blob: 18f2a89ebb1eb03721cf58912df909209597ede0 [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drhcd285082010-06-23 22:00:35 +000034** The WAL header is 32 bytes in size and consists of the following eight
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan10f5a502010-06-23 15:55:43 +000043** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
dan97a31352010-04-16 13:59:31 +000045**
drh23ea97b2010-05-20 16:45:58 +000046** Immediately following the wal-header are zero or more frames. Each
47** frame consists of a 24-byte frame-header followed by a <page-size> bytes
drhcd285082010-06-23 22:00:35 +000048** of page data. The frame-header is six big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000049** integer values, as follows:
50**
dan3de777f2010-04-17 12:31:37 +000051** 0: Page number.
52** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000053** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000054** 8: Salt-1 (copied from the header)
55** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000056** 16: Checksum-1.
57** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000058**
drh7e263722010-05-20 21:21:09 +000059** A frame is considered valid if and only if the following conditions are
60** true:
61**
62** (1) The salt-1 and salt-2 values in the frame-header match
63** salt values in the wal-header
64**
65** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000066** exactly match the checksum computed consecutively on the
67** WAL header and the first 8 bytes and the content of all frames
68** up to and including the current frame.
69**
70** The checksum is computed using 32-bit big-endian integers if the
71** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000073** The checksum values are always stored in the frame header in a
74** big-endian format regardless of which byte order is used to compute
75** the checksum. The checksum is computed by interpreting the input as
76** an even number of unsigned 32-bit integers: x[0] through x[N]. The
drhffca4302010-06-15 11:21:54 +000077** algorithm used for the checksum is as follows:
drh51b21b12010-05-25 15:53:31 +000078**
79** for i from 0 to n-1 step 2:
80** s0 += x[i] + s1;
81** s1 += x[i+1] + s0;
82** endfor
drh7e263722010-05-20 21:21:09 +000083**
drhcd285082010-06-23 22:00:35 +000084** Note that s0 and s1 are both weighted checksums using fibonacci weights
85** in reverse order (the largest fibonacci weight occurs on the first element
86** of the sequence being summed.) The s1 value spans all 32-bit
87** terms of the sequence whereas s0 omits the final term.
88**
drh7e263722010-05-20 21:21:09 +000089** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90** WAL is transferred into the database, then the database is VFS.xSync-ed.
drhffca4302010-06-15 11:21:54 +000091** The VFS.xSync operations serve as write barriers - all writes launched
drh7e263722010-05-20 21:21:09 +000092** before the xSync must complete before any write that launches after the
93** xSync begins.
94**
95** After each checkpoint, the salt-1 value is incremented and the salt-2
96** value is randomized. This prevents old and new frames in the WAL from
97** being considered valid at the same time and being checkpointing together
98** following a crash.
99**
drh29d4dbe2010-05-18 23:29:52 +0000100** READER ALGORITHM
101**
102** To read a page from the database (call it page number P), a reader
103** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +0000104** last valid instance of page P that is a followed by a commit frame
105** or is a commit frame itself becomes the value read. If the WAL
106** contains no copies of page P that are valid and which are a commit
107** frame or are followed by a commit frame, then page P is read from
108** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000109**
drh73b64e42010-05-30 19:55:15 +0000110** To start a read transaction, the reader records the index of the last
111** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112** for all subsequent read operations. New transactions can be appended
113** to the WAL, but as long as the reader uses its original mxFrame value
114** and ignores the newly appended content, it will see a consistent snapshot
115** of the database from a single point in time. This technique allows
116** multiple concurrent readers to view different versions of the database
117** content simultaneously.
118**
119** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000120** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000121** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000122** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000123** and read performance suffers. To overcome this problem, a separate
124** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000125** search for frames of a particular page.
126**
127** WAL-INDEX FORMAT
128**
129** Conceptually, the wal-index is shared memory, though VFS implementations
130** might choose to implement the wal-index using a mmapped file. Because
131** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132** on a network filesystem. All users of the database must be able to
133** share memory.
134**
135** The wal-index is transient. After a crash, the wal-index can (and should
136** be) reconstructed from the original WAL file. In fact, the VFS is required
137** to either truncate or zero the header of the wal-index when the last
138** connection to it closes. Because the wal-index is transient, it can
139** use an architecture-specific format; it does not have to be cross-platform.
140** Hence, unlike the database and WAL file formats which store all values
141** as big endian, the wal-index can store multi-byte values in the native
142** byte order of the host computer.
143**
144** The purpose of the wal-index is to answer this question quickly: Given
145** a page number P, return the index of the last frame for page P in the WAL,
146** or return NULL if there are no frames for page P in the WAL.
147**
148** The wal-index consists of a header region, followed by an one or
149** more index blocks.
150**
drh027a1282010-05-19 01:53:53 +0000151** The wal-index header contains the total number of frames within the WAL
danad3cadd2010-06-14 11:49:26 +0000152** in the the mxFrame field.
153**
154** Each index block except for the first contains information on
155** HASHTABLE_NPAGE frames. The first index block contains information on
156** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
157** HASHTABLE_NPAGE are selected so that together the wal-index header and
158** first index block are the same size as all other index blocks in the
159** wal-index.
160**
161** Each index block contains two sections, a page-mapping that contains the
162** database page number associated with each wal frame, and a hash-table
drhffca4302010-06-15 11:21:54 +0000163** that allows readers to query an index block for a specific page number.
danad3cadd2010-06-14 11:49:26 +0000164** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
165** for the first index block) 32-bit page numbers. The first entry in the
166** first index-block contains the database page number corresponding to the
167** first frame in the WAL file. The first entry in the second index block
168** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
169** the log, and so on.
170**
171** The last index block in a wal-index usually contains less than the full
172** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
173** depending on the contents of the WAL file. This does not change the
174** allocated size of the page-mapping array - the page-mapping array merely
175** contains unused entries.
drh027a1282010-05-19 01:53:53 +0000176**
177** Even without using the hash table, the last frame for page P
danad3cadd2010-06-14 11:49:26 +0000178** can be found by scanning the page-mapping sections of each index block
drh027a1282010-05-19 01:53:53 +0000179** starting with the last index block and moving toward the first, and
180** within each index block, starting at the end and moving toward the
181** beginning. The first entry that equals P corresponds to the frame
182** holding the content for that page.
183**
184** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
185** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
186** hash table for each page number in the mapping section, so the hash
187** table is never more than half full. The expected number of collisions
188** prior to finding a match is 1. Each entry of the hash table is an
189** 1-based index of an entry in the mapping section of the same
190** index block. Let K be the 1-based index of the largest entry in
191** the mapping section. (For index blocks other than the last, K will
192** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
193** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000194** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000195**
196** To look for page P in the hash table, first compute a hash iKey on
197** P as follows:
198**
199** iKey = (P * 383) % HASHTABLE_NSLOT
200**
201** Then start scanning entries of the hash table, starting with iKey
202** (wrapping around to the beginning when the end of the hash table is
203** reached) until an unused hash slot is found. Let the first unused slot
204** be at index iUnused. (iUnused might be less than iKey if there was
205** wrap-around.) Because the hash table is never more than half full,
206** the search is guaranteed to eventually hit an unused entry. Let
207** iMax be the value between iKey and iUnused, closest to iUnused,
208** where aHash[iMax]==P. If there is no iMax entry (if there exists
209** no hash slot such that aHash[i]==p) then page P is not in the
210** current index block. Otherwise the iMax-th mapping entry of the
211** current index block corresponds to the last entry that references
212** page P.
213**
214** A hash search begins with the last index block and moves toward the
215** first index block, looking for entries corresponding to page P. On
216** average, only two or three slots in each index block need to be
217** examined in order to either find the last entry for page P, or to
218** establish that no such entry exists in the block. Each index block
219** holds over 4000 entries. So two or three index blocks are sufficient
220** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
221** comparisons (on average) suffice to either locate a frame in the
222** WAL or to establish that the frame does not exist in the WAL. This
223** is much faster than scanning the entire 10MB WAL.
224**
225** Note that entries are added in order of increasing K. Hence, one
226** reader might be using some value K0 and a second reader that started
227** at a later time (after additional transactions were added to the WAL
228** and to the wal-index) might be using a different value K1, where K1>K0.
229** Both readers can use the same hash table and mapping section to get
230** the correct result. There may be entries in the hash table with
231** K>K0 but to the first reader, those entries will appear to be unused
232** slots in the hash table and so the first reader will get an answer as
233** if no values greater than K0 had ever been inserted into the hash table
234** in the first place - which is what reader one wants. Meanwhile, the
235** second reader using K1 will see additional values that were inserted
236** later, which is exactly what reader two wants.
237**
dan6f150142010-05-21 15:31:56 +0000238** When a rollback occurs, the value of K is decreased. Hash table entries
239** that correspond to frames greater than the new K value are removed
240** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000241*/
drh29d4dbe2010-05-18 23:29:52 +0000242#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000243
drh29d4dbe2010-05-18 23:29:52 +0000244#include "wal.h"
245
drh73b64e42010-05-30 19:55:15 +0000246/*
drhc74c3332010-05-31 12:15:19 +0000247** Trace output macros
248*/
drhc74c3332010-05-31 12:15:19 +0000249#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000250int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000251# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
252#else
253# define WALTRACE(X)
254#endif
255
dan10f5a502010-06-23 15:55:43 +0000256/*
257** The maximum (and only) versions of the wal and wal-index formats
258** that may be interpreted by this version of SQLite.
259**
260** If a client begins recovering a WAL file and finds that (a) the checksum
261** values in the wal-header are correct and (b) the version field is not
262** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
263**
264** Similarly, if a client successfully reads a wal-index header (i.e. the
265** checksum test is successful) and finds that the version field is not
266** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
267** returns SQLITE_CANTOPEN.
268*/
269#define WAL_MAX_VERSION 3007000
270#define WALINDEX_MAX_VERSION 3007000
drhc74c3332010-05-31 12:15:19 +0000271
272/*
drh73b64e42010-05-30 19:55:15 +0000273** Indices of various locking bytes. WAL_NREADER is the number
274** of available reader locks and should be at least 3.
275*/
276#define WAL_WRITE_LOCK 0
277#define WAL_ALL_BUT_WRITE 1
278#define WAL_CKPT_LOCK 1
279#define WAL_RECOVER_LOCK 2
280#define WAL_READ_LOCK(I) (3+(I))
281#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
282
dan97a31352010-04-16 13:59:31 +0000283
drh7ed91f22010-04-29 22:34:07 +0000284/* Object declarations */
285typedef struct WalIndexHdr WalIndexHdr;
286typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000287typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000288
289
290/*
drh286a2882010-05-20 23:51:06 +0000291** The following object holds a copy of the wal-index header content.
292**
293** The actual header in the wal-index consists of two copies of this
294** object.
drh9b78f792010-08-14 21:21:24 +0000295**
296** The szPage value can be any power of 2 between 512 and 32768, inclusive.
