blob: 991869b59b8090188a1b67870428f25752945178 [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drhcd285082010-06-23 22:00:35 +000034** The WAL header is 32 bytes in size and consists of the following eight
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan10f5a502010-06-23 15:55:43 +000043** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
dan97a31352010-04-16 13:59:31 +000045**
drh23ea97b2010-05-20 16:45:58 +000046** Immediately following the wal-header are zero or more frames. Each
47** frame consists of a 24-byte frame-header followed by a <page-size> bytes
drhcd285082010-06-23 22:00:35 +000048** of page data. The frame-header is six big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000049** integer values, as follows:
50**
dan3de777f2010-04-17 12:31:37 +000051** 0: Page number.
52** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000053** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000054** 8: Salt-1 (copied from the header)
55** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000056** 16: Checksum-1.
57** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000058**
drh7e263722010-05-20 21:21:09 +000059** A frame is considered valid if and only if the following conditions are
60** true:
61**
62** (1) The salt-1 and salt-2 values in the frame-header match
63** salt values in the wal-header
64**
65** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000066** exactly match the checksum computed consecutively on the
67** WAL header and the first 8 bytes and the content of all frames
68** up to and including the current frame.
69**
70** The checksum is computed using 32-bit big-endian integers if the
71** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000073** The checksum values are always stored in the frame header in a
74** big-endian format regardless of which byte order is used to compute
75** the checksum. The checksum is computed by interpreting the input as
76** an even number of unsigned 32-bit integers: x[0] through x[N]. The
drhffca4302010-06-15 11:21:54 +000077** algorithm used for the checksum is as follows:
drh51b21b12010-05-25 15:53:31 +000078**
79** for i from 0 to n-1 step 2:
80** s0 += x[i] + s1;
81** s1 += x[i+1] + s0;
82** endfor
drh7e263722010-05-20 21:21:09 +000083**
drhcd285082010-06-23 22:00:35 +000084** Note that s0 and s1 are both weighted checksums using fibonacci weights
85** in reverse order (the largest fibonacci weight occurs on the first element
86** of the sequence being summed.) The s1 value spans all 32-bit
87** terms of the sequence whereas s0 omits the final term.
88**
drh7e263722010-05-20 21:21:09 +000089** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90** WAL is transferred into the database, then the database is VFS.xSync-ed.
drhffca4302010-06-15 11:21:54 +000091** The VFS.xSync operations serve as write barriers - all writes launched
drh7e263722010-05-20 21:21:09 +000092** before the xSync must complete before any write that launches after the
93** xSync begins.
94**
95** After each checkpoint, the salt-1 value is incremented and the salt-2
96** value is randomized. This prevents old and new frames in the WAL from
97** being considered valid at the same time and being checkpointing together
98** following a crash.
99**
drh29d4dbe2010-05-18 23:29:52 +0000100** READER ALGORITHM
101**
102** To read a page from the database (call it page number P), a reader
103** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +0000104** last valid instance of page P that is a followed by a commit frame
105** or is a commit frame itself becomes the value read. If the WAL
106** contains no copies of page P that are valid and which are a commit
107** frame or are followed by a commit frame, then page P is read from
108** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000109**
drh73b64e42010-05-30 19:55:15 +0000110** To start a read transaction, the reader records the index of the last
111** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112** for all subsequent read operations. New transactions can be appended
113** to the WAL, but as long as the reader uses its original mxFrame value
114** and ignores the newly appended content, it will see a consistent snapshot
115** of the database from a single point in time. This technique allows
116** multiple concurrent readers to view different versions of the database
117** content simultaneously.
118**
119** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000120** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000121** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000122** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000123** and read performance suffers. To overcome this problem, a separate
124** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000125** search for frames of a particular page.
126**
127** WAL-INDEX FORMAT
128**
129** Conceptually, the wal-index is shared memory, though VFS implementations
130** might choose to implement the wal-index using a mmapped file. Because
131** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132** on a network filesystem. All users of the database must be able to
133** share memory.
134**
drh07dae082017-10-30 20:44:36 +0000135** In the default unix and windows implementation, the wal-index is a mmapped
136** file whose name is the database name with a "-shm" suffix added. For that
137** reason, the wal-index is sometimes called the "shm" file.
138**
drh29d4dbe2010-05-18 23:29:52 +0000139** The wal-index is transient. After a crash, the wal-index can (and should
140** be) reconstructed from the original WAL file. In fact, the VFS is required
141** to either truncate or zero the header of the wal-index when the last
142** connection to it closes. Because the wal-index is transient, it can
143** use an architecture-specific format; it does not have to be cross-platform.
144** Hence, unlike the database and WAL file formats which store all values
145** as big endian, the wal-index can store multi-byte values in the native
146** byte order of the host computer.
147**
148** The purpose of the wal-index is to answer this question quickly: Given
drh3314d122012-07-17 17:46:21 +0000149** a page number P and a maximum frame index M, return the index of the
150** last frame in the wal before frame M for page P in the WAL, or return
151** NULL if there are no frames for page P in the WAL prior to M.
drh29d4dbe2010-05-18 23:29:52 +0000152**
153** The wal-index consists of a header region, followed by an one or
154** more index blocks.
155**
drh027a1282010-05-19 01:53:53 +0000156** The wal-index header contains the total number of frames within the WAL
mistachkind5578432012-08-25 10:01:29 +0000157** in the mxFrame field.
danad3cadd2010-06-14 11:49:26 +0000158**
159** Each index block except for the first contains information on
160** HASHTABLE_NPAGE frames. The first index block contains information on
161** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162** HASHTABLE_NPAGE are selected so that together the wal-index header and
163** first index block are the same size as all other index blocks in the
164** wal-index.
165**
166** Each index block contains two sections, a page-mapping that contains the
167** database page number associated with each wal frame, and a hash-table
drhffca4302010-06-15 11:21:54 +0000168** that allows readers to query an index block for a specific page number.
danad3cadd2010-06-14 11:49:26 +0000169** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
170** for the first index block) 32-bit page numbers. The first entry in the
171** first index-block contains the database page number corresponding to the
172** first frame in the WAL file. The first entry in the second index block
173** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
174** the log, and so on.
175**
176** The last index block in a wal-index usually contains less than the full
177** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
178** depending on the contents of the WAL file. This does not change the
179** allocated size of the page-mapping array - the page-mapping array merely
180** contains unused entries.
drh027a1282010-05-19 01:53:53 +0000181**
182** Even without using the hash table, the last frame for page P
danad3cadd2010-06-14 11:49:26 +0000183** can be found by scanning the page-mapping sections of each index block
drh027a1282010-05-19 01:53:53 +0000184** starting with the last index block and moving toward the first, and
185** within each index block, starting at the end and moving toward the
186** beginning. The first entry that equals P corresponds to the frame
187** holding the content for that page.
188**
189** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
190** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
191** hash table for each page number in the mapping section, so the hash
192** table is never more than half full. The expected number of collisions
193** prior to finding a match is 1. Each entry of the hash table is an
194** 1-based index of an entry in the mapping section of the same
195** index block. Let K be the 1-based index of the largest entry in
196** the mapping section. (For index blocks other than the last, K will
197** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
198** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000199** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000200**
201** To look for page P in the hash table, first compute a hash iKey on
202** P as follows:
203**
204** iKey = (P * 383) % HASHTABLE_NSLOT
205**
206** Then start scanning entries of the hash table, starting with iKey
207** (wrapping around to the beginning when the end of the hash table is
208** reached) until an unused hash slot is found. Let the first unused slot
209** be at index iUnused. (iUnused might be less than iKey if there was
210** wrap-around.) Because the hash table is never more than half full,
211** the search is guaranteed to eventually hit an unused entry. Let
212** iMax be the value between iKey and iUnused, closest to iUnused,
213** where aHash[iMax]==P. If there is no iMax entry (if there exists
214** no hash slot such that aHash[i]==p) then page P is not in the
215** current index block. Otherwise the iMax-th mapping entry of the
216** current index block corresponds to the last entry that references
217** page P.
218**
219** A hash search begins with the last index block and moves toward the
220** first index block, looking for entries corresponding to page P. On
221** average, only two or three slots in each index block need to be
222** examined in order to either find the last entry for page P, or to
223** establish that no such entry exists in the block. Each index block
224** holds over 4000 entries. So two or three index blocks are sufficient
225** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
226** comparisons (on average) suffice to either locate a frame in the
227** WAL or to establish that the frame does not exist in the WAL. This
228** is much faster than scanning the entire 10MB WAL.
229**
230** Note that entries are added in order of increasing K. Hence, one
231** reader might be using some value K0 and a second reader that started
232** at a later time (after additional transactions were added to the WAL
233** and to the wal-index) might be using a different value K1, where K1>K0.
234** Both readers can use the same hash table and mapping section to get
235** the correct result. There may be entries in the hash table with
236** K>K0 but to the first reader, those entries will appear to be unused
237** slots in the hash table and so the first reader will get an answer as
238** if no values greater than K0 had ever been inserted into the hash table
239** in the first place - which is what reader one wants. Meanwhile, the
240** second reader using K1 will see additional values that were inserted
241** later, which is exactly what reader two wants.
242**
dan6f150142010-05-21 15:31:56 +0000243** When a rollback occurs, the value of K is decreased. Hash table entries
244** that correspond to frames greater than the new K value are removed
245** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000246*/
drh29d4dbe2010-05-18 23:29:52 +0000247#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000248
drh29d4dbe2010-05-18 23:29:52 +0000249#include "wal.h"
250
drh73b64e42010-05-30 19:55:15 +0000251/*
drhc74c3332010-05-31 12:15:19 +0000252** Trace output macros
253*/
drhc74c3332010-05-31 12:15:19 +0000254#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000255int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000256# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
257#else
258# define WALTRACE(X)
259#endif
260
dan10f5a502010-06-23 15:55:43 +0000261/*
262** The maximum (and only) versions of the wal and wal-index formats
263** that may be interpreted by this version of SQLite.
264**
265** If a client begins recovering a WAL file and finds that (a) the checksum
266** values in the wal-header are correct and (b) the version field is not
267** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
268**
269** Similarly, if a client successfully reads a wal-index header (i.e. the
270** checksum test is successful) and finds that the version field is not
271** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
272** returns SQLITE_CANTOPEN.
273*/
274#define WAL_MAX_VERSION 3007000
275#define WALINDEX_MAX_VERSION 3007000
drhc74c3332010-05-31 12:15:19 +0000276
277/*
drh07dae082017-10-30 20:44:36 +0000278** Index numbers for various locking bytes. WAL_NREADER is the number
drh998147e2015-12-10 02:15:03 +0000279** of available reader locks and should be at least 3. The default
280** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5.
drh07dae082017-10-30 20:44:36 +0000281**
282** Technically, the various VFSes are free to implement these locks however
283** they see fit. However, compatibility is encouraged so that VFSes can
284** interoperate. The standard implemention used on both unix and windows
285** is for the index number to indicate a byte offset into the
286** WalCkptInfo.aLock[] array in the wal-index header. In other words, all
287** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which
288** should be 120) is the location in the shm file for the first locking
289** byte.
drh73b64e42010-05-30 19:55:15 +0000290*/
291#define WAL_WRITE_LOCK 0
292#define WAL_ALL_BUT_WRITE 1
293#define WAL_CKPT_LOCK 1
294#define WAL_RECOVER_LOCK 2
295#define WAL_READ_LOCK(I) (3+(I))
296#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
297
dan97a31352010-04-16 13:59:31 +0000298
drh7ed91f22010-04-29 22:34:07 +0000299/* Object declarations */
300typedef struct WalIndexHdr WalIndexHdr;
301typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000302typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000303
304
305/*
drh286a2882010-05-20 23:51:06 +0000306** The following object holds a copy of the wal-index header content.
307**
308** The actual header in the wal-index consists of two copies of this
drh998147e2015-12-10 02:15:03 +0000309** object followed by one instance of the WalCkptInfo object.
310** For all versions of SQLite through 3.10.0 and probably beyond,
311** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
312** the total header size is 136 bytes.
drh9b78f792010-08-14 21:21:24 +0000313**
314** The szPage value can be any power of 2 between 512 and 32768, inclusive.
315** Or it can be 1 to represent a 65536-byte page. The latter case was
316** added in 3.7.1 when support for 64K pages was added.
dan7c246102010-04-12 19:00:29 +0000317*/
drh7ed91f22010-04-29 22:34:07 +0000318struct WalIndexHdr {
dan10f5a502010-06-23 15:55:43 +0000319 u32 iVersion; /* Wal-index version */
320 u32 unused; /* Unused (padding) field */
dan71d89912010-05-24 13:57:42 +0000321 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000322 u8 isInit; /* 1 when initialized */
323 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
drh9b78f792010-08-14 21:21:24 +0000324 u16 szPage; /* Database page size in bytes. 1==64K */
dand0aa3422010-05-31 16:41:53 +0000325 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000326 u32 nPage; /* Size of database in pages */
327 u32 aFrameCksum[2]; /* Checksum of last frame in log */
328 u32 aSalt[2]; /* Two salt values copied from WAL header */
329 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000330};
331
drh73b64e42010-05-30 19:55:15 +0000332/*
333** A copy of the following object occurs in the wal-index immediately
334** following the second copy of the WalIndexHdr. This object stores
335** information used by checkpoint.
336**
337** nBackfill is the number of frames in the WAL that have been written
338** back into the database. (We call the act of moving content from WAL to
339** database "backfilling".) The nBackfill number is never greater than
340** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
341** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
342** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
343** mxFrame back to zero when the WAL is reset.
344**
drh998147e2015-12-10 02:15:03 +0000345** nBackfillAttempted is the largest value of nBackfill that a checkpoint
346** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however
347** the nBackfillAttempted is set before any backfilling is done and the
mistachkinc9fb38e2015-12-10 03:16:47 +0000348** nBackfill is only set after all backfilling completes. So if a checkpoint
drh998147e2015-12-10 02:15:03 +0000349** crashes, nBackfillAttempted might be larger than nBackfill. The
350** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
351**
352** The aLock[] field is a set of bytes used for locking. These bytes should
353** never be read or written.
354**
drh73b64e42010-05-30 19:55:15 +0000355** There is one entry in aReadMark[] for each reader lock. If a reader
356** holds read-lock K, then the value in aReadMark[K] is no greater than
drhdb7f6472010-06-09 14:45:12 +0000357** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
358** for any aReadMark[] means that entry is unused. aReadMark[0] is
359** a special case; its value is never used and it exists as a place-holder
360** to avoid having to offset aReadMark[] indexs by one. Readers holding
361** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
362** directly from the database.
drh73b64e42010-05-30 19:55:15 +0000363**
364** The value of aReadMark[K] may only be changed by a thread that
365** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
366** aReadMark[K] cannot changed while there is a reader is using that mark
367** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
368**
369** The checkpointer may only transfer frames from WAL to database where
370** the frame numbers are less than or equal to every aReadMark[] that is
371** in use (that is, every aReadMark[j] for which there is a corresponding
372** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
373** largest value and will increase an unused aReadMark[] to mxFrame if there
374** is not already an aReadMark[] equal to mxFrame. The exception to the
375** previous sentence is when nBackfill equals mxFrame (meaning that everything
376** in the WAL has been backfilled into the database) then new readers
377** will choose aReadMark[0] which has value 0 and hence such reader will
378** get all their all content directly from the database file and ignore
379** the WAL.
380**
381** Writers normally append new frames to the end of the WAL. However,
382** if nBackfill equals mxFrame (meaning that all WAL content has been
383** written back into the database) and if no readers are using the WAL
384** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
385** the writer will first "reset" the WAL back to the beginning and start
386** writing new content beginning at frame 1.
387**
388** We assume that 32-bit loads are atomic and so no locks are needed in
389** order to read from any aReadMark[] entries.
390*/
391struct WalCkptInfo {
392 u32 nBackfill; /* Number of WAL frames backfilled into DB */
393 u32 aReadMark[WAL_NREADER]; /* Reader marks */
drh998147e2015-12-10 02:15:03 +0000394 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */
395 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */
396 u32 notUsed0; /* Available for future enhancements */
drh73b64e42010-05-30 19:55:15 +0000397};
drhdb7f6472010-06-09 14:45:12 +0000398#define READMARK_NOT_USED 0xffffffff
drh73b64e42010-05-30 19:55:15 +0000399
400
drh7e263722010-05-20 21:21:09 +0000401/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
402** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
403** only support mandatory file-locks, we do not read or write data
404** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000405*/
drh998147e2015-12-10 02:15:03 +0000406#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
407#define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
dan7c246102010-04-12 19:00:29 +0000408
drh7ed91f22010-04-29 22:34:07 +0000409/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000410#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000411
dan10f5a502010-06-23 15:55:43 +0000412/* Size of write ahead log header, including checksum. */
dan10f5a502010-06-23 15:55:43 +0000413#define WAL_HDRSIZE 32
dan97a31352010-04-16 13:59:31 +0000414
danb8fd6c22010-05-24 10:39:36 +0000415/* WAL magic value. Either this value, or the same value with the least
416** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
417** big-endian format in the first 4 bytes of a WAL file.
418**
419** If the LSB is set, then the checksums for each frame within the WAL
420** file are calculated by treating all data as an array of 32-bit
421** big-endian words. Otherwise, they are calculated by interpreting
422** all data as 32-bit little-endian words.
423*/
424#define WAL_MAGIC 0x377f0682
425
dan97a31352010-04-16 13:59:31 +0000426/*
drh7ed91f22010-04-29 22:34:07 +0000427** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000428** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000429** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000430*/
drh6e810962010-05-19 17:49:50 +0000431#define walFrameOffset(iFrame, szPage) ( \
danbd0e9072010-07-07 09:48:44 +0000432 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000433)
dan7c246102010-04-12 19:00:29 +0000434
435/*
drh7ed91f22010-04-29 22:34:07 +0000436** An open write-ahead log file is represented by an instance of the
437** following object.
dance4f05f2010-04-22 19:14:13 +0000438*/
drh7ed91f22010-04-29 22:34:07 +0000439struct Wal {
drh73b64e42010-05-30 19:55:15 +0000440 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000441 sqlite3_file *pDbFd; /* File handle for the database file */
442 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000443 u32 iCallback; /* Value to pass to log callback (or 0) */
drh85a83752011-05-16 21:00:27 +0000444 i64 mxWalSize; /* Truncate WAL to this size upon reset */
dan13a3cb82010-06-11 19:04:21 +0000445 int nWiData; /* Size of array apWiData */
drh88f975a2011-12-16 19:34:36 +0000446 int szFirstBlock; /* Size of first block written to WAL file */
dan13a3cb82010-06-11 19:04:21 +0000447 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
drhb2eced52010-08-12 02:41:12 +0000448 u32 szPage; /* Database page size */
drh73b64e42010-05-30 19:55:15 +0000449 i16 readLock; /* Which read lock is being held. -1 for none */
drh4eb02a42011-12-16 21:26:26 +0000450 u8 syncFlags; /* Flags to use to sync header writes */
dan55437592010-05-11 12:19:26 +0000451 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000452 u8 writeLock; /* True if in a write transaction */
453 u8 ckptLock; /* True if holding a checkpoint lock */
drh66dfec8b2011-06-01 20:01:49 +0000454 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
danf60b7f32011-12-16 13:24:27 +0000455 u8 truncateOnCommit; /* True to truncate WAL file on commit */
drhd992b152011-12-20 20:13:25 +0000456 u8 syncHeader; /* Fsync the WAL header if true */
drh374f4a02011-12-17 20:02:11 +0000457 u8 padToSectorBoundary; /* Pad transactions out to the next sector */
drh85bc6df2017-11-10 20:00:50 +0000458 u8 bShmUnreliable; /* SHM content is read-only and unreliable */
drh73b64e42010-05-30 19:55:15 +0000459 WalIndexHdr hdr; /* Wal-index header for current transaction */
danb8c7cfb2015-08-13 20:23:46 +0000460 u32 minFrame; /* Ignore wal frames before this one */
danc9a90222016-01-09 18:57:35 +0000461 u32 iReCksum; /* On commit, recalculate checksums from here */
dan3e875ef2010-07-05 19:03:35 +0000462 const char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000463 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000464#ifdef SQLITE_DEBUG
465 u8 lockError; /* True if a locking error has occurred */
466#endif
danfc1acf32015-12-05 20:51:54 +0000467#ifdef SQLITE_ENABLE_SNAPSHOT
drh998147e2015-12-10 02:15:03 +0000468 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */
danfc1acf32015-12-05 20:51:54 +0000469#endif
dan7c246102010-04-12 19:00:29 +0000470};
471
drh73b64e42010-05-30 19:55:15 +0000472/*
dan8c408002010-11-01 17:38:24 +0000473** Candidate values for Wal.exclusiveMode.
474*/
475#define WAL_NORMAL_MODE 0
476#define WAL_EXCLUSIVE_MODE 1
477#define WAL_HEAPMEMORY_MODE 2
478
479/*
drh66dfec8b2011-06-01 20:01:49 +0000480** Possible values for WAL.readOnly
481*/
482#define WAL_RDWR 0 /* Normal read/write connection */
483#define WAL_RDONLY 1 /* The WAL file is readonly */
484#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
485
486/*
dan067f3162010-06-14 10:30:12 +0000487** Each page of the wal-index mapping contains a hash-table made up of
488** an array of HASHTABLE_NSLOT elements of the following type.
489*/
490typedef u16 ht_slot;
491
492/*
danad3cadd2010-06-14 11:49:26 +0000493** This structure is used to implement an iterator that loops through
494** all frames in the WAL in database page order. Where two or more frames
495** correspond to the same database page, the iterator visits only the
496** frame most recently written to the WAL (in other words, the frame with
497** the largest index).
498**
499** The internals of this structure are only accessed by:
500**
501** walIteratorInit() - Create a new iterator,
502** walIteratorNext() - Step an iterator,
503** walIteratorFree() - Free an iterator.
504**
505** This functionality is used by the checkpoint code (see walCheckpoint()).
506*/
507struct WalIterator {
508 int iPrior; /* Last result returned from the iterator */
drhd9c9b782010-12-15 21:02:06 +0000509 int nSegment; /* Number of entries in aSegment[] */
danad3cadd2010-06-14 11:49:26 +0000510 struct WalSegment {
511 int iNext; /* Next slot in aIndex[] not yet returned */
512 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
513 u32 *aPgno; /* Array of page numbers. */
drhd9c9b782010-12-15 21:02:06 +0000514 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
danad3cadd2010-06-14 11:49:26 +0000515 int iZero; /* Frame number associated with aPgno[0] */
drhd9c9b782010-12-15 21:02:06 +0000516 } aSegment[1]; /* One for every 32KB page in the wal-index */
danad3cadd2010-06-14 11:49:26 +0000517};
518
519/*
dan13a3cb82010-06-11 19:04:21 +0000520** Define the parameters of the hash tables in the wal-index file. There
521** is a hash-table following every HASHTABLE_NPAGE page numbers in the
522** wal-index.
523**
524** Changing any of these constants will alter the wal-index format and
525** create incompatibilities.
