blob: 713016e75639fe8a2d13619d08edc5211f79eae5 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
drhe53831d2007-08-17 01:14:38 +000046#ifndef SQLITE_OMIT_SHARED_CACHE
47/*
danielk1977502b4e02008-09-02 14:07:24 +000048** A list of BtShared objects that are eligible for participation
49** in shared cache. This variable has file scope during normal builds,
50** but the test harness needs to access it so we make it global for
51** test builds.
drh7555d8e2009-03-20 13:15:30 +000052**
53** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000054*/
55#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000056BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000057#else
drh78f82d12008-09-02 00:52:52 +000058static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000059#endif
drhe53831d2007-08-17 01:14:38 +000060#endif /* SQLITE_OMIT_SHARED_CACHE */
61
62#ifndef SQLITE_OMIT_SHARED_CACHE
63/*
64** Enable or disable the shared pager and schema features.
65**
66** This routine has no effect on existing database connections.
67** The shared cache setting effects only future calls to
68** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
69*/
70int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000071 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000072 return SQLITE_OK;
73}
74#endif
75
drhd677b3d2007-08-20 22:48:41 +000076
danielk1977aef0bf62005-12-30 16:28:01 +000077
78#ifdef SQLITE_OMIT_SHARED_CACHE
79 /*
drhc25eabe2009-02-24 18:57:31 +000080 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
81 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000082 ** manipulate entries in the BtShared.pLock linked list used to store
83 ** shared-cache table level locks. If the library is compiled with the
84 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000085 ** of each BtShared structure and so this locking is not necessary.
86 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000087 */
drhc25eabe2009-02-24 18:57:31 +000088 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
89 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
90 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000091 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000092 #define hasSharedCacheTableLock(a,b,c,d) 1
93 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000094#endif
danielk1977aef0bf62005-12-30 16:28:01 +000095
drhe53831d2007-08-17 01:14:38 +000096#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000097
98#ifdef SQLITE_DEBUG
99/*
drh0ee3dbe2009-10-16 15:05:18 +0000100**** This function is only used as part of an assert() statement. ***
101**
102** Check to see if pBtree holds the required locks to read or write to the
103** table with root page iRoot. Return 1 if it does and 0 if not.
104**
105** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000106** Btree connection pBtree:
107**
108** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
109**
drh0ee3dbe2009-10-16 15:05:18 +0000110** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000111** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000112** the corresponding table. This makes things a bit more complicated,
113** as this module treats each table as a separate structure. To determine
114** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000115** function has to search through the database schema.
116**
drh0ee3dbe2009-10-16 15:05:18 +0000117** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000118** hold a write-lock on the schema table (root page 1). This is also
119** acceptable.
120*/
121static int hasSharedCacheTableLock(
122 Btree *pBtree, /* Handle that must hold lock */
123 Pgno iRoot, /* Root page of b-tree */
124 int isIndex, /* True if iRoot is the root of an index b-tree */
125 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
126){
127 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
128 Pgno iTab = 0;
129 BtLock *pLock;
130
drh0ee3dbe2009-10-16 15:05:18 +0000131 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000132 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000133 ** Return true immediately.
134 */
danielk197796d48e92009-06-29 06:00:37 +0000135 if( (pBtree->sharable==0)
136 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000137 ){
138 return 1;
139 }
140
drh0ee3dbe2009-10-16 15:05:18 +0000141 /* If the client is reading or writing an index and the schema is
142 ** not loaded, then it is too difficult to actually check to see if
143 ** the correct locks are held. So do not bother - just return true.
144 ** This case does not come up very often anyhow.
145 */
146 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
147 return 1;
148 }
149
danielk197796d48e92009-06-29 06:00:37 +0000150 /* Figure out the root-page that the lock should be held on. For table
151 ** b-trees, this is just the root page of the b-tree being read or
152 ** written. For index b-trees, it is the root page of the associated
153 ** table. */
154 if( isIndex ){
155 HashElem *p;
156 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
157 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000158 if( pIdx->tnum==(int)iRoot ){
159 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000160 }
161 }
162 }else{
163 iTab = iRoot;
164 }
165
166 /* Search for the required lock. Either a write-lock on root-page iTab, a
167 ** write-lock on the schema table, or (if the client is reading) a
168 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
169 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
170 if( pLock->pBtree==pBtree
171 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
172 && pLock->eLock>=eLockType
173 ){
174 return 1;
175 }
176 }
177
178 /* Failed to find the required lock. */
179 return 0;
180}
drh0ee3dbe2009-10-16 15:05:18 +0000181#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000182
drh0ee3dbe2009-10-16 15:05:18 +0000183#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000184/*
drh0ee3dbe2009-10-16 15:05:18 +0000185**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000186**
drh0ee3dbe2009-10-16 15:05:18 +0000187** Return true if it would be illegal for pBtree to write into the
188** table or index rooted at iRoot because other shared connections are
189** simultaneously reading that same table or index.
190**
191** It is illegal for pBtree to write if some other Btree object that
192** shares the same BtShared object is currently reading or writing
193** the iRoot table. Except, if the other Btree object has the
194** read-uncommitted flag set, then it is OK for the other object to
195** have a read cursor.
196**
197** For example, before writing to any part of the table or index
198** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000199**
200** assert( !hasReadConflicts(pBtree, iRoot) );
201*/
202static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
203 BtCursor *p;
204 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
205 if( p->pgnoRoot==iRoot
206 && p->pBtree!=pBtree
207 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
208 ){
209 return 1;
210 }
211 }
212 return 0;
213}
214#endif /* #ifdef SQLITE_DEBUG */
215
danielk1977da184232006-01-05 11:34:32 +0000216/*
drh0ee3dbe2009-10-16 15:05:18 +0000217** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000218** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000219** SQLITE_OK if the lock may be obtained (by calling
220** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000221*/
drhc25eabe2009-02-24 18:57:31 +0000222static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000223 BtShared *pBt = p->pBt;
224 BtLock *pIter;
225
drh1fee73e2007-08-29 04:00:57 +0000226 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000227 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
228 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000229 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000230
danielk19775b413d72009-04-01 09:41:54 +0000231 /* If requesting a write-lock, then the Btree must have an open write
232 ** transaction on this file. And, obviously, for this to be so there
233 ** must be an open write transaction on the file itself.
234 */
235 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
236 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
237
drh0ee3dbe2009-10-16 15:05:18 +0000238 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000239 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000240 return SQLITE_OK;
241 }
242
danielk1977641b0f42007-12-21 04:47:25 +0000243 /* If some other connection is holding an exclusive lock, the
244 ** requested lock may not be obtained.
245 */
danielk1977404ca072009-03-16 13:19:36 +0000246 if( pBt->pWriter!=p && pBt->isExclusive ){
247 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
248 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000249 }
250
danielk1977e0d9e6f2009-07-03 16:25:06 +0000251 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
252 /* The condition (pIter->eLock!=eLock) in the following if(...)
253 ** statement is a simplification of:
254 **
255 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
256 **
257 ** since we know that if eLock==WRITE_LOCK, then no other connection
258 ** may hold a WRITE_LOCK on any table in this file (since there can
259 ** only be a single writer).
260 */
261 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
262 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
263 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
264 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
265 if( eLock==WRITE_LOCK ){
266 assert( p==pBt->pWriter );
267 pBt->isPending = 1;
danielk1977da184232006-01-05 11:34:32 +0000268 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000269 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000270 }
271 }
272 return SQLITE_OK;
273}
drhe53831d2007-08-17 01:14:38 +0000274#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000275
drhe53831d2007-08-17 01:14:38 +0000276#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000277/*
278** Add a lock on the table with root-page iTable to the shared-btree used
279** by Btree handle p. Parameter eLock must be either READ_LOCK or
280** WRITE_LOCK.
281**
danielk19779d104862009-07-09 08:27:14 +0000282** This function assumes the following:
283**
drh0ee3dbe2009-10-16 15:05:18 +0000284** (a) The specified Btree object p is connected to a sharable
285** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000286**
drh0ee3dbe2009-10-16 15:05:18 +0000287** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000288** with the requested lock (i.e. querySharedCacheTableLock() has
289** already been called and returned SQLITE_OK).
290**
291** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
292** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000293*/
drhc25eabe2009-02-24 18:57:31 +0000294static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000295 BtShared *pBt = p->pBt;
296 BtLock *pLock = 0;
297 BtLock *pIter;
298
drh1fee73e2007-08-29 04:00:57 +0000299 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000300 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
301 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000302
danielk1977e0d9e6f2009-07-03 16:25:06 +0000303 /* A connection with the read-uncommitted flag set will never try to
304 ** obtain a read-lock using this function. The only read-lock obtained
305 ** by a connection in read-uncommitted mode is on the sqlite_master
306 ** table, and that lock is obtained in BtreeBeginTrans(). */
307 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
308
danielk19779d104862009-07-09 08:27:14 +0000309 /* This function should only be called on a sharable b-tree after it
310 ** has been determined that no other b-tree holds a conflicting lock. */
311 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000312 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000313
314 /* First search the list for an existing lock on this table. */
315 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
316 if( pIter->iTable==iTable && pIter->pBtree==p ){
317 pLock = pIter;
318 break;
319 }
320 }
321
322 /* If the above search did not find a BtLock struct associating Btree p
323 ** with table iTable, allocate one and link it into the list.
324 */
325 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000326 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000327 if( !pLock ){
328 return SQLITE_NOMEM;
329 }
330 pLock->iTable = iTable;
331 pLock->pBtree = p;
332 pLock->pNext = pBt->pLock;
333 pBt->pLock = pLock;
334 }
335
336 /* Set the BtLock.eLock variable to the maximum of the current lock
337 ** and the requested lock. This means if a write-lock was already held
338 ** and a read-lock requested, we don't incorrectly downgrade the lock.
339 */
340 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000341 if( eLock>pLock->eLock ){
342 pLock->eLock = eLock;
343 }
danielk1977aef0bf62005-12-30 16:28:01 +0000344
345 return SQLITE_OK;
346}
drhe53831d2007-08-17 01:14:38 +0000347#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000348
drhe53831d2007-08-17 01:14:38 +0000349#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000350/*
drhc25eabe2009-02-24 18:57:31 +0000351** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000352** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000353**
drh0ee3dbe2009-10-16 15:05:18 +0000354** This function assumes that Btree p has an open read or write
danielk1977fa542f12009-04-02 18:28:08 +0000355** transaction. If it does not, then the BtShared.isPending variable
356** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000357*/
drhc25eabe2009-02-24 18:57:31 +0000358static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000359 BtShared *pBt = p->pBt;
360 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000361
drh1fee73e2007-08-29 04:00:57 +0000362 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000363 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000364 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000365
danielk1977aef0bf62005-12-30 16:28:01 +0000366 while( *ppIter ){
367 BtLock *pLock = *ppIter;
danielk1977404ca072009-03-16 13:19:36 +0000368 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000369 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000370 if( pLock->pBtree==p ){
371 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000372 assert( pLock->iTable!=1 || pLock==&p->lock );
373 if( pLock->iTable!=1 ){
374 sqlite3_free(pLock);
375 }
danielk1977aef0bf62005-12-30 16:28:01 +0000376 }else{
377 ppIter = &pLock->pNext;
378 }
379 }
danielk1977641b0f42007-12-21 04:47:25 +0000380
danielk1977404ca072009-03-16 13:19:36 +0000381 assert( pBt->isPending==0 || pBt->pWriter );
382 if( pBt->pWriter==p ){
383 pBt->pWriter = 0;
384 pBt->isExclusive = 0;
385 pBt->isPending = 0;
386 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000387 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000388 ** transaction. If there currently exists a writer, and p is not
389 ** that writer, then the number of locks held by connections other
390 ** than the writer must be about to drop to zero. In this case
391 ** set the isPending flag to 0.
392 **
393 ** If there is not currently a writer, then BtShared.isPending must
394 ** be zero already. So this next line is harmless in that case.
395 */
396 pBt->isPending = 0;
danielk1977641b0f42007-12-21 04:47:25 +0000397 }
danielk1977aef0bf62005-12-30 16:28:01 +0000398}
danielk197794b30732009-07-02 17:21:57 +0000399
danielk1977e0d9e6f2009-07-03 16:25:06 +0000400/*
drh0ee3dbe2009-10-16 15:05:18 +0000401** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000402*/
danielk197794b30732009-07-02 17:21:57 +0000403static void downgradeAllSharedCacheTableLocks(Btree *p){
404 BtShared *pBt = p->pBt;
405 if( pBt->pWriter==p ){
406 BtLock *pLock;
407 pBt->pWriter = 0;
408 pBt->isExclusive = 0;
409 pBt->isPending = 0;
410 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
411 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
412 pLock->eLock = READ_LOCK;
413 }
414 }
415}
416
danielk1977aef0bf62005-12-30 16:28:01 +0000417#endif /* SQLITE_OMIT_SHARED_CACHE */
418
drh980b1a72006-08-16 16:42:48 +0000419static void releasePage(MemPage *pPage); /* Forward reference */
420
drh1fee73e2007-08-29 04:00:57 +0000421/*
drh0ee3dbe2009-10-16 15:05:18 +0000422***** This routine is used inside of assert() only ****
423**
424** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000425*/
drh0ee3dbe2009-10-16 15:05:18 +0000426#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000427static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000428 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000429}
430#endif
431
432
danielk197792d4d7a2007-05-04 12:05:56 +0000433#ifndef SQLITE_OMIT_INCRBLOB
434/*
435** Invalidate the overflow page-list cache for cursor pCur, if any.
436*/
437static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000438 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000439 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000440 pCur->aOverflow = 0;
441}
442
443/*
444** Invalidate the overflow page-list cache for all cursors opened
445** on the shared btree structure pBt.
446*/
447static void invalidateAllOverflowCache(BtShared *pBt){
448 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000449 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000450 for(p=pBt->pCursor; p; p=p->pNext){
451 invalidateOverflowCache(p);
452 }
453}
danielk197796d48e92009-06-29 06:00:37 +0000454
455/*
456** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000457** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000458** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000459**
460** If argument isClearTable is true, then the entire contents of the
461** table is about to be deleted. In this case invalidate all incrblob
462** cursors open on any row within the table with root-page pgnoRoot.
463**
464** Otherwise, if argument isClearTable is false, then the row with
465** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000466** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000467*/
468static void invalidateIncrblobCursors(
469 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000470 i64 iRow, /* The rowid that might be changing */
471 int isClearTable /* True if all rows are being deleted */
472){
473 BtCursor *p;
474 BtShared *pBt = pBtree->pBt;
475 assert( sqlite3BtreeHoldsMutex(pBtree) );
476 for(p=pBt->pCursor; p; p=p->pNext){
477 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
478 p->eState = CURSOR_INVALID;
479 }
480 }
481}
482
danielk197792d4d7a2007-05-04 12:05:56 +0000483#else
drh0ee3dbe2009-10-16 15:05:18 +0000484 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000485 #define invalidateOverflowCache(x)
486 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000487 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000488#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000489
drh980b1a72006-08-16 16:42:48 +0000490/*
danielk1977bea2a942009-01-20 17:06:27 +0000491** Set bit pgno of the BtShared.pHasContent bitvec. This is called
492** when a page that previously contained data becomes a free-list leaf
493** page.
494**
495** The BtShared.pHasContent bitvec exists to work around an obscure
496** bug caused by the interaction of two useful IO optimizations surrounding
497** free-list leaf pages:
498**
499** 1) When all data is deleted from a page and the page becomes
500** a free-list leaf page, the page is not written to the database
501** (as free-list leaf pages contain no meaningful data). Sometimes
502** such a page is not even journalled (as it will not be modified,
503** why bother journalling it?).
504**
505** 2) When a free-list leaf page is reused, its content is not read
506** from the database or written to the journal file (why should it
507** be, if it is not at all meaningful?).
508**
509** By themselves, these optimizations work fine and provide a handy
510** performance boost to bulk delete or insert operations. However, if
511** a page is moved to the free-list and then reused within the same
512** transaction, a problem comes up. If the page is not journalled when
513** it is moved to the free-list and it is also not journalled when it
514** is extracted from the free-list and reused, then the original data
515** may be lost. In the event of a rollback, it may not be possible
516** to restore the database to its original configuration.
517**
518** The solution is the BtShared.pHasContent bitvec. Whenever a page is
519** moved to become a free-list leaf page, the corresponding bit is
520** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000521** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000522** set in BtShared.pHasContent. The contents of the bitvec are cleared
523** at the end of every transaction.
524*/
525static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
526 int rc = SQLITE_OK;
527 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000528 assert( pgno<=pBt->nPage );
529 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000530 if( !pBt->pHasContent ){
531 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000532 }
533 }
534 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
535 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
536 }
537 return rc;
538}
539
540/*
541** Query the BtShared.pHasContent vector.
542**
543** This function is called when a free-list leaf page is removed from the
544** free-list for reuse. It returns false if it is safe to retrieve the
545** page from the pager layer with the 'no-content' flag set. True otherwise.
546*/
547static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
548 Bitvec *p = pBt->pHasContent;
549 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
550}
551
552/*
553** Clear (destroy) the BtShared.pHasContent bitvec. This should be
554** invoked at the conclusion of each write-transaction.
555*/
556static void btreeClearHasContent(BtShared *pBt){
557 sqlite3BitvecDestroy(pBt->pHasContent);
558 pBt->pHasContent = 0;
559}
560
561/*
drh980b1a72006-08-16 16:42:48 +0000562** Save the current cursor position in the variables BtCursor.nKey
563** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000564**
565** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
566** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000567*/
568static int saveCursorPosition(BtCursor *pCur){
569 int rc;
570
571 assert( CURSOR_VALID==pCur->eState );
572 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000573 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000574
575 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000576 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000577
578 /* If this is an intKey table, then the above call to BtreeKeySize()
579 ** stores the integer key in pCur->nKey. In this case this value is
580 ** all that is required. Otherwise, if pCur is not open on an intKey
581 ** table, then malloc space for and store the pCur->nKey bytes of key
582 ** data.
583 */
drh4c301aa2009-07-15 17:25:45 +0000584 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000585 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000586 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000587 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000588 if( rc==SQLITE_OK ){
589 pCur->pKey = pKey;
590 }else{
drh17435752007-08-16 04:30:38 +0000591 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000592 }
593 }else{
594 rc = SQLITE_NOMEM;
595 }
596 }
danielk197771d5d2c2008-09-29 11:49:47 +0000597 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000598
599 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000600 int i;
601 for(i=0; i<=pCur->iPage; i++){
602 releasePage(pCur->apPage[i]);
603 pCur->apPage[i] = 0;
604 }
605 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000606 pCur->eState = CURSOR_REQUIRESEEK;
607 }
608
danielk197792d4d7a2007-05-04 12:05:56 +0000609 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000610 return rc;
611}
612
613/*
drh0ee3dbe2009-10-16 15:05:18 +0000614** Save the positions of all cursors (except pExcept) that are open on
615** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000616** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
617*/
618static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
619 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000620 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000621 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000622 for(p=pBt->pCursor; p; p=p->pNext){
623 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
624 p->eState==CURSOR_VALID ){
625 int rc = saveCursorPosition(p);
626 if( SQLITE_OK!=rc ){
627 return rc;
628 }
629 }
630 }
631 return SQLITE_OK;
632}
633
634/*
drhbf700f32007-03-31 02:36:44 +0000635** Clear the current cursor position.
636*/
danielk1977be51a652008-10-08 17:58:48 +0000637void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000638 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000639 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000640 pCur->pKey = 0;
641 pCur->eState = CURSOR_INVALID;
642}
643
644/*
danielk19773509a652009-07-06 18:56:13 +0000645** In this version of BtreeMoveto, pKey is a packed index record
646** such as is generated by the OP_MakeRecord opcode. Unpack the
647** record and then call BtreeMovetoUnpacked() to do the work.
648*/
649static int btreeMoveto(
650 BtCursor *pCur, /* Cursor open on the btree to be searched */
651 const void *pKey, /* Packed key if the btree is an index */
652 i64 nKey, /* Integer key for tables. Size of pKey for indices */
653 int bias, /* Bias search to the high end */
654 int *pRes /* Write search results here */
655){
656 int rc; /* Status code */
657 UnpackedRecord *pIdxKey; /* Unpacked index key */
658 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000659 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000660
661 if( pKey ){
662 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000663 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
664 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
665 );
danielk19773509a652009-07-06 18:56:13 +0000666 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000667 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000668 }else{
669 pIdxKey = 0;
670 }
671 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000672 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000673 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000674 }
675 return rc;
676}
677
678/*
drh980b1a72006-08-16 16:42:48 +0000679** Restore the cursor to the position it was in (or as close to as possible)
680** when saveCursorPosition() was called. Note that this call deletes the
681** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000682** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000683** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000684*/
danielk197730548662009-07-09 05:07:37 +0000685static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000686 int rc;
drh1fee73e2007-08-29 04:00:57 +0000687 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000688 assert( pCur->eState>=CURSOR_REQUIRESEEK );
689 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000690 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000691 }
drh980b1a72006-08-16 16:42:48 +0000692 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000693 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000694 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000695 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000696 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000697 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000698 }
699 return rc;
700}
701
drha3460582008-07-11 21:02:53 +0000702#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000703 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000704 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000705 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000706
drha3460582008-07-11 21:02:53 +0000707/*
708** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000709** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000710** at is deleted out from under them.
711**
712** This routine returns an error code if something goes wrong. The
713** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
714*/
715int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
716 int rc;
717
718 rc = restoreCursorPosition(pCur);
719 if( rc ){
720 *pHasMoved = 1;
721 return rc;
722 }
drh4c301aa2009-07-15 17:25:45 +0000723 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
drha3460582008-07-11 21:02:53 +0000724 *pHasMoved = 1;
725 }else{
726 *pHasMoved = 0;
727 }
728 return SQLITE_OK;
729}
730
danielk1977599fcba2004-11-08 07:13:13 +0000731#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000732/*
drha3152892007-05-05 11:48:52 +0000733** Given a page number of a regular database page, return the page
734** number for the pointer-map page that contains the entry for the
735** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000736**
737** Return 0 (not a valid page) for pgno==1 since there is
738** no pointer map associated with page 1. The integrity_check logic
739** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000740*/
danielk1977266664d2006-02-10 08:24:21 +0000741static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000742 int nPagesPerMapPage;
743 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000744 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000745 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000746 nPagesPerMapPage = (pBt->usableSize/5)+1;
747 iPtrMap = (pgno-2)/nPagesPerMapPage;
748 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000749 if( ret==PENDING_BYTE_PAGE(pBt) ){
750 ret++;
751 }
752 return ret;
753}
danielk1977a19df672004-11-03 11:37:07 +0000754
danielk1977afcdd022004-10-31 16:25:42 +0000755/*
danielk1977afcdd022004-10-31 16:25:42 +0000756** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000757**
758** This routine updates the pointer map entry for page number 'key'
759** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000760**
761** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
762** a no-op. If an error occurs, the appropriate error code is written
763** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000764*/
drh98add2e2009-07-20 17:11:49 +0000765static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000766 DbPage *pDbPage; /* The pointer map page */
767 u8 *pPtrmap; /* The pointer map data */
768 Pgno iPtrmap; /* The pointer map page number */
769 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000770 int rc; /* Return code from subfunctions */
771
772 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000773
drh1fee73e2007-08-29 04:00:57 +0000774 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000775 /* The master-journal page number must never be used as a pointer map page */
776 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
777
danielk1977ac11ee62005-01-15 12:45:51 +0000778 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000779 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000780 *pRC = SQLITE_CORRUPT_BKPT;
781 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000782 }
danielk1977266664d2006-02-10 08:24:21 +0000783 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000784 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000785 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000786 *pRC = rc;
787 return;
danielk1977afcdd022004-10-31 16:25:42 +0000788 }
danielk19778c666b12008-07-18 09:34:57 +0000789 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000790 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000791 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000792 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000793 }
drhfc243732011-05-17 15:21:56 +0000794 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000795 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000796
drh615ae552005-01-16 23:21:00 +0000797 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
798 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000799 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000800 if( rc==SQLITE_OK ){
801 pPtrmap[offset] = eType;
802 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000803 }
danielk1977afcdd022004-10-31 16:25:42 +0000804 }
805
drh4925a552009-07-07 11:39:58 +0000806ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000807 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000808}
809
810/*
811** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000812**
813** This routine retrieves the pointer map entry for page 'key', writing
814** the type and parent page number to *pEType and *pPgno respectively.
815** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000816*/
danielk1977aef0bf62005-12-30 16:28:01 +0000817static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000818 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000819 int iPtrmap; /* Pointer map page index */
820 u8 *pPtrmap; /* Pointer map page data */
821 int offset; /* Offset of entry in pointer map */
822 int rc;
823
drh1fee73e2007-08-29 04:00:57 +0000824 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000825
danielk1977266664d2006-02-10 08:24:21 +0000826 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000827 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000828 if( rc!=0 ){
829 return rc;
830 }
danielk19773b8a05f2007-03-19 17:44:26 +0000831 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000832
danielk19778c666b12008-07-18 09:34:57 +0000833 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000834 if( offset<0 ){
835 sqlite3PagerUnref(pDbPage);
836 return SQLITE_CORRUPT_BKPT;
837 }
838 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000839 assert( pEType!=0 );
840 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000841 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000842
danielk19773b8a05f2007-03-19 17:44:26 +0000843 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000844 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000845 return SQLITE_OK;
846}
847
danielk197785d90ca2008-07-19 14:25:15 +0000848#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000849 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000850 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000851 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000852#endif
danielk1977afcdd022004-10-31 16:25:42 +0000853
drh0d316a42002-08-11 20:10:47 +0000854/*
drh271efa52004-05-30 19:19:05 +0000855** Given a btree page and a cell index (0 means the first cell on
856** the page, 1 means the second cell, and so forth) return a pointer
857** to the cell content.
858**
859** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000860*/
drh1688c862008-07-18 02:44:17 +0000861#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000862 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000863#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
864
drh43605152004-05-29 21:46:49 +0000865
866/*
drh93a960a2008-07-10 00:32:42 +0000867** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000868** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000869*/
870static u8 *findOverflowCell(MemPage *pPage, int iCell){
871 int i;
drh1fee73e2007-08-29 04:00:57 +0000872 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000873 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000874 int k;
875 struct _OvflCell *pOvfl;
876 pOvfl = &pPage->aOvfl[i];
877 k = pOvfl->idx;
878 if( k<=iCell ){
879 if( k==iCell ){
880 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000881 }
882 iCell--;
883 }
884 }
danielk19771cc5ed82007-05-16 17:28:43 +0000885 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000886}
887
888/*
889** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000890** are two versions of this function. btreeParseCell() takes a
891** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000892** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000893**
894** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000895** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000896*/
danielk197730548662009-07-09 05:07:37 +0000897static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000898 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000899 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000900 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000901){
drhf49661a2008-12-10 16:45:50 +0000902 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000903 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000904
drh1fee73e2007-08-29 04:00:57 +0000905 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000906
drh43605152004-05-29 21:46:49 +0000907 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000908 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000909 n = pPage->childPtrSize;
910 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000911 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000912 if( pPage->hasData ){
913 n += getVarint32(&pCell[n], nPayload);
914 }else{
915 nPayload = 0;
916 }
drh1bd10f82008-12-10 21:19:56 +0000917 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000918 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000919 }else{
drh79df1f42008-07-18 00:57:33 +0000920 pInfo->nData = 0;
921 n += getVarint32(&pCell[n], nPayload);
922 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000923 }
drh72365832007-03-06 15:53:44 +0000924 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000925 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000926 testcase( nPayload==pPage->maxLocal );
927 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000928 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000929 /* This is the (easy) common case where the entire payload fits
930 ** on the local page. No overflow is required.
931 */
drh41692e92011-01-25 04:34:51 +0000932 if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +0000933 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000934 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +0000935 }else{
drh271efa52004-05-30 19:19:05 +0000936 /* If the payload will not fit completely on the local page, we have
937 ** to decide how much to store locally and how much to spill onto
938 ** overflow pages. The strategy is to minimize the amount of unused
939 ** space on overflow pages while keeping the amount of local storage
940 ** in between minLocal and maxLocal.
941 **
942 ** Warning: changing the way overflow payload is distributed in any
943 ** way will result in an incompatible file format.
944 */
945 int minLocal; /* Minimum amount of payload held locally */
946 int maxLocal; /* Maximum amount of payload held locally */
947 int surplus; /* Overflow payload available for local storage */
948
949 minLocal = pPage->minLocal;
950 maxLocal = pPage->maxLocal;
951 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000952 testcase( surplus==maxLocal );
953 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000954 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000955 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000956 }else{
drhf49661a2008-12-10 16:45:50 +0000957 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000958 }
drhf49661a2008-12-10 16:45:50 +0000959 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000960 pInfo->nSize = pInfo->iOverflow + 4;
961 }
drh3aac2dd2004-04-26 14:10:20 +0000962}
danielk19771cc5ed82007-05-16 17:28:43 +0000963#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000964 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
965static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000966 MemPage *pPage, /* Page containing the cell */
967 int iCell, /* The cell index. First cell is 0 */
968 CellInfo *pInfo /* Fill in this structure */
969){
danielk19771cc5ed82007-05-16 17:28:43 +0000970 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000971}
drh3aac2dd2004-04-26 14:10:20 +0000972
973/*
drh43605152004-05-29 21:46:49 +0000974** Compute the total number of bytes that a Cell needs in the cell
975** data area of the btree-page. The return number includes the cell
976** data header and the local payload, but not any overflow page or
977** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000978*/
danielk1977ae5558b2009-04-29 11:31:47 +0000979static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
980 u8 *pIter = &pCell[pPage->childPtrSize];
981 u32 nSize;
982
983#ifdef SQLITE_DEBUG
984 /* The value returned by this function should always be the same as
985 ** the (CellInfo.nSize) value found by doing a full parse of the
986 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
987 ** this function verifies that this invariant is not violated. */
988 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +0000989 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +0000990#endif
991
992 if( pPage->intKey ){
993 u8 *pEnd;
994 if( pPage->hasData ){
995 pIter += getVarint32(pIter, nSize);
996 }else{
997 nSize = 0;
998 }
999
1000 /* pIter now points at the 64-bit integer key value, a variable length
1001 ** integer. The following block moves pIter to point at the first byte
1002 ** past the end of the key value. */
1003 pEnd = &pIter[9];
1004 while( (*pIter++)&0x80 && pIter<pEnd );
1005 }else{
1006 pIter += getVarint32(pIter, nSize);
1007 }
1008
drh0a45c272009-07-08 01:49:11 +00001009 testcase( nSize==pPage->maxLocal );
1010 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001011 if( nSize>pPage->maxLocal ){
1012 int minLocal = pPage->minLocal;
1013 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001014 testcase( nSize==pPage->maxLocal );
1015 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001016 if( nSize>pPage->maxLocal ){
1017 nSize = minLocal;
1018 }
1019 nSize += 4;
1020 }
shane75ac1de2009-06-09 18:58:52 +00001021 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001022
1023 /* The minimum size of any cell is 4 bytes. */
1024 if( nSize<4 ){
1025 nSize = 4;
1026 }
1027
1028 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001029 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001030}
drh0ee3dbe2009-10-16 15:05:18 +00001031
1032#ifdef SQLITE_DEBUG
1033/* This variation on cellSizePtr() is used inside of assert() statements
1034** only. */
drha9121e42008-02-19 14:59:35 +00001035static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001036 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001037}
danielk1977bc6ada42004-06-30 08:20:16 +00001038#endif
drh3b7511c2001-05-26 13:15:44 +00001039
danielk197779a40da2005-01-16 08:00:01 +00001040#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001041/*
danielk197726836652005-01-17 01:33:13 +00001042** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001043** to an overflow page, insert an entry into the pointer-map
1044** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001045*/
drh98add2e2009-07-20 17:11:49 +00001046static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001047 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001048 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001049 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001050 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001051 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001052 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001053 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001054 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001055 }
danielk1977ac11ee62005-01-15 12:45:51 +00001056}
danielk197779a40da2005-01-16 08:00:01 +00001057#endif
1058
danielk1977ac11ee62005-01-15 12:45:51 +00001059
drhda200cc2004-05-09 11:51:38 +00001060/*
drh72f82862001-05-24 21:06:34 +00001061** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001062** end of the page and all free space is collected into one
1063** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001064** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001065*/
shane0af3f892008-11-12 04:55:34 +00001066static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001067 int i; /* Loop counter */
1068 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001069 int hdr; /* Offset to the page header */
1070 int size; /* Size of a cell */
1071 int usableSize; /* Number of usable bytes on a page */
1072 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001073 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001074 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001075 unsigned char *data; /* The page data */
1076 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001077 int iCellFirst; /* First allowable cell index */
1078 int iCellLast; /* Last possible cell index */
1079
drh2af926b2001-05-15 00:39:25 +00001080
danielk19773b8a05f2007-03-19 17:44:26 +00001081 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001082 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001083 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001084 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001085 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001086 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001087 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001088 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001089 cellOffset = pPage->cellOffset;
1090 nCell = pPage->nCell;
1091 assert( nCell==get2byte(&data[hdr+3]) );
1092 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001093 cbrk = get2byte(&data[hdr+5]);
1094 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1095 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001096 iCellFirst = cellOffset + 2*nCell;
1097 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001098 for(i=0; i<nCell; i++){
1099 u8 *pAddr; /* The i-th cell pointer */
1100 pAddr = &data[cellOffset + i*2];
1101 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001102 testcase( pc==iCellFirst );
1103 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001104#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001105 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001106 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1107 */
1108 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001109 return SQLITE_CORRUPT_BKPT;
1110 }
drh17146622009-07-07 17:38:38 +00001111#endif
1112 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001113 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001114 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001115#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1116 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001117 return SQLITE_CORRUPT_BKPT;
1118 }
drh17146622009-07-07 17:38:38 +00001119#else
1120 if( cbrk<iCellFirst || pc+size>usableSize ){
1121 return SQLITE_CORRUPT_BKPT;
1122 }
1123#endif
drh7157e1d2009-07-09 13:25:32 +00001124 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001125 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001126 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001127 memcpy(&data[cbrk], &temp[pc], size);
1128 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001129 }
drh17146622009-07-07 17:38:38 +00001130 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001131 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001132 data[hdr+1] = 0;
1133 data[hdr+2] = 0;
1134 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001135 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001136 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001137 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001138 return SQLITE_CORRUPT_BKPT;
1139 }
shane0af3f892008-11-12 04:55:34 +00001140 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001141}
1142
drha059ad02001-04-17 20:09:11 +00001143/*
danielk19776011a752009-04-01 16:25:32 +00001144** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001145** as the first argument. Write into *pIdx the index into pPage->aData[]
1146** of the first byte of allocated space. Return either SQLITE_OK or
1147** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001148**
drh0a45c272009-07-08 01:49:11 +00001149** The caller guarantees that there is sufficient space to make the
1150** allocation. This routine might need to defragment in order to bring
1151** all the space together, however. This routine will avoid using
1152** the first two bytes past the cell pointer area since presumably this
1153** allocation is being made in order to insert a new cell, so we will
1154** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001155*/
drh0a45c272009-07-08 01:49:11 +00001156static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001157 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1158 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1159 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001160 int top; /* First byte of cell content area */
1161 int gap; /* First byte of gap between cell pointers and cell content */
1162 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001163 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001164
danielk19773b8a05f2007-03-19 17:44:26 +00001165 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001166 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001167 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001168 assert( nByte>=0 ); /* Minimum cell size is 4 */
1169 assert( pPage->nFree>=nByte );
1170 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001171 usableSize = pPage->pBt->usableSize;
1172 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001173
1174 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001175 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1176 gap = pPage->cellOffset + 2*pPage->nCell;
drh5d433ce2010-08-14 16:02:52 +00001177 top = get2byteNotZero(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001178 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001179 testcase( gap+2==top );
1180 testcase( gap+1==top );
1181 testcase( gap==top );
1182
danielk19776011a752009-04-01 16:25:32 +00001183 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001184 /* Always defragment highly fragmented pages */
1185 rc = defragmentPage(pPage);
1186 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001187 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001188 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001189 /* Search the freelist looking for a free slot big enough to satisfy
1190 ** the request. The allocation is made from the first free slot in
1191 ** the list that is large enough to accomadate it.