297** Or it can be 1 to represent a 65536-byte page. The latter case was
298** added in 3.7.1 when support for 64K pages was added.
dan7c246102010-04-12 19:00:29 +0000299*/
drh7ed91f22010-04-29 22:34:07 +0000300struct WalIndexHdr {
dan10f5a502010-06-23 15:55:43 +0000301 u32 iVersion; /* Wal-index version */
302 u32 unused; /* Unused (padding) field */
dan71d89912010-05-24 13:57:42 +0000303 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000304 u8 isInit; /* 1 when initialized */
305 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
drh9b78f792010-08-14 21:21:24 +0000306 u16 szPage; /* Database page size in bytes. 1==64K */
dand0aa3422010-05-31 16:41:53 +0000307 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000308 u32 nPage; /* Size of database in pages */
309 u32 aFrameCksum[2]; /* Checksum of last frame in log */
310 u32 aSalt[2]; /* Two salt values copied from WAL header */
311 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000312};
313
drh73b64e42010-05-30 19:55:15 +0000314/*
315** A copy of the following object occurs in the wal-index immediately
316** following the second copy of the WalIndexHdr. This object stores
317** information used by checkpoint.
318**
319** nBackfill is the number of frames in the WAL that have been written
320** back into the database. (We call the act of moving content from WAL to
321** database "backfilling".) The nBackfill number is never greater than
322** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
323** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
324** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
325** mxFrame back to zero when the WAL is reset.
326**
327** There is one entry in aReadMark[] for each reader lock. If a reader
328** holds read-lock K, then the value in aReadMark[K] is no greater than
drhdb7f6472010-06-09 14:45:12 +0000329** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
330** for any aReadMark[] means that entry is unused. aReadMark[0] is
331** a special case; its value is never used and it exists as a place-holder
332** to avoid having to offset aReadMark[] indexs by one. Readers holding
333** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
334** directly from the database.
drh73b64e42010-05-30 19:55:15 +0000335**
336** The value of aReadMark[K] may only be changed by a thread that
337** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
338** aReadMark[K] cannot changed while there is a reader is using that mark
339** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
340**
341** The checkpointer may only transfer frames from WAL to database where
342** the frame numbers are less than or equal to every aReadMark[] that is
343** in use (that is, every aReadMark[j] for which there is a corresponding
344** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
345** largest value and will increase an unused aReadMark[] to mxFrame if there
346** is not already an aReadMark[] equal to mxFrame. The exception to the
347** previous sentence is when nBackfill equals mxFrame (meaning that everything
348** in the WAL has been backfilled into the database) then new readers
349** will choose aReadMark[0] which has value 0 and hence such reader will
350** get all their all content directly from the database file and ignore
351** the WAL.
352**
353** Writers normally append new frames to the end of the WAL. However,
354** if nBackfill equals mxFrame (meaning that all WAL content has been
355** written back into the database) and if no readers are using the WAL
356** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
357** the writer will first "reset" the WAL back to the beginning and start
358** writing new content beginning at frame 1.
359**
360** We assume that 32-bit loads are atomic and so no locks are needed in
361** order to read from any aReadMark[] entries.
362*/
363struct WalCkptInfo {
364 u32 nBackfill; /* Number of WAL frames backfilled into DB */
365 u32 aReadMark[WAL_NREADER]; /* Reader marks */
366};
drhdb7f6472010-06-09 14:45:12 +0000367#define READMARK_NOT_USED 0xffffffff
drh73b64e42010-05-30 19:55:15 +0000368
369
drh7e263722010-05-20 21:21:09 +0000370/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
371** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
372** only support mandatory file-locks, we do not read or write data
373** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000374*/
drh73b64e42010-05-30 19:55:15 +0000375#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
376#define WALINDEX_LOCK_RESERVED 16
drh026ac282010-05-26 15:06:38 +0000377#define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
dan7c246102010-04-12 19:00:29 +0000378
drh7ed91f22010-04-29 22:34:07 +0000379/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000380#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000381
dan10f5a502010-06-23 15:55:43 +0000382/* Size of write ahead log header, including checksum. */
383/* #define WAL_HDRSIZE 24 */
384#define WAL_HDRSIZE 32
dan97a31352010-04-16 13:59:31 +0000385
danb8fd6c22010-05-24 10:39:36 +0000386/* WAL magic value. Either this value, or the same value with the least
387** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
388** big-endian format in the first 4 bytes of a WAL file.
389**
390** If the LSB is set, then the checksums for each frame within the WAL
391** file are calculated by treating all data as an array of 32-bit
392** big-endian words. Otherwise, they are calculated by interpreting
393** all data as 32-bit little-endian words.
394*/
395#define WAL_MAGIC 0x377f0682
396
dan97a31352010-04-16 13:59:31 +0000397/*
drh7ed91f22010-04-29 22:34:07 +0000398** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000399** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000400** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000401*/
drh6e810962010-05-19 17:49:50 +0000402#define walFrameOffset(iFrame, szPage) ( \
danbd0e9072010-07-07 09:48:44 +0000403 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000404)
dan7c246102010-04-12 19:00:29 +0000405
406/*
drh7ed91f22010-04-29 22:34:07 +0000407** An open write-ahead log file is represented by an instance of the
408** following object.
dance4f05f2010-04-22 19:14:13 +0000409*/
drh7ed91f22010-04-29 22:34:07 +0000410struct Wal {
drh73b64e42010-05-30 19:55:15 +0000411 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000412 sqlite3_file *pDbFd; /* File handle for the database file */
413 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000414 u32 iCallback; /* Value to pass to log callback (or 0) */
dan13a3cb82010-06-11 19:04:21 +0000415 int nWiData; /* Size of array apWiData */
416 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
drhb2eced52010-08-12 02:41:12 +0000417 u32 szPage; /* Database page size */
drh73b64e42010-05-30 19:55:15 +0000418 i16 readLock; /* Which read lock is being held. -1 for none */
dan55437592010-05-11 12:19:26 +0000419 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000420 u8 writeLock; /* True if in a write transaction */
421 u8 ckptLock; /* True if holding a checkpoint lock */
dan1e5de5a2010-07-15 18:20:53 +0000422 u8 readOnly; /* True if the WAL file is open read-only */
drh73b64e42010-05-30 19:55:15 +0000423 WalIndexHdr hdr; /* Wal-index header for current transaction */
dan3e875ef2010-07-05 19:03:35 +0000424 const char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000425 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000426#ifdef SQLITE_DEBUG
427 u8 lockError; /* True if a locking error has occurred */
428#endif
dan7c246102010-04-12 19:00:29 +0000429};
430
drh73b64e42010-05-30 19:55:15 +0000431/*
dan067f3162010-06-14 10:30:12 +0000432** Each page of the wal-index mapping contains a hash-table made up of
433** an array of HASHTABLE_NSLOT elements of the following type.
434*/
435typedef u16 ht_slot;
436
437/*
danad3cadd2010-06-14 11:49:26 +0000438** This structure is used to implement an iterator that loops through
439** all frames in the WAL in database page order. Where two or more frames
440** correspond to the same database page, the iterator visits only the
441** frame most recently written to the WAL (in other words, the frame with
442** the largest index).
443**
444** The internals of this structure are only accessed by:
445**
446** walIteratorInit() - Create a new iterator,
447** walIteratorNext() - Step an iterator,
448** walIteratorFree() - Free an iterator.
449**
450** This functionality is used by the checkpoint code (see walCheckpoint()).
451*/
452struct WalIterator {
453 int iPrior; /* Last result returned from the iterator */
454 int nSegment; /* Size of the aSegment[] array */
455 struct WalSegment {
456 int iNext; /* Next slot in aIndex[] not yet returned */
457 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
458 u32 *aPgno; /* Array of page numbers. */
459 int nEntry; /* Max size of aPgno[] and aIndex[] arrays */
460 int iZero; /* Frame number associated with aPgno[0] */
461 } aSegment[1]; /* One for every 32KB page in the WAL */
462};
463
464/*
dan13a3cb82010-06-11 19:04:21 +0000465** Define the parameters of the hash tables in the wal-index file. There
466** is a hash-table following every HASHTABLE_NPAGE page numbers in the
467** wal-index.
468**
469** Changing any of these constants will alter the wal-index format and
470** create incompatibilities.
471*/
dan067f3162010-06-14 10:30:12 +0000472#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000473#define HASHTABLE_HASH_1 383 /* Should be prime */
474#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000475
danad3cadd2010-06-14 11:49:26 +0000476/*
477** The block of page numbers associated with the first hash-table in a
dan13a3cb82010-06-11 19:04:21 +0000478** wal-index is smaller than usual. This is so that there is a complete
479** hash-table on each aligned 32KB page of the wal-index.
480*/
dan067f3162010-06-14 10:30:12 +0000481#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
dan13a3cb82010-06-11 19:04:21 +0000482
dan067f3162010-06-14 10:30:12 +0000483/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
484#define WALINDEX_PGSZ ( \
485 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
486)
dan13a3cb82010-06-11 19:04:21 +0000487
488/*
489** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
dan067f3162010-06-14 10:30:12 +0000490** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
dan13a3cb82010-06-11 19:04:21 +0000491** numbered from zero.
492**
493** If this call is successful, *ppPage is set to point to the wal-index
494** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
495** then an SQLite error code is returned and *ppPage is set to 0.
496*/
497static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
498 int rc = SQLITE_OK;
499
500 /* Enlarge the pWal->apWiData[] array if required */
501 if( pWal->nWiData<=iPage ){
drh519426a2010-07-09 03:19:07 +0000502 int nByte = sizeof(u32*)*(iPage+1);
dan13a3cb82010-06-11 19:04:21 +0000503 volatile u32 **apNew;
shaneh8a300f82010-07-02 18:15:31 +0000504 apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte);
dan13a3cb82010-06-11 19:04:21 +0000505 if( !apNew ){
506 *ppPage = 0;
507 return SQLITE_NOMEM;
508 }
drh519426a2010-07-09 03:19:07 +0000509 memset((void*)&apNew[pWal->nWiData], 0,
510 sizeof(u32*)*(iPage+1-pWal->nWiData));
dan13a3cb82010-06-11 19:04:21 +0000511 pWal->apWiData = apNew;
512 pWal->nWiData = iPage+1;
513 }
514
515 /* Request a pointer to the required page from the VFS */
516 if( pWal->apWiData[iPage]==0 ){
dan18801912010-06-14 14:07:50 +0000517 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
dan13a3cb82010-06-11 19:04:21 +0000518 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
519 );
520 }
521
522 *ppPage = pWal->apWiData[iPage];
523 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
524 return rc;
525}
526
527/*
drh73b64e42010-05-30 19:55:15 +0000528** Return a pointer to the WalCkptInfo structure in the wal-index.
529*/
530static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000531 assert( pWal->nWiData>0 && pWal->apWiData[0] );
532 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
533}
534
535/*
536** Return a pointer to the WalIndexHdr structure in the wal-index.
537*/
538static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
539 assert( pWal->nWiData>0 && pWal->apWiData[0] );
540 return (volatile WalIndexHdr*)pWal->apWiData[0];
drh73b64e42010-05-30 19:55:15 +0000541}
542
dan7c246102010-04-12 19:00:29 +0000543/*
danb8fd6c22010-05-24 10:39:36 +0000544** The argument to this macro must be of type u32. On a little-endian
545** architecture, it returns the u32 value that results from interpreting
546** the 4 bytes as a big-endian value. On a big-endian architecture, it
547** returns the value that would be produced by intepreting the 4 bytes
548** of the input value as a little-endian integer.
