blob: 74c4f61635726375849c1ad275871509cc80f17b [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
danielk19774b0aa4c2009-05-28 11:05:57 +000012** $Id: btree.c,v 1.609 2009/05/28 11:05:57 danielk1977 Exp $
drh8b2f49b2001-06-08 00:21:52 +000013**
14** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000015** See the header comment on "btreeInt.h" for additional information.
16** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000017*/
drha3152892007-05-05 11:48:52 +000018#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000019
drh8c42ca92001-06-22 19:15:00 +000020/*
drha3152892007-05-05 11:48:52 +000021** The header string that appears at the beginning of every
22** SQLite database.
drh556b2a22005-06-14 16:04:05 +000023*/
drh556b2a22005-06-14 16:04:05 +000024static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000025
drh8c42ca92001-06-22 19:15:00 +000026/*
drha3152892007-05-05 11:48:52 +000027** Set this global variable to 1 to enable tracing using the TRACE
28** macro.
drh615ae552005-01-16 23:21:00 +000029*/
drhe8f52c52008-07-12 14:52:20 +000030#if 0
mlcreech3a00f902008-03-04 17:45:01 +000031int sqlite3BtreeTrace=0; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000032# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
33#else
34# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000035#endif
drh615ae552005-01-16 23:21:00 +000036
drh86f8c192007-08-22 00:39:19 +000037
38
drhe53831d2007-08-17 01:14:38 +000039#ifndef SQLITE_OMIT_SHARED_CACHE
40/*
danielk1977502b4e02008-09-02 14:07:24 +000041** A list of BtShared objects that are eligible for participation
42** in shared cache. This variable has file scope during normal builds,
43** but the test harness needs to access it so we make it global for
44** test builds.
drh7555d8e2009-03-20 13:15:30 +000045**
46** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000047*/
48#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000049BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000050#else
drh78f82d12008-09-02 00:52:52 +000051static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000052#endif
drhe53831d2007-08-17 01:14:38 +000053#endif /* SQLITE_OMIT_SHARED_CACHE */
54
55#ifndef SQLITE_OMIT_SHARED_CACHE
56/*
57** Enable or disable the shared pager and schema features.
58**
59** This routine has no effect on existing database connections.
60** The shared cache setting effects only future calls to
61** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
62*/
63int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000064 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000065 return SQLITE_OK;
66}
67#endif
68
drhd677b3d2007-08-20 22:48:41 +000069
drh615ae552005-01-16 23:21:00 +000070/*
drh66cbd152004-09-01 16:12:25 +000071** Forward declaration
72*/
drh11b57d62009-02-24 19:21:41 +000073static int checkForReadConflicts(Btree*, Pgno, BtCursor*, i64);
drh66cbd152004-09-01 16:12:25 +000074
danielk1977aef0bf62005-12-30 16:28:01 +000075
76#ifdef SQLITE_OMIT_SHARED_CACHE
77 /*
drhc25eabe2009-02-24 18:57:31 +000078 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
79 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000080 ** manipulate entries in the BtShared.pLock linked list used to store
81 ** shared-cache table level locks. If the library is compiled with the
82 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000083 ** of each BtShared structure and so this locking is not necessary.
84 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000085 */
drhc25eabe2009-02-24 18:57:31 +000086 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
87 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
88 #define clearAllSharedCacheTableLocks(a)
drhe53831d2007-08-17 01:14:38 +000089#endif
danielk1977aef0bf62005-12-30 16:28:01 +000090
drhe53831d2007-08-17 01:14:38 +000091#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977da184232006-01-05 11:34:32 +000092/*
danielk1977aef0bf62005-12-30 16:28:01 +000093** Query to see if btree handle p may obtain a lock of type eLock
94** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +000095** SQLITE_OK if the lock may be obtained (by calling
96** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +000097*/
drhc25eabe2009-02-24 18:57:31 +000098static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +000099 BtShared *pBt = p->pBt;
100 BtLock *pIter;
101
drh1fee73e2007-08-29 04:00:57 +0000102 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000103 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
104 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000105
danielk19775b413d72009-04-01 09:41:54 +0000106 /* If requesting a write-lock, then the Btree must have an open write
107 ** transaction on this file. And, obviously, for this to be so there
108 ** must be an open write transaction on the file itself.
109 */
110 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
111 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
112
danielk1977da184232006-01-05 11:34:32 +0000113 /* This is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000114 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000115 return SQLITE_OK;
116 }
117
danielk1977641b0f42007-12-21 04:47:25 +0000118 /* If some other connection is holding an exclusive lock, the
119 ** requested lock may not be obtained.
120 */
danielk1977404ca072009-03-16 13:19:36 +0000121 if( pBt->pWriter!=p && pBt->isExclusive ){
122 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
123 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000124 }
125
drhc25eabe2009-02-24 18:57:31 +0000126 /* This (along with setSharedCacheTableLock()) is where
127 ** the ReadUncommitted flag is dealt with.
128 ** If the caller is querying for a read-lock on any table
drhc74d0b1d2009-02-24 16:18:05 +0000129 ** other than the sqlite_master table (table 1) and if the ReadUncommitted
130 ** flag is set, then the lock granted even if there are write-locks
danielk1977da184232006-01-05 11:34:32 +0000131 ** on the table. If a write-lock is requested, the ReadUncommitted flag
132 ** is not considered.
133 **
drhc25eabe2009-02-24 18:57:31 +0000134 ** In function setSharedCacheTableLock(), if a read-lock is demanded and the
danielk1977da184232006-01-05 11:34:32 +0000135 ** ReadUncommitted flag is set, no entry is added to the locks list
136 ** (BtShared.pLock).
137 **
drhc74d0b1d2009-02-24 16:18:05 +0000138 ** To summarize: If the ReadUncommitted flag is set, then read cursors
139 ** on non-schema tables do not create or respect table locks. The locking
140 ** procedure for a write-cursor does not change.
danielk1977da184232006-01-05 11:34:32 +0000141 */
142 if(
drhe5fe6902007-12-07 18:55:28 +0000143 0==(p->db->flags&SQLITE_ReadUncommitted) ||
danielk1977da184232006-01-05 11:34:32 +0000144 eLock==WRITE_LOCK ||
drh47ded162006-01-06 01:42:58 +0000145 iTab==MASTER_ROOT
danielk1977da184232006-01-05 11:34:32 +0000146 ){
147 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
danielk19775b413d72009-04-01 09:41:54 +0000148 /* The condition (pIter->eLock!=eLock) in the following if(...)
149 ** statement is a simplification of:
150 **
151 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
152 **
153 ** since we know that if eLock==WRITE_LOCK, then no other connection
154 ** may hold a WRITE_LOCK on any table in this file (since there can
155 ** only be a single writer).
156 */
157 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
158 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
159 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
danielk1977404ca072009-03-16 13:19:36 +0000160 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
161 if( eLock==WRITE_LOCK ){
162 assert( p==pBt->pWriter );
163 pBt->isPending = 1;
164 }
165 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977da184232006-01-05 11:34:32 +0000166 }
danielk1977aef0bf62005-12-30 16:28:01 +0000167 }
168 }
169 return SQLITE_OK;
170}
drhe53831d2007-08-17 01:14:38 +0000171#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000172
drhe53831d2007-08-17 01:14:38 +0000173#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000174/*
175** Add a lock on the table with root-page iTable to the shared-btree used
176** by Btree handle p. Parameter eLock must be either READ_LOCK or
177** WRITE_LOCK.
178**
179** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
180** SQLITE_NOMEM may also be returned.
181*/
drhc25eabe2009-02-24 18:57:31 +0000182static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000183 BtShared *pBt = p->pBt;
184 BtLock *pLock = 0;
185 BtLock *pIter;
186
drh1fee73e2007-08-29 04:00:57 +0000187 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000188 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
189 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000190
danielk1977da184232006-01-05 11:34:32 +0000191 /* This is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000192 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000193 return SQLITE_OK;
194 }
195
drhc25eabe2009-02-24 18:57:31 +0000196 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000197
drhc74d0b1d2009-02-24 16:18:05 +0000198 /* If the read-uncommitted flag is set and a read-lock is requested on
199 ** a non-schema table, then the lock is always granted. Return early
200 ** without adding an entry to the BtShared.pLock list. See
drhc25eabe2009-02-24 18:57:31 +0000201 ** comment in function querySharedCacheTableLock() for more info
202 ** on handling the ReadUncommitted flag.
danielk1977da184232006-01-05 11:34:32 +0000203 */
204 if(
drhe5fe6902007-12-07 18:55:28 +0000205 (p->db->flags&SQLITE_ReadUncommitted) &&
danielk1977da184232006-01-05 11:34:32 +0000206 (eLock==READ_LOCK) &&
drh47ded162006-01-06 01:42:58 +0000207 iTable!=MASTER_ROOT
danielk1977da184232006-01-05 11:34:32 +0000208 ){
209 return SQLITE_OK;
210 }
211
danielk1977aef0bf62005-12-30 16:28:01 +0000212 /* First search the list for an existing lock on this table. */
213 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
214 if( pIter->iTable==iTable && pIter->pBtree==p ){
215 pLock = pIter;
216 break;
217 }
218 }
219
220 /* If the above search did not find a BtLock struct associating Btree p
221 ** with table iTable, allocate one and link it into the list.
222 */
223 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000224 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000225 if( !pLock ){
226 return SQLITE_NOMEM;
227 }
228 pLock->iTable = iTable;
229 pLock->pBtree = p;
230 pLock->pNext = pBt->pLock;
231 pBt->pLock = pLock;
232 }
233
234 /* Set the BtLock.eLock variable to the maximum of the current lock
235 ** and the requested lock. This means if a write-lock was already held
236 ** and a read-lock requested, we don't incorrectly downgrade the lock.
237 */
238 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000239 if( eLock>pLock->eLock ){
240 pLock->eLock = eLock;
241 }
danielk1977aef0bf62005-12-30 16:28:01 +0000242
243 return SQLITE_OK;
244}
drhe53831d2007-08-17 01:14:38 +0000245#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000246
drhe53831d2007-08-17 01:14:38 +0000247#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000248/*
drhc25eabe2009-02-24 18:57:31 +0000249** Release all the table locks (locks obtained via calls to
250** the setSharedCacheTableLock() procedure) held by Btree handle p.
danielk1977fa542f12009-04-02 18:28:08 +0000251**
252** This function assumes that handle p has an open read or write
253** transaction. If it does not, then the BtShared.isPending variable
254** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000255*/
drhc25eabe2009-02-24 18:57:31 +0000256static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000257 BtShared *pBt = p->pBt;
258 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000259
drh1fee73e2007-08-29 04:00:57 +0000260 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000261 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000262 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000263
danielk1977aef0bf62005-12-30 16:28:01 +0000264 while( *ppIter ){
265 BtLock *pLock = *ppIter;
danielk1977404ca072009-03-16 13:19:36 +0000266 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000267 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000268 if( pLock->pBtree==p ){
269 *ppIter = pLock->pNext;
drh17435752007-08-16 04:30:38 +0000270 sqlite3_free(pLock);
danielk1977aef0bf62005-12-30 16:28:01 +0000271 }else{
272 ppIter = &pLock->pNext;
273 }
274 }
danielk1977641b0f42007-12-21 04:47:25 +0000275
danielk1977404ca072009-03-16 13:19:36 +0000276 assert( pBt->isPending==0 || pBt->pWriter );
277 if( pBt->pWriter==p ){
278 pBt->pWriter = 0;
279 pBt->isExclusive = 0;
280 pBt->isPending = 0;
281 }else if( pBt->nTransaction==2 ){
282 /* This function is called when connection p is concluding its
283 ** transaction. If there currently exists a writer, and p is not
284 ** that writer, then the number of locks held by connections other
285 ** than the writer must be about to drop to zero. In this case
286 ** set the isPending flag to 0.
287 **
288 ** If there is not currently a writer, then BtShared.isPending must
289 ** be zero already. So this next line is harmless in that case.
290 */
291 pBt->isPending = 0;
danielk1977641b0f42007-12-21 04:47:25 +0000292 }
danielk1977aef0bf62005-12-30 16:28:01 +0000293}
294#endif /* SQLITE_OMIT_SHARED_CACHE */
295
drh980b1a72006-08-16 16:42:48 +0000296static void releasePage(MemPage *pPage); /* Forward reference */
297
drh1fee73e2007-08-29 04:00:57 +0000298/*
299** Verify that the cursor holds a mutex on the BtShared
300*/
301#ifndef NDEBUG
302static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000303 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000304}
305#endif
306
307
danielk197792d4d7a2007-05-04 12:05:56 +0000308#ifndef SQLITE_OMIT_INCRBLOB
309/*
310** Invalidate the overflow page-list cache for cursor pCur, if any.
311*/
312static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000313 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000314 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000315 pCur->aOverflow = 0;
316}
317
318/*
319** Invalidate the overflow page-list cache for all cursors opened
320** on the shared btree structure pBt.
321*/
322static void invalidateAllOverflowCache(BtShared *pBt){
323 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000325 for(p=pBt->pCursor; p; p=p->pNext){
326 invalidateOverflowCache(p);
327 }
328}
329#else
330 #define invalidateOverflowCache(x)
331 #define invalidateAllOverflowCache(x)
332#endif
333
drh980b1a72006-08-16 16:42:48 +0000334/*
danielk1977bea2a942009-01-20 17:06:27 +0000335** Set bit pgno of the BtShared.pHasContent bitvec. This is called
336** when a page that previously contained data becomes a free-list leaf
337** page.
338**
339** The BtShared.pHasContent bitvec exists to work around an obscure
340** bug caused by the interaction of two useful IO optimizations surrounding
341** free-list leaf pages:
342**
343** 1) When all data is deleted from a page and the page becomes
344** a free-list leaf page, the page is not written to the database
345** (as free-list leaf pages contain no meaningful data). Sometimes
346** such a page is not even journalled (as it will not be modified,
347** why bother journalling it?).
348**
349** 2) When a free-list leaf page is reused, its content is not read
350** from the database or written to the journal file (why should it
351** be, if it is not at all meaningful?).
352**
353** By themselves, these optimizations work fine and provide a handy
354** performance boost to bulk delete or insert operations. However, if
355** a page is moved to the free-list and then reused within the same
356** transaction, a problem comes up. If the page is not journalled when
357** it is moved to the free-list and it is also not journalled when it
358** is extracted from the free-list and reused, then the original data
359** may be lost. In the event of a rollback, it may not be possible
360** to restore the database to its original configuration.
361**
362** The solution is the BtShared.pHasContent bitvec. Whenever a page is
363** moved to become a free-list leaf page, the corresponding bit is
364** set in the bitvec. Whenever a leaf page is extracted from the free-list,
365** optimization 2 above is ommitted if the corresponding bit is already
366** set in BtShared.pHasContent. The contents of the bitvec are cleared
367** at the end of every transaction.
368*/
369static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
370 int rc = SQLITE_OK;
371 if( !pBt->pHasContent ){
372 int nPage;
373 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
374 if( rc==SQLITE_OK ){
375 pBt->pHasContent = sqlite3BitvecCreate((u32)nPage);
376 if( !pBt->pHasContent ){
377 rc = SQLITE_NOMEM;
378 }
379 }
380 }
381 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
382 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
383 }
384 return rc;
385}
386
387/*
388** Query the BtShared.pHasContent vector.
389**
390** This function is called when a free-list leaf page is removed from the
391** free-list for reuse. It returns false if it is safe to retrieve the
392** page from the pager layer with the 'no-content' flag set. True otherwise.
393*/
394static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
395 Bitvec *p = pBt->pHasContent;
396 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
397}
398
399/*
400** Clear (destroy) the BtShared.pHasContent bitvec. This should be
401** invoked at the conclusion of each write-transaction.
402*/
403static void btreeClearHasContent(BtShared *pBt){
404 sqlite3BitvecDestroy(pBt->pHasContent);
405 pBt->pHasContent = 0;
406}
407
408/*
drh980b1a72006-08-16 16:42:48 +0000409** Save the current cursor position in the variables BtCursor.nKey
410** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
411*/
412static int saveCursorPosition(BtCursor *pCur){
413 int rc;
414
415 assert( CURSOR_VALID==pCur->eState );
416 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000417 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000418
419 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
420
421 /* If this is an intKey table, then the above call to BtreeKeySize()
422 ** stores the integer key in pCur->nKey. In this case this value is
423 ** all that is required. Otherwise, if pCur is not open on an intKey
424 ** table, then malloc space for and store the pCur->nKey bytes of key
425 ** data.
426 */
danielk197771d5d2c2008-09-29 11:49:47 +0000427 if( rc==SQLITE_OK && 0==pCur->apPage[0]->intKey){
drhf49661a2008-12-10 16:45:50 +0000428 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000429 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000430 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000431 if( rc==SQLITE_OK ){
432 pCur->pKey = pKey;
433 }else{
drh17435752007-08-16 04:30:38 +0000434 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000435 }
436 }else{
437 rc = SQLITE_NOMEM;
438 }
439 }
danielk197771d5d2c2008-09-29 11:49:47 +0000440 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000441
442 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000443 int i;
444 for(i=0; i<=pCur->iPage; i++){
445 releasePage(pCur->apPage[i]);
446 pCur->apPage[i] = 0;
447 }
448 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000449 pCur->eState = CURSOR_REQUIRESEEK;
450 }
451
danielk197792d4d7a2007-05-04 12:05:56 +0000452 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000453 return rc;
454}
455
456/*
457** Save the positions of all cursors except pExcept open on the table
458** with root-page iRoot. Usually, this is called just before cursor
459** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
460*/
461static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
462 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000463 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000464 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000465 for(p=pBt->pCursor; p; p=p->pNext){
466 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
467 p->eState==CURSOR_VALID ){
468 int rc = saveCursorPosition(p);
469 if( SQLITE_OK!=rc ){
470 return rc;
471 }
472 }
473 }
474 return SQLITE_OK;
475}
476
477/*
drhbf700f32007-03-31 02:36:44 +0000478** Clear the current cursor position.
479*/
danielk1977be51a652008-10-08 17:58:48 +0000480void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000481 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000482 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000483 pCur->pKey = 0;
484 pCur->eState = CURSOR_INVALID;
485}
486
487/*
drh980b1a72006-08-16 16:42:48 +0000488** Restore the cursor to the position it was in (or as close to as possible)
489** when saveCursorPosition() was called. Note that this call deletes the
490** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000491** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000492** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000493*/
drha3460582008-07-11 21:02:53 +0000494int sqlite3BtreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000495 int rc;
drh1fee73e2007-08-29 04:00:57 +0000496 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000497 assert( pCur->eState>=CURSOR_REQUIRESEEK );
498 if( pCur->eState==CURSOR_FAULT ){
499 return pCur->skip;
500 }
drh980b1a72006-08-16 16:42:48 +0000501 pCur->eState = CURSOR_INVALID;
drhe63d9992008-08-13 19:11:48 +0000502 rc = sqlite3BtreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skip);
drh980b1a72006-08-16 16:42:48 +0000503 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000504 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000505 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000506 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000507 }
508 return rc;
509}
510
drha3460582008-07-11 21:02:53 +0000511#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000512 (p->eState>=CURSOR_REQUIRESEEK ? \
drha3460582008-07-11 21:02:53 +0000513 sqlite3BtreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000514 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000515
drha3460582008-07-11 21:02:53 +0000516/*
517** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000518** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000519** at is deleted out from under them.
520**
521** This routine returns an error code if something goes wrong. The
522** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
523*/
524int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
525 int rc;
526
527 rc = restoreCursorPosition(pCur);
528 if( rc ){
529 *pHasMoved = 1;
530 return rc;
531 }
532 if( pCur->eState!=CURSOR_VALID || pCur->skip!=0 ){
533 *pHasMoved = 1;
534 }else{
535 *pHasMoved = 0;
536 }
537 return SQLITE_OK;
538}
539
danielk1977599fcba2004-11-08 07:13:13 +0000540#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000541/*
drha3152892007-05-05 11:48:52 +0000542** Given a page number of a regular database page, return the page
543** number for the pointer-map page that contains the entry for the
544** input page number.
danielk1977afcdd022004-10-31 16:25:42 +0000545*/
danielk1977266664d2006-02-10 08:24:21 +0000546static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000547 int nPagesPerMapPage;
548 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000549 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000550 nPagesPerMapPage = (pBt->usableSize/5)+1;
551 iPtrMap = (pgno-2)/nPagesPerMapPage;
552 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000553 if( ret==PENDING_BYTE_PAGE(pBt) ){
554 ret++;
555 }
556 return ret;
557}
danielk1977a19df672004-11-03 11:37:07 +0000558
danielk1977afcdd022004-10-31 16:25:42 +0000559/*
danielk1977afcdd022004-10-31 16:25:42 +0000560** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000561**
562** This routine updates the pointer map entry for page number 'key'
563** so that it maps to type 'eType' and parent page number 'pgno'.
564** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000565*/
danielk1977aef0bf62005-12-30 16:28:01 +0000566static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
danielk19773b8a05f2007-03-19 17:44:26 +0000567 DbPage *pDbPage; /* The pointer map page */
568 u8 *pPtrmap; /* The pointer map data */
569 Pgno iPtrmap; /* The pointer map page number */
570 int offset; /* Offset in pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000571 int rc;
572
drh1fee73e2007-08-29 04:00:57 +0000573 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000574 /* The master-journal page number must never be used as a pointer map page */
575 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
576
danielk1977ac11ee62005-01-15 12:45:51 +0000577 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000578 if( key==0 ){
drh49285702005-09-17 15:20:26 +0000579 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000580 }
danielk1977266664d2006-02-10 08:24:21 +0000581 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000582 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000583 if( rc!=SQLITE_OK ){
danielk1977afcdd022004-10-31 16:25:42 +0000584 return rc;
585 }
danielk19778c666b12008-07-18 09:34:57 +0000586 offset = PTRMAP_PTROFFSET(iPtrmap, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000587 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000588
drh615ae552005-01-16 23:21:00 +0000589 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
590 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
danielk19773b8a05f2007-03-19 17:44:26 +0000591 rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000592 if( rc==SQLITE_OK ){
593 pPtrmap[offset] = eType;
594 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000595 }
danielk1977afcdd022004-10-31 16:25:42 +0000596 }
597
danielk19773b8a05f2007-03-19 17:44:26 +0000598 sqlite3PagerUnref(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000599 return rc;
danielk1977afcdd022004-10-31 16:25:42 +0000600}
601
602/*
603** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000604**
605** This routine retrieves the pointer map entry for page 'key', writing
606** the type and parent page number to *pEType and *pPgno respectively.
607** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000608*/
danielk1977aef0bf62005-12-30 16:28:01 +0000609static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000610 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000611 int iPtrmap; /* Pointer map page index */
612 u8 *pPtrmap; /* Pointer map page data */
613 int offset; /* Offset of entry in pointer map */
614 int rc;
615
drh1fee73e2007-08-29 04:00:57 +0000616 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000617
danielk1977266664d2006-02-10 08:24:21 +0000618 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000619 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000620 if( rc!=0 ){
621 return rc;
622 }
danielk19773b8a05f2007-03-19 17:44:26 +0000623 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000624
danielk19778c666b12008-07-18 09:34:57 +0000625 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drh43617e92006-03-06 20:55:46 +0000626 assert( pEType!=0 );
627 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000628 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000629
danielk19773b8a05f2007-03-19 17:44:26 +0000630 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000631 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000632 return SQLITE_OK;
633}
634
danielk197785d90ca2008-07-19 14:25:15 +0000635#else /* if defined SQLITE_OMIT_AUTOVACUUM */
636 #define ptrmapPut(w,x,y,z) SQLITE_OK
637 #define ptrmapGet(w,x,y,z) SQLITE_OK
638 #define ptrmapPutOvfl(y,z) SQLITE_OK
639#endif
danielk1977afcdd022004-10-31 16:25:42 +0000640
drh0d316a42002-08-11 20:10:47 +0000641/*
drh271efa52004-05-30 19:19:05 +0000642** Given a btree page and a cell index (0 means the first cell on
643** the page, 1 means the second cell, and so forth) return a pointer
644** to the cell content.
645**
646** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000647*/
drh1688c862008-07-18 02:44:17 +0000648#define findCell(P,I) \
649 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
drh43605152004-05-29 21:46:49 +0000650
651/*
drh93a960a2008-07-10 00:32:42 +0000652** This a more complex version of findCell() that works for
drh43605152004-05-29 21:46:49 +0000653** pages that do contain overflow cells. See insert
654*/
655static u8 *findOverflowCell(MemPage *pPage, int iCell){
656 int i;
drh1fee73e2007-08-29 04:00:57 +0000657 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000658 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000659 int k;
660 struct _OvflCell *pOvfl;
661 pOvfl = &pPage->aOvfl[i];
662 k = pOvfl->idx;
663 if( k<=iCell ){
664 if( k==iCell ){
665 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000666 }
667 iCell--;
668 }
669 }
danielk19771cc5ed82007-05-16 17:28:43 +0000670 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000671}
672
673/*
674** Parse a cell content block and fill in the CellInfo structure. There
drh16a9b832007-05-05 18:39:25 +0000675** are two versions of this function. sqlite3BtreeParseCell() takes a
676** cell index as the second argument and sqlite3BtreeParseCellPtr()
677** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000678**
679** Within this file, the parseCell() macro can be called instead of
680** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000681*/
drh16a9b832007-05-05 18:39:25 +0000682void sqlite3BtreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000683 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000684 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000685 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000686){
drhf49661a2008-12-10 16:45:50 +0000687 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000688 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000689
drh1fee73e2007-08-29 04:00:57 +0000690 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000691
drh43605152004-05-29 21:46:49 +0000692 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000693 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000694 n = pPage->childPtrSize;
695 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000696 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000697 if( pPage->hasData ){
698 n += getVarint32(&pCell[n], nPayload);
699 }else{
700 nPayload = 0;
701 }
drh1bd10f82008-12-10 21:19:56 +0000702 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000703 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000704 }else{
drh79df1f42008-07-18 00:57:33 +0000705 pInfo->nData = 0;
706 n += getVarint32(&pCell[n], nPayload);
707 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000708 }
drh72365832007-03-06 15:53:44 +0000709 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000710 pInfo->nHeader = n;
drh79df1f42008-07-18 00:57:33 +0000711 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000712 /* This is the (easy) common case where the entire payload fits
713 ** on the local page. No overflow is required.
714 */
715 int nSize; /* Total size of cell content in bytes */
drh79df1f42008-07-18 00:57:33 +0000716 nSize = nPayload + n;
drhf49661a2008-12-10 16:45:50 +0000717 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000718 pInfo->iOverflow = 0;
drh79df1f42008-07-18 00:57:33 +0000719 if( (nSize & ~3)==0 ){
drh271efa52004-05-30 19:19:05 +0000720 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000721 }
drh1bd10f82008-12-10 21:19:56 +0000722 pInfo->nSize = (u16)nSize;
drh6f11bef2004-05-13 01:12:56 +0000723 }else{
drh271efa52004-05-30 19:19:05 +0000724 /* If the payload will not fit completely on the local page, we have
725 ** to decide how much to store locally and how much to spill onto
726 ** overflow pages. The strategy is to minimize the amount of unused
727 ** space on overflow pages while keeping the amount of local storage
728 ** in between minLocal and maxLocal.
729 **
730 ** Warning: changing the way overflow payload is distributed in any
731 ** way will result in an incompatible file format.
732 */
733 int minLocal; /* Minimum amount of payload held locally */
734 int maxLocal; /* Maximum amount of payload held locally */
735 int surplus; /* Overflow payload available for local storage */
736
737 minLocal = pPage->minLocal;
738 maxLocal = pPage->maxLocal;
739 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh6f11bef2004-05-13 01:12:56 +0000740 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000741 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000742 }else{
drhf49661a2008-12-10 16:45:50 +0000743 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000744 }
drhf49661a2008-12-10 16:45:50 +0000745 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000746 pInfo->nSize = pInfo->iOverflow + 4;
747 }
drh3aac2dd2004-04-26 14:10:20 +0000748}
danielk19771cc5ed82007-05-16 17:28:43 +0000749#define parseCell(pPage, iCell, pInfo) \
750 sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
drh16a9b832007-05-05 18:39:25 +0000751void sqlite3BtreeParseCell(
drh43605152004-05-29 21:46:49 +0000752 MemPage *pPage, /* Page containing the cell */
753 int iCell, /* The cell index. First cell is 0 */
754 CellInfo *pInfo /* Fill in this structure */
755){
danielk19771cc5ed82007-05-16 17:28:43 +0000756 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000757}
drh3aac2dd2004-04-26 14:10:20 +0000758
759/*
drh43605152004-05-29 21:46:49 +0000760** Compute the total number of bytes that a Cell needs in the cell
761** data area of the btree-page. The return number includes the cell
762** data header and the local payload, but not any overflow page or
763** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000764*/
danielk1977ae5558b2009-04-29 11:31:47 +0000765static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
766 u8 *pIter = &pCell[pPage->childPtrSize];
767 u32 nSize;
768
769#ifdef SQLITE_DEBUG
770 /* The value returned by this function should always be the same as
771 ** the (CellInfo.nSize) value found by doing a full parse of the
772 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
773 ** this function verifies that this invariant is not violated. */
774 CellInfo debuginfo;
775 sqlite3BtreeParseCellPtr(pPage, pCell, &debuginfo);
776#endif
777
778 if( pPage->intKey ){
779 u8 *pEnd;
780 if( pPage->hasData ){
781 pIter += getVarint32(pIter, nSize);
782 }else{
783 nSize = 0;
784 }
785
786 /* pIter now points at the 64-bit integer key value, a variable length
787 ** integer. The following block moves pIter to point at the first byte
788 ** past the end of the key value. */
789 pEnd = &pIter[9];
790 while( (*pIter++)&0x80 && pIter<pEnd );
791 }else{
792 pIter += getVarint32(pIter, nSize);
793 }
794
795 if( nSize>pPage->maxLocal ){
796 int minLocal = pPage->minLocal;
797 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
798 if( nSize>pPage->maxLocal ){
799 nSize = minLocal;
800 }
801 nSize += 4;
802 }
803 nSize += (pIter - pCell);
804
805 /* The minimum size of any cell is 4 bytes. */
806 if( nSize<4 ){
807 nSize = 4;
808 }
809
810 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +0000811 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +0000812}
danielk1977bc6ada42004-06-30 08:20:16 +0000813#ifndef NDEBUG
drha9121e42008-02-19 14:59:35 +0000814static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +0000815 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +0000816}
danielk1977bc6ada42004-06-30 08:20:16 +0000817#endif
drh3b7511c2001-05-26 13:15:44 +0000818
danielk197779a40da2005-01-16 08:00:01 +0000819#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +0000820/*
danielk197726836652005-01-17 01:33:13 +0000821** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +0000822** to an overflow page, insert an entry into the pointer-map
823** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +0000824*/
danielk197726836652005-01-17 01:33:13 +0000825static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
drhfa67c3c2008-07-11 02:21:40 +0000826 CellInfo info;
827 assert( pCell!=0 );
828 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
829 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
830 if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
831 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
832 return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
danielk1977ac11ee62005-01-15 12:45:51 +0000833 }
danielk197779a40da2005-01-16 08:00:01 +0000834 return SQLITE_OK;
danielk1977ac11ee62005-01-15 12:45:51 +0000835}
danielk197726836652005-01-17 01:33:13 +0000836/*
837** If the cell with index iCell on page pPage contains a pointer
838** to an overflow page, insert an entry into the pointer-map
839** for the overflow page.
840*/
841static int ptrmapPutOvfl(MemPage *pPage, int iCell){
842 u8 *pCell;
drh1fee73e2007-08-29 04:00:57 +0000843 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197726836652005-01-17 01:33:13 +0000844 pCell = findOverflowCell(pPage, iCell);
845 return ptrmapPutOvflPtr(pPage, pCell);
846}
danielk197779a40da2005-01-16 08:00:01 +0000847#endif
848
danielk1977ac11ee62005-01-15 12:45:51 +0000849
drhda200cc2004-05-09 11:51:38 +0000850/*
drh72f82862001-05-24 21:06:34 +0000851** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +0000852** end of the page and all free space is collected into one
853** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +0000854** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +0000855*/
shane0af3f892008-11-12 04:55:34 +0000856static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +0000857 int i; /* Loop counter */
858 int pc; /* Address of a i-th cell */
859 int addr; /* Offset of first byte after cell pointer array */
860 int hdr; /* Offset to the page header */
861 int size; /* Size of a cell */
862 int usableSize; /* Number of usable bytes on a page */
863 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +0000864 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +0000865 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +0000866 unsigned char *data; /* The page data */
867 unsigned char *temp; /* Temp area for cell content */
drh2af926b2001-05-15 00:39:25 +0000868
danielk19773b8a05f2007-03-19 17:44:26 +0000869 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +0000870 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +0000871 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +0000872 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +0000873 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +0000874 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +0000875 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +0000876 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +0000877 cellOffset = pPage->cellOffset;
878 nCell = pPage->nCell;
879 assert( nCell==get2byte(&data[hdr+3]) );
880 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +0000881 cbrk = get2byte(&data[hdr+5]);
882 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
883 cbrk = usableSize;
drh43605152004-05-29 21:46:49 +0000884 for(i=0; i<nCell; i++){
885 u8 *pAddr; /* The i-th cell pointer */
886 pAddr = &data[cellOffset + i*2];
887 pc = get2byte(pAddr);
shanedcc50b72008-11-13 18:29:50 +0000888 if( pc>=usableSize ){
shane0af3f892008-11-12 04:55:34 +0000889 return SQLITE_CORRUPT_BKPT;
890 }
drh43605152004-05-29 21:46:49 +0000891 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +0000892 cbrk -= size;
danielk19770d065412008-11-12 18:21:36 +0000893 if( cbrk<cellOffset+2*nCell || pc+size>usableSize ){
shane0af3f892008-11-12 04:55:34 +0000894 return SQLITE_CORRUPT_BKPT;
895 }
danielk19770d065412008-11-12 18:21:36 +0000896 assert( cbrk+size<=usableSize && cbrk>=0 );
drh281b21d2008-08-22 12:57:08 +0000897 memcpy(&data[cbrk], &temp[pc], size);
898 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +0000899 }
drh281b21d2008-08-22 12:57:08 +0000900 assert( cbrk>=cellOffset+2*nCell );
901 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +0000902 data[hdr+1] = 0;
903 data[hdr+2] = 0;
904 data[hdr+7] = 0;
905 addr = cellOffset+2*nCell;
drh281b21d2008-08-22 12:57:08 +0000906 memset(&data[addr], 0, cbrk-addr);
drhc5053fb2008-11-27 02:22:10 +0000907 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977360e6342008-11-12 08:49:51 +0000908 if( cbrk-addr!=pPage->nFree ){
909 return SQLITE_CORRUPT_BKPT;
910 }
shane0af3f892008-11-12 04:55:34 +0000911 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +0000912}
913
drha059ad02001-04-17 20:09:11 +0000914/*
danielk19776011a752009-04-01 16:25:32 +0000915** Allocate nByte bytes of space from within the B-Tree page passed
916** as the first argument. Return the index into pPage->aData[] of the
917** first byte of allocated space.
drhbd03cae2001-06-02 02:40:57 +0000918**
danielk19776011a752009-04-01 16:25:32 +0000919** The caller guarantees that the space between the end of the cell-offset
920** array and the start of the cell-content area is at least nByte bytes
921** in size. So this routine can never fail.
drh2af926b2001-05-15 00:39:25 +0000922**
danielk19776011a752009-04-01 16:25:32 +0000923** If there are already 60 or more bytes of fragments within the page,
924** the page is defragmented before returning. If this were not done there
925** is a chance that the number of fragmented bytes could eventually
926** overflow the single-byte field of the page-header in which this value
927** is stored.
drh7e3b0a02001-04-28 16:52:40 +0000928*/
drh9e572e62004-04-23 23:43:10 +0000929static int allocateSpace(MemPage *pPage, int nByte){
danielk19776011a752009-04-01 16:25:32 +0000930 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
931 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
932 int nFrag; /* Number of fragmented bytes on pPage */
drh43605152004-05-29 21:46:49 +0000933 int top;
drh43605152004-05-29 21:46:49 +0000934
danielk19773b8a05f2007-03-19 17:44:26 +0000935 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +0000936 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +0000937 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +0000938 assert( nByte>=0 ); /* Minimum cell size is 4 */
939 assert( pPage->nFree>=nByte );
940 assert( pPage->nOverflow==0 );
drh43605152004-05-29 21:46:49 +0000941
danielk19776011a752009-04-01 16:25:32 +0000942 /* Assert that the space between the cell-offset array and the
943 ** cell-content area is greater than nByte bytes.
944 */
945 assert( nByte <= (
946 get2byte(&data[hdr+5])-(hdr+8+(pPage->leaf?0:4)+2*get2byte(&data[hdr+3]))
947 ));
948
949 pPage->nFree -= (u16)nByte;
drh43605152004-05-29 21:46:49 +0000950 nFrag = data[hdr+7];
danielk19776011a752009-04-01 16:25:32 +0000951 if( nFrag>=60 ){
952 defragmentPage(pPage);
953 }else{
954 /* Search the freelist looking for a free slot big enough to satisfy
955 ** the request. The allocation is made from the first free slot in
956 ** the list that is large enough to accomadate it.
957 */
958 int pc, addr;
959 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
960 int size = get2byte(&data[pc+2]); /* Size of free slot */
drh43605152004-05-29 21:46:49 +0000961 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +0000962 int x = size - nByte;
danielk19776011a752009-04-01 16:25:32 +0000963 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +0000964 /* Remove the slot from the free-list. Update the number of
965 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +0000966 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +0000967 data[hdr+7] = (u8)(nFrag + x);
drh43605152004-05-29 21:46:49 +0000968 }else{
danielk1977fad91942009-04-29 17:49:59 +0000969 /* The slot remains on the free-list. Reduce its size to account
970 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +0000971 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +0000972 }
danielk19776011a752009-04-01 16:25:32 +0000973 return pc + x;
drh43605152004-05-29 21:46:49 +0000974 }
drh9e572e62004-04-23 23:43:10 +0000975 }
976 }
drh43605152004-05-29 21:46:49 +0000977
978 /* Allocate memory from the gap in between the cell pointer array
979 ** and the cell content area.
980 */
danielk19776011a752009-04-01 16:25:32 +0000981 top = get2byte(&data[hdr+5]) - nByte;
drh43605152004-05-29 21:46:49 +0000982 put2byte(&data[hdr+5], top);
983 return top;
drh7e3b0a02001-04-28 16:52:40 +0000984}
985
986/*
drh9e572e62004-04-23 23:43:10 +0000987** Return a section of the pPage->aData to the freelist.