1192 */
1193 int pc, addr;
1194 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001195 int size; /* Size of the free slot */
1196 if( pc>usableSize-4 || pc<addr+4 ){
1197 return SQLITE_CORRUPT_BKPT;
1198 }
1199 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001200 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001201 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001202 testcase( x==4 );
1203 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001204 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001205 /* Remove the slot from the free-list. Update the number of
1206 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001207 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001208 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001209 }else if( size+pc > usableSize ){
1210 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001211 }else{
danielk1977fad91942009-04-29 17:49:59 +00001212 /* The slot remains on the free-list. Reduce its size to account
1213 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001214 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001215 }
drh0a45c272009-07-08 01:49:11 +00001216 *pIdx = pc + x;
1217 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001218 }
drh9e572e62004-04-23 23:43:10 +00001219 }
1220 }
drh43605152004-05-29 21:46:49 +00001221
drh0a45c272009-07-08 01:49:11 +00001222 /* Check to make sure there is enough space in the gap to satisfy
1223 ** the allocation. If not, defragment.
1224 */
1225 testcase( gap+2+nByte==top );
1226 if( gap+2+nByte>top ){
1227 rc = defragmentPage(pPage);
1228 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001229 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001230 assert( gap+nByte<=top );
1231 }
1232
1233
drh43605152004-05-29 21:46:49 +00001234 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001235 ** and the cell content area. The btreeInitPage() call has already
1236 ** validated the freelist. Given that the freelist is valid, there
1237 ** is no way that the allocation can extend off the end of the page.
1238 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001239 */
drh0a45c272009-07-08 01:49:11 +00001240 top -= nByte;
drh43605152004-05-29 21:46:49 +00001241 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001242 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001243 *pIdx = top;
1244 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001245}
1246
1247/*
drh9e572e62004-04-23 23:43:10 +00001248** Return a section of the pPage->aData to the freelist.
1249** The first byte of the new free block is pPage->aDisk[start]
1250** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001251**
1252** Most of the effort here is involved in coalesing adjacent
1253** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001254*/
shanedcc50b72008-11-13 18:29:50 +00001255static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001256 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001257 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001258 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001259
drh9e572e62004-04-23 23:43:10 +00001260 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001261 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001262 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
drhfcd71b62011-04-05 22:08:24 +00001263 assert( (start + size) <= (int)pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001264 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001265 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001266
drh5b47efa2010-02-12 18:18:39 +00001267 if( pPage->pBt->secureDelete ){
1268 /* Overwrite deleted information with zeros when the secure_delete
1269 ** option is enabled */
1270 memset(&data[start], 0, size);
1271 }
drhfcce93f2006-02-22 03:08:32 +00001272
drh0a45c272009-07-08 01:49:11 +00001273 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001274 ** even though the freeblock list was checked by btreeInitPage(),
1275 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001276 ** freeblocks that overlapped cells. Nor does it detect when the
1277 ** cell content area exceeds the value in the page header. If these
1278 ** situations arise, then subsequent insert operations might corrupt
1279 ** the freelist. So we do need to check for corruption while scanning
1280 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001281 */
drh43605152004-05-29 21:46:49 +00001282 hdr = pPage->hdrOffset;
1283 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001284 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001285 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001286 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001287 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001288 return SQLITE_CORRUPT_BKPT;
1289 }
drh3aac2dd2004-04-26 14:10:20 +00001290 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001291 }
drh0a45c272009-07-08 01:49:11 +00001292 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001293 return SQLITE_CORRUPT_BKPT;
1294 }
drh3aac2dd2004-04-26 14:10:20 +00001295 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001296 put2byte(&data[addr], start);
1297 put2byte(&data[start], pbegin);
1298 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001299 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001300
1301 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001302 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001303 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001304 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001305 assert( pbegin>addr );
drhfcd71b62011-04-05 22:08:24 +00001306 assert( pbegin <= (int)pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001307 pnext = get2byte(&data[pbegin]);
1308 psize = get2byte(&data[pbegin+2]);
1309 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1310 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001311 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001312 return SQLITE_CORRUPT_BKPT;
1313 }
drh0a45c272009-07-08 01:49:11 +00001314 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001315 x = get2byte(&data[pnext]);
1316 put2byte(&data[pbegin], x);
1317 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1318 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001319 }else{
drh3aac2dd2004-04-26 14:10:20 +00001320 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001321 }
1322 }
drh7e3b0a02001-04-28 16:52:40 +00001323
drh43605152004-05-29 21:46:49 +00001324 /* If the cell content area begins with a freeblock, remove it. */
1325 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1326 int top;
1327 pbegin = get2byte(&data[hdr+1]);
1328 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001329 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1330 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001331 }
drhc5053fb2008-11-27 02:22:10 +00001332 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001333 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001334}
1335
1336/*
drh271efa52004-05-30 19:19:05 +00001337** Decode the flags byte (the first byte of the header) for a page
1338** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001339**
1340** Only the following combinations are supported. Anything different
1341** indicates a corrupt database files:
1342**
1343** PTF_ZERODATA
1344** PTF_ZERODATA | PTF_LEAF
1345** PTF_LEAFDATA | PTF_INTKEY
1346** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001347*/
drh44845222008-07-17 18:39:57 +00001348static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001349 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001350
1351 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001352 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001353 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001354 flagByte &= ~PTF_LEAF;
1355 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001356 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001357 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1358 pPage->intKey = 1;
1359 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001360 pPage->maxLocal = pBt->maxLeaf;
1361 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001362 }else if( flagByte==PTF_ZERODATA ){
1363 pPage->intKey = 0;
1364 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001365 pPage->maxLocal = pBt->maxLocal;
1366 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001367 }else{
1368 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001369 }
drh44845222008-07-17 18:39:57 +00001370 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001371}
1372
1373/*
drh7e3b0a02001-04-28 16:52:40 +00001374** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001375**
1376** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001377** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001378** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1379** guarantee that the page is well-formed. It only shows that
1380** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001381*/
danielk197730548662009-07-09 05:07:37 +00001382static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001383
danielk197771d5d2c2008-09-29 11:49:47 +00001384 assert( pPage->pBt!=0 );
1385 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001386 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001387 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1388 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001389
1390 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001391 u16 pc; /* Address of a freeblock within pPage->aData[] */
1392 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001393 u8 *data; /* Equal to pPage->aData */
1394 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001395 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001396 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001397 int nFree; /* Number of unused bytes on the page */
1398 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001399 int iCellFirst; /* First allowable cell or freeblock offset */
1400 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001401
1402 pBt = pPage->pBt;
1403
danielk1977eaa06f62008-09-18 17:34:44 +00001404 hdr = pPage->hdrOffset;
1405 data = pPage->aData;
1406 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001407 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1408 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001409 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001410 usableSize = pBt->usableSize;
1411 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh3def2352011-11-11 00:27:15 +00001412 pPage->aDataEnd = &data[usableSize];
1413 pPage->aCellIdx = &data[cellOffset];
drh5d433ce2010-08-14 16:02:52 +00001414 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001415 pPage->nCell = get2byte(&data[hdr+3]);
1416 if( pPage->nCell>MX_CELL(pBt) ){
1417 /* To many cells for a single page. The page must be corrupt */
1418 return SQLITE_CORRUPT_BKPT;
1419 }
drhb908d762009-07-08 16:54:40 +00001420 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001421
shane5eff7cf2009-08-10 03:57:58 +00001422 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001423 ** of page when parsing a cell.
1424 **
1425 ** The following block of code checks early to see if a cell extends
1426 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1427 ** returned if it does.
1428 */
drh0a45c272009-07-08 01:49:11 +00001429 iCellFirst = cellOffset + 2*pPage->nCell;
1430 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001431#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001432 {
drh69e931e2009-06-03 21:04:35 +00001433 int i; /* Index into the cell pointer array */
1434 int sz; /* Size of a cell */
1435
drh69e931e2009-06-03 21:04:35 +00001436 if( !pPage->leaf ) iCellLast--;
1437 for(i=0; i<pPage->nCell; i++){
1438 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001439 testcase( pc==iCellFirst );
1440 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001441 if( pc<iCellFirst || pc>iCellLast ){
1442 return SQLITE_CORRUPT_BKPT;
1443 }
1444 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001445 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001446 if( pc+sz>usableSize ){
1447 return SQLITE_CORRUPT_BKPT;
1448 }
1449 }
drh0a45c272009-07-08 01:49:11 +00001450 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001451 }
1452#endif
1453
danielk1977eaa06f62008-09-18 17:34:44 +00001454 /* Compute the total free space on the page */
1455 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001456 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001457 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001458 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001459 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001460 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001461 return SQLITE_CORRUPT_BKPT;
1462 }
1463 next = get2byte(&data[pc]);
1464 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001465 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1466 /* Free blocks must be in ascending order. And the last byte of
1467 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001468 return SQLITE_CORRUPT_BKPT;
1469 }
shane85095702009-06-15 16:27:08 +00001470 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001471 pc = next;
1472 }
danielk197793c829c2009-06-03 17:26:17 +00001473
1474 /* At this point, nFree contains the sum of the offset to the start
1475 ** of the cell-content area plus the number of free bytes within
1476 ** the cell-content area. If this is greater than the usable-size
1477 ** of the page, then the page must be corrupted. This check also
1478 ** serves to verify that the offset to the start of the cell-content
1479 ** area, according to the page header, lies within the page.
1480 */
1481 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001482 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001483 }
shane5eff7cf2009-08-10 03:57:58 +00001484 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001485 pPage->isInit = 1;
1486 }
drh9e572e62004-04-23 23:43:10 +00001487 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001488}
1489
1490/*
drh8b2f49b2001-06-08 00:21:52 +00001491** Set up a raw page so that it looks like a database page holding
1492** no entries.
drhbd03cae2001-06-02 02:40:57 +00001493*/
drh9e572e62004-04-23 23:43:10 +00001494static void zeroPage(MemPage *pPage, int flags){
1495 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001496 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001497 u8 hdr = pPage->hdrOffset;
1498 u16 first;
drh9e572e62004-04-23 23:43:10 +00001499
danielk19773b8a05f2007-03-19 17:44:26 +00001500 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001501 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1502 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001503 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001504 assert( sqlite3_mutex_held(pBt->mutex) );
drh5b47efa2010-02-12 18:18:39 +00001505 if( pBt->secureDelete ){
1506 memset(&data[hdr], 0, pBt->usableSize - hdr);
1507 }
drh1bd10f82008-12-10 21:19:56 +00001508 data[hdr] = (char)flags;
1509 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001510 memset(&data[hdr+1], 0, 4);
1511 data[hdr+7] = 0;
1512 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001513 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001514 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001515 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001516 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001517 pPage->aDataEnd = &data[pBt->usableSize];
1518 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001519 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001520 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1521 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001522 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001523 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001524}
1525
drh897a8202008-09-18 01:08:15 +00001526
1527/*
1528** Convert a DbPage obtained from the pager into a MemPage used by
1529** the btree layer.
1530*/
1531static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1532 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1533 pPage->aData = sqlite3PagerGetData(pDbPage);
1534 pPage->pDbPage = pDbPage;
1535 pPage->pBt = pBt;
1536 pPage->pgno = pgno;
1537 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1538 return pPage;
1539}
1540
drhbd03cae2001-06-02 02:40:57 +00001541/*
drh3aac2dd2004-04-26 14:10:20 +00001542** Get a page from the pager. Initialize the MemPage.pBt and
1543** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001544**
1545** If the noContent flag is set, it means that we do not care about
1546** the content of the page at this time. So do not go to the disk
1547** to fetch the content. Just fill in the content with zeros for now.
1548** If in the future we call sqlite3PagerWrite() on this page, that
1549** means we have started to be concerned about content and the disk
1550** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001551*/
danielk197730548662009-07-09 05:07:37 +00001552static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001553 BtShared *pBt, /* The btree */
1554 Pgno pgno, /* Number of the page to fetch */
1555 MemPage **ppPage, /* Return the page in this parameter */
1556 int noContent /* Do not load page content if true */
1557){
drh3aac2dd2004-04-26 14:10:20 +00001558 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001559 DbPage *pDbPage;
1560
drh1fee73e2007-08-29 04:00:57 +00001561 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001562 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001563 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001564 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001565 return SQLITE_OK;
1566}
1567
1568/*
danielk1977bea2a942009-01-20 17:06:27 +00001569** Retrieve a page from the pager cache. If the requested page is not
1570** already in the pager cache return NULL. Initialize the MemPage.pBt and
1571** MemPage.aData elements if needed.
1572*/
1573static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1574 DbPage *pDbPage;
1575 assert( sqlite3_mutex_held(pBt->mutex) );
1576 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1577 if( pDbPage ){
1578 return btreePageFromDbPage(pDbPage, pgno, pBt);
1579 }
1580 return 0;
1581}
1582
1583/*
danielk197789d40042008-11-17 14:20:56 +00001584** Return the size of the database file in pages. If there is any kind of
1585** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001586*/
drhb1299152010-03-30 22:58:33 +00001587static Pgno btreePagecount(BtShared *pBt){
1588 return pBt->nPage;
1589}
1590u32 sqlite3BtreeLastPage(Btree *p){
1591 assert( sqlite3BtreeHoldsMutex(p) );
1592 assert( ((p->pBt->nPage)&0x8000000)==0 );
1593 return (int)btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001594}
1595
1596/*
danielk197789bc4bc2009-07-21 19:25:24 +00001597** Get a page from the pager and initialize it. This routine is just a
1598** convenience wrapper around separate calls to btreeGetPage() and
1599** btreeInitPage().
1600**
1601** If an error occurs, then the value *ppPage is set to is undefined. It
1602** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001603*/
1604static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001605 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001606 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001607 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001608){
1609 int rc;
drh1fee73e2007-08-29 04:00:57 +00001610 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789bc4bc2009-07-21 19:25:24 +00001611
danba3cbf32010-06-30 04:29:03 +00001612 if( pgno>btreePagecount(pBt) ){
1613 rc = SQLITE_CORRUPT_BKPT;
1614 }else{
1615 rc = btreeGetPage(pBt, pgno, ppPage, 0);
1616 if( rc==SQLITE_OK ){
1617 rc = btreeInitPage(*ppPage);
1618 if( rc!=SQLITE_OK ){
1619 releasePage(*ppPage);
1620 }
danielk197789bc4bc2009-07-21 19:25:24 +00001621 }
drhee696e22004-08-30 16:52:17 +00001622 }
danba3cbf32010-06-30 04:29:03 +00001623
1624 testcase( pgno==0 );
1625 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001626 return rc;
1627}
1628
1629/*
drh3aac2dd2004-04-26 14:10:20 +00001630** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001631** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001632*/
drh4b70f112004-05-02 21:12:19 +00001633static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001634 if( pPage ){
1635 assert( pPage->aData );
1636 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001637 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1638 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001639 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001640 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001641 }
1642}
1643
1644/*
drha6abd042004-06-09 17:37:22 +00001645** During a rollback, when the pager reloads information into the cache
1646** so that the cache is restored to its original state at the start of
1647** the transaction, for each page restored this routine is called.
1648**
1649** This routine needs to reset the extra data section at the end of the
1650** page to agree with the restored data.
1651*/
danielk1977eaa06f62008-09-18 17:34:44 +00001652static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001653 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001654 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001655 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001656 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001657 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001658 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001659 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001660 /* pPage might not be a btree page; it might be an overflow page
1661 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001662 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001663 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001664 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001665 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001666 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001667 }
drha6abd042004-06-09 17:37:22 +00001668 }
1669}
1670
1671/*
drhe5fe6902007-12-07 18:55:28 +00001672** Invoke the busy handler for a btree.
1673*/
danielk19771ceedd32008-11-19 10:22:33 +00001674static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001675 BtShared *pBt = (BtShared*)pArg;
1676 assert( pBt->db );
1677 assert( sqlite3_mutex_held(pBt->db->mutex) );
1678 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1679}
1680
1681/*
drhad3e0102004-09-03 23:32:18 +00001682** Open a database file.
1683**
drh382c0242001-10-06 16:33:02 +00001684** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001685** then an ephemeral database is created. The ephemeral database might
1686** be exclusively in memory, or it might use a disk-based memory cache.
1687** Either way, the ephemeral database will be automatically deleted
1688** when sqlite3BtreeClose() is called.
1689**
drhe53831d2007-08-17 01:14:38 +00001690** If zFilename is ":memory:" then an in-memory database is created
1691** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001692**
drh75c014c2010-08-30 15:02:28 +00001693** The "flags" parameter is a bitmask that might contain bits
1694** BTREE_OMIT_JOURNAL and/or BTREE_NO_READLOCK. The BTREE_NO_READLOCK
1695** bit is also set if the SQLITE_NoReadlock flags is set in db->flags.
1696** These flags are passed through into sqlite3PagerOpen() and must
1697** be the same values as PAGER_OMIT_JOURNAL and PAGER_NO_READLOCK.
1698**
drhc47fd8e2009-04-30 13:30:32 +00001699** If the database is already opened in the same database connection
1700** and we are in shared cache mode, then the open will fail with an
1701** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1702** objects in the same database connection since doing so will lead
1703** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001704*/
drh23e11ca2004-05-04 17:27:28 +00001705int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001706 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001707 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001708 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001709 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001710 int flags, /* Options */
1711 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001712){
drh7555d8e2009-03-20 13:15:30 +00001713 BtShared *pBt = 0; /* Shared part of btree structure */
1714 Btree *p; /* Handle to return */
1715 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1716 int rc = SQLITE_OK; /* Result code from this function */
1717 u8 nReserve; /* Byte of unused space on each page */
1718 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001719
drh75c014c2010-08-30 15:02:28 +00001720 /* True if opening an ephemeral, temporary database */
1721 const int isTempDb = zFilename==0 || zFilename[0]==0;
1722
danielk1977aef0bf62005-12-30 16:28:01 +00001723 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001724 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001725 */
drhb0a7c9c2010-12-06 21:09:59 +00001726#ifdef SQLITE_OMIT_MEMORYDB
1727 const int isMemdb = 0;
1728#else
1729 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
1730 || (isTempDb && sqlite3TempInMemory(db));
danielk1977aef0bf62005-12-30 16:28:01 +00001731#endif
1732
drhe5fe6902007-12-07 18:55:28 +00001733 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001734 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001735 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001736 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1737
1738 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1739 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1740
1741 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1742 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001743
drh75c014c2010-08-30 15:02:28 +00001744 if( db->flags & SQLITE_NoReadlock ){
1745 flags |= BTREE_NO_READLOCK;
1746 }
1747 if( isMemdb ){
1748 flags |= BTREE_MEMORY;
1749 }
1750 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1751 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1752 }
drh17435752007-08-16 04:30:38 +00001753 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001754 if( !p ){
1755 return SQLITE_NOMEM;
1756 }
1757 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001758 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001759#ifndef SQLITE_OMIT_SHARED_CACHE
1760 p->lock.pBtree = p;
1761 p->lock.iTable = 1;
1762#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001763
drh198bf392006-01-06 21:52:49 +00001764#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001765 /*
1766 ** If this Btree is a candidate for shared cache, try to find an
1767 ** existing BtShared object that we can share with
1768 */
drh75c014c2010-08-30 15:02:28 +00001769 if( isMemdb==0 && isTempDb==0 ){
drhf1f12682009-09-09 14:17:52 +00001770 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001771 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001772 char *zFullPathname = sqlite3Malloc(nFullPathname);
drh30ddce62011-10-15 00:16:30 +00001773 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhff0587c2007-08-29 17:43:19 +00001774 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001775 if( !zFullPathname ){
1776 sqlite3_free(p);
1777 return SQLITE_NOMEM;
1778 }
drh070ad6b2011-11-17 11:43:19 +00001779 rc = sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
1780 if( rc ){
1781 sqlite3_free(zFullPathname);
1782 sqlite3_free(p);
1783 return rc;
1784 }
drh30ddce62011-10-15 00:16:30 +00001785#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00001786 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1787 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001788 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001789 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00001790#endif
drh78f82d12008-09-02 00:52:52 +00001791 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001792 assert( pBt->nRef>0 );
1793 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1794 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001795 int iDb;
1796 for(iDb=db->nDb-1; iDb>=0; iDb--){
1797 Btree *pExisting = db->aDb[iDb].pBt;
1798 if( pExisting && pExisting->pBt==pBt ){
1799 sqlite3_mutex_leave(mutexShared);
1800 sqlite3_mutex_leave(mutexOpen);
1801 sqlite3_free(zFullPathname);
1802 sqlite3_free(p);
1803 return SQLITE_CONSTRAINT;
1804 }
1805 }
drhff0587c2007-08-29 17:43:19 +00001806 p->pBt = pBt;
1807 pBt->nRef++;
1808 break;
1809 }
1810 }
1811 sqlite3_mutex_leave(mutexShared);
1812 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001813 }
drhff0587c2007-08-29 17:43:19 +00001814#ifdef SQLITE_DEBUG
1815 else{
1816 /* In debug mode, we mark all persistent databases as sharable
1817 ** even when they are not. This exercises the locking code and
1818 ** gives more opportunity for asserts(sqlite3_mutex_held())
1819 ** statements to find locking problems.
1820 */
1821 p->sharable = 1;
1822 }
1823#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001824 }
1825#endif
drha059ad02001-04-17 20:09:11 +00001826 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001827 /*
1828 ** The following asserts make sure that structures used by the btree are
1829 ** the right size. This is to guard against size changes that result
1830 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001831 */
drhe53831d2007-08-17 01:14:38 +00001832 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1833 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1834 assert( sizeof(u32)==4 );
1835 assert( sizeof(u16)==2 );
1836 assert( sizeof(Pgno)==4 );
1837
1838 pBt = sqlite3MallocZero( sizeof(*pBt) );
1839 if( pBt==0 ){
1840 rc = SQLITE_NOMEM;
1841 goto btree_open_out;
1842 }
danielk197771d5d2c2008-09-29 11:49:47 +00001843 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001844 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001845 if( rc==SQLITE_OK ){
1846 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1847 }
1848 if( rc!=SQLITE_OK ){
1849 goto btree_open_out;
1850 }
shanehbd2aaf92010-09-01 02:38:21 +00001851 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00001852 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001853 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001854 p->pBt = pBt;
1855
drhe53831d2007-08-17 01:14:38 +00001856 pBt->pCursor = 0;
1857 pBt->pPage1 = 0;
1858 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
drh5b47efa2010-02-12 18:18:39 +00001859#ifdef SQLITE_SECURE_DELETE
1860 pBt->secureDelete = 1;
1861#endif
drhb2eced52010-08-12 02:41:12 +00001862 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001863 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1864 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001865 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001866#ifndef SQLITE_OMIT_AUTOVACUUM
1867 /* If the magic name ":memory:" will create an in-memory database, then
1868 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1869 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1870 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1871 ** regular file-name. In this case the auto-vacuum applies as per normal.
1872 */
1873 if( zFilename && !isMemdb ){
1874 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1875 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1876 }
1877#endif
1878 nReserve = 0;
1879 }else{
1880 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001881 pBt->pageSizeFixed = 1;
1882#ifndef SQLITE_OMIT_AUTOVACUUM
1883 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1884 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1885#endif
1886 }
drhfa9601a2009-06-18 17:22:39 +00001887 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001888 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001889 pBt->usableSize = pBt->pageSize - nReserve;
1890 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001891
1892#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1893 /* Add the new BtShared object to the linked list sharable BtShareds.
1894 */
1895 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00001896 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00001897 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00001898 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00001899 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001900 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001901 if( pBt->mutex==0 ){
1902 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001903 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001904 goto btree_open_out;
1905 }
drhff0587c2007-08-29 17:43:19 +00001906 }
drhe53831d2007-08-17 01:14:38 +00001907 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001908 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1909 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001910 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001911 }
drheee46cf2004-11-06 00:02:48 +00001912#endif
drh90f5ecb2004-07-22 01:19:35 +00001913 }
danielk1977aef0bf62005-12-30 16:28:01 +00001914
drhcfed7bc2006-03-13 14:28:05 +00001915#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001916 /* If the new Btree uses a sharable pBtShared, then link the new
1917 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001918 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001919 */
drhe53831d2007-08-17 01:14:38 +00001920 if( p->sharable ){
1921 int i;
1922 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001923 for(i=0; i<db->nDb; i++){
1924 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001925 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1926 if( p->pBt<pSib->pBt ){
1927 p->pNext = pSib;
1928 p->pPrev = 0;
1929 pSib->pPrev = p;
1930 }else{
drhabddb0c2007-08-20 13:14:28 +00001931 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001932 pSib = pSib->pNext;
1933 }
1934 p->pNext = pSib->pNext;
1935 p->pPrev = pSib;
1936 if( p->pNext ){
1937 p->pNext->pPrev = p;
1938 }
1939 pSib->pNext = p;
1940 }
1941 break;
1942 }
1943 }
danielk1977aef0bf62005-12-30 16:28:01 +00001944 }
danielk1977aef0bf62005-12-30 16:28:01 +00001945#endif
1946 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001947
1948btree_open_out:
1949 if( rc!=SQLITE_OK ){
1950 if( pBt && pBt->pPager ){
1951 sqlite3PagerClose(pBt->pPager);
1952 }
drh17435752007-08-16 04:30:38 +00001953 sqlite3_free(pBt);
1954 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001955 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00001956 }else{
1957 /* If the B-Tree was successfully opened, set the pager-cache size to the
1958 ** default value. Except, when opening on an existing shared pager-cache,
1959 ** do not change the pager-cache size.
1960 */
1961 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
1962 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
1963 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001964 }
drh7555d8e2009-03-20 13:15:30 +00001965 if( mutexOpen ){
1966 assert( sqlite3_mutex_held(mutexOpen) );
1967 sqlite3_mutex_leave(mutexOpen);
1968 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001969 return rc;
drha059ad02001-04-17 20:09:11 +00001970}
1971
1972/*
drhe53831d2007-08-17 01:14:38 +00001973** Decrement the BtShared.nRef counter. When it reaches zero,
1974** remove the BtShared structure from the sharing list. Return
1975** true if the BtShared.nRef counter reaches zero and return
1976** false if it is still positive.
1977*/
1978static int removeFromSharingList(BtShared *pBt){
1979#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00001980 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00001981 BtShared *pList;
1982 int removed = 0;
1983
drhd677b3d2007-08-20 22:48:41 +00001984 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00001985 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00001986 sqlite3_mutex_enter(pMaster);
1987 pBt->nRef--;
1988 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001989 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1990 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001991 }else{
drh78f82d12008-09-02 00:52:52 +00001992 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001993 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001994 pList=pList->pNext;
1995 }
drh34004ce2008-07-11 16:15:17 +00001996 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001997 pList->pNext = pBt->pNext;
1998 }
1999 }
drh3285db22007-09-03 22:00:39 +00002000 if( SQLITE_THREADSAFE ){
2001 sqlite3_mutex_free(pBt->mutex);
2002 }
drhe53831d2007-08-17 01:14:38 +00002003 removed = 1;
2004 }
2005 sqlite3_mutex_leave(pMaster);
2006 return removed;
2007#else
2008 return 1;
2009#endif
2010}
2011
2012/*
drhf7141992008-06-19 00:16:08 +00002013** Make sure pBt->pTmpSpace points to an allocation of
2014** MX_CELL_SIZE(pBt) bytes.
2015*/
2016static void allocateTempSpace(BtShared *pBt){
2017 if( !pBt->pTmpSpace ){
2018 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2019 }
2020}
2021
2022/*
2023** Free the pBt->pTmpSpace allocation
2024*/
2025static void freeTempSpace(BtShared *pBt){
2026 sqlite3PageFree( pBt->pTmpSpace);
2027 pBt->pTmpSpace = 0;
2028}
2029
2030/*
drha059ad02001-04-17 20:09:11 +00002031** Close an open database and invalidate all cursors.
2032*/
danielk1977aef0bf62005-12-30 16:28:01 +00002033int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002034 BtShared *pBt = p->pBt;
2035 BtCursor *pCur;
2036
danielk1977aef0bf62005-12-30 16:28:01 +00002037 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002038 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002039 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002040 pCur = pBt->pCursor;
2041 while( pCur ){
2042 BtCursor *pTmp = pCur;
2043 pCur = pCur->pNext;
2044 if( pTmp->pBtree==p ){
2045 sqlite3BtreeCloseCursor(pTmp);
2046 }
drha059ad02001-04-17 20:09:11 +00002047 }
danielk1977aef0bf62005-12-30 16:28:01 +00002048
danielk19778d34dfd2006-01-24 16:37:57 +00002049 /* Rollback any active transaction and free the handle structure.
2050 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2051 ** this handle.
2052 */
danielk1977b597f742006-01-15 11:39:18 +00002053 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00002054 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002055
danielk1977aef0bf62005-12-30 16:28:01 +00002056 /* If there are still other outstanding references to the shared-btree
2057 ** structure, return now. The remainder of this procedure cleans
2058 ** up the shared-btree.
2059 */
drhe53831d2007-08-17 01:14:38 +00002060 assert( p->wantToLock==0 && p->locked==0 );
2061 if( !p->sharable || removeFromSharingList(pBt) ){
2062 /* The pBt is no longer on the sharing list, so we can access
2063 ** it without having to hold the mutex.
2064 **
2065 ** Clean out and delete the BtShared object.
2066 */
2067 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002068 sqlite3PagerClose(pBt->pPager);
2069 if( pBt->xFreeSchema && pBt->pSchema ){
2070 pBt->xFreeSchema(pBt->pSchema);
2071 }
drhb9755982010-07-24 16:34:37 +00002072 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002073 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002074 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002075 }
2076
drhe53831d2007-08-17 01:14:38 +00002077#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002078 assert( p->wantToLock==0 );
2079 assert( p->locked==0 );
2080 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2081 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002082#endif
2083
drhe53831d2007-08-17 01:14:38 +00002084 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002085 return SQLITE_OK;
2086}
2087
2088/*
drhda47d772002-12-02 04:25:19 +00002089** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002090**
2091** The maximum number of cache pages is set to the absolute
2092** value of mxPage. If mxPage is negative, the pager will
2093** operate asynchronously - it will not stop to do fsync()s
2094** to insure data is written to the disk surface before
2095** continuing. Transactions still work if synchronous is off,
2096** and the database cannot be corrupted if this program
2097** crashes. But if the operating system crashes or there is
2098** an abrupt power failure when synchronous is off, the database
2099** could be left in an inconsistent and unrecoverable state.
2100** Synchronous is on by default so database corruption is not
2101** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002102*/
danielk1977aef0bf62005-12-30 16:28:01 +00002103int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2104 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002105 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002106 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002107 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002108 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002109 return SQLITE_OK;
2110}
2111
2112/*
drh973b6e32003-02-12 14:09:42 +00002113** Change the way data is synced to disk in order to increase or decrease
2114** how well the database resists damage due to OS crashes and power
2115** failures. Level 1 is the same as asynchronous (no syncs() occur and
2116** there is a high probability of damage) Level 2 is the default. There
2117** is a very low but non-zero probability of damage. Level 3 reduces the
2118** probability of damage to near zero but with a write performance reduction.
2119*/
danielk197793758c82005-01-21 08:13:14 +00002120#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhc97d8462010-11-19 18:23:35 +00002121int sqlite3BtreeSetSafetyLevel(
2122 Btree *p, /* The btree to set the safety level on */
2123 int level, /* PRAGMA synchronous. 1=OFF, 2=NORMAL, 3=FULL */
2124 int fullSync, /* PRAGMA fullfsync. */
2125 int ckptFullSync /* PRAGMA checkpoint_fullfync */
2126){
danielk1977aef0bf62005-12-30 16:28:01 +00002127 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002128 assert( sqlite3_mutex_held(p->db->mutex) );
drhc97d8462010-11-19 18:23:35 +00002129 assert( level>=1 && level<=3 );
drhd677b3d2007-08-20 22:48:41 +00002130 sqlite3BtreeEnter(p);
drhc97d8462010-11-19 18:23:35 +00002131 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync, ckptFullSync);
drhd677b3d2007-08-20 22:48:41 +00002132 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002133 return SQLITE_OK;
2134}
danielk197793758c82005-01-21 08:13:14 +00002135#endif
drh973b6e32003-02-12 14:09:42 +00002136
drh2c8997b2005-08-27 16:36:48 +00002137/*
2138** Return TRUE if the given btree is set to safety level 1. In other
2139** words, return TRUE if no sync() occurs on the disk files.
2140*/
danielk1977aef0bf62005-12-30 16:28:01 +00002141int sqlite3BtreeSyncDisabled(Btree *p){
2142 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002143 int rc;
drhe5fe6902007-12-07 18:55:28 +00002144 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002145 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002146 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002147 rc = sqlite3PagerNosync(pBt->pPager);
2148 sqlite3BtreeLeave(p);
2149 return rc;
drh2c8997b2005-08-27 16:36:48 +00002150}
2151
drh973b6e32003-02-12 14:09:42 +00002152/*
drh90f5ecb2004-07-22 01:19:35 +00002153** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002154** Or, if the page size has already been fixed, return SQLITE_READONLY
2155** without changing anything.
drh06f50212004-11-02 14:24:33 +00002156**
2157** The page size must be a power of 2 between 512 and 65536. If the page
2158** size supplied does not meet this constraint then the page size is not
2159** changed.
