 08:27:14 +0000309 /* This function should only be called on a sharable b-tree after it
310 ** has been determined that no other b-tree holds a conflicting lock. */
311 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000312 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000313
314 /* First search the list for an existing lock on this table. */
315 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
316 if( pIter->iTable==iTable && pIter->pBtree==p ){
317 pLock = pIter;
318 break;
319 }
320 }
321
322 /* If the above search did not find a BtLock struct associating Btree p
323 ** with table iTable, allocate one and link it into the list.
324 */
325 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000326 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000327 if( !pLock ){
328 return SQLITE_NOMEM;
329 }
330 pLock->iTable = iTable;
331 pLock->pBtree = p;
332 pLock->pNext = pBt->pLock;
333 pBt->pLock = pLock;
334 }
335
336 /* Set the BtLock.eLock variable to the maximum of the current lock
337 ** and the requested lock. This means if a write-lock was already held
338 ** and a read-lock requested, we don't incorrectly downgrade the lock.
339 */
340 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000341 if( eLock>pLock->eLock ){
342 pLock->eLock = eLock;
343 }
danielk1977aef0bf62005-12-30 16:28:01 +0000344
345 return SQLITE_OK;
346}
drhe53831d2007-08-17 01:14:38 +0000347#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000348
drhe53831d2007-08-17 01:14:38 +0000349#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000350/*
drhc25eabe2009-02-24 18:57:31 +0000351** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000352** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000353**
drh0ee3dbe2009-10-16 15:05:18 +0000354** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000355** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000356** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000357*/
drhc25eabe2009-02-24 18:57:31 +0000358static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000359 BtShared *pBt = p->pBt;
360 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000361
drh1fee73e2007-08-29 04:00:57 +0000362 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000363 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000364 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000365
danielk1977aef0bf62005-12-30 16:28:01 +0000366 while( *ppIter ){
367 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000368 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000369 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000370 if( pLock->pBtree==p ){
371 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000372 assert( pLock->iTable!=1 || pLock==&p->lock );
373 if( pLock->iTable!=1 ){
374 sqlite3_free(pLock);
375 }
danielk1977aef0bf62005-12-30 16:28:01 +0000376 }else{
377 ppIter = &pLock->pNext;
378 }
379 }
danielk1977641b0f42007-12-21 04:47:25 +0000380
drhc9166342012-01-05 23:32:06 +0000381 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000382 if( pBt->pWriter==p ){
383 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000384 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000385 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000386 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000387 ** transaction. If there currently exists a writer, and p is not
388 ** that writer, then the number of locks held by connections other
389 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000390 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000391 **
drhc9166342012-01-05 23:32:06 +0000392 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000393 ** be zero already. So this next line is harmless in that case.
394 */
drhc9166342012-01-05 23:32:06 +0000395 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000396 }
danielk1977aef0bf62005-12-30 16:28:01 +0000397}
danielk197794b30732009-07-02 17:21:57 +0000398
danielk1977e0d9e6f2009-07-03 16:25:06 +0000399/*
drh0ee3dbe2009-10-16 15:05:18 +0000400** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000401*/
danielk197794b30732009-07-02 17:21:57 +0000402static void downgradeAllSharedCacheTableLocks(Btree *p){
403 BtShared *pBt = p->pBt;
404 if( pBt->pWriter==p ){
405 BtLock *pLock;
406 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000407 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000408 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
409 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
410 pLock->eLock = READ_LOCK;
411 }
412 }
413}
414
danielk1977aef0bf62005-12-30 16:28:01 +0000415#endif /* SQLITE_OMIT_SHARED_CACHE */
416
drh980b1a72006-08-16 16:42:48 +0000417static void releasePage(MemPage *pPage); /* Forward reference */
418
drh1fee73e2007-08-29 04:00:57 +0000419/*
drh0ee3dbe2009-10-16 15:05:18 +0000420***** This routine is used inside of assert() only ****
421**
422** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000423*/
drh0ee3dbe2009-10-16 15:05:18 +0000424#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000425static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000426 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000427}
428#endif
429
430
danielk197792d4d7a2007-05-04 12:05:56 +0000431#ifndef SQLITE_OMIT_INCRBLOB
432/*
433** Invalidate the overflow page-list cache for cursor pCur, if any.
434*/
435static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000436 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000437 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000438 pCur->aOverflow = 0;
439}
440
441/*
442** Invalidate the overflow page-list cache for all cursors opened
443** on the shared btree structure pBt.
444*/
445static void invalidateAllOverflowCache(BtShared *pBt){
446 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000447 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000448 for(p=pBt->pCursor; p; p=p->pNext){
449 invalidateOverflowCache(p);
450 }
451}
danielk197796d48e92009-06-29 06:00:37 +0000452
453/*
454** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000455** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000456** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000457**
458** If argument isClearTable is true, then the entire contents of the
459** table is about to be deleted. In this case invalidate all incrblob
460** cursors open on any row within the table with root-page pgnoRoot.
461**
462** Otherwise, if argument isClearTable is false, then the row with
463** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000464** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000465*/
466static void invalidateIncrblobCursors(
467 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000468 i64 iRow, /* The rowid that might be changing */
469 int isClearTable /* True if all rows are being deleted */
470){
471 BtCursor *p;
472 BtShared *pBt = pBtree->pBt;
473 assert( sqlite3BtreeHoldsMutex(pBtree) );
474 for(p=pBt->pCursor; p; p=p->pNext){
475 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
476 p->eState = CURSOR_INVALID;
477 }
478 }
479}
480
danielk197792d4d7a2007-05-04 12:05:56 +0000481#else
drh0ee3dbe2009-10-16 15:05:18 +0000482 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000483 #define invalidateOverflowCache(x)
484 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000485 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000486#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000487
drh980b1a72006-08-16 16:42:48 +0000488/*
danielk1977bea2a942009-01-20 17:06:27 +0000489** Set bit pgno of the BtShared.pHasContent bitvec. This is called
490** when a page that previously contained data becomes a free-list leaf
491** page.
492**
493** The BtShared.pHasContent bitvec exists to work around an obscure
494** bug caused by the interaction of two useful IO optimizations surrounding
495** free-list leaf pages:
496**
497** 1) When all data is deleted from a page and the page becomes
498** a free-list leaf page, the page is not written to the database
499** (as free-list leaf pages contain no meaningful data). Sometimes
500** such a page is not even journalled (as it will not be modified,
501** why bother journalling it?).
502**
503** 2) When a free-list leaf page is reused, its content is not read
504** from the database or written to the journal file (why should it
505** be, if it is not at all meaningful?).
506**
507** By themselves, these optimizations work fine and provide a handy
508** performance boost to bulk delete or insert operations. However, if
509** a page is moved to the free-list and then reused within the same
510** transaction, a problem comes up. If the page is not journalled when
511** it is moved to the free-list and it is also not journalled when it
512** is extracted from the free-list and reused, then the original data
513** may be lost. In the event of a rollback, it may not be possible
514** to restore the database to its original configuration.
515**
516** The solution is the BtShared.pHasContent bitvec. Whenever a page is
517** moved to become a free-list leaf page, the corresponding bit is
518** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000519** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000520** set in BtShared.pHasContent. The contents of the bitvec are cleared
521** at the end of every transaction.
522*/
523static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
524 int rc = SQLITE_OK;
525 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000526 assert( pgno<=pBt->nPage );
527 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000528 if( !pBt->pHasContent ){
529 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000530 }
531 }
532 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
533 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
534 }
535 return rc;
536}
537
538/*
539** Query the BtShared.pHasContent vector.
540**
541** This function is called when a free-list leaf page is removed from the
542** free-list for reuse. It returns false if it is safe to retrieve the
543** page from the pager layer with the 'no-content' flag set. True otherwise.
544*/
545static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
546 Bitvec *p = pBt->pHasContent;
547 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
548}
549
550/*
551** Clear (destroy) the BtShared.pHasContent bitvec. This should be
552** invoked at the conclusion of each write-transaction.
553*/
554static void btreeClearHasContent(BtShared *pBt){
555 sqlite3BitvecDestroy(pBt->pHasContent);
556 pBt->pHasContent = 0;
557}
558
559/*
drh980b1a72006-08-16 16:42:48 +0000560** Save the current cursor position in the variables BtCursor.nKey
561** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000562**
563** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
564** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000565*/
566static int saveCursorPosition(BtCursor *pCur){
567 int rc;
568
569 assert( CURSOR_VALID==pCur->eState );
570 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000571 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000572
573 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000574 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000575
576 /* If this is an intKey table, then the above call to BtreeKeySize()
577 ** stores the integer key in pCur->nKey. In this case this value is
578 ** all that is required. Otherwise, if pCur is not open on an intKey
579 ** table, then malloc space for and store the pCur->nKey bytes of key
580 ** data.
581 */
drh4c301aa2009-07-15 17:25:45 +0000582 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000583 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000584 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000585 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000586 if( rc==SQLITE_OK ){
587 pCur->pKey = pKey;
588 }else{
drh17435752007-08-16 04:30:38 +0000589 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000590 }
591 }else{
592 rc = SQLITE_NOMEM;
593 }
594 }
danielk197771d5d2c2008-09-29 11:49:47 +0000595 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000596
597 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000598 int i;
599 for(i=0; i<=pCur->iPage; i++){
600 releasePage(pCur->apPage[i]);
601 pCur->apPage[i] = 0;
602 }
603 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000604 pCur->eState = CURSOR_REQUIRESEEK;
605 }
606
danielk197792d4d7a2007-05-04 12:05:56 +0000607 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000608 return rc;
609}
610
611/*
drh0ee3dbe2009-10-16 15:05:18 +0000612** Save the positions of all cursors (except pExcept) that are open on
613** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000614** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
615*/
616static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
617 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000618 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000619 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000620 for(p=pBt->pCursor; p; p=p->pNext){
621 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
622 p->eState==CURSOR_VALID ){
623 int rc = saveCursorPosition(p);
624 if( SQLITE_OK!=rc ){
625 return rc;
626 }
627 }
628 }
629 return SQLITE_OK;
630}
631
632/*
drhbf700f32007-03-31 02:36:44 +0000633** Clear the current cursor position.
634*/
danielk1977be51a652008-10-08 17:58:48 +0000635void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000636 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000637 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000638 pCur->pKey = 0;
639 pCur->eState = CURSOR_INVALID;
640}
641
642/*
danielk19773509a652009-07-06 18:56:13 +0000643** In this version of BtreeMoveto, pKey is a packed index record
644** such as is generated by the OP_MakeRecord opcode. Unpack the
645** record and then call BtreeMovetoUnpacked() to do the work.
646*/
647static int btreeMoveto(
648 BtCursor *pCur, /* Cursor open on the btree to be searched */
649 const void *pKey, /* Packed key if the btree is an index */
650 i64 nKey, /* Integer key for tables. Size of pKey for indices */
651 int bias, /* Bias search to the high end */
652 int *pRes /* Write search results here */
653){
654 int rc; /* Status code */
655 UnpackedRecord *pIdxKey; /* Unpacked index key */
656 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000657 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000658
659 if( pKey ){
660 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000661 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
662 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
663 );
danielk19773509a652009-07-06 18:56:13 +0000664 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000665 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000666 }else{
667 pIdxKey = 0;
668 }
669 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000670 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000671 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000672 }
673 return rc;
674}
675
676/*
drh980b1a72006-08-16 16:42:48 +0000677** Restore the cursor to the position it was in (or as close to as possible)
678** when saveCursorPosition() was called. Note that this call deletes the
679** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000680** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000681** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000682*/
danielk197730548662009-07-09 05:07:37 +0000683static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000684 int rc;
drh1fee73e2007-08-29 04:00:57 +0000685 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000686 assert( pCur->eState>=CURSOR_REQUIRESEEK );
687 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000688 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000689 }
drh980b1a72006-08-16 16:42:48 +0000690 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000691 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000692 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000693 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000694 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000695 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000696 }
697 return rc;
698}
699
drha3460582008-07-11 21:02:53 +0000700#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000701 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000702 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000703 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000704
drha3460582008-07-11 21:02:53 +0000705/*
706** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000707** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000708** at is deleted out from under them.
709**
710** This routine returns an error code if something goes wrong. The
711** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
712*/
713int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
714 int rc;
715
716 rc = restoreCursorPosition(pCur);
717 if( rc ){
718 *pHasMoved = 1;
719 return rc;
720 }
drh4c301aa2009-07-15 17:25:45 +0000721 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
drha3460582008-07-11 21:02:53 +0000722 *pHasMoved = 1;
723 }else{
724 *pHasMoved = 0;
725 }
726 return SQLITE_OK;
727}
728
danielk1977599fcba2004-11-08 07:13:13 +0000729#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000730/*
drha3152892007-05-05 11:48:52 +0000731** Given a page number of a regular database page, return the page
732** number for the pointer-map page that contains the entry for the
733** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000734**
735** Return 0 (not a valid page) for pgno==1 since there is
736** no pointer map associated with page 1. The integrity_check logic
737** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000738*/
danielk1977266664d2006-02-10 08:24:21 +0000739static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000740 int nPagesPerMapPage;
741 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000742 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000743 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000744 nPagesPerMapPage = (pBt->usableSize/5)+1;
745 iPtrMap = (pgno-2)/nPagesPerMapPage;
746 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000747 if( ret==PENDING_BYTE_PAGE(pBt) ){
748 ret++;
749 }
750 return ret;
751}
danielk1977a19df672004-11-03 11:37:07 +0000752
danielk1977afcdd022004-10-31 16:25:42 +0000753/*
danielk1977afcdd022004-10-31 16:25:42 +0000754** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000755**
756** This routine updates the pointer map entry for page number 'key'
757** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000758**
759** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
760** a no-op. If an error occurs, the appropriate error code is written
761** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000762*/
drh98add2e2009-07-20 17:11:49 +0000763static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000764 DbPage *pDbPage; /* The pointer map page */
765 u8 *pPtrmap; /* The pointer map data */
766 Pgno iPtrmap; /* The pointer map page number */
767 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000768 int rc; /* Return code from subfunctions */
769
770 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000771
drh1fee73e2007-08-29 04:00:57 +0000772 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000773 /* The master-journal page number must never be used as a pointer map page */
774 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
775
danielk1977ac11ee62005-01-15 12:45:51 +0000776 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000777 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000778 *pRC = SQLITE_CORRUPT_BKPT;
779 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000780 }
danielk1977266664d2006-02-10 08:24:21 +0000781 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000782 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000783 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000784 *pRC = rc;
785 return;
danielk1977afcdd022004-10-31 16:25:42 +0000786 }
danielk19778c666b12008-07-18 09:34:57 +0000787 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000788 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000789 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000790 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000791 }
drhfc243732011-05-17 15:21:56 +0000792 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000793 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000794
drh615ae552005-01-16 23:21:00 +0000795 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
796 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000797 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000798 if( rc==SQLITE_OK ){
799 pPtrmap[offset] = eType;
800 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000801 }
danielk1977afcdd022004-10-31 16:25:42 +0000802 }
803
drh4925a552009-07-07 11:39:58 +0000804ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000805 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000806}
807
808/*
809** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000810**
811** This routine retrieves the pointer map entry for page 'key', writing
812** the type and parent page number to *pEType and *pPgno respectively.
813** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000814*/
danielk1977aef0bf62005-12-30 16:28:01 +0000815static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000816 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000817 int iPtrmap; /* Pointer map page index */
818 u8 *pPtrmap; /* Pointer map page data */
819 int offset; /* Offset of entry in pointer map */
820 int rc;
821
drh1fee73e2007-08-29 04:00:57 +0000822 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000823
danielk1977266664d2006-02-10 08:24:21 +0000824 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000825 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000826 if( rc!=0 ){
827 return rc;
828 }
danielk19773b8a05f2007-03-19 17:44:26 +0000829 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000830
danielk19778c666b12008-07-18 09:34:57 +0000831 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000832 if( offset<0 ){
833 sqlite3PagerUnref(pDbPage);
834 return SQLITE_CORRUPT_BKPT;
835 }
836 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000837 assert( pEType!=0 );
838 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000839 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000840
danielk19773b8a05f2007-03-19 17:44:26 +0000841 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000842 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000843 return SQLITE_OK;
844}
845
danielk197785d90ca2008-07-19 14:25:15 +0000846#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000847 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000848 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000849 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000850#endif
danielk1977afcdd022004-10-31 16:25:42 +0000851
drh0d316a42002-08-11 20:10:47 +0000852/*
drh271efa52004-05-30 19:19:05 +0000853** Given a btree page and a cell index (0 means the first cell on
854** the page, 1 means the second cell, and so forth) return a pointer
855** to the cell content.
856**
857** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000858*/
drh1688c862008-07-18 02:44:17 +0000859#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000860 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000861#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
862
drh43605152004-05-29 21:46:49 +0000863
864/*
drh93a960a2008-07-10 00:32:42 +0000865** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000866** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000867*/
868static u8 *findOverflowCell(MemPage *pPage, int iCell){
869 int i;
drh1fee73e2007-08-29 04:00:57 +0000870 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000871 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000872 int k;
drh2cbd78b2012-02-02 19:37:18 +0000873 k = pPage->aiOvfl[i];
drh6d08b4d2004-07-20 12:45:22 +0000874 if( k<=iCell ){
875 if( k==iCell ){
drh2cbd78b2012-02-02 19:37:18 +0000876 return pPage->apOvfl[i];
drh43605152004-05-29 21:46:49 +0000877 }
878 iCell--;
879 }
880 }
danielk19771cc5ed82007-05-16 17:28:43 +0000881 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000882}
883
884/*
885** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000886** are two versions of this function. btreeParseCell() takes a
887** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000888** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000889**
890** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000891** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000892*/
danielk197730548662009-07-09 05:07:37 +0000893static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000894 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000895 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000896 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000897){
drhf49661a2008-12-10 16:45:50 +0000898 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000899 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000900
drh1fee73e2007-08-29 04:00:57 +0000901 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000902
drh43605152004-05-29 21:46:49 +0000903 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000904 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000905 n = pPage->childPtrSize;
906 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000907 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000908 if( pPage->hasData ){
909 n += getVarint32(&pCell[n], nPayload);
910 }else{
911 nPayload = 0;
912 }
drh1bd10f82008-12-10 21:19:56 +0000913 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000914 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000915 }else{
drh79df1f42008-07-18 00:57:33 +0000916 pInfo->nData = 0;
917 n += getVarint32(&pCell[n], nPayload);
918 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000919 }
drh72365832007-03-06 15:53:44 +0000920 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000921 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000922 testcase( nPayload==pPage->maxLocal );
923 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000924 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000925 /* This is the (easy) common case where the entire payload fits
926 ** on the local page. No overflow is required.
927 */
drh41692e92011-01-25 04:34:51 +0000928 if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +0000929 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000930 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +0000931 }else{
drh271efa52004-05-30 19:19:05 +0000932 /* If the payload will not fit completely on the local page, we have
933 ** to decide how much to store locally and how much to spill onto
934 ** overflow pages. The strategy is to minimize the amount of unused
935 ** space on overflow pages while keeping the amount of local storage
936 ** in between minLocal and maxLocal.
937 **
938 ** Warning: changing the way overflow payload is distributed in any
939 ** way will result in an incompatible file format.
940 */
941 int minLocal; /* Minimum amount of payload held locally */
942 int maxLocal; /* Maximum amount of payload held locally */
943 int surplus; /* Overflow payload available for local storage */
944
945 minLocal = pPage->minLocal;
946 maxLocal = pPage->maxLocal;
947 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000948 testcase( surplus==maxLocal );
949 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000950 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000951 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000952 }else{
drhf49661a2008-12-10 16:45:50 +0000953 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000954 }
drhf49661a2008-12-10 16:45:50 +0000955 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000956 pInfo->nSize = pInfo->iOverflow + 4;
957 }
drh3aac2dd2004-04-26 14:10:20 +0000958}
danielk19771cc5ed82007-05-16 17:28:43 +0000959#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000960 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
961static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000962 MemPage *pPage, /* Page containing the cell */
963 int iCell, /* The cell index. First cell is 0 */
964 CellInfo *pInfo /* Fill in this structure */
965){
danielk19771cc5ed82007-05-16 17:28:43 +0000966 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000967}
drh3aac2dd2004-04-26 14:10:20 +0000968
969/*
drh43605152004-05-29 21:46:49 +0000970** Compute the total number of bytes that a Cell needs in the cell
971** data area of the btree-page. The return number includes the cell
972** data header and the local payload, but not any overflow page or
973** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000974*/
danielk1977ae5558b2009-04-29 11:31:47 +0000975static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
976 u8 *pIter = &pCell[pPage->childPtrSize];
977 u32 nSize;
978
979#ifdef SQLITE_DEBUG
980 /* The value returned by this function should always be the same as
981 ** the (CellInfo.nSize) value found by doing a full parse of the
982 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
983 ** this function verifies that this invariant is not violated. */
984 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +0000985 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +0000986#endif
987
988 if( pPage->intKey ){
989 u8 *pEnd;
990 if( pPage->hasData ){
991 pIter += getVarint32(pIter, nSize);
992 }else{
993 nSize = 0;
994 }
995
996 /* pIter now points at the 64-bit integer key value, a variable length
997 ** integer. The following block moves pIter to point at the first byte
998 ** past the end of the key value. */
999 pEnd = &pIter[9];
1000 while( (*pIter++)&0x80 && pIter<pEnd );
1001 }else{
1002 pIter += getVarint32(pIter, nSize);
1003 }
1004
drh0a45c272009-07-08 01:49:11 +00001005 testcase( nSize==pPage->maxLocal );
1006 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001007 if( nSize>pPage->maxLocal ){
1008 int minLocal = pPage->minLocal;
1009 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001010 testcase( nSize==pPage->maxLocal );
1011 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001012 if( nSize>pPage->maxLocal ){
1013 nSize = minLocal;
1014 }
1015 nSize += 4;
1016 }
shane75ac1de2009-06-09 18:58:52 +00001017 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001018
1019 /* The minimum size of any cell is 4 bytes. */
1020 if( nSize<4 ){
1021 nSize = 4;
1022 }
1023
1024 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001025 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001026}
drh0ee3dbe2009-10-16 15:05:18 +00001027
1028#ifdef SQLITE_DEBUG
1029/* This variation on cellSizePtr() is used inside of assert() statements
1030** only. */
drha9121e42008-02-19 14:59:35 +00001031static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001032 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001033}
danielk1977bc6ada42004-06-30 08:20:16 +00001034#endif
drh3b7511c2001-05-26 13:15:44 +00001035
danielk197779a40da2005-01-16 08:00:01 +00001036#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001037/*
danielk197726836652005-01-17 01:33:13 +00001038** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001039** to an overflow page, insert an entry into the pointer-map
1040** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001041*/
drh98add2e2009-07-20 17:11:49 +00001042static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001043 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001044 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001045 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001046 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001047 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001048 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001049 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001050 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001051 }
danielk1977ac11ee62005-01-15 12:45:51 +00001052}
danielk197779a40da2005-01-16 08:00:01 +00001053#endif
1054
danielk1977ac11ee62005-01-15 12:45:51 +00001055
drhda200cc2004-05-09 11:51:38 +00001056/*
drh72f82862001-05-24 21:06:34 +00001057** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001058** end of the page and all free space is collected into one
1059** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001060** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001061*/
shane0af3f892008-11-12 04:55:34 +00001062static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001063 int i; /* Loop counter */
1064 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001065 int hdr; /* Offset to the page header */
1066 int size; /* Size of a cell */
1067 int usableSize; /* Number of usable bytes on a page */
1068 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001069 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001070 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001071 unsigned char *data; /* The page data */
1072 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001073 int iCellFirst; /* First allowable cell index */
1074 int iCellLast; /* Last possible cell index */
1075
drh2af926b2001-05-15 00:39:25 +00001076
danielk19773b8a05f2007-03-19 17:44:26 +00001077 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001078 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001079 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001080 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001081 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001082 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001083 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001084 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001085 cellOffset = pPage->cellOffset;
1086 nCell = pPage->nCell;
1087 assert( nCell==get2byte(&data[hdr+3]) );
1088 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001089 cbrk = get2byte(&data[hdr+5]);
1090 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1091 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001092 iCellFirst = cellOffset + 2*nCell;
1093 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001094 for(i=0; i<nCell; i++){
1095 u8 *pAddr; /* The i-th cell pointer */
1096 pAddr = &data[cellOffset + i*2];
1097 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001098 testcase( pc==iCellFirst );
1099 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001100#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001101 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001102 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1103 */
1104 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001105 return SQLITE_CORRUPT_BKPT;
1106 }
drh17146622009-07-07 17:38:38 +00001107#endif
1108 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001109 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001110 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001111#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1112 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001113 return SQLITE_CORRUPT_BKPT;
1114 }
drh17146622009-07-07 17:38:38 +00001115#else
1116 if( cbrk<iCellFirst || pc+size>usableSize ){
1117 return SQLITE_CORRUPT_BKPT;
1118 }
1119#endif
drh7157e1d2009-07-09 13:25:32 +00001120 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001121 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001122 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001123 memcpy(&data[cbrk], &temp[pc], size);
1124 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001125 }
drh17146622009-07-07 17:38:38 +00001126 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001127 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001128 data[hdr+1] = 0;
1129 data[hdr+2] = 0;
1130 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001131 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001132 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001133 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001134 return SQLITE_CORRUPT_BKPT;
1135 }
shane0af3f892008-11-12 04:55:34 +00001136 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001137}
1138
drha059ad02001-04-17 20:09:11 +00001139/*
danielk19776011a752009-04-01 16:25:32 +00001140** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001141** as the first argument. Write into *pIdx the index into pPage->aData[]
1142** of the first byte of allocated space. Return either SQLITE_OK or
1143** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001144**
drh0a45c272009-07-08 01:49:11 +00001145** The caller guarantees that there is sufficient space to make the
1146** allocation. This routine might need to defragment in order to bring
1147** all the space together, however. This routine will avoid using
1148** the first two bytes past the cell pointer area since presumably this
1149** allocation is being made in order to insert a new cell, so we will
1150** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001151*/
drh0a45c272009-07-08 01:49:11 +00001152static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001153 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1154 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1155 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001156 int top; /* First byte of cell content area */
1157 int gap; /* First byte of gap between cell pointers and cell content */
1158 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001159 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001160
danielk19773b8a05f2007-03-19 17:44:26 +00001161 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001162 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001163 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001164 assert( nByte>=0 ); /* Minimum cell size is 4 */
1165 assert( pPage->nFree>=nByte );
1166 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001167 usableSize = pPage->pBt->usableSize;
1168 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001169
1170 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001171 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1172 gap = pPage->cellOffset + 2*pPage->nCell;
drh5d433ce2010-08-14 16:02:52 +00001173 top = get2byteNotZero(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001174 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001175 testcase( gap+2==top );
1176 testcase( gap+1==top );
1177 testcase( gap==top );
1178
danielk19776011a752009-04-01 16:25:32 +00001179 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001180 /* Always defragment highly fragmented pages */
1181 rc = defragmentPage(pPage);
1182 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001183 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001184 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001185 /* Search the freelist looking for a free slot big enough to satisfy
1186 ** the request. The allocation is made from the first free slot in
1187 ** the list that is large enough to accomadate it.
1188 */
1189 int pc, addr;
1190 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001191 int size; /* Size of the free slot */
1192 if( pc>usableSize-4 || pc<addr+4 ){
1193 return SQLITE_CORRUPT_BKPT;
1194 }
1195 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001196 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001197 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001198 testcase( x==4 );
1199 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001200 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001201 /* Remove the slot from the free-list. Update the number of
1202 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001203 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001204 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001205 }else if( size+pc > usableSize ){
1206 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001207 }else{
danielk1977fad91942009-04-29 17:49:59 +00001208 /* The slot remains on the free-list. Reduce its size to account
1209 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001210 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001211 }
drh0a45c272009-07-08 01:49:11 +00001212 *pIdx = pc + x;
1213 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001214 }
drh9e572e62004-04-23 23:43:10 +00001215 }
1216 }
drh43605152004-05-29 21:46:49 +00001217
drh0a45c272009-07-08 01:49:11 +00001218 /* Check to make sure there is enough space in the gap to satisfy
1219 ** the allocation. If not, defragment.
1220 */
1221 testcase( gap+2+nByte==top );
1222 if( gap+2+nByte>top ){
1223 rc = defragmentPage(pPage);
1224 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001225 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001226 assert( gap+nByte<=top );
1227 }
1228
1229
drh43605152004-05-29 21:46:49 +00001230 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001231 ** and the cell content area. The btreeInitPage() call has already
1232 ** validated the freelist. Given that the freelist is valid, there
1233 ** is no way that the allocation can extend off the end of the page.
1234 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001235 */
drh0a45c272009-07-08 01:49:11 +00001236 top -= nByte;
drh43605152004-05-29 21:46:49 +00001237 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001238 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001239 *pIdx = top;
1240 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001241}
1242
1243/*
drh9e572e62004-04-23 23:43:10 +00001244** Return a section of the pPage->aData to the freelist.
1245** The first byte of the new free block is pPage->aDisk[start]
1246** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001247**
1248** Most of the effort here is involved in coalesing adjacent
1249** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001250*/
shanedcc50b72008-11-13 18:29:50 +00001251static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001252 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001253 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001254 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001255
drh9e572e62004-04-23 23:43:10 +00001256 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001257 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001258 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
drhfcd71b62011-04-05 22:08:24 +00001259 assert( (start + size) <= (int)pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001260 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001261 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001262
drhc9166342012-01-05 23:32:06 +00001263 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001264 /* Overwrite deleted information with zeros when the secure_delete
1265 ** option is enabled */
1266 memset(&data[start], 0, size);
1267 }
drhfcce93f2006-02-22 03:08:32 +00001268
drh0a45c272009-07-08 01:49:11 +00001269 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001270 ** even though the freeblock list was checked by btreeInitPage(),
1271 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001272 ** freeblocks that overlapped cells. Nor does it detect when the
1273 ** cell content area exceeds the value in the page header. If these
1274 ** situations arise, then subsequent insert operations might corrupt
1275 ** the freelist. So we do need to check for corruption while scanning
1276 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001277 */
drh43605152004-05-29 21:46:49 +00001278 hdr = pPage->hdrOffset;
1279 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001280 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001281 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001282 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001283 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001284 return SQLITE_CORRUPT_BKPT;
1285 }
drh3aac2dd2004-04-26 14:10:20 +00001286 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001287 }
drh0a45c272009-07-08 01:49:11 +00001288 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001289 return SQLITE_CORRUPT_BKPT;
1290 }
drh3aac2dd2004-04-26 14:10:20 +00001291 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001292 put2byte(&data[addr], start);
1293 put2byte(&data[start], pbegin);
1294 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001295 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001296
1297 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001298 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001299 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001300 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001301 assert( pbegin>addr );
drhfcd71b62011-04-05 22:08:24 +00001302 assert( pbegin <= (int)pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001303 pnext = get2byte(&data[pbegin]);
1304 psize = get2byte(&data[pbegin+2]);
1305 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1306 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001307 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001308 return SQLITE_CORRUPT_BKPT;
1309 }
drh0a45c272009-07-08 01:49:11 +00001310 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001311 x = get2byte(&data[pnext]);
1312 put2byte(&data[pbegin], x);
1313 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1314 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001315 }else{
drh3aac2dd2004-04-26 14:10:20 +00001316 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001317 }
1318 }
drh7e3b0a02001-04-28 16:52:40 +00001319
drh43605152004-05-29 21:46:49 +00001320 /* If the cell content area begins with a freeblock, remove it. */
1321 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1322 int top;
1323 pbegin = get2byte(&data[hdr+1]);
1324 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001325 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1326 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001327 }
drhc5053fb2008-11-27 02:22:10 +00001328 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001329 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001330}
1331
1332/*
drh271efa52004-05-30 19:19:05 +00001333** Decode the flags byte (the first byte of the header) for a page
1334** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001335**
1336** Only the following combinations are supported. Anything different
1337** indicates a corrupt database files:
1338**
1339** PTF_ZERODATA
1340** PTF_ZERODATA | PTF_LEAF
1341** PTF_LEAFDATA | PTF_INTKEY
1342** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001343*/
drh44845222008-07-17 18:39:57 +00001344static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001345 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001346
1347 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001348 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001349 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001350 flagByte &= ~PTF_LEAF;
1351 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001352 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001353 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1354 pPage->intKey = 1;
1355 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001356 pPage->maxLocal = pBt->maxLeaf;
1357 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001358 }else if( flagByte==PTF_ZERODATA ){
1359 pPage->intKey = 0;
1360 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001361 pPage->maxLocal = pBt->maxLocal;
1362 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001363 }else{
1364 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001365 }
drhc9166342012-01-05 23:32:06 +00001366 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001367 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001368}
1369
1370/*
drh7e3b0a02001-04-28 16:52:40 +00001371** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001372**
1373** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001374** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001375** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1376** guarantee that the page is well-formed. It only shows that
1377** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001378*/
danielk197730548662009-07-09 05:07:37 +00001379static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001380
danielk197771d5d2c2008-09-29 11:49:47 +00001381 assert( pPage->pBt!=0 );
1382 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001383 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001384 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1385 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001386
1387 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001388 u16 pc; /* Address of a freeblock within pPage->aData[] */
1389 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001390 u8 *data; /* Equal to pPage->aData */
1391 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001392 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001393 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001394 int nFree; /* Number of unused bytes on the page */
1395 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001396 int iCellFirst; /* First allowable cell or freeblock offset */
1397 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001398
1399 pBt = pPage->pBt;
1400
danielk1977eaa06f62008-09-18 17:34:44 +00001401 hdr = pPage->hdrOffset;
1402 data = pPage->aData;
1403 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001404 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1405 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001406 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001407 usableSize = pBt->usableSize;
1408 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh3def2352011-11-11 00:27:15 +00001409 pPage->aDataEnd = &data[usableSize];
1410 pPage->aCellIdx = &data[cellOffset];
drh5d433ce2010-08-14 16:02:52 +00001411 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001412 pPage->nCell = get2byte(&data[hdr+3]);
1413 if( pPage->nCell>MX_CELL(pBt) ){
1414 /* To many cells for a single page. The page must be corrupt */
1415 return SQLITE_CORRUPT_BKPT;
1416 }
drhb908d762009-07-08 16:54:40 +00001417 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001418
shane5eff7cf2009-08-10 03:57:58 +00001419 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001420 ** of page when parsing a cell.
