blob: 51136b95cb95b849f70a0769667ce40f11ae979b [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh35a25da2009-07-08 15:14:50 +000012** $Id: btree.c,v 1.661 2009/07/08 15:14:50 drh Exp $
drh8b2f49b2001-06-08 00:21:52 +000013**
14** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000015** See the header comment on "btreeInt.h" for additional information.
16** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000017*/
drha3152892007-05-05 11:48:52 +000018#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000019
drh8c42ca92001-06-22 19:15:00 +000020/*
drha3152892007-05-05 11:48:52 +000021** The header string that appears at the beginning of every
22** SQLite database.
drh556b2a22005-06-14 16:04:05 +000023*/
drh556b2a22005-06-14 16:04:05 +000024static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000025
drh8c42ca92001-06-22 19:15:00 +000026/*
drha3152892007-05-05 11:48:52 +000027** Set this global variable to 1 to enable tracing using the TRACE
28** macro.
drh615ae552005-01-16 23:21:00 +000029*/
drhe8f52c52008-07-12 14:52:20 +000030#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000031int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000032# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
33#else
34# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000035#endif
drh615ae552005-01-16 23:21:00 +000036
drh86f8c192007-08-22 00:39:19 +000037
38
drhe53831d2007-08-17 01:14:38 +000039#ifndef SQLITE_OMIT_SHARED_CACHE
40/*
danielk1977502b4e02008-09-02 14:07:24 +000041** A list of BtShared objects that are eligible for participation
42** in shared cache. This variable has file scope during normal builds,
43** but the test harness needs to access it so we make it global for
44** test builds.
drh7555d8e2009-03-20 13:15:30 +000045**
46** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000047*/
48#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000049BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000050#else
drh78f82d12008-09-02 00:52:52 +000051static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000052#endif
drhe53831d2007-08-17 01:14:38 +000053#endif /* SQLITE_OMIT_SHARED_CACHE */
54
55#ifndef SQLITE_OMIT_SHARED_CACHE
56/*
57** Enable or disable the shared pager and schema features.
58**
59** This routine has no effect on existing database connections.
60** The shared cache setting effects only future calls to
61** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
62*/
63int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000064 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000065 return SQLITE_OK;
66}
67#endif
68
drhd677b3d2007-08-20 22:48:41 +000069
danielk1977aef0bf62005-12-30 16:28:01 +000070
71#ifdef SQLITE_OMIT_SHARED_CACHE
72 /*
drhc25eabe2009-02-24 18:57:31 +000073 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
74 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000075 ** manipulate entries in the BtShared.pLock linked list used to store
76 ** shared-cache table level locks. If the library is compiled with the
77 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000078 ** of each BtShared structure and so this locking is not necessary.
79 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000080 */
drhc25eabe2009-02-24 18:57:31 +000081 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
82 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
83 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000084 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000085 #define hasSharedCacheTableLock(a,b,c,d) 1
86 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000087#endif
danielk1977aef0bf62005-12-30 16:28:01 +000088
drhe53831d2007-08-17 01:14:38 +000089#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000090
91#ifdef SQLITE_DEBUG
92/*
93** This function is only used as part of an assert() statement. It checks
94** that connection p holds the required locks to read or write to the
95** b-tree with root page iRoot. If so, true is returned. Otherwise, false.
96** For example, when writing to a table b-tree with root-page iRoot via
97** Btree connection pBtree:
98**
99** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
100**
101** When writing to an index b-tree that resides in a sharable database, the
102** caller should have first obtained a lock specifying the root page of
103** the corresponding table b-tree. This makes things a bit more complicated,
104** as this module treats each b-tree as a separate structure. To determine
105** the table b-tree corresponding to the index b-tree being written, this
106** function has to search through the database schema.
107**
108** Instead of a lock on the b-tree rooted at page iRoot, the caller may
109** hold a write-lock on the schema table (root page 1). This is also
110** acceptable.
111*/
112static int hasSharedCacheTableLock(
113 Btree *pBtree, /* Handle that must hold lock */
114 Pgno iRoot, /* Root page of b-tree */
115 int isIndex, /* True if iRoot is the root of an index b-tree */
116 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
117){
118 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
119 Pgno iTab = 0;
120 BtLock *pLock;
121
122 /* If this b-tree database is not shareable, or if the client is reading
123 ** and has the read-uncommitted flag set, then no lock is required.
124 ** In these cases return true immediately. If the client is reading
125 ** or writing an index b-tree, but the schema is not loaded, then return
126 ** true also. In this case the lock is required, but it is too difficult
127 ** to check if the client actually holds it. This doesn't happen very
128 ** often. */
129 if( (pBtree->sharable==0)
130 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
131 || (isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0 ))
132 ){
133 return 1;
134 }
135
136 /* Figure out the root-page that the lock should be held on. For table
137 ** b-trees, this is just the root page of the b-tree being read or
138 ** written. For index b-trees, it is the root page of the associated
139 ** table. */
140 if( isIndex ){
141 HashElem *p;
142 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
143 Index *pIdx = (Index *)sqliteHashData(p);
144 if( pIdx->tnum==iRoot ){
145 iTab = pIdx->pTable->tnum;
146 }
147 }
148 }else{
149 iTab = iRoot;
150 }
151
152 /* Search for the required lock. Either a write-lock on root-page iTab, a
153 ** write-lock on the schema table, or (if the client is reading) a
154 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
155 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
156 if( pLock->pBtree==pBtree
157 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
158 && pLock->eLock>=eLockType
159 ){
160 return 1;
161 }
162 }
163
164 /* Failed to find the required lock. */
165 return 0;
166}
167
168/*
169** This function is also used as part of assert() statements only. It
170** returns true if there exist one or more cursors open on the table
171** with root page iRoot that do not belong to either connection pBtree
172** or some other connection that has the read-uncommitted flag set.
173**
174** For example, before writing to page iRoot:
175**
176** assert( !hasReadConflicts(pBtree, iRoot) );
177*/
178static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
179 BtCursor *p;
180 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
181 if( p->pgnoRoot==iRoot
182 && p->pBtree!=pBtree
183 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
184 ){
185 return 1;
186 }
187 }
188 return 0;
189}
190#endif /* #ifdef SQLITE_DEBUG */
191
danielk1977da184232006-01-05 11:34:32 +0000192/*
danielk1977aef0bf62005-12-30 16:28:01 +0000193** Query to see if btree handle p may obtain a lock of type eLock
194** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000195** SQLITE_OK if the lock may be obtained (by calling
196** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000197*/
drhc25eabe2009-02-24 18:57:31 +0000198static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000199 BtShared *pBt = p->pBt;
200 BtLock *pIter;
201
drh1fee73e2007-08-29 04:00:57 +0000202 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000203 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
204 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000205 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000206
danielk19775b413d72009-04-01 09:41:54 +0000207 /* If requesting a write-lock, then the Btree must have an open write
208 ** transaction on this file. And, obviously, for this to be so there
209 ** must be an open write transaction on the file itself.
210 */
211 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
212 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
213
danielk1977da184232006-01-05 11:34:32 +0000214 /* This is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000215 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000216 return SQLITE_OK;
217 }
218
danielk1977641b0f42007-12-21 04:47:25 +0000219 /* If some other connection is holding an exclusive lock, the
220 ** requested lock may not be obtained.
221 */
danielk1977404ca072009-03-16 13:19:36 +0000222 if( pBt->pWriter!=p && pBt->isExclusive ){
223 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
224 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000225 }
226
danielk1977e0d9e6f2009-07-03 16:25:06 +0000227 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
228 /* The condition (pIter->eLock!=eLock) in the following if(...)
229 ** statement is a simplification of:
230 **
231 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
232 **
233 ** since we know that if eLock==WRITE_LOCK, then no other connection
234 ** may hold a WRITE_LOCK on any table in this file (since there can
235 ** only be a single writer).
236 */
237 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
238 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
239 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
240 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
241 if( eLock==WRITE_LOCK ){
242 assert( p==pBt->pWriter );
243 pBt->isPending = 1;
danielk1977da184232006-01-05 11:34:32 +0000244 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000245 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000246 }
247 }
248 return SQLITE_OK;
249}
drhe53831d2007-08-17 01:14:38 +0000250#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000251
drhe53831d2007-08-17 01:14:38 +0000252#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000253/*
254** Add a lock on the table with root-page iTable to the shared-btree used
255** by Btree handle p. Parameter eLock must be either READ_LOCK or
256** WRITE_LOCK.
257**
258** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
259** SQLITE_NOMEM may also be returned.
260*/
drhc25eabe2009-02-24 18:57:31 +0000261static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000262 BtShared *pBt = p->pBt;
263 BtLock *pLock = 0;
264 BtLock *pIter;
265
drh1fee73e2007-08-29 04:00:57 +0000266 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000267 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
268 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000269
danielk1977e0d9e6f2009-07-03 16:25:06 +0000270 /* A connection with the read-uncommitted flag set will never try to
271 ** obtain a read-lock using this function. The only read-lock obtained
272 ** by a connection in read-uncommitted mode is on the sqlite_master
273 ** table, and that lock is obtained in BtreeBeginTrans(). */
274 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
275
danielk1977da184232006-01-05 11:34:32 +0000276 /* This is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000277 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000278 return SQLITE_OK;
279 }
280
drhc25eabe2009-02-24 18:57:31 +0000281 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000282
283 /* First search the list for an existing lock on this table. */
284 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
285 if( pIter->iTable==iTable && pIter->pBtree==p ){
286 pLock = pIter;
287 break;
288 }
289 }
290
291 /* If the above search did not find a BtLock struct associating Btree p
292 ** with table iTable, allocate one and link it into the list.
293 */
294 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000295 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000296 if( !pLock ){
297 return SQLITE_NOMEM;
298 }
299 pLock->iTable = iTable;
300 pLock->pBtree = p;
301 pLock->pNext = pBt->pLock;
302 pBt->pLock = pLock;
303 }
304
305 /* Set the BtLock.eLock variable to the maximum of the current lock
306 ** and the requested lock. This means if a write-lock was already held
307 ** and a read-lock requested, we don't incorrectly downgrade the lock.
308 */
309 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000310 if( eLock>pLock->eLock ){
311 pLock->eLock = eLock;
312 }
danielk1977aef0bf62005-12-30 16:28:01 +0000313
314 return SQLITE_OK;
315}
drhe53831d2007-08-17 01:14:38 +0000316#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000317
drhe53831d2007-08-17 01:14:38 +0000318#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000319/*
drhc25eabe2009-02-24 18:57:31 +0000320** Release all the table locks (locks obtained via calls to
321** the setSharedCacheTableLock() procedure) held by Btree handle p.
danielk1977fa542f12009-04-02 18:28:08 +0000322**
323** This function assumes that handle p has an open read or write
324** transaction. If it does not, then the BtShared.isPending variable
325** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000326*/
drhc25eabe2009-02-24 18:57:31 +0000327static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000328 BtShared *pBt = p->pBt;
329 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000330
drh1fee73e2007-08-29 04:00:57 +0000331 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000332 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000333 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000334
danielk1977aef0bf62005-12-30 16:28:01 +0000335 while( *ppIter ){
336 BtLock *pLock = *ppIter;
danielk1977404ca072009-03-16 13:19:36 +0000337 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000338 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000339 if( pLock->pBtree==p ){
340 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000341 assert( pLock->iTable!=1 || pLock==&p->lock );
342 if( pLock->iTable!=1 ){
343 sqlite3_free(pLock);
344 }
danielk1977aef0bf62005-12-30 16:28:01 +0000345 }else{
346 ppIter = &pLock->pNext;
347 }
348 }
danielk1977641b0f42007-12-21 04:47:25 +0000349
danielk1977404ca072009-03-16 13:19:36 +0000350 assert( pBt->isPending==0 || pBt->pWriter );
351 if( pBt->pWriter==p ){
352 pBt->pWriter = 0;
353 pBt->isExclusive = 0;
354 pBt->isPending = 0;
355 }else if( pBt->nTransaction==2 ){
356 /* This function is called when connection p is concluding its
357 ** transaction. If there currently exists a writer, and p is not
358 ** that writer, then the number of locks held by connections other
359 ** than the writer must be about to drop to zero. In this case
360 ** set the isPending flag to 0.
361 **
362 ** If there is not currently a writer, then BtShared.isPending must
363 ** be zero already. So this next line is harmless in that case.
364 */
365 pBt->isPending = 0;
danielk1977641b0f42007-12-21 04:47:25 +0000366 }
danielk1977aef0bf62005-12-30 16:28:01 +0000367}
danielk197794b30732009-07-02 17:21:57 +0000368
danielk1977e0d9e6f2009-07-03 16:25:06 +0000369/*
370** This function changes all write-locks held by connection p to read-locks.
371*/
danielk197794b30732009-07-02 17:21:57 +0000372static void downgradeAllSharedCacheTableLocks(Btree *p){
373 BtShared *pBt = p->pBt;
374 if( pBt->pWriter==p ){
375 BtLock *pLock;
376 pBt->pWriter = 0;
377 pBt->isExclusive = 0;
378 pBt->isPending = 0;
379 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
380 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
381 pLock->eLock = READ_LOCK;
382 }
383 }
384}
385
danielk1977aef0bf62005-12-30 16:28:01 +0000386#endif /* SQLITE_OMIT_SHARED_CACHE */
387
drh980b1a72006-08-16 16:42:48 +0000388static void releasePage(MemPage *pPage); /* Forward reference */
389
drh1fee73e2007-08-29 04:00:57 +0000390/*
391** Verify that the cursor holds a mutex on the BtShared
392*/
393#ifndef NDEBUG
394static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000395 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000396}
397#endif
398
399
danielk197792d4d7a2007-05-04 12:05:56 +0000400#ifndef SQLITE_OMIT_INCRBLOB
401/*
402** Invalidate the overflow page-list cache for cursor pCur, if any.
403*/
404static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000405 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000406 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000407 pCur->aOverflow = 0;
408}
409
410/*
411** Invalidate the overflow page-list cache for all cursors opened
412** on the shared btree structure pBt.
413*/
414static void invalidateAllOverflowCache(BtShared *pBt){
415 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000416 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000417 for(p=pBt->pCursor; p; p=p->pNext){
418 invalidateOverflowCache(p);
419 }
420}
danielk197796d48e92009-06-29 06:00:37 +0000421
422/*
423** This function is called before modifying the contents of a table
424** b-tree to invalidate any incrblob cursors that are open on the
425** row or one of the rows being modified. Argument pgnoRoot is the
426** root-page of the table b-tree.
427**
428** If argument isClearTable is true, then the entire contents of the
429** table is about to be deleted. In this case invalidate all incrblob
430** cursors open on any row within the table with root-page pgnoRoot.
431**
432** Otherwise, if argument isClearTable is false, then the row with
433** rowid iRow is being replaced or deleted. In this case invalidate
434** only those incrblob cursors open on this specific row.
435*/
436static void invalidateIncrblobCursors(
437 Btree *pBtree, /* The database file to check */
438 Pgno pgnoRoot, /* Look for read cursors on this btree */
439 i64 iRow, /* The rowid that might be changing */
440 int isClearTable /* True if all rows are being deleted */
441){
442 BtCursor *p;
443 BtShared *pBt = pBtree->pBt;
444 assert( sqlite3BtreeHoldsMutex(pBtree) );
445 for(p=pBt->pCursor; p; p=p->pNext){
446 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
447 p->eState = CURSOR_INVALID;
448 }
449 }
450}
451
danielk197792d4d7a2007-05-04 12:05:56 +0000452#else
453 #define invalidateOverflowCache(x)
454 #define invalidateAllOverflowCache(x)
danielk197796d48e92009-06-29 06:00:37 +0000455 #define invalidateIncrblobCursors(w,x,y,z)
danielk197792d4d7a2007-05-04 12:05:56 +0000456#endif
457
drh980b1a72006-08-16 16:42:48 +0000458/*
danielk1977bea2a942009-01-20 17:06:27 +0000459** Set bit pgno of the BtShared.pHasContent bitvec. This is called
460** when a page that previously contained data becomes a free-list leaf
461** page.
462**
463** The BtShared.pHasContent bitvec exists to work around an obscure
464** bug caused by the interaction of two useful IO optimizations surrounding
465** free-list leaf pages:
466**
467** 1) When all data is deleted from a page and the page becomes
468** a free-list leaf page, the page is not written to the database
469** (as free-list leaf pages contain no meaningful data). Sometimes
470** such a page is not even journalled (as it will not be modified,
471** why bother journalling it?).
472**
473** 2) When a free-list leaf page is reused, its content is not read
474** from the database or written to the journal file (why should it
475** be, if it is not at all meaningful?).
476**
477** By themselves, these optimizations work fine and provide a handy
478** performance boost to bulk delete or insert operations. However, if
479** a page is moved to the free-list and then reused within the same
480** transaction, a problem comes up. If the page is not journalled when
481** it is moved to the free-list and it is also not journalled when it
482** is extracted from the free-list and reused, then the original data
483** may be lost. In the event of a rollback, it may not be possible
484** to restore the database to its original configuration.
485**
486** The solution is the BtShared.pHasContent bitvec. Whenever a page is
487** moved to become a free-list leaf page, the corresponding bit is
488** set in the bitvec. Whenever a leaf page is extracted from the free-list,
489** optimization 2 above is ommitted if the corresponding bit is already
490** set in BtShared.pHasContent. The contents of the bitvec are cleared
491** at the end of every transaction.
492*/
493static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
494 int rc = SQLITE_OK;
495 if( !pBt->pHasContent ){
496 int nPage;
497 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
498 if( rc==SQLITE_OK ){
499 pBt->pHasContent = sqlite3BitvecCreate((u32)nPage);
500 if( !pBt->pHasContent ){
501 rc = SQLITE_NOMEM;
502 }
503 }
504 }
505 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
506 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
507 }
508 return rc;
509}
510
511/*
512** Query the BtShared.pHasContent vector.
513**
514** This function is called when a free-list leaf page is removed from the
515** free-list for reuse. It returns false if it is safe to retrieve the
516** page from the pager layer with the 'no-content' flag set. True otherwise.
517*/
518static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
519 Bitvec *p = pBt->pHasContent;
520 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
521}
522
523/*
524** Clear (destroy) the BtShared.pHasContent bitvec. This should be
525** invoked at the conclusion of each write-transaction.
526*/
527static void btreeClearHasContent(BtShared *pBt){
528 sqlite3BitvecDestroy(pBt->pHasContent);
529 pBt->pHasContent = 0;
530}
531
532/*
drh980b1a72006-08-16 16:42:48 +0000533** Save the current cursor position in the variables BtCursor.nKey
534** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
535*/
536static int saveCursorPosition(BtCursor *pCur){
537 int rc;
538
539 assert( CURSOR_VALID==pCur->eState );
540 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000541 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000542
543 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
544
545 /* If this is an intKey table, then the above call to BtreeKeySize()
546 ** stores the integer key in pCur->nKey. In this case this value is
547 ** all that is required. Otherwise, if pCur is not open on an intKey
548 ** table, then malloc space for and store the pCur->nKey bytes of key
549 ** data.
550 */
danielk197771d5d2c2008-09-29 11:49:47 +0000551 if( rc==SQLITE_OK && 0==pCur->apPage[0]->intKey){
drhf49661a2008-12-10 16:45:50 +0000552 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000553 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000554 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000555 if( rc==SQLITE_OK ){
556 pCur->pKey = pKey;
557 }else{
drh17435752007-08-16 04:30:38 +0000558 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000559 }
560 }else{
561 rc = SQLITE_NOMEM;
562 }
563 }
danielk197771d5d2c2008-09-29 11:49:47 +0000564 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000565
566 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000567 int i;
568 for(i=0; i<=pCur->iPage; i++){
569 releasePage(pCur->apPage[i]);
570 pCur->apPage[i] = 0;
571 }
572 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000573 pCur->eState = CURSOR_REQUIRESEEK;
574 }
575
danielk197792d4d7a2007-05-04 12:05:56 +0000576 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000577 return rc;
578}
579
580/*
581** Save the positions of all cursors except pExcept open on the table
582** with root-page iRoot. Usually, this is called just before cursor
583** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
584*/
585static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
586 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000587 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000588 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000589 for(p=pBt->pCursor; p; p=p->pNext){
590 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
591 p->eState==CURSOR_VALID ){
592 int rc = saveCursorPosition(p);
593 if( SQLITE_OK!=rc ){
594 return rc;
595 }
596 }
597 }
598 return SQLITE_OK;
599}
600
601/*
drhbf700f32007-03-31 02:36:44 +0000602** Clear the current cursor position.
603*/
danielk1977be51a652008-10-08 17:58:48 +0000604void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000605 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000606 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000607 pCur->pKey = 0;
608 pCur->eState = CURSOR_INVALID;
609}
610
611/*
danielk19773509a652009-07-06 18:56:13 +0000612** In this version of BtreeMoveto, pKey is a packed index record
613** such as is generated by the OP_MakeRecord opcode. Unpack the
614** record and then call BtreeMovetoUnpacked() to do the work.
615*/
616static int btreeMoveto(
617 BtCursor *pCur, /* Cursor open on the btree to be searched */
618 const void *pKey, /* Packed key if the btree is an index */
619 i64 nKey, /* Integer key for tables. Size of pKey for indices */
620 int bias, /* Bias search to the high end */
621 int *pRes /* Write search results here */
622){
623 int rc; /* Status code */
624 UnpackedRecord *pIdxKey; /* Unpacked index key */
625 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
626
627 if( pKey ){
628 assert( nKey==(i64)(int)nKey );
629 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
630 aSpace, sizeof(aSpace));
631 if( pIdxKey==0 ) return SQLITE_NOMEM;
632 }else{
633 pIdxKey = 0;
634 }
635 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
636 if( pKey ){
637 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
638 }
639 return rc;
640}
641
642/*
drh980b1a72006-08-16 16:42:48 +0000643** Restore the cursor to the position it was in (or as close to as possible)
644** when saveCursorPosition() was called. Note that this call deletes the
645** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000646** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000647** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000648*/
drha3460582008-07-11 21:02:53 +0000649int sqlite3BtreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000650 int rc;
drh1fee73e2007-08-29 04:00:57 +0000651 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000652 assert( pCur->eState>=CURSOR_REQUIRESEEK );
653 if( pCur->eState==CURSOR_FAULT ){
654 return pCur->skip;
655 }
drh980b1a72006-08-16 16:42:48 +0000656 pCur->eState = CURSOR_INVALID;
danielk19773509a652009-07-06 18:56:13 +0000657 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skip);
drh980b1a72006-08-16 16:42:48 +0000658 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000659 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000660 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000661 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000662 }
663 return rc;
664}
665
drha3460582008-07-11 21:02:53 +0000666#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000667 (p->eState>=CURSOR_REQUIRESEEK ? \
drha3460582008-07-11 21:02:53 +0000668 sqlite3BtreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000669 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000670
drha3460582008-07-11 21:02:53 +0000671/*
672** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000673** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000674** at is deleted out from under them.
675**
676** This routine returns an error code if something goes wrong. The
677** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
678*/
679int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
680 int rc;
681
682 rc = restoreCursorPosition(pCur);
683 if( rc ){
684 *pHasMoved = 1;
685 return rc;
686 }
687 if( pCur->eState!=CURSOR_VALID || pCur->skip!=0 ){
688 *pHasMoved = 1;
689 }else{
690 *pHasMoved = 0;
691 }
692 return SQLITE_OK;
693}
694
danielk1977599fcba2004-11-08 07:13:13 +0000695#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000696/*
drha3152892007-05-05 11:48:52 +0000697** Given a page number of a regular database page, return the page
698** number for the pointer-map page that contains the entry for the
699** input page number.
danielk1977afcdd022004-10-31 16:25:42 +0000700*/
danielk1977266664d2006-02-10 08:24:21 +0000701static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000702 int nPagesPerMapPage;
703 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000704 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000705 nPagesPerMapPage = (pBt->usableSize/5)+1;
706 iPtrMap = (pgno-2)/nPagesPerMapPage;
707 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000708 if( ret==PENDING_BYTE_PAGE(pBt) ){
709 ret++;
710 }
711 return ret;
712}
danielk1977a19df672004-11-03 11:37:07 +0000713
danielk1977afcdd022004-10-31 16:25:42 +0000714/*
danielk1977afcdd022004-10-31 16:25:42 +0000715** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000716**
717** This routine updates the pointer map entry for page number 'key'
718** so that it maps to type 'eType' and parent page number 'pgno'.
719** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000720*/
danielk1977aef0bf62005-12-30 16:28:01 +0000721static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
danielk19773b8a05f2007-03-19 17:44:26 +0000722 DbPage *pDbPage; /* The pointer map page */
723 u8 *pPtrmap; /* The pointer map data */
724 Pgno iPtrmap; /* The pointer map page number */
725 int offset; /* Offset in pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000726 int rc;
727
drh1fee73e2007-08-29 04:00:57 +0000728 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000729 /* The master-journal page number must never be used as a pointer map page */
730 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
731
danielk1977ac11ee62005-01-15 12:45:51 +0000732 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000733 if( key==0 ){
drh49285702005-09-17 15:20:26 +0000734 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000735 }
danielk1977266664d2006-02-10 08:24:21 +0000736 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000737 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000738 if( rc!=SQLITE_OK ){
danielk1977afcdd022004-10-31 16:25:42 +0000739 return rc;
740 }
danielk19778c666b12008-07-18 09:34:57 +0000741 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000742 if( offset<0 ){
drh4925a552009-07-07 11:39:58 +0000743 rc = SQLITE_CORRUPT_BKPT;
744 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000745 }
danielk19773b8a05f2007-03-19 17:44:26 +0000746 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000747
drh615ae552005-01-16 23:21:00 +0000748 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
749 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
danielk19773b8a05f2007-03-19 17:44:26 +0000750 rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000751 if( rc==SQLITE_OK ){
752 pPtrmap[offset] = eType;
753 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000754 }
danielk1977afcdd022004-10-31 16:25:42 +0000755 }
756
drh4925a552009-07-07 11:39:58 +0000757ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000758 sqlite3PagerUnref(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000759 return rc;
danielk1977afcdd022004-10-31 16:25:42 +0000760}
761
762/*
763** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000764**
765** This routine retrieves the pointer map entry for page 'key', writing
766** the type and parent page number to *pEType and *pPgno respectively.
767** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000768*/
danielk1977aef0bf62005-12-30 16:28:01 +0000769static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000770 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000771 int iPtrmap; /* Pointer map page index */
772 u8 *pPtrmap; /* Pointer map page data */
773 int offset; /* Offset of entry in pointer map */
774 int rc;
775
drh1fee73e2007-08-29 04:00:57 +0000776 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000777
danielk1977266664d2006-02-10 08:24:21 +0000778 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000779 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000780 if( rc!=0 ){
781 return rc;
782 }
danielk19773b8a05f2007-03-19 17:44:26 +0000783 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000784
danielk19778c666b12008-07-18 09:34:57 +0000785 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drh43617e92006-03-06 20:55:46 +0000786 assert( pEType!=0 );
787 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000788 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000789
danielk19773b8a05f2007-03-19 17:44:26 +0000790 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000791 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000792 return SQLITE_OK;
793}
794
danielk197785d90ca2008-07-19 14:25:15 +0000795#else /* if defined SQLITE_OMIT_AUTOVACUUM */
796 #define ptrmapPut(w,x,y,z) SQLITE_OK
797 #define ptrmapGet(w,x,y,z) SQLITE_OK
danielk1977325ccfa2009-07-02 05:23:25 +0000798 #define ptrmapPutOvflPtr(x, y) SQLITE_OK
danielk197785d90ca2008-07-19 14:25:15 +0000799#endif
danielk1977afcdd022004-10-31 16:25:42 +0000800
drh0d316a42002-08-11 20:10:47 +0000801/*
drh271efa52004-05-30 19:19:05 +0000802** Given a btree page and a cell index (0 means the first cell on
803** the page, 1 means the second cell, and so forth) return a pointer
804** to the cell content.
805**
806** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000807*/
drh1688c862008-07-18 02:44:17 +0000808#define findCell(P,I) \
809 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
drh43605152004-05-29 21:46:49 +0000810
811/*
drh93a960a2008-07-10 00:32:42 +0000812** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000813** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000814*/
815static u8 *findOverflowCell(MemPage *pPage, int iCell){
816 int i;
drh1fee73e2007-08-29 04:00:57 +0000817 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000818 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000819 int k;
820 struct _OvflCell *pOvfl;
821 pOvfl = &pPage->aOvfl[i];
822 k = pOvfl->idx;
823 if( k<=iCell ){
824 if( k==iCell ){
825 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000826 }
827 iCell--;
828 }
829 }
danielk19771cc5ed82007-05-16 17:28:43 +0000830 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000831}
832
833/*
834** Parse a cell content block and fill in the CellInfo structure. There
drh16a9b832007-05-05 18:39:25 +0000835** are two versions of this function. sqlite3BtreeParseCell() takes a
836** cell index as the second argument and sqlite3BtreeParseCellPtr()
837** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000838**
839** Within this file, the parseCell() macro can be called instead of
840** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000841*/
drh16a9b832007-05-05 18:39:25 +0000842void sqlite3BtreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000843 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000844 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000845 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000846){
drhf49661a2008-12-10 16:45:50 +0000847 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000848 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000849
drh1fee73e2007-08-29 04:00:57 +0000850 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000851
drh43605152004-05-29 21:46:49 +0000852 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000853 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000854 n = pPage->childPtrSize;
855 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000856 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000857 if( pPage->hasData ){
858 n += getVarint32(&pCell[n], nPayload);
859 }else{
860 nPayload = 0;
861 }
drh1bd10f82008-12-10 21:19:56 +0000862 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000863 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000864 }else{
drh79df1f42008-07-18 00:57:33 +0000865 pInfo->nData = 0;
866 n += getVarint32(&pCell[n], nPayload);
867 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000868 }
drh72365832007-03-06 15:53:44 +0000869 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000870 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000871 testcase( nPayload==pPage->maxLocal );
872 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000873 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000874 /* This is the (easy) common case where the entire payload fits
875 ** on the local page. No overflow is required.
876 */
877 int nSize; /* Total size of cell content in bytes */
drh79df1f42008-07-18 00:57:33 +0000878 nSize = nPayload + n;
drhf49661a2008-12-10 16:45:50 +0000879 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000880 pInfo->iOverflow = 0;
drh79df1f42008-07-18 00:57:33 +0000881 if( (nSize & ~3)==0 ){
drh271efa52004-05-30 19:19:05 +0000882 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000883 }
drh1bd10f82008-12-10 21:19:56 +0000884 pInfo->nSize = (u16)nSize;
drh6f11bef2004-05-13 01:12:56 +0000885 }else{
drh271efa52004-05-30 19:19:05 +0000886 /* If the payload will not fit completely on the local page, we have
887 ** to decide how much to store locally and how much to spill onto
888 ** overflow pages. The strategy is to minimize the amount of unused
889 ** space on overflow pages while keeping the amount of local storage
890 ** in between minLocal and maxLocal.
891 **
892 ** Warning: changing the way overflow payload is distributed in any
893 ** way will result in an incompatible file format.
894 */
895 int minLocal; /* Minimum amount of payload held locally */
896 int maxLocal; /* Maximum amount of payload held locally */
897 int surplus; /* Overflow payload available for local storage */
898
899 minLocal = pPage->minLocal;
900 maxLocal = pPage->maxLocal;
901 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000902 testcase( surplus==maxLocal );
903 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000904 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000905 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000906 }else{
drhf49661a2008-12-10 16:45:50 +0000907 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000908 }
drhf49661a2008-12-10 16:45:50 +0000909 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000910 pInfo->nSize = pInfo->iOverflow + 4;
911 }
drh3aac2dd2004-04-26 14:10:20 +0000912}
danielk19771cc5ed82007-05-16 17:28:43 +0000913#define parseCell(pPage, iCell, pInfo) \
914 sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
drh16a9b832007-05-05 18:39:25 +0000915void sqlite3BtreeParseCell(
drh43605152004-05-29 21:46:49 +0000916 MemPage *pPage, /* Page containing the cell */
917 int iCell, /* The cell index. First cell is 0 */
918 CellInfo *pInfo /* Fill in this structure */
919){
danielk19771cc5ed82007-05-16 17:28:43 +0000920 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000921}
drh3aac2dd2004-04-26 14:10:20 +0000922
923/*
drh43605152004-05-29 21:46:49 +0000924** Compute the total number of bytes that a Cell needs in the cell
925** data area of the btree-page. The return number includes the cell
926** data header and the local payload, but not any overflow page or
927** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000928*/
danielk1977ae5558b2009-04-29 11:31:47 +0000929static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
930 u8 *pIter = &pCell[pPage->childPtrSize];
931 u32 nSize;
932
933#ifdef SQLITE_DEBUG
934 /* The value returned by this function should always be the same as
935 ** the (CellInfo.nSize) value found by doing a full parse of the
936 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
937 ** this function verifies that this invariant is not violated. */
938 CellInfo debuginfo;
939 sqlite3BtreeParseCellPtr(pPage, pCell, &debuginfo);
940#endif
941
942 if( pPage->intKey ){
943 u8 *pEnd;
944 if( pPage->hasData ){
945 pIter += getVarint32(pIter, nSize);
946 }else{
947 nSize = 0;
948 }
949
950 /* pIter now points at the 64-bit integer key value, a variable length
951 ** integer. The following block moves pIter to point at the first byte
952 ** past the end of the key value. */
953 pEnd = &pIter[9];
954 while( (*pIter++)&0x80 && pIter<pEnd );
955 }else{
956 pIter += getVarint32(pIter, nSize);
957 }
958
drh0a45c272009-07-08 01:49:11 +0000959 testcase( nSize==pPage->maxLocal );
960 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +0000961 if( nSize>pPage->maxLocal ){
962 int minLocal = pPage->minLocal;
963 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000964 testcase( nSize==pPage->maxLocal );
965 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +0000966 if( nSize>pPage->maxLocal ){
967 nSize = minLocal;
968 }
969 nSize += 4;
970 }
shane75ac1de2009-06-09 18:58:52 +0000971 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +0000972
973 /* The minimum size of any cell is 4 bytes. */
974 if( nSize<4 ){
975 nSize = 4;
976 }
977
978 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +0000979 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +0000980}
danielk1977bc6ada42004-06-30 08:20:16 +0000981#ifndef NDEBUG
drha9121e42008-02-19 14:59:35 +0000982static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +0000983 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +0000984}
danielk1977bc6ada42004-06-30 08:20:16 +0000985#endif
drh3b7511c2001-05-26 13:15:44 +0000986
danielk197779a40da2005-01-16 08:00:01 +0000987#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +0000988/*
danielk197726836652005-01-17 01:33:13 +0000989** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +0000990** to an overflow page, insert an entry into the pointer-map
991** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +0000992*/
danielk197726836652005-01-17 01:33:13 +0000993static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
drhfa67c3c2008-07-11 02:21:40 +0000994 CellInfo info;
995 assert( pCell!=0 );
996 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
997 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +0000998 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +0000999 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
1000 return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
danielk1977ac11ee62005-01-15 12:45:51 +00001001 }
danielk197779a40da2005-01-16 08:00:01 +00001002 return SQLITE_OK;
danielk1977ac11ee62005-01-15 12:45:51 +00001003}
danielk197779a40da2005-01-16 08:00:01 +00001004#endif
1005
danielk1977ac11ee62005-01-15 12:45:51 +00001006
drhda200cc2004-05-09 11:51:38 +00001007/*
drh72f82862001-05-24 21:06:34 +00001008** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001009** end of the page and all free space is collected into one
1010** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001011** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001012*/
shane0af3f892008-11-12 04:55:34 +00001013static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001014 int i; /* Loop counter */
1015 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001016 int hdr; /* Offset to the page header */
1017 int size; /* Size of a cell */
1018 int usableSize; /* Number of usable bytes on a page */
1019 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001020 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001021 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001022 unsigned char *data; /* The page data */
1023 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001024 int iCellFirst; /* First allowable cell index */
1025 int iCellLast; /* Last possible cell index */
1026
drh2af926b2001-05-15 00:39:25 +00001027
danielk19773b8a05f2007-03-19 17:44:26 +00001028 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001029 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001030 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001031 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001032 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001033 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001034 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001035 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001036 cellOffset = pPage->cellOffset;
1037 nCell = pPage->nCell;
1038 assert( nCell==get2byte(&data[hdr+3]) );
1039 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001040 cbrk = get2byte(&data[hdr+5]);
1041 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1042 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001043 iCellFirst = cellOffset + 2*nCell;
1044 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001045 for(i=0; i<nCell; i++){
1046 u8 *pAddr; /* The i-th cell pointer */
1047 pAddr = &data[cellOffset + i*2];
1048 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001049 testcase( pc==iCellFirst );
1050 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001051#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1052 /* These conditions have already been verified in sqlite3BtreeInitPage()
1053 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1054 */
1055 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001056 return SQLITE_CORRUPT_BKPT;
1057 }
drh17146622009-07-07 17:38:38 +00001058#endif
1059 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001060 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001061 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001062#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1063 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001064 return SQLITE_CORRUPT_BKPT;
1065 }
drh17146622009-07-07 17:38:38 +00001066#else
1067 if( cbrk<iCellFirst || pc+size>usableSize ){
1068 return SQLITE_CORRUPT_BKPT;
1069 }
1070#endif
drh35a25da2009-07-08 15:14:50 +00001071 assert( cbrk+size<=usableSize && cbrk>iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001072 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001073 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001074 memcpy(&data[cbrk], &temp[pc], size);
1075 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001076 }
drh17146622009-07-07 17:38:38 +00001077 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001078 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001079 data[hdr+1] = 0;
1080 data[hdr+2] = 0;
1081 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001082 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001083 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001084 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001085 return SQLITE_CORRUPT_BKPT;
1086 }
shane0af3f892008-11-12 04:55:34 +00001087 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001088}
1089
drha059ad02001-04-17 20:09:11 +00001090/*
danielk19776011a752009-04-01 16:25:32 +00001091** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001092** as the first argument. Write into *pIdx the index into pPage->aData[]
1093** of the first byte of allocated space. Return either SQLITE_OK or
1094** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001095**
drh0a45c272009-07-08 01:49:11 +00001096** The caller guarantees that there is sufficient space to make the
1097** allocation. This routine might need to defragment in order to bring
1098** all the space together, however. This routine will avoid using
1099** the first two bytes past the cell pointer area since presumably this
1100** allocation is being made in order to insert a new cell, so we will
1101** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001102*/
drh0a45c272009-07-08 01:49:11 +00001103static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001104 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1105 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1106 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001107 int top; /* First byte of cell content area */
1108 int gap; /* First byte of gap between cell pointers and cell content */
1109 int rc; /* Integer return code */
drh43605152004-05-29 21:46:49 +00001110
danielk19773b8a05f2007-03-19 17:44:26 +00001111 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001112 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001113 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001114 assert( nByte>=0 ); /* Minimum cell size is 4 */
1115 assert( pPage->nFree>=nByte );
1116 assert( pPage->nOverflow==0 );
drh43605152004-05-29 21:46:49 +00001117
1118 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001119 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1120 gap = pPage->cellOffset + 2*pPage->nCell;
1121 top = get2byte(&data[hdr+5]);
1122 assert( gap<=top );
1123 testcase( gap+2==top );
1124 testcase( gap+1==top );
1125 testcase( gap==top );
1126
danielk19776011a752009-04-01 16:25:32 +00001127 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001128 /* Always defragment highly fragmented pages */
1129 rc = defragmentPage(pPage);
1130 if( rc ) return rc;
1131 top = get2byte(&data[hdr+5]);
1132 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001133 /* Search the freelist looking for a free slot big enough to satisfy
1134 ** the request. The allocation is made from the first free slot in
1135 ** the list that is large enough to accomadate it.