2160**
2161** Page sizes are constrained to be a power of two so that the region
2162** of the database file used for locking (beginning at PENDING_BYTE,
2163** the first byte past the 1GB boundary, 0x40000000) needs to occur
2164** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002165**
2166** If parameter nReserve is less than zero, then the number of reserved
2167** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002168**
2169** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
2170** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002171*/
drhce4869f2009-04-02 20:16:58 +00002172int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002173 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002174 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002175 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002176 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00002177 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00002178 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002179 return SQLITE_READONLY;
2180 }
2181 if( nReserve<0 ){
2182 nReserve = pBt->pageSize - pBt->usableSize;
2183 }
drhf49661a2008-12-10 16:45:50 +00002184 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002185 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2186 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002187 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002188 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002189 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002190 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002191 }
drhfa9601a2009-06-18 17:22:39 +00002192 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002193 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhce4869f2009-04-02 20:16:58 +00002194 if( iFix ) pBt->pageSizeFixed = 1;
drhd677b3d2007-08-20 22:48:41 +00002195 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002196 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002197}
2198
2199/*
2200** Return the currently defined page size
2201*/
danielk1977aef0bf62005-12-30 16:28:01 +00002202int sqlite3BtreeGetPageSize(Btree *p){
2203 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002204}
drh7f751222009-03-17 22:33:00 +00002205
danbb2b4412011-04-06 17:54:31 +00002206#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh7f751222009-03-17 22:33:00 +00002207/*
2208** Return the number of bytes of space at the end of every page that
2209** are intentually left unused. This is the "reserved" space that is
2210** sometimes used by extensions.
2211*/
danielk1977aef0bf62005-12-30 16:28:01 +00002212int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002213 int n;
2214 sqlite3BtreeEnter(p);
2215 n = p->pBt->pageSize - p->pBt->usableSize;
2216 sqlite3BtreeLeave(p);
2217 return n;
drh2011d5f2004-07-22 02:40:37 +00002218}
drhf8e632b2007-05-08 14:51:36 +00002219
2220/*
2221** Set the maximum page count for a database if mxPage is positive.
2222** No changes are made if mxPage is 0 or negative.
2223** Regardless of the value of mxPage, return the maximum page count.
2224*/
2225int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002226 int n;
2227 sqlite3BtreeEnter(p);
2228 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2229 sqlite3BtreeLeave(p);
2230 return n;
drhf8e632b2007-05-08 14:51:36 +00002231}
drh5b47efa2010-02-12 18:18:39 +00002232
2233/*
2234** Set the secureDelete flag if newFlag is 0 or 1. If newFlag is -1,
2235** then make no changes. Always return the value of the secureDelete
2236** setting after the change.
2237*/
2238int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2239 int b;
drhaf034ed2010-02-12 19:46:26 +00002240 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002241 sqlite3BtreeEnter(p);
2242 if( newFlag>=0 ){
2243 p->pBt->secureDelete = (newFlag!=0) ? 1 : 0;
2244 }
2245 b = p->pBt->secureDelete;
2246 sqlite3BtreeLeave(p);
2247 return b;
2248}
danielk1977576ec6b2005-01-21 11:55:25 +00002249#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002250
2251/*
danielk1977951af802004-11-05 15:45:09 +00002252** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2253** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2254** is disabled. The default value for the auto-vacuum property is
2255** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2256*/
danielk1977aef0bf62005-12-30 16:28:01 +00002257int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002258#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002259 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002260#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002261 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002262 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002263 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002264
2265 sqlite3BtreeEnter(p);
drh076d4662009-02-18 20:31:18 +00002266 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002267 rc = SQLITE_READONLY;
2268 }else{
drh076d4662009-02-18 20:31:18 +00002269 pBt->autoVacuum = av ?1:0;
2270 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002271 }
drhd677b3d2007-08-20 22:48:41 +00002272 sqlite3BtreeLeave(p);
2273 return rc;
danielk1977951af802004-11-05 15:45:09 +00002274#endif
2275}
2276
2277/*
2278** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2279** enabled 1 is returned. Otherwise 0.
2280*/
danielk1977aef0bf62005-12-30 16:28:01 +00002281int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002282#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002283 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002284#else
drhd677b3d2007-08-20 22:48:41 +00002285 int rc;
2286 sqlite3BtreeEnter(p);
2287 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002288 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2289 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2290 BTREE_AUTOVACUUM_INCR
2291 );
drhd677b3d2007-08-20 22:48:41 +00002292 sqlite3BtreeLeave(p);
2293 return rc;
danielk1977951af802004-11-05 15:45:09 +00002294#endif
2295}
2296
2297
2298/*
drha34b6762004-05-07 13:30:42 +00002299** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002300** also acquire a readlock on that file.
2301**
2302** SQLITE_OK is returned on success. If the file is not a
2303** well-formed database file, then SQLITE_CORRUPT is returned.
2304** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002305** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002306*/
danielk1977aef0bf62005-12-30 16:28:01 +00002307static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002308 int rc; /* Result code from subfunctions */
2309 MemPage *pPage1; /* Page 1 of the database file */
2310 int nPage; /* Number of pages in the database */
2311 int nPageFile = 0; /* Number of pages in the database file */
2312 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002313
drh1fee73e2007-08-29 04:00:57 +00002314 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002315 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002316 rc = sqlite3PagerSharedLock(pBt->pPager);
2317 if( rc!=SQLITE_OK ) return rc;
danielk197730548662009-07-09 05:07:37 +00002318 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002319 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002320
2321 /* Do some checking to help insure the file we opened really is
2322 ** a valid database file.
2323 */
drhc2a4bab2010-04-02 12:46:45 +00002324 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002325 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002326 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002327 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002328 }
2329 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002330 u32 pageSize;
2331 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002332 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002333 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002334 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002335 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002336 }
dan5cf53532010-05-01 16:40:20 +00002337
2338#ifdef SQLITE_OMIT_WAL
2339 if( page1[18]>1 ){
2340 pBt->readOnly = 1;
2341 }
2342 if( page1[19]>1 ){
2343 goto page1_init_failed;
2344 }
2345#else
dane04dc882010-04-20 18:53:15 +00002346 if( page1[18]>2 ){
drh309169a2007-04-24 17:27:51 +00002347 pBt->readOnly = 1;
2348 }
dane04dc882010-04-20 18:53:15 +00002349 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002350 goto page1_init_failed;
2351 }
drhe5ae5732008-06-15 02:51:47 +00002352
dana470aeb2010-04-21 11:43:38 +00002353 /* If the write version is set to 2, this database should be accessed
2354 ** in WAL mode. If the log is not already open, open it now. Then
2355 ** return SQLITE_OK and return without populating BtShared.pPage1.
2356 ** The caller detects this and calls this function again. This is
2357 ** required as the version of page 1 currently in the page1 buffer
2358 ** may not be the latest version - there may be a newer one in the log
2359 ** file.
2360 */
danb9780022010-04-21 18:37:57 +00002361 if( page1[19]==2 && pBt->doNotUseWAL==0 ){
dane04dc882010-04-20 18:53:15 +00002362 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002363 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002364 if( rc!=SQLITE_OK ){
2365 goto page1_init_failed;
2366 }else if( isOpen==0 ){
2367 releasePage(pPage1);
2368 return SQLITE_OK;
2369 }
dan8b5444b2010-04-27 14:37:47 +00002370 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002371 }
dan5cf53532010-05-01 16:40:20 +00002372#endif
dane04dc882010-04-20 18:53:15 +00002373
drhe5ae5732008-06-15 02:51:47 +00002374 /* The maximum embedded fraction must be exactly 25%. And the minimum
2375 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2376 ** The original design allowed these amounts to vary, but as of
2377 ** version 3.6.0, we require them to be fixed.
2378 */
2379 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2380 goto page1_init_failed;
2381 }
drhb2eced52010-08-12 02:41:12 +00002382 pageSize = (page1[16]<<8) | (page1[17]<<16);
2383 if( ((pageSize-1)&pageSize)!=0
2384 || pageSize>SQLITE_MAX_PAGE_SIZE
2385 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002386 ){
drh07d183d2005-05-01 22:52:42 +00002387 goto page1_init_failed;
2388 }
2389 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002390 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002391 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002392 /* After reading the first page of the database assuming a page size
2393 ** of BtShared.pageSize, we have discovered that the page-size is
2394 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2395 ** zero and return SQLITE_OK. The caller will call this function
2396 ** again with the correct page-size.
2397 */
2398 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002399 pBt->usableSize = usableSize;
2400 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002401 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002402 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2403 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002404 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002405 }
danecac6702011-02-09 18:19:20 +00002406 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002407 rc = SQLITE_CORRUPT_BKPT;
2408 goto page1_init_failed;
2409 }
drhb33e1b92009-06-18 11:29:20 +00002410 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002411 goto page1_init_failed;
2412 }
drh43b18e12010-08-17 19:40:08 +00002413 pBt->pageSize = pageSize;
2414 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002415#ifndef SQLITE_OMIT_AUTOVACUUM
2416 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002417 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002418#endif
drh306dc212001-05-21 13:45:10 +00002419 }
drhb6f41482004-05-14 01:58:11 +00002420
2421 /* maxLocal is the maximum amount of payload to store locally for
2422 ** a cell. Make sure it is small enough so that at least minFanout
2423 ** cells can will fit on one page. We assume a 10-byte page header.
2424 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002425 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002426 ** 4-byte child pointer
2427 ** 9-byte nKey value
2428 ** 4-byte nData value
2429 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002430 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002431 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2432 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002433 */
shaneh1df2db72010-08-18 02:28:48 +00002434 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2435 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2436 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2437 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drh2e38c322004-09-03 18:38:44 +00002438 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002439 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002440 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002441 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002442
drh72f82862001-05-24 21:06:34 +00002443page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002444 releasePage(pPage1);
2445 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002446 return rc;
drh306dc212001-05-21 13:45:10 +00002447}
2448
2449/*
drhb8ca3072001-12-05 00:21:20 +00002450** If there are no outstanding cursors and we are not in the middle
2451** of a transaction but there is a read lock on the database, then
2452** this routine unrefs the first page of the database file which
2453** has the effect of releasing the read lock.
2454**
drhb8ca3072001-12-05 00:21:20 +00002455** If there is a transaction in progress, this routine is a no-op.
2456*/
danielk1977aef0bf62005-12-30 16:28:01 +00002457static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002458 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002459 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2460 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002461 assert( pBt->pPage1->aData );
2462 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2463 assert( pBt->pPage1->aData );
2464 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002465 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002466 }
2467}
2468
2469/*
drhe39f2f92009-07-23 01:43:59 +00002470** If pBt points to an empty file then convert that empty file
2471** into a new empty database by initializing the first page of
2472** the database.
drh8b2f49b2001-06-08 00:21:52 +00002473*/
danielk1977aef0bf62005-12-30 16:28:01 +00002474static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002475 MemPage *pP1;
2476 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002477 int rc;
drhd677b3d2007-08-20 22:48:41 +00002478
drh1fee73e2007-08-29 04:00:57 +00002479 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002480 if( pBt->nPage>0 ){
2481 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002482 }
drh3aac2dd2004-04-26 14:10:20 +00002483 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002484 assert( pP1!=0 );
2485 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002486 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002487 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002488 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2489 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002490 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2491 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002492 data[18] = 1;
2493 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002494 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2495 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002496 data[21] = 64;
2497 data[22] = 32;
2498 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002499 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002500 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002501 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002502#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002503 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002504 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002505 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002506 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002507#endif
drhdd3cd972010-03-27 17:12:36 +00002508 pBt->nPage = 1;
2509 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002510 return SQLITE_OK;
2511}
2512
2513/*
danielk1977ee5741e2004-05-31 10:01:34 +00002514** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002515** is started if the second argument is nonzero, otherwise a read-
2516** transaction. If the second argument is 2 or more and exclusive
2517** transaction is started, meaning that no other process is allowed
2518** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002519** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002520** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002521**
danielk1977ee5741e2004-05-31 10:01:34 +00002522** A write-transaction must be started before attempting any
2523** changes to the database. None of the following routines
2524** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002525**
drh23e11ca2004-05-04 17:27:28 +00002526** sqlite3BtreeCreateTable()
2527** sqlite3BtreeCreateIndex()
2528** sqlite3BtreeClearTable()
2529** sqlite3BtreeDropTable()
2530** sqlite3BtreeInsert()
2531** sqlite3BtreeDelete()
2532** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002533**
drhb8ef32c2005-03-14 02:01:49 +00002534** If an initial attempt to acquire the lock fails because of lock contention
2535** and the database was previously unlocked, then invoke the busy handler
2536** if there is one. But if there was previously a read-lock, do not
2537** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2538** returned when there is already a read-lock in order to avoid a deadlock.
2539**
2540** Suppose there are two processes A and B. A has a read lock and B has
2541** a reserved lock. B tries to promote to exclusive but is blocked because
2542** of A's read lock. A tries to promote to reserved but is blocked by B.
2543** One or the other of the two processes must give way or there can be
2544** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2545** when A already has a read lock, we encourage A to give up and let B
2546** proceed.
drha059ad02001-04-17 20:09:11 +00002547*/
danielk1977aef0bf62005-12-30 16:28:01 +00002548int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002549 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002550 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002551 int rc = SQLITE_OK;
2552
drhd677b3d2007-08-20 22:48:41 +00002553 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002554 btreeIntegrity(p);
2555
danielk1977ee5741e2004-05-31 10:01:34 +00002556 /* If the btree is already in a write-transaction, or it
2557 ** is already in a read-transaction and a read-transaction
2558 ** is requested, this is a no-op.
2559 */
danielk1977aef0bf62005-12-30 16:28:01 +00002560 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002561 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002562 }
drhb8ef32c2005-03-14 02:01:49 +00002563
2564 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002565 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002566 rc = SQLITE_READONLY;
2567 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002568 }
2569
danielk1977404ca072009-03-16 13:19:36 +00002570#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002571 /* If another database handle has already opened a write transaction
2572 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002573 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002574 */
danielk1977404ca072009-03-16 13:19:36 +00002575 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
2576 pBlock = pBt->pWriter->db;
2577 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002578 BtLock *pIter;
2579 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2580 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002581 pBlock = pIter->pBtree->db;
2582 break;
danielk1977641b0f42007-12-21 04:47:25 +00002583 }
2584 }
2585 }
danielk1977404ca072009-03-16 13:19:36 +00002586 if( pBlock ){
2587 sqlite3ConnectionBlocked(p->db, pBlock);
2588 rc = SQLITE_LOCKED_SHAREDCACHE;
2589 goto trans_begun;
2590 }
danielk1977641b0f42007-12-21 04:47:25 +00002591#endif
2592
danielk1977602b4662009-07-02 07:47:33 +00002593 /* Any read-only or read-write transaction implies a read-lock on
2594 ** page 1. So if some other shared-cache client already has a write-lock
2595 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002596 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2597 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002598
shaneh5eba1f62010-07-02 17:05:03 +00002599 pBt->initiallyEmpty = (u8)(pBt->nPage==0);
drhb8ef32c2005-03-14 02:01:49 +00002600 do {
danielk1977295dc102009-04-01 19:07:03 +00002601 /* Call lockBtree() until either pBt->pPage1 is populated or
2602 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2603 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2604 ** reading page 1 it discovers that the page-size of the database
2605 ** file is not pBt->pageSize. In this case lockBtree() will update
2606 ** pBt->pageSize to the page-size of the file on disk.
2607 */
2608 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002609
drhb8ef32c2005-03-14 02:01:49 +00002610 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00002611 if( pBt->readOnly ){
2612 rc = SQLITE_READONLY;
2613 }else{
danielk1977d8293352009-04-30 09:10:37 +00002614 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002615 if( rc==SQLITE_OK ){
2616 rc = newDatabase(pBt);
2617 }
drhb8ef32c2005-03-14 02:01:49 +00002618 }
2619 }
2620
danielk1977bd434552009-03-18 10:33:00 +00002621 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002622 unlockBtreeIfUnused(pBt);
2623 }
danf9b76712010-06-01 14:12:45 +00002624 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002625 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002626
2627 if( rc==SQLITE_OK ){
2628 if( p->inTrans==TRANS_NONE ){
2629 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002630#ifndef SQLITE_OMIT_SHARED_CACHE
2631 if( p->sharable ){
2632 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2633 p->lock.eLock = READ_LOCK;
2634 p->lock.pNext = pBt->pLock;
2635 pBt->pLock = &p->lock;
2636 }
2637#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002638 }
2639 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2640 if( p->inTrans>pBt->inTransaction ){
2641 pBt->inTransaction = p->inTrans;
2642 }
danielk1977404ca072009-03-16 13:19:36 +00002643 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002644 MemPage *pPage1 = pBt->pPage1;
2645#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002646 assert( !pBt->pWriter );
2647 pBt->pWriter = p;
shaneca18d202009-03-23 02:34:32 +00002648 pBt->isExclusive = (u8)(wrflag>1);
danielk1977641b0f42007-12-21 04:47:25 +00002649#endif
dan59257dc2010-08-04 11:34:31 +00002650
2651 /* If the db-size header field is incorrect (as it may be if an old
2652 ** client has been writing the database file), update it now. Doing
2653 ** this sooner rather than later means the database size can safely
2654 ** re-read the database size from page 1 if a savepoint or transaction
2655 ** rollback occurs within the transaction.
2656 */
2657 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2658 rc = sqlite3PagerWrite(pPage1->pDbPage);
2659 if( rc==SQLITE_OK ){
2660 put4byte(&pPage1->aData[28], pBt->nPage);
2661 }
2662 }
2663 }
danielk1977aef0bf62005-12-30 16:28:01 +00002664 }
2665
drhd677b3d2007-08-20 22:48:41 +00002666
2667trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002668 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002669 /* This call makes sure that the pager has the correct number of
2670 ** open savepoints. If the second parameter is greater than 0 and
2671 ** the sub-journal is not already open, then it will be opened here.
2672 */
danielk1977fd7f0452008-12-17 17:30:26 +00002673 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2674 }
danielk197712dd5492008-12-18 15:45:07 +00002675
danielk1977aef0bf62005-12-30 16:28:01 +00002676 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002677 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002678 return rc;
drha059ad02001-04-17 20:09:11 +00002679}
2680
danielk1977687566d2004-11-02 12:56:41 +00002681#ifndef SQLITE_OMIT_AUTOVACUUM
2682
2683/*
2684** Set the pointer-map entries for all children of page pPage. Also, if
2685** pPage contains cells that point to overflow pages, set the pointer
2686** map entries for the overflow pages as well.
2687*/
2688static int setChildPtrmaps(MemPage *pPage){
2689 int i; /* Counter variable */
2690 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002691 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002692 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002693 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002694 Pgno pgno = pPage->pgno;
2695
drh1fee73e2007-08-29 04:00:57 +00002696 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002697 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002698 if( rc!=SQLITE_OK ){
2699 goto set_child_ptrmaps_out;
2700 }
danielk1977687566d2004-11-02 12:56:41 +00002701 nCell = pPage->nCell;
2702
2703 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002704 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002705
drh98add2e2009-07-20 17:11:49 +00002706 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002707
danielk1977687566d2004-11-02 12:56:41 +00002708 if( !pPage->leaf ){
2709 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002710 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002711 }
2712 }
2713
2714 if( !pPage->leaf ){
2715 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002716 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002717 }
2718
2719set_child_ptrmaps_out:
2720 pPage->isInit = isInitOrig;
2721 return rc;
2722}
2723
2724/*
drhf3aed592009-07-08 18:12:49 +00002725** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2726** that it points to iTo. Parameter eType describes the type of pointer to
2727** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002728**
2729** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2730** page of pPage.
2731**
2732** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2733** page pointed to by one of the cells on pPage.
2734**
2735** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2736** overflow page in the list.
2737*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002738static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002739 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002740 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002741 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002742 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002743 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002744 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002745 }
danielk1977f78fc082004-11-02 14:40:32 +00002746 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002747 }else{
drhf49661a2008-12-10 16:45:50 +00002748 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002749 int i;
2750 int nCell;
2751
danielk197730548662009-07-09 05:07:37 +00002752 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002753 nCell = pPage->nCell;
2754
danielk1977687566d2004-11-02 12:56:41 +00002755 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002756 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002757 if( eType==PTRMAP_OVERFLOW1 ){
2758 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002759 btreeParseCellPtr(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00002760 if( info.iOverflow
2761 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
2762 && iFrom==get4byte(&pCell[info.iOverflow])
2763 ){
2764 put4byte(&pCell[info.iOverflow], iTo);
2765 break;
danielk1977687566d2004-11-02 12:56:41 +00002766 }
2767 }else{
2768 if( get4byte(pCell)==iFrom ){
2769 put4byte(pCell, iTo);
2770 break;
2771 }
2772 }
2773 }
2774
2775 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002776 if( eType!=PTRMAP_BTREE ||
2777 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002778 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002779 }
danielk1977687566d2004-11-02 12:56:41 +00002780 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2781 }
2782
2783 pPage->isInit = isInitOrig;
2784 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002785 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002786}
2787
danielk1977003ba062004-11-04 02:57:33 +00002788
danielk19777701e812005-01-10 12:59:51 +00002789/*
2790** Move the open database page pDbPage to location iFreePage in the
2791** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002792**
2793** The isCommit flag indicates that there is no need to remember that
2794** the journal needs to be sync()ed before database page pDbPage->pgno
2795** can be written to. The caller has already promised not to write to that
2796** page.
danielk19777701e812005-01-10 12:59:51 +00002797*/
danielk1977003ba062004-11-04 02:57:33 +00002798static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002799 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002800 MemPage *pDbPage, /* Open page to move */
2801 u8 eType, /* Pointer map 'type' entry for pDbPage */
2802 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002803 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002804 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002805){
2806 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2807 Pgno iDbPage = pDbPage->pgno;
2808 Pager *pPager = pBt->pPager;
2809 int rc;
2810
danielk1977a0bf2652004-11-04 14:30:04 +00002811 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2812 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002813 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002814 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002815
drh85b623f2007-12-13 21:54:09 +00002816 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002817 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2818 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002819 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002820 if( rc!=SQLITE_OK ){
2821 return rc;
2822 }
2823 pDbPage->pgno = iFreePage;
2824
2825 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2826 ** that point to overflow pages. The pointer map entries for all these
2827 ** pages need to be changed.
2828 **
2829 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2830 ** pointer to a subsequent overflow page. If this is the case, then
2831 ** the pointer map needs to be updated for the subsequent overflow page.
2832 */
danielk1977a0bf2652004-11-04 14:30:04 +00002833 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002834 rc = setChildPtrmaps(pDbPage);
2835 if( rc!=SQLITE_OK ){
2836 return rc;
2837 }
2838 }else{
2839 Pgno nextOvfl = get4byte(pDbPage->aData);
2840 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002841 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002842 if( rc!=SQLITE_OK ){
2843 return rc;
2844 }
2845 }
2846 }
2847
2848 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2849 ** that it points at iFreePage. Also fix the pointer map entry for
2850 ** iPtrPage.
2851 */
danielk1977a0bf2652004-11-04 14:30:04 +00002852 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00002853 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002854 if( rc!=SQLITE_OK ){
2855 return rc;
2856 }
danielk19773b8a05f2007-03-19 17:44:26 +00002857 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002858 if( rc!=SQLITE_OK ){
2859 releasePage(pPtrPage);
2860 return rc;
2861 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002862 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002863 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002864 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002865 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002866 }
danielk1977003ba062004-11-04 02:57:33 +00002867 }
danielk1977003ba062004-11-04 02:57:33 +00002868 return rc;
2869}
2870
danielk1977dddbcdc2007-04-26 14:42:34 +00002871/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002872static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002873
2874/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002875** Perform a single step of an incremental-vacuum. If successful,
2876** return SQLITE_OK. If there is no work to do (and therefore no
2877** point in calling this function again), return SQLITE_DONE.
2878**
2879** More specificly, this function attempts to re-organize the
2880** database so that the last page of the file currently in use
2881** is no longer in use.
2882**
drhea8ffdf2009-07-22 00:35:23 +00002883** If the nFin parameter is non-zero, this function assumes
danielk1977dddbcdc2007-04-26 14:42:34 +00002884** that the caller will keep calling incrVacuumStep() until
2885** it returns SQLITE_DONE or an error, and that nFin is the
2886** number of pages the database file will contain after this
drhea8ffdf2009-07-22 00:35:23 +00002887** process is complete. If nFin is zero, it is assumed that
2888** incrVacuumStep() will be called a finite amount of times
2889** which may or may not empty the freelist. A full autovacuum
2890** has nFin>0. A "PRAGMA incremental_vacuum" has nFin==0.
danielk1977dddbcdc2007-04-26 14:42:34 +00002891*/
danielk19773460d192008-12-27 15:23:13 +00002892static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002893 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00002894 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002895
drh1fee73e2007-08-29 04:00:57 +00002896 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002897 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002898
2899 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002900 u8 eType;
2901 Pgno iPtrPage;
2902
2903 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002904 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002905 return SQLITE_DONE;
2906 }
2907
2908 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2909 if( rc!=SQLITE_OK ){
2910 return rc;
2911 }
2912 if( eType==PTRMAP_ROOTPAGE ){
2913 return SQLITE_CORRUPT_BKPT;
2914 }
2915
2916 if( eType==PTRMAP_FREEPAGE ){
2917 if( nFin==0 ){
2918 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002919 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002920 ** truncated to zero after this function returns, so it doesn't
2921 ** matter if it still contains some garbage entries.
2922 */
2923 Pgno iFreePg;
2924 MemPage *pFreePg;
2925 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2926 if( rc!=SQLITE_OK ){
2927 return rc;
2928 }
2929 assert( iFreePg==iLastPg );
2930 releasePage(pFreePg);
2931 }
2932 } else {
2933 Pgno iFreePg; /* Index of free page to move pLastPg to */
2934 MemPage *pLastPg;
2935
danielk197730548662009-07-09 05:07:37 +00002936 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002937 if( rc!=SQLITE_OK ){
2938 return rc;
2939 }
2940
danielk1977b4626a32007-04-28 15:47:43 +00002941 /* If nFin is zero, this loop runs exactly once and page pLastPg
2942 ** is swapped with the first free page pulled off the free list.
2943 **
2944 ** On the other hand, if nFin is greater than zero, then keep
2945 ** looping until a free-page located within the first nFin pages
2946 ** of the file is found.
2947 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002948 do {
2949 MemPage *pFreePg;
2950 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2951 if( rc!=SQLITE_OK ){
2952 releasePage(pLastPg);
2953 return rc;
2954 }
2955 releasePage(pFreePg);
2956 }while( nFin!=0 && iFreePg>nFin );
2957 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002958
2959 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002960 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002961 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002962 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002963 releasePage(pLastPg);
2964 if( rc!=SQLITE_OK ){
2965 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002966 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002967 }
2968 }
2969
danielk19773460d192008-12-27 15:23:13 +00002970 if( nFin==0 ){
2971 iLastPg--;
2972 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002973 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2974 MemPage *pPg;
drhdd3cd972010-03-27 17:12:36 +00002975 rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
danielk1977f4027782009-03-30 18:50:04 +00002976 if( rc!=SQLITE_OK ){
2977 return rc;
2978 }
2979 rc = sqlite3PagerWrite(pPg->pDbPage);
2980 releasePage(pPg);
2981 if( rc!=SQLITE_OK ){
2982 return rc;
2983 }
2984 }
danielk19773460d192008-12-27 15:23:13 +00002985 iLastPg--;
2986 }
2987 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
drhdd3cd972010-03-27 17:12:36 +00002988 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00002989 }
2990 return SQLITE_OK;
2991}
2992
2993/*
2994** A write-transaction must be opened before calling this function.
2995** It performs a single unit of work towards an incremental vacuum.
2996**
2997** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00002998** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00002999** SQLITE_OK is returned. Otherwise an SQLite error code.
3000*/
3001int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003002 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003003 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003004
3005 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003006 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3007 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003008 rc = SQLITE_DONE;
3009 }else{
3010 invalidateAllOverflowCache(pBt);
drhb1299152010-03-30 22:58:33 +00003011 rc = incrVacuumStep(pBt, 0, btreePagecount(pBt));
drhdd3cd972010-03-27 17:12:36 +00003012 if( rc==SQLITE_OK ){
3013 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3014 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3015 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003016 }
drhd677b3d2007-08-20 22:48:41 +00003017 sqlite3BtreeLeave(p);
3018 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003019}
3020
3021/*
danielk19773b8a05f2007-03-19 17:44:26 +00003022** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00003023** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003024**
3025** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3026** the database file should be truncated to during the commit process.
3027** i.e. the database has been reorganized so that only the first *pnTrunc
3028** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003029*/
danielk19773460d192008-12-27 15:23:13 +00003030static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003031 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003032 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003033 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003034
drh1fee73e2007-08-29 04:00:57 +00003035 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003036 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003037 assert(pBt->autoVacuum);
3038 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003039 Pgno nFin; /* Number of pages in database after autovacuuming */
3040 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003041 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3042 Pgno iFree; /* The next page to be freed */
3043 int nEntry; /* Number of entries on one ptrmap page */
3044 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003045
drhb1299152010-03-30 22:58:33 +00003046 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003047 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3048 /* It is not possible to create a database for which the final page
3049 ** is either a pointer-map page or the pending-byte page. If one
3050 ** is encountered, this indicates corruption.
3051 */
danielk19773460d192008-12-27 15:23:13 +00003052 return SQLITE_CORRUPT_BKPT;
3053 }
danielk1977ef165ce2009-04-06 17:50:03 +00003054
danielk19773460d192008-12-27 15:23:13 +00003055 nFree = get4byte(&pBt->pPage1->aData[36]);
drh41d628c2009-07-11 17:04:08 +00003056 nEntry = pBt->usableSize/5;
3057 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
danielk19773460d192008-12-27 15:23:13 +00003058 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00003059 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00003060 nFin--;
3061 }
3062 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3063 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00003064 }
drhc5e47ac2009-06-04 00:11:56 +00003065 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00003066
danielk19773460d192008-12-27 15:23:13 +00003067 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3068 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00003069 }
danielk19773460d192008-12-27 15:23:13 +00003070 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003071 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3072 put4byte(&pBt->pPage1->aData[32], 0);
3073 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003074 put4byte(&pBt->pPage1->aData[28], nFin);
danielk19773460d192008-12-27 15:23:13 +00003075 sqlite3PagerTruncateImage(pBt->pPager, nFin);
drhdd3cd972010-03-27 17:12:36 +00003076 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003077 }
3078 if( rc!=SQLITE_OK ){
3079 sqlite3PagerRollback(pPager);
3080 }
danielk1977687566d2004-11-02 12:56:41 +00003081 }
3082
danielk19773b8a05f2007-03-19 17:44:26 +00003083 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003084 return rc;
3085}
danielk1977dddbcdc2007-04-26 14:42:34 +00003086
danielk1977a50d9aa2009-06-08 14:49:45 +00003087#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3088# define setChildPtrmaps(x) SQLITE_OK
3089#endif
danielk1977687566d2004-11-02 12:56:41 +00003090
3091/*
drh80e35f42007-03-30 14:06:34 +00003092** This routine does the first phase of a two-phase commit. This routine
3093** causes a rollback journal to be created (if it does not already exist)
3094** and populated with enough information so that if a power loss occurs
3095** the database can be restored to its original state by playing back
3096** the journal. Then the contents of the journal are flushed out to
3097** the disk. After the journal is safely on oxide, the changes to the
3098** database are written into the database file and flushed to oxide.
3099** At the end of this call, the rollback journal still exists on the
3100** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003101** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003102** commit process.
3103**
3104** This call is a no-op if no write-transaction is currently active on pBt.
3105**
3106** Otherwise, sync the database file for the btree pBt. zMaster points to
3107** the name of a master journal file that should be written into the
3108** individual journal file, or is NULL, indicating no master journal file
3109** (single database transaction).
3110**
3111** When this is called, the master journal should already have been
3112** created, populated with this journal pointer and synced to disk.
3113**
3114** Once this is routine has returned, the only thing required to commit
3115** the write-transaction for this database file is to delete the journal.
3116*/
3117int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3118 int rc = SQLITE_OK;
3119 if( p->inTrans==TRANS_WRITE ){
3120 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003121 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003122#ifndef SQLITE_OMIT_AUTOVACUUM
3123 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003124 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003125 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003126 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003127 return rc;
3128 }
3129 }
3130#endif
drh49b9d332009-01-02 18:10:42 +00003131 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003132 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003133 }
3134 return rc;
3135}
3136
3137/*
danielk197794b30732009-07-02 17:21:57 +00003138** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3139** at the conclusion of a transaction.
3140*/
3141static void btreeEndTransaction(Btree *p){
3142 BtShared *pBt = p->pBt;
danielk197794b30732009-07-02 17:21:57 +00003143 assert( sqlite3BtreeHoldsMutex(p) );
3144
danielk197794b30732009-07-02 17:21:57 +00003145 btreeClearHasContent(pBt);
danfa401de2009-10-16 14:55:03 +00003146 if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
3147 /* If there are other active statements that belong to this database
3148 ** handle, downgrade to a read-only transaction. The other statements
3149 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003150 downgradeAllSharedCacheTableLocks(p);
3151 p->inTrans = TRANS_READ;
3152 }else{
3153 /* If the handle had any kind of transaction open, decrement the
3154 ** transaction count of the shared btree. If the transaction count
3155 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3156 ** call below will unlock the pager. */
3157 if( p->inTrans!=TRANS_NONE ){
3158 clearAllSharedCacheTableLocks(p);
3159 pBt->nTransaction--;
3160 if( 0==pBt->nTransaction ){
3161 pBt->inTransaction = TRANS_NONE;
3162 }
3163 }
3164
3165 /* Set the current transaction state to TRANS_NONE and unlock the
3166 ** pager if this call closed the only read or write transaction. */
3167 p->inTrans = TRANS_NONE;
3168 unlockBtreeIfUnused(pBt);
3169 }
3170
3171 btreeIntegrity(p);
3172}
3173
3174/*
drh2aa679f2001-06-25 02:11:07 +00003175** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003176**
drh6e345992007-03-30 11:12:08 +00003177** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003178** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3179** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3180** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003181** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003182** routine has to do is delete or truncate or zero the header in the
3183** the rollback journal (which causes the transaction to commit) and
3184** drop locks.
drh6e345992007-03-30 11:12:08 +00003185**
dan60939d02011-03-29 15:40:55 +00003186** Normally, if an error occurs while the pager layer is attempting to
3187** finalize the underlying journal file, this function returns an error and
3188** the upper layer will attempt a rollback. However, if the second argument
3189** is non-zero then this b-tree transaction is part of a multi-file
3190** transaction. In this case, the transaction has already been committed
3191** (by deleting a master journal file) and the caller will ignore this
3192** functions return code. So, even if an error occurs in the pager layer,
3193** reset the b-tree objects internal state to indicate that the write
3194** transaction has been closed. This is quite safe, as the pager will have
3195** transitioned to the error state.