526*/
dan067f3162010-06-14 10:30:12 +0000527#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000528#define HASHTABLE_HASH_1 383 /* Should be prime */
529#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000530
danad3cadd2010-06-14 11:49:26 +0000531/*
532** The block of page numbers associated with the first hash-table in a
dan13a3cb82010-06-11 19:04:21 +0000533** wal-index is smaller than usual. This is so that there is a complete
534** hash-table on each aligned 32KB page of the wal-index.
535*/
dan067f3162010-06-14 10:30:12 +0000536#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
dan13a3cb82010-06-11 19:04:21 +0000537
dan067f3162010-06-14 10:30:12 +0000538/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
539#define WALINDEX_PGSZ ( \
540 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
541)
dan13a3cb82010-06-11 19:04:21 +0000542
543/*
544** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
dan067f3162010-06-14 10:30:12 +0000545** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
dan13a3cb82010-06-11 19:04:21 +0000546** numbered from zero.
547**
drhc05a0632017-11-11 20:11:01 +0000548** If the wal-index is currently smaller the iPage pages then the size
549** of the wal-index might be increased, but only if it is safe to do
550** so. It is safe to enlarge the wal-index if pWal->writeLock is true
551** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
552**
dan13a3cb82010-06-11 19:04:21 +0000553** If this call is successful, *ppPage is set to point to the wal-index
554** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
555** then an SQLite error code is returned and *ppPage is set to 0.
556*/
drh2e178d72018-02-20 22:20:57 +0000557static SQLITE_NOINLINE int walIndexPageRealloc(
558 Wal *pWal, /* The WAL context */
559 int iPage, /* The page we seek */
560 volatile u32 **ppPage /* Write the page pointer here */
561){
dan13a3cb82010-06-11 19:04:21 +0000562 int rc = SQLITE_OK;
563
564 /* Enlarge the pWal->apWiData[] array if required */
565 if( pWal->nWiData<=iPage ){
drh519426a2010-07-09 03:19:07 +0000566 int nByte = sizeof(u32*)*(iPage+1);
dan13a3cb82010-06-11 19:04:21 +0000567 volatile u32 **apNew;
drhf3cdcdc2015-04-29 16:50:28 +0000568 apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
dan13a3cb82010-06-11 19:04:21 +0000569 if( !apNew ){
570 *ppPage = 0;
mistachkinfad30392016-02-13 23:43:46 +0000571 return SQLITE_NOMEM_BKPT;
dan13a3cb82010-06-11 19:04:21 +0000572 }
drh519426a2010-07-09 03:19:07 +0000573 memset((void*)&apNew[pWal->nWiData], 0,
574 sizeof(u32*)*(iPage+1-pWal->nWiData));
dan13a3cb82010-06-11 19:04:21 +0000575 pWal->apWiData = apNew;
576 pWal->nWiData = iPage+1;
577 }
578
579 /* Request a pointer to the required page from the VFS */
drhc0ec2f72018-02-21 01:48:22 +0000580 assert( pWal->apWiData[iPage]==0 );
581 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
582 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
583 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
584 }else{
585 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
586 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
587 );
588 assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
589 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
590 if( (rc&0xff)==SQLITE_READONLY ){
591 pWal->readOnly |= WAL_SHM_RDONLY;
592 if( rc==SQLITE_READONLY ){
593 rc = SQLITE_OK;
dan4edc6bf2011-05-10 17:31:29 +0000594 }
dan8c408002010-11-01 17:38:24 +0000595 }
dan13a3cb82010-06-11 19:04:21 +0000596 }
danb6d2f9c2011-05-11 14:57:33 +0000597
drh66dfec8b2011-06-01 20:01:49 +0000598 *ppPage = pWal->apWiData[iPage];
dan13a3cb82010-06-11 19:04:21 +0000599 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
600 return rc;
601}
drh2e178d72018-02-20 22:20:57 +0000602static int walIndexPage(
603 Wal *pWal, /* The WAL context */
604 int iPage, /* The page we seek */
605 volatile u32 **ppPage /* Write the page pointer here */
606){
607 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
608 return walIndexPageRealloc(pWal, iPage, ppPage);
609 }
610 return SQLITE_OK;
611}
dan13a3cb82010-06-11 19:04:21 +0000612
613/*
drh73b64e42010-05-30 19:55:15 +0000614** Return a pointer to the WalCkptInfo structure in the wal-index.
615*/
616static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000617 assert( pWal->nWiData>0 && pWal->apWiData[0] );
618 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
619}
620
621/*
622** Return a pointer to the WalIndexHdr structure in the wal-index.
623*/
624static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
625 assert( pWal->nWiData>0 && pWal->apWiData[0] );
626 return (volatile WalIndexHdr*)pWal->apWiData[0];
drh73b64e42010-05-30 19:55:15 +0000627}
628
dan7c246102010-04-12 19:00:29 +0000629/*
danb8fd6c22010-05-24 10:39:36 +0000630** The argument to this macro must be of type u32. On a little-endian
631** architecture, it returns the u32 value that results from interpreting
632** the 4 bytes as a big-endian value. On a big-endian architecture, it
peter.d.reid60ec9142014-09-06 16:39:46 +0000633** returns the value that would be produced by interpreting the 4 bytes
danb8fd6c22010-05-24 10:39:36 +0000634** of the input value as a little-endian integer.
635*/
636#define BYTESWAP32(x) ( \
637 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
638 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
639)
dan64d039e2010-04-13 19:27:31 +0000640
dan7c246102010-04-12 19:00:29 +0000641/*
drh7e263722010-05-20 21:21:09 +0000642** Generate or extend an 8 byte checksum based on the data in
643** array aByte[] and the initial values of aIn[0] and aIn[1] (or
644** initial values of 0 and 0 if aIn==NULL).
645**
646** The checksum is written back into aOut[] before returning.
647**
648** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000649*/
drh7e263722010-05-20 21:21:09 +0000650static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000651 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000652 u8 *a, /* Content to be checksummed */
653 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
654 const u32 *aIn, /* Initial checksum value input */
655 u32 *aOut /* OUT: Final checksum value output */
656){
657 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000658 u32 *aData = (u32 *)a;
659 u32 *aEnd = (u32 *)&a[nByte];
660
drh7e263722010-05-20 21:21:09 +0000661 if( aIn ){
662 s1 = aIn[0];
663 s2 = aIn[1];
664 }else{
665 s1 = s2 = 0;
666 }
dan7c246102010-04-12 19:00:29 +0000667
drh584c7542010-05-19 18:08:10 +0000668 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000669 assert( (nByte&0x00000007)==0 );
dan7c246102010-04-12 19:00:29 +0000670
danb8fd6c22010-05-24 10:39:36 +0000671 if( nativeCksum ){
672 do {
673 s1 += *aData++ + s2;
674 s2 += *aData++ + s1;
675 }while( aData<aEnd );
676 }else{
677 do {
678 s1 += BYTESWAP32(aData[0]) + s2;
679 s2 += BYTESWAP32(aData[1]) + s1;
680 aData += 2;
681 }while( aData<aEnd );
682 }
683
drh7e263722010-05-20 21:21:09 +0000684 aOut[0] = s1;
685 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000686}
687
dan8c408002010-11-01 17:38:24 +0000688static void walShmBarrier(Wal *pWal){
689 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
690 sqlite3OsShmBarrier(pWal->pDbFd);
691 }
692}
693
dan7c246102010-04-12 19:00:29 +0000694/*
drh7e263722010-05-20 21:21:09 +0000695** Write the header information in pWal->hdr into the wal-index.
696**
697** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000698*/
drh7e263722010-05-20 21:21:09 +0000699static void walIndexWriteHdr(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000700 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
701 const int nCksum = offsetof(WalIndexHdr, aCksum);
drh73b64e42010-05-30 19:55:15 +0000702
703 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000704 pWal->hdr.isInit = 1;
dan10f5a502010-06-23 15:55:43 +0000705 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
dan4280eb32010-06-12 12:02:35 +0000706 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
drhf6bff3f2015-07-17 01:16:10 +0000707 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
dan8c408002010-11-01 17:38:24 +0000708 walShmBarrier(pWal);
drhf6bff3f2015-07-17 01:16:10 +0000709 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000710}
711
712/*
713** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000714** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000715** 4-byte big-endian integers, as follows:
716**
drh23ea97b2010-05-20 16:45:58 +0000717** 0: Page number.
718** 4: For commit records, the size of the database image in pages
719** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000720** 8: Salt-1 (copied from the wal-header)
721** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000722** 16: Checksum-1.
723** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000724*/
drh7ed91f22010-04-29 22:34:07 +0000725static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000726 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000727 u32 iPage, /* Database page number for frame */
728 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000729 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000730 u8 *aFrame /* OUT: Write encoded frame here */
731){
danb8fd6c22010-05-24 10:39:36 +0000732 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000733 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000734 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000735 sqlite3Put4byte(&aFrame[0], iPage);
736 sqlite3Put4byte(&aFrame[4], nTruncate);
danc9a90222016-01-09 18:57:35 +0000737 if( pWal->iReCksum==0 ){
738 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000739
danc9a90222016-01-09 18:57:35 +0000740 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
741 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
742 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000743
danc9a90222016-01-09 18:57:35 +0000744 sqlite3Put4byte(&aFrame[16], aCksum[0]);
745 sqlite3Put4byte(&aFrame[20], aCksum[1]);
drh869aaf02016-01-12 02:28:19 +0000746 }else{
747 memset(&aFrame[8], 0, 16);
danc9a90222016-01-09 18:57:35 +0000748 }
dan7c246102010-04-12 19:00:29 +0000749}
750
751/*
drh7e263722010-05-20 21:21:09 +0000752** Check to see if the frame with header in aFrame[] and content
753** in aData[] is valid. If it is a valid frame, fill *piPage and
754** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000755*/
drh7ed91f22010-04-29 22:34:07 +0000756static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000757 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000758 u32 *piPage, /* OUT: Database page number for frame */
759 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000760 u8 *aData, /* Pointer to page data (for checksum) */
761 u8 *aFrame /* Frame data */
762){
danb8fd6c22010-05-24 10:39:36 +0000763 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000764 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000765 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000766 assert( WAL_FRAME_HDRSIZE==24 );
767
drh7e263722010-05-20 21:21:09 +0000768 /* A frame is only valid if the salt values in the frame-header
769 ** match the salt values in the wal-header.
770 */
771 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000772 return 0;
773 }
dan4a4b01d2010-04-16 11:30:18 +0000774
drhc8179152010-05-24 13:28:36 +0000775 /* A frame is only valid if the page number is creater than zero.
776 */
777 pgno = sqlite3Get4byte(&aFrame[0]);
778 if( pgno==0 ){
779 return 0;
780 }
781
drh519426a2010-07-09 03:19:07 +0000782 /* A frame is only valid if a checksum of the WAL header,
783 ** all prior frams, the first 16 bytes of this frame-header,
784 ** and the frame-data matches the checksum in the last 8
785 ** bytes of this frame-header.
drh7e263722010-05-20 21:21:09 +0000786 */
danb8fd6c22010-05-24 10:39:36 +0000787 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000788 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000789 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000790 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
791 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000792 ){
793 /* Checksum failed. */
794 return 0;
795 }
796
drh7e263722010-05-20 21:21:09 +0000797 /* If we reach this point, the frame is valid. Return the page number
798 ** and the new database size.
799 */
drhc8179152010-05-24 13:28:36 +0000800 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000801 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000802 return 1;
803}
804
dan7c246102010-04-12 19:00:29 +0000805
drhc74c3332010-05-31 12:15:19 +0000806#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
807/*
drh181e0912010-06-01 01:08:08 +0000808** Names of locks. This routine is used to provide debugging output and is not
809** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000810*/
811static const char *walLockName(int lockIdx){
812 if( lockIdx==WAL_WRITE_LOCK ){
813 return "WRITE-LOCK";
814 }else if( lockIdx==WAL_CKPT_LOCK ){
815 return "CKPT-LOCK";
816 }else if( lockIdx==WAL_RECOVER_LOCK ){
817 return "RECOVER-LOCK";
818 }else{
819 static char zName[15];
820 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
821 lockIdx-WAL_READ_LOCK(0));
822 return zName;
823 }
824}
825#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
826
827
dan7c246102010-04-12 19:00:29 +0000828/*
drh181e0912010-06-01 01:08:08 +0000829** Set or release locks on the WAL. Locks are either shared or exclusive.
830** A lock cannot be moved directly between shared and exclusive - it must go
831** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000832**
833** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
834*/
835static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000836 int rc;
drh73b64e42010-05-30 19:55:15 +0000837 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000838 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
839 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
840 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
841 walLockName(lockIdx), rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000842 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000843 return rc;
drh73b64e42010-05-30 19:55:15 +0000844}
845static void walUnlockShared(Wal *pWal, int lockIdx){
846 if( pWal->exclusiveMode ) return;
847 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
848 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000849 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000850}
drhab372772015-12-02 16:10:16 +0000851static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000852 int rc;
drh73b64e42010-05-30 19:55:15 +0000853 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000854 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
855 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
856 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
857 walLockName(lockIdx), n, rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000858 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000859 return rc;
drh73b64e42010-05-30 19:55:15 +0000860}
861static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
862 if( pWal->exclusiveMode ) return;
863 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
864 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000865 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
866 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000867}
868
869/*
drh29d4dbe2010-05-18 23:29:52 +0000870** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000871** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
872** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000873*/
874static int walHash(u32 iPage){
875 assert( iPage>0 );
876 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
877 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
878}
879static int walNextHash(int iPriorHash){
880 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000881}
882
dan4280eb32010-06-12 12:02:35 +0000883/*
884** Return pointers to the hash table and page number array stored on
885** page iHash of the wal-index. The wal-index is broken into 32KB pages
886** numbered starting from 0.
887**
888** Set output variable *paHash to point to the start of the hash table
889** in the wal-index file. Set *piZero to one less than the frame
890** number of the first frame indexed by this hash table. If a
891** slot in the hash table is set to N, it refers to frame number
892** (*piZero+N) in the log.
893**
dand60bf112010-06-14 11:18:50 +0000894** Finally, set *paPgno so that *paPgno[1] is the page number of the
895** first frame indexed by the hash table, frame (*piZero+1).
dan4280eb32010-06-12 12:02:35 +0000896*/
897static int walHashGet(
dan13a3cb82010-06-11 19:04:21 +0000898 Wal *pWal, /* WAL handle */
899 int iHash, /* Find the iHash'th table */
dan067f3162010-06-14 10:30:12 +0000900 volatile ht_slot **paHash, /* OUT: Pointer to hash index */
dan13a3cb82010-06-11 19:04:21 +0000901 volatile u32 **paPgno, /* OUT: Pointer to page number array */
902 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
903){
dan4280eb32010-06-12 12:02:35 +0000904 int rc; /* Return code */
dan13a3cb82010-06-11 19:04:21 +0000905 volatile u32 *aPgno;
dan13a3cb82010-06-11 19:04:21 +0000906
dan4280eb32010-06-12 12:02:35 +0000907 rc = walIndexPage(pWal, iHash, &aPgno);
908 assert( rc==SQLITE_OK || iHash>0 );
dan13a3cb82010-06-11 19:04:21 +0000909
dan4280eb32010-06-12 12:02:35 +0000910 if( rc==SQLITE_OK ){
911 u32 iZero;
dan067f3162010-06-14 10:30:12 +0000912 volatile ht_slot *aHash;
dan4280eb32010-06-12 12:02:35 +0000913
dan067f3162010-06-14 10:30:12 +0000914 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
dan4280eb32010-06-12 12:02:35 +0000915 if( iHash==0 ){
dand60bf112010-06-14 11:18:50 +0000916 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
dan4280eb32010-06-12 12:02:35 +0000917 iZero = 0;
918 }else{
919 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
dan4280eb32010-06-12 12:02:35 +0000920 }
921
dand60bf112010-06-14 11:18:50 +0000922 *paPgno = &aPgno[-1];
dan4280eb32010-06-12 12:02:35 +0000923 *paHash = aHash;
924 *piZero = iZero;
dan13a3cb82010-06-11 19:04:21 +0000925 }
dan4280eb32010-06-12 12:02:35 +0000926 return rc;
dan13a3cb82010-06-11 19:04:21 +0000927}
928
dan4280eb32010-06-12 12:02:35 +0000929/*
930** Return the number of the wal-index page that contains the hash-table
931** and page-number array that contain entries corresponding to WAL frame
932** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
933** are numbered starting from 0.
934*/
dan13a3cb82010-06-11 19:04:21 +0000935static int walFramePage(u32 iFrame){
936 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
937 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
938 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
939 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
940 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
941 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
942 );
943 return iHash;
944}
945
946/*
947** Return the page number associated with frame iFrame in this WAL.
948*/
949static u32 walFramePgno(Wal *pWal, u32 iFrame){
950 int iHash = walFramePage(iFrame);
951 if( iHash==0 ){
952 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
953 }
954 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
955}
danbb23aff2010-05-10 14:46:09 +0000956
danca6b5ba2010-05-25 10:50:56 +0000957/*
958** Remove entries from the hash table that point to WAL slots greater
959** than pWal->hdr.mxFrame.
960**
961** This function is called whenever pWal->hdr.mxFrame is decreased due
962** to a rollback or savepoint.
963**
drh181e0912010-06-01 01:08:08 +0000964** At most only the hash table containing pWal->hdr.mxFrame needs to be
965** updated. Any later hash tables will be automatically cleared when
966** pWal->hdr.mxFrame advances to the point where those hash tables are
967** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000968*/
969static void walCleanupHash(Wal *pWal){
drhff828942010-06-26 21:34:06 +0000970 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */
971 volatile u32 *aPgno = 0; /* Page number array for hash table */
972 u32 iZero = 0; /* frame == (aHash[x]+iZero) */
dan067f3162010-06-14 10:30:12 +0000973 int iLimit = 0; /* Zero values greater than this */
974 int nByte; /* Number of bytes to zero in aPgno[] */
975 int i; /* Used to iterate through aHash[] */
danca6b5ba2010-05-25 10:50:56 +0000976
drh73b64e42010-05-30 19:55:15 +0000977 assert( pWal->writeLock );
drhffca4302010-06-15 11:21:54 +0000978 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
979 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
980 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
drh9c156472010-06-01 12:58:41 +0000981
dan4280eb32010-06-12 12:02:35 +0000982 if( pWal->hdr.mxFrame==0 ) return;
983
984 /* Obtain pointers to the hash-table and page-number array containing
985 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
986 ** that the page said hash-table and array reside on is already mapped.
987 */
988 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
989 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
990 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
991
992 /* Zero all hash-table entries that correspond to frame numbers greater
993 ** than pWal->hdr.mxFrame.
994 */
995 iLimit = pWal->hdr.mxFrame - iZero;
996 assert( iLimit>0 );
997 for(i=0; i<HASHTABLE_NSLOT; i++){
998 if( aHash[i]>iLimit ){
999 aHash[i] = 0;
danca6b5ba2010-05-25 10:50:56 +00001000 }
danca6b5ba2010-05-25 10:50:56 +00001001 }
dan4280eb32010-06-12 12:02:35 +00001002
1003 /* Zero the entries in the aPgno array that correspond to frames with
1004 ** frame numbers greater than pWal->hdr.mxFrame.
1005 */
shaneh5eba1f62010-07-02 17:05:03 +00001006 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
dand60bf112010-06-14 11:18:50 +00001007 memset((void *)&aPgno[iLimit+1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +00001008
1009#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1010 /* Verify that the every entry in the mapping region is still reachable
1011 ** via the hash table even after the cleanup.
1012 */
drhf77bbd92010-06-01 13:17:44 +00001013 if( iLimit ){
mistachkin6b67a8a2015-07-21 19:22:35 +00001014 int j; /* Loop counter */
danca6b5ba2010-05-25 10:50:56 +00001015 int iKey; /* Hash key */
mistachkin6b67a8a2015-07-21 19:22:35 +00001016 for(j=1; j<=iLimit; j++){
1017 for(iKey=walHash(aPgno[j]); aHash[iKey]; iKey=walNextHash(iKey)){
1018 if( aHash[iKey]==j ) break;
danca6b5ba2010-05-25 10:50:56 +00001019 }
mistachkin6b67a8a2015-07-21 19:22:35 +00001020 assert( aHash[iKey]==j );
danca6b5ba2010-05-25 10:50:56 +00001021 }
1022 }
1023#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1024}
1025
danbb23aff2010-05-10 14:46:09 +00001026
drh7ed91f22010-04-29 22:34:07 +00001027/*
drh29d4dbe2010-05-18 23:29:52 +00001028** Set an entry in the wal-index that will map database page number
1029** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +00001030*/
drh7ed91f22010-04-29 22:34:07 +00001031static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
dan4280eb32010-06-12 12:02:35 +00001032 int rc; /* Return code */
drhff828942010-06-26 21:34:06 +00001033 u32 iZero = 0; /* One less than frame number of aPgno[1] */
1034 volatile u32 *aPgno = 0; /* Page number array */
1035 volatile ht_slot *aHash = 0; /* Hash table */
dance4f05f2010-04-22 19:14:13 +00001036
dan4280eb32010-06-12 12:02:35 +00001037 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
1038
1039 /* Assuming the wal-index file was successfully mapped, populate the
1040 ** page number array and hash table entry.
dan7c246102010-04-12 19:00:29 +00001041 */
danbb23aff2010-05-10 14:46:09 +00001042 if( rc==SQLITE_OK ){
1043 int iKey; /* Hash table key */
dan4280eb32010-06-12 12:02:35 +00001044 int idx; /* Value to write to hash-table slot */
drh519426a2010-07-09 03:19:07 +00001045 int nCollide; /* Number of hash collisions */
dan7c246102010-04-12 19:00:29 +00001046
danbb23aff2010-05-10 14:46:09 +00001047 idx = iFrame - iZero;
dan4280eb32010-06-12 12:02:35 +00001048 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1049
1050 /* If this is the first entry to be added to this hash-table, zero the
peter.d.reid60ec9142014-09-06 16:39:46 +00001051 ** entire hash table and aPgno[] array before proceeding.
dan4280eb32010-06-12 12:02:35 +00001052 */
danca6b5ba2010-05-25 10:50:56 +00001053 if( idx==1 ){
shaneh5eba1f62010-07-02 17:05:03 +00001054 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
dand60bf112010-06-14 11:18:50 +00001055 memset((void*)&aPgno[1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +00001056 }
danca6b5ba2010-05-25 10:50:56 +00001057
dan4280eb32010-06-12 12:02:35 +00001058 /* If the entry in aPgno[] is already set, then the previous writer
1059 ** must have exited unexpectedly in the middle of a transaction (after
1060 ** writing one or more dirty pages to the WAL to free up memory).
1061 ** Remove the remnants of that writers uncommitted transaction from
1062 ** the hash-table before writing any new entries.