988** The first byte of the new free block is pPage->aDisk[start]
989** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +0000990**
991** Most of the effort here is involved in coalesing adjacent
992** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +0000993*/
shanedcc50b72008-11-13 18:29:50 +0000994static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +0000995 int addr, pbegin, hdr;
drh9e572e62004-04-23 23:43:10 +0000996 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +0000997
drh9e572e62004-04-23 23:43:10 +0000998 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +0000999 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001000 assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
danielk1977bc6ada42004-06-30 08:20:16 +00001001 assert( (start + size)<=pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001002 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001003 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001004
drhfcce93f2006-02-22 03:08:32 +00001005#ifdef SQLITE_SECURE_DELETE
1006 /* Overwrite deleted information with zeros when the SECURE_DELETE
1007 ** option is enabled at compile-time */
1008 memset(&data[start], 0, size);
1009#endif
1010
drh9e572e62004-04-23 23:43:10 +00001011 /* Add the space back into the linked list of freeblocks */
drh43605152004-05-29 21:46:49 +00001012 hdr = pPage->hdrOffset;
1013 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001014 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drhb6f41482004-05-14 01:58:11 +00001015 assert( pbegin<=pPage->pBt->usableSize-4 );
shanedcc50b72008-11-13 18:29:50 +00001016 if( pbegin<=addr ) {
1017 return SQLITE_CORRUPT_BKPT;
1018 }
drh3aac2dd2004-04-26 14:10:20 +00001019 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001020 }
shanedcc50b72008-11-13 18:29:50 +00001021 if ( pbegin>pPage->pBt->usableSize-4 ) {
1022 return SQLITE_CORRUPT_BKPT;
1023 }
drh3aac2dd2004-04-26 14:10:20 +00001024 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001025 put2byte(&data[addr], start);
1026 put2byte(&data[start], pbegin);
1027 put2byte(&data[start+2], size);
drhf49661a2008-12-10 16:45:50 +00001028 pPage->nFree += (u16)size;
drh9e572e62004-04-23 23:43:10 +00001029
1030 /* Coalesce adjacent free blocks */
drh3aac2dd2004-04-26 14:10:20 +00001031 addr = pPage->hdrOffset + 1;
1032 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001033 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001034 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +00001035 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001036 pnext = get2byte(&data[pbegin]);
1037 psize = get2byte(&data[pbegin+2]);
1038 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1039 int frag = pnext - (pbegin+psize);
drhf49661a2008-12-10 16:45:50 +00001040 if( (frag<0) || (frag>(int)data[pPage->hdrOffset+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001041 return SQLITE_CORRUPT_BKPT;
1042 }
drhf49661a2008-12-10 16:45:50 +00001043 data[pPage->hdrOffset+7] -= (u8)frag;
1044 x = get2byte(&data[pnext]);
1045 put2byte(&data[pbegin], x);
1046 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1047 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001048 }else{
drh3aac2dd2004-04-26 14:10:20 +00001049 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001050 }
1051 }
drh7e3b0a02001-04-28 16:52:40 +00001052
drh43605152004-05-29 21:46:49 +00001053 /* If the cell content area begins with a freeblock, remove it. */
1054 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1055 int top;
1056 pbegin = get2byte(&data[hdr+1]);
1057 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001058 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1059 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001060 }
drhc5053fb2008-11-27 02:22:10 +00001061 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001062 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001063}
1064
1065/*
drh271efa52004-05-30 19:19:05 +00001066** Decode the flags byte (the first byte of the header) for a page
1067** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001068**
1069** Only the following combinations are supported. Anything different
1070** indicates a corrupt database files:
1071**
1072** PTF_ZERODATA
1073** PTF_ZERODATA | PTF_LEAF
1074** PTF_LEAFDATA | PTF_INTKEY
1075** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001076*/
drh44845222008-07-17 18:39:57 +00001077static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001078 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001079
1080 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001081 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001082 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001083 flagByte &= ~PTF_LEAF;
1084 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001085 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001086 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1087 pPage->intKey = 1;
1088 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001089 pPage->maxLocal = pBt->maxLeaf;
1090 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001091 }else if( flagByte==PTF_ZERODATA ){
1092 pPage->intKey = 0;
1093 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001094 pPage->maxLocal = pBt->maxLocal;
1095 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001096 }else{
1097 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001098 }
drh44845222008-07-17 18:39:57 +00001099 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001100}
1101
1102/*
drh7e3b0a02001-04-28 16:52:40 +00001103** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001104**
1105** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001106** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001107** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1108** guarantee that the page is well-formed. It only shows that
1109** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001110*/
danielk197771d5d2c2008-09-29 11:49:47 +00001111int sqlite3BtreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001112
danielk197771d5d2c2008-09-29 11:49:47 +00001113 assert( pPage->pBt!=0 );
1114 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001115 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001116 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1117 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001118
1119 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001120 u16 pc; /* Address of a freeblock within pPage->aData[] */
1121 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001122 u8 *data; /* Equal to pPage->aData */
1123 BtShared *pBt; /* The main btree structure */
drhf49661a2008-12-10 16:45:50 +00001124 u16 usableSize; /* Amount of usable space on each page */
1125 u16 cellOffset; /* Offset from start of page to first cell pointer */
1126 u16 nFree; /* Number of unused bytes on the page */
1127 u16 top; /* First byte of the cell content area */
danielk197771d5d2c2008-09-29 11:49:47 +00001128
1129 pBt = pPage->pBt;
1130
danielk1977eaa06f62008-09-18 17:34:44 +00001131 hdr = pPage->hdrOffset;
1132 data = pPage->aData;
1133 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1134 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1135 pPage->maskPage = pBt->pageSize - 1;
1136 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001137 usableSize = pBt->usableSize;
1138 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
1139 top = get2byte(&data[hdr+5]);
1140 pPage->nCell = get2byte(&data[hdr+3]);
1141 if( pPage->nCell>MX_CELL(pBt) ){
1142 /* To many cells for a single page. The page must be corrupt */
1143 return SQLITE_CORRUPT_BKPT;
1144 }
danielk1977eaa06f62008-09-18 17:34:44 +00001145
1146 /* Compute the total free space on the page */
1147 pc = get2byte(&data[hdr+1]);
1148 nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell);
1149 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001150 u16 next, size;
danielk1977eaa06f62008-09-18 17:34:44 +00001151 if( pc>usableSize-4 ){
1152 /* Free block is off the page */
1153 return SQLITE_CORRUPT_BKPT;
1154 }
1155 next = get2byte(&data[pc]);
1156 size = get2byte(&data[pc+2]);
1157 if( next>0 && next<=pc+size+3 ){
1158 /* Free blocks must be in accending order */
1159 return SQLITE_CORRUPT_BKPT;
1160 }
1161 nFree += size;
1162 pc = next;
1163 }
drhf49661a2008-12-10 16:45:50 +00001164 pPage->nFree = (u16)nFree;
danielk1977eaa06f62008-09-18 17:34:44 +00001165 if( nFree>=usableSize ){
1166 /* Free space cannot exceed total page size */
drh49285702005-09-17 15:20:26 +00001167 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001168 }
drh9e572e62004-04-23 23:43:10 +00001169
drh1688c862008-07-18 02:44:17 +00001170#if 0
1171 /* Check that all the offsets in the cell offset array are within range.
1172 **
1173 ** Omitting this consistency check and using the pPage->maskPage mask
1174 ** to prevent overrunning the page buffer in findCell() results in a
1175 ** 2.5% performance gain.
1176 */
1177 {
1178 u8 *pOff; /* Iterator used to check all cell offsets are in range */
1179 u8 *pEnd; /* Pointer to end of cell offset array */
1180 u8 mask; /* Mask of bits that must be zero in MSB of cell offsets */
1181 mask = ~(((u8)(pBt->pageSize>>8))-1);
1182 pEnd = &data[cellOffset + pPage->nCell*2];
1183 for(pOff=&data[cellOffset]; pOff!=pEnd && !((*pOff)&mask); pOff+=2);
1184 if( pOff!=pEnd ){
1185 return SQLITE_CORRUPT_BKPT;
1186 }
danielk1977e16535f2008-06-11 18:15:29 +00001187 }
drh1688c862008-07-18 02:44:17 +00001188#endif
danielk1977e16535f2008-06-11 18:15:29 +00001189
danielk197771d5d2c2008-09-29 11:49:47 +00001190 pPage->isInit = 1;
1191 }
drh9e572e62004-04-23 23:43:10 +00001192 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001193}
1194
1195/*
drh8b2f49b2001-06-08 00:21:52 +00001196** Set up a raw page so that it looks like a database page holding
1197** no entries.
drhbd03cae2001-06-02 02:40:57 +00001198*/
drh9e572e62004-04-23 23:43:10 +00001199static void zeroPage(MemPage *pPage, int flags){
1200 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001201 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001202 u8 hdr = pPage->hdrOffset;
1203 u16 first;
drh9e572e62004-04-23 23:43:10 +00001204
danielk19773b8a05f2007-03-19 17:44:26 +00001205 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001206 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1207 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001208 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001209 assert( sqlite3_mutex_held(pBt->mutex) );
drh1af4a6e2008-07-18 03:32:51 +00001210 /*memset(&data[hdr], 0, pBt->usableSize - hdr);*/
drh1bd10f82008-12-10 21:19:56 +00001211 data[hdr] = (char)flags;
1212 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001213 memset(&data[hdr+1], 0, 4);
1214 data[hdr+7] = 0;
1215 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +00001216 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +00001217 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001218 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001219 pPage->cellOffset = first;
1220 pPage->nOverflow = 0;
drh1688c862008-07-18 02:44:17 +00001221 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1222 pPage->maskPage = pBt->pageSize - 1;
drh43605152004-05-29 21:46:49 +00001223 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001224 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001225}
1226
drh897a8202008-09-18 01:08:15 +00001227
1228/*
1229** Convert a DbPage obtained from the pager into a MemPage used by
1230** the btree layer.
1231*/
1232static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1233 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1234 pPage->aData = sqlite3PagerGetData(pDbPage);
1235 pPage->pDbPage = pDbPage;
1236 pPage->pBt = pBt;
1237 pPage->pgno = pgno;
1238 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1239 return pPage;
1240}
1241
drhbd03cae2001-06-02 02:40:57 +00001242/*
drh3aac2dd2004-04-26 14:10:20 +00001243** Get a page from the pager. Initialize the MemPage.pBt and
1244** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001245**
1246** If the noContent flag is set, it means that we do not care about
1247** the content of the page at this time. So do not go to the disk
1248** to fetch the content. Just fill in the content with zeros for now.
1249** If in the future we call sqlite3PagerWrite() on this page, that
1250** means we have started to be concerned about content and the disk
1251** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001252*/
drh16a9b832007-05-05 18:39:25 +00001253int sqlite3BtreeGetPage(
1254 BtShared *pBt, /* The btree */
1255 Pgno pgno, /* Number of the page to fetch */
1256 MemPage **ppPage, /* Return the page in this parameter */
1257 int noContent /* Do not load page content if true */
1258){
drh3aac2dd2004-04-26 14:10:20 +00001259 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001260 DbPage *pDbPage;
1261
drh1fee73e2007-08-29 04:00:57 +00001262 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001263 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001264 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001265 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001266 return SQLITE_OK;
1267}
1268
1269/*
danielk1977bea2a942009-01-20 17:06:27 +00001270** Retrieve a page from the pager cache. If the requested page is not
1271** already in the pager cache return NULL. Initialize the MemPage.pBt and
1272** MemPage.aData elements if needed.
1273*/
1274static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1275 DbPage *pDbPage;
1276 assert( sqlite3_mutex_held(pBt->mutex) );
1277 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1278 if( pDbPage ){
1279 return btreePageFromDbPage(pDbPage, pgno, pBt);
1280 }
1281 return 0;
1282}
1283
1284/*
danielk197789d40042008-11-17 14:20:56 +00001285** Return the size of the database file in pages. If there is any kind of
1286** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001287*/
danielk197789d40042008-11-17 14:20:56 +00001288static Pgno pagerPagecount(BtShared *pBt){
1289 int nPage = -1;
danielk197767fd7a92008-09-10 17:53:35 +00001290 int rc;
danielk197789d40042008-11-17 14:20:56 +00001291 assert( pBt->pPage1 );
1292 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
1293 assert( rc==SQLITE_OK || nPage==-1 );
1294 return (Pgno)nPage;
danielk197767fd7a92008-09-10 17:53:35 +00001295}
1296
1297/*
drhde647132004-05-07 17:57:49 +00001298** Get a page from the pager and initialize it. This routine
1299** is just a convenience wrapper around separate calls to
drh16a9b832007-05-05 18:39:25 +00001300** sqlite3BtreeGetPage() and sqlite3BtreeInitPage().
drhde647132004-05-07 17:57:49 +00001301*/
1302static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001303 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001304 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001305 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001306){
1307 int rc;
drh897a8202008-09-18 01:08:15 +00001308 MemPage *pPage;
1309
drh1fee73e2007-08-29 04:00:57 +00001310 assert( sqlite3_mutex_held(pBt->mutex) );
drh897a8202008-09-18 01:08:15 +00001311 if( pgno==0 ){
drh49285702005-09-17 15:20:26 +00001312 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001313 }
danielk19779f580ad2008-09-10 14:45:57 +00001314
drh897a8202008-09-18 01:08:15 +00001315 /* It is often the case that the page we want is already in cache.
1316 ** If so, get it directly. This saves us from having to call
1317 ** pagerPagecount() to make sure pgno is within limits, which results
1318 ** in a measureable performance improvements.
1319 */
danielk1977bea2a942009-01-20 17:06:27 +00001320 *ppPage = pPage = btreePageLookup(pBt, pgno);
1321 if( pPage ){
drh897a8202008-09-18 01:08:15 +00001322 /* Page is already in cache */
drh897a8202008-09-18 01:08:15 +00001323 rc = SQLITE_OK;
1324 }else{
1325 /* Page not in cache. Acquire it. */
danielk197789d40042008-11-17 14:20:56 +00001326 if( pgno>pagerPagecount(pBt) ){
drh897a8202008-09-18 01:08:15 +00001327 return SQLITE_CORRUPT_BKPT;
1328 }
1329 rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0);
1330 if( rc ) return rc;
1331 pPage = *ppPage;
1332 }
danielk197771d5d2c2008-09-29 11:49:47 +00001333 if( !pPage->isInit ){
1334 rc = sqlite3BtreeInitPage(pPage);
drh897a8202008-09-18 01:08:15 +00001335 }
1336 if( rc!=SQLITE_OK ){
1337 releasePage(pPage);
1338 *ppPage = 0;
1339 }
drhde647132004-05-07 17:57:49 +00001340 return rc;
1341}
1342
1343/*
drh3aac2dd2004-04-26 14:10:20 +00001344** Release a MemPage. This should be called once for each prior
drh16a9b832007-05-05 18:39:25 +00001345** call to sqlite3BtreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001346*/
drh4b70f112004-05-02 21:12:19 +00001347static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001348 if( pPage ){
drh30df0092008-12-23 15:58:06 +00001349 assert( pPage->nOverflow==0 || sqlite3PagerPageRefcount(pPage->pDbPage)>1 );
drh3aac2dd2004-04-26 14:10:20 +00001350 assert( pPage->aData );
1351 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001352 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1353 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001354 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001355 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001356 }
1357}
1358
1359/*
drha6abd042004-06-09 17:37:22 +00001360** During a rollback, when the pager reloads information into the cache
1361** so that the cache is restored to its original state at the start of
1362** the transaction, for each page restored this routine is called.
1363**
1364** This routine needs to reset the extra data section at the end of the
1365** page to agree with the restored data.
1366*/
danielk1977eaa06f62008-09-18 17:34:44 +00001367static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001368 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001369 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001370 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001371 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001372 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001373 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001374 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001375 /* pPage might not be a btree page; it might be an overflow page
1376 ** or ptrmap page or a free page. In those cases, the following
1377 ** call to sqlite3BtreeInitPage() will likely return SQLITE_CORRUPT.
1378 ** But no harm is done by this. And it is very important that
1379 ** sqlite3BtreeInitPage() be called on every btree page so we make
1380 ** the call for every page that comes in for re-initing. */
danielk197771d5d2c2008-09-29 11:49:47 +00001381 sqlite3BtreeInitPage(pPage);
1382 }
drha6abd042004-06-09 17:37:22 +00001383 }
1384}
1385
1386/*
drhe5fe6902007-12-07 18:55:28 +00001387** Invoke the busy handler for a btree.
1388*/
danielk19771ceedd32008-11-19 10:22:33 +00001389static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001390 BtShared *pBt = (BtShared*)pArg;
1391 assert( pBt->db );
1392 assert( sqlite3_mutex_held(pBt->db->mutex) );
1393 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1394}
1395
1396/*
drhad3e0102004-09-03 23:32:18 +00001397** Open a database file.
1398**
drh382c0242001-10-06 16:33:02 +00001399** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +00001400** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +00001401** database file will be deleted when sqlite3BtreeClose() is called.
drhe53831d2007-08-17 01:14:38 +00001402** If zFilename is ":memory:" then an in-memory database is created
1403** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001404**
1405** If the database is already opened in the same database connection
1406** and we are in shared cache mode, then the open will fail with an
1407** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1408** objects in the same database connection since doing so will lead
1409** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001410*/
drh23e11ca2004-05-04 17:27:28 +00001411int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001412 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001413 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001414 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001415 int flags, /* Options */
1416 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001417){
drh7555d8e2009-03-20 13:15:30 +00001418 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
1419 BtShared *pBt = 0; /* Shared part of btree structure */
1420 Btree *p; /* Handle to return */
1421 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1422 int rc = SQLITE_OK; /* Result code from this function */
1423 u8 nReserve; /* Byte of unused space on each page */
1424 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001425
1426 /* Set the variable isMemdb to true for an in-memory database, or
1427 ** false for a file-based database. This symbol is only required if
1428 ** either of the shared-data or autovacuum features are compiled
1429 ** into the library.
1430 */
1431#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1432 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001433 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001434 #else
drh980b1a72006-08-16 16:42:48 +00001435 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
danielk1977aef0bf62005-12-30 16:28:01 +00001436 #endif
1437#endif
1438
drhe5fe6902007-12-07 18:55:28 +00001439 assert( db!=0 );
1440 assert( sqlite3_mutex_held(db->mutex) );
drh153c62c2007-08-24 03:51:33 +00001441
drhe5fe6902007-12-07 18:55:28 +00001442 pVfs = db->pVfs;
drh17435752007-08-16 04:30:38 +00001443 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001444 if( !p ){
1445 return SQLITE_NOMEM;
1446 }
1447 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001448 p->db = db;
danielk1977aef0bf62005-12-30 16:28:01 +00001449
drh198bf392006-01-06 21:52:49 +00001450#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001451 /*
1452 ** If this Btree is a candidate for shared cache, try to find an
1453 ** existing BtShared object that we can share with
1454 */
danielk197720c6cc22009-04-01 18:03:00 +00001455 if( isMemdb==0 && zFilename && zFilename[0] ){
danielk1977502b4e02008-09-02 14:07:24 +00001456 if( sqlite3GlobalConfig.sharedCacheEnabled ){
danielk1977adfb9b02007-09-17 07:02:56 +00001457 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001458 char *zFullPathname = sqlite3Malloc(nFullPathname);
drhff0587c2007-08-29 17:43:19 +00001459 sqlite3_mutex *mutexShared;
1460 p->sharable = 1;
drh34004ce2008-07-11 16:15:17 +00001461 db->flags |= SQLITE_SharedCache;
drhff0587c2007-08-29 17:43:19 +00001462 if( !zFullPathname ){
1463 sqlite3_free(p);
1464 return SQLITE_NOMEM;
1465 }
danielk1977adfb9b02007-09-17 07:02:56 +00001466 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
drh7555d8e2009-03-20 13:15:30 +00001467 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1468 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001469 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001470 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001471 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001472 assert( pBt->nRef>0 );
1473 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1474 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001475 int iDb;
1476 for(iDb=db->nDb-1; iDb>=0; iDb--){
1477 Btree *pExisting = db->aDb[iDb].pBt;
1478 if( pExisting && pExisting->pBt==pBt ){
1479 sqlite3_mutex_leave(mutexShared);
1480 sqlite3_mutex_leave(mutexOpen);
1481 sqlite3_free(zFullPathname);
1482 sqlite3_free(p);
1483 return SQLITE_CONSTRAINT;
1484 }
1485 }
drhff0587c2007-08-29 17:43:19 +00001486 p->pBt = pBt;
1487 pBt->nRef++;
1488 break;
1489 }
1490 }
1491 sqlite3_mutex_leave(mutexShared);
1492 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001493 }
drhff0587c2007-08-29 17:43:19 +00001494#ifdef SQLITE_DEBUG
1495 else{
1496 /* In debug mode, we mark all persistent databases as sharable
1497 ** even when they are not. This exercises the locking code and
1498 ** gives more opportunity for asserts(sqlite3_mutex_held())
1499 ** statements to find locking problems.
1500 */
1501 p->sharable = 1;
1502 }
1503#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001504 }
1505#endif
drha059ad02001-04-17 20:09:11 +00001506 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001507 /*
1508 ** The following asserts make sure that structures used by the btree are
1509 ** the right size. This is to guard against size changes that result
1510 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001511 */
drhe53831d2007-08-17 01:14:38 +00001512 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1513 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1514 assert( sizeof(u32)==4 );
1515 assert( sizeof(u16)==2 );
1516 assert( sizeof(Pgno)==4 );
1517
1518 pBt = sqlite3MallocZero( sizeof(*pBt) );
1519 if( pBt==0 ){
1520 rc = SQLITE_NOMEM;
1521 goto btree_open_out;
1522 }
danielk197771d5d2c2008-09-29 11:49:47 +00001523 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh33f4e022007-09-03 15:19:34 +00001524 EXTRA_SIZE, flags, vfsFlags);
drhe53831d2007-08-17 01:14:38 +00001525 if( rc==SQLITE_OK ){
1526 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1527 }
1528 if( rc!=SQLITE_OK ){
1529 goto btree_open_out;
1530 }
danielk19772a50ff02009-04-10 09:47:06 +00001531 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001532 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001533 p->pBt = pBt;
1534
drhe53831d2007-08-17 01:14:38 +00001535 sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
1536 pBt->pCursor = 0;
1537 pBt->pPage1 = 0;
1538 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
1539 pBt->pageSize = get2byte(&zDbHeader[16]);
1540 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1541 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001542 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001543#ifndef SQLITE_OMIT_AUTOVACUUM
1544 /* If the magic name ":memory:" will create an in-memory database, then
1545 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1546 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1547 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1548 ** regular file-name. In this case the auto-vacuum applies as per normal.
1549 */
1550 if( zFilename && !isMemdb ){
1551 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1552 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1553 }
1554#endif
1555 nReserve = 0;
1556 }else{
1557 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001558 pBt->pageSizeFixed = 1;
1559#ifndef SQLITE_OMIT_AUTOVACUUM
1560 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1561 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1562#endif
1563 }
drhc0b61812009-04-30 01:22:41 +00001564 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
1565 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001566 pBt->usableSize = pBt->pageSize - nReserve;
1567 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001568
1569#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1570 /* Add the new BtShared object to the linked list sharable BtShareds.
1571 */
1572 if( p->sharable ){
1573 sqlite3_mutex *mutexShared;
1574 pBt->nRef = 1;
danielk197759f8c082008-06-18 17:09:10 +00001575 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
danielk1977075c23a2008-09-01 18:34:20 +00001576 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001577 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001578 if( pBt->mutex==0 ){
1579 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001580 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001581 goto btree_open_out;
1582 }
drhff0587c2007-08-29 17:43:19 +00001583 }
drhe53831d2007-08-17 01:14:38 +00001584 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001585 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1586 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001587 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001588 }
drheee46cf2004-11-06 00:02:48 +00001589#endif
drh90f5ecb2004-07-22 01:19:35 +00001590 }
danielk1977aef0bf62005-12-30 16:28:01 +00001591
drhcfed7bc2006-03-13 14:28:05 +00001592#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001593 /* If the new Btree uses a sharable pBtShared, then link the new
1594 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001595 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001596 */
drhe53831d2007-08-17 01:14:38 +00001597 if( p->sharable ){
1598 int i;
1599 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001600 for(i=0; i<db->nDb; i++){
1601 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001602 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1603 if( p->pBt<pSib->pBt ){
1604 p->pNext = pSib;
1605 p->pPrev = 0;
1606 pSib->pPrev = p;
1607 }else{
drhabddb0c2007-08-20 13:14:28 +00001608 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001609 pSib = pSib->pNext;
1610 }
1611 p->pNext = pSib->pNext;
1612 p->pPrev = pSib;
1613 if( p->pNext ){
1614 p->pNext->pPrev = p;
1615 }
1616 pSib->pNext = p;
1617 }
1618 break;
1619 }
1620 }
danielk1977aef0bf62005-12-30 16:28:01 +00001621 }
danielk1977aef0bf62005-12-30 16:28:01 +00001622#endif
1623 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001624
1625btree_open_out:
1626 if( rc!=SQLITE_OK ){
1627 if( pBt && pBt->pPager ){
1628 sqlite3PagerClose(pBt->pPager);
1629 }
drh17435752007-08-16 04:30:38 +00001630 sqlite3_free(pBt);
1631 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001632 *ppBtree = 0;
1633 }
drh7555d8e2009-03-20 13:15:30 +00001634 if( mutexOpen ){
1635 assert( sqlite3_mutex_held(mutexOpen) );
1636 sqlite3_mutex_leave(mutexOpen);
1637 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001638 return rc;
drha059ad02001-04-17 20:09:11 +00001639}
1640
1641/*
drhe53831d2007-08-17 01:14:38 +00001642** Decrement the BtShared.nRef counter. When it reaches zero,
1643** remove the BtShared structure from the sharing list. Return
1644** true if the BtShared.nRef counter reaches zero and return
1645** false if it is still positive.
1646*/
1647static int removeFromSharingList(BtShared *pBt){
1648#ifndef SQLITE_OMIT_SHARED_CACHE
1649 sqlite3_mutex *pMaster;
1650 BtShared *pList;
1651 int removed = 0;
1652
drhd677b3d2007-08-20 22:48:41 +00001653 assert( sqlite3_mutex_notheld(pBt->mutex) );
danielk197759f8c082008-06-18 17:09:10 +00001654 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhe53831d2007-08-17 01:14:38 +00001655 sqlite3_mutex_enter(pMaster);
1656 pBt->nRef--;
1657 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001658 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1659 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001660 }else{
drh78f82d12008-09-02 00:52:52 +00001661 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001662 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001663 pList=pList->pNext;
1664 }
drh34004ce2008-07-11 16:15:17 +00001665 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001666 pList->pNext = pBt->pNext;
1667 }
1668 }
drh3285db22007-09-03 22:00:39 +00001669 if( SQLITE_THREADSAFE ){
1670 sqlite3_mutex_free(pBt->mutex);
1671 }
drhe53831d2007-08-17 01:14:38 +00001672 removed = 1;
1673 }
1674 sqlite3_mutex_leave(pMaster);
1675 return removed;
1676#else
1677 return 1;
1678#endif
1679}
1680
1681/*
drhf7141992008-06-19 00:16:08 +00001682** Make sure pBt->pTmpSpace points to an allocation of
1683** MX_CELL_SIZE(pBt) bytes.
1684*/
1685static void allocateTempSpace(BtShared *pBt){
1686 if( !pBt->pTmpSpace ){
1687 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
1688 }
1689}
1690
1691/*
1692** Free the pBt->pTmpSpace allocation
1693*/
1694static void freeTempSpace(BtShared *pBt){
1695 sqlite3PageFree( pBt->pTmpSpace);
1696 pBt->pTmpSpace = 0;
1697}
1698
1699/*
drha059ad02001-04-17 20:09:11 +00001700** Close an open database and invalidate all cursors.
1701*/
danielk1977aef0bf62005-12-30 16:28:01 +00001702int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00001703 BtShared *pBt = p->pBt;
1704 BtCursor *pCur;
1705
danielk1977aef0bf62005-12-30 16:28:01 +00001706 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00001707 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00001708 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001709 pCur = pBt->pCursor;
1710 while( pCur ){
1711 BtCursor *pTmp = pCur;
1712 pCur = pCur->pNext;
1713 if( pTmp->pBtree==p ){
1714 sqlite3BtreeCloseCursor(pTmp);
1715 }
drha059ad02001-04-17 20:09:11 +00001716 }
danielk1977aef0bf62005-12-30 16:28:01 +00001717
danielk19778d34dfd2006-01-24 16:37:57 +00001718 /* Rollback any active transaction and free the handle structure.
1719 ** The call to sqlite3BtreeRollback() drops any table-locks held by
1720 ** this handle.
1721 */
danielk1977b597f742006-01-15 11:39:18 +00001722 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00001723 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001724
danielk1977aef0bf62005-12-30 16:28:01 +00001725 /* If there are still other outstanding references to the shared-btree
1726 ** structure, return now. The remainder of this procedure cleans
1727 ** up the shared-btree.
1728 */
drhe53831d2007-08-17 01:14:38 +00001729 assert( p->wantToLock==0 && p->locked==0 );
1730 if( !p->sharable || removeFromSharingList(pBt) ){
1731 /* The pBt is no longer on the sharing list, so we can access
1732 ** it without having to hold the mutex.
1733 **
1734 ** Clean out and delete the BtShared object.
1735 */
1736 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00001737 sqlite3PagerClose(pBt->pPager);
1738 if( pBt->xFreeSchema && pBt->pSchema ){
1739 pBt->xFreeSchema(pBt->pSchema);
1740 }
1741 sqlite3_free(pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00001742 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00001743 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00001744 }
1745
drhe53831d2007-08-17 01:14:38 +00001746#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00001747 assert( p->wantToLock==0 );
1748 assert( p->locked==0 );
1749 if( p->pPrev ) p->pPrev->pNext = p->pNext;
1750 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00001751#endif
1752
drhe53831d2007-08-17 01:14:38 +00001753 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00001754 return SQLITE_OK;
1755}
1756
1757/*
drhda47d772002-12-02 04:25:19 +00001758** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00001759**
1760** The maximum number of cache pages is set to the absolute
1761** value of mxPage. If mxPage is negative, the pager will
1762** operate asynchronously - it will not stop to do fsync()s
1763** to insure data is written to the disk surface before
1764** continuing. Transactions still work if synchronous is off,
1765** and the database cannot be corrupted if this program
1766** crashes. But if the operating system crashes or there is
1767** an abrupt power failure when synchronous is off, the database
1768** could be left in an inconsistent and unrecoverable state.
1769** Synchronous is on by default so database corruption is not
1770** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00001771*/
danielk1977aef0bf62005-12-30 16:28:01 +00001772int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
1773 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00001774 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001775 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00001776 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00001777 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00001778 return SQLITE_OK;
1779}
1780
1781/*
drh973b6e32003-02-12 14:09:42 +00001782** Change the way data is synced to disk in order to increase or decrease
1783** how well the database resists damage due to OS crashes and power
1784** failures. Level 1 is the same as asynchronous (no syncs() occur and
1785** there is a high probability of damage) Level 2 is the default. There
1786** is a very low but non-zero probability of damage. Level 3 reduces the
1787** probability of damage to near zero but with a write performance reduction.
1788*/
danielk197793758c82005-01-21 08:13:14 +00001789#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00001790int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00001791 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00001792 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001793 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00001794 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
drhd677b3d2007-08-20 22:48:41 +00001795 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00001796 return SQLITE_OK;
1797}
danielk197793758c82005-01-21 08:13:14 +00001798#endif
drh973b6e32003-02-12 14:09:42 +00001799
drh2c8997b2005-08-27 16:36:48 +00001800/*
1801** Return TRUE if the given btree is set to safety level 1. In other
1802** words, return TRUE if no sync() occurs on the disk files.
1803*/
danielk1977aef0bf62005-12-30 16:28:01 +00001804int sqlite3BtreeSyncDisabled(Btree *p){
1805 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00001806 int rc;
drhe5fe6902007-12-07 18:55:28 +00001807 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001808 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00001809 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00001810 rc = sqlite3PagerNosync(pBt->pPager);
1811 sqlite3BtreeLeave(p);
1812 return rc;
drh2c8997b2005-08-27 16:36:48 +00001813}
1814
danielk1977576ec6b2005-01-21 11:55:25 +00001815#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00001816/*
drh90f5ecb2004-07-22 01:19:35 +00001817** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00001818** Or, if the page size has already been fixed, return SQLITE_READONLY
1819** without changing anything.
drh06f50212004-11-02 14:24:33 +00001820**
1821** The page size must be a power of 2 between 512 and 65536. If the page
1822** size supplied does not meet this constraint then the page size is not
1823** changed.
1824**
1825** Page sizes are constrained to be a power of two so that the region
1826** of the database file used for locking (beginning at PENDING_BYTE,
1827** the first byte past the 1GB boundary, 0x40000000) needs to occur
1828** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00001829**
1830** If parameter nReserve is less than zero, then the number of reserved
1831** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00001832**
1833** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
1834** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00001835*/
drhce4869f2009-04-02 20:16:58 +00001836int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00001837 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00001838 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00001839 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00001840 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00001841 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00001842 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00001843 return SQLITE_READONLY;
1844 }
1845 if( nReserve<0 ){
1846 nReserve = pBt->pageSize - pBt->usableSize;
1847 }
drhf49661a2008-12-10 16:45:50 +00001848 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00001849 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
1850 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00001851 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00001852 assert( !pBt->pPage1 && !pBt->pCursor );
drh1bd10f82008-12-10 21:19:56 +00001853 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00001854 freeTempSpace(pBt);
danielk1977a1644fd2007-08-29 12:31:25 +00001855 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
drh90f5ecb2004-07-22 01:19:35 +00001856 }
drhf49661a2008-12-10 16:45:50 +00001857 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhce4869f2009-04-02 20:16:58 +00001858 if( iFix ) pBt->pageSizeFixed = 1;
drhd677b3d2007-08-20 22:48:41 +00001859 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00001860 return rc;
drh90f5ecb2004-07-22 01:19:35 +00001861}
1862
1863/*
1864** Return the currently defined page size
1865*/
danielk1977aef0bf62005-12-30 16:28:01 +00001866int sqlite3BtreeGetPageSize(Btree *p){
1867 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00001868}
drh7f751222009-03-17 22:33:00 +00001869
1870/*
1871** Return the number of bytes of space at the end of every page that
1872** are intentually left unused. This is the "reserved" space that is
1873** sometimes used by extensions.
1874*/
danielk1977aef0bf62005-12-30 16:28:01 +00001875int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00001876 int n;
1877 sqlite3BtreeEnter(p);
1878 n = p->pBt->pageSize - p->pBt->usableSize;
1879 sqlite3BtreeLeave(p);
1880 return n;
drh2011d5f2004-07-22 02:40:37 +00001881}
drhf8e632b2007-05-08 14:51:36 +00001882
1883/*
1884** Set the maximum page count for a database if mxPage is positive.
1885** No changes are made if mxPage is 0 or negative.
1886** Regardless of the value of mxPage, return the maximum page count.
1887*/
1888int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00001889 int n;
1890 sqlite3BtreeEnter(p);
1891 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
1892 sqlite3BtreeLeave(p);
1893 return n;
drhf8e632b2007-05-08 14:51:36 +00001894}
danielk1977576ec6b2005-01-21 11:55:25 +00001895#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00001896
1897/*
danielk1977951af802004-11-05 15:45:09 +00001898** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
1899** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
1900** is disabled. The default value for the auto-vacuum property is
1901** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
1902*/
danielk1977aef0bf62005-12-30 16:28:01 +00001903int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00001904#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00001905 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00001906#else
danielk1977dddbcdc2007-04-26 14:42:34 +00001907 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00001908 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00001909 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00001910
1911 sqlite3BtreeEnter(p);
drh076d4662009-02-18 20:31:18 +00001912 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00001913 rc = SQLITE_READONLY;
1914 }else{
drh076d4662009-02-18 20:31:18 +00001915 pBt->autoVacuum = av ?1:0;
1916 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00001917 }
drhd677b3d2007-08-20 22:48:41 +00001918 sqlite3BtreeLeave(p);
1919 return rc;
danielk1977951af802004-11-05 15:45:09 +00001920#endif
1921}
1922
1923/*
1924** Return the value of the 'auto-vacuum' property. If auto-vacuum is
1925** enabled 1 is returned. Otherwise 0.
1926*/
danielk1977aef0bf62005-12-30 16:28:01 +00001927int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00001928#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00001929 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00001930#else
drhd677b3d2007-08-20 22:48:41 +00001931 int rc;
1932 sqlite3BtreeEnter(p);
1933 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00001934 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
1935 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
1936 BTREE_AUTOVACUUM_INCR
1937 );
drhd677b3d2007-08-20 22:48:41 +00001938 sqlite3BtreeLeave(p);
1939 return rc;
danielk1977951af802004-11-05 15:45:09 +00001940#endif
1941}
1942
1943
1944/*
drha34b6762004-05-07 13:30:42 +00001945** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00001946** also acquire a readlock on that file.
1947**
1948** SQLITE_OK is returned on success. If the file is not a
1949** well-formed database file, then SQLITE_CORRUPT is returned.
1950** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00001951** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00001952*/
danielk1977aef0bf62005-12-30 16:28:01 +00001953static int lockBtree(BtShared *pBt){
danielk1977f653d782008-03-20 11:04:21 +00001954 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001955 MemPage *pPage1;
danielk197793f7af92008-05-09 16:57:50 +00001956 int nPage;
drhd677b3d2007-08-20 22:48:41 +00001957
drh1fee73e2007-08-29 04:00:57 +00001958 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00001959 assert( pBt->pPage1==0 );
drh16a9b832007-05-05 18:39:25 +00001960 rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00001961 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00001962
1963 /* Do some checking to help insure the file we opened really is
1964 ** a valid database file.
1965 */
danielk1977ad0132d2008-06-07 08:58:22 +00001966 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
1967 if( rc!=SQLITE_OK ){
danielk197793f7af92008-05-09 16:57:50 +00001968 goto page1_init_failed;
1969 }else if( nPage>0 ){
danielk1977f653d782008-03-20 11:04:21 +00001970 int pageSize;
1971 int usableSize;
drhb6f41482004-05-14 01:58:11 +00001972 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00001973 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00001974 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00001975 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00001976 }
drh309169a2007-04-24 17:27:51 +00001977 if( page1[18]>1 ){
1978 pBt->readOnly = 1;
1979 }
1980 if( page1[19]>1 ){
drhb6f41482004-05-14 01:58:11 +00001981 goto page1_init_failed;
1982 }
drhe5ae5732008-06-15 02:51:47 +00001983
1984 /* The maximum embedded fraction must be exactly 25%. And the minimum
1985 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
1986 ** The original design allowed these amounts to vary, but as of
1987 ** version 3.6.0, we require them to be fixed.
1988 */
1989 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
1990 goto page1_init_failed;
1991 }
drh07d183d2005-05-01 22:52:42 +00001992 pageSize = get2byte(&page1[16]);
drh7dc385e2007-09-06 23:39:36 +00001993 if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
1994 (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
1995 ){
drh07d183d2005-05-01 22:52:42 +00001996 goto page1_init_failed;
1997 }
1998 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00001999 usableSize = pageSize - page1[20];
2000 if( pageSize!=pBt->pageSize ){
2001 /* After reading the first page of the database assuming a page size
2002 ** of BtShared.pageSize, we have discovered that the page-size is
2003 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2004 ** zero and return SQLITE_OK. The caller will call this function
2005 ** again with the correct page-size.
2006 */
2007 releasePage(pPage1);
drhf49661a2008-12-10 16:45:50 +00002008 pBt->usableSize = (u16)usableSize;
2009 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002010 freeTempSpace(pBt);
drhc0b61812009-04-30 01:22:41 +00002011 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
2012 if( rc ) goto page1_init_failed;
danielk1977f653d782008-03-20 11:04:21 +00002013 return SQLITE_OK;
2014 }
2015 if( usableSize<500 ){
drhb6f41482004-05-14 01:58:11 +00002016 goto page1_init_failed;
2017 }
drh1bd10f82008-12-10 21:19:56 +00002018 pBt->pageSize = (u16)pageSize;
2019 pBt->usableSize = (u16)usableSize;
drh057cd3a2005-02-15 16:23:02 +00002020#ifndef SQLITE_OMIT_AUTOVACUUM
2021 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002022 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002023#endif
drh306dc212001-05-21 13:45:10 +00002024 }
drhb6f41482004-05-14 01:58:11 +00002025
2026 /* maxLocal is the maximum amount of payload to store locally for
2027 ** a cell. Make sure it is small enough so that at least minFanout
2028 ** cells can will fit on one page. We assume a 10-byte page header.
2029 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002030 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002031 ** 4-byte child pointer
2032 ** 9-byte nKey value
2033 ** 4-byte nData value
2034 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00002035 ** So a cell consists of a 2-byte poiner, a header which is as much as
2036 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2037 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002038 */
drhe5ae5732008-06-15 02:51:47 +00002039 pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
2040 pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
drh43605152004-05-29 21:46:49 +00002041 pBt->maxLeaf = pBt->usableSize - 35;
drhe5ae5732008-06-15 02:51:47 +00002042 pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
drh2e38c322004-09-03 18:38:44 +00002043 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002044 pBt->pPage1 = pPage1;
drhb6f41482004-05-14 01:58:11 +00002045 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002046
drh72f82862001-05-24 21:06:34 +00002047page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002048 releasePage(pPage1);
2049 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002050 return rc;
drh306dc212001-05-21 13:45:10 +00002051}
2052
2053/*
drhb8ef32c2005-03-14 02:01:49 +00002054** This routine works like lockBtree() except that it also invokes the
2055** busy callback if there is lock contention.