3196**
drh5e00f6c2001-09-13 13:46:56 +00003197** This will release the write lock on the database file. If there
3198** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003199*/
dan60939d02011-03-29 15:40:55 +00003200int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003201
drh075ed302010-10-14 01:17:30 +00003202 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003203 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003204 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003205
3206 /* If the handle has a write-transaction open, commit the shared-btrees
3207 ** transaction and set the shared state to TRANS_READ.
3208 */
3209 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003210 int rc;
drh075ed302010-10-14 01:17:30 +00003211 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003212 assert( pBt->inTransaction==TRANS_WRITE );
3213 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003214 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003215 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003216 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003217 return rc;
3218 }
danielk1977aef0bf62005-12-30 16:28:01 +00003219 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003220 }
danielk1977aef0bf62005-12-30 16:28:01 +00003221
danielk197794b30732009-07-02 17:21:57 +00003222 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003223 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003224 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003225}
3226
drh80e35f42007-03-30 14:06:34 +00003227/*
3228** Do both phases of a commit.
3229*/
3230int sqlite3BtreeCommit(Btree *p){
3231 int rc;
drhd677b3d2007-08-20 22:48:41 +00003232 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003233 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3234 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003235 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003236 }
drhd677b3d2007-08-20 22:48:41 +00003237 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003238 return rc;
3239}
3240
danielk1977fbcd5852004-06-15 02:44:18 +00003241#ifndef NDEBUG
3242/*
3243** Return the number of write-cursors open on this handle. This is for use
3244** in assert() expressions, so it is only compiled if NDEBUG is not
3245** defined.
drhfb982642007-08-30 01:19:59 +00003246**
3247** For the purposes of this routine, a write-cursor is any cursor that
3248** is capable of writing to the databse. That means the cursor was
3249** originally opened for writing and the cursor has not be disabled
3250** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003251*/
danielk1977aef0bf62005-12-30 16:28:01 +00003252static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003253 BtCursor *pCur;
3254 int r = 0;
3255 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003256 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003257 }
3258 return r;
3259}
3260#endif
3261
drhc39e0002004-05-07 23:50:57 +00003262/*
drhfb982642007-08-30 01:19:59 +00003263** This routine sets the state to CURSOR_FAULT and the error
3264** code to errCode for every cursor on BtShared that pBtree
3265** references.
3266**
3267** Every cursor is tripped, including cursors that belong
3268** to other database connections that happen to be sharing
3269** the cache with pBtree.
3270**
3271** This routine gets called when a rollback occurs.
3272** All cursors using the same cache must be tripped
3273** to prevent them from trying to use the btree after
3274** the rollback. The rollback may have deleted tables
3275** or moved root pages, so it is not sufficient to
3276** save the state of the cursor. The cursor must be
3277** invalidated.
3278*/
3279void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3280 BtCursor *p;
3281 sqlite3BtreeEnter(pBtree);
3282 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003283 int i;
danielk1977be51a652008-10-08 17:58:48 +00003284 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003285 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003286 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003287 for(i=0; i<=p->iPage; i++){
3288 releasePage(p->apPage[i]);
3289 p->apPage[i] = 0;
3290 }
drhfb982642007-08-30 01:19:59 +00003291 }
3292 sqlite3BtreeLeave(pBtree);
3293}
3294
3295/*
drhecdc7532001-09-23 02:35:53 +00003296** Rollback the transaction in progress. All cursors will be
3297** invalided by this operation. Any attempt to use a cursor
3298** that was open at the beginning of this operation will result
3299** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003300**
3301** This will release the write lock on the database file. If there
3302** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003303*/
danielk1977aef0bf62005-12-30 16:28:01 +00003304int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00003305 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003306 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003307 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003308
drhd677b3d2007-08-20 22:48:41 +00003309 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00003310 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00003311#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00003312 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00003313 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00003314 ** trying to save cursor positions. If this is an automatic rollback (as
3315 ** the result of a constraint, malloc() failure or IO error) then
3316 ** the cache may be internally inconsistent (not contain valid trees) so
3317 ** we cannot simply return the error to the caller. Instead, abort
3318 ** all queries that may be using any of the cursors that failed to save.
3319 */
drhfb982642007-08-30 01:19:59 +00003320 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00003321 }
danielk19778d34dfd2006-01-24 16:37:57 +00003322#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003323 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003324
3325 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003326 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003327
danielk19778d34dfd2006-01-24 16:37:57 +00003328 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003329 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003330 if( rc2!=SQLITE_OK ){
3331 rc = rc2;
3332 }
3333
drh24cd67e2004-05-10 16:18:47 +00003334 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003335 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003336 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003337 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003338 int nPage = get4byte(28+(u8*)pPage1->aData);
3339 testcase( nPage==0 );
3340 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3341 testcase( pBt->nPage!=nPage );
3342 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003343 releasePage(pPage1);
3344 }
danielk1977fbcd5852004-06-15 02:44:18 +00003345 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003346 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003347 }
danielk1977aef0bf62005-12-30 16:28:01 +00003348
danielk197794b30732009-07-02 17:21:57 +00003349 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003350 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003351 return rc;
3352}
3353
3354/*
danielk1977bd434552009-03-18 10:33:00 +00003355** Start a statement subtransaction. The subtransaction can can be rolled
3356** back independently of the main transaction. You must start a transaction
3357** before starting a subtransaction. The subtransaction is ended automatically
3358** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003359**
3360** Statement subtransactions are used around individual SQL statements
3361** that are contained within a BEGIN...COMMIT block. If a constraint
3362** error occurs within the statement, the effect of that one statement
3363** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003364**
3365** A statement sub-transaction is implemented as an anonymous savepoint. The
3366** value passed as the second parameter is the total number of savepoints,
3367** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3368** are no active savepoints and no other statement-transactions open,
3369** iStatement is 1. This anonymous savepoint can be released or rolled back
3370** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003371*/
danielk1977bd434552009-03-18 10:33:00 +00003372int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003373 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003374 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003375 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003376 assert( p->inTrans==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003377 assert( pBt->readOnly==0 );
danielk1977bd434552009-03-18 10:33:00 +00003378 assert( iStatement>0 );
3379 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003380 assert( pBt->inTransaction==TRANS_WRITE );
3381 /* At the pager level, a statement transaction is a savepoint with
3382 ** an index greater than all savepoints created explicitly using
3383 ** SQL statements. It is illegal to open, release or rollback any
3384 ** such savepoints while the statement transaction savepoint is active.
3385 */
3386 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003387 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003388 return rc;
3389}
3390
3391/*
danielk1977fd7f0452008-12-17 17:30:26 +00003392** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3393** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003394** savepoint identified by parameter iSavepoint, depending on the value
3395** of op.
3396**
3397** Normally, iSavepoint is greater than or equal to zero. However, if op is
3398** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3399** contents of the entire transaction are rolled back. This is different
3400** from a normal transaction rollback, as no locks are released and the
3401** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003402*/
3403int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3404 int rc = SQLITE_OK;
3405 if( p && p->inTrans==TRANS_WRITE ){
3406 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003407 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3408 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3409 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003410 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003411 if( rc==SQLITE_OK ){
drh25a80ad2010-03-29 21:13:12 +00003412 if( iSavepoint<0 && pBt->initiallyEmpty ) pBt->nPage = 0;
drh9f0bbf92009-01-02 21:08:09 +00003413 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003414 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003415
3416 /* The database size was written into the offset 28 of the header
3417 ** when the transaction started, so we know that the value at offset
3418 ** 28 is nonzero. */
3419 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003420 }
danielk1977fd7f0452008-12-17 17:30:26 +00003421 sqlite3BtreeLeave(p);
3422 }
3423 return rc;
3424}
3425
3426/*
drh8b2f49b2001-06-08 00:21:52 +00003427** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003428** iTable. If a read-only cursor is requested, it is assumed that
3429** the caller already has at least a read-only transaction open
3430** on the database already. If a write-cursor is requested, then
3431** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003432**
3433** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003434** If wrFlag==1, then the cursor can be used for reading or for
3435** writing if other conditions for writing are also met. These
3436** are the conditions that must be met in order for writing to
3437** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003438**
drhf74b8d92002-09-01 23:20:45 +00003439** 1: The cursor must have been opened with wrFlag==1
3440**
drhfe5d71d2007-03-19 11:54:10 +00003441** 2: Other database connections that share the same pager cache
3442** but which are not in the READ_UNCOMMITTED state may not have
3443** cursors open with wrFlag==0 on the same table. Otherwise
3444** the changes made by this write cursor would be visible to
3445** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003446**
3447** 3: The database must be writable (not on read-only media)
3448**
3449** 4: There must be an active transaction.
3450**
drh6446c4d2001-12-15 14:22:18 +00003451** No checking is done to make sure that page iTable really is the
3452** root page of a b-tree. If it is not, then the cursor acquired
3453** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003454**
drhf25a5072009-11-18 23:01:25 +00003455** It is assumed that the sqlite3BtreeCursorZero() has been called
3456** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003457*/
drhd677b3d2007-08-20 22:48:41 +00003458static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003459 Btree *p, /* The btree */
3460 int iTable, /* Root page of table to open */
3461 int wrFlag, /* 1 to write. 0 read-only */
3462 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3463 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003464){
danielk19773e8add92009-07-04 17:16:00 +00003465 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003466
drh1fee73e2007-08-29 04:00:57 +00003467 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003468 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003469
danielk1977602b4662009-07-02 07:47:33 +00003470 /* The following assert statements verify that if this is a sharable
3471 ** b-tree database, the connection is holding the required table locks,
3472 ** and that no other connection has any open cursor that conflicts with
3473 ** this lock. */
3474 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003475 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3476
danielk19773e8add92009-07-04 17:16:00 +00003477 /* Assert that the caller has opened the required transaction. */
3478 assert( p->inTrans>TRANS_NONE );
3479 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3480 assert( pBt->pPage1 && pBt->pPage1->aData );
3481
danielk197796d48e92009-06-29 06:00:37 +00003482 if( NEVER(wrFlag && pBt->readOnly) ){
3483 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003484 }
drhb1299152010-03-30 22:58:33 +00003485 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00003486 assert( wrFlag==0 );
3487 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00003488 }
danielk1977aef0bf62005-12-30 16:28:01 +00003489
danielk1977aef0bf62005-12-30 16:28:01 +00003490 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003491 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003492 pCur->pgnoRoot = (Pgno)iTable;
3493 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003494 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003495 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003496 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003497 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003498 pCur->pNext = pBt->pCursor;
3499 if( pCur->pNext ){
3500 pCur->pNext->pPrev = pCur;
3501 }
3502 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003503 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003504 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003505 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003506}
drhd677b3d2007-08-20 22:48:41 +00003507int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003508 Btree *p, /* The btree */
3509 int iTable, /* Root page of table to open */
3510 int wrFlag, /* 1 to write. 0 read-only */
3511 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3512 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003513){
3514 int rc;
3515 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003516 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003517 sqlite3BtreeLeave(p);
3518 return rc;
3519}
drh7f751222009-03-17 22:33:00 +00003520
3521/*
3522** Return the size of a BtCursor object in bytes.
3523**
3524** This interfaces is needed so that users of cursors can preallocate
3525** sufficient storage to hold a cursor. The BtCursor object is opaque
3526** to users so they cannot do the sizeof() themselves - they must call
3527** this routine.
3528*/
3529int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003530 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003531}
3532
drh7f751222009-03-17 22:33:00 +00003533/*
drhf25a5072009-11-18 23:01:25 +00003534** Initialize memory that will be converted into a BtCursor object.
3535**
3536** The simple approach here would be to memset() the entire object
3537** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3538** do not need to be zeroed and they are large, so we can save a lot
3539** of run-time by skipping the initialization of those elements.
3540*/
3541void sqlite3BtreeCursorZero(BtCursor *p){
3542 memset(p, 0, offsetof(BtCursor, iPage));
3543}
3544
3545/*
drh7f751222009-03-17 22:33:00 +00003546** Set the cached rowid value of every cursor in the same database file
3547** as pCur and having the same root page number as pCur. The value is
3548** set to iRowid.
3549**
3550** Only positive rowid values are considered valid for this cache.
3551** The cache is initialized to zero, indicating an invalid cache.
3552** A btree will work fine with zero or negative rowids. We just cannot
3553** cache zero or negative rowids, which means tables that use zero or
3554** negative rowids might run a little slower. But in practice, zero
3555** or negative rowids are very uncommon so this should not be a problem.
3556*/
3557void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3558 BtCursor *p;
3559 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3560 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3561 }
3562 assert( pCur->cachedRowid==iRowid );
3563}
drhd677b3d2007-08-20 22:48:41 +00003564
drh7f751222009-03-17 22:33:00 +00003565/*
3566** Return the cached rowid for the given cursor. A negative or zero
3567** return value indicates that the rowid cache is invalid and should be
3568** ignored. If the rowid cache has never before been set, then a
3569** zero is returned.
3570*/
3571sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3572 return pCur->cachedRowid;
3573}
drha059ad02001-04-17 20:09:11 +00003574
3575/*
drh5e00f6c2001-09-13 13:46:56 +00003576** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003577** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003578*/
drh3aac2dd2004-04-26 14:10:20 +00003579int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003580 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003581 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003582 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003583 BtShared *pBt = pCur->pBt;
3584 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003585 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003586 if( pCur->pPrev ){
3587 pCur->pPrev->pNext = pCur->pNext;
3588 }else{
3589 pBt->pCursor = pCur->pNext;
3590 }
3591 if( pCur->pNext ){
3592 pCur->pNext->pPrev = pCur->pPrev;
3593 }
danielk197771d5d2c2008-09-29 11:49:47 +00003594 for(i=0; i<=pCur->iPage; i++){
3595 releasePage(pCur->apPage[i]);
3596 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003597 unlockBtreeIfUnused(pBt);
3598 invalidateOverflowCache(pCur);
3599 /* sqlite3_free(pCur); */
3600 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003601 }
drh8c42ca92001-06-22 19:15:00 +00003602 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003603}
3604
drh5e2f8b92001-05-28 00:41:15 +00003605/*
drh86057612007-06-26 01:04:48 +00003606** Make sure the BtCursor* given in the argument has a valid
3607** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003608** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003609**
3610** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003611** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003612**
3613** 2007-06-25: There is a bug in some versions of MSVC that cause the
3614** compiler to crash when getCellInfo() is implemented as a macro.
3615** But there is a measureable speed advantage to using the macro on gcc
3616** (when less compiler optimizations like -Os or -O0 are used and the
3617** compiler is not doing agressive inlining.) So we use a real function
3618** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003619*/
drh9188b382004-05-14 21:12:22 +00003620#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003621 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003622 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003623 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003624 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003625 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003626 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003627 }
danielk19771cc5ed82007-05-16 17:28:43 +00003628#else
3629 #define assertCellInfo(x)
3630#endif
drh86057612007-06-26 01:04:48 +00003631#ifdef _MSC_VER
3632 /* Use a real function in MSVC to work around bugs in that compiler. */
3633 static void getCellInfo(BtCursor *pCur){
3634 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003635 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003636 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003637 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003638 }else{
3639 assertCellInfo(pCur);
3640 }
3641 }
3642#else /* if not _MSC_VER */
3643 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003644#define getCellInfo(pCur) \
3645 if( pCur->info.nSize==0 ){ \
3646 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003647 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003648 pCur->validNKey = 1; \
3649 }else{ \
3650 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003651 }
3652#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003653
drhea8ffdf2009-07-22 00:35:23 +00003654#ifndef NDEBUG /* The next routine used only within assert() statements */
3655/*
3656** Return true if the given BtCursor is valid. A valid cursor is one
3657** that is currently pointing to a row in a (non-empty) table.
3658** This is a verification routine is used only within assert() statements.
3659*/
3660int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3661 return pCur && pCur->eState==CURSOR_VALID;
3662}
3663#endif /* NDEBUG */
3664
drh9188b382004-05-14 21:12:22 +00003665/*
drh3aac2dd2004-04-26 14:10:20 +00003666** Set *pSize to the size of the buffer needed to hold the value of
3667** the key for the current entry. If the cursor is not pointing
3668** to a valid entry, *pSize is set to 0.
3669**
drh4b70f112004-05-02 21:12:19 +00003670** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003671** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003672**
3673** The caller must position the cursor prior to invoking this routine.
3674**
3675** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003676*/
drh4a1c3802004-05-12 15:15:47 +00003677int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003678 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003679 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3680 if( pCur->eState!=CURSOR_VALID ){
3681 *pSize = 0;
3682 }else{
3683 getCellInfo(pCur);
3684 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003685 }
drhea8ffdf2009-07-22 00:35:23 +00003686 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003687}
drh2af926b2001-05-15 00:39:25 +00003688
drh72f82862001-05-24 21:06:34 +00003689/*
drh0e1c19e2004-05-11 00:58:56 +00003690** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003691** cursor currently points to.
3692**
3693** The caller must guarantee that the cursor is pointing to a non-NULL
3694** valid entry. In other words, the calling procedure must guarantee
3695** that the cursor has Cursor.eState==CURSOR_VALID.
3696**
3697** Failure is not possible. This function always returns SQLITE_OK.
3698** It might just as well be a procedure (returning void) but we continue
3699** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003700*/
3701int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003702 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003703 assert( pCur->eState==CURSOR_VALID );
3704 getCellInfo(pCur);
3705 *pSize = pCur->info.nData;
3706 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003707}
3708
3709/*
danielk1977d04417962007-05-02 13:16:30 +00003710** Given the page number of an overflow page in the database (parameter
3711** ovfl), this function finds the page number of the next page in the
3712** linked list of overflow pages. If possible, it uses the auto-vacuum
3713** pointer-map data instead of reading the content of page ovfl to do so.
3714**
3715** If an error occurs an SQLite error code is returned. Otherwise:
3716**
danielk1977bea2a942009-01-20 17:06:27 +00003717** The page number of the next overflow page in the linked list is
3718** written to *pPgnoNext. If page ovfl is the last page in its linked
3719** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003720**
danielk1977bea2a942009-01-20 17:06:27 +00003721** If ppPage is not NULL, and a reference to the MemPage object corresponding
3722** to page number pOvfl was obtained, then *ppPage is set to point to that
3723** reference. It is the responsibility of the caller to call releasePage()
3724** on *ppPage to free the reference. In no reference was obtained (because
3725** the pointer-map was used to obtain the value for *pPgnoNext), then
3726** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003727*/
3728static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003729 BtShared *pBt, /* The database file */
3730 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003731 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003732 Pgno *pPgnoNext /* OUT: Next overflow page number */
3733){
3734 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003735 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003736 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003737
drh1fee73e2007-08-29 04:00:57 +00003738 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003739 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003740
3741#ifndef SQLITE_OMIT_AUTOVACUUM
3742 /* Try to find the next page in the overflow list using the
3743 ** autovacuum pointer-map pages. Guess that the next page in
3744 ** the overflow list is page number (ovfl+1). If that guess turns
3745 ** out to be wrong, fall back to loading the data of page
3746 ** number ovfl to determine the next page number.
3747 */
3748 if( pBt->autoVacuum ){
3749 Pgno pgno;
3750 Pgno iGuess = ovfl+1;
3751 u8 eType;
3752
3753 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3754 iGuess++;
3755 }
3756
drhb1299152010-03-30 22:58:33 +00003757 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003758 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003759 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003760 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003761 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003762 }
3763 }
3764 }
3765#endif
3766
danielk1977d8a3f3d2009-07-11 11:45:23 +00003767 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003768 if( rc==SQLITE_OK ){
danielk197730548662009-07-09 05:07:37 +00003769 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003770 assert( rc==SQLITE_OK || pPage==0 );
3771 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003772 next = get4byte(pPage->aData);
3773 }
danielk1977443c0592009-01-16 15:21:05 +00003774 }
danielk197745d68822009-01-16 16:23:38 +00003775
danielk1977bea2a942009-01-20 17:06:27 +00003776 *pPgnoNext = next;
3777 if( ppPage ){
3778 *ppPage = pPage;
3779 }else{
3780 releasePage(pPage);
3781 }
3782 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003783}
3784
danielk1977da107192007-05-04 08:32:13 +00003785/*
3786** Copy data from a buffer to a page, or from a page to a buffer.
3787**
3788** pPayload is a pointer to data stored on database page pDbPage.
3789** If argument eOp is false, then nByte bytes of data are copied
3790** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3791** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3792** of data are copied from the buffer pBuf to pPayload.
3793**
3794** SQLITE_OK is returned on success, otherwise an error code.
3795*/
3796static int copyPayload(
3797 void *pPayload, /* Pointer to page data */
3798 void *pBuf, /* Pointer to buffer */
3799 int nByte, /* Number of bytes to copy */
3800 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3801 DbPage *pDbPage /* Page containing pPayload */
3802){
3803 if( eOp ){
3804 /* Copy data from buffer to page (a write operation) */
3805 int rc = sqlite3PagerWrite(pDbPage);
3806 if( rc!=SQLITE_OK ){
3807 return rc;
3808 }
3809 memcpy(pPayload, pBuf, nByte);
3810 }else{
3811 /* Copy data from page to buffer (a read operation) */
3812 memcpy(pBuf, pPayload, nByte);
3813 }
3814 return SQLITE_OK;
3815}
danielk1977d04417962007-05-02 13:16:30 +00003816
3817/*
danielk19779f8d6402007-05-02 17:48:45 +00003818** This function is used to read or overwrite payload information
3819** for the entry that the pCur cursor is pointing to. If the eOp
3820** parameter is 0, this is a read operation (data copied into
3821** buffer pBuf). If it is non-zero, a write (data copied from
3822** buffer pBuf).
3823**
3824** A total of "amt" bytes are read or written beginning at "offset".
3825** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003826**
drh3bcdfd22009-07-12 02:32:21 +00003827** The content being read or written might appear on the main page
3828** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003829**
danielk1977dcbb5d32007-05-04 18:36:44 +00003830** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003831** cursor entry uses one or more overflow pages, this function
3832** allocates space for and lazily popluates the overflow page-list
3833** cache array (BtCursor.aOverflow). Subsequent calls use this
3834** cache to make seeking to the supplied offset more efficient.
3835**
3836** Once an overflow page-list cache has been allocated, it may be
3837** invalidated if some other cursor writes to the same table, or if
3838** the cursor is moved to a different row. Additionally, in auto-vacuum
3839** mode, the following events may invalidate an overflow page-list cache.
3840**
3841** * An incremental vacuum,
3842** * A commit in auto_vacuum="full" mode,
3843** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003844*/
danielk19779f8d6402007-05-02 17:48:45 +00003845static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003846 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003847 u32 offset, /* Begin reading this far into payload */
3848 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003849 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003850 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003851){
3852 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003853 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003854 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003855 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003856 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003857 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003858
danielk1977da107192007-05-04 08:32:13 +00003859 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003860 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003861 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003862 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003863
drh86057612007-06-26 01:04:48 +00003864 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003865 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003866 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003867
drh3bcdfd22009-07-12 02:32:21 +00003868 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003869 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3870 ){
danielk1977da107192007-05-04 08:32:13 +00003871 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003872 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003873 }
danielk1977da107192007-05-04 08:32:13 +00003874
3875 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003876 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003877 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003878 if( a+offset>pCur->info.nLocal ){
3879 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003880 }
danielk1977da107192007-05-04 08:32:13 +00003881 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003882 offset = 0;
drha34b6762004-05-07 13:30:42 +00003883 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003884 amt -= a;
drhdd793422001-06-28 01:54:48 +00003885 }else{
drhfa1a98a2004-05-14 19:08:17 +00003886 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003887 }
danielk1977da107192007-05-04 08:32:13 +00003888
3889 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003890 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003891 Pgno nextPage;
3892
drhfa1a98a2004-05-14 19:08:17 +00003893 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003894
danielk19772dec9702007-05-02 16:48:37 +00003895#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003896 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003897 ** has not been allocated, allocate it now. The array is sized at
3898 ** one entry for each overflow page in the overflow chain. The
3899 ** page number of the first overflow page is stored in aOverflow[0],
3900 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3901 ** (the cache is lazily populated).
3902 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003903 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003904 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003905 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00003906 /* nOvfl is always positive. If it were zero, fetchPayload would have
3907 ** been used instead of this routine. */
3908 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003909 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003910 }
3911 }
danielk1977da107192007-05-04 08:32:13 +00003912
3913 /* If the overflow page-list cache has been allocated and the
3914 ** entry for the first required overflow page is valid, skip
3915 ** directly to it.
3916 */
danielk19772dec9702007-05-02 16:48:37 +00003917 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3918 iIdx = (offset/ovflSize);
3919 nextPage = pCur->aOverflow[iIdx];
3920 offset = (offset%ovflSize);
3921 }
3922#endif
danielk1977da107192007-05-04 08:32:13 +00003923
3924 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3925
3926#ifndef SQLITE_OMIT_INCRBLOB
3927 /* If required, populate the overflow page-list cache. */
3928 if( pCur->aOverflow ){
3929 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3930 pCur->aOverflow[iIdx] = nextPage;
3931 }
3932#endif
3933
danielk1977d04417962007-05-02 13:16:30 +00003934 if( offset>=ovflSize ){
3935 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003936 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003937 ** data is not required. So first try to lookup the overflow
3938 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003939 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003940 */
danielk19772dec9702007-05-02 16:48:37 +00003941#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003942 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3943 nextPage = pCur->aOverflow[iIdx+1];
3944 } else
danielk19772dec9702007-05-02 16:48:37 +00003945#endif
danielk1977da107192007-05-04 08:32:13 +00003946 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003947 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003948 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003949 /* Need to read this page properly. It contains some of the
3950 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003951 */
danf4ba1092011-10-08 14:57:07 +00003952#ifdef SQLITE_DIRECT_OVERFLOW_READ
3953 sqlite3_file *fd;
3954#endif
danielk1977cfe9a692004-06-16 12:00:29 +00003955 int a = amt;
danf4ba1092011-10-08 14:57:07 +00003956 if( a + offset > ovflSize ){
3957 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003958 }
danf4ba1092011-10-08 14:57:07 +00003959
3960#ifdef SQLITE_DIRECT_OVERFLOW_READ
3961 /* If all the following are true:
3962 **
3963 ** 1) this is a read operation, and
3964 ** 2) data is required from the start of this overflow page, and
3965 ** 3) the database is file-backed, and
3966 ** 4) there is no open write-transaction, and
3967 ** 5) the database is not a WAL database,
3968 **
3969 ** then data can be read directly from the database file into the
3970 ** output buffer, bypassing the page-cache altogether. This speeds
3971 ** up loading large records that span many overflow pages.
3972 */
3973 if( eOp==0 /* (1) */
3974 && offset==0 /* (2) */
3975 && pBt->inTransaction==TRANS_READ /* (4) */
3976 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
3977 && pBt->pPage1->aData[19]==0x01 /* (5) */
3978 ){
3979 u8 aSave[4];
3980 u8 *aWrite = &pBuf[-4];
3981 memcpy(aSave, aWrite, 4);
3982 rc = sqlite3OsRead(fd, aWrite, a+4, pBt->pageSize * (nextPage-1));
3983 nextPage = get4byte(aWrite);
3984 memcpy(aWrite, aSave, 4);
3985 }else
3986#endif
3987
3988 {
3989 DbPage *pDbPage;
3990 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
3991 if( rc==SQLITE_OK ){
3992 aPayload = sqlite3PagerGetData(pDbPage);
3993 nextPage = get4byte(aPayload);
3994 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3995 sqlite3PagerUnref(pDbPage);
3996 offset = 0;
3997 }
3998 }
3999 amt -= a;
4000 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004001 }
drh2af926b2001-05-15 00:39:25 +00004002 }
drh2af926b2001-05-15 00:39:25 +00004003 }
danielk1977cfe9a692004-06-16 12:00:29 +00004004
danielk1977da107192007-05-04 08:32:13 +00004005 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004006 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004007 }
danielk1977da107192007-05-04 08:32:13 +00004008 return rc;
drh2af926b2001-05-15 00:39:25 +00004009}
4010
drh72f82862001-05-24 21:06:34 +00004011/*
drh3aac2dd2004-04-26 14:10:20 +00004012** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004013** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004014** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004015**
drh5d1a8722009-07-22 18:07:40 +00004016** The caller must ensure that pCur is pointing to a valid row
4017** in the table.
4018**
drh3aac2dd2004-04-26 14:10:20 +00004019** Return SQLITE_OK on success or an error code if anything goes
4020** wrong. An error is returned if "offset+amt" is larger than
4021** the available payload.
drh72f82862001-05-24 21:06:34 +00004022*/
drha34b6762004-05-07 13:30:42 +00004023int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004024 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004025 assert( pCur->eState==CURSOR_VALID );
4026 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4027 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4028 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004029}
4030
4031/*
drh3aac2dd2004-04-26 14:10:20 +00004032** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004033** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004034** begins at "offset".
4035**
4036** Return SQLITE_OK on success or an error code if anything goes
4037** wrong. An error is returned if "offset+amt" is larger than
4038** the available payload.
drh72f82862001-05-24 21:06:34 +00004039*/
drh3aac2dd2004-04-26 14:10:20 +00004040int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004041 int rc;
4042
danielk19773588ceb2008-06-10 17:30:26 +00004043#ifndef SQLITE_OMIT_INCRBLOB
4044 if ( pCur->eState==CURSOR_INVALID ){
4045 return SQLITE_ABORT;
4046 }
4047#endif
4048
drh1fee73e2007-08-29 04:00:57 +00004049 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004050 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004051 if( rc==SQLITE_OK ){
4052 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004053 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4054 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004055 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004056 }
4057 return rc;
drh2af926b2001-05-15 00:39:25 +00004058}
4059
drh72f82862001-05-24 21:06:34 +00004060/*
drh0e1c19e2004-05-11 00:58:56 +00004061** Return a pointer to payload information from the entry that the
4062** pCur cursor is pointing to. The pointer is to the beginning of
4063** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00004064** skipKey==1. The number of bytes of available key/data is written
4065** into *pAmt. If *pAmt==0, then the value returned will not be
4066** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004067**
4068** This routine is an optimization. It is common for the entire key
4069** and data to fit on the local page and for there to be no overflow
4070** pages. When that is so, this routine can be used to access the
4071** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004072** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004073** the key/data and copy it into a preallocated buffer.
4074**
4075** The pointer returned by this routine looks directly into the cached
4076** page of the database. The data might change or move the next time
4077** any btree routine is called.
4078*/
4079static const unsigned char *fetchPayload(
4080 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00004081 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004082 int skipKey /* read beginning at data if this is true */
4083){
4084 unsigned char *aPayload;
4085 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00004086 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00004087 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004088
danielk197771d5d2c2008-09-29 11:49:47 +00004089 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004090 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00004091 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00004092 pPage = pCur->apPage[pCur->iPage];
4093 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drhfe3313f2009-07-21 19:02:20 +00004094 if( NEVER(pCur->info.nSize==0) ){
4095 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
4096 &pCur->info);
4097 }
drh43605152004-05-29 21:46:49 +00004098 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00004099 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00004100 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00004101 nKey = 0;
4102 }else{
drhf49661a2008-12-10 16:45:50 +00004103 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00004104 }
drh0e1c19e2004-05-11 00:58:56 +00004105 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00004106 aPayload += nKey;
4107 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00004108 }else{
drhfa1a98a2004-05-14 19:08:17 +00004109 nLocal = pCur->info.nLocal;
drhfe3313f2009-07-21 19:02:20 +00004110 assert( nLocal<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00004111 }
drhe51c44f2004-05-30 20:46:09 +00004112 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004113 return aPayload;
4114}
4115
4116
4117/*
drhe51c44f2004-05-30 20:46:09 +00004118** For the entry that cursor pCur is point to, return as
4119** many bytes of the key or data as are available on the local
4120** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004121**
4122** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004123** or be destroyed on the next call to any Btree routine,
4124** including calls from other threads against the same cache.
4125** Hence, a mutex on the BtShared should be held prior to calling
4126** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004127**
4128** These routines is used to get quick access to key and data
4129** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004130*/
drhe51c44f2004-05-30 20:46:09 +00004131const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004132 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004133 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004134 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004135 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4136 p = (const void*)fetchPayload(pCur, pAmt, 0);
danielk1977da184232006-01-05 11:34:32 +00004137 }
drhfe3313f2009-07-21 19:02:20 +00004138 return p;
drh0e1c19e2004-05-11 00:58:56 +00004139}
drhe51c44f2004-05-30 20:46:09 +00004140const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004141 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004142 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004143 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004144 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4145 p = (const void*)fetchPayload(pCur, pAmt, 1);
danielk1977da184232006-01-05 11:34:32 +00004146 }
drhfe3313f2009-07-21 19:02:20 +00004147 return p;
drh0e1c19e2004-05-11 00:58:56 +00004148}
4149
4150
4151/*
drh8178a752003-01-05 21:41:40 +00004152** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004153** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004154**
4155** This function returns SQLITE_CORRUPT if the page-header flags field of
4156** the new child page does not match the flags field of the parent (i.e.
4157** if an intkey page appears to be the parent of a non-intkey page, or
4158** vice-versa).
drh72f82862001-05-24 21:06:34 +00004159*/
drh3aac2dd2004-04-26 14:10:20 +00004160static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004161 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004162 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004163 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004164 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004165
drh1fee73e2007-08-29 04:00:57 +00004166 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004167 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004168 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4169 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4170 return SQLITE_CORRUPT_BKPT;
4171 }
4172 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00004173 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004174 pCur->apPage[i+1] = pNewPage;
4175 pCur->aiIdx[i+1] = 0;
4176 pCur->iPage++;
4177
drh271efa52004-05-30 19:19:05 +00004178 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004179 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00004180 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004181 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004182 }
drh72f82862001-05-24 21:06:34 +00004183 return SQLITE_OK;
4184}
4185
danielk1977bf93c562008-09-29 15:53:25 +00004186#ifndef NDEBUG
4187/*
4188** Page pParent is an internal (non-leaf) tree page. This function
4189** asserts that page number iChild is the left-child if the iIdx'th
4190** cell in page pParent. Or, if iIdx is equal to the total number of
4191** cells in pParent, that page number iChild is the right-child of
4192** the page.