1421 **
1422 ** The following block of code checks early to see if a cell extends
1423 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1424 ** returned if it does.
1425 */
drh0a45c272009-07-08 01:49:11 +00001426 iCellFirst = cellOffset + 2*pPage->nCell;
1427 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001428#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001429 {
drh69e931e2009-06-03 21:04:35 +00001430 int i; /* Index into the cell pointer array */
1431 int sz; /* Size of a cell */
1432
drh69e931e2009-06-03 21:04:35 +00001433 if( !pPage->leaf ) iCellLast--;
1434 for(i=0; i<pPage->nCell; i++){
1435 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001436 testcase( pc==iCellFirst );
1437 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001438 if( pc<iCellFirst || pc>iCellLast ){
1439 return SQLITE_CORRUPT_BKPT;
1440 }
1441 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001442 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001443 if( pc+sz>usableSize ){
1444 return SQLITE_CORRUPT_BKPT;
1445 }
1446 }
drh0a45c272009-07-08 01:49:11 +00001447 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001448 }
1449#endif
1450
danielk1977eaa06f62008-09-18 17:34:44 +00001451 /* Compute the total free space on the page */
1452 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001453 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001454 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001455 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001456 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001457 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001458 return SQLITE_CORRUPT_BKPT;
1459 }
1460 next = get2byte(&data[pc]);
1461 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001462 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1463 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001464 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001465 return SQLITE_CORRUPT_BKPT;
1466 }
shane85095702009-06-15 16:27:08 +00001467 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001468 pc = next;
1469 }
danielk197793c829c2009-06-03 17:26:17 +00001470
1471 /* At this point, nFree contains the sum of the offset to the start
1472 ** of the cell-content area plus the number of free bytes within
1473 ** the cell-content area. If this is greater than the usable-size
1474 ** of the page, then the page must be corrupted. This check also
1475 ** serves to verify that the offset to the start of the cell-content
1476 ** area, according to the page header, lies within the page.
1477 */
1478 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001479 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001480 }
shane5eff7cf2009-08-10 03:57:58 +00001481 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001482 pPage->isInit = 1;
1483 }
drh9e572e62004-04-23 23:43:10 +00001484 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001485}
1486
1487/*
drh8b2f49b2001-06-08 00:21:52 +00001488** Set up a raw page so that it looks like a database page holding
1489** no entries.
drhbd03cae2001-06-02 02:40:57 +00001490*/
drh9e572e62004-04-23 23:43:10 +00001491static void zeroPage(MemPage *pPage, int flags){
1492 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001493 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001494 u8 hdr = pPage->hdrOffset;
1495 u16 first;
drh9e572e62004-04-23 23:43:10 +00001496
danielk19773b8a05f2007-03-19 17:44:26 +00001497 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001498 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1499 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001500 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001501 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001502 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001503 memset(&data[hdr], 0, pBt->usableSize - hdr);
1504 }
drh1bd10f82008-12-10 21:19:56 +00001505 data[hdr] = (char)flags;
1506 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001507 memset(&data[hdr+1], 0, 4);
1508 data[hdr+7] = 0;
1509 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001510 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001511 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001512 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001513 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001514 pPage->aDataEnd = &data[pBt->usableSize];
1515 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001516 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001517 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1518 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001519 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001520 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001521}
1522
drh897a8202008-09-18 01:08:15 +00001523
1524/*
1525** Convert a DbPage obtained from the pager into a MemPage used by
1526** the btree layer.
1527*/
1528static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1529 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1530 pPage->aData = sqlite3PagerGetData(pDbPage);
1531 pPage->pDbPage = pDbPage;
1532 pPage->pBt = pBt;
1533 pPage->pgno = pgno;
1534 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1535 return pPage;
1536}
1537
drhbd03cae2001-06-02 02:40:57 +00001538/*
drh3aac2dd2004-04-26 14:10:20 +00001539** Get a page from the pager. Initialize the MemPage.pBt and
1540** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001541**
1542** If the noContent flag is set, it means that we do not care about
1543** the content of the page at this time. So do not go to the disk
1544** to fetch the content. Just fill in the content with zeros for now.
1545** If in the future we call sqlite3PagerWrite() on this page, that
1546** means we have started to be concerned about content and the disk
1547** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001548*/
danielk197730548662009-07-09 05:07:37 +00001549static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001550 BtShared *pBt, /* The btree */
1551 Pgno pgno, /* Number of the page to fetch */
1552 MemPage **ppPage, /* Return the page in this parameter */
1553 int noContent /* Do not load page content if true */
1554){
drh3aac2dd2004-04-26 14:10:20 +00001555 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001556 DbPage *pDbPage;
1557
drh1fee73e2007-08-29 04:00:57 +00001558 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001559 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001560 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001561 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001562 return SQLITE_OK;
1563}
1564
1565/*
danielk1977bea2a942009-01-20 17:06:27 +00001566** Retrieve a page from the pager cache. If the requested page is not
1567** already in the pager cache return NULL. Initialize the MemPage.pBt and
1568** MemPage.aData elements if needed.
1569*/
1570static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1571 DbPage *pDbPage;
1572 assert( sqlite3_mutex_held(pBt->mutex) );
1573 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1574 if( pDbPage ){
1575 return btreePageFromDbPage(pDbPage, pgno, pBt);
1576 }
1577 return 0;
1578}
1579
1580/*
danielk197789d40042008-11-17 14:20:56 +00001581** Return the size of the database file in pages. If there is any kind of
1582** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001583*/
drhb1299152010-03-30 22:58:33 +00001584static Pgno btreePagecount(BtShared *pBt){
1585 return pBt->nPage;
1586}
1587u32 sqlite3BtreeLastPage(Btree *p){
1588 assert( sqlite3BtreeHoldsMutex(p) );
1589 assert( ((p->pBt->nPage)&0x8000000)==0 );
1590 return (int)btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001591}
1592
1593/*
danielk197789bc4bc2009-07-21 19:25:24 +00001594** Get a page from the pager and initialize it. This routine is just a
1595** convenience wrapper around separate calls to btreeGetPage() and
1596** btreeInitPage().
1597**
1598** If an error occurs, then the value *ppPage is set to is undefined. It
1599** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001600*/
1601static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001602 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001603 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001604 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001605){
1606 int rc;
drh1fee73e2007-08-29 04:00:57 +00001607 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789bc4bc2009-07-21 19:25:24 +00001608
danba3cbf32010-06-30 04:29:03 +00001609 if( pgno>btreePagecount(pBt) ){
1610 rc = SQLITE_CORRUPT_BKPT;
1611 }else{
1612 rc = btreeGetPage(pBt, pgno, ppPage, 0);
1613 if( rc==SQLITE_OK ){
1614 rc = btreeInitPage(*ppPage);
1615 if( rc!=SQLITE_OK ){
1616 releasePage(*ppPage);
1617 }
danielk197789bc4bc2009-07-21 19:25:24 +00001618 }
drhee696e22004-08-30 16:52:17 +00001619 }
danba3cbf32010-06-30 04:29:03 +00001620
1621 testcase( pgno==0 );
1622 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001623 return rc;
1624}
1625
1626/*
drh3aac2dd2004-04-26 14:10:20 +00001627** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001628** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001629*/
drh4b70f112004-05-02 21:12:19 +00001630static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001631 if( pPage ){
1632 assert( pPage->aData );
1633 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001634 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1635 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001636 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001637 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001638 }
1639}
1640
1641/*
drha6abd042004-06-09 17:37:22 +00001642** During a rollback, when the pager reloads information into the cache
1643** so that the cache is restored to its original state at the start of
1644** the transaction, for each page restored this routine is called.
1645**
1646** This routine needs to reset the extra data section at the end of the
1647** page to agree with the restored data.
1648*/
danielk1977eaa06f62008-09-18 17:34:44 +00001649static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001650 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001651 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001652 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001653 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001654 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001655 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001656 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001657 /* pPage might not be a btree page; it might be an overflow page
1658 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001659 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001660 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001661 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001662 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001663 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001664 }
drha6abd042004-06-09 17:37:22 +00001665 }
1666}
1667
1668/*
drhe5fe6902007-12-07 18:55:28 +00001669** Invoke the busy handler for a btree.
1670*/
danielk19771ceedd32008-11-19 10:22:33 +00001671static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001672 BtShared *pBt = (BtShared*)pArg;
1673 assert( pBt->db );
1674 assert( sqlite3_mutex_held(pBt->db->mutex) );
1675 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1676}
1677
1678/*
drhad3e0102004-09-03 23:32:18 +00001679** Open a database file.
1680**
drh382c0242001-10-06 16:33:02 +00001681** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001682** then an ephemeral database is created. The ephemeral database might
1683** be exclusively in memory, or it might use a disk-based memory cache.
1684** Either way, the ephemeral database will be automatically deleted
1685** when sqlite3BtreeClose() is called.
1686**
drhe53831d2007-08-17 01:14:38 +00001687** If zFilename is ":memory:" then an in-memory database is created
1688** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001689**
drh33f111d2012-01-17 15:29:14 +00001690** The "flags" parameter is a bitmask that might contain bits like
1691** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00001692**
drhc47fd8e2009-04-30 13:30:32 +00001693** If the database is already opened in the same database connection
1694** and we are in shared cache mode, then the open will fail with an
1695** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1696** objects in the same database connection since doing so will lead
1697** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001698*/
drh23e11ca2004-05-04 17:27:28 +00001699int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001700 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001701 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001702 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001703 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001704 int flags, /* Options */
1705 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001706){
drh7555d8e2009-03-20 13:15:30 +00001707 BtShared *pBt = 0; /* Shared part of btree structure */
1708 Btree *p; /* Handle to return */
1709 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1710 int rc = SQLITE_OK; /* Result code from this function */
1711 u8 nReserve; /* Byte of unused space on each page */
1712 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001713
drh75c014c2010-08-30 15:02:28 +00001714 /* True if opening an ephemeral, temporary database */
1715 const int isTempDb = zFilename==0 || zFilename[0]==0;
1716
danielk1977aef0bf62005-12-30 16:28:01 +00001717 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001718 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001719 */
drhb0a7c9c2010-12-06 21:09:59 +00001720#ifdef SQLITE_OMIT_MEMORYDB
1721 const int isMemdb = 0;
1722#else
1723 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00001724 || (isTempDb && sqlite3TempInMemory(db))
1725 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00001726#endif
1727
drhe5fe6902007-12-07 18:55:28 +00001728 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001729 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001730 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001731 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1732
1733 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1734 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1735
1736 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1737 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001738
drh75c014c2010-08-30 15:02:28 +00001739 if( isMemdb ){
1740 flags |= BTREE_MEMORY;
1741 }
1742 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1743 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1744 }
drh17435752007-08-16 04:30:38 +00001745 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001746 if( !p ){
1747 return SQLITE_NOMEM;
1748 }
1749 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001750 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001751#ifndef SQLITE_OMIT_SHARED_CACHE
1752 p->lock.pBtree = p;
1753 p->lock.iTable = 1;
1754#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001755
drh198bf392006-01-06 21:52:49 +00001756#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001757 /*
1758 ** If this Btree is a candidate for shared cache, try to find an
1759 ** existing BtShared object that we can share with
1760 */
drh4ab9d252012-05-26 20:08:49 +00001761 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00001762 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001763 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001764 char *zFullPathname = sqlite3Malloc(nFullPathname);
drh30ddce62011-10-15 00:16:30 +00001765 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhff0587c2007-08-29 17:43:19 +00001766 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001767 if( !zFullPathname ){
1768 sqlite3_free(p);
1769 return SQLITE_NOMEM;
1770 }
drhafc8b7f2012-05-26 18:06:38 +00001771 if( isMemdb ){
1772 memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1);
1773 }else{
1774 rc = sqlite3OsFullPathname(pVfs, zFilename,
1775 nFullPathname, zFullPathname);
1776 if( rc ){
1777 sqlite3_free(zFullPathname);
1778 sqlite3_free(p);
1779 return rc;
1780 }
drh070ad6b2011-11-17 11:43:19 +00001781 }
drh30ddce62011-10-15 00:16:30 +00001782#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00001783 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1784 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001785 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001786 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00001787#endif
drh78f82d12008-09-02 00:52:52 +00001788 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001789 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00001790 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00001791 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001792 int iDb;
1793 for(iDb=db->nDb-1; iDb>=0; iDb--){
1794 Btree *pExisting = db->aDb[iDb].pBt;
1795 if( pExisting && pExisting->pBt==pBt ){
1796 sqlite3_mutex_leave(mutexShared);
1797 sqlite3_mutex_leave(mutexOpen);
1798 sqlite3_free(zFullPathname);
1799 sqlite3_free(p);
1800 return SQLITE_CONSTRAINT;
1801 }
1802 }
drhff0587c2007-08-29 17:43:19 +00001803 p->pBt = pBt;
1804 pBt->nRef++;
1805 break;
1806 }
1807 }
1808 sqlite3_mutex_leave(mutexShared);
1809 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001810 }
drhff0587c2007-08-29 17:43:19 +00001811#ifdef SQLITE_DEBUG
1812 else{
1813 /* In debug mode, we mark all persistent databases as sharable
1814 ** even when they are not. This exercises the locking code and
1815 ** gives more opportunity for asserts(sqlite3_mutex_held())
1816 ** statements to find locking problems.
1817 */
1818 p->sharable = 1;
1819 }
1820#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001821 }
1822#endif
drha059ad02001-04-17 20:09:11 +00001823 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001824 /*
1825 ** The following asserts make sure that structures used by the btree are
1826 ** the right size. This is to guard against size changes that result
1827 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001828 */
drhe53831d2007-08-17 01:14:38 +00001829 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1830 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1831 assert( sizeof(u32)==4 );
1832 assert( sizeof(u16)==2 );
1833 assert( sizeof(Pgno)==4 );
1834
1835 pBt = sqlite3MallocZero( sizeof(*pBt) );
1836 if( pBt==0 ){
1837 rc = SQLITE_NOMEM;
1838 goto btree_open_out;
1839 }
danielk197771d5d2c2008-09-29 11:49:47 +00001840 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001841 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001842 if( rc==SQLITE_OK ){
1843 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1844 }
1845 if( rc!=SQLITE_OK ){
1846 goto btree_open_out;
1847 }
shanehbd2aaf92010-09-01 02:38:21 +00001848 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00001849 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001850 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001851 p->pBt = pBt;
1852
drhe53831d2007-08-17 01:14:38 +00001853 pBt->pCursor = 0;
1854 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00001855 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00001856#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00001857 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00001858#endif
drhb2eced52010-08-12 02:41:12 +00001859 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001860 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1861 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001862 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001863#ifndef SQLITE_OMIT_AUTOVACUUM
1864 /* If the magic name ":memory:" will create an in-memory database, then
1865 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1866 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1867 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1868 ** regular file-name. In this case the auto-vacuum applies as per normal.
1869 */
1870 if( zFilename && !isMemdb ){
1871 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1872 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1873 }
1874#endif
1875 nReserve = 0;
1876 }else{
1877 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00001878 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00001879#ifndef SQLITE_OMIT_AUTOVACUUM
1880 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1881 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1882#endif
1883 }
drhfa9601a2009-06-18 17:22:39 +00001884 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001885 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001886 pBt->usableSize = pBt->pageSize - nReserve;
1887 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001888
1889#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1890 /* Add the new BtShared object to the linked list sharable BtShareds.
1891 */
1892 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00001893 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00001894 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00001895 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00001896 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001897 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001898 if( pBt->mutex==0 ){
1899 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001900 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001901 goto btree_open_out;
1902 }
drhff0587c2007-08-29 17:43:19 +00001903 }
drhe53831d2007-08-17 01:14:38 +00001904 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001905 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1906 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001907 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001908 }
drheee46cf2004-11-06 00:02:48 +00001909#endif
drh90f5ecb2004-07-22 01:19:35 +00001910 }
danielk1977aef0bf62005-12-30 16:28:01 +00001911
drhcfed7bc2006-03-13 14:28:05 +00001912#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001913 /* If the new Btree uses a sharable pBtShared, then link the new
1914 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001915 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001916 */
drhe53831d2007-08-17 01:14:38 +00001917 if( p->sharable ){
1918 int i;
1919 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001920 for(i=0; i<db->nDb; i++){
1921 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001922 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1923 if( p->pBt<pSib->pBt ){
1924 p->pNext = pSib;
1925 p->pPrev = 0;
1926 pSib->pPrev = p;
1927 }else{
drhabddb0c2007-08-20 13:14:28 +00001928 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001929 pSib = pSib->pNext;
1930 }
1931 p->pNext = pSib->pNext;
1932 p->pPrev = pSib;
1933 if( p->pNext ){
1934 p->pNext->pPrev = p;
1935 }
1936 pSib->pNext = p;
1937 }
1938 break;
1939 }
1940 }
danielk1977aef0bf62005-12-30 16:28:01 +00001941 }
danielk1977aef0bf62005-12-30 16:28:01 +00001942#endif
1943 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001944
1945btree_open_out:
1946 if( rc!=SQLITE_OK ){
1947 if( pBt && pBt->pPager ){
1948 sqlite3PagerClose(pBt->pPager);
1949 }
drh17435752007-08-16 04:30:38 +00001950 sqlite3_free(pBt);
1951 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001952 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00001953 }else{
1954 /* If the B-Tree was successfully opened, set the pager-cache size to the
1955 ** default value. Except, when opening on an existing shared pager-cache,
1956 ** do not change the pager-cache size.
1957 */
1958 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
1959 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
1960 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001961 }
drh7555d8e2009-03-20 13:15:30 +00001962 if( mutexOpen ){
1963 assert( sqlite3_mutex_held(mutexOpen) );
1964 sqlite3_mutex_leave(mutexOpen);
1965 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001966 return rc;
drha059ad02001-04-17 20:09:11 +00001967}
1968
1969/*
drhe53831d2007-08-17 01:14:38 +00001970** Decrement the BtShared.nRef counter. When it reaches zero,
1971** remove the BtShared structure from the sharing list. Return
1972** true if the BtShared.nRef counter reaches zero and return
1973** false if it is still positive.
1974*/
1975static int removeFromSharingList(BtShared *pBt){
1976#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00001977 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00001978 BtShared *pList;
1979 int removed = 0;
1980
drhd677b3d2007-08-20 22:48:41 +00001981 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00001982 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00001983 sqlite3_mutex_enter(pMaster);
1984 pBt->nRef--;
1985 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001986 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1987 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001988 }else{
drh78f82d12008-09-02 00:52:52 +00001989 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001990 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001991 pList=pList->pNext;
1992 }
drh34004ce2008-07-11 16:15:17 +00001993 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001994 pList->pNext = pBt->pNext;
1995 }
1996 }
drh3285db22007-09-03 22:00:39 +00001997 if( SQLITE_THREADSAFE ){
1998 sqlite3_mutex_free(pBt->mutex);
1999 }
drhe53831d2007-08-17 01:14:38 +00002000 removed = 1;
2001 }
2002 sqlite3_mutex_leave(pMaster);
2003 return removed;
2004#else
2005 return 1;
2006#endif
2007}
2008
2009/*
drhf7141992008-06-19 00:16:08 +00002010** Make sure pBt->pTmpSpace points to an allocation of
2011** MX_CELL_SIZE(pBt) bytes.
2012*/
2013static void allocateTempSpace(BtShared *pBt){
2014 if( !pBt->pTmpSpace ){
2015 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2016 }
2017}
2018
2019/*
2020** Free the pBt->pTmpSpace allocation
2021*/
2022static void freeTempSpace(BtShared *pBt){
2023 sqlite3PageFree( pBt->pTmpSpace);
2024 pBt->pTmpSpace = 0;
2025}
2026
2027/*
drha059ad02001-04-17 20:09:11 +00002028** Close an open database and invalidate all cursors.
2029*/
danielk1977aef0bf62005-12-30 16:28:01 +00002030int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002031 BtShared *pBt = p->pBt;
2032 BtCursor *pCur;
2033
danielk1977aef0bf62005-12-30 16:28:01 +00002034 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002035 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002036 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002037 pCur = pBt->pCursor;
2038 while( pCur ){
2039 BtCursor *pTmp = pCur;
2040 pCur = pCur->pNext;
2041 if( pTmp->pBtree==p ){
2042 sqlite3BtreeCloseCursor(pTmp);
2043 }
drha059ad02001-04-17 20:09:11 +00002044 }
danielk1977aef0bf62005-12-30 16:28:01 +00002045
danielk19778d34dfd2006-01-24 16:37:57 +00002046 /* Rollback any active transaction and free the handle structure.
2047 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2048 ** this handle.
2049 */
drh0f198a72012-02-13 16:43:16 +00002050 sqlite3BtreeRollback(p, SQLITE_OK);
drhe53831d2007-08-17 01:14:38 +00002051 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002052
danielk1977aef0bf62005-12-30 16:28:01 +00002053 /* If there are still other outstanding references to the shared-btree
2054 ** structure, return now. The remainder of this procedure cleans
2055 ** up the shared-btree.
2056 */
drhe53831d2007-08-17 01:14:38 +00002057 assert( p->wantToLock==0 && p->locked==0 );
2058 if( !p->sharable || removeFromSharingList(pBt) ){
2059 /* The pBt is no longer on the sharing list, so we can access
2060 ** it without having to hold the mutex.
2061 **
2062 ** Clean out and delete the BtShared object.
2063 */
2064 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002065 sqlite3PagerClose(pBt->pPager);
2066 if( pBt->xFreeSchema && pBt->pSchema ){
2067 pBt->xFreeSchema(pBt->pSchema);
2068 }
drhb9755982010-07-24 16:34:37 +00002069 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002070 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002071 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002072 }
2073
drhe53831d2007-08-17 01:14:38 +00002074#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002075 assert( p->wantToLock==0 );
2076 assert( p->locked==0 );
2077 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2078 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002079#endif
2080
drhe53831d2007-08-17 01:14:38 +00002081 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002082 return SQLITE_OK;
2083}
2084
2085/*
drhda47d772002-12-02 04:25:19 +00002086** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002087**
2088** The maximum number of cache pages is set to the absolute
2089** value of mxPage. If mxPage is negative, the pager will
2090** operate asynchronously - it will not stop to do fsync()s
2091** to insure data is written to the disk surface before
2092** continuing. Transactions still work if synchronous is off,
2093** and the database cannot be corrupted if this program
2094** crashes. But if the operating system crashes or there is
2095** an abrupt power failure when synchronous is off, the database
2096** could be left in an inconsistent and unrecoverable state.
2097** Synchronous is on by default so database corruption is not
2098** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002099*/
danielk1977aef0bf62005-12-30 16:28:01 +00002100int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2101 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002102 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002103 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002104 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002105 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002106 return SQLITE_OK;
2107}
2108
2109/*
drh973b6e32003-02-12 14:09:42 +00002110** Change the way data is synced to disk in order to increase or decrease
2111** how well the database resists damage due to OS crashes and power
2112** failures. Level 1 is the same as asynchronous (no syncs() occur and
2113** there is a high probability of damage) Level 2 is the default. There
2114** is a very low but non-zero probability of damage. Level 3 reduces the
2115** probability of damage to near zero but with a write performance reduction.
2116*/
danielk197793758c82005-01-21 08:13:14 +00002117#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhc97d8462010-11-19 18:23:35 +00002118int sqlite3BtreeSetSafetyLevel(
2119 Btree *p, /* The btree to set the safety level on */
2120 int level, /* PRAGMA synchronous. 1=OFF, 2=NORMAL, 3=FULL */
2121 int fullSync, /* PRAGMA fullfsync. */
2122 int ckptFullSync /* PRAGMA checkpoint_fullfync */
2123){
danielk1977aef0bf62005-12-30 16:28:01 +00002124 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002125 assert( sqlite3_mutex_held(p->db->mutex) );
drhc97d8462010-11-19 18:23:35 +00002126 assert( level>=1 && level<=3 );
drhd677b3d2007-08-20 22:48:41 +00002127 sqlite3BtreeEnter(p);
drhc97d8462010-11-19 18:23:35 +00002128 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync, ckptFullSync);
drhd677b3d2007-08-20 22:48:41 +00002129 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002130 return SQLITE_OK;
2131}
danielk197793758c82005-01-21 08:13:14 +00002132#endif
drh973b6e32003-02-12 14:09:42 +00002133
drh2c8997b2005-08-27 16:36:48 +00002134/*
2135** Return TRUE if the given btree is set to safety level 1. In other
2136** words, return TRUE if no sync() occurs on the disk files.
2137*/
danielk1977aef0bf62005-12-30 16:28:01 +00002138int sqlite3BtreeSyncDisabled(Btree *p){
2139 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002140 int rc;
drhe5fe6902007-12-07 18:55:28 +00002141 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002142 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002143 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002144 rc = sqlite3PagerNosync(pBt->pPager);
2145 sqlite3BtreeLeave(p);
2146 return rc;
drh2c8997b2005-08-27 16:36:48 +00002147}
2148
drh973b6e32003-02-12 14:09:42 +00002149/*
drh90f5ecb2004-07-22 01:19:35 +00002150** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002151** Or, if the page size has already been fixed, return SQLITE_READONLY
2152** without changing anything.
drh06f50212004-11-02 14:24:33 +00002153**
2154** The page size must be a power of 2 between 512 and 65536. If the page
2155** size supplied does not meet this constraint then the page size is not
2156** changed.
2157**
2158** Page sizes are constrained to be a power of two so that the region
2159** of the database file used for locking (beginning at PENDING_BYTE,
2160** the first byte past the 1GB boundary, 0x40000000) needs to occur
2161** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002162**
2163** If parameter nReserve is less than zero, then the number of reserved
2164** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002165**
drhc9166342012-01-05 23:32:06 +00002166** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002167** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002168*/
drhce4869f2009-04-02 20:16:58 +00002169int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002170 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002171 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002172 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002173 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002174 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002175 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002176 return SQLITE_READONLY;
2177 }
2178 if( nReserve<0 ){
2179 nReserve = pBt->pageSize - pBt->usableSize;
2180 }
drhf49661a2008-12-10 16:45:50 +00002181 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002182 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2183 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002184 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002185 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002186 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002187 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002188 }
drhfa9601a2009-06-18 17:22:39 +00002189 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002190 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002191 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002192 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002193 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002194}
2195
2196/*
2197** Return the currently defined page size
2198*/
danielk1977aef0bf62005-12-30 16:28:01 +00002199int sqlite3BtreeGetPageSize(Btree *p){
2200 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002201}
drh7f751222009-03-17 22:33:00 +00002202
drha1f38532012-10-01 12:44:26 +00002203#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
dan0094f372012-09-28 20:23:42 +00002204/*
2205** This function is similar to sqlite3BtreeGetReserve(), except that it
2206** may only be called if it is guaranteed that the b-tree mutex is already
2207** held.
2208**
2209** This is useful in one special case in the backup API code where it is
2210** known that the shared b-tree mutex is held, but the mutex on the
2211** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2212** were to be called, it might collide with some other operation on the
2213** database handle that owns *p, causing undefined behaviour.
2214*/
2215int sqlite3BtreeGetReserveNoMutex(Btree *p){
2216 assert( sqlite3_mutex_held(p->pBt->mutex) );
2217 return p->pBt->pageSize - p->pBt->usableSize;
2218}
drha1f38532012-10-01 12:44:26 +00002219#endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */
dan0094f372012-09-28 20:23:42 +00002220
danbb2b4412011-04-06 17:54:31 +00002221#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh7f751222009-03-17 22:33:00 +00002222/*
2223** Return the number of bytes of space at the end of every page that
2224** are intentually left unused. This is the "reserved" space that is
2225** sometimes used by extensions.
2226*/
danielk1977aef0bf62005-12-30 16:28:01 +00002227int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002228 int n;
2229 sqlite3BtreeEnter(p);
2230 n = p->pBt->pageSize - p->pBt->usableSize;
2231 sqlite3BtreeLeave(p);
2232 return n;
drh2011d5f2004-07-22 02:40:37 +00002233}
drhf8e632b2007-05-08 14:51:36 +00002234
2235/*
2236** Set the maximum page count for a database if mxPage is positive.
2237** No changes are made if mxPage is 0 or negative.
2238** Regardless of the value of mxPage, return the maximum page count.
2239*/
2240int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002241 int n;
2242 sqlite3BtreeEnter(p);
2243 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2244 sqlite3BtreeLeave(p);
2245 return n;
drhf8e632b2007-05-08 14:51:36 +00002246}
drh5b47efa2010-02-12 18:18:39 +00002247
2248/*
drhc9166342012-01-05 23:32:06 +00002249** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2250** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002251** setting after the change.
2252*/
2253int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2254 int b;
drhaf034ed2010-02-12 19:46:26 +00002255 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002256 sqlite3BtreeEnter(p);
2257 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002258 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2259 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002260 }
drhc9166342012-01-05 23:32:06 +00002261 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002262 sqlite3BtreeLeave(p);
2263 return b;
2264}
danielk1977576ec6b2005-01-21 11:55:25 +00002265#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002266
2267/*
danielk1977951af802004-11-05 15:45:09 +00002268** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2269** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2270** is disabled. The default value for the auto-vacuum property is
2271** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2272*/
danielk1977aef0bf62005-12-30 16:28:01 +00002273int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002274#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002275 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002276#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002277 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002278 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002279 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002280
2281 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002282 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002283 rc = SQLITE_READONLY;
2284 }else{
drh076d4662009-02-18 20:31:18 +00002285 pBt->autoVacuum = av ?1:0;
2286 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002287 }
drhd677b3d2007-08-20 22:48:41 +00002288 sqlite3BtreeLeave(p);
2289 return rc;
danielk1977951af802004-11-05 15:45:09 +00002290#endif
2291}
2292
2293/*
2294** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2295** enabled 1 is returned. Otherwise 0.
2296*/
danielk1977aef0bf62005-12-30 16:28:01 +00002297int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002298#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002299 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002300#else
drhd677b3d2007-08-20 22:48:41 +00002301 int rc;
2302 sqlite3BtreeEnter(p);
2303 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002304 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2305 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2306 BTREE_AUTOVACUUM_INCR
2307 );
drhd677b3d2007-08-20 22:48:41 +00002308 sqlite3BtreeLeave(p);
2309 return rc;
danielk1977951af802004-11-05 15:45:09 +00002310#endif
2311}
2312
2313
2314/*
drha34b6762004-05-07 13:30:42 +00002315** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002316** also acquire a readlock on that file.
2317**
2318** SQLITE_OK is returned on success. If the file is not a
2319** well-formed database file, then SQLITE_CORRUPT is returned.
2320** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002321** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002322*/
danielk1977aef0bf62005-12-30 16:28:01 +00002323static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002324 int rc; /* Result code from subfunctions */
2325 MemPage *pPage1; /* Page 1 of the database file */
2326 int nPage; /* Number of pages in the database */
2327 int nPageFile = 0; /* Number of pages in the database file */
2328 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002329
drh1fee73e2007-08-29 04:00:57 +00002330 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002331 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002332 rc = sqlite3PagerSharedLock(pBt->pPager);
2333 if( rc!=SQLITE_OK ) return rc;
danielk197730548662009-07-09 05:07:37 +00002334 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002335 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002336
2337 /* Do some checking to help insure the file we opened really is
2338 ** a valid database file.
2339 */
drhc2a4bab2010-04-02 12:46:45 +00002340 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002341 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002342 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002343 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002344 }
2345 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002346 u32 pageSize;
2347 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002348 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002349 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002350 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002351 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002352 }
dan5cf53532010-05-01 16:40:20 +00002353
2354#ifdef SQLITE_OMIT_WAL
2355 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002356 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002357 }
2358 if( page1[19]>1 ){
2359 goto page1_init_failed;
2360 }
2361#else
dane04dc882010-04-20 18:53:15 +00002362 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002363 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002364 }
dane04dc882010-04-20 18:53:15 +00002365 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002366 goto page1_init_failed;
2367 }
drhe5ae5732008-06-15 02:51:47 +00002368
dana470aeb2010-04-21 11:43:38 +00002369 /* If the write version is set to 2, this database should be accessed
2370 ** in WAL mode. If the log is not already open, open it now. Then
2371 ** return SQLITE_OK and return without populating BtShared.pPage1.
2372 ** The caller detects this and calls this function again. This is
2373 ** required as the version of page 1 currently in the page1 buffer
2374 ** may not be the latest version - there may be a newer one in the log
2375 ** file.
2376 */
drhc9166342012-01-05 23:32:06 +00002377 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002378 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002379 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002380 if( rc!=SQLITE_OK ){
2381 goto page1_init_failed;
2382 }else if( isOpen==0 ){
2383 releasePage(pPage1);
2384 return SQLITE_OK;
2385 }
dan8b5444b2010-04-27 14:37:47 +00002386 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002387 }
dan5cf53532010-05-01 16:40:20 +00002388#endif
dane04dc882010-04-20 18:53:15 +00002389
drhe5ae5732008-06-15 02:51:47 +00002390 /* The maximum embedded fraction must be exactly 25%. And the minimum
2391 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2392 ** The original design allowed these amounts to vary, but as of
2393 ** version 3.6.0, we require them to be fixed.