1136 */
1137 int pc, addr;
1138 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
1139 int size = get2byte(&data[pc+2]); /* Size of free slot */
drh43605152004-05-29 21:46:49 +00001140 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001141 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001142 testcase( x==4 );
1143 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001144 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001145 /* Remove the slot from the free-list. Update the number of
1146 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001147 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001148 data[hdr+7] = (u8)(nFrag + x);
drh43605152004-05-29 21:46:49 +00001149 }else{
danielk1977fad91942009-04-29 17:49:59 +00001150 /* The slot remains on the free-list. Reduce its size to account
1151 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001152 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001153 }
drh0a45c272009-07-08 01:49:11 +00001154 *pIdx = pc + x;
1155 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001156 }
drh9e572e62004-04-23 23:43:10 +00001157 }
1158 }
drh43605152004-05-29 21:46:49 +00001159
drh0a45c272009-07-08 01:49:11 +00001160 /* Check to make sure there is enough space in the gap to satisfy
1161 ** the allocation. If not, defragment.
1162 */
1163 testcase( gap+2+nByte==top );
1164 if( gap+2+nByte>top ){
1165 rc = defragmentPage(pPage);
1166 if( rc ) return rc;
1167 top = get2byte(&data[hdr+5]);
1168 assert( gap+nByte<=top );
1169 }
1170
1171
drh43605152004-05-29 21:46:49 +00001172 /* Allocate memory from the gap in between the cell pointer array
1173 ** and the cell content area.
1174 */
drh0a45c272009-07-08 01:49:11 +00001175 top -= nByte;
drh43605152004-05-29 21:46:49 +00001176 put2byte(&data[hdr+5], top);
drh0a45c272009-07-08 01:49:11 +00001177 *pIdx = top;
1178 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001179}
1180
1181/*
drh9e572e62004-04-23 23:43:10 +00001182** Return a section of the pPage->aData to the freelist.
1183** The first byte of the new free block is pPage->aDisk[start]
1184** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001185**
1186** Most of the effort here is involved in coalesing adjacent
1187** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001188*/
shanedcc50b72008-11-13 18:29:50 +00001189static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001190 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001191 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001192 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001193
drh9e572e62004-04-23 23:43:10 +00001194 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001195 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001196 assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
danielk1977bc6ada42004-06-30 08:20:16 +00001197 assert( (start + size)<=pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001198 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001199 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001200
drhfcce93f2006-02-22 03:08:32 +00001201#ifdef SQLITE_SECURE_DELETE
1202 /* Overwrite deleted information with zeros when the SECURE_DELETE
1203 ** option is enabled at compile-time */
1204 memset(&data[start], 0, size);
1205#endif
1206
drh0a45c272009-07-08 01:49:11 +00001207 /* Add the space back into the linked list of freeblocks. Note that
1208 ** even though the freeblock list was checked by sqlite3BtreeInitPage(),
1209 ** sqlite3BtreeInitPage() did not detect overlapping freeblocks or
1210 ** freeblocks that overlapped cells. If there was overlap then
1211 ** subsequent insert operations might have corrupted the freelist.
1212 ** So we do need to check for corruption while scanning the freelist.
1213 */
drh43605152004-05-29 21:46:49 +00001214 hdr = pPage->hdrOffset;
1215 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001216 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001217 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001218 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001219 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001220 return SQLITE_CORRUPT_BKPT;
1221 }
drh3aac2dd2004-04-26 14:10:20 +00001222 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001223 }
drh0a45c272009-07-08 01:49:11 +00001224 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001225 return SQLITE_CORRUPT_BKPT;
1226 }
drh3aac2dd2004-04-26 14:10:20 +00001227 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001228 put2byte(&data[addr], start);
1229 put2byte(&data[start], pbegin);
1230 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001231 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001232
1233 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001234 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001235 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001236 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001237 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +00001238 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001239 pnext = get2byte(&data[pbegin]);
1240 psize = get2byte(&data[pbegin+2]);
1241 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1242 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001243 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001244 return SQLITE_CORRUPT_BKPT;
1245 }
drh0a45c272009-07-08 01:49:11 +00001246 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001247 x = get2byte(&data[pnext]);
1248 put2byte(&data[pbegin], x);
1249 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1250 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001251 }else{
drh3aac2dd2004-04-26 14:10:20 +00001252 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001253 }
1254 }
drh7e3b0a02001-04-28 16:52:40 +00001255
drh43605152004-05-29 21:46:49 +00001256 /* If the cell content area begins with a freeblock, remove it. */
1257 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1258 int top;
1259 pbegin = get2byte(&data[hdr+1]);
1260 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001261 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1262 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001263 }
drhc5053fb2008-11-27 02:22:10 +00001264 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001265 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001266}
1267
1268/*
drh271efa52004-05-30 19:19:05 +00001269** Decode the flags byte (the first byte of the header) for a page
1270** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001271**
1272** Only the following combinations are supported. Anything different
1273** indicates a corrupt database files:
1274**
1275** PTF_ZERODATA
1276** PTF_ZERODATA | PTF_LEAF
1277** PTF_LEAFDATA | PTF_INTKEY
1278** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001279*/
drh44845222008-07-17 18:39:57 +00001280static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001281 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001282
1283 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001284 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001285 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001286 flagByte &= ~PTF_LEAF;
1287 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001288 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001289 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1290 pPage->intKey = 1;
1291 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001292 pPage->maxLocal = pBt->maxLeaf;
1293 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001294 }else if( flagByte==PTF_ZERODATA ){
1295 pPage->intKey = 0;
1296 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001297 pPage->maxLocal = pBt->maxLocal;
1298 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001299 }else{
1300 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001301 }
drh44845222008-07-17 18:39:57 +00001302 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001303}
1304
1305/*
drh7e3b0a02001-04-28 16:52:40 +00001306** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001307**
1308** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001309** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001310** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1311** guarantee that the page is well-formed. It only shows that
1312** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001313*/
danielk197771d5d2c2008-09-29 11:49:47 +00001314int sqlite3BtreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001315
danielk197771d5d2c2008-09-29 11:49:47 +00001316 assert( pPage->pBt!=0 );
1317 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001318 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001319 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1320 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001321
1322 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001323 u16 pc; /* Address of a freeblock within pPage->aData[] */
1324 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001325 u8 *data; /* Equal to pPage->aData */
1326 BtShared *pBt; /* The main btree structure */
drhf49661a2008-12-10 16:45:50 +00001327 u16 usableSize; /* Amount of usable space on each page */
1328 u16 cellOffset; /* Offset from start of page to first cell pointer */
1329 u16 nFree; /* Number of unused bytes on the page */
1330 u16 top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001331 int iCellFirst; /* First allowable cell or freeblock offset */
1332 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001333
1334 pBt = pPage->pBt;
1335
danielk1977eaa06f62008-09-18 17:34:44 +00001336 hdr = pPage->hdrOffset;
1337 data = pPage->aData;
1338 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1339 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1340 pPage->maskPage = pBt->pageSize - 1;
1341 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001342 usableSize = pBt->usableSize;
1343 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
1344 top = get2byte(&data[hdr+5]);
1345 pPage->nCell = get2byte(&data[hdr+3]);
1346 if( pPage->nCell>MX_CELL(pBt) ){
1347 /* To many cells for a single page. The page must be corrupt */
1348 return SQLITE_CORRUPT_BKPT;
1349 }
drh69e931e2009-06-03 21:04:35 +00001350
1351 /* A malformed database page might cause use to read past the end
1352 ** of page when parsing a cell.
1353 **
1354 ** The following block of code checks early to see if a cell extends
1355 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1356 ** returned if it does.
1357 */
drh0a45c272009-07-08 01:49:11 +00001358 iCellFirst = cellOffset + 2*pPage->nCell;
1359 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001360#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001361 {
drh69e931e2009-06-03 21:04:35 +00001362 int i; /* Index into the cell pointer array */
1363 int sz; /* Size of a cell */
1364
drh69e931e2009-06-03 21:04:35 +00001365 if( !pPage->leaf ) iCellLast--;
1366 for(i=0; i<pPage->nCell; i++){
1367 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001368 testcase( pc==iCellFirst );
1369 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001370 if( pc<iCellFirst || pc>iCellLast ){
1371 return SQLITE_CORRUPT_BKPT;
1372 }
1373 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001374 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001375 if( pc+sz>usableSize ){
1376 return SQLITE_CORRUPT_BKPT;
1377 }
1378 }
drh0a45c272009-07-08 01:49:11 +00001379 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001380 }
1381#endif
1382
danielk1977eaa06f62008-09-18 17:34:44 +00001383 /* Compute the total free space on the page */
1384 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001385 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001386 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001387 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001388 if( pc<iCellFirst || pc>iCellLast ){
danielk1977eaa06f62008-09-18 17:34:44 +00001389 /* Free block is off the page */
1390 return SQLITE_CORRUPT_BKPT;
1391 }
1392 next = get2byte(&data[pc]);
1393 size = get2byte(&data[pc+2]);
1394 if( next>0 && next<=pc+size+3 ){
drh0a45c272009-07-08 01:49:11 +00001395 /* Free blocks must be in ascending order */
danielk1977eaa06f62008-09-18 17:34:44 +00001396 return SQLITE_CORRUPT_BKPT;
1397 }
shane85095702009-06-15 16:27:08 +00001398 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001399 pc = next;
1400 }
danielk197793c829c2009-06-03 17:26:17 +00001401
1402 /* At this point, nFree contains the sum of the offset to the start
1403 ** of the cell-content area plus the number of free bytes within
1404 ** the cell-content area. If this is greater than the usable-size
1405 ** of the page, then the page must be corrupted. This check also
1406 ** serves to verify that the offset to the start of the cell-content
1407 ** area, according to the page header, lies within the page.
1408 */
1409 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001410 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001411 }
drh0a45c272009-07-08 01:49:11 +00001412 pPage->nFree = nFree - iCellFirst;
danielk197771d5d2c2008-09-29 11:49:47 +00001413 pPage->isInit = 1;
1414 }
drh9e572e62004-04-23 23:43:10 +00001415 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001416}
1417
1418/*
drh8b2f49b2001-06-08 00:21:52 +00001419** Set up a raw page so that it looks like a database page holding
1420** no entries.
drhbd03cae2001-06-02 02:40:57 +00001421*/
drh9e572e62004-04-23 23:43:10 +00001422static void zeroPage(MemPage *pPage, int flags){
1423 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001424 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001425 u8 hdr = pPage->hdrOffset;
1426 u16 first;
drh9e572e62004-04-23 23:43:10 +00001427
danielk19773b8a05f2007-03-19 17:44:26 +00001428 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001429 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1430 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001431 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001432 assert( sqlite3_mutex_held(pBt->mutex) );
drh1af4a6e2008-07-18 03:32:51 +00001433 /*memset(&data[hdr], 0, pBt->usableSize - hdr);*/
drh1bd10f82008-12-10 21:19:56 +00001434 data[hdr] = (char)flags;
1435 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001436 memset(&data[hdr+1], 0, 4);
1437 data[hdr+7] = 0;
1438 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +00001439 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +00001440 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001441 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001442 pPage->cellOffset = first;
1443 pPage->nOverflow = 0;
drh1688c862008-07-18 02:44:17 +00001444 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1445 pPage->maskPage = pBt->pageSize - 1;
drh43605152004-05-29 21:46:49 +00001446 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001447 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001448}
1449
drh897a8202008-09-18 01:08:15 +00001450
1451/*
1452** Convert a DbPage obtained from the pager into a MemPage used by
1453** the btree layer.
1454*/
1455static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1456 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1457 pPage->aData = sqlite3PagerGetData(pDbPage);
1458 pPage->pDbPage = pDbPage;
1459 pPage->pBt = pBt;
1460 pPage->pgno = pgno;
1461 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1462 return pPage;
1463}
1464
drhbd03cae2001-06-02 02:40:57 +00001465/*
drh3aac2dd2004-04-26 14:10:20 +00001466** Get a page from the pager. Initialize the MemPage.pBt and
1467** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001468**
1469** If the noContent flag is set, it means that we do not care about
1470** the content of the page at this time. So do not go to the disk
1471** to fetch the content. Just fill in the content with zeros for now.
1472** If in the future we call sqlite3PagerWrite() on this page, that
1473** means we have started to be concerned about content and the disk
1474** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001475*/
drh16a9b832007-05-05 18:39:25 +00001476int sqlite3BtreeGetPage(
1477 BtShared *pBt, /* The btree */
1478 Pgno pgno, /* Number of the page to fetch */
1479 MemPage **ppPage, /* Return the page in this parameter */
1480 int noContent /* Do not load page content if true */
1481){
drh3aac2dd2004-04-26 14:10:20 +00001482 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001483 DbPage *pDbPage;
1484
drh1fee73e2007-08-29 04:00:57 +00001485 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001486 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001487 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001488 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001489 return SQLITE_OK;
1490}
1491
1492/*
danielk1977bea2a942009-01-20 17:06:27 +00001493** Retrieve a page from the pager cache. If the requested page is not
1494** already in the pager cache return NULL. Initialize the MemPage.pBt and
1495** MemPage.aData elements if needed.
1496*/
1497static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1498 DbPage *pDbPage;
1499 assert( sqlite3_mutex_held(pBt->mutex) );
1500 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1501 if( pDbPage ){
1502 return btreePageFromDbPage(pDbPage, pgno, pBt);
1503 }
1504 return 0;
1505}
1506
1507/*
danielk197789d40042008-11-17 14:20:56 +00001508** Return the size of the database file in pages. If there is any kind of
1509** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001510*/
danielk197789d40042008-11-17 14:20:56 +00001511static Pgno pagerPagecount(BtShared *pBt){
1512 int nPage = -1;
danielk197767fd7a92008-09-10 17:53:35 +00001513 int rc;
danielk197789d40042008-11-17 14:20:56 +00001514 assert( pBt->pPage1 );
1515 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
1516 assert( rc==SQLITE_OK || nPage==-1 );
1517 return (Pgno)nPage;
danielk197767fd7a92008-09-10 17:53:35 +00001518}
1519
1520/*
drhde647132004-05-07 17:57:49 +00001521** Get a page from the pager and initialize it. This routine
1522** is just a convenience wrapper around separate calls to
drh16a9b832007-05-05 18:39:25 +00001523** sqlite3BtreeGetPage() and sqlite3BtreeInitPage().
drhde647132004-05-07 17:57:49 +00001524*/
1525static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001526 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001527 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001528 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001529){
1530 int rc;
drh897a8202008-09-18 01:08:15 +00001531 MemPage *pPage;
1532
drh1fee73e2007-08-29 04:00:57 +00001533 assert( sqlite3_mutex_held(pBt->mutex) );
drh897a8202008-09-18 01:08:15 +00001534 if( pgno==0 ){
drh49285702005-09-17 15:20:26 +00001535 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001536 }
danielk19779f580ad2008-09-10 14:45:57 +00001537
drh897a8202008-09-18 01:08:15 +00001538 /* It is often the case that the page we want is already in cache.
1539 ** If so, get it directly. This saves us from having to call
1540 ** pagerPagecount() to make sure pgno is within limits, which results
1541 ** in a measureable performance improvements.
1542 */
danielk1977bea2a942009-01-20 17:06:27 +00001543 *ppPage = pPage = btreePageLookup(pBt, pgno);
1544 if( pPage ){
drh897a8202008-09-18 01:08:15 +00001545 /* Page is already in cache */
drh897a8202008-09-18 01:08:15 +00001546 rc = SQLITE_OK;
1547 }else{
1548 /* Page not in cache. Acquire it. */
danielk197789d40042008-11-17 14:20:56 +00001549 if( pgno>pagerPagecount(pBt) ){
drh897a8202008-09-18 01:08:15 +00001550 return SQLITE_CORRUPT_BKPT;
1551 }
1552 rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0);
1553 if( rc ) return rc;
1554 pPage = *ppPage;
1555 }
danielk197771d5d2c2008-09-29 11:49:47 +00001556 if( !pPage->isInit ){
1557 rc = sqlite3BtreeInitPage(pPage);
drh897a8202008-09-18 01:08:15 +00001558 }
1559 if( rc!=SQLITE_OK ){
1560 releasePage(pPage);
1561 *ppPage = 0;
1562 }
drhde647132004-05-07 17:57:49 +00001563 return rc;
1564}
1565
1566/*
drh3aac2dd2004-04-26 14:10:20 +00001567** Release a MemPage. This should be called once for each prior
drh16a9b832007-05-05 18:39:25 +00001568** call to sqlite3BtreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001569*/
drh4b70f112004-05-02 21:12:19 +00001570static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001571 if( pPage ){
drh30df0092008-12-23 15:58:06 +00001572 assert( pPage->nOverflow==0 || sqlite3PagerPageRefcount(pPage->pDbPage)>1 );
drh3aac2dd2004-04-26 14:10:20 +00001573 assert( pPage->aData );
1574 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001575 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1576 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001577 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001578 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001579 }
1580}
1581
1582/*
drha6abd042004-06-09 17:37:22 +00001583** During a rollback, when the pager reloads information into the cache
1584** so that the cache is restored to its original state at the start of
1585** the transaction, for each page restored this routine is called.
1586**
1587** This routine needs to reset the extra data section at the end of the
1588** page to agree with the restored data.
1589*/
danielk1977eaa06f62008-09-18 17:34:44 +00001590static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001591 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001592 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001593 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001594 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001595 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001596 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001597 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001598 /* pPage might not be a btree page; it might be an overflow page
1599 ** or ptrmap page or a free page. In those cases, the following
1600 ** call to sqlite3BtreeInitPage() will likely return SQLITE_CORRUPT.
1601 ** But no harm is done by this. And it is very important that
1602 ** sqlite3BtreeInitPage() be called on every btree page so we make
1603 ** the call for every page that comes in for re-initing. */
danielk197771d5d2c2008-09-29 11:49:47 +00001604 sqlite3BtreeInitPage(pPage);
1605 }
drha6abd042004-06-09 17:37:22 +00001606 }
1607}
1608
1609/*
drhe5fe6902007-12-07 18:55:28 +00001610** Invoke the busy handler for a btree.
1611*/
danielk19771ceedd32008-11-19 10:22:33 +00001612static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001613 BtShared *pBt = (BtShared*)pArg;
1614 assert( pBt->db );
1615 assert( sqlite3_mutex_held(pBt->db->mutex) );
1616 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1617}
1618
1619/*
drhad3e0102004-09-03 23:32:18 +00001620** Open a database file.
1621**
drh382c0242001-10-06 16:33:02 +00001622** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +00001623** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +00001624** database file will be deleted when sqlite3BtreeClose() is called.
drhe53831d2007-08-17 01:14:38 +00001625** If zFilename is ":memory:" then an in-memory database is created
1626** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001627**
1628** If the database is already opened in the same database connection
1629** and we are in shared cache mode, then the open will fail with an
1630** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1631** objects in the same database connection since doing so will lead
1632** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001633*/
drh23e11ca2004-05-04 17:27:28 +00001634int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001635 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001636 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001637 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001638 int flags, /* Options */
1639 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001640){
drh7555d8e2009-03-20 13:15:30 +00001641 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
1642 BtShared *pBt = 0; /* Shared part of btree structure */
1643 Btree *p; /* Handle to return */
1644 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1645 int rc = SQLITE_OK; /* Result code from this function */
1646 u8 nReserve; /* Byte of unused space on each page */
1647 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001648
1649 /* Set the variable isMemdb to true for an in-memory database, or
1650 ** false for a file-based database. This symbol is only required if
1651 ** either of the shared-data or autovacuum features are compiled
1652 ** into the library.
1653 */
1654#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1655 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001656 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001657 #else
drh980b1a72006-08-16 16:42:48 +00001658 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
danielk1977aef0bf62005-12-30 16:28:01 +00001659 #endif
1660#endif
1661
drhe5fe6902007-12-07 18:55:28 +00001662 assert( db!=0 );
1663 assert( sqlite3_mutex_held(db->mutex) );
drh153c62c2007-08-24 03:51:33 +00001664
drhe5fe6902007-12-07 18:55:28 +00001665 pVfs = db->pVfs;
drh17435752007-08-16 04:30:38 +00001666 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001667 if( !p ){
1668 return SQLITE_NOMEM;
1669 }
1670 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001671 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001672#ifndef SQLITE_OMIT_SHARED_CACHE
1673 p->lock.pBtree = p;
1674 p->lock.iTable = 1;
1675#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001676
drh198bf392006-01-06 21:52:49 +00001677#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001678 /*
1679 ** If this Btree is a candidate for shared cache, try to find an
1680 ** existing BtShared object that we can share with
1681 */
danielk197720c6cc22009-04-01 18:03:00 +00001682 if( isMemdb==0 && zFilename && zFilename[0] ){
danielk1977502b4e02008-09-02 14:07:24 +00001683 if( sqlite3GlobalConfig.sharedCacheEnabled ){
danielk1977adfb9b02007-09-17 07:02:56 +00001684 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001685 char *zFullPathname = sqlite3Malloc(nFullPathname);
drhff0587c2007-08-29 17:43:19 +00001686 sqlite3_mutex *mutexShared;
1687 p->sharable = 1;
drh34004ce2008-07-11 16:15:17 +00001688 db->flags |= SQLITE_SharedCache;
drhff0587c2007-08-29 17:43:19 +00001689 if( !zFullPathname ){
1690 sqlite3_free(p);
1691 return SQLITE_NOMEM;
1692 }
danielk1977adfb9b02007-09-17 07:02:56 +00001693 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
drh7555d8e2009-03-20 13:15:30 +00001694 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1695 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001696 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001697 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001698 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001699 assert( pBt->nRef>0 );
1700 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1701 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001702 int iDb;
1703 for(iDb=db->nDb-1; iDb>=0; iDb--){
1704 Btree *pExisting = db->aDb[iDb].pBt;
1705 if( pExisting && pExisting->pBt==pBt ){
1706 sqlite3_mutex_leave(mutexShared);
1707 sqlite3_mutex_leave(mutexOpen);
1708 sqlite3_free(zFullPathname);
1709 sqlite3_free(p);
1710 return SQLITE_CONSTRAINT;
1711 }
1712 }
drhff0587c2007-08-29 17:43:19 +00001713 p->pBt = pBt;
1714 pBt->nRef++;
1715 break;
1716 }
1717 }
1718 sqlite3_mutex_leave(mutexShared);
1719 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001720 }
drhff0587c2007-08-29 17:43:19 +00001721#ifdef SQLITE_DEBUG
1722 else{
1723 /* In debug mode, we mark all persistent databases as sharable
1724 ** even when they are not. This exercises the locking code and
1725 ** gives more opportunity for asserts(sqlite3_mutex_held())
1726 ** statements to find locking problems.
1727 */
1728 p->sharable = 1;
1729 }
1730#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001731 }
1732#endif
drha059ad02001-04-17 20:09:11 +00001733 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001734 /*
1735 ** The following asserts make sure that structures used by the btree are
1736 ** the right size. This is to guard against size changes that result
1737 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001738 */
drhe53831d2007-08-17 01:14:38 +00001739 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1740 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1741 assert( sizeof(u32)==4 );
1742 assert( sizeof(u16)==2 );
1743 assert( sizeof(Pgno)==4 );
1744
1745 pBt = sqlite3MallocZero( sizeof(*pBt) );
1746 if( pBt==0 ){
1747 rc = SQLITE_NOMEM;
1748 goto btree_open_out;
1749 }
danielk197771d5d2c2008-09-29 11:49:47 +00001750 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh33f4e022007-09-03 15:19:34 +00001751 EXTRA_SIZE, flags, vfsFlags);
drhe53831d2007-08-17 01:14:38 +00001752 if( rc==SQLITE_OK ){
1753 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1754 }
1755 if( rc!=SQLITE_OK ){
1756 goto btree_open_out;
1757 }
danielk19772a50ff02009-04-10 09:47:06 +00001758 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001759 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001760 p->pBt = pBt;
1761
drhe53831d2007-08-17 01:14:38 +00001762 sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
1763 pBt->pCursor = 0;
1764 pBt->pPage1 = 0;
1765 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
1766 pBt->pageSize = get2byte(&zDbHeader[16]);
1767 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1768 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001769 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001770#ifndef SQLITE_OMIT_AUTOVACUUM
1771 /* If the magic name ":memory:" will create an in-memory database, then
1772 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1773 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1774 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1775 ** regular file-name. In this case the auto-vacuum applies as per normal.
1776 */
1777 if( zFilename && !isMemdb ){
1778 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1779 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1780 }
1781#endif
1782 nReserve = 0;
1783 }else{
1784 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001785 pBt->pageSizeFixed = 1;
1786#ifndef SQLITE_OMIT_AUTOVACUUM
1787 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1788 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1789#endif
1790 }
drhfa9601a2009-06-18 17:22:39 +00001791 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001792 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001793 pBt->usableSize = pBt->pageSize - nReserve;
1794 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001795
1796#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1797 /* Add the new BtShared object to the linked list sharable BtShareds.
1798 */
1799 if( p->sharable ){
1800 sqlite3_mutex *mutexShared;
1801 pBt->nRef = 1;
danielk197759f8c082008-06-18 17:09:10 +00001802 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
danielk1977075c23a2008-09-01 18:34:20 +00001803 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001804 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001805 if( pBt->mutex==0 ){
1806 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001807 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001808 goto btree_open_out;
1809 }
drhff0587c2007-08-29 17:43:19 +00001810 }
drhe53831d2007-08-17 01:14:38 +00001811 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001812 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1813 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001814 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001815 }
drheee46cf2004-11-06 00:02:48 +00001816#endif
drh90f5ecb2004-07-22 01:19:35 +00001817 }
danielk1977aef0bf62005-12-30 16:28:01 +00001818
drhcfed7bc2006-03-13 14:28:05 +00001819#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001820 /* If the new Btree uses a sharable pBtShared, then link the new
1821 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001822 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001823 */
drhe53831d2007-08-17 01:14:38 +00001824 if( p->sharable ){
1825 int i;
1826 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001827 for(i=0; i<db->nDb; i++){
1828 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001829 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1830 if( p->pBt<pSib->pBt ){
1831 p->pNext = pSib;
1832 p->pPrev = 0;
1833 pSib->pPrev = p;
1834 }else{
drhabddb0c2007-08-20 13:14:28 +00001835 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001836 pSib = pSib->pNext;
1837 }
1838 p->pNext = pSib->pNext;
1839 p->pPrev = pSib;
1840 if( p->pNext ){
1841 p->pNext->pPrev = p;
1842 }
1843 pSib->pNext = p;
1844 }
1845 break;
1846 }
1847 }
danielk1977aef0bf62005-12-30 16:28:01 +00001848 }
danielk1977aef0bf62005-12-30 16:28:01 +00001849#endif
1850 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001851
1852btree_open_out:
1853 if( rc!=SQLITE_OK ){
1854 if( pBt && pBt->pPager ){
1855 sqlite3PagerClose(pBt->pPager);
1856 }
drh17435752007-08-16 04:30:38 +00001857 sqlite3_free(pBt);
1858 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001859 *ppBtree = 0;
1860 }
drh7555d8e2009-03-20 13:15:30 +00001861 if( mutexOpen ){
1862 assert( sqlite3_mutex_held(mutexOpen) );
1863 sqlite3_mutex_leave(mutexOpen);
1864 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001865 return rc;
drha059ad02001-04-17 20:09:11 +00001866}
1867
1868/*
drhe53831d2007-08-17 01:14:38 +00001869** Decrement the BtShared.nRef counter. When it reaches zero,
1870** remove the BtShared structure from the sharing list. Return
1871** true if the BtShared.nRef counter reaches zero and return
1872** false if it is still positive.
1873*/
1874static int removeFromSharingList(BtShared *pBt){
1875#ifndef SQLITE_OMIT_SHARED_CACHE
1876 sqlite3_mutex *pMaster;
1877 BtShared *pList;
1878 int removed = 0;
1879
drhd677b3d2007-08-20 22:48:41 +00001880 assert( sqlite3_mutex_notheld(pBt->mutex) );
danielk197759f8c082008-06-18 17:09:10 +00001881 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhe53831d2007-08-17 01:14:38 +00001882 sqlite3_mutex_enter(pMaster);
1883 pBt->nRef--;
1884 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001885 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1886 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001887 }else{
drh78f82d12008-09-02 00:52:52 +00001888 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001889 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001890 pList=pList->pNext;
1891 }
drh34004ce2008-07-11 16:15:17 +00001892 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001893 pList->pNext = pBt->pNext;
1894 }
1895 }
drh3285db22007-09-03 22:00:39 +00001896 if( SQLITE_THREADSAFE ){
1897 sqlite3_mutex_free(pBt->mutex);
1898 }
drhe53831d2007-08-17 01:14:38 +00001899 removed = 1;
1900 }
1901 sqlite3_mutex_leave(pMaster);
1902 return removed;
1903#else
1904 return 1;
1905#endif
1906}
1907
1908/*
drhf7141992008-06-19 00:16:08 +00001909** Make sure pBt->pTmpSpace points to an allocation of
1910** MX_CELL_SIZE(pBt) bytes.
1911*/
1912static void allocateTempSpace(BtShared *pBt){
1913 if( !pBt->pTmpSpace ){
1914 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
1915 }
1916}
1917
1918/*
1919** Free the pBt->pTmpSpace allocation
1920*/
1921static void freeTempSpace(BtShared *pBt){
1922 sqlite3PageFree( pBt->pTmpSpace);
1923 pBt->pTmpSpace = 0;
1924}
1925
1926/*
drha059ad02001-04-17 20:09:11 +00001927** Close an open database and invalidate all cursors.
1928*/
danielk1977aef0bf62005-12-30 16:28:01 +00001929int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00001930 BtShared *pBt = p->pBt;
1931 BtCursor *pCur;
1932
danielk1977aef0bf62005-12-30 16:28:01 +00001933 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00001934 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00001935 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001936 pCur = pBt->pCursor;
1937 while( pCur ){
1938 BtCursor *pTmp = pCur;
1939 pCur = pCur->pNext;
1940 if( pTmp->pBtree==p ){
1941 sqlite3BtreeCloseCursor(pTmp);
1942 }
drha059ad02001-04-17 20:09:11 +00001943 }
danielk1977aef0bf62005-12-30 16:28:01 +00001944
danielk19778d34dfd2006-01-24 16:37:57 +00001945 /* Rollback any active transaction and free the handle structure.
1946 ** The call to sqlite3BtreeRollback() drops any table-locks held by
1947 ** this handle.
1948 */
danielk1977b597f742006-01-15 11:39:18 +00001949 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00001950 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001951
danielk1977aef0bf62005-12-30 16:28:01 +00001952 /* If there are still other outstanding references to the shared-btree
1953 ** structure, return now. The remainder of this procedure cleans
1954 ** up the shared-btree.
1955 */
drhe53831d2007-08-17 01:14:38 +00001956 assert( p->wantToLock==0 && p->locked==0 );
1957 if( !p->sharable || removeFromSharingList(pBt) ){
1958 /* The pBt is no longer on the sharing list, so we can access
1959 ** it without having to hold the mutex.
1960 **
1961 ** Clean out and delete the BtShared object.
1962 */
1963 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00001964 sqlite3PagerClose(pBt->pPager);
1965 if( pBt->xFreeSchema && pBt->pSchema ){
1966 pBt->xFreeSchema(pBt->pSchema);
1967 }
1968 sqlite3_free(pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00001969 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00001970 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00001971 }
1972
drhe53831d2007-08-17 01:14:38 +00001973#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00001974 assert( p->wantToLock==0 );
1975 assert( p->locked==0 );
1976 if( p->pPrev ) p->pPrev->pNext = p->pNext;
1977 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00001978#endif
1979
drhe53831d2007-08-17 01:14:38 +00001980 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00001981 return SQLITE_OK;
1982}
1983
1984/*
drhda47d772002-12-02 04:25:19 +00001985** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00001986**
1987** The maximum number of cache pages is set to the absolute
1988** value of mxPage. If mxPage is negative, the pager will
1989** operate asynchronously - it will not stop to do fsync()s
1990** to insure data is written to the disk surface before
1991** continuing. Transactions still work if synchronous is off,
1992** and the database cannot be corrupted if this program
1993** crashes. But if the operating system crashes or there is
1994** an abrupt power failure when synchronous is off, the database
1995** could be left in an inconsistent and unrecoverable state.