4193*/
4194static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4195 assert( iIdx<=pParent->nCell );
4196 if( iIdx==pParent->nCell ){
4197 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4198 }else{
4199 assert( get4byte(findCell(pParent, iIdx))==iChild );
4200 }
4201}
4202#else
4203# define assertParentIndex(x,y,z)
4204#endif
4205
drh72f82862001-05-24 21:06:34 +00004206/*
drh5e2f8b92001-05-28 00:41:15 +00004207** Move the cursor up to the parent page.
4208**
4209** pCur->idx is set to the cell index that contains the pointer
4210** to the page we are coming from. If we are coming from the
4211** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004212** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004213*/
danielk197730548662009-07-09 05:07:37 +00004214static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004215 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004216 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004217 assert( pCur->iPage>0 );
4218 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004219 assertParentIndex(
4220 pCur->apPage[pCur->iPage-1],
4221 pCur->aiIdx[pCur->iPage-1],
4222 pCur->apPage[pCur->iPage]->pgno
4223 );
danielk197771d5d2c2008-09-29 11:49:47 +00004224 releasePage(pCur->apPage[pCur->iPage]);
4225 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004226 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004227 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004228}
4229
4230/*
danielk19778f880a82009-07-13 09:41:45 +00004231** Move the cursor to point to the root page of its b-tree structure.
4232**
4233** If the table has a virtual root page, then the cursor is moved to point
4234** to the virtual root page instead of the actual root page. A table has a
4235** virtual root page when the actual root page contains no cells and a
4236** single child page. This can only happen with the table rooted at page 1.
4237**
4238** If the b-tree structure is empty, the cursor state is set to
4239** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4240** cell located on the root (or virtual root) page and the cursor state
4241** is set to CURSOR_VALID.
4242**
4243** If this function returns successfully, it may be assumed that the
4244** page-header flags indicate that the [virtual] root-page is the expected
4245** kind of b-tree page (i.e. if when opening the cursor the caller did not
4246** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4247** indicating a table b-tree, or if the caller did specify a KeyInfo
4248** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4249** b-tree).
drh72f82862001-05-24 21:06:34 +00004250*/
drh5e2f8b92001-05-28 00:41:15 +00004251static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004252 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004253 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004254 Btree *p = pCur->pBtree;
4255 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004256
drh1fee73e2007-08-29 04:00:57 +00004257 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004258 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4259 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4260 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4261 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4262 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004263 assert( pCur->skipNext!=SQLITE_OK );
4264 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004265 }
danielk1977be51a652008-10-08 17:58:48 +00004266 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004267 }
danielk197771d5d2c2008-09-29 11:49:47 +00004268
4269 if( pCur->iPage>=0 ){
4270 int i;
4271 for(i=1; i<=pCur->iPage; i++){
4272 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004273 }
danielk1977172114a2009-07-07 15:47:12 +00004274 pCur->iPage = 0;
dana205a482011-08-27 18:48:57 +00004275 }else if( pCur->pgnoRoot==0 ){
4276 pCur->eState = CURSOR_INVALID;
4277 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004278 }else{
drh4c301aa2009-07-15 17:25:45 +00004279 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
4280 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004281 pCur->eState = CURSOR_INVALID;
4282 return rc;
4283 }
danielk1977172114a2009-07-07 15:47:12 +00004284 pCur->iPage = 0;
4285
4286 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4287 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4288 ** NULL, the caller expects a table b-tree. If this is not the case,
4289 ** return an SQLITE_CORRUPT error. */
4290 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4291 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4292 return SQLITE_CORRUPT_BKPT;
4293 }
drhc39e0002004-05-07 23:50:57 +00004294 }
danielk197771d5d2c2008-09-29 11:49:47 +00004295
danielk19778f880a82009-07-13 09:41:45 +00004296 /* Assert that the root page is of the correct type. This must be the
4297 ** case as the call to this function that loaded the root-page (either
4298 ** this call or a previous invocation) would have detected corruption
4299 ** if the assumption were not true, and it is not possible for the flags
4300 ** byte to have been modified while this cursor is holding a reference
4301 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004302 pRoot = pCur->apPage[0];
4303 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004304 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4305
danielk197771d5d2c2008-09-29 11:49:47 +00004306 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004307 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004308 pCur->atLast = 0;
4309 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004310
drh8856d6a2004-04-29 14:42:46 +00004311 if( pRoot->nCell==0 && !pRoot->leaf ){
4312 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004313 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004314 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004315 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004316 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004317 }else{
4318 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004319 }
4320 return rc;
drh72f82862001-05-24 21:06:34 +00004321}
drh2af926b2001-05-15 00:39:25 +00004322
drh5e2f8b92001-05-28 00:41:15 +00004323/*
4324** Move the cursor down to the left-most leaf entry beneath the
4325** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004326**
4327** The left-most leaf is the one with the smallest key - the first
4328** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004329*/
4330static int moveToLeftmost(BtCursor *pCur){
4331 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004332 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004333 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004334
drh1fee73e2007-08-29 04:00:57 +00004335 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004336 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004337 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4338 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4339 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004340 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004341 }
drhd677b3d2007-08-20 22:48:41 +00004342 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004343}
4344
drh2dcc9aa2002-12-04 13:40:25 +00004345/*
4346** Move the cursor down to the right-most leaf entry beneath the
4347** page to which it is currently pointing. Notice the difference
4348** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4349** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4350** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004351**
4352** The right-most entry is the one with the largest key - the last
4353** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004354*/
4355static int moveToRightmost(BtCursor *pCur){
4356 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004357 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004358 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004359
drh1fee73e2007-08-29 04:00:57 +00004360 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004361 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004362 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004363 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004364 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004365 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004366 }
drhd677b3d2007-08-20 22:48:41 +00004367 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004368 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004369 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004370 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004371 }
danielk1977518002e2008-09-05 05:02:46 +00004372 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004373}
4374
drh5e00f6c2001-09-13 13:46:56 +00004375/* Move the cursor to the first entry in the table. Return SQLITE_OK
4376** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004377** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004378*/
drh3aac2dd2004-04-26 14:10:20 +00004379int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004380 int rc;
drhd677b3d2007-08-20 22:48:41 +00004381
drh1fee73e2007-08-29 04:00:57 +00004382 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004383 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004384 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004385 if( rc==SQLITE_OK ){
4386 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004387 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004388 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004389 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004390 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004391 *pRes = 0;
4392 rc = moveToLeftmost(pCur);
4393 }
drh5e00f6c2001-09-13 13:46:56 +00004394 }
drh5e00f6c2001-09-13 13:46:56 +00004395 return rc;
4396}
drh5e2f8b92001-05-28 00:41:15 +00004397
drh9562b552002-02-19 15:00:07 +00004398/* Move the cursor to the last entry in the table. Return SQLITE_OK
4399** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004400** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004401*/
drh3aac2dd2004-04-26 14:10:20 +00004402int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004403 int rc;
drhd677b3d2007-08-20 22:48:41 +00004404
drh1fee73e2007-08-29 04:00:57 +00004405 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004406 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004407
4408 /* If the cursor already points to the last entry, this is a no-op. */
4409 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4410#ifdef SQLITE_DEBUG
4411 /* This block serves to assert() that the cursor really does point
4412 ** to the last entry in the b-tree. */
4413 int ii;
4414 for(ii=0; ii<pCur->iPage; ii++){
4415 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4416 }
4417 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4418 assert( pCur->apPage[pCur->iPage]->leaf );
4419#endif
4420 return SQLITE_OK;
4421 }
4422
drh9562b552002-02-19 15:00:07 +00004423 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004424 if( rc==SQLITE_OK ){
4425 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004426 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004427 *pRes = 1;
4428 }else{
4429 assert( pCur->eState==CURSOR_VALID );
4430 *pRes = 0;
4431 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004432 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004433 }
drh9562b552002-02-19 15:00:07 +00004434 }
drh9562b552002-02-19 15:00:07 +00004435 return rc;
4436}
4437
drhe14006d2008-03-25 17:23:32 +00004438/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004439** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004440**
drhe63d9992008-08-13 19:11:48 +00004441** For INTKEY tables, the intKey parameter is used. pIdxKey
4442** must be NULL. For index tables, pIdxKey is used and intKey
4443** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004444**
drh5e2f8b92001-05-28 00:41:15 +00004445** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004446** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004447** were present. The cursor might point to an entry that comes
4448** before or after the key.
4449**
drh64022502009-01-09 14:11:04 +00004450** An integer is written into *pRes which is the result of
4451** comparing the key with the entry to which the cursor is
4452** pointing. The meaning of the integer written into
4453** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004454**
4455** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004456** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004457** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004458**
4459** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004460** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004461**
4462** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004463** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004464**
drha059ad02001-04-17 20:09:11 +00004465*/
drhe63d9992008-08-13 19:11:48 +00004466int sqlite3BtreeMovetoUnpacked(
4467 BtCursor *pCur, /* The cursor to be moved */
4468 UnpackedRecord *pIdxKey, /* Unpacked index key */
4469 i64 intKey, /* The table key */
4470 int biasRight, /* If true, bias the search to the high end */
4471 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004472){
drh72f82862001-05-24 21:06:34 +00004473 int rc;
drhd677b3d2007-08-20 22:48:41 +00004474
drh1fee73e2007-08-29 04:00:57 +00004475 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004476 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004477 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004478 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004479
4480 /* If the cursor is already positioned at the point we are trying
4481 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004482 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4483 && pCur->apPage[0]->intKey
4484 ){
drhe63d9992008-08-13 19:11:48 +00004485 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004486 *pRes = 0;
4487 return SQLITE_OK;
4488 }
drhe63d9992008-08-13 19:11:48 +00004489 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004490 *pRes = -1;
4491 return SQLITE_OK;
4492 }
4493 }
4494
drh5e2f8b92001-05-28 00:41:15 +00004495 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004496 if( rc ){
4497 return rc;
4498 }
dana205a482011-08-27 18:48:57 +00004499 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4500 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4501 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004502 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004503 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004504 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004505 return SQLITE_OK;
4506 }
danielk197771d5d2c2008-09-29 11:49:47 +00004507 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004508 for(;;){
drhafb98172011-06-04 01:43:53 +00004509 int lwr, upr, idx;
drh72f82862001-05-24 21:06:34 +00004510 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004511 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004512 int c;
4513
4514 /* pPage->nCell must be greater than zero. If this is the root-page
4515 ** the cursor would have been INVALID above and this for(;;) loop
4516 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004517 ** would have already detected db corruption. Similarly, pPage must
4518 ** be the right kind (index or table) of b-tree page. Otherwise
4519 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004520 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004521 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004522 lwr = 0;
4523 upr = pPage->nCell-1;
drhe4d90812007-03-29 05:51:49 +00004524 if( biasRight ){
drhafb98172011-06-04 01:43:53 +00004525 pCur->aiIdx[pCur->iPage] = (u16)(idx = upr);
drhe4d90812007-03-29 05:51:49 +00004526 }else{
drhafb98172011-06-04 01:43:53 +00004527 pCur->aiIdx[pCur->iPage] = (u16)(idx = (upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004528 }
drh64022502009-01-09 14:11:04 +00004529 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004530 u8 *pCell; /* Pointer to current cell in pPage */
4531
drhafb98172011-06-04 01:43:53 +00004532 assert( idx==pCur->aiIdx[pCur->iPage] );
drh366fda62006-01-13 02:35:09 +00004533 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004534 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004535 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004536 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004537 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004538 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004539 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004540 }
drha2c20e42008-03-29 16:01:04 +00004541 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004542 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004543 c = 0;
drhe63d9992008-08-13 19:11:48 +00004544 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004545 c = -1;
4546 }else{
drhe63d9992008-08-13 19:11:48 +00004547 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004548 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004549 }
danielk197711c327a2009-05-04 19:01:26 +00004550 pCur->validNKey = 1;
4551 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004552 }else{
drhb2eced52010-08-12 02:41:12 +00004553 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004554 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004555 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004556 ** varint. This information is used to attempt to avoid parsing
4557 ** the entire cell by checking for the cases where the record is
4558 ** stored entirely within the b-tree page by inspecting the first
4559 ** 2 bytes of the cell.
4560 */
4561 int nCell = pCell[0];
drh3def2352011-11-11 00:27:15 +00004562 if( !(nCell & 0x80)
4563 && nCell<=pPage->maxLocal
4564 && (pCell+nCell+1)<=pPage->aDataEnd
4565 ){
danielk197711c327a2009-05-04 19:01:26 +00004566 /* This branch runs if the record-size field of the cell is a
4567 ** single byte varint and the record fits entirely on the main
4568 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00004569 testcase( pCell+nCell+1==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004570 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4571 }else if( !(pCell[1] & 0x80)
4572 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
drh3def2352011-11-11 00:27:15 +00004573 && (pCell+nCell+2)<=pPage->aDataEnd
danielk197711c327a2009-05-04 19:01:26 +00004574 ){
4575 /* The record-size field is a 2 byte varint and the record
4576 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00004577 testcase( pCell+nCell+2==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004578 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004579 }else{
danielk197711c327a2009-05-04 19:01:26 +00004580 /* The record flows over onto one or more overflow pages. In
4581 ** this case the whole cell needs to be parsed, a buffer allocated
4582 ** and accessPayload() used to retrieve the record into the
4583 ** buffer before VdbeRecordCompare() can be called. */
4584 void *pCellKey;
4585 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004586 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004587 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004588 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004589 if( pCellKey==0 ){
4590 rc = SQLITE_NOMEM;
4591 goto moveto_finish;
4592 }
drhfb192682009-07-11 18:26:28 +00004593 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004594 if( rc ){
4595 sqlite3_free(pCellKey);
4596 goto moveto_finish;
4597 }
danielk197711c327a2009-05-04 19:01:26 +00004598 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004599 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004600 }
drh3aac2dd2004-04-26 14:10:20 +00004601 }
drh72f82862001-05-24 21:06:34 +00004602 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004603 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004604 lwr = idx;
drh8b18dd42004-05-12 19:18:15 +00004605 break;
4606 }else{
drh64022502009-01-09 14:11:04 +00004607 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004608 rc = SQLITE_OK;
4609 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004610 }
drh72f82862001-05-24 21:06:34 +00004611 }
4612 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004613 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004614 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004615 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004616 }
drhf1d68b32007-03-29 04:43:26 +00004617 if( lwr>upr ){
4618 break;
4619 }
drhafb98172011-06-04 01:43:53 +00004620 pCur->aiIdx[pCur->iPage] = (u16)(idx = (lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004621 }
drhb07028f2011-10-14 21:49:18 +00004622 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00004623 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004624 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004625 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004626 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004627 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004628 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004629 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004630 }
4631 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004632 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004633 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004634 rc = SQLITE_OK;
4635 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004636 }
drhf49661a2008-12-10 16:45:50 +00004637 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004638 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004639 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004640 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004641 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004642 }
drh1e968a02008-03-25 00:22:21 +00004643moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004644 return rc;
4645}
4646
drhd677b3d2007-08-20 22:48:41 +00004647
drh72f82862001-05-24 21:06:34 +00004648/*
drhc39e0002004-05-07 23:50:57 +00004649** Return TRUE if the cursor is not pointing at an entry of the table.
4650**
4651** TRUE will be returned after a call to sqlite3BtreeNext() moves
4652** past the last entry in the table or sqlite3BtreePrev() moves past
4653** the first entry. TRUE is also returned if the table is empty.
4654*/
4655int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004656 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4657 ** have been deleted? This API will need to change to return an error code
4658 ** as well as the boolean result value.
4659 */
4660 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004661}
4662
4663/*
drhbd03cae2001-06-02 02:40:57 +00004664** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004665** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004666** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004667** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004668*/
drhd094db12008-04-03 21:46:57 +00004669int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004670 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004671 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004672 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004673
drh1fee73e2007-08-29 04:00:57 +00004674 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004675 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004676 if( rc!=SQLITE_OK ){
4677 return rc;
4678 }
drh8c4d3a62007-04-06 01:03:32 +00004679 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004680 if( CURSOR_INVALID==pCur->eState ){
4681 *pRes = 1;
4682 return SQLITE_OK;
4683 }
drh4c301aa2009-07-15 17:25:45 +00004684 if( pCur->skipNext>0 ){
4685 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004686 *pRes = 0;
4687 return SQLITE_OK;
4688 }
drh4c301aa2009-07-15 17:25:45 +00004689 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004690
danielk197771d5d2c2008-09-29 11:49:47 +00004691 pPage = pCur->apPage[pCur->iPage];
4692 idx = ++pCur->aiIdx[pCur->iPage];
4693 assert( pPage->isInit );
4694 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004695
drh271efa52004-05-30 19:19:05 +00004696 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004697 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004698 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004699 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004700 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004701 if( rc ) return rc;
4702 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004703 *pRes = 0;
4704 return rc;
drh72f82862001-05-24 21:06:34 +00004705 }
drh5e2f8b92001-05-28 00:41:15 +00004706 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004707 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004708 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004709 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004710 return SQLITE_OK;
4711 }
danielk197730548662009-07-09 05:07:37 +00004712 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004713 pPage = pCur->apPage[pCur->iPage];
4714 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004715 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004716 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004717 rc = sqlite3BtreeNext(pCur, pRes);
4718 }else{
4719 rc = SQLITE_OK;
4720 }
4721 return rc;
drh8178a752003-01-05 21:41:40 +00004722 }
4723 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004724 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004725 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004726 }
drh5e2f8b92001-05-28 00:41:15 +00004727 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004728 return rc;
drh72f82862001-05-24 21:06:34 +00004729}
drhd677b3d2007-08-20 22:48:41 +00004730
drh72f82862001-05-24 21:06:34 +00004731
drh3b7511c2001-05-26 13:15:44 +00004732/*
drh2dcc9aa2002-12-04 13:40:25 +00004733** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004734** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004735** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004736** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004737*/
drhd094db12008-04-03 21:46:57 +00004738int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004739 int rc;
drh8178a752003-01-05 21:41:40 +00004740 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004741
drh1fee73e2007-08-29 04:00:57 +00004742 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004743 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004744 if( rc!=SQLITE_OK ){
4745 return rc;
4746 }
drha2c20e42008-03-29 16:01:04 +00004747 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004748 if( CURSOR_INVALID==pCur->eState ){
4749 *pRes = 1;
4750 return SQLITE_OK;
4751 }
drh4c301aa2009-07-15 17:25:45 +00004752 if( pCur->skipNext<0 ){
4753 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004754 *pRes = 0;
4755 return SQLITE_OK;
4756 }
drh4c301aa2009-07-15 17:25:45 +00004757 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004758
danielk197771d5d2c2008-09-29 11:49:47 +00004759 pPage = pCur->apPage[pCur->iPage];
4760 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004761 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004762 int idx = pCur->aiIdx[pCur->iPage];
4763 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004764 if( rc ){
4765 return rc;
4766 }
drh2dcc9aa2002-12-04 13:40:25 +00004767 rc = moveToRightmost(pCur);
4768 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004769 while( pCur->aiIdx[pCur->iPage]==0 ){
4770 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004771 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004772 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004773 return SQLITE_OK;
4774 }
danielk197730548662009-07-09 05:07:37 +00004775 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004776 }
drh271efa52004-05-30 19:19:05 +00004777 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004778 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004779
4780 pCur->aiIdx[pCur->iPage]--;
4781 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004782 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004783 rc = sqlite3BtreePrevious(pCur, pRes);
4784 }else{
4785 rc = SQLITE_OK;
4786 }
drh2dcc9aa2002-12-04 13:40:25 +00004787 }
drh8178a752003-01-05 21:41:40 +00004788 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004789 return rc;
4790}
4791
4792/*
drh3b7511c2001-05-26 13:15:44 +00004793** Allocate a new page from the database file.
4794**
danielk19773b8a05f2007-03-19 17:44:26 +00004795** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004796** has already been called on the new page.) The new page has also
4797** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004798** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004799**
4800** SQLITE_OK is returned on success. Any other return value indicates
4801** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004802** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004803**
drh199e3cf2002-07-18 11:01:47 +00004804** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4805** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004806** attempt to keep related pages close to each other in the database file,
4807** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004808**
4809** If the "exact" parameter is not 0, and the page-number nearby exists
4810** anywhere on the free-list, then it is guarenteed to be returned. This
4811** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004812*/
drh4f0c5872007-03-26 22:05:01 +00004813static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004814 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004815 MemPage **ppPage,
4816 Pgno *pPgno,
4817 Pgno nearby,
4818 u8 exact
4819){
drh3aac2dd2004-04-26 14:10:20 +00004820 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004821 int rc;
drh35cd6432009-06-05 14:17:21 +00004822 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004823 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004824 MemPage *pTrunk = 0;
4825 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004826 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004827
drh1fee73e2007-08-29 04:00:57 +00004828 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004829 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00004830 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004831 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004832 testcase( n==mxPage-1 );
4833 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004834 return SQLITE_CORRUPT_BKPT;
4835 }
drh3aac2dd2004-04-26 14:10:20 +00004836 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004837 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004838 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004839 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4840
4841 /* If the 'exact' parameter was true and a query of the pointer-map
4842 ** shows that the page 'nearby' is somewhere on the free-list, then
4843 ** the entire-list will be searched for that page.
4844 */
4845#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004846 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004847 u8 eType;
4848 assert( nearby>0 );
4849 assert( pBt->autoVacuum );
4850 rc = ptrmapGet(pBt, nearby, &eType, 0);
4851 if( rc ) return rc;
4852 if( eType==PTRMAP_FREEPAGE ){
4853 searchList = 1;
4854 }
4855 *pPgno = nearby;
4856 }
4857#endif
4858
4859 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4860 ** first free-list trunk page. iPrevTrunk is initially 1.
4861 */
danielk19773b8a05f2007-03-19 17:44:26 +00004862 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004863 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004864 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004865
4866 /* The code within this loop is run only once if the 'searchList' variable
4867 ** is not true. Otherwise, it runs once for each trunk-page on the
4868 ** free-list until the page 'nearby' is located.
4869 */
4870 do {
4871 pPrevTrunk = pTrunk;
4872 if( pPrevTrunk ){
4873 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004874 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004875 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004876 }
drhdf35a082009-07-09 02:24:35 +00004877 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004878 if( iTrunk>mxPage ){
4879 rc = SQLITE_CORRUPT_BKPT;
4880 }else{
danielk197730548662009-07-09 05:07:37 +00004881 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00004882 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004883 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004884 pTrunk = 0;
4885 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004886 }
drhb07028f2011-10-14 21:49:18 +00004887 assert( pTrunk!=0 );
4888 assert( pTrunk->aData!=0 );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004889
drh93b4fc72011-04-07 14:47:01 +00004890 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004891 if( k==0 && !searchList ){
4892 /* The trunk has no leaves and the list is not being searched.
4893 ** So extract the trunk page itself and use it as the newly
4894 ** allocated page */
4895 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004896 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004897 if( rc ){
4898 goto end_allocate_page;
4899 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004900 *pPgno = iTrunk;
4901 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4902 *ppPage = pTrunk;
4903 pTrunk = 0;
4904 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004905 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004906 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004907 rc = SQLITE_CORRUPT_BKPT;
4908 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004909#ifndef SQLITE_OMIT_AUTOVACUUM
4910 }else if( searchList && nearby==iTrunk ){
4911 /* The list is being searched and this trunk page is the page
4912 ** to allocate, regardless of whether it has leaves.
4913 */
4914 assert( *pPgno==iTrunk );
4915 *ppPage = pTrunk;
4916 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004917 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004918 if( rc ){
4919 goto end_allocate_page;
4920 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004921 if( k==0 ){
4922 if( !pPrevTrunk ){
4923 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4924 }else{
danf48c3552010-08-23 15:41:24 +00004925 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
4926 if( rc!=SQLITE_OK ){
4927 goto end_allocate_page;
4928 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004929 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4930 }
4931 }else{
4932 /* The trunk page is required by the caller but it contains
4933 ** pointers to free-list leaves. The first leaf becomes a trunk
4934 ** page in this case.
4935 */
4936 MemPage *pNewTrunk;
4937 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004938 if( iNewTrunk>mxPage ){
4939 rc = SQLITE_CORRUPT_BKPT;
4940 goto end_allocate_page;
4941 }
drhdf35a082009-07-09 02:24:35 +00004942 testcase( iNewTrunk==mxPage );
danielk197730548662009-07-09 05:07:37 +00004943 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004944 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004945 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004946 }
danielk19773b8a05f2007-03-19 17:44:26 +00004947 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004948 if( rc!=SQLITE_OK ){
4949 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004950 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004951 }
4952 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4953 put4byte(&pNewTrunk->aData[4], k-1);
4954 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004955 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004956 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004957 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004958 put4byte(&pPage1->aData[32], iNewTrunk);
4959 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004960 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004961 if( rc ){
4962 goto end_allocate_page;
4963 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004964 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4965 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004966 }
4967 pTrunk = 0;
4968 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4969#endif
danielk1977e5765212009-06-17 11:13:28 +00004970 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004971 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00004972 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004973 Pgno iPage;
4974 unsigned char *aData = pTrunk->aData;
4975 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00004976 u32 i;
4977 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004978 closest = 0;
drhd50ffc42011-03-08 02:38:28 +00004979 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004980 for(i=1; i<k; i++){
drhd50ffc42011-03-08 02:38:28 +00004981 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004982 if( d2<dist ){
4983 closest = i;
4984 dist = d2;
4985 }
4986 }
4987 }else{
4988 closest = 0;
4989 }
4990
4991 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00004992 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004993 if( iPage>mxPage ){
4994 rc = SQLITE_CORRUPT_BKPT;
4995 goto end_allocate_page;
4996 }
drhdf35a082009-07-09 02:24:35 +00004997 testcase( iPage==mxPage );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004998 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00004999 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005000 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005001 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5002 ": %d more free pages\n",
5003 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005004 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5005 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005006 if( closest<k-1 ){
5007 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5008 }
5009 put4byte(&aData[4], k-1);
danielk1977bea2a942009-01-20 17:06:27 +00005010 noContent = !btreeGetHasContent(pBt, *pPgno);
danielk197730548662009-07-09 05:07:37 +00005011 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005012 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005013 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005014 if( rc!=SQLITE_OK ){
5015 releasePage(*ppPage);
5016 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005017 }
5018 searchList = 0;
5019 }
drhee696e22004-08-30 16:52:17 +00005020 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005021 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005022 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005023 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005024 }else{
drh3aac2dd2004-04-26 14:10:20 +00005025 /* There are no pages on the freelist, so create a new page at the
5026 ** end of the file */
drhdd3cd972010-03-27 17:12:36 +00005027 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5028 if( rc ) return rc;
5029 pBt->nPage++;
5030 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005031
danielk1977afcdd022004-10-31 16:25:42 +00005032#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005033 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005034 /* If *pPgno refers to a pointer-map page, allocate two new pages
5035 ** at the end of the file instead of one. The first allocated page
5036 ** becomes a new pointer-map page, the second is used by the caller.
5037 */
danielk1977ac861692009-03-28 10:54:22 +00005038 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005039 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5040 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00005041 rc = btreeGetPage(pBt, pBt->nPage, &pPg, 1);
danielk1977ac861692009-03-28 10:54:22 +00005042 if( rc==SQLITE_OK ){
5043 rc = sqlite3PagerWrite(pPg->pDbPage);
5044 releasePage(pPg);
5045 }
5046 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005047 pBt->nPage++;
5048 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005049 }
5050#endif
drhdd3cd972010-03-27 17:12:36 +00005051 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5052 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005053
danielk1977599fcba2004-11-08 07:13:13 +00005054 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00005055 rc = btreeGetPage(pBt, *pPgno, ppPage, 1);
drh3b7511c2001-05-26 13:15:44 +00005056 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005057 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005058 if( rc!=SQLITE_OK ){
5059 releasePage(*ppPage);
5060 }
drh3a4c1412004-05-09 20:40:11 +00005061 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005062 }
danielk1977599fcba2004-11-08 07:13:13 +00005063
5064 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005065
5066end_allocate_page:
5067 releasePage(pTrunk);
5068 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005069 if( rc==SQLITE_OK ){
5070 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5071 releasePage(*ppPage);
5072 return SQLITE_CORRUPT_BKPT;
5073 }
5074 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005075 }else{
5076 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005077 }
drh93b4fc72011-04-07 14:47:01 +00005078 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005079 return rc;
5080}
5081
5082/*
danielk1977bea2a942009-01-20 17:06:27 +00005083** This function is used to add page iPage to the database file free-list.
5084** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005085**
danielk1977bea2a942009-01-20 17:06:27 +00005086** The value passed as the second argument to this function is optional.
5087** If the caller happens to have a pointer to the MemPage object
5088** corresponding to page iPage handy, it may pass it as the second value.
5089** Otherwise, it may pass NULL.
5090**
5091** If a pointer to a MemPage object is passed as the second argument,
5092** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005093*/
danielk1977bea2a942009-01-20 17:06:27 +00005094static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5095 MemPage *pTrunk = 0; /* Free-list trunk page */
5096 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5097 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5098 MemPage *pPage; /* Page being freed. May be NULL. */
5099 int rc; /* Return Code */
5100 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005101
danielk1977bea2a942009-01-20 17:06:27 +00005102 assert( sqlite3_mutex_held(pBt->mutex) );
5103 assert( iPage>1 );
5104 assert( !pMemPage || pMemPage->pgno==iPage );
5105
5106 if( pMemPage ){
5107 pPage = pMemPage;
5108 sqlite3PagerRef(pPage->pDbPage);
5109 }else{
5110 pPage = btreePageLookup(pBt, iPage);
5111 }
drh3aac2dd2004-04-26 14:10:20 +00005112
drha34b6762004-05-07 13:30:42 +00005113 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005114 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005115 if( rc ) goto freepage_out;
5116 nFree = get4byte(&pPage1->aData[36]);
5117 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005118
drh5b47efa2010-02-12 18:18:39 +00005119 if( pBt->secureDelete ){
5120 /* If the secure_delete option is enabled, then
5121 ** always fully overwrite deleted information with zeros.
5122 */
shaneh84f4b2f2010-02-26 01:46:54 +00005123 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
5124 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005125 ){
5126 goto freepage_out;
5127 }
5128 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005129 }
drhfcce93f2006-02-22 03:08:32 +00005130
danielk1977687566d2004-11-02 12:56:41 +00005131 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005132 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005133 */
danielk197785d90ca2008-07-19 14:25:15 +00005134 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005135 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005136 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005137 }
danielk1977687566d2004-11-02 12:56:41 +00005138
danielk1977bea2a942009-01-20 17:06:27 +00005139 /* Now manipulate the actual database free-list structure. There are two
5140 ** possibilities. If the free-list is currently empty, or if the first
5141 ** trunk page in the free-list is full, then this page will become a
5142 ** new free-list trunk page. Otherwise, it will become a leaf of the
5143 ** first trunk page in the current free-list. This block tests if it
5144 ** is possible to add the page as a new free-list leaf.
5145 */
5146 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005147 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005148
5149 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00005150 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005151 if( rc!=SQLITE_OK ){
5152 goto freepage_out;
5153 }
5154
5155 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005156 assert( pBt->usableSize>32 );
5157 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005158 rc = SQLITE_CORRUPT_BKPT;
5159 goto freepage_out;
5160 }
drheeb844a2009-08-08 18:01:07 +00005161 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005162 /* In this case there is room on the trunk page to insert the page
5163 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005164 **
5165 ** Note that the trunk page is not really full until it contains
5166 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5167 ** coded. But due to a coding error in versions of SQLite prior to
5168 ** 3.6.0, databases with freelist trunk pages holding more than
5169 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5170 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005171 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005172 ** for now. At some point in the future (once everyone has upgraded
5173 ** to 3.6.0 or later) we should consider fixing the conditional above
5174 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5175 */
danielk19773b8a05f2007-03-19 17:44:26 +00005176 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005177 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005178 put4byte(&pTrunk->aData[4], nLeaf+1);
5179 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drh5b47efa2010-02-12 18:18:39 +00005180 if( pPage && !pBt->secureDelete ){
danielk1977bea2a942009-01-20 17:06:27 +00005181 sqlite3PagerDontWrite(pPage->pDbPage);
5182 }
danielk1977bea2a942009-01-20 17:06:27 +00005183 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005184 }
drh3a4c1412004-05-09 20:40:11 +00005185 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005186 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005187 }
drh3b7511c2001-05-26 13:15:44 +00005188 }
danielk1977bea2a942009-01-20 17:06:27 +00005189
5190 /* If control flows to this point, then it was not possible to add the
5191 ** the page being freed as a leaf page of the first trunk in the free-list.
5192 ** Possibly because the free-list is empty, or possibly because the
5193 ** first trunk in the free-list is full. Either way, the page being freed
5194 ** will become the new first trunk page in the free-list.
5195 */
drhc046e3e2009-07-15 11:26:44 +00005196 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5197 goto freepage_out;
5198 }
5199 rc = sqlite3PagerWrite(pPage->pDbPage);
5200 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005201 goto freepage_out;
5202 }
5203 put4byte(pPage->aData, iTrunk);
5204 put4byte(&pPage->aData[4], 0);
5205 put4byte(&pPage1->aData[32], iPage);
5206 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5207
5208freepage_out:
5209 if( pPage ){
5210 pPage->isInit = 0;
5211 }
5212 releasePage(pPage);
5213 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005214 return rc;
5215}
drhc314dc72009-07-21 11:52:34 +00005216static void freePage(MemPage *pPage, int *pRC){
5217 if( (*pRC)==SQLITE_OK ){
5218 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5219 }
danielk1977bea2a942009-01-20 17:06:27 +00005220}
drh3b7511c2001-05-26 13:15:44 +00005221
5222/*
drh3aac2dd2004-04-26 14:10:20 +00005223** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005224*/
drh3aac2dd2004-04-26 14:10:20 +00005225static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005226 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005227 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005228 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005229 int rc;
drh94440812007-03-06 11:42:19 +00005230 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005231 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005232
drh1fee73e2007-08-29 04:00:57 +00005233 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005234 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005235 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005236 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005237 }
drhe42a9b42011-08-31 13:27:19 +00005238 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
5239 return SQLITE_CORRUPT; /* Cell extends past end of page */
5240 }
drh6f11bef2004-05-13 01:12:56 +00005241 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005242 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005243 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005244 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5245 assert( ovflPgno==0 || nOvfl>0 );
5246 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005247 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005248 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005249 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005250 /* 0 is not a legal page number and page 1 cannot be an
5251 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5252 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005253 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005254 }
danielk1977bea2a942009-01-20 17:06:27 +00005255 if( nOvfl ){
5256 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5257 if( rc ) return rc;
5258 }
dan887d4b22010-02-25 12:09:16 +00005259
shaneh1da207e2010-03-09 14:41:12 +00005260 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005261 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5262 ){
5263 /* There is no reason any cursor should have an outstanding reference
5264 ** to an overflow page belonging to a cell that is being deleted/updated.