2056*/
danielk1977aef0bf62005-12-30 16:28:01 +00002057static int lockBtreeWithRetry(Btree *pRef){
drhb8ef32c2005-03-14 02:01:49 +00002058 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00002059
drh1fee73e2007-08-29 04:00:57 +00002060 assert( sqlite3BtreeHoldsMutex(pRef) );
danielk1977aef0bf62005-12-30 16:28:01 +00002061 if( pRef->inTrans==TRANS_NONE ){
2062 u8 inTransaction = pRef->pBt->inTransaction;
2063 btreeIntegrity(pRef);
2064 rc = sqlite3BtreeBeginTrans(pRef, 0);
2065 pRef->pBt->inTransaction = inTransaction;
2066 pRef->inTrans = TRANS_NONE;
2067 if( rc==SQLITE_OK ){
2068 pRef->pBt->nTransaction--;
2069 }
2070 btreeIntegrity(pRef);
drhb8ef32c2005-03-14 02:01:49 +00002071 }
2072 return rc;
2073}
2074
2075
2076/*
drhb8ca3072001-12-05 00:21:20 +00002077** If there are no outstanding cursors and we are not in the middle
2078** of a transaction but there is a read lock on the database, then
2079** this routine unrefs the first page of the database file which
2080** has the effect of releasing the read lock.
2081**
2082** If there are any outstanding cursors, this routine is a no-op.
2083**
2084** If there is a transaction in progress, this routine is a no-op.
2085*/
danielk1977aef0bf62005-12-30 16:28:01 +00002086static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002087 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00002088 if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00002089 if( sqlite3PagerRefcount(pBt->pPager)>=1 ){
drhde4fcfd2008-01-19 23:50:26 +00002090 assert( pBt->pPage1->aData );
drh24c9a2e2007-01-05 02:00:47 +00002091 releasePage(pBt->pPage1);
drh51c6d962004-06-06 00:42:25 +00002092 }
drh3aac2dd2004-04-26 14:10:20 +00002093 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002094 }
2095}
2096
2097/*
drh9e572e62004-04-23 23:43:10 +00002098** Create a new database by initializing the first page of the
drh8c42ca92001-06-22 19:15:00 +00002099** file.
drh8b2f49b2001-06-08 00:21:52 +00002100*/
danielk1977aef0bf62005-12-30 16:28:01 +00002101static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002102 MemPage *pP1;
2103 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002104 int rc;
danielk1977ad0132d2008-06-07 08:58:22 +00002105 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002106
drh1fee73e2007-08-29 04:00:57 +00002107 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977ad0132d2008-06-07 08:58:22 +00002108 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
2109 if( rc!=SQLITE_OK || nPage>0 ){
2110 return rc;
2111 }
drh3aac2dd2004-04-26 14:10:20 +00002112 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002113 assert( pP1!=0 );
2114 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002115 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002116 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002117 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2118 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00002119 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00002120 data[18] = 1;
2121 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002122 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2123 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002124 data[21] = 64;
2125 data[22] = 32;
2126 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002127 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002128 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002129 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002130#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002131 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002132 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002133 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002134 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002135#endif
drh8b2f49b2001-06-08 00:21:52 +00002136 return SQLITE_OK;
2137}
2138
2139/*
danielk1977ee5741e2004-05-31 10:01:34 +00002140** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002141** is started if the second argument is nonzero, otherwise a read-
2142** transaction. If the second argument is 2 or more and exclusive
2143** transaction is started, meaning that no other process is allowed
2144** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002145** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002146** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002147**
danielk1977ee5741e2004-05-31 10:01:34 +00002148** A write-transaction must be started before attempting any
2149** changes to the database. None of the following routines
2150** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002151**
drh23e11ca2004-05-04 17:27:28 +00002152** sqlite3BtreeCreateTable()
2153** sqlite3BtreeCreateIndex()
2154** sqlite3BtreeClearTable()
2155** sqlite3BtreeDropTable()
2156** sqlite3BtreeInsert()
2157** sqlite3BtreeDelete()
2158** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002159**
drhb8ef32c2005-03-14 02:01:49 +00002160** If an initial attempt to acquire the lock fails because of lock contention
2161** and the database was previously unlocked, then invoke the busy handler
2162** if there is one. But if there was previously a read-lock, do not
2163** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2164** returned when there is already a read-lock in order to avoid a deadlock.
2165**
2166** Suppose there are two processes A and B. A has a read lock and B has
2167** a reserved lock. B tries to promote to exclusive but is blocked because
2168** of A's read lock. A tries to promote to reserved but is blocked by B.
2169** One or the other of the two processes must give way or there can be
2170** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2171** when A already has a read lock, we encourage A to give up and let B
2172** proceed.
drha059ad02001-04-17 20:09:11 +00002173*/
danielk1977aef0bf62005-12-30 16:28:01 +00002174int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002175 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002176 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002177 int rc = SQLITE_OK;
2178
drhd677b3d2007-08-20 22:48:41 +00002179 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002180 btreeIntegrity(p);
2181
danielk1977ee5741e2004-05-31 10:01:34 +00002182 /* If the btree is already in a write-transaction, or it
2183 ** is already in a read-transaction and a read-transaction
2184 ** is requested, this is a no-op.
2185 */
danielk1977aef0bf62005-12-30 16:28:01 +00002186 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002187 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002188 }
drhb8ef32c2005-03-14 02:01:49 +00002189
2190 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002191 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002192 rc = SQLITE_READONLY;
2193 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002194 }
2195
danielk1977404ca072009-03-16 13:19:36 +00002196#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002197 /* If another database handle has already opened a write transaction
2198 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002199 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002200 */
danielk1977404ca072009-03-16 13:19:36 +00002201 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
2202 pBlock = pBt->pWriter->db;
2203 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002204 BtLock *pIter;
2205 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2206 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002207 pBlock = pIter->pBtree->db;
2208 break;
danielk1977641b0f42007-12-21 04:47:25 +00002209 }
2210 }
2211 }
danielk1977404ca072009-03-16 13:19:36 +00002212 if( pBlock ){
2213 sqlite3ConnectionBlocked(p->db, pBlock);
2214 rc = SQLITE_LOCKED_SHAREDCACHE;
2215 goto trans_begun;
2216 }
danielk1977641b0f42007-12-21 04:47:25 +00002217#endif
2218
drhb8ef32c2005-03-14 02:01:49 +00002219 do {
danielk1977295dc102009-04-01 19:07:03 +00002220 /* Call lockBtree() until either pBt->pPage1 is populated or
2221 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2222 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2223 ** reading page 1 it discovers that the page-size of the database
2224 ** file is not pBt->pageSize. In this case lockBtree() will update
2225 ** pBt->pageSize to the page-size of the file on disk.
2226 */
2227 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002228
drhb8ef32c2005-03-14 02:01:49 +00002229 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00002230 if( pBt->readOnly ){
2231 rc = SQLITE_READONLY;
2232 }else{
danielk1977d8293352009-04-30 09:10:37 +00002233 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002234 if( rc==SQLITE_OK ){
2235 rc = newDatabase(pBt);
2236 }
drhb8ef32c2005-03-14 02:01:49 +00002237 }
2238 }
2239
danielk1977bd434552009-03-18 10:33:00 +00002240 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002241 unlockBtreeIfUnused(pBt);
2242 }
danielk1977aef0bf62005-12-30 16:28:01 +00002243 }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002244 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002245
2246 if( rc==SQLITE_OK ){
2247 if( p->inTrans==TRANS_NONE ){
2248 pBt->nTransaction++;
2249 }
2250 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2251 if( p->inTrans>pBt->inTransaction ){
2252 pBt->inTransaction = p->inTrans;
2253 }
danielk1977641b0f42007-12-21 04:47:25 +00002254#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002255 if( wrflag ){
2256 assert( !pBt->pWriter );
2257 pBt->pWriter = p;
shaneca18d202009-03-23 02:34:32 +00002258 pBt->isExclusive = (u8)(wrflag>1);
danielk1977641b0f42007-12-21 04:47:25 +00002259 }
2260#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002261 }
2262
drhd677b3d2007-08-20 22:48:41 +00002263
2264trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002265 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002266 /* This call makes sure that the pager has the correct number of
2267 ** open savepoints. If the second parameter is greater than 0 and
2268 ** the sub-journal is not already open, then it will be opened here.
2269 */
danielk1977fd7f0452008-12-17 17:30:26 +00002270 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2271 }
danielk197712dd5492008-12-18 15:45:07 +00002272
danielk1977aef0bf62005-12-30 16:28:01 +00002273 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002274 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002275 return rc;
drha059ad02001-04-17 20:09:11 +00002276}
2277
danielk1977687566d2004-11-02 12:56:41 +00002278#ifndef SQLITE_OMIT_AUTOVACUUM
2279
2280/*
2281** Set the pointer-map entries for all children of page pPage. Also, if
2282** pPage contains cells that point to overflow pages, set the pointer
2283** map entries for the overflow pages as well.
2284*/
2285static int setChildPtrmaps(MemPage *pPage){
2286 int i; /* Counter variable */
2287 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002288 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002289 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002290 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002291 Pgno pgno = pPage->pgno;
2292
drh1fee73e2007-08-29 04:00:57 +00002293 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197771d5d2c2008-09-29 11:49:47 +00002294 rc = sqlite3BtreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002295 if( rc!=SQLITE_OK ){
2296 goto set_child_ptrmaps_out;
2297 }
danielk1977687566d2004-11-02 12:56:41 +00002298 nCell = pPage->nCell;
2299
2300 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002301 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002302
danielk197726836652005-01-17 01:33:13 +00002303 rc = ptrmapPutOvflPtr(pPage, pCell);
2304 if( rc!=SQLITE_OK ){
2305 goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002306 }
danielk197726836652005-01-17 01:33:13 +00002307
danielk1977687566d2004-11-02 12:56:41 +00002308 if( !pPage->leaf ){
2309 Pgno childPgno = get4byte(pCell);
2310 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
danielk197700a696d2008-09-29 16:41:31 +00002311 if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002312 }
2313 }
2314
2315 if( !pPage->leaf ){
2316 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
2317 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
2318 }
2319
2320set_child_ptrmaps_out:
2321 pPage->isInit = isInitOrig;
2322 return rc;
2323}
2324
2325/*
danielk1977fa542f12009-04-02 18:28:08 +00002326** Somewhere on pPage, which is guaranteed to be a btree page, not an overflow
danielk1977687566d2004-11-02 12:56:41 +00002327** page, is a pointer to page iFrom. Modify this pointer so that it points to
2328** iTo. Parameter eType describes the type of pointer to be modified, as
2329** follows:
2330**
2331** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2332** page of pPage.
2333**
2334** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2335** page pointed to by one of the cells on pPage.
2336**
2337** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2338** overflow page in the list.
2339*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002340static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002341 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002342 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002343 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002344 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002345 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002346 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002347 }
danielk1977f78fc082004-11-02 14:40:32 +00002348 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002349 }else{
drhf49661a2008-12-10 16:45:50 +00002350 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002351 int i;
2352 int nCell;
2353
danielk197771d5d2c2008-09-29 11:49:47 +00002354 sqlite3BtreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002355 nCell = pPage->nCell;
2356
danielk1977687566d2004-11-02 12:56:41 +00002357 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002358 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002359 if( eType==PTRMAP_OVERFLOW1 ){
2360 CellInfo info;
drh16a9b832007-05-05 18:39:25 +00002361 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
danielk1977687566d2004-11-02 12:56:41 +00002362 if( info.iOverflow ){
2363 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2364 put4byte(&pCell[info.iOverflow], iTo);
2365 break;
2366 }
2367 }
2368 }else{
2369 if( get4byte(pCell)==iFrom ){
2370 put4byte(pCell, iTo);
2371 break;
2372 }
2373 }
2374 }
2375
2376 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002377 if( eType!=PTRMAP_BTREE ||
2378 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002379 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002380 }
danielk1977687566d2004-11-02 12:56:41 +00002381 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2382 }
2383
2384 pPage->isInit = isInitOrig;
2385 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002386 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002387}
2388
danielk1977003ba062004-11-04 02:57:33 +00002389
danielk19777701e812005-01-10 12:59:51 +00002390/*
2391** Move the open database page pDbPage to location iFreePage in the
2392** database. The pDbPage reference remains valid.
2393*/
danielk1977003ba062004-11-04 02:57:33 +00002394static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002395 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002396 MemPage *pDbPage, /* Open page to move */
2397 u8 eType, /* Pointer map 'type' entry for pDbPage */
2398 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002399 Pgno iFreePage, /* The location to move pDbPage to */
2400 int isCommit
danielk1977003ba062004-11-04 02:57:33 +00002401){
2402 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2403 Pgno iDbPage = pDbPage->pgno;
2404 Pager *pPager = pBt->pPager;
2405 int rc;
2406
danielk1977a0bf2652004-11-04 14:30:04 +00002407 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2408 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002409 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002410 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002411
drh85b623f2007-12-13 21:54:09 +00002412 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002413 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2414 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002415 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002416 if( rc!=SQLITE_OK ){
2417 return rc;
2418 }
2419 pDbPage->pgno = iFreePage;
2420
2421 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2422 ** that point to overflow pages. The pointer map entries for all these
2423 ** pages need to be changed.
2424 **
2425 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2426 ** pointer to a subsequent overflow page. If this is the case, then
2427 ** the pointer map needs to be updated for the subsequent overflow page.
2428 */
danielk1977a0bf2652004-11-04 14:30:04 +00002429 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002430 rc = setChildPtrmaps(pDbPage);
2431 if( rc!=SQLITE_OK ){
2432 return rc;
2433 }
2434 }else{
2435 Pgno nextOvfl = get4byte(pDbPage->aData);
2436 if( nextOvfl!=0 ){
danielk1977003ba062004-11-04 02:57:33 +00002437 rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
2438 if( rc!=SQLITE_OK ){
2439 return rc;
2440 }
2441 }
2442 }
2443
2444 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2445 ** that it points at iFreePage. Also fix the pointer map entry for
2446 ** iPtrPage.
2447 */
danielk1977a0bf2652004-11-04 14:30:04 +00002448 if( eType!=PTRMAP_ROOTPAGE ){
drh16a9b832007-05-05 18:39:25 +00002449 rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002450 if( rc!=SQLITE_OK ){
2451 return rc;
2452 }
danielk19773b8a05f2007-03-19 17:44:26 +00002453 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002454 if( rc!=SQLITE_OK ){
2455 releasePage(pPtrPage);
2456 return rc;
2457 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002458 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002459 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002460 if( rc==SQLITE_OK ){
2461 rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
2462 }
danielk1977003ba062004-11-04 02:57:33 +00002463 }
danielk1977003ba062004-11-04 02:57:33 +00002464 return rc;
2465}
2466
danielk1977dddbcdc2007-04-26 14:42:34 +00002467/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002468static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002469
2470/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002471** Perform a single step of an incremental-vacuum. If successful,
2472** return SQLITE_OK. If there is no work to do (and therefore no
2473** point in calling this function again), return SQLITE_DONE.
2474**
2475** More specificly, this function attempts to re-organize the
2476** database so that the last page of the file currently in use
2477** is no longer in use.
2478**
2479** If the nFin parameter is non-zero, the implementation assumes
2480** that the caller will keep calling incrVacuumStep() until
2481** it returns SQLITE_DONE or an error, and that nFin is the
2482** number of pages the database file will contain after this
2483** process is complete.
2484*/
danielk19773460d192008-12-27 15:23:13 +00002485static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002486 Pgno nFreeList; /* Number of pages still on the free-list */
2487
drh1fee73e2007-08-29 04:00:57 +00002488 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002489 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002490
2491 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
2492 int rc;
2493 u8 eType;
2494 Pgno iPtrPage;
2495
2496 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002497 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002498 return SQLITE_DONE;
2499 }
2500
2501 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2502 if( rc!=SQLITE_OK ){
2503 return rc;
2504 }
2505 if( eType==PTRMAP_ROOTPAGE ){
2506 return SQLITE_CORRUPT_BKPT;
2507 }
2508
2509 if( eType==PTRMAP_FREEPAGE ){
2510 if( nFin==0 ){
2511 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002512 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002513 ** truncated to zero after this function returns, so it doesn't
2514 ** matter if it still contains some garbage entries.
2515 */
2516 Pgno iFreePg;
2517 MemPage *pFreePg;
2518 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2519 if( rc!=SQLITE_OK ){
2520 return rc;
2521 }
2522 assert( iFreePg==iLastPg );
2523 releasePage(pFreePg);
2524 }
2525 } else {
2526 Pgno iFreePg; /* Index of free page to move pLastPg to */
2527 MemPage *pLastPg;
2528
drh16a9b832007-05-05 18:39:25 +00002529 rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002530 if( rc!=SQLITE_OK ){
2531 return rc;
2532 }
2533
danielk1977b4626a32007-04-28 15:47:43 +00002534 /* If nFin is zero, this loop runs exactly once and page pLastPg
2535 ** is swapped with the first free page pulled off the free list.
2536 **
2537 ** On the other hand, if nFin is greater than zero, then keep
2538 ** looping until a free-page located within the first nFin pages
2539 ** of the file is found.
2540 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002541 do {
2542 MemPage *pFreePg;
2543 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2544 if( rc!=SQLITE_OK ){
2545 releasePage(pLastPg);
2546 return rc;
2547 }
2548 releasePage(pFreePg);
2549 }while( nFin!=0 && iFreePg>nFin );
2550 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002551
2552 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002553 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002554 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002555 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002556 releasePage(pLastPg);
2557 if( rc!=SQLITE_OK ){
2558 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002559 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002560 }
2561 }
2562
danielk19773460d192008-12-27 15:23:13 +00002563 if( nFin==0 ){
2564 iLastPg--;
2565 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002566 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2567 MemPage *pPg;
2568 int rc = sqlite3BtreeGetPage(pBt, iLastPg, &pPg, 0);
2569 if( rc!=SQLITE_OK ){
2570 return rc;
2571 }
2572 rc = sqlite3PagerWrite(pPg->pDbPage);
2573 releasePage(pPg);
2574 if( rc!=SQLITE_OK ){
2575 return rc;
2576 }
2577 }
danielk19773460d192008-12-27 15:23:13 +00002578 iLastPg--;
2579 }
2580 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
danielk1977dddbcdc2007-04-26 14:42:34 +00002581 }
2582 return SQLITE_OK;
2583}
2584
2585/*
2586** A write-transaction must be opened before calling this function.
2587** It performs a single unit of work towards an incremental vacuum.
2588**
2589** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00002590** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00002591** SQLITE_OK is returned. Otherwise an SQLite error code.
2592*/
2593int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002594 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002595 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002596
2597 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002598 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2599 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002600 rc = SQLITE_DONE;
2601 }else{
2602 invalidateAllOverflowCache(pBt);
danielk1977bea2a942009-01-20 17:06:27 +00002603 rc = incrVacuumStep(pBt, 0, pagerPagecount(pBt));
danielk1977dddbcdc2007-04-26 14:42:34 +00002604 }
drhd677b3d2007-08-20 22:48:41 +00002605 sqlite3BtreeLeave(p);
2606 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002607}
2608
2609/*
danielk19773b8a05f2007-03-19 17:44:26 +00002610** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00002611** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00002612**
2613** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
2614** the database file should be truncated to during the commit process.
2615** i.e. the database has been reorganized so that only the first *pnTrunc
2616** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00002617*/
danielk19773460d192008-12-27 15:23:13 +00002618static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00002619 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002620 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00002621 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002622
drh1fee73e2007-08-29 04:00:57 +00002623 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00002624 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00002625 assert(pBt->autoVacuum);
2626 if( !pBt->incrVacuum ){
danielk19773460d192008-12-27 15:23:13 +00002627 Pgno nFin;
2628 Pgno nFree;
2629 Pgno nPtrmap;
2630 Pgno iFree;
2631 const int pgsz = pBt->pageSize;
2632 Pgno nOrig = pagerPagecount(pBt);
danielk1977687566d2004-11-02 12:56:41 +00002633
danielk1977ef165ce2009-04-06 17:50:03 +00002634 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
2635 /* It is not possible to create a database for which the final page
2636 ** is either a pointer-map page or the pending-byte page. If one
2637 ** is encountered, this indicates corruption.
2638 */
danielk19773460d192008-12-27 15:23:13 +00002639 return SQLITE_CORRUPT_BKPT;
2640 }
danielk1977ef165ce2009-04-06 17:50:03 +00002641
danielk19773460d192008-12-27 15:23:13 +00002642 nFree = get4byte(&pBt->pPage1->aData[36]);
2643 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+pgsz/5)/(pgsz/5);
2644 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00002645 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00002646 nFin--;
2647 }
2648 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
2649 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00002650 }
danielk1977687566d2004-11-02 12:56:41 +00002651
danielk19773460d192008-12-27 15:23:13 +00002652 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
2653 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00002654 }
danielk19773460d192008-12-27 15:23:13 +00002655 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002656 rc = SQLITE_OK;
danielk19773460d192008-12-27 15:23:13 +00002657 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2658 put4byte(&pBt->pPage1->aData[32], 0);
2659 put4byte(&pBt->pPage1->aData[36], 0);
2660 sqlite3PagerTruncateImage(pBt->pPager, nFin);
danielk1977dddbcdc2007-04-26 14:42:34 +00002661 }
2662 if( rc!=SQLITE_OK ){
2663 sqlite3PagerRollback(pPager);
2664 }
danielk1977687566d2004-11-02 12:56:41 +00002665 }
2666
danielk19773b8a05f2007-03-19 17:44:26 +00002667 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002668 return rc;
2669}
danielk1977dddbcdc2007-04-26 14:42:34 +00002670
shane831c3292008-11-10 17:14:58 +00002671#endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
danielk1977687566d2004-11-02 12:56:41 +00002672
2673/*
drh80e35f42007-03-30 14:06:34 +00002674** This routine does the first phase of a two-phase commit. This routine
2675** causes a rollback journal to be created (if it does not already exist)
2676** and populated with enough information so that if a power loss occurs
2677** the database can be restored to its original state by playing back
2678** the journal. Then the contents of the journal are flushed out to
2679** the disk. After the journal is safely on oxide, the changes to the
2680** database are written into the database file and flushed to oxide.
2681** At the end of this call, the rollback journal still exists on the
2682** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00002683** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00002684** commit process.
2685**
2686** This call is a no-op if no write-transaction is currently active on pBt.
2687**
2688** Otherwise, sync the database file for the btree pBt. zMaster points to
2689** the name of a master journal file that should be written into the
2690** individual journal file, or is NULL, indicating no master journal file
2691** (single database transaction).
2692**
2693** When this is called, the master journal should already have been
2694** created, populated with this journal pointer and synced to disk.
2695**
2696** Once this is routine has returned, the only thing required to commit
2697** the write-transaction for this database file is to delete the journal.
2698*/
2699int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
2700 int rc = SQLITE_OK;
2701 if( p->inTrans==TRANS_WRITE ){
2702 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002703 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00002704#ifndef SQLITE_OMIT_AUTOVACUUM
2705 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00002706 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00002707 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00002708 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002709 return rc;
2710 }
2711 }
2712#endif
drh49b9d332009-01-02 18:10:42 +00002713 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00002714 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002715 }
2716 return rc;
2717}
2718
2719/*
drh2aa679f2001-06-25 02:11:07 +00002720** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00002721**
drh6e345992007-03-30 11:12:08 +00002722** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00002723** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
2724** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
2725** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00002726** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00002727** routine has to do is delete or truncate or zero the header in the
2728** the rollback journal (which causes the transaction to commit) and
2729** drop locks.
drh6e345992007-03-30 11:12:08 +00002730**
drh5e00f6c2001-09-13 13:46:56 +00002731** This will release the write lock on the database file. If there
2732** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00002733*/
drh80e35f42007-03-30 14:06:34 +00002734int sqlite3BtreeCommitPhaseTwo(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002735 BtShared *pBt = p->pBt;
2736
drhd677b3d2007-08-20 22:48:41 +00002737 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002738 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002739
2740 /* If the handle has a write-transaction open, commit the shared-btrees
2741 ** transaction and set the shared state to TRANS_READ.
2742 */
2743 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00002744 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002745 assert( pBt->inTransaction==TRANS_WRITE );
2746 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00002747 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00002748 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00002749 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00002750 return rc;
2751 }
danielk1977aef0bf62005-12-30 16:28:01 +00002752 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00002753 }
danielk1977aef0bf62005-12-30 16:28:01 +00002754
2755 /* If the handle has any kind of transaction open, decrement the transaction
2756 ** count of the shared btree. If the transaction count reaches 0, set
2757 ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below
2758 ** will unlock the pager.
2759 */
2760 if( p->inTrans!=TRANS_NONE ){
danielk1977fa542f12009-04-02 18:28:08 +00002761 clearAllSharedCacheTableLocks(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002762 pBt->nTransaction--;
2763 if( 0==pBt->nTransaction ){
2764 pBt->inTransaction = TRANS_NONE;
2765 }
2766 }
2767
drh51898cf2009-04-19 20:51:06 +00002768 /* Set the current transaction state to TRANS_NONE and unlock
danielk1977aef0bf62005-12-30 16:28:01 +00002769 ** the pager if this call closed the only read or write transaction.
2770 */
danielk1977bea2a942009-01-20 17:06:27 +00002771 btreeClearHasContent(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002772 p->inTrans = TRANS_NONE;
drh5e00f6c2001-09-13 13:46:56 +00002773 unlockBtreeIfUnused(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002774
2775 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002776 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00002777 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00002778}
2779
drh80e35f42007-03-30 14:06:34 +00002780/*
2781** Do both phases of a commit.
2782*/
2783int sqlite3BtreeCommit(Btree *p){
2784 int rc;
drhd677b3d2007-08-20 22:48:41 +00002785 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00002786 rc = sqlite3BtreeCommitPhaseOne(p, 0);
2787 if( rc==SQLITE_OK ){
2788 rc = sqlite3BtreeCommitPhaseTwo(p);
2789 }
drhd677b3d2007-08-20 22:48:41 +00002790 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002791 return rc;
2792}
2793
danielk1977fbcd5852004-06-15 02:44:18 +00002794#ifndef NDEBUG
2795/*
2796** Return the number of write-cursors open on this handle. This is for use
2797** in assert() expressions, so it is only compiled if NDEBUG is not
2798** defined.
drhfb982642007-08-30 01:19:59 +00002799**
2800** For the purposes of this routine, a write-cursor is any cursor that
2801** is capable of writing to the databse. That means the cursor was
2802** originally opened for writing and the cursor has not be disabled
2803** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00002804*/
danielk1977aef0bf62005-12-30 16:28:01 +00002805static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00002806 BtCursor *pCur;
2807 int r = 0;
2808 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00002809 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00002810 }
2811 return r;
2812}
2813#endif
2814
drhc39e0002004-05-07 23:50:57 +00002815/*
drhfb982642007-08-30 01:19:59 +00002816** This routine sets the state to CURSOR_FAULT and the error
2817** code to errCode for every cursor on BtShared that pBtree
2818** references.
2819**
2820** Every cursor is tripped, including cursors that belong
2821** to other database connections that happen to be sharing
2822** the cache with pBtree.
2823**
2824** This routine gets called when a rollback occurs.
2825** All cursors using the same cache must be tripped
2826** to prevent them from trying to use the btree after
2827** the rollback. The rollback may have deleted tables
2828** or moved root pages, so it is not sufficient to
2829** save the state of the cursor. The cursor must be
2830** invalidated.
2831*/
2832void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
2833 BtCursor *p;
2834 sqlite3BtreeEnter(pBtree);
2835 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00002836 int i;
danielk1977be51a652008-10-08 17:58:48 +00002837 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00002838 p->eState = CURSOR_FAULT;
2839 p->skip = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00002840 for(i=0; i<=p->iPage; i++){
2841 releasePage(p->apPage[i]);
2842 p->apPage[i] = 0;
2843 }
drhfb982642007-08-30 01:19:59 +00002844 }
2845 sqlite3BtreeLeave(pBtree);
2846}
2847
2848/*
drhecdc7532001-09-23 02:35:53 +00002849** Rollback the transaction in progress. All cursors will be
2850** invalided by this operation. Any attempt to use a cursor
2851** that was open at the beginning of this operation will result
2852** in an error.
drh5e00f6c2001-09-13 13:46:56 +00002853**
2854** This will release the write lock on the database file. If there
2855** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00002856*/
danielk1977aef0bf62005-12-30 16:28:01 +00002857int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00002858 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002859 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00002860 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00002861
drhd677b3d2007-08-20 22:48:41 +00002862 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00002863 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00002864#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00002865 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00002866 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00002867 ** trying to save cursor positions. If this is an automatic rollback (as
2868 ** the result of a constraint, malloc() failure or IO error) then
2869 ** the cache may be internally inconsistent (not contain valid trees) so
2870 ** we cannot simply return the error to the caller. Instead, abort
2871 ** all queries that may be using any of the cursors that failed to save.
2872 */
drhfb982642007-08-30 01:19:59 +00002873 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00002874 }
danielk19778d34dfd2006-01-24 16:37:57 +00002875#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002876 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002877
2878 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00002879 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00002880
danielk19778d34dfd2006-01-24 16:37:57 +00002881 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00002882 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00002883 if( rc2!=SQLITE_OK ){
2884 rc = rc2;
2885 }
2886
drh24cd67e2004-05-10 16:18:47 +00002887 /* The rollback may have destroyed the pPage1->aData value. So
drh16a9b832007-05-05 18:39:25 +00002888 ** call sqlite3BtreeGetPage() on page 1 again to make
2889 ** sure pPage1->aData is set correctly. */
2890 if( sqlite3BtreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh24cd67e2004-05-10 16:18:47 +00002891 releasePage(pPage1);
2892 }
danielk1977fbcd5852004-06-15 02:44:18 +00002893 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002894 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00002895 }
danielk1977aef0bf62005-12-30 16:28:01 +00002896
2897 if( p->inTrans!=TRANS_NONE ){
danielk1977fa542f12009-04-02 18:28:08 +00002898 clearAllSharedCacheTableLocks(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002899 assert( pBt->nTransaction>0 );
2900 pBt->nTransaction--;
2901 if( 0==pBt->nTransaction ){
2902 pBt->inTransaction = TRANS_NONE;
2903 }
2904 }
2905
danielk1977bea2a942009-01-20 17:06:27 +00002906 btreeClearHasContent(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002907 p->inTrans = TRANS_NONE;
drh5e00f6c2001-09-13 13:46:56 +00002908 unlockBtreeIfUnused(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002909
2910 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002911 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00002912 return rc;
2913}
2914
2915/*
danielk1977bd434552009-03-18 10:33:00 +00002916** Start a statement subtransaction. The subtransaction can can be rolled
2917** back independently of the main transaction. You must start a transaction
2918** before starting a subtransaction. The subtransaction is ended automatically
2919** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00002920**
2921** Statement subtransactions are used around individual SQL statements
2922** that are contained within a BEGIN...COMMIT block. If a constraint
2923** error occurs within the statement, the effect of that one statement
2924** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00002925**
2926** A statement sub-transaction is implemented as an anonymous savepoint. The
2927** value passed as the second parameter is the total number of savepoints,
2928** including the new anonymous savepoint, open on the B-Tree. i.e. if there
2929** are no active savepoints and no other statement-transactions open,
2930** iStatement is 1. This anonymous savepoint can be released or rolled back
2931** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00002932*/
danielk1977bd434552009-03-18 10:33:00 +00002933int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00002934 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002935 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002936 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00002937 assert( p->inTrans==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00002938 assert( pBt->readOnly==0 );
danielk1977bd434552009-03-18 10:33:00 +00002939 assert( iStatement>0 );
2940 assert( iStatement>p->db->nSavepoint );
2941 if( NEVER(p->inTrans!=TRANS_WRITE || pBt->readOnly) ){
drh64022502009-01-09 14:11:04 +00002942 rc = SQLITE_INTERNAL;
drhd677b3d2007-08-20 22:48:41 +00002943 }else{
2944 assert( pBt->inTransaction==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00002945 /* At the pager level, a statement transaction is a savepoint with
2946 ** an index greater than all savepoints created explicitly using
2947 ** SQL statements. It is illegal to open, release or rollback any
2948 ** such savepoints while the statement transaction savepoint is active.
2949 */
danielk1977bd434552009-03-18 10:33:00 +00002950 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
danielk197797a227c2006-01-20 16:32:04 +00002951 }
drhd677b3d2007-08-20 22:48:41 +00002952 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00002953 return rc;
2954}
2955
2956/*
danielk1977fd7f0452008-12-17 17:30:26 +00002957** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
2958** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00002959** savepoint identified by parameter iSavepoint, depending on the value
2960** of op.
2961**
2962** Normally, iSavepoint is greater than or equal to zero. However, if op is
2963** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
2964** contents of the entire transaction are rolled back. This is different
2965** from a normal transaction rollback, as no locks are released and the
2966** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00002967*/
2968int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
2969 int rc = SQLITE_OK;
2970 if( p && p->inTrans==TRANS_WRITE ){
2971 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00002972 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
2973 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
2974 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00002975 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00002976 if( rc==SQLITE_OK ){
2977 rc = newDatabase(pBt);
2978 }
danielk1977fd7f0452008-12-17 17:30:26 +00002979 sqlite3BtreeLeave(p);
2980 }
2981 return rc;
2982}
2983
2984/*
drh8b2f49b2001-06-08 00:21:52 +00002985** Create a new cursor for the BTree whose root is on the page
2986** iTable. The act of acquiring a cursor gets a read lock on
2987** the database file.
drh1bee3d72001-10-15 00:44:35 +00002988**
2989** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00002990** If wrFlag==1, then the cursor can be used for reading or for
2991** writing if other conditions for writing are also met. These
2992** are the conditions that must be met in order for writing to
2993** be allowed:
drh6446c4d2001-12-15 14:22:18 +00002994**
drhf74b8d92002-09-01 23:20:45 +00002995** 1: The cursor must have been opened with wrFlag==1
2996**
drhfe5d71d2007-03-19 11:54:10 +00002997** 2: Other database connections that share the same pager cache
2998** but which are not in the READ_UNCOMMITTED state may not have
2999** cursors open with wrFlag==0 on the same table. Otherwise
3000** the changes made by this write cursor would be visible to
3001** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003002**
3003** 3: The database must be writable (not on read-only media)
3004**
3005** 4: There must be an active transaction.
3006**
drh6446c4d2001-12-15 14:22:18 +00003007** No checking is done to make sure that page iTable really is the
3008** root page of a b-tree. If it is not, then the cursor acquired
3009** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003010**
3011** It is assumed that the sqlite3BtreeCursorSize() bytes of memory
3012** pointed to by pCur have been zeroed by the caller.
drha059ad02001-04-17 20:09:11 +00003013*/
drhd677b3d2007-08-20 22:48:41 +00003014static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003015 Btree *p, /* The btree */
3016 int iTable, /* Root page of table to open */
3017 int wrFlag, /* 1 to write. 0 read-only */
3018 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3019 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003020){
drha059ad02001-04-17 20:09:11 +00003021 int rc;
danielk197789d40042008-11-17 14:20:56 +00003022 Pgno nPage;
danielk1977aef0bf62005-12-30 16:28:01 +00003023 BtShared *pBt = p->pBt;
drhecdc7532001-09-23 02:35:53 +00003024
drh1fee73e2007-08-29 04:00:57 +00003025 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003026 assert( wrFlag==0 || wrFlag==1 );
drh8dcd7ca2004-08-08 19:43:29 +00003027 if( wrFlag ){
drh64022502009-01-09 14:11:04 +00003028 assert( !pBt->readOnly );
3029 if( NEVER(pBt->readOnly) ){
drh8dcd7ca2004-08-08 19:43:29 +00003030 return SQLITE_READONLY;
3031 }
danielk1977404ca072009-03-16 13:19:36 +00003032 rc = checkForReadConflicts(p, iTable, 0, 0);
3033 if( rc!=SQLITE_OK ){
3034 assert( rc==SQLITE_LOCKED_SHAREDCACHE );
3035 return rc;
drh8dcd7ca2004-08-08 19:43:29 +00003036 }
drha0c9a112004-03-10 13:42:37 +00003037 }
danielk1977aef0bf62005-12-30 16:28:01 +00003038
drh4b70f112004-05-02 21:12:19 +00003039 if( pBt->pPage1==0 ){
danielk1977aef0bf62005-12-30 16:28:01 +00003040 rc = lockBtreeWithRetry(p);
drha059ad02001-04-17 20:09:11 +00003041 if( rc!=SQLITE_OK ){
drha059ad02001-04-17 20:09:11 +00003042 return rc;
3043 }
3044 }
drh8b2f49b2001-06-08 00:21:52 +00003045 pCur->pgnoRoot = (Pgno)iTable;
danielk197789d40042008-11-17 14:20:56 +00003046 rc = sqlite3PagerPagecount(pBt->pPager, (int *)&nPage);
3047 if( rc!=SQLITE_OK ){
3048 return rc;
3049 }
3050 if( iTable==1 && nPage==0 ){
drh24cd67e2004-05-10 16:18:47 +00003051 rc = SQLITE_EMPTY;
3052 goto create_cursor_exception;
3053 }
danielk197771d5d2c2008-09-29 11:49:47 +00003054 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
drhbd03cae2001-06-02 02:40:57 +00003055 if( rc!=SQLITE_OK ){
3056 goto create_cursor_exception;
drha059ad02001-04-17 20:09:11 +00003057 }
danielk1977aef0bf62005-12-30 16:28:01 +00003058
danielk1977aef0bf62005-12-30 16:28:01 +00003059 /* Now that no other errors can occur, finish filling in the BtCursor
3060 ** variables, link the cursor into the BtShared list and set *ppCur (the
3061 ** output argument to this function).
3062 */
drh1e968a02008-03-25 00:22:21 +00003063 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003064 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003065 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003066 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003067 pCur->pNext = pBt->pCursor;
3068 if( pCur->pNext ){
3069 pCur->pNext->pPrev = pCur;
3070 }
3071 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003072 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003073 pCur->cachedRowid = 0;
drhbd03cae2001-06-02 02:40:57 +00003074
danielk1977aef0bf62005-12-30 16:28:01 +00003075 return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003076
drhbd03cae2001-06-02 02:40:57 +00003077create_cursor_exception:
danielk197771d5d2c2008-09-29 11:49:47 +00003078 releasePage(pCur->apPage[0]);
drh5e00f6c2001-09-13 13:46:56 +00003079 unlockBtreeIfUnused(pBt);
drhbd03cae2001-06-02 02:40:57 +00003080 return rc;
drha059ad02001-04-17 20:09:11 +00003081}
drhd677b3d2007-08-20 22:48:41 +00003082int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003083 Btree *p, /* The btree */
3084 int iTable, /* Root page of table to open */
3085 int wrFlag, /* 1 to write. 0 read-only */
3086 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3087 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003088){
3089 int rc;
3090 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003091 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003092 sqlite3BtreeLeave(p);
3093 return rc;
3094}
drh7f751222009-03-17 22:33:00 +00003095
3096/*
3097** Return the size of a BtCursor object in bytes.
3098**
3099** This interfaces is needed so that users of cursors can preallocate
3100** sufficient storage to hold a cursor. The BtCursor object is opaque
3101** to users so they cannot do the sizeof() themselves - they must call
3102** this routine.
3103*/
3104int sqlite3BtreeCursorSize(void){
danielk1977cd3e8f72008-03-25 09:47:35 +00003105 return sizeof(BtCursor);
3106}
3107
drh7f751222009-03-17 22:33:00 +00003108/*
3109** Set the cached rowid value of every cursor in the same database file
3110** as pCur and having the same root page number as pCur. The value is
3111** set to iRowid.
3112**
3113** Only positive rowid values are considered valid for this cache.
3114** The cache is initialized to zero, indicating an invalid cache.
3115** A btree will work fine with zero or negative rowids. We just cannot
3116** cache zero or negative rowids, which means tables that use zero or
3117** negative rowids might run a little slower. But in practice, zero
3118** or negative rowids are very uncommon so this should not be a problem.
3119*/
3120void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3121 BtCursor *p;
3122 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3123 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3124 }
3125 assert( pCur->cachedRowid==iRowid );
3126}
drhd677b3d2007-08-20 22:48:41 +00003127
drh7f751222009-03-17 22:33:00 +00003128/*
3129** Return the cached rowid for the given cursor. A negative or zero
3130** return value indicates that the rowid cache is invalid and should be
3131** ignored. If the rowid cache has never before been set, then a
3132** zero is returned.