1063 */
dand60bf112010-06-14 11:18:50 +00001064 if( aPgno[idx] ){
danca6b5ba2010-05-25 10:50:56 +00001065 walCleanupHash(pWal);
dand60bf112010-06-14 11:18:50 +00001066 assert( !aPgno[idx] );
danca6b5ba2010-05-25 10:50:56 +00001067 }
dan4280eb32010-06-12 12:02:35 +00001068
1069 /* Write the aPgno[] array entry and the hash-table slot. */
drh519426a2010-07-09 03:19:07 +00001070 nCollide = idx;
dan6f150142010-05-21 15:31:56 +00001071 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
drh519426a2010-07-09 03:19:07 +00001072 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
drh29d4dbe2010-05-18 23:29:52 +00001073 }
dand60bf112010-06-14 11:18:50 +00001074 aPgno[idx] = iPage;
shaneh5eba1f62010-07-02 17:05:03 +00001075 aHash[iKey] = (ht_slot)idx;
drh4fa95bf2010-05-22 00:55:39 +00001076
1077#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1078 /* Verify that the number of entries in the hash table exactly equals
1079 ** the number of entries in the mapping region.
1080 */
1081 {
1082 int i; /* Loop counter */
1083 int nEntry = 0; /* Number of entries in the hash table */
1084 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1085 assert( nEntry==idx );
1086 }
1087
1088 /* Verify that the every entry in the mapping region is reachable
1089 ** via the hash table. This turns out to be a really, really expensive
1090 ** thing to check, so only do this occasionally - not on every
1091 ** iteration.
1092 */
1093 if( (idx&0x3ff)==0 ){
1094 int i; /* Loop counter */
1095 for(i=1; i<=idx; i++){
dand60bf112010-06-14 11:18:50 +00001096 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
drh4fa95bf2010-05-22 00:55:39 +00001097 if( aHash[iKey]==i ) break;
1098 }
1099 assert( aHash[iKey]==i );
1100 }
1101 }
1102#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +00001103 }
dan31f98fc2010-04-27 05:42:32 +00001104
drh4fa95bf2010-05-22 00:55:39 +00001105
danbb23aff2010-05-10 14:46:09 +00001106 return rc;
dan7c246102010-04-12 19:00:29 +00001107}
1108
1109
1110/*
drh7ed91f22010-04-29 22:34:07 +00001111** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +00001112**
1113** This routine first tries to establish an exclusive lock on the
1114** wal-index to prevent other threads/processes from doing anything
1115** with the WAL or wal-index while recovery is running. The
1116** WAL_RECOVER_LOCK is also held so that other threads will know
1117** that this thread is running recovery. If unable to establish
1118** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +00001119*/
drh7ed91f22010-04-29 22:34:07 +00001120static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +00001121 int rc; /* Return Code */
1122 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +00001123 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +00001124 int iLock; /* Lock offset to lock for checkpoint */
dan7c246102010-04-12 19:00:29 +00001125
dand0aa3422010-05-31 16:41:53 +00001126 /* Obtain an exclusive lock on all byte in the locking range not already
1127 ** locked by the caller. The caller is guaranteed to have locked the
1128 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1129 ** If successful, the same bytes that are locked here are unlocked before
1130 ** this function returns.
1131 */
1132 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1133 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1134 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1135 assert( pWal->writeLock );
1136 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
dandea5ce32017-11-02 11:12:03 +00001137 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1138 if( rc==SQLITE_OK ){
1139 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1140 if( rc!=SQLITE_OK ){
1141 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1142 }
1143 }
drh73b64e42010-05-30 19:55:15 +00001144 if( rc ){
1145 return rc;
1146 }
dandea5ce32017-11-02 11:12:03 +00001147
drhc74c3332010-05-31 12:15:19 +00001148 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +00001149
dan71d89912010-05-24 13:57:42 +00001150 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +00001151
drhd9e5c4f2010-05-12 18:01:39 +00001152 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +00001153 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001154 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001155 }
1156
danb8fd6c22010-05-24 10:39:36 +00001157 if( nSize>WAL_HDRSIZE ){
1158 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dan7c246102010-04-12 19:00:29 +00001159 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001160 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001161 u8 *aData; /* Pointer to data part of aFrame buffer */
1162 int iFrame; /* Index of last frame read */
1163 i64 iOffset; /* Next offset to read from log file */
drh6e810962010-05-19 17:49:50 +00001164 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001165 u32 magic; /* Magic value read from WAL header */
dan10f5a502010-06-23 15:55:43 +00001166 u32 version; /* Magic value read from WAL header */
drhfe6163d2011-12-17 13:45:28 +00001167 int isValid; /* True if this frame is valid */
dan7c246102010-04-12 19:00:29 +00001168
danb8fd6c22010-05-24 10:39:36 +00001169 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001170 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001171 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001172 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001173 }
1174
1175 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001176 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1177 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1178 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001179 */
danb8fd6c22010-05-24 10:39:36 +00001180 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001181 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001182 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1183 || szPage&(szPage-1)
1184 || szPage>SQLITE_MAX_PAGE_SIZE
1185 || szPage<512
1186 ){
dan7c246102010-04-12 19:00:29 +00001187 goto finished;
1188 }
shaneh5eba1f62010-07-02 17:05:03 +00001189 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
drhb2eced52010-08-12 02:41:12 +00001190 pWal->szPage = szPage;
drh23ea97b2010-05-20 16:45:58 +00001191 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001192 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
drhcd285082010-06-23 22:00:35 +00001193
1194 /* Verify that the WAL header checksum is correct */
dan71d89912010-05-24 13:57:42 +00001195 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
dan10f5a502010-06-23 15:55:43 +00001196 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
dan71d89912010-05-24 13:57:42 +00001197 );
dan10f5a502010-06-23 15:55:43 +00001198 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1199 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1200 ){
1201 goto finished;
1202 }
1203
drhcd285082010-06-23 22:00:35 +00001204 /* Verify that the version number on the WAL format is one that
1205 ** are able to understand */
dan10f5a502010-06-23 15:55:43 +00001206 version = sqlite3Get4byte(&aBuf[4]);
1207 if( version!=WAL_MAX_VERSION ){
1208 rc = SQLITE_CANTOPEN_BKPT;
1209 goto finished;
1210 }
1211
dan7c246102010-04-12 19:00:29 +00001212 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001213 szFrame = szPage + WAL_FRAME_HDRSIZE;
drhf3cdcdc2015-04-29 16:50:28 +00001214 aFrame = (u8 *)sqlite3_malloc64(szFrame);
dan7c246102010-04-12 19:00:29 +00001215 if( !aFrame ){
mistachkinfad30392016-02-13 23:43:46 +00001216 rc = SQLITE_NOMEM_BKPT;
drh73b64e42010-05-30 19:55:15 +00001217 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001218 }
drh7ed91f22010-04-29 22:34:07 +00001219 aData = &aFrame[WAL_FRAME_HDRSIZE];
dan7c246102010-04-12 19:00:29 +00001220
1221 /* Read all frames from the log file. */
1222 iFrame = 0;
drh584c7542010-05-19 18:08:10 +00001223 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
dan7c246102010-04-12 19:00:29 +00001224 u32 pgno; /* Database page number for frame */
1225 u32 nTruncate; /* dbsize field from frame header */
dan7c246102010-04-12 19:00:29 +00001226
1227 /* Read and decode the next log frame. */
drhfe6163d2011-12-17 13:45:28 +00001228 iFrame++;
drh584c7542010-05-19 18:08:10 +00001229 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
dan7c246102010-04-12 19:00:29 +00001230 if( rc!=SQLITE_OK ) break;
drh7e263722010-05-20 21:21:09 +00001231 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
dan7c246102010-04-12 19:00:29 +00001232 if( !isValid ) break;
drhfe6163d2011-12-17 13:45:28 +00001233 rc = walIndexAppend(pWal, iFrame, pgno);
danc7991bd2010-05-05 19:04:59 +00001234 if( rc!=SQLITE_OK ) break;
dan7c246102010-04-12 19:00:29 +00001235
1236 /* If nTruncate is non-zero, this is a commit record. */
1237 if( nTruncate ){
dan71d89912010-05-24 13:57:42 +00001238 pWal->hdr.mxFrame = iFrame;
1239 pWal->hdr.nPage = nTruncate;
shaneh1df2db72010-08-18 02:28:48 +00001240 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00001241 testcase( szPage<=32768 );
1242 testcase( szPage>=65536 );
dan71d89912010-05-24 13:57:42 +00001243 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1244 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
dan7c246102010-04-12 19:00:29 +00001245 }
1246 }
1247
1248 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001249 }
1250
1251finished:
dan576bc322010-05-06 18:04:50 +00001252 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001253 volatile WalCkptInfo *pInfo;
1254 int i;
dan71d89912010-05-24 13:57:42 +00001255 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1256 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001257 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001258
drhdb7f6472010-06-09 14:45:12 +00001259 /* Reset the checkpoint-header. This is safe because this thread is
dan3dee6da2010-05-31 16:17:54 +00001260 ** currently holding locks that exclude all other readers, writers and
1261 ** checkpointers.
1262 */
drhdb7f6472010-06-09 14:45:12 +00001263 pInfo = walCkptInfo(pWal);
1264 pInfo->nBackfill = 0;
dan3bf83cc2015-12-10 15:45:15 +00001265 pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
drhdb7f6472010-06-09 14:45:12 +00001266 pInfo->aReadMark[0] = 0;
1267 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
drh3314d122012-07-17 17:46:21 +00001268 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
daneb8763d2010-08-17 14:52:22 +00001269
1270 /* If more than one frame was recovered from the log file, report an
1271 ** event via sqlite3_log(). This is to help with identifying performance
1272 ** problems caused by applications routinely shutting down without
1273 ** checkpointing the log file.
1274 */
1275 if( pWal->hdr.nPage ){
drhd040e762013-04-10 23:48:37 +00001276 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1277 "recovered %d frames from WAL file %s",
dan0943f0b2013-04-01 14:35:01 +00001278 pWal->hdr.mxFrame, pWal->zWalName
daneb8763d2010-08-17 14:52:22 +00001279 );
1280 }
dan576bc322010-05-06 18:04:50 +00001281 }
drh73b64e42010-05-30 19:55:15 +00001282
1283recovery_error:
drhc74c3332010-05-31 12:15:19 +00001284 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dandea5ce32017-11-02 11:12:03 +00001285 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1286 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
dan7c246102010-04-12 19:00:29 +00001287 return rc;
1288}
1289
drha8e654e2010-05-04 17:38:42 +00001290/*
dan1018e902010-05-05 15:33:05 +00001291** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001292*/
dan1018e902010-05-05 15:33:05 +00001293static void walIndexClose(Wal *pWal, int isDelete){
drh85bc6df2017-11-10 20:00:50 +00001294 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
dan8c408002010-11-01 17:38:24 +00001295 int i;
1296 for(i=0; i<pWal->nWiData; i++){
1297 sqlite3_free((void *)pWal->apWiData[i]);
1298 pWal->apWiData[i] = 0;
1299 }
dan11caf4f2017-11-04 18:10:03 +00001300 }
1301 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
dan8c408002010-11-01 17:38:24 +00001302 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1303 }
drha8e654e2010-05-04 17:38:42 +00001304}
1305
dan7c246102010-04-12 19:00:29 +00001306/*
dan3e875ef2010-07-05 19:03:35 +00001307** Open a connection to the WAL file zWalName. The database file must
1308** already be opened on connection pDbFd. The buffer that zWalName points
1309** to must remain valid for the lifetime of the returned Wal* handle.
dan3de777f2010-04-17 12:31:37 +00001310**
1311** A SHARED lock should be held on the database file when this function
1312** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001313** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001314** were to do this just after this client opened one of these files, the
1315** system would be badly broken.
danef378022010-05-04 11:06:03 +00001316**
1317** If the log file is successfully opened, SQLITE_OK is returned and
1318** *ppWal is set to point to a new WAL handle. If an error occurs,
1319** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001320*/
drhc438efd2010-04-26 00:19:45 +00001321int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001322 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001323 sqlite3_file *pDbFd, /* The open database file */
dan3e875ef2010-07-05 19:03:35 +00001324 const char *zWalName, /* Name of the WAL file */
dan8c408002010-11-01 17:38:24 +00001325 int bNoShm, /* True to run in heap-memory mode */
drh85a83752011-05-16 21:00:27 +00001326 i64 mxWalSize, /* Truncate WAL to this size on reset */
adam2e4491d2011-06-24 20:47:06 +00001327 int flags, /* VFS file protection flags */
drh7ed91f22010-04-29 22:34:07 +00001328 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001329){
danef378022010-05-04 11:06:03 +00001330 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001331 Wal *pRet; /* Object to allocate and return */
adam2e4491d2011-06-24 20:47:06 +00001332 int vfsFlags; /* Flags passed to OsOpen() */
dan7c246102010-04-12 19:00:29 +00001333
dan3e875ef2010-07-05 19:03:35 +00001334 assert( zWalName && zWalName[0] );
drhd9e5c4f2010-05-12 18:01:39 +00001335 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001336
drh1b78eaf2010-05-25 13:40:03 +00001337 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1338 ** this source file. Verify that the #defines of the locking byte offsets
1339 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
drh998147e2015-12-10 02:15:03 +00001340 ** For that matter, if the lock offset ever changes from its initial design
1341 ** value of 120, we need to know that so there is an assert() to check it.
drh1b78eaf2010-05-25 13:40:03 +00001342 */
drh998147e2015-12-10 02:15:03 +00001343 assert( 120==WALINDEX_LOCK_OFFSET );
1344 assert( 136==WALINDEX_HDR_SIZE );
drh1b78eaf2010-05-25 13:40:03 +00001345#ifdef WIN_SHM_BASE
1346 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1347#endif
1348#ifdef UNIX_SHM_BASE
1349 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1350#endif
1351
1352
drh7ed91f22010-04-29 22:34:07 +00001353 /* Allocate an instance of struct Wal to return. */
1354 *ppWal = 0;
dan3e875ef2010-07-05 19:03:35 +00001355 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
dan76ed3bc2010-05-03 17:18:24 +00001356 if( !pRet ){
mistachkinfad30392016-02-13 23:43:46 +00001357 return SQLITE_NOMEM_BKPT;
dan76ed3bc2010-05-03 17:18:24 +00001358 }
1359
dan7c246102010-04-12 19:00:29 +00001360 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001361 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1362 pRet->pDbFd = pDbFd;
drh73b64e42010-05-30 19:55:15 +00001363 pRet->readLock = -1;
drh85a83752011-05-16 21:00:27 +00001364 pRet->mxWalSize = mxWalSize;
dan3e875ef2010-07-05 19:03:35 +00001365 pRet->zWalName = zWalName;
drhd992b152011-12-20 20:13:25 +00001366 pRet->syncHeader = 1;
drh374f4a02011-12-17 20:02:11 +00001367 pRet->padToSectorBoundary = 1;
dan8c408002010-11-01 17:38:24 +00001368 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
dan7c246102010-04-12 19:00:29 +00001369
drh7ed91f22010-04-29 22:34:07 +00001370 /* Open file handle on the write-ahead log file. */
adamaec336a2011-10-10 22:11:44 +00001371 if( flags&SQLITE_OPEN_READONLY ){
1372 vfsFlags = flags | SQLITE_OPEN_WAL;
1373 } else {
1374 vfsFlags = flags | (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1375 }
adam2e4491d2011-06-24 20:47:06 +00001376 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, vfsFlags, &vfsFlags);
1377 if( rc==SQLITE_OK && vfsFlags&SQLITE_OPEN_READONLY ){
drh66dfec8b2011-06-01 20:01:49 +00001378 pRet->readOnly = WAL_RDONLY;
dan50833e32010-07-14 16:37:17 +00001379 }
dan7c246102010-04-12 19:00:29 +00001380
dan7c246102010-04-12 19:00:29 +00001381 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001382 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001383 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001384 sqlite3_free(pRet);
1385 }else{
dandd973542014-02-13 19:27:08 +00001386 int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
drhd992b152011-12-20 20:13:25 +00001387 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
drhcb15f352011-12-23 01:04:17 +00001388 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1389 pRet->padToSectorBoundary = 0;
1390 }
danef378022010-05-04 11:06:03 +00001391 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001392 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001393 }
dan7c246102010-04-12 19:00:29 +00001394 return rc;
1395}
1396
drha2a42012010-05-18 18:01:08 +00001397/*
drh85a83752011-05-16 21:00:27 +00001398** Change the size to which the WAL file is trucated on each reset.
1399*/
1400void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1401 if( pWal ) pWal->mxWalSize = iLimit;
1402}
1403
1404/*
drha2a42012010-05-18 18:01:08 +00001405** Find the smallest page number out of all pages held in the WAL that
1406** has not been returned by any prior invocation of this method on the
1407** same WalIterator object. Write into *piFrame the frame index where
1408** that page was last written into the WAL. Write into *piPage the page
1409** number.
1410**
1411** Return 0 on success. If there are no pages in the WAL with a page
1412** number larger than *piPage, then return 1.
1413*/
drh7ed91f22010-04-29 22:34:07 +00001414static int walIteratorNext(
1415 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001416 u32 *piPage, /* OUT: The page number of the next page */
1417 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001418){
drha2a42012010-05-18 18:01:08 +00001419 u32 iMin; /* Result pgno must be greater than iMin */
1420 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1421 int i; /* For looping through segments */
dan7c246102010-04-12 19:00:29 +00001422
drha2a42012010-05-18 18:01:08 +00001423 iMin = p->iPrior;
1424 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001425 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001426 struct WalSegment *pSegment = &p->aSegment[i];
dan13a3cb82010-06-11 19:04:21 +00001427 while( pSegment->iNext<pSegment->nEntry ){
drha2a42012010-05-18 18:01:08 +00001428 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001429 if( iPg>iMin ){
1430 if( iPg<iRet ){
1431 iRet = iPg;
dan13a3cb82010-06-11 19:04:21 +00001432 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
dan7c246102010-04-12 19:00:29 +00001433 }
1434 break;
1435 }
1436 pSegment->iNext++;
1437 }
dan7c246102010-04-12 19:00:29 +00001438 }
1439
drha2a42012010-05-18 18:01:08 +00001440 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001441 return (iRet==0xFFFFFFFF);
1442}
1443
danf544b4c2010-06-25 11:35:52 +00001444/*
1445** This function merges two sorted lists into a single sorted list.
drhd9c9b782010-12-15 21:02:06 +00001446**
1447** aLeft[] and aRight[] are arrays of indices. The sort key is
1448** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1449** is guaranteed for all J<K:
1450**
1451** aContent[aLeft[J]] < aContent[aLeft[K]]
1452** aContent[aRight[J]] < aContent[aRight[K]]
1453**
1454** This routine overwrites aRight[] with a new (probably longer) sequence
1455** of indices such that the aRight[] contains every index that appears in
1456** either aLeft[] or the old aRight[] and such that the second condition
1457** above is still met.
1458**
1459** The aContent[aLeft[X]] values will be unique for all X. And the
1460** aContent[aRight[X]] values will be unique too. But there might be
1461** one or more combinations of X and Y such that
1462**
1463** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1464**
1465** When that happens, omit the aLeft[X] and use the aRight[Y] index.
danf544b4c2010-06-25 11:35:52 +00001466*/
1467static void walMerge(
drhd9c9b782010-12-15 21:02:06 +00001468 const u32 *aContent, /* Pages in wal - keys for the sort */
danf544b4c2010-06-25 11:35:52 +00001469 ht_slot *aLeft, /* IN: Left hand input list */
1470 int nLeft, /* IN: Elements in array *paLeft */
1471 ht_slot **paRight, /* IN/OUT: Right hand input list */
1472 int *pnRight, /* IN/OUT: Elements in *paRight */
1473 ht_slot *aTmp /* Temporary buffer */
1474){
1475 int iLeft = 0; /* Current index in aLeft */
1476 int iRight = 0; /* Current index in aRight */
1477 int iOut = 0; /* Current index in output buffer */
1478 int nRight = *pnRight;
1479 ht_slot *aRight = *paRight;
dan7c246102010-04-12 19:00:29 +00001480
danf544b4c2010-06-25 11:35:52 +00001481 assert( nLeft>0 && nRight>0 );
1482 while( iRight<nRight || iLeft<nLeft ){
1483 ht_slot logpage;
1484 Pgno dbpage;
1485
1486 if( (iLeft<nLeft)
1487 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1488 ){
1489 logpage = aLeft[iLeft++];
1490 }else{
1491 logpage = aRight[iRight++];
1492 }
1493 dbpage = aContent[logpage];
1494
1495 aTmp[iOut++] = logpage;
1496 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1497
1498 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1499 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1500 }
1501
1502 *paRight = aLeft;
1503 *pnRight = iOut;
1504 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1505}
1506
1507/*
drhd9c9b782010-12-15 21:02:06 +00001508** Sort the elements in list aList using aContent[] as the sort key.
1509** Remove elements with duplicate keys, preferring to keep the
1510** larger aList[] values.
1511**
1512** The aList[] entries are indices into aContent[]. The values in
1513** aList[] are to be sorted so that for all J<K:
1514**
1515** aContent[aList[J]] < aContent[aList[K]]
1516**
1517** For any X and Y such that
1518**
1519** aContent[aList[X]] == aContent[aList[Y]]
1520**
1521** Keep the larger of the two values aList[X] and aList[Y] and discard
1522** the smaller.
danf544b4c2010-06-25 11:35:52 +00001523*/
dan13a3cb82010-06-11 19:04:21 +00001524static void walMergesort(
drhd9c9b782010-12-15 21:02:06 +00001525 const u32 *aContent, /* Pages in wal */
dan067f3162010-06-14 10:30:12 +00001526 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1527 ht_slot *aList, /* IN/OUT: List to sort */
drha2a42012010-05-18 18:01:08 +00001528 int *pnList /* IN/OUT: Number of elements in aList[] */
1529){
danf544b4c2010-06-25 11:35:52 +00001530 struct Sublist {
1531 int nList; /* Number of elements in aList */
1532 ht_slot *aList; /* Pointer to sub-list content */
1533 };
drha2a42012010-05-18 18:01:08 +00001534
danf544b4c2010-06-25 11:35:52 +00001535 const int nList = *pnList; /* Size of input list */
drhff828942010-06-26 21:34:06 +00001536 int nMerge = 0; /* Number of elements in list aMerge */
1537 ht_slot *aMerge = 0; /* List to be merged */
danf544b4c2010-06-25 11:35:52 +00001538 int iList; /* Index into input list */
drhf4fa0b82015-07-15 18:35:54 +00001539 u32 iSub = 0; /* Index into aSub array */
danf544b4c2010-06-25 11:35:52 +00001540 struct Sublist aSub[13]; /* Array of sub-lists */
drha2a42012010-05-18 18:01:08 +00001541
danf544b4c2010-06-25 11:35:52 +00001542 memset(aSub, 0, sizeof(aSub));
1543 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1544 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
drha2a42012010-05-18 18:01:08 +00001545
danf544b4c2010-06-25 11:35:52 +00001546 for(iList=0; iList<nList; iList++){
1547 nMerge = 1;
1548 aMerge = &aList[iList];
1549 for(iSub=0; iList & (1<<iSub); iSub++){
drhf4fa0b82015-07-15 18:35:54 +00001550 struct Sublist *p;
1551 assert( iSub<ArraySize(aSub) );
1552 p = &aSub[iSub];
danf544b4c2010-06-25 11:35:52 +00001553 assert( p->aList && p->nList<=(1<<iSub) );
danbdf1e242010-06-25 15:16:25 +00001554 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001555 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
drha2a42012010-05-18 18:01:08 +00001556 }
danf544b4c2010-06-25 11:35:52 +00001557 aSub[iSub].aList = aMerge;
1558 aSub[iSub].nList = nMerge;
drha2a42012010-05-18 18:01:08 +00001559 }
1560
danf544b4c2010-06-25 11:35:52 +00001561 for(iSub++; iSub<ArraySize(aSub); iSub++){
1562 if( nList & (1<<iSub) ){
drhf4fa0b82015-07-15 18:35:54 +00001563 struct Sublist *p;
1564 assert( iSub<ArraySize(aSub) );
1565 p = &aSub[iSub];
danbdf1e242010-06-25 15:16:25 +00001566 assert( p->nList<=(1<<iSub) );
1567 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001568 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1569 }
1570 }
1571 assert( aMerge==aList );
1572 *pnList = nMerge;
1573
drha2a42012010-05-18 18:01:08 +00001574#ifdef SQLITE_DEBUG
1575 {
1576 int i;
1577 for(i=1; i<*pnList; i++){
1578 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1579 }
1580 }
1581#endif
1582}
1583
dan5d656852010-06-14 07:53:26 +00001584/*
1585** Free an iterator allocated by walIteratorInit().