5265 ** So if there exists more than one reference to this page, then it
5266 ** must not really be an overflow page and the database must be corrupt.
5267 ** It is helpful to detect this before calling freePage2(), as
5268 ** freePage2() may zero the page contents if secure-delete mode is
5269 ** enabled. If this 'overflow' page happens to be a page that the
5270 ** caller is iterating through or using in some other way, this
5271 ** can be problematic.
5272 */
5273 rc = SQLITE_CORRUPT_BKPT;
5274 }else{
5275 rc = freePage2(pBt, pOvfl, ovflPgno);
5276 }
5277
danielk1977bea2a942009-01-20 17:06:27 +00005278 if( pOvfl ){
5279 sqlite3PagerUnref(pOvfl->pDbPage);
5280 }
drh3b7511c2001-05-26 13:15:44 +00005281 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005282 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005283 }
drh5e2f8b92001-05-28 00:41:15 +00005284 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005285}
5286
5287/*
drh91025292004-05-03 19:49:32 +00005288** Create the byte sequence used to represent a cell on page pPage
5289** and write that byte sequence into pCell[]. Overflow pages are
5290** allocated and filled in as necessary. The calling procedure
5291** is responsible for making sure sufficient space has been allocated
5292** for pCell[].
5293**
5294** Note that pCell does not necessary need to point to the pPage->aData
5295** area. pCell might point to some temporary storage. The cell will
5296** be constructed in this temporary area then copied into pPage->aData
5297** later.
drh3b7511c2001-05-26 13:15:44 +00005298*/
5299static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005300 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005301 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005302 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005303 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005304 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005305 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005306){
drh3b7511c2001-05-26 13:15:44 +00005307 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005308 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005309 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005310 int spaceLeft;
5311 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005312 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005313 unsigned char *pPrior;
5314 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005315 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005316 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005317 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005318 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005319
drh1fee73e2007-08-29 04:00:57 +00005320 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005321
drhc5053fb2008-11-27 02:22:10 +00005322 /* pPage is not necessarily writeable since pCell might be auxiliary
5323 ** buffer space that is separate from the pPage buffer area */
5324 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5325 || sqlite3PagerIswriteable(pPage->pDbPage) );
5326
drh91025292004-05-03 19:49:32 +00005327 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005328 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005329 if( !pPage->leaf ){
5330 nHeader += 4;
5331 }
drh8b18dd42004-05-12 19:18:15 +00005332 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005333 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005334 }else{
drhb026e052007-05-02 01:34:31 +00005335 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005336 }
drh6f11bef2004-05-13 01:12:56 +00005337 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005338 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005339 assert( info.nHeader==nHeader );
5340 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005341 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005342
5343 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005344 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005345 if( pPage->intKey ){
5346 pSrc = pData;
5347 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005348 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005349 }else{
danielk197731d31b82009-07-13 13:18:07 +00005350 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5351 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005352 }
drhf49661a2008-12-10 16:45:50 +00005353 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005354 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005355 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005356 }
drh6f11bef2004-05-13 01:12:56 +00005357 *pnSize = info.nSize;
5358 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005359 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005360 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005361
drh3b7511c2001-05-26 13:15:44 +00005362 while( nPayload>0 ){
5363 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005364#ifndef SQLITE_OMIT_AUTOVACUUM
5365 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005366 if( pBt->autoVacuum ){
5367 do{
5368 pgnoOvfl++;
5369 } while(
5370 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5371 );
danielk1977b39f70b2007-05-17 18:28:11 +00005372 }
danielk1977afcdd022004-10-31 16:25:42 +00005373#endif
drhf49661a2008-12-10 16:45:50 +00005374 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005375#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005376 /* If the database supports auto-vacuum, and the second or subsequent
5377 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005378 ** for that page now.
5379 **
5380 ** If this is the first overflow page, then write a partial entry
5381 ** to the pointer-map. If we write nothing to this pointer-map slot,
5382 ** then the optimistic overflow chain processing in clearCell()
5383 ** may misinterpret the uninitialised values and delete the
5384 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005385 */
danielk19774ef24492007-05-23 09:52:41 +00005386 if( pBt->autoVacuum && rc==SQLITE_OK ){
5387 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005388 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005389 if( rc ){
5390 releasePage(pOvfl);
5391 }
danielk1977afcdd022004-10-31 16:25:42 +00005392 }
5393#endif
drh3b7511c2001-05-26 13:15:44 +00005394 if( rc ){
drh9b171272004-05-08 02:03:22 +00005395 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005396 return rc;
5397 }
drhc5053fb2008-11-27 02:22:10 +00005398
5399 /* If pToRelease is not zero than pPrior points into the data area
5400 ** of pToRelease. Make sure pToRelease is still writeable. */
5401 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5402
5403 /* If pPrior is part of the data area of pPage, then make sure pPage
5404 ** is still writeable */
5405 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5406 || sqlite3PagerIswriteable(pPage->pDbPage) );
5407
drh3aac2dd2004-04-26 14:10:20 +00005408 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005409 releasePage(pToRelease);
5410 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005411 pPrior = pOvfl->aData;
5412 put4byte(pPrior, 0);
5413 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005414 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005415 }
5416 n = nPayload;
5417 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005418
5419 /* If pToRelease is not zero than pPayload points into the data area
5420 ** of pToRelease. Make sure pToRelease is still writeable. */
5421 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5422
5423 /* If pPayload is part of the data area of pPage, then make sure pPage
5424 ** is still writeable */
5425 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5426 || sqlite3PagerIswriteable(pPage->pDbPage) );
5427
drhb026e052007-05-02 01:34:31 +00005428 if( nSrc>0 ){
5429 if( n>nSrc ) n = nSrc;
5430 assert( pSrc );
5431 memcpy(pPayload, pSrc, n);
5432 }else{
5433 memset(pPayload, 0, n);
5434 }
drh3b7511c2001-05-26 13:15:44 +00005435 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005436 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005437 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005438 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005439 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005440 if( nSrc==0 ){
5441 nSrc = nData;
5442 pSrc = pData;
5443 }
drhdd793422001-06-28 01:54:48 +00005444 }
drh9b171272004-05-08 02:03:22 +00005445 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005446 return SQLITE_OK;
5447}
5448
drh14acc042001-06-10 19:56:58 +00005449/*
5450** Remove the i-th cell from pPage. This routine effects pPage only.
5451** The cell content is not freed or deallocated. It is assumed that
5452** the cell content has been copied someplace else. This routine just
5453** removes the reference to the cell from pPage.
5454**
5455** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005456*/
drh98add2e2009-07-20 17:11:49 +00005457static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00005458 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005459 u8 *data; /* pPage->aData */
5460 u8 *ptr; /* Used to move bytes around within data[] */
drhc3f1d5f2011-05-30 23:42:16 +00005461 u8 *endPtr; /* End of loop */
shanedcc50b72008-11-13 18:29:50 +00005462 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005463 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005464
drh98add2e2009-07-20 17:11:49 +00005465 if( *pRC ) return;
5466
drh8c42ca92001-06-22 19:15:00 +00005467 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005468 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005469 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005470 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005471 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00005472 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00005473 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005474 hdr = pPage->hdrOffset;
5475 testcase( pc==get2byte(&data[hdr+5]) );
5476 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005477 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005478 *pRC = SQLITE_CORRUPT_BKPT;
5479 return;
shane0af3f892008-11-12 04:55:34 +00005480 }
shanedcc50b72008-11-13 18:29:50 +00005481 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005482 if( rc ){
5483 *pRC = rc;
5484 return;
shanedcc50b72008-11-13 18:29:50 +00005485 }
drh3def2352011-11-11 00:27:15 +00005486 endPtr = &pPage->aCellIdx[2*pPage->nCell - 2];
drh2ce71b42011-06-06 13:38:11 +00005487 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drhc3f1d5f2011-05-30 23:42:16 +00005488 while( ptr<endPtr ){
drh61d2fe92011-06-03 23:28:33 +00005489 *(u16*)ptr = *(u16*)&ptr[2];
drhc3f1d5f2011-05-30 23:42:16 +00005490 ptr += 2;
drh14acc042001-06-10 19:56:58 +00005491 }
5492 pPage->nCell--;
drhc314dc72009-07-21 11:52:34 +00005493 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005494 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005495}
5496
5497/*
5498** Insert a new cell on pPage at cell index "i". pCell points to the
5499** content of the cell.
5500**
5501** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005502** will not fit, then make a copy of the cell content into pTemp if
5503** pTemp is not null. Regardless of pTemp, allocate a new entry
5504** in pPage->aOvfl[] and make it point to the cell content (either
5505** in pTemp or the original pCell) and also record its index.
5506** Allocating a new entry in pPage->aCell[] implies that
5507** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005508**
5509** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5510** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005511** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005512** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005513*/
drh98add2e2009-07-20 17:11:49 +00005514static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005515 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005516 int i, /* New cell becomes the i-th cell of the page */
5517 u8 *pCell, /* Content of the new cell */
5518 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005519 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005520 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5521 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005522){
drh383d30f2010-02-26 13:07:37 +00005523 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005524 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005525 int end; /* First byte past the last cell pointer in data[] */
5526 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005527 int cellOffset; /* Address of first cell pointer in data[] */
5528 u8 *data; /* The content of the whole page */
5529 u8 *ptr; /* Used for moving information around in data[] */
drh61d2fe92011-06-03 23:28:33 +00005530 u8 *endPtr; /* End of the loop */
drh43605152004-05-29 21:46:49 +00005531
danielk19774dbaa892009-06-16 16:50:22 +00005532 int nSkip = (iChild ? 4 : 0);
5533
drh98add2e2009-07-20 17:11:49 +00005534 if( *pRC ) return;
5535
drh43605152004-05-29 21:46:49 +00005536 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhb2eced52010-08-12 02:41:12 +00005537 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
drhf49661a2008-12-10 16:45:50 +00005538 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005539 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005540 /* The cell should normally be sized correctly. However, when moving a
5541 ** malformed cell from a leaf page to an interior page, if the cell size
5542 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5543 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5544 ** the term after the || in the following assert(). */
5545 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005546 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005547 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005548 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005549 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005550 }
danielk19774dbaa892009-06-16 16:50:22 +00005551 if( iChild ){
5552 put4byte(pCell, iChild);
5553 }
drh43605152004-05-29 21:46:49 +00005554 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005555 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005556 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005557 pPage->aOvfl[j].idx = (u16)i;
drh14acc042001-06-10 19:56:58 +00005558 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005559 int rc = sqlite3PagerWrite(pPage->pDbPage);
5560 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005561 *pRC = rc;
5562 return;
danielk19776e465eb2007-08-21 13:11:00 +00005563 }
5564 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005565 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005566 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005567 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005568 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005569 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005570 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005571 /* The allocateSpace() routine guarantees the following two properties
5572 ** if it returns success */
5573 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00005574 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005575 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005576 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005577 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005578 if( iChild ){
5579 put4byte(&data[idx], iChild);
5580 }
drh61d2fe92011-06-03 23:28:33 +00005581 ptr = &data[end];
5582 endPtr = &data[ins];
drh2ce71b42011-06-06 13:38:11 +00005583 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drh61d2fe92011-06-03 23:28:33 +00005584 while( ptr>endPtr ){
5585 *(u16*)ptr = *(u16*)&ptr[-2];
5586 ptr -= 2;
drhda200cc2004-05-09 11:51:38 +00005587 }
drh43605152004-05-29 21:46:49 +00005588 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005589 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005590#ifndef SQLITE_OMIT_AUTOVACUUM
5591 if( pPage->pBt->autoVacuum ){
5592 /* The cell may contain a pointer to an overflow page. If so, write
5593 ** the entry for the overflow page into the pointer map.
5594 */
drh98add2e2009-07-20 17:11:49 +00005595 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005596 }
5597#endif
drh14acc042001-06-10 19:56:58 +00005598 }
5599}
5600
5601/*
drhfa1a98a2004-05-14 19:08:17 +00005602** Add a list of cells to a page. The page should be initially empty.
5603** The cells are guaranteed to fit on the page.
5604*/
5605static void assemblePage(
5606 MemPage *pPage, /* The page to be assemblied */
5607 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005608 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005609 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005610){
5611 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005612 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005613 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005614 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5615 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5616 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005617
drh43605152004-05-29 21:46:49 +00005618 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005619 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfcd71b62011-04-05 22:08:24 +00005620 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5621 && (int)MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005622 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005623
5624 /* Check that the page has just been zeroed by zeroPage() */
5625 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005626 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005627
drh3def2352011-11-11 00:27:15 +00005628 pCellptr = &pPage->aCellIdx[nCell*2];
danielk1977fad91942009-04-29 17:49:59 +00005629 cellbody = nUsable;
5630 for(i=nCell-1; i>=0; i--){
drh61d2fe92011-06-03 23:28:33 +00005631 u16 sz = aSize[i];
danielk1977fad91942009-04-29 17:49:59 +00005632 pCellptr -= 2;
drh61d2fe92011-06-03 23:28:33 +00005633 cellbody -= sz;
danielk1977fad91942009-04-29 17:49:59 +00005634 put2byte(pCellptr, cellbody);
drh61d2fe92011-06-03 23:28:33 +00005635 memcpy(&data[cellbody], apCell[i], sz);
drhfa1a98a2004-05-14 19:08:17 +00005636 }
danielk1977fad91942009-04-29 17:49:59 +00005637 put2byte(&data[hdr+3], nCell);
5638 put2byte(&data[hdr+5], cellbody);
5639 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005640 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005641}
5642
drh14acc042001-06-10 19:56:58 +00005643/*
drhc3b70572003-01-04 19:44:07 +00005644** The following parameters determine how many adjacent pages get involved
5645** in a balancing operation. NN is the number of neighbors on either side
5646** of the page that participate in the balancing operation. NB is the
5647** total number of pages that participate, including the target page and
5648** NN neighbors on either side.
5649**
5650** The minimum value of NN is 1 (of course). Increasing NN above 1
5651** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5652** in exchange for a larger degradation in INSERT and UPDATE performance.
5653** The value of NN appears to give the best results overall.
5654*/
5655#define NN 1 /* Number of neighbors on either side of pPage */
5656#define NB (NN*2+1) /* Total pages involved in the balance */
5657
danielk1977ac245ec2005-01-14 13:50:11 +00005658
drh615ae552005-01-16 23:21:00 +00005659#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005660/*
5661** This version of balance() handles the common special case where
5662** a new entry is being inserted on the extreme right-end of the
5663** tree, in other words, when the new entry will become the largest
5664** entry in the tree.
5665**
drhc314dc72009-07-21 11:52:34 +00005666** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005667** a new page to the right-hand side and put the one new entry in
5668** that page. This leaves the right side of the tree somewhat
5669** unbalanced. But odds are that we will be inserting new entries
5670** at the end soon afterwards so the nearly empty page will quickly
5671** fill up. On average.
5672**
5673** pPage is the leaf page which is the right-most page in the tree.
5674** pParent is its parent. pPage must have a single overflow entry
5675** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005676**
5677** The pSpace buffer is used to store a temporary copy of the divider
5678** cell that will be inserted into pParent. Such a cell consists of a 4
5679** byte page number followed by a variable length integer. In other
5680** words, at most 13 bytes. Hence the pSpace buffer must be at
5681** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005682*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005683static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5684 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005685 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005686 int rc; /* Return Code */
5687 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005688
drh1fee73e2007-08-29 04:00:57 +00005689 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005690 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005691 assert( pPage->nOverflow==1 );
5692
drh5d433ce2010-08-14 16:02:52 +00005693 /* This error condition is now caught prior to reaching this function */
drh6b47fca2010-08-19 14:22:42 +00005694 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005695
danielk1977a50d9aa2009-06-08 14:49:45 +00005696 /* Allocate a new page. This page will become the right-sibling of
5697 ** pPage. Make the parent page writable, so that the new divider cell
5698 ** may be inserted. If both these operations are successful, proceed.
5699 */
drh4f0c5872007-03-26 22:05:01 +00005700 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005701
danielk1977eaa06f62008-09-18 17:34:44 +00005702 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005703
5704 u8 *pOut = &pSpace[4];
danielk19776f235cc2009-06-04 14:46:08 +00005705 u8 *pCell = pPage->aOvfl[0].pCell;
5706 u16 szCell = cellSizePtr(pPage, pCell);
5707 u8 *pStop;
5708
drhc5053fb2008-11-27 02:22:10 +00005709 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005710 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5711 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005712 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005713
5714 /* If this is an auto-vacuum database, update the pointer map
5715 ** with entries for the new page, and any pointer from the
5716 ** cell on the page to an overflow page. If either of these
5717 ** operations fails, the return code is set, but the contents
5718 ** of the parent page are still manipulated by thh code below.
5719 ** That is Ok, at this point the parent page is guaranteed to
5720 ** be marked as dirty. Returning an error code will cause a
5721 ** rollback, undoing any changes made to the parent page.
5722 */
5723 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005724 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5725 if( szCell>pNew->minLocal ){
5726 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005727 }
5728 }
danielk1977eaa06f62008-09-18 17:34:44 +00005729
danielk19776f235cc2009-06-04 14:46:08 +00005730 /* Create a divider cell to insert into pParent. The divider cell
5731 ** consists of a 4-byte page number (the page number of pPage) and
5732 ** a variable length key value (which must be the same value as the
5733 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005734 **
danielk19776f235cc2009-06-04 14:46:08 +00005735 ** To find the largest key value on pPage, first find the right-most
5736 ** cell on pPage. The first two fields of this cell are the
5737 ** record-length (a variable length integer at most 32-bits in size)
5738 ** and the key value (a variable length integer, may have any value).
5739 ** The first of the while(...) loops below skips over the record-length
5740 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005741 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005742 */
danielk1977eaa06f62008-09-18 17:34:44 +00005743 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005744 pStop = &pCell[9];
5745 while( (*(pCell++)&0x80) && pCell<pStop );
5746 pStop = &pCell[9];
5747 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5748
danielk19774dbaa892009-06-16 16:50:22 +00005749 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005750 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5751 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005752
5753 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005754 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5755
danielk1977e08a3c42008-09-18 18:17:03 +00005756 /* Release the reference to the new page. */
5757 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005758 }
5759
danielk1977eaa06f62008-09-18 17:34:44 +00005760 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005761}
drh615ae552005-01-16 23:21:00 +00005762#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005763
danielk19774dbaa892009-06-16 16:50:22 +00005764#if 0
drhc3b70572003-01-04 19:44:07 +00005765/*
danielk19774dbaa892009-06-16 16:50:22 +00005766** This function does not contribute anything to the operation of SQLite.
5767** it is sometimes activated temporarily while debugging code responsible
5768** for setting pointer-map entries.
5769*/
5770static int ptrmapCheckPages(MemPage **apPage, int nPage){
5771 int i, j;
5772 for(i=0; i<nPage; i++){
5773 Pgno n;
5774 u8 e;
5775 MemPage *pPage = apPage[i];
5776 BtShared *pBt = pPage->pBt;
5777 assert( pPage->isInit );
5778
5779 for(j=0; j<pPage->nCell; j++){
5780 CellInfo info;
5781 u8 *z;
5782
5783 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005784 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005785 if( info.iOverflow ){
5786 Pgno ovfl = get4byte(&z[info.iOverflow]);
5787 ptrmapGet(pBt, ovfl, &e, &n);
5788 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5789 }
5790 if( !pPage->leaf ){
5791 Pgno child = get4byte(z);
5792 ptrmapGet(pBt, child, &e, &n);
5793 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5794 }
5795 }
5796 if( !pPage->leaf ){
5797 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5798 ptrmapGet(pBt, child, &e, &n);
5799 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5800 }
5801 }
5802 return 1;
5803}
5804#endif
5805
danielk1977cd581a72009-06-23 15:43:39 +00005806/*
5807** This function is used to copy the contents of the b-tree node stored
5808** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5809** the pointer-map entries for each child page are updated so that the
5810** parent page stored in the pointer map is page pTo. If pFrom contained
5811** any cells with overflow page pointers, then the corresponding pointer
5812** map entries are also updated so that the parent page is page pTo.
5813**
5814** If pFrom is currently carrying any overflow cells (entries in the
5815** MemPage.aOvfl[] array), they are not copied to pTo.
5816**
danielk197730548662009-07-09 05:07:37 +00005817** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005818**
5819** The performance of this function is not critical. It is only used by
5820** the balance_shallower() and balance_deeper() procedures, neither of
5821** which are called often under normal circumstances.
5822*/
drhc314dc72009-07-21 11:52:34 +00005823static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5824 if( (*pRC)==SQLITE_OK ){
5825 BtShared * const pBt = pFrom->pBt;
5826 u8 * const aFrom = pFrom->aData;
5827 u8 * const aTo = pTo->aData;
5828 int const iFromHdr = pFrom->hdrOffset;
5829 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00005830 int rc;
drhc314dc72009-07-21 11:52:34 +00005831 int iData;
5832
5833
5834 assert( pFrom->isInit );
5835 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00005836 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00005837
5838 /* Copy the b-tree node content from page pFrom to page pTo. */
5839 iData = get2byte(&aFrom[iFromHdr+5]);
5840 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5841 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5842
5843 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00005844 ** match the new data. The initialization of pTo can actually fail under
5845 ** fairly obscure circumstances, even though it is a copy of initialized
5846 ** page pFrom.
5847 */
drhc314dc72009-07-21 11:52:34 +00005848 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00005849 rc = btreeInitPage(pTo);
5850 if( rc!=SQLITE_OK ){
5851 *pRC = rc;
5852 return;
5853 }
drhc314dc72009-07-21 11:52:34 +00005854
5855 /* If this is an auto-vacuum database, update the pointer-map entries
5856 ** for any b-tree or overflow pages that pTo now contains the pointers to.
5857 */
5858 if( ISAUTOVACUUM ){
5859 *pRC = setChildPtrmaps(pTo);
5860 }
danielk1977cd581a72009-06-23 15:43:39 +00005861 }
danielk1977cd581a72009-06-23 15:43:39 +00005862}
5863
5864/*
danielk19774dbaa892009-06-16 16:50:22 +00005865** This routine redistributes cells on the iParentIdx'th child of pParent
5866** (hereafter "the page") and up to 2 siblings so that all pages have about the
5867** same amount of free space. Usually a single sibling on either side of the
5868** page are used in the balancing, though both siblings might come from one
5869** side if the page is the first or last child of its parent. If the page
5870** has fewer than 2 siblings (something which can only happen if the page
5871** is a root page or a child of a root page) then all available siblings
5872** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005873**
danielk19774dbaa892009-06-16 16:50:22 +00005874** The number of siblings of the page might be increased or decreased by
5875** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005876**
danielk19774dbaa892009-06-16 16:50:22 +00005877** Note that when this routine is called, some of the cells on the page
5878** might not actually be stored in MemPage.aData[]. This can happen
5879** if the page is overfull. This routine ensures that all cells allocated
5880** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005881**
danielk19774dbaa892009-06-16 16:50:22 +00005882** In the course of balancing the page and its siblings, cells may be
5883** inserted into or removed from the parent page (pParent). Doing so
5884** may cause the parent page to become overfull or underfull. If this
5885** happens, it is the responsibility of the caller to invoke the correct
5886** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005887**
drh5e00f6c2001-09-13 13:46:56 +00005888** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005889** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005890** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005891**
5892** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00005893** buffer big enough to hold one page. If while inserting cells into the parent
5894** page (pParent) the parent page becomes overfull, this buffer is
5895** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00005896** a maximum of four divider cells into the parent page, and the maximum
5897** size of a cell stored within an internal node is always less than 1/4
5898** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5899** enough for all overflow cells.
5900**
5901** If aOvflSpace is set to a null pointer, this function returns
5902** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005903*/
danielk19774dbaa892009-06-16 16:50:22 +00005904static int balance_nonroot(
5905 MemPage *pParent, /* Parent page of siblings being balanced */
5906 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005907 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5908 int isRoot /* True if pParent is a root-page */
danielk19774dbaa892009-06-16 16:50:22 +00005909){
drh16a9b832007-05-05 18:39:25 +00005910 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005911 int nCell = 0; /* Number of cells in apCell[] */
5912 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005913 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005914 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005915 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005916 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005917 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005918 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005919 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005920 int usableSpace; /* Bytes in pPage beyond the header */
5921 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005922 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005923 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005924 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005925 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005926 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005927 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005928 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005929 u8 *pRight; /* Location in parent of right-sibling pointer */
5930 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005931 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5932 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005933 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005934 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005935 u8 *aSpace1; /* Space for copies of dividers cells */
5936 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005937
danielk1977a50d9aa2009-06-08 14:49:45 +00005938 pBt = pParent->pBt;
5939 assert( sqlite3_mutex_held(pBt->mutex) );
5940 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005941
danielk1977e5765212009-06-17 11:13:28 +00005942#if 0
drh43605152004-05-29 21:46:49 +00005943 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00005944#endif
drh2e38c322004-09-03 18:38:44 +00005945
danielk19774dbaa892009-06-16 16:50:22 +00005946 /* At this point pParent may have at most one overflow cell. And if
5947 ** this overflow cell is present, it must be the cell with
5948 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00005949 ** is called (indirectly) from sqlite3BtreeDelete().
5950 */
danielk19774dbaa892009-06-16 16:50:22 +00005951 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
5952 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
5953
danielk197711a8a862009-06-17 11:49:52 +00005954 if( !aOvflSpace ){
5955 return SQLITE_NOMEM;
5956 }
5957
danielk1977a50d9aa2009-06-08 14:49:45 +00005958 /* Find the sibling pages to balance. Also locate the cells in pParent
5959 ** that divide the siblings. An attempt is made to find NN siblings on
5960 ** either side of pPage. More siblings are taken from one side, however,
5961 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00005962 ** has NB or fewer children then all children of pParent are taken.
5963 **
5964 ** This loop also drops the divider cells from the parent page. This
5965 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00005966 ** overflow cells in the parent page, since if any existed they will
5967 ** have already been removed.
5968 */
danielk19774dbaa892009-06-16 16:50:22 +00005969 i = pParent->nOverflow + pParent->nCell;
5970 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00005971 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00005972 nOld = i+1;
5973 }else{
5974 nOld = 3;
5975 if( iParentIdx==0 ){
5976 nxDiv = 0;
5977 }else if( iParentIdx==i ){
5978 nxDiv = i-2;
drh14acc042001-06-10 19:56:58 +00005979 }else{
danielk19774dbaa892009-06-16 16:50:22 +00005980 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00005981 }
danielk19774dbaa892009-06-16 16:50:22 +00005982 i = 2;
5983 }
5984 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
5985 pRight = &pParent->aData[pParent->hdrOffset+8];
5986 }else{
5987 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
5988 }
5989 pgno = get4byte(pRight);
5990 while( 1 ){
5991 rc = getAndInitPage(pBt, pgno, &apOld[i]);
5992 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00005993 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00005994 goto balance_cleanup;
5995 }
danielk1977634f2982005-03-28 08:44:07 +00005996 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00005997 if( (i--)==0 ) break;
5998
drhcd09c532009-07-20 19:30:00 +00005999 if( i+nxDiv==pParent->aOvfl[0].idx && pParent->nOverflow ){
danielk19774dbaa892009-06-16 16:50:22 +00006000 apDiv[i] = pParent->aOvfl[0].pCell;
6001 pgno = get4byte(apDiv[i]);
6002 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6003 pParent->nOverflow = 0;
6004 }else{
6005 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6006 pgno = get4byte(apDiv[i]);
6007 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6008
6009 /* Drop the cell from the parent page. apDiv[i] still points to
6010 ** the cell within the parent, even though it has been dropped.
6011 ** This is safe because dropping a cell only overwrites the first
6012 ** four bytes of it, and this function does not need the first
6013 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006014 ** later on.
6015 **
drh8a575d92011-10-12 17:00:28 +00006016 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006017 ** the dropCell() routine will overwrite the entire cell with zeroes.
6018 ** In this case, temporarily copy the cell into the aOvflSpace[]
6019 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6020 ** is allocated. */
drh5b47efa2010-02-12 18:18:39 +00006021 if( pBt->secureDelete ){
drh8a575d92011-10-12 17:00:28 +00006022 int iOff;
6023
6024 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006025 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006026 rc = SQLITE_CORRUPT_BKPT;
6027 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6028 goto balance_cleanup;
6029 }else{
6030 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6031 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6032 }
drh5b47efa2010-02-12 18:18:39 +00006033 }
drh98add2e2009-07-20 17:11:49 +00006034 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006035 }
drh8b2f49b2001-06-08 00:21:52 +00006036 }
6037
drha9121e42008-02-19 14:59:35 +00006038 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006039 ** alignment */
drha9121e42008-02-19 14:59:35 +00006040 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006041
drh8b2f49b2001-06-08 00:21:52 +00006042 /*
danielk1977634f2982005-03-28 08:44:07 +00006043 ** Allocate space for memory structures
6044 */
danielk19774dbaa892009-06-16 16:50:22 +00006045 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00006046 szScratch =
drha9121e42008-02-19 14:59:35 +00006047 nMaxCells*sizeof(u8*) /* apCell */
6048 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00006049 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00006050 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00006051 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00006052 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00006053 rc = SQLITE_NOMEM;
6054 goto balance_cleanup;
6055 }
drha9121e42008-02-19 14:59:35 +00006056 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00006057 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00006058 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00006059
6060 /*
6061 ** Load pointers to all cells on sibling pages and the divider cells
6062 ** into the local apCell[] array. Make copies of the divider cells
danielk19774dbaa892009-06-16 16:50:22 +00006063 ** into space obtained from aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00006064 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00006065 **
6066 ** If the siblings are on leaf pages, then the child pointers of the
6067 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006068 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006069 ** child pointers. If siblings are not leaves, then all cell in
6070 ** apCell[] include child pointers. Either way, all cells in apCell[]
6071 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006072 **
6073 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6074 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006075 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006076 leafCorrection = apOld[0]->leaf*4;
6077 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00006078 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006079 int limit;
6080
6081 /* Before doing anything else, take a copy of the i'th original sibling
6082 ** The rest of this function will use data from the copies rather
6083 ** that the original pages since the original pages will be in the
6084 ** process of being overwritten. */
6085 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6086 memcpy(pOld, apOld[i], sizeof(MemPage));
6087 pOld->aData = (void*)&pOld[1];
6088 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6089
6090 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006091 if( pOld->nOverflow>0 ){
6092 for(j=0; j<limit; j++){
6093 assert( nCell<nMaxCells );
6094 apCell[nCell] = findOverflowCell(pOld, j);
6095 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6096 nCell++;
6097 }
6098 }else{
6099 u8 *aData = pOld->aData;
6100 u16 maskPage = pOld->maskPage;
6101 u16 cellOffset = pOld->cellOffset;
6102 for(j=0; j<limit; j++){
6103 assert( nCell<nMaxCells );
6104 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6105 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6106 nCell++;
6107 }
6108 }
danielk19774dbaa892009-06-16 16:50:22 +00006109 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006110 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006111 u8 *pTemp;
6112 assert( nCell<nMaxCells );
6113 szCell[nCell] = sz;
6114 pTemp = &aSpace1[iSpace1];
6115 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006116 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006117 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006118 memcpy(pTemp, apDiv[i], sz);
6119 apCell[nCell] = pTemp+leafCorrection;
6120 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006121 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006122 if( !pOld->leaf ){
6123 assert( leafCorrection==0 );
6124 assert( pOld->hdrOffset==0 );
6125 /* The right pointer of the child page pOld becomes the left
6126 ** pointer of the divider cell */
6127 memcpy(apCell[nCell], &pOld->aData[8], 4);
6128 }else{
6129 assert( leafCorrection==4 );
6130 if( szCell[nCell]<4 ){
6131 /* Do not allow any cells smaller than 4 bytes. */
6132 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006133 }
6134 }
drh14acc042001-06-10 19:56:58 +00006135 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006136 }
drh8b2f49b2001-06-08 00:21:52 +00006137 }
6138
6139 /*
drh6019e162001-07-02 17:51:45 +00006140 ** Figure out the number of pages needed to hold all nCell cells.
6141 ** Store this number in "k". Also compute szNew[] which is the total
6142 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006143 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006144 ** cntNew[k] should equal nCell.
6145 **
drh96f5b762004-05-16 16:24:36 +00006146 ** Values computed by this block:
6147 **
6148 ** k: The total number of sibling pages
6149 ** szNew[i]: Spaced used on the i-th sibling page.
6150 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6151 ** the right of the i-th sibling page.
6152 ** usableSpace: Number of bytes of space available on each sibling.
6153 **
drh8b2f49b2001-06-08 00:21:52 +00006154 */
drh43605152004-05-29 21:46:49 +00006155 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006156 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006157 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006158 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006159 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006160 szNew[k] = subtotal - szCell[i];
6161 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006162 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006163 subtotal = 0;
6164 k++;
drh9978c972010-02-23 17:36:32 +00006165 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006166 }
6167 }
6168 szNew[k] = subtotal;
6169 cntNew[k] = nCell;
6170 k++;
drh96f5b762004-05-16 16:24:36 +00006171
6172 /*
6173 ** The packing computed by the previous block is biased toward the siblings
6174 ** on the left side. The left siblings are always nearly full, while the
6175 ** right-most sibling might be nearly empty. This block of code attempts
6176 ** to adjust the packing of siblings to get a better balance.
6177 **
6178 ** This adjustment is more than an optimization. The packing above might
6179 ** be so out of balance as to be illegal. For example, the right-most
6180 ** sibling might be completely empty. This adjustment is not optional.