3133*/
3134sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3135 return pCur->cachedRowid;
3136}
drha059ad02001-04-17 20:09:11 +00003137
3138/*
drh5e00f6c2001-09-13 13:46:56 +00003139** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003140** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003141*/
drh3aac2dd2004-04-26 14:10:20 +00003142int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003143 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003144 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003145 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003146 BtShared *pBt = pCur->pBt;
3147 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003148 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003149 if( pCur->pPrev ){
3150 pCur->pPrev->pNext = pCur->pNext;
3151 }else{
3152 pBt->pCursor = pCur->pNext;
3153 }
3154 if( pCur->pNext ){
3155 pCur->pNext->pPrev = pCur->pPrev;
3156 }
danielk197771d5d2c2008-09-29 11:49:47 +00003157 for(i=0; i<=pCur->iPage; i++){
3158 releasePage(pCur->apPage[i]);
3159 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003160 unlockBtreeIfUnused(pBt);
3161 invalidateOverflowCache(pCur);
3162 /* sqlite3_free(pCur); */
3163 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003164 }
drh8c42ca92001-06-22 19:15:00 +00003165 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003166}
3167
drh7e3b0a02001-04-28 16:52:40 +00003168/*
drh5e2f8b92001-05-28 00:41:15 +00003169** Make a temporary cursor by filling in the fields of pTempCur.
3170** The temporary cursor is not on the cursor list for the Btree.
3171*/
drh16a9b832007-05-05 18:39:25 +00003172void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){
danielk197771d5d2c2008-09-29 11:49:47 +00003173 int i;
drh1fee73e2007-08-29 04:00:57 +00003174 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003175 memcpy(pTempCur, pCur, sizeof(BtCursor));
drh5e2f8b92001-05-28 00:41:15 +00003176 pTempCur->pNext = 0;
3177 pTempCur->pPrev = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003178 for(i=0; i<=pTempCur->iPage; i++){
3179 sqlite3PagerRef(pTempCur->apPage[i]->pDbPage);
drhecdc7532001-09-23 02:35:53 +00003180 }
danielk197736e20932008-11-26 07:40:30 +00003181 assert( pTempCur->pKey==0 );
drh5e2f8b92001-05-28 00:41:15 +00003182}
3183
3184/*
drhbd03cae2001-06-02 02:40:57 +00003185** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
drh5e2f8b92001-05-28 00:41:15 +00003186** function above.
3187*/
drh16a9b832007-05-05 18:39:25 +00003188void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){
danielk197771d5d2c2008-09-29 11:49:47 +00003189 int i;
drh1fee73e2007-08-29 04:00:57 +00003190 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003191 for(i=0; i<=pCur->iPage; i++){
3192 sqlite3PagerUnref(pCur->apPage[i]->pDbPage);
drhecdc7532001-09-23 02:35:53 +00003193 }
danielk197736e20932008-11-26 07:40:30 +00003194 sqlite3_free(pCur->pKey);
drh5e2f8b92001-05-28 00:41:15 +00003195}
3196
drh7f751222009-03-17 22:33:00 +00003197
3198
drh5e2f8b92001-05-28 00:41:15 +00003199/*
drh86057612007-06-26 01:04:48 +00003200** Make sure the BtCursor* given in the argument has a valid
3201** BtCursor.info structure. If it is not already valid, call
danielk19771cc5ed82007-05-16 17:28:43 +00003202** sqlite3BtreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003203**
3204** BtCursor.info is a cache of the information in the current cell.
drh16a9b832007-05-05 18:39:25 +00003205** Using this cache reduces the number of calls to sqlite3BtreeParseCell().
drh86057612007-06-26 01:04:48 +00003206**
3207** 2007-06-25: There is a bug in some versions of MSVC that cause the
3208** compiler to crash when getCellInfo() is implemented as a macro.
3209** But there is a measureable speed advantage to using the macro on gcc
3210** (when less compiler optimizations like -Os or -O0 are used and the
3211** compiler is not doing agressive inlining.) So we use a real function
3212** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003213*/
drh9188b382004-05-14 21:12:22 +00003214#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003215 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003216 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003217 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003218 memset(&info, 0, sizeof(info));
danielk197771d5d2c2008-09-29 11:49:47 +00003219 sqlite3BtreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003220 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003221 }
danielk19771cc5ed82007-05-16 17:28:43 +00003222#else
3223 #define assertCellInfo(x)
3224#endif
drh86057612007-06-26 01:04:48 +00003225#ifdef _MSC_VER
3226 /* Use a real function in MSVC to work around bugs in that compiler. */
3227 static void getCellInfo(BtCursor *pCur){
3228 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003229 int iPage = pCur->iPage;
3230 sqlite3BtreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003231 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003232 }else{
3233 assertCellInfo(pCur);
3234 }
3235 }
3236#else /* if not _MSC_VER */
3237 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003238#define getCellInfo(pCur) \
3239 if( pCur->info.nSize==0 ){ \
3240 int iPage = pCur->iPage; \
3241 sqlite3BtreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
3242 pCur->validNKey = 1; \
3243 }else{ \
3244 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003245 }
3246#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003247
3248/*
drh3aac2dd2004-04-26 14:10:20 +00003249** Set *pSize to the size of the buffer needed to hold the value of
3250** the key for the current entry. If the cursor is not pointing
3251** to a valid entry, *pSize is set to 0.
3252**
drh4b70f112004-05-02 21:12:19 +00003253** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003254** itself, not the number of bytes in the key.
drh7e3b0a02001-04-28 16:52:40 +00003255*/
drh4a1c3802004-05-12 15:15:47 +00003256int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drhd677b3d2007-08-20 22:48:41 +00003257 int rc;
3258
drh1fee73e2007-08-29 04:00:57 +00003259 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003260 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003261 if( rc==SQLITE_OK ){
3262 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3263 if( pCur->eState==CURSOR_INVALID ){
3264 *pSize = 0;
3265 }else{
drh86057612007-06-26 01:04:48 +00003266 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00003267 *pSize = pCur->info.nKey;
3268 }
drh72f82862001-05-24 21:06:34 +00003269 }
danielk1977da184232006-01-05 11:34:32 +00003270 return rc;
drha059ad02001-04-17 20:09:11 +00003271}
drh2af926b2001-05-15 00:39:25 +00003272
drh72f82862001-05-24 21:06:34 +00003273/*
drh0e1c19e2004-05-11 00:58:56 +00003274** Set *pSize to the number of bytes of data in the entry the
3275** cursor currently points to. Always return SQLITE_OK.
3276** Failure is not possible. If the cursor is not currently
3277** pointing to an entry (which can happen, for example, if
3278** the database is empty) then *pSize is set to 0.
3279*/
3280int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drhd677b3d2007-08-20 22:48:41 +00003281 int rc;
3282
drh1fee73e2007-08-29 04:00:57 +00003283 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003284 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003285 if( rc==SQLITE_OK ){
3286 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3287 if( pCur->eState==CURSOR_INVALID ){
3288 /* Not pointing at a valid entry - set *pSize to 0. */
3289 *pSize = 0;
3290 }else{
drh86057612007-06-26 01:04:48 +00003291 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00003292 *pSize = pCur->info.nData;
3293 }
drh0e1c19e2004-05-11 00:58:56 +00003294 }
danielk1977da184232006-01-05 11:34:32 +00003295 return rc;
drh0e1c19e2004-05-11 00:58:56 +00003296}
3297
3298/*
danielk1977d04417962007-05-02 13:16:30 +00003299** Given the page number of an overflow page in the database (parameter
3300** ovfl), this function finds the page number of the next page in the
3301** linked list of overflow pages. If possible, it uses the auto-vacuum
3302** pointer-map data instead of reading the content of page ovfl to do so.
3303**
3304** If an error occurs an SQLite error code is returned. Otherwise:
3305**
danielk1977bea2a942009-01-20 17:06:27 +00003306** The page number of the next overflow page in the linked list is
3307** written to *pPgnoNext. If page ovfl is the last page in its linked
3308** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003309**
danielk1977bea2a942009-01-20 17:06:27 +00003310** If ppPage is not NULL, and a reference to the MemPage object corresponding
3311** to page number pOvfl was obtained, then *ppPage is set to point to that
3312** reference. It is the responsibility of the caller to call releasePage()
3313** on *ppPage to free the reference. In no reference was obtained (because
3314** the pointer-map was used to obtain the value for *pPgnoNext), then
3315** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003316*/
3317static int getOverflowPage(
3318 BtShared *pBt,
3319 Pgno ovfl, /* Overflow page */
danielk1977bea2a942009-01-20 17:06:27 +00003320 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003321 Pgno *pPgnoNext /* OUT: Next overflow page number */
3322){
3323 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003324 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003325 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003326
drh1fee73e2007-08-29 04:00:57 +00003327 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003328 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003329
3330#ifndef SQLITE_OMIT_AUTOVACUUM
3331 /* Try to find the next page in the overflow list using the
3332 ** autovacuum pointer-map pages. Guess that the next page in
3333 ** the overflow list is page number (ovfl+1). If that guess turns
3334 ** out to be wrong, fall back to loading the data of page
3335 ** number ovfl to determine the next page number.
3336 */
3337 if( pBt->autoVacuum ){
3338 Pgno pgno;
3339 Pgno iGuess = ovfl+1;
3340 u8 eType;
3341
3342 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3343 iGuess++;
3344 }
3345
danielk197789d40042008-11-17 14:20:56 +00003346 if( iGuess<=pagerPagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003347 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003348 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003349 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003350 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003351 }
3352 }
3353 }
3354#endif
3355
danielk1977bea2a942009-01-20 17:06:27 +00003356 if( rc==SQLITE_OK ){
3357 rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d04417962007-05-02 13:16:30 +00003358 assert(rc==SQLITE_OK || pPage==0);
3359 if( next==0 && rc==SQLITE_OK ){
3360 next = get4byte(pPage->aData);
3361 }
danielk1977443c0592009-01-16 15:21:05 +00003362 }
danielk197745d68822009-01-16 16:23:38 +00003363
danielk1977bea2a942009-01-20 17:06:27 +00003364 *pPgnoNext = next;
3365 if( ppPage ){
3366 *ppPage = pPage;
3367 }else{
3368 releasePage(pPage);
3369 }
3370 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003371}
3372
danielk1977da107192007-05-04 08:32:13 +00003373/*
3374** Copy data from a buffer to a page, or from a page to a buffer.
3375**
3376** pPayload is a pointer to data stored on database page pDbPage.
3377** If argument eOp is false, then nByte bytes of data are copied
3378** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3379** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3380** of data are copied from the buffer pBuf to pPayload.
3381**
3382** SQLITE_OK is returned on success, otherwise an error code.
3383*/
3384static int copyPayload(
3385 void *pPayload, /* Pointer to page data */
3386 void *pBuf, /* Pointer to buffer */
3387 int nByte, /* Number of bytes to copy */
3388 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3389 DbPage *pDbPage /* Page containing pPayload */
3390){
3391 if( eOp ){
3392 /* Copy data from buffer to page (a write operation) */
3393 int rc = sqlite3PagerWrite(pDbPage);
3394 if( rc!=SQLITE_OK ){
3395 return rc;
3396 }
3397 memcpy(pPayload, pBuf, nByte);
3398 }else{
3399 /* Copy data from page to buffer (a read operation) */
3400 memcpy(pBuf, pPayload, nByte);
3401 }
3402 return SQLITE_OK;
3403}
danielk1977d04417962007-05-02 13:16:30 +00003404
3405/*
danielk19779f8d6402007-05-02 17:48:45 +00003406** This function is used to read or overwrite payload information
3407** for the entry that the pCur cursor is pointing to. If the eOp
3408** parameter is 0, this is a read operation (data copied into
3409** buffer pBuf). If it is non-zero, a write (data copied from
3410** buffer pBuf).
3411**
3412** A total of "amt" bytes are read or written beginning at "offset".
3413** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003414**
3415** This routine does not make a distinction between key and data.
danielk19779f8d6402007-05-02 17:48:45 +00003416** It just reads or writes bytes from the payload area. Data might
3417** appear on the main page or be scattered out on multiple overflow
3418** pages.
danielk1977da107192007-05-04 08:32:13 +00003419**
danielk1977dcbb5d32007-05-04 18:36:44 +00003420** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003421** cursor entry uses one or more overflow pages, this function
3422** allocates space for and lazily popluates the overflow page-list
3423** cache array (BtCursor.aOverflow). Subsequent calls use this
3424** cache to make seeking to the supplied offset more efficient.
3425**
3426** Once an overflow page-list cache has been allocated, it may be
3427** invalidated if some other cursor writes to the same table, or if
3428** the cursor is moved to a different row. Additionally, in auto-vacuum
3429** mode, the following events may invalidate an overflow page-list cache.
3430**
3431** * An incremental vacuum,
3432** * A commit in auto_vacuum="full" mode,
3433** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003434*/
danielk19779f8d6402007-05-02 17:48:45 +00003435static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003436 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003437 u32 offset, /* Begin reading this far into payload */
3438 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003439 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003440 int skipKey, /* offset begins at data if this is true */
3441 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003442){
3443 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003444 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003445 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003446 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003447 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003448 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003449
danielk1977da107192007-05-04 08:32:13 +00003450 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003451 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003452 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003453 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003454
drh86057612007-06-26 01:04:48 +00003455 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003456 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003457 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003458
drh3aac2dd2004-04-26 14:10:20 +00003459 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003460 offset += nKey;
drh3aac2dd2004-04-26 14:10:20 +00003461 }
danielk19770d065412008-11-12 18:21:36 +00003462 if( offset+amt > nKey+pCur->info.nData
3463 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3464 ){
danielk1977da107192007-05-04 08:32:13 +00003465 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003466 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003467 }
danielk1977da107192007-05-04 08:32:13 +00003468
3469 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003470 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003471 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003472 if( a+offset>pCur->info.nLocal ){
3473 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003474 }
danielk1977da107192007-05-04 08:32:13 +00003475 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003476 offset = 0;
drha34b6762004-05-07 13:30:42 +00003477 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003478 amt -= a;
drhdd793422001-06-28 01:54:48 +00003479 }else{
drhfa1a98a2004-05-14 19:08:17 +00003480 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003481 }
danielk1977da107192007-05-04 08:32:13 +00003482
3483 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003484 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003485 Pgno nextPage;
3486
drhfa1a98a2004-05-14 19:08:17 +00003487 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003488
danielk19772dec9702007-05-02 16:48:37 +00003489#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003490 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003491 ** has not been allocated, allocate it now. The array is sized at
3492 ** one entry for each overflow page in the overflow chain. The
3493 ** page number of the first overflow page is stored in aOverflow[0],
3494 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3495 ** (the cache is lazily populated).
3496 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003497 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003498 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003499 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
danielk19772dec9702007-05-02 16:48:37 +00003500 if( nOvfl && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003501 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003502 }
3503 }
danielk1977da107192007-05-04 08:32:13 +00003504
3505 /* If the overflow page-list cache has been allocated and the
3506 ** entry for the first required overflow page is valid, skip
3507 ** directly to it.
3508 */
danielk19772dec9702007-05-02 16:48:37 +00003509 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3510 iIdx = (offset/ovflSize);
3511 nextPage = pCur->aOverflow[iIdx];
3512 offset = (offset%ovflSize);
3513 }
3514#endif
danielk1977da107192007-05-04 08:32:13 +00003515
3516 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3517
3518#ifndef SQLITE_OMIT_INCRBLOB
3519 /* If required, populate the overflow page-list cache. */
3520 if( pCur->aOverflow ){
3521 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3522 pCur->aOverflow[iIdx] = nextPage;
3523 }
3524#endif
3525
danielk1977d04417962007-05-02 13:16:30 +00003526 if( offset>=ovflSize ){
3527 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003528 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003529 ** data is not required. So first try to lookup the overflow
3530 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003531 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003532 */
danielk19772dec9702007-05-02 16:48:37 +00003533#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003534 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3535 nextPage = pCur->aOverflow[iIdx+1];
3536 } else
danielk19772dec9702007-05-02 16:48:37 +00003537#endif
danielk1977da107192007-05-04 08:32:13 +00003538 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003539 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003540 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003541 /* Need to read this page properly. It contains some of the
3542 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003543 */
3544 DbPage *pDbPage;
danielk1977cfe9a692004-06-16 12:00:29 +00003545 int a = amt;
danielk1977d04417962007-05-02 13:16:30 +00003546 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977da107192007-05-04 08:32:13 +00003547 if( rc==SQLITE_OK ){
3548 aPayload = sqlite3PagerGetData(pDbPage);
3549 nextPage = get4byte(aPayload);
3550 if( a + offset > ovflSize ){
3551 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003552 }
danielk1977da107192007-05-04 08:32:13 +00003553 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3554 sqlite3PagerUnref(pDbPage);
3555 offset = 0;
3556 amt -= a;
3557 pBuf += a;
danielk19779f8d6402007-05-02 17:48:45 +00003558 }
danielk1977cfe9a692004-06-16 12:00:29 +00003559 }
drh2af926b2001-05-15 00:39:25 +00003560 }
drh2af926b2001-05-15 00:39:25 +00003561 }
danielk1977cfe9a692004-06-16 12:00:29 +00003562
danielk1977da107192007-05-04 08:32:13 +00003563 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003564 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003565 }
danielk1977da107192007-05-04 08:32:13 +00003566 return rc;
drh2af926b2001-05-15 00:39:25 +00003567}
3568
drh72f82862001-05-24 21:06:34 +00003569/*
drh3aac2dd2004-04-26 14:10:20 +00003570** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003571** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003572** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003573**
drh3aac2dd2004-04-26 14:10:20 +00003574** Return SQLITE_OK on success or an error code if anything goes
3575** wrong. An error is returned if "offset+amt" is larger than
3576** the available payload.
drh72f82862001-05-24 21:06:34 +00003577*/
drha34b6762004-05-07 13:30:42 +00003578int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003579 int rc;
3580
drh1fee73e2007-08-29 04:00:57 +00003581 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003582 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003583 if( rc==SQLITE_OK ){
3584 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003585 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3586 if( pCur->apPage[0]->intKey ){
danielk1977da184232006-01-05 11:34:32 +00003587 return SQLITE_CORRUPT_BKPT;
3588 }
danielk197771d5d2c2008-09-29 11:49:47 +00003589 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh16a9b832007-05-05 18:39:25 +00003590 rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0);
drh6575a222005-03-10 17:06:34 +00003591 }
danielk1977da184232006-01-05 11:34:32 +00003592 return rc;
drh3aac2dd2004-04-26 14:10:20 +00003593}
3594
3595/*
drh3aac2dd2004-04-26 14:10:20 +00003596** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003597** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003598** begins at "offset".
3599**
3600** Return SQLITE_OK on success or an error code if anything goes
3601** wrong. An error is returned if "offset+amt" is larger than
3602** the available payload.
drh72f82862001-05-24 21:06:34 +00003603*/
drh3aac2dd2004-04-26 14:10:20 +00003604int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003605 int rc;
3606
danielk19773588ceb2008-06-10 17:30:26 +00003607#ifndef SQLITE_OMIT_INCRBLOB
3608 if ( pCur->eState==CURSOR_INVALID ){
3609 return SQLITE_ABORT;
3610 }
3611#endif
3612
drh1fee73e2007-08-29 04:00:57 +00003613 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003614 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003615 if( rc==SQLITE_OK ){
3616 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003617 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3618 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh16a9b832007-05-05 18:39:25 +00003619 rc = accessPayload(pCur, offset, amt, pBuf, 1, 0);
danielk1977da184232006-01-05 11:34:32 +00003620 }
3621 return rc;
drh2af926b2001-05-15 00:39:25 +00003622}
3623
drh72f82862001-05-24 21:06:34 +00003624/*
drh0e1c19e2004-05-11 00:58:56 +00003625** Return a pointer to payload information from the entry that the
3626** pCur cursor is pointing to. The pointer is to the beginning of
3627** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003628** skipKey==1. The number of bytes of available key/data is written
3629** into *pAmt. If *pAmt==0, then the value returned will not be
3630** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00003631**
3632** This routine is an optimization. It is common for the entire key
3633** and data to fit on the local page and for there to be no overflow
3634** pages. When that is so, this routine can be used to access the
3635** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00003636** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00003637** the key/data and copy it into a preallocated buffer.
3638**
3639** The pointer returned by this routine looks directly into the cached
3640** page of the database. The data might change or move the next time
3641** any btree routine is called.
3642*/
3643static const unsigned char *fetchPayload(
3644 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00003645 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00003646 int skipKey /* read beginning at data if this is true */
3647){
3648 unsigned char *aPayload;
3649 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00003650 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00003651 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003652
danielk197771d5d2c2008-09-29 11:49:47 +00003653 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00003654 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00003655 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003656 pPage = pCur->apPage[pCur->iPage];
3657 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh86057612007-06-26 01:04:48 +00003658 getCellInfo(pCur);
drh43605152004-05-29 21:46:49 +00003659 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00003660 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00003661 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00003662 nKey = 0;
3663 }else{
drhf49661a2008-12-10 16:45:50 +00003664 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00003665 }
drh0e1c19e2004-05-11 00:58:56 +00003666 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003667 aPayload += nKey;
3668 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00003669 }else{
drhfa1a98a2004-05-14 19:08:17 +00003670 nLocal = pCur->info.nLocal;
drhe51c44f2004-05-30 20:46:09 +00003671 if( nLocal>nKey ){
3672 nLocal = nKey;
3673 }
drh0e1c19e2004-05-11 00:58:56 +00003674 }
drhe51c44f2004-05-30 20:46:09 +00003675 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003676 return aPayload;
3677}
3678
3679
3680/*
drhe51c44f2004-05-30 20:46:09 +00003681** For the entry that cursor pCur is point to, return as
3682** many bytes of the key or data as are available on the local
3683** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00003684**
3685** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00003686** or be destroyed on the next call to any Btree routine,
3687** including calls from other threads against the same cache.
3688** Hence, a mutex on the BtShared should be held prior to calling
3689** this routine.
drh0e1c19e2004-05-11 00:58:56 +00003690**
3691** These routines is used to get quick access to key and data
3692** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00003693*/
drhe51c44f2004-05-30 20:46:09 +00003694const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
danielk19774b0aa4c2009-05-28 11:05:57 +00003695 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003696 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003697 if( pCur->eState==CURSOR_VALID ){
3698 return (const void*)fetchPayload(pCur, pAmt, 0);
3699 }
3700 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003701}
drhe51c44f2004-05-30 20:46:09 +00003702const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
danielk19774b0aa4c2009-05-28 11:05:57 +00003703 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003704 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003705 if( pCur->eState==CURSOR_VALID ){
3706 return (const void*)fetchPayload(pCur, pAmt, 1);
3707 }
3708 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003709}
3710
3711
3712/*
drh8178a752003-01-05 21:41:40 +00003713** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00003714** page number of the child page to move to.
drh72f82862001-05-24 21:06:34 +00003715*/
drh3aac2dd2004-04-26 14:10:20 +00003716static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00003717 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003718 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00003719 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00003720 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00003721
drh1fee73e2007-08-29 04:00:57 +00003722 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003723 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003724 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
3725 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
3726 return SQLITE_CORRUPT_BKPT;
3727 }
3728 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00003729 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003730 pCur->apPage[i+1] = pNewPage;
3731 pCur->aiIdx[i+1] = 0;
3732 pCur->iPage++;
3733
drh271efa52004-05-30 19:19:05 +00003734 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003735 pCur->validNKey = 0;
drh4be295b2003-12-16 03:44:47 +00003736 if( pNewPage->nCell<1 ){
drh49285702005-09-17 15:20:26 +00003737 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00003738 }
drh72f82862001-05-24 21:06:34 +00003739 return SQLITE_OK;
3740}
3741
danielk1977bf93c562008-09-29 15:53:25 +00003742#ifndef NDEBUG
3743/*
3744** Page pParent is an internal (non-leaf) tree page. This function
3745** asserts that page number iChild is the left-child if the iIdx'th
3746** cell in page pParent. Or, if iIdx is equal to the total number of
3747** cells in pParent, that page number iChild is the right-child of
3748** the page.
3749*/
3750static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
3751 assert( iIdx<=pParent->nCell );
3752 if( iIdx==pParent->nCell ){
3753 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
3754 }else{
3755 assert( get4byte(findCell(pParent, iIdx))==iChild );
3756 }
3757}
3758#else
3759# define assertParentIndex(x,y,z)
3760#endif
3761
drh72f82862001-05-24 21:06:34 +00003762/*
drh5e2f8b92001-05-28 00:41:15 +00003763** Move the cursor up to the parent page.
3764**
3765** pCur->idx is set to the cell index that contains the pointer
3766** to the page we are coming from. If we are coming from the
3767** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00003768** the largest cell index.
drh72f82862001-05-24 21:06:34 +00003769*/
drh16a9b832007-05-05 18:39:25 +00003770void sqlite3BtreeMoveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00003771 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003772 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003773 assert( pCur->iPage>0 );
3774 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00003775 assertParentIndex(
3776 pCur->apPage[pCur->iPage-1],
3777 pCur->aiIdx[pCur->iPage-1],
3778 pCur->apPage[pCur->iPage]->pgno
3779 );
danielk197771d5d2c2008-09-29 11:49:47 +00003780 releasePage(pCur->apPage[pCur->iPage]);
3781 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00003782 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003783 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00003784}
3785
3786/*
3787** Move the cursor to the root page
3788*/
drh5e2f8b92001-05-28 00:41:15 +00003789static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00003790 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00003791 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003792 Btree *p = pCur->pBtree;
3793 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00003794
drh1fee73e2007-08-29 04:00:57 +00003795 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00003796 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
3797 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
3798 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
3799 if( pCur->eState>=CURSOR_REQUIRESEEK ){
3800 if( pCur->eState==CURSOR_FAULT ){
3801 return pCur->skip;
3802 }
danielk1977be51a652008-10-08 17:58:48 +00003803 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00003804 }
danielk197771d5d2c2008-09-29 11:49:47 +00003805
3806 if( pCur->iPage>=0 ){
3807 int i;
3808 for(i=1; i<=pCur->iPage; i++){
3809 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00003810 }
drh777e4c42006-01-13 04:31:58 +00003811 }else{
3812 if(
danielk197771d5d2c2008-09-29 11:49:47 +00003813 SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]))
drh777e4c42006-01-13 04:31:58 +00003814 ){
3815 pCur->eState = CURSOR_INVALID;
3816 return rc;
3817 }
drhc39e0002004-05-07 23:50:57 +00003818 }
danielk197771d5d2c2008-09-29 11:49:47 +00003819
3820 pRoot = pCur->apPage[0];
3821 assert( pRoot->pgno==pCur->pgnoRoot );
3822 pCur->iPage = 0;
3823 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00003824 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003825 pCur->atLast = 0;
3826 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003827
drh8856d6a2004-04-29 14:42:46 +00003828 if( pRoot->nCell==0 && !pRoot->leaf ){
3829 Pgno subpage;
3830 assert( pRoot->pgno==1 );
drh43605152004-05-29 21:46:49 +00003831 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
drh8856d6a2004-04-29 14:42:46 +00003832 assert( subpage>0 );
danielk1977da184232006-01-05 11:34:32 +00003833 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00003834 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00003835 }else{
3836 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00003837 }
3838 return rc;
drh72f82862001-05-24 21:06:34 +00003839}
drh2af926b2001-05-15 00:39:25 +00003840
drh5e2f8b92001-05-28 00:41:15 +00003841/*
3842** Move the cursor down to the left-most leaf entry beneath the
3843** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00003844**
3845** The left-most leaf is the one with the smallest key - the first
3846** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00003847*/
3848static int moveToLeftmost(BtCursor *pCur){
3849 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00003850 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00003851 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00003852
drh1fee73e2007-08-29 04:00:57 +00003853 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003854 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003855 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
3856 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
3857 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00003858 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00003859 }
drhd677b3d2007-08-20 22:48:41 +00003860 return rc;
drh5e2f8b92001-05-28 00:41:15 +00003861}
3862
drh2dcc9aa2002-12-04 13:40:25 +00003863/*
3864** Move the cursor down to the right-most leaf entry beneath the
3865** page to which it is currently pointing. Notice the difference
3866** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
3867** finds the left-most entry beneath the *entry* whereas moveToRightmost()
3868** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00003869**
3870** The right-most entry is the one with the largest key - the last
3871** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00003872*/
3873static int moveToRightmost(BtCursor *pCur){
3874 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00003875 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00003876 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00003877
drh1fee73e2007-08-29 04:00:57 +00003878 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003879 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003880 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00003881 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00003882 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00003883 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00003884 }
drhd677b3d2007-08-20 22:48:41 +00003885 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00003886 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00003887 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003888 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00003889 }
danielk1977518002e2008-09-05 05:02:46 +00003890 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00003891}
3892
drh5e00f6c2001-09-13 13:46:56 +00003893/* Move the cursor to the first entry in the table. Return SQLITE_OK
3894** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00003895** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00003896*/
drh3aac2dd2004-04-26 14:10:20 +00003897int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00003898 int rc;
drhd677b3d2007-08-20 22:48:41 +00003899
drh1fee73e2007-08-29 04:00:57 +00003900 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00003901 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00003902 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00003903 if( rc==SQLITE_OK ){
3904 if( pCur->eState==CURSOR_INVALID ){
danielk197771d5d2c2008-09-29 11:49:47 +00003905 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00003906 *pRes = 1;
3907 rc = SQLITE_OK;
3908 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00003909 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00003910 *pRes = 0;
3911 rc = moveToLeftmost(pCur);
3912 }
drh5e00f6c2001-09-13 13:46:56 +00003913 }
drh5e00f6c2001-09-13 13:46:56 +00003914 return rc;
3915}
drh5e2f8b92001-05-28 00:41:15 +00003916
drh9562b552002-02-19 15:00:07 +00003917/* Move the cursor to the last entry in the table. Return SQLITE_OK
3918** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00003919** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00003920*/
drh3aac2dd2004-04-26 14:10:20 +00003921int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00003922 int rc;
drhd677b3d2007-08-20 22:48:41 +00003923
drh1fee73e2007-08-29 04:00:57 +00003924 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00003925 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00003926
3927 /* If the cursor already points to the last entry, this is a no-op. */
3928 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
3929#ifdef SQLITE_DEBUG
3930 /* This block serves to assert() that the cursor really does point
3931 ** to the last entry in the b-tree. */
3932 int ii;
3933 for(ii=0; ii<pCur->iPage; ii++){
3934 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
3935 }
3936 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
3937 assert( pCur->apPage[pCur->iPage]->leaf );
3938#endif
3939 return SQLITE_OK;
3940 }
3941
drh9562b552002-02-19 15:00:07 +00003942 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00003943 if( rc==SQLITE_OK ){
3944 if( CURSOR_INVALID==pCur->eState ){
danielk197771d5d2c2008-09-29 11:49:47 +00003945 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00003946 *pRes = 1;
3947 }else{
3948 assert( pCur->eState==CURSOR_VALID );
3949 *pRes = 0;
3950 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00003951 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00003952 }
drh9562b552002-02-19 15:00:07 +00003953 }
drh9562b552002-02-19 15:00:07 +00003954 return rc;
3955}
3956
drhe14006d2008-03-25 17:23:32 +00003957/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00003958** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00003959**
drhe63d9992008-08-13 19:11:48 +00003960** For INTKEY tables, the intKey parameter is used. pIdxKey
3961** must be NULL. For index tables, pIdxKey is used and intKey
3962** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00003963**
drh5e2f8b92001-05-28 00:41:15 +00003964** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00003965** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00003966** were present. The cursor might point to an entry that comes
3967** before or after the key.
3968**
drh64022502009-01-09 14:11:04 +00003969** An integer is written into *pRes which is the result of
3970** comparing the key with the entry to which the cursor is
3971** pointing. The meaning of the integer written into
3972** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00003973**
3974** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00003975** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00003976** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00003977**
3978** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00003979** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00003980**
3981** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00003982** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00003983**
drha059ad02001-04-17 20:09:11 +00003984*/
drhe63d9992008-08-13 19:11:48 +00003985int sqlite3BtreeMovetoUnpacked(
3986 BtCursor *pCur, /* The cursor to be moved */
3987 UnpackedRecord *pIdxKey, /* Unpacked index key */
3988 i64 intKey, /* The table key */
3989 int biasRight, /* If true, bias the search to the high end */
3990 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00003991){
drh72f82862001-05-24 21:06:34 +00003992 int rc;
drhd677b3d2007-08-20 22:48:41 +00003993
drh1fee73e2007-08-29 04:00:57 +00003994 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00003995 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drha2c20e42008-03-29 16:01:04 +00003996
3997 /* If the cursor is already positioned at the point we are trying
3998 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00003999 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4000 && pCur->apPage[0]->intKey
4001 ){
drhe63d9992008-08-13 19:11:48 +00004002 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004003 *pRes = 0;
4004 return SQLITE_OK;
4005 }
drhe63d9992008-08-13 19:11:48 +00004006 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004007 *pRes = -1;
4008 return SQLITE_OK;
4009 }
4010 }
4011
drh5e2f8b92001-05-28 00:41:15 +00004012 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004013 if( rc ){
4014 return rc;
4015 }
danielk197771d5d2c2008-09-29 11:49:47 +00004016 assert( pCur->apPage[pCur->iPage] );
4017 assert( pCur->apPage[pCur->iPage]->isInit );
danielk1977da184232006-01-05 11:34:32 +00004018 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004019 *pRes = -1;
danielk197771d5d2c2008-09-29 11:49:47 +00004020 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004021 return SQLITE_OK;
4022 }
danielk197771d5d2c2008-09-29 11:49:47 +00004023 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004024 for(;;){
drh72f82862001-05-24 21:06:34 +00004025 int lwr, upr;
4026 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004027 MemPage *pPage = pCur->apPage[pCur->iPage];
drh1a844c32002-12-04 22:29:28 +00004028 int c = -1; /* pRes return if table is empty must be -1 */
drh72f82862001-05-24 21:06:34 +00004029 lwr = 0;
4030 upr = pPage->nCell-1;
drh64022502009-01-09 14:11:04 +00004031 if( (!pPage->intKey && pIdxKey==0) || upr<0 ){
drh1e968a02008-03-25 00:22:21 +00004032 rc = SQLITE_CORRUPT_BKPT;
4033 goto moveto_finish;
drh4eec4c12005-01-21 00:22:37 +00004034 }
drhe4d90812007-03-29 05:51:49 +00004035 if( biasRight ){
drhf49661a2008-12-10 16:45:50 +00004036 pCur->aiIdx[pCur->iPage] = (u16)upr;
drhe4d90812007-03-29 05:51:49 +00004037 }else{
drhf49661a2008-12-10 16:45:50 +00004038 pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004039 }
drh64022502009-01-09 14:11:04 +00004040 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004041 int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
4042 u8 *pCell; /* Pointer to current cell in pPage */
4043
drh366fda62006-01-13 02:35:09 +00004044 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004045 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004046 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004047 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004048 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004049 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004050 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004051 }
drha2c20e42008-03-29 16:01:04 +00004052 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004053 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004054 c = 0;
drhe63d9992008-08-13 19:11:48 +00004055 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004056 c = -1;
4057 }else{
drhe63d9992008-08-13 19:11:48 +00004058 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004059 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004060 }
danielk197711c327a2009-05-04 19:01:26 +00004061 pCur->validNKey = 1;
4062 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004063 }else{
danielk197711c327a2009-05-04 19:01:26 +00004064 /* The maximum supported page-size is 32768 bytes. This means that
4065 ** the maximum number of record bytes stored on an index B-Tree
4066 ** page is at most 8198 bytes, which may be stored as a 2-byte
4067 ** varint. This information is used to attempt to avoid parsing
4068 ** the entire cell by checking for the cases where the record is
4069 ** stored entirely within the b-tree page by inspecting the first
4070 ** 2 bytes of the cell.
4071 */
4072 int nCell = pCell[0];
4073 if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){
4074 /* This branch runs if the record-size field of the cell is a
4075 ** single byte varint and the record fits entirely on the main
4076 ** b-tree page. */
4077 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4078 }else if( !(pCell[1] & 0x80)
4079 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4080 ){
4081 /* The record-size field is a 2 byte varint and the record
4082 ** fits entirely on the main b-tree page. */
4083 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004084 }else{
danielk197711c327a2009-05-04 19:01:26 +00004085 /* The record flows over onto one or more overflow pages. In
4086 ** this case the whole cell needs to be parsed, a buffer allocated
4087 ** and accessPayload() used to retrieve the record into the
4088 ** buffer before VdbeRecordCompare() can be called. */
4089 void *pCellKey;
4090 u8 * const pCellBody = pCell - pPage->childPtrSize;
4091 sqlite3BtreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004092 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004093 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004094 if( pCellKey==0 ){
4095 rc = SQLITE_NOMEM;
4096 goto moveto_finish;
4097 }
danielk197711c327a2009-05-04 19:01:26 +00004098 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0, 0);
4099 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004100 sqlite3_free(pCellKey);
drh1e968a02008-03-25 00:22:21 +00004101 if( rc ) goto moveto_finish;
drhe51c44f2004-05-30 20:46:09 +00004102 }
drh3aac2dd2004-04-26 14:10:20 +00004103 }
drh72f82862001-05-24 21:06:34 +00004104 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004105 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004106 lwr = idx;
drhfc70e6f2004-05-12 21:11:27 +00004107 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00004108 break;
4109 }else{
drh64022502009-01-09 14:11:04 +00004110 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004111 rc = SQLITE_OK;
4112 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004113 }
drh72f82862001-05-24 21:06:34 +00004114 }
4115 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004116 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004117 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004118 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004119 }
drhf1d68b32007-03-29 04:43:26 +00004120 if( lwr>upr ){
4121 break;
4122 }
drhf49661a2008-12-10 16:45:50 +00004123 pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004124 }
4125 assert( lwr==upr+1 );
danielk197771d5d2c2008-09-29 11:49:47 +00004126 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004127 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004128 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004129 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004130 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004131 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004132 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004133 }
4134 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004135 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh72f82862001-05-24 21:06:34 +00004136 if( pRes ) *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004137 rc = SQLITE_OK;
4138 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004139 }
drhf49661a2008-12-10 16:45:50 +00004140 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004141 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004142 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004143 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004144 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004145 }
drh1e968a02008-03-25 00:22:21 +00004146moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004147 return rc;
4148}
4149
4150/*
4151** In this version of BtreeMoveto, pKey is a packed index record
4152** such as is generated by the OP_MakeRecord opcode. Unpack the
4153** record and then call BtreeMovetoUnpacked() to do the work.
4154*/
4155int sqlite3BtreeMoveto(
4156 BtCursor *pCur, /* Cursor open on the btree to be searched */
4157 const void *pKey, /* Packed key if the btree is an index */
4158 i64 nKey, /* Integer key for tables. Size of pKey for indices */
4159 int bias, /* Bias search to the high end */
4160 int *pRes /* Write search results here */
4161){
4162 int rc; /* Status code */
4163 UnpackedRecord *pIdxKey; /* Unpacked index key */
drh8c5d1522009-04-10 00:56:28 +00004164 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
4165
drhe63d9992008-08-13 19:11:48 +00004166
drhe14006d2008-03-25 17:23:32 +00004167 if( pKey ){
drhf49661a2008-12-10 16:45:50 +00004168 assert( nKey==(i64)(int)nKey );
4169 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
drh23f79d02008-08-20 22:06:47 +00004170 aSpace, sizeof(aSpace));
drhe63d9992008-08-13 19:11:48 +00004171 if( pIdxKey==0 ) return SQLITE_NOMEM;
4172 }else{
4173 pIdxKey = 0;
4174 }
4175 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
4176 if( pKey ){
4177 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
drhe14006d2008-03-25 17:23:32 +00004178 }
drh1e968a02008-03-25 00:22:21 +00004179 return rc;
drh72f82862001-05-24 21:06:34 +00004180}
4181
drhd677b3d2007-08-20 22:48:41 +00004182
drh72f82862001-05-24 21:06:34 +00004183/*
drhc39e0002004-05-07 23:50:57 +00004184** Return TRUE if the cursor is not pointing at an entry of the table.
4185**
4186** TRUE will be returned after a call to sqlite3BtreeNext() moves
4187** past the last entry in the table or sqlite3BtreePrev() moves past
4188** the first entry. TRUE is also returned if the table is empty.
4189*/
4190int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004191 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4192 ** have been deleted? This API will need to change to return an error code
4193 ** as well as the boolean result value.