549*/
550#define BYTESWAP32(x) ( \
551 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
552 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
553)
dan64d039e2010-04-13 19:27:31 +0000554
dan7c246102010-04-12 19:00:29 +0000555/*
drh7e263722010-05-20 21:21:09 +0000556** Generate or extend an 8 byte checksum based on the data in
557** array aByte[] and the initial values of aIn[0] and aIn[1] (or
558** initial values of 0 and 0 if aIn==NULL).
559**
560** The checksum is written back into aOut[] before returning.
561**
562** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000563*/
drh7e263722010-05-20 21:21:09 +0000564static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000565 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000566 u8 *a, /* Content to be checksummed */
567 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
568 const u32 *aIn, /* Initial checksum value input */
569 u32 *aOut /* OUT: Final checksum value output */
570){
571 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000572 u32 *aData = (u32 *)a;
573 u32 *aEnd = (u32 *)&a[nByte];
574
drh7e263722010-05-20 21:21:09 +0000575 if( aIn ){
576 s1 = aIn[0];
577 s2 = aIn[1];
578 }else{
579 s1 = s2 = 0;
580 }
dan7c246102010-04-12 19:00:29 +0000581
drh584c7542010-05-19 18:08:10 +0000582 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000583 assert( (nByte&0x00000007)==0 );
dan7c246102010-04-12 19:00:29 +0000584
danb8fd6c22010-05-24 10:39:36 +0000585 if( nativeCksum ){
586 do {
587 s1 += *aData++ + s2;
588 s2 += *aData++ + s1;
589 }while( aData<aEnd );
590 }else{
591 do {
592 s1 += BYTESWAP32(aData[0]) + s2;
593 s2 += BYTESWAP32(aData[1]) + s1;
594 aData += 2;
595 }while( aData<aEnd );
596 }
597
drh7e263722010-05-20 21:21:09 +0000598 aOut[0] = s1;
599 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000600}
601
602/*
drh7e263722010-05-20 21:21:09 +0000603** Write the header information in pWal->hdr into the wal-index.
604**
605** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000606*/
drh7e263722010-05-20 21:21:09 +0000607static void walIndexWriteHdr(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000608 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
609 const int nCksum = offsetof(WalIndexHdr, aCksum);
drh73b64e42010-05-30 19:55:15 +0000610
611 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000612 pWal->hdr.isInit = 1;
dan10f5a502010-06-23 15:55:43 +0000613 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
dan4280eb32010-06-12 12:02:35 +0000614 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
615 memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
drh286a2882010-05-20 23:51:06 +0000616 sqlite3OsShmBarrier(pWal->pDbFd);
dan4280eb32010-06-12 12:02:35 +0000617 memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000618}
619
620/*
621** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000622** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000623** 4-byte big-endian integers, as follows:
624**
drh23ea97b2010-05-20 16:45:58 +0000625** 0: Page number.
626** 4: For commit records, the size of the database image in pages
627** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000628** 8: Salt-1 (copied from the wal-header)
629** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000630** 16: Checksum-1.
631** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000632*/
drh7ed91f22010-04-29 22:34:07 +0000633static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000634 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000635 u32 iPage, /* Database page number for frame */
636 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000637 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000638 u8 *aFrame /* OUT: Write encoded frame here */
639){
danb8fd6c22010-05-24 10:39:36 +0000640 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000641 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000642 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000643 sqlite3Put4byte(&aFrame[0], iPage);
644 sqlite3Put4byte(&aFrame[4], nTruncate);
drh7e263722010-05-20 21:21:09 +0000645 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000646
danb8fd6c22010-05-24 10:39:36 +0000647 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000648 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000649 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000650
drh23ea97b2010-05-20 16:45:58 +0000651 sqlite3Put4byte(&aFrame[16], aCksum[0]);
652 sqlite3Put4byte(&aFrame[20], aCksum[1]);
dan7c246102010-04-12 19:00:29 +0000653}
654
655/*
drh7e263722010-05-20 21:21:09 +0000656** Check to see if the frame with header in aFrame[] and content
657** in aData[] is valid. If it is a valid frame, fill *piPage and
658** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000659*/
drh7ed91f22010-04-29 22:34:07 +0000660static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000661 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000662 u32 *piPage, /* OUT: Database page number for frame */
663 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000664 u8 *aData, /* Pointer to page data (for checksum) */
665 u8 *aFrame /* Frame data */
666){
danb8fd6c22010-05-24 10:39:36 +0000667 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000668 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000669 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000670 assert( WAL_FRAME_HDRSIZE==24 );
671
drh7e263722010-05-20 21:21:09 +0000672 /* A frame is only valid if the salt values in the frame-header
673 ** match the salt values in the wal-header.
674 */
675 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000676 return 0;
677 }
dan4a4b01d2010-04-16 11:30:18 +0000678
drhc8179152010-05-24 13:28:36 +0000679 /* A frame is only valid if the page number is creater than zero.
680 */
681 pgno = sqlite3Get4byte(&aFrame[0]);
682 if( pgno==0 ){
683 return 0;
684 }
685
drh519426a2010-07-09 03:19:07 +0000686 /* A frame is only valid if a checksum of the WAL header,
687 ** all prior frams, the first 16 bytes of this frame-header,
688 ** and the frame-data matches the checksum in the last 8
689 ** bytes of this frame-header.
drh7e263722010-05-20 21:21:09 +0000690 */
danb8fd6c22010-05-24 10:39:36 +0000691 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000692 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000693 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000694 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
695 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000696 ){
697 /* Checksum failed. */
698 return 0;
699 }
700
drh7e263722010-05-20 21:21:09 +0000701 /* If we reach this point, the frame is valid. Return the page number
702 ** and the new database size.
703 */
drhc8179152010-05-24 13:28:36 +0000704 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000705 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000706 return 1;
707}
708
dan7c246102010-04-12 19:00:29 +0000709
drhc74c3332010-05-31 12:15:19 +0000710#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
711/*
drh181e0912010-06-01 01:08:08 +0000712** Names of locks. This routine is used to provide debugging output and is not
713** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000714*/
715static const char *walLockName(int lockIdx){
716 if( lockIdx==WAL_WRITE_LOCK ){
717 return "WRITE-LOCK";
718 }else if( lockIdx==WAL_CKPT_LOCK ){
719 return "CKPT-LOCK";
720 }else if( lockIdx==WAL_RECOVER_LOCK ){
721 return "RECOVER-LOCK";
722 }else{
723 static char zName[15];
724 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
725 lockIdx-WAL_READ_LOCK(0));
726 return zName;
727 }
728}
729#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
730
731
dan7c246102010-04-12 19:00:29 +0000732/*
drh181e0912010-06-01 01:08:08 +0000733** Set or release locks on the WAL. Locks are either shared or exclusive.
734** A lock cannot be moved directly between shared and exclusive - it must go
735** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000736**
737** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
738*/
739static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000740 int rc;
drh73b64e42010-05-30 19:55:15 +0000741 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000742 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
743 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
744 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
745 walLockName(lockIdx), rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000746 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000747 return rc;
drh73b64e42010-05-30 19:55:15 +0000748}
749static void walUnlockShared(Wal *pWal, int lockIdx){
750 if( pWal->exclusiveMode ) return;
751 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
752 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000753 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000754}
755static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000756 int rc;
drh73b64e42010-05-30 19:55:15 +0000757 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000758 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
759 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
760 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
761 walLockName(lockIdx), n, rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000762 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000763 return rc;
drh73b64e42010-05-30 19:55:15 +0000764}
765static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
766 if( pWal->exclusiveMode ) return;
767 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
768 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000769 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
770 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000771}
772
773/*
drh29d4dbe2010-05-18 23:29:52 +0000774** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000775** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
776** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000777*/
778static int walHash(u32 iPage){
779 assert( iPage>0 );
780 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
781 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
782}
783static int walNextHash(int iPriorHash){
784 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000785}
786
dan4280eb32010-06-12 12:02:35 +0000787/*
788** Return pointers to the hash table and page number array stored on
789** page iHash of the wal-index. The wal-index is broken into 32KB pages
790** numbered starting from 0.
791**
792** Set output variable *paHash to point to the start of the hash table
793** in the wal-index file. Set *piZero to one less than the frame
794** number of the first frame indexed by this hash table. If a
795** slot in the hash table is set to N, it refers to frame number
796** (*piZero+N) in the log.
797**
dand60bf112010-06-14 11:18:50 +0000798** Finally, set *paPgno so that *paPgno[1] is the page number of the
799** first frame indexed by the hash table, frame (*piZero+1).
dan4280eb32010-06-12 12:02:35 +0000800*/
801static int walHashGet(
dan13a3cb82010-06-11 19:04:21 +0000802 Wal *pWal, /* WAL handle */
803 int iHash, /* Find the iHash'th table */
dan067f3162010-06-14 10:30:12 +0000804 volatile ht_slot **paHash, /* OUT: Pointer to hash index */
dan13a3cb82010-06-11 19:04:21 +0000805 volatile u32 **paPgno, /* OUT: Pointer to page number array */
806 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
807){
dan4280eb32010-06-12 12:02:35 +0000808 int rc; /* Return code */
dan13a3cb82010-06-11 19:04:21 +0000809 volatile u32 *aPgno;
dan13a3cb82010-06-11 19:04:21 +0000810
dan4280eb32010-06-12 12:02:35 +0000811 rc = walIndexPage(pWal, iHash, &aPgno);
812 assert( rc==SQLITE_OK || iHash>0 );
dan13a3cb82010-06-11 19:04:21 +0000813
dan4280eb32010-06-12 12:02:35 +0000814 if( rc==SQLITE_OK ){
815 u32 iZero;
dan067f3162010-06-14 10:30:12 +0000816 volatile ht_slot *aHash;
dan4280eb32010-06-12 12:02:35 +0000817
dan067f3162010-06-14 10:30:12 +0000818 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
dan4280eb32010-06-12 12:02:35 +0000819 if( iHash==0 ){
dand60bf112010-06-14 11:18:50 +0000820 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
dan4280eb32010-06-12 12:02:35 +0000821 iZero = 0;
822 }else{
823 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
dan4280eb32010-06-12 12:02:35 +0000824 }
825
dand60bf112010-06-14 11:18:50 +0000826 *paPgno = &aPgno[-1];
dan4280eb32010-06-12 12:02:35 +0000827 *paHash = aHash;
828 *piZero = iZero;
dan13a3cb82010-06-11 19:04:21 +0000829 }
dan4280eb32010-06-12 12:02:35 +0000830 return rc;
dan13a3cb82010-06-11 19:04:21 +0000831}
832
dan4280eb32010-06-12 12:02:35 +0000833/*
834** Return the number of the wal-index page that contains the hash-table
835** and page-number array that contain entries corresponding to WAL frame
836** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
837** are numbered starting from 0.