6181 */
drh6019e162001-07-02 17:51:45 +00006182 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006183 int szRight = szNew[i]; /* Size of sibling on the right */
6184 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6185 int r; /* Index of right-most cell in left sibling */
6186 int d; /* Index of first cell to the left of right sibling */
6187
6188 r = cntNew[i-1] - 1;
6189 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006190 assert( d<nMaxCells );
6191 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00006192 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
6193 szRight += szCell[d] + 2;
6194 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006195 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006196 r = cntNew[i-1] - 1;
6197 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006198 }
drh96f5b762004-05-16 16:24:36 +00006199 szNew[i] = szRight;
6200 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006201 }
drh09d0deb2005-08-02 17:13:09 +00006202
danielk19776f235cc2009-06-04 14:46:08 +00006203 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006204 ** a virtual root page. A virtual root page is when the real root
6205 ** page is page 1 and we are the only child of that page.
6206 */
6207 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00006208
danielk1977e5765212009-06-17 11:13:28 +00006209 TRACE(("BALANCE: old: %d %d %d ",
6210 apOld[0]->pgno,
6211 nOld>=2 ? apOld[1]->pgno : 0,
6212 nOld>=3 ? apOld[2]->pgno : 0
6213 ));
6214
drh8b2f49b2001-06-08 00:21:52 +00006215 /*
drh6b308672002-07-08 02:16:37 +00006216 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006217 */
drheac74422009-06-14 12:47:11 +00006218 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006219 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006220 goto balance_cleanup;
6221 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006222 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006223 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006224 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006225 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006226 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006227 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006228 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006229 nNew++;
danielk197728129562005-01-11 10:25:06 +00006230 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006231 }else{
drh7aa8f852006-03-28 00:24:44 +00006232 assert( i>0 );
danielk19774dbaa892009-06-16 16:50:22 +00006233 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
drh6b308672002-07-08 02:16:37 +00006234 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006235 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006236 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006237
6238 /* Set the pointer-map entry for the new sibling page. */
6239 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006240 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006241 if( rc!=SQLITE_OK ){
6242 goto balance_cleanup;
6243 }
6244 }
drh6b308672002-07-08 02:16:37 +00006245 }
drh8b2f49b2001-06-08 00:21:52 +00006246 }
6247
danielk1977299b1872004-11-22 10:02:10 +00006248 /* Free any old pages that were not reused as new pages.
6249 */
6250 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006251 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006252 if( rc ) goto balance_cleanup;
6253 releasePage(apOld[i]);
6254 apOld[i] = 0;
6255 i++;
6256 }
6257
drh8b2f49b2001-06-08 00:21:52 +00006258 /*
drhf9ffac92002-03-02 19:00:31 +00006259 ** Put the new pages in accending order. This helps to
6260 ** keep entries in the disk file in order so that a scan
6261 ** of the table is a linear scan through the file. That
6262 ** in turn helps the operating system to deliver pages
6263 ** from the disk more rapidly.
6264 **
6265 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006266 ** n is never more than NB (a small constant), that should
6267 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006268 **
drhc3b70572003-01-04 19:44:07 +00006269 ** When NB==3, this one optimization makes the database
6270 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006271 */
6272 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006273 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006274 int minI = i;
6275 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006276 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006277 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006278 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006279 }
6280 }
6281 if( minI>i ){
drhf9ffac92002-03-02 19:00:31 +00006282 MemPage *pT;
drhf9ffac92002-03-02 19:00:31 +00006283 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006284 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006285 apNew[minI] = pT;
6286 }
6287 }
danielk1977e5765212009-06-17 11:13:28 +00006288 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006289 apNew[0]->pgno, szNew[0],
6290 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6291 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6292 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6293 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6294
6295 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6296 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006297
drhf9ffac92002-03-02 19:00:31 +00006298 /*
drh14acc042001-06-10 19:56:58 +00006299 ** Evenly distribute the data in apCell[] across the new pages.
6300 ** Insert divider cells into pParent as necessary.
6301 */
6302 j = 0;
6303 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006304 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006305 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006306 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006307 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006308 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006309 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006310 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006311
danielk1977ac11ee62005-01-15 12:45:51 +00006312 j = cntNew[i];
6313
6314 /* If the sibling page assembled above was not the right-most sibling,
6315 ** insert a divider cell into the parent page.
6316 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006317 assert( i<nNew-1 || j==nCell );
6318 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006319 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006320 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006321 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006322
6323 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006324 pCell = apCell[j];
6325 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006326 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006327 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006328 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006329 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006330 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006331 ** then there is no divider cell in apCell[]. Instead, the divider
6332 ** cell consists of the integer key for the right-most cell of
6333 ** the sibling-page assembled above only.
6334 */
drh6f11bef2004-05-13 01:12:56 +00006335 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006336 j--;
danielk197730548662009-07-09 05:07:37 +00006337 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006338 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006339 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006340 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006341 }else{
6342 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006343 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006344 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006345 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006346 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006347 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006348 ** insertCell(), so reparse the cell now.
6349 **
6350 ** Note that this can never happen in an SQLite data file, as all
6351 ** cells are at least 4 bytes. It only happens in b-trees used
6352 ** to evaluate "IN (SELECT ...)" and similar clauses.
6353 */
6354 if( szCell[j]==4 ){
6355 assert(leafCorrection==4);
6356 sz = cellSizePtr(pParent, pCell);
6357 }
drh4b70f112004-05-02 21:12:19 +00006358 }
danielk19776067a9b2009-06-09 09:41:00 +00006359 iOvflSpace += sz;
drhe22e03e2010-08-18 21:19:03 +00006360 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006361 assert( iOvflSpace <= (int)pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006362 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006363 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006364 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006365
drh14acc042001-06-10 19:56:58 +00006366 j++;
6367 nxDiv++;
6368 }
6369 }
drh6019e162001-07-02 17:51:45 +00006370 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006371 assert( nOld>0 );
6372 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006373 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006374 u8 *zChild = &apCopy[nOld-1]->aData[8];
6375 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006376 }
6377
danielk197713bd99f2009-06-24 05:40:34 +00006378 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6379 /* The root page of the b-tree now contains no cells. The only sibling
6380 ** page is the right-child of the parent. Copy the contents of the
6381 ** child page into the parent, decreasing the overall height of the
6382 ** b-tree structure by one. This is described as the "balance-shallower"
6383 ** sub-algorithm in some documentation.
6384 **
6385 ** If this is an auto-vacuum database, the call to copyNodeContent()
6386 ** sets all pointer-map entries corresponding to database image pages
6387 ** for which the pointer is stored within the content being copied.
6388 **
6389 ** The second assert below verifies that the child page is defragmented
6390 ** (it must be, as it was just reconstructed using assemblePage()). This
6391 ** is important if the parent page happens to be page 1 of the database
6392 ** image. */
6393 assert( nNew==1 );
6394 assert( apNew[0]->nFree ==
6395 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6396 );
drhc314dc72009-07-21 11:52:34 +00006397 copyNodeContent(apNew[0], pParent, &rc);
6398 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006399 }else if( ISAUTOVACUUM ){
6400 /* Fix the pointer-map entries for all the cells that were shifted around.
6401 ** There are several different types of pointer-map entries that need to
6402 ** be dealt with by this routine. Some of these have been set already, but
6403 ** many have not. The following is a summary:
6404 **
6405 ** 1) The entries associated with new sibling pages that were not
6406 ** siblings when this function was called. These have already
6407 ** been set. We don't need to worry about old siblings that were
6408 ** moved to the free-list - the freePage() code has taken care
6409 ** of those.
6410 **
6411 ** 2) The pointer-map entries associated with the first overflow
6412 ** page in any overflow chains used by new divider cells. These
6413 ** have also already been taken care of by the insertCell() code.
6414 **
6415 ** 3) If the sibling pages are not leaves, then the child pages of
6416 ** cells stored on the sibling pages may need to be updated.
6417 **
6418 ** 4) If the sibling pages are not internal intkey nodes, then any
6419 ** overflow pages used by these cells may need to be updated
6420 ** (internal intkey nodes never contain pointers to overflow pages).
6421 **
6422 ** 5) If the sibling pages are not leaves, then the pointer-map
6423 ** entries for the right-child pages of each sibling may need
6424 ** to be updated.
6425 **
6426 ** Cases 1 and 2 are dealt with above by other code. The next
6427 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6428 ** setting a pointer map entry is a relatively expensive operation, this
6429 ** code only sets pointer map entries for child or overflow pages that have
6430 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006431 MemPage *pNew = apNew[0];
6432 MemPage *pOld = apCopy[0];
6433 int nOverflow = pOld->nOverflow;
6434 int iNextOld = pOld->nCell + nOverflow;
6435 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
6436 j = 0; /* Current 'old' sibling page */
6437 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006438 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006439 int isDivider = 0;
6440 while( i==iNextOld ){
6441 /* Cell i is the cell immediately following the last cell on old
6442 ** sibling page j. If the siblings are not leaf pages of an
6443 ** intkey b-tree, then cell i was a divider cell. */
drhb07028f2011-10-14 21:49:18 +00006444 assert( j+1 < ArraySize(apCopy) );
danielk19774dbaa892009-06-16 16:50:22 +00006445 pOld = apCopy[++j];
6446 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6447 if( pOld->nOverflow ){
6448 nOverflow = pOld->nOverflow;
6449 iOverflow = i + !leafData + pOld->aOvfl[0].idx;
6450 }
6451 isDivider = !leafData;
6452 }
6453
6454 assert(nOverflow>0 || iOverflow<i );
6455 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
6456 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
6457 if( i==iOverflow ){
6458 isDivider = 1;
6459 if( (--nOverflow)>0 ){
6460 iOverflow++;
6461 }
6462 }
6463
6464 if( i==cntNew[k] ){
6465 /* Cell i is the cell immediately following the last cell on new
6466 ** sibling page k. If the siblings are not leaf pages of an
6467 ** intkey b-tree, then cell i is a divider cell. */
6468 pNew = apNew[++k];
6469 if( !leafData ) continue;
6470 }
danielk19774dbaa892009-06-16 16:50:22 +00006471 assert( j<nOld );
6472 assert( k<nNew );
6473
6474 /* If the cell was originally divider cell (and is not now) or
6475 ** an overflow cell, or if the cell was located on a different sibling
6476 ** page before the balancing, then the pointer map entries associated
6477 ** with any child or overflow pages need to be updated. */
6478 if( isDivider || pOld->pgno!=pNew->pgno ){
6479 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006480 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006481 }
drh98add2e2009-07-20 17:11:49 +00006482 if( szCell[i]>pNew->minLocal ){
6483 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006484 }
6485 }
6486 }
6487
6488 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006489 for(i=0; i<nNew; i++){
6490 u32 key = get4byte(&apNew[i]->aData[8]);
6491 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006492 }
6493 }
6494
6495#if 0
6496 /* The ptrmapCheckPages() contains assert() statements that verify that
6497 ** all pointer map pages are set correctly. This is helpful while
6498 ** debugging. This is usually disabled because a corrupt database may
6499 ** cause an assert() statement to fail. */
6500 ptrmapCheckPages(apNew, nNew);
6501 ptrmapCheckPages(&pParent, 1);
6502#endif
6503 }
6504
danielk197771d5d2c2008-09-29 11:49:47 +00006505 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006506 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6507 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006508
drh8b2f49b2001-06-08 00:21:52 +00006509 /*
drh14acc042001-06-10 19:56:58 +00006510 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006511 */
drh14acc042001-06-10 19:56:58 +00006512balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006513 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006514 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006515 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006516 }
drh14acc042001-06-10 19:56:58 +00006517 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006518 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006519 }
danielk1977eaa06f62008-09-18 17:34:44 +00006520
drh8b2f49b2001-06-08 00:21:52 +00006521 return rc;
6522}
6523
drh43605152004-05-29 21:46:49 +00006524
6525/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006526** This function is called when the root page of a b-tree structure is
6527** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006528**
danielk1977a50d9aa2009-06-08 14:49:45 +00006529** A new child page is allocated and the contents of the current root
6530** page, including overflow cells, are copied into the child. The root
6531** page is then overwritten to make it an empty page with the right-child
6532** pointer pointing to the new page.
6533**
6534** Before returning, all pointer-map entries corresponding to pages
6535** that the new child-page now contains pointers to are updated. The
6536** entry corresponding to the new right-child pointer of the root
6537** page is also updated.
6538**
6539** If successful, *ppChild is set to contain a reference to the child
6540** page and SQLITE_OK is returned. In this case the caller is required
6541** to call releasePage() on *ppChild exactly once. If an error occurs,
6542** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006543*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006544static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6545 int rc; /* Return value from subprocedures */
6546 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006547 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006548 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006549
danielk1977a50d9aa2009-06-08 14:49:45 +00006550 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006551 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006552
danielk1977a50d9aa2009-06-08 14:49:45 +00006553 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6554 ** page that will become the new right-child of pPage. Copy the contents
6555 ** of the node stored on pRoot into the new child page.
6556 */
drh98add2e2009-07-20 17:11:49 +00006557 rc = sqlite3PagerWrite(pRoot->pDbPage);
6558 if( rc==SQLITE_OK ){
6559 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006560 copyNodeContent(pRoot, pChild, &rc);
6561 if( ISAUTOVACUUM ){
6562 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006563 }
6564 }
6565 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006566 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006567 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006568 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006569 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006570 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6571 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6572 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006573
danielk1977a50d9aa2009-06-08 14:49:45 +00006574 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6575
6576 /* Copy the overflow cells from pRoot to pChild */
6577 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
6578 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006579
6580 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6581 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6582 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6583
6584 *ppChild = pChild;
6585 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006586}
6587
6588/*
danielk197771d5d2c2008-09-29 11:49:47 +00006589** The page that pCur currently points to has just been modified in
6590** some way. This function figures out if this modification means the
6591** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006592** routine. Balancing routines are:
6593**
6594** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006595** balance_deeper()
6596** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006597*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006598static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006599 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006600 const int nMin = pCur->pBt->usableSize * 2 / 3;
6601 u8 aBalanceQuickSpace[13];
6602 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006603
shane75ac1de2009-06-09 18:58:52 +00006604 TESTONLY( int balance_quick_called = 0 );
6605 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006606
6607 do {
6608 int iPage = pCur->iPage;
6609 MemPage *pPage = pCur->apPage[iPage];
6610
6611 if( iPage==0 ){
6612 if( pPage->nOverflow ){
6613 /* The root page of the b-tree is overfull. In this case call the
6614 ** balance_deeper() function to create a new child for the root-page
6615 ** and copy the current contents of the root-page to it. The
6616 ** next iteration of the do-loop will balance the child page.
6617 */
6618 assert( (balance_deeper_called++)==0 );
6619 rc = balance_deeper(pPage, &pCur->apPage[1]);
6620 if( rc==SQLITE_OK ){
6621 pCur->iPage = 1;
6622 pCur->aiIdx[0] = 0;
6623 pCur->aiIdx[1] = 0;
6624 assert( pCur->apPage[1]->nOverflow );
6625 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006626 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006627 break;
6628 }
6629 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6630 break;
6631 }else{
6632 MemPage * const pParent = pCur->apPage[iPage-1];
6633 int const iIdx = pCur->aiIdx[iPage-1];
6634
6635 rc = sqlite3PagerWrite(pParent->pDbPage);
6636 if( rc==SQLITE_OK ){
6637#ifndef SQLITE_OMIT_QUICKBALANCE
6638 if( pPage->hasData
6639 && pPage->nOverflow==1
6640 && pPage->aOvfl[0].idx==pPage->nCell
6641 && pParent->pgno!=1
6642 && pParent->nCell==iIdx
6643 ){
6644 /* Call balance_quick() to create a new sibling of pPage on which
6645 ** to store the overflow cell. balance_quick() inserts a new cell
6646 ** into pParent, which may cause pParent overflow. If this
6647 ** happens, the next interation of the do-loop will balance pParent
6648 ** use either balance_nonroot() or balance_deeper(). Until this
6649 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6650 ** buffer.
6651 **
6652 ** The purpose of the following assert() is to check that only a
6653 ** single call to balance_quick() is made for each call to this
6654 ** function. If this were not verified, a subtle bug involving reuse
6655 ** of the aBalanceQuickSpace[] might sneak in.
6656 */
6657 assert( (balance_quick_called++)==0 );
6658 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6659 }else
6660#endif
6661 {
6662 /* In this case, call balance_nonroot() to redistribute cells
6663 ** between pPage and up to 2 of its sibling pages. This involves
6664 ** modifying the contents of pParent, which may cause pParent to
6665 ** become overfull or underfull. The next iteration of the do-loop
6666 ** will balance the parent page to correct this.
6667 **
6668 ** If the parent page becomes overfull, the overflow cell or cells
6669 ** are stored in the pSpace buffer allocated immediately below.
6670 ** A subsequent iteration of the do-loop will deal with this by
6671 ** calling balance_nonroot() (balance_deeper() may be called first,
6672 ** but it doesn't deal with overflow cells - just moves them to a
6673 ** different page). Once this subsequent call to balance_nonroot()
6674 ** has completed, it is safe to release the pSpace buffer used by
6675 ** the previous call, as the overflow cell data will have been
6676 ** copied either into the body of a database page or into the new
6677 ** pSpace buffer passed to the latter call to balance_nonroot().
6678 */
6679 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
danielk1977cd581a72009-06-23 15:43:39 +00006680 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
danielk1977a50d9aa2009-06-08 14:49:45 +00006681 if( pFree ){
6682 /* If pFree is not NULL, it points to the pSpace buffer used
6683 ** by a previous call to balance_nonroot(). Its contents are
6684 ** now stored either on real database pages or within the
6685 ** new pSpace buffer, so it may be safely freed here. */
6686 sqlite3PageFree(pFree);
6687 }
6688
danielk19774dbaa892009-06-16 16:50:22 +00006689 /* The pSpace buffer will be freed after the next call to
6690 ** balance_nonroot(), or just before this function returns, whichever
6691 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006692 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006693 }
6694 }
6695
6696 pPage->nOverflow = 0;
6697
6698 /* The next iteration of the do-loop balances the parent page. */
6699 releasePage(pPage);
6700 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006701 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006702 }while( rc==SQLITE_OK );
6703
6704 if( pFree ){
6705 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006706 }
6707 return rc;
6708}
6709
drhf74b8d92002-09-01 23:20:45 +00006710
6711/*
drh3b7511c2001-05-26 13:15:44 +00006712** Insert a new record into the BTree. The key is given by (pKey,nKey)
6713** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006714** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006715** is left pointing at a random location.
6716**
6717** For an INTKEY table, only the nKey value of the key is used. pKey is
6718** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006719**
6720** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006721** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006722** been performed. seekResult is the search result returned (a negative
6723** number if pCur points at an entry that is smaller than (pKey, nKey), or
6724** a positive value if pCur points at an etry that is larger than
6725** (pKey, nKey)).
6726**
drh3e9ca092009-09-08 01:14:48 +00006727** If the seekResult parameter is non-zero, then the caller guarantees that
6728** cursor pCur is pointing at the existing copy of a row that is to be
6729** overwritten. If the seekResult parameter is 0, then cursor pCur may
6730** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006731** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006732*/
drh3aac2dd2004-04-26 14:10:20 +00006733int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006734 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006735 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006736 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006737 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006738 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006739 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006740){
drh3b7511c2001-05-26 13:15:44 +00006741 int rc;
drh3e9ca092009-09-08 01:14:48 +00006742 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006743 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006744 int idx;
drh3b7511c2001-05-26 13:15:44 +00006745 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006746 Btree *p = pCur->pBtree;
6747 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006748 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006749 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006750
drh98add2e2009-07-20 17:11:49 +00006751 if( pCur->eState==CURSOR_FAULT ){
6752 assert( pCur->skipNext!=SQLITE_OK );
6753 return pCur->skipNext;
6754 }
6755
drh1fee73e2007-08-29 04:00:57 +00006756 assert( cursorHoldsMutex(pCur) );
danielk197731d31b82009-07-13 13:18:07 +00006757 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE && !pBt->readOnly );
danielk197796d48e92009-06-29 06:00:37 +00006758 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6759
danielk197731d31b82009-07-13 13:18:07 +00006760 /* Assert that the caller has been consistent. If this cursor was opened
6761 ** expecting an index b-tree, then the caller should be inserting blob
6762 ** keys with no associated data. If the cursor was opened expecting an
6763 ** intkey table, the caller should be inserting integer keys with a
6764 ** blob of associated data. */
6765 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6766
danielk197796d48e92009-06-29 06:00:37 +00006767 /* If this is an insert into a table b-tree, invalidate any incrblob
6768 ** cursors open on the row being replaced (assuming this is a replace
6769 ** operation - if it is not, the following is a no-op). */
6770 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006771 invalidateIncrblobCursors(p, nKey, 0);
drhf74b8d92002-09-01 23:20:45 +00006772 }
danielk197796d48e92009-06-29 06:00:37 +00006773
danielk19779c3acf32009-05-02 07:36:49 +00006774 /* Save the positions of any other cursors open on this table.
6775 **
danielk19773509a652009-07-06 18:56:13 +00006776 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006777 ** example, when inserting data into a table with auto-generated integer
6778 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6779 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006780 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006781 ** that the cursor is already where it needs to be and returns without
6782 ** doing any work. To avoid thwarting these optimizations, it is important
6783 ** not to clear the cursor here.
6784 */
drh4c301aa2009-07-15 17:25:45 +00006785 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6786 if( rc ) return rc;
6787 if( !loc ){
6788 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6789 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00006790 }
danielk1977b980d2212009-06-22 18:03:51 +00006791 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006792
danielk197771d5d2c2008-09-29 11:49:47 +00006793 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006794 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006795 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006796
drh3a4c1412004-05-09 20:40:11 +00006797 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6798 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6799 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006800 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006801 allocateTempSpace(pBt);
6802 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006803 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006804 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006805 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006806 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00006807 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006808 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006809 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006810 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006811 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006812 rc = sqlite3PagerWrite(pPage->pDbPage);
6813 if( rc ){
6814 goto end_insert;
6815 }
danielk197771d5d2c2008-09-29 11:49:47 +00006816 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006817 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006818 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006819 }
drh43605152004-05-29 21:46:49 +00006820 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006821 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00006822 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00006823 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00006824 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006825 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006826 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006827 }else{
drh4b70f112004-05-02 21:12:19 +00006828 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006829 }
drh98add2e2009-07-20 17:11:49 +00006830 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00006831 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006832
danielk1977a50d9aa2009-06-08 14:49:45 +00006833 /* If no error has occured and pPage has an overflow cell, call balance()
6834 ** to redistribute the cells within the tree. Since balance() may move
6835 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6836 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006837 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006838 ** Previous versions of SQLite called moveToRoot() to move the cursor
6839 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006840 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6841 ** set the cursor state to "invalid". This makes common insert operations
6842 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006843 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006844 ** There is a subtle but important optimization here too. When inserting
6845 ** multiple records into an intkey b-tree using a single cursor (as can
6846 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6847 ** is advantageous to leave the cursor pointing to the last entry in
6848 ** the b-tree if possible. If the cursor is left pointing to the last
6849 ** entry in the table, and the next row inserted has an integer key
6850 ** larger than the largest existing key, it is possible to insert the
6851 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006852 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006853 pCur->info.nSize = 0;
6854 pCur->validNKey = 0;
6855 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006856 rc = balance(pCur);
6857
6858 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006859 ** fails. Internal data structure corruption will result otherwise.
6860 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6861 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006862 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006863 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006864 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006865 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006866
drh2e38c322004-09-03 18:38:44 +00006867end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006868 return rc;
6869}
6870
6871/*
drh4b70f112004-05-02 21:12:19 +00006872** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006873** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006874*/
drh3aac2dd2004-04-26 14:10:20 +00006875int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006876 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006877 BtShared *pBt = p->pBt;
6878 int rc; /* Return code */
6879 MemPage *pPage; /* Page to delete cell from */
6880 unsigned char *pCell; /* Pointer to cell to delete */
6881 int iCellIdx; /* Index of cell to delete */
6882 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006883
drh1fee73e2007-08-29 04:00:57 +00006884 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006885 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006886 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006887 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006888 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6889 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6890
danielk19774dbaa892009-06-16 16:50:22 +00006891 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6892 || NEVER(pCur->eState!=CURSOR_VALID)
6893 ){
6894 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006895 }
danielk1977da184232006-01-05 11:34:32 +00006896
danielk197796d48e92009-06-29 06:00:37 +00006897 /* If this is a delete operation to remove a row from a table b-tree,
6898 ** invalidate any incrblob cursors open on the row being deleted. */
6899 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006900 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006901 }
6902
6903 iCellDepth = pCur->iPage;
6904 iCellIdx = pCur->aiIdx[iCellDepth];
6905 pPage = pCur->apPage[iCellDepth];
6906 pCell = findCell(pPage, iCellIdx);
6907
6908 /* If the page containing the entry to delete is not a leaf page, move
6909 ** the cursor to the largest entry in the tree that is smaller than
6910 ** the entry being deleted. This cell will replace the cell being deleted
6911 ** from the internal node. The 'previous' entry is used for this instead
6912 ** of the 'next' entry, as the previous entry is always a part of the
6913 ** sub-tree headed by the child page of the cell being deleted. This makes
6914 ** balancing the tree following the delete operation easier. */
6915 if( !pPage->leaf ){
6916 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00006917 rc = sqlite3BtreePrevious(pCur, &notUsed);
6918 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00006919 }
6920
6921 /* Save the positions of any other cursors open on this table before
6922 ** making any modifications. Make the page containing the entry to be
6923 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00006924 ** entry and finally remove the cell itself from within the page.
6925 */
6926 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6927 if( rc ) return rc;
6928 rc = sqlite3PagerWrite(pPage->pDbPage);
6929 if( rc ) return rc;
6930 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00006931 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00006932 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00006933
danielk19774dbaa892009-06-16 16:50:22 +00006934 /* If the cell deleted was not located on a leaf page, then the cursor
6935 ** is currently pointing to the largest entry in the sub-tree headed
6936 ** by the child-page of the cell that was just deleted from an internal
6937 ** node. The cell from the leaf node needs to be moved to the internal
6938 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00006939 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00006940 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6941 int nCell;
6942 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6943 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00006944
danielk19774dbaa892009-06-16 16:50:22 +00006945 pCell = findCell(pLeaf, pLeaf->nCell-1);
6946 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00006947 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006948
danielk19774dbaa892009-06-16 16:50:22 +00006949 allocateTempSpace(pBt);
6950 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00006951
drha4ec1d42009-07-11 13:13:11 +00006952 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00006953 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
6954 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00006955 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00006956 }
danielk19774dbaa892009-06-16 16:50:22 +00006957
6958 /* Balance the tree. If the entry deleted was located on a leaf page,
6959 ** then the cursor still points to that page. In this case the first
6960 ** call to balance() repairs the tree, and the if(...) condition is
6961 ** never true.
6962 **
6963 ** Otherwise, if the entry deleted was on an internal node page, then
6964 ** pCur is pointing to the leaf page from which a cell was removed to
6965 ** replace the cell deleted from the internal node. This is slightly
6966 ** tricky as the leaf node may be underfull, and the internal node may
6967 ** be either under or overfull. In this case run the balancing algorithm
6968 ** on the leaf node first. If the balance proceeds far enough up the
6969 ** tree that we can be sure that any problem in the internal node has
6970 ** been corrected, so be it. Otherwise, after balancing the leaf node,
6971 ** walk the cursor up the tree to the internal node and balance it as
6972 ** well. */
6973 rc = balance(pCur);
6974 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
6975 while( pCur->iPage>iCellDepth ){
6976 releasePage(pCur->apPage[pCur->iPage--]);
6977 }
6978 rc = balance(pCur);
6979 }
6980
danielk19776b456a22005-03-21 04:04:02 +00006981 if( rc==SQLITE_OK ){
6982 moveToRoot(pCur);
6983 }
drh5e2f8b92001-05-28 00:41:15 +00006984 return rc;
drh3b7511c2001-05-26 13:15:44 +00006985}
drh8b2f49b2001-06-08 00:21:52 +00006986
6987/*
drhc6b52df2002-01-04 03:09:29 +00006988** Create a new BTree table. Write into *piTable the page
6989** number for the root page of the new table.
6990**
drhab01f612004-05-22 02:55:23 +00006991** The type of type is determined by the flags parameter. Only the
6992** following values of flags are currently in use. Other values for
6993** flags might not work:
6994**
6995** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6996** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006997*/
drhd4187c72010-08-30 22:15:45 +00006998static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00006999 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007000 MemPage *pRoot;
7001 Pgno pgnoRoot;
7002 int rc;
drhd4187c72010-08-30 22:15:45 +00007003 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00007004
drh1fee73e2007-08-29 04:00:57 +00007005 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007006 assert( pBt->inTransaction==TRANS_WRITE );
danielk197728129562005-01-11 10:25:06 +00007007 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00007008
danielk1977003ba062004-11-04 02:57:33 +00007009#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00007010 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00007011 if( rc ){
7012 return rc;
7013 }
danielk1977003ba062004-11-04 02:57:33 +00007014#else
danielk1977687566d2004-11-02 12:56:41 +00007015 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00007016 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7017 MemPage *pPageMove; /* The page to move to. */
7018
danielk197720713f32007-05-03 11:43:33 +00007019 /* Creating a new table may probably require moving an existing database
7020 ** to make room for the new tables root page. In case this page turns
7021 ** out to be an overflow page, delete all overflow page-map caches
7022 ** held by open cursors.
7023 */
danielk197792d4d7a2007-05-04 12:05:56 +00007024 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00007025
danielk1977003ba062004-11-04 02:57:33 +00007026 /* Read the value of meta[3] from the database to determine where the
7027 ** root page of the new table should go. meta[3] is the largest root-page
7028 ** created so far, so the new root-page is (meta[3]+1).
7029 */
danielk1977602b4662009-07-02 07:47:33 +00007030 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00007031 pgnoRoot++;
7032
danielk1977599fcba2004-11-08 07:13:13 +00007033 /* The new root-page may not be allocated on a pointer-map page, or the
7034 ** PENDING_BYTE page.
7035 */
drh72190432008-01-31 14:54:43 +00007036 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00007037 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00007038 pgnoRoot++;
7039 }
7040 assert( pgnoRoot>=3 );
7041
7042 /* Allocate a page. The page that currently resides at pgnoRoot will
7043 ** be moved to the allocated page (unless the allocated page happens
7044 ** to reside at pgnoRoot).
7045 */
drh4f0c5872007-03-26 22:05:01 +00007046 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00007047 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00007048 return rc;
7049 }
danielk1977003ba062004-11-04 02:57:33 +00007050
7051 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00007052 /* pgnoRoot is the page that will be used for the root-page of
7053 ** the new table (assuming an error did not occur). But we were
7054 ** allocated pgnoMove. If required (i.e. if it was not allocated
7055 ** by extending the file), the current page at position pgnoMove
7056 ** is already journaled.
7057 */
drheeb844a2009-08-08 18:01:07 +00007058 u8 eType = 0;
7059 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00007060
7061 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00007062
7063 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00007064 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007065 if( rc!=SQLITE_OK ){
7066 return rc;
7067 }
7068 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007069 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7070 rc = SQLITE_CORRUPT_BKPT;
7071 }
7072 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007073 releasePage(pRoot);
7074 return rc;
7075 }
drhccae6022005-02-26 17:31:26 +00007076 assert( eType!=PTRMAP_ROOTPAGE );
7077 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007078 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007079 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007080
7081 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007082 if( rc!=SQLITE_OK ){
7083 return rc;
7084 }
danielk197730548662009-07-09 05:07:37 +00007085 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007086 if( rc!=SQLITE_OK ){
7087 return rc;
7088 }
danielk19773b8a05f2007-03-19 17:44:26 +00007089 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007090 if( rc!=SQLITE_OK ){
7091 releasePage(pRoot);
7092 return rc;
7093 }
7094 }else{
7095 pRoot = pPageMove;
7096 }
7097
danielk197742741be2005-01-08 12:42:39 +00007098 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007099 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007100 if( rc ){
7101 releasePage(pRoot);
7102 return rc;
7103 }
drhbf592832010-03-30 15:51:12 +00007104
7105 /* When the new root page was allocated, page 1 was made writable in
7106 ** order either to increase the database filesize, or to decrement the
7107 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7108 */
7109 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007110 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007111 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007112 releasePage(pRoot);
7113 return rc;
7114 }
danielk197742741be2005-01-08 12:42:39 +00007115
danielk1977003ba062004-11-04 02:57:33 +00007116 }else{
drh4f0c5872007-03-26 22:05:01 +00007117 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007118 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007119 }
7120#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007121 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007122 if( createTabFlags & BTREE_INTKEY ){
7123 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7124 }else{
7125 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7126 }
7127 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007128 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007129 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007130 *piTable = (int)pgnoRoot;
7131 return SQLITE_OK;
7132}
drhd677b3d2007-08-20 22:48:41 +00007133int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7134 int rc;
7135 sqlite3BtreeEnter(p);
7136 rc = btreeCreateTable(p, piTable, flags);
7137 sqlite3BtreeLeave(p);
7138 return rc;
7139}
drh8b2f49b2001-06-08 00:21:52 +00007140
7141/*
7142** Erase the given database page and all its children. Return
7143** the page to the freelist.
7144*/
drh4b70f112004-05-02 21:12:19 +00007145static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007146 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007147 Pgno pgno, /* Page number to clear */
7148 int freePageFlag, /* Deallocate page if true */
7149 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007150){
danielk1977146ba992009-07-22 14:08:13 +00007151 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007152 int rc;
drh4b70f112004-05-02 21:12:19 +00007153 unsigned char *pCell;
7154 int i;
drh8b2f49b2001-06-08 00:21:52 +00007155
drh1fee73e2007-08-29 04:00:57 +00007156 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007157 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007158 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007159 }
7160
danielk197771d5d2c2008-09-29 11:49:47 +00007161 rc = getAndInitPage(pBt, pgno, &pPage);
danielk1977146ba992009-07-22 14:08:13 +00007162 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00007163 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007164 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007165 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007166 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007167 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007168 }
drh4b70f112004-05-02 21:12:19 +00007169 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00007170 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007171 }
drha34b6762004-05-07 13:30:42 +00007172 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007173 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007174 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007175 }else if( pnChange ){
7176 assert( pPage->intKey );
7177 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007178 }
7179 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007180 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007181 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00007182 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007183 }
danielk19776b456a22005-03-21 04:04:02 +00007184
7185cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007186 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007187 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007188}
7189
7190/*
drhab01f612004-05-22 02:55:23 +00007191** Delete all information from a single table in the database. iTable is
7192** the page number of the root of the table. After this routine returns,
7193** the root page is empty, but still exists.