1586*/
1587static void walIteratorFree(WalIterator *p){
drhcbd55b02014-11-04 14:22:27 +00001588 sqlite3_free(p);
dan5d656852010-06-14 07:53:26 +00001589}
1590
drha2a42012010-05-18 18:01:08 +00001591/*
danbdf1e242010-06-25 15:16:25 +00001592** Construct a WalInterator object that can be used to loop over all
dan302ce472018-03-02 15:42:20 +00001593** pages in the WAL following frame nBackfill in ascending order. Frames
1594** nBackfill or earlier may be included - excluding them is an optimization
1595** only. The caller must hold the checkpoint lock.
drha2a42012010-05-18 18:01:08 +00001596**
1597** On success, make *pp point to the newly allocated WalInterator object
danbdf1e242010-06-25 15:16:25 +00001598** return SQLITE_OK. Otherwise, return an error code. If this routine
1599** returns an error, the value of *pp is undefined.
drha2a42012010-05-18 18:01:08 +00001600**
1601** The calling routine should invoke walIteratorFree() to destroy the
danbdf1e242010-06-25 15:16:25 +00001602** WalIterator object when it has finished with it.
drha2a42012010-05-18 18:01:08 +00001603*/
dan302ce472018-03-02 15:42:20 +00001604static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
dan067f3162010-06-14 10:30:12 +00001605 WalIterator *p; /* Return value */
1606 int nSegment; /* Number of segments to merge */
1607 u32 iLast; /* Last frame in log */
1608 int nByte; /* Number of bytes to allocate */
1609 int i; /* Iterator variable */
1610 ht_slot *aTmp; /* Temp space used by merge-sort */
danbdf1e242010-06-25 15:16:25 +00001611 int rc = SQLITE_OK; /* Return Code */
drha2a42012010-05-18 18:01:08 +00001612
danbdf1e242010-06-25 15:16:25 +00001613 /* This routine only runs while holding the checkpoint lock. And
1614 ** it only runs if there is actually content in the log (mxFrame>0).
drha2a42012010-05-18 18:01:08 +00001615 */
danbdf1e242010-06-25 15:16:25 +00001616 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
dan13a3cb82010-06-11 19:04:21 +00001617 iLast = pWal->hdr.mxFrame;
drha2a42012010-05-18 18:01:08 +00001618
danbdf1e242010-06-25 15:16:25 +00001619 /* Allocate space for the WalIterator object. */
dan13a3cb82010-06-11 19:04:21 +00001620 nSegment = walFramePage(iLast) + 1;
1621 nByte = sizeof(WalIterator)
dan52d6fc02010-06-25 16:34:32 +00001622 + (nSegment-1)*sizeof(struct WalSegment)
1623 + iLast*sizeof(ht_slot);
drhf3cdcdc2015-04-29 16:50:28 +00001624 p = (WalIterator *)sqlite3_malloc64(nByte);
dan8f6097c2010-05-06 07:43:58 +00001625 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00001626 return SQLITE_NOMEM_BKPT;
drha2a42012010-05-18 18:01:08 +00001627 }
1628 memset(p, 0, nByte);
drha2a42012010-05-18 18:01:08 +00001629 p->nSegment = nSegment;
danbdf1e242010-06-25 15:16:25 +00001630
1631 /* Allocate temporary space used by the merge-sort routine. This block
1632 ** of memory will be freed before this function returns.
1633 */
drhf3cdcdc2015-04-29 16:50:28 +00001634 aTmp = (ht_slot *)sqlite3_malloc64(
dan52d6fc02010-06-25 16:34:32 +00001635 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1636 );
danbdf1e242010-06-25 15:16:25 +00001637 if( !aTmp ){
mistachkinfad30392016-02-13 23:43:46 +00001638 rc = SQLITE_NOMEM_BKPT;
danbdf1e242010-06-25 15:16:25 +00001639 }
1640
dan302ce472018-03-02 15:42:20 +00001641 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
dan067f3162010-06-14 10:30:12 +00001642 volatile ht_slot *aHash;
dan13a3cb82010-06-11 19:04:21 +00001643 u32 iZero;
dan13a3cb82010-06-11 19:04:21 +00001644 volatile u32 *aPgno;
1645
dan4280eb32010-06-12 12:02:35 +00001646 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
danbdf1e242010-06-25 15:16:25 +00001647 if( rc==SQLITE_OK ){
dan52d6fc02010-06-25 16:34:32 +00001648 int j; /* Counter variable */
1649 int nEntry; /* Number of entries in this segment */
1650 ht_slot *aIndex; /* Sorted index for this segment */
1651
danbdf1e242010-06-25 15:16:25 +00001652 aPgno++;
drh519426a2010-07-09 03:19:07 +00001653 if( (i+1)==nSegment ){
1654 nEntry = (int)(iLast - iZero);
1655 }else{
shaneh55897962010-07-09 12:57:53 +00001656 nEntry = (int)((u32*)aHash - (u32*)aPgno);
drh519426a2010-07-09 03:19:07 +00001657 }
dan52d6fc02010-06-25 16:34:32 +00001658 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
danbdf1e242010-06-25 15:16:25 +00001659 iZero++;
1660
danbdf1e242010-06-25 15:16:25 +00001661 for(j=0; j<nEntry; j++){
shaneh5eba1f62010-07-02 17:05:03 +00001662 aIndex[j] = (ht_slot)j;
danbdf1e242010-06-25 15:16:25 +00001663 }
1664 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1665 p->aSegment[i].iZero = iZero;
1666 p->aSegment[i].nEntry = nEntry;
1667 p->aSegment[i].aIndex = aIndex;
1668 p->aSegment[i].aPgno = (u32 *)aPgno;
dan13a3cb82010-06-11 19:04:21 +00001669 }
dan7c246102010-04-12 19:00:29 +00001670 }
drhcbd55b02014-11-04 14:22:27 +00001671 sqlite3_free(aTmp);
dan7c246102010-04-12 19:00:29 +00001672
danbdf1e242010-06-25 15:16:25 +00001673 if( rc!=SQLITE_OK ){
1674 walIteratorFree(p);
drh49cc2f32018-03-05 23:23:28 +00001675 p = 0;
danbdf1e242010-06-25 15:16:25 +00001676 }
dan8f6097c2010-05-06 07:43:58 +00001677 *pp = p;
danbdf1e242010-06-25 15:16:25 +00001678 return rc;
dan7c246102010-04-12 19:00:29 +00001679}
1680
dan7c246102010-04-12 19:00:29 +00001681/*
dana58f26f2010-11-16 18:56:51 +00001682** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1683** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1684** busy-handler function. Invoke it and retry the lock until either the
1685** lock is successfully obtained or the busy-handler returns 0.
1686*/
1687static int walBusyLock(
1688 Wal *pWal, /* WAL connection */
1689 int (*xBusy)(void*), /* Function to call when busy */
1690 void *pBusyArg, /* Context argument for xBusyHandler */
1691 int lockIdx, /* Offset of first byte to lock */
1692 int n /* Number of bytes to lock */
1693){
1694 int rc;
1695 do {
drhab372772015-12-02 16:10:16 +00001696 rc = walLockExclusive(pWal, lockIdx, n);
dana58f26f2010-11-16 18:56:51 +00001697 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1698 return rc;
1699}
1700
1701/*
danf2b8dd52010-11-18 19:28:01 +00001702** The cache of the wal-index header must be valid to call this function.
1703** Return the page-size in bytes used by the database.
1704*/
1705static int walPagesize(Wal *pWal){
1706 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1707}
1708
1709/*
danf26a1542014-12-02 19:04:54 +00001710** The following is guaranteed when this function is called:
1711**
1712** a) the WRITER lock is held,
1713** b) the entire log file has been checkpointed, and
1714** c) any existing readers are reading exclusively from the database
1715** file - there are no readers that may attempt to read a frame from
1716** the log file.
1717**
1718** This function updates the shared-memory structures so that the next
1719** client to write to the database (which may be this one) does so by
1720** writing frames into the start of the log file.
dan0fe8c1b2014-12-02 19:35:09 +00001721**
1722** The value of parameter salt1 is used as the aSalt[1] value in the
1723** new wal-index header. It should be passed a pseudo-random value (i.e.
1724** one obtained from sqlite3_randomness()).
danf26a1542014-12-02 19:04:54 +00001725*/
dan0fe8c1b2014-12-02 19:35:09 +00001726static void walRestartHdr(Wal *pWal, u32 salt1){
danf26a1542014-12-02 19:04:54 +00001727 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1728 int i; /* Loop counter */
1729 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
1730 pWal->nCkpt++;
1731 pWal->hdr.mxFrame = 0;
1732 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
dan0fe8c1b2014-12-02 19:35:09 +00001733 memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
danf26a1542014-12-02 19:04:54 +00001734 walIndexWriteHdr(pWal);
1735 pInfo->nBackfill = 0;
drh998147e2015-12-10 02:15:03 +00001736 pInfo->nBackfillAttempted = 0;
danf26a1542014-12-02 19:04:54 +00001737 pInfo->aReadMark[1] = 0;
1738 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1739 assert( pInfo->aReadMark[0]==0 );
1740}
1741
1742/*
drh73b64e42010-05-30 19:55:15 +00001743** Copy as much content as we can from the WAL back into the database file
1744** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1745**
1746** The amount of information copies from WAL to database might be limited
1747** by active readers. This routine will never overwrite a database page
1748** that a concurrent reader might be using.
1749**
1750** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1751** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1752** checkpoints are always run by a background thread or background
1753** process, foreground threads will never block on a lengthy fsync call.
1754**
1755** Fsync is called on the WAL before writing content out of the WAL and
1756** into the database. This ensures that if the new content is persistent
1757** in the WAL and can be recovered following a power-loss or hard reset.
1758**
1759** Fsync is also called on the database file if (and only if) the entire
1760** WAL content is copied into the database file. This second fsync makes
1761** it safe to delete the WAL since the new content will persist in the
1762** database file.
1763**
1764** This routine uses and updates the nBackfill field of the wal-index header.
peter.d.reid60ec9142014-09-06 16:39:46 +00001765** This is the only routine that will increase the value of nBackfill.
drh73b64e42010-05-30 19:55:15 +00001766** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1767** its value.)
1768**
1769** The caller must be holding sufficient locks to ensure that no other
1770** checkpoint is running (in any other thread or process) at the same
1771** time.
dan7c246102010-04-12 19:00:29 +00001772*/
drh7ed91f22010-04-29 22:34:07 +00001773static int walCheckpoint(
1774 Wal *pWal, /* Wal connection */
dan7fb89902016-08-12 16:21:15 +00001775 sqlite3 *db, /* Check for interrupts on this handle */
dancdc1f042010-11-18 12:11:05 +00001776 int eMode, /* One of PASSIVE, FULL or RESTART */
drhdd90d7e2014-12-03 19:25:41 +00001777 int (*xBusy)(void*), /* Function to call when busy */
dana58f26f2010-11-16 18:56:51 +00001778 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00001779 int sync_flags, /* Flags for OsSync() (or 0) */
dan9c5e3682011-02-07 15:12:12 +00001780 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00001781){
dan976b0032015-01-29 19:12:12 +00001782 int rc = SQLITE_OK; /* Return code */
drhb2eced52010-08-12 02:41:12 +00001783 int szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001784 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001785 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001786 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001787 u32 mxSafeFrame; /* Max frame that can be backfilled */
dan502019c2010-07-28 14:26:17 +00001788 u32 mxPage; /* Max database page to write */
drh73b64e42010-05-30 19:55:15 +00001789 int i; /* Loop counter */
drh73b64e42010-05-30 19:55:15 +00001790 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
dan7c246102010-04-12 19:00:29 +00001791
danf2b8dd52010-11-18 19:28:01 +00001792 szPage = walPagesize(pWal);
drh9b78f792010-08-14 21:21:24 +00001793 testcase( szPage<=32768 );
1794 testcase( szPage>=65536 );
drh7d208442010-12-16 02:06:29 +00001795 pInfo = walCkptInfo(pWal);
dan976b0032015-01-29 19:12:12 +00001796 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
danf544b4c2010-06-25 11:35:52 +00001797
dan976b0032015-01-29 19:12:12 +00001798 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1799 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1800 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
drh73b64e42010-05-30 19:55:15 +00001801
dan976b0032015-01-29 19:12:12 +00001802 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1803 ** safe to write into the database. Frames beyond mxSafeFrame might
1804 ** overwrite database pages that are in use by active readers and thus
1805 ** cannot be backfilled from the WAL.
dan502019c2010-07-28 14:26:17 +00001806 */
dan976b0032015-01-29 19:12:12 +00001807 mxSafeFrame = pWal->hdr.mxFrame;
1808 mxPage = pWal->hdr.nPage;
1809 for(i=1; i<WAL_NREADER; i++){
dan1fe0af22015-04-13 17:43:43 +00001810 /* Thread-sanitizer reports that the following is an unsafe read,
1811 ** as some other thread may be in the process of updating the value
1812 ** of the aReadMark[] slot. The assumption here is that if that is
1813 ** happening, the other client may only be increasing the value,
1814 ** not decreasing it. So assuming either that either the "old" or
1815 ** "new" version of the value is read, and not some arbitrary value
1816 ** that would never be written by a real client, things are still
1817 ** safe. */
dan976b0032015-01-29 19:12:12 +00001818 u32 y = pInfo->aReadMark[i];
1819 if( mxSafeFrame>y ){
1820 assert( y<=pWal->hdr.mxFrame );
1821 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1822 if( rc==SQLITE_OK ){
1823 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1824 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1825 }else if( rc==SQLITE_BUSY ){
1826 mxSafeFrame = y;
1827 xBusy = 0;
1828 }else{
1829 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001830 }
1831 }
1832 }
1833
danf0cb61d2018-03-02 16:52:47 +00001834 /* Allocate the iterator */
1835 if( pInfo->nBackfill<mxSafeFrame ){
1836 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
1837 assert( rc==SQLITE_OK || pIter==0 );
1838 }
1839
1840 if( pIter
dan976b0032015-01-29 19:12:12 +00001841 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
1842 ){
1843 i64 nSize; /* Current size of database file */
1844 u32 nBackfill = pInfo->nBackfill;
dana58f26f2010-11-16 18:56:51 +00001845
dan3bf83cc2015-12-10 15:45:15 +00001846 pInfo->nBackfillAttempted = mxSafeFrame;
1847
dan976b0032015-01-29 19:12:12 +00001848 /* Sync the WAL to disk */
drhdaaae7b2017-08-25 01:14:43 +00001849 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
dan976b0032015-01-29 19:12:12 +00001850
1851 /* If the database may grow as a result of this checkpoint, hint
1852 ** about the eventual size of the db file to the VFS layer.
1853 */
1854 if( rc==SQLITE_OK ){
1855 i64 nReq = ((i64)mxPage * szPage);
1856 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1857 if( rc==SQLITE_OK && nSize<nReq ){
1858 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1859 }
1860 }
1861
1862
1863 /* Iterate through the contents of the WAL, copying data to the db file */
1864 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1865 i64 iOffset;
1866 assert( walFramePgno(pWal, iFrame)==iDbpage );
dan7fb89902016-08-12 16:21:15 +00001867 if( db->u1.isInterrupted ){
1868 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
1869 break;
1870 }
dan976b0032015-01-29 19:12:12 +00001871 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1872 continue;
1873 }
1874 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1875 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1876 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1877 if( rc!=SQLITE_OK ) break;
1878 iOffset = (iDbpage-1)*(i64)szPage;
1879 testcase( IS_BIG_INT(iOffset) );
1880 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1881 if( rc!=SQLITE_OK ) break;
1882 }
1883
1884 /* If work was actually accomplished... */
1885 if( rc==SQLITE_OK ){
1886 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1887 i64 szDb = pWal->hdr.nPage*(i64)szPage;
1888 testcase( IS_BIG_INT(szDb) );
1889 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
drhdaaae7b2017-08-25 01:14:43 +00001890 if( rc==SQLITE_OK ){
1891 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
dan976b0032015-01-29 19:12:12 +00001892 }
1893 }
1894 if( rc==SQLITE_OK ){
1895 pInfo->nBackfill = mxSafeFrame;
1896 }
1897 }
1898
1899 /* Release the reader lock held while backfilling */
1900 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1901 }
1902
1903 if( rc==SQLITE_BUSY ){
1904 /* Reset the return code so as not to report a checkpoint failure
1905 ** just because there are active readers. */
1906 rc = SQLITE_OK;
1907 }
dan7c246102010-04-12 19:00:29 +00001908 }
1909
danf26a1542014-12-02 19:04:54 +00001910 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
1911 ** entire wal file has been copied into the database file, then block
1912 ** until all readers have finished using the wal file. This ensures that
1913 ** the next process to write to the database restarts the wal file.
danf2b8dd52010-11-18 19:28:01 +00001914 */
1915 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dancdc1f042010-11-18 12:11:05 +00001916 assert( pWal->writeLock );
danf2b8dd52010-11-18 19:28:01 +00001917 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1918 rc = SQLITE_BUSY;
danf26a1542014-12-02 19:04:54 +00001919 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
dan0fe8c1b2014-12-02 19:35:09 +00001920 u32 salt1;
1921 sqlite3_randomness(4, &salt1);
dan976b0032015-01-29 19:12:12 +00001922 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
danf2b8dd52010-11-18 19:28:01 +00001923 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1924 if( rc==SQLITE_OK ){
danf26a1542014-12-02 19:04:54 +00001925 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
drha25165f2014-12-04 04:50:59 +00001926 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
1927 ** SQLITE_CHECKPOINT_RESTART with the addition that it also
1928 ** truncates the log file to zero bytes just prior to a
1929 ** successful return.
danf26a1542014-12-02 19:04:54 +00001930 **
1931 ** In theory, it might be safe to do this without updating the
1932 ** wal-index header in shared memory, as all subsequent reader or
1933 ** writer clients should see that the entire log file has been
1934 ** checkpointed and behave accordingly. This seems unsafe though,
1935 ** as it would leave the system in a state where the contents of
1936 ** the wal-index header do not match the contents of the
1937 ** file-system. To avoid this, update the wal-index header to
1938 ** indicate that the log file contains zero valid frames. */
dan0fe8c1b2014-12-02 19:35:09 +00001939 walRestartHdr(pWal, salt1);
danf26a1542014-12-02 19:04:54 +00001940 rc = sqlite3OsTruncate(pWal->pWalFd, 0);
1941 }
danf2b8dd52010-11-18 19:28:01 +00001942 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1943 }
dancdc1f042010-11-18 12:11:05 +00001944 }
1945 }
1946
dan83f42d12010-06-04 10:37:05 +00001947 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00001948 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00001949 return rc;
1950}
1951
1952/*
danf60b7f32011-12-16 13:24:27 +00001953** If the WAL file is currently larger than nMax bytes in size, truncate
1954** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
drh8dd4afa2011-12-08 19:50:32 +00001955*/
danf60b7f32011-12-16 13:24:27 +00001956static void walLimitSize(Wal *pWal, i64 nMax){
1957 i64 sz;
1958 int rx;
1959 sqlite3BeginBenignMalloc();
1960 rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1961 if( rx==SQLITE_OK && (sz > nMax ) ){
1962 rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1963 }
1964 sqlite3EndBenignMalloc();
1965 if( rx ){
1966 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
drh8dd4afa2011-12-08 19:50:32 +00001967 }
1968}
1969
1970/*
dan7c246102010-04-12 19:00:29 +00001971** Close a connection to a log file.
1972*/
drhc438efd2010-04-26 00:19:45 +00001973int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00001974 Wal *pWal, /* Wal to close */
dan7fb89902016-08-12 16:21:15 +00001975 sqlite3 *db, /* For interrupt flag */
danc5118782010-04-17 17:34:41 +00001976 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001977 int nBuf,
1978 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00001979){
1980 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00001981 if( pWal ){
dan30c86292010-04-30 16:24:46 +00001982 int isDelete = 0; /* True to unlink wal and wal-index files */
1983
1984 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1985 ** ordinary, rollback-mode locking methods, this guarantees that the
1986 ** connection associated with this log file is the only connection to
1987 ** the database. In this case checkpoint the database and unlink both
1988 ** the wal and wal-index files.
1989 **
1990 ** The EXCLUSIVE lock is not released before returning.
1991 */
dan4a5bad52016-11-11 17:08:51 +00001992 if( zBuf!=0
dan298af022016-10-31 16:16:49 +00001993 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
1994 ){
dan8c408002010-11-01 17:38:24 +00001995 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1996 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1997 }
dan7fb89902016-08-12 16:21:15 +00001998 rc = sqlite3WalCheckpoint(pWal, db,
1999 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
dancdc1f042010-11-18 12:11:05 +00002000 );
drheed42502011-12-16 15:38:52 +00002001 if( rc==SQLITE_OK ){
2002 int bPersist = -1;
drhc02372c2012-01-10 17:59:59 +00002003 sqlite3OsFileControlHint(
dan6f2f19a2012-01-10 16:56:39 +00002004 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
2005 );
drheed42502011-12-16 15:38:52 +00002006 if( bPersist!=1 ){
2007 /* Try to delete the WAL file if the checkpoint completed and
2008 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
2009 ** mode (!bPersist) */
2010 isDelete = 1;
2011 }else if( pWal->mxWalSize>=0 ){
2012 /* Try to truncate the WAL file to zero bytes if the checkpoint
2013 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
2014 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
2015 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
2016 ** to zero bytes as truncating to the journal_size_limit might
2017 ** leave a corrupt WAL file on disk. */
2018 walLimitSize(pWal, 0);
2019 }
dan30c86292010-04-30 16:24:46 +00002020 }
dan30c86292010-04-30 16:24:46 +00002021 }
2022
dan1018e902010-05-05 15:33:05 +00002023 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00002024 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00002025 if( isDelete ){
drh92c45cf2012-01-10 00:24:59 +00002026 sqlite3BeginBenignMalloc();
drhd9e5c4f2010-05-12 18:01:39 +00002027 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
drh92c45cf2012-01-10 00:24:59 +00002028 sqlite3EndBenignMalloc();
dan30c86292010-04-30 16:24:46 +00002029 }
drhc74c3332010-05-31 12:15:19 +00002030 WALTRACE(("WAL%p: closed\n", pWal));
shaneh8a300f82010-07-02 18:15:31 +00002031 sqlite3_free((void *)pWal->apWiData);
drh7ed91f22010-04-29 22:34:07 +00002032 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00002033 }
2034 return rc;
2035}
2036
2037/*
drha2a42012010-05-18 18:01:08 +00002038** Try to read the wal-index header. Return 0 on success and 1 if
2039** there is a problem.