2394 */
2395 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2396 goto page1_init_failed;
2397 }
drhb2eced52010-08-12 02:41:12 +00002398 pageSize = (page1[16]<<8) | (page1[17]<<16);
2399 if( ((pageSize-1)&pageSize)!=0
2400 || pageSize>SQLITE_MAX_PAGE_SIZE
2401 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002402 ){
drh07d183d2005-05-01 22:52:42 +00002403 goto page1_init_failed;
2404 }
2405 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002406 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002407 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002408 /* After reading the first page of the database assuming a page size
2409 ** of BtShared.pageSize, we have discovered that the page-size is
2410 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2411 ** zero and return SQLITE_OK. The caller will call this function
2412 ** again with the correct page-size.
2413 */
2414 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002415 pBt->usableSize = usableSize;
2416 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002417 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002418 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2419 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002420 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002421 }
danecac6702011-02-09 18:19:20 +00002422 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002423 rc = SQLITE_CORRUPT_BKPT;
2424 goto page1_init_failed;
2425 }
drhb33e1b92009-06-18 11:29:20 +00002426 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002427 goto page1_init_failed;
2428 }
drh43b18e12010-08-17 19:40:08 +00002429 pBt->pageSize = pageSize;
2430 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002431#ifndef SQLITE_OMIT_AUTOVACUUM
2432 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002433 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002434#endif
drh306dc212001-05-21 13:45:10 +00002435 }
drhb6f41482004-05-14 01:58:11 +00002436
2437 /* maxLocal is the maximum amount of payload to store locally for
2438 ** a cell. Make sure it is small enough so that at least minFanout
2439 ** cells can will fit on one page. We assume a 10-byte page header.
2440 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002441 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002442 ** 4-byte child pointer
2443 ** 9-byte nKey value
2444 ** 4-byte nData value
2445 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002446 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002447 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2448 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002449 */
shaneh1df2db72010-08-18 02:28:48 +00002450 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2451 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2452 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2453 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002454 if( pBt->maxLocal>127 ){
2455 pBt->max1bytePayload = 127;
2456 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002457 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002458 }
drh2e38c322004-09-03 18:38:44 +00002459 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002460 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002461 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002462 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002463
drh72f82862001-05-24 21:06:34 +00002464page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002465 releasePage(pPage1);
2466 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002467 return rc;
drh306dc212001-05-21 13:45:10 +00002468}
2469
2470/*
drhb8ca3072001-12-05 00:21:20 +00002471** If there are no outstanding cursors and we are not in the middle
2472** of a transaction but there is a read lock on the database, then
2473** this routine unrefs the first page of the database file which
2474** has the effect of releasing the read lock.
2475**
drhb8ca3072001-12-05 00:21:20 +00002476** If there is a transaction in progress, this routine is a no-op.
2477*/
danielk1977aef0bf62005-12-30 16:28:01 +00002478static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002479 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002480 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2481 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002482 assert( pBt->pPage1->aData );
2483 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2484 assert( pBt->pPage1->aData );
2485 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002486 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002487 }
2488}
2489
2490/*
drhe39f2f92009-07-23 01:43:59 +00002491** If pBt points to an empty file then convert that empty file
2492** into a new empty database by initializing the first page of
2493** the database.
drh8b2f49b2001-06-08 00:21:52 +00002494*/
danielk1977aef0bf62005-12-30 16:28:01 +00002495static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002496 MemPage *pP1;
2497 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002498 int rc;
drhd677b3d2007-08-20 22:48:41 +00002499
drh1fee73e2007-08-29 04:00:57 +00002500 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002501 if( pBt->nPage>0 ){
2502 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002503 }
drh3aac2dd2004-04-26 14:10:20 +00002504 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002505 assert( pP1!=0 );
2506 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002507 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002508 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002509 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2510 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002511 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2512 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002513 data[18] = 1;
2514 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002515 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2516 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002517 data[21] = 64;
2518 data[22] = 32;
2519 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002520 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002521 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002522 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002523#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002524 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002525 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002526 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002527 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002528#endif
drhdd3cd972010-03-27 17:12:36 +00002529 pBt->nPage = 1;
2530 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002531 return SQLITE_OK;
2532}
2533
2534/*
danb483eba2012-10-13 19:58:11 +00002535** Initialize the first page of the database file (creating a database
2536** consisting of a single page and no schema objects). Return SQLITE_OK
2537** if successful, or an SQLite error code otherwise.
2538*/
2539int sqlite3BtreeNewDb(Btree *p){
2540 int rc;
2541 sqlite3BtreeEnter(p);
2542 p->pBt->nPage = 0;
2543 rc = newDatabase(p->pBt);
2544 sqlite3BtreeLeave(p);
2545 return rc;
2546}
2547
2548/*
danielk1977ee5741e2004-05-31 10:01:34 +00002549** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002550** is started if the second argument is nonzero, otherwise a read-
2551** transaction. If the second argument is 2 or more and exclusive
2552** transaction is started, meaning that no other process is allowed
2553** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002554** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002555** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002556**
danielk1977ee5741e2004-05-31 10:01:34 +00002557** A write-transaction must be started before attempting any
2558** changes to the database. None of the following routines
2559** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002560**
drh23e11ca2004-05-04 17:27:28 +00002561** sqlite3BtreeCreateTable()
2562** sqlite3BtreeCreateIndex()
2563** sqlite3BtreeClearTable()
2564** sqlite3BtreeDropTable()
2565** sqlite3BtreeInsert()
2566** sqlite3BtreeDelete()
2567** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002568**
drhb8ef32c2005-03-14 02:01:49 +00002569** If an initial attempt to acquire the lock fails because of lock contention
2570** and the database was previously unlocked, then invoke the busy handler
2571** if there is one. But if there was previously a read-lock, do not
2572** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2573** returned when there is already a read-lock in order to avoid a deadlock.
2574**
2575** Suppose there are two processes A and B. A has a read lock and B has
2576** a reserved lock. B tries to promote to exclusive but is blocked because
2577** of A's read lock. A tries to promote to reserved but is blocked by B.
2578** One or the other of the two processes must give way or there can be
2579** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2580** when A already has a read lock, we encourage A to give up and let B
2581** proceed.
drha059ad02001-04-17 20:09:11 +00002582*/
danielk1977aef0bf62005-12-30 16:28:01 +00002583int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002584 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002585 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002586 int rc = SQLITE_OK;
2587
drhd677b3d2007-08-20 22:48:41 +00002588 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002589 btreeIntegrity(p);
2590
danielk1977ee5741e2004-05-31 10:01:34 +00002591 /* If the btree is already in a write-transaction, or it
2592 ** is already in a read-transaction and a read-transaction
2593 ** is requested, this is a no-op.
2594 */
danielk1977aef0bf62005-12-30 16:28:01 +00002595 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002596 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002597 }
drhb8ef32c2005-03-14 02:01:49 +00002598
2599 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00002600 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002601 rc = SQLITE_READONLY;
2602 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002603 }
2604
danielk1977404ca072009-03-16 13:19:36 +00002605#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002606 /* If another database handle has already opened a write transaction
2607 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002608 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002609 */
drhc9166342012-01-05 23:32:06 +00002610 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2611 || (pBt->btsFlags & BTS_PENDING)!=0
2612 ){
danielk1977404ca072009-03-16 13:19:36 +00002613 pBlock = pBt->pWriter->db;
2614 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002615 BtLock *pIter;
2616 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2617 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002618 pBlock = pIter->pBtree->db;
2619 break;
danielk1977641b0f42007-12-21 04:47:25 +00002620 }
2621 }
2622 }
danielk1977404ca072009-03-16 13:19:36 +00002623 if( pBlock ){
2624 sqlite3ConnectionBlocked(p->db, pBlock);
2625 rc = SQLITE_LOCKED_SHAREDCACHE;
2626 goto trans_begun;
2627 }
danielk1977641b0f42007-12-21 04:47:25 +00002628#endif
2629
danielk1977602b4662009-07-02 07:47:33 +00002630 /* Any read-only or read-write transaction implies a read-lock on
2631 ** page 1. So if some other shared-cache client already has a write-lock
2632 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002633 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2634 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002635
drhc9166342012-01-05 23:32:06 +00002636 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2637 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00002638 do {
danielk1977295dc102009-04-01 19:07:03 +00002639 /* Call lockBtree() until either pBt->pPage1 is populated or
2640 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2641 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2642 ** reading page 1 it discovers that the page-size of the database
2643 ** file is not pBt->pageSize. In this case lockBtree() will update
2644 ** pBt->pageSize to the page-size of the file on disk.
2645 */
2646 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002647
drhb8ef32c2005-03-14 02:01:49 +00002648 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00002649 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00002650 rc = SQLITE_READONLY;
2651 }else{
danielk1977d8293352009-04-30 09:10:37 +00002652 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002653 if( rc==SQLITE_OK ){
2654 rc = newDatabase(pBt);
2655 }
drhb8ef32c2005-03-14 02:01:49 +00002656 }
2657 }
2658
danielk1977bd434552009-03-18 10:33:00 +00002659 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002660 unlockBtreeIfUnused(pBt);
2661 }
danf9b76712010-06-01 14:12:45 +00002662 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002663 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002664
2665 if( rc==SQLITE_OK ){
2666 if( p->inTrans==TRANS_NONE ){
2667 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002668#ifndef SQLITE_OMIT_SHARED_CACHE
2669 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00002670 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00002671 p->lock.eLock = READ_LOCK;
2672 p->lock.pNext = pBt->pLock;
2673 pBt->pLock = &p->lock;
2674 }
2675#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002676 }
2677 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2678 if( p->inTrans>pBt->inTransaction ){
2679 pBt->inTransaction = p->inTrans;
2680 }
danielk1977404ca072009-03-16 13:19:36 +00002681 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002682 MemPage *pPage1 = pBt->pPage1;
2683#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002684 assert( !pBt->pWriter );
2685 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00002686 pBt->btsFlags &= ~BTS_EXCLUSIVE;
2687 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00002688#endif
dan59257dc2010-08-04 11:34:31 +00002689
2690 /* If the db-size header field is incorrect (as it may be if an old
2691 ** client has been writing the database file), update it now. Doing
2692 ** this sooner rather than later means the database size can safely
2693 ** re-read the database size from page 1 if a savepoint or transaction
2694 ** rollback occurs within the transaction.
2695 */
2696 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2697 rc = sqlite3PagerWrite(pPage1->pDbPage);
2698 if( rc==SQLITE_OK ){
2699 put4byte(&pPage1->aData[28], pBt->nPage);
2700 }
2701 }
2702 }
danielk1977aef0bf62005-12-30 16:28:01 +00002703 }
2704
drhd677b3d2007-08-20 22:48:41 +00002705
2706trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002707 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002708 /* This call makes sure that the pager has the correct number of
2709 ** open savepoints. If the second parameter is greater than 0 and
2710 ** the sub-journal is not already open, then it will be opened here.
2711 */
danielk1977fd7f0452008-12-17 17:30:26 +00002712 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2713 }
danielk197712dd5492008-12-18 15:45:07 +00002714
danielk1977aef0bf62005-12-30 16:28:01 +00002715 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002716 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002717 return rc;
drha059ad02001-04-17 20:09:11 +00002718}
2719
danielk1977687566d2004-11-02 12:56:41 +00002720#ifndef SQLITE_OMIT_AUTOVACUUM
2721
2722/*
2723** Set the pointer-map entries for all children of page pPage. Also, if
2724** pPage contains cells that point to overflow pages, set the pointer
2725** map entries for the overflow pages as well.
2726*/
2727static int setChildPtrmaps(MemPage *pPage){
2728 int i; /* Counter variable */
2729 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002730 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002731 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002732 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002733 Pgno pgno = pPage->pgno;
2734
drh1fee73e2007-08-29 04:00:57 +00002735 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002736 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002737 if( rc!=SQLITE_OK ){
2738 goto set_child_ptrmaps_out;
2739 }
danielk1977687566d2004-11-02 12:56:41 +00002740 nCell = pPage->nCell;
2741
2742 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002743 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002744
drh98add2e2009-07-20 17:11:49 +00002745 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002746
danielk1977687566d2004-11-02 12:56:41 +00002747 if( !pPage->leaf ){
2748 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002749 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002750 }
2751 }
2752
2753 if( !pPage->leaf ){
2754 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002755 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002756 }
2757
2758set_child_ptrmaps_out:
2759 pPage->isInit = isInitOrig;
2760 return rc;
2761}
2762
2763/*
drhf3aed592009-07-08 18:12:49 +00002764** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2765** that it points to iTo. Parameter eType describes the type of pointer to
2766** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002767**
2768** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2769** page of pPage.
2770**
2771** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2772** page pointed to by one of the cells on pPage.
2773**
2774** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2775** overflow page in the list.
2776*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002777static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002778 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002779 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002780 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002781 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002782 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002783 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002784 }
danielk1977f78fc082004-11-02 14:40:32 +00002785 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002786 }else{
drhf49661a2008-12-10 16:45:50 +00002787 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002788 int i;
2789 int nCell;
2790
danielk197730548662009-07-09 05:07:37 +00002791 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002792 nCell = pPage->nCell;
2793
danielk1977687566d2004-11-02 12:56:41 +00002794 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002795 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002796 if( eType==PTRMAP_OVERFLOW1 ){
2797 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002798 btreeParseCellPtr(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00002799 if( info.iOverflow
2800 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
2801 && iFrom==get4byte(&pCell[info.iOverflow])
2802 ){
2803 put4byte(&pCell[info.iOverflow], iTo);
2804 break;
danielk1977687566d2004-11-02 12:56:41 +00002805 }
2806 }else{
2807 if( get4byte(pCell)==iFrom ){
2808 put4byte(pCell, iTo);
2809 break;
2810 }
2811 }
2812 }
2813
2814 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002815 if( eType!=PTRMAP_BTREE ||
2816 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002817 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002818 }
danielk1977687566d2004-11-02 12:56:41 +00002819 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2820 }
2821
2822 pPage->isInit = isInitOrig;
2823 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002824 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002825}
2826
danielk1977003ba062004-11-04 02:57:33 +00002827
danielk19777701e812005-01-10 12:59:51 +00002828/*
2829** Move the open database page pDbPage to location iFreePage in the
2830** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002831**
2832** The isCommit flag indicates that there is no need to remember that
2833** the journal needs to be sync()ed before database page pDbPage->pgno
2834** can be written to. The caller has already promised not to write to that
2835** page.
danielk19777701e812005-01-10 12:59:51 +00002836*/
danielk1977003ba062004-11-04 02:57:33 +00002837static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002838 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002839 MemPage *pDbPage, /* Open page to move */
2840 u8 eType, /* Pointer map 'type' entry for pDbPage */
2841 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002842 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002843 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002844){
2845 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2846 Pgno iDbPage = pDbPage->pgno;
2847 Pager *pPager = pBt->pPager;
2848 int rc;
2849
danielk1977a0bf2652004-11-04 14:30:04 +00002850 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2851 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002852 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002853 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002854
drh85b623f2007-12-13 21:54:09 +00002855 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002856 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2857 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002858 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002859 if( rc!=SQLITE_OK ){
2860 return rc;
2861 }
2862 pDbPage->pgno = iFreePage;
2863
2864 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2865 ** that point to overflow pages. The pointer map entries for all these
2866 ** pages need to be changed.
2867 **
2868 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2869 ** pointer to a subsequent overflow page. If this is the case, then
2870 ** the pointer map needs to be updated for the subsequent overflow page.
2871 */
danielk1977a0bf2652004-11-04 14:30:04 +00002872 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002873 rc = setChildPtrmaps(pDbPage);
2874 if( rc!=SQLITE_OK ){
2875 return rc;
2876 }
2877 }else{
2878 Pgno nextOvfl = get4byte(pDbPage->aData);
2879 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002880 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002881 if( rc!=SQLITE_OK ){
2882 return rc;
2883 }
2884 }
2885 }
2886
2887 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2888 ** that it points at iFreePage. Also fix the pointer map entry for
2889 ** iPtrPage.
2890 */
danielk1977a0bf2652004-11-04 14:30:04 +00002891 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00002892 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002893 if( rc!=SQLITE_OK ){
2894 return rc;
2895 }
danielk19773b8a05f2007-03-19 17:44:26 +00002896 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002897 if( rc!=SQLITE_OK ){
2898 releasePage(pPtrPage);
2899 return rc;
2900 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002901 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002902 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002903 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002904 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002905 }
danielk1977003ba062004-11-04 02:57:33 +00002906 }
danielk1977003ba062004-11-04 02:57:33 +00002907 return rc;
2908}
2909
danielk1977dddbcdc2007-04-26 14:42:34 +00002910/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002911static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002912
2913/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002914** Perform a single step of an incremental-vacuum. If successful,
2915** return SQLITE_OK. If there is no work to do (and therefore no
2916** point in calling this function again), return SQLITE_DONE.
2917**
2918** More specificly, this function attempts to re-organize the
2919** database so that the last page of the file currently in use
2920** is no longer in use.
2921**
drhea8ffdf2009-07-22 00:35:23 +00002922** If the nFin parameter is non-zero, this function assumes
danielk1977dddbcdc2007-04-26 14:42:34 +00002923** that the caller will keep calling incrVacuumStep() until
2924** it returns SQLITE_DONE or an error, and that nFin is the
2925** number of pages the database file will contain after this
drhea8ffdf2009-07-22 00:35:23 +00002926** process is complete. If nFin is zero, it is assumed that
2927** incrVacuumStep() will be called a finite amount of times
2928** which may or may not empty the freelist. A full autovacuum
2929** has nFin>0. A "PRAGMA incremental_vacuum" has nFin==0.
danielk1977dddbcdc2007-04-26 14:42:34 +00002930*/
danielk19773460d192008-12-27 15:23:13 +00002931static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002932 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00002933 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002934
drh1fee73e2007-08-29 04:00:57 +00002935 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002936 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002937
2938 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002939 u8 eType;
2940 Pgno iPtrPage;
2941
2942 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002943 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002944 return SQLITE_DONE;
2945 }
2946
2947 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2948 if( rc!=SQLITE_OK ){
2949 return rc;
2950 }
2951 if( eType==PTRMAP_ROOTPAGE ){
2952 return SQLITE_CORRUPT_BKPT;
2953 }
2954
2955 if( eType==PTRMAP_FREEPAGE ){
2956 if( nFin==0 ){
2957 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002958 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002959 ** truncated to zero after this function returns, so it doesn't
2960 ** matter if it still contains some garbage entries.
2961 */
2962 Pgno iFreePg;
2963 MemPage *pFreePg;
2964 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2965 if( rc!=SQLITE_OK ){
2966 return rc;
2967 }
2968 assert( iFreePg==iLastPg );
2969 releasePage(pFreePg);
2970 }
2971 } else {
2972 Pgno iFreePg; /* Index of free page to move pLastPg to */
2973 MemPage *pLastPg;
2974
danielk197730548662009-07-09 05:07:37 +00002975 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002976 if( rc!=SQLITE_OK ){
2977 return rc;
2978 }
2979
danielk1977b4626a32007-04-28 15:47:43 +00002980 /* If nFin is zero, this loop runs exactly once and page pLastPg
2981 ** is swapped with the first free page pulled off the free list.
2982 **
2983 ** On the other hand, if nFin is greater than zero, then keep
2984 ** looping until a free-page located within the first nFin pages
2985 ** of the file is found.
2986 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002987 do {
2988 MemPage *pFreePg;
2989 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2990 if( rc!=SQLITE_OK ){
2991 releasePage(pLastPg);
2992 return rc;
2993 }
2994 releasePage(pFreePg);
2995 }while( nFin!=0 && iFreePg>nFin );
2996 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002997
2998 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002999 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00003000 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00003001 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003002 releasePage(pLastPg);
3003 if( rc!=SQLITE_OK ){
3004 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003005 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003006 }
3007 }
3008
danielk19773460d192008-12-27 15:23:13 +00003009 if( nFin==0 ){
3010 iLastPg--;
3011 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00003012 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
3013 MemPage *pPg;
drhdd3cd972010-03-27 17:12:36 +00003014 rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
danielk1977f4027782009-03-30 18:50:04 +00003015 if( rc!=SQLITE_OK ){
3016 return rc;
3017 }
3018 rc = sqlite3PagerWrite(pPg->pDbPage);
3019 releasePage(pPg);
3020 if( rc!=SQLITE_OK ){
3021 return rc;
3022 }
3023 }
danielk19773460d192008-12-27 15:23:13 +00003024 iLastPg--;
3025 }
3026 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
drhdd3cd972010-03-27 17:12:36 +00003027 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003028 }
3029 return SQLITE_OK;
3030}
3031
3032/*
3033** A write-transaction must be opened before calling this function.
3034** It performs a single unit of work towards an incremental vacuum.
3035**
3036** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003037** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003038** SQLITE_OK is returned. Otherwise an SQLite error code.
3039*/
3040int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003041 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003042 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003043
3044 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003045 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3046 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003047 rc = SQLITE_DONE;
3048 }else{
3049 invalidateAllOverflowCache(pBt);
drhb1299152010-03-30 22:58:33 +00003050 rc = incrVacuumStep(pBt, 0, btreePagecount(pBt));
drhdd3cd972010-03-27 17:12:36 +00003051 if( rc==SQLITE_OK ){
3052 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3053 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3054 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003055 }
drhd677b3d2007-08-20 22:48:41 +00003056 sqlite3BtreeLeave(p);
3057 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003058}
3059
3060/*
danielk19773b8a05f2007-03-19 17:44:26 +00003061** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00003062** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003063**
3064** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3065** the database file should be truncated to during the commit process.
3066** i.e. the database has been reorganized so that only the first *pnTrunc
3067** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003068*/
danielk19773460d192008-12-27 15:23:13 +00003069static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003070 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003071 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003072 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003073
drh1fee73e2007-08-29 04:00:57 +00003074 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003075 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003076 assert(pBt->autoVacuum);
3077 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003078 Pgno nFin; /* Number of pages in database after autovacuuming */
3079 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003080 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3081 Pgno iFree; /* The next page to be freed */
3082 int nEntry; /* Number of entries on one ptrmap page */
3083 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003084
drhb1299152010-03-30 22:58:33 +00003085 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003086 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3087 /* It is not possible to create a database for which the final page
3088 ** is either a pointer-map page or the pending-byte page. If one
3089 ** is encountered, this indicates corruption.
3090 */
danielk19773460d192008-12-27 15:23:13 +00003091 return SQLITE_CORRUPT_BKPT;
3092 }
danielk1977ef165ce2009-04-06 17:50:03 +00003093
danielk19773460d192008-12-27 15:23:13 +00003094 nFree = get4byte(&pBt->pPage1->aData[36]);
drh41d628c2009-07-11 17:04:08 +00003095 nEntry = pBt->usableSize/5;
3096 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
danielk19773460d192008-12-27 15:23:13 +00003097 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00003098 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00003099 nFin--;
3100 }
3101 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3102 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00003103 }
drhc5e47ac2009-06-04 00:11:56 +00003104 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00003105
danielk19773460d192008-12-27 15:23:13 +00003106 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3107 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00003108 }
danielk19773460d192008-12-27 15:23:13 +00003109 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003110 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3111 put4byte(&pBt->pPage1->aData[32], 0);
3112 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003113 put4byte(&pBt->pPage1->aData[28], nFin);
danielk19773460d192008-12-27 15:23:13 +00003114 sqlite3PagerTruncateImage(pBt->pPager, nFin);
drhdd3cd972010-03-27 17:12:36 +00003115 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003116 }
3117 if( rc!=SQLITE_OK ){
3118 sqlite3PagerRollback(pPager);
3119 }
danielk1977687566d2004-11-02 12:56:41 +00003120 }
3121
danielk19773b8a05f2007-03-19 17:44:26 +00003122 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003123 return rc;
3124}
danielk1977dddbcdc2007-04-26 14:42:34 +00003125
danielk1977a50d9aa2009-06-08 14:49:45 +00003126#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3127# define setChildPtrmaps(x) SQLITE_OK
3128#endif
danielk1977687566d2004-11-02 12:56:41 +00003129
3130/*
drh80e35f42007-03-30 14:06:34 +00003131** This routine does the first phase of a two-phase commit. This routine
3132** causes a rollback journal to be created (if it does not already exist)
3133** and populated with enough information so that if a power loss occurs
3134** the database can be restored to its original state by playing back
3135** the journal. Then the contents of the journal are flushed out to
3136** the disk. After the journal is safely on oxide, the changes to the
3137** database are written into the database file and flushed to oxide.
3138** At the end of this call, the rollback journal still exists on the
3139** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003140** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003141** commit process.
3142**
3143** This call is a no-op if no write-transaction is currently active on pBt.
3144**
3145** Otherwise, sync the database file for the btree pBt. zMaster points to
3146** the name of a master journal file that should be written into the
3147** individual journal file, or is NULL, indicating no master journal file
3148** (single database transaction).
3149**
3150** When this is called, the master journal should already have been
3151** created, populated with this journal pointer and synced to disk.
3152**
3153** Once this is routine has returned, the only thing required to commit
3154** the write-transaction for this database file is to delete the journal.
3155*/
3156int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3157 int rc = SQLITE_OK;
3158 if( p->inTrans==TRANS_WRITE ){
3159 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003160 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003161#ifndef SQLITE_OMIT_AUTOVACUUM
3162 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003163 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003164 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003165 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003166 return rc;
3167 }
3168 }
3169#endif
drh49b9d332009-01-02 18:10:42 +00003170 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003171 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003172 }
3173 return rc;
3174}
3175
3176/*
danielk197794b30732009-07-02 17:21:57 +00003177** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3178** at the conclusion of a transaction.
3179*/
3180static void btreeEndTransaction(Btree *p){
3181 BtShared *pBt = p->pBt;
danielk197794b30732009-07-02 17:21:57 +00003182 assert( sqlite3BtreeHoldsMutex(p) );
3183
danielk197794b30732009-07-02 17:21:57 +00003184 btreeClearHasContent(pBt);
danfa401de2009-10-16 14:55:03 +00003185 if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
3186 /* If there are other active statements that belong to this database
3187 ** handle, downgrade to a read-only transaction. The other statements
3188 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003189 downgradeAllSharedCacheTableLocks(p);
3190 p->inTrans = TRANS_READ;
3191 }else{
3192 /* If the handle had any kind of transaction open, decrement the
3193 ** transaction count of the shared btree. If the transaction count
3194 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3195 ** call below will unlock the pager. */
3196 if( p->inTrans!=TRANS_NONE ){
3197 clearAllSharedCacheTableLocks(p);
3198 pBt->nTransaction--;
3199 if( 0==pBt->nTransaction ){
3200 pBt->inTransaction = TRANS_NONE;
3201 }
3202 }
3203
3204 /* Set the current transaction state to TRANS_NONE and unlock the
3205 ** pager if this call closed the only read or write transaction. */
3206 p->inTrans = TRANS_NONE;
3207 unlockBtreeIfUnused(pBt);
3208 }
3209
3210 btreeIntegrity(p);
3211}
3212
3213/*
drh2aa679f2001-06-25 02:11:07 +00003214** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003215**
drh6e345992007-03-30 11:12:08 +00003216** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003217** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3218** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3219** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003220** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003221** routine has to do is delete or truncate or zero the header in the
3222** the rollback journal (which causes the transaction to commit) and
3223** drop locks.
drh6e345992007-03-30 11:12:08 +00003224**
dan60939d02011-03-29 15:40:55 +00003225** Normally, if an error occurs while the pager layer is attempting to
3226** finalize the underlying journal file, this function returns an error and
3227** the upper layer will attempt a rollback. However, if the second argument
3228** is non-zero then this b-tree transaction is part of a multi-file
3229** transaction. In this case, the transaction has already been committed
3230** (by deleting a master journal file) and the caller will ignore this
3231** functions return code. So, even if an error occurs in the pager layer,
3232** reset the b-tree objects internal state to indicate that the write
3233** transaction has been closed. This is quite safe, as the pager will have
3234** transitioned to the error state.
3235**
drh5e00f6c2001-09-13 13:46:56 +00003236** This will release the write lock on the database file. If there
3237** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003238*/
dan60939d02011-03-29 15:40:55 +00003239int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003240
drh075ed302010-10-14 01:17:30 +00003241 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003242 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003243 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003244
3245 /* If the handle has a write-transaction open, commit the shared-btrees
3246 ** transaction and set the shared state to TRANS_READ.
3247 */
3248 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003249 int rc;
drh075ed302010-10-14 01:17:30 +00003250 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003251 assert( pBt->inTransaction==TRANS_WRITE );
3252 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003253 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003254 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003255 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003256 return rc;
3257 }
danielk1977aef0bf62005-12-30 16:28:01 +00003258 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003259 }
danielk1977aef0bf62005-12-30 16:28:01 +00003260
danielk197794b30732009-07-02 17:21:57 +00003261 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003262 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003263 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003264}
3265
drh80e35f42007-03-30 14:06:34 +00003266/*
3267** Do both phases of a commit.
3268*/
3269int sqlite3BtreeCommit(Btree *p){
3270 int rc;
drhd677b3d2007-08-20 22:48:41 +00003271 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003272 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3273 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003274 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003275 }
drhd677b3d2007-08-20 22:48:41 +00003276 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003277 return rc;
3278}
3279
danielk1977fbcd5852004-06-15 02:44:18 +00003280#ifndef NDEBUG
3281/*
3282** Return the number of write-cursors open on this handle. This is for use
3283** in assert() expressions, so it is only compiled if NDEBUG is not
3284** defined.
drhfb982642007-08-30 01:19:59 +00003285**
3286** For the purposes of this routine, a write-cursor is any cursor that
3287** is capable of writing to the databse. That means the cursor was
3288** originally opened for writing and the cursor has not be disabled
3289** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003290*/
danielk1977aef0bf62005-12-30 16:28:01 +00003291static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003292 BtCursor *pCur;
3293 int r = 0;
3294 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003295 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003296 }
3297 return r;
3298}
3299#endif
3300
drhc39e0002004-05-07 23:50:57 +00003301/*
drhfb982642007-08-30 01:19:59 +00003302** This routine sets the state to CURSOR_FAULT and the error
3303** code to errCode for every cursor on BtShared that pBtree
3304** references.
3305**
3306** Every cursor is tripped, including cursors that belong
3307** to other database connections that happen to be sharing
3308** the cache with pBtree.
3309**
3310** This routine gets called when a rollback occurs.
3311** All cursors using the same cache must be tripped
3312** to prevent them from trying to use the btree after
3313** the rollback. The rollback may have deleted tables
3314** or moved root pages, so it is not sufficient to
3315** save the state of the cursor. The cursor must be
3316** invalidated.
3317*/
3318void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3319 BtCursor *p;
drh0f198a72012-02-13 16:43:16 +00003320 if( pBtree==0 ) return;
drhfb982642007-08-30 01:19:59 +00003321 sqlite3BtreeEnter(pBtree);
3322 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003323 int i;
danielk1977be51a652008-10-08 17:58:48 +00003324 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003325 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003326 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003327 for(i=0; i<=p->iPage; i++){
3328 releasePage(p->apPage[i]);
3329 p->apPage[i] = 0;
3330 }
drhfb982642007-08-30 01:19:59 +00003331 }
3332 sqlite3BtreeLeave(pBtree);
3333}
3334
3335/*
drhecdc7532001-09-23 02:35:53 +00003336** Rollback the transaction in progress. All cursors will be
3337** invalided by this operation. Any attempt to use a cursor
3338** that was open at the beginning of this operation will result
3339** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003340**
3341** This will release the write lock on the database file. If there
3342** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003343*/
drh0f198a72012-02-13 16:43:16 +00003344int sqlite3BtreeRollback(Btree *p, int tripCode){
danielk19778d34dfd2006-01-24 16:37:57 +00003345 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003346 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003347 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003348
drhd677b3d2007-08-20 22:48:41 +00003349 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003350 if( tripCode==SQLITE_OK ){
3351 rc = tripCode = saveAllCursors(pBt, 0, 0);
3352 }else{
3353 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003354 }
drh0f198a72012-02-13 16:43:16 +00003355 if( tripCode ){
3356 sqlite3BtreeTripAllCursors(p, tripCode);
3357 }
danielk1977aef0bf62005-12-30 16:28:01 +00003358 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003359
3360 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003361 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003362
danielk19778d34dfd2006-01-24 16:37:57 +00003363 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003364 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003365 if( rc2!=SQLITE_OK ){
3366 rc = rc2;
3367 }
3368
drh24cd67e2004-05-10 16:18:47 +00003369 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003370 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003371 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003372 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003373 int nPage = get4byte(28+(u8*)pPage1->aData);
3374 testcase( nPage==0 );
3375 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3376 testcase( pBt->nPage!=nPage );
3377 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003378 releasePage(pPage1);
3379 }
danielk1977fbcd5852004-06-15 02:44:18 +00003380 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003381 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003382 }
danielk1977aef0bf62005-12-30 16:28:01 +00003383
danielk197794b30732009-07-02 17:21:57 +00003384 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003385 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003386 return rc;
3387}
3388
3389/*
danielk1977bd434552009-03-18 10:33:00 +00003390** Start a statement subtransaction. The subtransaction can can be rolled
3391** back independently of the main transaction. You must start a transaction
3392** before starting a subtransaction. The subtransaction is ended automatically
3393** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003394**
3395** Statement subtransactions are used around individual SQL statements
3396** that are contained within a BEGIN...COMMIT block. If a constraint
3397** error occurs within the statement, the effect of that one statement
3398** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003399**
3400** A statement sub-transaction is implemented as an anonymous savepoint. The
3401** value passed as the second parameter is the total number of savepoints,
3402** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3403** are no active savepoints and no other statement-transactions open,
3404** iStatement is 1. This anonymous savepoint can be released or rolled back
3405** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003406*/
danielk1977bd434552009-03-18 10:33:00 +00003407int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003408 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003409 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003410 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003411 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003412 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003413 assert( iStatement>0 );
3414 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003415 assert( pBt->inTransaction==TRANS_WRITE );
3416 /* At the pager level, a statement transaction is a savepoint with
3417 ** an index greater than all savepoints created explicitly using
3418 ** SQL statements. It is illegal to open, release or rollback any
3419 ** such savepoints while the statement transaction savepoint is active.