7194**
7195** This routine will fail with SQLITE_LOCKED if there are any open
7196** read cursors on the table. Open write cursors are moved to the
7197** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007198**
7199** If pnChange is not NULL, then table iTable must be an intkey table. The
7200** integer value pointed to by pnChange is incremented by the number of
7201** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007202*/
danielk1977c7af4842008-10-27 13:59:33 +00007203int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007204 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007205 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007206 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007207 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007208
7209 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7210 ** is the root of a table b-tree - if it is not, the following call is
7211 ** a no-op). */
drheeb844a2009-08-08 18:01:07 +00007212 invalidateIncrblobCursors(p, 0, 1);
danielk197796d48e92009-06-29 06:00:37 +00007213
drhc046e3e2009-07-15 11:26:44 +00007214 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
7215 if( SQLITE_OK==rc ){
danielk197762c14b32008-11-19 09:05:26 +00007216 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007217 }
drhd677b3d2007-08-20 22:48:41 +00007218 sqlite3BtreeLeave(p);
7219 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007220}
7221
7222/*
7223** Erase all information in a table and add the root of the table to
7224** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007225** page 1) is never added to the freelist.
7226**
7227** This routine will fail with SQLITE_LOCKED if there are any open
7228** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007229**
7230** If AUTOVACUUM is enabled and the page at iTable is not the last
7231** root page in the database file, then the last root page
7232** in the database file is moved into the slot formerly occupied by
7233** iTable and that last slot formerly occupied by the last root page
7234** is added to the freelist instead of iTable. In this say, all
7235** root pages are kept at the beginning of the database file, which
7236** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7237** page number that used to be the last root page in the file before
7238** the move. If no page gets moved, *piMoved is set to 0.
7239** The last root page is recorded in meta[3] and the value of
7240** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007241*/
danielk197789d40042008-11-17 14:20:56 +00007242static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007243 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007244 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007245 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007246
drh1fee73e2007-08-29 04:00:57 +00007247 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007248 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007249
danielk1977e6efa742004-11-10 11:55:10 +00007250 /* It is illegal to drop a table if any cursors are open on the
7251 ** database. This is because in auto-vacuum mode the backend may
7252 ** need to move another root-page to fill a gap left by the deleted
7253 ** root page. If an open cursor was using this page a problem would
7254 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007255 **
7256 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007257 */
drhc046e3e2009-07-15 11:26:44 +00007258 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007259 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7260 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007261 }
danielk1977a0bf2652004-11-04 14:30:04 +00007262
danielk197730548662009-07-09 05:07:37 +00007263 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007264 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007265 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007266 if( rc ){
7267 releasePage(pPage);
7268 return rc;
7269 }
danielk1977a0bf2652004-11-04 14:30:04 +00007270
drh205f48e2004-11-05 00:43:11 +00007271 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007272
drh4b70f112004-05-02 21:12:19 +00007273 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007274#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007275 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007276 releasePage(pPage);
7277#else
7278 if( pBt->autoVacuum ){
7279 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007280 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007281
7282 if( iTable==maxRootPgno ){
7283 /* If the table being dropped is the table with the largest root-page
7284 ** number in the database, put the root page on the free list.
7285 */
drhc314dc72009-07-21 11:52:34 +00007286 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007287 releasePage(pPage);
7288 if( rc!=SQLITE_OK ){
7289 return rc;
7290 }
7291 }else{
7292 /* The table being dropped does not have the largest root-page
7293 ** number in the database. So move the page that does into the
7294 ** gap left by the deleted root-page.
7295 */
7296 MemPage *pMove;
7297 releasePage(pPage);
danielk197730548662009-07-09 05:07:37 +00007298 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007299 if( rc!=SQLITE_OK ){
7300 return rc;
7301 }
danielk19774c999992008-07-16 18:17:55 +00007302 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007303 releasePage(pMove);
7304 if( rc!=SQLITE_OK ){
7305 return rc;
7306 }
drhfe3313f2009-07-21 19:02:20 +00007307 pMove = 0;
danielk197730548662009-07-09 05:07:37 +00007308 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007309 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007310 releasePage(pMove);
7311 if( rc!=SQLITE_OK ){
7312 return rc;
7313 }
7314 *piMoved = maxRootPgno;
7315 }
7316
danielk1977599fcba2004-11-08 07:13:13 +00007317 /* Set the new 'max-root-page' value in the database header. This
7318 ** is the old value less one, less one more if that happens to
7319 ** be a root-page number, less one again if that is the
7320 ** PENDING_BYTE_PAGE.
7321 */
danielk197787a6e732004-11-05 12:58:25 +00007322 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007323 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7324 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007325 maxRootPgno--;
7326 }
danielk1977599fcba2004-11-08 07:13:13 +00007327 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7328
danielk1977aef0bf62005-12-30 16:28:01 +00007329 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007330 }else{
drhc314dc72009-07-21 11:52:34 +00007331 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007332 releasePage(pPage);
7333 }
7334#endif
drh2aa679f2001-06-25 02:11:07 +00007335 }else{
drhc046e3e2009-07-15 11:26:44 +00007336 /* If sqlite3BtreeDropTable was called on page 1.
7337 ** This really never should happen except in a corrupt
7338 ** database.
7339 */
drha34b6762004-05-07 13:30:42 +00007340 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007341 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007342 }
drh8b2f49b2001-06-08 00:21:52 +00007343 return rc;
7344}
drhd677b3d2007-08-20 22:48:41 +00007345int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7346 int rc;
7347 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00007348 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00007349 sqlite3BtreeLeave(p);
7350 return rc;
7351}
drh8b2f49b2001-06-08 00:21:52 +00007352
drh001bbcb2003-03-19 03:14:00 +00007353
drh8b2f49b2001-06-08 00:21:52 +00007354/*
danielk1977602b4662009-07-02 07:47:33 +00007355** This function may only be called if the b-tree connection already
7356** has a read or write transaction open on the database.
7357**
drh23e11ca2004-05-04 17:27:28 +00007358** Read the meta-information out of a database file. Meta[0]
7359** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007360** through meta[15] are available for use by higher layers. Meta[0]
7361** is read-only, the others are read/write.
7362**
7363** The schema layer numbers meta values differently. At the schema
7364** layer (and the SetCookie and ReadCookie opcodes) the number of
7365** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007366*/
danielk1977602b4662009-07-02 07:47:33 +00007367void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007368 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007369
drhd677b3d2007-08-20 22:48:41 +00007370 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007371 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007372 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007373 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007374 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007375
danielk1977602b4662009-07-02 07:47:33 +00007376 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007377
danielk1977602b4662009-07-02 07:47:33 +00007378 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7379 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007380#ifdef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007381 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00007382#endif
drhae157872004-08-14 19:20:09 +00007383
drhd677b3d2007-08-20 22:48:41 +00007384 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007385}
7386
7387/*
drh23e11ca2004-05-04 17:27:28 +00007388** Write meta-information back into the database. Meta[0] is
7389** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007390*/
danielk1977aef0bf62005-12-30 16:28:01 +00007391int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7392 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007393 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007394 int rc;
drh23e11ca2004-05-04 17:27:28 +00007395 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007396 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007397 assert( p->inTrans==TRANS_WRITE );
7398 assert( pBt->pPage1!=0 );
7399 pP1 = pBt->pPage1->aData;
7400 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7401 if( rc==SQLITE_OK ){
7402 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007403#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007404 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007405 assert( pBt->autoVacuum || iMeta==0 );
7406 assert( iMeta==0 || iMeta==1 );
7407 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007408 }
drh64022502009-01-09 14:11:04 +00007409#endif
drh5df72a52002-06-06 23:16:05 +00007410 }
drhd677b3d2007-08-20 22:48:41 +00007411 sqlite3BtreeLeave(p);
7412 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007413}
drh8c42ca92001-06-22 19:15:00 +00007414
danielk1977a5533162009-02-24 10:01:51 +00007415#ifndef SQLITE_OMIT_BTREECOUNT
7416/*
7417** The first argument, pCur, is a cursor opened on some b-tree. Count the
7418** number of entries in the b-tree and write the result to *pnEntry.
7419**
7420** SQLITE_OK is returned if the operation is successfully executed.
7421** Otherwise, if an error is encountered (i.e. an IO error or database
7422** corruption) an SQLite error code is returned.
7423*/
7424int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7425 i64 nEntry = 0; /* Value to return in *pnEntry */
7426 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00007427
7428 if( pCur->pgnoRoot==0 ){
7429 *pnEntry = 0;
7430 return SQLITE_OK;
7431 }
danielk1977a5533162009-02-24 10:01:51 +00007432 rc = moveToRoot(pCur);
7433
7434 /* Unless an error occurs, the following loop runs one iteration for each
7435 ** page in the B-Tree structure (not including overflow pages).
7436 */
7437 while( rc==SQLITE_OK ){
7438 int iIdx; /* Index of child node in parent */
7439 MemPage *pPage; /* Current page of the b-tree */
7440
7441 /* If this is a leaf page or the tree is not an int-key tree, then
7442 ** this page contains countable entries. Increment the entry counter
7443 ** accordingly.
7444 */
7445 pPage = pCur->apPage[pCur->iPage];
7446 if( pPage->leaf || !pPage->intKey ){
7447 nEntry += pPage->nCell;
7448 }
7449
7450 /* pPage is a leaf node. This loop navigates the cursor so that it
7451 ** points to the first interior cell that it points to the parent of
7452 ** the next page in the tree that has not yet been visited. The
7453 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7454 ** of the page, or to the number of cells in the page if the next page
7455 ** to visit is the right-child of its parent.
7456 **
7457 ** If all pages in the tree have been visited, return SQLITE_OK to the
7458 ** caller.
7459 */
7460 if( pPage->leaf ){
7461 do {
7462 if( pCur->iPage==0 ){
7463 /* All pages of the b-tree have been visited. Return successfully. */
7464 *pnEntry = nEntry;
7465 return SQLITE_OK;
7466 }
danielk197730548662009-07-09 05:07:37 +00007467 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007468 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7469
7470 pCur->aiIdx[pCur->iPage]++;
7471 pPage = pCur->apPage[pCur->iPage];
7472 }
7473
7474 /* Descend to the child node of the cell that the cursor currently
7475 ** points at. This is the right-child if (iIdx==pPage->nCell).
7476 */
7477 iIdx = pCur->aiIdx[pCur->iPage];
7478 if( iIdx==pPage->nCell ){
7479 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7480 }else{
7481 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7482 }
7483 }
7484
shanebe217792009-03-05 04:20:31 +00007485 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007486 return rc;
7487}
7488#endif
drhdd793422001-06-28 01:54:48 +00007489
drhdd793422001-06-28 01:54:48 +00007490/*
drh5eddca62001-06-30 21:53:53 +00007491** Return the pager associated with a BTree. This routine is used for
7492** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007493*/
danielk1977aef0bf62005-12-30 16:28:01 +00007494Pager *sqlite3BtreePager(Btree *p){
7495 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007496}
drh5eddca62001-06-30 21:53:53 +00007497
drhb7f91642004-10-31 02:22:47 +00007498#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007499/*
7500** Append a message to the error message string.
7501*/
drh2e38c322004-09-03 18:38:44 +00007502static void checkAppendMsg(
7503 IntegrityCk *pCheck,
7504 char *zMsg1,
7505 const char *zFormat,
7506 ...
7507){
7508 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007509 if( !pCheck->mxErr ) return;
7510 pCheck->mxErr--;
7511 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007512 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007513 if( pCheck->errMsg.nChar ){
7514 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007515 }
drhf089aa42008-07-08 19:34:06 +00007516 if( zMsg1 ){
7517 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7518 }
7519 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7520 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007521 if( pCheck->errMsg.mallocFailed ){
7522 pCheck->mallocFailed = 1;
7523 }
drh5eddca62001-06-30 21:53:53 +00007524}
drhb7f91642004-10-31 02:22:47 +00007525#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007526
drhb7f91642004-10-31 02:22:47 +00007527#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007528/*
7529** Add 1 to the reference count for page iPage. If this is the second
7530** reference to the page, add an error message to pCheck->zErrMsg.
7531** Return 1 if there are 2 ore more references to the page and 0 if
7532** if this is the first reference to the page.
7533**
7534** Also check that the page number is in bounds.
7535*/
danielk197789d40042008-11-17 14:20:56 +00007536static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007537 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007538 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007539 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007540 return 1;
7541 }
7542 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007543 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007544 return 1;
7545 }
7546 return (pCheck->anRef[iPage]++)>1;
7547}
7548
danielk1977afcdd022004-10-31 16:25:42 +00007549#ifndef SQLITE_OMIT_AUTOVACUUM
7550/*
7551** Check that the entry in the pointer-map for page iChild maps to
7552** page iParent, pointer type ptrType. If not, append an error message
7553** to pCheck.
7554*/
7555static void checkPtrmap(
7556 IntegrityCk *pCheck, /* Integrity check context */
7557 Pgno iChild, /* Child page number */
7558 u8 eType, /* Expected pointer map type */
7559 Pgno iParent, /* Expected pointer map parent page number */
7560 char *zContext /* Context description (used for error msg) */
7561){
7562 int rc;
7563 u8 ePtrmapType;
7564 Pgno iPtrmapParent;
7565
7566 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7567 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007568 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007569 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7570 return;
7571 }
7572
7573 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7574 checkAppendMsg(pCheck, zContext,
7575 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7576 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7577 }
7578}
7579#endif
7580
drh5eddca62001-06-30 21:53:53 +00007581/*
7582** Check the integrity of the freelist or of an overflow page list.
7583** Verify that the number of pages on the list is N.
7584*/
drh30e58752002-03-02 20:41:57 +00007585static void checkList(
7586 IntegrityCk *pCheck, /* Integrity checking context */
7587 int isFreeList, /* True for a freelist. False for overflow page list */
7588 int iPage, /* Page number for first page in the list */
7589 int N, /* Expected number of pages in the list */
7590 char *zContext /* Context for error messages */
7591){
7592 int i;
drh3a4c1412004-05-09 20:40:11 +00007593 int expected = N;
7594 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007595 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007596 DbPage *pOvflPage;
7597 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007598 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007599 checkAppendMsg(pCheck, zContext,
7600 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007601 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007602 break;
7603 }
7604 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007605 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007606 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007607 break;
7608 }
danielk19773b8a05f2007-03-19 17:44:26 +00007609 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007610 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007611 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007612#ifndef SQLITE_OMIT_AUTOVACUUM
7613 if( pCheck->pBt->autoVacuum ){
7614 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7615 }
7616#endif
drh43b18e12010-08-17 19:40:08 +00007617 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007618 checkAppendMsg(pCheck, zContext,
7619 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007620 N--;
7621 }else{
7622 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007623 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007624#ifndef SQLITE_OMIT_AUTOVACUUM
7625 if( pCheck->pBt->autoVacuum ){
7626 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7627 }
7628#endif
7629 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007630 }
7631 N -= n;
drh30e58752002-03-02 20:41:57 +00007632 }
drh30e58752002-03-02 20:41:57 +00007633 }
danielk1977afcdd022004-10-31 16:25:42 +00007634#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007635 else{
7636 /* If this database supports auto-vacuum and iPage is not the last
7637 ** page in this overflow list, check that the pointer-map entry for
7638 ** the following page matches iPage.
7639 */
7640 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007641 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007642 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7643 }
danielk1977afcdd022004-10-31 16:25:42 +00007644 }
7645#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007646 iPage = get4byte(pOvflData);
7647 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007648 }
7649}
drhb7f91642004-10-31 02:22:47 +00007650#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007651
drhb7f91642004-10-31 02:22:47 +00007652#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007653/*
7654** Do various sanity checks on a single page of a tree. Return
7655** the tree depth. Root pages return 0. Parents of root pages
7656** return 1, and so forth.
7657**
7658** These checks are done:
7659**
7660** 1. Make sure that cells and freeblocks do not overlap
7661** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007662** NO 2. Make sure cell keys are in order.
7663** NO 3. Make sure no key is less than or equal to zLowerBound.
7664** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007665** 5. Check the integrity of overflow pages.
7666** 6. Recursively call checkTreePage on all children.
7667** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007668** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007669** the root of the tree.
7670*/
7671static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007672 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007673 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007674 char *zParentContext, /* Parent context */
7675 i64 *pnParentMinKey,
7676 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007677){
7678 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007679 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007680 int hdr, cellStart;
7681 int nCell;
drhda200cc2004-05-09 11:51:38 +00007682 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007683 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007684 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007685 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007686 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007687 i64 nMinKey = 0;
7688 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007689
drh5bb3eb92007-05-04 13:15:55 +00007690 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007691
drh5eddca62001-06-30 21:53:53 +00007692 /* Check that the page exists
7693 */
drhd9cb6ac2005-10-20 07:28:17 +00007694 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007695 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007696 if( iPage==0 ) return 0;
7697 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
danielk197730548662009-07-09 05:07:37 +00007698 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007699 checkAppendMsg(pCheck, zContext,
7700 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007701 return 0;
7702 }
danielk197793caf5a2009-07-11 06:55:33 +00007703
7704 /* Clear MemPage.isInit to make sure the corruption detection code in
7705 ** btreeInitPage() is executed. */
7706 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007707 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007708 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007709 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007710 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007711 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007712 return 0;
7713 }
7714
7715 /* Check out all the cells.
7716 */
7717 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007718 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007719 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007720 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007721 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007722
7723 /* Check payload overflow pages
7724 */
drh5bb3eb92007-05-04 13:15:55 +00007725 sqlite3_snprintf(sizeof(zContext), zContext,
7726 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007727 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007728 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007729 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007730 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00007731 /* For intKey pages, check that the keys are in order.
7732 */
7733 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
7734 else{
7735 if( info.nKey <= nMaxKey ){
7736 checkAppendMsg(pCheck, zContext,
7737 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
7738 }
7739 nMaxKey = info.nKey;
7740 }
drh72365832007-03-06 15:53:44 +00007741 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007742 if( (sz>info.nLocal)
7743 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7744 ){
drhb6f41482004-05-14 01:58:11 +00007745 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007746 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7747#ifndef SQLITE_OMIT_AUTOVACUUM
7748 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007749 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007750 }
7751#endif
7752 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007753 }
7754
7755 /* Check sanity of left child page.
7756 */
drhda200cc2004-05-09 11:51:38 +00007757 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007758 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007759#ifndef SQLITE_OMIT_AUTOVACUUM
7760 if( pBt->autoVacuum ){
7761 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7762 }
7763#endif
shaneh195475d2010-02-19 04:28:08 +00007764 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007765 if( i>0 && d2!=depth ){
7766 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7767 }
7768 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007769 }
drh5eddca62001-06-30 21:53:53 +00007770 }
shaneh195475d2010-02-19 04:28:08 +00007771
drhda200cc2004-05-09 11:51:38 +00007772 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007773 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007774 sqlite3_snprintf(sizeof(zContext), zContext,
7775 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007776#ifndef SQLITE_OMIT_AUTOVACUUM
7777 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00007778 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007779 }
7780#endif
shaneh195475d2010-02-19 04:28:08 +00007781 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007782 }
drh5eddca62001-06-30 21:53:53 +00007783
shaneh195475d2010-02-19 04:28:08 +00007784 /* For intKey leaf pages, check that the min/max keys are in order
7785 ** with any left/parent/right pages.
7786 */
7787 if( pPage->leaf && pPage->intKey ){
7788 /* if we are a left child page */
7789 if( pnParentMinKey ){
7790 /* if we are the left most child page */
7791 if( !pnParentMaxKey ){
7792 if( nMaxKey > *pnParentMinKey ){
7793 checkAppendMsg(pCheck, zContext,
7794 "Rowid %lld out of order (max larger than parent min of %lld)",
7795 nMaxKey, *pnParentMinKey);
7796 }
7797 }else{
7798 if( nMinKey <= *pnParentMinKey ){
7799 checkAppendMsg(pCheck, zContext,
7800 "Rowid %lld out of order (min less than parent min of %lld)",
7801 nMinKey, *pnParentMinKey);
7802 }
7803 if( nMaxKey > *pnParentMaxKey ){
7804 checkAppendMsg(pCheck, zContext,
7805 "Rowid %lld out of order (max larger than parent max of %lld)",
7806 nMaxKey, *pnParentMaxKey);
7807 }
7808 *pnParentMinKey = nMaxKey;
7809 }
7810 /* else if we're a right child page */
7811 } else if( pnParentMaxKey ){
7812 if( nMinKey <= *pnParentMaxKey ){
7813 checkAppendMsg(pCheck, zContext,
7814 "Rowid %lld out of order (min less than parent max of %lld)",
7815 nMinKey, *pnParentMaxKey);
7816 }
7817 }
7818 }
7819
drh5eddca62001-06-30 21:53:53 +00007820 /* Check for complete coverage of the page
7821 */
drhda200cc2004-05-09 11:51:38 +00007822 data = pPage->aData;
7823 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007824 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007825 if( hit==0 ){
7826 pCheck->mallocFailed = 1;
7827 }else{
drh5d433ce2010-08-14 16:02:52 +00007828 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00007829 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00007830 memset(hit+contentOffset, 0, usableSize-contentOffset);
7831 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007832 nCell = get2byte(&data[hdr+3]);
7833 cellStart = hdr + 12 - 4*pPage->leaf;
7834 for(i=0; i<nCell; i++){
7835 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00007836 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00007837 int j;
drh8c2bbb62009-07-10 02:52:20 +00007838 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00007839 size = cellSizePtr(pPage, &data[pc]);
7840 }
drh43b18e12010-08-17 19:40:08 +00007841 if( (int)(pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00007842 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00007843 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00007844 }else{
7845 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7846 }
drh2e38c322004-09-03 18:38:44 +00007847 }
drh8c2bbb62009-07-10 02:52:20 +00007848 i = get2byte(&data[hdr+1]);
7849 while( i>0 ){
7850 int size, j;
7851 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
7852 size = get2byte(&data[i+2]);
7853 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
7854 for(j=i+size-1; j>=i; j--) hit[j]++;
7855 j = get2byte(&data[i]);
7856 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
7857 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
7858 i = j;
drh2e38c322004-09-03 18:38:44 +00007859 }
7860 for(i=cnt=0; i<usableSize; i++){
7861 if( hit[i]==0 ){
7862 cnt++;
7863 }else if( hit[i]>1 ){
7864 checkAppendMsg(pCheck, 0,
7865 "Multiple uses for byte %d of page %d", i, iPage);
7866 break;
7867 }
7868 }
7869 if( cnt!=data[hdr+7] ){
7870 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00007871 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00007872 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007873 }
7874 }
drh8c2bbb62009-07-10 02:52:20 +00007875 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00007876 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007877 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007878}
drhb7f91642004-10-31 02:22:47 +00007879#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007880
drhb7f91642004-10-31 02:22:47 +00007881#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007882/*
7883** This routine does a complete check of the given BTree file. aRoot[] is
7884** an array of pages numbers were each page number is the root page of
7885** a table. nRoot is the number of entries in aRoot.
7886**
danielk19773509a652009-07-06 18:56:13 +00007887** A read-only or read-write transaction must be opened before calling
7888** this function.
7889**
drhc890fec2008-08-01 20:10:08 +00007890** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007891** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007892** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007893** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007894*/
drh1dcdbc02007-01-27 02:24:54 +00007895char *sqlite3BtreeIntegrityCheck(
7896 Btree *p, /* The btree to be checked */
7897 int *aRoot, /* An array of root pages numbers for individual trees */
7898 int nRoot, /* Number of entries in aRoot[] */
7899 int mxErr, /* Stop reporting errors after this many */
7900 int *pnErr /* Write number of errors seen to this variable */
7901){
danielk197789d40042008-11-17 14:20:56 +00007902 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007903 int nRef;
drhaaab5722002-02-19 13:39:21 +00007904 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007905 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007906 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007907
drhd677b3d2007-08-20 22:48:41 +00007908 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00007909 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00007910 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00007911 sCheck.pBt = pBt;
7912 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00007913 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007914 sCheck.mxErr = mxErr;
7915 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007916 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007917 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007918 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00007919 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007920 return 0;
7921 }
drhe5ae5732008-06-15 02:51:47 +00007922 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007923 if( !sCheck.anRef ){
drh1dcdbc02007-01-27 02:24:54 +00007924 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007925 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007926 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007927 }
drhda200cc2004-05-09 11:51:38 +00007928 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007929 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007930 if( i<=sCheck.nPage ){
7931 sCheck.anRef[i] = 1;
7932 }
drhf089aa42008-07-08 19:34:06 +00007933 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drhb9755982010-07-24 16:34:37 +00007934 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00007935
7936 /* Check the integrity of the freelist
7937 */
drha34b6762004-05-07 13:30:42 +00007938 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7939 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007940
7941 /* Check all the tables.
7942 */
danielk197789d40042008-11-17 14:20:56 +00007943 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007944 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007945#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007946 if( pBt->autoVacuum && aRoot[i]>1 ){
7947 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7948 }
7949#endif
shaneh195475d2010-02-19 04:28:08 +00007950 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00007951 }
7952
7953 /* Make sure every page in the file is referenced
7954 */
drh1dcdbc02007-01-27 02:24:54 +00007955 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007956#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007957 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007958 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007959 }
danielk1977afcdd022004-10-31 16:25:42 +00007960#else
7961 /* If the database supports auto-vacuum, make sure no tables contain
7962 ** references to pointer-map pages.
7963 */
7964 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007965 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007966 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7967 }
7968 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007969 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007970 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7971 }
7972#endif
drh5eddca62001-06-30 21:53:53 +00007973 }
7974
drh64022502009-01-09 14:11:04 +00007975 /* Make sure this analysis did not leave any unref() pages.
7976 ** This is an internal consistency check; an integrity check
7977 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007978 */
drh64022502009-01-09 14:11:04 +00007979 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007980 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00007981 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00007982 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00007983 );
drh5eddca62001-06-30 21:53:53 +00007984 }
7985
7986 /* Clean up and report errors.
7987 */
drhd677b3d2007-08-20 22:48:41 +00007988 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00007989 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00007990 if( sCheck.mallocFailed ){
7991 sqlite3StrAccumReset(&sCheck.errMsg);
7992 *pnErr = sCheck.nErr+1;
7993 return 0;
7994 }
drh1dcdbc02007-01-27 02:24:54 +00007995 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00007996 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7997 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00007998}
drhb7f91642004-10-31 02:22:47 +00007999#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00008000
drh73509ee2003-04-06 20:44:45 +00008001/*
8002** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00008003**
8004** The pager filename is invariant as long as the pager is
8005** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00008006*/
danielk1977aef0bf62005-12-30 16:28:01 +00008007const char *sqlite3BtreeGetFilename(Btree *p){
8008 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008009 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00008010}
8011
8012/*
danielk19775865e3d2004-06-14 06:03:57 +00008013** Return the pathname of the journal file for this database. The return
8014** value of this routine is the same regardless of whether the journal file
8015** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00008016**
8017** The pager journal filename is invariant as long as the pager is
8018** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00008019*/
danielk1977aef0bf62005-12-30 16:28:01 +00008020const char *sqlite3BtreeGetJournalname(Btree *p){
8021 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008022 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00008023}
8024
danielk19771d850a72004-05-31 08:26:49 +00008025/*
8026** Return non-zero if a transaction is active.
8027*/
danielk1977aef0bf62005-12-30 16:28:01 +00008028int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00008029 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00008030 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00008031}
8032
dana550f2d2010-08-02 10:47:05 +00008033#ifndef SQLITE_OMIT_WAL
8034/*
8035** Run a checkpoint on the Btree passed as the first argument.
8036**
8037** Return SQLITE_LOCKED if this or any other connection has an open
8038** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00008039**
dancdc1f042010-11-18 12:11:05 +00008040** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00008041*/
dancdc1f042010-11-18 12:11:05 +00008042int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00008043 int rc = SQLITE_OK;
8044 if( p ){
8045 BtShared *pBt = p->pBt;
8046 sqlite3BtreeEnter(p);
8047 if( pBt->inTransaction!=TRANS_NONE ){
8048 rc = SQLITE_LOCKED;
8049 }else{
dancdc1f042010-11-18 12:11:05 +00008050 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00008051 }
8052 sqlite3BtreeLeave(p);
8053 }
8054 return rc;
8055}
8056#endif
8057
danielk19771d850a72004-05-31 08:26:49 +00008058/*
danielk19772372c2b2006-06-27 16:34:56 +00008059** Return non-zero if a read (or write) transaction is active.
8060*/
8061int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00008062 assert( p );
drhe5fe6902007-12-07 18:55:28 +00008063 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00008064 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00008065}
8066
danielk197704103022009-02-03 16:51:24 +00008067int sqlite3BtreeIsInBackup(Btree *p){
8068 assert( p );
8069 assert( sqlite3_mutex_held(p->db->mutex) );
8070 return p->nBackup!=0;
8071}
8072
danielk19772372c2b2006-06-27 16:34:56 +00008073/*
danielk1977da184232006-01-05 11:34:32 +00008074** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00008075** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00008076** purposes (for example, to store a high-level schema associated with
8077** the shared-btree). The btree layer manages reference counting issues.
8078**
8079** The first time this is called on a shared-btree, nBytes bytes of memory
8080** are allocated, zeroed, and returned to the caller. For each subsequent
8081** call the nBytes parameter is ignored and a pointer to the same blob
8082** of memory returned.
8083**
danielk1977171bfed2008-06-23 09:50:50 +00008084** If the nBytes parameter is 0 and the blob of memory has not yet been
8085** allocated, a null pointer is returned. If the blob has already been
8086** allocated, it is returned as normal.
8087**
danielk1977da184232006-01-05 11:34:32 +00008088** Just before the shared-btree is closed, the function passed as the
8089** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00008090** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00008091** on the memory, the btree layer does that.
8092*/
8093void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8094 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00008095 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00008096 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00008097 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00008098 pBt->xFreeSchema = xFree;
8099 }
drh27641702007-08-22 02:56:42 +00008100 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00008101 return pBt->pSchema;
8102}
8103
danielk1977c87d34d2006-01-06 13:00:28 +00008104/*
danielk1977404ca072009-03-16 13:19:36 +00008105** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8106** btree as the argument handle holds an exclusive lock on the
8107** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008108*/
8109int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008110 int rc;
drhe5fe6902007-12-07 18:55:28 +00008111 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008112 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008113 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8114 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008115 sqlite3BtreeLeave(p);
8116 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008117}
8118
drha154dcd2006-03-22 22:10:07 +00008119
8120#ifndef SQLITE_OMIT_SHARED_CACHE
8121/*
8122** Obtain a lock on the table whose root page is iTab. The
8123** lock is a write lock if isWritelock is true or a read lock
8124** if it is false.
8125*/
danielk1977c00da102006-01-07 13:21:04 +00008126int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008127 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008128 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00008129 if( p->sharable ){
8130 u8 lockType = READ_LOCK + isWriteLock;
8131 assert( READ_LOCK+1==WRITE_LOCK );
8132 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00008133
drh6a9ad3d2008-04-02 16:29:30 +00008134 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00008135 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008136 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00008137 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008138 }
8139 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00008140 }
8141 return rc;
8142}
drha154dcd2006-03-22 22:10:07 +00008143#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00008144
danielk1977b4e9af92007-05-01 17:49:49 +00008145#ifndef SQLITE_OMIT_INCRBLOB
8146/*
8147** Argument pCsr must be a cursor opened for writing on an
8148** INTKEY table currently pointing at a valid table entry.
8149** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00008150**
8151** Only the data content may only be modified, it is not possible to
8152** change the length of the data stored. If this function is called with
8153** parameters that attempt to write past the end of the existing data,
8154** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00008155*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008156int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008157 int rc;
drh1fee73e2007-08-29 04:00:57 +00008158 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008159 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00008160 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00008161
danielk1977c9000e62009-07-08 13:55:28 +00008162 rc = restoreCursorPosition(pCsr);
8163 if( rc!=SQLITE_OK ){
8164 return rc;
8165 }
danielk19773588ceb2008-06-10 17:30:26 +00008166 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8167 if( pCsr->eState!=CURSOR_VALID ){
8168 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008169 }
8170
danielk1977c9000e62009-07-08 13:55:28 +00008171 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008172 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008173 ** (b) there is a read/write transaction open,
8174 ** (c) the connection holds a write-lock on the table (if required),
8175 ** (d) there are no conflicting read-locks, and
8176 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008177 */
danielk19774f029602009-07-08 18:45:37 +00008178 if( !pCsr->wrFlag ){
8179 return SQLITE_READONLY;
8180 }
danielk197796d48e92009-06-29 06:00:37 +00008181 assert( !pCsr->pBt->readOnly && pCsr->pBt->inTransaction==TRANS_WRITE );
8182 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8183 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008184 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008185
drhfb192682009-07-11 18:26:28 +00008186 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008187}
danielk19772dec9702007-05-02 16:48:37 +00008188
8189/*
8190** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00008191** overflow list for the current row. This is used by cursors opened
8192** for incremental blob IO only.
8193**
8194** This function sets a flag only. The actual page location cache
8195** (stored in BtCursor.aOverflow[]) is allocated and used by function
8196** accessPayload() (the worker function for sqlite3BtreeData() and
8197** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00008198*/
8199void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00008200 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00008201 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan4e76cc32010-10-20 18:56:04 +00008202 invalidateOverflowCache(pCur);
danielk1977dcbb5d32007-05-04 18:36:44 +00008203 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00008204}
danielk1977b4e9af92007-05-01 17:49:49 +00008205#endif
dane04dc882010-04-20 18:53:15 +00008206
8207/*
8208** Set both the "read version" (single byte at byte offset 18) and
8209** "write version" (single byte at byte offset 19) fields in the database
8210** header to iVersion.
8211*/
8212int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8213 BtShared *pBt = pBtree->pBt;
8214 int rc; /* Return code */
8215
dane04dc882010-04-20 18:53:15 +00008216 assert( iVersion==1 || iVersion==2 );
8217
danb9780022010-04-21 18:37:57 +00008218 /* If setting the version fields to 1, do not automatically open the
8219 ** WAL connection, even if the version fields are currently set to 2.
8220 */
shaneh5eba1f62010-07-02 17:05:03 +00008221 pBt->doNotUseWAL = (u8)(iVersion==1);
danb9780022010-04-21 18:37:57 +00008222
8223 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008224 if( rc==SQLITE_OK ){
8225 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008226 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008227 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008228 if( rc==SQLITE_OK ){
8229 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8230 if( rc==SQLITE_OK ){
8231 aData[18] = (u8)iVersion;
8232 aData[19] = (u8)iVersion;
8233 }
8234 }
8235 }
dane04dc882010-04-20 18:53:15 +00008236 }
8237
danb9780022010-04-21 18:37:57 +00008238 pBt->doNotUseWAL = 0;
dane04dc882010-04-20 18:53:15 +00008239 return rc;
8240}