2040**
2041** The wal-index is in shared memory. Another thread or process might
2042** be writing the header at the same time this procedure is trying to
2043** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00002044** by verifying that both copies of the header are the same and also by
2045** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00002046**
2047** If and only if the read is consistent and the header is different from
2048** pWal->hdr, then pWal->hdr is updated to the content of the new header
2049** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00002050**
dan84670502010-05-07 05:46:23 +00002051** If the checksum cannot be verified return non-zero. If the header
2052** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00002053*/
drh7750ab42010-06-26 22:16:02 +00002054static int walIndexTryHdr(Wal *pWal, int *pChanged){
dan4280eb32010-06-12 12:02:35 +00002055 u32 aCksum[2]; /* Checksum on the header content */
2056 WalIndexHdr h1, h2; /* Two copies of the header content */
2057 WalIndexHdr volatile *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00002058
dan4280eb32010-06-12 12:02:35 +00002059 /* The first page of the wal-index must be mapped at this point. */
2060 assert( pWal->nWiData>0 && pWal->apWiData[0] );
drh79e6c782010-04-30 02:13:26 +00002061
drh6cef0cf2010-08-16 16:31:43 +00002062 /* Read the header. This might happen concurrently with a write to the
drh73b64e42010-05-30 19:55:15 +00002063 ** same area of shared memory on a different CPU in a SMP,
2064 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00002065 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00002066 **
2067 ** There are two copies of the header at the beginning of the wal-index.
2068 ** When reading, read [0] first then [1]. Writes are in the reverse order.
2069 ** Memory barriers are used to prevent the compiler or the hardware from
2070 ** reordering the reads and writes.
danb9bf16b2010-04-14 11:23:30 +00002071 */
dan4280eb32010-06-12 12:02:35 +00002072 aHdr = walIndexHdr(pWal);
adamaec336a2011-10-10 22:11:44 +00002073 if( aHdr==NULL ){
2074 return 1; /* Shouldn't be getting NULL from walIndexHdr, but we are */
2075 }
dan4280eb32010-06-12 12:02:35 +00002076 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
dan8c408002010-11-01 17:38:24 +00002077 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +00002078 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00002079
drhf0b20f82010-05-21 13:16:18 +00002080 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2081 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00002082 }
drh4b82c382010-05-31 18:24:19 +00002083 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00002084 return 1; /* Malformed header - probably all zeros */
2085 }
danb8fd6c22010-05-24 10:39:36 +00002086 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00002087 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2088 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00002089 }
2090
drhf0b20f82010-05-21 13:16:18 +00002091 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00002092 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00002093 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh9b78f792010-08-14 21:21:24 +00002094 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2095 testcase( pWal->szPage<=32768 );
2096 testcase( pWal->szPage>=65536 );
danb9bf16b2010-04-14 11:23:30 +00002097 }
dan84670502010-05-07 05:46:23 +00002098
2099 /* The header was successfully read. Return zero. */
2100 return 0;
danb9bf16b2010-04-14 11:23:30 +00002101}
2102
2103/*
dan08ecefc2017-11-07 21:15:07 +00002104** This is the value that walTryBeginRead returns when it needs to
2105** be retried.
2106*/
2107#define WAL_RETRY (-1)
2108
2109/*
drha2a42012010-05-18 18:01:08 +00002110** Read the wal-index header from the wal-index and into pWal->hdr.
drha927e942010-06-24 02:46:48 +00002111** If the wal-header appears to be corrupt, try to reconstruct the
2112** wal-index from the WAL before returning.
drha2a42012010-05-18 18:01:08 +00002113**
2114** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
peter.d.reid60ec9142014-09-06 16:39:46 +00002115** changed by this operation. If pWal->hdr is unchanged, set *pChanged
drha2a42012010-05-18 18:01:08 +00002116** to 0.
2117**
drh7ed91f22010-04-29 22:34:07 +00002118** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00002119** Otherwise an SQLite error code.
2120*/
drh7ed91f22010-04-29 22:34:07 +00002121static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00002122 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00002123 int badHdr; /* True if a header read failed */
drha927e942010-06-24 02:46:48 +00002124 volatile u32 *page0; /* Chunk of wal-index containing header */
danb9bf16b2010-04-14 11:23:30 +00002125
dan4280eb32010-06-12 12:02:35 +00002126 /* Ensure that page 0 of the wal-index (the page that contains the
2127 ** wal-index header) is mapped. Return early if an error occurs here.
2128 */
dana8614692010-05-06 14:42:34 +00002129 assert( pChanged );
dan4280eb32010-06-12 12:02:35 +00002130 rc = walIndexPage(pWal, 0, &page0);
danc7991bd2010-05-05 19:04:59 +00002131 if( rc!=SQLITE_OK ){
drh85bc6df2017-11-10 20:00:50 +00002132 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2133 if( rc==SQLITE_READONLY_CANTINIT ){
2134 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2135 ** was openable but is not writable, and this thread is unable to
2136 ** confirm that another write-capable connection has the shared-memory
2137 ** open, and hence the content of the shared-memory is unreliable,
2138 ** since the shared-memory might be inconsistent with the WAL file
2139 ** and there is no writer on hand to fix it. */
drhc05a0632017-11-11 20:11:01 +00002140 assert( page0==0 );
2141 assert( pWal->writeLock==0 );
2142 assert( pWal->readOnly & WAL_SHM_RDONLY );
drh85bc6df2017-11-10 20:00:50 +00002143 pWal->bShmUnreliable = 1;
2144 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2145 *pChanged = 1;
2146 }else{
2147 return rc; /* Any other non-OK return is just an error */
2148 }
drhc05a0632017-11-11 20:11:01 +00002149 }else{
2150 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2151 ** is zero, which prevents the SHM from growing */
2152 testcase( page0!=0 );
2153 }
2154 assert( page0!=0 || pWal->writeLock==0 );
drh7ed91f22010-04-29 22:34:07 +00002155
dan4280eb32010-06-12 12:02:35 +00002156 /* If the first page of the wal-index has been mapped, try to read the
2157 ** wal-index header immediately, without holding any lock. This usually
2158 ** works, but may fail if the wal-index header is corrupt or currently
drha927e942010-06-24 02:46:48 +00002159 ** being modified by another thread or process.
danb9bf16b2010-04-14 11:23:30 +00002160 */
dan4280eb32010-06-12 12:02:35 +00002161 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
drhbab7b912010-05-26 17:31:58 +00002162
drh73b64e42010-05-30 19:55:15 +00002163 /* If the first attempt failed, it might have been due to a race
drh66dfec8b2011-06-01 20:01:49 +00002164 ** with a writer. So get a WRITE lock and try again.
drh73b64e42010-05-30 19:55:15 +00002165 */
dand54ff602010-05-31 11:16:30 +00002166 assert( badHdr==0 || pWal->writeLock==0 );
dan4edc6bf2011-05-10 17:31:29 +00002167 if( badHdr ){
drh85bc6df2017-11-10 20:00:50 +00002168 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
dan4edc6bf2011-05-10 17:31:29 +00002169 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2170 walUnlockShared(pWal, WAL_WRITE_LOCK);
2171 rc = SQLITE_READONLY_RECOVERY;
drhbab7b912010-05-26 17:31:58 +00002172 }
drhab372772015-12-02 16:10:16 +00002173 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
dan4edc6bf2011-05-10 17:31:29 +00002174 pWal->writeLock = 1;
2175 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2176 badHdr = walIndexTryHdr(pWal, pChanged);
2177 if( badHdr ){
2178 /* If the wal-index header is still malformed even while holding
2179 ** a WRITE lock, it can only mean that the header is corrupted and
2180 ** needs to be reconstructed. So run recovery to do exactly that.
2181 */
2182 rc = walIndexRecover(pWal);
2183 *pChanged = 1;
2184 }
2185 }
2186 pWal->writeLock = 0;
2187 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhbab7b912010-05-26 17:31:58 +00002188 }
danb9bf16b2010-04-14 11:23:30 +00002189 }
2190
drha927e942010-06-24 02:46:48 +00002191 /* If the header is read successfully, check the version number to make
2192 ** sure the wal-index was not constructed with some future format that
2193 ** this version of SQLite cannot understand.
2194 */
2195 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2196 rc = SQLITE_CANTOPEN_BKPT;
2197 }
drh85bc6df2017-11-10 20:00:50 +00002198 if( pWal->bShmUnreliable ){
dan11caf4f2017-11-04 18:10:03 +00002199 if( rc!=SQLITE_OK ){
2200 walIndexClose(pWal, 0);
drh85bc6df2017-11-10 20:00:50 +00002201 pWal->bShmUnreliable = 0;
dan08ecefc2017-11-07 21:15:07 +00002202 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
drh8b17ac12017-11-14 03:42:52 +00002203 /* walIndexRecover() might have returned SHORT_READ if a concurrent
2204 ** writer truncated the WAL out from under it. If that happens, it
2205 ** indicates that a writer has fixed the SHM file for us, so retry */
dan08ecefc2017-11-07 21:15:07 +00002206 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
dan11caf4f2017-11-04 18:10:03 +00002207 }
2208 pWal->exclusiveMode = WAL_NORMAL_MODE;
2209 }
drha927e942010-06-24 02:46:48 +00002210
danb9bf16b2010-04-14 11:23:30 +00002211 return rc;
2212}
2213
2214/*
drh85bc6df2017-11-10 20:00:50 +00002215** Open a transaction in a connection where the shared-memory is read-only
2216** and where we cannot verify that there is a separate write-capable connection
2217** on hand to keep the shared-memory up-to-date with the WAL file.
2218**
2219** This can happen, for example, when the shared-memory is implemented by
2220** memory-mapping a *-shm file, where a prior writer has shut down and
2221** left the *-shm file on disk, and now the present connection is trying
2222** to use that database but lacks write permission on the *-shm file.
2223** Other scenarios are also possible, depending on the VFS implementation.
2224**
2225** Precondition:
2226**
2227** The *-wal file has been read and an appropriate wal-index has been
2228** constructed in pWal->apWiData[] using heap memory instead of shared
2229** memory.
dan11caf4f2017-11-04 18:10:03 +00002230**
2231** If this function returns SQLITE_OK, then the read transaction has
2232** been successfully opened. In this case output variable (*pChanged)
2233** is set to true before returning if the caller should discard the
2234** contents of the page cache before proceeding. Or, if it returns
2235** WAL_RETRY, then the heap memory wal-index has been discarded and
2236** the caller should retry opening the read transaction from the
2237** beginning (including attempting to map the *-shm file).
2238**
2239** If an error occurs, an SQLite error code is returned.
dan7c246102010-04-12 19:00:29 +00002240*/
drh85bc6df2017-11-10 20:00:50 +00002241static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
dan11caf4f2017-11-04 18:10:03 +00002242 i64 szWal; /* Size of wal file on disk in bytes */
2243 i64 iOffset; /* Current offset when reading wal file */
2244 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
2245 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
2246 int szFrame; /* Number of bytes in buffer aFrame[] */
2247 u8 *aData; /* Pointer to data part of aFrame buffer */
2248 volatile void *pDummy; /* Dummy argument for xShmMap */
2249 int rc; /* Return code */
2250 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */
2251
drh85bc6df2017-11-10 20:00:50 +00002252 assert( pWal->bShmUnreliable );
dan11caf4f2017-11-04 18:10:03 +00002253 assert( pWal->readOnly & WAL_SHM_RDONLY );
2254 assert( pWal->nWiData>0 && pWal->apWiData[0] );
2255
2256 /* Take WAL_READ_LOCK(0). This has the effect of preventing any
drh85bc6df2017-11-10 20:00:50 +00002257 ** writers from running a checkpoint, but does not stop them
dan11caf4f2017-11-04 18:10:03 +00002258 ** from running recovery. */
2259 rc = walLockShared(pWal, WAL_READ_LOCK(0));
2260 if( rc!=SQLITE_OK ){
danab548382017-11-06 19:49:34 +00002261 if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
drh85bc6df2017-11-10 20:00:50 +00002262 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002263 }
2264 pWal->readLock = 0;
2265
drh85bc6df2017-11-10 20:00:50 +00002266 /* Check to see if a separate writer has attached to the shared-memory area,
2267 ** thus making the shared-memory "reliable" again. Do this by invoking
2268 ** the xShmMap() routine of the VFS and looking to see if the return
2269 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
drh9214c1e2017-11-08 19:26:27 +00002270 **
drh85bc6df2017-11-10 20:00:50 +00002271 ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2272 ** cause the heap-memory WAL-index to be discarded and the actual
2273 ** shared memory to be used in its place.
drh870655b2017-11-11 13:30:44 +00002274 **
2275 ** This step is important because, even though this connection is holding
2276 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2277 ** have already checkpointed the WAL file and, while the current
2278 ** is active, wrap the WAL and start overwriting frames that this
2279 ** process wants to use.
2280 **
2281 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2282 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2283 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2284 ** even if some external agent does a "chmod" to make the shared-memory
2285 ** writable by us, until sqlite3OsShmUnmap() has been called.
2286 ** This is a requirement on the VFS implementation.
2287 */
dan11caf4f2017-11-04 18:10:03 +00002288 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
drh9214c1e2017-11-08 19:26:27 +00002289 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
drh7e45e3a2017-11-08 17:32:12 +00002290 if( rc!=SQLITE_READONLY_CANTINIT ){
dan11caf4f2017-11-04 18:10:03 +00002291 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
drh85bc6df2017-11-10 20:00:50 +00002292 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002293 }
2294
drh870655b2017-11-11 13:30:44 +00002295 /* We reach this point only if the real shared-memory is still unreliable.
drh85bc6df2017-11-10 20:00:50 +00002296 ** Assume the in-memory WAL-index substitute is correct and load it
2297 ** into pWal->hdr.
2298 */
dan11caf4f2017-11-04 18:10:03 +00002299 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
drh85bc6df2017-11-10 20:00:50 +00002300
drh870655b2017-11-11 13:30:44 +00002301 /* Make sure some writer hasn't come in and changed the WAL file out
2302 ** from under us, then disconnected, while we were not looking.
drh85bc6df2017-11-10 20:00:50 +00002303 */
dan11caf4f2017-11-04 18:10:03 +00002304 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
danab548382017-11-06 19:49:34 +00002305 if( rc!=SQLITE_OK ){
drh85bc6df2017-11-10 20:00:50 +00002306 goto begin_unreliable_shm_out;
danab548382017-11-06 19:49:34 +00002307 }
2308 if( szWal<WAL_HDRSIZE ){
dan11caf4f2017-11-04 18:10:03 +00002309 /* If the wal file is too small to contain a wal-header and the
2310 ** wal-index header has mxFrame==0, then it must be safe to proceed
2311 ** reading the database file only. However, the page cache cannot
2312 ** be trusted, as a read/write connection may have connected, written
2313 ** the db, run a checkpoint, truncated the wal file and disconnected
2314 ** since this client's last read transaction. */
2315 *pChanged = 1;
danab548382017-11-06 19:49:34 +00002316 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
drh85bc6df2017-11-10 20:00:50 +00002317 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002318 }
2319
2320 /* Check the salt keys at the start of the wal file still match. */
2321 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2322 if( rc!=SQLITE_OK ){
drh85bc6df2017-11-10 20:00:50 +00002323 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002324 }
2325 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
drh870655b2017-11-11 13:30:44 +00002326 /* Some writer has wrapped the WAL file while we were not looking.
2327 ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2328 ** rebuilt. */
dan11caf4f2017-11-04 18:10:03 +00002329 rc = WAL_RETRY;
drh85bc6df2017-11-10 20:00:50 +00002330 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002331 }
2332
2333 /* Allocate a buffer to read frames into */
2334 szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2335 aFrame = (u8 *)sqlite3_malloc64(szFrame);
2336 if( aFrame==0 ){
2337 rc = SQLITE_NOMEM_BKPT;
drh85bc6df2017-11-10 20:00:50 +00002338 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002339 }
2340 aData = &aFrame[WAL_FRAME_HDRSIZE];
2341
dancbd33212017-11-04 21:06:35 +00002342 /* Check to see if a complete transaction has been appended to the
2343 ** wal file since the heap-memory wal-index was created. If so, the
2344 ** heap-memory wal-index is discarded and WAL_RETRY returned to
2345 ** the caller. */
dan11caf4f2017-11-04 18:10:03 +00002346 aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2347 aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2348 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2349 iOffset+szFrame<=szWal;
2350 iOffset+=szFrame
2351 ){
2352 u32 pgno; /* Database page number for frame */
2353 u32 nTruncate; /* dbsize field from frame header */
2354
2355 /* Read and decode the next log frame. */
2356 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
danab548382017-11-06 19:49:34 +00002357 if( rc!=SQLITE_OK ) break;
dan11caf4f2017-11-04 18:10:03 +00002358 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2359
dancbd33212017-11-04 21:06:35 +00002360 /* If nTruncate is non-zero, then a complete transaction has been
2361 ** appended to this wal file. Set rc to WAL_RETRY and break out of
2362 ** the loop. */
dan11caf4f2017-11-04 18:10:03 +00002363 if( nTruncate ){
2364 rc = WAL_RETRY;
2365 break;
2366 }
2367 }
2368 pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2369 pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2370
drh85bc6df2017-11-10 20:00:50 +00002371 begin_unreliable_shm_out:
dan11caf4f2017-11-04 18:10:03 +00002372 sqlite3_free(aFrame);
2373 if( rc!=SQLITE_OK ){
2374 int i;
2375 for(i=0; i<pWal->nWiData; i++){
2376 sqlite3_free((void*)pWal->apWiData[i]);
2377 pWal->apWiData[i] = 0;
2378 }
drh85bc6df2017-11-10 20:00:50 +00002379 pWal->bShmUnreliable = 0;
dan11caf4f2017-11-04 18:10:03 +00002380 sqlite3WalEndReadTransaction(pWal);
2381 *pChanged = 1;
2382 }
2383 return rc;
2384}
dan64d039e2010-04-13 19:27:31 +00002385
drh73b64e42010-05-30 19:55:15 +00002386/*
2387** Attempt to start a read transaction. This might fail due to a race or
2388** other transient condition. When that happens, it returns WAL_RETRY to
2389** indicate to the caller that it is safe to retry immediately.
2390**
drha927e942010-06-24 02:46:48 +00002391** On success return SQLITE_OK. On a permanent failure (such an
drh73b64e42010-05-30 19:55:15 +00002392** I/O error or an SQLITE_BUSY because another process is running
2393** recovery) return a positive error code.
2394**
drha927e942010-06-24 02:46:48 +00002395** The useWal parameter is true to force the use of the WAL and disable
2396** the case where the WAL is bypassed because it has been completely
2397** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
2398** to make a copy of the wal-index header into pWal->hdr. If the
2399** wal-index header has changed, *pChanged is set to 1 (as an indication
drh183f0aa2017-10-31 12:06:29 +00002400** to the caller that the local page cache is obsolete and needs to be
drha927e942010-06-24 02:46:48 +00002401** flushed.) When useWal==1, the wal-index header is assumed to already
2402** be loaded and the pChanged parameter is unused.
2403**
2404** The caller must set the cnt parameter to the number of prior calls to
2405** this routine during the current read attempt that returned WAL_RETRY.
2406** This routine will start taking more aggressive measures to clear the
2407** race conditions after multiple WAL_RETRY returns, and after an excessive
2408** number of errors will ultimately return SQLITE_PROTOCOL. The
2409** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2410** and is not honoring the locking protocol. There is a vanishingly small
2411** chance that SQLITE_PROTOCOL could be returned because of a run of really
2412** bad luck when there is lots of contention for the wal-index, but that
2413** possibility is so small that it can be safely neglected, we believe.
2414**
drh73b64e42010-05-30 19:55:15 +00002415** On success, this routine obtains a read lock on
2416** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
2417** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
2418** that means the Wal does not hold any read lock. The reader must not
2419** access any database page that is modified by a WAL frame up to and
2420** including frame number aReadMark[pWal->readLock]. The reader will
2421** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2422** Or if pWal->readLock==0, then the reader will ignore the WAL
2423** completely and get all content directly from the database file.
drha927e942010-06-24 02:46:48 +00002424** If the useWal parameter is 1 then the WAL will never be ignored and
2425** this routine will always set pWal->readLock>0 on success.
drh73b64e42010-05-30 19:55:15 +00002426** When the read transaction is completed, the caller must release the
2427** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2428**
2429** This routine uses the nBackfill and aReadMark[] fields of the header
2430** to select a particular WAL_READ_LOCK() that strives to let the
2431** checkpoint process do as much work as possible. This routine might
2432** update values of the aReadMark[] array in the header, but if it does
2433** so it takes care to hold an exclusive lock on the corresponding
2434** WAL_READ_LOCK() while changing values.
2435*/
drhaab4c022010-06-02 14:45:51 +00002436static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00002437 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
2438 u32 mxReadMark; /* Largest aReadMark[] value */
2439 int mxI; /* Index of largest aReadMark[] value */
2440 int i; /* Loop counter */
dan13a3cb82010-06-11 19:04:21 +00002441 int rc = SQLITE_OK; /* Return code */
drhc49e9602015-12-11 03:16:54 +00002442 u32 mxFrame; /* Wal frame to lock to */
dan64d039e2010-04-13 19:27:31 +00002443
drh61e4ace2010-05-31 20:28:37 +00002444 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00002445
drh2e9b0922017-11-13 05:51:37 +00002446 /* useWal may only be set for read/write connections */
2447 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2448
drh658d76c2011-02-19 15:22:14 +00002449 /* Take steps to avoid spinning forever if there is a protocol error.
2450 **
2451 ** Circumstances that cause a RETRY should only last for the briefest
2452 ** instances of time. No I/O or other system calls are done while the
2453 ** locks are held, so the locks should not be held for very long. But
2454 ** if we are unlucky, another process that is holding a lock might get
2455 ** paged out or take a page-fault that is time-consuming to resolve,
2456 ** during the few nanoseconds that it is holding the lock. In that case,
2457 ** it might take longer than normal for the lock to free.