838*/
dan13a3cb82010-06-11 19:04:21 +0000839static int walFramePage(u32 iFrame){
840 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
841 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
842 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
843 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
844 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
845 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
846 );
847 return iHash;
848}
849
850/*
851** Return the page number associated with frame iFrame in this WAL.
852*/
853static u32 walFramePgno(Wal *pWal, u32 iFrame){
854 int iHash = walFramePage(iFrame);
855 if( iHash==0 ){
856 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
857 }
858 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
859}
danbb23aff2010-05-10 14:46:09 +0000860
danca6b5ba2010-05-25 10:50:56 +0000861/*
862** Remove entries from the hash table that point to WAL slots greater
863** than pWal->hdr.mxFrame.
864**
865** This function is called whenever pWal->hdr.mxFrame is decreased due
866** to a rollback or savepoint.
867**
drh181e0912010-06-01 01:08:08 +0000868** At most only the hash table containing pWal->hdr.mxFrame needs to be
869** updated. Any later hash tables will be automatically cleared when
870** pWal->hdr.mxFrame advances to the point where those hash tables are
871** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000872*/
873static void walCleanupHash(Wal *pWal){
drhff828942010-06-26 21:34:06 +0000874 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */
875 volatile u32 *aPgno = 0; /* Page number array for hash table */
876 u32 iZero = 0; /* frame == (aHash[x]+iZero) */
dan067f3162010-06-14 10:30:12 +0000877 int iLimit = 0; /* Zero values greater than this */
878 int nByte; /* Number of bytes to zero in aPgno[] */
879 int i; /* Used to iterate through aHash[] */
danca6b5ba2010-05-25 10:50:56 +0000880
drh73b64e42010-05-30 19:55:15 +0000881 assert( pWal->writeLock );
drhffca4302010-06-15 11:21:54 +0000882 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
883 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
884 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
drh9c156472010-06-01 12:58:41 +0000885
dan4280eb32010-06-12 12:02:35 +0000886 if( pWal->hdr.mxFrame==0 ) return;
887
888 /* Obtain pointers to the hash-table and page-number array containing
889 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
890 ** that the page said hash-table and array reside on is already mapped.
891 */
892 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
893 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
894 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
895
896 /* Zero all hash-table entries that correspond to frame numbers greater
897 ** than pWal->hdr.mxFrame.
898 */
899 iLimit = pWal->hdr.mxFrame - iZero;
900 assert( iLimit>0 );
901 for(i=0; i<HASHTABLE_NSLOT; i++){
902 if( aHash[i]>iLimit ){
903 aHash[i] = 0;
danca6b5ba2010-05-25 10:50:56 +0000904 }
danca6b5ba2010-05-25 10:50:56 +0000905 }
dan4280eb32010-06-12 12:02:35 +0000906
907 /* Zero the entries in the aPgno array that correspond to frames with
908 ** frame numbers greater than pWal->hdr.mxFrame.
909 */
shaneh5eba1f62010-07-02 17:05:03 +0000910 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
dand60bf112010-06-14 11:18:50 +0000911 memset((void *)&aPgno[iLimit+1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000912
913#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
914 /* Verify that the every entry in the mapping region is still reachable
915 ** via the hash table even after the cleanup.
916 */
drhf77bbd92010-06-01 13:17:44 +0000917 if( iLimit ){
danca6b5ba2010-05-25 10:50:56 +0000918 int i; /* Loop counter */
919 int iKey; /* Hash key */
920 for(i=1; i<=iLimit; i++){
dand60bf112010-06-14 11:18:50 +0000921 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
danca6b5ba2010-05-25 10:50:56 +0000922 if( aHash[iKey]==i ) break;
923 }
924 assert( aHash[iKey]==i );
925 }
926 }
927#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
928}
929
danbb23aff2010-05-10 14:46:09 +0000930
drh7ed91f22010-04-29 22:34:07 +0000931/*
drh29d4dbe2010-05-18 23:29:52 +0000932** Set an entry in the wal-index that will map database page number
933** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +0000934*/
drh7ed91f22010-04-29 22:34:07 +0000935static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
dan4280eb32010-06-12 12:02:35 +0000936 int rc; /* Return code */
drhff828942010-06-26 21:34:06 +0000937 u32 iZero = 0; /* One less than frame number of aPgno[1] */
938 volatile u32 *aPgno = 0; /* Page number array */
939 volatile ht_slot *aHash = 0; /* Hash table */
dance4f05f2010-04-22 19:14:13 +0000940
dan4280eb32010-06-12 12:02:35 +0000941 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
942
943 /* Assuming the wal-index file was successfully mapped, populate the
944 ** page number array and hash table entry.
dan7c246102010-04-12 19:00:29 +0000945 */
danbb23aff2010-05-10 14:46:09 +0000946 if( rc==SQLITE_OK ){
947 int iKey; /* Hash table key */
dan4280eb32010-06-12 12:02:35 +0000948 int idx; /* Value to write to hash-table slot */
drh519426a2010-07-09 03:19:07 +0000949 int nCollide; /* Number of hash collisions */
dan7c246102010-04-12 19:00:29 +0000950
danbb23aff2010-05-10 14:46:09 +0000951 idx = iFrame - iZero;
dan4280eb32010-06-12 12:02:35 +0000952 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
953
954 /* If this is the first entry to be added to this hash-table, zero the
955 ** entire hash table and aPgno[] array before proceding.
956 */
danca6b5ba2010-05-25 10:50:56 +0000957 if( idx==1 ){
shaneh5eba1f62010-07-02 17:05:03 +0000958 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
dand60bf112010-06-14 11:18:50 +0000959 memset((void*)&aPgno[1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000960 }
danca6b5ba2010-05-25 10:50:56 +0000961
dan4280eb32010-06-12 12:02:35 +0000962 /* If the entry in aPgno[] is already set, then the previous writer
963 ** must have exited unexpectedly in the middle of a transaction (after
964 ** writing one or more dirty pages to the WAL to free up memory).
965 ** Remove the remnants of that writers uncommitted transaction from
966 ** the hash-table before writing any new entries.
967 */
dand60bf112010-06-14 11:18:50 +0000968 if( aPgno[idx] ){
danca6b5ba2010-05-25 10:50:56 +0000969 walCleanupHash(pWal);
dand60bf112010-06-14 11:18:50 +0000970 assert( !aPgno[idx] );
danca6b5ba2010-05-25 10:50:56 +0000971 }
dan4280eb32010-06-12 12:02:35 +0000972
973 /* Write the aPgno[] array entry and the hash-table slot. */
drh519426a2010-07-09 03:19:07 +0000974 nCollide = idx;
dan6f150142010-05-21 15:31:56 +0000975 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
drh519426a2010-07-09 03:19:07 +0000976 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
drh29d4dbe2010-05-18 23:29:52 +0000977 }
dand60bf112010-06-14 11:18:50 +0000978 aPgno[idx] = iPage;
shaneh5eba1f62010-07-02 17:05:03 +0000979 aHash[iKey] = (ht_slot)idx;
drh4fa95bf2010-05-22 00:55:39 +0000980
981#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
982 /* Verify that the number of entries in the hash table exactly equals
983 ** the number of entries in the mapping region.
984 */
985 {
986 int i; /* Loop counter */
987 int nEntry = 0; /* Number of entries in the hash table */
988 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
989 assert( nEntry==idx );
990 }
991
992 /* Verify that the every entry in the mapping region is reachable
993 ** via the hash table. This turns out to be a really, really expensive
994 ** thing to check, so only do this occasionally - not on every
995 ** iteration.
996 */
997 if( (idx&0x3ff)==0 ){
998 int i; /* Loop counter */
999 for(i=1; i<=idx; i++){
dand60bf112010-06-14 11:18:50 +00001000 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
drh4fa95bf2010-05-22 00:55:39 +00001001 if( aHash[iKey]==i ) break;
1002 }
1003 assert( aHash[iKey]==i );
1004 }
1005 }
1006#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +00001007 }
dan31f98fc2010-04-27 05:42:32 +00001008
drh4fa95bf2010-05-22 00:55:39 +00001009
danbb23aff2010-05-10 14:46:09 +00001010 return rc;
dan7c246102010-04-12 19:00:29 +00001011}
1012
1013
1014/*
drh7ed91f22010-04-29 22:34:07 +00001015** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +00001016**
1017** This routine first tries to establish an exclusive lock on the
1018** wal-index to prevent other threads/processes from doing anything
1019** with the WAL or wal-index while recovery is running. The
1020** WAL_RECOVER_LOCK is also held so that other threads will know
1021** that this thread is running recovery. If unable to establish
1022** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +00001023*/
drh7ed91f22010-04-29 22:34:07 +00001024static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +00001025 int rc; /* Return Code */
1026 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +00001027 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +00001028 int iLock; /* Lock offset to lock for checkpoint */
1029 int nLock; /* Number of locks to hold */
dan7c246102010-04-12 19:00:29 +00001030
dand0aa3422010-05-31 16:41:53 +00001031 /* Obtain an exclusive lock on all byte in the locking range not already
1032 ** locked by the caller. The caller is guaranteed to have locked the
1033 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1034 ** If successful, the same bytes that are locked here are unlocked before
1035 ** this function returns.