3420 */
3421 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003422 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003423 return rc;
3424}
3425
3426/*
danielk1977fd7f0452008-12-17 17:30:26 +00003427** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3428** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003429** savepoint identified by parameter iSavepoint, depending on the value
3430** of op.
3431**
3432** Normally, iSavepoint is greater than or equal to zero. However, if op is
3433** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3434** contents of the entire transaction are rolled back. This is different
3435** from a normal transaction rollback, as no locks are released and the
3436** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003437*/
3438int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3439 int rc = SQLITE_OK;
3440 if( p && p->inTrans==TRANS_WRITE ){
3441 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003442 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3443 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3444 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003445 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003446 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003447 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3448 pBt->nPage = 0;
3449 }
drh9f0bbf92009-01-02 21:08:09 +00003450 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003451 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003452
3453 /* The database size was written into the offset 28 of the header
3454 ** when the transaction started, so we know that the value at offset
3455 ** 28 is nonzero. */
3456 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003457 }
danielk1977fd7f0452008-12-17 17:30:26 +00003458 sqlite3BtreeLeave(p);
3459 }
3460 return rc;
3461}
3462
3463/*
drh8b2f49b2001-06-08 00:21:52 +00003464** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003465** iTable. If a read-only cursor is requested, it is assumed that
3466** the caller already has at least a read-only transaction open
3467** on the database already. If a write-cursor is requested, then
3468** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003469**
3470** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003471** If wrFlag==1, then the cursor can be used for reading or for
3472** writing if other conditions for writing are also met. These
3473** are the conditions that must be met in order for writing to
3474** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003475**
drhf74b8d92002-09-01 23:20:45 +00003476** 1: The cursor must have been opened with wrFlag==1
3477**
drhfe5d71d2007-03-19 11:54:10 +00003478** 2: Other database connections that share the same pager cache
3479** but which are not in the READ_UNCOMMITTED state may not have
3480** cursors open with wrFlag==0 on the same table. Otherwise
3481** the changes made by this write cursor would be visible to
3482** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003483**
3484** 3: The database must be writable (not on read-only media)
3485**
3486** 4: There must be an active transaction.
3487**
drh6446c4d2001-12-15 14:22:18 +00003488** No checking is done to make sure that page iTable really is the
3489** root page of a b-tree. If it is not, then the cursor acquired
3490** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003491**
drhf25a5072009-11-18 23:01:25 +00003492** It is assumed that the sqlite3BtreeCursorZero() has been called
3493** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003494*/
drhd677b3d2007-08-20 22:48:41 +00003495static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003496 Btree *p, /* The btree */
3497 int iTable, /* Root page of table to open */
3498 int wrFlag, /* 1 to write. 0 read-only */
3499 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3500 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003501){
danielk19773e8add92009-07-04 17:16:00 +00003502 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003503
drh1fee73e2007-08-29 04:00:57 +00003504 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003505 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003506
danielk1977602b4662009-07-02 07:47:33 +00003507 /* The following assert statements verify that if this is a sharable
3508 ** b-tree database, the connection is holding the required table locks,
3509 ** and that no other connection has any open cursor that conflicts with
3510 ** this lock. */
3511 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003512 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3513
danielk19773e8add92009-07-04 17:16:00 +00003514 /* Assert that the caller has opened the required transaction. */
3515 assert( p->inTrans>TRANS_NONE );
3516 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3517 assert( pBt->pPage1 && pBt->pPage1->aData );
3518
drhc9166342012-01-05 23:32:06 +00003519 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003520 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003521 }
drhb1299152010-03-30 22:58:33 +00003522 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00003523 assert( wrFlag==0 );
3524 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00003525 }
danielk1977aef0bf62005-12-30 16:28:01 +00003526
danielk1977aef0bf62005-12-30 16:28:01 +00003527 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003528 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003529 pCur->pgnoRoot = (Pgno)iTable;
3530 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003531 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003532 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003533 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003534 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003535 pCur->pNext = pBt->pCursor;
3536 if( pCur->pNext ){
3537 pCur->pNext->pPrev = pCur;
3538 }
3539 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003540 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003541 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003542 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003543}
drhd677b3d2007-08-20 22:48:41 +00003544int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003545 Btree *p, /* The btree */
3546 int iTable, /* Root page of table to open */
3547 int wrFlag, /* 1 to write. 0 read-only */
3548 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3549 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003550){
3551 int rc;
3552 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003553 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003554 sqlite3BtreeLeave(p);
3555 return rc;
3556}
drh7f751222009-03-17 22:33:00 +00003557
3558/*
3559** Return the size of a BtCursor object in bytes.
3560**
3561** This interfaces is needed so that users of cursors can preallocate
3562** sufficient storage to hold a cursor. The BtCursor object is opaque
3563** to users so they cannot do the sizeof() themselves - they must call
3564** this routine.
3565*/
3566int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003567 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003568}
3569
drh7f751222009-03-17 22:33:00 +00003570/*
drhf25a5072009-11-18 23:01:25 +00003571** Initialize memory that will be converted into a BtCursor object.
3572**
3573** The simple approach here would be to memset() the entire object
3574** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3575** do not need to be zeroed and they are large, so we can save a lot
3576** of run-time by skipping the initialization of those elements.
3577*/
3578void sqlite3BtreeCursorZero(BtCursor *p){
3579 memset(p, 0, offsetof(BtCursor, iPage));
3580}
3581
3582/*
drh7f751222009-03-17 22:33:00 +00003583** Set the cached rowid value of every cursor in the same database file
3584** as pCur and having the same root page number as pCur. The value is
3585** set to iRowid.
3586**
3587** Only positive rowid values are considered valid for this cache.
3588** The cache is initialized to zero, indicating an invalid cache.
3589** A btree will work fine with zero or negative rowids. We just cannot
3590** cache zero or negative rowids, which means tables that use zero or
3591** negative rowids might run a little slower. But in practice, zero
3592** or negative rowids are very uncommon so this should not be a problem.
3593*/
3594void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3595 BtCursor *p;
3596 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3597 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3598 }
3599 assert( pCur->cachedRowid==iRowid );
3600}
drhd677b3d2007-08-20 22:48:41 +00003601
drh7f751222009-03-17 22:33:00 +00003602/*
3603** Return the cached rowid for the given cursor. A negative or zero
3604** return value indicates that the rowid cache is invalid and should be
3605** ignored. If the rowid cache has never before been set, then a
3606** zero is returned.
3607*/
3608sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3609 return pCur->cachedRowid;
3610}
drha059ad02001-04-17 20:09:11 +00003611
3612/*
drh5e00f6c2001-09-13 13:46:56 +00003613** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003614** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003615*/
drh3aac2dd2004-04-26 14:10:20 +00003616int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003617 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003618 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003619 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003620 BtShared *pBt = pCur->pBt;
3621 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003622 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003623 if( pCur->pPrev ){
3624 pCur->pPrev->pNext = pCur->pNext;
3625 }else{
3626 pBt->pCursor = pCur->pNext;
3627 }
3628 if( pCur->pNext ){
3629 pCur->pNext->pPrev = pCur->pPrev;
3630 }
danielk197771d5d2c2008-09-29 11:49:47 +00003631 for(i=0; i<=pCur->iPage; i++){
3632 releasePage(pCur->apPage[i]);
3633 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003634 unlockBtreeIfUnused(pBt);
3635 invalidateOverflowCache(pCur);
3636 /* sqlite3_free(pCur); */
3637 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003638 }
drh8c42ca92001-06-22 19:15:00 +00003639 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003640}
3641
drh5e2f8b92001-05-28 00:41:15 +00003642/*
drh86057612007-06-26 01:04:48 +00003643** Make sure the BtCursor* given in the argument has a valid
3644** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003645** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003646**
3647** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003648** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003649**
3650** 2007-06-25: There is a bug in some versions of MSVC that cause the
3651** compiler to crash when getCellInfo() is implemented as a macro.
3652** But there is a measureable speed advantage to using the macro on gcc
3653** (when less compiler optimizations like -Os or -O0 are used and the
3654** compiler is not doing agressive inlining.) So we use a real function
3655** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003656*/
drh9188b382004-05-14 21:12:22 +00003657#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003658 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003659 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003660 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003661 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003662 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003663 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003664 }
danielk19771cc5ed82007-05-16 17:28:43 +00003665#else
3666 #define assertCellInfo(x)
3667#endif
drh86057612007-06-26 01:04:48 +00003668#ifdef _MSC_VER
3669 /* Use a real function in MSVC to work around bugs in that compiler. */
3670 static void getCellInfo(BtCursor *pCur){
3671 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003672 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003673 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003674 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003675 }else{
3676 assertCellInfo(pCur);
3677 }
3678 }
3679#else /* if not _MSC_VER */
3680 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003681#define getCellInfo(pCur) \
3682 if( pCur->info.nSize==0 ){ \
3683 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003684 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003685 pCur->validNKey = 1; \
3686 }else{ \
3687 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003688 }
3689#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003690
drhea8ffdf2009-07-22 00:35:23 +00003691#ifndef NDEBUG /* The next routine used only within assert() statements */
3692/*
3693** Return true if the given BtCursor is valid. A valid cursor is one
3694** that is currently pointing to a row in a (non-empty) table.
3695** This is a verification routine is used only within assert() statements.
3696*/
3697int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3698 return pCur && pCur->eState==CURSOR_VALID;
3699}
3700#endif /* NDEBUG */
3701
drh9188b382004-05-14 21:12:22 +00003702/*
drh3aac2dd2004-04-26 14:10:20 +00003703** Set *pSize to the size of the buffer needed to hold the value of
3704** the key for the current entry. If the cursor is not pointing
3705** to a valid entry, *pSize is set to 0.
3706**
drh4b70f112004-05-02 21:12:19 +00003707** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003708** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003709**
3710** The caller must position the cursor prior to invoking this routine.
3711**
3712** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003713*/
drh4a1c3802004-05-12 15:15:47 +00003714int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003715 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003716 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3717 if( pCur->eState!=CURSOR_VALID ){
3718 *pSize = 0;
3719 }else{
3720 getCellInfo(pCur);
3721 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003722 }
drhea8ffdf2009-07-22 00:35:23 +00003723 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003724}
drh2af926b2001-05-15 00:39:25 +00003725
drh72f82862001-05-24 21:06:34 +00003726/*
drh0e1c19e2004-05-11 00:58:56 +00003727** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003728** cursor currently points to.
3729**
3730** The caller must guarantee that the cursor is pointing to a non-NULL
3731** valid entry. In other words, the calling procedure must guarantee
3732** that the cursor has Cursor.eState==CURSOR_VALID.
3733**
3734** Failure is not possible. This function always returns SQLITE_OK.
3735** It might just as well be a procedure (returning void) but we continue
3736** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003737*/
3738int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003739 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003740 assert( pCur->eState==CURSOR_VALID );
3741 getCellInfo(pCur);
3742 *pSize = pCur->info.nData;
3743 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003744}
3745
3746/*
danielk1977d04417962007-05-02 13:16:30 +00003747** Given the page number of an overflow page in the database (parameter
3748** ovfl), this function finds the page number of the next page in the
3749** linked list of overflow pages. If possible, it uses the auto-vacuum
3750** pointer-map data instead of reading the content of page ovfl to do so.
3751**
3752** If an error occurs an SQLite error code is returned. Otherwise:
3753**
danielk1977bea2a942009-01-20 17:06:27 +00003754** The page number of the next overflow page in the linked list is
3755** written to *pPgnoNext. If page ovfl is the last page in its linked
3756** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003757**
danielk1977bea2a942009-01-20 17:06:27 +00003758** If ppPage is not NULL, and a reference to the MemPage object corresponding
3759** to page number pOvfl was obtained, then *ppPage is set to point to that
3760** reference. It is the responsibility of the caller to call releasePage()
3761** on *ppPage to free the reference. In no reference was obtained (because
3762** the pointer-map was used to obtain the value for *pPgnoNext), then
3763** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003764*/
3765static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003766 BtShared *pBt, /* The database file */
3767 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003768 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003769 Pgno *pPgnoNext /* OUT: Next overflow page number */
3770){
3771 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003772 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003773 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003774
drh1fee73e2007-08-29 04:00:57 +00003775 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003776 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003777
3778#ifndef SQLITE_OMIT_AUTOVACUUM
3779 /* Try to find the next page in the overflow list using the
3780 ** autovacuum pointer-map pages. Guess that the next page in
3781 ** the overflow list is page number (ovfl+1). If that guess turns
3782 ** out to be wrong, fall back to loading the data of page
3783 ** number ovfl to determine the next page number.
3784 */
3785 if( pBt->autoVacuum ){
3786 Pgno pgno;
3787 Pgno iGuess = ovfl+1;
3788 u8 eType;
3789
3790 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3791 iGuess++;
3792 }
3793
drhb1299152010-03-30 22:58:33 +00003794 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003795 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003796 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003797 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003798 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003799 }
3800 }
3801 }
3802#endif
3803
danielk1977d8a3f3d2009-07-11 11:45:23 +00003804 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003805 if( rc==SQLITE_OK ){
danielk197730548662009-07-09 05:07:37 +00003806 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003807 assert( rc==SQLITE_OK || pPage==0 );
3808 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003809 next = get4byte(pPage->aData);
3810 }
danielk1977443c0592009-01-16 15:21:05 +00003811 }
danielk197745d68822009-01-16 16:23:38 +00003812
danielk1977bea2a942009-01-20 17:06:27 +00003813 *pPgnoNext = next;
3814 if( ppPage ){
3815 *ppPage = pPage;
3816 }else{
3817 releasePage(pPage);
3818 }
3819 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003820}
3821
danielk1977da107192007-05-04 08:32:13 +00003822/*
3823** Copy data from a buffer to a page, or from a page to a buffer.
3824**
3825** pPayload is a pointer to data stored on database page pDbPage.
3826** If argument eOp is false, then nByte bytes of data are copied
3827** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3828** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3829** of data are copied from the buffer pBuf to pPayload.
3830**
3831** SQLITE_OK is returned on success, otherwise an error code.
3832*/
3833static int copyPayload(
3834 void *pPayload, /* Pointer to page data */
3835 void *pBuf, /* Pointer to buffer */
3836 int nByte, /* Number of bytes to copy */
3837 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3838 DbPage *pDbPage /* Page containing pPayload */
3839){
3840 if( eOp ){
3841 /* Copy data from buffer to page (a write operation) */
3842 int rc = sqlite3PagerWrite(pDbPage);
3843 if( rc!=SQLITE_OK ){
3844 return rc;
3845 }
3846 memcpy(pPayload, pBuf, nByte);
3847 }else{
3848 /* Copy data from page to buffer (a read operation) */
3849 memcpy(pBuf, pPayload, nByte);
3850 }
3851 return SQLITE_OK;
3852}
danielk1977d04417962007-05-02 13:16:30 +00003853
3854/*
danielk19779f8d6402007-05-02 17:48:45 +00003855** This function is used to read or overwrite payload information
3856** for the entry that the pCur cursor is pointing to. If the eOp
3857** parameter is 0, this is a read operation (data copied into
3858** buffer pBuf). If it is non-zero, a write (data copied from
3859** buffer pBuf).
3860**
3861** A total of "amt" bytes are read or written beginning at "offset".
3862** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003863**
drh3bcdfd22009-07-12 02:32:21 +00003864** The content being read or written might appear on the main page
3865** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003866**
danielk1977dcbb5d32007-05-04 18:36:44 +00003867** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003868** cursor entry uses one or more overflow pages, this function
3869** allocates space for and lazily popluates the overflow page-list
3870** cache array (BtCursor.aOverflow). Subsequent calls use this
3871** cache to make seeking to the supplied offset more efficient.
3872**
3873** Once an overflow page-list cache has been allocated, it may be
3874** invalidated if some other cursor writes to the same table, or if
3875** the cursor is moved to a different row. Additionally, in auto-vacuum
3876** mode, the following events may invalidate an overflow page-list cache.
3877**
3878** * An incremental vacuum,
3879** * A commit in auto_vacuum="full" mode,
3880** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003881*/
danielk19779f8d6402007-05-02 17:48:45 +00003882static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003883 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003884 u32 offset, /* Begin reading this far into payload */
3885 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003886 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003887 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003888){
3889 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003890 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003891 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003892 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003893 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003894 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003895
danielk1977da107192007-05-04 08:32:13 +00003896 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003897 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003898 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003899 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003900
drh86057612007-06-26 01:04:48 +00003901 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003902 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003903 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003904
drh3bcdfd22009-07-12 02:32:21 +00003905 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003906 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3907 ){
danielk1977da107192007-05-04 08:32:13 +00003908 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003909 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003910 }
danielk1977da107192007-05-04 08:32:13 +00003911
3912 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003913 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003914 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003915 if( a+offset>pCur->info.nLocal ){
3916 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003917 }
danielk1977da107192007-05-04 08:32:13 +00003918 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003919 offset = 0;
drha34b6762004-05-07 13:30:42 +00003920 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003921 amt -= a;
drhdd793422001-06-28 01:54:48 +00003922 }else{
drhfa1a98a2004-05-14 19:08:17 +00003923 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003924 }
danielk1977da107192007-05-04 08:32:13 +00003925
3926 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003927 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003928 Pgno nextPage;
3929
drhfa1a98a2004-05-14 19:08:17 +00003930 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003931
danielk19772dec9702007-05-02 16:48:37 +00003932#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003933 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003934 ** has not been allocated, allocate it now. The array is sized at
3935 ** one entry for each overflow page in the overflow chain. The
3936 ** page number of the first overflow page is stored in aOverflow[0],
3937 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3938 ** (the cache is lazily populated).
3939 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003940 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003941 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003942 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00003943 /* nOvfl is always positive. If it were zero, fetchPayload would have
3944 ** been used instead of this routine. */
3945 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003946 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003947 }
3948 }
danielk1977da107192007-05-04 08:32:13 +00003949
3950 /* If the overflow page-list cache has been allocated and the
3951 ** entry for the first required overflow page is valid, skip
3952 ** directly to it.
3953 */
danielk19772dec9702007-05-02 16:48:37 +00003954 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3955 iIdx = (offset/ovflSize);
3956 nextPage = pCur->aOverflow[iIdx];
3957 offset = (offset%ovflSize);
3958 }
3959#endif
danielk1977da107192007-05-04 08:32:13 +00003960
3961 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3962
3963#ifndef SQLITE_OMIT_INCRBLOB
3964 /* If required, populate the overflow page-list cache. */
3965 if( pCur->aOverflow ){
3966 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3967 pCur->aOverflow[iIdx] = nextPage;
3968 }
3969#endif
3970
danielk1977d04417962007-05-02 13:16:30 +00003971 if( offset>=ovflSize ){
3972 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003973 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003974 ** data is not required. So first try to lookup the overflow
3975 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003976 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003977 */
danielk19772dec9702007-05-02 16:48:37 +00003978#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003979 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3980 nextPage = pCur->aOverflow[iIdx+1];
3981 } else
danielk19772dec9702007-05-02 16:48:37 +00003982#endif
danielk1977da107192007-05-04 08:32:13 +00003983 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003984 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003985 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003986 /* Need to read this page properly. It contains some of the
3987 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003988 */
danf4ba1092011-10-08 14:57:07 +00003989#ifdef SQLITE_DIRECT_OVERFLOW_READ
3990 sqlite3_file *fd;
3991#endif
danielk1977cfe9a692004-06-16 12:00:29 +00003992 int a = amt;
danf4ba1092011-10-08 14:57:07 +00003993 if( a + offset > ovflSize ){
3994 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003995 }
danf4ba1092011-10-08 14:57:07 +00003996
3997#ifdef SQLITE_DIRECT_OVERFLOW_READ
3998 /* If all the following are true:
3999 **
4000 ** 1) this is a read operation, and
4001 ** 2) data is required from the start of this overflow page, and
4002 ** 3) the database is file-backed, and
4003 ** 4) there is no open write-transaction, and
4004 ** 5) the database is not a WAL database,
4005 **
4006 ** then data can be read directly from the database file into the
4007 ** output buffer, bypassing the page-cache altogether. This speeds
4008 ** up loading large records that span many overflow pages.
4009 */
4010 if( eOp==0 /* (1) */
4011 && offset==0 /* (2) */
4012 && pBt->inTransaction==TRANS_READ /* (4) */
4013 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4014 && pBt->pPage1->aData[19]==0x01 /* (5) */
4015 ){
4016 u8 aSave[4];
4017 u8 *aWrite = &pBuf[-4];
4018 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004019 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004020 nextPage = get4byte(aWrite);
4021 memcpy(aWrite, aSave, 4);
4022 }else
4023#endif
4024
4025 {
4026 DbPage *pDbPage;
4027 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
4028 if( rc==SQLITE_OK ){
4029 aPayload = sqlite3PagerGetData(pDbPage);
4030 nextPage = get4byte(aPayload);
4031 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4032 sqlite3PagerUnref(pDbPage);
4033 offset = 0;
4034 }
4035 }
4036 amt -= a;
4037 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004038 }
drh2af926b2001-05-15 00:39:25 +00004039 }
drh2af926b2001-05-15 00:39:25 +00004040 }
danielk1977cfe9a692004-06-16 12:00:29 +00004041
danielk1977da107192007-05-04 08:32:13 +00004042 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004043 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004044 }
danielk1977da107192007-05-04 08:32:13 +00004045 return rc;
drh2af926b2001-05-15 00:39:25 +00004046}
4047
drh72f82862001-05-24 21:06:34 +00004048/*
drh3aac2dd2004-04-26 14:10:20 +00004049** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004050** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004051** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004052**
drh5d1a8722009-07-22 18:07:40 +00004053** The caller must ensure that pCur is pointing to a valid row
4054** in the table.
4055**
drh3aac2dd2004-04-26 14:10:20 +00004056** Return SQLITE_OK on success or an error code if anything goes
4057** wrong. An error is returned if "offset+amt" is larger than
4058** the available payload.
drh72f82862001-05-24 21:06:34 +00004059*/
drha34b6762004-05-07 13:30:42 +00004060int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004061 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004062 assert( pCur->eState==CURSOR_VALID );
4063 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4064 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4065 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004066}
4067
4068/*
drh3aac2dd2004-04-26 14:10:20 +00004069** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004070** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004071** begins at "offset".
4072**
4073** Return SQLITE_OK on success or an error code if anything goes
4074** wrong. An error is returned if "offset+amt" is larger than
4075** the available payload.
drh72f82862001-05-24 21:06:34 +00004076*/
drh3aac2dd2004-04-26 14:10:20 +00004077int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004078 int rc;
4079
danielk19773588ceb2008-06-10 17:30:26 +00004080#ifndef SQLITE_OMIT_INCRBLOB
4081 if ( pCur->eState==CURSOR_INVALID ){
4082 return SQLITE_ABORT;
4083 }
4084#endif
4085
drh1fee73e2007-08-29 04:00:57 +00004086 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004087 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004088 if( rc==SQLITE_OK ){
4089 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004090 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4091 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004092 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004093 }
4094 return rc;
drh2af926b2001-05-15 00:39:25 +00004095}
4096
drh72f82862001-05-24 21:06:34 +00004097/*
drh0e1c19e2004-05-11 00:58:56 +00004098** Return a pointer to payload information from the entry that the
4099** pCur cursor is pointing to. The pointer is to the beginning of
4100** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00004101** skipKey==1. The number of bytes of available key/data is written
4102** into *pAmt. If *pAmt==0, then the value returned will not be
4103** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004104**
4105** This routine is an optimization. It is common for the entire key
4106** and data to fit on the local page and for there to be no overflow
4107** pages. When that is so, this routine can be used to access the
4108** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004109** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004110** the key/data and copy it into a preallocated buffer.
4111**
4112** The pointer returned by this routine looks directly into the cached
4113** page of the database. The data might change or move the next time
4114** any btree routine is called.
4115*/
4116static const unsigned char *fetchPayload(
4117 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00004118 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004119 int skipKey /* read beginning at data if this is true */
4120){
4121 unsigned char *aPayload;
4122 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00004123 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00004124 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004125
danielk197771d5d2c2008-09-29 11:49:47 +00004126 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004127 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00004128 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00004129 pPage = pCur->apPage[pCur->iPage];
4130 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drhfe3313f2009-07-21 19:02:20 +00004131 if( NEVER(pCur->info.nSize==0) ){
4132 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
4133 &pCur->info);
4134 }
drh43605152004-05-29 21:46:49 +00004135 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00004136 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00004137 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00004138 nKey = 0;
4139 }else{
drhf49661a2008-12-10 16:45:50 +00004140 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00004141 }
drh0e1c19e2004-05-11 00:58:56 +00004142 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00004143 aPayload += nKey;
4144 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00004145 }else{
drhfa1a98a2004-05-14 19:08:17 +00004146 nLocal = pCur->info.nLocal;
drhfe3313f2009-07-21 19:02:20 +00004147 assert( nLocal<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00004148 }
drhe51c44f2004-05-30 20:46:09 +00004149 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004150 return aPayload;
4151}
4152
4153
4154/*
drhe51c44f2004-05-30 20:46:09 +00004155** For the entry that cursor pCur is point to, return as
4156** many bytes of the key or data as are available on the local
4157** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004158**
4159** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004160** or be destroyed on the next call to any Btree routine,
4161** including calls from other threads against the same cache.
4162** Hence, a mutex on the BtShared should be held prior to calling
4163** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004164**
4165** These routines is used to get quick access to key and data
4166** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004167*/
drhe51c44f2004-05-30 20:46:09 +00004168const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004169 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004170 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004171 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004172 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4173 p = (const void*)fetchPayload(pCur, pAmt, 0);
danielk1977da184232006-01-05 11:34:32 +00004174 }
drhfe3313f2009-07-21 19:02:20 +00004175 return p;
drh0e1c19e2004-05-11 00:58:56 +00004176}
drhe51c44f2004-05-30 20:46:09 +00004177const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004178 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004179 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004180 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004181 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4182 p = (const void*)fetchPayload(pCur, pAmt, 1);
danielk1977da184232006-01-05 11:34:32 +00004183 }
drhfe3313f2009-07-21 19:02:20 +00004184 return p;
drh0e1c19e2004-05-11 00:58:56 +00004185}
4186
4187
4188/*
drh8178a752003-01-05 21:41:40 +00004189** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004190** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004191**
4192** This function returns SQLITE_CORRUPT if the page-header flags field of
4193** the new child page does not match the flags field of the parent (i.e.
4194** if an intkey page appears to be the parent of a non-intkey page, or
4195** vice-versa).
drh72f82862001-05-24 21:06:34 +00004196*/
drh3aac2dd2004-04-26 14:10:20 +00004197static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004198 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004199 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004200 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004201 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004202
drh1fee73e2007-08-29 04:00:57 +00004203 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004204 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004205 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4206 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4207 return SQLITE_CORRUPT_BKPT;
4208 }
4209 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00004210 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004211 pCur->apPage[i+1] = pNewPage;
4212 pCur->aiIdx[i+1] = 0;
4213 pCur->iPage++;
4214
drh271efa52004-05-30 19:19:05 +00004215 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004216 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00004217 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004218 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004219 }
drh72f82862001-05-24 21:06:34 +00004220 return SQLITE_OK;
4221}
4222
danbb246c42012-01-12 14:25:55 +00004223#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004224/*
4225** Page pParent is an internal (non-leaf) tree page. This function
4226** asserts that page number iChild is the left-child if the iIdx'th
4227** cell in page pParent. Or, if iIdx is equal to the total number of
4228** cells in pParent, that page number iChild is the right-child of
4229** the page.
4230*/
4231static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4232 assert( iIdx<=pParent->nCell );
4233 if( iIdx==pParent->nCell ){
4234 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4235 }else{
4236 assert( get4byte(findCell(pParent, iIdx))==iChild );
4237 }
4238}
4239#else
4240# define assertParentIndex(x,y,z)
4241#endif
4242
drh72f82862001-05-24 21:06:34 +00004243/*
drh5e2f8b92001-05-28 00:41:15 +00004244** Move the cursor up to the parent page.
4245**
4246** pCur->idx is set to the cell index that contains the pointer
4247** to the page we are coming from. If we are coming from the
4248** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004249** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004250*/
danielk197730548662009-07-09 05:07:37 +00004251static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004252 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004253 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004254 assert( pCur->iPage>0 );
4255 assert( pCur->apPage[pCur->iPage] );
danbb246c42012-01-12 14:25:55 +00004256
4257 /* UPDATE: It is actually possible for the condition tested by the assert
4258 ** below to be untrue if the database file is corrupt. This can occur if
4259 ** one cursor has modified page pParent while a reference to it is held
4260 ** by a second cursor. Which can only happen if a single page is linked
4261 ** into more than one b-tree structure in a corrupt database. */
4262#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004263 assertParentIndex(
4264 pCur->apPage[pCur->iPage-1],
4265 pCur->aiIdx[pCur->iPage-1],
4266 pCur->apPage[pCur->iPage]->pgno
4267 );
danbb246c42012-01-12 14:25:55 +00004268#endif
dan6c2688c2012-01-12 15:05:03 +00004269 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004270
danielk197771d5d2c2008-09-29 11:49:47 +00004271 releasePage(pCur->apPage[pCur->iPage]);
4272 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004273 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004274 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004275}
4276
4277/*
danielk19778f880a82009-07-13 09:41:45 +00004278** Move the cursor to point to the root page of its b-tree structure.
4279**
4280** If the table has a virtual root page, then the cursor is moved to point
4281** to the virtual root page instead of the actual root page. A table has a
4282** virtual root page when the actual root page contains no cells and a
4283** single child page. This can only happen with the table rooted at page 1.
4284**
4285** If the b-tree structure is empty, the cursor state is set to
4286** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4287** cell located on the root (or virtual root) page and the cursor state
4288** is set to CURSOR_VALID.