2458 **
2459 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2460 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2461 ** is more of a scheduler yield than an actual delay. But on the 10th
2462 ** an subsequent retries, the delays start becoming longer and longer,
drh5b6e3b92014-06-12 17:10:18 +00002463 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2464 ** The total delay time before giving up is less than 10 seconds.
drh658d76c2011-02-19 15:22:14 +00002465 */
drhaab4c022010-06-02 14:45:51 +00002466 if( cnt>5 ){
drh658d76c2011-02-19 15:22:14 +00002467 int nDelay = 1; /* Pause time in microseconds */
drh03c69672011-02-19 23:18:12 +00002468 if( cnt>100 ){
2469 VVA_ONLY( pWal->lockError = 1; )
2470 return SQLITE_PROTOCOL;
2471 }
drh5b6e3b92014-06-12 17:10:18 +00002472 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
drh658d76c2011-02-19 15:22:14 +00002473 sqlite3OsSleep(pWal->pVfs, nDelay);
drhaab4c022010-06-02 14:45:51 +00002474 }
2475
drh73b64e42010-05-30 19:55:15 +00002476 if( !useWal ){
dan11caf4f2017-11-04 18:10:03 +00002477 assert( rc==SQLITE_OK );
drh85bc6df2017-11-10 20:00:50 +00002478 if( pWal->bShmUnreliable==0 ){
dan11caf4f2017-11-04 18:10:03 +00002479 rc = walIndexReadHdr(pWal, pChanged);
2480 }
drh73b64e42010-05-30 19:55:15 +00002481 if( rc==SQLITE_BUSY ){
2482 /* If there is not a recovery running in another thread or process
2483 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2484 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2485 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2486 ** would be technically correct. But the race is benign since with
2487 ** WAL_RETRY this routine will be called again and will probably be
2488 ** right on the second iteration.
2489 */
dan7d4514a2010-07-15 17:54:14 +00002490 if( pWal->apWiData[0]==0 ){
2491 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2492 ** We assume this is a transient condition, so return WAL_RETRY. The
2493 ** xShmMap() implementation used by the default unix and win32 VFS
2494 ** modules may return SQLITE_BUSY due to a race condition in the
2495 ** code that determines whether or not the shared-memory region
2496 ** must be zeroed before the requested page is returned.
2497 */
2498 rc = WAL_RETRY;
2499 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
drh73b64e42010-05-30 19:55:15 +00002500 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2501 rc = WAL_RETRY;
2502 }else if( rc==SQLITE_BUSY ){
2503 rc = SQLITE_BUSY_RECOVERY;
2504 }
2505 }
drha927e942010-06-24 02:46:48 +00002506 if( rc!=SQLITE_OK ){
2507 return rc;
2508 }
drh85bc6df2017-11-10 20:00:50 +00002509 else if( pWal->bShmUnreliable ){
2510 return walBeginShmUnreliable(pWal, pChanged);
dan11caf4f2017-11-04 18:10:03 +00002511 }
drh73b64e42010-05-30 19:55:15 +00002512 }
2513
dan92c02da2017-11-01 20:59:28 +00002514 assert( pWal->nWiData>0 );
drh2e9b0922017-11-13 05:51:37 +00002515 assert( pWal->apWiData[0]!=0 );
dan13a3cb82010-06-11 19:04:21 +00002516 pInfo = walCkptInfo(pWal);
drh2e9b0922017-11-13 05:51:37 +00002517 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame
danfc1acf32015-12-05 20:51:54 +00002518#ifdef SQLITE_ENABLE_SNAPSHOT
dan21f2baf2017-09-23 07:46:54 +00002519 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
danfc1acf32015-12-05 20:51:54 +00002520#endif
2521 ){
drh73b64e42010-05-30 19:55:15 +00002522 /* The WAL has been completely backfilled (or it is empty).
2523 ** and can be safely ignored.
2524 */
2525 rc = walLockShared(pWal, WAL_READ_LOCK(0));
dan8c408002010-11-01 17:38:24 +00002526 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002527 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00002528 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00002529 /* It is not safe to allow the reader to continue here if frames
2530 ** may have been appended to the log before READ_LOCK(0) was obtained.
2531 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2532 ** which implies that the database file contains a trustworthy
peter.d.reid60ec9142014-09-06 16:39:46 +00002533 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
dan493cc592010-06-05 18:12:23 +00002534 ** happening, this is usually correct.
2535 **
2536 ** However, if frames have been appended to the log (or if the log
2537 ** is wrapped and written for that matter) before the READ_LOCK(0)
2538 ** is obtained, that is not necessarily true. A checkpointer may
2539 ** have started to backfill the appended frames but crashed before
2540 ** it finished. Leaving a corrupt image in the database file.
2541 */
drh73b64e42010-05-30 19:55:15 +00002542 walUnlockShared(pWal, WAL_READ_LOCK(0));
2543 return WAL_RETRY;
2544 }
2545 pWal->readLock = 0;
2546 return SQLITE_OK;
2547 }else if( rc!=SQLITE_BUSY ){
2548 return rc;
dan64d039e2010-04-13 19:27:31 +00002549 }
dan7c246102010-04-12 19:00:29 +00002550 }
danba515902010-04-30 09:32:06 +00002551
drh73b64e42010-05-30 19:55:15 +00002552 /* If we get this far, it means that the reader will want to use
2553 ** the WAL to get at content from recent commits. The job now is
2554 ** to select one of the aReadMark[] entries that is closest to
2555 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2556 */
2557 mxReadMark = 0;
2558 mxI = 0;
danfc1acf32015-12-05 20:51:54 +00002559 mxFrame = pWal->hdr.mxFrame;
2560#ifdef SQLITE_ENABLE_SNAPSHOT
dan818b11a2015-12-07 14:33:07 +00002561 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2562 mxFrame = pWal->pSnapshot->mxFrame;
2563 }
danfc1acf32015-12-05 20:51:54 +00002564#endif
drh73b64e42010-05-30 19:55:15 +00002565 for(i=1; i<WAL_NREADER; i++){
2566 u32 thisMark = pInfo->aReadMark[i];
danfc1acf32015-12-05 20:51:54 +00002567 if( mxReadMark<=thisMark && thisMark<=mxFrame ){
drhdb7f6472010-06-09 14:45:12 +00002568 assert( thisMark!=READMARK_NOT_USED );
drh73b64e42010-05-30 19:55:15 +00002569 mxReadMark = thisMark;
2570 mxI = i;
2571 }
2572 }
drh998147e2015-12-10 02:15:03 +00002573 if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2574 && (mxReadMark<mxFrame || mxI==0)
drh998147e2015-12-10 02:15:03 +00002575 ){
2576 for(i=1; i<WAL_NREADER; i++){
2577 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2578 if( rc==SQLITE_OK ){
2579 mxReadMark = pInfo->aReadMark[i] = mxFrame;
2580 mxI = i;
2581 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2582 break;
2583 }else if( rc!=SQLITE_BUSY ){
2584 return rc;
drh73b64e42010-05-30 19:55:15 +00002585 }
2586 }
drh998147e2015-12-10 02:15:03 +00002587 }
2588 if( mxI==0 ){
drh998147e2015-12-10 02:15:03 +00002589 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
drh7e45e3a2017-11-08 17:32:12 +00002590 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
drh998147e2015-12-10 02:15:03 +00002591 }
drh73b64e42010-05-30 19:55:15 +00002592
drh998147e2015-12-10 02:15:03 +00002593 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2594 if( rc ){
2595 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2596 }
2597 /* Now that the read-lock has been obtained, check that neither the
2598 ** value in the aReadMark[] array or the contents of the wal-index
2599 ** header have changed.
2600 **
2601 ** It is necessary to check that the wal-index header did not change
2602 ** between the time it was read and when the shared-lock was obtained
2603 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2604 ** that the log file may have been wrapped by a writer, or that frames
2605 ** that occur later in the log than pWal->hdr.mxFrame may have been
2606 ** copied into the database by a checkpointer. If either of these things
2607 ** happened, then reading the database with the current value of
2608 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2609 ** instead.
2610 **
2611 ** Before checking that the live wal-index header has not changed
2612 ** since it was read, set Wal.minFrame to the first frame in the wal
2613 ** file that has not yet been checkpointed. This client will not need
2614 ** to read any frames earlier than minFrame from the wal file - they
2615 ** can be safely read directly from the database file.
2616 **
2617 ** Because a ShmBarrier() call is made between taking the copy of
2618 ** nBackfill and checking that the wal-header in shared-memory still
2619 ** matches the one cached in pWal->hdr, it is guaranteed that the
2620 ** checkpointer that set nBackfill was not working with a wal-index
2621 ** header newer than that cached in pWal->hdr. If it were, that could
2622 ** cause a problem. The checkpointer could omit to checkpoint
2623 ** a version of page X that lies before pWal->minFrame (call that version
2624 ** A) on the basis that there is a newer version (version B) of the same
2625 ** page later in the wal file. But if version B happens to like past
2626 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2627 ** that it can read version A from the database file. However, since
2628 ** we can guarantee that the checkpointer that set nBackfill could not
2629 ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2630 */
2631 pWal->minFrame = pInfo->nBackfill+1;
2632 walShmBarrier(pWal);
2633 if( pInfo->aReadMark[mxI]!=mxReadMark
2634 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2635 ){
2636 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2637 return WAL_RETRY;
2638 }else{
2639 assert( mxReadMark<=pWal->hdr.mxFrame );
2640 pWal->readLock = (i16)mxI;
drh73b64e42010-05-30 19:55:15 +00002641 }
2642 return rc;
2643}
2644
drhbc887112016-11-22 21:11:59 +00002645#ifdef SQLITE_ENABLE_SNAPSHOT
drh73b64e42010-05-30 19:55:15 +00002646/*
dan93f51132016-11-19 18:31:37 +00002647** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2648** variable so that older snapshots can be accessed. To do this, loop
2649** through all wal frames from nBackfillAttempted to (nBackfill+1),
2650** comparing their content to the corresponding page with the database
2651** file, if any. Set nBackfillAttempted to the frame number of the
2652** first frame for which the wal file content matches the db file.
2653**
2654** This is only really safe if the file-system is such that any page
2655** writes made by earlier checkpointers were atomic operations, which
2656** is not always true. It is also possible that nBackfillAttempted
2657** may be left set to a value larger than expected, if a wal frame
2658** contains content that duplicate of an earlier version of the same
2659** page.
2660**
2661** SQLITE_OK is returned if successful, or an SQLite error code if an
2662** error occurs. It is not an error if nBackfillAttempted cannot be
2663** decreased at all.
dan11584982016-11-18 20:49:43 +00002664*/
2665int sqlite3WalSnapshotRecover(Wal *pWal){
dan11584982016-11-18 20:49:43 +00002666 int rc;
2667
dan93f51132016-11-19 18:31:37 +00002668 assert( pWal->readLock>=0 );
2669 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
dan11584982016-11-18 20:49:43 +00002670 if( rc==SQLITE_OK ){
dan93f51132016-11-19 18:31:37 +00002671 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2672 int szPage = (int)pWal->szPage;
2673 i64 szDb; /* Size of db file in bytes */
2674
2675 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
dan11584982016-11-18 20:49:43 +00002676 if( rc==SQLITE_OK ){
dan93f51132016-11-19 18:31:37 +00002677 void *pBuf1 = sqlite3_malloc(szPage);
2678 void *pBuf2 = sqlite3_malloc(szPage);
2679 if( pBuf1==0 || pBuf2==0 ){
2680 rc = SQLITE_NOMEM;
2681 }else{
2682 u32 i = pInfo->nBackfillAttempted;
2683 for(i=pInfo->nBackfillAttempted; i>pInfo->nBackfill; i--){
2684 volatile ht_slot *dummy;
2685 volatile u32 *aPgno; /* Array of page numbers */
2686 u32 iZero; /* Frame corresponding to aPgno[0] */
2687 u32 pgno; /* Page number in db file */
2688 i64 iDbOff; /* Offset of db file entry */
2689 i64 iWalOff; /* Offset of wal file entry */
dan11584982016-11-18 20:49:43 +00002690
dan93f51132016-11-19 18:31:37 +00002691 rc = walHashGet(pWal, walFramePage(i), &dummy, &aPgno, &iZero);
2692 if( rc!=SQLITE_OK ) break;
2693 pgno = aPgno[i-iZero];
2694 iDbOff = (i64)(pgno-1) * szPage;
dan11584982016-11-18 20:49:43 +00002695
dan93f51132016-11-19 18:31:37 +00002696 if( iDbOff+szPage<=szDb ){
2697 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2698 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
dan11584982016-11-18 20:49:43 +00002699
dan93f51132016-11-19 18:31:37 +00002700 if( rc==SQLITE_OK ){
2701 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
dan6a9e7f12016-11-19 16:35:53 +00002702 }
2703
dan93f51132016-11-19 18:31:37 +00002704 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2705 break;
2706 }
dan6a9e7f12016-11-19 16:35:53 +00002707 }
dan93f51132016-11-19 18:31:37 +00002708
2709 pInfo->nBackfillAttempted = i-1;
dan11584982016-11-18 20:49:43 +00002710 }
dan6a9e7f12016-11-19 16:35:53 +00002711 }
dan11584982016-11-18 20:49:43 +00002712
dan93f51132016-11-19 18:31:37 +00002713 sqlite3_free(pBuf1);
2714 sqlite3_free(pBuf2);
2715 }
2716 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dan11584982016-11-18 20:49:43 +00002717 }
2718
2719 return rc;
2720}
drhbc887112016-11-22 21:11:59 +00002721#endif /* SQLITE_ENABLE_SNAPSHOT */
dan11584982016-11-18 20:49:43 +00002722
drh73b64e42010-05-30 19:55:15 +00002723/*
2724** Begin a read transaction on the database.
2725**
2726** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2727** it takes a snapshot of the state of the WAL and wal-index for the current
2728** instant in time. The current thread will continue to use this snapshot.
2729** Other threads might append new content to the WAL and wal-index but
2730** that extra content is ignored by the current thread.
2731**
2732** If the database contents have changes since the previous read
2733** transaction, then *pChanged is set to 1 before returning. The
2734** Pager layer will use this to know that is cache is stale and
2735** needs to be flushed.
2736*/
drh66dfec8b2011-06-01 20:01:49 +00002737int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
drh73b64e42010-05-30 19:55:15 +00002738 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00002739 int cnt = 0; /* Number of TryBeginRead attempts */
drh73b64e42010-05-30 19:55:15 +00002740
danfc1acf32015-12-05 20:51:54 +00002741#ifdef SQLITE_ENABLE_SNAPSHOT
2742 int bChanged = 0;
2743 WalIndexHdr *pSnapshot = pWal->pSnapshot;
drh998147e2015-12-10 02:15:03 +00002744 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
danfc1acf32015-12-05 20:51:54 +00002745 bChanged = 1;
2746 }
2747#endif
2748
drh73b64e42010-05-30 19:55:15 +00002749 do{
drhaab4c022010-06-02 14:45:51 +00002750 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00002751 }while( rc==WAL_RETRY );
drhab1cc742011-02-19 16:51:45 +00002752 testcase( (rc&0xff)==SQLITE_BUSY );
2753 testcase( (rc&0xff)==SQLITE_IOERR );
2754 testcase( rc==SQLITE_PROTOCOL );
2755 testcase( rc==SQLITE_OK );
danfc1acf32015-12-05 20:51:54 +00002756
2757#ifdef SQLITE_ENABLE_SNAPSHOT
2758 if( rc==SQLITE_OK ){
drh998147e2015-12-10 02:15:03 +00002759 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
dan65127cd2015-12-09 20:05:27 +00002760 /* At this point the client has a lock on an aReadMark[] slot holding
dan3bf83cc2015-12-10 15:45:15 +00002761 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2762 ** is populated with the wal-index header corresponding to the head
2763 ** of the wal file. Verify that pSnapshot is still valid before
2764 ** continuing. Reasons why pSnapshot might no longer be valid:
dan65127cd2015-12-09 20:05:27 +00002765 **
drh998147e2015-12-10 02:15:03 +00002766 ** (1) The WAL file has been reset since the snapshot was taken.
2767 ** In this case, the salt will have changed.
dan65127cd2015-12-09 20:05:27 +00002768 **
drh998147e2015-12-10 02:15:03 +00002769 ** (2) A checkpoint as been attempted that wrote frames past
2770 ** pSnapshot->mxFrame into the database file. Note that the
2771 ** checkpoint need not have completed for this to cause problems.
dan65127cd2015-12-09 20:05:27 +00002772 */
danfc1acf32015-12-05 20:51:54 +00002773 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
dan65127cd2015-12-09 20:05:27 +00002774
drh71b62fa2015-12-11 01:22:22 +00002775 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
dan65127cd2015-12-09 20:05:27 +00002776 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2777
dan3bf83cc2015-12-10 15:45:15 +00002778 /* It is possible that there is a checkpointer thread running
2779 ** concurrent with this code. If this is the case, it may be that the
2780 ** checkpointer has already determined that it will checkpoint
2781 ** snapshot X, where X is later in the wal file than pSnapshot, but
2782 ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2783 ** its intent. To avoid the race condition this leads to, ensure that
2784 ** there is no checkpointer process by taking a shared CKPT lock
dan11584982016-11-18 20:49:43 +00002785 ** before checking pInfo->nBackfillAttempted.
2786 **
2787 ** TODO: Does the aReadMark[] lock prevent a checkpointer from doing
2788 ** this already?
2789 */
dan3bf83cc2015-12-10 15:45:15 +00002790 rc = walLockShared(pWal, WAL_CKPT_LOCK);
2791
dana7aeb392015-12-10 19:11:34 +00002792 if( rc==SQLITE_OK ){
2793 /* Check that the wal file has not been wrapped. Assuming that it has
2794 ** not, also check that no checkpointer has attempted to checkpoint any
2795 ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2796 ** true, return SQLITE_BUSY_SNAPSHOT. Otherwise, overwrite pWal->hdr
2797 ** with *pSnapshot and set *pChanged as appropriate for opening the
2798 ** snapshot. */
2799 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2800 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2801 ){
dan0f308f52015-12-11 14:59:49 +00002802 assert( pWal->readLock>0 );
dana7aeb392015-12-10 19:11:34 +00002803 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2804 *pChanged = bChanged;
2805 }else{
2806 rc = SQLITE_BUSY_SNAPSHOT;
2807 }
2808
2809 /* Release the shared CKPT lock obtained above. */
2810 walUnlockShared(pWal, WAL_CKPT_LOCK);
danfc1acf32015-12-05 20:51:54 +00002811 }
dan65127cd2015-12-09 20:05:27 +00002812
dan3bf83cc2015-12-10 15:45:15 +00002813
danfc1acf32015-12-05 20:51:54 +00002814 if( rc!=SQLITE_OK ){
2815 sqlite3WalEndReadTransaction(pWal);
2816 }
2817 }
2818 }
2819#endif
dan7c246102010-04-12 19:00:29 +00002820 return rc;
2821}
2822
2823/*
drh73b64e42010-05-30 19:55:15 +00002824** Finish with a read transaction. All this does is release the
2825** read-lock.
dan7c246102010-04-12 19:00:29 +00002826*/
drh73b64e42010-05-30 19:55:15 +00002827void sqlite3WalEndReadTransaction(Wal *pWal){
dan73d66fd2010-08-07 16:17:48 +00002828 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00002829 if( pWal->readLock>=0 ){
2830 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2831 pWal->readLock = -1;
2832 }
dan7c246102010-04-12 19:00:29 +00002833}
2834
dan5e0ce872010-04-28 17:48:44 +00002835/*
dan99bd1092013-03-22 18:20:14 +00002836** Search the wal file for page pgno. If found, set *piRead to the frame that
2837** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2838** to zero.
drh73b64e42010-05-30 19:55:15 +00002839**
dan99bd1092013-03-22 18:20:14 +00002840** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2841** error does occur, the final value of *piRead is undefined.
dan7c246102010-04-12 19:00:29 +00002842*/
dan99bd1092013-03-22 18:20:14 +00002843int sqlite3WalFindFrame(
danbb23aff2010-05-10 14:46:09 +00002844 Wal *pWal, /* WAL handle */
2845 Pgno pgno, /* Database page number to read data for */
dan99bd1092013-03-22 18:20:14 +00002846 u32 *piRead /* OUT: Frame number (or zero) */
danb6e099a2010-05-04 14:47:39 +00002847){
danbb23aff2010-05-10 14:46:09 +00002848 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00002849 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00002850 int iHash; /* Used to loop through N hash tables */
dan6df003c2015-08-12 19:42:08 +00002851 int iMinHash;
dan7c246102010-04-12 19:00:29 +00002852
drhaab4c022010-06-02 14:45:51 +00002853 /* This routine is only be called from within a read transaction. */
2854 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00002855
danbb23aff2010-05-10 14:46:09 +00002856 /* If the "last page" field of the wal-index header snapshot is 0, then
2857 ** no data will be read from the wal under any circumstances. Return early
drha927e942010-06-24 02:46:48 +00002858 ** in this case as an optimization. Likewise, if pWal->readLock==0,
2859 ** then the WAL is ignored by the reader so return early, as if the
2860 ** WAL were empty.
danbb23aff2010-05-10 14:46:09 +00002861 */
drh85bc6df2017-11-10 20:00:50 +00002862 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
dan99bd1092013-03-22 18:20:14 +00002863 *piRead = 0;
danbb23aff2010-05-10 14:46:09 +00002864 return SQLITE_OK;
2865 }
2866
danbb23aff2010-05-10 14:46:09 +00002867 /* Search the hash table or tables for an entry matching page number
2868 ** pgno. Each iteration of the following for() loop searches one
2869 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2870 **
drha927e942010-06-24 02:46:48 +00002871 ** This code might run concurrently to the code in walIndexAppend()
danbb23aff2010-05-10 14:46:09 +00002872 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00002873 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00002874 ** slot (aHash[iKey]) may have been added before or after the
2875 ** current read transaction was opened. Values added after the
2876 ** read transaction was opened may have been written incorrectly -
2877 ** i.e. these slots may contain garbage data. However, we assume
2878 ** that any slots written before the current read transaction was
2879 ** opened remain unmodified.
2880 **
2881 ** For the reasons above, the if(...) condition featured in the inner
2882 ** loop of the following block is more stringent that would be required
2883 ** if we had exclusive access to the hash-table:
2884 **
2885 ** (aPgno[iFrame]==pgno):
2886 ** This condition filters out normal hash-table collisions.