4194 */
4195 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004196}
4197
4198/*
drhbd03cae2001-06-02 02:40:57 +00004199** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004200** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004201** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004202** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004203*/
drhd094db12008-04-03 21:46:57 +00004204int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004205 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004206 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004207 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004208
drh1fee73e2007-08-29 04:00:57 +00004209 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004210 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004211 if( rc!=SQLITE_OK ){
4212 return rc;
4213 }
drh8c4d3a62007-04-06 01:03:32 +00004214 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004215 if( CURSOR_INVALID==pCur->eState ){
4216 *pRes = 1;
4217 return SQLITE_OK;
4218 }
danielk1977da184232006-01-05 11:34:32 +00004219 if( pCur->skip>0 ){
4220 pCur->skip = 0;
4221 *pRes = 0;
4222 return SQLITE_OK;
4223 }
4224 pCur->skip = 0;
danielk1977da184232006-01-05 11:34:32 +00004225
danielk197771d5d2c2008-09-29 11:49:47 +00004226 pPage = pCur->apPage[pCur->iPage];
4227 idx = ++pCur->aiIdx[pCur->iPage];
4228 assert( pPage->isInit );
4229 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004230
drh271efa52004-05-30 19:19:05 +00004231 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004232 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004233 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004234 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004235 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004236 if( rc ) return rc;
4237 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004238 *pRes = 0;
4239 return rc;
drh72f82862001-05-24 21:06:34 +00004240 }
drh5e2f8b92001-05-28 00:41:15 +00004241 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004242 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004243 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004244 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004245 return SQLITE_OK;
4246 }
drh16a9b832007-05-05 18:39:25 +00004247 sqlite3BtreeMoveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004248 pPage = pCur->apPage[pCur->iPage];
4249 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004250 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004251 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004252 rc = sqlite3BtreeNext(pCur, pRes);
4253 }else{
4254 rc = SQLITE_OK;
4255 }
4256 return rc;
drh8178a752003-01-05 21:41:40 +00004257 }
4258 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004259 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004260 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004261 }
drh5e2f8b92001-05-28 00:41:15 +00004262 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004263 return rc;
drh72f82862001-05-24 21:06:34 +00004264}
drhd677b3d2007-08-20 22:48:41 +00004265
drh72f82862001-05-24 21:06:34 +00004266
drh3b7511c2001-05-26 13:15:44 +00004267/*
drh2dcc9aa2002-12-04 13:40:25 +00004268** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004269** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004270** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004271** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004272*/
drhd094db12008-04-03 21:46:57 +00004273int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004274 int rc;
drh8178a752003-01-05 21:41:40 +00004275 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004276
drh1fee73e2007-08-29 04:00:57 +00004277 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004278 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004279 if( rc!=SQLITE_OK ){
4280 return rc;
4281 }
drha2c20e42008-03-29 16:01:04 +00004282 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004283 if( CURSOR_INVALID==pCur->eState ){
4284 *pRes = 1;
4285 return SQLITE_OK;
4286 }
danielk1977da184232006-01-05 11:34:32 +00004287 if( pCur->skip<0 ){
4288 pCur->skip = 0;
4289 *pRes = 0;
4290 return SQLITE_OK;
4291 }
4292 pCur->skip = 0;
danielk1977da184232006-01-05 11:34:32 +00004293
danielk197771d5d2c2008-09-29 11:49:47 +00004294 pPage = pCur->apPage[pCur->iPage];
4295 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004296 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004297 int idx = pCur->aiIdx[pCur->iPage];
4298 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004299 if( rc ){
4300 return rc;
4301 }
drh2dcc9aa2002-12-04 13:40:25 +00004302 rc = moveToRightmost(pCur);
4303 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004304 while( pCur->aiIdx[pCur->iPage]==0 ){
4305 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004306 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004307 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004308 return SQLITE_OK;
4309 }
drh16a9b832007-05-05 18:39:25 +00004310 sqlite3BtreeMoveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004311 }
drh271efa52004-05-30 19:19:05 +00004312 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004313 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004314
4315 pCur->aiIdx[pCur->iPage]--;
4316 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004317 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004318 rc = sqlite3BtreePrevious(pCur, pRes);
4319 }else{
4320 rc = SQLITE_OK;
4321 }
drh2dcc9aa2002-12-04 13:40:25 +00004322 }
drh8178a752003-01-05 21:41:40 +00004323 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004324 return rc;
4325}
4326
4327/*
drh3b7511c2001-05-26 13:15:44 +00004328** Allocate a new page from the database file.
4329**
danielk19773b8a05f2007-03-19 17:44:26 +00004330** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004331** has already been called on the new page.) The new page has also
4332** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004333** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004334**
4335** SQLITE_OK is returned on success. Any other return value indicates
4336** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004337** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004338**
drh199e3cf2002-07-18 11:01:47 +00004339** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4340** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004341** attempt to keep related pages close to each other in the database file,
4342** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004343**
4344** If the "exact" parameter is not 0, and the page-number nearby exists
4345** anywhere on the free-list, then it is guarenteed to be returned. This
4346** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004347*/
drh4f0c5872007-03-26 22:05:01 +00004348static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004349 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004350 MemPage **ppPage,
4351 Pgno *pPgno,
4352 Pgno nearby,
4353 u8 exact
4354){
drh3aac2dd2004-04-26 14:10:20 +00004355 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004356 int rc;
drh3aac2dd2004-04-26 14:10:20 +00004357 int n; /* Number of pages on the freelist */
4358 int k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004359 MemPage *pTrunk = 0;
4360 MemPage *pPrevTrunk = 0;
drh30e58752002-03-02 20:41:57 +00004361
drh1fee73e2007-08-29 04:00:57 +00004362 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004363 pPage1 = pBt->pPage1;
4364 n = get4byte(&pPage1->aData[36]);
4365 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004366 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004367 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004368 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4369
4370 /* If the 'exact' parameter was true and a query of the pointer-map
4371 ** shows that the page 'nearby' is somewhere on the free-list, then
4372 ** the entire-list will be searched for that page.
4373 */
4374#ifndef SQLITE_OMIT_AUTOVACUUM
danielk197789d40042008-11-17 14:20:56 +00004375 if( exact && nearby<=pagerPagecount(pBt) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004376 u8 eType;
4377 assert( nearby>0 );
4378 assert( pBt->autoVacuum );
4379 rc = ptrmapGet(pBt, nearby, &eType, 0);
4380 if( rc ) return rc;
4381 if( eType==PTRMAP_FREEPAGE ){
4382 searchList = 1;
4383 }
4384 *pPgno = nearby;
4385 }
4386#endif
4387
4388 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4389 ** first free-list trunk page. iPrevTrunk is initially 1.
4390 */
danielk19773b8a05f2007-03-19 17:44:26 +00004391 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004392 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004393 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004394
4395 /* The code within this loop is run only once if the 'searchList' variable
4396 ** is not true. Otherwise, it runs once for each trunk-page on the
4397 ** free-list until the page 'nearby' is located.
4398 */
4399 do {
4400 pPrevTrunk = pTrunk;
4401 if( pPrevTrunk ){
4402 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004403 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004404 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004405 }
drh16a9b832007-05-05 18:39:25 +00004406 rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004407 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004408 pTrunk = 0;
4409 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004410 }
4411
4412 k = get4byte(&pTrunk->aData[4]);
4413 if( k==0 && !searchList ){
4414 /* The trunk has no leaves and the list is not being searched.
4415 ** So extract the trunk page itself and use it as the newly
4416 ** allocated page */
4417 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004418 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004419 if( rc ){
4420 goto end_allocate_page;
4421 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004422 *pPgno = iTrunk;
4423 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4424 *ppPage = pTrunk;
4425 pTrunk = 0;
4426 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh45b1fac2008-07-04 17:52:42 +00004427 }else if( k>pBt->usableSize/4 - 2 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004428 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004429 rc = SQLITE_CORRUPT_BKPT;
4430 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004431#ifndef SQLITE_OMIT_AUTOVACUUM
4432 }else if( searchList && nearby==iTrunk ){
4433 /* The list is being searched and this trunk page is the page
4434 ** to allocate, regardless of whether it has leaves.
4435 */
4436 assert( *pPgno==iTrunk );
4437 *ppPage = pTrunk;
4438 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004439 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004440 if( rc ){
4441 goto end_allocate_page;
4442 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004443 if( k==0 ){
4444 if( !pPrevTrunk ){
4445 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4446 }else{
4447 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4448 }
4449 }else{
4450 /* The trunk page is required by the caller but it contains
4451 ** pointers to free-list leaves. The first leaf becomes a trunk
4452 ** page in this case.
4453 */
4454 MemPage *pNewTrunk;
4455 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh16a9b832007-05-05 18:39:25 +00004456 rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004457 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004458 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004459 }
danielk19773b8a05f2007-03-19 17:44:26 +00004460 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004461 if( rc!=SQLITE_OK ){
4462 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004463 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004464 }
4465 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4466 put4byte(&pNewTrunk->aData[4], k-1);
4467 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004468 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004469 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004470 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004471 put4byte(&pPage1->aData[32], iNewTrunk);
4472 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004473 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004474 if( rc ){
4475 goto end_allocate_page;
4476 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004477 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4478 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004479 }
4480 pTrunk = 0;
4481 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4482#endif
4483 }else{
4484 /* Extract a leaf from the trunk */
4485 int closest;
4486 Pgno iPage;
4487 unsigned char *aData = pTrunk->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00004488 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004489 if( rc ){
4490 goto end_allocate_page;
4491 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004492 if( nearby>0 ){
4493 int i, dist;
4494 closest = 0;
4495 dist = get4byte(&aData[8]) - nearby;
4496 if( dist<0 ) dist = -dist;
4497 for(i=1; i<k; i++){
4498 int d2 = get4byte(&aData[8+i*4]) - nearby;
4499 if( d2<0 ) d2 = -d2;
4500 if( d2<dist ){
4501 closest = i;
4502 dist = d2;
4503 }
4504 }
4505 }else{
4506 closest = 0;
4507 }
4508
4509 iPage = get4byte(&aData[8+closest*4]);
4510 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00004511 int noContent;
danielk197789d40042008-11-17 14:20:56 +00004512 Pgno nPage;
shane1f9e6aa2008-06-09 19:27:11 +00004513 *pPgno = iPage;
danielk197789d40042008-11-17 14:20:56 +00004514 nPage = pagerPagecount(pBt);
danielk1977ad0132d2008-06-07 08:58:22 +00004515 if( *pPgno>nPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004516 /* Free page off the end of the file */
danielk197743e377a2008-05-05 12:09:32 +00004517 rc = SQLITE_CORRUPT_BKPT;
4518 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004519 }
4520 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4521 ": %d more free pages\n",
4522 *pPgno, closest+1, k, pTrunk->pgno, n-1));
4523 if( closest<k-1 ){
4524 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4525 }
4526 put4byte(&aData[4], k-1);
drhc5053fb2008-11-27 02:22:10 +00004527 assert( sqlite3PagerIswriteable(pTrunk->pDbPage) );
danielk1977bea2a942009-01-20 17:06:27 +00004528 noContent = !btreeGetHasContent(pBt, *pPgno);
4529 rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004530 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00004531 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004532 if( rc!=SQLITE_OK ){
4533 releasePage(*ppPage);
4534 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004535 }
4536 searchList = 0;
4537 }
drhee696e22004-08-30 16:52:17 +00004538 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004539 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00004540 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004541 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00004542 }else{
drh3aac2dd2004-04-26 14:10:20 +00004543 /* There are no pages on the freelist, so create a new page at the
4544 ** end of the file */
danielk197789d40042008-11-17 14:20:56 +00004545 int nPage = pagerPagecount(pBt);
danielk1977ad0132d2008-06-07 08:58:22 +00004546 *pPgno = nPage + 1;
danielk1977afcdd022004-10-31 16:25:42 +00004547
danielk1977bea2a942009-01-20 17:06:27 +00004548 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
4549 (*pPgno)++;
4550 }
4551
danielk1977afcdd022004-10-31 16:25:42 +00004552#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977266664d2006-02-10 08:24:21 +00004553 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
danielk1977afcdd022004-10-31 16:25:42 +00004554 /* If *pPgno refers to a pointer-map page, allocate two new pages
4555 ** at the end of the file instead of one. The first allocated page
4556 ** becomes a new pointer-map page, the second is used by the caller.
4557 */
danielk1977ac861692009-03-28 10:54:22 +00004558 MemPage *pPg = 0;
danielk1977afcdd022004-10-31 16:25:42 +00004559 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
danielk1977599fcba2004-11-08 07:13:13 +00004560 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk1977ac861692009-03-28 10:54:22 +00004561 rc = sqlite3BtreeGetPage(pBt, *pPgno, &pPg, 0);
4562 if( rc==SQLITE_OK ){
4563 rc = sqlite3PagerWrite(pPg->pDbPage);
4564 releasePage(pPg);
4565 }
4566 if( rc ) return rc;
danielk1977afcdd022004-10-31 16:25:42 +00004567 (*pPgno)++;
drh72190432008-01-31 14:54:43 +00004568 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; }
danielk1977afcdd022004-10-31 16:25:42 +00004569 }
4570#endif
4571
danielk1977599fcba2004-11-08 07:13:13 +00004572 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh16a9b832007-05-05 18:39:25 +00004573 rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0);
drh3b7511c2001-05-26 13:15:44 +00004574 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00004575 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004576 if( rc!=SQLITE_OK ){
4577 releasePage(*ppPage);
4578 }
drh3a4c1412004-05-09 20:40:11 +00004579 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00004580 }
danielk1977599fcba2004-11-08 07:13:13 +00004581
4582 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00004583
4584end_allocate_page:
4585 releasePage(pTrunk);
4586 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00004587 if( rc==SQLITE_OK ){
4588 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
4589 releasePage(*ppPage);
4590 return SQLITE_CORRUPT_BKPT;
4591 }
4592 (*ppPage)->isInit = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00004593 }
drh3b7511c2001-05-26 13:15:44 +00004594 return rc;
4595}
4596
4597/*
danielk1977bea2a942009-01-20 17:06:27 +00004598** This function is used to add page iPage to the database file free-list.
4599** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00004600**
danielk1977bea2a942009-01-20 17:06:27 +00004601** The value passed as the second argument to this function is optional.
4602** If the caller happens to have a pointer to the MemPage object
4603** corresponding to page iPage handy, it may pass it as the second value.
4604** Otherwise, it may pass NULL.
4605**
4606** If a pointer to a MemPage object is passed as the second argument,
4607** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00004608*/
danielk1977bea2a942009-01-20 17:06:27 +00004609static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
4610 MemPage *pTrunk = 0; /* Free-list trunk page */
4611 Pgno iTrunk = 0; /* Page number of free-list trunk page */
4612 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
4613 MemPage *pPage; /* Page being freed. May be NULL. */
4614 int rc; /* Return Code */
4615 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00004616
danielk1977bea2a942009-01-20 17:06:27 +00004617 assert( sqlite3_mutex_held(pBt->mutex) );
4618 assert( iPage>1 );
4619 assert( !pMemPage || pMemPage->pgno==iPage );
4620
4621 if( pMemPage ){
4622 pPage = pMemPage;
4623 sqlite3PagerRef(pPage->pDbPage);
4624 }else{
4625 pPage = btreePageLookup(pBt, iPage);
4626 }
drh3aac2dd2004-04-26 14:10:20 +00004627
drha34b6762004-05-07 13:30:42 +00004628 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00004629 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00004630 if( rc ) goto freepage_out;
4631 nFree = get4byte(&pPage1->aData[36]);
4632 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00004633
drhfcce93f2006-02-22 03:08:32 +00004634#ifdef SQLITE_SECURE_DELETE
4635 /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
4636 ** always fully overwrite deleted information with zeros.
4637 */
danielk1977bea2a942009-01-20 17:06:27 +00004638 if( (!pPage && (rc = sqlite3BtreeGetPage(pBt, iPage, &pPage, 0)))
4639 || (rc = sqlite3PagerWrite(pPage->pDbPage))
4640 ){
4641 goto freepage_out;
4642 }
drhfcce93f2006-02-22 03:08:32 +00004643 memset(pPage->aData, 0, pPage->pBt->pageSize);
4644#endif
4645
danielk1977687566d2004-11-02 12:56:41 +00004646 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00004647 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00004648 */
danielk197785d90ca2008-07-19 14:25:15 +00004649 if( ISAUTOVACUUM ){
danielk1977bea2a942009-01-20 17:06:27 +00004650 rc = ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0);
4651 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00004652 }
danielk1977687566d2004-11-02 12:56:41 +00004653
danielk1977bea2a942009-01-20 17:06:27 +00004654 /* Now manipulate the actual database free-list structure. There are two
4655 ** possibilities. If the free-list is currently empty, or if the first
4656 ** trunk page in the free-list is full, then this page will become a
4657 ** new free-list trunk page. Otherwise, it will become a leaf of the
4658 ** first trunk page in the current free-list. This block tests if it
4659 ** is possible to add the page as a new free-list leaf.
4660 */
4661 if( nFree!=0 ){
4662 int nLeaf; /* Initial number of leaf cells on trunk page */
4663
4664 iTrunk = get4byte(&pPage1->aData[32]);
4665 rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
4666 if( rc!=SQLITE_OK ){
4667 goto freepage_out;
4668 }
4669
4670 nLeaf = get4byte(&pTrunk->aData[4]);
4671 if( nLeaf<0 ){
4672 rc = SQLITE_CORRUPT_BKPT;
4673 goto freepage_out;
4674 }
4675 if( nLeaf<pBt->usableSize/4 - 8 ){
4676 /* In this case there is room on the trunk page to insert the page
4677 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00004678 **
4679 ** Note that the trunk page is not really full until it contains
4680 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
4681 ** coded. But due to a coding error in versions of SQLite prior to
4682 ** 3.6.0, databases with freelist trunk pages holding more than
4683 ** usableSize/4 - 8 entries will be reported as corrupt. In order
4684 ** to maintain backwards compatibility with older versions of SQLite,
4685 ** we will contain to restrict the number of entries to usableSize/4 - 8
4686 ** for now. At some point in the future (once everyone has upgraded
4687 ** to 3.6.0 or later) we should consider fixing the conditional above
4688 ** to read "usableSize/4-2" instead of "usableSize/4-8".
4689 */
danielk19773b8a05f2007-03-19 17:44:26 +00004690 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00004691 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00004692 put4byte(&pTrunk->aData[4], nLeaf+1);
4693 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhfcce93f2006-02-22 03:08:32 +00004694#ifndef SQLITE_SECURE_DELETE
danielk1977bea2a942009-01-20 17:06:27 +00004695 if( pPage ){
4696 sqlite3PagerDontWrite(pPage->pDbPage);
4697 }
drhfcce93f2006-02-22 03:08:32 +00004698#endif
danielk1977bea2a942009-01-20 17:06:27 +00004699 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00004700 }
drh3a4c1412004-05-09 20:40:11 +00004701 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00004702 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00004703 }
drh3b7511c2001-05-26 13:15:44 +00004704 }
danielk1977bea2a942009-01-20 17:06:27 +00004705
4706 /* If control flows to this point, then it was not possible to add the
4707 ** the page being freed as a leaf page of the first trunk in the free-list.
4708 ** Possibly because the free-list is empty, or possibly because the
4709 ** first trunk in the free-list is full. Either way, the page being freed
4710 ** will become the new first trunk page in the free-list.
4711 */
shane63207ab2009-02-04 01:49:30 +00004712 if( ((!pPage) && (0 != (rc = sqlite3BtreeGetPage(pBt, iPage, &pPage, 0))))
4713 || (0 != (rc = sqlite3PagerWrite(pPage->pDbPage)))
danielk1977bea2a942009-01-20 17:06:27 +00004714 ){
4715 goto freepage_out;
4716 }
4717 put4byte(pPage->aData, iTrunk);
4718 put4byte(&pPage->aData[4], 0);
4719 put4byte(&pPage1->aData[32], iPage);
4720 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
4721
4722freepage_out:
4723 if( pPage ){
4724 pPage->isInit = 0;
4725 }
4726 releasePage(pPage);
4727 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00004728 return rc;
4729}
danielk1977bea2a942009-01-20 17:06:27 +00004730static int freePage(MemPage *pPage){
4731 return freePage2(pPage->pBt, pPage, pPage->pgno);
4732}
drh3b7511c2001-05-26 13:15:44 +00004733
4734/*
drh3aac2dd2004-04-26 14:10:20 +00004735** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00004736*/
drh3aac2dd2004-04-26 14:10:20 +00004737static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00004738 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00004739 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00004740 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00004741 int rc;
drh94440812007-03-06 11:42:19 +00004742 int nOvfl;
shane63207ab2009-02-04 01:49:30 +00004743 u16 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00004744
drh1fee73e2007-08-29 04:00:57 +00004745 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh16a9b832007-05-05 18:39:25 +00004746 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00004747 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00004748 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00004749 }
drh6f11bef2004-05-13 01:12:56 +00004750 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00004751 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00004752 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00004753 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
4754 assert( ovflPgno==0 || nOvfl>0 );
4755 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00004756 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004757 MemPage *pOvfl = 0;
danielk1977e589a672009-04-11 16:06:15 +00004758 if( ovflPgno<2 || ovflPgno>pagerPagecount(pBt) ){
4759 /* 0 is not a legal page number and page 1 cannot be an
4760 ** overflow page. Therefore if ovflPgno<2 or past the end of the
4761 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00004762 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00004763 }
danielk1977bea2a942009-01-20 17:06:27 +00004764 if( nOvfl ){
4765 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
4766 if( rc ) return rc;
4767 }
4768 rc = freePage2(pBt, pOvfl, ovflPgno);
4769 if( pOvfl ){
4770 sqlite3PagerUnref(pOvfl->pDbPage);
4771 }
drh3b7511c2001-05-26 13:15:44 +00004772 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00004773 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00004774 }
drh5e2f8b92001-05-28 00:41:15 +00004775 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00004776}
4777
4778/*
drh91025292004-05-03 19:49:32 +00004779** Create the byte sequence used to represent a cell on page pPage
4780** and write that byte sequence into pCell[]. Overflow pages are
4781** allocated and filled in as necessary. The calling procedure
4782** is responsible for making sure sufficient space has been allocated
4783** for pCell[].
4784**
4785** Note that pCell does not necessary need to point to the pPage->aData
4786** area. pCell might point to some temporary storage. The cell will
4787** be constructed in this temporary area then copied into pPage->aData
4788** later.
drh3b7511c2001-05-26 13:15:44 +00004789*/
4790static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00004791 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00004792 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00004793 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00004794 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00004795 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00004796 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00004797){
drh3b7511c2001-05-26 13:15:44 +00004798 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00004799 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00004800 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00004801 int spaceLeft;
4802 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00004803 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00004804 unsigned char *pPrior;
4805 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00004806 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00004807 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00004808 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00004809 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00004810
drh1fee73e2007-08-29 04:00:57 +00004811 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00004812
drhc5053fb2008-11-27 02:22:10 +00004813 /* pPage is not necessarily writeable since pCell might be auxiliary
4814 ** buffer space that is separate from the pPage buffer area */
4815 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
4816 || sqlite3PagerIswriteable(pPage->pDbPage) );
4817
drh91025292004-05-03 19:49:32 +00004818 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00004819 nHeader = 0;
drh91025292004-05-03 19:49:32 +00004820 if( !pPage->leaf ){
4821 nHeader += 4;
4822 }
drh8b18dd42004-05-12 19:18:15 +00004823 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00004824 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00004825 }else{
drhb026e052007-05-02 01:34:31 +00004826 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00004827 }
drh6f11bef2004-05-13 01:12:56 +00004828 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh16a9b832007-05-05 18:39:25 +00004829 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00004830 assert( info.nHeader==nHeader );
4831 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00004832 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00004833
4834 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00004835 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00004836 if( pPage->intKey ){
4837 pSrc = pData;
4838 nSrc = nData;
drh91025292004-05-03 19:49:32 +00004839 nData = 0;
drhf49661a2008-12-10 16:45:50 +00004840 }else{
drh20abac22009-01-28 20:21:17 +00004841 if( nKey>0x7fffffff || pKey==0 ){
4842 return SQLITE_CORRUPT;
4843 }
drhf49661a2008-12-10 16:45:50 +00004844 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00004845 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00004846 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00004847 }
drh6f11bef2004-05-13 01:12:56 +00004848 *pnSize = info.nSize;
4849 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00004850 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00004851 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00004852
drh3b7511c2001-05-26 13:15:44 +00004853 while( nPayload>0 ){
4854 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00004855#ifndef SQLITE_OMIT_AUTOVACUUM
4856 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00004857 if( pBt->autoVacuum ){
4858 do{
4859 pgnoOvfl++;
4860 } while(
4861 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
4862 );
danielk1977b39f70b2007-05-17 18:28:11 +00004863 }
danielk1977afcdd022004-10-31 16:25:42 +00004864#endif
drhf49661a2008-12-10 16:45:50 +00004865 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00004866#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00004867 /* If the database supports auto-vacuum, and the second or subsequent
4868 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00004869 ** for that page now.
4870 **
4871 ** If this is the first overflow page, then write a partial entry
4872 ** to the pointer-map. If we write nothing to this pointer-map slot,
4873 ** then the optimistic overflow chain processing in clearCell()
4874 ** may misinterpret the uninitialised values and delete the
4875 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00004876 */
danielk19774ef24492007-05-23 09:52:41 +00004877 if( pBt->autoVacuum && rc==SQLITE_OK ){
4878 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
4879 rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
danielk197789a4be82007-05-23 13:34:32 +00004880 if( rc ){
4881 releasePage(pOvfl);
4882 }
danielk1977afcdd022004-10-31 16:25:42 +00004883 }
4884#endif
drh3b7511c2001-05-26 13:15:44 +00004885 if( rc ){
drh9b171272004-05-08 02:03:22 +00004886 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00004887 return rc;
4888 }
drhc5053fb2008-11-27 02:22:10 +00004889
4890 /* If pToRelease is not zero than pPrior points into the data area
4891 ** of pToRelease. Make sure pToRelease is still writeable. */
4892 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
4893
4894 /* If pPrior is part of the data area of pPage, then make sure pPage
4895 ** is still writeable */
4896 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
4897 || sqlite3PagerIswriteable(pPage->pDbPage) );
4898
drh3aac2dd2004-04-26 14:10:20 +00004899 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00004900 releasePage(pToRelease);
4901 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00004902 pPrior = pOvfl->aData;
4903 put4byte(pPrior, 0);
4904 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00004905 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00004906 }
4907 n = nPayload;
4908 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00004909
4910 /* If pToRelease is not zero than pPayload points into the data area
4911 ** of pToRelease. Make sure pToRelease is still writeable. */
4912 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
4913
4914 /* If pPayload is part of the data area of pPage, then make sure pPage
4915 ** is still writeable */
4916 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
4917 || sqlite3PagerIswriteable(pPage->pDbPage) );
4918
drhb026e052007-05-02 01:34:31 +00004919 if( nSrc>0 ){
4920 if( n>nSrc ) n = nSrc;
4921 assert( pSrc );
4922 memcpy(pPayload, pSrc, n);
4923 }else{
4924 memset(pPayload, 0, n);
4925 }
drh3b7511c2001-05-26 13:15:44 +00004926 nPayload -= n;
drhde647132004-05-07 17:57:49 +00004927 pPayload += n;
drh9b171272004-05-08 02:03:22 +00004928 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00004929 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00004930 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00004931 if( nSrc==0 ){
4932 nSrc = nData;
4933 pSrc = pData;
4934 }
drhdd793422001-06-28 01:54:48 +00004935 }
drh9b171272004-05-08 02:03:22 +00004936 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00004937 return SQLITE_OK;
4938}
4939
drh14acc042001-06-10 19:56:58 +00004940/*
4941** Remove the i-th cell from pPage. This routine effects pPage only.
4942** The cell content is not freed or deallocated. It is assumed that
4943** the cell content has been copied someplace else. This routine just
4944** removes the reference to the cell from pPage.
4945**
4946** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00004947*/
shane0af3f892008-11-12 04:55:34 +00004948static int dropCell(MemPage *pPage, int idx, int sz){
drh43605152004-05-29 21:46:49 +00004949 int i; /* Loop counter */
4950 int pc; /* Offset to cell content of cell being deleted */
4951 u8 *data; /* pPage->aData */
4952 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00004953 int rc; /* The return code */
drh43605152004-05-29 21:46:49 +00004954
drh8c42ca92001-06-22 19:15:00 +00004955 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00004956 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00004957 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00004958 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00004959 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00004960 ptr = &data[pPage->cellOffset + 2*idx];
shane0af3f892008-11-12 04:55:34 +00004961 pc = get2byte(ptr);
drhc5053fb2008-11-27 02:22:10 +00004962 if( (pc<pPage->hdrOffset+6+(pPage->leaf?0:4))
4963 || (pc+sz>pPage->pBt->usableSize) ){
shane0af3f892008-11-12 04:55:34 +00004964 return SQLITE_CORRUPT_BKPT;
4965 }
shanedcc50b72008-11-13 18:29:50 +00004966 rc = freeSpace(pPage, pc, sz);
4967 if( rc!=SQLITE_OK ){
4968 return rc;
4969 }
drh43605152004-05-29 21:46:49 +00004970 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
4971 ptr[0] = ptr[2];
4972 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00004973 }
4974 pPage->nCell--;
drh43605152004-05-29 21:46:49 +00004975 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
4976 pPage->nFree += 2;
shane0af3f892008-11-12 04:55:34 +00004977 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00004978}
4979
4980/*
4981** Insert a new cell on pPage at cell index "i". pCell points to the
4982** content of the cell.
4983**
4984** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00004985** will not fit, then make a copy of the cell content into pTemp if
4986** pTemp is not null. Regardless of pTemp, allocate a new entry
4987** in pPage->aOvfl[] and make it point to the cell content (either
4988** in pTemp or the original pCell) and also record its index.
4989** Allocating a new entry in pPage->aCell[] implies that
4990** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00004991**
4992** If nSkip is non-zero, then do not copy the first nSkip bytes of the
4993** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00004994** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00004995** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00004996*/
danielk1977e80463b2004-11-03 03:01:16 +00004997static int insertCell(
drh24cd67e2004-05-10 16:18:47 +00004998 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00004999 int i, /* New cell becomes the i-th cell of the page */
5000 u8 *pCell, /* Content of the new cell */
5001 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005002 u8 *pTemp, /* Temp storage space for pCell, if needed */
5003 u8 nSkip /* Do not write the first nSkip bytes of the cell */
drh24cd67e2004-05-10 16:18:47 +00005004){
drh43605152004-05-29 21:46:49 +00005005 int idx; /* Where to write new cell content in data[] */
5006 int j; /* Loop counter */
5007 int top; /* First byte of content for any cell in data[] */
5008 int end; /* First byte past the last cell pointer in data[] */
5009 int ins; /* Index in data[] where new cell pointer is inserted */
5010 int hdr; /* Offset into data[] of the page header */
5011 int cellOffset; /* Address of first cell pointer in data[] */
5012 u8 *data; /* The content of the whole page */
5013 u8 *ptr; /* Used for moving information around in data[] */
5014
5015 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhf49661a2008-12-10 16:45:50 +00005016 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
5017 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh43605152004-05-29 21:46:49 +00005018 assert( sz==cellSizePtr(pPage, pCell) );
drh1fee73e2007-08-29 04:00:57 +00005019 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +00005020 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005021 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005022 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005023 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005024 }
drh43605152004-05-29 21:46:49 +00005025 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005026 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005027 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005028 pPage->aOvfl[j].idx = (u16)i;
drh43605152004-05-29 21:46:49 +00005029 pPage->nFree = 0;
drh14acc042001-06-10 19:56:58 +00005030 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005031 int rc = sqlite3PagerWrite(pPage->pDbPage);
5032 if( rc!=SQLITE_OK ){
5033 return rc;
5034 }
5035 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005036 data = pPage->aData;
5037 hdr = pPage->hdrOffset;
5038 top = get2byte(&data[hdr+5]);
5039 cellOffset = pPage->cellOffset;
5040 end = cellOffset + 2*pPage->nCell + 2;
5041 ins = cellOffset + 2*i;
5042 if( end > top - sz ){
shane0af3f892008-11-12 04:55:34 +00005043 rc = defragmentPage(pPage);
5044 if( rc!=SQLITE_OK ){
5045 return rc;
5046 }
drh43605152004-05-29 21:46:49 +00005047 top = get2byte(&data[hdr+5]);
5048 assert( end + sz <= top );
5049 }
5050 idx = allocateSpace(pPage, sz);
5051 assert( idx>0 );
5052 assert( end <= get2byte(&data[hdr+5]) );
shane0af3f892008-11-12 04:55:34 +00005053 if (idx+sz > pPage->pBt->usableSize) {
shane34ac18d2008-11-11 22:18:20 +00005054 return SQLITE_CORRUPT_BKPT;
shane0af3f892008-11-12 04:55:34 +00005055 }
drh43605152004-05-29 21:46:49 +00005056 pPage->nCell++;
5057 pPage->nFree -= 2;
danielk1977a3ad5e72005-01-07 08:56:44 +00005058 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005059 for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
5060 ptr[0] = ptr[-2];
5061 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00005062 }
drh43605152004-05-29 21:46:49 +00005063 put2byte(&data[ins], idx);
5064 put2byte(&data[hdr+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005065#ifndef SQLITE_OMIT_AUTOVACUUM
5066 if( pPage->pBt->autoVacuum ){
5067 /* The cell may contain a pointer to an overflow page. If so, write
5068 ** the entry for the overflow page into the pointer map.
5069 */
5070 CellInfo info;
drh16a9b832007-05-05 18:39:25 +00005071 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh72365832007-03-06 15:53:44 +00005072 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19777b801382009-04-29 06:27:56 +00005073 if( info.iOverflow ){
danielk1977a19df672004-11-03 11:37:07 +00005074 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
danielk19776e465eb2007-08-21 13:11:00 +00005075 rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno);
danielk1977a19df672004-11-03 11:37:07 +00005076 if( rc!=SQLITE_OK ) return rc;
5077 }
5078 }
5079#endif
drh14acc042001-06-10 19:56:58 +00005080 }
danielk1977e80463b2004-11-03 03:01:16 +00005081
danielk1977e80463b2004-11-03 03:01:16 +00005082 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00005083}
5084
5085/*
drhfa1a98a2004-05-14 19:08:17 +00005086** Add a list of cells to a page. The page should be initially empty.
5087** The cells are guaranteed to fit on the page.
5088*/
5089static void assemblePage(
5090 MemPage *pPage, /* The page to be assemblied */
5091 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005092 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005093 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005094){
5095 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005096 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005097 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005098 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5099 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5100 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005101
drh43605152004-05-29 21:46:49 +00005102 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005103 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00005104 assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
drhc5053fb2008-11-27 02:22:10 +00005105 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005106
5107 /* Check that the page has just been zeroed by zeroPage() */
5108 assert( pPage->nCell==0 );
5109 assert( get2byte(&data[hdr+5])==nUsable );
5110
5111 pCellptr = &data[pPage->cellOffset + nCell*2];
5112 cellbody = nUsable;
5113 for(i=nCell-1; i>=0; i--){
5114 pCellptr -= 2;
5115 cellbody -= aSize[i];
5116 put2byte(pCellptr, cellbody);
5117 memcpy(&data[cellbody], apCell[i], aSize[i]);
drhfa1a98a2004-05-14 19:08:17 +00005118 }
danielk1977fad91942009-04-29 17:49:59 +00005119 put2byte(&data[hdr+3], nCell);
5120 put2byte(&data[hdr+5], cellbody);
5121 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005122 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005123}
5124
drh14acc042001-06-10 19:56:58 +00005125/*
drhc3b70572003-01-04 19:44:07 +00005126** The following parameters determine how many adjacent pages get involved
5127** in a balancing operation. NN is the number of neighbors on either side
5128** of the page that participate in the balancing operation. NB is the
5129** total number of pages that participate, including the target page and
5130** NN neighbors on either side.
5131**
5132** The minimum value of NN is 1 (of course). Increasing NN above 1
5133** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5134** in exchange for a larger degradation in INSERT and UPDATE performance.
5135** The value of NN appears to give the best results overall.
5136*/
5137#define NN 1 /* Number of neighbors on either side of pPage */
5138#define NB (NN*2+1) /* Total pages involved in the balance */
5139
drh43605152004-05-29 21:46:49 +00005140/* Forward reference */
danielk197771d5d2c2008-09-29 11:49:47 +00005141static int balance(BtCursor*, int);
danielk1977ac245ec2005-01-14 13:50:11 +00005142
drh615ae552005-01-16 23:21:00 +00005143#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005144/*
5145** This version of balance() handles the common special case where
5146** a new entry is being inserted on the extreme right-end of the
5147** tree, in other words, when the new entry will become the largest
5148** entry in the tree.
5149**
5150** Instead of trying balance the 3 right-most leaf pages, just add
5151** a new page to the right-hand side and put the one new entry in
5152** that page. This leaves the right side of the tree somewhat
5153** unbalanced. But odds are that we will be inserting new entries
5154** at the end soon afterwards so the nearly empty page will quickly
5155** fill up. On average.
5156**
5157** pPage is the leaf page which is the right-most page in the tree.
5158** pParent is its parent. pPage must have a single overflow entry
5159** which is also the right-most entry on the page.
5160*/
danielk197771d5d2c2008-09-29 11:49:47 +00005161static int balance_quick(BtCursor *pCur){
danielk1977ac245ec2005-01-14 13:50:11 +00005162 int rc;
danielk1977eaa06f62008-09-18 17:34:44 +00005163 MemPage *pNew = 0;
danielk1977ac245ec2005-01-14 13:50:11 +00005164 Pgno pgnoNew;
5165 u8 *pCell;
drha9121e42008-02-19 14:59:35 +00005166 u16 szCell;
danielk1977ac245ec2005-01-14 13:50:11 +00005167 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00005168 MemPage *pPage = pCur->apPage[pCur->iPage];
5169 MemPage *pParent = pCur->apPage[pCur->iPage-1];
danielk1977aef0bf62005-12-30 16:28:01 +00005170 BtShared *pBt = pPage->pBt;
danielk197779a40da2005-01-16 08:00:01 +00005171 int parentIdx = pParent->nCell; /* pParent new divider cell index */
5172 int parentSize; /* Size of new divider cell */
5173 u8 parentCell[64]; /* Space for the new divider cell */
danielk1977ac245ec2005-01-14 13:50:11 +00005174
drh1fee73e2007-08-29 04:00:57 +00005175 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005176
danielk1977ac245ec2005-01-14 13:50:11 +00005177 /* Allocate a new page. Insert the overflow cell from pPage
5178 ** into it. Then remove the overflow cell from pPage.
5179 */
drh4f0c5872007-03-26 22:05:01 +00005180 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk1977eaa06f62008-09-18 17:34:44 +00005181 if( rc==SQLITE_OK ){
5182 pCell = pPage->aOvfl[0].pCell;
5183 szCell = cellSizePtr(pPage, pCell);
drhc5053fb2008-11-27 02:22:10 +00005184 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977eaa06f62008-09-18 17:34:44 +00005185 zeroPage(pNew, pPage->aData[0]);
5186 assemblePage(pNew, 1, &pCell, &szCell);
5187 pPage->nOverflow = 0;
5188
danielk1977eaa06f62008-09-18 17:34:44 +00005189 /* pPage is currently the right-child of pParent. Change this
5190 ** so that the right-child is the new page allocated above and
5191 ** pPage is the next-to-right child.
5192 **
5193 ** Ignore the return value of the call to fillInCell(). fillInCell()
5194 ** may only return other than SQLITE_OK if it is required to allocate
5195 ** one or more overflow pages. Since an internal table B-Tree cell
5196 ** may never spill over onto an overflow page (it is a maximum of
5197 ** 13 bytes in size), it is not neccessary to check the return code.
5198 **
5199 ** Similarly, the insertCell() function cannot fail if the page
5200 ** being inserted into is already writable and the cell does not
5201 ** contain an overflow pointer. So ignore this return code too.
5202 */
5203 assert( pPage->nCell>0 );
5204 pCell = findCell(pPage, pPage->nCell-1);
5205 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
5206 fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, 0, &parentSize);
5207 assert( parentSize<64 );
5208 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
5209 insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4);
5210 put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno);
5211 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5212
5213 /* If this is an auto-vacuum database, update the pointer map
5214 ** with entries for the new page, and any pointer from the
5215 ** cell on the page to an overflow page.