1996** Synchronous is on by default so database corruption is not
1997** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00001998*/
danielk1977aef0bf62005-12-30 16:28:01 +00001999int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2000 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002001 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002002 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002003 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002004 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002005 return SQLITE_OK;
2006}
2007
2008/*
drh973b6e32003-02-12 14:09:42 +00002009** Change the way data is synced to disk in order to increase or decrease
2010** how well the database resists damage due to OS crashes and power
2011** failures. Level 1 is the same as asynchronous (no syncs() occur and
2012** there is a high probability of damage) Level 2 is the default. There
2013** is a very low but non-zero probability of damage. Level 3 reduces the
2014** probability of damage to near zero but with a write performance reduction.
2015*/
danielk197793758c82005-01-21 08:13:14 +00002016#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00002017int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00002018 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002019 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002020 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002021 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
drhd677b3d2007-08-20 22:48:41 +00002022 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002023 return SQLITE_OK;
2024}
danielk197793758c82005-01-21 08:13:14 +00002025#endif
drh973b6e32003-02-12 14:09:42 +00002026
drh2c8997b2005-08-27 16:36:48 +00002027/*
2028** Return TRUE if the given btree is set to safety level 1. In other
2029** words, return TRUE if no sync() occurs on the disk files.
2030*/
danielk1977aef0bf62005-12-30 16:28:01 +00002031int sqlite3BtreeSyncDisabled(Btree *p){
2032 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002033 int rc;
drhe5fe6902007-12-07 18:55:28 +00002034 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002035 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002036 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002037 rc = sqlite3PagerNosync(pBt->pPager);
2038 sqlite3BtreeLeave(p);
2039 return rc;
drh2c8997b2005-08-27 16:36:48 +00002040}
2041
danielk1977576ec6b2005-01-21 11:55:25 +00002042#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00002043/*
drh90f5ecb2004-07-22 01:19:35 +00002044** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002045** Or, if the page size has already been fixed, return SQLITE_READONLY
2046** without changing anything.
drh06f50212004-11-02 14:24:33 +00002047**
2048** The page size must be a power of 2 between 512 and 65536. If the page
2049** size supplied does not meet this constraint then the page size is not
2050** changed.
2051**
2052** Page sizes are constrained to be a power of two so that the region
2053** of the database file used for locking (beginning at PENDING_BYTE,
2054** the first byte past the 1GB boundary, 0x40000000) needs to occur
2055** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002056**
2057** If parameter nReserve is less than zero, then the number of reserved
2058** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002059**
2060** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
2061** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002062*/
drhce4869f2009-04-02 20:16:58 +00002063int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002064 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002065 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002066 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002067 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00002068 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00002069 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002070 return SQLITE_READONLY;
2071 }
2072 if( nReserve<0 ){
2073 nReserve = pBt->pageSize - pBt->usableSize;
2074 }
drhf49661a2008-12-10 16:45:50 +00002075 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002076 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2077 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002078 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002079 assert( !pBt->pPage1 && !pBt->pCursor );
drh1bd10f82008-12-10 21:19:56 +00002080 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002081 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002082 }
drhfa9601a2009-06-18 17:22:39 +00002083 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002084 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhce4869f2009-04-02 20:16:58 +00002085 if( iFix ) pBt->pageSizeFixed = 1;
drhd677b3d2007-08-20 22:48:41 +00002086 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002087 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002088}
2089
2090/*
2091** Return the currently defined page size
2092*/
danielk1977aef0bf62005-12-30 16:28:01 +00002093int sqlite3BtreeGetPageSize(Btree *p){
2094 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002095}
drh7f751222009-03-17 22:33:00 +00002096
2097/*
2098** Return the number of bytes of space at the end of every page that
2099** are intentually left unused. This is the "reserved" space that is
2100** sometimes used by extensions.
2101*/
danielk1977aef0bf62005-12-30 16:28:01 +00002102int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002103 int n;
2104 sqlite3BtreeEnter(p);
2105 n = p->pBt->pageSize - p->pBt->usableSize;
2106 sqlite3BtreeLeave(p);
2107 return n;
drh2011d5f2004-07-22 02:40:37 +00002108}
drhf8e632b2007-05-08 14:51:36 +00002109
2110/*
2111** Set the maximum page count for a database if mxPage is positive.
2112** No changes are made if mxPage is 0 or negative.
2113** Regardless of the value of mxPage, return the maximum page count.
2114*/
2115int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002116 int n;
2117 sqlite3BtreeEnter(p);
2118 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2119 sqlite3BtreeLeave(p);
2120 return n;
drhf8e632b2007-05-08 14:51:36 +00002121}
danielk1977576ec6b2005-01-21 11:55:25 +00002122#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002123
2124/*
danielk1977951af802004-11-05 15:45:09 +00002125** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2126** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2127** is disabled. The default value for the auto-vacuum property is
2128** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2129*/
danielk1977aef0bf62005-12-30 16:28:01 +00002130int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002131#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002132 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002133#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002134 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002135 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002136 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002137
2138 sqlite3BtreeEnter(p);
drh076d4662009-02-18 20:31:18 +00002139 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002140 rc = SQLITE_READONLY;
2141 }else{
drh076d4662009-02-18 20:31:18 +00002142 pBt->autoVacuum = av ?1:0;
2143 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002144 }
drhd677b3d2007-08-20 22:48:41 +00002145 sqlite3BtreeLeave(p);
2146 return rc;
danielk1977951af802004-11-05 15:45:09 +00002147#endif
2148}
2149
2150/*
2151** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2152** enabled 1 is returned. Otherwise 0.
2153*/
danielk1977aef0bf62005-12-30 16:28:01 +00002154int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002155#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002156 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002157#else
drhd677b3d2007-08-20 22:48:41 +00002158 int rc;
2159 sqlite3BtreeEnter(p);
2160 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002161 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2162 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2163 BTREE_AUTOVACUUM_INCR
2164 );
drhd677b3d2007-08-20 22:48:41 +00002165 sqlite3BtreeLeave(p);
2166 return rc;
danielk1977951af802004-11-05 15:45:09 +00002167#endif
2168}
2169
2170
2171/*
drha34b6762004-05-07 13:30:42 +00002172** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002173** also acquire a readlock on that file.
2174**
2175** SQLITE_OK is returned on success. If the file is not a
2176** well-formed database file, then SQLITE_CORRUPT is returned.
2177** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002178** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002179*/
danielk1977aef0bf62005-12-30 16:28:01 +00002180static int lockBtree(BtShared *pBt){
danielk1977f653d782008-03-20 11:04:21 +00002181 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002182 MemPage *pPage1;
danielk197793f7af92008-05-09 16:57:50 +00002183 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002184
drh1fee73e2007-08-29 04:00:57 +00002185 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002186 assert( pBt->pPage1==0 );
drh16a9b832007-05-05 18:39:25 +00002187 rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002188 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002189
2190 /* Do some checking to help insure the file we opened really is
2191 ** a valid database file.
2192 */
danielk1977ad0132d2008-06-07 08:58:22 +00002193 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
2194 if( rc!=SQLITE_OK ){
danielk197793f7af92008-05-09 16:57:50 +00002195 goto page1_init_failed;
2196 }else if( nPage>0 ){
danielk1977f653d782008-03-20 11:04:21 +00002197 int pageSize;
2198 int usableSize;
drhb6f41482004-05-14 01:58:11 +00002199 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002200 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002201 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002202 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002203 }
drh309169a2007-04-24 17:27:51 +00002204 if( page1[18]>1 ){
2205 pBt->readOnly = 1;
2206 }
2207 if( page1[19]>1 ){
drhb6f41482004-05-14 01:58:11 +00002208 goto page1_init_failed;
2209 }
drhe5ae5732008-06-15 02:51:47 +00002210
2211 /* The maximum embedded fraction must be exactly 25%. And the minimum
2212 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2213 ** The original design allowed these amounts to vary, but as of
2214 ** version 3.6.0, we require them to be fixed.
2215 */
2216 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2217 goto page1_init_failed;
2218 }
drh07d183d2005-05-01 22:52:42 +00002219 pageSize = get2byte(&page1[16]);
drh7dc385e2007-09-06 23:39:36 +00002220 if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
2221 (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
2222 ){
drh07d183d2005-05-01 22:52:42 +00002223 goto page1_init_failed;
2224 }
2225 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002226 usableSize = pageSize - page1[20];
2227 if( pageSize!=pBt->pageSize ){
2228 /* After reading the first page of the database assuming a page size
2229 ** of BtShared.pageSize, we have discovered that the page-size is
2230 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2231 ** zero and return SQLITE_OK. The caller will call this function
2232 ** again with the correct page-size.
2233 */
2234 releasePage(pPage1);
drhf49661a2008-12-10 16:45:50 +00002235 pBt->usableSize = (u16)usableSize;
2236 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002237 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002238 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2239 pageSize-usableSize);
drhc0b61812009-04-30 01:22:41 +00002240 if( rc ) goto page1_init_failed;
danielk1977f653d782008-03-20 11:04:21 +00002241 return SQLITE_OK;
2242 }
drhb33e1b92009-06-18 11:29:20 +00002243 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002244 goto page1_init_failed;
2245 }
drh1bd10f82008-12-10 21:19:56 +00002246 pBt->pageSize = (u16)pageSize;
2247 pBt->usableSize = (u16)usableSize;
drh057cd3a2005-02-15 16:23:02 +00002248#ifndef SQLITE_OMIT_AUTOVACUUM
2249 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002250 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002251#endif
drh306dc212001-05-21 13:45:10 +00002252 }
drhb6f41482004-05-14 01:58:11 +00002253
2254 /* maxLocal is the maximum amount of payload to store locally for
2255 ** a cell. Make sure it is small enough so that at least minFanout
2256 ** cells can will fit on one page. We assume a 10-byte page header.
2257 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002258 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002259 ** 4-byte child pointer
2260 ** 9-byte nKey value
2261 ** 4-byte nData value
2262 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00002263 ** So a cell consists of a 2-byte poiner, a header which is as much as
2264 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2265 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002266 */
drhe5ae5732008-06-15 02:51:47 +00002267 pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
2268 pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
drh43605152004-05-29 21:46:49 +00002269 pBt->maxLeaf = pBt->usableSize - 35;
drhe5ae5732008-06-15 02:51:47 +00002270 pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
drh2e38c322004-09-03 18:38:44 +00002271 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002272 pBt->pPage1 = pPage1;
drhb6f41482004-05-14 01:58:11 +00002273 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002274
drh72f82862001-05-24 21:06:34 +00002275page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002276 releasePage(pPage1);
2277 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002278 return rc;
drh306dc212001-05-21 13:45:10 +00002279}
2280
2281/*
drhb8ca3072001-12-05 00:21:20 +00002282** If there are no outstanding cursors and we are not in the middle
2283** of a transaction but there is a read lock on the database, then
2284** this routine unrefs the first page of the database file which
2285** has the effect of releasing the read lock.
2286**
drhb8ca3072001-12-05 00:21:20 +00002287** If there is a transaction in progress, this routine is a no-op.
2288*/
danielk1977aef0bf62005-12-30 16:28:01 +00002289static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002290 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002291 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2292 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002293 assert( pBt->pPage1->aData );
2294 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2295 assert( pBt->pPage1->aData );
2296 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002297 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002298 }
2299}
2300
2301/*
drh9e572e62004-04-23 23:43:10 +00002302** Create a new database by initializing the first page of the
drh8c42ca92001-06-22 19:15:00 +00002303** file.
drh8b2f49b2001-06-08 00:21:52 +00002304*/
danielk1977aef0bf62005-12-30 16:28:01 +00002305static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002306 MemPage *pP1;
2307 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002308 int rc;
danielk1977ad0132d2008-06-07 08:58:22 +00002309 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002310
drh1fee73e2007-08-29 04:00:57 +00002311 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977ad0132d2008-06-07 08:58:22 +00002312 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
2313 if( rc!=SQLITE_OK || nPage>0 ){
2314 return rc;
2315 }
drh3aac2dd2004-04-26 14:10:20 +00002316 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002317 assert( pP1!=0 );
2318 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002319 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002320 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002321 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2322 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00002323 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00002324 data[18] = 1;
2325 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002326 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2327 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002328 data[21] = 64;
2329 data[22] = 32;
2330 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002331 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002332 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002333 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002334#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002335 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002336 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002337 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002338 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002339#endif
drh8b2f49b2001-06-08 00:21:52 +00002340 return SQLITE_OK;
2341}
2342
2343/*
danielk1977ee5741e2004-05-31 10:01:34 +00002344** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002345** is started if the second argument is nonzero, otherwise a read-
2346** transaction. If the second argument is 2 or more and exclusive
2347** transaction is started, meaning that no other process is allowed
2348** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002349** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002350** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002351**
danielk1977ee5741e2004-05-31 10:01:34 +00002352** A write-transaction must be started before attempting any
2353** changes to the database. None of the following routines
2354** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002355**
drh23e11ca2004-05-04 17:27:28 +00002356** sqlite3BtreeCreateTable()
2357** sqlite3BtreeCreateIndex()
2358** sqlite3BtreeClearTable()
2359** sqlite3BtreeDropTable()
2360** sqlite3BtreeInsert()
2361** sqlite3BtreeDelete()
2362** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002363**
drhb8ef32c2005-03-14 02:01:49 +00002364** If an initial attempt to acquire the lock fails because of lock contention
2365** and the database was previously unlocked, then invoke the busy handler
2366** if there is one. But if there was previously a read-lock, do not
2367** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2368** returned when there is already a read-lock in order to avoid a deadlock.
2369**
2370** Suppose there are two processes A and B. A has a read lock and B has
2371** a reserved lock. B tries to promote to exclusive but is blocked because
2372** of A's read lock. A tries to promote to reserved but is blocked by B.
2373** One or the other of the two processes must give way or there can be
2374** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2375** when A already has a read lock, we encourage A to give up and let B
2376** proceed.
drha059ad02001-04-17 20:09:11 +00002377*/
danielk1977aef0bf62005-12-30 16:28:01 +00002378int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002379 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002380 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002381 int rc = SQLITE_OK;
2382
drhd677b3d2007-08-20 22:48:41 +00002383 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002384 btreeIntegrity(p);
2385
danielk1977ee5741e2004-05-31 10:01:34 +00002386 /* If the btree is already in a write-transaction, or it
2387 ** is already in a read-transaction and a read-transaction
2388 ** is requested, this is a no-op.
2389 */
danielk1977aef0bf62005-12-30 16:28:01 +00002390 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002391 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002392 }
drhb8ef32c2005-03-14 02:01:49 +00002393
2394 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002395 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002396 rc = SQLITE_READONLY;
2397 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002398 }
2399
danielk1977404ca072009-03-16 13:19:36 +00002400#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002401 /* If another database handle has already opened a write transaction
2402 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002403 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002404 */
danielk1977404ca072009-03-16 13:19:36 +00002405 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
2406 pBlock = pBt->pWriter->db;
2407 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002408 BtLock *pIter;
2409 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2410 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002411 pBlock = pIter->pBtree->db;
2412 break;
danielk1977641b0f42007-12-21 04:47:25 +00002413 }
2414 }
2415 }
danielk1977404ca072009-03-16 13:19:36 +00002416 if( pBlock ){
2417 sqlite3ConnectionBlocked(p->db, pBlock);
2418 rc = SQLITE_LOCKED_SHAREDCACHE;
2419 goto trans_begun;
2420 }
danielk1977641b0f42007-12-21 04:47:25 +00002421#endif
2422
danielk1977602b4662009-07-02 07:47:33 +00002423 /* Any read-only or read-write transaction implies a read-lock on
2424 ** page 1. So if some other shared-cache client already has a write-lock
2425 ** on page 1, the transaction cannot be opened. */
2426 if( SQLITE_OK!=(rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK)) ){
2427 goto trans_begun;
2428 }
2429
drhb8ef32c2005-03-14 02:01:49 +00002430 do {
danielk1977295dc102009-04-01 19:07:03 +00002431 /* Call lockBtree() until either pBt->pPage1 is populated or
2432 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2433 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2434 ** reading page 1 it discovers that the page-size of the database
2435 ** file is not pBt->pageSize. In this case lockBtree() will update
2436 ** pBt->pageSize to the page-size of the file on disk.
2437 */
2438 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002439
drhb8ef32c2005-03-14 02:01:49 +00002440 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00002441 if( pBt->readOnly ){
2442 rc = SQLITE_READONLY;
2443 }else{
danielk1977d8293352009-04-30 09:10:37 +00002444 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002445 if( rc==SQLITE_OK ){
2446 rc = newDatabase(pBt);
2447 }
drhb8ef32c2005-03-14 02:01:49 +00002448 }
2449 }
2450
danielk1977bd434552009-03-18 10:33:00 +00002451 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002452 unlockBtreeIfUnused(pBt);
2453 }
danielk1977aef0bf62005-12-30 16:28:01 +00002454 }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002455 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002456
2457 if( rc==SQLITE_OK ){
2458 if( p->inTrans==TRANS_NONE ){
2459 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002460#ifndef SQLITE_OMIT_SHARED_CACHE
2461 if( p->sharable ){
2462 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2463 p->lock.eLock = READ_LOCK;
2464 p->lock.pNext = pBt->pLock;
2465 pBt->pLock = &p->lock;
2466 }
2467#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002468 }
2469 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2470 if( p->inTrans>pBt->inTransaction ){
2471 pBt->inTransaction = p->inTrans;
2472 }
danielk1977641b0f42007-12-21 04:47:25 +00002473#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002474 if( wrflag ){
2475 assert( !pBt->pWriter );
2476 pBt->pWriter = p;
shaneca18d202009-03-23 02:34:32 +00002477 pBt->isExclusive = (u8)(wrflag>1);
danielk1977641b0f42007-12-21 04:47:25 +00002478 }
2479#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002480 }
2481
drhd677b3d2007-08-20 22:48:41 +00002482
2483trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002484 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002485 /* This call makes sure that the pager has the correct number of
2486 ** open savepoints. If the second parameter is greater than 0 and
2487 ** the sub-journal is not already open, then it will be opened here.
2488 */
danielk1977fd7f0452008-12-17 17:30:26 +00002489 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2490 }
danielk197712dd5492008-12-18 15:45:07 +00002491
danielk1977aef0bf62005-12-30 16:28:01 +00002492 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002493 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002494 return rc;
drha059ad02001-04-17 20:09:11 +00002495}
2496
danielk1977687566d2004-11-02 12:56:41 +00002497#ifndef SQLITE_OMIT_AUTOVACUUM
2498
2499/*
2500** Set the pointer-map entries for all children of page pPage. Also, if
2501** pPage contains cells that point to overflow pages, set the pointer
2502** map entries for the overflow pages as well.
2503*/
2504static int setChildPtrmaps(MemPage *pPage){
2505 int i; /* Counter variable */
2506 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002507 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002508 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002509 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002510 Pgno pgno = pPage->pgno;
2511
drh1fee73e2007-08-29 04:00:57 +00002512 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197771d5d2c2008-09-29 11:49:47 +00002513 rc = sqlite3BtreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002514 if( rc!=SQLITE_OK ){
2515 goto set_child_ptrmaps_out;
2516 }
danielk1977687566d2004-11-02 12:56:41 +00002517 nCell = pPage->nCell;
2518
2519 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002520 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002521
danielk197726836652005-01-17 01:33:13 +00002522 rc = ptrmapPutOvflPtr(pPage, pCell);
2523 if( rc!=SQLITE_OK ){
2524 goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002525 }
danielk197726836652005-01-17 01:33:13 +00002526
danielk1977687566d2004-11-02 12:56:41 +00002527 if( !pPage->leaf ){
2528 Pgno childPgno = get4byte(pCell);
2529 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
danielk197700a696d2008-09-29 16:41:31 +00002530 if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002531 }
2532 }
2533
2534 if( !pPage->leaf ){
2535 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
2536 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
2537 }
2538
2539set_child_ptrmaps_out:
2540 pPage->isInit = isInitOrig;
2541 return rc;
2542}
2543
2544/*
danielk1977fa542f12009-04-02 18:28:08 +00002545** Somewhere on pPage, which is guaranteed to be a btree page, not an overflow
danielk1977687566d2004-11-02 12:56:41 +00002546** page, is a pointer to page iFrom. Modify this pointer so that it points to
2547** iTo. Parameter eType describes the type of pointer to be modified, as
2548** follows:
2549**
2550** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2551** page of pPage.
2552**
2553** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2554** page pointed to by one of the cells on pPage.
2555**
2556** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2557** overflow page in the list.
2558*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002559static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002560 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002561 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002562 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002563 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002564 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002565 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002566 }
danielk1977f78fc082004-11-02 14:40:32 +00002567 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002568 }else{
drhf49661a2008-12-10 16:45:50 +00002569 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002570 int i;
2571 int nCell;
2572
danielk197771d5d2c2008-09-29 11:49:47 +00002573 sqlite3BtreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002574 nCell = pPage->nCell;
2575
danielk1977687566d2004-11-02 12:56:41 +00002576 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002577 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002578 if( eType==PTRMAP_OVERFLOW1 ){
2579 CellInfo info;
drh16a9b832007-05-05 18:39:25 +00002580 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
danielk1977687566d2004-11-02 12:56:41 +00002581 if( info.iOverflow ){
2582 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2583 put4byte(&pCell[info.iOverflow], iTo);
2584 break;
2585 }
2586 }
2587 }else{
2588 if( get4byte(pCell)==iFrom ){
2589 put4byte(pCell, iTo);
2590 break;
2591 }
2592 }
2593 }
2594
2595 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002596 if( eType!=PTRMAP_BTREE ||
2597 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002598 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002599 }
danielk1977687566d2004-11-02 12:56:41 +00002600 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2601 }
2602
2603 pPage->isInit = isInitOrig;
2604 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002605 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002606}
2607
danielk1977003ba062004-11-04 02:57:33 +00002608
danielk19777701e812005-01-10 12:59:51 +00002609/*
2610** Move the open database page pDbPage to location iFreePage in the
2611** database. The pDbPage reference remains valid.
2612*/
danielk1977003ba062004-11-04 02:57:33 +00002613static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002614 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002615 MemPage *pDbPage, /* Open page to move */
2616 u8 eType, /* Pointer map 'type' entry for pDbPage */
2617 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002618 Pgno iFreePage, /* The location to move pDbPage to */
2619 int isCommit
danielk1977003ba062004-11-04 02:57:33 +00002620){
2621 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2622 Pgno iDbPage = pDbPage->pgno;
2623 Pager *pPager = pBt->pPager;
2624 int rc;
2625
danielk1977a0bf2652004-11-04 14:30:04 +00002626 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2627 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002628 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002629 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002630
drh85b623f2007-12-13 21:54:09 +00002631 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002632 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2633 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002634 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002635 if( rc!=SQLITE_OK ){
2636 return rc;
2637 }
2638 pDbPage->pgno = iFreePage;
2639
2640 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2641 ** that point to overflow pages. The pointer map entries for all these
2642 ** pages need to be changed.
2643 **
2644 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2645 ** pointer to a subsequent overflow page. If this is the case, then
2646 ** the pointer map needs to be updated for the subsequent overflow page.
2647 */
danielk1977a0bf2652004-11-04 14:30:04 +00002648 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002649 rc = setChildPtrmaps(pDbPage);
2650 if( rc!=SQLITE_OK ){
2651 return rc;
2652 }
2653 }else{
2654 Pgno nextOvfl = get4byte(pDbPage->aData);
2655 if( nextOvfl!=0 ){
danielk1977003ba062004-11-04 02:57:33 +00002656 rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
2657 if( rc!=SQLITE_OK ){
2658 return rc;
2659 }
2660 }
2661 }
2662
2663 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2664 ** that it points at iFreePage. Also fix the pointer map entry for
2665 ** iPtrPage.
2666 */
danielk1977a0bf2652004-11-04 14:30:04 +00002667 if( eType!=PTRMAP_ROOTPAGE ){
drh16a9b832007-05-05 18:39:25 +00002668 rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002669 if( rc!=SQLITE_OK ){
2670 return rc;
2671 }
danielk19773b8a05f2007-03-19 17:44:26 +00002672 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002673 if( rc!=SQLITE_OK ){
2674 releasePage(pPtrPage);
2675 return rc;
2676 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002677 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002678 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002679 if( rc==SQLITE_OK ){
2680 rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
2681 }
danielk1977003ba062004-11-04 02:57:33 +00002682 }
danielk1977003ba062004-11-04 02:57:33 +00002683 return rc;
2684}
2685
danielk1977dddbcdc2007-04-26 14:42:34 +00002686/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002687static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002688
2689/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002690** Perform a single step of an incremental-vacuum. If successful,
2691** return SQLITE_OK. If there is no work to do (and therefore no
2692** point in calling this function again), return SQLITE_DONE.
2693**
2694** More specificly, this function attempts to re-organize the
2695** database so that the last page of the file currently in use
2696** is no longer in use.
2697**
2698** If the nFin parameter is non-zero, the implementation assumes
2699** that the caller will keep calling incrVacuumStep() until
2700** it returns SQLITE_DONE or an error, and that nFin is the
2701** number of pages the database file will contain after this
2702** process is complete.
2703*/
danielk19773460d192008-12-27 15:23:13 +00002704static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002705 Pgno nFreeList; /* Number of pages still on the free-list */
2706
drh1fee73e2007-08-29 04:00:57 +00002707 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002708 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002709
2710 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
2711 int rc;
2712 u8 eType;
2713 Pgno iPtrPage;
2714
2715 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002716 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002717 return SQLITE_DONE;
2718 }
2719
2720 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2721 if( rc!=SQLITE_OK ){
2722 return rc;
2723 }
2724 if( eType==PTRMAP_ROOTPAGE ){
2725 return SQLITE_CORRUPT_BKPT;
2726 }
2727
2728 if( eType==PTRMAP_FREEPAGE ){
2729 if( nFin==0 ){
2730 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002731 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002732 ** truncated to zero after this function returns, so it doesn't
2733 ** matter if it still contains some garbage entries.
2734 */
2735 Pgno iFreePg;
2736 MemPage *pFreePg;
2737 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2738 if( rc!=SQLITE_OK ){
2739 return rc;
2740 }
2741 assert( iFreePg==iLastPg );
2742 releasePage(pFreePg);
2743 }
2744 } else {
2745 Pgno iFreePg; /* Index of free page to move pLastPg to */
2746 MemPage *pLastPg;
2747
drh16a9b832007-05-05 18:39:25 +00002748 rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002749 if( rc!=SQLITE_OK ){
2750 return rc;
2751 }
2752
danielk1977b4626a32007-04-28 15:47:43 +00002753 /* If nFin is zero, this loop runs exactly once and page pLastPg
2754 ** is swapped with the first free page pulled off the free list.
2755 **
2756 ** On the other hand, if nFin is greater than zero, then keep
2757 ** looping until a free-page located within the first nFin pages
2758 ** of the file is found.
2759 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002760 do {
2761 MemPage *pFreePg;
2762 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2763 if( rc!=SQLITE_OK ){
2764 releasePage(pLastPg);
2765 return rc;
2766 }
2767 releasePage(pFreePg);
2768 }while( nFin!=0 && iFreePg>nFin );
2769 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002770
2771 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002772 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002773 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002774 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002775 releasePage(pLastPg);
2776 if( rc!=SQLITE_OK ){
2777 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002778 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002779 }
2780 }
2781
danielk19773460d192008-12-27 15:23:13 +00002782 if( nFin==0 ){
2783 iLastPg--;
2784 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002785 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2786 MemPage *pPg;
2787 int rc = sqlite3BtreeGetPage(pBt, iLastPg, &pPg, 0);
2788 if( rc!=SQLITE_OK ){
2789 return rc;
2790 }
2791 rc = sqlite3PagerWrite(pPg->pDbPage);
2792 releasePage(pPg);
2793 if( rc!=SQLITE_OK ){
2794 return rc;
2795 }
2796 }
danielk19773460d192008-12-27 15:23:13 +00002797 iLastPg--;
2798 }
2799 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
danielk1977dddbcdc2007-04-26 14:42:34 +00002800 }
2801 return SQLITE_OK;
2802}
2803
2804/*
2805** A write-transaction must be opened before calling this function.
2806** It performs a single unit of work towards an incremental vacuum.
2807**
2808** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00002809** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00002810** SQLITE_OK is returned. Otherwise an SQLite error code.
2811*/
2812int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002813 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002814 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002815
2816 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002817 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2818 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002819 rc = SQLITE_DONE;
2820 }else{
2821 invalidateAllOverflowCache(pBt);
danielk1977bea2a942009-01-20 17:06:27 +00002822 rc = incrVacuumStep(pBt, 0, pagerPagecount(pBt));
danielk1977dddbcdc2007-04-26 14:42:34 +00002823 }
drhd677b3d2007-08-20 22:48:41 +00002824 sqlite3BtreeLeave(p);
2825 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002826}
2827
2828/*
danielk19773b8a05f2007-03-19 17:44:26 +00002829** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00002830** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00002831**
2832** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
2833** the database file should be truncated to during the commit process.
2834** i.e. the database has been reorganized so that only the first *pnTrunc
2835** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00002836*/
danielk19773460d192008-12-27 15:23:13 +00002837static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00002838 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002839 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00002840 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002841
drh1fee73e2007-08-29 04:00:57 +00002842 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00002843 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00002844 assert(pBt->autoVacuum);
2845 if( !pBt->incrVacuum ){
danielk19773460d192008-12-27 15:23:13 +00002846 Pgno nFin;
2847 Pgno nFree;
2848 Pgno nPtrmap;
2849 Pgno iFree;
2850 const int pgsz = pBt->pageSize;
2851 Pgno nOrig = pagerPagecount(pBt);
danielk1977687566d2004-11-02 12:56:41 +00002852
danielk1977ef165ce2009-04-06 17:50:03 +00002853 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
2854 /* It is not possible to create a database for which the final page
2855 ** is either a pointer-map page or the pending-byte page. If one
2856 ** is encountered, this indicates corruption.
2857 */
danielk19773460d192008-12-27 15:23:13 +00002858 return SQLITE_CORRUPT_BKPT;
2859 }
danielk1977ef165ce2009-04-06 17:50:03 +00002860
danielk19773460d192008-12-27 15:23:13 +00002861 nFree = get4byte(&pBt->pPage1->aData[36]);
2862 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+pgsz/5)/(pgsz/5);
2863 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00002864 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00002865 nFin--;
2866 }
2867 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
2868 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00002869 }
drhc5e47ac2009-06-04 00:11:56 +00002870 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00002871
danielk19773460d192008-12-27 15:23:13 +00002872 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
2873 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00002874 }
danielk19773460d192008-12-27 15:23:13 +00002875 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002876 rc = SQLITE_OK;
danielk19773460d192008-12-27 15:23:13 +00002877 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2878 put4byte(&pBt->pPage1->aData[32], 0);
2879 put4byte(&pBt->pPage1->aData[36], 0);
2880 sqlite3PagerTruncateImage(pBt->pPager, nFin);
danielk1977dddbcdc2007-04-26 14:42:34 +00002881 }
2882 if( rc!=SQLITE_OK ){
2883 sqlite3PagerRollback(pPager);
2884 }
danielk1977687566d2004-11-02 12:56:41 +00002885 }
2886
danielk19773b8a05f2007-03-19 17:44:26 +00002887 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002888 return rc;
2889}
danielk1977dddbcdc2007-04-26 14:42:34 +00002890
danielk1977a50d9aa2009-06-08 14:49:45 +00002891#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
2892# define setChildPtrmaps(x) SQLITE_OK
2893#endif
danielk1977687566d2004-11-02 12:56:41 +00002894
2895/*
drh80e35f42007-03-30 14:06:34 +00002896** This routine does the first phase of a two-phase commit. This routine
2897** causes a rollback journal to be created (if it does not already exist)
2898** and populated with enough information so that if a power loss occurs
2899** the database can be restored to its original state by playing back
2900** the journal. Then the contents of the journal are flushed out to
2901** the disk. After the journal is safely on oxide, the changes to the
2902** database are written into the database file and flushed to oxide.
2903** At the end of this call, the rollback journal still exists on the
2904** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00002905** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00002906** commit process.
2907**
2908** This call is a no-op if no write-transaction is currently active on pBt.
2909**
2910** Otherwise, sync the database file for the btree pBt. zMaster points to
2911** the name of a master journal file that should be written into the
2912** individual journal file, or is NULL, indicating no master journal file
2913** (single database transaction).
2914**
2915** When this is called, the master journal should already have been
2916** created, populated with this journal pointer and synced to disk.
2917**
2918** Once this is routine has returned, the only thing required to commit
2919** the write-transaction for this database file is to delete the journal.
2920*/
2921int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
2922 int rc = SQLITE_OK;
2923 if( p->inTrans==TRANS_WRITE ){
2924 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002925 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00002926#ifndef SQLITE_OMIT_AUTOVACUUM
2927 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00002928 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00002929 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00002930 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002931 return rc;
2932 }
2933 }
2934#endif
drh49b9d332009-01-02 18:10:42 +00002935 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00002936 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002937 }
2938 return rc;
2939}
2940
2941/*
danielk197794b30732009-07-02 17:21:57 +00002942** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
2943** at the conclusion of a transaction.
2944*/
2945static void btreeEndTransaction(Btree *p){
2946 BtShared *pBt = p->pBt;
2947 BtCursor *pCsr;
2948 assert( sqlite3BtreeHoldsMutex(p) );
2949
2950 /* Search for a cursor held open by this b-tree connection. If one exists,
2951 ** then the transaction will be downgraded to a read-only transaction
2952 ** instead of actually concluded. A subsequent call to CommitPhaseTwo()
2953 ** or Rollback() will finish the transaction and unlock the database. */
2954 for(pCsr=pBt->pCursor; pCsr && pCsr->pBtree!=p; pCsr=pCsr->pNext);
2955 assert( pCsr==0 || p->inTrans>TRANS_NONE );
2956
2957 btreeClearHasContent(pBt);
2958 if( pCsr ){
2959 downgradeAllSharedCacheTableLocks(p);
2960 p->inTrans = TRANS_READ;
2961 }else{
2962 /* If the handle had any kind of transaction open, decrement the
2963 ** transaction count of the shared btree. If the transaction count
2964 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
2965 ** call below will unlock the pager. */
2966 if( p->inTrans!=TRANS_NONE ){
2967 clearAllSharedCacheTableLocks(p);
2968 pBt->nTransaction--;
2969 if( 0==pBt->nTransaction ){
2970 pBt->inTransaction = TRANS_NONE;
2971 }
2972 }
2973
2974 /* Set the current transaction state to TRANS_NONE and unlock the
2975 ** pager if this call closed the only read or write transaction. */
2976 p->inTrans = TRANS_NONE;
2977 unlockBtreeIfUnused(pBt);
2978 }
2979
2980 btreeIntegrity(p);
2981}
2982
2983/*
drh2aa679f2001-06-25 02:11:07 +00002984** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00002985**
drh6e345992007-03-30 11:12:08 +00002986** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00002987** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
2988** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
2989** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00002990** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00002991** routine has to do is delete or truncate or zero the header in the
2992** the rollback journal (which causes the transaction to commit) and
2993** drop locks.
drh6e345992007-03-30 11:12:08 +00002994**
drh5e00f6c2001-09-13 13:46:56 +00002995** This will release the write lock on the database file. If there
2996** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00002997*/
drh80e35f42007-03-30 14:06:34 +00002998int sqlite3BtreeCommitPhaseTwo(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002999 BtShared *pBt = p->pBt;
3000
drhd677b3d2007-08-20 22:48:41 +00003001 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003002 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003003
3004 /* If the handle has a write-transaction open, commit the shared-btrees
3005 ** transaction and set the shared state to TRANS_READ.