1036 */
1037 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1038 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1039 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1040 assert( pWal->writeLock );
1041 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1042 nLock = SQLITE_SHM_NLOCK - iLock;
1043 rc = walLockExclusive(pWal, iLock, nLock);
drh73b64e42010-05-30 19:55:15 +00001044 if( rc ){
1045 return rc;
1046 }
drhc74c3332010-05-31 12:15:19 +00001047 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +00001048
dan71d89912010-05-24 13:57:42 +00001049 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +00001050
drhd9e5c4f2010-05-12 18:01:39 +00001051 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +00001052 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001053 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001054 }
1055
danb8fd6c22010-05-24 10:39:36 +00001056 if( nSize>WAL_HDRSIZE ){
1057 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dan7c246102010-04-12 19:00:29 +00001058 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001059 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001060 u8 *aData; /* Pointer to data part of aFrame buffer */
1061 int iFrame; /* Index of last frame read */
1062 i64 iOffset; /* Next offset to read from log file */
drh6e810962010-05-19 17:49:50 +00001063 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001064 u32 magic; /* Magic value read from WAL header */
dan10f5a502010-06-23 15:55:43 +00001065 u32 version; /* Magic value read from WAL header */
dan7c246102010-04-12 19:00:29 +00001066
danb8fd6c22010-05-24 10:39:36 +00001067 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001068 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001069 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001070 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001071 }
1072
1073 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001074 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1075 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1076 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001077 */
danb8fd6c22010-05-24 10:39:36 +00001078 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001079 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001080 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1081 || szPage&(szPage-1)
1082 || szPage>SQLITE_MAX_PAGE_SIZE
1083 || szPage<512
1084 ){
dan7c246102010-04-12 19:00:29 +00001085 goto finished;
1086 }
shaneh5eba1f62010-07-02 17:05:03 +00001087 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
drhb2eced52010-08-12 02:41:12 +00001088 pWal->szPage = szPage;
drh23ea97b2010-05-20 16:45:58 +00001089 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001090 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
drhcd285082010-06-23 22:00:35 +00001091
1092 /* Verify that the WAL header checksum is correct */
dan71d89912010-05-24 13:57:42 +00001093 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
dan10f5a502010-06-23 15:55:43 +00001094 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
dan71d89912010-05-24 13:57:42 +00001095 );
dan10f5a502010-06-23 15:55:43 +00001096 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1097 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1098 ){
1099 goto finished;
1100 }
1101
drhcd285082010-06-23 22:00:35 +00001102 /* Verify that the version number on the WAL format is one that
1103 ** are able to understand */
dan10f5a502010-06-23 15:55:43 +00001104 version = sqlite3Get4byte(&aBuf[4]);
1105 if( version!=WAL_MAX_VERSION ){
1106 rc = SQLITE_CANTOPEN_BKPT;
1107 goto finished;
1108 }
1109
dan7c246102010-04-12 19:00:29 +00001110 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001111 szFrame = szPage + WAL_FRAME_HDRSIZE;
1112 aFrame = (u8 *)sqlite3_malloc(szFrame);
dan7c246102010-04-12 19:00:29 +00001113 if( !aFrame ){
drh73b64e42010-05-30 19:55:15 +00001114 rc = SQLITE_NOMEM;
1115 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001116 }
drh7ed91f22010-04-29 22:34:07 +00001117 aData = &aFrame[WAL_FRAME_HDRSIZE];
dan7c246102010-04-12 19:00:29 +00001118
1119 /* Read all frames from the log file. */
1120 iFrame = 0;
drh584c7542010-05-19 18:08:10 +00001121 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
dan7c246102010-04-12 19:00:29 +00001122 u32 pgno; /* Database page number for frame */
1123 u32 nTruncate; /* dbsize field from frame header */
1124 int isValid; /* True if this frame is valid */
1125
1126 /* Read and decode the next log frame. */
drh584c7542010-05-19 18:08:10 +00001127 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
dan7c246102010-04-12 19:00:29 +00001128 if( rc!=SQLITE_OK ) break;
drh7e263722010-05-20 21:21:09 +00001129 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
dan7c246102010-04-12 19:00:29 +00001130 if( !isValid ) break;
danc7991bd2010-05-05 19:04:59 +00001131 rc = walIndexAppend(pWal, ++iFrame, pgno);
1132 if( rc!=SQLITE_OK ) break;
dan7c246102010-04-12 19:00:29 +00001133
1134 /* If nTruncate is non-zero, this is a commit record. */
1135 if( nTruncate ){
dan71d89912010-05-24 13:57:42 +00001136 pWal->hdr.mxFrame = iFrame;
1137 pWal->hdr.nPage = nTruncate;
shaneh1df2db72010-08-18 02:28:48 +00001138 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00001139 testcase( szPage<=32768 );
1140 testcase( szPage>=65536 );
dan71d89912010-05-24 13:57:42 +00001141 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1142 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
dan7c246102010-04-12 19:00:29 +00001143 }
1144 }
1145
1146 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001147 }
1148
1149finished:
dan576bc322010-05-06 18:04:50 +00001150 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001151 volatile WalCkptInfo *pInfo;
1152 int i;
dan71d89912010-05-24 13:57:42 +00001153 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1154 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001155 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001156
drhdb7f6472010-06-09 14:45:12 +00001157 /* Reset the checkpoint-header. This is safe because this thread is
dan3dee6da2010-05-31 16:17:54 +00001158 ** currently holding locks that exclude all other readers, writers and
1159 ** checkpointers.
1160 */
drhdb7f6472010-06-09 14:45:12 +00001161 pInfo = walCkptInfo(pWal);
1162 pInfo->nBackfill = 0;
1163 pInfo->aReadMark[0] = 0;
1164 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
daneb8763d2010-08-17 14:52:22 +00001165
1166 /* If more than one frame was recovered from the log file, report an
1167 ** event via sqlite3_log(). This is to help with identifying performance
1168 ** problems caused by applications routinely shutting down without
1169 ** checkpointing the log file.
1170 */
1171 if( pWal->hdr.nPage ){
1172 sqlite3_log(SQLITE_OK, "Recovered %d frames from WAL file %s",
1173 pWal->hdr.nPage, pWal->zWalName
1174 );
1175 }
dan576bc322010-05-06 18:04:50 +00001176 }
drh73b64e42010-05-30 19:55:15 +00001177
1178recovery_error:
drhc74c3332010-05-31 12:15:19 +00001179 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dand0aa3422010-05-31 16:41:53 +00001180 walUnlockExclusive(pWal, iLock, nLock);
dan7c246102010-04-12 19:00:29 +00001181 return rc;
1182}
1183
drha8e654e2010-05-04 17:38:42 +00001184/*
dan1018e902010-05-05 15:33:05 +00001185** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001186*/
dan1018e902010-05-05 15:33:05 +00001187static void walIndexClose(Wal *pWal, int isDelete){
drhe11fedc2010-07-14 00:14:30 +00001188 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
drha8e654e2010-05-04 17:38:42 +00001189}
1190
dan7c246102010-04-12 19:00:29 +00001191/*
dan3e875ef2010-07-05 19:03:35 +00001192** Open a connection to the WAL file zWalName. The database file must
1193** already be opened on connection pDbFd. The buffer that zWalName points
1194** to must remain valid for the lifetime of the returned Wal* handle.
dan3de777f2010-04-17 12:31:37 +00001195**
1196** A SHARED lock should be held on the database file when this function
1197** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001198** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001199** were to do this just after this client opened one of these files, the
1200** system would be badly broken.
danef378022010-05-04 11:06:03 +00001201**
1202** If the log file is successfully opened, SQLITE_OK is returned and
1203** *ppWal is set to point to a new WAL handle. If an error occurs,
1204** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001205*/
drhc438efd2010-04-26 00:19:45 +00001206int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001207 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001208 sqlite3_file *pDbFd, /* The open database file */
dan3e875ef2010-07-05 19:03:35 +00001209 const char *zWalName, /* Name of the WAL file */
drh7ed91f22010-04-29 22:34:07 +00001210 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001211){
danef378022010-05-04 11:06:03 +00001212 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001213 Wal *pRet; /* Object to allocate and return */
dan7c246102010-04-12 19:00:29 +00001214 int flags; /* Flags passed to OsOpen() */
dan7c246102010-04-12 19:00:29 +00001215
dan3e875ef2010-07-05 19:03:35 +00001216 assert( zWalName && zWalName[0] );
drhd9e5c4f2010-05-12 18:01:39 +00001217 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001218
drh1b78eaf2010-05-25 13:40:03 +00001219 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1220 ** this source file. Verify that the #defines of the locking byte offsets
1221 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1222 */
1223#ifdef WIN_SHM_BASE
1224 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1225#endif
1226#ifdef UNIX_SHM_BASE
1227 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1228#endif
1229
1230
drh7ed91f22010-04-29 22:34:07 +00001231 /* Allocate an instance of struct Wal to return. */
1232 *ppWal = 0;
dan3e875ef2010-07-05 19:03:35 +00001233 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
dan76ed3bc2010-05-03 17:18:24 +00001234 if( !pRet ){
1235 return SQLITE_NOMEM;
1236 }
1237
dan7c246102010-04-12 19:00:29 +00001238 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001239 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1240 pRet->pDbFd = pDbFd;
drh73b64e42010-05-30 19:55:15 +00001241 pRet->readLock = -1;
dan3e875ef2010-07-05 19:03:35 +00001242 pRet->zWalName = zWalName;
dan7c246102010-04-12 19:00:29 +00001243
drh7ed91f22010-04-29 22:34:07 +00001244 /* Open file handle on the write-ahead log file. */
danddb0ac42010-07-14 14:48:58 +00001245 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
danda9fe0c2010-07-13 18:44:03 +00001246 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
dan50833e32010-07-14 16:37:17 +00001247 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
dan1e5de5a2010-07-15 18:20:53 +00001248 pRet->readOnly = 1;
dan50833e32010-07-14 16:37:17 +00001249 }
dan7c246102010-04-12 19:00:29 +00001250
dan7c246102010-04-12 19:00:29 +00001251 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001252 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001253 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001254 sqlite3_free(pRet);
1255 }else{
1256 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001257 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001258 }
dan7c246102010-04-12 19:00:29 +00001259 return rc;
1260}
1261
drha2a42012010-05-18 18:01:08 +00001262/*
1263** Find the smallest page number out of all pages held in the WAL that
1264** has not been returned by any prior invocation of this method on the
1265** same WalIterator object. Write into *piFrame the frame index where
1266** that page was last written into the WAL. Write into *piPage the page
1267** number.
1268**
1269** Return 0 on success. If there are no pages in the WAL with a page
1270** number larger than *piPage, then return 1.
1271*/
drh7ed91f22010-04-29 22:34:07 +00001272static int walIteratorNext(
1273 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001274 u32 *piPage, /* OUT: The page number of the next page */
1275 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001276){
drha2a42012010-05-18 18:01:08 +00001277 u32 iMin; /* Result pgno must be greater than iMin */
1278 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1279 int i; /* For looping through segments */
dan7c246102010-04-12 19:00:29 +00001280
drha2a42012010-05-18 18:01:08 +00001281 iMin = p->iPrior;
1282 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001283 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001284 struct WalSegment *pSegment = &p->aSegment[i];
dan13a3cb82010-06-11 19:04:21 +00001285 while( pSegment->iNext<pSegment->nEntry ){
drha2a42012010-05-18 18:01:08 +00001286 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001287 if( iPg>iMin ){
1288 if( iPg<iRet ){
1289 iRet = iPg;
dan13a3cb82010-06-11 19:04:21 +00001290 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
dan7c246102010-04-12 19:00:29 +00001291 }
1292 break;
1293 }
1294 pSegment->iNext++;
1295 }
dan7c246102010-04-12 19:00:29 +00001296 }
1297
drha2a42012010-05-18 18:01:08 +00001298 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001299 return (iRet==0xFFFFFFFF);
1300}
1301
danf544b4c2010-06-25 11:35:52 +00001302/*
1303** This function merges two sorted lists into a single sorted list.
1304*/
1305static void walMerge(
1306 u32 *aContent, /* Pages in wal */
1307 ht_slot *aLeft, /* IN: Left hand input list */
1308 int nLeft, /* IN: Elements in array *paLeft */
1309 ht_slot **paRight, /* IN/OUT: Right hand input list */
1310 int *pnRight, /* IN/OUT: Elements in *paRight */
1311 ht_slot *aTmp /* Temporary buffer */
1312){
1313 int iLeft = 0; /* Current index in aLeft */
1314 int iRight = 0; /* Current index in aRight */
1315 int iOut = 0; /* Current index in output buffer */
1316 int nRight = *pnRight;
1317 ht_slot *aRight = *paRight;
dan7c246102010-04-12 19:00:29 +00001318
danf544b4c2010-06-25 11:35:52 +00001319 assert( nLeft>0 && nRight>0 );
1320 while( iRight<nRight || iLeft<nLeft ){
1321 ht_slot logpage;
1322 Pgno dbpage;
1323
1324 if( (iLeft<nLeft)
1325 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1326 ){
1327 logpage = aLeft[iLeft++];
1328 }else{
1329 logpage = aRight[iRight++];
1330 }
1331 dbpage = aContent[logpage];
1332
1333 aTmp[iOut++] = logpage;
1334 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1335
1336 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1337 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1338 }
1339
1340 *paRight = aLeft;
1341 *pnRight = iOut;
1342 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1343}
1344
1345/*
1346** Sort the elements in list aList, removing any duplicates.