5216 */
5217 if( ISAUTOVACUUM ){
5218 rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
5219 if( rc==SQLITE_OK ){
5220 rc = ptrmapPutOvfl(pNew, 0);
5221 }
danielk1977ac11ee62005-01-15 12:45:51 +00005222 }
danielk1977e08a3c42008-09-18 18:17:03 +00005223
5224 /* Release the reference to the new page. */
5225 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005226 }
5227
danielk1977eaa06f62008-09-18 17:34:44 +00005228 /* At this point the pPage->nFree variable is not set correctly with
5229 ** respect to the content of the page (because it was set to 0 by
5230 ** insertCell). So call sqlite3BtreeInitPage() to make sure it is
5231 ** correct.
5232 **
5233 ** This has to be done even if an error will be returned. Normally, if
5234 ** an error occurs during tree balancing, the contents of MemPage are
5235 ** not important, as they will be recalculated when the page is rolled
5236 ** back. But here, in balance_quick(), it is possible that pPage has
5237 ** not yet been marked dirty or written into the journal file. Therefore
5238 ** it will not be rolled back and so it is important to make sure that
5239 ** the page data and contents of MemPage are consistent.
5240 */
5241 pPage->isInit = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00005242 sqlite3BtreeInitPage(pPage);
danielk1977a4124bd2008-12-23 10:37:47 +00005243 assert( pPage->nOverflow==0 );
danielk1977eaa06f62008-09-18 17:34:44 +00005244
danielk1977e08a3c42008-09-18 18:17:03 +00005245 /* If everything else succeeded, balance the parent page, in
5246 ** case the divider cell inserted caused it to become overfull.
danielk197779a40da2005-01-16 08:00:01 +00005247 */
danielk1977eaa06f62008-09-18 17:34:44 +00005248 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00005249 releasePage(pPage);
5250 pCur->iPage--;
5251 rc = balance(pCur, 0);
danielk1977eaa06f62008-09-18 17:34:44 +00005252 }
5253 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005254}
drh615ae552005-01-16 23:21:00 +00005255#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005256
drhc3b70572003-01-04 19:44:07 +00005257/*
drhab01f612004-05-22 02:55:23 +00005258** This routine redistributes Cells on pPage and up to NN*2 siblings
drh8b2f49b2001-06-08 00:21:52 +00005259** of pPage so that all pages have about the same amount of free space.
drh0c6cc4e2004-06-15 02:13:26 +00005260** Usually NN siblings on either side of pPage is used in the balancing,
5261** though more siblings might come from one side if pPage is the first
drhab01f612004-05-22 02:55:23 +00005262** or last child of its parent. If pPage has fewer than 2*NN siblings
drh8b2f49b2001-06-08 00:21:52 +00005263** (something which can only happen if pPage is the root page or a
drh14acc042001-06-10 19:56:58 +00005264** child of root) then all available siblings participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005265**
drh0c6cc4e2004-06-15 02:13:26 +00005266** The number of siblings of pPage might be increased or decreased by one or
5267** two in an effort to keep pages nearly full but not over full. The root page
drhab01f612004-05-22 02:55:23 +00005268** is special and is allowed to be nearly empty. If pPage is
drh8c42ca92001-06-22 19:15:00 +00005269** the root page, then the depth of the tree might be increased
drh8b2f49b2001-06-08 00:21:52 +00005270** or decreased by one, as necessary, to keep the root page from being
drhab01f612004-05-22 02:55:23 +00005271** overfull or completely empty.
drh14acc042001-06-10 19:56:58 +00005272**
drh8b2f49b2001-06-08 00:21:52 +00005273** Note that when this routine is called, some of the Cells on pPage
drh4b70f112004-05-02 21:12:19 +00005274** might not actually be stored in pPage->aData[]. This can happen
drh8b2f49b2001-06-08 00:21:52 +00005275** if the page is overfull. Part of the job of this routine is to
drh4b70f112004-05-02 21:12:19 +00005276** make sure all Cells for pPage once again fit in pPage->aData[].
drh14acc042001-06-10 19:56:58 +00005277**
drh8c42ca92001-06-22 19:15:00 +00005278** In the course of balancing the siblings of pPage, the parent of pPage
5279** might become overfull or underfull. If that happens, then this routine
5280** is called recursively on the parent.
5281**
drh5e00f6c2001-09-13 13:46:56 +00005282** If this routine fails for any reason, it might leave the database
5283** in a corrupted state. So if this routine fails, the database should
5284** be rolled back.
drh8b2f49b2001-06-08 00:21:52 +00005285*/
danielk197771d5d2c2008-09-29 11:49:47 +00005286static int balance_nonroot(BtCursor *pCur){
5287 MemPage *pPage; /* The over or underfull page to balance */
drh8b2f49b2001-06-08 00:21:52 +00005288 MemPage *pParent; /* The parent of pPage */
drh16a9b832007-05-05 18:39:25 +00005289 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005290 int nCell = 0; /* Number of cells in apCell[] */
5291 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005292 int nOld = 0; /* Number of pages in apOld[] */
5293 int nNew = 0; /* Number of pages in apNew[] */
drh8b2f49b2001-06-08 00:21:52 +00005294 int nDiv; /* Number of cells in apDiv[] */
drh14acc042001-06-10 19:56:58 +00005295 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005296 int idx; /* Index of pPage in pParent->aCell[] */
5297 int nxDiv; /* Next divider slot in pParent->aCell[] */
drh14acc042001-06-10 19:56:58 +00005298 int rc; /* The return code */
drh91025292004-05-03 19:49:32 +00005299 int leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005300 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005301 int usableSpace; /* Bytes in pPage beyond the header */
5302 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005303 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005304 int iSpace1 = 0; /* First unused byte of aSpace1[] */
5305 int iSpace2 = 0; /* First unused byte of aSpace2[] */
drhfacf0302008-06-17 15:12:00 +00005306 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005307 MemPage *apOld[NB]; /* pPage and up to two siblings */
5308 Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
drh4b70f112004-05-02 21:12:19 +00005309 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005310 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
5311 Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */
drh4b70f112004-05-02 21:12:19 +00005312 u8 *apDiv[NB]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005313 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5314 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005315 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005316 u16 *szCell; /* Local size of all cells in apCell[] */
drhe5ae5732008-06-15 02:51:47 +00005317 u8 *aCopy[NB]; /* Space for holding data of apCopy[] */
5318 u8 *aSpace1; /* Space for copies of dividers cells before balance */
5319 u8 *aSpace2 = 0; /* Space for overflow dividers cells after balance */
danielk1977ac11ee62005-01-15 12:45:51 +00005320 u8 *aFrom = 0;
drh8b2f49b2001-06-08 00:21:52 +00005321
danielk197771d5d2c2008-09-29 11:49:47 +00005322 pPage = pCur->apPage[pCur->iPage];
drh1fee73e2007-08-29 04:00:57 +00005323 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf94a1732008-09-30 17:18:17 +00005324 VVA_ONLY( pCur->pagesShuffled = 1 );
drhd677b3d2007-08-20 22:48:41 +00005325
drh14acc042001-06-10 19:56:58 +00005326 /*
drh43605152004-05-29 21:46:49 +00005327 ** Find the parent page.
drh8b2f49b2001-06-08 00:21:52 +00005328 */
danielk197771d5d2c2008-09-29 11:49:47 +00005329 assert( pCur->iPage>0 );
5330 assert( pPage->isInit );
danielk19776e465eb2007-08-21 13:11:00 +00005331 assert( sqlite3PagerIswriteable(pPage->pDbPage) || pPage->nOverflow==1 );
drh4b70f112004-05-02 21:12:19 +00005332 pBt = pPage->pBt;
danielk197771d5d2c2008-09-29 11:49:47 +00005333 pParent = pCur->apPage[pCur->iPage-1];
drh43605152004-05-29 21:46:49 +00005334 assert( pParent );
danielk19773b8a05f2007-03-19 17:44:26 +00005335 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pParent->pDbPage)) ){
danielk1977a4124bd2008-12-23 10:37:47 +00005336 goto balance_cleanup;
danielk197707cb5602006-01-20 10:55:05 +00005337 }
danielk1977474b7cc2008-07-09 11:49:46 +00005338
drh43605152004-05-29 21:46:49 +00005339 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
drh2e38c322004-09-03 18:38:44 +00005340
drh615ae552005-01-16 23:21:00 +00005341#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005342 /*
5343 ** A special case: If a new entry has just been inserted into a
5344 ** table (that is, a btree with integer keys and all data at the leaves)
drh09d0deb2005-08-02 17:13:09 +00005345 ** and the new entry is the right-most entry in the tree (it has the
drhf222e712005-01-14 22:55:49 +00005346 ** largest key) then use the special balance_quick() routine for
5347 ** balancing. balance_quick() is much faster and results in a tighter
5348 ** packing of data in the common case.
5349 */
danielk1977ac245ec2005-01-14 13:50:11 +00005350 if( pPage->leaf &&
5351 pPage->intKey &&
danielk1977ac245ec2005-01-14 13:50:11 +00005352 pPage->nOverflow==1 &&
5353 pPage->aOvfl[0].idx==pPage->nCell &&
danielk197771d5d2c2008-09-29 11:49:47 +00005354 pParent->pgno!=1 &&
danielk1977ac245ec2005-01-14 13:50:11 +00005355 get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno
5356 ){
drh44845222008-07-17 18:39:57 +00005357 assert( pPage->intKey );
danielk1977ac11ee62005-01-15 12:45:51 +00005358 /*
5359 ** TODO: Check the siblings to the left of pPage. It may be that
5360 ** they are not full and no new page is required.
5361 */
danielk197771d5d2c2008-09-29 11:49:47 +00005362 return balance_quick(pCur);
danielk1977ac245ec2005-01-14 13:50:11 +00005363 }
5364#endif
5365
danielk19776e465eb2007-08-21 13:11:00 +00005366 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pPage->pDbPage)) ){
danielk1977a4124bd2008-12-23 10:37:47 +00005367 goto balance_cleanup;
danielk19776e465eb2007-08-21 13:11:00 +00005368 }
5369
drh2e38c322004-09-03 18:38:44 +00005370 /*
drh4b70f112004-05-02 21:12:19 +00005371 ** Find the cell in the parent page whose left child points back
drh14acc042001-06-10 19:56:58 +00005372 ** to pPage. The "idx" variable is the index of that cell. If pPage
5373 ** is the rightmost child of pParent then set idx to pParent->nCell
drh8b2f49b2001-06-08 00:21:52 +00005374 */
danielk1977bf93c562008-09-29 15:53:25 +00005375 idx = pCur->aiIdx[pCur->iPage-1];
5376 assertParentIndex(pParent, idx, pPage->pgno);
drh8b2f49b2001-06-08 00:21:52 +00005377
5378 /*
drh4b70f112004-05-02 21:12:19 +00005379 ** Find sibling pages to pPage and the cells in pParent that divide
drhc3b70572003-01-04 19:44:07 +00005380 ** the siblings. An attempt is made to find NN siblings on either
5381 ** side of pPage. More siblings are taken from one side, however, if
5382 ** pPage there are fewer than NN siblings on the other side. If pParent
5383 ** has NB or fewer children then all children of pParent are taken.
drh14acc042001-06-10 19:56:58 +00005384 */
drhc3b70572003-01-04 19:44:07 +00005385 nxDiv = idx - NN;
5386 if( nxDiv + NB > pParent->nCell ){
5387 nxDiv = pParent->nCell - NB + 1;
drh8b2f49b2001-06-08 00:21:52 +00005388 }
drhc3b70572003-01-04 19:44:07 +00005389 if( nxDiv<0 ){
5390 nxDiv = 0;
5391 }
drh8b2f49b2001-06-08 00:21:52 +00005392 nDiv = 0;
drhc3b70572003-01-04 19:44:07 +00005393 for(i=0, k=nxDiv; i<NB; i++, k++){
drh14acc042001-06-10 19:56:58 +00005394 if( k<pParent->nCell ){
danielk19771cc5ed82007-05-16 17:28:43 +00005395 apDiv[i] = findCell(pParent, k);
drh8b2f49b2001-06-08 00:21:52 +00005396 nDiv++;
drha34b6762004-05-07 13:30:42 +00005397 assert( !pParent->leaf );
drh43605152004-05-29 21:46:49 +00005398 pgnoOld[i] = get4byte(apDiv[i]);
drh14acc042001-06-10 19:56:58 +00005399 }else if( k==pParent->nCell ){
drh43605152004-05-29 21:46:49 +00005400 pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
drh14acc042001-06-10 19:56:58 +00005401 }else{
5402 break;
drh8b2f49b2001-06-08 00:21:52 +00005403 }
danielk197771d5d2c2008-09-29 11:49:47 +00005404 rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i]);
drh6019e162001-07-02 17:51:45 +00005405 if( rc ) goto balance_cleanup;
danielk197771d5d2c2008-09-29 11:49:47 +00005406 /* apOld[i]->idxParent = k; */
drh91025292004-05-03 19:49:32 +00005407 apCopy[i] = 0;
5408 assert( i==nOld );
drh14acc042001-06-10 19:56:58 +00005409 nOld++;
danielk1977634f2982005-03-28 08:44:07 +00005410 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
drh8b2f49b2001-06-08 00:21:52 +00005411 }
5412
drha9121e42008-02-19 14:59:35 +00005413 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00005414 ** alignment */
drha9121e42008-02-19 14:59:35 +00005415 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00005416
drh8b2f49b2001-06-08 00:21:52 +00005417 /*
danielk1977634f2982005-03-28 08:44:07 +00005418 ** Allocate space for memory structures
5419 */
drhfacf0302008-06-17 15:12:00 +00005420 szScratch =
drha9121e42008-02-19 14:59:35 +00005421 nMaxCells*sizeof(u8*) /* apCell */
5422 + nMaxCells*sizeof(u16) /* szCell */
5423 + (ROUND8(sizeof(MemPage))+pBt->pageSize)*NB /* aCopy */
drhe5ae5732008-06-15 02:51:47 +00005424 + pBt->pageSize /* aSpace1 */
drhfacf0302008-06-17 15:12:00 +00005425 + (ISAUTOVACUUM ? nMaxCells : 0); /* aFrom */
5426 apCell = sqlite3ScratchMalloc( szScratch );
danielk1977634f2982005-03-28 08:44:07 +00005427 if( apCell==0 ){
5428 rc = SQLITE_NOMEM;
5429 goto balance_cleanup;
5430 }
drha9121e42008-02-19 14:59:35 +00005431 szCell = (u16*)&apCell[nMaxCells];
danielk1977634f2982005-03-28 08:44:07 +00005432 aCopy[0] = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00005433 assert( EIGHT_BYTE_ALIGNMENT(aCopy[0]) );
danielk1977634f2982005-03-28 08:44:07 +00005434 for(i=1; i<NB; i++){
drhc96d8532005-05-03 12:30:33 +00005435 aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
drh66e80082008-12-16 13:46:29 +00005436 assert( ((aCopy[i] - (u8*)0) & 7)==0 ); /* 8-byte alignment required */
danielk1977634f2982005-03-28 08:44:07 +00005437 }
drhe5ae5732008-06-15 02:51:47 +00005438 aSpace1 = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
drhea598cb2009-04-05 12:22:08 +00005439 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
danielk197785d90ca2008-07-19 14:25:15 +00005440 if( ISAUTOVACUUM ){
drhe5ae5732008-06-15 02:51:47 +00005441 aFrom = &aSpace1[pBt->pageSize];
danielk1977634f2982005-03-28 08:44:07 +00005442 }
drhfacf0302008-06-17 15:12:00 +00005443 aSpace2 = sqlite3PageMalloc(pBt->pageSize);
drhe5ae5732008-06-15 02:51:47 +00005444 if( aSpace2==0 ){
5445 rc = SQLITE_NOMEM;
5446 goto balance_cleanup;
5447 }
danielk1977634f2982005-03-28 08:44:07 +00005448
5449 /*
drh14acc042001-06-10 19:56:58 +00005450 ** Make copies of the content of pPage and its siblings into aOld[].
5451 ** The rest of this function will use data from the copies rather
5452 ** that the original pages since the original pages will be in the
5453 ** process of being overwritten.
5454 */
5455 for(i=0; i<nOld; i++){
drhbf4bca52007-09-06 22:19:14 +00005456 MemPage *p = apCopy[i] = (MemPage*)aCopy[i];
5457 memcpy(p, apOld[i], sizeof(MemPage));
5458 p->aData = (void*)&p[1];
5459 memcpy(p->aData, apOld[i]->aData, pBt->pageSize);
drh14acc042001-06-10 19:56:58 +00005460 }
5461
5462 /*
5463 ** Load pointers to all cells on sibling pages and the divider cells
5464 ** into the local apCell[] array. Make copies of the divider cells
drhe5ae5732008-06-15 02:51:47 +00005465 ** into space obtained form aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00005466 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00005467 **
5468 ** If the siblings are on leaf pages, then the child pointers of the
5469 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00005470 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00005471 ** child pointers. If siblings are not leaves, then all cell in
5472 ** apCell[] include child pointers. Either way, all cells in apCell[]
5473 ** are alike.
drh96f5b762004-05-16 16:24:36 +00005474 **
5475 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
5476 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00005477 */
5478 nCell = 0;
drh4b70f112004-05-02 21:12:19 +00005479 leafCorrection = pPage->leaf*4;
drh44845222008-07-17 18:39:57 +00005480 leafData = pPage->hasData;
drh8b2f49b2001-06-08 00:21:52 +00005481 for(i=0; i<nOld; i++){
drh4b70f112004-05-02 21:12:19 +00005482 MemPage *pOld = apCopy[i];
drh43605152004-05-29 21:46:49 +00005483 int limit = pOld->nCell+pOld->nOverflow;
5484 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00005485 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00005486 apCell[nCell] = findOverflowCell(pOld, j);
5487 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk197785d90ca2008-07-19 14:25:15 +00005488 if( ISAUTOVACUUM ){
danielk1977ac11ee62005-01-15 12:45:51 +00005489 int a;
drhf49661a2008-12-10 16:45:50 +00005490 aFrom[nCell] = (u8)i; assert( i>=0 && i<6 );
danielk1977ac11ee62005-01-15 12:45:51 +00005491 for(a=0; a<pOld->nOverflow; a++){
5492 if( pOld->aOvfl[a].pCell==apCell[nCell] ){
5493 aFrom[nCell] = 0xFF;
5494 break;
5495 }
5496 }
5497 }
drh14acc042001-06-10 19:56:58 +00005498 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00005499 }
5500 if( i<nOld-1 ){
drha9121e42008-02-19 14:59:35 +00005501 u16 sz = cellSizePtr(pParent, apDiv[i]);
drh8b18dd42004-05-12 19:18:15 +00005502 if( leafData ){
drh96f5b762004-05-16 16:24:36 +00005503 /* With the LEAFDATA flag, pParent cells hold only INTKEYs that
5504 ** are duplicates of keys on the child pages. We need to remove
5505 ** the divider cells from pParent, but the dividers cells are not
5506 ** added to apCell[] because they are duplicates of child cells.
5507 */
drh8b18dd42004-05-12 19:18:15 +00005508 dropCell(pParent, nxDiv, sz);
drh4b70f112004-05-02 21:12:19 +00005509 }else{
drhb6f41482004-05-14 01:58:11 +00005510 u8 *pTemp;
danielk1977634f2982005-03-28 08:44:07 +00005511 assert( nCell<nMaxCells );
drhb6f41482004-05-14 01:58:11 +00005512 szCell[nCell] = sz;
drhe5ae5732008-06-15 02:51:47 +00005513 pTemp = &aSpace1[iSpace1];
5514 iSpace1 += sz;
5515 assert( sz<=pBt->pageSize/4 );
5516 assert( iSpace1<=pBt->pageSize );
drhb6f41482004-05-14 01:58:11 +00005517 memcpy(pTemp, apDiv[i], sz);
5518 apCell[nCell] = pTemp+leafCorrection;
danielk197785d90ca2008-07-19 14:25:15 +00005519 if( ISAUTOVACUUM ){
danielk1977ac11ee62005-01-15 12:45:51 +00005520 aFrom[nCell] = 0xFF;
5521 }
drhb6f41482004-05-14 01:58:11 +00005522 dropCell(pParent, nxDiv, sz);
drhf49661a2008-12-10 16:45:50 +00005523 assert( leafCorrection==0 || leafCorrection==4 );
5524 szCell[nCell] -= (u16)leafCorrection;
drh43605152004-05-29 21:46:49 +00005525 assert( get4byte(pTemp)==pgnoOld[i] );
drh8b18dd42004-05-12 19:18:15 +00005526 if( !pOld->leaf ){
5527 assert( leafCorrection==0 );
5528 /* The right pointer of the child page pOld becomes the left
5529 ** pointer of the divider cell */
drh43605152004-05-29 21:46:49 +00005530 memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
drh8b18dd42004-05-12 19:18:15 +00005531 }else{
5532 assert( leafCorrection==4 );
danielk197739c96042007-05-12 10:41:47 +00005533 if( szCell[nCell]<4 ){
5534 /* Do not allow any cells smaller than 4 bytes. */
5535 szCell[nCell] = 4;
5536 }
drh8b18dd42004-05-12 19:18:15 +00005537 }
5538 nCell++;
drh4b70f112004-05-02 21:12:19 +00005539 }
drh8b2f49b2001-06-08 00:21:52 +00005540 }
5541 }
5542
5543 /*
drh6019e162001-07-02 17:51:45 +00005544 ** Figure out the number of pages needed to hold all nCell cells.
5545 ** Store this number in "k". Also compute szNew[] which is the total
5546 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00005547 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00005548 ** cntNew[k] should equal nCell.
5549 **
drh96f5b762004-05-16 16:24:36 +00005550 ** Values computed by this block:
5551 **
5552 ** k: The total number of sibling pages
5553 ** szNew[i]: Spaced used on the i-th sibling page.
5554 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
5555 ** the right of the i-th sibling page.
5556 ** usableSpace: Number of bytes of space available on each sibling.
5557 **
drh8b2f49b2001-06-08 00:21:52 +00005558 */
drh43605152004-05-29 21:46:49 +00005559 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00005560 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00005561 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00005562 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00005563 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00005564 szNew[k] = subtotal - szCell[i];
5565 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00005566 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00005567 subtotal = 0;
5568 k++;
5569 }
5570 }
5571 szNew[k] = subtotal;
5572 cntNew[k] = nCell;
5573 k++;
drh96f5b762004-05-16 16:24:36 +00005574
5575 /*
5576 ** The packing computed by the previous block is biased toward the siblings
5577 ** on the left side. The left siblings are always nearly full, while the
5578 ** right-most sibling might be nearly empty. This block of code attempts
5579 ** to adjust the packing of siblings to get a better balance.
5580 **
5581 ** This adjustment is more than an optimization. The packing above might
5582 ** be so out of balance as to be illegal. For example, the right-most
5583 ** sibling might be completely empty. This adjustment is not optional.
5584 */
drh6019e162001-07-02 17:51:45 +00005585 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00005586 int szRight = szNew[i]; /* Size of sibling on the right */
5587 int szLeft = szNew[i-1]; /* Size of sibling on the left */
5588 int r; /* Index of right-most cell in left sibling */
5589 int d; /* Index of first cell to the left of right sibling */
5590
5591 r = cntNew[i-1] - 1;
5592 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00005593 assert( d<nMaxCells );
5594 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00005595 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
5596 szRight += szCell[d] + 2;
5597 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00005598 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00005599 r = cntNew[i-1] - 1;
5600 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00005601 }
drh96f5b762004-05-16 16:24:36 +00005602 szNew[i] = szRight;
5603 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00005604 }
drh09d0deb2005-08-02 17:13:09 +00005605
5606 /* Either we found one or more cells (cntnew[0])>0) or we are the
5607 ** a virtual root page. A virtual root page is when the real root
5608 ** page is page 1 and we are the only child of that page.
5609 */
5610 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00005611
5612 /*
drh6b308672002-07-08 02:16:37 +00005613 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00005614 */
drh4b70f112004-05-02 21:12:19 +00005615 assert( pPage->pgno>1 );
5616 pageFlags = pPage->aData[0];
drh14acc042001-06-10 19:56:58 +00005617 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00005618 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00005619 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00005620 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00005621 pgnoNew[i] = pgnoOld[i];
5622 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005623 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00005624 nNew++;
danielk197728129562005-01-11 10:25:06 +00005625 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00005626 }else{
drh7aa8f852006-03-28 00:24:44 +00005627 assert( i>0 );
drh4f0c5872007-03-26 22:05:01 +00005628 rc = allocateBtreePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0);
drh6b308672002-07-08 02:16:37 +00005629 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00005630 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00005631 nNew++;
drh6b308672002-07-08 02:16:37 +00005632 }
drh8b2f49b2001-06-08 00:21:52 +00005633 }
5634
danielk1977299b1872004-11-22 10:02:10 +00005635 /* Free any old pages that were not reused as new pages.
5636 */
5637 while( i<nOld ){
5638 rc = freePage(apOld[i]);
5639 if( rc ) goto balance_cleanup;
5640 releasePage(apOld[i]);
5641 apOld[i] = 0;
5642 i++;
5643 }
5644
drh8b2f49b2001-06-08 00:21:52 +00005645 /*
drhf9ffac92002-03-02 19:00:31 +00005646 ** Put the new pages in accending order. This helps to
5647 ** keep entries in the disk file in order so that a scan
5648 ** of the table is a linear scan through the file. That
5649 ** in turn helps the operating system to deliver pages
5650 ** from the disk more rapidly.
5651 **
5652 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00005653 ** n is never more than NB (a small constant), that should
5654 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00005655 **
drhc3b70572003-01-04 19:44:07 +00005656 ** When NB==3, this one optimization makes the database
5657 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00005658 */
5659 for(i=0; i<k-1; i++){
5660 int minV = pgnoNew[i];
5661 int minI = i;
5662 for(j=i+1; j<k; j++){
drh7d02cb72003-06-04 16:24:39 +00005663 if( pgnoNew[j]<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00005664 minI = j;
5665 minV = pgnoNew[j];
5666 }
5667 }
5668 if( minI>i ){
5669 int t;
5670 MemPage *pT;
5671 t = pgnoNew[i];
5672 pT = apNew[i];
5673 pgnoNew[i] = pgnoNew[minI];
5674 apNew[i] = apNew[minI];
5675 pgnoNew[minI] = t;
5676 apNew[minI] = pT;
5677 }
5678 }
drha2fce642004-06-05 00:01:44 +00005679 TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
drh24cd67e2004-05-10 16:18:47 +00005680 pgnoOld[0],
5681 nOld>=2 ? pgnoOld[1] : 0,
5682 nOld>=3 ? pgnoOld[2] : 0,
drh10c0fa62004-05-18 12:50:17 +00005683 pgnoNew[0], szNew[0],
5684 nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
5685 nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
drha2fce642004-06-05 00:01:44 +00005686 nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
5687 nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));
drh24cd67e2004-05-10 16:18:47 +00005688
drhf9ffac92002-03-02 19:00:31 +00005689 /*
drh14acc042001-06-10 19:56:58 +00005690 ** Evenly distribute the data in apCell[] across the new pages.
5691 ** Insert divider cells into pParent as necessary.
5692 */
5693 j = 0;
5694 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00005695 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00005696 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00005697 assert( j<nMaxCells );
drh4b70f112004-05-02 21:12:19 +00005698 assert( pNew->pgno==pgnoNew[i] );
drh10131482008-07-11 03:34:09 +00005699 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00005700 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00005701 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00005702 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00005703
danielk1977ac11ee62005-01-15 12:45:51 +00005704 /* If this is an auto-vacuum database, update the pointer map entries
5705 ** that point to the siblings that were rearranged. These can be: left
5706 ** children of cells, the right-child of the page, or overflow pages
5707 ** pointed to by cells.
5708 */
danielk197785d90ca2008-07-19 14:25:15 +00005709 if( ISAUTOVACUUM ){
danielk1977ac11ee62005-01-15 12:45:51 +00005710 for(k=j; k<cntNew[i]; k++){
danielk1977634f2982005-03-28 08:44:07 +00005711 assert( k<nMaxCells );
danielk1977ac11ee62005-01-15 12:45:51 +00005712 if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){
danielk197779a40da2005-01-16 08:00:01 +00005713 rc = ptrmapPutOvfl(pNew, k-j);
danielk197787c52b52008-07-19 11:49:07 +00005714 if( rc==SQLITE_OK && leafCorrection==0 ){
5715 rc = ptrmapPut(pBt, get4byte(apCell[k]), PTRMAP_BTREE, pNew->pgno);
5716 }
danielk197779a40da2005-01-16 08:00:01 +00005717 if( rc!=SQLITE_OK ){
5718 goto balance_cleanup;
danielk1977ac11ee62005-01-15 12:45:51 +00005719 }
5720 }
5721 }
5722 }
danielk1977ac11ee62005-01-15 12:45:51 +00005723
5724 j = cntNew[i];
5725
5726 /* If the sibling page assembled above was not the right-most sibling,
5727 ** insert a divider cell into the parent page.
5728 */
drh14acc042001-06-10 19:56:58 +00005729 if( i<nNew-1 && j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00005730 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00005731 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00005732 int sz;
danielk1977634f2982005-03-28 08:44:07 +00005733
5734 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00005735 pCell = apCell[j];
5736 sz = szCell[j] + leafCorrection;
drhe5ae5732008-06-15 02:51:47 +00005737 pTemp = &aSpace2[iSpace2];
drh4b70f112004-05-02 21:12:19 +00005738 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00005739 memcpy(&pNew->aData[8], pCell, 4);
danielk197785d90ca2008-07-19 14:25:15 +00005740 if( ISAUTOVACUUM
danielk197787c52b52008-07-19 11:49:07 +00005741 && (aFrom[j]==0xFF || apCopy[aFrom[j]]->pgno!=pNew->pgno)
5742 ){
5743 rc = ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno);
5744 if( rc!=SQLITE_OK ){
5745 goto balance_cleanup;
5746 }
5747 }
drh8b18dd42004-05-12 19:18:15 +00005748 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00005749 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00005750 ** then there is no divider cell in apCell[]. Instead, the divider
5751 ** cell consists of the integer key for the right-most cell of
5752 ** the sibling-page assembled above only.
5753 */
drh6f11bef2004-05-13 01:12:56 +00005754 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00005755 j--;
drh16a9b832007-05-05 18:39:25 +00005756 sqlite3BtreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00005757 pCell = pTemp;
drh20abac22009-01-28 20:21:17 +00005758 rc = fillInCell(pParent, pCell, 0, info.nKey, 0, 0, 0, &sz);
5759 if( rc!=SQLITE_OK ){
5760 goto balance_cleanup;
5761 }
drh8b18dd42004-05-12 19:18:15 +00005762 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00005763 }else{
5764 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00005765 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00005766 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00005767 ** bytes, then it may actually be smaller than this
5768 ** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00005769 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00005770 ** insertCell(), so reparse the cell now.
5771 **
5772 ** Note that this can never happen in an SQLite data file, as all
5773 ** cells are at least 4 bytes. It only happens in b-trees used
5774 ** to evaluate "IN (SELECT ...)" and similar clauses.
5775 */
5776 if( szCell[j]==4 ){
5777 assert(leafCorrection==4);
5778 sz = cellSizePtr(pParent, pCell);
5779 }
drh4b70f112004-05-02 21:12:19 +00005780 }
drhe5ae5732008-06-15 02:51:47 +00005781 iSpace2 += sz;
5782 assert( sz<=pBt->pageSize/4 );
5783 assert( iSpace2<=pBt->pageSize );
danielk1977a3ad5e72005-01-07 08:56:44 +00005784 rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
danielk1977e80463b2004-11-03 03:01:16 +00005785 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00005786 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
drh43605152004-05-29 21:46:49 +00005787 put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
danielk197785d90ca2008-07-19 14:25:15 +00005788
danielk1977ac11ee62005-01-15 12:45:51 +00005789 /* If this is an auto-vacuum database, and not a leaf-data tree,
5790 ** then update the pointer map with an entry for the overflow page
5791 ** that the cell just inserted points to (if any).
5792 */
danielk197785d90ca2008-07-19 14:25:15 +00005793 if( ISAUTOVACUUM && !leafData ){
danielk197779a40da2005-01-16 08:00:01 +00005794 rc = ptrmapPutOvfl(pParent, nxDiv);
5795 if( rc!=SQLITE_OK ){
5796 goto balance_cleanup;
danielk1977ac11ee62005-01-15 12:45:51 +00005797 }
5798 }
drh14acc042001-06-10 19:56:58 +00005799 j++;
5800 nxDiv++;
5801 }
danielk197787c52b52008-07-19 11:49:07 +00005802
danielk197787c52b52008-07-19 11:49:07 +00005803 /* Set the pointer-map entry for the new sibling page. */
danielk197785d90ca2008-07-19 14:25:15 +00005804 if( ISAUTOVACUUM ){
danielk197787c52b52008-07-19 11:49:07 +00005805 rc = ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno);
5806 if( rc!=SQLITE_OK ){
5807 goto balance_cleanup;
5808 }
5809 }
drh14acc042001-06-10 19:56:58 +00005810 }
drh6019e162001-07-02 17:51:45 +00005811 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00005812 assert( nOld>0 );
5813 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00005814 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00005815 u8 *zChild = &apCopy[nOld-1]->aData[8];
5816 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
danielk197785d90ca2008-07-19 14:25:15 +00005817 if( ISAUTOVACUUM ){
danielk197787c52b52008-07-19 11:49:07 +00005818 rc = ptrmapPut(pBt, get4byte(zChild), PTRMAP_BTREE, apNew[nNew-1]->pgno);
5819 if( rc!=SQLITE_OK ){
5820 goto balance_cleanup;
5821 }
5822 }
drh14acc042001-06-10 19:56:58 +00005823 }
drhc5053fb2008-11-27 02:22:10 +00005824 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
drh43605152004-05-29 21:46:49 +00005825 if( nxDiv==pParent->nCell+pParent->nOverflow ){
drh4b70f112004-05-02 21:12:19 +00005826 /* Right-most sibling is the right-most child of pParent */
drh43605152004-05-29 21:46:49 +00005827 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
drh4b70f112004-05-02 21:12:19 +00005828 }else{
5829 /* Right-most sibling is the left child of the first entry in pParent
5830 ** past the right-most divider entry */
drh43605152004-05-29 21:46:49 +00005831 put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
drh14acc042001-06-10 19:56:58 +00005832 }
5833
5834 /*
drh3a4c1412004-05-09 20:40:11 +00005835 ** Balance the parent page. Note that the current page (pPage) might
danielk1977ac11ee62005-01-15 12:45:51 +00005836 ** have been added to the freelist so it might no longer be initialized.
drh3a4c1412004-05-09 20:40:11 +00005837 ** But the parent page will always be initialized.
drh8b2f49b2001-06-08 00:21:52 +00005838 */
danielk197771d5d2c2008-09-29 11:49:47 +00005839 assert( pParent->isInit );
drhfacf0302008-06-17 15:12:00 +00005840 sqlite3ScratchFree(apCell);
drhe5ae5732008-06-15 02:51:47 +00005841 apCell = 0;
danielk1977a4124bd2008-12-23 10:37:47 +00005842 TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
5843 pPage->pgno, nOld, nNew, nCell));
5844 pPage->nOverflow = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00005845 releasePage(pPage);
5846 pCur->iPage--;
5847 rc = balance(pCur, 0);
drhda200cc2004-05-09 11:51:38 +00005848
drh8b2f49b2001-06-08 00:21:52 +00005849 /*
drh14acc042001-06-10 19:56:58 +00005850 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00005851 */
drh14acc042001-06-10 19:56:58 +00005852balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00005853 sqlite3PageFree(aSpace2);
5854 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00005855 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00005856 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00005857 }
drh14acc042001-06-10 19:56:58 +00005858 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00005859 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00005860 }
danielk1977a4124bd2008-12-23 10:37:47 +00005861 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005862
drh8b2f49b2001-06-08 00:21:52 +00005863 return rc;
5864}
5865
5866/*
drh43605152004-05-29 21:46:49 +00005867** This routine is called for the root page of a btree when the root
5868** page contains no cells. This is an opportunity to make the tree
5869** shallower by one level.
5870*/
danielk197771d5d2c2008-09-29 11:49:47 +00005871static int balance_shallower(BtCursor *pCur){
5872 MemPage *pPage; /* Root page of B-Tree */
drh43605152004-05-29 21:46:49 +00005873 MemPage *pChild; /* The only child page of pPage */
5874 Pgno pgnoChild; /* Page number for pChild */
drh2e38c322004-09-03 18:38:44 +00005875 int rc = SQLITE_OK; /* Return code from subprocedures */
danielk1977aef0bf62005-12-30 16:28:01 +00005876 BtShared *pBt; /* The main BTree structure */
drh2e38c322004-09-03 18:38:44 +00005877 int mxCellPerPage; /* Maximum number of cells per page */
5878 u8 **apCell; /* All cells from pages being balanced */
drha9121e42008-02-19 14:59:35 +00005879 u16 *szCell; /* Local size of all cells */
drh43605152004-05-29 21:46:49 +00005880
danielk197771d5d2c2008-09-29 11:49:47 +00005881 assert( pCur->iPage==0 );
5882 pPage = pCur->apPage[0];
5883
drh43605152004-05-29 21:46:49 +00005884 assert( pPage->nCell==0 );
drh1fee73e2007-08-29 04:00:57 +00005885 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh2e38c322004-09-03 18:38:44 +00005886 pBt = pPage->pBt;
5887 mxCellPerPage = MX_CELL(pBt);
drhe5ae5732008-06-15 02:51:47 +00005888 apCell = sqlite3Malloc( mxCellPerPage*(sizeof(u8*)+sizeof(u16)) );
drh2e38c322004-09-03 18:38:44 +00005889 if( apCell==0 ) return SQLITE_NOMEM;
drha9121e42008-02-19 14:59:35 +00005890 szCell = (u16*)&apCell[mxCellPerPage];
drh43605152004-05-29 21:46:49 +00005891 if( pPage->leaf ){
5892 /* The table is completely empty */
5893 TRACE(("BALANCE: empty table %d\n", pPage->pgno));
5894 }else{
5895 /* The root page is empty but has one child. Transfer the
5896 ** information from that one child into the root page if it
5897 ** will fit. This reduces the depth of the tree by one.
5898 **
5899 ** If the root page is page 1, it has less space available than
5900 ** its child (due to the 100 byte header that occurs at the beginning
5901 ** of the database fle), so it might not be able to hold all of the
5902 ** information currently contained in the child. If this is the
5903 ** case, then do not do the transfer. Leave page 1 empty except
5904 ** for the right-pointer to the child page. The child page becomes
5905 ** the virtual root of the tree.
5906 */
drhf94a1732008-09-30 17:18:17 +00005907 VVA_ONLY( pCur->pagesShuffled = 1 );
drh43605152004-05-29 21:46:49 +00005908 pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5909 assert( pgnoChild>0 );
danielk197789d40042008-11-17 14:20:56 +00005910 assert( pgnoChild<=pagerPagecount(pPage->pBt) );
drh16a9b832007-05-05 18:39:25 +00005911 rc = sqlite3BtreeGetPage(pPage->pBt, pgnoChild, &pChild, 0);
drh2e38c322004-09-03 18:38:44 +00005912 if( rc ) goto end_shallow_balance;
drh43605152004-05-29 21:46:49 +00005913 if( pPage->pgno==1 ){
danielk197771d5d2c2008-09-29 11:49:47 +00005914 rc = sqlite3BtreeInitPage(pChild);
drh2e38c322004-09-03 18:38:44 +00005915 if( rc ) goto end_shallow_balance;
drh43605152004-05-29 21:46:49 +00005916 assert( pChild->nOverflow==0 );
5917 if( pChild->nFree>=100 ){
5918 /* The child information will fit on the root page, so do the
5919 ** copy */
5920 int i;
5921 zeroPage(pPage, pChild->aData[0]);
5922 for(i=0; i<pChild->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00005923 apCell[i] = findCell(pChild,i);
drh43605152004-05-29 21:46:49 +00005924 szCell[i] = cellSizePtr(pChild, apCell[i]);
5925 }
5926 assemblePage(pPage, pChild->nCell, apCell, szCell);
danielk1977ae825582004-11-23 09:06:55 +00005927 /* Copy the right-pointer of the child to the parent. */
drhc5053fb2008-11-27 02:22:10 +00005928 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977ae825582004-11-23 09:06:55 +00005929 put4byte(&pPage->aData[pPage->hdrOffset+8],
5930 get4byte(&pChild->aData[pChild->hdrOffset+8]));
drh9bf9e9c2008-12-05 20:01:43 +00005931 rc = freePage(pChild);
drh43605152004-05-29 21:46:49 +00005932 TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
5933 }else{
5934 /* The child has more information that will fit on the root.