3006 */
3007 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003008 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003009 assert( pBt->inTransaction==TRANS_WRITE );
3010 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003011 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00003012 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003013 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003014 return rc;
3015 }
danielk1977aef0bf62005-12-30 16:28:01 +00003016 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003017 }
danielk1977aef0bf62005-12-30 16:28:01 +00003018
danielk197794b30732009-07-02 17:21:57 +00003019 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003020 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003021 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003022}
3023
drh80e35f42007-03-30 14:06:34 +00003024/*
3025** Do both phases of a commit.
3026*/
3027int sqlite3BtreeCommit(Btree *p){
3028 int rc;
drhd677b3d2007-08-20 22:48:41 +00003029 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003030 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3031 if( rc==SQLITE_OK ){
3032 rc = sqlite3BtreeCommitPhaseTwo(p);
3033 }
drhd677b3d2007-08-20 22:48:41 +00003034 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003035 return rc;
3036}
3037
danielk1977fbcd5852004-06-15 02:44:18 +00003038#ifndef NDEBUG
3039/*
3040** Return the number of write-cursors open on this handle. This is for use
3041** in assert() expressions, so it is only compiled if NDEBUG is not
3042** defined.
drhfb982642007-08-30 01:19:59 +00003043**
3044** For the purposes of this routine, a write-cursor is any cursor that
3045** is capable of writing to the databse. That means the cursor was
3046** originally opened for writing and the cursor has not be disabled
3047** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003048*/
danielk1977aef0bf62005-12-30 16:28:01 +00003049static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003050 BtCursor *pCur;
3051 int r = 0;
3052 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003053 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003054 }
3055 return r;
3056}
3057#endif
3058
drhc39e0002004-05-07 23:50:57 +00003059/*
drhfb982642007-08-30 01:19:59 +00003060** This routine sets the state to CURSOR_FAULT and the error
3061** code to errCode for every cursor on BtShared that pBtree
3062** references.
3063**
3064** Every cursor is tripped, including cursors that belong
3065** to other database connections that happen to be sharing
3066** the cache with pBtree.
3067**
3068** This routine gets called when a rollback occurs.
3069** All cursors using the same cache must be tripped
3070** to prevent them from trying to use the btree after
3071** the rollback. The rollback may have deleted tables
3072** or moved root pages, so it is not sufficient to
3073** save the state of the cursor. The cursor must be
3074** invalidated.
3075*/
3076void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3077 BtCursor *p;
3078 sqlite3BtreeEnter(pBtree);
3079 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003080 int i;
danielk1977be51a652008-10-08 17:58:48 +00003081 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003082 p->eState = CURSOR_FAULT;
3083 p->skip = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003084 for(i=0; i<=p->iPage; i++){
3085 releasePage(p->apPage[i]);
3086 p->apPage[i] = 0;
3087 }
drhfb982642007-08-30 01:19:59 +00003088 }
3089 sqlite3BtreeLeave(pBtree);
3090}
3091
3092/*
drhecdc7532001-09-23 02:35:53 +00003093** Rollback the transaction in progress. All cursors will be
3094** invalided by this operation. Any attempt to use a cursor
3095** that was open at the beginning of this operation will result
3096** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003097**
3098** This will release the write lock on the database file. If there
3099** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003100*/
danielk1977aef0bf62005-12-30 16:28:01 +00003101int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00003102 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003103 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003104 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003105
drhd677b3d2007-08-20 22:48:41 +00003106 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00003107 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00003108#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00003109 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00003110 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00003111 ** trying to save cursor positions. If this is an automatic rollback (as
3112 ** the result of a constraint, malloc() failure or IO error) then
3113 ** the cache may be internally inconsistent (not contain valid trees) so
3114 ** we cannot simply return the error to the caller. Instead, abort
3115 ** all queries that may be using any of the cursors that failed to save.
3116 */
drhfb982642007-08-30 01:19:59 +00003117 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00003118 }
danielk19778d34dfd2006-01-24 16:37:57 +00003119#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003120 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003121
3122 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003123 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003124
danielk19778d34dfd2006-01-24 16:37:57 +00003125 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003126 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003127 if( rc2!=SQLITE_OK ){
3128 rc = rc2;
3129 }
3130
drh24cd67e2004-05-10 16:18:47 +00003131 /* The rollback may have destroyed the pPage1->aData value. So
drh16a9b832007-05-05 18:39:25 +00003132 ** call sqlite3BtreeGetPage() on page 1 again to make
3133 ** sure pPage1->aData is set correctly. */
3134 if( sqlite3BtreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh24cd67e2004-05-10 16:18:47 +00003135 releasePage(pPage1);
3136 }
danielk1977fbcd5852004-06-15 02:44:18 +00003137 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003138 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003139 }
danielk1977aef0bf62005-12-30 16:28:01 +00003140
danielk197794b30732009-07-02 17:21:57 +00003141 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003142 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003143 return rc;
3144}
3145
3146/*
danielk1977bd434552009-03-18 10:33:00 +00003147** Start a statement subtransaction. The subtransaction can can be rolled
3148** back independently of the main transaction. You must start a transaction
3149** before starting a subtransaction. The subtransaction is ended automatically
3150** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003151**
3152** Statement subtransactions are used around individual SQL statements
3153** that are contained within a BEGIN...COMMIT block. If a constraint
3154** error occurs within the statement, the effect of that one statement
3155** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003156**
3157** A statement sub-transaction is implemented as an anonymous savepoint. The
3158** value passed as the second parameter is the total number of savepoints,
3159** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3160** are no active savepoints and no other statement-transactions open,
3161** iStatement is 1. This anonymous savepoint can be released or rolled back
3162** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003163*/
danielk1977bd434552009-03-18 10:33:00 +00003164int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003165 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003166 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003167 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003168 assert( p->inTrans==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003169 assert( pBt->readOnly==0 );
danielk1977bd434552009-03-18 10:33:00 +00003170 assert( iStatement>0 );
3171 assert( iStatement>p->db->nSavepoint );
3172 if( NEVER(p->inTrans!=TRANS_WRITE || pBt->readOnly) ){
drh64022502009-01-09 14:11:04 +00003173 rc = SQLITE_INTERNAL;
drhd677b3d2007-08-20 22:48:41 +00003174 }else{
3175 assert( pBt->inTransaction==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003176 /* At the pager level, a statement transaction is a savepoint with
3177 ** an index greater than all savepoints created explicitly using
3178 ** SQL statements. It is illegal to open, release or rollback any
3179 ** such savepoints while the statement transaction savepoint is active.
3180 */
danielk1977bd434552009-03-18 10:33:00 +00003181 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
danielk197797a227c2006-01-20 16:32:04 +00003182 }
drhd677b3d2007-08-20 22:48:41 +00003183 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003184 return rc;
3185}
3186
3187/*
danielk1977fd7f0452008-12-17 17:30:26 +00003188** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3189** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003190** savepoint identified by parameter iSavepoint, depending on the value
3191** of op.
3192**
3193** Normally, iSavepoint is greater than or equal to zero. However, if op is
3194** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3195** contents of the entire transaction are rolled back. This is different
3196** from a normal transaction rollback, as no locks are released and the
3197** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003198*/
3199int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3200 int rc = SQLITE_OK;
3201 if( p && p->inTrans==TRANS_WRITE ){
3202 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003203 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3204 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3205 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003206 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003207 if( rc==SQLITE_OK ){
3208 rc = newDatabase(pBt);
3209 }
danielk1977fd7f0452008-12-17 17:30:26 +00003210 sqlite3BtreeLeave(p);
3211 }
3212 return rc;
3213}
3214
3215/*
drh8b2f49b2001-06-08 00:21:52 +00003216** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003217** iTable. If a read-only cursor is requested, it is assumed that
3218** the caller already has at least a read-only transaction open
3219** on the database already. If a write-cursor is requested, then
3220** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003221**
3222** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003223** If wrFlag==1, then the cursor can be used for reading or for
3224** writing if other conditions for writing are also met. These
3225** are the conditions that must be met in order for writing to
3226** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003227**
drhf74b8d92002-09-01 23:20:45 +00003228** 1: The cursor must have been opened with wrFlag==1
3229**
drhfe5d71d2007-03-19 11:54:10 +00003230** 2: Other database connections that share the same pager cache
3231** but which are not in the READ_UNCOMMITTED state may not have
3232** cursors open with wrFlag==0 on the same table. Otherwise
3233** the changes made by this write cursor would be visible to
3234** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003235**
3236** 3: The database must be writable (not on read-only media)
3237**
3238** 4: There must be an active transaction.
3239**
drh6446c4d2001-12-15 14:22:18 +00003240** No checking is done to make sure that page iTable really is the
3241** root page of a b-tree. If it is not, then the cursor acquired
3242** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003243**
3244** It is assumed that the sqlite3BtreeCursorSize() bytes of memory
3245** pointed to by pCur have been zeroed by the caller.
drha059ad02001-04-17 20:09:11 +00003246*/
drhd677b3d2007-08-20 22:48:41 +00003247static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003248 Btree *p, /* The btree */
3249 int iTable, /* Root page of table to open */
3250 int wrFlag, /* 1 to write. 0 read-only */
3251 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3252 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003253){
danielk19773e8add92009-07-04 17:16:00 +00003254 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003255
drh1fee73e2007-08-29 04:00:57 +00003256 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003257 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003258
danielk1977602b4662009-07-02 07:47:33 +00003259 /* The following assert statements verify that if this is a sharable
3260 ** b-tree database, the connection is holding the required table locks,
3261 ** and that no other connection has any open cursor that conflicts with
3262 ** this lock. */
3263 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003264 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3265
danielk19773e8add92009-07-04 17:16:00 +00003266 /* Assert that the caller has opened the required transaction. */
3267 assert( p->inTrans>TRANS_NONE );
3268 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3269 assert( pBt->pPage1 && pBt->pPage1->aData );
3270
danielk197796d48e92009-06-29 06:00:37 +00003271 if( NEVER(wrFlag && pBt->readOnly) ){
3272 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003273 }
danielk19773e8add92009-07-04 17:16:00 +00003274 if( iTable==1 && pagerPagecount(pBt)==0 ){
3275 return SQLITE_EMPTY;
3276 }
danielk1977aef0bf62005-12-30 16:28:01 +00003277
danielk1977aef0bf62005-12-30 16:28:01 +00003278 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003279 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003280 pCur->pgnoRoot = (Pgno)iTable;
3281 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003282 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003283 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003284 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003285 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003286 pCur->pNext = pBt->pCursor;
3287 if( pCur->pNext ){
3288 pCur->pNext->pPrev = pCur;
3289 }
3290 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003291 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003292 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003293 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003294}
drhd677b3d2007-08-20 22:48:41 +00003295int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003296 Btree *p, /* The btree */
3297 int iTable, /* Root page of table to open */
3298 int wrFlag, /* 1 to write. 0 read-only */
3299 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3300 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003301){
3302 int rc;
3303 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003304 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003305 sqlite3BtreeLeave(p);
3306 return rc;
3307}
drh7f751222009-03-17 22:33:00 +00003308
3309/*
3310** Return the size of a BtCursor object in bytes.
3311**
3312** This interfaces is needed so that users of cursors can preallocate
3313** sufficient storage to hold a cursor. The BtCursor object is opaque
3314** to users so they cannot do the sizeof() themselves - they must call
3315** this routine.
3316*/
3317int sqlite3BtreeCursorSize(void){
danielk1977cd3e8f72008-03-25 09:47:35 +00003318 return sizeof(BtCursor);
3319}
3320
drh7f751222009-03-17 22:33:00 +00003321/*
3322** Set the cached rowid value of every cursor in the same database file
3323** as pCur and having the same root page number as pCur. The value is
3324** set to iRowid.
3325**
3326** Only positive rowid values are considered valid for this cache.
3327** The cache is initialized to zero, indicating an invalid cache.
3328** A btree will work fine with zero or negative rowids. We just cannot
3329** cache zero or negative rowids, which means tables that use zero or
3330** negative rowids might run a little slower. But in practice, zero
3331** or negative rowids are very uncommon so this should not be a problem.
3332*/
3333void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3334 BtCursor *p;
3335 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3336 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3337 }
3338 assert( pCur->cachedRowid==iRowid );
3339}
drhd677b3d2007-08-20 22:48:41 +00003340
drh7f751222009-03-17 22:33:00 +00003341/*
3342** Return the cached rowid for the given cursor. A negative or zero
3343** return value indicates that the rowid cache is invalid and should be
3344** ignored. If the rowid cache has never before been set, then a
3345** zero is returned.
3346*/
3347sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3348 return pCur->cachedRowid;
3349}
drha059ad02001-04-17 20:09:11 +00003350
3351/*
drh5e00f6c2001-09-13 13:46:56 +00003352** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003353** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003354*/
drh3aac2dd2004-04-26 14:10:20 +00003355int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003356 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003357 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003358 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003359 BtShared *pBt = pCur->pBt;
3360 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003361 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003362 if( pCur->pPrev ){
3363 pCur->pPrev->pNext = pCur->pNext;
3364 }else{
3365 pBt->pCursor = pCur->pNext;
3366 }
3367 if( pCur->pNext ){
3368 pCur->pNext->pPrev = pCur->pPrev;
3369 }
danielk197771d5d2c2008-09-29 11:49:47 +00003370 for(i=0; i<=pCur->iPage; i++){
3371 releasePage(pCur->apPage[i]);
3372 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003373 unlockBtreeIfUnused(pBt);
3374 invalidateOverflowCache(pCur);
3375 /* sqlite3_free(pCur); */
3376 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003377 }
drh8c42ca92001-06-22 19:15:00 +00003378 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003379}
3380
drh0d588bb2009-06-17 13:09:38 +00003381#ifdef SQLITE_TEST
drh7e3b0a02001-04-28 16:52:40 +00003382/*
drh5e2f8b92001-05-28 00:41:15 +00003383** Make a temporary cursor by filling in the fields of pTempCur.
3384** The temporary cursor is not on the cursor list for the Btree.
3385*/
drh16a9b832007-05-05 18:39:25 +00003386void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){
danielk197771d5d2c2008-09-29 11:49:47 +00003387 int i;
drh1fee73e2007-08-29 04:00:57 +00003388 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003389 memcpy(pTempCur, pCur, sizeof(BtCursor));
drh5e2f8b92001-05-28 00:41:15 +00003390 pTempCur->pNext = 0;
3391 pTempCur->pPrev = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003392 for(i=0; i<=pTempCur->iPage; i++){
3393 sqlite3PagerRef(pTempCur->apPage[i]->pDbPage);
drhecdc7532001-09-23 02:35:53 +00003394 }
danielk197736e20932008-11-26 07:40:30 +00003395 assert( pTempCur->pKey==0 );
drh5e2f8b92001-05-28 00:41:15 +00003396}
drh0d588bb2009-06-17 13:09:38 +00003397#endif /* SQLITE_TEST */
drh5e2f8b92001-05-28 00:41:15 +00003398
drh0d588bb2009-06-17 13:09:38 +00003399#ifdef SQLITE_TEST
drh5e2f8b92001-05-28 00:41:15 +00003400/*
drhbd03cae2001-06-02 02:40:57 +00003401** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
drh5e2f8b92001-05-28 00:41:15 +00003402** function above.
3403*/
drh16a9b832007-05-05 18:39:25 +00003404void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){
danielk197771d5d2c2008-09-29 11:49:47 +00003405 int i;
drh1fee73e2007-08-29 04:00:57 +00003406 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003407 for(i=0; i<=pCur->iPage; i++){
3408 sqlite3PagerUnref(pCur->apPage[i]->pDbPage);
drhecdc7532001-09-23 02:35:53 +00003409 }
danielk197736e20932008-11-26 07:40:30 +00003410 sqlite3_free(pCur->pKey);
drh5e2f8b92001-05-28 00:41:15 +00003411}
drh0d588bb2009-06-17 13:09:38 +00003412#endif /* SQLITE_TEST */
drh7f751222009-03-17 22:33:00 +00003413
drh5e2f8b92001-05-28 00:41:15 +00003414/*
drh86057612007-06-26 01:04:48 +00003415** Make sure the BtCursor* given in the argument has a valid
3416** BtCursor.info structure. If it is not already valid, call
danielk19771cc5ed82007-05-16 17:28:43 +00003417** sqlite3BtreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003418**
3419** BtCursor.info is a cache of the information in the current cell.
drh16a9b832007-05-05 18:39:25 +00003420** Using this cache reduces the number of calls to sqlite3BtreeParseCell().
drh86057612007-06-26 01:04:48 +00003421**
3422** 2007-06-25: There is a bug in some versions of MSVC that cause the
3423** compiler to crash when getCellInfo() is implemented as a macro.
3424** But there is a measureable speed advantage to using the macro on gcc
3425** (when less compiler optimizations like -Os or -O0 are used and the
3426** compiler is not doing agressive inlining.) So we use a real function
3427** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003428*/
drh9188b382004-05-14 21:12:22 +00003429#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003430 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003431 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003432 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003433 memset(&info, 0, sizeof(info));
danielk197771d5d2c2008-09-29 11:49:47 +00003434 sqlite3BtreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003435 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003436 }
danielk19771cc5ed82007-05-16 17:28:43 +00003437#else
3438 #define assertCellInfo(x)
3439#endif
drh86057612007-06-26 01:04:48 +00003440#ifdef _MSC_VER
3441 /* Use a real function in MSVC to work around bugs in that compiler. */
3442 static void getCellInfo(BtCursor *pCur){
3443 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003444 int iPage = pCur->iPage;
3445 sqlite3BtreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003446 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003447 }else{
3448 assertCellInfo(pCur);
3449 }
3450 }
3451#else /* if not _MSC_VER */
3452 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003453#define getCellInfo(pCur) \
3454 if( pCur->info.nSize==0 ){ \
3455 int iPage = pCur->iPage; \
3456 sqlite3BtreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
3457 pCur->validNKey = 1; \
3458 }else{ \
3459 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003460 }
3461#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003462
3463/*
drh3aac2dd2004-04-26 14:10:20 +00003464** Set *pSize to the size of the buffer needed to hold the value of
3465** the key for the current entry. If the cursor is not pointing
3466** to a valid entry, *pSize is set to 0.
3467**
drh4b70f112004-05-02 21:12:19 +00003468** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003469** itself, not the number of bytes in the key.
drh7e3b0a02001-04-28 16:52:40 +00003470*/
drh4a1c3802004-05-12 15:15:47 +00003471int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drhd677b3d2007-08-20 22:48:41 +00003472 int rc;
3473
drh1fee73e2007-08-29 04:00:57 +00003474 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003475 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003476 if( rc==SQLITE_OK ){
3477 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3478 if( pCur->eState==CURSOR_INVALID ){
3479 *pSize = 0;
3480 }else{
drh86057612007-06-26 01:04:48 +00003481 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00003482 *pSize = pCur->info.nKey;
3483 }
drh72f82862001-05-24 21:06:34 +00003484 }
danielk1977da184232006-01-05 11:34:32 +00003485 return rc;
drha059ad02001-04-17 20:09:11 +00003486}
drh2af926b2001-05-15 00:39:25 +00003487
drh72f82862001-05-24 21:06:34 +00003488/*
drh0e1c19e2004-05-11 00:58:56 +00003489** Set *pSize to the number of bytes of data in the entry the
3490** cursor currently points to. Always return SQLITE_OK.
3491** Failure is not possible. If the cursor is not currently
3492** pointing to an entry (which can happen, for example, if
3493** the database is empty) then *pSize is set to 0.
3494*/
3495int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drhd677b3d2007-08-20 22:48:41 +00003496 int rc;
3497
drh1fee73e2007-08-29 04:00:57 +00003498 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003499 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003500 if( rc==SQLITE_OK ){
3501 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3502 if( pCur->eState==CURSOR_INVALID ){
3503 /* Not pointing at a valid entry - set *pSize to 0. */
3504 *pSize = 0;
3505 }else{
drh86057612007-06-26 01:04:48 +00003506 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00003507 *pSize = pCur->info.nData;
3508 }
drh0e1c19e2004-05-11 00:58:56 +00003509 }
danielk1977da184232006-01-05 11:34:32 +00003510 return rc;
drh0e1c19e2004-05-11 00:58:56 +00003511}
3512
3513/*
danielk1977d04417962007-05-02 13:16:30 +00003514** Given the page number of an overflow page in the database (parameter
3515** ovfl), this function finds the page number of the next page in the
3516** linked list of overflow pages. If possible, it uses the auto-vacuum
3517** pointer-map data instead of reading the content of page ovfl to do so.
3518**
3519** If an error occurs an SQLite error code is returned. Otherwise:
3520**
danielk1977bea2a942009-01-20 17:06:27 +00003521** The page number of the next overflow page in the linked list is
3522** written to *pPgnoNext. If page ovfl is the last page in its linked
3523** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003524**
danielk1977bea2a942009-01-20 17:06:27 +00003525** If ppPage is not NULL, and a reference to the MemPage object corresponding
3526** to page number pOvfl was obtained, then *ppPage is set to point to that
3527** reference. It is the responsibility of the caller to call releasePage()
3528** on *ppPage to free the reference. In no reference was obtained (because
3529** the pointer-map was used to obtain the value for *pPgnoNext), then
3530** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003531*/
3532static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003533 BtShared *pBt, /* The database file */
3534 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003535 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003536 Pgno *pPgnoNext /* OUT: Next overflow page number */
3537){
3538 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003539 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003540 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003541
drh1fee73e2007-08-29 04:00:57 +00003542 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003543 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003544
3545#ifndef SQLITE_OMIT_AUTOVACUUM
3546 /* Try to find the next page in the overflow list using the
3547 ** autovacuum pointer-map pages. Guess that the next page in
3548 ** the overflow list is page number (ovfl+1). If that guess turns
3549 ** out to be wrong, fall back to loading the data of page
3550 ** number ovfl to determine the next page number.
3551 */
3552 if( pBt->autoVacuum ){
3553 Pgno pgno;
3554 Pgno iGuess = ovfl+1;
3555 u8 eType;
3556
3557 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3558 iGuess++;
3559 }
3560
danielk197789d40042008-11-17 14:20:56 +00003561 if( iGuess<=pagerPagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003562 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003563 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003564 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003565 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003566 }
3567 }
3568 }
3569#endif
3570
danielk1977bea2a942009-01-20 17:06:27 +00003571 if( rc==SQLITE_OK ){
3572 rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d04417962007-05-02 13:16:30 +00003573 assert(rc==SQLITE_OK || pPage==0);
3574 if( next==0 && rc==SQLITE_OK ){
3575 next = get4byte(pPage->aData);
3576 }
danielk1977443c0592009-01-16 15:21:05 +00003577 }
danielk197745d68822009-01-16 16:23:38 +00003578
danielk1977bea2a942009-01-20 17:06:27 +00003579 *pPgnoNext = next;
3580 if( ppPage ){
3581 *ppPage = pPage;
3582 }else{
3583 releasePage(pPage);
3584 }
3585 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003586}
3587
danielk1977da107192007-05-04 08:32:13 +00003588/*
3589** Copy data from a buffer to a page, or from a page to a buffer.
3590**
3591** pPayload is a pointer to data stored on database page pDbPage.
3592** If argument eOp is false, then nByte bytes of data are copied
3593** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3594** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3595** of data are copied from the buffer pBuf to pPayload.
3596**
3597** SQLITE_OK is returned on success, otherwise an error code.
3598*/
3599static int copyPayload(
3600 void *pPayload, /* Pointer to page data */
3601 void *pBuf, /* Pointer to buffer */
3602 int nByte, /* Number of bytes to copy */
3603 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3604 DbPage *pDbPage /* Page containing pPayload */
3605){
3606 if( eOp ){
3607 /* Copy data from buffer to page (a write operation) */
3608 int rc = sqlite3PagerWrite(pDbPage);
3609 if( rc!=SQLITE_OK ){
3610 return rc;
3611 }
3612 memcpy(pPayload, pBuf, nByte);
3613 }else{
3614 /* Copy data from page to buffer (a read operation) */
3615 memcpy(pBuf, pPayload, nByte);
3616 }
3617 return SQLITE_OK;
3618}
danielk1977d04417962007-05-02 13:16:30 +00003619
3620/*
danielk19779f8d6402007-05-02 17:48:45 +00003621** This function is used to read or overwrite payload information
3622** for the entry that the pCur cursor is pointing to. If the eOp
3623** parameter is 0, this is a read operation (data copied into
3624** buffer pBuf). If it is non-zero, a write (data copied from
3625** buffer pBuf).
3626**
3627** A total of "amt" bytes are read or written beginning at "offset".
3628** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003629**
3630** This routine does not make a distinction between key and data.
danielk19779f8d6402007-05-02 17:48:45 +00003631** It just reads or writes bytes from the payload area. Data might
3632** appear on the main page or be scattered out on multiple overflow
3633** pages.
danielk1977da107192007-05-04 08:32:13 +00003634**
danielk1977dcbb5d32007-05-04 18:36:44 +00003635** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003636** cursor entry uses one or more overflow pages, this function
3637** allocates space for and lazily popluates the overflow page-list
3638** cache array (BtCursor.aOverflow). Subsequent calls use this
3639** cache to make seeking to the supplied offset more efficient.
3640**
3641** Once an overflow page-list cache has been allocated, it may be
3642** invalidated if some other cursor writes to the same table, or if
3643** the cursor is moved to a different row. Additionally, in auto-vacuum
3644** mode, the following events may invalidate an overflow page-list cache.
3645**
3646** * An incremental vacuum,
3647** * A commit in auto_vacuum="full" mode,
3648** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003649*/
danielk19779f8d6402007-05-02 17:48:45 +00003650static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003651 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003652 u32 offset, /* Begin reading this far into payload */
3653 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003654 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003655 int skipKey, /* offset begins at data if this is true */
3656 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003657){
3658 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003659 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003660 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003661 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003662 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003663 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003664
danielk1977da107192007-05-04 08:32:13 +00003665 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003666 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003667 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003668 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003669
drh86057612007-06-26 01:04:48 +00003670 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003671 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003672 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003673
drh3aac2dd2004-04-26 14:10:20 +00003674 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003675 offset += nKey;
drh3aac2dd2004-04-26 14:10:20 +00003676 }
danielk19770d065412008-11-12 18:21:36 +00003677 if( offset+amt > nKey+pCur->info.nData
3678 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3679 ){
danielk1977da107192007-05-04 08:32:13 +00003680 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003681 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003682 }
danielk1977da107192007-05-04 08:32:13 +00003683
3684 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003685 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003686 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003687 if( a+offset>pCur->info.nLocal ){
3688 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003689 }
danielk1977da107192007-05-04 08:32:13 +00003690 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003691 offset = 0;
drha34b6762004-05-07 13:30:42 +00003692 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003693 amt -= a;
drhdd793422001-06-28 01:54:48 +00003694 }else{
drhfa1a98a2004-05-14 19:08:17 +00003695 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003696 }
danielk1977da107192007-05-04 08:32:13 +00003697
3698 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003699 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003700 Pgno nextPage;
3701
drhfa1a98a2004-05-14 19:08:17 +00003702 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003703
danielk19772dec9702007-05-02 16:48:37 +00003704#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003705 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003706 ** has not been allocated, allocate it now. The array is sized at
3707 ** one entry for each overflow page in the overflow chain. The
3708 ** page number of the first overflow page is stored in aOverflow[0],
3709 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3710 ** (the cache is lazily populated).
3711 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003712 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003713 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003714 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
danielk19772dec9702007-05-02 16:48:37 +00003715 if( nOvfl && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003716 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003717 }
3718 }
danielk1977da107192007-05-04 08:32:13 +00003719
3720 /* If the overflow page-list cache has been allocated and the
3721 ** entry for the first required overflow page is valid, skip
3722 ** directly to it.
3723 */
danielk19772dec9702007-05-02 16:48:37 +00003724 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3725 iIdx = (offset/ovflSize);
3726 nextPage = pCur->aOverflow[iIdx];
3727 offset = (offset%ovflSize);
3728 }
3729#endif
danielk1977da107192007-05-04 08:32:13 +00003730
3731 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3732
3733#ifndef SQLITE_OMIT_INCRBLOB
3734 /* If required, populate the overflow page-list cache. */
3735 if( pCur->aOverflow ){
3736 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3737 pCur->aOverflow[iIdx] = nextPage;
3738 }
3739#endif
3740
danielk1977d04417962007-05-02 13:16:30 +00003741 if( offset>=ovflSize ){
3742 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003743 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003744 ** data is not required. So first try to lookup the overflow
3745 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003746 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003747 */
danielk19772dec9702007-05-02 16:48:37 +00003748#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003749 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3750 nextPage = pCur->aOverflow[iIdx+1];
3751 } else
danielk19772dec9702007-05-02 16:48:37 +00003752#endif
danielk1977da107192007-05-04 08:32:13 +00003753 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003754 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003755 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003756 /* Need to read this page properly. It contains some of the
3757 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003758 */
3759 DbPage *pDbPage;
danielk1977cfe9a692004-06-16 12:00:29 +00003760 int a = amt;
danielk1977d04417962007-05-02 13:16:30 +00003761 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977da107192007-05-04 08:32:13 +00003762 if( rc==SQLITE_OK ){
3763 aPayload = sqlite3PagerGetData(pDbPage);
3764 nextPage = get4byte(aPayload);
3765 if( a + offset > ovflSize ){
3766 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003767 }
danielk1977da107192007-05-04 08:32:13 +00003768 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3769 sqlite3PagerUnref(pDbPage);
3770 offset = 0;
3771 amt -= a;
3772 pBuf += a;
danielk19779f8d6402007-05-02 17:48:45 +00003773 }
danielk1977cfe9a692004-06-16 12:00:29 +00003774 }
drh2af926b2001-05-15 00:39:25 +00003775 }
drh2af926b2001-05-15 00:39:25 +00003776 }
danielk1977cfe9a692004-06-16 12:00:29 +00003777
danielk1977da107192007-05-04 08:32:13 +00003778 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003779 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003780 }
danielk1977da107192007-05-04 08:32:13 +00003781 return rc;
drh2af926b2001-05-15 00:39:25 +00003782}
3783
drh72f82862001-05-24 21:06:34 +00003784/*
drh3aac2dd2004-04-26 14:10:20 +00003785** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003786** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003787** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003788**
drh3aac2dd2004-04-26 14:10:20 +00003789** Return SQLITE_OK on success or an error code if anything goes
3790** wrong. An error is returned if "offset+amt" is larger than
3791** the available payload.
drh72f82862001-05-24 21:06:34 +00003792*/
drha34b6762004-05-07 13:30:42 +00003793int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003794 int rc;
3795
drh1fee73e2007-08-29 04:00:57 +00003796 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003797 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003798 if( rc==SQLITE_OK ){
3799 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003800 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3801 if( pCur->apPage[0]->intKey ){
danielk1977da184232006-01-05 11:34:32 +00003802 return SQLITE_CORRUPT_BKPT;
3803 }
danielk197771d5d2c2008-09-29 11:49:47 +00003804 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh16a9b832007-05-05 18:39:25 +00003805 rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0);
drh6575a222005-03-10 17:06:34 +00003806 }
danielk1977da184232006-01-05 11:34:32 +00003807 return rc;
drh3aac2dd2004-04-26 14:10:20 +00003808}
3809
3810/*
drh3aac2dd2004-04-26 14:10:20 +00003811** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003812** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003813** begins at "offset".
3814**
3815** Return SQLITE_OK on success or an error code if anything goes
3816** wrong. An error is returned if "offset+amt" is larger than
3817** the available payload.
drh72f82862001-05-24 21:06:34 +00003818*/
drh3aac2dd2004-04-26 14:10:20 +00003819int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003820 int rc;
3821
danielk19773588ceb2008-06-10 17:30:26 +00003822#ifndef SQLITE_OMIT_INCRBLOB
3823 if ( pCur->eState==CURSOR_INVALID ){
3824 return SQLITE_ABORT;
3825 }
3826#endif
3827
drh1fee73e2007-08-29 04:00:57 +00003828 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003829 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003830 if( rc==SQLITE_OK ){
3831 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003832 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3833 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh16a9b832007-05-05 18:39:25 +00003834 rc = accessPayload(pCur, offset, amt, pBuf, 1, 0);
danielk1977da184232006-01-05 11:34:32 +00003835 }
3836 return rc;
drh2af926b2001-05-15 00:39:25 +00003837}
3838
drh72f82862001-05-24 21:06:34 +00003839/*
drh0e1c19e2004-05-11 00:58:56 +00003840** Return a pointer to payload information from the entry that the
3841** pCur cursor is pointing to. The pointer is to the beginning of
3842** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003843** skipKey==1. The number of bytes of available key/data is written
3844** into *pAmt. If *pAmt==0, then the value returned will not be
3845** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00003846**
3847** This routine is an optimization. It is common for the entire key
3848** and data to fit on the local page and for there to be no overflow
3849** pages. When that is so, this routine can be used to access the
3850** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00003851** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00003852** the key/data and copy it into a preallocated buffer.
3853**
3854** The pointer returned by this routine looks directly into the cached
3855** page of the database. The data might change or move the next time
3856** any btree routine is called.
3857*/
3858static const unsigned char *fetchPayload(
3859 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00003860 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00003861 int skipKey /* read beginning at data if this is true */
3862){
3863 unsigned char *aPayload;
3864 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00003865 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00003866 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003867
danielk197771d5d2c2008-09-29 11:49:47 +00003868 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00003869 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00003870 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003871 pPage = pCur->apPage[pCur->iPage];
3872 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh86057612007-06-26 01:04:48 +00003873 getCellInfo(pCur);
drh43605152004-05-29 21:46:49 +00003874 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00003875 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00003876 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00003877 nKey = 0;
3878 }else{
drhf49661a2008-12-10 16:45:50 +00003879 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00003880 }
drh0e1c19e2004-05-11 00:58:56 +00003881 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003882 aPayload += nKey;
3883 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00003884 }else{
drhfa1a98a2004-05-14 19:08:17 +00003885 nLocal = pCur->info.nLocal;
drhe51c44f2004-05-30 20:46:09 +00003886 if( nLocal>nKey ){
3887 nLocal = nKey;
3888 }
drh0e1c19e2004-05-11 00:58:56 +00003889 }
drhe51c44f2004-05-30 20:46:09 +00003890 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003891 return aPayload;
3892}
3893
3894
3895/*
drhe51c44f2004-05-30 20:46:09 +00003896** For the entry that cursor pCur is point to, return as
3897** many bytes of the key or data as are available on the local
3898** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00003899**
3900** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00003901** or be destroyed on the next call to any Btree routine,
3902** including calls from other threads against the same cache.