4289**
4290** If this function returns successfully, it may be assumed that the
4291** page-header flags indicate that the [virtual] root-page is the expected
4292** kind of b-tree page (i.e. if when opening the cursor the caller did not
4293** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4294** indicating a table b-tree, or if the caller did specify a KeyInfo
4295** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4296** b-tree).
drh72f82862001-05-24 21:06:34 +00004297*/
drh5e2f8b92001-05-28 00:41:15 +00004298static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004299 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004300 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004301 Btree *p = pCur->pBtree;
4302 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004303
drh1fee73e2007-08-29 04:00:57 +00004304 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004305 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4306 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4307 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4308 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4309 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004310 assert( pCur->skipNext!=SQLITE_OK );
4311 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004312 }
danielk1977be51a652008-10-08 17:58:48 +00004313 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004314 }
danielk197771d5d2c2008-09-29 11:49:47 +00004315
4316 if( pCur->iPage>=0 ){
4317 int i;
4318 for(i=1; i<=pCur->iPage; i++){
4319 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004320 }
danielk1977172114a2009-07-07 15:47:12 +00004321 pCur->iPage = 0;
dana205a482011-08-27 18:48:57 +00004322 }else if( pCur->pgnoRoot==0 ){
4323 pCur->eState = CURSOR_INVALID;
4324 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004325 }else{
drh4c301aa2009-07-15 17:25:45 +00004326 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
4327 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004328 pCur->eState = CURSOR_INVALID;
4329 return rc;
4330 }
danielk1977172114a2009-07-07 15:47:12 +00004331 pCur->iPage = 0;
4332
4333 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4334 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4335 ** NULL, the caller expects a table b-tree. If this is not the case,
4336 ** return an SQLITE_CORRUPT error. */
4337 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4338 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4339 return SQLITE_CORRUPT_BKPT;
4340 }
drhc39e0002004-05-07 23:50:57 +00004341 }
danielk197771d5d2c2008-09-29 11:49:47 +00004342
danielk19778f880a82009-07-13 09:41:45 +00004343 /* Assert that the root page is of the correct type. This must be the
4344 ** case as the call to this function that loaded the root-page (either
4345 ** this call or a previous invocation) would have detected corruption
4346 ** if the assumption were not true, and it is not possible for the flags
4347 ** byte to have been modified while this cursor is holding a reference
4348 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004349 pRoot = pCur->apPage[0];
4350 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004351 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4352
danielk197771d5d2c2008-09-29 11:49:47 +00004353 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004354 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004355 pCur->atLast = 0;
4356 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004357
drh8856d6a2004-04-29 14:42:46 +00004358 if( pRoot->nCell==0 && !pRoot->leaf ){
4359 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004360 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004361 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004362 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004363 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004364 }else{
4365 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004366 }
4367 return rc;
drh72f82862001-05-24 21:06:34 +00004368}
drh2af926b2001-05-15 00:39:25 +00004369
drh5e2f8b92001-05-28 00:41:15 +00004370/*
4371** Move the cursor down to the left-most leaf entry beneath the
4372** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004373**
4374** The left-most leaf is the one with the smallest key - the first
4375** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004376*/
4377static int moveToLeftmost(BtCursor *pCur){
4378 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004379 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004380 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004381
drh1fee73e2007-08-29 04:00:57 +00004382 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004383 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004384 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4385 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4386 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004387 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004388 }
drhd677b3d2007-08-20 22:48:41 +00004389 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004390}
4391
drh2dcc9aa2002-12-04 13:40:25 +00004392/*
4393** Move the cursor down to the right-most leaf entry beneath the
4394** page to which it is currently pointing. Notice the difference
4395** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4396** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4397** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004398**
4399** The right-most entry is the one with the largest key - the last
4400** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004401*/
4402static int moveToRightmost(BtCursor *pCur){
4403 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004404 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004405 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004406
drh1fee73e2007-08-29 04:00:57 +00004407 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004408 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004409 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004410 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004411 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004412 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004413 }
drhd677b3d2007-08-20 22:48:41 +00004414 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004415 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004416 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004417 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004418 }
danielk1977518002e2008-09-05 05:02:46 +00004419 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004420}
4421
drh5e00f6c2001-09-13 13:46:56 +00004422/* Move the cursor to the first entry in the table. Return SQLITE_OK
4423** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004424** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004425*/
drh3aac2dd2004-04-26 14:10:20 +00004426int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004427 int rc;
drhd677b3d2007-08-20 22:48:41 +00004428
drh1fee73e2007-08-29 04:00:57 +00004429 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004430 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004431 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004432 if( rc==SQLITE_OK ){
4433 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004434 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004435 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004436 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004437 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004438 *pRes = 0;
4439 rc = moveToLeftmost(pCur);
4440 }
drh5e00f6c2001-09-13 13:46:56 +00004441 }
drh5e00f6c2001-09-13 13:46:56 +00004442 return rc;
4443}
drh5e2f8b92001-05-28 00:41:15 +00004444
drh9562b552002-02-19 15:00:07 +00004445/* Move the cursor to the last entry in the table. Return SQLITE_OK
4446** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004447** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004448*/
drh3aac2dd2004-04-26 14:10:20 +00004449int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004450 int rc;
drhd677b3d2007-08-20 22:48:41 +00004451
drh1fee73e2007-08-29 04:00:57 +00004452 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004453 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004454
4455 /* If the cursor already points to the last entry, this is a no-op. */
4456 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4457#ifdef SQLITE_DEBUG
4458 /* This block serves to assert() that the cursor really does point
4459 ** to the last entry in the b-tree. */
4460 int ii;
4461 for(ii=0; ii<pCur->iPage; ii++){
4462 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4463 }
4464 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4465 assert( pCur->apPage[pCur->iPage]->leaf );
4466#endif
4467 return SQLITE_OK;
4468 }
4469
drh9562b552002-02-19 15:00:07 +00004470 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004471 if( rc==SQLITE_OK ){
4472 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004473 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004474 *pRes = 1;
4475 }else{
4476 assert( pCur->eState==CURSOR_VALID );
4477 *pRes = 0;
4478 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004479 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004480 }
drh9562b552002-02-19 15:00:07 +00004481 }
drh9562b552002-02-19 15:00:07 +00004482 return rc;
4483}
4484
drhe14006d2008-03-25 17:23:32 +00004485/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004486** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004487**
drhe63d9992008-08-13 19:11:48 +00004488** For INTKEY tables, the intKey parameter is used. pIdxKey
4489** must be NULL. For index tables, pIdxKey is used and intKey
4490** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004491**
drh5e2f8b92001-05-28 00:41:15 +00004492** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004493** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004494** were present. The cursor might point to an entry that comes
4495** before or after the key.
4496**
drh64022502009-01-09 14:11:04 +00004497** An integer is written into *pRes which is the result of
4498** comparing the key with the entry to which the cursor is
4499** pointing. The meaning of the integer written into
4500** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004501**
4502** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004503** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004504** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004505**
4506** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004507** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004508**
4509** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004510** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004511**
drha059ad02001-04-17 20:09:11 +00004512*/
drhe63d9992008-08-13 19:11:48 +00004513int sqlite3BtreeMovetoUnpacked(
4514 BtCursor *pCur, /* The cursor to be moved */
4515 UnpackedRecord *pIdxKey, /* Unpacked index key */
4516 i64 intKey, /* The table key */
4517 int biasRight, /* If true, bias the search to the high end */
4518 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004519){
drh72f82862001-05-24 21:06:34 +00004520 int rc;
drhd677b3d2007-08-20 22:48:41 +00004521
drh1fee73e2007-08-29 04:00:57 +00004522 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004523 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004524 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004525 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004526
4527 /* If the cursor is already positioned at the point we are trying
4528 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004529 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4530 && pCur->apPage[0]->intKey
4531 ){
drhe63d9992008-08-13 19:11:48 +00004532 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004533 *pRes = 0;
4534 return SQLITE_OK;
4535 }
drhe63d9992008-08-13 19:11:48 +00004536 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004537 *pRes = -1;
4538 return SQLITE_OK;
4539 }
4540 }
4541
drh5e2f8b92001-05-28 00:41:15 +00004542 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004543 if( rc ){
4544 return rc;
4545 }
dana205a482011-08-27 18:48:57 +00004546 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4547 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4548 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004549 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004550 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004551 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004552 return SQLITE_OK;
4553 }
danielk197771d5d2c2008-09-29 11:49:47 +00004554 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004555 for(;;){
drhafb98172011-06-04 01:43:53 +00004556 int lwr, upr, idx;
drh72f82862001-05-24 21:06:34 +00004557 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004558 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004559 int c;
4560
4561 /* pPage->nCell must be greater than zero. If this is the root-page
4562 ** the cursor would have been INVALID above and this for(;;) loop
4563 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004564 ** would have already detected db corruption. Similarly, pPage must
4565 ** be the right kind (index or table) of b-tree page. Otherwise
4566 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004567 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004568 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004569 lwr = 0;
4570 upr = pPage->nCell-1;
drhe4d90812007-03-29 05:51:49 +00004571 if( biasRight ){
drhafb98172011-06-04 01:43:53 +00004572 pCur->aiIdx[pCur->iPage] = (u16)(idx = upr);
drhe4d90812007-03-29 05:51:49 +00004573 }else{
drhafb98172011-06-04 01:43:53 +00004574 pCur->aiIdx[pCur->iPage] = (u16)(idx = (upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004575 }
drh64022502009-01-09 14:11:04 +00004576 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004577 u8 *pCell; /* Pointer to current cell in pPage */
4578
drhafb98172011-06-04 01:43:53 +00004579 assert( idx==pCur->aiIdx[pCur->iPage] );
drh366fda62006-01-13 02:35:09 +00004580 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004581 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004582 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004583 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004584 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004585 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004586 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004587 }
drha2c20e42008-03-29 16:01:04 +00004588 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004589 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004590 c = 0;
drhe63d9992008-08-13 19:11:48 +00004591 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004592 c = -1;
4593 }else{
drhe63d9992008-08-13 19:11:48 +00004594 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004595 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004596 }
danielk197711c327a2009-05-04 19:01:26 +00004597 pCur->validNKey = 1;
4598 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004599 }else{
drhb2eced52010-08-12 02:41:12 +00004600 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004601 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004602 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004603 ** varint. This information is used to attempt to avoid parsing
4604 ** the entire cell by checking for the cases where the record is
4605 ** stored entirely within the b-tree page by inspecting the first
4606 ** 2 bytes of the cell.
4607 */
4608 int nCell = pCell[0];
drhc9166342012-01-05 23:32:06 +00004609 if( nCell<=pPage->max1bytePayload
4610 /* && (pCell+nCell)<pPage->aDataEnd */
drh3def2352011-11-11 00:27:15 +00004611 ){
danielk197711c327a2009-05-04 19:01:26 +00004612 /* This branch runs if the record-size field of the cell is a
4613 ** single byte varint and the record fits entirely on the main
4614 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00004615 testcase( pCell+nCell+1==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004616 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4617 }else if( !(pCell[1] & 0x80)
4618 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
drhc9166342012-01-05 23:32:06 +00004619 /* && (pCell+nCell+2)<=pPage->aDataEnd */
danielk197711c327a2009-05-04 19:01:26 +00004620 ){
4621 /* The record-size field is a 2 byte varint and the record
4622 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00004623 testcase( pCell+nCell+2==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004624 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004625 }else{
danielk197711c327a2009-05-04 19:01:26 +00004626 /* The record flows over onto one or more overflow pages. In
4627 ** this case the whole cell needs to be parsed, a buffer allocated
4628 ** and accessPayload() used to retrieve the record into the
4629 ** buffer before VdbeRecordCompare() can be called. */
4630 void *pCellKey;
4631 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004632 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004633 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004634 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004635 if( pCellKey==0 ){
4636 rc = SQLITE_NOMEM;
4637 goto moveto_finish;
4638 }
drhfb192682009-07-11 18:26:28 +00004639 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004640 if( rc ){
4641 sqlite3_free(pCellKey);
4642 goto moveto_finish;
4643 }
danielk197711c327a2009-05-04 19:01:26 +00004644 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004645 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004646 }
drh3aac2dd2004-04-26 14:10:20 +00004647 }
drh72f82862001-05-24 21:06:34 +00004648 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004649 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004650 lwr = idx;
drh8b18dd42004-05-12 19:18:15 +00004651 break;
4652 }else{
drh64022502009-01-09 14:11:04 +00004653 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004654 rc = SQLITE_OK;
4655 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004656 }
drh72f82862001-05-24 21:06:34 +00004657 }
4658 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004659 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004660 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004661 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004662 }
drhf1d68b32007-03-29 04:43:26 +00004663 if( lwr>upr ){
4664 break;
4665 }
drhafb98172011-06-04 01:43:53 +00004666 pCur->aiIdx[pCur->iPage] = (u16)(idx = (lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004667 }
drhb07028f2011-10-14 21:49:18 +00004668 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00004669 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004670 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004671 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004672 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004673 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004674 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004675 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004676 }
4677 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004678 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004679 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004680 rc = SQLITE_OK;
4681 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004682 }
drhf49661a2008-12-10 16:45:50 +00004683 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004684 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004685 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004686 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004687 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004688 }
drh1e968a02008-03-25 00:22:21 +00004689moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004690 return rc;
4691}
4692
drhd677b3d2007-08-20 22:48:41 +00004693
drh72f82862001-05-24 21:06:34 +00004694/*
drhc39e0002004-05-07 23:50:57 +00004695** Return TRUE if the cursor is not pointing at an entry of the table.
4696**
4697** TRUE will be returned after a call to sqlite3BtreeNext() moves
4698** past the last entry in the table or sqlite3BtreePrev() moves past
4699** the first entry. TRUE is also returned if the table is empty.
4700*/
4701int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004702 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4703 ** have been deleted? This API will need to change to return an error code
4704 ** as well as the boolean result value.
4705 */
4706 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004707}
4708
4709/*
drhbd03cae2001-06-02 02:40:57 +00004710** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004711** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004712** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004713** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004714*/
drhd094db12008-04-03 21:46:57 +00004715int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004716 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004717 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004718 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004719
drh1fee73e2007-08-29 04:00:57 +00004720 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004721 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004722 if( rc!=SQLITE_OK ){
4723 return rc;
4724 }
drh8c4d3a62007-04-06 01:03:32 +00004725 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004726 if( CURSOR_INVALID==pCur->eState ){
4727 *pRes = 1;
4728 return SQLITE_OK;
4729 }
drh4c301aa2009-07-15 17:25:45 +00004730 if( pCur->skipNext>0 ){
4731 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004732 *pRes = 0;
4733 return SQLITE_OK;
4734 }
drh4c301aa2009-07-15 17:25:45 +00004735 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004736
danielk197771d5d2c2008-09-29 11:49:47 +00004737 pPage = pCur->apPage[pCur->iPage];
4738 idx = ++pCur->aiIdx[pCur->iPage];
4739 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00004740
4741 /* If the database file is corrupt, it is possible for the value of idx
4742 ** to be invalid here. This can only occur if a second cursor modifies
4743 ** the page while cursor pCur is holding a reference to it. Which can
4744 ** only happen if the database is corrupt in such a way as to link the
4745 ** page into more than one b-tree structure. */
4746 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004747
drh271efa52004-05-30 19:19:05 +00004748 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004749 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004750 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004751 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004752 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004753 if( rc ) return rc;
4754 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004755 *pRes = 0;
4756 return rc;
drh72f82862001-05-24 21:06:34 +00004757 }
drh5e2f8b92001-05-28 00:41:15 +00004758 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004759 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004760 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004761 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004762 return SQLITE_OK;
4763 }
danielk197730548662009-07-09 05:07:37 +00004764 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004765 pPage = pCur->apPage[pCur->iPage];
4766 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004767 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004768 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004769 rc = sqlite3BtreeNext(pCur, pRes);
4770 }else{
4771 rc = SQLITE_OK;
4772 }
4773 return rc;
drh8178a752003-01-05 21:41:40 +00004774 }
4775 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004776 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004777 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004778 }
drh5e2f8b92001-05-28 00:41:15 +00004779 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004780 return rc;
drh72f82862001-05-24 21:06:34 +00004781}
drhd677b3d2007-08-20 22:48:41 +00004782
drh72f82862001-05-24 21:06:34 +00004783
drh3b7511c2001-05-26 13:15:44 +00004784/*
drh2dcc9aa2002-12-04 13:40:25 +00004785** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004786** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004787** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004788** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004789*/
drhd094db12008-04-03 21:46:57 +00004790int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004791 int rc;
drh8178a752003-01-05 21:41:40 +00004792 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004793
drh1fee73e2007-08-29 04:00:57 +00004794 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004795 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004796 if( rc!=SQLITE_OK ){
4797 return rc;
4798 }
drha2c20e42008-03-29 16:01:04 +00004799 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004800 if( CURSOR_INVALID==pCur->eState ){
4801 *pRes = 1;
4802 return SQLITE_OK;
4803 }
drh4c301aa2009-07-15 17:25:45 +00004804 if( pCur->skipNext<0 ){
4805 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004806 *pRes = 0;
4807 return SQLITE_OK;
4808 }
drh4c301aa2009-07-15 17:25:45 +00004809 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004810
danielk197771d5d2c2008-09-29 11:49:47 +00004811 pPage = pCur->apPage[pCur->iPage];
4812 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004813 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004814 int idx = pCur->aiIdx[pCur->iPage];
4815 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004816 if( rc ){
4817 return rc;
4818 }
drh2dcc9aa2002-12-04 13:40:25 +00004819 rc = moveToRightmost(pCur);
4820 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004821 while( pCur->aiIdx[pCur->iPage]==0 ){
4822 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004823 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004824 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004825 return SQLITE_OK;
4826 }
danielk197730548662009-07-09 05:07:37 +00004827 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004828 }
drh271efa52004-05-30 19:19:05 +00004829 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004830 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004831
4832 pCur->aiIdx[pCur->iPage]--;
4833 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004834 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004835 rc = sqlite3BtreePrevious(pCur, pRes);
4836 }else{
4837 rc = SQLITE_OK;
4838 }
drh2dcc9aa2002-12-04 13:40:25 +00004839 }
drh8178a752003-01-05 21:41:40 +00004840 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004841 return rc;
4842}
4843
4844/*
drh3b7511c2001-05-26 13:15:44 +00004845** Allocate a new page from the database file.
4846**
danielk19773b8a05f2007-03-19 17:44:26 +00004847** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004848** has already been called on the new page.) The new page has also
4849** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004850** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004851**
4852** SQLITE_OK is returned on success. Any other return value indicates
4853** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004854** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004855**
drh199e3cf2002-07-18 11:01:47 +00004856** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4857** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004858** attempt to keep related pages close to each other in the database file,
4859** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004860**
4861** If the "exact" parameter is not 0, and the page-number nearby exists
4862** anywhere on the free-list, then it is guarenteed to be returned. This
4863** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004864*/
drh4f0c5872007-03-26 22:05:01 +00004865static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004866 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004867 MemPage **ppPage,
4868 Pgno *pPgno,
4869 Pgno nearby,
4870 u8 exact
4871){
drh3aac2dd2004-04-26 14:10:20 +00004872 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004873 int rc;
drh35cd6432009-06-05 14:17:21 +00004874 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004875 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004876 MemPage *pTrunk = 0;
4877 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004878 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004879
drh1fee73e2007-08-29 04:00:57 +00004880 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004881 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00004882 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004883 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004884 testcase( n==mxPage-1 );
4885 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004886 return SQLITE_CORRUPT_BKPT;
4887 }
drh3aac2dd2004-04-26 14:10:20 +00004888 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004889 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004890 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004891 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4892
4893 /* If the 'exact' parameter was true and a query of the pointer-map
4894 ** shows that the page 'nearby' is somewhere on the free-list, then
4895 ** the entire-list will be searched for that page.
4896 */
4897#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004898 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004899 u8 eType;
4900 assert( nearby>0 );
4901 assert( pBt->autoVacuum );
4902 rc = ptrmapGet(pBt, nearby, &eType, 0);
4903 if( rc ) return rc;
4904 if( eType==PTRMAP_FREEPAGE ){
4905 searchList = 1;
4906 }
4907 *pPgno = nearby;
4908 }
4909#endif
4910
4911 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4912 ** first free-list trunk page. iPrevTrunk is initially 1.
4913 */
danielk19773b8a05f2007-03-19 17:44:26 +00004914 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004915 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004916 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004917
4918 /* The code within this loop is run only once if the 'searchList' variable
4919 ** is not true. Otherwise, it runs once for each trunk-page on the
4920 ** free-list until the page 'nearby' is located.
4921 */
4922 do {
4923 pPrevTrunk = pTrunk;
4924 if( pPrevTrunk ){
4925 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004926 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004927 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004928 }
drhdf35a082009-07-09 02:24:35 +00004929 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004930 if( iTrunk>mxPage ){
4931 rc = SQLITE_CORRUPT_BKPT;
4932 }else{
danielk197730548662009-07-09 05:07:37 +00004933 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00004934 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004935 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004936 pTrunk = 0;
4937 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004938 }
drhb07028f2011-10-14 21:49:18 +00004939 assert( pTrunk!=0 );
4940 assert( pTrunk->aData!=0 );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004941
drh93b4fc72011-04-07 14:47:01 +00004942 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004943 if( k==0 && !searchList ){
4944 /* The trunk has no leaves and the list is not being searched.
4945 ** So extract the trunk page itself and use it as the newly
4946 ** allocated page */
4947 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004948 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004949 if( rc ){
4950 goto end_allocate_page;
4951 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004952 *pPgno = iTrunk;
4953 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4954 *ppPage = pTrunk;
4955 pTrunk = 0;
4956 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004957 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004958 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004959 rc = SQLITE_CORRUPT_BKPT;
4960 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004961#ifndef SQLITE_OMIT_AUTOVACUUM
4962 }else if( searchList && nearby==iTrunk ){
4963 /* The list is being searched and this trunk page is the page
4964 ** to allocate, regardless of whether it has leaves.
4965 */
4966 assert( *pPgno==iTrunk );
4967 *ppPage = pTrunk;
4968 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004969 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004970 if( rc ){
4971 goto end_allocate_page;
4972 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004973 if( k==0 ){
4974 if( !pPrevTrunk ){
4975 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4976 }else{
danf48c3552010-08-23 15:41:24 +00004977 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
4978 if( rc!=SQLITE_OK ){
4979 goto end_allocate_page;
4980 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004981 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4982 }
4983 }else{
4984 /* The trunk page is required by the caller but it contains
4985 ** pointers to free-list leaves. The first leaf becomes a trunk
4986 ** page in this case.
4987 */
4988 MemPage *pNewTrunk;
4989 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004990 if( iNewTrunk>mxPage ){
4991 rc = SQLITE_CORRUPT_BKPT;
4992 goto end_allocate_page;
4993 }
drhdf35a082009-07-09 02:24:35 +00004994 testcase( iNewTrunk==mxPage );
danielk197730548662009-07-09 05:07:37 +00004995 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004996 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004997 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004998 }
danielk19773b8a05f2007-03-19 17:44:26 +00004999 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005000 if( rc!=SQLITE_OK ){
5001 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005002 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005003 }
5004 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5005 put4byte(&pNewTrunk->aData[4], k-1);
5006 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005007 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005008 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005009 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005010 put4byte(&pPage1->aData[32], iNewTrunk);
5011 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005012 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005013 if( rc ){
5014 goto end_allocate_page;
5015 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005016 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5017 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005018 }
5019 pTrunk = 0;
5020 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5021#endif
danielk1977e5765212009-06-17 11:13:28 +00005022 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005023 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005024 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005025 Pgno iPage;
5026 unsigned char *aData = pTrunk->aData;
5027 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005028 u32 i;
5029 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005030 closest = 0;
drhd50ffc42011-03-08 02:38:28 +00005031 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005032 for(i=1; i<k; i++){
drhd50ffc42011-03-08 02:38:28 +00005033 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005034 if( d2<dist ){
5035 closest = i;
5036 dist = d2;
5037 }
5038 }
5039 }else{
5040 closest = 0;
5041 }
5042
5043 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005044 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005045 if( iPage>mxPage ){
5046 rc = SQLITE_CORRUPT_BKPT;
5047 goto end_allocate_page;
5048 }
drhdf35a082009-07-09 02:24:35 +00005049 testcase( iPage==mxPage );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005050 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00005051 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005052 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005053 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5054 ": %d more free pages\n",
5055 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005056 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5057 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005058 if( closest<k-1 ){
5059 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5060 }
5061 put4byte(&aData[4], k-1);
danielk1977bea2a942009-01-20 17:06:27 +00005062 noContent = !btreeGetHasContent(pBt, *pPgno);
danielk197730548662009-07-09 05:07:37 +00005063 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005064 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005065 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005066 if( rc!=SQLITE_OK ){
5067 releasePage(*ppPage);
5068 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005069 }
5070 searchList = 0;
5071 }
drhee696e22004-08-30 16:52:17 +00005072 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005073 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005074 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005075 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005076 }else{
drh3aac2dd2004-04-26 14:10:20 +00005077 /* There are no pages on the freelist, so create a new page at the
5078 ** end of the file */
drhdd3cd972010-03-27 17:12:36 +00005079 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5080 if( rc ) return rc;
5081 pBt->nPage++;
5082 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005083
danielk1977afcdd022004-10-31 16:25:42 +00005084#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005085 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005086 /* If *pPgno refers to a pointer-map page, allocate two new pages
5087 ** at the end of the file instead of one. The first allocated page
5088 ** becomes a new pointer-map page, the second is used by the caller.
5089 */
danielk1977ac861692009-03-28 10:54:22 +00005090 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005091 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5092 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00005093 rc = btreeGetPage(pBt, pBt->nPage, &pPg, 1);
danielk1977ac861692009-03-28 10:54:22 +00005094 if( rc==SQLITE_OK ){
5095 rc = sqlite3PagerWrite(pPg->pDbPage);
5096 releasePage(pPg);
5097 }
5098 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005099 pBt->nPage++;
5100 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005101 }
5102#endif
drhdd3cd972010-03-27 17:12:36 +00005103 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5104 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005105
danielk1977599fcba2004-11-08 07:13:13 +00005106 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00005107 rc = btreeGetPage(pBt, *pPgno, ppPage, 1);
drh3b7511c2001-05-26 13:15:44 +00005108 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005109 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005110 if( rc!=SQLITE_OK ){
5111 releasePage(*ppPage);
5112 }
drh3a4c1412004-05-09 20:40:11 +00005113 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005114 }
danielk1977599fcba2004-11-08 07:13:13 +00005115
5116 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005117
5118end_allocate_page:
5119 releasePage(pTrunk);
5120 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005121 if( rc==SQLITE_OK ){
5122 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5123 releasePage(*ppPage);
5124 return SQLITE_CORRUPT_BKPT;
5125 }
5126 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005127 }else{
5128 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005129 }
drh93b4fc72011-04-07 14:47:01 +00005130 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005131 return rc;
5132}
5133
5134/*
danielk1977bea2a942009-01-20 17:06:27 +00005135** This function is used to add page iPage to the database file free-list.
5136** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005137**
danielk1977bea2a942009-01-20 17:06:27 +00005138** The value passed as the second argument to this function is optional.
5139** If the caller happens to have a pointer to the MemPage object
5140** corresponding to page iPage handy, it may pass it as the second value.
5141** Otherwise, it may pass NULL.
5142**
5143** If a pointer to a MemPage object is passed as the second argument,
5144** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005145*/
danielk1977bea2a942009-01-20 17:06:27 +00005146static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5147 MemPage *pTrunk = 0; /* Free-list trunk page */
5148 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5149 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5150 MemPage *pPage; /* Page being freed. May be NULL. */
5151 int rc; /* Return Code */
5152 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005153
danielk1977bea2a942009-01-20 17:06:27 +00005154 assert( sqlite3_mutex_held(pBt->mutex) );
5155 assert( iPage>1 );
5156 assert( !pMemPage || pMemPage->pgno==iPage );
5157
5158 if( pMemPage ){
5159 pPage = pMemPage;
5160 sqlite3PagerRef(pPage->pDbPage);
5161 }else{
5162 pPage = btreePageLookup(pBt, iPage);
5163 }
drh3aac2dd2004-04-26 14:10:20 +00005164
drha34b6762004-05-07 13:30:42 +00005165 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005166 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005167 if( rc ) goto freepage_out;
5168 nFree = get4byte(&pPage1->aData[36]);
5169 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005170
drhc9166342012-01-05 23:32:06 +00005171 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005172 /* If the secure_delete option is enabled, then
5173 ** always fully overwrite deleted information with zeros.
5174 */
shaneh84f4b2f2010-02-26 01:46:54 +00005175 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
5176 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005177 ){
5178 goto freepage_out;
5179 }
5180 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005181 }
drhfcce93f2006-02-22 03:08:32 +00005182
danielk1977687566d2004-11-02 12:56:41 +00005183 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005184 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005185 */
danielk197785d90ca2008-07-19 14:25:15 +00005186 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005187 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005188 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005189 }
danielk1977687566d2004-11-02 12:56:41 +00005190
danielk1977bea2a942009-01-20 17:06:27 +00005191 /* Now manipulate the actual database free-list structure. There are two
5192 ** possibilities. If the free-list is currently empty, or if the first
5193 ** trunk page in the free-list is full, then this page will become a
5194 ** new free-list trunk page. Otherwise, it will become a leaf of the
5195 ** first trunk page in the current free-list. This block tests if it
5196 ** is possible to add the page as a new free-list leaf.
5197 */
5198 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005199 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005200
5201 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00005202 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005203 if( rc!=SQLITE_OK ){
5204 goto freepage_out;
5205 }
5206
5207 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005208 assert( pBt->usableSize>32 );
5209 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005210 rc = SQLITE_CORRUPT_BKPT;
5211 goto freepage_out;
5212 }
drheeb844a2009-08-08 18:01:07 +00005213 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005214 /* In this case there is room on the trunk page to insert the page
5215 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005216 **
5217 ** Note that the trunk page is not really full until it contains
5218 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5219 ** coded. But due to a coding error in versions of SQLite prior to
5220 ** 3.6.0, databases with freelist trunk pages holding more than
5221 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5222 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005223 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005224 ** for now. At some point in the future (once everyone has upgraded
5225 ** to 3.6.0 or later) we should consider fixing the conditional above
5226 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5227 */
danielk19773b8a05f2007-03-19 17:44:26 +00005228 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005229 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005230 put4byte(&pTrunk->aData[4], nLeaf+1);
5231 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005232 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005233 sqlite3PagerDontWrite(pPage->pDbPage);
5234 }
danielk1977bea2a942009-01-20 17:06:27 +00005235 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005236 }
drh3a4c1412004-05-09 20:40:11 +00005237 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005238 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005239 }
drh3b7511c2001-05-26 13:15:44 +00005240 }
danielk1977bea2a942009-01-20 17:06:27 +00005241
5242 /* If control flows to this point, then it was not possible to add the
5243 ** the page being freed as a leaf page of the first trunk in the free-list.
5244 ** Possibly because the free-list is empty, or possibly because the
5245 ** first trunk in the free-list is full. Either way, the page being freed
5246 ** will become the new first trunk page in the free-list.
5247 */
drhc046e3e2009-07-15 11:26:44 +00005248 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5249 goto freepage_out;
5250 }
5251 rc = sqlite3PagerWrite(pPage->pDbPage);
5252 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005253 goto freepage_out;
5254 }
5255 put4byte(pPage->aData, iTrunk);
5256 put4byte(&pPage->aData[4], 0);
5257 put4byte(&pPage1->aData[32], iPage);
5258 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5259
5260freepage_out:
5261 if( pPage ){
5262 pPage->isInit = 0;
5263 }
5264 releasePage(pPage);
5265 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005266 return rc;
5267}
drhc314dc72009-07-21 11:52:34 +00005268static void freePage(MemPage *pPage, int *pRC){
5269 if( (*pRC)==SQLITE_OK ){
5270 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5271 }
danielk1977bea2a942009-01-20 17:06:27 +00005272}
drh3b7511c2001-05-26 13:15:44 +00005273
5274/*
drh3aac2dd2004-04-26 14:10:20 +00005275** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005276*/
drh3aac2dd2004-04-26 14:10:20 +00005277static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005278 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005279 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005280 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005281 int rc;
drh94440812007-03-06 11:42:19 +00005282 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005283 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005284
drh1fee73e2007-08-29 04:00:57 +00005285 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005286 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005287 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005288 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005289 }
drhe42a9b42011-08-31 13:27:19 +00005290 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005291 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005292 }
drh6f11bef2004-05-13 01:12:56 +00005293 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005294 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005295 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005296 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5297 assert( ovflPgno==0 || nOvfl>0 );
5298 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005299 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005300 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005301 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005302 /* 0 is not a legal page number and page 1 cannot be an
5303 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5304 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005305 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005306 }
danielk1977bea2a942009-01-20 17:06:27 +00005307 if( nOvfl ){
5308 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5309 if( rc ) return rc;
5310 }
dan887d4b22010-02-25 12:09:16 +00005311
shaneh1da207e2010-03-09 14:41:12 +00005312 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005313 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5314 ){
5315 /* There is no reason any cursor should have an outstanding reference
5316 ** to an overflow page belonging to a cell that is being deleted/updated.
5317 ** So if there exists more than one reference to this page, then it
5318 ** must not really be an overflow page and the database must be corrupt.
5319 ** It is helpful to detect this before calling freePage2(), as
5320 ** freePage2() may zero the page contents if secure-delete mode is
5321 ** enabled. If this 'overflow' page happens to be a page that the
5322 ** caller is iterating through or using in some other way, this
5323 ** can be problematic.
5324 */
5325 rc = SQLITE_CORRUPT_BKPT;
5326 }else{
5327 rc = freePage2(pBt, pOvfl, ovflPgno);
5328 }
5329
danielk1977bea2a942009-01-20 17:06:27 +00005330 if( pOvfl ){
5331 sqlite3PagerUnref(pOvfl->pDbPage);
5332 }
drh3b7511c2001-05-26 13:15:44 +00005333 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005334 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005335 }
drh5e2f8b92001-05-28 00:41:15 +00005336 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005337}
5338
5339/*
drh91025292004-05-03 19:49:32 +00005340** Create the byte sequence used to represent a cell on page pPage
5341** and write that byte sequence into pCell[]. Overflow pages are
5342** allocated and filled in as necessary. The calling procedure
5343** is responsible for making sure sufficient space has been allocated
5344** for pCell[].
5345**
5346** Note that pCell does not necessary need to point to the pPage->aData
5347** area. pCell might point to some temporary storage. The cell will
5348** be constructed in this temporary area then copied into pPage->aData
5349** later.
drh3b7511c2001-05-26 13:15:44 +00005350*/
5351static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005352 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005353 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005354 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005355 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005356 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005357 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005358){
drh3b7511c2001-05-26 13:15:44 +00005359 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005360 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005361 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005362 int spaceLeft;
5363 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005364 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005365 unsigned char *pPrior;
5366 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005367 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005368 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005369 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005370 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005371
drh1fee73e2007-08-29 04:00:57 +00005372 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005373
drhc5053fb2008-11-27 02:22:10 +00005374 /* pPage is not necessarily writeable since pCell might be auxiliary
5375 ** buffer space that is separate from the pPage buffer area */
5376 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5377 || sqlite3PagerIswriteable(pPage->pDbPage) );
5378
drh91025292004-05-03 19:49:32 +00005379 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005380 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005381 if( !pPage->leaf ){
5382 nHeader += 4;
5383 }
drh8b18dd42004-05-12 19:18:15 +00005384 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005385 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005386 }else{
drhb026e052007-05-02 01:34:31 +00005387 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005388 }
drh6f11bef2004-05-13 01:12:56 +00005389 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005390 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005391 assert( info.nHeader==nHeader );
5392 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005393 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005394
5395 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005396 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005397 if( pPage->intKey ){
5398 pSrc = pData;
5399 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005400 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005401 }else{
danielk197731d31b82009-07-13 13:18:07 +00005402 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5403 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005404 }
drhf49661a2008-12-10 16:45:50 +00005405 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005406 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005407 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005408 }
drh6f11bef2004-05-13 01:12:56 +00005409 *pnSize = info.nSize;
5410 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005411 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005412 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005413
drh3b7511c2001-05-26 13:15:44 +00005414 while( nPayload>0 ){
5415 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005416#ifndef SQLITE_OMIT_AUTOVACUUM
5417 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005418 if( pBt->autoVacuum ){
5419 do{
5420 pgnoOvfl++;
5421 } while(
5422 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5423 );
danielk1977b39f70b2007-05-17 18:28:11 +00005424 }
danielk1977afcdd022004-10-31 16:25:42 +00005425#endif
drhf49661a2008-12-10 16:45:50 +00005426 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005427#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005428 /* If the database supports auto-vacuum, and the second or subsequent
5429 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005430 ** for that page now.