5935 ** The tree is already balanced. Do nothing. */
5936 TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
5937 }
5938 }else{
5939 memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
5940 pPage->isInit = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00005941 rc = sqlite3BtreeInitPage(pPage);
drh43605152004-05-29 21:46:49 +00005942 assert( rc==SQLITE_OK );
5943 freePage(pChild);
5944 TRACE(("BALANCE: transfer child %d into root %d\n",
5945 pChild->pgno, pPage->pgno));
5946 }
danielk1977ac11ee62005-01-15 12:45:51 +00005947 assert( pPage->nOverflow==0 );
shane831c3292008-11-10 17:14:58 +00005948#ifndef SQLITE_OMIT_AUTOVACUUM
drh9bf9e9c2008-12-05 20:01:43 +00005949 if( ISAUTOVACUUM && rc==SQLITE_OK ){
danielk197700a696d2008-09-29 16:41:31 +00005950 rc = setChildPtrmaps(pPage);
danielk1977ac11ee62005-01-15 12:45:51 +00005951 }
shane831c3292008-11-10 17:14:58 +00005952#endif
drh43605152004-05-29 21:46:49 +00005953 releasePage(pChild);
5954 }
drh2e38c322004-09-03 18:38:44 +00005955end_shallow_balance:
drh17435752007-08-16 04:30:38 +00005956 sqlite3_free(apCell);
drh2e38c322004-09-03 18:38:44 +00005957 return rc;
drh43605152004-05-29 21:46:49 +00005958}
5959
5960
5961/*
5962** The root page is overfull
5963**
5964** When this happens, Create a new child page and copy the
5965** contents of the root into the child. Then make the root
5966** page an empty page with rightChild pointing to the new
5967** child. Finally, call balance_internal() on the new child
5968** to cause it to split.
5969*/
danielk197771d5d2c2008-09-29 11:49:47 +00005970static int balance_deeper(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00005971 int rc; /* Return value from subprocedures */
danielk197771d5d2c2008-09-29 11:49:47 +00005972 MemPage *pPage; /* Pointer to the root page */
drh43605152004-05-29 21:46:49 +00005973 MemPage *pChild; /* Pointer to a new child page */
5974 Pgno pgnoChild; /* Page number of the new child page */
danielk1977aef0bf62005-12-30 16:28:01 +00005975 BtShared *pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00005976 int usableSize; /* Total usable size of a page */
5977 u8 *data; /* Content of the parent page */
5978 u8 *cdata; /* Content of the child page */
5979 int hdr; /* Offset to page header in parent */
drh281b21d2008-08-22 12:57:08 +00005980 int cbrk; /* Offset to content of first cell in parent */
drh43605152004-05-29 21:46:49 +00005981
danielk197771d5d2c2008-09-29 11:49:47 +00005982 assert( pCur->iPage==0 );
5983 assert( pCur->apPage[0]->nOverflow>0 );
5984
drhf94a1732008-09-30 17:18:17 +00005985 VVA_ONLY( pCur->pagesShuffled = 1 );
danielk197771d5d2c2008-09-29 11:49:47 +00005986 pPage = pCur->apPage[0];
drh43605152004-05-29 21:46:49 +00005987 pBt = pPage->pBt;
drh1fee73e2007-08-29 04:00:57 +00005988 assert( sqlite3_mutex_held(pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00005989 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh4f0c5872007-03-26 22:05:01 +00005990 rc = allocateBtreePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0);
drh43605152004-05-29 21:46:49 +00005991 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005992 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
drh43605152004-05-29 21:46:49 +00005993 usableSize = pBt->usableSize;
5994 data = pPage->aData;
5995 hdr = pPage->hdrOffset;
drh281b21d2008-08-22 12:57:08 +00005996 cbrk = get2byte(&data[hdr+5]);
drh43605152004-05-29 21:46:49 +00005997 cdata = pChild->aData;
5998 memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
drh281b21d2008-08-22 12:57:08 +00005999 memcpy(&cdata[cbrk], &data[cbrk], usableSize-cbrk);
danielk1977bc2ca9e2008-11-13 14:28:28 +00006000
6001 assert( pChild->isInit==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00006002 rc = sqlite3BtreeInitPage(pChild);
6003 if( rc==SQLITE_OK ){
6004 int nCopy = pPage->nOverflow*sizeof(pPage->aOvfl[0]);
6005 memcpy(pChild->aOvfl, pPage->aOvfl, nCopy);
6006 pChild->nOverflow = pPage->nOverflow;
6007 if( pChild->nOverflow ){
6008 pChild->nFree = 0;
6009 }
6010 assert( pChild->nCell==pPage->nCell );
drhc5053fb2008-11-27 02:22:10 +00006011 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00006012 zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
6013 put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
6014 TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
6015 if( ISAUTOVACUUM ){
danielk197771d5d2c2008-09-29 11:49:47 +00006016 rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno);
shane831c3292008-11-10 17:14:58 +00006017#ifndef SQLITE_OMIT_AUTOVACUUM
danielk197771d5d2c2008-09-29 11:49:47 +00006018 if( rc==SQLITE_OK ){
danielk197700a696d2008-09-29 16:41:31 +00006019 rc = setChildPtrmaps(pChild);
danielk1977ac11ee62005-01-15 12:45:51 +00006020 }
drh30df0092008-12-23 15:58:06 +00006021 if( rc ){
6022 pChild->nOverflow = 0;
6023 }
shane831c3292008-11-10 17:14:58 +00006024#endif
danielk1977ac11ee62005-01-15 12:45:51 +00006025 }
danielk197787c52b52008-07-19 11:49:07 +00006026 }
danielk19776b456a22005-03-21 04:04:02 +00006027
danielk197771d5d2c2008-09-29 11:49:47 +00006028 if( rc==SQLITE_OK ){
6029 pCur->iPage++;
6030 pCur->apPage[1] = pChild;
danielk1977bf93c562008-09-29 15:53:25 +00006031 pCur->aiIdx[0] = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006032 rc = balance_nonroot(pCur);
6033 }else{
6034 releasePage(pChild);
6035 }
6036
drh43605152004-05-29 21:46:49 +00006037 return rc;
6038}
6039
6040/*
danielk197771d5d2c2008-09-29 11:49:47 +00006041** The page that pCur currently points to has just been modified in
6042** some way. This function figures out if this modification means the
6043** tree needs to be balanced, and if so calls the appropriate balancing
6044** routine.
6045**
6046** Parameter isInsert is true if a new cell was just inserted into the
6047** page, or false otherwise.
drh43605152004-05-29 21:46:49 +00006048*/
danielk197771d5d2c2008-09-29 11:49:47 +00006049static int balance(BtCursor *pCur, int isInsert){
drh43605152004-05-29 21:46:49 +00006050 int rc = SQLITE_OK;
danielk197771d5d2c2008-09-29 11:49:47 +00006051 MemPage *pPage = pCur->apPage[pCur->iPage];
6052
drh1fee73e2007-08-29 04:00:57 +00006053 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197771d5d2c2008-09-29 11:49:47 +00006054 if( pCur->iPage==0 ){
danielk19776e465eb2007-08-21 13:11:00 +00006055 rc = sqlite3PagerWrite(pPage->pDbPage);
6056 if( rc==SQLITE_OK && pPage->nOverflow>0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00006057 rc = balance_deeper(pCur);
danielk1977a4124bd2008-12-23 10:37:47 +00006058 assert( pCur->apPage[0]==pPage );
drh9bf9e9c2008-12-05 20:01:43 +00006059 assert( pPage->nOverflow==0 || rc!=SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006060 }
danielk1977687566d2004-11-02 12:56:41 +00006061 if( rc==SQLITE_OK && pPage->nCell==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00006062 rc = balance_shallower(pCur);
danielk1977a4124bd2008-12-23 10:37:47 +00006063 assert( pCur->apPage[0]==pPage );
drh9bf9e9c2008-12-05 20:01:43 +00006064 assert( pPage->nOverflow==0 || rc!=SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006065 }
6066 }else{
danielk1977ac245ec2005-01-14 13:50:11 +00006067 if( pPage->nOverflow>0 ||
danielk197771d5d2c2008-09-29 11:49:47 +00006068 (!isInsert && pPage->nFree>pPage->pBt->usableSize*2/3) ){
6069 rc = balance_nonroot(pCur);
drh43605152004-05-29 21:46:49 +00006070 }
6071 }
6072 return rc;
6073}
6074
6075/*
drh8dcd7ca2004-08-08 19:43:29 +00006076** This routine checks all cursors that point to table pgnoRoot.
drh980b1a72006-08-16 16:42:48 +00006077** If any of those cursors were opened with wrFlag==0 in a different
6078** database connection (a database connection that shares the pager
6079** cache with the current connection) and that other connection
6080** is not in the ReadUncommmitted state, then this routine returns
6081** SQLITE_LOCKED.
danielk1977299b1872004-11-22 10:02:10 +00006082**
drh11b57d62009-02-24 19:21:41 +00006083** As well as cursors with wrFlag==0, cursors with
6084** isIncrblobHandle==1 are also considered 'read' cursors because
6085** incremental blob cursors are used for both reading and writing.
danielk19773588ceb2008-06-10 17:30:26 +00006086**
6087** When pgnoRoot is the root page of an intkey table, this function is also
6088** responsible for invalidating incremental blob cursors when the table row
6089** on which they are opened is deleted or modified. Cursors are invalidated
6090** according to the following rules:
6091**
6092** 1) When BtreeClearTable() is called to completely delete the contents
6093** of a B-Tree table, pExclude is set to zero and parameter iRow is
6094** set to non-zero. In this case all incremental blob cursors open
6095** on the table rooted at pgnoRoot are invalidated.
6096**
6097** 2) When BtreeInsert(), BtreeDelete() or BtreePutData() is called to
6098** modify a table row via an SQL statement, pExclude is set to the
6099** write cursor used to do the modification and parameter iRow is set
6100** to the integer row id of the B-Tree entry being modified. Unless
6101** pExclude is itself an incremental blob cursor, then all incremental
6102** blob cursors open on row iRow of the B-Tree are invalidated.
6103**
6104** 3) If both pExclude and iRow are set to zero, no incremental blob
6105** cursors are invalidated.
drhf74b8d92002-09-01 23:20:45 +00006106*/
drh11b57d62009-02-24 19:21:41 +00006107static int checkForReadConflicts(
6108 Btree *pBtree, /* The database file to check */
6109 Pgno pgnoRoot, /* Look for read cursors on this btree */
6110 BtCursor *pExclude, /* Ignore this cursor */
6111 i64 iRow /* The rowid that might be changing */
danielk19773588ceb2008-06-10 17:30:26 +00006112){
danielk1977299b1872004-11-22 10:02:10 +00006113 BtCursor *p;
drh980b1a72006-08-16 16:42:48 +00006114 BtShared *pBt = pBtree->pBt;
drhe5fe6902007-12-07 18:55:28 +00006115 sqlite3 *db = pBtree->db;
drh1fee73e2007-08-29 04:00:57 +00006116 assert( sqlite3BtreeHoldsMutex(pBtree) );
danielk1977299b1872004-11-22 10:02:10 +00006117 for(p=pBt->pCursor; p; p=p->pNext){
drh980b1a72006-08-16 16:42:48 +00006118 if( p==pExclude ) continue;
drh980b1a72006-08-16 16:42:48 +00006119 if( p->pgnoRoot!=pgnoRoot ) continue;
danielk19773588ceb2008-06-10 17:30:26 +00006120#ifndef SQLITE_OMIT_INCRBLOB
6121 if( p->isIncrblobHandle && (
6122 (!pExclude && iRow)
6123 || (pExclude && !pExclude->isIncrblobHandle && p->info.nKey==iRow)
6124 )){
6125 p->eState = CURSOR_INVALID;
6126 }
6127#endif
6128 if( p->eState!=CURSOR_VALID ) continue;
6129 if( p->wrFlag==0
6130#ifndef SQLITE_OMIT_INCRBLOB
6131 || p->isIncrblobHandle
6132#endif
6133 ){
drhe5fe6902007-12-07 18:55:28 +00006134 sqlite3 *dbOther = p->pBtree->db;
danielk1977404ca072009-03-16 13:19:36 +00006135 assert(dbOther);
6136 if( dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0 ){
6137 sqlite3ConnectionBlocked(db, dbOther);
6138 return SQLITE_LOCKED_SHAREDCACHE;
drh980b1a72006-08-16 16:42:48 +00006139 }
danielk1977299b1872004-11-22 10:02:10 +00006140 }
6141 }
drhf74b8d92002-09-01 23:20:45 +00006142 return SQLITE_OK;
6143}
6144
6145/*
drh3b7511c2001-05-26 13:15:44 +00006146** Insert a new record into the BTree. The key is given by (pKey,nKey)
6147** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006148** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006149** is left pointing at a random location.
6150**
6151** For an INTKEY table, only the nKey value of the key is used. pKey is
6152** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006153**
6154** If the seekResult parameter is non-zero, then a successful call to
6155** sqlite3BtreeMoveto() to seek cursor pCur to (pKey, nKey) has already
6156** been performed. seekResult is the search result returned (a negative
6157** number if pCur points at an entry that is smaller than (pKey, nKey), or
6158** a positive value if pCur points at an etry that is larger than
6159** (pKey, nKey)).
6160**
6161** If the seekResult parameter is 0, then cursor pCur may point to any
6162** entry or to no entry at all. In this case this function has to seek
6163** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006164*/
drh3aac2dd2004-04-26 14:10:20 +00006165int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006166 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006167 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006168 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006169 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006170 int appendBias, /* True if this is likely an append */
6171 int seekResult /* Result of prior sqlite3BtreeMoveto() call */
drh3b7511c2001-05-26 13:15:44 +00006172){
drh3b7511c2001-05-26 13:15:44 +00006173 int rc;
danielk1977de630352009-05-04 11:42:29 +00006174 int loc = seekResult;
drh14acc042001-06-10 19:56:58 +00006175 int szNew;
danielk197771d5d2c2008-09-29 11:49:47 +00006176 int idx;
drh3b7511c2001-05-26 13:15:44 +00006177 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006178 Btree *p = pCur->pBtree;
6179 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006180 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006181 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006182
drh1fee73e2007-08-29 04:00:57 +00006183 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006184 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006185 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006186 assert( pCur->wrFlag );
danielk1977404ca072009-03-16 13:19:36 +00006187 rc = checkForReadConflicts(pCur->pBtree, pCur->pgnoRoot, pCur, nKey);
6188 if( rc ){
6189 /* The table pCur points to has a read lock */
6190 assert( rc==SQLITE_LOCKED_SHAREDCACHE );
6191 return rc;
drhf74b8d92002-09-01 23:20:45 +00006192 }
drhfb982642007-08-30 01:19:59 +00006193 if( pCur->eState==CURSOR_FAULT ){
6194 return pCur->skip;
6195 }
danielk1977da184232006-01-05 11:34:32 +00006196
danielk19779c3acf32009-05-02 07:36:49 +00006197 /* Save the positions of any other cursors open on this table.
6198 **
6199 ** In some cases, the call to sqlite3BtreeMoveto() below is a no-op. For
6200 ** example, when inserting data into a table with auto-generated integer
6201 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6202 ** integer key to use. It then calls this function to actually insert the
6203 ** data into the intkey B-Tree. In this case sqlite3BtreeMoveto() recognizes
6204 ** that the cursor is already where it needs to be and returns without
6205 ** doing any work. To avoid thwarting these optimizations, it is important
6206 ** not to clear the cursor here.
6207 */
danielk1977de630352009-05-04 11:42:29 +00006208 if(
6209 SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) || (!loc &&
drhe63d9992008-08-13 19:11:48 +00006210 SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, nKey, appendBias, &loc))
danielk1977de630352009-05-04 11:42:29 +00006211 )){
danielk1977da184232006-01-05 11:34:32 +00006212 return rc;
6213 }
6214
danielk197771d5d2c2008-09-29 11:49:47 +00006215 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006216 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006217 assert( pPage->leaf || !pPage->intKey );
drh3a4c1412004-05-09 20:40:11 +00006218 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6219 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6220 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006221 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006222 allocateTempSpace(pBt);
6223 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006224 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006225 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006226 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006227 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00006228 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006229 idx = pCur->aiIdx[pCur->iPage];
danielk1977da184232006-01-05 11:34:32 +00006230 if( loc==0 && CURSOR_VALID==pCur->eState ){
drha9121e42008-02-19 14:59:35 +00006231 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006232 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006233 rc = sqlite3PagerWrite(pPage->pDbPage);
6234 if( rc ){
6235 goto end_insert;
6236 }
danielk197771d5d2c2008-09-29 11:49:47 +00006237 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006238 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006239 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006240 }
drh43605152004-05-29 21:46:49 +00006241 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006242 rc = clearCell(pPage, oldCell);
drh2e38c322004-09-03 18:38:44 +00006243 if( rc ) goto end_insert;
shane0af3f892008-11-12 04:55:34 +00006244 rc = dropCell(pPage, idx, szOld);
6245 if( rc!=SQLITE_OK ) {
6246 goto end_insert;
6247 }
drh7c717f72001-06-24 20:39:41 +00006248 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006249 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006250 idx = ++pCur->aiIdx[pCur->iPage];
drh271efa52004-05-30 19:19:05 +00006251 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00006252 pCur->validNKey = 0;
drh14acc042001-06-10 19:56:58 +00006253 }else{
drh4b70f112004-05-02 21:12:19 +00006254 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006255 }
danielk197771d5d2c2008-09-29 11:49:47 +00006256 rc = insertCell(pPage, idx, newCell, szNew, 0, 0);
danielk19773f632d52009-05-02 10:03:09 +00006257 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006258
danielk19773f632d52009-05-02 10:03:09 +00006259 /* If no error has occured, call balance() to deal with any overflow and
6260 ** move the cursor to point at the root of the table (since balance may
6261 ** have rearranged the table in such a way as to invalidate BtCursor.apPage[]
6262 ** or BtCursor.aiIdx[]).
6263 **
6264 ** Except, if all of the following are true, do nothing:
6265 **
6266 ** * Inserting the new cell did not cause overflow,
6267 **
6268 ** * Before inserting the new cell the cursor was pointing at the
6269 ** largest key in an intkey B-Tree, and
6270 **
6271 ** * The key value associated with the new cell is now the largest
6272 ** in the B-Tree.
6273 **
6274 ** In this case the cursor can be safely left pointing at the (new)
6275 ** largest key value in the B-Tree. Doing so speeds up inserting a set
6276 ** of entries with increasing integer key values via a single cursor
6277 ** (comes up with "INSERT INTO ... SELECT ..." statements), as
6278 ** the next insert operation is not required to seek the cursor.
6279 */
6280 if( rc==SQLITE_OK
6281 && (pPage->nOverflow || !pCur->atLast || loc>=0 || !pCur->apPage[0]->intKey)
6282 ){
6283 rc = balance(pCur, 1);
6284 if( rc==SQLITE_OK ){
6285 moveToRoot(pCur);
6286 }
6287 }
6288
drh9bf9e9c2008-12-05 20:01:43 +00006289 /* Must make sure nOverflow is reset to zero even if the balance()
6290 ** fails. Internal data structure corruption will result otherwise. */
danielk1977a4124bd2008-12-23 10:37:47 +00006291 pCur->apPage[pCur->iPage]->nOverflow = 0;
drh9bf9e9c2008-12-05 20:01:43 +00006292
drh2e38c322004-09-03 18:38:44 +00006293end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006294 return rc;
6295}
6296
6297/*
drh4b70f112004-05-02 21:12:19 +00006298** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006299** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006300*/
drh3aac2dd2004-04-26 14:10:20 +00006301int sqlite3BtreeDelete(BtCursor *pCur){
danielk197771d5d2c2008-09-29 11:49:47 +00006302 MemPage *pPage = pCur->apPage[pCur->iPage];
6303 int idx;
drh4b70f112004-05-02 21:12:19 +00006304 unsigned char *pCell;
drh5e2f8b92001-05-28 00:41:15 +00006305 int rc;
danielk1977cfe9a692004-06-16 12:00:29 +00006306 Pgno pgnoChild = 0;
drhd677b3d2007-08-20 22:48:41 +00006307 Btree *p = pCur->pBtree;
6308 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006309
drh1fee73e2007-08-29 04:00:57 +00006310 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00006311 assert( pPage->isInit );
drh64022502009-01-09 14:11:04 +00006312 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006313 assert( !pBt->readOnly );
drhfb982642007-08-30 01:19:59 +00006314 if( pCur->eState==CURSOR_FAULT ){
6315 return pCur->skip;
6316 }
drh64022502009-01-09 14:11:04 +00006317 if( NEVER(pCur->aiIdx[pCur->iPage]>=pPage->nCell) ){
drhbd03cae2001-06-02 02:40:57 +00006318 return SQLITE_ERROR; /* The cursor is not pointing to anything */
6319 }
drh64022502009-01-09 14:11:04 +00006320 assert( pCur->wrFlag );
danielk1977404ca072009-03-16 13:19:36 +00006321 rc = checkForReadConflicts(p, pCur->pgnoRoot, pCur, pCur->info.nKey);
6322 if( rc!=SQLITE_OK ){
6323 /* The table pCur points to has a read lock */
6324 assert( rc==SQLITE_LOCKED_SHAREDCACHE );
6325 return rc;
drhf74b8d92002-09-01 23:20:45 +00006326 }
danielk1977da184232006-01-05 11:34:32 +00006327
6328 /* Restore the current cursor position (a no-op if the cursor is not in
6329 ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors
danielk19773b8a05f2007-03-19 17:44:26 +00006330 ** open on the same table. Then call sqlite3PagerWrite() on the page
danielk1977da184232006-01-05 11:34:32 +00006331 ** that the entry will be deleted from.
6332 */
6333 if(
drha3460582008-07-11 21:02:53 +00006334 (rc = restoreCursorPosition(pCur))!=0 ||
drhd1167392006-01-23 13:00:35 +00006335 (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 ||
danielk19773b8a05f2007-03-19 17:44:26 +00006336 (rc = sqlite3PagerWrite(pPage->pDbPage))!=0
danielk1977da184232006-01-05 11:34:32 +00006337 ){
6338 return rc;
6339 }
danielk1977e6efa742004-11-10 11:55:10 +00006340
drh85b623f2007-12-13 21:54:09 +00006341 /* Locate the cell within its page and leave pCell pointing to the
danielk1977e6efa742004-11-10 11:55:10 +00006342 ** data. The clearCell() call frees any overflow pages associated with the
6343 ** cell. The cell itself is still intact.
6344 */
danielk197771d5d2c2008-09-29 11:49:47 +00006345 idx = pCur->aiIdx[pCur->iPage];
6346 pCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006347 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006348 pgnoChild = get4byte(pCell);
drh4b70f112004-05-02 21:12:19 +00006349 }
danielk197728129562005-01-11 10:25:06 +00006350 rc = clearCell(pPage, pCell);
drhd677b3d2007-08-20 22:48:41 +00006351 if( rc ){
drhd677b3d2007-08-20 22:48:41 +00006352 return rc;
6353 }
danielk1977e6efa742004-11-10 11:55:10 +00006354
drh4b70f112004-05-02 21:12:19 +00006355 if( !pPage->leaf ){
drh14acc042001-06-10 19:56:58 +00006356 /*
drh5e00f6c2001-09-13 13:46:56 +00006357 ** The entry we are about to delete is not a leaf so if we do not
drh9ca7d3b2001-06-28 11:50:21 +00006358 ** do something we will leave a hole on an internal page.
6359 ** We have to fill the hole by moving in a cell from a leaf. The
6360 ** next Cell after the one to be deleted is guaranteed to exist and
danielk1977299b1872004-11-22 10:02:10 +00006361 ** to be a leaf so we can use it.
drh5e2f8b92001-05-28 00:41:15 +00006362 */
drh14acc042001-06-10 19:56:58 +00006363 BtCursor leafCur;
drh1bd10f82008-12-10 21:19:56 +00006364 MemPage *pLeafPage = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006365
drh4b70f112004-05-02 21:12:19 +00006366 unsigned char *pNext;
danielk1977299b1872004-11-22 10:02:10 +00006367 int notUsed;
danielk19776b456a22005-03-21 04:04:02 +00006368 unsigned char *tempCell = 0;
drh44845222008-07-17 18:39:57 +00006369 assert( !pPage->intKey );
drh16a9b832007-05-05 18:39:25 +00006370 sqlite3BtreeGetTempCursor(pCur, &leafCur);
danielk1977299b1872004-11-22 10:02:10 +00006371 rc = sqlite3BtreeNext(&leafCur, &notUsed);
danielk19776b456a22005-03-21 04:04:02 +00006372 if( rc==SQLITE_OK ){
danielk19772f78fc62008-09-30 09:31:45 +00006373 assert( leafCur.aiIdx[leafCur.iPage]==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00006374 pLeafPage = leafCur.apPage[leafCur.iPage];
danielk197771d5d2c2008-09-29 11:49:47 +00006375 rc = sqlite3PagerWrite(pLeafPage->pDbPage);
danielk19776b456a22005-03-21 04:04:02 +00006376 }
6377 if( rc==SQLITE_OK ){
danielk19772f78fc62008-09-30 09:31:45 +00006378 int leafCursorInvalid = 0;
drha9121e42008-02-19 14:59:35 +00006379 u16 szNext;
danielk19776b456a22005-03-21 04:04:02 +00006380 TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
danielk197771d5d2c2008-09-29 11:49:47 +00006381 pCur->pgnoRoot, pPage->pgno, pLeafPage->pgno));
6382 dropCell(pPage, idx, cellSizePtr(pPage, pCell));
danielk19772f78fc62008-09-30 09:31:45 +00006383 pNext = findCell(pLeafPage, 0);
danielk197771d5d2c2008-09-29 11:49:47 +00006384 szNext = cellSizePtr(pLeafPage, pNext);
danielk19776b456a22005-03-21 04:04:02 +00006385 assert( MX_CELL_SIZE(pBt)>=szNext+4 );
danielk197752ae7242008-03-25 14:24:56 +00006386 allocateTempSpace(pBt);
6387 tempCell = pBt->pTmpSpace;
danielk19776b456a22005-03-21 04:04:02 +00006388 if( tempCell==0 ){
6389 rc = SQLITE_NOMEM;
6390 }
danielk19778ea1cfa2008-01-01 06:19:02 +00006391 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00006392 rc = insertCell(pPage, idx, pNext-4, szNext+4, tempCell, 0);
danielk19778ea1cfa2008-01-01 06:19:02 +00006393 }
danielk19772f78fc62008-09-30 09:31:45 +00006394
drhf94a1732008-09-30 17:18:17 +00006395
6396 /* The "if" statement in the next code block is critical. The
6397 ** slightest error in that statement would allow SQLite to operate
6398 ** correctly most of the time but produce very rare failures. To
6399 ** guard against this, the following macros help to verify that
6400 ** the "if" statement is well tested.
6401 */
6402 testcase( pPage->nOverflow==0 && pPage->nFree<pBt->usableSize*2/3
6403 && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 );
6404 testcase( pPage->nOverflow==0 && pPage->nFree==pBt->usableSize*2/3
6405 && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 );
6406 testcase( pPage->nOverflow==0 && pPage->nFree==pBt->usableSize*2/3+1
6407 && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 );
6408 testcase( pPage->nOverflow>0 && pPage->nFree<=pBt->usableSize*2/3
6409 && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 );
6410 testcase( (pPage->nOverflow>0 || (pPage->nFree > pBt->usableSize*2/3))
6411 && pLeafPage->nFree+2+szNext == pBt->usableSize*2/3 );
6412
6413
danielk19772f78fc62008-09-30 09:31:45 +00006414 if( (pPage->nOverflow>0 || (pPage->nFree > pBt->usableSize*2/3)) &&
6415 (pLeafPage->nFree+2+szNext > pBt->usableSize*2/3)
6416 ){
drhf94a1732008-09-30 17:18:17 +00006417 /* This branch is taken if the internal node is now either overflowing
6418 ** or underfull and the leaf node will be underfull after the just cell
danielk19772f78fc62008-09-30 09:31:45 +00006419 ** copied to the internal node is deleted from it. This is a special
6420 ** case because the call to balance() to correct the internal node
6421 ** may change the tree structure and invalidate the contents of
6422 ** the leafCur.apPage[] and leafCur.aiIdx[] arrays, which will be
6423 ** used by the balance() required to correct the underfull leaf
6424 ** node.
6425 **
6426 ** The formula used in the expression above are based on facets of
6427 ** the SQLite file-format that do not change over time.
6428 */
drhf94a1732008-09-30 17:18:17 +00006429 testcase( pPage->nFree==pBt->usableSize*2/3+1 );
6430 testcase( pLeafPage->nFree+2+szNext==pBt->usableSize*2/3+1 );
danielk19772f78fc62008-09-30 09:31:45 +00006431 leafCursorInvalid = 1;
6432 }
6433
danielk19778ea1cfa2008-01-01 06:19:02 +00006434 if( rc==SQLITE_OK ){
drhc5053fb2008-11-27 02:22:10 +00006435 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00006436 put4byte(findOverflowCell(pPage, idx), pgnoChild);
drhf94a1732008-09-30 17:18:17 +00006437 VVA_ONLY( pCur->pagesShuffled = 0 );
danielk197771d5d2c2008-09-29 11:49:47 +00006438 rc = balance(pCur, 0);
danielk19778ea1cfa2008-01-01 06:19:02 +00006439 }
danielk19772f78fc62008-09-30 09:31:45 +00006440
6441 if( rc==SQLITE_OK && leafCursorInvalid ){
6442 /* The leaf-node is now underfull and so the tree needs to be
6443 ** rebalanced. However, the balance() operation on the internal
6444 ** node above may have modified the structure of the B-Tree and
6445 ** so the current contents of leafCur.apPage[] and leafCur.aiIdx[]
6446 ** may not be trusted.
6447 **
6448 ** It is not possible to copy the ancestry from pCur, as the same
6449 ** balance() call has invalidated the pCur->apPage[] and aiIdx[]
6450 ** arrays.
drh7b682802008-09-30 14:06:28 +00006451 **
6452 ** The call to saveCursorPosition() below internally saves the
6453 ** key that leafCur is currently pointing to. Currently, there
6454 ** are two copies of that key in the tree - one here on the leaf
6455 ** page and one on some internal node in the tree. The copy on
6456 ** the leaf node is always the next key in tree-order after the
6457 ** copy on the internal node. So, the call to sqlite3BtreeNext()
6458 ** calls restoreCursorPosition() to point the cursor to the copy
6459 ** stored on the internal node, then advances to the next entry,
6460 ** which happens to be the copy of the key on the internal node.
danielk1977a69fda22008-09-30 16:48:10 +00006461 ** Net effect: leafCur is pointing back to the duplicate cell
6462 ** that needs to be removed, and the leafCur.apPage[] and
6463 ** leafCur.aiIdx[] arrays are correct.
danielk19772f78fc62008-09-30 09:31:45 +00006464 */
drhf94a1732008-09-30 17:18:17 +00006465 VVA_ONLY( Pgno leafPgno = pLeafPage->pgno );
danielk19772f78fc62008-09-30 09:31:45 +00006466 rc = saveCursorPosition(&leafCur);
6467 if( rc==SQLITE_OK ){
6468 rc = sqlite3BtreeNext(&leafCur, &notUsed);
6469 }
6470 pLeafPage = leafCur.apPage[leafCur.iPage];
danielk19775d189852009-04-07 14:38:58 +00006471 assert( rc!=SQLITE_OK || pLeafPage->pgno==leafPgno );
6472 assert( rc!=SQLITE_OK || leafCur.aiIdx[leafCur.iPage]==0 );
danielk19772f78fc62008-09-30 09:31:45 +00006473 }
6474
danielk19770cd1bbd2008-11-26 07:25:52 +00006475 if( SQLITE_OK==rc
6476 && SQLITE_OK==(rc = sqlite3PagerWrite(pLeafPage->pDbPage))
6477 ){
danielk19772f78fc62008-09-30 09:31:45 +00006478 dropCell(pLeafPage, 0, szNext);
drhf94a1732008-09-30 17:18:17 +00006479 VVA_ONLY( leafCur.pagesShuffled = 0 );
danielk197771d5d2c2008-09-29 11:49:47 +00006480 rc = balance(&leafCur, 0);
drhf94a1732008-09-30 17:18:17 +00006481 assert( leafCursorInvalid || !leafCur.pagesShuffled
6482 || !pCur->pagesShuffled );
danielk19778ea1cfa2008-01-01 06:19:02 +00006483 }
danielk19776b456a22005-03-21 04:04:02 +00006484 }
drh16a9b832007-05-05 18:39:25 +00006485 sqlite3BtreeReleaseTempCursor(&leafCur);
drh5e2f8b92001-05-28 00:41:15 +00006486 }else{
danielk1977299b1872004-11-22 10:02:10 +00006487 TRACE(("DELETE: table=%d delete from leaf %d\n",
6488 pCur->pgnoRoot, pPage->pgno));
shanedcc50b72008-11-13 18:29:50 +00006489 rc = dropCell(pPage, idx, cellSizePtr(pPage, pCell));
6490 if( rc==SQLITE_OK ){
6491 rc = balance(pCur, 0);
6492 }
drh5e2f8b92001-05-28 00:41:15 +00006493 }
danielk19776b456a22005-03-21 04:04:02 +00006494 if( rc==SQLITE_OK ){
6495 moveToRoot(pCur);
6496 }
drh5e2f8b92001-05-28 00:41:15 +00006497 return rc;
drh3b7511c2001-05-26 13:15:44 +00006498}
drh8b2f49b2001-06-08 00:21:52 +00006499
6500/*
drhc6b52df2002-01-04 03:09:29 +00006501** Create a new BTree table. Write into *piTable the page
6502** number for the root page of the new table.
6503**
drhab01f612004-05-22 02:55:23 +00006504** The type of type is determined by the flags parameter. Only the
6505** following values of flags are currently in use. Other values for
6506** flags might not work:
6507**
6508** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6509** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006510*/
drhd677b3d2007-08-20 22:48:41 +00006511static int btreeCreateTable(Btree *p, int *piTable, int flags){
danielk1977aef0bf62005-12-30 16:28:01 +00006512 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006513 MemPage *pRoot;
6514 Pgno pgnoRoot;
6515 int rc;
drhd677b3d2007-08-20 22:48:41 +00006516
drh1fee73e2007-08-29 04:00:57 +00006517 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006518 assert( pBt->inTransaction==TRANS_WRITE );
danielk197728129562005-01-11 10:25:06 +00006519 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00006520
danielk1977003ba062004-11-04 02:57:33 +00006521#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00006522 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00006523 if( rc ){
6524 return rc;
6525 }
danielk1977003ba062004-11-04 02:57:33 +00006526#else
danielk1977687566d2004-11-02 12:56:41 +00006527 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00006528 Pgno pgnoMove; /* Move a page here to make room for the root-page */
6529 MemPage *pPageMove; /* The page to move to. */
6530
danielk197720713f32007-05-03 11:43:33 +00006531 /* Creating a new table may probably require moving an existing database
6532 ** to make room for the new tables root page. In case this page turns
6533 ** out to be an overflow page, delete all overflow page-map caches
6534 ** held by open cursors.
6535 */
danielk197792d4d7a2007-05-04 12:05:56 +00006536 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00006537
danielk1977003ba062004-11-04 02:57:33 +00006538 /* Read the value of meta[3] from the database to determine where the
6539 ** root page of the new table should go. meta[3] is the largest root-page
6540 ** created so far, so the new root-page is (meta[3]+1).
6541 */
danielk1977aef0bf62005-12-30 16:28:01 +00006542 rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot);
drhd677b3d2007-08-20 22:48:41 +00006543 if( rc!=SQLITE_OK ){
6544 return rc;
6545 }
danielk1977003ba062004-11-04 02:57:33 +00006546 pgnoRoot++;
6547
danielk1977599fcba2004-11-08 07:13:13 +00006548 /* The new root-page may not be allocated on a pointer-map page, or the
6549 ** PENDING_BYTE page.
6550 */
drh72190432008-01-31 14:54:43 +00006551 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00006552 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00006553 pgnoRoot++;
6554 }
6555 assert( pgnoRoot>=3 );
6556
6557 /* Allocate a page. The page that currently resides at pgnoRoot will
6558 ** be moved to the allocated page (unless the allocated page happens
6559 ** to reside at pgnoRoot).
6560 */
drh4f0c5872007-03-26 22:05:01 +00006561 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00006562 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00006563 return rc;
6564 }
danielk1977003ba062004-11-04 02:57:33 +00006565
6566 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00006567 /* pgnoRoot is the page that will be used for the root-page of
6568 ** the new table (assuming an error did not occur). But we were
6569 ** allocated pgnoMove. If required (i.e. if it was not allocated
6570 ** by extending the file), the current page at position pgnoMove
6571 ** is already journaled.
6572 */
danielk1977003ba062004-11-04 02:57:33 +00006573 u8 eType;
6574 Pgno iPtrPage;
6575
6576 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00006577
6578 /* Move the page currently at pgnoRoot to pgnoMove. */
drh16a9b832007-05-05 18:39:25 +00006579 rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006580 if( rc!=SQLITE_OK ){
6581 return rc;
6582 }
6583 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drhccae6022005-02-26 17:31:26 +00006584 if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00006585 releasePage(pRoot);
6586 return rc;
6587 }
drhccae6022005-02-26 17:31:26 +00006588 assert( eType!=PTRMAP_ROOTPAGE );
6589 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00006590 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00006591 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00006592
6593 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00006594 if( rc!=SQLITE_OK ){
6595 return rc;
6596 }
drh16a9b832007-05-05 18:39:25 +00006597 rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006598 if( rc!=SQLITE_OK ){
6599 return rc;
6600 }
danielk19773b8a05f2007-03-19 17:44:26 +00006601 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00006602 if( rc!=SQLITE_OK ){
6603 releasePage(pRoot);
6604 return rc;
6605 }
6606 }else{
6607 pRoot = pPageMove;
6608 }
6609
danielk197742741be2005-01-08 12:42:39 +00006610 /* Update the pointer-map and meta-data with the new root-page number. */
danielk1977003ba062004-11-04 02:57:33 +00006611 rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
6612 if( rc ){
6613 releasePage(pRoot);
6614 return rc;
6615 }
danielk1977aef0bf62005-12-30 16:28:01 +00006616 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006617 if( rc ){
6618 releasePage(pRoot);
6619 return rc;
6620 }
danielk197742741be2005-01-08 12:42:39 +00006621
danielk1977003ba062004-11-04 02:57:33 +00006622 }else{
drh4f0c5872007-03-26 22:05:01 +00006623 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00006624 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00006625 }
6626#endif
danielk19773b8a05f2007-03-19 17:44:26 +00006627 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhde647132004-05-07 17:57:49 +00006628 zeroPage(pRoot, flags | PTF_LEAF);
danielk19773b8a05f2007-03-19 17:44:26 +00006629 sqlite3PagerUnref(pRoot->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00006630 *piTable = (int)pgnoRoot;
6631 return SQLITE_OK;
6632}
drhd677b3d2007-08-20 22:48:41 +00006633int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
6634 int rc;
6635 sqlite3BtreeEnter(p);
6636 rc = btreeCreateTable(p, piTable, flags);
6637 sqlite3BtreeLeave(p);
6638 return rc;
6639}
drh8b2f49b2001-06-08 00:21:52 +00006640
6641/*
6642** Erase the given database page and all its children. Return
6643** the page to the freelist.