2887 **
2888 ** (iFrame<=iLast):
2889 ** This condition filters out entries that were added to the hash
2890 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00002891 */
danb8c7cfb2015-08-13 20:23:46 +00002892 iMinHash = walFramePage(pWal->minFrame);
drh8d3e15e2018-02-21 01:05:37 +00002893 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
dan067f3162010-06-14 10:30:12 +00002894 volatile ht_slot *aHash; /* Pointer to hash table */
2895 volatile u32 *aPgno; /* Pointer to array of page numbers */
danbb23aff2010-05-10 14:46:09 +00002896 u32 iZero; /* Frame number corresponding to aPgno[0] */
2897 int iKey; /* Hash slot index */
drh519426a2010-07-09 03:19:07 +00002898 int nCollide; /* Number of hash collisions remaining */
2899 int rc; /* Error code */
danbb23aff2010-05-10 14:46:09 +00002900
dan4280eb32010-06-12 12:02:35 +00002901 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2902 if( rc!=SQLITE_OK ){
2903 return rc;
2904 }
drh519426a2010-07-09 03:19:07 +00002905 nCollide = HASHTABLE_NSLOT;
dan6f150142010-05-21 15:31:56 +00002906 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
danbb23aff2010-05-10 14:46:09 +00002907 u32 iFrame = aHash[iKey] + iZero;
danb8c7cfb2015-08-13 20:23:46 +00002908 if( iFrame<=iLast && iFrame>=pWal->minFrame && aPgno[aHash[iKey]]==pgno ){
drh622a53d2014-12-29 11:50:39 +00002909 assert( iFrame>iRead || CORRUPT_DB );
danbb23aff2010-05-10 14:46:09 +00002910 iRead = iFrame;
2911 }
drh519426a2010-07-09 03:19:07 +00002912 if( (nCollide--)==0 ){
2913 return SQLITE_CORRUPT_BKPT;
2914 }
dan7c246102010-04-12 19:00:29 +00002915 }
drh8d3e15e2018-02-21 01:05:37 +00002916 if( iRead ) break;
dan7c246102010-04-12 19:00:29 +00002917 }
dan7c246102010-04-12 19:00:29 +00002918
danbb23aff2010-05-10 14:46:09 +00002919#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2920 /* If expensive assert() statements are available, do a linear search
2921 ** of the wal-index file content. Make sure the results agree with the
2922 ** result obtained using the hash indexes above. */
2923 {
2924 u32 iRead2 = 0;
2925 u32 iTest;
drh85bc6df2017-11-10 20:00:50 +00002926 assert( pWal->bShmUnreliable || pWal->minFrame>0 );
dan6c9d8f62017-11-07 21:25:15 +00002927 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
dan13a3cb82010-06-11 19:04:21 +00002928 if( walFramePgno(pWal, iTest)==pgno ){
danbb23aff2010-05-10 14:46:09 +00002929 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00002930 break;
2931 }
dan7c246102010-04-12 19:00:29 +00002932 }
danbb23aff2010-05-10 14:46:09 +00002933 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00002934 }
danbb23aff2010-05-10 14:46:09 +00002935#endif
dancd11fb22010-04-26 10:40:52 +00002936
dan99bd1092013-03-22 18:20:14 +00002937 *piRead = iRead;
dan7c246102010-04-12 19:00:29 +00002938 return SQLITE_OK;
2939}
2940
dan99bd1092013-03-22 18:20:14 +00002941/*
2942** Read the contents of frame iRead from the wal file into buffer pOut
2943** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2944** error code otherwise.
2945*/
2946int sqlite3WalReadFrame(
2947 Wal *pWal, /* WAL handle */
2948 u32 iRead, /* Frame to read */
2949 int nOut, /* Size of buffer pOut in bytes */
2950 u8 *pOut /* Buffer to write page data to */
2951){
2952 int sz;
2953 i64 iOffset;
2954 sz = pWal->hdr.szPage;
2955 sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2956 testcase( sz<=32768 );
2957 testcase( sz>=65536 );
2958 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2959 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2960 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2961}
dan7c246102010-04-12 19:00:29 +00002962
2963/*
dan763afe62010-08-03 06:42:39 +00002964** Return the size of the database in pages (or zero, if unknown).
dan7c246102010-04-12 19:00:29 +00002965*/
dan763afe62010-08-03 06:42:39 +00002966Pgno sqlite3WalDbsize(Wal *pWal){
drh7e9e70b2010-08-16 14:17:59 +00002967 if( pWal && ALWAYS(pWal->readLock>=0) ){
dan763afe62010-08-03 06:42:39 +00002968 return pWal->hdr.nPage;
2969 }
2970 return 0;
dan7c246102010-04-12 19:00:29 +00002971}
2972
adam02d24932012-05-09 22:36:25 +00002973/*
drh73b64e42010-05-30 19:55:15 +00002974** This function starts a write transaction on the WAL.
2975**
2976** A read transaction must have already been started by a prior call
2977** to sqlite3WalBeginReadTransaction().
2978**
2979** If another thread or process has written into the database since
2980** the read transaction was started, then it is not possible for this
2981** thread to write as doing so would cause a fork. So this routine
2982** returns SQLITE_BUSY in that case and no write transaction is started.
2983**
2984** There can only be a single writer active at a time.
2985*/
2986int sqlite3WalBeginWriteTransaction(Wal *pWal){
2987 int rc;
drh73b64e42010-05-30 19:55:15 +00002988
2989 /* Cannot start a write transaction without first holding a read
2990 ** transaction. */
2991 assert( pWal->readLock>=0 );
danc9a90222016-01-09 18:57:35 +00002992 assert( pWal->writeLock==0 && pWal->iReCksum==0 );
drh73b64e42010-05-30 19:55:15 +00002993
dan1e5de5a2010-07-15 18:20:53 +00002994 if( pWal->readOnly ){
2995 return SQLITE_READONLY;
2996 }
2997
drh73b64e42010-05-30 19:55:15 +00002998 /* Only one writer allowed at a time. Get the write lock. Return
2999 ** SQLITE_BUSY if unable.
3000 */
drhab372772015-12-02 16:10:16 +00003001 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
drh73b64e42010-05-30 19:55:15 +00003002 if( rc ){
3003 return rc;
3004 }
drhc99597c2010-05-31 01:41:15 +00003005 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00003006
3007 /* If another connection has written to the database file since the
3008 ** time the read transaction on this connection was started, then
3009 ** the write is disallowed.
3010 */
dan4280eb32010-06-12 12:02:35 +00003011 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
drh73b64e42010-05-30 19:55:15 +00003012 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00003013 pWal->writeLock = 0;
danf73819a2013-06-27 11:46:27 +00003014 rc = SQLITE_BUSY_SNAPSHOT;
drh73b64e42010-05-30 19:55:15 +00003015 }
3016
drh7ed91f22010-04-29 22:34:07 +00003017 return rc;
dan7c246102010-04-12 19:00:29 +00003018}
3019
dan74d6cd82010-04-24 18:44:05 +00003020/*
drh73b64e42010-05-30 19:55:15 +00003021** End a write transaction. The commit has already been done. This
3022** routine merely releases the lock.
3023*/
3024int sqlite3WalEndWriteTransaction(Wal *pWal){
danda9fe0c2010-07-13 18:44:03 +00003025 if( pWal->writeLock ){
3026 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3027 pWal->writeLock = 0;
danc9a90222016-01-09 18:57:35 +00003028 pWal->iReCksum = 0;
danf60b7f32011-12-16 13:24:27 +00003029 pWal->truncateOnCommit = 0;
danda9fe0c2010-07-13 18:44:03 +00003030 }
drh73b64e42010-05-30 19:55:15 +00003031 return SQLITE_OK;
3032}
3033
3034/*
dan74d6cd82010-04-24 18:44:05 +00003035** If any data has been written (but not committed) to the log file, this
3036** function moves the write-pointer back to the start of the transaction.
3037**
3038** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00003039** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00003040** other than SQLITE_OK, it is not invoked again and the error code is
3041** returned to the caller.
3042**
3043** Otherwise, if the callback function does not return an error, this
3044** function returns SQLITE_OK.
3045*/
drh7ed91f22010-04-29 22:34:07 +00003046int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00003047 int rc = SQLITE_OK;
drh7e9e70b2010-08-16 14:17:59 +00003048 if( ALWAYS(pWal->writeLock) ){
drh027a1282010-05-19 01:53:53 +00003049 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00003050 Pgno iFrame;
3051
dan5d656852010-06-14 07:53:26 +00003052 /* Restore the clients cache of the wal-index header to the state it
3053 ** was in before the client began writing to the database.
3054 */
dan067f3162010-06-14 10:30:12 +00003055 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
dan5d656852010-06-14 07:53:26 +00003056
3057 for(iFrame=pWal->hdr.mxFrame+1;
drh664f85d2014-11-19 14:05:41 +00003058 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
dan5d656852010-06-14 07:53:26 +00003059 iFrame++
3060 ){
3061 /* This call cannot fail. Unless the page for which the page number
3062 ** is passed as the second argument is (a) in the cache and
3063 ** (b) has an outstanding reference, then xUndo is either a no-op
3064 ** (if (a) is false) or simply expels the page from the cache (if (b)
3065 ** is false).
3066 **
3067 ** If the upper layer is doing a rollback, it is guaranteed that there
3068 ** are no outstanding references to any page other than page 1. And
3069 ** page 1 is never written to the log until the transaction is
3070 ** committed. As a result, the call to xUndo may not fail.
3071 */
dan5d656852010-06-14 07:53:26 +00003072 assert( walFramePgno(pWal, iFrame)!=1 );
3073 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
dan6f150142010-05-21 15:31:56 +00003074 }
dan7eb05752012-10-15 11:28:24 +00003075 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
dan74d6cd82010-04-24 18:44:05 +00003076 }
3077 return rc;
3078}
3079
dan71d89912010-05-24 13:57:42 +00003080/*
3081** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3082** values. This function populates the array with values required to
3083** "rollback" the write position of the WAL handle back to the current
3084** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00003085*/
dan71d89912010-05-24 13:57:42 +00003086void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00003087 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00003088 aWalData[0] = pWal->hdr.mxFrame;
3089 aWalData[1] = pWal->hdr.aFrameCksum[0];
3090 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00003091 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00003092}
3093
dan71d89912010-05-24 13:57:42 +00003094/*
3095** Move the write position of the WAL back to the point identified by
3096** the values in the aWalData[] array. aWalData must point to an array
3097** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3098** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00003099*/
dan71d89912010-05-24 13:57:42 +00003100int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00003101 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00003102
dan6e6bd562010-06-02 18:59:03 +00003103 assert( pWal->writeLock );
3104 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3105
3106 if( aWalData[3]!=pWal->nCkpt ){
3107 /* This savepoint was opened immediately after the write-transaction
3108 ** was started. Right after that, the writer decided to wrap around
3109 ** to the start of the log. Update the savepoint values to match.
3110 */
3111 aWalData[0] = 0;
3112 aWalData[3] = pWal->nCkpt;
3113 }
3114
dan71d89912010-05-24 13:57:42 +00003115 if( aWalData[0]<pWal->hdr.mxFrame ){
dan71d89912010-05-24 13:57:42 +00003116 pWal->hdr.mxFrame = aWalData[0];
3117 pWal->hdr.aFrameCksum[0] = aWalData[1];
3118 pWal->hdr.aFrameCksum[1] = aWalData[2];
dan5d656852010-06-14 07:53:26 +00003119 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00003120 }
dan6e6bd562010-06-02 18:59:03 +00003121
dan4cd78b42010-04-26 16:57:10 +00003122 return rc;
3123}
3124
dan9971e712010-06-01 15:44:57 +00003125/*
3126** This function is called just before writing a set of frames to the log
3127** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3128** to the current log file, it is possible to overwrite the start of the
3129** existing log file with the new frames (i.e. "reset" the log). If so,
3130** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3131** unchanged.
3132**
3133** SQLITE_OK is returned if no error is encountered (regardless of whether
3134** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
drh4533cd02010-10-05 15:41:05 +00003135** if an error occurs.
dan9971e712010-06-01 15:44:57 +00003136*/
3137static int walRestartLog(Wal *pWal){
3138 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00003139 int cnt;
3140
dan13a3cb82010-06-11 19:04:21 +00003141 if( pWal->readLock==0 ){
dan9971e712010-06-01 15:44:57 +00003142 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3143 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3144 if( pInfo->nBackfill>0 ){
drh658d76c2011-02-19 15:22:14 +00003145 u32 salt1;
3146 sqlite3_randomness(4, &salt1);
drhab372772015-12-02 16:10:16 +00003147 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
dan9971e712010-06-01 15:44:57 +00003148 if( rc==SQLITE_OK ){
3149 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3150 ** readers are currently using the WAL), then the transactions
3151 ** frames will overwrite the start of the existing log. Update the
3152 ** wal-index header to reflect this.
3153 **
3154 ** In theory it would be Ok to update the cache of the header only
3155 ** at this point. But updating the actual wal-index header is also
3156 ** safe and means there is no special case for sqlite3WalUndo()
danf26a1542014-12-02 19:04:54 +00003157 ** to handle if this transaction is rolled back. */
dan0fe8c1b2014-12-02 19:35:09 +00003158 walRestartHdr(pWal, salt1);
dan9971e712010-06-01 15:44:57 +00003159 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
drh4533cd02010-10-05 15:41:05 +00003160 }else if( rc!=SQLITE_BUSY ){
3161 return rc;
dan9971e712010-06-01 15:44:57 +00003162 }
3163 }
3164 walUnlockShared(pWal, WAL_READ_LOCK(0));
3165 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00003166 cnt = 0;
dan9971e712010-06-01 15:44:57 +00003167 do{
3168 int notUsed;
drhaab4c022010-06-02 14:45:51 +00003169 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00003170 }while( rc==WAL_RETRY );
drhc90e0812011-02-19 17:02:44 +00003171 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
drhab1cc742011-02-19 16:51:45 +00003172 testcase( (rc&0xff)==SQLITE_IOERR );
3173 testcase( rc==SQLITE_PROTOCOL );
3174 testcase( rc==SQLITE_OK );
dan9971e712010-06-01 15:44:57 +00003175 }
3176 return rc;
3177}
3178
drh88f975a2011-12-16 19:34:36 +00003179/*
drhd992b152011-12-20 20:13:25 +00003180** Information about the current state of the WAL file and where
3181** the next fsync should occur - passed from sqlite3WalFrames() into
3182** walWriteToLog().
3183*/
3184typedef struct WalWriter {
3185 Wal *pWal; /* The complete WAL information */
3186 sqlite3_file *pFd; /* The WAL file to which we write */
3187 sqlite3_int64 iSyncPoint; /* Fsync at this offset */
3188 int syncFlags; /* Flags for the fsync */
3189 int szPage; /* Size of one page */
adam0cb33b62012-04-02 23:35:45 +00003190#if defined(SQLITE_WRITE_WALFRAME_PREBUFFERED)
3191 void *aFrameBuf; /* Frame buffer */
3192 size_t szFrameBuf; /* Size of frame buffer */
3193#endif
drhd992b152011-12-20 20:13:25 +00003194} WalWriter;
3195
3196/*
drh88f975a2011-12-16 19:34:36 +00003197** Write iAmt bytes of content into the WAL file beginning at iOffset.
drhd992b152011-12-20 20:13:25 +00003198** Do a sync when crossing the p->iSyncPoint boundary.
drh88f975a2011-12-16 19:34:36 +00003199**
drhd992b152011-12-20 20:13:25 +00003200** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3201** first write the part before iSyncPoint, then sync, then write the
3202** rest.
drh88f975a2011-12-16 19:34:36 +00003203*/
3204static int walWriteToLog(
drhd992b152011-12-20 20:13:25 +00003205 WalWriter *p, /* WAL to write to */
drh88f975a2011-12-16 19:34:36 +00003206 void *pContent, /* Content to be written */
3207 int iAmt, /* Number of bytes to write */
3208 sqlite3_int64 iOffset /* Start writing at this offset */
3209){
3210 int rc;
drhd992b152011-12-20 20:13:25 +00003211 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3212 int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3213 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
drh88f975a2011-12-16 19:34:36 +00003214 if( rc ) return rc;
drhd992b152011-12-20 20:13:25 +00003215 iOffset += iFirstAmt;
3216 iAmt -= iFirstAmt;
drh88f975a2011-12-16 19:34:36 +00003217 pContent = (void*)(iFirstAmt + (char*)pContent);
drhdaaae7b2017-08-25 01:14:43 +00003218 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3219 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
drhcc8d10a2011-12-23 02:07:10 +00003220 if( iAmt==0 || rc ) return rc;
drh88f975a2011-12-16 19:34:36 +00003221 }
drhd992b152011-12-20 20:13:25 +00003222 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3223 return rc;
3224}
3225
3226/*
3227** Write out a single frame of the WAL
3228*/
3229static int walWriteOneFrame(
3230 WalWriter *p, /* Where to write the frame */
3231 PgHdr *pPage, /* The page of the frame to be written */
3232 int nTruncate, /* The commit flag. Usually 0. >0 for commit */
3233 sqlite3_int64 iOffset /* Byte offset at which to write */
3234){
3235 int rc; /* Result code from subfunctions */
3236 void *pData; /* Data actually written */
adam0cb33b62012-04-02 23:35:45 +00003237#if defined(SQLITE_WRITE_WALFRAME_PREBUFFERED)
drh79911372016-03-08 16:35:17 +00003238 u8 *aFrame = p->aFrameBuf;
adam0cb33b62012-04-02 23:35:45 +00003239#else
drhd992b152011-12-20 20:13:25 +00003240 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
adam0cb33b62012-04-02 23:35:45 +00003241#endif
3242
drhd992b152011-12-20 20:13:25 +00003243#if defined(SQLITE_HAS_CODEC)
mistachkinfad30392016-02-13 23:43:46 +00003244 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT;
drhd992b152011-12-20 20:13:25 +00003245#else
3246 pData = pPage->pData;
3247#endif
adam0cb33b62012-04-02 23:35:45 +00003248
drhd992b152011-12-20 20:13:25 +00003249 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
adam0cb33b62012-04-02 23:35:45 +00003250
3251#if defined(SQLITE_WRITE_WALFRAME_PREBUFFERED)
3252 memcpy(&aFrame[WAL_FRAME_HDRSIZE], pData, p->szPage);
3253 rc = walWriteToLog(p, aFrame, (p->szPage + WAL_FRAME_HDRSIZE), iOffset);
3254#else
drhd992b152011-12-20 20:13:25 +00003255 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3256 if( rc ) return rc;
3257 /* Write the page data */
3258 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
adam0cb33b62012-04-02 23:35:45 +00003259#endif
drh88f975a2011-12-16 19:34:36 +00003260 return rc;
3261}
3262
dand6f7c972016-01-09 16:39:29 +00003263/*
3264** This function is called as part of committing a transaction within which
3265** one or more frames have been overwritten. It updates the checksums for
danc9a90222016-01-09 18:57:35 +00003266** all frames written to the wal file by the current transaction starting
3267** with the earliest to have been overwritten.
dand6f7c972016-01-09 16:39:29 +00003268**
3269** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3270*/
danc9a90222016-01-09 18:57:35 +00003271static int walRewriteChecksums(Wal *pWal, u32 iLast){
dand6f7c972016-01-09 16:39:29 +00003272 const int szPage = pWal->szPage;/* Database page size */
3273 int rc = SQLITE_OK; /* Return code */
3274 u8 *aBuf; /* Buffer to load data from wal file into */
3275 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */
3276 u32 iRead; /* Next frame to read from wal file */
danc9a90222016-01-09 18:57:35 +00003277 i64 iCksumOff;
dand6f7c972016-01-09 16:39:29 +00003278
3279 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
mistachkinfad30392016-02-13 23:43:46 +00003280 if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
dand6f7c972016-01-09 16:39:29 +00003281
danc9a90222016-01-09 18:57:35 +00003282 /* Find the checksum values to use as input for the recalculating the
3283 ** first checksum. If the first frame is frame 1 (implying that the current
3284 ** transaction restarted the wal file), these values must be read from the
3285 ** wal-file header. Otherwise, read them from the frame header of the
3286 ** previous frame. */
3287 assert( pWal->iReCksum>0 );
3288 if( pWal->iReCksum==1 ){
3289 iCksumOff = 24;
dand6f7c972016-01-09 16:39:29 +00003290 }else{
danc9a90222016-01-09 18:57:35 +00003291 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
dand6f7c972016-01-09 16:39:29 +00003292 }
danc9a90222016-01-09 18:57:35 +00003293 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3294 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3295 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
dand6f7c972016-01-09 16:39:29 +00003296
danc9a90222016-01-09 18:57:35 +00003297 iRead = pWal->iReCksum;
3298 pWal->iReCksum = 0;
3299 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
dand6f7c972016-01-09 16:39:29 +00003300 i64 iOff = walFrameOffset(iRead, szPage);
3301 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3302 if( rc==SQLITE_OK ){
3303 u32 iPgno, nDbSize;
3304 iPgno = sqlite3Get4byte(aBuf);
3305 nDbSize = sqlite3Get4byte(&aBuf[4]);
3306
3307 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3308 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3309 }
3310 }
3311
3312 sqlite3_free(aBuf);
3313 return rc;
3314}
3315
dan7c246102010-04-12 19:00:29 +00003316/*
dan4cd78b42010-04-26 16:57:10 +00003317** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00003318** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00003319*/
drhc438efd2010-04-26 00:19:45 +00003320int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00003321 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00003322 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00003323 PgHdr *pList, /* List of dirty pages to write */
3324 Pgno nTruncate, /* Database size after this commit */
3325 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00003326 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00003327){
dan7c246102010-04-12 19:00:29 +00003328 int rc; /* Used to catch return codes */
3329 u32 iFrame; /* Next frame address */
dan7c246102010-04-12 19:00:29 +00003330 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00003331 PgHdr *pLast = 0; /* Last frame in list */
drhd992b152011-12-20 20:13:25 +00003332 int nExtra = 0; /* Number of extra copies of last page */
3333 int szFrame; /* The size of a single frame */
3334 i64 iOffset; /* Next byte to write in WAL file */
3335 WalWriter w; /* The writer */
dand6f7c972016-01-09 16:39:29 +00003336 u32 iFirst = 0; /* First frame that may be overwritten */
3337 WalIndexHdr *pLive; /* Pointer to shared header */
dan7c246102010-04-12 19:00:29 +00003338
dan7c246102010-04-12 19:00:29 +00003339 assert( pList );
drh73b64e42010-05-30 19:55:15 +00003340 assert( pWal->writeLock );
dan7c246102010-04-12 19:00:29 +00003341
drh41209942011-12-20 13:13:09 +00003342 /* If this frame set completes a transaction, then nTruncate>0. If
3343 ** nTruncate==0 then this frame set does not complete the transaction. */
3344 assert( (isCommit!=0)==(nTruncate!=0) );
3345
drhc74c3332010-05-31 12:15:19 +00003346#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3347 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3348 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3349 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3350 }
3351#endif
3352
dand6f7c972016-01-09 16:39:29 +00003353 pLive = (WalIndexHdr*)walIndexHdr(pWal);
drhb7c2f862016-01-09 23:55:47 +00003354 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
dand6f7c972016-01-09 16:39:29 +00003355 iFirst = pLive->mxFrame+1;
3356 }
3357
dan9971e712010-06-01 15:44:57 +00003358 /* See if it is possible to write these frames into the start of the
3359 ** log file, instead of appending to it at pWal->hdr.mxFrame.