3903** Hence, a mutex on the BtShared should be held prior to calling
3904** this routine.
drh0e1c19e2004-05-11 00:58:56 +00003905**
3906** These routines is used to get quick access to key and data
3907** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00003908*/
drhe51c44f2004-05-30 20:46:09 +00003909const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
danielk19774b0aa4c2009-05-28 11:05:57 +00003910 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003911 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003912 if( pCur->eState==CURSOR_VALID ){
3913 return (const void*)fetchPayload(pCur, pAmt, 0);
3914 }
3915 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003916}
drhe51c44f2004-05-30 20:46:09 +00003917const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
danielk19774b0aa4c2009-05-28 11:05:57 +00003918 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003919 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003920 if( pCur->eState==CURSOR_VALID ){
3921 return (const void*)fetchPayload(pCur, pAmt, 1);
3922 }
3923 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003924}
3925
3926
3927/*
drh8178a752003-01-05 21:41:40 +00003928** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00003929** page number of the child page to move to.
drh72f82862001-05-24 21:06:34 +00003930*/
drh3aac2dd2004-04-26 14:10:20 +00003931static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00003932 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003933 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00003934 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00003935 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00003936
drh1fee73e2007-08-29 04:00:57 +00003937 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003938 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003939 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
3940 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
3941 return SQLITE_CORRUPT_BKPT;
3942 }
3943 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00003944 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003945 pCur->apPage[i+1] = pNewPage;
3946 pCur->aiIdx[i+1] = 0;
3947 pCur->iPage++;
3948
drh271efa52004-05-30 19:19:05 +00003949 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003950 pCur->validNKey = 0;
drh4be295b2003-12-16 03:44:47 +00003951 if( pNewPage->nCell<1 ){
drh49285702005-09-17 15:20:26 +00003952 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00003953 }
drh72f82862001-05-24 21:06:34 +00003954 return SQLITE_OK;
3955}
3956
danielk1977bf93c562008-09-29 15:53:25 +00003957#ifndef NDEBUG
3958/*
3959** Page pParent is an internal (non-leaf) tree page. This function
3960** asserts that page number iChild is the left-child if the iIdx'th
3961** cell in page pParent. Or, if iIdx is equal to the total number of
3962** cells in pParent, that page number iChild is the right-child of
3963** the page.
3964*/
3965static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
3966 assert( iIdx<=pParent->nCell );
3967 if( iIdx==pParent->nCell ){
3968 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
3969 }else{
3970 assert( get4byte(findCell(pParent, iIdx))==iChild );
3971 }
3972}
3973#else
3974# define assertParentIndex(x,y,z)
3975#endif
3976
drh72f82862001-05-24 21:06:34 +00003977/*
drh5e2f8b92001-05-28 00:41:15 +00003978** Move the cursor up to the parent page.
3979**
3980** pCur->idx is set to the cell index that contains the pointer
3981** to the page we are coming from. If we are coming from the
3982** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00003983** the largest cell index.
drh72f82862001-05-24 21:06:34 +00003984*/
drh16a9b832007-05-05 18:39:25 +00003985void sqlite3BtreeMoveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00003986 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003987 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003988 assert( pCur->iPage>0 );
3989 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00003990 assertParentIndex(
3991 pCur->apPage[pCur->iPage-1],
3992 pCur->aiIdx[pCur->iPage-1],
3993 pCur->apPage[pCur->iPage]->pgno
3994 );
danielk197771d5d2c2008-09-29 11:49:47 +00003995 releasePage(pCur->apPage[pCur->iPage]);
3996 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00003997 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003998 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00003999}
4000
4001/*
4002** Move the cursor to the root page
4003*/
drh5e2f8b92001-05-28 00:41:15 +00004004static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004005 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004006 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004007 Btree *p = pCur->pBtree;
4008 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004009
drh1fee73e2007-08-29 04:00:57 +00004010 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004011 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4012 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4013 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4014 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4015 if( pCur->eState==CURSOR_FAULT ){
4016 return pCur->skip;
4017 }
danielk1977be51a652008-10-08 17:58:48 +00004018 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004019 }
danielk197771d5d2c2008-09-29 11:49:47 +00004020
4021 if( pCur->iPage>=0 ){
4022 int i;
4023 for(i=1; i<=pCur->iPage; i++){
4024 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004025 }
danielk1977172114a2009-07-07 15:47:12 +00004026 pCur->iPage = 0;
drh777e4c42006-01-13 04:31:58 +00004027 }else{
4028 if(
danielk197771d5d2c2008-09-29 11:49:47 +00004029 SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]))
drh777e4c42006-01-13 04:31:58 +00004030 ){
4031 pCur->eState = CURSOR_INVALID;
4032 return rc;
4033 }
danielk1977172114a2009-07-07 15:47:12 +00004034 pCur->iPage = 0;
4035
4036 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4037 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4038 ** NULL, the caller expects a table b-tree. If this is not the case,
4039 ** return an SQLITE_CORRUPT error. */
4040 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4041 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4042 return SQLITE_CORRUPT_BKPT;
4043 }
drhc39e0002004-05-07 23:50:57 +00004044 }
danielk197771d5d2c2008-09-29 11:49:47 +00004045
4046 pRoot = pCur->apPage[0];
4047 assert( pRoot->pgno==pCur->pgnoRoot );
danielk197771d5d2c2008-09-29 11:49:47 +00004048 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004049 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004050 pCur->atLast = 0;
4051 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004052
drh8856d6a2004-04-29 14:42:46 +00004053 if( pRoot->nCell==0 && !pRoot->leaf ){
4054 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004055 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh8856d6a2004-04-29 14:42:46 +00004056 assert( pRoot->pgno==1 );
drh43605152004-05-29 21:46:49 +00004057 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
drh8856d6a2004-04-29 14:42:46 +00004058 assert( subpage>0 );
danielk1977da184232006-01-05 11:34:32 +00004059 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004060 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004061 }else{
4062 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004063 }
4064 return rc;
drh72f82862001-05-24 21:06:34 +00004065}
drh2af926b2001-05-15 00:39:25 +00004066
drh5e2f8b92001-05-28 00:41:15 +00004067/*
4068** Move the cursor down to the left-most leaf entry beneath the
4069** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004070**
4071** The left-most leaf is the one with the smallest key - the first
4072** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004073*/
4074static int moveToLeftmost(BtCursor *pCur){
4075 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004076 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004077 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004078
drh1fee73e2007-08-29 04:00:57 +00004079 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004080 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004081 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4082 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4083 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004084 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004085 }
drhd677b3d2007-08-20 22:48:41 +00004086 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004087}
4088
drh2dcc9aa2002-12-04 13:40:25 +00004089/*
4090** Move the cursor down to the right-most leaf entry beneath the
4091** page to which it is currently pointing. Notice the difference
4092** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4093** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4094** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004095**
4096** The right-most entry is the one with the largest key - the last
4097** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004098*/
4099static int moveToRightmost(BtCursor *pCur){
4100 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004101 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004102 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004103
drh1fee73e2007-08-29 04:00:57 +00004104 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004105 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004106 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004107 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004108 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004109 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004110 }
drhd677b3d2007-08-20 22:48:41 +00004111 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004112 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004113 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004114 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004115 }
danielk1977518002e2008-09-05 05:02:46 +00004116 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004117}
4118
drh5e00f6c2001-09-13 13:46:56 +00004119/* Move the cursor to the first entry in the table. Return SQLITE_OK
4120** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004121** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004122*/
drh3aac2dd2004-04-26 14:10:20 +00004123int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004124 int rc;
drhd677b3d2007-08-20 22:48:41 +00004125
drh1fee73e2007-08-29 04:00:57 +00004126 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004127 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004128 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004129 if( rc==SQLITE_OK ){
4130 if( pCur->eState==CURSOR_INVALID ){
danielk197771d5d2c2008-09-29 11:49:47 +00004131 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004132 *pRes = 1;
4133 rc = SQLITE_OK;
4134 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004135 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004136 *pRes = 0;
4137 rc = moveToLeftmost(pCur);
4138 }
drh5e00f6c2001-09-13 13:46:56 +00004139 }
drh5e00f6c2001-09-13 13:46:56 +00004140 return rc;
4141}
drh5e2f8b92001-05-28 00:41:15 +00004142
drh9562b552002-02-19 15:00:07 +00004143/* Move the cursor to the last entry in the table. Return SQLITE_OK
4144** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004145** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004146*/
drh3aac2dd2004-04-26 14:10:20 +00004147int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004148 int rc;
drhd677b3d2007-08-20 22:48:41 +00004149
drh1fee73e2007-08-29 04:00:57 +00004150 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004151 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004152
4153 /* If the cursor already points to the last entry, this is a no-op. */
4154 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4155#ifdef SQLITE_DEBUG
4156 /* This block serves to assert() that the cursor really does point
4157 ** to the last entry in the b-tree. */
4158 int ii;
4159 for(ii=0; ii<pCur->iPage; ii++){
4160 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4161 }
4162 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4163 assert( pCur->apPage[pCur->iPage]->leaf );
4164#endif
4165 return SQLITE_OK;
4166 }
4167
drh9562b552002-02-19 15:00:07 +00004168 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004169 if( rc==SQLITE_OK ){
4170 if( CURSOR_INVALID==pCur->eState ){
danielk197771d5d2c2008-09-29 11:49:47 +00004171 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004172 *pRes = 1;
4173 }else{
4174 assert( pCur->eState==CURSOR_VALID );
4175 *pRes = 0;
4176 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004177 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004178 }
drh9562b552002-02-19 15:00:07 +00004179 }
drh9562b552002-02-19 15:00:07 +00004180 return rc;
4181}
4182
drhe14006d2008-03-25 17:23:32 +00004183/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004184** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004185**
drhe63d9992008-08-13 19:11:48 +00004186** For INTKEY tables, the intKey parameter is used. pIdxKey
4187** must be NULL. For index tables, pIdxKey is used and intKey
4188** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004189**
drh5e2f8b92001-05-28 00:41:15 +00004190** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004191** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004192** were present. The cursor might point to an entry that comes
4193** before or after the key.
4194**
drh64022502009-01-09 14:11:04 +00004195** An integer is written into *pRes which is the result of
4196** comparing the key with the entry to which the cursor is
4197** pointing. The meaning of the integer written into
4198** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004199**
4200** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004201** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004202** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004203**
4204** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004205** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004206**
4207** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004208** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004209**
drha059ad02001-04-17 20:09:11 +00004210*/
drhe63d9992008-08-13 19:11:48 +00004211int sqlite3BtreeMovetoUnpacked(
4212 BtCursor *pCur, /* The cursor to be moved */
4213 UnpackedRecord *pIdxKey, /* Unpacked index key */
4214 i64 intKey, /* The table key */
4215 int biasRight, /* If true, bias the search to the high end */
4216 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004217){
drh72f82862001-05-24 21:06:34 +00004218 int rc;
drhd677b3d2007-08-20 22:48:41 +00004219
drh1fee73e2007-08-29 04:00:57 +00004220 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004221 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drha2c20e42008-03-29 16:01:04 +00004222
4223 /* If the cursor is already positioned at the point we are trying
4224 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004225 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4226 && pCur->apPage[0]->intKey
4227 ){
drhe63d9992008-08-13 19:11:48 +00004228 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004229 *pRes = 0;
4230 return SQLITE_OK;
4231 }
drhe63d9992008-08-13 19:11:48 +00004232 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004233 *pRes = -1;
4234 return SQLITE_OK;
4235 }
4236 }
4237
drh5e2f8b92001-05-28 00:41:15 +00004238 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004239 if( rc ){
4240 return rc;
4241 }
danielk197771d5d2c2008-09-29 11:49:47 +00004242 assert( pCur->apPage[pCur->iPage] );
4243 assert( pCur->apPage[pCur->iPage]->isInit );
danielk1977da184232006-01-05 11:34:32 +00004244 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004245 *pRes = -1;
danielk197771d5d2c2008-09-29 11:49:47 +00004246 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004247 return SQLITE_OK;
4248 }
danielk197771d5d2c2008-09-29 11:49:47 +00004249 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004250 for(;;){
drh72f82862001-05-24 21:06:34 +00004251 int lwr, upr;
4252 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004253 MemPage *pPage = pCur->apPage[pCur->iPage];
drh1a844c32002-12-04 22:29:28 +00004254 int c = -1; /* pRes return if table is empty must be -1 */
drh72f82862001-05-24 21:06:34 +00004255 lwr = 0;
4256 upr = pPage->nCell-1;
drh64022502009-01-09 14:11:04 +00004257 if( (!pPage->intKey && pIdxKey==0) || upr<0 ){
drh1e968a02008-03-25 00:22:21 +00004258 rc = SQLITE_CORRUPT_BKPT;
4259 goto moveto_finish;
drh4eec4c12005-01-21 00:22:37 +00004260 }
drhe4d90812007-03-29 05:51:49 +00004261 if( biasRight ){
drhf49661a2008-12-10 16:45:50 +00004262 pCur->aiIdx[pCur->iPage] = (u16)upr;
drhe4d90812007-03-29 05:51:49 +00004263 }else{
drhf49661a2008-12-10 16:45:50 +00004264 pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004265 }
drh64022502009-01-09 14:11:04 +00004266 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004267 int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
4268 u8 *pCell; /* Pointer to current cell in pPage */
4269
drh366fda62006-01-13 02:35:09 +00004270 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004271 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004272 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004273 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004274 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004275 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004276 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004277 }
drha2c20e42008-03-29 16:01:04 +00004278 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004279 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004280 c = 0;
drhe63d9992008-08-13 19:11:48 +00004281 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004282 c = -1;
4283 }else{
drhe63d9992008-08-13 19:11:48 +00004284 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004285 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004286 }
danielk197711c327a2009-05-04 19:01:26 +00004287 pCur->validNKey = 1;
4288 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004289 }else{
danielk197711c327a2009-05-04 19:01:26 +00004290 /* The maximum supported page-size is 32768 bytes. This means that
4291 ** the maximum number of record bytes stored on an index B-Tree
4292 ** page is at most 8198 bytes, which may be stored as a 2-byte
4293 ** varint. This information is used to attempt to avoid parsing
4294 ** the entire cell by checking for the cases where the record is
4295 ** stored entirely within the b-tree page by inspecting the first
4296 ** 2 bytes of the cell.
4297 */
4298 int nCell = pCell[0];
4299 if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){
4300 /* This branch runs if the record-size field of the cell is a
4301 ** single byte varint and the record fits entirely on the main
4302 ** b-tree page. */
4303 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4304 }else if( !(pCell[1] & 0x80)
4305 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4306 ){
4307 /* The record-size field is a 2 byte varint and the record
4308 ** fits entirely on the main b-tree page. */
4309 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004310 }else{
danielk197711c327a2009-05-04 19:01:26 +00004311 /* The record flows over onto one or more overflow pages. In
4312 ** this case the whole cell needs to be parsed, a buffer allocated
4313 ** and accessPayload() used to retrieve the record into the
4314 ** buffer before VdbeRecordCompare() can be called. */
4315 void *pCellKey;
4316 u8 * const pCellBody = pCell - pPage->childPtrSize;
4317 sqlite3BtreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004318 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004319 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004320 if( pCellKey==0 ){
4321 rc = SQLITE_NOMEM;
4322 goto moveto_finish;
4323 }
danielk197711c327a2009-05-04 19:01:26 +00004324 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0, 0);
4325 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004326 sqlite3_free(pCellKey);
drh1e968a02008-03-25 00:22:21 +00004327 if( rc ) goto moveto_finish;
drhe51c44f2004-05-30 20:46:09 +00004328 }
drh3aac2dd2004-04-26 14:10:20 +00004329 }
drh72f82862001-05-24 21:06:34 +00004330 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004331 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004332 lwr = idx;
drhfc70e6f2004-05-12 21:11:27 +00004333 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00004334 break;
4335 }else{
drh64022502009-01-09 14:11:04 +00004336 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004337 rc = SQLITE_OK;
4338 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004339 }
drh72f82862001-05-24 21:06:34 +00004340 }
4341 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004342 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004343 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004344 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004345 }
drhf1d68b32007-03-29 04:43:26 +00004346 if( lwr>upr ){
4347 break;
4348 }
drhf49661a2008-12-10 16:45:50 +00004349 pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004350 }
4351 assert( lwr==upr+1 );
danielk197771d5d2c2008-09-29 11:49:47 +00004352 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004353 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004354 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004355 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004356 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004357 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004358 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004359 }
4360 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004361 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh72f82862001-05-24 21:06:34 +00004362 if( pRes ) *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004363 rc = SQLITE_OK;
4364 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004365 }
drhf49661a2008-12-10 16:45:50 +00004366 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004367 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004368 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004369 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004370 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004371 }
drh1e968a02008-03-25 00:22:21 +00004372moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004373 return rc;
4374}
4375
drhd677b3d2007-08-20 22:48:41 +00004376
drh72f82862001-05-24 21:06:34 +00004377/*
drhc39e0002004-05-07 23:50:57 +00004378** Return TRUE if the cursor is not pointing at an entry of the table.
4379**
4380** TRUE will be returned after a call to sqlite3BtreeNext() moves
4381** past the last entry in the table or sqlite3BtreePrev() moves past
4382** the first entry. TRUE is also returned if the table is empty.
4383*/
4384int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004385 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4386 ** have been deleted? This API will need to change to return an error code
4387 ** as well as the boolean result value.
4388 */
4389 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004390}
4391
4392/*
drhbd03cae2001-06-02 02:40:57 +00004393** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004394** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004395** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004396** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004397*/
drhd094db12008-04-03 21:46:57 +00004398int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004399 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004400 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004401 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004402
drh1fee73e2007-08-29 04:00:57 +00004403 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004404 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004405 if( rc!=SQLITE_OK ){
4406 return rc;
4407 }
drh8c4d3a62007-04-06 01:03:32 +00004408 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004409 if( CURSOR_INVALID==pCur->eState ){
4410 *pRes = 1;
4411 return SQLITE_OK;
4412 }
danielk1977da184232006-01-05 11:34:32 +00004413 if( pCur->skip>0 ){
4414 pCur->skip = 0;
4415 *pRes = 0;
4416 return SQLITE_OK;
4417 }
4418 pCur->skip = 0;
danielk1977da184232006-01-05 11:34:32 +00004419
danielk197771d5d2c2008-09-29 11:49:47 +00004420 pPage = pCur->apPage[pCur->iPage];
4421 idx = ++pCur->aiIdx[pCur->iPage];
4422 assert( pPage->isInit );
4423 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004424
drh271efa52004-05-30 19:19:05 +00004425 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004426 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004427 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004428 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004429 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004430 if( rc ) return rc;
4431 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004432 *pRes = 0;
4433 return rc;
drh72f82862001-05-24 21:06:34 +00004434 }
drh5e2f8b92001-05-28 00:41:15 +00004435 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004436 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004437 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004438 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004439 return SQLITE_OK;
4440 }
drh16a9b832007-05-05 18:39:25 +00004441 sqlite3BtreeMoveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004442 pPage = pCur->apPage[pCur->iPage];
4443 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004444 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004445 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004446 rc = sqlite3BtreeNext(pCur, pRes);
4447 }else{
4448 rc = SQLITE_OK;
4449 }
4450 return rc;
drh8178a752003-01-05 21:41:40 +00004451 }
4452 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004453 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004454 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004455 }
drh5e2f8b92001-05-28 00:41:15 +00004456 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004457 return rc;
drh72f82862001-05-24 21:06:34 +00004458}
drhd677b3d2007-08-20 22:48:41 +00004459
drh72f82862001-05-24 21:06:34 +00004460
drh3b7511c2001-05-26 13:15:44 +00004461/*
drh2dcc9aa2002-12-04 13:40:25 +00004462** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004463** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004464** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004465** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004466*/
drhd094db12008-04-03 21:46:57 +00004467int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004468 int rc;
drh8178a752003-01-05 21:41:40 +00004469 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004470
drh1fee73e2007-08-29 04:00:57 +00004471 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004472 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004473 if( rc!=SQLITE_OK ){
4474 return rc;
4475 }
drha2c20e42008-03-29 16:01:04 +00004476 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004477 if( CURSOR_INVALID==pCur->eState ){
4478 *pRes = 1;
4479 return SQLITE_OK;
4480 }
danielk1977da184232006-01-05 11:34:32 +00004481 if( pCur->skip<0 ){
4482 pCur->skip = 0;
4483 *pRes = 0;
4484 return SQLITE_OK;
4485 }
4486 pCur->skip = 0;
danielk1977da184232006-01-05 11:34:32 +00004487
danielk197771d5d2c2008-09-29 11:49:47 +00004488 pPage = pCur->apPage[pCur->iPage];
4489 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004490 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004491 int idx = pCur->aiIdx[pCur->iPage];
4492 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004493 if( rc ){
4494 return rc;
4495 }
drh2dcc9aa2002-12-04 13:40:25 +00004496 rc = moveToRightmost(pCur);
4497 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004498 while( pCur->aiIdx[pCur->iPage]==0 ){
4499 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004500 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004501 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004502 return SQLITE_OK;
4503 }
drh16a9b832007-05-05 18:39:25 +00004504 sqlite3BtreeMoveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004505 }
drh271efa52004-05-30 19:19:05 +00004506 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004507 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004508
4509 pCur->aiIdx[pCur->iPage]--;
4510 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004511 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004512 rc = sqlite3BtreePrevious(pCur, pRes);
4513 }else{
4514 rc = SQLITE_OK;
4515 }
drh2dcc9aa2002-12-04 13:40:25 +00004516 }
drh8178a752003-01-05 21:41:40 +00004517 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004518 return rc;
4519}
4520
4521/*
drh3b7511c2001-05-26 13:15:44 +00004522** Allocate a new page from the database file.
4523**
danielk19773b8a05f2007-03-19 17:44:26 +00004524** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004525** has already been called on the new page.) The new page has also
4526** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004527** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004528**
4529** SQLITE_OK is returned on success. Any other return value indicates
4530** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004531** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004532**
drh199e3cf2002-07-18 11:01:47 +00004533** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4534** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004535** attempt to keep related pages close to each other in the database file,
4536** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004537**
4538** If the "exact" parameter is not 0, and the page-number nearby exists
4539** anywhere on the free-list, then it is guarenteed to be returned. This
4540** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004541*/
drh4f0c5872007-03-26 22:05:01 +00004542static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004543 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004544 MemPage **ppPage,
4545 Pgno *pPgno,
4546 Pgno nearby,
4547 u8 exact
4548){
drh3aac2dd2004-04-26 14:10:20 +00004549 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004550 int rc;
drh35cd6432009-06-05 14:17:21 +00004551 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004552 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004553 MemPage *pTrunk = 0;
4554 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004555 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004556
drh1fee73e2007-08-29 04:00:57 +00004557 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004558 pPage1 = pBt->pPage1;
drh1662b5a2009-06-04 19:06:09 +00004559 mxPage = pagerPagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004560 n = get4byte(&pPage1->aData[36]);
drh1662b5a2009-06-04 19:06:09 +00004561 if( n>mxPage ){
4562 return SQLITE_CORRUPT_BKPT;
4563 }
drh3aac2dd2004-04-26 14:10:20 +00004564 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004565 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004566 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004567 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4568
4569 /* If the 'exact' parameter was true and a query of the pointer-map
4570 ** shows that the page 'nearby' is somewhere on the free-list, then
4571 ** the entire-list will be searched for that page.
4572 */
4573#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004574 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004575 u8 eType;
4576 assert( nearby>0 );
4577 assert( pBt->autoVacuum );
4578 rc = ptrmapGet(pBt, nearby, &eType, 0);
4579 if( rc ) return rc;
4580 if( eType==PTRMAP_FREEPAGE ){
4581 searchList = 1;
4582 }
4583 *pPgno = nearby;
4584 }
4585#endif
4586
4587 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4588 ** first free-list trunk page. iPrevTrunk is initially 1.
4589 */
danielk19773b8a05f2007-03-19 17:44:26 +00004590 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004591 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004592 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004593
4594 /* The code within this loop is run only once if the 'searchList' variable
4595 ** is not true. Otherwise, it runs once for each trunk-page on the
4596 ** free-list until the page 'nearby' is located.
4597 */
4598 do {
4599 pPrevTrunk = pTrunk;
4600 if( pPrevTrunk ){
4601 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004602 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004603 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004604 }
drh1662b5a2009-06-04 19:06:09 +00004605 if( iTrunk>mxPage ){
4606 rc = SQLITE_CORRUPT_BKPT;
4607 }else{
4608 rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
4609 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004610 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004611 pTrunk = 0;
4612 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004613 }
4614
4615 k = get4byte(&pTrunk->aData[4]);
4616 if( k==0 && !searchList ){
4617 /* The trunk has no leaves and the list is not being searched.
4618 ** So extract the trunk page itself and use it as the newly
4619 ** allocated page */
4620 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004621 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004622 if( rc ){
4623 goto end_allocate_page;
4624 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004625 *pPgno = iTrunk;
4626 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4627 *ppPage = pTrunk;
4628 pTrunk = 0;
4629 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004630 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004631 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004632 rc = SQLITE_CORRUPT_BKPT;
4633 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004634#ifndef SQLITE_OMIT_AUTOVACUUM
4635 }else if( searchList && nearby==iTrunk ){
4636 /* The list is being searched and this trunk page is the page
4637 ** to allocate, regardless of whether it has leaves.
4638 */
4639 assert( *pPgno==iTrunk );
4640 *ppPage = pTrunk;
4641 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004642 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004643 if( rc ){
4644 goto end_allocate_page;
4645 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004646 if( k==0 ){
4647 if( !pPrevTrunk ){
4648 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4649 }else{
4650 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4651 }
4652 }else{
4653 /* The trunk page is required by the caller but it contains
4654 ** pointers to free-list leaves. The first leaf becomes a trunk
4655 ** page in this case.
4656 */
4657 MemPage *pNewTrunk;
4658 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004659 if( iNewTrunk>mxPage ){
4660 rc = SQLITE_CORRUPT_BKPT;
4661 goto end_allocate_page;
4662 }
drh16a9b832007-05-05 18:39:25 +00004663 rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004664 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004665 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004666 }
danielk19773b8a05f2007-03-19 17:44:26 +00004667 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004668 if( rc!=SQLITE_OK ){
4669 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004670 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004671 }
4672 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4673 put4byte(&pNewTrunk->aData[4], k-1);
4674 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004675 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004676 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004677 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004678 put4byte(&pPage1->aData[32], iNewTrunk);
4679 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004680 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004681 if( rc ){
4682 goto end_allocate_page;
4683 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004684 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4685 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004686 }
4687 pTrunk = 0;
4688 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4689#endif
danielk1977e5765212009-06-17 11:13:28 +00004690 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004691 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00004692 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004693 Pgno iPage;
4694 unsigned char *aData = pTrunk->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00004695 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004696 if( rc ){
4697 goto end_allocate_page;
4698 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004699 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00004700 u32 i;
4701 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004702 closest = 0;
4703 dist = get4byte(&aData[8]) - nearby;
4704 if( dist<0 ) dist = -dist;
4705 for(i=1; i<k; i++){
4706 int d2 = get4byte(&aData[8+i*4]) - nearby;
4707 if( d2<0 ) d2 = -d2;
4708 if( d2<dist ){
4709 closest = i;
4710 dist = d2;
4711 }
4712 }
4713 }else{
4714 closest = 0;
4715 }
4716
4717 iPage = get4byte(&aData[8+closest*4]);
drh1662b5a2009-06-04 19:06:09 +00004718 if( iPage>mxPage ){
4719 rc = SQLITE_CORRUPT_BKPT;
4720 goto end_allocate_page;
4721 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004722 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00004723 int noContent;
danielk197789d40042008-11-17 14:20:56 +00004724 Pgno nPage;
shane1f9e6aa2008-06-09 19:27:11 +00004725 *pPgno = iPage;
danielk197789d40042008-11-17 14:20:56 +00004726 nPage = pagerPagecount(pBt);
danielk19774dbaa892009-06-16 16:50:22 +00004727 if( iPage>nPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004728 /* Free page off the end of the file */
danielk197743e377a2008-05-05 12:09:32 +00004729 rc = SQLITE_CORRUPT_BKPT;
4730 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004731 }
4732 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4733 ": %d more free pages\n",
4734 *pPgno, closest+1, k, pTrunk->pgno, n-1));
4735 if( closest<k-1 ){
4736 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4737 }
4738 put4byte(&aData[4], k-1);
drhc5053fb2008-11-27 02:22:10 +00004739 assert( sqlite3PagerIswriteable(pTrunk->pDbPage) );
danielk1977bea2a942009-01-20 17:06:27 +00004740 noContent = !btreeGetHasContent(pBt, *pPgno);
4741 rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004742 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00004743 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004744 if( rc!=SQLITE_OK ){
4745 releasePage(*ppPage);
4746 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004747 }
4748 searchList = 0;
4749 }
drhee696e22004-08-30 16:52:17 +00004750 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004751 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00004752 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004753 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00004754 }else{
drh3aac2dd2004-04-26 14:10:20 +00004755 /* There are no pages on the freelist, so create a new page at the
4756 ** end of the file */
danielk197789d40042008-11-17 14:20:56 +00004757 int nPage = pagerPagecount(pBt);
danielk1977ad0132d2008-06-07 08:58:22 +00004758 *pPgno = nPage + 1;
danielk1977afcdd022004-10-31 16:25:42 +00004759
danielk1977bea2a942009-01-20 17:06:27 +00004760 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
4761 (*pPgno)++;
4762 }
4763
danielk1977afcdd022004-10-31 16:25:42 +00004764#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977266664d2006-02-10 08:24:21 +00004765 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
danielk1977afcdd022004-10-31 16:25:42 +00004766 /* If *pPgno refers to a pointer-map page, allocate two new pages
4767 ** at the end of the file instead of one. The first allocated page
4768 ** becomes a new pointer-map page, the second is used by the caller.
4769 */
danielk1977ac861692009-03-28 10:54:22 +00004770 MemPage *pPg = 0;
danielk1977afcdd022004-10-31 16:25:42 +00004771 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
danielk1977599fcba2004-11-08 07:13:13 +00004772 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk1977ac861692009-03-28 10:54:22 +00004773 rc = sqlite3BtreeGetPage(pBt, *pPgno, &pPg, 0);
4774 if( rc==SQLITE_OK ){
4775 rc = sqlite3PagerWrite(pPg->pDbPage);
4776 releasePage(pPg);
4777 }
4778 if( rc ) return rc;
danielk1977afcdd022004-10-31 16:25:42 +00004779 (*pPgno)++;
drh72190432008-01-31 14:54:43 +00004780 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; }
danielk1977afcdd022004-10-31 16:25:42 +00004781 }
4782#endif
4783
danielk1977599fcba2004-11-08 07:13:13 +00004784 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh16a9b832007-05-05 18:39:25 +00004785 rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0);
drh3b7511c2001-05-26 13:15:44 +00004786 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00004787 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004788 if( rc!=SQLITE_OK ){
4789 releasePage(*ppPage);
4790 }
drh3a4c1412004-05-09 20:40:11 +00004791 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00004792 }
danielk1977599fcba2004-11-08 07:13:13 +00004793
4794 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00004795
4796end_allocate_page:
4797 releasePage(pTrunk);
4798 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00004799 if( rc==SQLITE_OK ){
4800 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
4801 releasePage(*ppPage);
4802 return SQLITE_CORRUPT_BKPT;
4803 }
4804 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00004805 }else{
4806 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00004807 }
drh3b7511c2001-05-26 13:15:44 +00004808 return rc;
4809}
4810
4811/*
danielk1977bea2a942009-01-20 17:06:27 +00004812** This function is used to add page iPage to the database file free-list.
4813** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00004814**
danielk1977bea2a942009-01-20 17:06:27 +00004815** The value passed as the second argument to this function is optional.
4816** If the caller happens to have a pointer to the MemPage object
4817** corresponding to page iPage handy, it may pass it as the second value.
4818** Otherwise, it may pass NULL.
4819**
4820** If a pointer to a MemPage object is passed as the second argument,
4821** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00004822*/
danielk1977bea2a942009-01-20 17:06:27 +00004823static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
4824 MemPage *pTrunk = 0; /* Free-list trunk page */
4825 Pgno iTrunk = 0; /* Page number of free-list trunk page */
4826 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
4827 MemPage *pPage; /* Page being freed. May be NULL. */
4828 int rc; /* Return Code */
4829 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00004830
danielk1977bea2a942009-01-20 17:06:27 +00004831 assert( sqlite3_mutex_held(pBt->mutex) );
4832 assert( iPage>1 );
4833 assert( !pMemPage || pMemPage->pgno==iPage );
4834
4835 if( pMemPage ){
4836 pPage = pMemPage;
4837 sqlite3PagerRef(pPage->pDbPage);
4838 }else{
4839 pPage = btreePageLookup(pBt, iPage);
4840 }
drh3aac2dd2004-04-26 14:10:20 +00004841
drha34b6762004-05-07 13:30:42 +00004842 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00004843 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00004844 if( rc ) goto freepage_out;
4845 nFree = get4byte(&pPage1->aData[36]);
4846 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00004847
drhfcce93f2006-02-22 03:08:32 +00004848#ifdef SQLITE_SECURE_DELETE
4849 /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
4850 ** always fully overwrite deleted information with zeros.
4851 */
danielk1977bea2a942009-01-20 17:06:27 +00004852 if( (!pPage && (rc = sqlite3BtreeGetPage(pBt, iPage, &pPage, 0)))
4853 || (rc = sqlite3PagerWrite(pPage->pDbPage))
4854 ){
4855 goto freepage_out;
4856 }
drhfcce93f2006-02-22 03:08:32 +00004857 memset(pPage->aData, 0, pPage->pBt->pageSize);
4858#endif
4859
danielk1977687566d2004-11-02 12:56:41 +00004860 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00004861 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00004862 */
danielk197785d90ca2008-07-19 14:25:15 +00004863 if( ISAUTOVACUUM ){
danielk1977bea2a942009-01-20 17:06:27 +00004864 rc = ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0);
4865 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00004866 }
danielk1977687566d2004-11-02 12:56:41 +00004867
danielk1977bea2a942009-01-20 17:06:27 +00004868 /* Now manipulate the actual database free-list structure. There are two
4869 ** possibilities. If the free-list is currently empty, or if the first
4870 ** trunk page in the free-list is full, then this page will become a
4871 ** new free-list trunk page. Otherwise, it will become a leaf of the
4872 ** first trunk page in the current free-list. This block tests if it
4873 ** is possible to add the page as a new free-list leaf.
4874 */
4875 if( nFree!=0 ){
4876 int nLeaf; /* Initial number of leaf cells on trunk page */
4877
4878 iTrunk = get4byte(&pPage1->aData[32]);
4879 rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
4880 if( rc!=SQLITE_OK ){
4881 goto freepage_out;
4882 }
4883
4884 nLeaf = get4byte(&pTrunk->aData[4]);
4885 if( nLeaf<0 ){
4886 rc = SQLITE_CORRUPT_BKPT;
4887 goto freepage_out;
4888 }
4889 if( nLeaf<pBt->usableSize/4 - 8 ){
4890 /* In this case there is room on the trunk page to insert the page
4891 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00004892 **
4893 ** Note that the trunk page is not really full until it contains
4894 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
4895 ** coded. But due to a coding error in versions of SQLite prior to
4896 ** 3.6.0, databases with freelist trunk pages holding more than
4897 ** usableSize/4 - 8 entries will be reported as corrupt. In order
4898 ** to maintain backwards compatibility with older versions of SQLite,
4899 ** we will contain to restrict the number of entries to usableSize/4 - 8
4900 ** for now. At some point in the future (once everyone has upgraded
4901 ** to 3.6.0 or later) we should consider fixing the conditional above
4902 ** to read "usableSize/4-2" instead of "usableSize/4-8".
4903 */
danielk19773b8a05f2007-03-19 17:44:26 +00004904 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00004905 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00004906 put4byte(&pTrunk->aData[4], nLeaf+1);
4907 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhfcce93f2006-02-22 03:08:32 +00004908#ifndef SQLITE_SECURE_DELETE
danielk1977bea2a942009-01-20 17:06:27 +00004909 if( pPage ){
4910 sqlite3PagerDontWrite(pPage->pDbPage);
4911 }
drhfcce93f2006-02-22 03:08:32 +00004912#endif
danielk1977bea2a942009-01-20 17:06:27 +00004913 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00004914 }
drh3a4c1412004-05-09 20:40:11 +00004915 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00004916 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00004917 }
drh3b7511c2001-05-26 13:15:44 +00004918 }
danielk1977bea2a942009-01-20 17:06:27 +00004919
4920 /* If control flows to this point, then it was not possible to add the
4921 ** the page being freed as a leaf page of the first trunk in the free-list.