1347*/
dan13a3cb82010-06-11 19:04:21 +00001348static void walMergesort(
1349 u32 *aContent, /* Pages in wal */
dan067f3162010-06-14 10:30:12 +00001350 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1351 ht_slot *aList, /* IN/OUT: List to sort */
drha2a42012010-05-18 18:01:08 +00001352 int *pnList /* IN/OUT: Number of elements in aList[] */
1353){
danf544b4c2010-06-25 11:35:52 +00001354 struct Sublist {
1355 int nList; /* Number of elements in aList */
1356 ht_slot *aList; /* Pointer to sub-list content */
1357 };
drha2a42012010-05-18 18:01:08 +00001358
danf544b4c2010-06-25 11:35:52 +00001359 const int nList = *pnList; /* Size of input list */
drhff828942010-06-26 21:34:06 +00001360 int nMerge = 0; /* Number of elements in list aMerge */
1361 ht_slot *aMerge = 0; /* List to be merged */
danf544b4c2010-06-25 11:35:52 +00001362 int iList; /* Index into input list */
drh7d113eb2010-06-26 20:00:54 +00001363 int iSub = 0; /* Index into aSub array */
danf544b4c2010-06-25 11:35:52 +00001364 struct Sublist aSub[13]; /* Array of sub-lists */
drha2a42012010-05-18 18:01:08 +00001365
danf544b4c2010-06-25 11:35:52 +00001366 memset(aSub, 0, sizeof(aSub));
1367 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1368 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
drha2a42012010-05-18 18:01:08 +00001369
danf544b4c2010-06-25 11:35:52 +00001370 for(iList=0; iList<nList; iList++){
1371 nMerge = 1;
1372 aMerge = &aList[iList];
1373 for(iSub=0; iList & (1<<iSub); iSub++){
1374 struct Sublist *p = &aSub[iSub];
1375 assert( p->aList && p->nList<=(1<<iSub) );
danbdf1e242010-06-25 15:16:25 +00001376 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001377 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
drha2a42012010-05-18 18:01:08 +00001378 }
danf544b4c2010-06-25 11:35:52 +00001379 aSub[iSub].aList = aMerge;
1380 aSub[iSub].nList = nMerge;
drha2a42012010-05-18 18:01:08 +00001381 }
1382
danf544b4c2010-06-25 11:35:52 +00001383 for(iSub++; iSub<ArraySize(aSub); iSub++){
1384 if( nList & (1<<iSub) ){
1385 struct Sublist *p = &aSub[iSub];
danbdf1e242010-06-25 15:16:25 +00001386 assert( p->nList<=(1<<iSub) );
1387 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001388 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1389 }
1390 }
1391 assert( aMerge==aList );
1392 *pnList = nMerge;
1393
drha2a42012010-05-18 18:01:08 +00001394#ifdef SQLITE_DEBUG
1395 {
1396 int i;
1397 for(i=1; i<*pnList; i++){
1398 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1399 }
1400 }
1401#endif
1402}
1403
dan5d656852010-06-14 07:53:26 +00001404/*
1405** Free an iterator allocated by walIteratorInit().
1406*/
1407static void walIteratorFree(WalIterator *p){
danbdf1e242010-06-25 15:16:25 +00001408 sqlite3ScratchFree(p);
dan5d656852010-06-14 07:53:26 +00001409}
1410
drha2a42012010-05-18 18:01:08 +00001411/*
danbdf1e242010-06-25 15:16:25 +00001412** Construct a WalInterator object that can be used to loop over all
1413** pages in the WAL in ascending order. The caller must hold the checkpoint
drha2a42012010-05-18 18:01:08 +00001414**
1415** On success, make *pp point to the newly allocated WalInterator object
danbdf1e242010-06-25 15:16:25 +00001416** return SQLITE_OK. Otherwise, return an error code. If this routine
1417** returns an error, the value of *pp is undefined.
drha2a42012010-05-18 18:01:08 +00001418**
1419** The calling routine should invoke walIteratorFree() to destroy the
danbdf1e242010-06-25 15:16:25 +00001420** WalIterator object when it has finished with it.
drha2a42012010-05-18 18:01:08 +00001421*/
1422static int walIteratorInit(Wal *pWal, WalIterator **pp){
dan067f3162010-06-14 10:30:12 +00001423 WalIterator *p; /* Return value */
1424 int nSegment; /* Number of segments to merge */
1425 u32 iLast; /* Last frame in log */
1426 int nByte; /* Number of bytes to allocate */
1427 int i; /* Iterator variable */
1428 ht_slot *aTmp; /* Temp space used by merge-sort */
danbdf1e242010-06-25 15:16:25 +00001429 int rc = SQLITE_OK; /* Return Code */
drha2a42012010-05-18 18:01:08 +00001430
danbdf1e242010-06-25 15:16:25 +00001431 /* This routine only runs while holding the checkpoint lock. And
1432 ** it only runs if there is actually content in the log (mxFrame>0).
drha2a42012010-05-18 18:01:08 +00001433 */
danbdf1e242010-06-25 15:16:25 +00001434 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
dan13a3cb82010-06-11 19:04:21 +00001435 iLast = pWal->hdr.mxFrame;
drha2a42012010-05-18 18:01:08 +00001436
danbdf1e242010-06-25 15:16:25 +00001437 /* Allocate space for the WalIterator object. */
dan13a3cb82010-06-11 19:04:21 +00001438 nSegment = walFramePage(iLast) + 1;
1439 nByte = sizeof(WalIterator)
dan52d6fc02010-06-25 16:34:32 +00001440 + (nSegment-1)*sizeof(struct WalSegment)
1441 + iLast*sizeof(ht_slot);
danbdf1e242010-06-25 15:16:25 +00001442 p = (WalIterator *)sqlite3ScratchMalloc(nByte);
dan8f6097c2010-05-06 07:43:58 +00001443 if( !p ){
drha2a42012010-05-18 18:01:08 +00001444 return SQLITE_NOMEM;
1445 }
1446 memset(p, 0, nByte);
drha2a42012010-05-18 18:01:08 +00001447 p->nSegment = nSegment;
danbdf1e242010-06-25 15:16:25 +00001448
1449 /* Allocate temporary space used by the merge-sort routine. This block
1450 ** of memory will be freed before this function returns.
1451 */
dan52d6fc02010-06-25 16:34:32 +00001452 aTmp = (ht_slot *)sqlite3ScratchMalloc(
1453 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1454 );
danbdf1e242010-06-25 15:16:25 +00001455 if( !aTmp ){
1456 rc = SQLITE_NOMEM;
1457 }
1458
1459 for(i=0; rc==SQLITE_OK && i<nSegment; i++){
dan067f3162010-06-14 10:30:12 +00001460 volatile ht_slot *aHash;
dan13a3cb82010-06-11 19:04:21 +00001461 u32 iZero;
dan13a3cb82010-06-11 19:04:21 +00001462 volatile u32 *aPgno;
1463
dan4280eb32010-06-12 12:02:35 +00001464 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
danbdf1e242010-06-25 15:16:25 +00001465 if( rc==SQLITE_OK ){
dan52d6fc02010-06-25 16:34:32 +00001466 int j; /* Counter variable */
1467 int nEntry; /* Number of entries in this segment */
1468 ht_slot *aIndex; /* Sorted index for this segment */
1469
danbdf1e242010-06-25 15:16:25 +00001470 aPgno++;
drh519426a2010-07-09 03:19:07 +00001471 if( (i+1)==nSegment ){
1472 nEntry = (int)(iLast - iZero);
1473 }else{
shaneh55897962010-07-09 12:57:53 +00001474 nEntry = (int)((u32*)aHash - (u32*)aPgno);
drh519426a2010-07-09 03:19:07 +00001475 }
dan52d6fc02010-06-25 16:34:32 +00001476 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
danbdf1e242010-06-25 15:16:25 +00001477 iZero++;
1478
danbdf1e242010-06-25 15:16:25 +00001479 for(j=0; j<nEntry; j++){
shaneh5eba1f62010-07-02 17:05:03 +00001480 aIndex[j] = (ht_slot)j;
danbdf1e242010-06-25 15:16:25 +00001481 }
1482 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1483 p->aSegment[i].iZero = iZero;
1484 p->aSegment[i].nEntry = nEntry;
1485 p->aSegment[i].aIndex = aIndex;
1486 p->aSegment[i].aPgno = (u32 *)aPgno;
dan13a3cb82010-06-11 19:04:21 +00001487 }
dan7c246102010-04-12 19:00:29 +00001488 }
danbdf1e242010-06-25 15:16:25 +00001489 sqlite3ScratchFree(aTmp);
dan7c246102010-04-12 19:00:29 +00001490
danbdf1e242010-06-25 15:16:25 +00001491 if( rc!=SQLITE_OK ){
1492 walIteratorFree(p);
1493 }
dan8f6097c2010-05-06 07:43:58 +00001494 *pp = p;
danbdf1e242010-06-25 15:16:25 +00001495 return rc;
dan7c246102010-04-12 19:00:29 +00001496}
1497
dan7c246102010-04-12 19:00:29 +00001498/*
drh73b64e42010-05-30 19:55:15 +00001499** Copy as much content as we can from the WAL back into the database file
1500** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1501**
1502** The amount of information copies from WAL to database might be limited
1503** by active readers. This routine will never overwrite a database page
1504** that a concurrent reader might be using.
1505**
1506** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1507** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1508** checkpoints are always run by a background thread or background
1509** process, foreground threads will never block on a lengthy fsync call.
1510**
1511** Fsync is called on the WAL before writing content out of the WAL and
1512** into the database. This ensures that if the new content is persistent
1513** in the WAL and can be recovered following a power-loss or hard reset.
1514**
1515** Fsync is also called on the database file if (and only if) the entire
1516** WAL content is copied into the database file. This second fsync makes
1517** it safe to delete the WAL since the new content will persist in the
1518** database file.
1519**
1520** This routine uses and updates the nBackfill field of the wal-index header.
1521** This is the only routine tha will increase the value of nBackfill.
1522** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1523** its value.)