3360 */
3361 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
dan9971e712010-06-01 15:44:57 +00003362 return rc;
3363 }
dan9971e712010-06-01 15:44:57 +00003364
drha2a42012010-05-18 18:01:08 +00003365 /* If this is the first frame written into the log, write the WAL
3366 ** header to the start of the WAL file. See comments at the top of
3367 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00003368 */
drh027a1282010-05-19 01:53:53 +00003369 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00003370 if( iFrame==0 ){
dan10f5a502010-06-23 15:55:43 +00003371 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
3372 u32 aCksum[2]; /* Checksum for wal-header */
3373
danb8fd6c22010-05-24 10:39:36 +00003374 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
dan10f5a502010-06-23 15:55:43 +00003375 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
drh23ea97b2010-05-20 16:45:58 +00003376 sqlite3Put4byte(&aWalHdr[8], szPage);
3377 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drhd2980312011-12-17 01:31:44 +00003378 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
drh7e263722010-05-20 21:21:09 +00003379 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
dan10f5a502010-06-23 15:55:43 +00003380 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3381 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3382 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3383
drhb2eced52010-08-12 02:41:12 +00003384 pWal->szPage = szPage;
dan10f5a502010-06-23 15:55:43 +00003385 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3386 pWal->hdr.aFrameCksum[0] = aCksum[0];
3387 pWal->hdr.aFrameCksum[1] = aCksum[1];
danf60b7f32011-12-16 13:24:27 +00003388 pWal->truncateOnCommit = 1;
dan10f5a502010-06-23 15:55:43 +00003389
drh23ea97b2010-05-20 16:45:58 +00003390 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00003391 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00003392 if( rc!=SQLITE_OK ){
3393 return rc;
3394 }
drhd992b152011-12-20 20:13:25 +00003395
3396 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3397 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
3398 ** an out-of-order write following a WAL restart could result in
3399 ** database corruption. See the ticket:
3400 **
drh9c6e07d2017-08-24 20:54:42 +00003401 ** https://sqlite.org/src/info/ff5be73dee
drhd992b152011-12-20 20:13:25 +00003402 */
drhdaaae7b2017-08-25 01:14:43 +00003403 if( pWal->syncHeader ){
3404 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
drhd992b152011-12-20 20:13:25 +00003405 if( rc ) return rc;
3406 }
dan97a31352010-04-16 13:59:31 +00003407 }
shanehbd2aaf92010-09-01 02:38:21 +00003408 assert( (int)pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00003409
drhd992b152011-12-20 20:13:25 +00003410 /* Setup information needed to write frames into the WAL */
3411 w.pWal = pWal;
3412 w.pFd = pWal->pWalFd;
3413 w.iSyncPoint = 0;
3414 w.syncFlags = sync_flags;
3415 w.szPage = szPage;
3416 iOffset = walFrameOffset(iFrame+1, szPage);
3417 szFrame = szPage + WAL_FRAME_HDRSIZE;
adam0cb33b62012-04-02 23:35:45 +00003418#if defined(SQLITE_WRITE_WALFRAME_PREBUFFERED)
3419 w.aFrameBuf = (void *)malloc(szFrame);
3420 if( NULL==w.aFrameBuf ){
3421 return SQLITE_NOMEM;
3422 }
3423#endif
3424
dan7c246102010-04-12 19:00:29 +00003425
drhd992b152011-12-20 20:13:25 +00003426 /* Write all frames into the log file exactly once */
dan7c246102010-04-12 19:00:29 +00003427 for(p=pList; p; p=p->pDirty){
drhd992b152011-12-20 20:13:25 +00003428 int nDbSize; /* 0 normally. Positive == commit flag */
dand6f7c972016-01-09 16:39:29 +00003429
3430 /* Check if this page has already been written into the wal file by
3431 ** the current transaction. If so, overwrite the existing frame and
3432 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3433 ** checksums must be recomputed when the transaction is committed. */
3434 if( iFirst && (p->pDirty || isCommit==0) ){
3435 u32 iWrite = 0;
drh89970872016-01-11 00:52:32 +00003436 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3437 assert( rc==SQLITE_OK || iWrite==0 );
dand6f7c972016-01-09 16:39:29 +00003438 if( iWrite>=iFirst ){
3439 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
drh8e0cea12016-02-15 15:06:47 +00003440 void *pData;
danc9a90222016-01-09 18:57:35 +00003441 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3442 pWal->iReCksum = iWrite;
3443 }
drh8e0cea12016-02-15 15:06:47 +00003444#if defined(SQLITE_HAS_CODEC)
3445 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
3446#else
3447 pData = p->pData;
3448#endif
3449 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
dand6f7c972016-01-09 16:39:29 +00003450 if( rc ) return rc;
3451 p->flags &= ~PGHDR_WAL_APPEND;
3452 continue;
3453 }
3454 }
3455
drhd992b152011-12-20 20:13:25 +00003456 iFrame++;
3457 assert( iOffset==walFrameOffset(iFrame, szPage) );
3458 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3459 rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
drh264b78a2016-02-18 01:22:53 +00003460 if( rc ) {
3461#if defined(SQLITE_WRITE_WALFRAME_PREBUFFERED)
3462 free(w.aFrameBuf);
3463#endif
3464 return rc;
3465 }
dan7c246102010-04-12 19:00:29 +00003466 pLast = p;
drhd992b152011-12-20 20:13:25 +00003467 iOffset += szFrame;
dand6f7c972016-01-09 16:39:29 +00003468 p->flags |= PGHDR_WAL_APPEND;
3469 }
3470
3471 /* Recalculate checksums within the wal file if required. */
danc9a90222016-01-09 18:57:35 +00003472 if( isCommit && pWal->iReCksum ){
3473 rc = walRewriteChecksums(pWal, iFrame);
dand6f7c972016-01-09 16:39:29 +00003474 if( rc ) return rc;
dan7c246102010-04-12 19:00:29 +00003475 }
3476
drhd992b152011-12-20 20:13:25 +00003477 /* If this is the end of a transaction, then we might need to pad
3478 ** the transaction and/or sync the WAL file.
3479 **
3480 ** Padding and syncing only occur if this set of frames complete a
3481 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
peter.d.reid60ec9142014-09-06 16:39:46 +00003482 ** or synchronous==OFF, then no padding or syncing are needed.
drhd992b152011-12-20 20:13:25 +00003483 **
drhcb15f352011-12-23 01:04:17 +00003484 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3485 ** needed and only the sync is done. If padding is needed, then the
3486 ** final frame is repeated (with its commit mark) until the next sector
drhd992b152011-12-20 20:13:25 +00003487 ** boundary is crossed. Only the part of the WAL prior to the last
3488 ** sector boundary is synced; the part of the last frame that extends
3489 ** past the sector boundary is written after the sync.
3490 */
drhdaaae7b2017-08-25 01:14:43 +00003491 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
danfe912512016-05-24 16:20:51 +00003492 int bSync = 1;
drh374f4a02011-12-17 20:02:11 +00003493 if( pWal->padToSectorBoundary ){
danc9a53262012-10-01 06:50:55 +00003494 int sectorSize = sqlite3SectorSize(pWal->pWalFd);
drhd992b152011-12-20 20:13:25 +00003495 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
danfe912512016-05-24 16:20:51 +00003496 bSync = (w.iSyncPoint==iOffset);
3497 testcase( bSync );
drhd992b152011-12-20 20:13:25 +00003498 while( iOffset<w.iSyncPoint ){
3499 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
drh264b78a2016-02-18 01:22:53 +00003500 if( rc ) {
3501#if defined(SQLITE_WRITE_WALFRAME_PREBUFFERED)
3502 free(w.aFrameBuf);
3503#endif
3504 return rc;
3505 }
drhd992b152011-12-20 20:13:25 +00003506 iOffset += szFrame;
3507 nExtra++;
dan7c246102010-04-12 19:00:29 +00003508 }
danfe912512016-05-24 16:20:51 +00003509 }
3510 if( bSync ){
3511 assert( rc==SQLITE_OK );
drhdaaae7b2017-08-25 01:14:43 +00003512 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
dan7c246102010-04-12 19:00:29 +00003513 }
dan7c246102010-04-12 19:00:29 +00003514 }
dan7c246102010-04-12 19:00:29 +00003515
adam0cb33b62012-04-02 23:35:45 +00003516#if defined(SQLITE_WRITE_WALFRAME_PREBUFFERED)
3517 free(w.aFrameBuf);
3518#endif
drhd992b152011-12-20 20:13:25 +00003519 /* If this frame set completes the first transaction in the WAL and
3520 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3521 ** journal size limit, if possible.
3522 */
danf60b7f32011-12-16 13:24:27 +00003523 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3524 i64 sz = pWal->mxWalSize;
drhd992b152011-12-20 20:13:25 +00003525 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3526 sz = walFrameOffset(iFrame+nExtra+1, szPage);
danf60b7f32011-12-16 13:24:27 +00003527 }
3528 walLimitSize(pWal, sz);
3529 pWal->truncateOnCommit = 0;
dan7c246102010-04-12 19:00:29 +00003530 }
3531
drhe730fec2010-05-18 12:56:50 +00003532 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00003533 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00003534 ** guarantees that there are no other writers, and no data that may
3535 ** be in use by existing readers is being overwritten.
3536 */
drh027a1282010-05-19 01:53:53 +00003537 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00003538 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dand6f7c972016-01-09 16:39:29 +00003539 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
dan7c246102010-04-12 19:00:29 +00003540 iFrame++;
danc7991bd2010-05-05 19:04:59 +00003541 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00003542 }
drh20e226d2012-01-01 13:58:53 +00003543 while( rc==SQLITE_OK && nExtra>0 ){
dan7c246102010-04-12 19:00:29 +00003544 iFrame++;
drhd992b152011-12-20 20:13:25 +00003545 nExtra--;
danc7991bd2010-05-05 19:04:59 +00003546 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00003547 }
3548
danc7991bd2010-05-05 19:04:59 +00003549 if( rc==SQLITE_OK ){
3550 /* Update the private copy of the header. */
shaneh1df2db72010-08-18 02:28:48 +00003551 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00003552 testcase( szPage<=32768 );
3553 testcase( szPage>=65536 );
drh027a1282010-05-19 01:53:53 +00003554 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00003555 if( isCommit ){
3556 pWal->hdr.iChange++;
3557 pWal->hdr.nPage = nTruncate;
3558 }
danc7991bd2010-05-05 19:04:59 +00003559 /* If this is a commit, update the wal-index header too. */
3560 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00003561 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00003562 pWal->iCallback = iFrame;
3563 }
dan7c246102010-04-12 19:00:29 +00003564 }
danc7991bd2010-05-05 19:04:59 +00003565
drhc74c3332010-05-31 12:15:19 +00003566 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00003567 return rc;
dan7c246102010-04-12 19:00:29 +00003568}
3569
3570/*
drh73b64e42010-05-30 19:55:15 +00003571** This routine is called to implement sqlite3_wal_checkpoint() and
3572** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00003573**
drh73b64e42010-05-30 19:55:15 +00003574** Obtain a CHECKPOINT lock and then backfill as much information as
3575** we can from WAL into the database.
dana58f26f2010-11-16 18:56:51 +00003576**
3577** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3578** callback. In this case this function runs a blocking checkpoint.
dan7c246102010-04-12 19:00:29 +00003579*/
drhc438efd2010-04-26 00:19:45 +00003580int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00003581 Wal *pWal, /* Wal connection */
dan7fb89902016-08-12 16:21:15 +00003582 sqlite3 *db, /* Check this handle's interrupt flag */
drhdd90d7e2014-12-03 19:25:41 +00003583 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */
dana58f26f2010-11-16 18:56:51 +00003584 int (*xBusy)(void*), /* Function to call when busy */
3585 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00003586 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00003587 int nBuf, /* Size of temporary buffer */
dancdc1f042010-11-18 12:11:05 +00003588 u8 *zBuf, /* Temporary buffer to use */
3589 int *pnLog, /* OUT: Number of frames in WAL */
3590 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
dan7c246102010-04-12 19:00:29 +00003591){
danb9bf16b2010-04-14 11:23:30 +00003592 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00003593 int isChanged = 0; /* True if a new wal-index header is loaded */
danf2b8dd52010-11-18 19:28:01 +00003594 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
drhdd90d7e2014-12-03 19:25:41 +00003595 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */
dan7c246102010-04-12 19:00:29 +00003596
dand54ff602010-05-31 11:16:30 +00003597 assert( pWal->ckptLock==0 );
dana58f26f2010-11-16 18:56:51 +00003598 assert( pWal->writeLock==0 );
dan39c79f52010-04-15 10:58:51 +00003599
drhdd90d7e2014-12-03 19:25:41 +00003600 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3601 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3602 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3603
drh66dfec8b2011-06-01 20:01:49 +00003604 if( pWal->readOnly ) return SQLITE_READONLY;
drhc74c3332010-05-31 12:15:19 +00003605 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drhdd90d7e2014-12-03 19:25:41 +00003606
3607 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3608 ** "checkpoint" lock on the database file. */
drhab372772015-12-02 16:10:16 +00003609 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
drh73b64e42010-05-30 19:55:15 +00003610 if( rc ){
drhdd90d7e2014-12-03 19:25:41 +00003611 /* EVIDENCE-OF: R-10421-19736 If any other process is running a
3612 ** checkpoint operation at the same time, the lock cannot be obtained and
3613 ** SQLITE_BUSY is returned.
3614 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3615 ** it will not be invoked in this case.
3616 */
3617 testcase( rc==SQLITE_BUSY );
3618 testcase( xBusy!=0 );
danb9bf16b2010-04-14 11:23:30 +00003619 return rc;
3620 }
dand54ff602010-05-31 11:16:30 +00003621 pWal->ckptLock = 1;
dan64d039e2010-04-13 19:27:31 +00003622
drhdd90d7e2014-12-03 19:25:41 +00003623 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3624 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3625 ** file.
danf2b8dd52010-11-18 19:28:01 +00003626 **
drhdd90d7e2014-12-03 19:25:41 +00003627 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3628 ** immediately, and a busy-handler is configured, it is invoked and the
3629 ** writer lock retried until either the busy-handler returns 0 or the
3630 ** lock is successfully obtained.
dana58f26f2010-11-16 18:56:51 +00003631 */
dancdc1f042010-11-18 12:11:05 +00003632 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dana58f26f2010-11-16 18:56:51 +00003633 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
danf2b8dd52010-11-18 19:28:01 +00003634 if( rc==SQLITE_OK ){
3635 pWal->writeLock = 1;
3636 }else if( rc==SQLITE_BUSY ){
3637 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
drhdd90d7e2014-12-03 19:25:41 +00003638 xBusy2 = 0;
danf2b8dd52010-11-18 19:28:01 +00003639 rc = SQLITE_OK;
3640 }
danb9bf16b2010-04-14 11:23:30 +00003641 }
dana58f26f2010-11-16 18:56:51 +00003642
danf2b8dd52010-11-18 19:28:01 +00003643 /* Read the wal-index header. */
drh7ed91f22010-04-29 22:34:07 +00003644 if( rc==SQLITE_OK ){
dana58f26f2010-11-16 18:56:51 +00003645 rc = walIndexReadHdr(pWal, &isChanged);
danf55a4cf2013-04-01 16:56:41 +00003646 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3647 sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3648 }
dana58f26f2010-11-16 18:56:51 +00003649 }
danf2b8dd52010-11-18 19:28:01 +00003650
3651 /* Copy data from the log to the database file. */
dan9c5e3682011-02-07 15:12:12 +00003652 if( rc==SQLITE_OK ){
dand6f7c972016-01-09 16:39:29 +00003653
dan9c5e3682011-02-07 15:12:12 +00003654 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
danf2b8dd52010-11-18 19:28:01 +00003655 rc = SQLITE_CORRUPT_BKPT;
3656 }else{
dan7fb89902016-08-12 16:21:15 +00003657 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
dan9c5e3682011-02-07 15:12:12 +00003658 }
3659
3660 /* If no error occurred, set the output variables. */
3661 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
danf2b8dd52010-11-18 19:28:01 +00003662 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
dan9c5e3682011-02-07 15:12:12 +00003663 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
danf2b8dd52010-11-18 19:28:01 +00003664 }
danb9bf16b2010-04-14 11:23:30 +00003665 }
danf2b8dd52010-11-18 19:28:01 +00003666
dan31c03902010-04-29 14:51:33 +00003667 if( isChanged ){
3668 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00003669 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00003670 ** out of date. So zero the cached wal-index header to ensure that
3671 ** next time the pager opens a snapshot on this database it knows that
3672 ** the cache needs to be reset.
3673 */
3674 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3675 }
danb9bf16b2010-04-14 11:23:30 +00003676
3677 /* Release the locks. */
dana58f26f2010-11-16 18:56:51 +00003678 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00003679 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00003680 pWal->ckptLock = 0;
drhc74c3332010-05-31 12:15:19 +00003681 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
danf2b8dd52010-11-18 19:28:01 +00003682 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
dan7c246102010-04-12 19:00:29 +00003683}
3684
drh7ed91f22010-04-29 22:34:07 +00003685/* Return the value to pass to a sqlite3_wal_hook callback, the
3686** number of frames in the WAL at the point of the last commit since
3687** sqlite3WalCallback() was called. If no commits have occurred since
3688** the last call, then return 0.
3689*/
3690int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00003691 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00003692 if( pWal ){
3693 ret = pWal->iCallback;
3694 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00003695 }
3696 return (int)ret;
3697}
dan55437592010-05-11 12:19:26 +00003698
3699/*
drh61e4ace2010-05-31 20:28:37 +00003700** This function is called to change the WAL subsystem into or out
3701** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00003702**
drh61e4ace2010-05-31 20:28:37 +00003703** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3704** into locking_mode=NORMAL. This means that we must acquire a lock
3705** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
3706** or if the acquisition of the lock fails, then return 0. If the
3707** transition out of exclusive-mode is successful, return 1. This
3708** operation must occur while the pager is still holding the exclusive
3709** lock on the main database file.
dan55437592010-05-11 12:19:26 +00003710**
drh61e4ace2010-05-31 20:28:37 +00003711** If op is one, then change from locking_mode=NORMAL into
3712** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
3713** be released. Return 1 if the transition is made and 0 if the
3714** WAL is already in exclusive-locking mode - meaning that this
3715** routine is a no-op. The pager must already hold the exclusive lock
3716** on the main database file before invoking this operation.
3717**
3718** If op is negative, then do a dry-run of the op==1 case but do
dan8c408002010-11-01 17:38:24 +00003719** not actually change anything. The pager uses this to see if it
drh61e4ace2010-05-31 20:28:37 +00003720** should acquire the database exclusive lock prior to invoking
3721** the op==1 case.
dan55437592010-05-11 12:19:26 +00003722*/
3723int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00003724 int rc;
drhaab4c022010-06-02 14:45:51 +00003725 assert( pWal->writeLock==0 );
dan8c408002010-11-01 17:38:24 +00003726 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
dan3cac5dc2010-06-04 18:37:59 +00003727
3728 /* pWal->readLock is usually set, but might be -1 if there was a
3729 ** prior error while attempting to acquire are read-lock. This cannot
3730 ** happen if the connection is actually in exclusive mode (as no xShmLock
3731 ** locks are taken in this case). Nor should the pager attempt to
3732 ** upgrade to exclusive-mode following such an error.
3733 */
drhaab4c022010-06-02 14:45:51 +00003734 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00003735 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3736
drh61e4ace2010-05-31 20:28:37 +00003737 if( op==0 ){
drhc05a0632017-11-11 20:11:01 +00003738 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
3739 pWal->exclusiveMode = WAL_NORMAL_MODE;
dan3cac5dc2010-06-04 18:37:59 +00003740 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drhc05a0632017-11-11 20:11:01 +00003741 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
drh61e4ace2010-05-31 20:28:37 +00003742 }
drhc05a0632017-11-11 20:11:01 +00003743 rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
drh61e4ace2010-05-31 20:28:37 +00003744 }else{
drhaab4c022010-06-02 14:45:51 +00003745 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00003746 rc = 0;
3747 }
3748 }else if( op>0 ){
drhc05a0632017-11-11 20:11:01 +00003749 assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
drhaab4c022010-06-02 14:45:51 +00003750 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00003751 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
drhc05a0632017-11-11 20:11:01 +00003752 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
drh61e4ace2010-05-31 20:28:37 +00003753 rc = 1;
3754 }else{
drhc05a0632017-11-11 20:11:01 +00003755 rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
dan55437592010-05-11 12:19:26 +00003756 }
drh61e4ace2010-05-31 20:28:37 +00003757 return rc;
dan55437592010-05-11 12:19:26 +00003758}
3759
dan8c408002010-11-01 17:38:24 +00003760/*
3761** Return true if the argument is non-NULL and the WAL module is using
3762** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3763** WAL module is using shared-memory, return false.
3764*/
3765int sqlite3WalHeapMemory(Wal *pWal){
3766 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3767}
3768
danfc1acf32015-12-05 20:51:54 +00003769#ifdef SQLITE_ENABLE_SNAPSHOT
drhe230a892015-12-10 22:48:22 +00003770/* Create a snapshot object. The content of a snapshot is opaque to
3771** every other subsystem, so the WAL module can put whatever it needs
3772** in the object.
3773*/
danfc1acf32015-12-05 20:51:54 +00003774int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3775 int rc = SQLITE_OK;
3776 WalIndexHdr *pRet;
drhba6eb872016-11-15 17:37:56 +00003777 static const u32 aZero[4] = { 0, 0, 0, 0 };
danfc1acf32015-12-05 20:51:54 +00003778
3779 assert( pWal->readLock>=0 && pWal->writeLock==0 );
3780
drhba6eb872016-11-15 17:37:56 +00003781 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
3782 *ppSnapshot = 0;
3783 return SQLITE_ERROR;
3784 }
danfc1acf32015-12-05 20:51:54 +00003785 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3786 if( pRet==0 ){
mistachkinfad30392016-02-13 23:43:46 +00003787 rc = SQLITE_NOMEM_BKPT;
danfc1acf32015-12-05 20:51:54 +00003788 }else{
3789 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3790 *ppSnapshot = (sqlite3_snapshot*)pRet;
3791 }
3792
3793 return rc;
3794}
3795
drhe230a892015-12-10 22:48:22 +00003796/* Try to open on pSnapshot when the next read-transaction starts
3797*/
danfc1acf32015-12-05 20:51:54 +00003798void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){
3799 pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3800}
danad2d5ba2016-04-11 19:59:52 +00003801
3802/*
3803** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
3804** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
3805*/
3806int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
3807 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
3808 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
3809
3810 /* aSalt[0] is a copy of the value stored in the wal file header. It
3811 ** is incremented each time the wal file is restarted. */
3812 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
3813 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
3814 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
3815 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
3816 return 0;
3817}
danfc1acf32015-12-05 20:51:54 +00003818#endif /* SQLITE_ENABLE_SNAPSHOT */
3819
drh70708602012-02-24 14:33:28 +00003820#ifdef SQLITE_ENABLE_ZIPVFS
danb3bdc722012-02-23 15:35:49 +00003821/*
3822** If the argument is not NULL, it points to a Wal object that holds a
3823** read-lock. This function returns the database page-size if it is known,
3824** or zero if it is not (or if pWal is NULL).
3825*/
3826int sqlite3WalFramesize(Wal *pWal){
danb3bdc722012-02-23 15:35:49 +00003827 assert( pWal==0 || pWal->readLock>=0 );
3828 return (pWal ? pWal->szPage : 0);
3829}
drh70708602012-02-24 14:33:28 +00003830#endif
danb3bdc722012-02-23 15:35:49 +00003831
drh21d61852016-01-08 02:27:01 +00003832/* Return the sqlite3_file object for the WAL file
3833*/
3834sqlite3_file *sqlite3WalFile(Wal *pWal){
3835 return pWal->pWalFd;
3836}
3837
dan5cf53532010-05-01 16:40:20 +00003838#endif /* #ifndef SQLITE_OMIT_WAL */