4922 ** Possibly because the free-list is empty, or possibly because the
4923 ** first trunk in the free-list is full. Either way, the page being freed
4924 ** will become the new first trunk page in the free-list.
4925 */
shane63207ab2009-02-04 01:49:30 +00004926 if( ((!pPage) && (0 != (rc = sqlite3BtreeGetPage(pBt, iPage, &pPage, 0))))
4927 || (0 != (rc = sqlite3PagerWrite(pPage->pDbPage)))
danielk1977bea2a942009-01-20 17:06:27 +00004928 ){
4929 goto freepage_out;
4930 }
4931 put4byte(pPage->aData, iTrunk);
4932 put4byte(&pPage->aData[4], 0);
4933 put4byte(&pPage1->aData[32], iPage);
4934 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
4935
4936freepage_out:
4937 if( pPage ){
4938 pPage->isInit = 0;
4939 }
4940 releasePage(pPage);
4941 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00004942 return rc;
4943}
danielk1977bea2a942009-01-20 17:06:27 +00004944static int freePage(MemPage *pPage){
4945 return freePage2(pPage->pBt, pPage, pPage->pgno);
4946}
drh3b7511c2001-05-26 13:15:44 +00004947
4948/*
drh3aac2dd2004-04-26 14:10:20 +00004949** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00004950*/
drh3aac2dd2004-04-26 14:10:20 +00004951static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00004952 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00004953 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00004954 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00004955 int rc;
drh94440812007-03-06 11:42:19 +00004956 int nOvfl;
shane63207ab2009-02-04 01:49:30 +00004957 u16 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00004958
drh1fee73e2007-08-29 04:00:57 +00004959 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh16a9b832007-05-05 18:39:25 +00004960 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00004961 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00004962 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00004963 }
drh6f11bef2004-05-13 01:12:56 +00004964 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00004965 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00004966 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00004967 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
4968 assert( ovflPgno==0 || nOvfl>0 );
4969 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00004970 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004971 MemPage *pOvfl = 0;
danielk1977e589a672009-04-11 16:06:15 +00004972 if( ovflPgno<2 || ovflPgno>pagerPagecount(pBt) ){
4973 /* 0 is not a legal page number and page 1 cannot be an
4974 ** overflow page. Therefore if ovflPgno<2 or past the end of the
4975 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00004976 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00004977 }
danielk1977bea2a942009-01-20 17:06:27 +00004978 if( nOvfl ){
4979 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
4980 if( rc ) return rc;
4981 }
4982 rc = freePage2(pBt, pOvfl, ovflPgno);
4983 if( pOvfl ){
4984 sqlite3PagerUnref(pOvfl->pDbPage);
4985 }
drh3b7511c2001-05-26 13:15:44 +00004986 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00004987 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00004988 }
drh5e2f8b92001-05-28 00:41:15 +00004989 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00004990}
4991
4992/*
drh91025292004-05-03 19:49:32 +00004993** Create the byte sequence used to represent a cell on page pPage
4994** and write that byte sequence into pCell[]. Overflow pages are
4995** allocated and filled in as necessary. The calling procedure
4996** is responsible for making sure sufficient space has been allocated
4997** for pCell[].
4998**
4999** Note that pCell does not necessary need to point to the pPage->aData
5000** area. pCell might point to some temporary storage. The cell will
5001** be constructed in this temporary area then copied into pPage->aData
5002** later.
drh3b7511c2001-05-26 13:15:44 +00005003*/
5004static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005005 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005006 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005007 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005008 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005009 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005010 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005011){
drh3b7511c2001-05-26 13:15:44 +00005012 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005013 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005014 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005015 int spaceLeft;
5016 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005017 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005018 unsigned char *pPrior;
5019 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005020 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005021 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005022 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005023 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005024
drh1fee73e2007-08-29 04:00:57 +00005025 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005026
drhc5053fb2008-11-27 02:22:10 +00005027 /* pPage is not necessarily writeable since pCell might be auxiliary
5028 ** buffer space that is separate from the pPage buffer area */
5029 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5030 || sqlite3PagerIswriteable(pPage->pDbPage) );
5031
drh91025292004-05-03 19:49:32 +00005032 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005033 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005034 if( !pPage->leaf ){
5035 nHeader += 4;
5036 }
drh8b18dd42004-05-12 19:18:15 +00005037 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005038 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005039 }else{
drhb026e052007-05-02 01:34:31 +00005040 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005041 }
drh6f11bef2004-05-13 01:12:56 +00005042 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh16a9b832007-05-05 18:39:25 +00005043 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005044 assert( info.nHeader==nHeader );
5045 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005046 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005047
5048 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005049 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005050 if( pPage->intKey ){
5051 pSrc = pData;
5052 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005053 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005054 }else{
drh20abac22009-01-28 20:21:17 +00005055 if( nKey>0x7fffffff || pKey==0 ){
5056 return SQLITE_CORRUPT;
5057 }
drhf49661a2008-12-10 16:45:50 +00005058 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005059 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005060 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005061 }
drh6f11bef2004-05-13 01:12:56 +00005062 *pnSize = info.nSize;
5063 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005064 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005065 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005066
drh3b7511c2001-05-26 13:15:44 +00005067 while( nPayload>0 ){
5068 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005069#ifndef SQLITE_OMIT_AUTOVACUUM
5070 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005071 if( pBt->autoVacuum ){
5072 do{
5073 pgnoOvfl++;
5074 } while(
5075 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5076 );
danielk1977b39f70b2007-05-17 18:28:11 +00005077 }
danielk1977afcdd022004-10-31 16:25:42 +00005078#endif
drhf49661a2008-12-10 16:45:50 +00005079 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005080#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005081 /* If the database supports auto-vacuum, and the second or subsequent
5082 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005083 ** for that page now.
5084 **
5085 ** If this is the first overflow page, then write a partial entry
5086 ** to the pointer-map. If we write nothing to this pointer-map slot,
5087 ** then the optimistic overflow chain processing in clearCell()
5088 ** may misinterpret the uninitialised values and delete the
5089 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005090 */
danielk19774ef24492007-05-23 09:52:41 +00005091 if( pBt->autoVacuum && rc==SQLITE_OK ){
5092 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
5093 rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
danielk197789a4be82007-05-23 13:34:32 +00005094 if( rc ){
5095 releasePage(pOvfl);
5096 }
danielk1977afcdd022004-10-31 16:25:42 +00005097 }
5098#endif
drh3b7511c2001-05-26 13:15:44 +00005099 if( rc ){
drh9b171272004-05-08 02:03:22 +00005100 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005101 return rc;
5102 }
drhc5053fb2008-11-27 02:22:10 +00005103
5104 /* If pToRelease is not zero than pPrior points into the data area
5105 ** of pToRelease. Make sure pToRelease is still writeable. */
5106 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5107
5108 /* If pPrior is part of the data area of pPage, then make sure pPage
5109 ** is still writeable */
5110 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5111 || sqlite3PagerIswriteable(pPage->pDbPage) );
5112
drh3aac2dd2004-04-26 14:10:20 +00005113 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005114 releasePage(pToRelease);
5115 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005116 pPrior = pOvfl->aData;
5117 put4byte(pPrior, 0);
5118 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005119 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005120 }
5121 n = nPayload;
5122 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005123
5124 /* If pToRelease is not zero than pPayload points into the data area
5125 ** of pToRelease. Make sure pToRelease is still writeable. */
5126 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5127
5128 /* If pPayload is part of the data area of pPage, then make sure pPage
5129 ** is still writeable */
5130 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5131 || sqlite3PagerIswriteable(pPage->pDbPage) );
5132
drhb026e052007-05-02 01:34:31 +00005133 if( nSrc>0 ){
5134 if( n>nSrc ) n = nSrc;
5135 assert( pSrc );
5136 memcpy(pPayload, pSrc, n);
5137 }else{
5138 memset(pPayload, 0, n);
5139 }
drh3b7511c2001-05-26 13:15:44 +00005140 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005141 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005142 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005143 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005144 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005145 if( nSrc==0 ){
5146 nSrc = nData;
5147 pSrc = pData;
5148 }
drhdd793422001-06-28 01:54:48 +00005149 }
drh9b171272004-05-08 02:03:22 +00005150 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005151 return SQLITE_OK;
5152}
5153
drh14acc042001-06-10 19:56:58 +00005154/*
5155** Remove the i-th cell from pPage. This routine effects pPage only.
5156** The cell content is not freed or deallocated. It is assumed that
5157** the cell content has been copied someplace else. This routine just
5158** removes the reference to the cell from pPage.
5159**
5160** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005161*/
shane0af3f892008-11-12 04:55:34 +00005162static int dropCell(MemPage *pPage, int idx, int sz){
drh43605152004-05-29 21:46:49 +00005163 int i; /* Loop counter */
5164 int pc; /* Offset to cell content of cell being deleted */
5165 u8 *data; /* pPage->aData */
5166 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005167 int rc; /* The return code */
drh43605152004-05-29 21:46:49 +00005168
drh8c42ca92001-06-22 19:15:00 +00005169 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005170 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005171 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005172 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005173 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005174 ptr = &data[pPage->cellOffset + 2*idx];
shane0af3f892008-11-12 04:55:34 +00005175 pc = get2byte(ptr);
drhc5053fb2008-11-27 02:22:10 +00005176 if( (pc<pPage->hdrOffset+6+(pPage->leaf?0:4))
5177 || (pc+sz>pPage->pBt->usableSize) ){
shane0af3f892008-11-12 04:55:34 +00005178 return SQLITE_CORRUPT_BKPT;
5179 }
shanedcc50b72008-11-13 18:29:50 +00005180 rc = freeSpace(pPage, pc, sz);
5181 if( rc!=SQLITE_OK ){
5182 return rc;
5183 }
drh43605152004-05-29 21:46:49 +00005184 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
5185 ptr[0] = ptr[2];
5186 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00005187 }
5188 pPage->nCell--;
drh43605152004-05-29 21:46:49 +00005189 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
5190 pPage->nFree += 2;
shane0af3f892008-11-12 04:55:34 +00005191 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00005192}
5193
5194/*
5195** Insert a new cell on pPage at cell index "i". pCell points to the
5196** content of the cell.
5197**
5198** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005199** will not fit, then make a copy of the cell content into pTemp if
5200** pTemp is not null. Regardless of pTemp, allocate a new entry
5201** in pPage->aOvfl[] and make it point to the cell content (either
5202** in pTemp or the original pCell) and also record its index.
5203** Allocating a new entry in pPage->aCell[] implies that
5204** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005205**
5206** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5207** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005208** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005209** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005210*/
danielk1977e80463b2004-11-03 03:01:16 +00005211static int insertCell(
drh24cd67e2004-05-10 16:18:47 +00005212 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005213 int i, /* New cell becomes the i-th cell of the page */
5214 u8 *pCell, /* Content of the new cell */
5215 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005216 u8 *pTemp, /* Temp storage space for pCell, if needed */
danielk19774dbaa892009-06-16 16:50:22 +00005217 Pgno iChild /* If non-zero, replace first 4 bytes with this value */
drh24cd67e2004-05-10 16:18:47 +00005218){
drh43605152004-05-29 21:46:49 +00005219 int idx; /* Where to write new cell content in data[] */
5220 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005221 int end; /* First byte past the last cell pointer in data[] */
5222 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005223 int cellOffset; /* Address of first cell pointer in data[] */
5224 u8 *data; /* The content of the whole page */
5225 u8 *ptr; /* Used for moving information around in data[] */
5226
danielk19774dbaa892009-06-16 16:50:22 +00005227 int nSkip = (iChild ? 4 : 0);
5228
drh43605152004-05-29 21:46:49 +00005229 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhf49661a2008-12-10 16:45:50 +00005230 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
5231 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh43605152004-05-29 21:46:49 +00005232 assert( sz==cellSizePtr(pPage, pCell) );
drh1fee73e2007-08-29 04:00:57 +00005233 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +00005234 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005235 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005236 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005237 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005238 }
danielk19774dbaa892009-06-16 16:50:22 +00005239 if( iChild ){
5240 put4byte(pCell, iChild);
5241 }
drh43605152004-05-29 21:46:49 +00005242 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005243 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005244 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005245 pPage->aOvfl[j].idx = (u16)i;
drh14acc042001-06-10 19:56:58 +00005246 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005247 int rc = sqlite3PagerWrite(pPage->pDbPage);
5248 if( rc!=SQLITE_OK ){
5249 return rc;
5250 }
5251 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005252 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005253 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005254 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005255 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005256 rc = allocateSpace(pPage, sz, &idx);
5257 if( rc ) return rc;
5258 assert( idx>=end+2 );
5259 if( idx+sz > pPage->pBt->usableSize ){
shane34ac18d2008-11-11 22:18:20 +00005260 return SQLITE_CORRUPT_BKPT;
shane0af3f892008-11-12 04:55:34 +00005261 }
drh43605152004-05-29 21:46:49 +00005262 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005263 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005264 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005265 if( iChild ){
5266 put4byte(&data[idx], iChild);
5267 }
drh0a45c272009-07-08 01:49:11 +00005268 for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){
drh43605152004-05-29 21:46:49 +00005269 ptr[0] = ptr[-2];
5270 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00005271 }
drh43605152004-05-29 21:46:49 +00005272 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005273 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005274#ifndef SQLITE_OMIT_AUTOVACUUM
5275 if( pPage->pBt->autoVacuum ){
5276 /* The cell may contain a pointer to an overflow page. If so, write
5277 ** the entry for the overflow page into the pointer map.
5278 */
danielk197746aa38f2009-06-25 16:11:05 +00005279 return ptrmapPutOvflPtr(pPage, pCell);
danielk1977a19df672004-11-03 11:37:07 +00005280 }
5281#endif
drh14acc042001-06-10 19:56:58 +00005282 }
danielk1977e80463b2004-11-03 03:01:16 +00005283
danielk1977e80463b2004-11-03 03:01:16 +00005284 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00005285}
5286
5287/*
drhfa1a98a2004-05-14 19:08:17 +00005288** Add a list of cells to a page. The page should be initially empty.
5289** The cells are guaranteed to fit on the page.
5290*/
5291static void assemblePage(
5292 MemPage *pPage, /* The page to be assemblied */
5293 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005294 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005295 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005296){
5297 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005298 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005299 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005300 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5301 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5302 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005303
drh43605152004-05-29 21:46:49 +00005304 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005305 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00005306 assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
drhc5053fb2008-11-27 02:22:10 +00005307 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005308
5309 /* Check that the page has just been zeroed by zeroPage() */
5310 assert( pPage->nCell==0 );
5311 assert( get2byte(&data[hdr+5])==nUsable );
5312
5313 pCellptr = &data[pPage->cellOffset + nCell*2];
5314 cellbody = nUsable;
5315 for(i=nCell-1; i>=0; i--){
5316 pCellptr -= 2;
5317 cellbody -= aSize[i];
5318 put2byte(pCellptr, cellbody);
5319 memcpy(&data[cellbody], apCell[i], aSize[i]);
drhfa1a98a2004-05-14 19:08:17 +00005320 }
danielk1977fad91942009-04-29 17:49:59 +00005321 put2byte(&data[hdr+3], nCell);
5322 put2byte(&data[hdr+5], cellbody);
5323 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005324 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005325}
5326
drh14acc042001-06-10 19:56:58 +00005327/*
drhc3b70572003-01-04 19:44:07 +00005328** The following parameters determine how many adjacent pages get involved
5329** in a balancing operation. NN is the number of neighbors on either side
5330** of the page that participate in the balancing operation. NB is the
5331** total number of pages that participate, including the target page and
5332** NN neighbors on either side.
5333**
5334** The minimum value of NN is 1 (of course). Increasing NN above 1
5335** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5336** in exchange for a larger degradation in INSERT and UPDATE performance.
5337** The value of NN appears to give the best results overall.
5338*/
5339#define NN 1 /* Number of neighbors on either side of pPage */
5340#define NB (NN*2+1) /* Total pages involved in the balance */
5341
danielk1977ac245ec2005-01-14 13:50:11 +00005342
drh615ae552005-01-16 23:21:00 +00005343#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005344/*
5345** This version of balance() handles the common special case where
5346** a new entry is being inserted on the extreme right-end of the
5347** tree, in other words, when the new entry will become the largest
5348** entry in the tree.
5349**
5350** Instead of trying balance the 3 right-most leaf pages, just add
5351** a new page to the right-hand side and put the one new entry in
5352** that page. This leaves the right side of the tree somewhat
5353** unbalanced. But odds are that we will be inserting new entries
5354** at the end soon afterwards so the nearly empty page will quickly
5355** fill up. On average.
5356**
5357** pPage is the leaf page which is the right-most page in the tree.
5358** pParent is its parent. pPage must have a single overflow entry
5359** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005360**
5361** The pSpace buffer is used to store a temporary copy of the divider
5362** cell that will be inserted into pParent. Such a cell consists of a 4
5363** byte page number followed by a variable length integer. In other
5364** words, at most 13 bytes. Hence the pSpace buffer must be at
5365** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005366*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005367static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5368 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005369 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005370 int rc; /* Return Code */
5371 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005372
drh1fee73e2007-08-29 04:00:57 +00005373 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005374 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005375 assert( pPage->nOverflow==1 );
5376
drhd46b6c22009-06-04 17:02:51 +00005377 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005378
danielk1977a50d9aa2009-06-08 14:49:45 +00005379 /* Allocate a new page. This page will become the right-sibling of
5380 ** pPage. Make the parent page writable, so that the new divider cell
5381 ** may be inserted. If both these operations are successful, proceed.
5382 */
drh4f0c5872007-03-26 22:05:01 +00005383 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005384
danielk1977eaa06f62008-09-18 17:34:44 +00005385 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005386
5387 u8 *pOut = &pSpace[4];
danielk19776f235cc2009-06-04 14:46:08 +00005388 u8 *pCell = pPage->aOvfl[0].pCell;
5389 u16 szCell = cellSizePtr(pPage, pCell);
5390 u8 *pStop;
5391
drhc5053fb2008-11-27 02:22:10 +00005392 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005393 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5394 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005395 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005396
5397 /* If this is an auto-vacuum database, update the pointer map
5398 ** with entries for the new page, and any pointer from the
5399 ** cell on the page to an overflow page. If either of these
5400 ** operations fails, the return code is set, but the contents
5401 ** of the parent page are still manipulated by thh code below.
5402 ** That is Ok, at this point the parent page is guaranteed to
5403 ** be marked as dirty. Returning an error code will cause a
5404 ** rollback, undoing any changes made to the parent page.
5405 */
5406 if( ISAUTOVACUUM ){
5407 rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
5408 if( szCell>pNew->minLocal && rc==SQLITE_OK ){
5409 rc = ptrmapPutOvflPtr(pNew, pCell);
5410 }
5411 }
danielk1977eaa06f62008-09-18 17:34:44 +00005412
danielk19776f235cc2009-06-04 14:46:08 +00005413 /* Create a divider cell to insert into pParent. The divider cell
5414 ** consists of a 4-byte page number (the page number of pPage) and
5415 ** a variable length key value (which must be the same value as the
5416 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005417 **
danielk19776f235cc2009-06-04 14:46:08 +00005418 ** To find the largest key value on pPage, first find the right-most
5419 ** cell on pPage. The first two fields of this cell are the
5420 ** record-length (a variable length integer at most 32-bits in size)
5421 ** and the key value (a variable length integer, may have any value).
5422 ** The first of the while(...) loops below skips over the record-length
5423 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005424 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005425 */
danielk1977eaa06f62008-09-18 17:34:44 +00005426 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005427 pStop = &pCell[9];
5428 while( (*(pCell++)&0x80) && pCell<pStop );
5429 pStop = &pCell[9];
5430 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5431
danielk19774dbaa892009-06-16 16:50:22 +00005432 /* Insert the new divider cell into pParent. */
5433 insertCell(pParent,pParent->nCell,pSpace,(int)(pOut-pSpace),0,pPage->pgno);
danielk19776f235cc2009-06-04 14:46:08 +00005434
5435 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005436 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5437
danielk1977e08a3c42008-09-18 18:17:03 +00005438 /* Release the reference to the new page. */
5439 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005440 }
5441
danielk1977eaa06f62008-09-18 17:34:44 +00005442 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005443}
drh615ae552005-01-16 23:21:00 +00005444#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005445
danielk19774dbaa892009-06-16 16:50:22 +00005446#if 0
drhc3b70572003-01-04 19:44:07 +00005447/*
danielk19774dbaa892009-06-16 16:50:22 +00005448** This function does not contribute anything to the operation of SQLite.
5449** it is sometimes activated temporarily while debugging code responsible
5450** for setting pointer-map entries.
5451*/
5452static int ptrmapCheckPages(MemPage **apPage, int nPage){
5453 int i, j;
5454 for(i=0; i<nPage; i++){
5455 Pgno n;
5456 u8 e;
5457 MemPage *pPage = apPage[i];
5458 BtShared *pBt = pPage->pBt;
5459 assert( pPage->isInit );
5460
5461 for(j=0; j<pPage->nCell; j++){
5462 CellInfo info;
5463 u8 *z;
5464
5465 z = findCell(pPage, j);
5466 sqlite3BtreeParseCellPtr(pPage, z, &info);
5467 if( info.iOverflow ){
5468 Pgno ovfl = get4byte(&z[info.iOverflow]);
5469 ptrmapGet(pBt, ovfl, &e, &n);
5470 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5471 }
5472 if( !pPage->leaf ){
5473 Pgno child = get4byte(z);
5474 ptrmapGet(pBt, child, &e, &n);
5475 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5476 }
5477 }
5478 if( !pPage->leaf ){
5479 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5480 ptrmapGet(pBt, child, &e, &n);
5481 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5482 }
5483 }
5484 return 1;
5485}
5486#endif
5487
danielk1977cd581a72009-06-23 15:43:39 +00005488/*
5489** This function is used to copy the contents of the b-tree node stored
5490** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5491** the pointer-map entries for each child page are updated so that the
5492** parent page stored in the pointer map is page pTo. If pFrom contained
5493** any cells with overflow page pointers, then the corresponding pointer
5494** map entries are also updated so that the parent page is page pTo.
5495**
5496** If pFrom is currently carrying any overflow cells (entries in the
5497** MemPage.aOvfl[] array), they are not copied to pTo.
5498**
5499** Before returning, page pTo is reinitialized using sqlite3BtreeInitPage().
5500**
5501** The performance of this function is not critical. It is only used by
5502** the balance_shallower() and balance_deeper() procedures, neither of
5503** which are called often under normal circumstances.
5504*/
5505static int copyNodeContent(MemPage *pFrom, MemPage *pTo){
5506 BtShared * const pBt = pFrom->pBt;
5507 u8 * const aFrom = pFrom->aData;
5508 u8 * const aTo = pTo->aData;
5509 int const iFromHdr = pFrom->hdrOffset;
5510 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
5511 int rc = SQLITE_OK;
5512 int iData;
5513
5514 assert( pFrom->isInit );
5515 assert( pFrom->nFree>=iToHdr );
5516 assert( get2byte(&aFrom[iFromHdr+5])<=pBt->usableSize );
5517
5518 /* Copy the b-tree node content from page pFrom to page pTo. */
5519 iData = get2byte(&aFrom[iFromHdr+5]);
5520 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5521 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5522
5523 /* Reinitialize page pTo so that the contents of the MemPage structure
5524 ** match the new data. The initialization of pTo "cannot" fail, as the
5525 ** data copied from pFrom is known to be valid. */
5526 pTo->isInit = 0;
5527 TESTONLY(rc = ) sqlite3BtreeInitPage(pTo);
5528 assert( rc==SQLITE_OK );
5529
5530 /* If this is an auto-vacuum database, update the pointer-map entries
5531 ** for any b-tree or overflow pages that pTo now contains the pointers to. */
5532 if( ISAUTOVACUUM ){
5533 rc = setChildPtrmaps(pTo);
5534 }
5535 return rc;
5536}
5537
5538/*
danielk19774dbaa892009-06-16 16:50:22 +00005539** This routine redistributes cells on the iParentIdx'th child of pParent
5540** (hereafter "the page") and up to 2 siblings so that all pages have about the
5541** same amount of free space. Usually a single sibling on either side of the
5542** page are used in the balancing, though both siblings might come from one
5543** side if the page is the first or last child of its parent. If the page
5544** has fewer than 2 siblings (something which can only happen if the page
5545** is a root page or a child of a root page) then all available siblings
5546** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005547**
danielk19774dbaa892009-06-16 16:50:22 +00005548** The number of siblings of the page might be increased or decreased by
5549** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005550**
danielk19774dbaa892009-06-16 16:50:22 +00005551** Note that when this routine is called, some of the cells on the page
5552** might not actually be stored in MemPage.aData[]. This can happen
5553** if the page is overfull. This routine ensures that all cells allocated
5554** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005555**
danielk19774dbaa892009-06-16 16:50:22 +00005556** In the course of balancing the page and its siblings, cells may be
5557** inserted into or removed from the parent page (pParent). Doing so
5558** may cause the parent page to become overfull or underfull. If this
5559** happens, it is the responsibility of the caller to invoke the correct
5560** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005561**
drh5e00f6c2001-09-13 13:46:56 +00005562** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005563** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005564** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005565**
5566** The third argument to this function, aOvflSpace, is a pointer to a
5567** buffer page-size bytes in size. If, in inserting cells into the parent
5568** page (pParent), the parent page becomes overfull, this buffer is
5569** used to store the parents overflow cells. Because this function inserts
5570** a maximum of four divider cells into the parent page, and the maximum
5571** size of a cell stored within an internal node is always less than 1/4
5572** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5573** enough for all overflow cells.
5574**
5575** If aOvflSpace is set to a null pointer, this function returns
5576** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005577*/
danielk19774dbaa892009-06-16 16:50:22 +00005578static int balance_nonroot(
5579 MemPage *pParent, /* Parent page of siblings being balanced */
5580 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005581 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5582 int isRoot /* True if pParent is a root-page */
danielk19774dbaa892009-06-16 16:50:22 +00005583){
drh16a9b832007-05-05 18:39:25 +00005584 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005585 int nCell = 0; /* Number of cells in apCell[] */
5586 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005587 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005588 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005589 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005590 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005591 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005592 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005593 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005594 int usableSpace; /* Bytes in pPage beyond the header */
5595 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005596 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005597 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005598 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005599 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005600 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005601 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005602 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005603 u8 *pRight; /* Location in parent of right-sibling pointer */
5604 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005605 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5606 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005607 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005608 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005609 u8 *aSpace1; /* Space for copies of dividers cells */
5610 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005611
danielk1977a50d9aa2009-06-08 14:49:45 +00005612 pBt = pParent->pBt;
5613 assert( sqlite3_mutex_held(pBt->mutex) );
5614 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005615
danielk1977e5765212009-06-17 11:13:28 +00005616#if 0
drh43605152004-05-29 21:46:49 +00005617 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00005618#endif
drh2e38c322004-09-03 18:38:44 +00005619
danielk19774dbaa892009-06-16 16:50:22 +00005620 /* At this point pParent may have at most one overflow cell. And if
5621 ** this overflow cell is present, it must be the cell with
5622 ** index iParentIdx. This scenario comes about when this function
5623 ** is called (indirectly) from sqlite3BtreeDelete(). */
5624 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
5625 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
5626
danielk197711a8a862009-06-17 11:49:52 +00005627 if( !aOvflSpace ){
5628 return SQLITE_NOMEM;
5629 }
5630
danielk1977a50d9aa2009-06-08 14:49:45 +00005631 /* Find the sibling pages to balance. Also locate the cells in pParent
5632 ** that divide the siblings. An attempt is made to find NN siblings on
5633 ** either side of pPage. More siblings are taken from one side, however,
5634 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00005635 ** has NB or fewer children then all children of pParent are taken.
5636 **
5637 ** This loop also drops the divider cells from the parent page. This
5638 ** way, the remainder of the function does not have to deal with any
5639 ** overflow cells in the parent page, as if one existed it has already
5640 ** been removed. */
5641 i = pParent->nOverflow + pParent->nCell;
5642 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00005643 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00005644 nOld = i+1;
5645 }else{
5646 nOld = 3;
5647 if( iParentIdx==0 ){
5648 nxDiv = 0;
5649 }else if( iParentIdx==i ){
5650 nxDiv = i-2;
drh14acc042001-06-10 19:56:58 +00005651 }else{
danielk19774dbaa892009-06-16 16:50:22 +00005652 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00005653 }
danielk19774dbaa892009-06-16 16:50:22 +00005654 i = 2;
5655 }
5656 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
5657 pRight = &pParent->aData[pParent->hdrOffset+8];
5658 }else{
5659 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
5660 }
5661 pgno = get4byte(pRight);
5662 while( 1 ){
5663 rc = getAndInitPage(pBt, pgno, &apOld[i]);
5664 if( rc ){
5665 memset(apOld, 0, i*sizeof(MemPage*));
5666 goto balance_cleanup;
5667 }
danielk1977634f2982005-03-28 08:44:07 +00005668 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00005669 if( (i--)==0 ) break;
5670
5671 if( pParent->nOverflow && i+nxDiv==pParent->aOvfl[0].idx ){
5672 apDiv[i] = pParent->aOvfl[0].pCell;
5673 pgno = get4byte(apDiv[i]);
5674 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5675 pParent->nOverflow = 0;
5676 }else{
5677 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
5678 pgno = get4byte(apDiv[i]);
5679 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5680
5681 /* Drop the cell from the parent page. apDiv[i] still points to
5682 ** the cell within the parent, even though it has been dropped.
5683 ** This is safe because dropping a cell only overwrites the first
5684 ** four bytes of it, and this function does not need the first
5685 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00005686 ** later on.
5687 **
5688 ** Unless SQLite is compiled in secure-delete mode. In this case,
5689 ** the dropCell() routine will overwrite the entire cell with zeroes.
5690 ** In this case, temporarily copy the cell into the aOvflSpace[]
5691 ** buffer. It will be copied out again as soon as the aSpace[] buffer
5692 ** is allocated. */
5693#ifdef SQLITE_SECURE_DELETE
5694 memcpy(&aOvflSpace[apDiv[i]-pParent->aData], apDiv[i], szNew[i]);
5695 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
5696#endif
danielk19774dbaa892009-06-16 16:50:22 +00005697 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i]);
5698 }
drh8b2f49b2001-06-08 00:21:52 +00005699 }
5700
drha9121e42008-02-19 14:59:35 +00005701 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00005702 ** alignment */
drha9121e42008-02-19 14:59:35 +00005703 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00005704
drh8b2f49b2001-06-08 00:21:52 +00005705 /*
danielk1977634f2982005-03-28 08:44:07 +00005706 ** Allocate space for memory structures
5707 */
danielk19774dbaa892009-06-16 16:50:22 +00005708 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00005709 szScratch =
drha9121e42008-02-19 14:59:35 +00005710 nMaxCells*sizeof(u8*) /* apCell */
5711 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00005712 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00005713 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00005714 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00005715 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00005716 rc = SQLITE_NOMEM;
5717 goto balance_cleanup;
5718 }
drha9121e42008-02-19 14:59:35 +00005719 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00005720 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00005721 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00005722
5723 /*
5724 ** Load pointers to all cells on sibling pages and the divider cells
5725 ** into the local apCell[] array. Make copies of the divider cells
danielk19774dbaa892009-06-16 16:50:22 +00005726 ** into space obtained from aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00005727 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00005728 **
5729 ** If the siblings are on leaf pages, then the child pointers of the
5730 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00005731 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00005732 ** child pointers. If siblings are not leaves, then all cell in
5733 ** apCell[] include child pointers. Either way, all cells in apCell[]
5734 ** are alike.
drh96f5b762004-05-16 16:24:36 +00005735 **
5736 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
5737 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00005738 */
danielk1977a50d9aa2009-06-08 14:49:45 +00005739 leafCorrection = apOld[0]->leaf*4;
5740 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00005741 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00005742 int limit;
5743
5744 /* Before doing anything else, take a copy of the i'th original sibling
5745 ** The rest of this function will use data from the copies rather
5746 ** that the original pages since the original pages will be in the
5747 ** process of being overwritten. */
5748 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
5749 memcpy(pOld, apOld[i], sizeof(MemPage));
5750 pOld->aData = (void*)&pOld[1];
5751 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
5752
5753 limit = pOld->nCell+pOld->nOverflow;
drh43605152004-05-29 21:46:49 +00005754 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00005755 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00005756 apCell[nCell] = findOverflowCell(pOld, j);
5757 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk19774dbaa892009-06-16 16:50:22 +00005758 nCell++;
5759 }
5760 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00005761 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00005762 u8 *pTemp;
5763 assert( nCell<nMaxCells );
5764 szCell[nCell] = sz;
5765 pTemp = &aSpace1[iSpace1];
5766 iSpace1 += sz;
5767 assert( sz<=pBt->pageSize/4 );
5768 assert( iSpace1<=pBt->pageSize );
5769 memcpy(pTemp, apDiv[i], sz);
5770 apCell[nCell] = pTemp+leafCorrection;
5771 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00005772 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00005773 if( !pOld->leaf ){
5774 assert( leafCorrection==0 );
5775 assert( pOld->hdrOffset==0 );
5776 /* The right pointer of the child page pOld becomes the left
5777 ** pointer of the divider cell */
5778 memcpy(apCell[nCell], &pOld->aData[8], 4);
5779 }else{
5780 assert( leafCorrection==4 );
5781 if( szCell[nCell]<4 ){
5782 /* Do not allow any cells smaller than 4 bytes. */
5783 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00005784 }
5785 }
drh14acc042001-06-10 19:56:58 +00005786 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00005787 }
drh8b2f49b2001-06-08 00:21:52 +00005788 }
5789
5790 /*
drh6019e162001-07-02 17:51:45 +00005791 ** Figure out the number of pages needed to hold all nCell cells.
5792 ** Store this number in "k". Also compute szNew[] which is the total
5793 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00005794 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00005795 ** cntNew[k] should equal nCell.
5796 **
drh96f5b762004-05-16 16:24:36 +00005797 ** Values computed by this block:
5798 **
5799 ** k: The total number of sibling pages
5800 ** szNew[i]: Spaced used on the i-th sibling page.
5801 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
5802 ** the right of the i-th sibling page.
5803 ** usableSpace: Number of bytes of space available on each sibling.
5804 **
drh8b2f49b2001-06-08 00:21:52 +00005805 */
drh43605152004-05-29 21:46:49 +00005806 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00005807 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00005808 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00005809 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00005810 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00005811 szNew[k] = subtotal - szCell[i];
5812 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00005813 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00005814 subtotal = 0;
5815 k++;
drheac74422009-06-14 12:47:11 +00005816 if( k>NB+1 ){ rc = SQLITE_CORRUPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00005817 }
5818 }
5819 szNew[k] = subtotal;
5820 cntNew[k] = nCell;
5821 k++;
drh96f5b762004-05-16 16:24:36 +00005822
5823 /*
5824 ** The packing computed by the previous block is biased toward the siblings
5825 ** on the left side. The left siblings are always nearly full, while the
5826 ** right-most sibling might be nearly empty. This block of code attempts
5827 ** to adjust the packing of siblings to get a better balance.
5828 **
5829 ** This adjustment is more than an optimization. The packing above might
5830 ** be so out of balance as to be illegal. For example, the right-most
5831 ** sibling might be completely empty. This adjustment is not optional.