1524**
1525** The caller must be holding sufficient locks to ensure that no other
1526** checkpoint is running (in any other thread or process) at the same
1527** time.
dan7c246102010-04-12 19:00:29 +00001528*/
drh7ed91f22010-04-29 22:34:07 +00001529static int walCheckpoint(
1530 Wal *pWal, /* Wal connection */
danc5118782010-04-17 17:34:41 +00001531 int sync_flags, /* Flags for OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001532 int nBuf, /* Size of zBuf in bytes */
dan7c246102010-04-12 19:00:29 +00001533 u8 *zBuf /* Temporary buffer to use */
1534){
1535 int rc; /* Return code */
drhb2eced52010-08-12 02:41:12 +00001536 int szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001537 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001538 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001539 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001540 u32 mxSafeFrame; /* Max frame that can be backfilled */
dan502019c2010-07-28 14:26:17 +00001541 u32 mxPage; /* Max database page to write */
drh73b64e42010-05-30 19:55:15 +00001542 int i; /* Loop counter */
drh73b64e42010-05-30 19:55:15 +00001543 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
dan7c246102010-04-12 19:00:29 +00001544
drh9b78f792010-08-14 21:21:24 +00001545 szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1546 testcase( szPage<=32768 );
1547 testcase( szPage>=65536 );
danf544b4c2010-06-25 11:35:52 +00001548 if( pWal->hdr.mxFrame==0 ) return SQLITE_OK;
1549
dan7c246102010-04-12 19:00:29 +00001550 /* Allocate the iterator */
dan8f6097c2010-05-06 07:43:58 +00001551 rc = walIteratorInit(pWal, &pIter);
danf544b4c2010-06-25 11:35:52 +00001552 if( rc!=SQLITE_OK ){
danbdf1e242010-06-25 15:16:25 +00001553 return rc;
danb6e099a2010-05-04 14:47:39 +00001554 }
danf544b4c2010-06-25 11:35:52 +00001555 assert( pIter );
danb6e099a2010-05-04 14:47:39 +00001556
drh73b64e42010-05-30 19:55:15 +00001557 /*** TODO: Move this test out to the caller. Make it an assert() here ***/
drhb2eced52010-08-12 02:41:12 +00001558 if( szPage!=nBuf ){
dan83f42d12010-06-04 10:37:05 +00001559 rc = SQLITE_CORRUPT_BKPT;
1560 goto walcheckpoint_out;
danb6e099a2010-05-04 14:47:39 +00001561 }
1562
drh73b64e42010-05-30 19:55:15 +00001563 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1564 ** safe to write into the database. Frames beyond mxSafeFrame might
1565 ** overwrite database pages that are in use by active readers and thus
1566 ** cannot be backfilled from the WAL.
1567 */
dand54ff602010-05-31 11:16:30 +00001568 mxSafeFrame = pWal->hdr.mxFrame;
dan502019c2010-07-28 14:26:17 +00001569 mxPage = pWal->hdr.nPage;
dan13a3cb82010-06-11 19:04:21 +00001570 pInfo = walCkptInfo(pWal);
drh73b64e42010-05-30 19:55:15 +00001571 for(i=1; i<WAL_NREADER; i++){
1572 u32 y = pInfo->aReadMark[i];
drhdb7f6472010-06-09 14:45:12 +00001573 if( mxSafeFrame>=y ){
dan83f42d12010-06-04 10:37:05 +00001574 assert( y<=pWal->hdr.mxFrame );
1575 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1576 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001577 pInfo->aReadMark[i] = READMARK_NOT_USED;
drh73b64e42010-05-30 19:55:15 +00001578 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
drh2d37e1c2010-06-02 20:38:20 +00001579 }else if( rc==SQLITE_BUSY ){
drhdb7f6472010-06-09 14:45:12 +00001580 mxSafeFrame = y;
drh2d37e1c2010-06-02 20:38:20 +00001581 }else{
dan83f42d12010-06-04 10:37:05 +00001582 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001583 }
1584 }
danc5118782010-04-17 17:34:41 +00001585 }
dan7c246102010-04-12 19:00:29 +00001586
drh73b64e42010-05-30 19:55:15 +00001587 if( pInfo->nBackfill<mxSafeFrame
1588 && (rc = walLockExclusive(pWal, WAL_READ_LOCK(0), 1))==SQLITE_OK
1589 ){
dan502019c2010-07-28 14:26:17 +00001590 i64 nSize; /* Current size of database file */
drh73b64e42010-05-30 19:55:15 +00001591 u32 nBackfill = pInfo->nBackfill;
1592
1593 /* Sync the WAL to disk */
1594 if( sync_flags ){
1595 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1596 }
1597
dan502019c2010-07-28 14:26:17 +00001598 /* If the database file may grow as a result of this checkpoint, hint
1599 ** about the eventual size of the db file to the VFS layer.
1600 */
dan007820d2010-08-09 07:51:40 +00001601 if( rc==SQLITE_OK ){
1602 i64 nReq = ((i64)mxPage * szPage);
1603 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1604 if( rc==SQLITE_OK && nSize<nReq ){
1605 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1606 }
dan502019c2010-07-28 14:26:17 +00001607 }
1608
drh73b64e42010-05-30 19:55:15 +00001609 /* Iterate through the contents of the WAL, copying data to the db file. */
1610 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
drh3e8e7ec2010-07-07 13:43:19 +00001611 i64 iOffset;
dan13a3cb82010-06-11 19:04:21 +00001612 assert( walFramePgno(pWal, iFrame)==iDbpage );
dan502019c2010-07-28 14:26:17 +00001613 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue;
drh3e8e7ec2010-07-07 13:43:19 +00001614 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
drh09b5dbc2010-07-07 14:35:58 +00001615 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
drh3e8e7ec2010-07-07 13:43:19 +00001616 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1617 if( rc!=SQLITE_OK ) break;
1618 iOffset = (iDbpage-1)*(i64)szPage;
1619 testcase( IS_BIG_INT(iOffset) );
1620 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1621 if( rc!=SQLITE_OK ) break;
drh73b64e42010-05-30 19:55:15 +00001622 }
1623
1624 /* If work was actually accomplished... */
dand764c7d2010-06-04 11:56:22 +00001625 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00001626 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
drh3e8e7ec2010-07-07 13:43:19 +00001627 i64 szDb = pWal->hdr.nPage*(i64)szPage;
1628 testcase( IS_BIG_INT(szDb) );
1629 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
drh73b64e42010-05-30 19:55:15 +00001630 if( rc==SQLITE_OK && sync_flags ){
1631 rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1632 }
1633 }
dand764c7d2010-06-04 11:56:22 +00001634 if( rc==SQLITE_OK ){
1635 pInfo->nBackfill = mxSafeFrame;
1636 }
drh73b64e42010-05-30 19:55:15 +00001637 }
1638
1639 /* Release the reader lock held while backfilling */
1640 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
drh2d37e1c2010-06-02 20:38:20 +00001641 }else if( rc==SQLITE_BUSY ){
drh34116ea2010-05-31 12:30:52 +00001642 /* Reset the return code so as not to report a checkpoint failure
1643 ** just because active readers prevent any backfill.
1644 */
1645 rc = SQLITE_OK;
dan7c246102010-04-12 19:00:29 +00001646 }
1647
dan83f42d12010-06-04 10:37:05 +00001648 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00001649 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00001650 return rc;
1651}
1652
1653/*
1654** Close a connection to a log file.
1655*/
drhc438efd2010-04-26 00:19:45 +00001656int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00001657 Wal *pWal, /* Wal to close */
danc5118782010-04-17 17:34:41 +00001658 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001659 int nBuf,
1660 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00001661){
1662 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00001663 if( pWal ){
dan30c86292010-04-30 16:24:46 +00001664 int isDelete = 0; /* True to unlink wal and wal-index files */
1665
1666 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1667 ** ordinary, rollback-mode locking methods, this guarantees that the
1668 ** connection associated with this log file is the only connection to
1669 ** the database. In this case checkpoint the database and unlink both
1670 ** the wal and wal-index files.
1671 **
1672 ** The EXCLUSIVE lock is not released before returning.
1673 */
drhd9e5c4f2010-05-12 18:01:39 +00001674 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
dan30c86292010-04-30 16:24:46 +00001675 if( rc==SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001676 pWal->exclusiveMode = 1;
dan1beb9392010-05-31 12:02:30 +00001677 rc = sqlite3WalCheckpoint(pWal, sync_flags, nBuf, zBuf);
dan30c86292010-04-30 16:24:46 +00001678 if( rc==SQLITE_OK ){
1679 isDelete = 1;
1680 }
dan30c86292010-04-30 16:24:46 +00001681 }
1682
dan1018e902010-05-05 15:33:05 +00001683 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00001684 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00001685 if( isDelete ){
drhd9e5c4f2010-05-12 18:01:39 +00001686 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
dan30c86292010-04-30 16:24:46 +00001687 }
drhc74c3332010-05-31 12:15:19 +00001688 WALTRACE(("WAL%p: closed\n", pWal));
shaneh8a300f82010-07-02 18:15:31 +00001689 sqlite3_free((void *)pWal->apWiData);
drh7ed91f22010-04-29 22:34:07 +00001690 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00001691 }
1692 return rc;
1693}
1694
1695/*
drha2a42012010-05-18 18:01:08 +00001696** Try to read the wal-index header. Return 0 on success and 1 if
1697** there is a problem.
1698**
1699** The wal-index is in shared memory. Another thread or process might
1700** be writing the header at the same time this procedure is trying to
1701** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00001702** by verifying that both copies of the header are the same and also by
1703** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00001704**
1705** If and only if the read is consistent and the header is different from
1706** pWal->hdr, then pWal->hdr is updated to the content of the new header
1707** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00001708**
dan84670502010-05-07 05:46:23 +00001709** If the checksum cannot be verified return non-zero. If the header
1710** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00001711*/
drh7750ab42010-06-26 22:16:02 +00001712static int walIndexTryHdr(Wal *pWal, int *pChanged){
dan4280eb32010-06-12 12:02:35 +00001713 u32 aCksum[2]; /* Checksum on the header content */
1714 WalIndexHdr h1, h2; /* Two copies of the header content */
1715 WalIndexHdr volatile *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00001716
dan4280eb32010-06-12 12:02:35 +00001717 /* The first page of the wal-index must be mapped at this point. */
1718 assert( pWal->nWiData>0 && pWal->apWiData[0] );
drh79e6c782010-04-30 02:13:26 +00001719
drh6cef0cf2010-08-16 16:31:43 +00001720 /* Read the header. This might happen concurrently with a write to the
drh73b64e42010-05-30 19:55:15 +00001721 ** same area of shared memory on a different CPU in a SMP,
1722 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00001723 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00001724 **
1725 ** There are two copies of the header at the beginning of the wal-index.
1726 ** When reading, read [0] first then [1]. Writes are in the reverse order.