6644*/
drh4b70f112004-05-02 21:12:19 +00006645static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00006646 BtShared *pBt, /* The BTree that contains the table */
drh4b70f112004-05-02 21:12:19 +00006647 Pgno pgno, /* Page number to clear */
danielk1977c7af4842008-10-27 13:59:33 +00006648 int freePageFlag, /* Deallocate page if true */
6649 int *pnChange
drh4b70f112004-05-02 21:12:19 +00006650){
danielk19776b456a22005-03-21 04:04:02 +00006651 MemPage *pPage = 0;
drh8b2f49b2001-06-08 00:21:52 +00006652 int rc;
drh4b70f112004-05-02 21:12:19 +00006653 unsigned char *pCell;
6654 int i;
drh8b2f49b2001-06-08 00:21:52 +00006655
drh1fee73e2007-08-29 04:00:57 +00006656 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789d40042008-11-17 14:20:56 +00006657 if( pgno>pagerPagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00006658 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006659 }
6660
danielk197771d5d2c2008-09-29 11:49:47 +00006661 rc = getAndInitPage(pBt, pgno, &pPage);
danielk19776b456a22005-03-21 04:04:02 +00006662 if( rc ) goto cleardatabasepage_out;
drh4b70f112004-05-02 21:12:19 +00006663 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00006664 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00006665 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006666 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006667 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006668 }
drh4b70f112004-05-02 21:12:19 +00006669 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00006670 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006671 }
drha34b6762004-05-07 13:30:42 +00006672 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006673 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006674 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00006675 }else if( pnChange ){
6676 assert( pPage->intKey );
6677 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00006678 }
6679 if( freePageFlag ){
drh4b70f112004-05-02 21:12:19 +00006680 rc = freePage(pPage);
danielk19773b8a05f2007-03-19 17:44:26 +00006681 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00006682 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00006683 }
danielk19776b456a22005-03-21 04:04:02 +00006684
6685cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00006686 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00006687 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006688}
6689
6690/*
drhab01f612004-05-22 02:55:23 +00006691** Delete all information from a single table in the database. iTable is
6692** the page number of the root of the table. After this routine returns,
6693** the root page is empty, but still exists.
6694**
6695** This routine will fail with SQLITE_LOCKED if there are any open
6696** read cursors on the table. Open write cursors are moved to the
6697** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00006698**
6699** If pnChange is not NULL, then table iTable must be an intkey table. The
6700** integer value pointed to by pnChange is incremented by the number of
6701** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00006702*/
danielk1977c7af4842008-10-27 13:59:33 +00006703int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00006704 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00006705 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00006706 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00006707 assert( p->inTrans==TRANS_WRITE );
drh11b57d62009-02-24 19:21:41 +00006708 if( (rc = checkForReadConflicts(p, iTable, 0, 1))!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00006709 /* nothing to do */
6710 }else if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){
6711 /* nothing to do */
6712 }else{
danielk197762c14b32008-11-19 09:05:26 +00006713 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00006714 }
drhd677b3d2007-08-20 22:48:41 +00006715 sqlite3BtreeLeave(p);
6716 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006717}
6718
6719/*
6720** Erase all information in a table and add the root of the table to
6721** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00006722** page 1) is never added to the freelist.
6723**
6724** This routine will fail with SQLITE_LOCKED if there are any open
6725** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00006726**
6727** If AUTOVACUUM is enabled and the page at iTable is not the last
6728** root page in the database file, then the last root page
6729** in the database file is moved into the slot formerly occupied by
6730** iTable and that last slot formerly occupied by the last root page
6731** is added to the freelist instead of iTable. In this say, all
6732** root pages are kept at the beginning of the database file, which
6733** is necessary for AUTOVACUUM to work right. *piMoved is set to the
6734** page number that used to be the last root page in the file before
6735** the move. If no page gets moved, *piMoved is set to 0.
6736** The last root page is recorded in meta[3] and the value of
6737** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00006738*/
danielk197789d40042008-11-17 14:20:56 +00006739static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00006740 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00006741 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00006742 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00006743
drh1fee73e2007-08-29 04:00:57 +00006744 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006745 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00006746
danielk1977e6efa742004-11-10 11:55:10 +00006747 /* It is illegal to drop a table if any cursors are open on the
6748 ** database. This is because in auto-vacuum mode the backend may
6749 ** need to move another root-page to fill a gap left by the deleted
6750 ** root page. If an open cursor was using this page a problem would
6751 ** occur.
6752 */
6753 if( pBt->pCursor ){
danielk1977404ca072009-03-16 13:19:36 +00006754 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
6755 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00006756 }
danielk1977a0bf2652004-11-04 14:30:04 +00006757
drh16a9b832007-05-05 18:39:25 +00006758 rc = sqlite3BtreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00006759 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00006760 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00006761 if( rc ){
6762 releasePage(pPage);
6763 return rc;
6764 }
danielk1977a0bf2652004-11-04 14:30:04 +00006765
drh205f48e2004-11-05 00:43:11 +00006766 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00006767
drh4b70f112004-05-02 21:12:19 +00006768 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00006769#ifdef SQLITE_OMIT_AUTOVACUUM
drha34b6762004-05-07 13:30:42 +00006770 rc = freePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00006771 releasePage(pPage);
6772#else
6773 if( pBt->autoVacuum ){
6774 Pgno maxRootPgno;
danielk1977aef0bf62005-12-30 16:28:01 +00006775 rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006776 if( rc!=SQLITE_OK ){
6777 releasePage(pPage);
6778 return rc;
6779 }
6780
6781 if( iTable==maxRootPgno ){
6782 /* If the table being dropped is the table with the largest root-page
6783 ** number in the database, put the root page on the free list.
6784 */
6785 rc = freePage(pPage);
6786 releasePage(pPage);
6787 if( rc!=SQLITE_OK ){
6788 return rc;
6789 }
6790 }else{
6791 /* The table being dropped does not have the largest root-page
6792 ** number in the database. So move the page that does into the
6793 ** gap left by the deleted root-page.
6794 */
6795 MemPage *pMove;
6796 releasePage(pPage);
drh16a9b832007-05-05 18:39:25 +00006797 rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006798 if( rc!=SQLITE_OK ){
6799 return rc;
6800 }
danielk19774c999992008-07-16 18:17:55 +00006801 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006802 releasePage(pMove);
6803 if( rc!=SQLITE_OK ){
6804 return rc;
6805 }
drh16a9b832007-05-05 18:39:25 +00006806 rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006807 if( rc!=SQLITE_OK ){
6808 return rc;
6809 }
6810 rc = freePage(pMove);
6811 releasePage(pMove);
6812 if( rc!=SQLITE_OK ){
6813 return rc;
6814 }
6815 *piMoved = maxRootPgno;
6816 }
6817
danielk1977599fcba2004-11-08 07:13:13 +00006818 /* Set the new 'max-root-page' value in the database header. This
6819 ** is the old value less one, less one more if that happens to
6820 ** be a root-page number, less one again if that is the
6821 ** PENDING_BYTE_PAGE.
6822 */
danielk197787a6e732004-11-05 12:58:25 +00006823 maxRootPgno--;
danielk1977599fcba2004-11-08 07:13:13 +00006824 if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
6825 maxRootPgno--;
6826 }
danielk1977266664d2006-02-10 08:24:21 +00006827 if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00006828 maxRootPgno--;
6829 }
danielk1977599fcba2004-11-08 07:13:13 +00006830 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
6831
danielk1977aef0bf62005-12-30 16:28:01 +00006832 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006833 }else{
6834 rc = freePage(pPage);
6835 releasePage(pPage);
6836 }
6837#endif
drh2aa679f2001-06-25 02:11:07 +00006838 }else{
danielk1977a0bf2652004-11-04 14:30:04 +00006839 /* If sqlite3BtreeDropTable was called on page 1. */
drha34b6762004-05-07 13:30:42 +00006840 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00006841 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00006842 }
drh8b2f49b2001-06-08 00:21:52 +00006843 return rc;
6844}
drhd677b3d2007-08-20 22:48:41 +00006845int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
6846 int rc;
6847 sqlite3BtreeEnter(p);
6848 rc = btreeDropTable(p, iTable, piMoved);
6849 sqlite3BtreeLeave(p);
6850 return rc;
6851}
drh8b2f49b2001-06-08 00:21:52 +00006852
drh001bbcb2003-03-19 03:14:00 +00006853
drh8b2f49b2001-06-08 00:21:52 +00006854/*
drh23e11ca2004-05-04 17:27:28 +00006855** Read the meta-information out of a database file. Meta[0]
6856** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00006857** through meta[15] are available for use by higher layers. Meta[0]
6858** is read-only, the others are read/write.
6859**
6860** The schema layer numbers meta values differently. At the schema
6861** layer (and the SetCookie and ReadCookie opcodes) the number of
6862** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00006863*/
danielk1977aef0bf62005-12-30 16:28:01 +00006864int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
drh1bd10f82008-12-10 21:19:56 +00006865 DbPage *pDbPage = 0;
drh8b2f49b2001-06-08 00:21:52 +00006866 int rc;
drh4b70f112004-05-02 21:12:19 +00006867 unsigned char *pP1;
danielk1977aef0bf62005-12-30 16:28:01 +00006868 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006869
drhd677b3d2007-08-20 22:48:41 +00006870 sqlite3BtreeEnter(p);
6871
danielk1977da184232006-01-05 11:34:32 +00006872 /* Reading a meta-data value requires a read-lock on page 1 (and hence
6873 ** the sqlite_master table. We grab this lock regardless of whether or
6874 ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page
drhc25eabe2009-02-24 18:57:31 +00006875 ** 1 is treated as a special case by querySharedCacheTableLock()
6876 ** and setSharedCacheTableLock()).
danielk1977da184232006-01-05 11:34:32 +00006877 */
drhc25eabe2009-02-24 18:57:31 +00006878 rc = querySharedCacheTableLock(p, 1, READ_LOCK);
danielk1977da184232006-01-05 11:34:32 +00006879 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00006880 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00006881 return rc;
6882 }
6883
drh23e11ca2004-05-04 17:27:28 +00006884 assert( idx>=0 && idx<=15 );
danielk1977d9f6c532008-09-19 16:39:38 +00006885 if( pBt->pPage1 ){
6886 /* The b-tree is already holding a reference to page 1 of the database
6887 ** file. In this case the required meta-data value can be read directly
6888 ** from the page data of this reference. This is slightly faster than
6889 ** requesting a new reference from the pager layer.
6890 */
6891 pP1 = (unsigned char *)pBt->pPage1->aData;
6892 }else{
6893 /* The b-tree does not have a reference to page 1 of the database file.
6894 ** Obtain one from the pager layer.
6895 */
danielk1977ea897302008-09-19 15:10:58 +00006896 rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage);
6897 if( rc ){
6898 sqlite3BtreeLeave(p);
6899 return rc;
6900 }
6901 pP1 = (unsigned char *)sqlite3PagerGetData(pDbPage);
drhd677b3d2007-08-20 22:48:41 +00006902 }
drh23e11ca2004-05-04 17:27:28 +00006903 *pMeta = get4byte(&pP1[36 + idx*4]);
danielk1977ea897302008-09-19 15:10:58 +00006904
danielk1977d9f6c532008-09-19 16:39:38 +00006905 /* If the b-tree is not holding a reference to page 1, then one was
6906 ** requested from the pager layer in the above block. Release it now.
6907 */
danielk1977ea897302008-09-19 15:10:58 +00006908 if( !pBt->pPage1 ){
6909 sqlite3PagerUnref(pDbPage);
6910 }
drhae157872004-08-14 19:20:09 +00006911
danielk1977599fcba2004-11-08 07:13:13 +00006912 /* If autovacuumed is disabled in this build but we are trying to
6913 ** access an autovacuumed database, then make the database readonly.
6914 */
danielk1977003ba062004-11-04 02:57:33 +00006915#ifdef SQLITE_OMIT_AUTOVACUUM
drhae157872004-08-14 19:20:09 +00006916 if( idx==4 && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00006917#endif
drhae157872004-08-14 19:20:09 +00006918
danielk1977fa542f12009-04-02 18:28:08 +00006919 /* If there is currently an open transaction, grab a read-lock
6920 ** on page 1 of the database file. This is done to make sure that
6921 ** no other connection can modify the meta value just read from
6922 ** the database until the transaction is concluded.
6923 */
6924 if( p->inTrans>0 ){
6925 rc = setSharedCacheTableLock(p, 1, READ_LOCK);
6926 }
drhd677b3d2007-08-20 22:48:41 +00006927 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00006928 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006929}
6930
6931/*
drh23e11ca2004-05-04 17:27:28 +00006932** Write meta-information back into the database. Meta[0] is
6933** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00006934*/
danielk1977aef0bf62005-12-30 16:28:01 +00006935int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
6936 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00006937 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00006938 int rc;
drh23e11ca2004-05-04 17:27:28 +00006939 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00006940 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00006941 assert( p->inTrans==TRANS_WRITE );
6942 assert( pBt->pPage1!=0 );
6943 pP1 = pBt->pPage1->aData;
6944 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6945 if( rc==SQLITE_OK ){
6946 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00006947#ifndef SQLITE_OMIT_AUTOVACUUM
drh64022502009-01-09 14:11:04 +00006948 if( idx==7 ){
6949 assert( pBt->autoVacuum || iMeta==0 );
6950 assert( iMeta==0 || iMeta==1 );
6951 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00006952 }
drh64022502009-01-09 14:11:04 +00006953#endif
drh5df72a52002-06-06 23:16:05 +00006954 }
drhd677b3d2007-08-20 22:48:41 +00006955 sqlite3BtreeLeave(p);
6956 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006957}
drh8c42ca92001-06-22 19:15:00 +00006958
drhf328bc82004-05-10 23:29:49 +00006959/*
6960** Return the flag byte at the beginning of the page that the cursor
6961** is currently pointing to.
6962*/
6963int sqlite3BtreeFlags(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00006964 /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
drha3460582008-07-11 21:02:53 +00006965 ** restoreCursorPosition() here.
danielk1977da184232006-01-05 11:34:32 +00006966 */
danielk1977e448dc42008-01-02 11:50:51 +00006967 MemPage *pPage;
drha3460582008-07-11 21:02:53 +00006968 restoreCursorPosition(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00006969 pPage = pCur->apPage[pCur->iPage];
drh1fee73e2007-08-29 04:00:57 +00006970 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006971 assert( pPage!=0 );
drhd0679ed2007-08-28 22:24:34 +00006972 assert( pPage->pBt==pCur->pBt );
drh64022502009-01-09 14:11:04 +00006973 return pPage->aData[pPage->hdrOffset];
drhf328bc82004-05-10 23:29:49 +00006974}
6975
danielk1977a5533162009-02-24 10:01:51 +00006976#ifndef SQLITE_OMIT_BTREECOUNT
6977/*
6978** The first argument, pCur, is a cursor opened on some b-tree. Count the
6979** number of entries in the b-tree and write the result to *pnEntry.
6980**
6981** SQLITE_OK is returned if the operation is successfully executed.
6982** Otherwise, if an error is encountered (i.e. an IO error or database
6983** corruption) an SQLite error code is returned.
6984*/
6985int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
6986 i64 nEntry = 0; /* Value to return in *pnEntry */
6987 int rc; /* Return code */
6988 rc = moveToRoot(pCur);
6989
6990 /* Unless an error occurs, the following loop runs one iteration for each
6991 ** page in the B-Tree structure (not including overflow pages).
6992 */
6993 while( rc==SQLITE_OK ){
6994 int iIdx; /* Index of child node in parent */
6995 MemPage *pPage; /* Current page of the b-tree */
6996
6997 /* If this is a leaf page or the tree is not an int-key tree, then
6998 ** this page contains countable entries. Increment the entry counter
6999 ** accordingly.
7000 */
7001 pPage = pCur->apPage[pCur->iPage];
7002 if( pPage->leaf || !pPage->intKey ){
7003 nEntry += pPage->nCell;
7004 }
7005
7006 /* pPage is a leaf node. This loop navigates the cursor so that it
7007 ** points to the first interior cell that it points to the parent of
7008 ** the next page in the tree that has not yet been visited. The
7009 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7010 ** of the page, or to the number of cells in the page if the next page
7011 ** to visit is the right-child of its parent.
7012 **
7013 ** If all pages in the tree have been visited, return SQLITE_OK to the
7014 ** caller.
7015 */
7016 if( pPage->leaf ){
7017 do {
7018 if( pCur->iPage==0 ){
7019 /* All pages of the b-tree have been visited. Return successfully. */
7020 *pnEntry = nEntry;
7021 return SQLITE_OK;
7022 }
7023 sqlite3BtreeMoveToParent(pCur);
7024 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7025
7026 pCur->aiIdx[pCur->iPage]++;
7027 pPage = pCur->apPage[pCur->iPage];
7028 }
7029
7030 /* Descend to the child node of the cell that the cursor currently
7031 ** points at. This is the right-child if (iIdx==pPage->nCell).
7032 */
7033 iIdx = pCur->aiIdx[pCur->iPage];
7034 if( iIdx==pPage->nCell ){
7035 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7036 }else{
7037 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7038 }
7039 }
7040
shanebe217792009-03-05 04:20:31 +00007041 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007042 return rc;
7043}
7044#endif
drhdd793422001-06-28 01:54:48 +00007045
drhdd793422001-06-28 01:54:48 +00007046/*
drh5eddca62001-06-30 21:53:53 +00007047** Return the pager associated with a BTree. This routine is used for
7048** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007049*/
danielk1977aef0bf62005-12-30 16:28:01 +00007050Pager *sqlite3BtreePager(Btree *p){
7051 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007052}
drh5eddca62001-06-30 21:53:53 +00007053
drhb7f91642004-10-31 02:22:47 +00007054#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007055/*
7056** Append a message to the error message string.
7057*/
drh2e38c322004-09-03 18:38:44 +00007058static void checkAppendMsg(
7059 IntegrityCk *pCheck,
7060 char *zMsg1,
7061 const char *zFormat,
7062 ...
7063){
7064 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007065 if( !pCheck->mxErr ) return;
7066 pCheck->mxErr--;
7067 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007068 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007069 if( pCheck->errMsg.nChar ){
7070 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007071 }
drhf089aa42008-07-08 19:34:06 +00007072 if( zMsg1 ){
7073 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7074 }
7075 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7076 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007077 if( pCheck->errMsg.mallocFailed ){
7078 pCheck->mallocFailed = 1;
7079 }
drh5eddca62001-06-30 21:53:53 +00007080}
drhb7f91642004-10-31 02:22:47 +00007081#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007082
drhb7f91642004-10-31 02:22:47 +00007083#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007084/*
7085** Add 1 to the reference count for page iPage. If this is the second
7086** reference to the page, add an error message to pCheck->zErrMsg.
7087** Return 1 if there are 2 ore more references to the page and 0 if
7088** if this is the first reference to the page.
7089**
7090** Also check that the page number is in bounds.
7091*/
danielk197789d40042008-11-17 14:20:56 +00007092static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007093 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007094 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007095 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007096 return 1;
7097 }
7098 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007099 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007100 return 1;
7101 }
7102 return (pCheck->anRef[iPage]++)>1;
7103}
7104
danielk1977afcdd022004-10-31 16:25:42 +00007105#ifndef SQLITE_OMIT_AUTOVACUUM
7106/*
7107** Check that the entry in the pointer-map for page iChild maps to
7108** page iParent, pointer type ptrType. If not, append an error message
7109** to pCheck.
7110*/
7111static void checkPtrmap(
7112 IntegrityCk *pCheck, /* Integrity check context */
7113 Pgno iChild, /* Child page number */
7114 u8 eType, /* Expected pointer map type */
7115 Pgno iParent, /* Expected pointer map parent page number */
7116 char *zContext /* Context description (used for error msg) */
7117){
7118 int rc;
7119 u8 ePtrmapType;
7120 Pgno iPtrmapParent;
7121
7122 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7123 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007124 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007125 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7126 return;
7127 }
7128
7129 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7130 checkAppendMsg(pCheck, zContext,
7131 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7132 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7133 }
7134}
7135#endif
7136
drh5eddca62001-06-30 21:53:53 +00007137/*
7138** Check the integrity of the freelist or of an overflow page list.
7139** Verify that the number of pages on the list is N.
7140*/
drh30e58752002-03-02 20:41:57 +00007141static void checkList(
7142 IntegrityCk *pCheck, /* Integrity checking context */
7143 int isFreeList, /* True for a freelist. False for overflow page list */
7144 int iPage, /* Page number for first page in the list */
7145 int N, /* Expected number of pages in the list */
7146 char *zContext /* Context for error messages */
7147){
7148 int i;
drh3a4c1412004-05-09 20:40:11 +00007149 int expected = N;
7150 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007151 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007152 DbPage *pOvflPage;
7153 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007154 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007155 checkAppendMsg(pCheck, zContext,
7156 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007157 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007158 break;
7159 }
7160 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007161 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007162 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007163 break;
7164 }
danielk19773b8a05f2007-03-19 17:44:26 +00007165 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007166 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007167 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007168#ifndef SQLITE_OMIT_AUTOVACUUM
7169 if( pCheck->pBt->autoVacuum ){
7170 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7171 }
7172#endif
drh45b1fac2008-07-04 17:52:42 +00007173 if( n>pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007174 checkAppendMsg(pCheck, zContext,
7175 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007176 N--;
7177 }else{
7178 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007179 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007180#ifndef SQLITE_OMIT_AUTOVACUUM
7181 if( pCheck->pBt->autoVacuum ){
7182 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7183 }
7184#endif
7185 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007186 }
7187 N -= n;
drh30e58752002-03-02 20:41:57 +00007188 }
drh30e58752002-03-02 20:41:57 +00007189 }
danielk1977afcdd022004-10-31 16:25:42 +00007190#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007191 else{
7192 /* If this database supports auto-vacuum and iPage is not the last
7193 ** page in this overflow list, check that the pointer-map entry for
7194 ** the following page matches iPage.
7195 */
7196 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007197 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007198 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7199 }
danielk1977afcdd022004-10-31 16:25:42 +00007200 }
7201#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007202 iPage = get4byte(pOvflData);
7203 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007204 }
7205}
drhb7f91642004-10-31 02:22:47 +00007206#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007207
drhb7f91642004-10-31 02:22:47 +00007208#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007209/*
7210** Do various sanity checks on a single page of a tree. Return
7211** the tree depth. Root pages return 0. Parents of root pages
7212** return 1, and so forth.
7213**
7214** These checks are done:
7215**
7216** 1. Make sure that cells and freeblocks do not overlap
7217** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007218** NO 2. Make sure cell keys are in order.
7219** NO 3. Make sure no key is less than or equal to zLowerBound.
7220** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007221** 5. Check the integrity of overflow pages.
7222** 6. Recursively call checkTreePage on all children.
7223** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007224** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007225** the root of the tree.
7226*/
7227static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007228 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007229 int iPage, /* Page number of the page to check */
drh74161702006-02-24 02:53:49 +00007230 char *zParentContext /* Parent context */
drh5eddca62001-06-30 21:53:53 +00007231){
7232 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007233 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007234 int hdr, cellStart;
7235 int nCell;
drhda200cc2004-05-09 11:51:38 +00007236 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007237 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007238 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007239 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007240 char *hit = 0;
drh5eddca62001-06-30 21:53:53 +00007241
drh5bb3eb92007-05-04 13:15:55 +00007242 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007243
drh5eddca62001-06-30 21:53:53 +00007244 /* Check that the page exists
7245 */
drhd9cb6ac2005-10-20 07:28:17 +00007246 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007247 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007248 if( iPage==0 ) return 0;
7249 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drh16a9b832007-05-05 18:39:25 +00007250 if( (rc = sqlite3BtreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drhb56cd552009-05-01 13:16:54 +00007251 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh2e38c322004-09-03 18:38:44 +00007252 checkAppendMsg(pCheck, zContext,
7253 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007254 return 0;
7255 }
danielk197771d5d2c2008-09-29 11:49:47 +00007256 if( (rc = sqlite3BtreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007257 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007258 checkAppendMsg(pCheck, zContext,
7259 "sqlite3BtreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007260 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007261 return 0;
7262 }
7263
7264 /* Check out all the cells.
7265 */
7266 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007267 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007268 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007269 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007270 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007271
7272 /* Check payload overflow pages
7273 */
drh5bb3eb92007-05-04 13:15:55 +00007274 sqlite3_snprintf(sizeof(zContext), zContext,
7275 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007276 pCell = findCell(pPage,i);
drh16a9b832007-05-05 18:39:25 +00007277 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007278 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007279 if( !pPage->intKey ) sz += (int)info.nKey;
drh72365832007-03-06 15:53:44 +00007280 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007281 if( (sz>info.nLocal)
7282 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7283 ){
drhb6f41482004-05-14 01:58:11 +00007284 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007285 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7286#ifndef SQLITE_OMIT_AUTOVACUUM
7287 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007288 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007289 }
7290#endif
7291 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007292 }
7293
7294 /* Check sanity of left child page.
7295 */
drhda200cc2004-05-09 11:51:38 +00007296 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007297 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007298#ifndef SQLITE_OMIT_AUTOVACUUM
7299 if( pBt->autoVacuum ){
7300 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7301 }
7302#endif
danielk197762c14b32008-11-19 09:05:26 +00007303 d2 = checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007304 if( i>0 && d2!=depth ){
7305 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7306 }
7307 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007308 }
drh5eddca62001-06-30 21:53:53 +00007309 }
drhda200cc2004-05-09 11:51:38 +00007310 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007311 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007312 sqlite3_snprintf(sizeof(zContext), zContext,
7313 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007314#ifndef SQLITE_OMIT_AUTOVACUUM
7315 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007316 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00007317 }
7318#endif
danielk197762c14b32008-11-19 09:05:26 +00007319 checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007320 }
drh5eddca62001-06-30 21:53:53 +00007321
7322 /* Check for complete coverage of the page
7323 */
drhda200cc2004-05-09 11:51:38 +00007324 data = pPage->aData;
7325 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007326 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007327 if( hit==0 ){
7328 pCheck->mallocFailed = 1;
7329 }else{
shane5780ebd2008-11-11 17:36:30 +00007330 u16 contentOffset = get2byte(&data[hdr+5]);
7331 if (contentOffset > usableSize) {
7332 checkAppendMsg(pCheck, 0,
7333 "Corruption detected in header on page %d",iPage,0);
shane0af3f892008-11-12 04:55:34 +00007334 goto check_page_abort;
shane5780ebd2008-11-11 17:36:30 +00007335 }
7336 memset(hit+contentOffset, 0, usableSize-contentOffset);
7337 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007338 nCell = get2byte(&data[hdr+3]);
7339 cellStart = hdr + 12 - 4*pPage->leaf;
7340 for(i=0; i<nCell; i++){
7341 int pc = get2byte(&data[cellStart+i*2]);
danielk1977daca5432008-08-25 11:57:16 +00007342 u16 size = 1024;
drh2e38c322004-09-03 18:38:44 +00007343 int j;
danielk1977daca5432008-08-25 11:57:16 +00007344 if( pc<=usableSize ){
7345 size = cellSizePtr(pPage, &data[pc]);
7346 }
danielk19777701e812005-01-10 12:59:51 +00007347 if( (pc+size-1)>=usableSize || pc<0 ){
7348 checkAppendMsg(pCheck, 0,
7349 "Corruption detected in cell %d on page %d",i,iPage,0);
7350 }else{
7351 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7352 }
drh2e38c322004-09-03 18:38:44 +00007353 }
7354 for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000;
7355 cnt++){
7356 int size = get2byte(&data[i+2]);
7357 int j;
danielk19777701e812005-01-10 12:59:51 +00007358 if( (i+size-1)>=usableSize || i<0 ){
7359 checkAppendMsg(pCheck, 0,
7360 "Corruption detected in cell %d on page %d",i,iPage,0);
7361 }else{
7362 for(j=i+size-1; j>=i; j--) hit[j]++;
7363 }
drh2e38c322004-09-03 18:38:44 +00007364 i = get2byte(&data[i]);
7365 }
7366 for(i=cnt=0; i<usableSize; i++){
7367 if( hit[i]==0 ){
7368 cnt++;
7369 }else if( hit[i]>1 ){
7370 checkAppendMsg(pCheck, 0,
7371 "Multiple uses for byte %d of page %d", i, iPage);
7372 break;
7373 }
7374 }
7375 if( cnt!=data[hdr+7] ){
7376 checkAppendMsg(pCheck, 0,
7377 "Fragmented space is %d byte reported as %d on page %d",
7378 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007379 }
7380 }
shane0af3f892008-11-12 04:55:34 +00007381check_page_abort:
7382 if (hit) sqlite3PageFree(hit);
drh6019e162001-07-02 17:51:45 +00007383
drh4b70f112004-05-02 21:12:19 +00007384 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007385 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007386}
drhb7f91642004-10-31 02:22:47 +00007387#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007388
drhb7f91642004-10-31 02:22:47 +00007389#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007390/*
7391** This routine does a complete check of the given BTree file. aRoot[] is
7392** an array of pages numbers were each page number is the root page of
7393** a table. nRoot is the number of entries in aRoot.
7394**
drhc890fec2008-08-01 20:10:08 +00007395** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007396** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007397** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007398** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007399*/
drh1dcdbc02007-01-27 02:24:54 +00007400char *sqlite3BtreeIntegrityCheck(
7401 Btree *p, /* The btree to be checked */
7402 int *aRoot, /* An array of root pages numbers for individual trees */
7403 int nRoot, /* Number of entries in aRoot[] */
7404 int mxErr, /* Stop reporting errors after this many */
7405 int *pnErr /* Write number of errors seen to this variable */
7406){
danielk197789d40042008-11-17 14:20:56 +00007407 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007408 int nRef;
drhaaab5722002-02-19 13:39:21 +00007409 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007410 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007411 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007412
drhd677b3d2007-08-20 22:48:41 +00007413 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00007414 nRef = sqlite3PagerRefcount(pBt->pPager);
danielk1977aef0bf62005-12-30 16:28:01 +00007415 if( lockBtreeWithRetry(p)!=SQLITE_OK ){
drhc890fec2008-08-01 20:10:08 +00007416 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007417 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007418 return sqlite3DbStrDup(0, "cannot acquire a read lock on the database");
drhefc251d2001-07-01 22:12:01 +00007419 }
drh5eddca62001-06-30 21:53:53 +00007420 sCheck.pBt = pBt;
7421 sCheck.pPager = pBt->pPager;
danielk197789d40042008-11-17 14:20:56 +00007422 sCheck.nPage = pagerPagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007423 sCheck.mxErr = mxErr;
7424 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007425 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007426 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007427 if( sCheck.nPage==0 ){
7428 unlockBtreeIfUnused(pBt);
drhd677b3d2007-08-20 22:48:41 +00007429 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007430 return 0;
7431 }
drhe5ae5732008-06-15 02:51:47 +00007432 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007433 if( !sCheck.anRef ){
7434 unlockBtreeIfUnused(pBt);
drh1dcdbc02007-01-27 02:24:54 +00007435 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007436 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007437 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007438 }
drhda200cc2004-05-09 11:51:38 +00007439 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007440 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007441 if( i<=sCheck.nPage ){
7442 sCheck.anRef[i] = 1;
7443 }
drhf089aa42008-07-08 19:34:06 +00007444 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drh5eddca62001-06-30 21:53:53 +00007445
7446 /* Check the integrity of the freelist
7447 */
drha34b6762004-05-07 13:30:42 +00007448 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7449 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007450
7451 /* Check all the tables.
7452 */
danielk197789d40042008-11-17 14:20:56 +00007453 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007454 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007455#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007456 if( pBt->autoVacuum && aRoot[i]>1 ){
7457 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7458 }
7459#endif
danielk197762c14b32008-11-19 09:05:26 +00007460 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ");
drh5eddca62001-06-30 21:53:53 +00007461 }
7462
7463 /* Make sure every page in the file is referenced
7464 */
drh1dcdbc02007-01-27 02:24:54 +00007465 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007466#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007467 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007468 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007469 }
danielk1977afcdd022004-10-31 16:25:42 +00007470#else
7471 /* If the database supports auto-vacuum, make sure no tables contain
7472 ** references to pointer-map pages.
7473 */
7474 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007475 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007476 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7477 }
7478 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007479 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007480 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7481 }
7482#endif
drh5eddca62001-06-30 21:53:53 +00007483 }
7484
drh64022502009-01-09 14:11:04 +00007485 /* Make sure this analysis did not leave any unref() pages.
7486 ** This is an internal consistency check; an integrity check
7487 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007488 */
drh5e00f6c2001-09-13 13:46:56 +00007489 unlockBtreeIfUnused(pBt);
drh64022502009-01-09 14:11:04 +00007490 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007491 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00007492 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00007493 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00007494 );
drh5eddca62001-06-30 21:53:53 +00007495 }
7496
7497 /* Clean up and report errors.
7498 */
drhd677b3d2007-08-20 22:48:41 +00007499 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00007500 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00007501 if( sCheck.mallocFailed ){
7502 sqlite3StrAccumReset(&sCheck.errMsg);
7503 *pnErr = sCheck.nErr+1;
7504 return 0;
7505 }
drh1dcdbc02007-01-27 02:24:54 +00007506 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00007507 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7508 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00007509}
drhb7f91642004-10-31 02:22:47 +00007510#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00007511
drh73509ee2003-04-06 20:44:45 +00007512/*
7513** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00007514**
7515** The pager filename is invariant as long as the pager is
7516** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00007517*/
danielk1977aef0bf62005-12-30 16:28:01 +00007518const char *sqlite3BtreeGetFilename(Btree *p){
7519 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007520 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00007521}
7522
7523/*
danielk19775865e3d2004-06-14 06:03:57 +00007524** Return the pathname of the journal file for this database. The return
7525** value of this routine is the same regardless of whether the journal file
7526** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00007527**
7528** The pager journal filename is invariant as long as the pager is
7529** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00007530*/
danielk1977aef0bf62005-12-30 16:28:01 +00007531const char *sqlite3BtreeGetJournalname(Btree *p){
7532 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007533 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00007534}
7535
danielk19771d850a72004-05-31 08:26:49 +00007536/*
7537** Return non-zero if a transaction is active.
7538*/
danielk1977aef0bf62005-12-30 16:28:01 +00007539int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00007540 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00007541 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00007542}
7543
7544/*
danielk19772372c2b2006-06-27 16:34:56 +00007545** Return non-zero if a read (or write) transaction is active.
7546*/
7547int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00007548 assert( p );
drhe5fe6902007-12-07 18:55:28 +00007549 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00007550 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00007551}
7552
danielk197704103022009-02-03 16:51:24 +00007553int sqlite3BtreeIsInBackup(Btree *p){
7554 assert( p );
7555 assert( sqlite3_mutex_held(p->db->mutex) );
7556 return p->nBackup!=0;
7557}
7558
danielk19772372c2b2006-06-27 16:34:56 +00007559/*
danielk1977da184232006-01-05 11:34:32 +00007560** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00007561** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00007562** purposes (for example, to store a high-level schema associated with
7563** the shared-btree). The btree layer manages reference counting issues.
7564**
7565** The first time this is called on a shared-btree, nBytes bytes of memory
7566** are allocated, zeroed, and returned to the caller. For each subsequent
7567** call the nBytes parameter is ignored and a pointer to the same blob
7568** of memory returned.
7569**
danielk1977171bfed2008-06-23 09:50:50 +00007570** If the nBytes parameter is 0 and the blob of memory has not yet been
7571** allocated, a null pointer is returned. If the blob has already been
7572** allocated, it is returned as normal.
7573**
danielk1977da184232006-01-05 11:34:32 +00007574** Just before the shared-btree is closed, the function passed as the
7575** xFree argument when the memory allocation was made is invoked on the
drh17435752007-08-16 04:30:38 +00007576** blob of allocated memory. This function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00007577** on the memory, the btree layer does that.
7578*/
7579void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
7580 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00007581 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00007582 if( !pBt->pSchema && nBytes ){
drh17435752007-08-16 04:30:38 +00007583 pBt->pSchema = sqlite3MallocZero(nBytes);
danielk1977da184232006-01-05 11:34:32 +00007584 pBt->xFreeSchema = xFree;
7585 }
drh27641702007-08-22 02:56:42 +00007586 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00007587 return pBt->pSchema;
7588}
7589
danielk1977c87d34d2006-01-06 13:00:28 +00007590/*
danielk1977404ca072009-03-16 13:19:36 +00007591** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
7592** btree as the argument handle holds an exclusive lock on the
7593** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00007594*/
7595int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00007596 int rc;
drhe5fe6902007-12-07 18:55:28 +00007597 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00007598 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00007599 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
7600 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00007601 sqlite3BtreeLeave(p);
7602 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00007603}
7604
drha154dcd2006-03-22 22:10:07 +00007605
7606#ifndef SQLITE_OMIT_SHARED_CACHE
7607/*
7608** Obtain a lock on the table whose root page is iTab. The
7609** lock is a write lock if isWritelock is true or a read lock
7610** if it is false.
7611*/
danielk1977c00da102006-01-07 13:21:04 +00007612int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00007613 int rc = SQLITE_OK;
drh6a9ad3d2008-04-02 16:29:30 +00007614 if( p->sharable ){
7615 u8 lockType = READ_LOCK + isWriteLock;
7616 assert( READ_LOCK+1==WRITE_LOCK );
7617 assert( isWriteLock==0 || isWriteLock==1 );
7618 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00007619 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007620 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00007621 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007622 }
7623 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00007624 }
7625 return rc;
7626}
drha154dcd2006-03-22 22:10:07 +00007627#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00007628
danielk1977b4e9af92007-05-01 17:49:49 +00007629#ifndef SQLITE_OMIT_INCRBLOB
7630/*
7631** Argument pCsr must be a cursor opened for writing on an
7632** INTKEY table currently pointing at a valid table entry.
7633** This function modifies the data stored as part of that entry.
7634** Only the data content may only be modified, it is not possible
7635** to change the length of the data stored.
7636*/
danielk1977dcbb5d32007-05-04 18:36:44 +00007637int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977404ca072009-03-16 13:19:36 +00007638 int rc;
7639
drh1fee73e2007-08-29 04:00:57 +00007640 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00007641 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00007642 assert(pCsr->isIncrblobHandle);
danielk19773588ceb2008-06-10 17:30:26 +00007643
drha3460582008-07-11 21:02:53 +00007644 restoreCursorPosition(pCsr);
danielk19773588ceb2008-06-10 17:30:26 +00007645 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
7646 if( pCsr->eState!=CURSOR_VALID ){
7647 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00007648 }
7649
danielk1977d04417962007-05-02 13:16:30 +00007650 /* Check some preconditions:
danielk1977dcbb5d32007-05-04 18:36:44 +00007651 ** (a) the cursor is open for writing,
7652 ** (b) there is no read-lock on the table being modified and
7653 ** (c) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00007654 */
danielk1977d04417962007-05-02 13:16:30 +00007655 if( !pCsr->wrFlag ){
danielk1977dcbb5d32007-05-04 18:36:44 +00007656 return SQLITE_READONLY;
danielk1977d04417962007-05-02 13:16:30 +00007657 }
drhd0679ed2007-08-28 22:24:34 +00007658 assert( !pCsr->pBt->readOnly
7659 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk1977404ca072009-03-16 13:19:36 +00007660 rc = checkForReadConflicts(pCsr->pBtree, pCsr->pgnoRoot, pCsr, 0);
7661 if( rc!=SQLITE_OK ){
7662 /* The table pCur points to has a read lock */
7663 assert( rc==SQLITE_LOCKED_SHAREDCACHE );
7664 return rc;
danielk1977d04417962007-05-02 13:16:30 +00007665 }
danielk197771d5d2c2008-09-29 11:49:47 +00007666 if( pCsr->eState==CURSOR_INVALID || !pCsr->apPage[pCsr->iPage]->intKey ){
danielk1977d04417962007-05-02 13:16:30 +00007667 return SQLITE_ERROR;
danielk1977b4e9af92007-05-01 17:49:49 +00007668 }
7669
danielk19779f8d6402007-05-02 17:48:45 +00007670 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00007671}
danielk19772dec9702007-05-02 16:48:37 +00007672
7673/*
7674** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00007675** overflow list for the current row. This is used by cursors opened
7676** for incremental blob IO only.
7677**
7678** This function sets a flag only. The actual page location cache
7679** (stored in BtCursor.aOverflow[]) is allocated and used by function
7680** accessPayload() (the worker function for sqlite3BtreeData() and
7681** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00007682*/
7683void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00007684 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00007685 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00007686 assert(!pCur->isIncrblobHandle);
danielk19772dec9702007-05-02 16:48:37 +00007687 assert(!pCur->aOverflow);
danielk1977dcbb5d32007-05-04 18:36:44 +00007688 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00007689}
danielk1977b4e9af92007-05-01 17:49:49 +00007690#endif