5832 */
drh6019e162001-07-02 17:51:45 +00005833 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00005834 int szRight = szNew[i]; /* Size of sibling on the right */
5835 int szLeft = szNew[i-1]; /* Size of sibling on the left */
5836 int r; /* Index of right-most cell in left sibling */
5837 int d; /* Index of first cell to the left of right sibling */
5838
5839 r = cntNew[i-1] - 1;
5840 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00005841 assert( d<nMaxCells );
5842 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00005843 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
5844 szRight += szCell[d] + 2;
5845 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00005846 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00005847 r = cntNew[i-1] - 1;
5848 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00005849 }
drh96f5b762004-05-16 16:24:36 +00005850 szNew[i] = szRight;
5851 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00005852 }
drh09d0deb2005-08-02 17:13:09 +00005853
danielk19776f235cc2009-06-04 14:46:08 +00005854 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00005855 ** a virtual root page. A virtual root page is when the real root
5856 ** page is page 1 and we are the only child of that page.
5857 */
5858 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00005859
danielk1977e5765212009-06-17 11:13:28 +00005860 TRACE(("BALANCE: old: %d %d %d ",
5861 apOld[0]->pgno,
5862 nOld>=2 ? apOld[1]->pgno : 0,
5863 nOld>=3 ? apOld[2]->pgno : 0
5864 ));
5865
drh8b2f49b2001-06-08 00:21:52 +00005866 /*
drh6b308672002-07-08 02:16:37 +00005867 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00005868 */
drheac74422009-06-14 12:47:11 +00005869 if( apOld[0]->pgno<=1 ){
5870 rc = SQLITE_CORRUPT;
5871 goto balance_cleanup;
5872 }
danielk1977a50d9aa2009-06-08 14:49:45 +00005873 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00005874 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00005875 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00005876 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00005877 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00005878 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005879 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00005880 nNew++;
danielk197728129562005-01-11 10:25:06 +00005881 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00005882 }else{
drh7aa8f852006-03-28 00:24:44 +00005883 assert( i>0 );
danielk19774dbaa892009-06-16 16:50:22 +00005884 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
drh6b308672002-07-08 02:16:37 +00005885 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00005886 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00005887 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00005888
5889 /* Set the pointer-map entry for the new sibling page. */
5890 if( ISAUTOVACUUM ){
5891 rc = ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno);
5892 if( rc!=SQLITE_OK ){
5893 goto balance_cleanup;
5894 }
5895 }
drh6b308672002-07-08 02:16:37 +00005896 }
drh8b2f49b2001-06-08 00:21:52 +00005897 }
5898
danielk1977299b1872004-11-22 10:02:10 +00005899 /* Free any old pages that were not reused as new pages.
5900 */
5901 while( i<nOld ){
5902 rc = freePage(apOld[i]);
5903 if( rc ) goto balance_cleanup;
5904 releasePage(apOld[i]);
5905 apOld[i] = 0;
5906 i++;
5907 }
5908
drh8b2f49b2001-06-08 00:21:52 +00005909 /*
drhf9ffac92002-03-02 19:00:31 +00005910 ** Put the new pages in accending order. This helps to
5911 ** keep entries in the disk file in order so that a scan
5912 ** of the table is a linear scan through the file. That
5913 ** in turn helps the operating system to deliver pages
5914 ** from the disk more rapidly.
5915 **
5916 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00005917 ** n is never more than NB (a small constant), that should
5918 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00005919 **
drhc3b70572003-01-04 19:44:07 +00005920 ** When NB==3, this one optimization makes the database
5921 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00005922 */
5923 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00005924 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00005925 int minI = i;
5926 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00005927 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00005928 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00005929 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00005930 }
5931 }
5932 if( minI>i ){
5933 int t;
5934 MemPage *pT;
danielk19774dbaa892009-06-16 16:50:22 +00005935 t = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00005936 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00005937 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00005938 apNew[minI] = pT;
5939 }
5940 }
danielk1977e5765212009-06-17 11:13:28 +00005941 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00005942 apNew[0]->pgno, szNew[0],
5943 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
5944 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
5945 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
5946 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
5947
5948 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
5949 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00005950
drhf9ffac92002-03-02 19:00:31 +00005951 /*
drh14acc042001-06-10 19:56:58 +00005952 ** Evenly distribute the data in apCell[] across the new pages.
5953 ** Insert divider cells into pParent as necessary.
5954 */
5955 j = 0;
5956 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00005957 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00005958 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00005959 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00005960 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00005961 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00005962 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00005963 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00005964
danielk1977ac11ee62005-01-15 12:45:51 +00005965 j = cntNew[i];
5966
5967 /* If the sibling page assembled above was not the right-most sibling,
5968 ** insert a divider cell into the parent page.
5969 */
danielk19771c3d2bf2009-06-23 16:40:17 +00005970 assert( i<nNew-1 || j==nCell );
5971 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00005972 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00005973 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00005974 int sz;
danielk1977634f2982005-03-28 08:44:07 +00005975
5976 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00005977 pCell = apCell[j];
5978 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00005979 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00005980 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00005981 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00005982 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00005983 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00005984 ** then there is no divider cell in apCell[]. Instead, the divider
5985 ** cell consists of the integer key for the right-most cell of
5986 ** the sibling-page assembled above only.
5987 */
drh6f11bef2004-05-13 01:12:56 +00005988 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00005989 j--;
drh16a9b832007-05-05 18:39:25 +00005990 sqlite3BtreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00005991 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00005992 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00005993 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00005994 }else{
5995 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00005996 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00005997 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00005998 ** bytes, then it may actually be smaller than this
5999 ** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006000 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006001 ** insertCell(), so reparse the cell now.
6002 **
6003 ** Note that this can never happen in an SQLite data file, as all
6004 ** cells are at least 4 bytes. It only happens in b-trees used
6005 ** to evaluate "IN (SELECT ...)" and similar clauses.
6006 */
6007 if( szCell[j]==4 ){
6008 assert(leafCorrection==4);
6009 sz = cellSizePtr(pParent, pCell);
6010 }
drh4b70f112004-05-02 21:12:19 +00006011 }
danielk19776067a9b2009-06-09 09:41:00 +00006012 iOvflSpace += sz;
drhe5ae5732008-06-15 02:51:47 +00006013 assert( sz<=pBt->pageSize/4 );
danielk19776067a9b2009-06-09 09:41:00 +00006014 assert( iOvflSpace<=pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006015 rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno);
danielk1977e80463b2004-11-03 03:01:16 +00006016 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006017 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006018
drh14acc042001-06-10 19:56:58 +00006019 j++;
6020 nxDiv++;
6021 }
6022 }
drh6019e162001-07-02 17:51:45 +00006023 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006024 assert( nOld>0 );
6025 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006026 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006027 u8 *zChild = &apCopy[nOld-1]->aData[8];
6028 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006029 }
6030
danielk197713bd99f2009-06-24 05:40:34 +00006031 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6032 /* The root page of the b-tree now contains no cells. The only sibling
6033 ** page is the right-child of the parent. Copy the contents of the
6034 ** child page into the parent, decreasing the overall height of the
6035 ** b-tree structure by one. This is described as the "balance-shallower"
6036 ** sub-algorithm in some documentation.
6037 **
6038 ** If this is an auto-vacuum database, the call to copyNodeContent()
6039 ** sets all pointer-map entries corresponding to database image pages
6040 ** for which the pointer is stored within the content being copied.
6041 **
6042 ** The second assert below verifies that the child page is defragmented
6043 ** (it must be, as it was just reconstructed using assemblePage()). This
6044 ** is important if the parent page happens to be page 1 of the database
6045 ** image. */
6046 assert( nNew==1 );
6047 assert( apNew[0]->nFree ==
6048 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6049 );
6050 if( SQLITE_OK==(rc = copyNodeContent(apNew[0], pParent)) ){
6051 rc = freePage(apNew[0]);
6052 }
6053 }else if( ISAUTOVACUUM ){
6054 /* Fix the pointer-map entries for all the cells that were shifted around.
6055 ** There are several different types of pointer-map entries that need to
6056 ** be dealt with by this routine. Some of these have been set already, but
6057 ** many have not. The following is a summary:
6058 **
6059 ** 1) The entries associated with new sibling pages that were not
6060 ** siblings when this function was called. These have already
6061 ** been set. We don't need to worry about old siblings that were
6062 ** moved to the free-list - the freePage() code has taken care
6063 ** of those.
6064 **
6065 ** 2) The pointer-map entries associated with the first overflow
6066 ** page in any overflow chains used by new divider cells. These
6067 ** have also already been taken care of by the insertCell() code.
6068 **
6069 ** 3) If the sibling pages are not leaves, then the child pages of
6070 ** cells stored on the sibling pages may need to be updated.
6071 **
6072 ** 4) If the sibling pages are not internal intkey nodes, then any
6073 ** overflow pages used by these cells may need to be updated
6074 ** (internal intkey nodes never contain pointers to overflow pages).
6075 **
6076 ** 5) If the sibling pages are not leaves, then the pointer-map
6077 ** entries for the right-child pages of each sibling may need
6078 ** to be updated.
6079 **
6080 ** Cases 1 and 2 are dealt with above by other code. The next
6081 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6082 ** setting a pointer map entry is a relatively expensive operation, this
6083 ** code only sets pointer map entries for child or overflow pages that have
6084 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006085 MemPage *pNew = apNew[0];
6086 MemPage *pOld = apCopy[0];
6087 int nOverflow = pOld->nOverflow;
6088 int iNextOld = pOld->nCell + nOverflow;
6089 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
6090 j = 0; /* Current 'old' sibling page */
6091 k = 0; /* Current 'new' sibling page */
6092 for(i=0; i<nCell && rc==SQLITE_OK; i++){
6093 int isDivider = 0;
6094 while( i==iNextOld ){
6095 /* Cell i is the cell immediately following the last cell on old
6096 ** sibling page j. If the siblings are not leaf pages of an
6097 ** intkey b-tree, then cell i was a divider cell. */
6098 pOld = apCopy[++j];
6099 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6100 if( pOld->nOverflow ){
6101 nOverflow = pOld->nOverflow;
6102 iOverflow = i + !leafData + pOld->aOvfl[0].idx;
6103 }
6104 isDivider = !leafData;
6105 }
6106
6107 assert(nOverflow>0 || iOverflow<i );
6108 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
6109 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
6110 if( i==iOverflow ){
6111 isDivider = 1;
6112 if( (--nOverflow)>0 ){
6113 iOverflow++;
6114 }
6115 }
6116
6117 if( i==cntNew[k] ){
6118 /* Cell i is the cell immediately following the last cell on new
6119 ** sibling page k. If the siblings are not leaf pages of an
6120 ** intkey b-tree, then cell i is a divider cell. */
6121 pNew = apNew[++k];
6122 if( !leafData ) continue;
6123 }
6124 assert( rc==SQLITE_OK );
6125 assert( j<nOld );
6126 assert( k<nNew );
6127
6128 /* If the cell was originally divider cell (and is not now) or
6129 ** an overflow cell, or if the cell was located on a different sibling
6130 ** page before the balancing, then the pointer map entries associated
6131 ** with any child or overflow pages need to be updated. */
6132 if( isDivider || pOld->pgno!=pNew->pgno ){
6133 if( !leafCorrection ){
6134 rc = ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno);
6135 }
6136 if( szCell[i]>pNew->minLocal && rc==SQLITE_OK ){
6137 rc = ptrmapPutOvflPtr(pNew, apCell[i]);
6138 }
6139 }
6140 }
6141
6142 if( !leafCorrection ){
6143 for(i=0; rc==SQLITE_OK && i<nNew; i++){
6144 rc = ptrmapPut(
6145 pBt, get4byte(&apNew[i]->aData[8]), PTRMAP_BTREE, apNew[i]->pgno);
6146 }
6147 }
6148
6149#if 0
6150 /* The ptrmapCheckPages() contains assert() statements that verify that
6151 ** all pointer map pages are set correctly. This is helpful while
6152 ** debugging. This is usually disabled because a corrupt database may
6153 ** cause an assert() statement to fail. */
6154 ptrmapCheckPages(apNew, nNew);
6155 ptrmapCheckPages(&pParent, 1);
6156#endif
6157 }
6158
danielk197771d5d2c2008-09-29 11:49:47 +00006159 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006160 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6161 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006162
drh8b2f49b2001-06-08 00:21:52 +00006163 /*
drh14acc042001-06-10 19:56:58 +00006164 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006165 */
drh14acc042001-06-10 19:56:58 +00006166balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006167 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006168 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006169 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006170 }
drh14acc042001-06-10 19:56:58 +00006171 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006172 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006173 }
danielk1977eaa06f62008-09-18 17:34:44 +00006174
drh8b2f49b2001-06-08 00:21:52 +00006175 return rc;
6176}
6177
drh43605152004-05-29 21:46:49 +00006178
6179/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006180** This function is called when the root page of a b-tree structure is
6181** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006182**
danielk1977a50d9aa2009-06-08 14:49:45 +00006183** A new child page is allocated and the contents of the current root
6184** page, including overflow cells, are copied into the child. The root
6185** page is then overwritten to make it an empty page with the right-child
6186** pointer pointing to the new page.
6187**
6188** Before returning, all pointer-map entries corresponding to pages
6189** that the new child-page now contains pointers to are updated. The
6190** entry corresponding to the new right-child pointer of the root
6191** page is also updated.
6192**
6193** If successful, *ppChild is set to contain a reference to the child
6194** page and SQLITE_OK is returned. In this case the caller is required
6195** to call releasePage() on *ppChild exactly once. If an error occurs,
6196** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006197*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006198static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6199 int rc; /* Return value from subprocedures */
6200 MemPage *pChild = 0; /* Pointer to a new child page */
6201 Pgno pgnoChild; /* Page number of the new child page */
6202 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006203
danielk1977a50d9aa2009-06-08 14:49:45 +00006204 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006205 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006206
danielk1977a50d9aa2009-06-08 14:49:45 +00006207 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6208 ** page that will become the new right-child of pPage. Copy the contents
6209 ** of the node stored on pRoot into the new child page.
6210 */
6211 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pRoot->pDbPage))
6212 || SQLITE_OK!=(rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0))
6213 || SQLITE_OK!=(rc = copyNodeContent(pRoot, pChild))
6214 || (ISAUTOVACUUM &&
6215 SQLITE_OK!=(rc = ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno)))
6216 ){
6217 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006218 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006219 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006220 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006221 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6222 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6223 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006224
danielk1977a50d9aa2009-06-08 14:49:45 +00006225 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6226
6227 /* Copy the overflow cells from pRoot to pChild */
6228 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
6229 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006230
6231 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6232 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6233 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6234
6235 *ppChild = pChild;
6236 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006237}
6238
6239/*
danielk197771d5d2c2008-09-29 11:49:47 +00006240** The page that pCur currently points to has just been modified in
6241** some way. This function figures out if this modification means the
6242** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006243** routine. Balancing routines are:
6244**
6245** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006246** balance_deeper()
6247** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006248*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006249static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006250 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006251 const int nMin = pCur->pBt->usableSize * 2 / 3;
6252 u8 aBalanceQuickSpace[13];
6253 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006254
shane75ac1de2009-06-09 18:58:52 +00006255 TESTONLY( int balance_quick_called = 0 );
6256 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006257
6258 do {
6259 int iPage = pCur->iPage;
6260 MemPage *pPage = pCur->apPage[iPage];
6261
6262 if( iPage==0 ){
6263 if( pPage->nOverflow ){
6264 /* The root page of the b-tree is overfull. In this case call the
6265 ** balance_deeper() function to create a new child for the root-page
6266 ** and copy the current contents of the root-page to it. The
6267 ** next iteration of the do-loop will balance the child page.
6268 */
6269 assert( (balance_deeper_called++)==0 );
6270 rc = balance_deeper(pPage, &pCur->apPage[1]);
6271 if( rc==SQLITE_OK ){
6272 pCur->iPage = 1;
6273 pCur->aiIdx[0] = 0;
6274 pCur->aiIdx[1] = 0;
6275 assert( pCur->apPage[1]->nOverflow );
6276 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006277 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006278 break;
6279 }
6280 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6281 break;
6282 }else{
6283 MemPage * const pParent = pCur->apPage[iPage-1];
6284 int const iIdx = pCur->aiIdx[iPage-1];
6285
6286 rc = sqlite3PagerWrite(pParent->pDbPage);
6287 if( rc==SQLITE_OK ){
6288#ifndef SQLITE_OMIT_QUICKBALANCE
6289 if( pPage->hasData
6290 && pPage->nOverflow==1
6291 && pPage->aOvfl[0].idx==pPage->nCell
6292 && pParent->pgno!=1
6293 && pParent->nCell==iIdx
6294 ){
6295 /* Call balance_quick() to create a new sibling of pPage on which
6296 ** to store the overflow cell. balance_quick() inserts a new cell
6297 ** into pParent, which may cause pParent overflow. If this
6298 ** happens, the next interation of the do-loop will balance pParent
6299 ** use either balance_nonroot() or balance_deeper(). Until this
6300 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6301 ** buffer.
6302 **
6303 ** The purpose of the following assert() is to check that only a
6304 ** single call to balance_quick() is made for each call to this
6305 ** function. If this were not verified, a subtle bug involving reuse
6306 ** of the aBalanceQuickSpace[] might sneak in.
6307 */
6308 assert( (balance_quick_called++)==0 );
6309 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6310 }else
6311#endif
6312 {
6313 /* In this case, call balance_nonroot() to redistribute cells
6314 ** between pPage and up to 2 of its sibling pages. This involves
6315 ** modifying the contents of pParent, which may cause pParent to
6316 ** become overfull or underfull. The next iteration of the do-loop
6317 ** will balance the parent page to correct this.
6318 **
6319 ** If the parent page becomes overfull, the overflow cell or cells
6320 ** are stored in the pSpace buffer allocated immediately below.
6321 ** A subsequent iteration of the do-loop will deal with this by
6322 ** calling balance_nonroot() (balance_deeper() may be called first,
6323 ** but it doesn't deal with overflow cells - just moves them to a
6324 ** different page). Once this subsequent call to balance_nonroot()
6325 ** has completed, it is safe to release the pSpace buffer used by
6326 ** the previous call, as the overflow cell data will have been
6327 ** copied either into the body of a database page or into the new
6328 ** pSpace buffer passed to the latter call to balance_nonroot().
6329 */
6330 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
danielk1977cd581a72009-06-23 15:43:39 +00006331 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
danielk1977a50d9aa2009-06-08 14:49:45 +00006332 if( pFree ){
6333 /* If pFree is not NULL, it points to the pSpace buffer used
6334 ** by a previous call to balance_nonroot(). Its contents are
6335 ** now stored either on real database pages or within the
6336 ** new pSpace buffer, so it may be safely freed here. */
6337 sqlite3PageFree(pFree);
6338 }
6339
danielk19774dbaa892009-06-16 16:50:22 +00006340 /* The pSpace buffer will be freed after the next call to
6341 ** balance_nonroot(), or just before this function returns, whichever
6342 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006343 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006344 }
6345 }
6346
6347 pPage->nOverflow = 0;
6348
6349 /* The next iteration of the do-loop balances the parent page. */
6350 releasePage(pPage);
6351 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006352 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006353 }while( rc==SQLITE_OK );
6354
6355 if( pFree ){
6356 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006357 }
6358 return rc;
6359}
6360
drhf74b8d92002-09-01 23:20:45 +00006361
6362/*
drh3b7511c2001-05-26 13:15:44 +00006363** Insert a new record into the BTree. The key is given by (pKey,nKey)
6364** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006365** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006366** is left pointing at a random location.
6367**
6368** For an INTKEY table, only the nKey value of the key is used. pKey is
6369** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006370**
6371** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006372** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006373** been performed. seekResult is the search result returned (a negative
6374** number if pCur points at an entry that is smaller than (pKey, nKey), or
6375** a positive value if pCur points at an etry that is larger than
6376** (pKey, nKey)).
6377**
6378** If the seekResult parameter is 0, then cursor pCur may point to any
6379** entry or to no entry at all. In this case this function has to seek
6380** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006381*/
drh3aac2dd2004-04-26 14:10:20 +00006382int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006383 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006384 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006385 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006386 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006387 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006388 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006389){
drh3b7511c2001-05-26 13:15:44 +00006390 int rc;
danielk1977de630352009-05-04 11:42:29 +00006391 int loc = seekResult;
drh14acc042001-06-10 19:56:58 +00006392 int szNew;
danielk197771d5d2c2008-09-29 11:49:47 +00006393 int idx;
drh3b7511c2001-05-26 13:15:44 +00006394 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006395 Btree *p = pCur->pBtree;
6396 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006397 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006398 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006399
drh1fee73e2007-08-29 04:00:57 +00006400 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006401 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006402 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006403 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006404 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6405
6406 /* If this is an insert into a table b-tree, invalidate any incrblob
6407 ** cursors open on the row being replaced (assuming this is a replace
6408 ** operation - if it is not, the following is a no-op). */
6409 if( pCur->pKeyInfo==0 ){
6410 invalidateIncrblobCursors(p, pCur->pgnoRoot, nKey, 0);
drhf74b8d92002-09-01 23:20:45 +00006411 }
danielk197796d48e92009-06-29 06:00:37 +00006412
drhfb982642007-08-30 01:19:59 +00006413 if( pCur->eState==CURSOR_FAULT ){
6414 return pCur->skip;
6415 }
danielk1977da184232006-01-05 11:34:32 +00006416
danielk19779c3acf32009-05-02 07:36:49 +00006417 /* Save the positions of any other cursors open on this table.
6418 **
danielk19773509a652009-07-06 18:56:13 +00006419 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006420 ** example, when inserting data into a table with auto-generated integer
6421 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6422 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006423 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006424 ** that the cursor is already where it needs to be and returns without
6425 ** doing any work. To avoid thwarting these optimizations, it is important
6426 ** not to clear the cursor here.
6427 */
danielk1977de630352009-05-04 11:42:29 +00006428 if(
6429 SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) || (!loc &&
danielk19773509a652009-07-06 18:56:13 +00006430 SQLITE_OK!=(rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc))
danielk1977de630352009-05-04 11:42:29 +00006431 )){
danielk1977da184232006-01-05 11:34:32 +00006432 return rc;
6433 }
danielk1977b980d2212009-06-22 18:03:51 +00006434 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006435
danielk197771d5d2c2008-09-29 11:49:47 +00006436 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006437 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006438 assert( pPage->leaf || !pPage->intKey );
drh3a4c1412004-05-09 20:40:11 +00006439 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6440 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6441 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006442 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006443 allocateTempSpace(pBt);
6444 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006445 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006446 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006447 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006448 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00006449 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006450 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006451 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006452 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006453 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006454 rc = sqlite3PagerWrite(pPage->pDbPage);
6455 if( rc ){
6456 goto end_insert;
6457 }
danielk197771d5d2c2008-09-29 11:49:47 +00006458 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006459 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006460 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006461 }
drh43605152004-05-29 21:46:49 +00006462 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006463 rc = clearCell(pPage, oldCell);
drh2e38c322004-09-03 18:38:44 +00006464 if( rc ) goto end_insert;
shane0af3f892008-11-12 04:55:34 +00006465 rc = dropCell(pPage, idx, szOld);
6466 if( rc!=SQLITE_OK ) {
6467 goto end_insert;
6468 }
drh7c717f72001-06-24 20:39:41 +00006469 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006470 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006471 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006472 }else{
drh4b70f112004-05-02 21:12:19 +00006473 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006474 }
danielk197771d5d2c2008-09-29 11:49:47 +00006475 rc = insertCell(pPage, idx, newCell, szNew, 0, 0);
danielk19773f632d52009-05-02 10:03:09 +00006476 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006477
danielk1977a50d9aa2009-06-08 14:49:45 +00006478 /* If no error has occured and pPage has an overflow cell, call balance()
6479 ** to redistribute the cells within the tree. Since balance() may move
6480 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6481 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006482 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006483 ** Previous versions of SQLite called moveToRoot() to move the cursor
6484 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006485 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6486 ** set the cursor state to "invalid". This makes common insert operations
6487 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006488 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006489 ** There is a subtle but important optimization here too. When inserting
6490 ** multiple records into an intkey b-tree using a single cursor (as can
6491 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6492 ** is advantageous to leave the cursor pointing to the last entry in
6493 ** the b-tree if possible. If the cursor is left pointing to the last
6494 ** entry in the table, and the next row inserted has an integer key
6495 ** larger than the largest existing key, it is possible to insert the
6496 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006497 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006498 pCur->info.nSize = 0;
6499 pCur->validNKey = 0;
6500 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006501 rc = balance(pCur);
6502
6503 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006504 ** fails. Internal data structure corruption will result otherwise.
6505 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6506 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006507 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006508 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006509 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006510 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006511
drh2e38c322004-09-03 18:38:44 +00006512end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006513 return rc;
6514}
6515
6516/*
drh4b70f112004-05-02 21:12:19 +00006517** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006518** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006519*/
drh3aac2dd2004-04-26 14:10:20 +00006520int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006521 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006522 BtShared *pBt = p->pBt;
6523 int rc; /* Return code */
6524 MemPage *pPage; /* Page to delete cell from */
6525 unsigned char *pCell; /* Pointer to cell to delete */
6526 int iCellIdx; /* Index of cell to delete */
6527 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006528
drh1fee73e2007-08-29 04:00:57 +00006529 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006530 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006531 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006532 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006533 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6534 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6535
danielk19774dbaa892009-06-16 16:50:22 +00006536 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6537 || NEVER(pCur->eState!=CURSOR_VALID)
6538 ){
6539 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006540 }
danielk1977da184232006-01-05 11:34:32 +00006541
danielk197796d48e92009-06-29 06:00:37 +00006542 /* If this is a delete operation to remove a row from a table b-tree,
6543 ** invalidate any incrblob cursors open on the row being deleted. */
6544 if( pCur->pKeyInfo==0 ){
6545 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006546 }
6547
6548 iCellDepth = pCur->iPage;
6549 iCellIdx = pCur->aiIdx[iCellDepth];
6550 pPage = pCur->apPage[iCellDepth];
6551 pCell = findCell(pPage, iCellIdx);
6552
6553 /* If the page containing the entry to delete is not a leaf page, move
6554 ** the cursor to the largest entry in the tree that is smaller than
6555 ** the entry being deleted. This cell will replace the cell being deleted
6556 ** from the internal node. The 'previous' entry is used for this instead
6557 ** of the 'next' entry, as the previous entry is always a part of the
6558 ** sub-tree headed by the child page of the cell being deleted. This makes
6559 ** balancing the tree following the delete operation easier. */
6560 if( !pPage->leaf ){
6561 int notUsed;
6562 if( SQLITE_OK!=(rc = sqlite3BtreePrevious(pCur, &notUsed)) ){
6563 return rc;
6564 }
6565 }
6566
6567 /* Save the positions of any other cursors open on this table before
6568 ** making any modifications. Make the page containing the entry to be
6569 ** deleted writable. Then free any overflow pages associated with the
6570 ** entry and finally remove the cell itself from within the page. */
6571 if( SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))
6572 || SQLITE_OK!=(rc = sqlite3PagerWrite(pPage->pDbPage))
6573 || SQLITE_OK!=(rc = clearCell(pPage, pCell))
6574 || SQLITE_OK!=(rc = dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell)))
danielk1977da184232006-01-05 11:34:32 +00006575 ){
6576 return rc;
6577 }
danielk1977e6efa742004-11-10 11:55:10 +00006578
danielk19774dbaa892009-06-16 16:50:22 +00006579 /* If the cell deleted was not located on a leaf page, then the cursor
6580 ** is currently pointing to the largest entry in the sub-tree headed
6581 ** by the child-page of the cell that was just deleted from an internal
6582 ** node. The cell from the leaf node needs to be moved to the internal
6583 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00006584 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00006585 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6586 int nCell;
6587 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6588 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00006589
danielk19774dbaa892009-06-16 16:50:22 +00006590 pCell = findCell(pLeaf, pLeaf->nCell-1);
6591 nCell = cellSizePtr(pLeaf, pCell);
6592 assert( MX_CELL_SIZE(pBt)>=nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006593
danielk19774dbaa892009-06-16 16:50:22 +00006594 allocateTempSpace(pBt);
6595 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00006596
danielk19774dbaa892009-06-16 16:50:22 +00006597 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pLeaf->pDbPage))
6598 || SQLITE_OK!=(rc = insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n))
6599 || SQLITE_OK!=(rc = dropCell(pLeaf, pLeaf->nCell-1, nCell))
6600 ){
6601 return rc;
shanedcc50b72008-11-13 18:29:50 +00006602 }
drh5e2f8b92001-05-28 00:41:15 +00006603 }
danielk19774dbaa892009-06-16 16:50:22 +00006604
6605 /* Balance the tree. If the entry deleted was located on a leaf page,
6606 ** then the cursor still points to that page. In this case the first
6607 ** call to balance() repairs the tree, and the if(...) condition is
6608 ** never true.
6609 **
6610 ** Otherwise, if the entry deleted was on an internal node page, then
6611 ** pCur is pointing to the leaf page from which a cell was removed to
6612 ** replace the cell deleted from the internal node. This is slightly
6613 ** tricky as the leaf node may be underfull, and the internal node may
6614 ** be either under or overfull. In this case run the balancing algorithm
6615 ** on the leaf node first. If the balance proceeds far enough up the
6616 ** tree that we can be sure that any problem in the internal node has
6617 ** been corrected, so be it. Otherwise, after balancing the leaf node,
6618 ** walk the cursor up the tree to the internal node and balance it as
6619 ** well. */
6620 rc = balance(pCur);
6621 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
6622 while( pCur->iPage>iCellDepth ){
6623 releasePage(pCur->apPage[pCur->iPage--]);
6624 }
6625 rc = balance(pCur);
6626 }
6627
danielk19776b456a22005-03-21 04:04:02 +00006628 if( rc==SQLITE_OK ){
6629 moveToRoot(pCur);
6630 }
drh5e2f8b92001-05-28 00:41:15 +00006631 return rc;
drh3b7511c2001-05-26 13:15:44 +00006632}
drh8b2f49b2001-06-08 00:21:52 +00006633
6634/*
drhc6b52df2002-01-04 03:09:29 +00006635** Create a new BTree table. Write into *piTable the page
6636** number for the root page of the new table.
6637**
drhab01f612004-05-22 02:55:23 +00006638** The type of type is determined by the flags parameter. Only the
6639** following values of flags are currently in use. Other values for
6640** flags might not work:
6641**
6642** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6643** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006644*/
drhd677b3d2007-08-20 22:48:41 +00006645static int btreeCreateTable(Btree *p, int *piTable, int flags){
danielk1977aef0bf62005-12-30 16:28:01 +00006646 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006647 MemPage *pRoot;
6648 Pgno pgnoRoot;
6649 int rc;
drhd677b3d2007-08-20 22:48:41 +00006650
drh1fee73e2007-08-29 04:00:57 +00006651 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006652 assert( pBt->inTransaction==TRANS_WRITE );
danielk197728129562005-01-11 10:25:06 +00006653 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00006654
danielk1977003ba062004-11-04 02:57:33 +00006655#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00006656 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00006657 if( rc ){
6658 return rc;
6659 }
danielk1977003ba062004-11-04 02:57:33 +00006660#else
danielk1977687566d2004-11-02 12:56:41 +00006661 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00006662 Pgno pgnoMove; /* Move a page here to make room for the root-page */
6663 MemPage *pPageMove; /* The page to move to. */
6664
danielk197720713f32007-05-03 11:43:33 +00006665 /* Creating a new table may probably require moving an existing database
6666 ** to make room for the new tables root page. In case this page turns
6667 ** out to be an overflow page, delete all overflow page-map caches
6668 ** held by open cursors.
6669 */
danielk197792d4d7a2007-05-04 12:05:56 +00006670 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00006671
danielk1977003ba062004-11-04 02:57:33 +00006672 /* Read the value of meta[3] from the database to determine where the
6673 ** root page of the new table should go. meta[3] is the largest root-page
6674 ** created so far, so the new root-page is (meta[3]+1).
6675 */
danielk1977602b4662009-07-02 07:47:33 +00006676 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006677 pgnoRoot++;
6678
danielk1977599fcba2004-11-08 07:13:13 +00006679 /* The new root-page may not be allocated on a pointer-map page, or the
6680 ** PENDING_BYTE page.
6681 */
drh72190432008-01-31 14:54:43 +00006682 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00006683 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00006684 pgnoRoot++;
6685 }
6686 assert( pgnoRoot>=3 );
6687
6688 /* Allocate a page. The page that currently resides at pgnoRoot will
6689 ** be moved to the allocated page (unless the allocated page happens
6690 ** to reside at pgnoRoot).
6691 */
drh4f0c5872007-03-26 22:05:01 +00006692 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00006693 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00006694 return rc;
6695 }
danielk1977003ba062004-11-04 02:57:33 +00006696
6697 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00006698 /* pgnoRoot is the page that will be used for the root-page of
6699 ** the new table (assuming an error did not occur). But we were
6700 ** allocated pgnoMove. If required (i.e. if it was not allocated
6701 ** by extending the file), the current page at position pgnoMove
6702 ** is already journaled.
6703 */
danielk1977003ba062004-11-04 02:57:33 +00006704 u8 eType;
6705 Pgno iPtrPage;
6706
6707 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00006708
6709 /* Move the page currently at pgnoRoot to pgnoMove. */
drh16a9b832007-05-05 18:39:25 +00006710 rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006711 if( rc!=SQLITE_OK ){
6712 return rc;
6713 }
6714 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00006715 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
6716 rc = SQLITE_CORRUPT_BKPT;
6717 }
6718 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00006719 releasePage(pRoot);
6720 return rc;
6721 }
drhccae6022005-02-26 17:31:26 +00006722 assert( eType!=PTRMAP_ROOTPAGE );
6723 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00006724 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00006725 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00006726
6727 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00006728 if( rc!=SQLITE_OK ){
6729 return rc;
6730 }
drh16a9b832007-05-05 18:39:25 +00006731 rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006732 if( rc!=SQLITE_OK ){
6733 return rc;
6734 }
danielk19773b8a05f2007-03-19 17:44:26 +00006735 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00006736 if( rc!=SQLITE_OK ){
6737 releasePage(pRoot);
6738 return rc;
6739 }
6740 }else{
6741 pRoot = pPageMove;
6742 }
6743
danielk197742741be2005-01-08 12:42:39 +00006744 /* Update the pointer-map and meta-data with the new root-page number. */
danielk1977003ba062004-11-04 02:57:33 +00006745 rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
6746 if( rc ){
6747 releasePage(pRoot);
6748 return rc;
6749 }
danielk1977aef0bf62005-12-30 16:28:01 +00006750 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006751 if( rc ){
6752 releasePage(pRoot);
6753 return rc;
6754 }
danielk197742741be2005-01-08 12:42:39 +00006755
danielk1977003ba062004-11-04 02:57:33 +00006756 }else{
drh4f0c5872007-03-26 22:05:01 +00006757 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00006758 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00006759 }
6760#endif
danielk19773b8a05f2007-03-19 17:44:26 +00006761 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhde647132004-05-07 17:57:49 +00006762 zeroPage(pRoot, flags | PTF_LEAF);
danielk19773b8a05f2007-03-19 17:44:26 +00006763 sqlite3PagerUnref(pRoot->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00006764 *piTable = (int)pgnoRoot;
6765 return SQLITE_OK;
6766}
drhd677b3d2007-08-20 22:48:41 +00006767int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
6768 int rc;
6769 sqlite3BtreeEnter(p);
6770 rc = btreeCreateTable(p, piTable, flags);
6771 sqlite3BtreeLeave(p);
6772 return rc;
6773}
drh8b2f49b2001-06-08 00:21:52 +00006774
6775/*
6776** Erase the given database page and all its children. Return
6777** the page to the freelist.