5431 **
5432 ** If this is the first overflow page, then write a partial entry
5433 ** to the pointer-map. If we write nothing to this pointer-map slot,
5434 ** then the optimistic overflow chain processing in clearCell()
5435 ** may misinterpret the uninitialised values and delete the
5436 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005437 */
danielk19774ef24492007-05-23 09:52:41 +00005438 if( pBt->autoVacuum && rc==SQLITE_OK ){
5439 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005440 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005441 if( rc ){
5442 releasePage(pOvfl);
5443 }
danielk1977afcdd022004-10-31 16:25:42 +00005444 }
5445#endif
drh3b7511c2001-05-26 13:15:44 +00005446 if( rc ){
drh9b171272004-05-08 02:03:22 +00005447 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005448 return rc;
5449 }
drhc5053fb2008-11-27 02:22:10 +00005450
5451 /* If pToRelease is not zero than pPrior points into the data area
5452 ** of pToRelease. Make sure pToRelease is still writeable. */
5453 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5454
5455 /* If pPrior is part of the data area of pPage, then make sure pPage
5456 ** is still writeable */
5457 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5458 || sqlite3PagerIswriteable(pPage->pDbPage) );
5459
drh3aac2dd2004-04-26 14:10:20 +00005460 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005461 releasePage(pToRelease);
5462 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005463 pPrior = pOvfl->aData;
5464 put4byte(pPrior, 0);
5465 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005466 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005467 }
5468 n = nPayload;
5469 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005470
5471 /* If pToRelease is not zero than pPayload points into the data area
5472 ** of pToRelease. Make sure pToRelease is still writeable. */
5473 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5474
5475 /* If pPayload is part of the data area of pPage, then make sure pPage
5476 ** is still writeable */
5477 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5478 || sqlite3PagerIswriteable(pPage->pDbPage) );
5479
drhb026e052007-05-02 01:34:31 +00005480 if( nSrc>0 ){
5481 if( n>nSrc ) n = nSrc;
5482 assert( pSrc );
5483 memcpy(pPayload, pSrc, n);
5484 }else{
5485 memset(pPayload, 0, n);
5486 }
drh3b7511c2001-05-26 13:15:44 +00005487 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005488 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005489 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005490 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005491 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005492 if( nSrc==0 ){
5493 nSrc = nData;
5494 pSrc = pData;
5495 }
drhdd793422001-06-28 01:54:48 +00005496 }
drh9b171272004-05-08 02:03:22 +00005497 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005498 return SQLITE_OK;
5499}
5500
drh14acc042001-06-10 19:56:58 +00005501/*
5502** Remove the i-th cell from pPage. This routine effects pPage only.
5503** The cell content is not freed or deallocated. It is assumed that
5504** the cell content has been copied someplace else. This routine just
5505** removes the reference to the cell from pPage.
5506**
5507** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005508*/
drh98add2e2009-07-20 17:11:49 +00005509static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00005510 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005511 u8 *data; /* pPage->aData */
5512 u8 *ptr; /* Used to move bytes around within data[] */
drhc3f1d5f2011-05-30 23:42:16 +00005513 u8 *endPtr; /* End of loop */
shanedcc50b72008-11-13 18:29:50 +00005514 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005515 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005516
drh98add2e2009-07-20 17:11:49 +00005517 if( *pRC ) return;
5518
drh8c42ca92001-06-22 19:15:00 +00005519 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005520 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005521 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005522 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005523 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00005524 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00005525 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005526 hdr = pPage->hdrOffset;
5527 testcase( pc==get2byte(&data[hdr+5]) );
5528 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005529 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005530 *pRC = SQLITE_CORRUPT_BKPT;
5531 return;
shane0af3f892008-11-12 04:55:34 +00005532 }
shanedcc50b72008-11-13 18:29:50 +00005533 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005534 if( rc ){
5535 *pRC = rc;
5536 return;
shanedcc50b72008-11-13 18:29:50 +00005537 }
drh3def2352011-11-11 00:27:15 +00005538 endPtr = &pPage->aCellIdx[2*pPage->nCell - 2];
drh2ce71b42011-06-06 13:38:11 +00005539 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drhc3f1d5f2011-05-30 23:42:16 +00005540 while( ptr<endPtr ){
drh61d2fe92011-06-03 23:28:33 +00005541 *(u16*)ptr = *(u16*)&ptr[2];
drhc3f1d5f2011-05-30 23:42:16 +00005542 ptr += 2;
drh14acc042001-06-10 19:56:58 +00005543 }
5544 pPage->nCell--;
drhc314dc72009-07-21 11:52:34 +00005545 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005546 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005547}
5548
5549/*
5550** Insert a new cell on pPage at cell index "i". pCell points to the
5551** content of the cell.
5552**
5553** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005554** will not fit, then make a copy of the cell content into pTemp if
5555** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00005556** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00005557** in pTemp or the original pCell) and also record its index.
5558** Allocating a new entry in pPage->aCell[] implies that
5559** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005560**
5561** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5562** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005563** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005564** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005565*/
drh98add2e2009-07-20 17:11:49 +00005566static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005567 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005568 int i, /* New cell becomes the i-th cell of the page */
5569 u8 *pCell, /* Content of the new cell */
5570 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005571 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005572 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5573 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005574){
drh383d30f2010-02-26 13:07:37 +00005575 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005576 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005577 int end; /* First byte past the last cell pointer in data[] */
5578 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005579 int cellOffset; /* Address of first cell pointer in data[] */
5580 u8 *data; /* The content of the whole page */
5581 u8 *ptr; /* Used for moving information around in data[] */
drh61d2fe92011-06-03 23:28:33 +00005582 u8 *endPtr; /* End of the loop */
drh43605152004-05-29 21:46:49 +00005583
danielk19774dbaa892009-06-16 16:50:22 +00005584 int nSkip = (iChild ? 4 : 0);
5585
drh98add2e2009-07-20 17:11:49 +00005586 if( *pRC ) return;
5587
drh43605152004-05-29 21:46:49 +00005588 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhb2eced52010-08-12 02:41:12 +00005589 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
drh2cbd78b2012-02-02 19:37:18 +00005590 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
5591 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005592 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005593 /* The cell should normally be sized correctly. However, when moving a
5594 ** malformed cell from a leaf page to an interior page, if the cell size
5595 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5596 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5597 ** the term after the || in the following assert(). */
5598 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005599 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005600 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005601 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005602 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005603 }
danielk19774dbaa892009-06-16 16:50:22 +00005604 if( iChild ){
5605 put4byte(pCell, iChild);
5606 }
drh43605152004-05-29 21:46:49 +00005607 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00005608 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
5609 pPage->apOvfl[j] = pCell;
5610 pPage->aiOvfl[j] = (u16)i;
drh14acc042001-06-10 19:56:58 +00005611 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005612 int rc = sqlite3PagerWrite(pPage->pDbPage);
5613 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005614 *pRC = rc;
5615 return;
danielk19776e465eb2007-08-21 13:11:00 +00005616 }
5617 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005618 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005619 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005620 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005621 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005622 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005623 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005624 /* The allocateSpace() routine guarantees the following two properties
5625 ** if it returns success */
5626 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00005627 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005628 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005629 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005630 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005631 if( iChild ){
5632 put4byte(&data[idx], iChild);
5633 }
drh61d2fe92011-06-03 23:28:33 +00005634 ptr = &data[end];
5635 endPtr = &data[ins];
drh2ce71b42011-06-06 13:38:11 +00005636 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drh61d2fe92011-06-03 23:28:33 +00005637 while( ptr>endPtr ){
5638 *(u16*)ptr = *(u16*)&ptr[-2];
5639 ptr -= 2;
drhda200cc2004-05-09 11:51:38 +00005640 }
drh43605152004-05-29 21:46:49 +00005641 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005642 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005643#ifndef SQLITE_OMIT_AUTOVACUUM
5644 if( pPage->pBt->autoVacuum ){
5645 /* The cell may contain a pointer to an overflow page. If so, write
5646 ** the entry for the overflow page into the pointer map.
5647 */
drh98add2e2009-07-20 17:11:49 +00005648 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005649 }
5650#endif
drh14acc042001-06-10 19:56:58 +00005651 }
5652}
5653
5654/*
drhfa1a98a2004-05-14 19:08:17 +00005655** Add a list of cells to a page. The page should be initially empty.
5656** The cells are guaranteed to fit on the page.
5657*/
5658static void assemblePage(
5659 MemPage *pPage, /* The page to be assemblied */
5660 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005661 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005662 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005663){
5664 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005665 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005666 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005667 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5668 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5669 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005670
drh43605152004-05-29 21:46:49 +00005671 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005672 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfcd71b62011-04-05 22:08:24 +00005673 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5674 && (int)MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005675 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005676
5677 /* Check that the page has just been zeroed by zeroPage() */
5678 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005679 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005680
drh3def2352011-11-11 00:27:15 +00005681 pCellptr = &pPage->aCellIdx[nCell*2];
danielk1977fad91942009-04-29 17:49:59 +00005682 cellbody = nUsable;
5683 for(i=nCell-1; i>=0; i--){
drh61d2fe92011-06-03 23:28:33 +00005684 u16 sz = aSize[i];
danielk1977fad91942009-04-29 17:49:59 +00005685 pCellptr -= 2;
drh61d2fe92011-06-03 23:28:33 +00005686 cellbody -= sz;
danielk1977fad91942009-04-29 17:49:59 +00005687 put2byte(pCellptr, cellbody);
drh61d2fe92011-06-03 23:28:33 +00005688 memcpy(&data[cellbody], apCell[i], sz);
drhfa1a98a2004-05-14 19:08:17 +00005689 }
danielk1977fad91942009-04-29 17:49:59 +00005690 put2byte(&data[hdr+3], nCell);
5691 put2byte(&data[hdr+5], cellbody);
5692 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005693 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005694}
5695
drh14acc042001-06-10 19:56:58 +00005696/*
drhc3b70572003-01-04 19:44:07 +00005697** The following parameters determine how many adjacent pages get involved
5698** in a balancing operation. NN is the number of neighbors on either side
5699** of the page that participate in the balancing operation. NB is the
5700** total number of pages that participate, including the target page and
5701** NN neighbors on either side.
5702**
5703** The minimum value of NN is 1 (of course). Increasing NN above 1
5704** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5705** in exchange for a larger degradation in INSERT and UPDATE performance.
5706** The value of NN appears to give the best results overall.
5707*/
5708#define NN 1 /* Number of neighbors on either side of pPage */
5709#define NB (NN*2+1) /* Total pages involved in the balance */
5710
danielk1977ac245ec2005-01-14 13:50:11 +00005711
drh615ae552005-01-16 23:21:00 +00005712#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005713/*
5714** This version of balance() handles the common special case where
5715** a new entry is being inserted on the extreme right-end of the
5716** tree, in other words, when the new entry will become the largest
5717** entry in the tree.
5718**
drhc314dc72009-07-21 11:52:34 +00005719** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005720** a new page to the right-hand side and put the one new entry in
5721** that page. This leaves the right side of the tree somewhat
5722** unbalanced. But odds are that we will be inserting new entries
5723** at the end soon afterwards so the nearly empty page will quickly
5724** fill up. On average.
5725**
5726** pPage is the leaf page which is the right-most page in the tree.
5727** pParent is its parent. pPage must have a single overflow entry
5728** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005729**
5730** The pSpace buffer is used to store a temporary copy of the divider
5731** cell that will be inserted into pParent. Such a cell consists of a 4
5732** byte page number followed by a variable length integer. In other
5733** words, at most 13 bytes. Hence the pSpace buffer must be at
5734** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005735*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005736static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5737 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005738 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005739 int rc; /* Return Code */
5740 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005741
drh1fee73e2007-08-29 04:00:57 +00005742 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005743 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005744 assert( pPage->nOverflow==1 );
5745
drh5d433ce2010-08-14 16:02:52 +00005746 /* This error condition is now caught prior to reaching this function */
mistachkin5f070c72012-10-18 10:35:19 +00005747 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005748
danielk1977a50d9aa2009-06-08 14:49:45 +00005749 /* Allocate a new page. This page will become the right-sibling of
5750 ** pPage. Make the parent page writable, so that the new divider cell
5751 ** may be inserted. If both these operations are successful, proceed.
5752 */
drh4f0c5872007-03-26 22:05:01 +00005753 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005754
danielk1977eaa06f62008-09-18 17:34:44 +00005755 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005756
5757 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00005758 u8 *pCell = pPage->apOvfl[0];
danielk19776f235cc2009-06-04 14:46:08 +00005759 u16 szCell = cellSizePtr(pPage, pCell);
5760 u8 *pStop;
5761
drhc5053fb2008-11-27 02:22:10 +00005762 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005763 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5764 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005765 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005766
5767 /* If this is an auto-vacuum database, update the pointer map
5768 ** with entries for the new page, and any pointer from the
5769 ** cell on the page to an overflow page. If either of these
5770 ** operations fails, the return code is set, but the contents
5771 ** of the parent page are still manipulated by thh code below.
5772 ** That is Ok, at this point the parent page is guaranteed to
5773 ** be marked as dirty. Returning an error code will cause a
5774 ** rollback, undoing any changes made to the parent page.
5775 */
5776 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005777 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5778 if( szCell>pNew->minLocal ){
5779 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005780 }
5781 }
danielk1977eaa06f62008-09-18 17:34:44 +00005782
danielk19776f235cc2009-06-04 14:46:08 +00005783 /* Create a divider cell to insert into pParent. The divider cell
5784 ** consists of a 4-byte page number (the page number of pPage) and
5785 ** a variable length key value (which must be the same value as the
5786 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005787 **
danielk19776f235cc2009-06-04 14:46:08 +00005788 ** To find the largest key value on pPage, first find the right-most
5789 ** cell on pPage. The first two fields of this cell are the
5790 ** record-length (a variable length integer at most 32-bits in size)
5791 ** and the key value (a variable length integer, may have any value).
5792 ** The first of the while(...) loops below skips over the record-length
5793 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005794 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005795 */
danielk1977eaa06f62008-09-18 17:34:44 +00005796 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005797 pStop = &pCell[9];
5798 while( (*(pCell++)&0x80) && pCell<pStop );
5799 pStop = &pCell[9];
5800 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5801
danielk19774dbaa892009-06-16 16:50:22 +00005802 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005803 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5804 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005805
5806 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005807 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5808
danielk1977e08a3c42008-09-18 18:17:03 +00005809 /* Release the reference to the new page. */
5810 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005811 }
5812
danielk1977eaa06f62008-09-18 17:34:44 +00005813 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005814}
drh615ae552005-01-16 23:21:00 +00005815#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005816
danielk19774dbaa892009-06-16 16:50:22 +00005817#if 0
drhc3b70572003-01-04 19:44:07 +00005818/*
danielk19774dbaa892009-06-16 16:50:22 +00005819** This function does not contribute anything to the operation of SQLite.
5820** it is sometimes activated temporarily while debugging code responsible
5821** for setting pointer-map entries.
5822*/
5823static int ptrmapCheckPages(MemPage **apPage, int nPage){
5824 int i, j;
5825 for(i=0; i<nPage; i++){
5826 Pgno n;
5827 u8 e;
5828 MemPage *pPage = apPage[i];
5829 BtShared *pBt = pPage->pBt;
5830 assert( pPage->isInit );
5831
5832 for(j=0; j<pPage->nCell; j++){
5833 CellInfo info;
5834 u8 *z;
5835
5836 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005837 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005838 if( info.iOverflow ){
5839 Pgno ovfl = get4byte(&z[info.iOverflow]);
5840 ptrmapGet(pBt, ovfl, &e, &n);
5841 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5842 }
5843 if( !pPage->leaf ){
5844 Pgno child = get4byte(z);
5845 ptrmapGet(pBt, child, &e, &n);
5846 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5847 }
5848 }
5849 if( !pPage->leaf ){
5850 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5851 ptrmapGet(pBt, child, &e, &n);
5852 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5853 }
5854 }
5855 return 1;
5856}
5857#endif
5858
danielk1977cd581a72009-06-23 15:43:39 +00005859/*
5860** This function is used to copy the contents of the b-tree node stored
5861** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5862** the pointer-map entries for each child page are updated so that the
5863** parent page stored in the pointer map is page pTo. If pFrom contained
5864** any cells with overflow page pointers, then the corresponding pointer
5865** map entries are also updated so that the parent page is page pTo.
5866**
5867** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00005868** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00005869**
danielk197730548662009-07-09 05:07:37 +00005870** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005871**
5872** The performance of this function is not critical. It is only used by
5873** the balance_shallower() and balance_deeper() procedures, neither of
5874** which are called often under normal circumstances.
5875*/
drhc314dc72009-07-21 11:52:34 +00005876static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5877 if( (*pRC)==SQLITE_OK ){
5878 BtShared * const pBt = pFrom->pBt;
5879 u8 * const aFrom = pFrom->aData;
5880 u8 * const aTo = pTo->aData;
5881 int const iFromHdr = pFrom->hdrOffset;
5882 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00005883 int rc;
drhc314dc72009-07-21 11:52:34 +00005884 int iData;
5885
5886
5887 assert( pFrom->isInit );
5888 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00005889 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00005890
5891 /* Copy the b-tree node content from page pFrom to page pTo. */
5892 iData = get2byte(&aFrom[iFromHdr+5]);
5893 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5894 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5895
5896 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00005897 ** match the new data. The initialization of pTo can actually fail under
5898 ** fairly obscure circumstances, even though it is a copy of initialized
5899 ** page pFrom.
5900 */
drhc314dc72009-07-21 11:52:34 +00005901 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00005902 rc = btreeInitPage(pTo);
5903 if( rc!=SQLITE_OK ){
5904 *pRC = rc;
5905 return;
5906 }
drhc314dc72009-07-21 11:52:34 +00005907
5908 /* If this is an auto-vacuum database, update the pointer-map entries
5909 ** for any b-tree or overflow pages that pTo now contains the pointers to.
5910 */
5911 if( ISAUTOVACUUM ){
5912 *pRC = setChildPtrmaps(pTo);
5913 }
danielk1977cd581a72009-06-23 15:43:39 +00005914 }
danielk1977cd581a72009-06-23 15:43:39 +00005915}
5916
5917/*
danielk19774dbaa892009-06-16 16:50:22 +00005918** This routine redistributes cells on the iParentIdx'th child of pParent
5919** (hereafter "the page") and up to 2 siblings so that all pages have about the
5920** same amount of free space. Usually a single sibling on either side of the
5921** page are used in the balancing, though both siblings might come from one
5922** side if the page is the first or last child of its parent. If the page
5923** has fewer than 2 siblings (something which can only happen if the page
5924** is a root page or a child of a root page) then all available siblings
5925** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005926**
danielk19774dbaa892009-06-16 16:50:22 +00005927** The number of siblings of the page might be increased or decreased by
5928** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005929**
danielk19774dbaa892009-06-16 16:50:22 +00005930** Note that when this routine is called, some of the cells on the page
5931** might not actually be stored in MemPage.aData[]. This can happen
5932** if the page is overfull. This routine ensures that all cells allocated
5933** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005934**
danielk19774dbaa892009-06-16 16:50:22 +00005935** In the course of balancing the page and its siblings, cells may be
5936** inserted into or removed from the parent page (pParent). Doing so
5937** may cause the parent page to become overfull or underfull. If this
5938** happens, it is the responsibility of the caller to invoke the correct
5939** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005940**
drh5e00f6c2001-09-13 13:46:56 +00005941** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005942** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005943** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005944**
5945** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00005946** buffer big enough to hold one page. If while inserting cells into the parent
5947** page (pParent) the parent page becomes overfull, this buffer is
5948** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00005949** a maximum of four divider cells into the parent page, and the maximum
5950** size of a cell stored within an internal node is always less than 1/4
5951** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5952** enough for all overflow cells.
5953**
5954** If aOvflSpace is set to a null pointer, this function returns
5955** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005956*/
mistachkine7c54162012-10-02 22:54:27 +00005957#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
5958#pragma optimize("", off)
5959#endif
danielk19774dbaa892009-06-16 16:50:22 +00005960static int balance_nonroot(
5961 MemPage *pParent, /* Parent page of siblings being balanced */
5962 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005963 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00005964 int isRoot, /* True if pParent is a root-page */
5965 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00005966){
drh16a9b832007-05-05 18:39:25 +00005967 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005968 int nCell = 0; /* Number of cells in apCell[] */
5969 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005970 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005971 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005972 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005973 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005974 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005975 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005976 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005977 int usableSpace; /* Bytes in pPage beyond the header */
5978 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005979 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005980 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005981 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005982 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005983 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005984 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005985 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005986 u8 *pRight; /* Location in parent of right-sibling pointer */
5987 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005988 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5989 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005990 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005991 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005992 u8 *aSpace1; /* Space for copies of dividers cells */
5993 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005994
danielk1977a50d9aa2009-06-08 14:49:45 +00005995 pBt = pParent->pBt;
5996 assert( sqlite3_mutex_held(pBt->mutex) );
5997 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005998
danielk1977e5765212009-06-17 11:13:28 +00005999#if 0
drh43605152004-05-29 21:46:49 +00006000 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00006001#endif
drh2e38c322004-09-03 18:38:44 +00006002
danielk19774dbaa892009-06-16 16:50:22 +00006003 /* At this point pParent may have at most one overflow cell. And if
6004 ** this overflow cell is present, it must be the cell with
6005 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00006006 ** is called (indirectly) from sqlite3BtreeDelete().
6007 */
danielk19774dbaa892009-06-16 16:50:22 +00006008 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00006009 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00006010
danielk197711a8a862009-06-17 11:49:52 +00006011 if( !aOvflSpace ){
6012 return SQLITE_NOMEM;
6013 }
6014
danielk1977a50d9aa2009-06-08 14:49:45 +00006015 /* Find the sibling pages to balance. Also locate the cells in pParent
6016 ** that divide the siblings. An attempt is made to find NN siblings on
6017 ** either side of pPage. More siblings are taken from one side, however,
6018 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00006019 ** has NB or fewer children then all children of pParent are taken.
6020 **
6021 ** This loop also drops the divider cells from the parent page. This
6022 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00006023 ** overflow cells in the parent page, since if any existed they will
6024 ** have already been removed.
6025 */
danielk19774dbaa892009-06-16 16:50:22 +00006026 i = pParent->nOverflow + pParent->nCell;
6027 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00006028 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00006029 }else{
dan7d6885a2012-08-08 14:04:56 +00006030 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00006031 if( iParentIdx==0 ){
6032 nxDiv = 0;
6033 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00006034 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00006035 }else{
dan7d6885a2012-08-08 14:04:56 +00006036 assert( bBulk==0 );
danielk19774dbaa892009-06-16 16:50:22 +00006037 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006038 }
dan7d6885a2012-08-08 14:04:56 +00006039 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00006040 }
dan7d6885a2012-08-08 14:04:56 +00006041 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00006042 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6043 pRight = &pParent->aData[pParent->hdrOffset+8];
6044 }else{
6045 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6046 }
6047 pgno = get4byte(pRight);
6048 while( 1 ){
6049 rc = getAndInitPage(pBt, pgno, &apOld[i]);
6050 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006051 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006052 goto balance_cleanup;
6053 }
danielk1977634f2982005-03-28 08:44:07 +00006054 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006055 if( (i--)==0 ) break;
6056
drh2cbd78b2012-02-02 19:37:18 +00006057 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6058 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006059 pgno = get4byte(apDiv[i]);
6060 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6061 pParent->nOverflow = 0;
6062 }else{
6063 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6064 pgno = get4byte(apDiv[i]);
6065 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6066
6067 /* Drop the cell from the parent page. apDiv[i] still points to
6068 ** the cell within the parent, even though it has been dropped.
6069 ** This is safe because dropping a cell only overwrites the first
6070 ** four bytes of it, and this function does not need the first
6071 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006072 ** later on.
6073 **
drh8a575d92011-10-12 17:00:28 +00006074 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006075 ** the dropCell() routine will overwrite the entire cell with zeroes.
6076 ** In this case, temporarily copy the cell into the aOvflSpace[]
6077 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6078 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006079 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006080 int iOff;
6081
6082 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006083 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006084 rc = SQLITE_CORRUPT_BKPT;
6085 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6086 goto balance_cleanup;
6087 }else{
6088 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6089 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6090 }
drh5b47efa2010-02-12 18:18:39 +00006091 }
drh98add2e2009-07-20 17:11:49 +00006092 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006093 }
drh8b2f49b2001-06-08 00:21:52 +00006094 }
6095
drha9121e42008-02-19 14:59:35 +00006096 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006097 ** alignment */
drha9121e42008-02-19 14:59:35 +00006098 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006099
drh8b2f49b2001-06-08 00:21:52 +00006100 /*
danielk1977634f2982005-03-28 08:44:07 +00006101 ** Allocate space for memory structures
6102 */
danielk19774dbaa892009-06-16 16:50:22 +00006103 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00006104 szScratch =
drha9121e42008-02-19 14:59:35 +00006105 nMaxCells*sizeof(u8*) /* apCell */
6106 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00006107 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00006108 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00006109 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00006110 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00006111 rc = SQLITE_NOMEM;
6112 goto balance_cleanup;
6113 }
drha9121e42008-02-19 14:59:35 +00006114 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00006115 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00006116 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00006117
6118 /*
6119 ** Load pointers to all cells on sibling pages and the divider cells
6120 ** into the local apCell[] array. Make copies of the divider cells
mistachkind5578432012-08-25 10:01:29 +00006121 ** into space obtained from aSpace1[] and remove the divider cells
drhb6f41482004-05-14 01:58:11 +00006122 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00006123 **
6124 ** If the siblings are on leaf pages, then the child pointers of the
6125 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006126 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006127 ** child pointers. If siblings are not leaves, then all cell in
6128 ** apCell[] include child pointers. Either way, all cells in apCell[]
6129 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006130 **
6131 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6132 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006133 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006134 leafCorrection = apOld[0]->leaf*4;
6135 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00006136 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006137 int limit;
6138
6139 /* Before doing anything else, take a copy of the i'th original sibling
6140 ** The rest of this function will use data from the copies rather
6141 ** that the original pages since the original pages will be in the
6142 ** process of being overwritten. */
6143 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6144 memcpy(pOld, apOld[i], sizeof(MemPage));
6145 pOld->aData = (void*)&pOld[1];
6146 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6147
6148 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006149 if( pOld->nOverflow>0 ){
6150 for(j=0; j<limit; j++){
6151 assert( nCell<nMaxCells );
6152 apCell[nCell] = findOverflowCell(pOld, j);
6153 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6154 nCell++;
6155 }
6156 }else{
6157 u8 *aData = pOld->aData;
6158 u16 maskPage = pOld->maskPage;
6159 u16 cellOffset = pOld->cellOffset;
6160 for(j=0; j<limit; j++){
6161 assert( nCell<nMaxCells );
6162 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6163 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6164 nCell++;
6165 }
6166 }
danielk19774dbaa892009-06-16 16:50:22 +00006167 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006168 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006169 u8 *pTemp;
6170 assert( nCell<nMaxCells );
6171 szCell[nCell] = sz;
6172 pTemp = &aSpace1[iSpace1];
6173 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006174 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006175 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006176 memcpy(pTemp, apDiv[i], sz);
6177 apCell[nCell] = pTemp+leafCorrection;
6178 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006179 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006180 if( !pOld->leaf ){
6181 assert( leafCorrection==0 );
6182 assert( pOld->hdrOffset==0 );
6183 /* The right pointer of the child page pOld becomes the left
6184 ** pointer of the divider cell */
6185 memcpy(apCell[nCell], &pOld->aData[8], 4);
6186 }else{
6187 assert( leafCorrection==4 );
6188 if( szCell[nCell]<4 ){
6189 /* Do not allow any cells smaller than 4 bytes. */
6190 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006191 }
6192 }
drh14acc042001-06-10 19:56:58 +00006193 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006194 }
drh8b2f49b2001-06-08 00:21:52 +00006195 }
6196
6197 /*
drh6019e162001-07-02 17:51:45 +00006198 ** Figure out the number of pages needed to hold all nCell cells.
6199 ** Store this number in "k". Also compute szNew[] which is the total
6200 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006201 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006202 ** cntNew[k] should equal nCell.
6203 **
drh96f5b762004-05-16 16:24:36 +00006204 ** Values computed by this block:
6205 **
6206 ** k: The total number of sibling pages
6207 ** szNew[i]: Spaced used on the i-th sibling page.
6208 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6209 ** the right of the i-th sibling page.
6210 ** usableSpace: Number of bytes of space available on each sibling.
6211 **
drh8b2f49b2001-06-08 00:21:52 +00006212 */
drh43605152004-05-29 21:46:49 +00006213 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006214 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006215 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006216 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006217 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006218 szNew[k] = subtotal - szCell[i];
6219 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006220 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006221 subtotal = 0;
6222 k++;
drh9978c972010-02-23 17:36:32 +00006223 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006224 }
6225 }
6226 szNew[k] = subtotal;
6227 cntNew[k] = nCell;
6228 k++;
drh96f5b762004-05-16 16:24:36 +00006229
6230 /*
6231 ** The packing computed by the previous block is biased toward the siblings
6232 ** on the left side. The left siblings are always nearly full, while the
6233 ** right-most sibling might be nearly empty. This block of code attempts
6234 ** to adjust the packing of siblings to get a better balance.
6235 **
6236 ** This adjustment is more than an optimization. The packing above might
6237 ** be so out of balance as to be illegal. For example, the right-most
6238 ** sibling might be completely empty. This adjustment is not optional.
6239 */
drh6019e162001-07-02 17:51:45 +00006240 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006241 int szRight = szNew[i]; /* Size of sibling on the right */
6242 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6243 int r; /* Index of right-most cell in left sibling */
6244 int d; /* Index of first cell to the left of right sibling */
6245
6246 r = cntNew[i-1] - 1;
6247 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006248 assert( d<nMaxCells );
6249 assert( r<nMaxCells );
danf64cc492012-08-08 11:55:15 +00006250 while( szRight==0
6251 || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2))
6252 ){
drh43605152004-05-29 21:46:49 +00006253 szRight += szCell[d] + 2;
6254 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006255 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006256 r = cntNew[i-1] - 1;
6257 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006258 }
drh96f5b762004-05-16 16:24:36 +00006259 szNew[i] = szRight;
6260 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006261 }
drh09d0deb2005-08-02 17:13:09 +00006262
danielk19776f235cc2009-06-04 14:46:08 +00006263 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006264 ** a virtual root page. A virtual root page is when the real root
6265 ** page is page 1 and we are the only child of that page.
drh2f32fba2012-01-02 16:38:57 +00006266 **
6267 ** UPDATE: The assert() below is not necessarily true if the database
6268 ** file is corrupt. The corruption will be detected and reported later
6269 ** in this procedure so there is no need to act upon it now.
drh09d0deb2005-08-02 17:13:09 +00006270 */
drh2f32fba2012-01-02 16:38:57 +00006271#if 0
drh09d0deb2005-08-02 17:13:09 +00006272 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh2f32fba2012-01-02 16:38:57 +00006273#endif
drh8b2f49b2001-06-08 00:21:52 +00006274
danielk1977e5765212009-06-17 11:13:28 +00006275 TRACE(("BALANCE: old: %d %d %d ",
6276 apOld[0]->pgno,
6277 nOld>=2 ? apOld[1]->pgno : 0,
6278 nOld>=3 ? apOld[2]->pgno : 0
6279 ));
6280
drh8b2f49b2001-06-08 00:21:52 +00006281 /*
drh6b308672002-07-08 02:16:37 +00006282 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006283 */
drheac74422009-06-14 12:47:11 +00006284 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006285 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006286 goto balance_cleanup;
6287 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006288 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006289 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006290 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006291 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006292 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006293 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006294 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006295 nNew++;
danielk197728129562005-01-11 10:25:06 +00006296 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006297 }else{
drh7aa8f852006-03-28 00:24:44 +00006298 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00006299 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00006300 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006301 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006302 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006303
6304 /* Set the pointer-map entry for the new sibling page. */
6305 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006306 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006307 if( rc!=SQLITE_OK ){
6308 goto balance_cleanup;
6309 }
6310 }
drh6b308672002-07-08 02:16:37 +00006311 }
drh8b2f49b2001-06-08 00:21:52 +00006312 }
6313
danielk1977299b1872004-11-22 10:02:10 +00006314 /* Free any old pages that were not reused as new pages.
6315 */
6316 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006317 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006318 if( rc ) goto balance_cleanup;
6319 releasePage(apOld[i]);
6320 apOld[i] = 0;
6321 i++;
6322 }
6323
drh8b2f49b2001-06-08 00:21:52 +00006324 /*
drhf9ffac92002-03-02 19:00:31 +00006325 ** Put the new pages in accending order. This helps to
6326 ** keep entries in the disk file in order so that a scan
6327 ** of the table is a linear scan through the file. That
6328 ** in turn helps the operating system to deliver pages
6329 ** from the disk more rapidly.
6330 **
6331 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006332 ** n is never more than NB (a small constant), that should
6333 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006334 **
drhc3b70572003-01-04 19:44:07 +00006335 ** When NB==3, this one optimization makes the database
6336 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006337 */
6338 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006339 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006340 int minI = i;
6341 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006342 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006343 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006344 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006345 }
6346 }
6347 if( minI>i ){
drhf9ffac92002-03-02 19:00:31 +00006348 MemPage *pT;
drhf9ffac92002-03-02 19:00:31 +00006349 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006350 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006351 apNew[minI] = pT;
6352 }
6353 }
danielk1977e5765212009-06-17 11:13:28 +00006354 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006355 apNew[0]->pgno, szNew[0],
6356 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6357 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6358 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6359 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6360
6361 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6362 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006363
drhf9ffac92002-03-02 19:00:31 +00006364 /*
drh14acc042001-06-10 19:56:58 +00006365 ** Evenly distribute the data in apCell[] across the new pages.