6778*/
drh4b70f112004-05-02 21:12:19 +00006779static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00006780 BtShared *pBt, /* The BTree that contains the table */
drh4b70f112004-05-02 21:12:19 +00006781 Pgno pgno, /* Page number to clear */
danielk1977c7af4842008-10-27 13:59:33 +00006782 int freePageFlag, /* Deallocate page if true */
6783 int *pnChange
drh4b70f112004-05-02 21:12:19 +00006784){
danielk19776b456a22005-03-21 04:04:02 +00006785 MemPage *pPage = 0;
drh8b2f49b2001-06-08 00:21:52 +00006786 int rc;
drh4b70f112004-05-02 21:12:19 +00006787 unsigned char *pCell;
6788 int i;
drh8b2f49b2001-06-08 00:21:52 +00006789
drh1fee73e2007-08-29 04:00:57 +00006790 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789d40042008-11-17 14:20:56 +00006791 if( pgno>pagerPagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00006792 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006793 }
6794
danielk197771d5d2c2008-09-29 11:49:47 +00006795 rc = getAndInitPage(pBt, pgno, &pPage);
danielk19776b456a22005-03-21 04:04:02 +00006796 if( rc ) goto cleardatabasepage_out;
drh4b70f112004-05-02 21:12:19 +00006797 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00006798 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00006799 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006800 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006801 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006802 }
drh4b70f112004-05-02 21:12:19 +00006803 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00006804 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006805 }
drha34b6762004-05-07 13:30:42 +00006806 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006807 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006808 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00006809 }else if( pnChange ){
6810 assert( pPage->intKey );
6811 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00006812 }
6813 if( freePageFlag ){
drh4b70f112004-05-02 21:12:19 +00006814 rc = freePage(pPage);
danielk19773b8a05f2007-03-19 17:44:26 +00006815 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00006816 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00006817 }
danielk19776b456a22005-03-21 04:04:02 +00006818
6819cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00006820 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00006821 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006822}
6823
6824/*
drhab01f612004-05-22 02:55:23 +00006825** Delete all information from a single table in the database. iTable is
6826** the page number of the root of the table. After this routine returns,
6827** the root page is empty, but still exists.
6828**
6829** This routine will fail with SQLITE_LOCKED if there are any open
6830** read cursors on the table. Open write cursors are moved to the
6831** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00006832**
6833** If pnChange is not NULL, then table iTable must be an intkey table. The
6834** integer value pointed to by pnChange is incremented by the number of
6835** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00006836*/
danielk1977c7af4842008-10-27 13:59:33 +00006837int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00006838 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00006839 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00006840 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00006841 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00006842
6843 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
6844 ** is the root of a table b-tree - if it is not, the following call is
6845 ** a no-op). */
6846 invalidateIncrblobCursors(p, iTable, 0, 1);
6847
6848 if( SQLITE_OK==(rc = saveAllCursors(pBt, (Pgno)iTable, 0)) ){
danielk197762c14b32008-11-19 09:05:26 +00006849 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00006850 }
drhd677b3d2007-08-20 22:48:41 +00006851 sqlite3BtreeLeave(p);
6852 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006853}
6854
6855/*
6856** Erase all information in a table and add the root of the table to
6857** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00006858** page 1) is never added to the freelist.
6859**
6860** This routine will fail with SQLITE_LOCKED if there are any open
6861** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00006862**
6863** If AUTOVACUUM is enabled and the page at iTable is not the last
6864** root page in the database file, then the last root page
6865** in the database file is moved into the slot formerly occupied by
6866** iTable and that last slot formerly occupied by the last root page
6867** is added to the freelist instead of iTable. In this say, all
6868** root pages are kept at the beginning of the database file, which
6869** is necessary for AUTOVACUUM to work right. *piMoved is set to the
6870** page number that used to be the last root page in the file before
6871** the move. If no page gets moved, *piMoved is set to 0.
6872** The last root page is recorded in meta[3] and the value of
6873** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00006874*/
danielk197789d40042008-11-17 14:20:56 +00006875static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00006876 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00006877 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00006878 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00006879
drh1fee73e2007-08-29 04:00:57 +00006880 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006881 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00006882
danielk1977e6efa742004-11-10 11:55:10 +00006883 /* It is illegal to drop a table if any cursors are open on the
6884 ** database. This is because in auto-vacuum mode the backend may
6885 ** need to move another root-page to fill a gap left by the deleted
6886 ** root page. If an open cursor was using this page a problem would
6887 ** occur.
6888 */
6889 if( pBt->pCursor ){
danielk1977404ca072009-03-16 13:19:36 +00006890 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
6891 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00006892 }
danielk1977a0bf2652004-11-04 14:30:04 +00006893
drh16a9b832007-05-05 18:39:25 +00006894 rc = sqlite3BtreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00006895 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00006896 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00006897 if( rc ){
6898 releasePage(pPage);
6899 return rc;
6900 }
danielk1977a0bf2652004-11-04 14:30:04 +00006901
drh205f48e2004-11-05 00:43:11 +00006902 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00006903
drh4b70f112004-05-02 21:12:19 +00006904 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00006905#ifdef SQLITE_OMIT_AUTOVACUUM
drha34b6762004-05-07 13:30:42 +00006906 rc = freePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00006907 releasePage(pPage);
6908#else
6909 if( pBt->autoVacuum ){
6910 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00006911 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006912
6913 if( iTable==maxRootPgno ){
6914 /* If the table being dropped is the table with the largest root-page
6915 ** number in the database, put the root page on the free list.
6916 */
6917 rc = freePage(pPage);
6918 releasePage(pPage);
6919 if( rc!=SQLITE_OK ){
6920 return rc;
6921 }
6922 }else{
6923 /* The table being dropped does not have the largest root-page
6924 ** number in the database. So move the page that does into the
6925 ** gap left by the deleted root-page.
6926 */
6927 MemPage *pMove;
6928 releasePage(pPage);
drh16a9b832007-05-05 18:39:25 +00006929 rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006930 if( rc!=SQLITE_OK ){
6931 return rc;
6932 }
danielk19774c999992008-07-16 18:17:55 +00006933 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006934 releasePage(pMove);
6935 if( rc!=SQLITE_OK ){
6936 return rc;
6937 }
drh16a9b832007-05-05 18:39:25 +00006938 rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006939 if( rc!=SQLITE_OK ){
6940 return rc;
6941 }
6942 rc = freePage(pMove);
6943 releasePage(pMove);
6944 if( rc!=SQLITE_OK ){
6945 return rc;
6946 }
6947 *piMoved = maxRootPgno;
6948 }
6949
danielk1977599fcba2004-11-08 07:13:13 +00006950 /* Set the new 'max-root-page' value in the database header. This
6951 ** is the old value less one, less one more if that happens to
6952 ** be a root-page number, less one again if that is the
6953 ** PENDING_BYTE_PAGE.
6954 */
danielk197787a6e732004-11-05 12:58:25 +00006955 maxRootPgno--;
danielk1977599fcba2004-11-08 07:13:13 +00006956 if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
6957 maxRootPgno--;
6958 }
danielk1977266664d2006-02-10 08:24:21 +00006959 if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00006960 maxRootPgno--;
6961 }
danielk1977599fcba2004-11-08 07:13:13 +00006962 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
6963
danielk1977aef0bf62005-12-30 16:28:01 +00006964 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006965 }else{
6966 rc = freePage(pPage);
6967 releasePage(pPage);
6968 }
6969#endif
drh2aa679f2001-06-25 02:11:07 +00006970 }else{
danielk1977a0bf2652004-11-04 14:30:04 +00006971 /* If sqlite3BtreeDropTable was called on page 1. */
drha34b6762004-05-07 13:30:42 +00006972 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00006973 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00006974 }
drh8b2f49b2001-06-08 00:21:52 +00006975 return rc;
6976}
drhd677b3d2007-08-20 22:48:41 +00006977int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
6978 int rc;
6979 sqlite3BtreeEnter(p);
6980 rc = btreeDropTable(p, iTable, piMoved);
6981 sqlite3BtreeLeave(p);
6982 return rc;
6983}
drh8b2f49b2001-06-08 00:21:52 +00006984
drh001bbcb2003-03-19 03:14:00 +00006985
drh8b2f49b2001-06-08 00:21:52 +00006986/*
danielk1977602b4662009-07-02 07:47:33 +00006987** This function may only be called if the b-tree connection already
6988** has a read or write transaction open on the database.
6989**
drh23e11ca2004-05-04 17:27:28 +00006990** Read the meta-information out of a database file. Meta[0]
6991** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00006992** through meta[15] are available for use by higher layers. Meta[0]
6993** is read-only, the others are read/write.
6994**
6995** The schema layer numbers meta values differently. At the schema
6996** layer (and the SetCookie and ReadCookie opcodes) the number of
6997** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00006998*/
danielk1977602b4662009-07-02 07:47:33 +00006999void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007000 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007001
drhd677b3d2007-08-20 22:48:41 +00007002 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007003 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007004 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007005 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007006 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007007
danielk1977602b4662009-07-02 07:47:33 +00007008 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007009
danielk1977602b4662009-07-02 07:47:33 +00007010 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7011 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007012#ifdef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007013 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00007014#endif
drhae157872004-08-14 19:20:09 +00007015
drhd677b3d2007-08-20 22:48:41 +00007016 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007017}
7018
7019/*
drh23e11ca2004-05-04 17:27:28 +00007020** Write meta-information back into the database. Meta[0] is
7021** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007022*/
danielk1977aef0bf62005-12-30 16:28:01 +00007023int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7024 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007025 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007026 int rc;
drh23e11ca2004-05-04 17:27:28 +00007027 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007028 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007029 assert( p->inTrans==TRANS_WRITE );
7030 assert( pBt->pPage1!=0 );
7031 pP1 = pBt->pPage1->aData;
7032 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7033 if( rc==SQLITE_OK ){
7034 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007035#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007036 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007037 assert( pBt->autoVacuum || iMeta==0 );
7038 assert( iMeta==0 || iMeta==1 );
7039 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007040 }
drh64022502009-01-09 14:11:04 +00007041#endif
drh5df72a52002-06-06 23:16:05 +00007042 }
drhd677b3d2007-08-20 22:48:41 +00007043 sqlite3BtreeLeave(p);
7044 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007045}
drh8c42ca92001-06-22 19:15:00 +00007046
drh35a25da2009-07-08 15:14:50 +00007047#ifndef SQLITE_TEST
drhf328bc82004-05-10 23:29:49 +00007048/*
7049** Return the flag byte at the beginning of the page that the cursor
7050** is currently pointing to.
7051*/
7052int sqlite3BtreeFlags(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00007053 /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
drha3460582008-07-11 21:02:53 +00007054 ** restoreCursorPosition() here.
danielk1977da184232006-01-05 11:34:32 +00007055 */
danielk1977e448dc42008-01-02 11:50:51 +00007056 MemPage *pPage;
drha3460582008-07-11 21:02:53 +00007057 restoreCursorPosition(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00007058 pPage = pCur->apPage[pCur->iPage];
drh1fee73e2007-08-29 04:00:57 +00007059 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007060 assert( pPage!=0 );
drhd0679ed2007-08-28 22:24:34 +00007061 assert( pPage->pBt==pCur->pBt );
drh64022502009-01-09 14:11:04 +00007062 return pPage->aData[pPage->hdrOffset];
drhf328bc82004-05-10 23:29:49 +00007063}
drh35a25da2009-07-08 15:14:50 +00007064#endif
drhf328bc82004-05-10 23:29:49 +00007065
danielk1977a5533162009-02-24 10:01:51 +00007066#ifndef SQLITE_OMIT_BTREECOUNT
7067/*
7068** The first argument, pCur, is a cursor opened on some b-tree. Count the
7069** number of entries in the b-tree and write the result to *pnEntry.
7070**
7071** SQLITE_OK is returned if the operation is successfully executed.
7072** Otherwise, if an error is encountered (i.e. an IO error or database
7073** corruption) an SQLite error code is returned.
7074*/
7075int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7076 i64 nEntry = 0; /* Value to return in *pnEntry */
7077 int rc; /* Return code */
7078 rc = moveToRoot(pCur);
7079
7080 /* Unless an error occurs, the following loop runs one iteration for each
7081 ** page in the B-Tree structure (not including overflow pages).
7082 */
7083 while( rc==SQLITE_OK ){
7084 int iIdx; /* Index of child node in parent */
7085 MemPage *pPage; /* Current page of the b-tree */
7086
7087 /* If this is a leaf page or the tree is not an int-key tree, then
7088 ** this page contains countable entries. Increment the entry counter
7089 ** accordingly.
7090 */
7091 pPage = pCur->apPage[pCur->iPage];
7092 if( pPage->leaf || !pPage->intKey ){
7093 nEntry += pPage->nCell;
7094 }
7095
7096 /* pPage is a leaf node. This loop navigates the cursor so that it
7097 ** points to the first interior cell that it points to the parent of
7098 ** the next page in the tree that has not yet been visited. The
7099 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7100 ** of the page, or to the number of cells in the page if the next page
7101 ** to visit is the right-child of its parent.
7102 **
7103 ** If all pages in the tree have been visited, return SQLITE_OK to the
7104 ** caller.
7105 */
7106 if( pPage->leaf ){
7107 do {
7108 if( pCur->iPage==0 ){
7109 /* All pages of the b-tree have been visited. Return successfully. */
7110 *pnEntry = nEntry;
7111 return SQLITE_OK;
7112 }
7113 sqlite3BtreeMoveToParent(pCur);
7114 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7115
7116 pCur->aiIdx[pCur->iPage]++;
7117 pPage = pCur->apPage[pCur->iPage];
7118 }
7119
7120 /* Descend to the child node of the cell that the cursor currently
7121 ** points at. This is the right-child if (iIdx==pPage->nCell).
7122 */
7123 iIdx = pCur->aiIdx[pCur->iPage];
7124 if( iIdx==pPage->nCell ){
7125 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7126 }else{
7127 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7128 }
7129 }
7130
shanebe217792009-03-05 04:20:31 +00007131 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007132 return rc;
7133}
7134#endif
drhdd793422001-06-28 01:54:48 +00007135
drhdd793422001-06-28 01:54:48 +00007136/*
drh5eddca62001-06-30 21:53:53 +00007137** Return the pager associated with a BTree. This routine is used for
7138** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007139*/
danielk1977aef0bf62005-12-30 16:28:01 +00007140Pager *sqlite3BtreePager(Btree *p){
7141 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007142}
drh5eddca62001-06-30 21:53:53 +00007143
drhb7f91642004-10-31 02:22:47 +00007144#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007145/*
7146** Append a message to the error message string.
7147*/
drh2e38c322004-09-03 18:38:44 +00007148static void checkAppendMsg(
7149 IntegrityCk *pCheck,
7150 char *zMsg1,
7151 const char *zFormat,
7152 ...
7153){
7154 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007155 if( !pCheck->mxErr ) return;
7156 pCheck->mxErr--;
7157 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007158 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007159 if( pCheck->errMsg.nChar ){
7160 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007161 }
drhf089aa42008-07-08 19:34:06 +00007162 if( zMsg1 ){
7163 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7164 }
7165 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7166 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007167 if( pCheck->errMsg.mallocFailed ){
7168 pCheck->mallocFailed = 1;
7169 }
drh5eddca62001-06-30 21:53:53 +00007170}
drhb7f91642004-10-31 02:22:47 +00007171#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007172
drhb7f91642004-10-31 02:22:47 +00007173#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007174/*
7175** Add 1 to the reference count for page iPage. If this is the second
7176** reference to the page, add an error message to pCheck->zErrMsg.
7177** Return 1 if there are 2 ore more references to the page and 0 if
7178** if this is the first reference to the page.
7179**
7180** Also check that the page number is in bounds.
7181*/
danielk197789d40042008-11-17 14:20:56 +00007182static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007183 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007184 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007185 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007186 return 1;
7187 }
7188 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007189 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007190 return 1;
7191 }
7192 return (pCheck->anRef[iPage]++)>1;
7193}
7194
danielk1977afcdd022004-10-31 16:25:42 +00007195#ifndef SQLITE_OMIT_AUTOVACUUM
7196/*
7197** Check that the entry in the pointer-map for page iChild maps to
7198** page iParent, pointer type ptrType. If not, append an error message
7199** to pCheck.
7200*/
7201static void checkPtrmap(
7202 IntegrityCk *pCheck, /* Integrity check context */
7203 Pgno iChild, /* Child page number */
7204 u8 eType, /* Expected pointer map type */
7205 Pgno iParent, /* Expected pointer map parent page number */
7206 char *zContext /* Context description (used for error msg) */
7207){
7208 int rc;
7209 u8 ePtrmapType;
7210 Pgno iPtrmapParent;
7211
7212 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7213 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007214 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007215 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7216 return;
7217 }
7218
7219 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7220 checkAppendMsg(pCheck, zContext,
7221 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7222 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7223 }
7224}
7225#endif
7226
drh5eddca62001-06-30 21:53:53 +00007227/*
7228** Check the integrity of the freelist or of an overflow page list.
7229** Verify that the number of pages on the list is N.
7230*/
drh30e58752002-03-02 20:41:57 +00007231static void checkList(
7232 IntegrityCk *pCheck, /* Integrity checking context */
7233 int isFreeList, /* True for a freelist. False for overflow page list */
7234 int iPage, /* Page number for first page in the list */
7235 int N, /* Expected number of pages in the list */
7236 char *zContext /* Context for error messages */
7237){
7238 int i;
drh3a4c1412004-05-09 20:40:11 +00007239 int expected = N;
7240 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007241 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007242 DbPage *pOvflPage;
7243 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007244 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007245 checkAppendMsg(pCheck, zContext,
7246 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007247 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007248 break;
7249 }
7250 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007251 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007252 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007253 break;
7254 }
danielk19773b8a05f2007-03-19 17:44:26 +00007255 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007256 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007257 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007258#ifndef SQLITE_OMIT_AUTOVACUUM
7259 if( pCheck->pBt->autoVacuum ){
7260 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7261 }
7262#endif
drh45b1fac2008-07-04 17:52:42 +00007263 if( n>pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007264 checkAppendMsg(pCheck, zContext,
7265 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007266 N--;
7267 }else{
7268 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007269 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007270#ifndef SQLITE_OMIT_AUTOVACUUM
7271 if( pCheck->pBt->autoVacuum ){
7272 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7273 }
7274#endif
7275 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007276 }
7277 N -= n;
drh30e58752002-03-02 20:41:57 +00007278 }
drh30e58752002-03-02 20:41:57 +00007279 }
danielk1977afcdd022004-10-31 16:25:42 +00007280#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007281 else{
7282 /* If this database supports auto-vacuum and iPage is not the last
7283 ** page in this overflow list, check that the pointer-map entry for
7284 ** the following page matches iPage.
7285 */
7286 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007287 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007288 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7289 }
danielk1977afcdd022004-10-31 16:25:42 +00007290 }
7291#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007292 iPage = get4byte(pOvflData);
7293 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007294 }
7295}
drhb7f91642004-10-31 02:22:47 +00007296#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007297
drhb7f91642004-10-31 02:22:47 +00007298#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007299/*
7300** Do various sanity checks on a single page of a tree. Return
7301** the tree depth. Root pages return 0. Parents of root pages
7302** return 1, and so forth.
7303**
7304** These checks are done:
7305**
7306** 1. Make sure that cells and freeblocks do not overlap
7307** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007308** NO 2. Make sure cell keys are in order.
7309** NO 3. Make sure no key is less than or equal to zLowerBound.
7310** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007311** 5. Check the integrity of overflow pages.
7312** 6. Recursively call checkTreePage on all children.
7313** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007314** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007315** the root of the tree.
7316*/
7317static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007318 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007319 int iPage, /* Page number of the page to check */
drh74161702006-02-24 02:53:49 +00007320 char *zParentContext /* Parent context */
drh5eddca62001-06-30 21:53:53 +00007321){
7322 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007323 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007324 int hdr, cellStart;
7325 int nCell;
drhda200cc2004-05-09 11:51:38 +00007326 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007327 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007328 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007329 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007330 char *hit = 0;
drh5eddca62001-06-30 21:53:53 +00007331
drh5bb3eb92007-05-04 13:15:55 +00007332 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007333
drh5eddca62001-06-30 21:53:53 +00007334 /* Check that the page exists
7335 */
drhd9cb6ac2005-10-20 07:28:17 +00007336 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007337 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007338 if( iPage==0 ) return 0;
7339 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drh16a9b832007-05-05 18:39:25 +00007340 if( (rc = sqlite3BtreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drhb56cd552009-05-01 13:16:54 +00007341 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh2e38c322004-09-03 18:38:44 +00007342 checkAppendMsg(pCheck, zContext,
7343 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007344 return 0;
7345 }
danielk197771d5d2c2008-09-29 11:49:47 +00007346 if( (rc = sqlite3BtreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007347 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007348 checkAppendMsg(pCheck, zContext,
7349 "sqlite3BtreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007350 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007351 return 0;
7352 }
7353
7354 /* Check out all the cells.
7355 */
7356 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007357 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007358 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007359 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007360 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007361
7362 /* Check payload overflow pages
7363 */
drh5bb3eb92007-05-04 13:15:55 +00007364 sqlite3_snprintf(sizeof(zContext), zContext,
7365 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007366 pCell = findCell(pPage,i);
drh16a9b832007-05-05 18:39:25 +00007367 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007368 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007369 if( !pPage->intKey ) sz += (int)info.nKey;
drh72365832007-03-06 15:53:44 +00007370 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007371 if( (sz>info.nLocal)
7372 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7373 ){
drhb6f41482004-05-14 01:58:11 +00007374 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007375 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7376#ifndef SQLITE_OMIT_AUTOVACUUM
7377 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007378 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007379 }
7380#endif
7381 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007382 }
7383
7384 /* Check sanity of left child page.
7385 */
drhda200cc2004-05-09 11:51:38 +00007386 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007387 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007388#ifndef SQLITE_OMIT_AUTOVACUUM
7389 if( pBt->autoVacuum ){
7390 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7391 }
7392#endif
danielk197762c14b32008-11-19 09:05:26 +00007393 d2 = checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007394 if( i>0 && d2!=depth ){
7395 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7396 }
7397 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007398 }
drh5eddca62001-06-30 21:53:53 +00007399 }
drhda200cc2004-05-09 11:51:38 +00007400 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007401 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007402 sqlite3_snprintf(sizeof(zContext), zContext,
7403 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007404#ifndef SQLITE_OMIT_AUTOVACUUM
7405 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007406 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00007407 }
7408#endif
danielk197762c14b32008-11-19 09:05:26 +00007409 checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007410 }
drh5eddca62001-06-30 21:53:53 +00007411
7412 /* Check for complete coverage of the page
7413 */
drhda200cc2004-05-09 11:51:38 +00007414 data = pPage->aData;
7415 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007416 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007417 if( hit==0 ){
7418 pCheck->mallocFailed = 1;
7419 }else{
shane5780ebd2008-11-11 17:36:30 +00007420 u16 contentOffset = get2byte(&data[hdr+5]);
7421 if (contentOffset > usableSize) {
7422 checkAppendMsg(pCheck, 0,
7423 "Corruption detected in header on page %d",iPage,0);
shane0af3f892008-11-12 04:55:34 +00007424 goto check_page_abort;
shane5780ebd2008-11-11 17:36:30 +00007425 }
7426 memset(hit+contentOffset, 0, usableSize-contentOffset);
7427 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007428 nCell = get2byte(&data[hdr+3]);
7429 cellStart = hdr + 12 - 4*pPage->leaf;
7430 for(i=0; i<nCell; i++){
7431 int pc = get2byte(&data[cellStart+i*2]);
danielk1977daca5432008-08-25 11:57:16 +00007432 u16 size = 1024;
drh2e38c322004-09-03 18:38:44 +00007433 int j;
danielk1977daca5432008-08-25 11:57:16 +00007434 if( pc<=usableSize ){
7435 size = cellSizePtr(pPage, &data[pc]);
7436 }
danielk19777701e812005-01-10 12:59:51 +00007437 if( (pc+size-1)>=usableSize || pc<0 ){
7438 checkAppendMsg(pCheck, 0,
7439 "Corruption detected in cell %d on page %d",i,iPage,0);
7440 }else{
7441 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7442 }
drh2e38c322004-09-03 18:38:44 +00007443 }
7444 for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000;
7445 cnt++){
7446 int size = get2byte(&data[i+2]);
7447 int j;
danielk19777701e812005-01-10 12:59:51 +00007448 if( (i+size-1)>=usableSize || i<0 ){
7449 checkAppendMsg(pCheck, 0,
7450 "Corruption detected in cell %d on page %d",i,iPage,0);
7451 }else{
7452 for(j=i+size-1; j>=i; j--) hit[j]++;
7453 }
drh2e38c322004-09-03 18:38:44 +00007454 i = get2byte(&data[i]);
7455 }
7456 for(i=cnt=0; i<usableSize; i++){
7457 if( hit[i]==0 ){
7458 cnt++;
7459 }else if( hit[i]>1 ){
7460 checkAppendMsg(pCheck, 0,
7461 "Multiple uses for byte %d of page %d", i, iPage);
7462 break;
7463 }
7464 }
7465 if( cnt!=data[hdr+7] ){
7466 checkAppendMsg(pCheck, 0,
7467 "Fragmented space is %d byte reported as %d on page %d",
7468 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007469 }
7470 }
shane0af3f892008-11-12 04:55:34 +00007471check_page_abort:
7472 if (hit) sqlite3PageFree(hit);
drh6019e162001-07-02 17:51:45 +00007473
drh4b70f112004-05-02 21:12:19 +00007474 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007475 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007476}
drhb7f91642004-10-31 02:22:47 +00007477#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007478
drhb7f91642004-10-31 02:22:47 +00007479#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007480/*
7481** This routine does a complete check of the given BTree file. aRoot[] is
7482** an array of pages numbers were each page number is the root page of
7483** a table. nRoot is the number of entries in aRoot.
7484**
danielk19773509a652009-07-06 18:56:13 +00007485** A read-only or read-write transaction must be opened before calling
7486** this function.
7487**
drhc890fec2008-08-01 20:10:08 +00007488** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007489** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007490** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007491** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007492*/
drh1dcdbc02007-01-27 02:24:54 +00007493char *sqlite3BtreeIntegrityCheck(
7494 Btree *p, /* The btree to be checked */
7495 int *aRoot, /* An array of root pages numbers for individual trees */
7496 int nRoot, /* Number of entries in aRoot[] */
7497 int mxErr, /* Stop reporting errors after this many */
7498 int *pnErr /* Write number of errors seen to this variable */
7499){
danielk197789d40042008-11-17 14:20:56 +00007500 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007501 int nRef;
drhaaab5722002-02-19 13:39:21 +00007502 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007503 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007504 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007505
drhd677b3d2007-08-20 22:48:41 +00007506 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00007507 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00007508 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00007509 sCheck.pBt = pBt;
7510 sCheck.pPager = pBt->pPager;
danielk197789d40042008-11-17 14:20:56 +00007511 sCheck.nPage = pagerPagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007512 sCheck.mxErr = mxErr;
7513 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007514 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007515 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007516 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00007517 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007518 return 0;
7519 }
drhe5ae5732008-06-15 02:51:47 +00007520 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007521 if( !sCheck.anRef ){
drh1dcdbc02007-01-27 02:24:54 +00007522 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007523 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007524 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007525 }
drhda200cc2004-05-09 11:51:38 +00007526 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007527 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007528 if( i<=sCheck.nPage ){
7529 sCheck.anRef[i] = 1;
7530 }
drhf089aa42008-07-08 19:34:06 +00007531 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drh5eddca62001-06-30 21:53:53 +00007532
7533 /* Check the integrity of the freelist
7534 */
drha34b6762004-05-07 13:30:42 +00007535 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7536 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007537
7538 /* Check all the tables.
7539 */
danielk197789d40042008-11-17 14:20:56 +00007540 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007541 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007542#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007543 if( pBt->autoVacuum && aRoot[i]>1 ){
7544 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7545 }
7546#endif
danielk197762c14b32008-11-19 09:05:26 +00007547 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ");
drh5eddca62001-06-30 21:53:53 +00007548 }
7549
7550 /* Make sure every page in the file is referenced
7551 */
drh1dcdbc02007-01-27 02:24:54 +00007552 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007553#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007554 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007555 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007556 }
danielk1977afcdd022004-10-31 16:25:42 +00007557#else
7558 /* If the database supports auto-vacuum, make sure no tables contain
7559 ** references to pointer-map pages.
7560 */
7561 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007562 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007563 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7564 }
7565 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007566 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007567 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7568 }
7569#endif
drh5eddca62001-06-30 21:53:53 +00007570 }
7571
drh64022502009-01-09 14:11:04 +00007572 /* Make sure this analysis did not leave any unref() pages.
7573 ** This is an internal consistency check; an integrity check
7574 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007575 */
drh64022502009-01-09 14:11:04 +00007576 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007577 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00007578 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00007579 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00007580 );
drh5eddca62001-06-30 21:53:53 +00007581 }
7582
7583 /* Clean up and report errors.
7584 */
drhd677b3d2007-08-20 22:48:41 +00007585 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00007586 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00007587 if( sCheck.mallocFailed ){
7588 sqlite3StrAccumReset(&sCheck.errMsg);
7589 *pnErr = sCheck.nErr+1;
7590 return 0;
7591 }
drh1dcdbc02007-01-27 02:24:54 +00007592 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00007593 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7594 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00007595}
drhb7f91642004-10-31 02:22:47 +00007596#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00007597
drh73509ee2003-04-06 20:44:45 +00007598/*
7599** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00007600**
7601** The pager filename is invariant as long as the pager is
7602** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00007603*/
danielk1977aef0bf62005-12-30 16:28:01 +00007604const char *sqlite3BtreeGetFilename(Btree *p){
7605 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007606 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00007607}
7608
7609/*
danielk19775865e3d2004-06-14 06:03:57 +00007610** Return the pathname of the journal file for this database. The return
7611** value of this routine is the same regardless of whether the journal file
7612** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00007613**
7614** The pager journal filename is invariant as long as the pager is
7615** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00007616*/
danielk1977aef0bf62005-12-30 16:28:01 +00007617const char *sqlite3BtreeGetJournalname(Btree *p){
7618 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007619 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00007620}
7621
danielk19771d850a72004-05-31 08:26:49 +00007622/*
7623** Return non-zero if a transaction is active.
7624*/
danielk1977aef0bf62005-12-30 16:28:01 +00007625int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00007626 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00007627 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00007628}
7629
7630/*
danielk19772372c2b2006-06-27 16:34:56 +00007631** Return non-zero if a read (or write) transaction is active.
7632*/
7633int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00007634 assert( p );
drhe5fe6902007-12-07 18:55:28 +00007635 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00007636 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00007637}
7638
danielk197704103022009-02-03 16:51:24 +00007639int sqlite3BtreeIsInBackup(Btree *p){
7640 assert( p );
7641 assert( sqlite3_mutex_held(p->db->mutex) );
7642 return p->nBackup!=0;
7643}
7644
danielk19772372c2b2006-06-27 16:34:56 +00007645/*
danielk1977da184232006-01-05 11:34:32 +00007646** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00007647** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00007648** purposes (for example, to store a high-level schema associated with
7649** the shared-btree). The btree layer manages reference counting issues.
7650**
7651** The first time this is called on a shared-btree, nBytes bytes of memory
7652** are allocated, zeroed, and returned to the caller. For each subsequent
7653** call the nBytes parameter is ignored and a pointer to the same blob
7654** of memory returned.
7655**
danielk1977171bfed2008-06-23 09:50:50 +00007656** If the nBytes parameter is 0 and the blob of memory has not yet been
7657** allocated, a null pointer is returned. If the blob has already been
7658** allocated, it is returned as normal.
7659**
danielk1977da184232006-01-05 11:34:32 +00007660** Just before the shared-btree is closed, the function passed as the
7661** xFree argument when the memory allocation was made is invoked on the
drh17435752007-08-16 04:30:38 +00007662** blob of allocated memory. This function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00007663** on the memory, the btree layer does that.
7664*/
7665void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
7666 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00007667 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00007668 if( !pBt->pSchema && nBytes ){
drh17435752007-08-16 04:30:38 +00007669 pBt->pSchema = sqlite3MallocZero(nBytes);
danielk1977da184232006-01-05 11:34:32 +00007670 pBt->xFreeSchema = xFree;
7671 }
drh27641702007-08-22 02:56:42 +00007672 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00007673 return pBt->pSchema;
7674}
7675
danielk1977c87d34d2006-01-06 13:00:28 +00007676/*
danielk1977404ca072009-03-16 13:19:36 +00007677** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
7678** btree as the argument handle holds an exclusive lock on the
7679** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00007680*/
7681int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00007682 int rc;
drhe5fe6902007-12-07 18:55:28 +00007683 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00007684 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00007685 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
7686 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00007687 sqlite3BtreeLeave(p);
7688 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00007689}
7690
drha154dcd2006-03-22 22:10:07 +00007691
7692#ifndef SQLITE_OMIT_SHARED_CACHE
7693/*
7694** Obtain a lock on the table whose root page is iTab. The
7695** lock is a write lock if isWritelock is true or a read lock
7696** if it is false.
7697*/
danielk1977c00da102006-01-07 13:21:04 +00007698int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00007699 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00007700 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00007701 if( p->sharable ){
7702 u8 lockType = READ_LOCK + isWriteLock;
7703 assert( READ_LOCK+1==WRITE_LOCK );
7704 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00007705
drh6a9ad3d2008-04-02 16:29:30 +00007706 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00007707 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007708 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00007709 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007710 }
7711 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00007712 }
7713 return rc;
7714}
drha154dcd2006-03-22 22:10:07 +00007715#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00007716
danielk1977b4e9af92007-05-01 17:49:49 +00007717#ifndef SQLITE_OMIT_INCRBLOB
7718/*
7719** Argument pCsr must be a cursor opened for writing on an
7720** INTKEY table currently pointing at a valid table entry.
7721** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00007722**
7723** Only the data content may only be modified, it is not possible to
7724** change the length of the data stored. If this function is called with
7725** parameters that attempt to write past the end of the existing data,
7726** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00007727*/
danielk1977dcbb5d32007-05-04 18:36:44 +00007728int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00007729 int rc;
drh1fee73e2007-08-29 04:00:57 +00007730 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00007731 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00007732 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00007733
danielk1977c9000e62009-07-08 13:55:28 +00007734 rc = restoreCursorPosition(pCsr);
7735 if( rc!=SQLITE_OK ){
7736 return rc;
7737 }
danielk19773588ceb2008-06-10 17:30:26 +00007738 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
7739 if( pCsr->eState!=CURSOR_VALID ){
7740 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00007741 }
7742
danielk1977c9000e62009-07-08 13:55:28 +00007743 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00007744 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00007745 ** (b) there is a read/write transaction open,
7746 ** (c) the connection holds a write-lock on the table (if required),
7747 ** (d) there are no conflicting read-locks, and
7748 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00007749 */
danielk1977c9000e62009-07-08 13:55:28 +00007750 assert( pCsr->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00007751 assert( !pCsr->pBt->readOnly && pCsr->pBt->inTransaction==TRANS_WRITE );
7752 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
7753 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00007754 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00007755
danielk19779f8d6402007-05-02 17:48:45 +00007756 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00007757}
danielk19772dec9702007-05-02 16:48:37 +00007758
7759/*
7760** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00007761** overflow list for the current row. This is used by cursors opened
7762** for incremental blob IO only.
7763**
7764** This function sets a flag only. The actual page location cache
7765** (stored in BtCursor.aOverflow[]) is allocated and used by function
7766** accessPayload() (the worker function for sqlite3BtreeData() and
7767** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00007768*/
7769void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00007770 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00007771 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00007772 assert(!pCur->isIncrblobHandle);
danielk19772dec9702007-05-02 16:48:37 +00007773 assert(!pCur->aOverflow);
danielk1977dcbb5d32007-05-04 18:36:44 +00007774 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00007775}
danielk1977b4e9af92007-05-01 17:49:49 +00007776#endif