6366 ** Insert divider cells into pParent as necessary.
6367 */
6368 j = 0;
6369 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006370 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006371 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006372 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006373 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006374 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006375 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006376 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006377
danielk1977ac11ee62005-01-15 12:45:51 +00006378 j = cntNew[i];
6379
6380 /* If the sibling page assembled above was not the right-most sibling,
6381 ** insert a divider cell into the parent page.
6382 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006383 assert( i<nNew-1 || j==nCell );
6384 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006385 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006386 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006387 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006388
6389 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006390 pCell = apCell[j];
6391 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006392 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006393 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006394 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006395 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006396 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006397 ** then there is no divider cell in apCell[]. Instead, the divider
6398 ** cell consists of the integer key for the right-most cell of
6399 ** the sibling-page assembled above only.
6400 */
drh6f11bef2004-05-13 01:12:56 +00006401 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006402 j--;
danielk197730548662009-07-09 05:07:37 +00006403 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006404 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006405 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006406 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006407 }else{
6408 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006409 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006410 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006411 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006412 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006413 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006414 ** insertCell(), so reparse the cell now.
6415 **
6416 ** Note that this can never happen in an SQLite data file, as all
6417 ** cells are at least 4 bytes. It only happens in b-trees used
6418 ** to evaluate "IN (SELECT ...)" and similar clauses.
6419 */
6420 if( szCell[j]==4 ){
6421 assert(leafCorrection==4);
6422 sz = cellSizePtr(pParent, pCell);
6423 }
drh4b70f112004-05-02 21:12:19 +00006424 }
danielk19776067a9b2009-06-09 09:41:00 +00006425 iOvflSpace += sz;
drhe22e03e2010-08-18 21:19:03 +00006426 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006427 assert( iOvflSpace <= (int)pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006428 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006429 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006430 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006431
drh14acc042001-06-10 19:56:58 +00006432 j++;
6433 nxDiv++;
6434 }
6435 }
drh6019e162001-07-02 17:51:45 +00006436 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006437 assert( nOld>0 );
6438 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006439 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006440 u8 *zChild = &apCopy[nOld-1]->aData[8];
6441 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006442 }
6443
danielk197713bd99f2009-06-24 05:40:34 +00006444 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6445 /* The root page of the b-tree now contains no cells. The only sibling
6446 ** page is the right-child of the parent. Copy the contents of the
6447 ** child page into the parent, decreasing the overall height of the
6448 ** b-tree structure by one. This is described as the "balance-shallower"
6449 ** sub-algorithm in some documentation.
6450 **
6451 ** If this is an auto-vacuum database, the call to copyNodeContent()
6452 ** sets all pointer-map entries corresponding to database image pages
6453 ** for which the pointer is stored within the content being copied.
6454 **
6455 ** The second assert below verifies that the child page is defragmented
6456 ** (it must be, as it was just reconstructed using assemblePage()). This
6457 ** is important if the parent page happens to be page 1 of the database
6458 ** image. */
6459 assert( nNew==1 );
6460 assert( apNew[0]->nFree ==
6461 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6462 );
drhc314dc72009-07-21 11:52:34 +00006463 copyNodeContent(apNew[0], pParent, &rc);
6464 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006465 }else if( ISAUTOVACUUM ){
6466 /* Fix the pointer-map entries for all the cells that were shifted around.
6467 ** There are several different types of pointer-map entries that need to
6468 ** be dealt with by this routine. Some of these have been set already, but
6469 ** many have not. The following is a summary:
6470 **
6471 ** 1) The entries associated with new sibling pages that were not
6472 ** siblings when this function was called. These have already
6473 ** been set. We don't need to worry about old siblings that were
6474 ** moved to the free-list - the freePage() code has taken care
6475 ** of those.
6476 **
6477 ** 2) The pointer-map entries associated with the first overflow
6478 ** page in any overflow chains used by new divider cells. These
6479 ** have also already been taken care of by the insertCell() code.
6480 **
6481 ** 3) If the sibling pages are not leaves, then the child pages of
6482 ** cells stored on the sibling pages may need to be updated.
6483 **
6484 ** 4) If the sibling pages are not internal intkey nodes, then any
6485 ** overflow pages used by these cells may need to be updated
6486 ** (internal intkey nodes never contain pointers to overflow pages).
6487 **
6488 ** 5) If the sibling pages are not leaves, then the pointer-map
6489 ** entries for the right-child pages of each sibling may need
6490 ** to be updated.
6491 **
6492 ** Cases 1 and 2 are dealt with above by other code. The next
6493 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6494 ** setting a pointer map entry is a relatively expensive operation, this
6495 ** code only sets pointer map entries for child or overflow pages that have
6496 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006497 MemPage *pNew = apNew[0];
6498 MemPage *pOld = apCopy[0];
6499 int nOverflow = pOld->nOverflow;
6500 int iNextOld = pOld->nCell + nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006501 int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1);
danielk19774dbaa892009-06-16 16:50:22 +00006502 j = 0; /* Current 'old' sibling page */
6503 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006504 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006505 int isDivider = 0;
6506 while( i==iNextOld ){
6507 /* Cell i is the cell immediately following the last cell on old
6508 ** sibling page j. If the siblings are not leaf pages of an
6509 ** intkey b-tree, then cell i was a divider cell. */
drhb07028f2011-10-14 21:49:18 +00006510 assert( j+1 < ArraySize(apCopy) );
drhec739302012-08-14 18:43:39 +00006511 assert( j+1 < nOld );
danielk19774dbaa892009-06-16 16:50:22 +00006512 pOld = apCopy[++j];
6513 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6514 if( pOld->nOverflow ){
6515 nOverflow = pOld->nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006516 iOverflow = i + !leafData + pOld->aiOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006517 }
6518 isDivider = !leafData;
6519 }
6520
6521 assert(nOverflow>0 || iOverflow<i );
drh2cbd78b2012-02-02 19:37:18 +00006522 assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1);
6523 assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1);
danielk19774dbaa892009-06-16 16:50:22 +00006524 if( i==iOverflow ){
6525 isDivider = 1;
6526 if( (--nOverflow)>0 ){
6527 iOverflow++;
6528 }
6529 }
6530
6531 if( i==cntNew[k] ){
6532 /* Cell i is the cell immediately following the last cell on new
6533 ** sibling page k. If the siblings are not leaf pages of an
6534 ** intkey b-tree, then cell i is a divider cell. */
6535 pNew = apNew[++k];
6536 if( !leafData ) continue;
6537 }
danielk19774dbaa892009-06-16 16:50:22 +00006538 assert( j<nOld );
6539 assert( k<nNew );
6540
6541 /* If the cell was originally divider cell (and is not now) or
6542 ** an overflow cell, or if the cell was located on a different sibling
6543 ** page before the balancing, then the pointer map entries associated
6544 ** with any child or overflow pages need to be updated. */
6545 if( isDivider || pOld->pgno!=pNew->pgno ){
6546 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006547 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006548 }
drh98add2e2009-07-20 17:11:49 +00006549 if( szCell[i]>pNew->minLocal ){
6550 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006551 }
6552 }
6553 }
6554
6555 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006556 for(i=0; i<nNew; i++){
6557 u32 key = get4byte(&apNew[i]->aData[8]);
6558 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006559 }
6560 }
6561
6562#if 0
6563 /* The ptrmapCheckPages() contains assert() statements that verify that
6564 ** all pointer map pages are set correctly. This is helpful while
6565 ** debugging. This is usually disabled because a corrupt database may
6566 ** cause an assert() statement to fail. */
6567 ptrmapCheckPages(apNew, nNew);
6568 ptrmapCheckPages(&pParent, 1);
6569#endif
6570 }
6571
danielk197771d5d2c2008-09-29 11:49:47 +00006572 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006573 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6574 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006575
drh8b2f49b2001-06-08 00:21:52 +00006576 /*
drh14acc042001-06-10 19:56:58 +00006577 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006578 */
drh14acc042001-06-10 19:56:58 +00006579balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006580 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006581 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006582 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006583 }
drh14acc042001-06-10 19:56:58 +00006584 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006585 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006586 }
danielk1977eaa06f62008-09-18 17:34:44 +00006587
drh8b2f49b2001-06-08 00:21:52 +00006588 return rc;
6589}
mistachkine7c54162012-10-02 22:54:27 +00006590#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6591#pragma optimize("", on)
6592#endif
drh8b2f49b2001-06-08 00:21:52 +00006593
drh43605152004-05-29 21:46:49 +00006594
6595/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006596** This function is called when the root page of a b-tree structure is
6597** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006598**
danielk1977a50d9aa2009-06-08 14:49:45 +00006599** A new child page is allocated and the contents of the current root
6600** page, including overflow cells, are copied into the child. The root
6601** page is then overwritten to make it an empty page with the right-child
6602** pointer pointing to the new page.
6603**
6604** Before returning, all pointer-map entries corresponding to pages
6605** that the new child-page now contains pointers to are updated. The
6606** entry corresponding to the new right-child pointer of the root
6607** page is also updated.
6608**
6609** If successful, *ppChild is set to contain a reference to the child
6610** page and SQLITE_OK is returned. In this case the caller is required
6611** to call releasePage() on *ppChild exactly once. If an error occurs,
6612** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006613*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006614static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6615 int rc; /* Return value from subprocedures */
6616 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006617 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006618 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006619
danielk1977a50d9aa2009-06-08 14:49:45 +00006620 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006621 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006622
danielk1977a50d9aa2009-06-08 14:49:45 +00006623 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6624 ** page that will become the new right-child of pPage. Copy the contents
6625 ** of the node stored on pRoot into the new child page.
6626 */
drh98add2e2009-07-20 17:11:49 +00006627 rc = sqlite3PagerWrite(pRoot->pDbPage);
6628 if( rc==SQLITE_OK ){
6629 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006630 copyNodeContent(pRoot, pChild, &rc);
6631 if( ISAUTOVACUUM ){
6632 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006633 }
6634 }
6635 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006636 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006637 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006638 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006639 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006640 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6641 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6642 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006643
danielk1977a50d9aa2009-06-08 14:49:45 +00006644 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6645
6646 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00006647 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
6648 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
6649 memcpy(pChild->apOvfl, pRoot->apOvfl,
6650 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00006651 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006652
6653 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6654 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6655 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6656
6657 *ppChild = pChild;
6658 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006659}
6660
6661/*
danielk197771d5d2c2008-09-29 11:49:47 +00006662** The page that pCur currently points to has just been modified in
6663** some way. This function figures out if this modification means the
6664** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006665** routine. Balancing routines are:
6666**
6667** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006668** balance_deeper()
6669** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006670*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006671static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006672 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006673 const int nMin = pCur->pBt->usableSize * 2 / 3;
6674 u8 aBalanceQuickSpace[13];
6675 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006676
shane75ac1de2009-06-09 18:58:52 +00006677 TESTONLY( int balance_quick_called = 0 );
6678 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006679
6680 do {
6681 int iPage = pCur->iPage;
6682 MemPage *pPage = pCur->apPage[iPage];
6683
6684 if( iPage==0 ){
6685 if( pPage->nOverflow ){
6686 /* The root page of the b-tree is overfull. In this case call the
6687 ** balance_deeper() function to create a new child for the root-page
6688 ** and copy the current contents of the root-page to it. The
6689 ** next iteration of the do-loop will balance the child page.
6690 */
6691 assert( (balance_deeper_called++)==0 );
6692 rc = balance_deeper(pPage, &pCur->apPage[1]);
6693 if( rc==SQLITE_OK ){
6694 pCur->iPage = 1;
6695 pCur->aiIdx[0] = 0;
6696 pCur->aiIdx[1] = 0;
6697 assert( pCur->apPage[1]->nOverflow );
6698 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006699 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006700 break;
6701 }
6702 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6703 break;
6704 }else{
6705 MemPage * const pParent = pCur->apPage[iPage-1];
6706 int const iIdx = pCur->aiIdx[iPage-1];
6707
6708 rc = sqlite3PagerWrite(pParent->pDbPage);
6709 if( rc==SQLITE_OK ){
6710#ifndef SQLITE_OMIT_QUICKBALANCE
6711 if( pPage->hasData
6712 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00006713 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00006714 && pParent->pgno!=1
6715 && pParent->nCell==iIdx
6716 ){
6717 /* Call balance_quick() to create a new sibling of pPage on which
6718 ** to store the overflow cell. balance_quick() inserts a new cell
6719 ** into pParent, which may cause pParent overflow. If this
6720 ** happens, the next interation of the do-loop will balance pParent
6721 ** use either balance_nonroot() or balance_deeper(). Until this
6722 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6723 ** buffer.
6724 **
6725 ** The purpose of the following assert() is to check that only a
6726 ** single call to balance_quick() is made for each call to this
6727 ** function. If this were not verified, a subtle bug involving reuse
6728 ** of the aBalanceQuickSpace[] might sneak in.
6729 */
6730 assert( (balance_quick_called++)==0 );
6731 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6732 }else
6733#endif
6734 {
6735 /* In this case, call balance_nonroot() to redistribute cells
6736 ** between pPage and up to 2 of its sibling pages. This involves
6737 ** modifying the contents of pParent, which may cause pParent to
6738 ** become overfull or underfull. The next iteration of the do-loop
6739 ** will balance the parent page to correct this.
6740 **
6741 ** If the parent page becomes overfull, the overflow cell or cells
6742 ** are stored in the pSpace buffer allocated immediately below.
6743 ** A subsequent iteration of the do-loop will deal with this by
6744 ** calling balance_nonroot() (balance_deeper() may be called first,
6745 ** but it doesn't deal with overflow cells - just moves them to a
6746 ** different page). Once this subsequent call to balance_nonroot()
6747 ** has completed, it is safe to release the pSpace buffer used by
6748 ** the previous call, as the overflow cell data will have been
6749 ** copied either into the body of a database page or into the new
6750 ** pSpace buffer passed to the latter call to balance_nonroot().
6751 */
6752 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
dan428c2182012-08-06 18:50:11 +00006753 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints);
danielk1977a50d9aa2009-06-08 14:49:45 +00006754 if( pFree ){
6755 /* If pFree is not NULL, it points to the pSpace buffer used
6756 ** by a previous call to balance_nonroot(). Its contents are
6757 ** now stored either on real database pages or within the
6758 ** new pSpace buffer, so it may be safely freed here. */
6759 sqlite3PageFree(pFree);
6760 }
6761
danielk19774dbaa892009-06-16 16:50:22 +00006762 /* The pSpace buffer will be freed after the next call to
6763 ** balance_nonroot(), or just before this function returns, whichever
6764 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006765 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006766 }
6767 }
6768
6769 pPage->nOverflow = 0;
6770
6771 /* The next iteration of the do-loop balances the parent page. */
6772 releasePage(pPage);
6773 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006774 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006775 }while( rc==SQLITE_OK );
6776
6777 if( pFree ){
6778 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006779 }
6780 return rc;
6781}
6782
drhf74b8d92002-09-01 23:20:45 +00006783
6784/*
drh3b7511c2001-05-26 13:15:44 +00006785** Insert a new record into the BTree. The key is given by (pKey,nKey)
6786** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006787** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006788** is left pointing at a random location.
6789**
6790** For an INTKEY table, only the nKey value of the key is used. pKey is
6791** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006792**
6793** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006794** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006795** been performed. seekResult is the search result returned (a negative
6796** number if pCur points at an entry that is smaller than (pKey, nKey), or
6797** a positive value if pCur points at an etry that is larger than
6798** (pKey, nKey)).
6799**
drh3e9ca092009-09-08 01:14:48 +00006800** If the seekResult parameter is non-zero, then the caller guarantees that
6801** cursor pCur is pointing at the existing copy of a row that is to be
6802** overwritten. If the seekResult parameter is 0, then cursor pCur may
6803** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006804** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006805*/
drh3aac2dd2004-04-26 14:10:20 +00006806int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006807 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006808 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006809 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006810 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006811 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006812 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006813){
drh3b7511c2001-05-26 13:15:44 +00006814 int rc;
drh3e9ca092009-09-08 01:14:48 +00006815 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006816 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006817 int idx;
drh3b7511c2001-05-26 13:15:44 +00006818 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006819 Btree *p = pCur->pBtree;
6820 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006821 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006822 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006823
drh98add2e2009-07-20 17:11:49 +00006824 if( pCur->eState==CURSOR_FAULT ){
6825 assert( pCur->skipNext!=SQLITE_OK );
6826 return pCur->skipNext;
6827 }
6828
drh1fee73e2007-08-29 04:00:57 +00006829 assert( cursorHoldsMutex(pCur) );
drhc9166342012-01-05 23:32:06 +00006830 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE
6831 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00006832 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6833
danielk197731d31b82009-07-13 13:18:07 +00006834 /* Assert that the caller has been consistent. If this cursor was opened
6835 ** expecting an index b-tree, then the caller should be inserting blob
6836 ** keys with no associated data. If the cursor was opened expecting an
6837 ** intkey table, the caller should be inserting integer keys with a
6838 ** blob of associated data. */
6839 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6840
danielk19779c3acf32009-05-02 07:36:49 +00006841 /* Save the positions of any other cursors open on this table.
6842 **
danielk19773509a652009-07-06 18:56:13 +00006843 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006844 ** example, when inserting data into a table with auto-generated integer
6845 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6846 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006847 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006848 ** that the cursor is already where it needs to be and returns without
6849 ** doing any work. To avoid thwarting these optimizations, it is important
6850 ** not to clear the cursor here.
6851 */
drh4c301aa2009-07-15 17:25:45 +00006852 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6853 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00006854
6855 /* If this is an insert into a table b-tree, invalidate any incrblob
6856 ** cursors open on the row being replaced (assuming this is a replace
6857 ** operation - if it is not, the following is a no-op). */
6858 if( pCur->pKeyInfo==0 ){
6859 invalidateIncrblobCursors(p, nKey, 0);
6860 }
6861
drh4c301aa2009-07-15 17:25:45 +00006862 if( !loc ){
6863 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6864 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00006865 }
danielk1977b980d2212009-06-22 18:03:51 +00006866 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006867
danielk197771d5d2c2008-09-29 11:49:47 +00006868 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006869 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006870 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006871
drh3a4c1412004-05-09 20:40:11 +00006872 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6873 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6874 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006875 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006876 allocateTempSpace(pBt);
6877 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006878 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006879 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006880 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006881 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00006882 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006883 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006884 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006885 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006886 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006887 rc = sqlite3PagerWrite(pPage->pDbPage);
6888 if( rc ){
6889 goto end_insert;
6890 }
danielk197771d5d2c2008-09-29 11:49:47 +00006891 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006892 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006893 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006894 }
drh43605152004-05-29 21:46:49 +00006895 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006896 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00006897 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00006898 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00006899 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006900 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006901 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006902 }else{
drh4b70f112004-05-02 21:12:19 +00006903 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006904 }
drh98add2e2009-07-20 17:11:49 +00006905 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00006906 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006907
danielk1977a50d9aa2009-06-08 14:49:45 +00006908 /* If no error has occured and pPage has an overflow cell, call balance()
6909 ** to redistribute the cells within the tree. Since balance() may move
6910 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6911 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006912 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006913 ** Previous versions of SQLite called moveToRoot() to move the cursor
6914 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006915 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6916 ** set the cursor state to "invalid". This makes common insert operations
6917 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006918 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006919 ** There is a subtle but important optimization here too. When inserting
6920 ** multiple records into an intkey b-tree using a single cursor (as can
6921 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6922 ** is advantageous to leave the cursor pointing to the last entry in
6923 ** the b-tree if possible. If the cursor is left pointing to the last
6924 ** entry in the table, and the next row inserted has an integer key
6925 ** larger than the largest existing key, it is possible to insert the
6926 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006927 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006928 pCur->info.nSize = 0;
6929 pCur->validNKey = 0;
6930 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006931 rc = balance(pCur);
6932
6933 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006934 ** fails. Internal data structure corruption will result otherwise.
6935 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6936 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006937 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006938 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006939 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006940 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006941
drh2e38c322004-09-03 18:38:44 +00006942end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006943 return rc;
6944}
6945
6946/*
drh4b70f112004-05-02 21:12:19 +00006947** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006948** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006949*/
drh3aac2dd2004-04-26 14:10:20 +00006950int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006951 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006952 BtShared *pBt = p->pBt;
6953 int rc; /* Return code */
6954 MemPage *pPage; /* Page to delete cell from */
6955 unsigned char *pCell; /* Pointer to cell to delete */
6956 int iCellIdx; /* Index of cell to delete */
6957 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006958
drh1fee73e2007-08-29 04:00:57 +00006959 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006960 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00006961 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh64022502009-01-09 14:11:04 +00006962 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006963 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6964 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6965
danielk19774dbaa892009-06-16 16:50:22 +00006966 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6967 || NEVER(pCur->eState!=CURSOR_VALID)
6968 ){
6969 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006970 }
danielk1977da184232006-01-05 11:34:32 +00006971
danielk19774dbaa892009-06-16 16:50:22 +00006972 iCellDepth = pCur->iPage;
6973 iCellIdx = pCur->aiIdx[iCellDepth];
6974 pPage = pCur->apPage[iCellDepth];
6975 pCell = findCell(pPage, iCellIdx);
6976
6977 /* If the page containing the entry to delete is not a leaf page, move
6978 ** the cursor to the largest entry in the tree that is smaller than
6979 ** the entry being deleted. This cell will replace the cell being deleted
6980 ** from the internal node. The 'previous' entry is used for this instead
6981 ** of the 'next' entry, as the previous entry is always a part of the
6982 ** sub-tree headed by the child page of the cell being deleted. This makes
6983 ** balancing the tree following the delete operation easier. */
6984 if( !pPage->leaf ){
6985 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00006986 rc = sqlite3BtreePrevious(pCur, &notUsed);
6987 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00006988 }
6989
6990 /* Save the positions of any other cursors open on this table before
6991 ** making any modifications. Make the page containing the entry to be
6992 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00006993 ** entry and finally remove the cell itself from within the page.
6994 */
6995 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6996 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00006997
6998 /* If this is a delete operation to remove a row from a table b-tree,
6999 ** invalidate any incrblob cursors open on the row being deleted. */
7000 if( pCur->pKeyInfo==0 ){
7001 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
7002 }
7003
drha4ec1d42009-07-11 13:13:11 +00007004 rc = sqlite3PagerWrite(pPage->pDbPage);
7005 if( rc ) return rc;
7006 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00007007 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00007008 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00007009
danielk19774dbaa892009-06-16 16:50:22 +00007010 /* If the cell deleted was not located on a leaf page, then the cursor
7011 ** is currently pointing to the largest entry in the sub-tree headed
7012 ** by the child-page of the cell that was just deleted from an internal
7013 ** node. The cell from the leaf node needs to be moved to the internal
7014 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00007015 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00007016 MemPage *pLeaf = pCur->apPage[pCur->iPage];
7017 int nCell;
7018 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
7019 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00007020
danielk19774dbaa892009-06-16 16:50:22 +00007021 pCell = findCell(pLeaf, pLeaf->nCell-1);
7022 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00007023 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007024
danielk19774dbaa892009-06-16 16:50:22 +00007025 allocateTempSpace(pBt);
7026 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00007027
drha4ec1d42009-07-11 13:13:11 +00007028 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00007029 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
7030 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00007031 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00007032 }
danielk19774dbaa892009-06-16 16:50:22 +00007033
7034 /* Balance the tree. If the entry deleted was located on a leaf page,
7035 ** then the cursor still points to that page. In this case the first
7036 ** call to balance() repairs the tree, and the if(...) condition is
7037 ** never true.
7038 **
7039 ** Otherwise, if the entry deleted was on an internal node page, then
7040 ** pCur is pointing to the leaf page from which a cell was removed to
7041 ** replace the cell deleted from the internal node. This is slightly
7042 ** tricky as the leaf node may be underfull, and the internal node may
7043 ** be either under or overfull. In this case run the balancing algorithm
7044 ** on the leaf node first. If the balance proceeds far enough up the
7045 ** tree that we can be sure that any problem in the internal node has
7046 ** been corrected, so be it. Otherwise, after balancing the leaf node,
7047 ** walk the cursor up the tree to the internal node and balance it as
7048 ** well. */
7049 rc = balance(pCur);
7050 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
7051 while( pCur->iPage>iCellDepth ){
7052 releasePage(pCur->apPage[pCur->iPage--]);
7053 }
7054 rc = balance(pCur);
7055 }
7056
danielk19776b456a22005-03-21 04:04:02 +00007057 if( rc==SQLITE_OK ){
7058 moveToRoot(pCur);
7059 }
drh5e2f8b92001-05-28 00:41:15 +00007060 return rc;
drh3b7511c2001-05-26 13:15:44 +00007061}
drh8b2f49b2001-06-08 00:21:52 +00007062
7063/*
drhc6b52df2002-01-04 03:09:29 +00007064** Create a new BTree table. Write into *piTable the page
7065** number for the root page of the new table.
7066**
drhab01f612004-05-22 02:55:23 +00007067** The type of type is determined by the flags parameter. Only the
7068** following values of flags are currently in use. Other values for
7069** flags might not work:
7070**
7071** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7072** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00007073*/
drhd4187c72010-08-30 22:15:45 +00007074static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00007075 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007076 MemPage *pRoot;
7077 Pgno pgnoRoot;
7078 int rc;
drhd4187c72010-08-30 22:15:45 +00007079 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00007080
drh1fee73e2007-08-29 04:00:57 +00007081 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007082 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007083 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00007084
danielk1977003ba062004-11-04 02:57:33 +00007085#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00007086 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00007087 if( rc ){
7088 return rc;
7089 }
danielk1977003ba062004-11-04 02:57:33 +00007090#else
danielk1977687566d2004-11-02 12:56:41 +00007091 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00007092 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7093 MemPage *pPageMove; /* The page to move to. */
7094
danielk197720713f32007-05-03 11:43:33 +00007095 /* Creating a new table may probably require moving an existing database
7096 ** to make room for the new tables root page. In case this page turns
7097 ** out to be an overflow page, delete all overflow page-map caches
7098 ** held by open cursors.
7099 */
danielk197792d4d7a2007-05-04 12:05:56 +00007100 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00007101
danielk1977003ba062004-11-04 02:57:33 +00007102 /* Read the value of meta[3] from the database to determine where the
7103 ** root page of the new table should go. meta[3] is the largest root-page
7104 ** created so far, so the new root-page is (meta[3]+1).
7105 */
danielk1977602b4662009-07-02 07:47:33 +00007106 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00007107 pgnoRoot++;
7108
danielk1977599fcba2004-11-08 07:13:13 +00007109 /* The new root-page may not be allocated on a pointer-map page, or the
7110 ** PENDING_BYTE page.
7111 */
drh72190432008-01-31 14:54:43 +00007112 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00007113 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00007114 pgnoRoot++;
7115 }
7116 assert( pgnoRoot>=3 );
7117
7118 /* Allocate a page. The page that currently resides at pgnoRoot will
7119 ** be moved to the allocated page (unless the allocated page happens
7120 ** to reside at pgnoRoot).
7121 */
drh4f0c5872007-03-26 22:05:01 +00007122 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00007123 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00007124 return rc;
7125 }
danielk1977003ba062004-11-04 02:57:33 +00007126
7127 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00007128 /* pgnoRoot is the page that will be used for the root-page of
7129 ** the new table (assuming an error did not occur). But we were
7130 ** allocated pgnoMove. If required (i.e. if it was not allocated
7131 ** by extending the file), the current page at position pgnoMove
7132 ** is already journaled.
7133 */
drheeb844a2009-08-08 18:01:07 +00007134 u8 eType = 0;
7135 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00007136
7137 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00007138
7139 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00007140 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007141 if( rc!=SQLITE_OK ){
7142 return rc;
7143 }
7144 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007145 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7146 rc = SQLITE_CORRUPT_BKPT;
7147 }
7148 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007149 releasePage(pRoot);
7150 return rc;
7151 }
drhccae6022005-02-26 17:31:26 +00007152 assert( eType!=PTRMAP_ROOTPAGE );
7153 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007154 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007155 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007156
7157 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007158 if( rc!=SQLITE_OK ){
7159 return rc;
7160 }
danielk197730548662009-07-09 05:07:37 +00007161 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007162 if( rc!=SQLITE_OK ){
7163 return rc;
7164 }
danielk19773b8a05f2007-03-19 17:44:26 +00007165 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007166 if( rc!=SQLITE_OK ){
7167 releasePage(pRoot);
7168 return rc;
7169 }
7170 }else{
7171 pRoot = pPageMove;
7172 }
7173
danielk197742741be2005-01-08 12:42:39 +00007174 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007175 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007176 if( rc ){
7177 releasePage(pRoot);
7178 return rc;
7179 }
drhbf592832010-03-30 15:51:12 +00007180
7181 /* When the new root page was allocated, page 1 was made writable in
7182 ** order either to increase the database filesize, or to decrement the
7183 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7184 */
7185 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007186 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007187 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007188 releasePage(pRoot);
7189 return rc;
7190 }
danielk197742741be2005-01-08 12:42:39 +00007191
danielk1977003ba062004-11-04 02:57:33 +00007192 }else{
drh4f0c5872007-03-26 22:05:01 +00007193 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007194 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007195 }
7196#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007197 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007198 if( createTabFlags & BTREE_INTKEY ){
7199 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7200 }else{
7201 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7202 }
7203 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007204 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007205 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007206 *piTable = (int)pgnoRoot;
7207 return SQLITE_OK;
7208}
drhd677b3d2007-08-20 22:48:41 +00007209int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7210 int rc;
7211 sqlite3BtreeEnter(p);
7212 rc = btreeCreateTable(p, piTable, flags);
7213 sqlite3BtreeLeave(p);
7214 return rc;
7215}
drh8b2f49b2001-06-08 00:21:52 +00007216
7217/*
7218** Erase the given database page and all its children. Return
7219** the page to the freelist.
7220*/
drh4b70f112004-05-02 21:12:19 +00007221static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007222 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007223 Pgno pgno, /* Page number to clear */
7224 int freePageFlag, /* Deallocate page if true */
7225 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007226){
danielk1977146ba992009-07-22 14:08:13 +00007227 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007228 int rc;
drh4b70f112004-05-02 21:12:19 +00007229 unsigned char *pCell;
7230 int i;
drh8b2f49b2001-06-08 00:21:52 +00007231
drh1fee73e2007-08-29 04:00:57 +00007232 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007233 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007234 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007235 }
7236
danielk197771d5d2c2008-09-29 11:49:47 +00007237 rc = getAndInitPage(pBt, pgno, &pPage);
danielk1977146ba992009-07-22 14:08:13 +00007238 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00007239 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007240 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007241 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007242 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007243 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007244 }
drh4b70f112004-05-02 21:12:19 +00007245 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00007246 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007247 }
drha34b6762004-05-07 13:30:42 +00007248 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007249 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007250 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007251 }else if( pnChange ){
7252 assert( pPage->intKey );
7253 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007254 }
7255 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007256 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007257 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00007258 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007259 }
danielk19776b456a22005-03-21 04:04:02 +00007260
7261cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007262 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007263 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007264}
7265
7266/*
drhab01f612004-05-22 02:55:23 +00007267** Delete all information from a single table in the database. iTable is
7268** the page number of the root of the table. After this routine returns,
7269** the root page is empty, but still exists.
7270**
7271** This routine will fail with SQLITE_LOCKED if there are any open
7272** read cursors on the table. Open write cursors are moved to the
7273** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007274**
7275** If pnChange is not NULL, then table iTable must be an intkey table. The
7276** integer value pointed to by pnChange is incremented by the number of
7277** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007278*/
danielk1977c7af4842008-10-27 13:59:33 +00007279int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007280 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007281 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007282 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007283 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007284
drhc046e3e2009-07-15 11:26:44 +00007285 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00007286
drhc046e3e2009-07-15 11:26:44 +00007287 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00007288 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7289 ** is the root of a table b-tree - if it is not, the following call is
7290 ** a no-op). */
7291 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00007292 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007293 }
drhd677b3d2007-08-20 22:48:41 +00007294 sqlite3BtreeLeave(p);
7295 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007296}
7297
7298/*
7299** Erase all information in a table and add the root of the table to
7300** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007301** page 1) is never added to the freelist.
7302**
7303** This routine will fail with SQLITE_LOCKED if there are any open
7304** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007305**
7306** If AUTOVACUUM is enabled and the page at iTable is not the last
7307** root page in the database file, then the last root page
7308** in the database file is moved into the slot formerly occupied by
7309** iTable and that last slot formerly occupied by the last root page
7310** is added to the freelist instead of iTable. In this say, all
7311** root pages are kept at the beginning of the database file, which
7312** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7313** page number that used to be the last root page in the file before
7314** the move. If no page gets moved, *piMoved is set to 0.
7315** The last root page is recorded in meta[3] and the value of
7316** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007317*/
danielk197789d40042008-11-17 14:20:56 +00007318static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007319 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007320 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007321 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007322
drh1fee73e2007-08-29 04:00:57 +00007323 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007324 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007325
danielk1977e6efa742004-11-10 11:55:10 +00007326 /* It is illegal to drop a table if any cursors are open on the
7327 ** database. This is because in auto-vacuum mode the backend may
7328 ** need to move another root-page to fill a gap left by the deleted
7329 ** root page. If an open cursor was using this page a problem would
7330 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007331 **
7332 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007333 */
drhc046e3e2009-07-15 11:26:44 +00007334 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007335 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7336 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007337 }
danielk1977a0bf2652004-11-04 14:30:04 +00007338
danielk197730548662009-07-09 05:07:37 +00007339 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007340 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007341 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007342 if( rc ){
7343 releasePage(pPage);
7344 return rc;
7345 }
danielk1977a0bf2652004-11-04 14:30:04 +00007346
drh205f48e2004-11-05 00:43:11 +00007347 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007348
drh4b70f112004-05-02 21:12:19 +00007349 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007350#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007351 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007352 releasePage(pPage);
7353#else
7354 if( pBt->autoVacuum ){
7355 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007356 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007357
7358 if( iTable==maxRootPgno ){
7359 /* If the table being dropped is the table with the largest root-page
7360 ** number in the database, put the root page on the free list.
7361 */
drhc314dc72009-07-21 11:52:34 +00007362 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007363 releasePage(pPage);
7364 if( rc!=SQLITE_OK ){
7365 return rc;
7366 }
7367 }else{
7368 /* The table being dropped does not have the largest root-page
7369 ** number in the database. So move the page that does into the
7370 ** gap left by the deleted root-page.
7371 */
7372 MemPage *pMove;
7373 releasePage(pPage);
danielk197730548662009-07-09 05:07:37 +00007374 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007375 if( rc!=SQLITE_OK ){
7376 return rc;
7377 }
danielk19774c999992008-07-16 18:17:55 +00007378 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007379 releasePage(pMove);
7380 if( rc!=SQLITE_OK ){
7381 return rc;
7382 }
drhfe3313f2009-07-21 19:02:20 +00007383 pMove = 0;
danielk197730548662009-07-09 05:07:37 +00007384 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007385 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007386 releasePage(pMove);
7387 if( rc!=SQLITE_OK ){
7388 return rc;
7389 }
7390 *piMoved = maxRootPgno;
7391 }
7392
danielk1977599fcba2004-11-08 07:13:13 +00007393 /* Set the new 'max-root-page' value in the database header. This
7394 ** is the old value less one, less one more if that happens to
7395 ** be a root-page number, less one again if that is the
7396 ** PENDING_BYTE_PAGE.
7397 */
danielk197787a6e732004-11-05 12:58:25 +00007398 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007399 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7400 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007401 maxRootPgno--;
7402 }
danielk1977599fcba2004-11-08 07:13:13 +00007403 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7404
danielk1977aef0bf62005-12-30 16:28:01 +00007405 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007406 }else{
drhc314dc72009-07-21 11:52:34 +00007407 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007408 releasePage(pPage);
7409 }
7410#endif
drh2aa679f2001-06-25 02:11:07 +00007411 }else{
drhc046e3e2009-07-15 11:26:44 +00007412 /* If sqlite3BtreeDropTable was called on page 1.
7413 ** This really never should happen except in a corrupt
7414 ** database.
7415 */
drha34b6762004-05-07 13:30:42 +00007416 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007417 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007418 }
drh8b2f49b2001-06-08 00:21:52 +00007419 return rc;
7420}
drhd677b3d2007-08-20 22:48:41 +00007421int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7422 int rc;
7423 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00007424 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00007425 sqlite3BtreeLeave(p);
7426 return rc;
7427}
drh8b2f49b2001-06-08 00:21:52 +00007428
drh001bbcb2003-03-19 03:14:00 +00007429
drh8b2f49b2001-06-08 00:21:52 +00007430/*
danielk1977602b4662009-07-02 07:47:33 +00007431** This function may only be called if the b-tree connection already
7432** has a read or write transaction open on the database.
7433**
drh23e11ca2004-05-04 17:27:28 +00007434** Read the meta-information out of a database file. Meta[0]
7435** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007436** through meta[15] are available for use by higher layers. Meta[0]
7437** is read-only, the others are read/write.
7438**
7439** The schema layer numbers meta values differently. At the schema
7440** layer (and the SetCookie and ReadCookie opcodes) the number of
7441** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007442*/
danielk1977602b4662009-07-02 07:47:33 +00007443void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007444 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007445
drhd677b3d2007-08-20 22:48:41 +00007446 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007447 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007448 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007449 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007450 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007451
danielk1977602b4662009-07-02 07:47:33 +00007452 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007453
danielk1977602b4662009-07-02 07:47:33 +00007454 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7455 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007456#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00007457 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
7458 pBt->btsFlags |= BTS_READ_ONLY;
7459 }
danielk1977003ba062004-11-04 02:57:33 +00007460#endif
drhae157872004-08-14 19:20:09 +00007461
drhd677b3d2007-08-20 22:48:41 +00007462 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007463}
7464
7465/*
drh23e11ca2004-05-04 17:27:28 +00007466** Write meta-information back into the database. Meta[0] is
7467** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007468*/
danielk1977aef0bf62005-12-30 16:28:01 +00007469int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7470 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007471 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007472 int rc;
drh23e11ca2004-05-04 17:27:28 +00007473 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007474 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007475 assert( p->inTrans==TRANS_WRITE );
7476 assert( pBt->pPage1!=0 );
7477 pP1 = pBt->pPage1->aData;
7478 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7479 if( rc==SQLITE_OK ){
7480 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007481#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007482 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007483 assert( pBt->autoVacuum || iMeta==0 );
7484 assert( iMeta==0 || iMeta==1 );
7485 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007486 }
drh64022502009-01-09 14:11:04 +00007487#endif
drh5df72a52002-06-06 23:16:05 +00007488 }
drhd677b3d2007-08-20 22:48:41 +00007489 sqlite3BtreeLeave(p);
7490 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007491}
drh8c42ca92001-06-22 19:15:00 +00007492
danielk1977a5533162009-02-24 10:01:51 +00007493#ifndef SQLITE_OMIT_BTREECOUNT
7494/*
7495** The first argument, pCur, is a cursor opened on some b-tree. Count the
7496** number of entries in the b-tree and write the result to *pnEntry.
7497**
7498** SQLITE_OK is returned if the operation is successfully executed.
7499** Otherwise, if an error is encountered (i.e. an IO error or database
7500** corruption) an SQLite error code is returned.
7501*/
7502int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7503 i64 nEntry = 0; /* Value to return in *pnEntry */
7504 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00007505
7506 if( pCur->pgnoRoot==0 ){
7507 *pnEntry = 0;
7508 return SQLITE_OK;
7509 }
danielk1977a5533162009-02-24 10:01:51 +00007510 rc = moveToRoot(pCur);
7511
7512 /* Unless an error occurs, the following loop runs one iteration for each
7513 ** page in the B-Tree structure (not including overflow pages).
7514 */
7515 while( rc==SQLITE_OK ){
7516 int iIdx; /* Index of child node in parent */
7517 MemPage *pPage; /* Current page of the b-tree */
7518
7519 /* If this is a leaf page or the tree is not an int-key tree, then
7520 ** this page contains countable entries. Increment the entry counter
7521 ** accordingly.
7522 */
7523 pPage = pCur->apPage[pCur->iPage];
7524 if( pPage->leaf || !pPage->intKey ){
7525 nEntry += pPage->nCell;
7526 }
7527
7528 /* pPage is a leaf node. This loop navigates the cursor so that it
7529 ** points to the first interior cell that it points to the parent of
7530 ** the next page in the tree that has not yet been visited. The
7531 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7532 ** of the page, or to the number of cells in the page if the next page
7533 ** to visit is the right-child of its parent.
7534 **
7535 ** If all pages in the tree have been visited, return SQLITE_OK to the
7536 ** caller.
7537 */
7538 if( pPage->leaf ){
7539 do {
7540 if( pCur->iPage==0 ){
7541 /* All pages of the b-tree have been visited. Return successfully. */
7542 *pnEntry = nEntry;
7543 return SQLITE_OK;
7544 }
danielk197730548662009-07-09 05:07:37 +00007545 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007546 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7547
7548 pCur->aiIdx[pCur->iPage]++;
7549 pPage = pCur->apPage[pCur->iPage];
7550 }
7551
7552 /* Descend to the child node of the cell that the cursor currently
7553 ** points at. This is the right-child if (iIdx==pPage->nCell).
7554 */
7555 iIdx = pCur->aiIdx[pCur->iPage];
7556 if( iIdx==pPage->nCell ){
7557 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7558 }else{
7559 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7560 }
7561 }
7562
shanebe217792009-03-05 04:20:31 +00007563 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007564 return rc;
7565}
7566#endif
drhdd793422001-06-28 01:54:48 +00007567
drhdd793422001-06-28 01:54:48 +00007568/*
drh5eddca62001-06-30 21:53:53 +00007569** Return the pager associated with a BTree. This routine is used for
7570** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007571*/
danielk1977aef0bf62005-12-30 16:28:01 +00007572Pager *sqlite3BtreePager(Btree *p){
7573 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007574}
drh5eddca62001-06-30 21:53:53 +00007575
drhb7f91642004-10-31 02:22:47 +00007576#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007577/*
7578** Append a message to the error message string.
7579*/
drh2e38c322004-09-03 18:38:44 +00007580static void checkAppendMsg(
7581 IntegrityCk *pCheck,
7582 char *zMsg1,
7583 const char *zFormat,
7584 ...
7585){
7586 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007587 if( !pCheck->mxErr ) return;
7588 pCheck->mxErr--;
7589 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007590 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007591 if( pCheck->errMsg.nChar ){
7592 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007593 }
drhf089aa42008-07-08 19:34:06 +00007594 if( zMsg1 ){
7595 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7596 }
7597 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7598 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007599 if( pCheck->errMsg.mallocFailed ){
7600 pCheck->mallocFailed = 1;
7601 }
drh5eddca62001-06-30 21:53:53 +00007602}
drhb7f91642004-10-31 02:22:47 +00007603#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007604
drhb7f91642004-10-31 02:22:47 +00007605#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00007606
7607/*
7608** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
7609** corresponds to page iPg is already set.
7610*/
7611static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7612 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7613 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
7614}
7615
7616/*
7617** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
7618*/
7619static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7620 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7621 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
7622}
7623
7624
drh5eddca62001-06-30 21:53:53 +00007625/*
7626** Add 1 to the reference count for page iPage. If this is the second
7627** reference to the page, add an error message to pCheck->zErrMsg.
7628** Return 1 if there are 2 ore more references to the page and 0 if
7629** if this is the first reference to the page.
7630**
7631** Also check that the page number is in bounds.
7632*/
danielk197789d40042008-11-17 14:20:56 +00007633static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007634 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007635 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007636 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007637 return 1;
7638 }
dan1235bb12012-04-03 17:43:28 +00007639 if( getPageReferenced(pCheck, iPage) ){
drh2e38c322004-09-03 18:38:44 +00007640 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007641 return 1;
7642 }
dan1235bb12012-04-03 17:43:28 +00007643 setPageReferenced(pCheck, iPage);
7644 return 0;
drh5eddca62001-06-30 21:53:53 +00007645}
7646
danielk1977afcdd022004-10-31 16:25:42 +00007647#ifndef SQLITE_OMIT_AUTOVACUUM
7648/*
7649** Check that the entry in the pointer-map for page iChild maps to
7650** page iParent, pointer type ptrType. If not, append an error message
7651** to pCheck.
7652*/
7653static void checkPtrmap(
7654 IntegrityCk *pCheck, /* Integrity check context */
7655 Pgno iChild, /* Child page number */
7656 u8 eType, /* Expected pointer map type */
7657 Pgno iParent, /* Expected pointer map parent page number */
7658 char *zContext /* Context description (used for error msg) */
7659){
7660 int rc;
7661 u8 ePtrmapType;
7662 Pgno iPtrmapParent;
7663
7664 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7665 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007666 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007667 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7668 return;
7669 }
7670
7671 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7672 checkAppendMsg(pCheck, zContext,
7673 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7674 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7675 }
7676}
7677#endif
7678
drh5eddca62001-06-30 21:53:53 +00007679/*
7680** Check the integrity of the freelist or of an overflow page list.
7681** Verify that the number of pages on the list is N.
7682*/
drh30e58752002-03-02 20:41:57 +00007683static void checkList(
7684 IntegrityCk *pCheck, /* Integrity checking context */
7685 int isFreeList, /* True for a freelist. False for overflow page list */
7686 int iPage, /* Page number for first page in the list */
7687 int N, /* Expected number of pages in the list */
7688 char *zContext /* Context for error messages */
7689){
7690 int i;
drh3a4c1412004-05-09 20:40:11 +00007691 int expected = N;
7692 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007693 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007694 DbPage *pOvflPage;
7695 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007696 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007697 checkAppendMsg(pCheck, zContext,
7698 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007699 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007700 break;
7701 }
7702 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007703 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007704 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007705 break;
7706 }
danielk19773b8a05f2007-03-19 17:44:26 +00007707 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007708 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007709 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007710#ifndef SQLITE_OMIT_AUTOVACUUM
7711 if( pCheck->pBt->autoVacuum ){
7712 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7713 }
7714#endif
drh43b18e12010-08-17 19:40:08 +00007715 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007716 checkAppendMsg(pCheck, zContext,
7717 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007718 N--;
7719 }else{
7720 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007721 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007722#ifndef SQLITE_OMIT_AUTOVACUUM
7723 if( pCheck->pBt->autoVacuum ){
7724 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7725 }
7726#endif
7727 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007728 }
7729 N -= n;
drh30e58752002-03-02 20:41:57 +00007730 }
drh30e58752002-03-02 20:41:57 +00007731 }
danielk1977afcdd022004-10-31 16:25:42 +00007732#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007733 else{
7734 /* If this database supports auto-vacuum and iPage is not the last
7735 ** page in this overflow list, check that the pointer-map entry for
7736 ** the following page matches iPage.
7737 */
7738 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007739 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007740 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7741 }
danielk1977afcdd022004-10-31 16:25:42 +00007742 }
7743#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007744 iPage = get4byte(pOvflData);
7745 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007746 }
7747}
drhb7f91642004-10-31 02:22:47 +00007748#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007749
drhb7f91642004-10-31 02:22:47 +00007750#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007751/*
7752** Do various sanity checks on a single page of a tree. Return
7753** the tree depth. Root pages return 0. Parents of root pages
7754** return 1, and so forth.
7755**
7756** These checks are done:
7757**
7758** 1. Make sure that cells and freeblocks do not overlap
7759** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007760** NO 2. Make sure cell keys are in order.
7761** NO 3. Make sure no key is less than or equal to zLowerBound.
7762** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007763** 5. Check the integrity of overflow pages.
7764** 6. Recursively call checkTreePage on all children.
7765** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007766** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007767** the root of the tree.
7768*/
7769static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007770 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007771 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007772 char *zParentContext, /* Parent context */
7773 i64 *pnParentMinKey,
7774 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007775){
7776 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007777 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007778 int hdr, cellStart;
7779 int nCell;
drhda200cc2004-05-09 11:51:38 +00007780 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007781 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007782 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007783 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007784 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007785 i64 nMinKey = 0;
7786 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007787
drh5bb3eb92007-05-04 13:15:55 +00007788 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007789
drh5eddca62001-06-30 21:53:53 +00007790 /* Check that the page exists
7791 */
drhd9cb6ac2005-10-20 07:28:17 +00007792 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007793 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007794 if( iPage==0 ) return 0;
7795 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
danielk197730548662009-07-09 05:07:37 +00007796 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007797 checkAppendMsg(pCheck, zContext,
7798 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007799 return 0;
7800 }
danielk197793caf5a2009-07-11 06:55:33 +00007801
7802 /* Clear MemPage.isInit to make sure the corruption detection code in
7803 ** btreeInitPage() is executed. */
7804 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007805 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007806 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007807 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007808 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007809 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007810 return 0;
7811 }
7812
7813 /* Check out all the cells.
7814 */
7815 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007816 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007817 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007818 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007819 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007820
7821 /* Check payload overflow pages
7822 */
drh5bb3eb92007-05-04 13:15:55 +00007823 sqlite3_snprintf(sizeof(zContext), zContext,
7824 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007825 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007826 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007827 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007828 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00007829 /* For intKey pages, check that the keys are in order.
7830 */
7831 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
7832 else{
7833 if( info.nKey <= nMaxKey ){
7834 checkAppendMsg(pCheck, zContext,
7835 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
7836 }
7837 nMaxKey = info.nKey;
7838 }
drh72365832007-03-06 15:53:44 +00007839 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007840 if( (sz>info.nLocal)
7841 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7842 ){
drhb6f41482004-05-14 01:58:11 +00007843 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007844 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7845#ifndef SQLITE_OMIT_AUTOVACUUM
7846 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007847 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007848 }
7849#endif
7850 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007851 }
7852
7853 /* Check sanity of left child page.
7854 */
drhda200cc2004-05-09 11:51:38 +00007855 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007856 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007857#ifndef SQLITE_OMIT_AUTOVACUUM
7858 if( pBt->autoVacuum ){
7859 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7860 }
7861#endif
shaneh195475d2010-02-19 04:28:08 +00007862 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007863 if( i>0 && d2!=depth ){
7864 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7865 }
7866 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007867 }
drh5eddca62001-06-30 21:53:53 +00007868 }
shaneh195475d2010-02-19 04:28:08 +00007869
drhda200cc2004-05-09 11:51:38 +00007870 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007871 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007872 sqlite3_snprintf(sizeof(zContext), zContext,
7873 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007874#ifndef SQLITE_OMIT_AUTOVACUUM
7875 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00007876 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007877 }
7878#endif
shaneh195475d2010-02-19 04:28:08 +00007879 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007880 }
drh5eddca62001-06-30 21:53:53 +00007881
shaneh195475d2010-02-19 04:28:08 +00007882 /* For intKey leaf pages, check that the min/max keys are in order
7883 ** with any left/parent/right pages.
7884 */
7885 if( pPage->leaf && pPage->intKey ){
7886 /* if we are a left child page */
7887 if( pnParentMinKey ){
7888 /* if we are the left most child page */
7889 if( !pnParentMaxKey ){
7890 if( nMaxKey > *pnParentMinKey ){
7891 checkAppendMsg(pCheck, zContext,
7892 "Rowid %lld out of order (max larger than parent min of %lld)",
7893 nMaxKey, *pnParentMinKey);
7894 }
7895 }else{
7896 if( nMinKey <= *pnParentMinKey ){
7897 checkAppendMsg(pCheck, zContext,
7898 "Rowid %lld out of order (min less than parent min of %lld)",
7899 nMinKey, *pnParentMinKey);
7900 }
7901 if( nMaxKey > *pnParentMaxKey ){
7902 checkAppendMsg(pCheck, zContext,
7903 "Rowid %lld out of order (max larger than parent max of %lld)",
7904 nMaxKey, *pnParentMaxKey);
7905 }
7906 *pnParentMinKey = nMaxKey;
7907 }
7908 /* else if we're a right child page */
7909 } else if( pnParentMaxKey ){
7910 if( nMinKey <= *pnParentMaxKey ){
7911 checkAppendMsg(pCheck, zContext,
7912 "Rowid %lld out of order (min less than parent max of %lld)",
7913 nMinKey, *pnParentMaxKey);
7914 }
7915 }
7916 }
7917
drh5eddca62001-06-30 21:53:53 +00007918 /* Check for complete coverage of the page
7919 */
drhda200cc2004-05-09 11:51:38 +00007920 data = pPage->aData;
7921 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007922 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007923 if( hit==0 ){
7924 pCheck->mallocFailed = 1;
7925 }else{
drh5d433ce2010-08-14 16:02:52 +00007926 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00007927 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00007928 memset(hit+contentOffset, 0, usableSize-contentOffset);
7929 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007930 nCell = get2byte(&data[hdr+3]);
7931 cellStart = hdr + 12 - 4*pPage->leaf;
7932 for(i=0; i<nCell; i++){
7933 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00007934 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00007935 int j;
drh8c2bbb62009-07-10 02:52:20 +00007936 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00007937 size = cellSizePtr(pPage, &data[pc]);
7938 }
drh43b18e12010-08-17 19:40:08 +00007939 if( (int)(pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00007940 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00007941 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00007942 }else{
7943 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7944 }
drh2e38c322004-09-03 18:38:44 +00007945 }
drh8c2bbb62009-07-10 02:52:20 +00007946 i = get2byte(&data[hdr+1]);
7947 while( i>0 ){
7948 int size, j;
7949 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
7950 size = get2byte(&data[i+2]);
7951 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
7952 for(j=i+size-1; j>=i; j--) hit[j]++;
7953 j = get2byte(&data[i]);
7954 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
7955 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
7956 i = j;
drh2e38c322004-09-03 18:38:44 +00007957 }
7958 for(i=cnt=0; i<usableSize; i++){
7959 if( hit[i]==0 ){
7960 cnt++;
7961 }else if( hit[i]>1 ){
7962 checkAppendMsg(pCheck, 0,
7963 "Multiple uses for byte %d of page %d", i, iPage);
7964 break;
7965 }
7966 }
7967 if( cnt!=data[hdr+7] ){
7968 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00007969 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00007970 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007971 }
7972 }
drh8c2bbb62009-07-10 02:52:20 +00007973 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00007974 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007975 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007976}
drhb7f91642004-10-31 02:22:47 +00007977#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007978
drhb7f91642004-10-31 02:22:47 +00007979#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007980/*
7981** This routine does a complete check of the given BTree file. aRoot[] is
7982** an array of pages numbers were each page number is the root page of
7983** a table. nRoot is the number of entries in aRoot.
7984**
danielk19773509a652009-07-06 18:56:13 +00007985** A read-only or read-write transaction must be opened before calling
7986** this function.
7987**
drhc890fec2008-08-01 20:10:08 +00007988** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007989** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007990** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007991** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007992*/
drh1dcdbc02007-01-27 02:24:54 +00007993char *sqlite3BtreeIntegrityCheck(
7994 Btree *p, /* The btree to be checked */
7995 int *aRoot, /* An array of root pages numbers for individual trees */
7996 int nRoot, /* Number of entries in aRoot[] */
7997 int mxErr, /* Stop reporting errors after this many */
7998 int *pnErr /* Write number of errors seen to this variable */
7999){
danielk197789d40042008-11-17 14:20:56 +00008000 Pgno i;
drh5eddca62001-06-30 21:53:53 +00008001 int nRef;
drhaaab5722002-02-19 13:39:21 +00008002 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00008003 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00008004 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00008005
drhd677b3d2007-08-20 22:48:41 +00008006 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00008007 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00008008 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00008009 sCheck.pBt = pBt;
8010 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00008011 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00008012 sCheck.mxErr = mxErr;
8013 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00008014 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00008015 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00008016 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00008017 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00008018 return 0;
8019 }
dan1235bb12012-04-03 17:43:28 +00008020
8021 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
8022 if( !sCheck.aPgRef ){
drh1dcdbc02007-01-27 02:24:54 +00008023 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00008024 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00008025 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00008026 }
drh42cac6d2004-11-20 20:31:11 +00008027 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00008028 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh32055c22012-12-12 14:30:03 +00008029 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drhb9755982010-07-24 16:34:37 +00008030 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00008031
8032 /* Check the integrity of the freelist
8033 */
drha34b6762004-05-07 13:30:42 +00008034 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
8035 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00008036
8037 /* Check all the tables.
8038 */
danielk197789d40042008-11-17 14:20:56 +00008039 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00008040 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00008041#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008042 if( pBt->autoVacuum && aRoot[i]>1 ){
8043 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
8044 }
8045#endif
shaneh195475d2010-02-19 04:28:08 +00008046 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00008047 }
8048
8049 /* Make sure every page in the file is referenced
8050 */
drh1dcdbc02007-01-27 02:24:54 +00008051 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00008052#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00008053 if( getPageReferenced(&sCheck, i)==0 ){
drh2e38c322004-09-03 18:38:44 +00008054 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00008055 }
danielk1977afcdd022004-10-31 16:25:42 +00008056#else
8057 /* If the database supports auto-vacuum, make sure no tables contain
8058 ** references to pointer-map pages.
8059 */
dan1235bb12012-04-03 17:43:28 +00008060 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00008061 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008062 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
8063 }
dan1235bb12012-04-03 17:43:28 +00008064 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00008065 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008066 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
8067 }
8068#endif
drh5eddca62001-06-30 21:53:53 +00008069 }
8070
drh64022502009-01-09 14:11:04 +00008071 /* Make sure this analysis did not leave any unref() pages.
8072 ** This is an internal consistency check; an integrity check
8073 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00008074 */
drh64022502009-01-09 14:11:04 +00008075 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00008076 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00008077 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00008078 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00008079 );
drh5eddca62001-06-30 21:53:53 +00008080 }
8081
8082 /* Clean up and report errors.
8083 */
drhd677b3d2007-08-20 22:48:41 +00008084 sqlite3BtreeLeave(p);
dan1235bb12012-04-03 17:43:28 +00008085 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00008086 if( sCheck.mallocFailed ){
8087 sqlite3StrAccumReset(&sCheck.errMsg);
8088 *pnErr = sCheck.nErr+1;
8089 return 0;
8090 }
drh1dcdbc02007-01-27 02:24:54 +00008091 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00008092 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
8093 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00008094}
drhb7f91642004-10-31 02:22:47 +00008095#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00008096
drh73509ee2003-04-06 20:44:45 +00008097/*
drhd4e0bb02012-05-27 01:19:04 +00008098** Return the full pathname of the underlying database file. Return
8099** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00008100**
8101** The pager filename is invariant as long as the pager is
8102** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00008103*/
danielk1977aef0bf62005-12-30 16:28:01 +00008104const char *sqlite3BtreeGetFilename(Btree *p){
8105 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00008106 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00008107}
8108
8109/*
danielk19775865e3d2004-06-14 06:03:57 +00008110** Return the pathname of the journal file for this database. The return
8111** value of this routine is the same regardless of whether the journal file
8112** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00008113**
8114** The pager journal filename is invariant as long as the pager is
8115** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00008116*/
danielk1977aef0bf62005-12-30 16:28:01 +00008117const char *sqlite3BtreeGetJournalname(Btree *p){
8118 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008119 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00008120}
8121
danielk19771d850a72004-05-31 08:26:49 +00008122/*
8123** Return non-zero if a transaction is active.
8124*/
danielk1977aef0bf62005-12-30 16:28:01 +00008125int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00008126 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00008127 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00008128}
8129
dana550f2d2010-08-02 10:47:05 +00008130#ifndef SQLITE_OMIT_WAL
8131/*
8132** Run a checkpoint on the Btree passed as the first argument.
8133**
8134** Return SQLITE_LOCKED if this or any other connection has an open
8135** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00008136**
dancdc1f042010-11-18 12:11:05 +00008137** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00008138*/
dancdc1f042010-11-18 12:11:05 +00008139int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00008140 int rc = SQLITE_OK;
8141 if( p ){
8142 BtShared *pBt = p->pBt;
8143 sqlite3BtreeEnter(p);
8144 if( pBt->inTransaction!=TRANS_NONE ){
8145 rc = SQLITE_LOCKED;
8146 }else{
dancdc1f042010-11-18 12:11:05 +00008147 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00008148 }
8149 sqlite3BtreeLeave(p);
8150 }
8151 return rc;
8152}
8153#endif
8154
danielk19771d850a72004-05-31 08:26:49 +00008155/*
danielk19772372c2b2006-06-27 16:34:56 +00008156** Return non-zero if a read (or write) transaction is active.
8157*/
8158int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00008159 assert( p );
drhe5fe6902007-12-07 18:55:28 +00008160 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00008161 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00008162}
8163
danielk197704103022009-02-03 16:51:24 +00008164int sqlite3BtreeIsInBackup(Btree *p){
8165 assert( p );
8166 assert( sqlite3_mutex_held(p->db->mutex) );
8167 return p->nBackup!=0;
8168}
8169
danielk19772372c2b2006-06-27 16:34:56 +00008170/*
danielk1977da184232006-01-05 11:34:32 +00008171** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00008172** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00008173** purposes (for example, to store a high-level schema associated with
8174** the shared-btree). The btree layer manages reference counting issues.
8175**
8176** The first time this is called on a shared-btree, nBytes bytes of memory
8177** are allocated, zeroed, and returned to the caller. For each subsequent
8178** call the nBytes parameter is ignored and a pointer to the same blob
8179** of memory returned.
8180**
danielk1977171bfed2008-06-23 09:50:50 +00008181** If the nBytes parameter is 0 and the blob of memory has not yet been
8182** allocated, a null pointer is returned. If the blob has already been
8183** allocated, it is returned as normal.
8184**
danielk1977da184232006-01-05 11:34:32 +00008185** Just before the shared-btree is closed, the function passed as the
8186** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00008187** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00008188** on the memory, the btree layer does that.
8189*/
8190void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8191 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00008192 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00008193 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00008194 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00008195 pBt->xFreeSchema = xFree;
8196 }
drh27641702007-08-22 02:56:42 +00008197 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00008198 return pBt->pSchema;
8199}
8200
danielk1977c87d34d2006-01-06 13:00:28 +00008201/*
danielk1977404ca072009-03-16 13:19:36 +00008202** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8203** btree as the argument handle holds an exclusive lock on the
8204** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008205*/
8206int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008207 int rc;
drhe5fe6902007-12-07 18:55:28 +00008208 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008209 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008210 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8211 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008212 sqlite3BtreeLeave(p);
8213 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008214}
8215
drha154dcd2006-03-22 22:10:07 +00008216
8217#ifndef SQLITE_OMIT_SHARED_CACHE
8218/*
8219** Obtain a lock on the table whose root page is iTab. The
8220** lock is a write lock if isWritelock is true or a read lock
8221** if it is false.
8222*/
danielk1977c00da102006-01-07 13:21:04 +00008223int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008224 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008225 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00008226 if( p->sharable ){
8227 u8 lockType = READ_LOCK + isWriteLock;
8228 assert( READ_LOCK+1==WRITE_LOCK );
8229 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00008230
drh6a9ad3d2008-04-02 16:29:30 +00008231 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00008232 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008233 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00008234 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008235 }
8236 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00008237 }
8238 return rc;
8239}
drha154dcd2006-03-22 22:10:07 +00008240#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00008241
danielk1977b4e9af92007-05-01 17:49:49 +00008242#ifndef SQLITE_OMIT_INCRBLOB
8243/*
8244** Argument pCsr must be a cursor opened for writing on an
8245** INTKEY table currently pointing at a valid table entry.
8246** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00008247**
8248** Only the data content may only be modified, it is not possible to
8249** change the length of the data stored. If this function is called with
8250** parameters that attempt to write past the end of the existing data,
8251** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00008252*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008253int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008254 int rc;
drh1fee73e2007-08-29 04:00:57 +00008255 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008256 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00008257 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00008258
danielk1977c9000e62009-07-08 13:55:28 +00008259 rc = restoreCursorPosition(pCsr);
8260 if( rc!=SQLITE_OK ){
8261 return rc;
8262 }
danielk19773588ceb2008-06-10 17:30:26 +00008263 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8264 if( pCsr->eState!=CURSOR_VALID ){
8265 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008266 }
8267
danielk1977c9000e62009-07-08 13:55:28 +00008268 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008269 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008270 ** (b) there is a read/write transaction open,
8271 ** (c) the connection holds a write-lock on the table (if required),
8272 ** (d) there are no conflicting read-locks, and
8273 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008274 */
danielk19774f029602009-07-08 18:45:37 +00008275 if( !pCsr->wrFlag ){
8276 return SQLITE_READONLY;
8277 }
drhc9166342012-01-05 23:32:06 +00008278 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
8279 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008280 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8281 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008282 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008283
drhfb192682009-07-11 18:26:28 +00008284 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008285}
danielk19772dec9702007-05-02 16:48:37 +00008286
8287/*
8288** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00008289** overflow list for the current row. This is used by cursors opened
8290** for incremental blob IO only.
8291**
8292** This function sets a flag only. The actual page location cache
8293** (stored in BtCursor.aOverflow[]) is allocated and used by function
8294** accessPayload() (the worker function for sqlite3BtreeData() and
8295** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00008296*/
8297void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00008298 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00008299 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan4e76cc32010-10-20 18:56:04 +00008300 invalidateOverflowCache(pCur);
danielk1977dcbb5d32007-05-04 18:36:44 +00008301 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00008302}
danielk1977b4e9af92007-05-01 17:49:49 +00008303#endif
dane04dc882010-04-20 18:53:15 +00008304
8305/*
8306** Set both the "read version" (single byte at byte offset 18) and
8307** "write version" (single byte at byte offset 19) fields in the database
8308** header to iVersion.
8309*/
8310int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8311 BtShared *pBt = pBtree->pBt;
8312 int rc; /* Return code */
8313
dane04dc882010-04-20 18:53:15 +00008314 assert( iVersion==1 || iVersion==2 );
8315
danb9780022010-04-21 18:37:57 +00008316 /* If setting the version fields to 1, do not automatically open the
8317 ** WAL connection, even if the version fields are currently set to 2.
8318 */
drhc9166342012-01-05 23:32:06 +00008319 pBt->btsFlags &= ~BTS_NO_WAL;
8320 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00008321
8322 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008323 if( rc==SQLITE_OK ){
8324 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008325 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008326 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008327 if( rc==SQLITE_OK ){
8328 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8329 if( rc==SQLITE_OK ){
8330 aData[18] = (u8)iVersion;
8331 aData[19] = (u8)iVersion;
8332 }
8333 }
8334 }
dane04dc882010-04-20 18:53:15 +00008335 }
8336
drhc9166342012-01-05 23:32:06 +00008337 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00008338 return rc;
8339}
dan428c2182012-08-06 18:50:11 +00008340
8341/*
8342** set the mask of hint flags for cursor pCsr. Currently the only valid
8343** values are 0 and BTREE_BULKLOAD.
8344*/
8345void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
8346 assert( mask==BTREE_BULKLOAD || mask==0 );
8347 pCsr->hints = mask;
8348}