1727 ** Memory barriers are used to prevent the compiler or the hardware from
1728 ** reordering the reads and writes.
danb9bf16b2010-04-14 11:23:30 +00001729 */
dan4280eb32010-06-12 12:02:35 +00001730 aHdr = walIndexHdr(pWal);
1731 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
drh286a2882010-05-20 23:51:06 +00001732 sqlite3OsShmBarrier(pWal->pDbFd);
dan4280eb32010-06-12 12:02:35 +00001733 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00001734
drhf0b20f82010-05-21 13:16:18 +00001735 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
1736 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00001737 }
drh4b82c382010-05-31 18:24:19 +00001738 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00001739 return 1; /* Malformed header - probably all zeros */
1740 }
danb8fd6c22010-05-24 10:39:36 +00001741 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00001742 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
1743 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00001744 }
1745
drhf0b20f82010-05-21 13:16:18 +00001746 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00001747 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00001748 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh9b78f792010-08-14 21:21:24 +00001749 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1750 testcase( pWal->szPage<=32768 );
1751 testcase( pWal->szPage>=65536 );
danb9bf16b2010-04-14 11:23:30 +00001752 }
dan84670502010-05-07 05:46:23 +00001753
1754 /* The header was successfully read. Return zero. */
1755 return 0;
danb9bf16b2010-04-14 11:23:30 +00001756}
1757
1758/*
drha2a42012010-05-18 18:01:08 +00001759** Read the wal-index header from the wal-index and into pWal->hdr.
drha927e942010-06-24 02:46:48 +00001760** If the wal-header appears to be corrupt, try to reconstruct the
1761** wal-index from the WAL before returning.
drha2a42012010-05-18 18:01:08 +00001762**
1763** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
1764** changed by this opertion. If pWal->hdr is unchanged, set *pChanged
1765** to 0.
1766**
drh7ed91f22010-04-29 22:34:07 +00001767** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00001768** Otherwise an SQLite error code.
1769*/
drh7ed91f22010-04-29 22:34:07 +00001770static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00001771 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00001772 int badHdr; /* True if a header read failed */
drha927e942010-06-24 02:46:48 +00001773 volatile u32 *page0; /* Chunk of wal-index containing header */
danb9bf16b2010-04-14 11:23:30 +00001774
dan4280eb32010-06-12 12:02:35 +00001775 /* Ensure that page 0 of the wal-index (the page that contains the
1776 ** wal-index header) is mapped. Return early if an error occurs here.
1777 */
dana8614692010-05-06 14:42:34 +00001778 assert( pChanged );
dan4280eb32010-06-12 12:02:35 +00001779 rc = walIndexPage(pWal, 0, &page0);
danc7991bd2010-05-05 19:04:59 +00001780 if( rc!=SQLITE_OK ){
1781 return rc;
dan4280eb32010-06-12 12:02:35 +00001782 };
1783 assert( page0 || pWal->writeLock==0 );
drh7ed91f22010-04-29 22:34:07 +00001784
dan4280eb32010-06-12 12:02:35 +00001785 /* If the first page of the wal-index has been mapped, try to read the
1786 ** wal-index header immediately, without holding any lock. This usually
1787 ** works, but may fail if the wal-index header is corrupt or currently
drha927e942010-06-24 02:46:48 +00001788 ** being modified by another thread or process.
danb9bf16b2010-04-14 11:23:30 +00001789 */
dan4280eb32010-06-12 12:02:35 +00001790 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
drhbab7b912010-05-26 17:31:58 +00001791
drh73b64e42010-05-30 19:55:15 +00001792 /* If the first attempt failed, it might have been due to a race
1793 ** with a writer. So get a WRITE lock and try again.
1794 */
dand54ff602010-05-31 11:16:30 +00001795 assert( badHdr==0 || pWal->writeLock==0 );
dan4280eb32010-06-12 12:02:35 +00001796 if( badHdr && SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
1797 pWal->writeLock = 1;
1798 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
drh73b64e42010-05-30 19:55:15 +00001799 badHdr = walIndexTryHdr(pWal, pChanged);
1800 if( badHdr ){
1801 /* If the wal-index header is still malformed even while holding
1802 ** a WRITE lock, it can only mean that the header is corrupted and
1803 ** needs to be reconstructed. So run recovery to do exactly that.
1804 */
drhbab7b912010-05-26 17:31:58 +00001805 rc = walIndexRecover(pWal);
dan3dee6da2010-05-31 16:17:54 +00001806 *pChanged = 1;
drhbab7b912010-05-26 17:31:58 +00001807 }
drhbab7b912010-05-26 17:31:58 +00001808 }
dan4280eb32010-06-12 12:02:35 +00001809 pWal->writeLock = 0;
1810 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
danb9bf16b2010-04-14 11:23:30 +00001811 }
1812
drha927e942010-06-24 02:46:48 +00001813 /* If the header is read successfully, check the version number to make
1814 ** sure the wal-index was not constructed with some future format that
1815 ** this version of SQLite cannot understand.
1816 */
1817 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
1818 rc = SQLITE_CANTOPEN_BKPT;
1819 }
1820
danb9bf16b2010-04-14 11:23:30 +00001821 return rc;
1822}
1823
1824/*
drh73b64e42010-05-30 19:55:15 +00001825** This is the value that walTryBeginRead returns when it needs to
1826** be retried.
dan7c246102010-04-12 19:00:29 +00001827*/
drh73b64e42010-05-30 19:55:15 +00001828#define WAL_RETRY (-1)
dan64d039e2010-04-13 19:27:31 +00001829
drh73b64e42010-05-30 19:55:15 +00001830/*
1831** Attempt to start a read transaction. This might fail due to a race or
1832** other transient condition. When that happens, it returns WAL_RETRY to
1833** indicate to the caller that it is safe to retry immediately.
1834**
drha927e942010-06-24 02:46:48 +00001835** On success return SQLITE_OK. On a permanent failure (such an
drh73b64e42010-05-30 19:55:15 +00001836** I/O error or an SQLITE_BUSY because another process is running
1837** recovery) return a positive error code.
1838**
drha927e942010-06-24 02:46:48 +00001839** The useWal parameter is true to force the use of the WAL and disable
1840** the case where the WAL is bypassed because it has been completely
1841** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
1842** to make a copy of the wal-index header into pWal->hdr. If the
1843** wal-index header has changed, *pChanged is set to 1 (as an indication
1844** to the caller that the local paget cache is obsolete and needs to be
1845** flushed.) When useWal==1, the wal-index header is assumed to already
1846** be loaded and the pChanged parameter is unused.
1847**
1848** The caller must set the cnt parameter to the number of prior calls to
1849** this routine during the current read attempt that returned WAL_RETRY.
1850** This routine will start taking more aggressive measures to clear the
1851** race conditions after multiple WAL_RETRY returns, and after an excessive
1852** number of errors will ultimately return SQLITE_PROTOCOL. The
1853** SQLITE_PROTOCOL return indicates that some other process has gone rogue
1854** and is not honoring the locking protocol. There is a vanishingly small
1855** chance that SQLITE_PROTOCOL could be returned because of a run of really
1856** bad luck when there is lots of contention for the wal-index, but that
1857** possibility is so small that it can be safely neglected, we believe.
1858**
drh73b64e42010-05-30 19:55:15 +00001859** On success, this routine obtains a read lock on
1860** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
1861** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
1862** that means the Wal does not hold any read lock. The reader must not
1863** access any database page that is modified by a WAL frame up to and
1864** including frame number aReadMark[pWal->readLock]. The reader will
1865** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
1866** Or if pWal->readLock==0, then the reader will ignore the WAL
1867** completely and get all content directly from the database file.
drha927e942010-06-24 02:46:48 +00001868** If the useWal parameter is 1 then the WAL will never be ignored and
1869** this routine will always set pWal->readLock>0 on success.
drh73b64e42010-05-30 19:55:15 +00001870** When the read transaction is completed, the caller must release the
1871** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
1872**
1873** This routine uses the nBackfill and aReadMark[] fields of the header
1874** to select a particular WAL_READ_LOCK() that strives to let the
1875** checkpoint process do as much work as possible. This routine might
1876** update values of the aReadMark[] array in the header, but if it does
1877** so it takes care to hold an exclusive lock on the corresponding
1878** WAL_READ_LOCK() while changing values.
1879*/
drhaab4c022010-06-02 14:45:51 +00001880static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00001881 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
1882 u32 mxReadMark; /* Largest aReadMark[] value */
1883 int mxI; /* Index of largest aReadMark[] value */
1884 int i; /* Loop counter */
dan13a3cb82010-06-11 19:04:21 +00001885 int rc = SQLITE_OK; /* Return code */
dan64d039e2010-04-13 19:27:31 +00001886
drh61e4ace2010-05-31 20:28:37 +00001887 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00001888
drhaab4c022010-06-02 14:45:51 +00001889 /* Take steps to avoid spinning forever if there is a protocol error. */
1890 if( cnt>5 ){
1891 if( cnt>100 ) return SQLITE_PROTOCOL;
1892 sqlite3OsSleep(pWal->pVfs, 1);
1893 }
1894
drh73b64e42010-05-30 19:55:15 +00001895 if( !useWal ){
drh7ed91f22010-04-29 22:34:07 +00001896 rc = walIndexReadHdr(pWal, pChanged);
drh73b64e42010-05-30 19:55:15 +00001897 if( rc==SQLITE_BUSY ){
1898 /* If there is not a recovery running in another thread or process
1899 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
1900 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
1901 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
1902 ** would be technically correct. But the race is benign since with
1903 ** WAL_RETRY this routine will be called again and will probably be
1904 ** right on the second iteration.
1905 */
dan7d4514a2010-07-15 17:54:14 +00001906 if( pWal->apWiData[0]==0 ){
1907 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
1908 ** We assume this is a transient condition, so return WAL_RETRY. The
1909 ** xShmMap() implementation used by the default unix and win32 VFS
1910 ** modules may return SQLITE_BUSY due to a race condition in the
1911 ** code that determines whether or not the shared-memory region
1912 ** must be zeroed before the requested page is returned.
1913 */
1914 rc = WAL_RETRY;
1915 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
drh73b64e42010-05-30 19:55:15 +00001916 walUnlockShared(pWal, WAL_RECOVER_LOCK);
1917 rc = WAL_RETRY;
1918 }else if( rc==SQLITE_BUSY ){
1919 rc = SQLITE_BUSY_RECOVERY;
1920 }
1921 }
drha927e942010-06-24 02:46:48 +00001922 if( rc!=SQLITE_OK ){
1923 return rc;
1924 }
drh73b64e42010-05-30 19:55:15 +00001925 }
1926
dan13a3cb82010-06-11 19:04:21 +00001927 pInfo = walCkptInfo(pWal);
drh73b64e42010-05-30 19:55:15 +00001928 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
1929 /* The WAL has been completely backfilled (or it is empty).
1930 ** and can be safely ignored.
1931 */
1932 rc = walLockShared(pWal, WAL_READ_LOCK(0));
daneb8cb3a2010-06-05 18:34:26 +00001933 sqlite3OsShmBarrier(pWal->pDbFd);
drh73b64e42010-05-30 19:55:15 +00001934 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00001935 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00001936 /* It is not safe to allow the reader to continue here if frames
1937 ** may have been appended to the log before READ_LOCK(0) was obtained.
1938 ** When holding READ_LOCK(0), the reader ignores the entire log file,
1939 ** which implies that the database file contains a trustworthy
1940 ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from
1941 ** happening, this is usually correct.
1942 **
1943 ** However, if frames have been appended to the log (or if the log
1944 ** is wrapped and written for that matter) before the READ_LOCK(0)
1945 ** is obtained, that is not necessarily true. A checkpointer may
1946 ** have started to backfill the appended frames but crashed before
1947 ** it finished. Leaving a corrupt image in the database file.
1948 */
drh73b64e42010-05-30 19:55:15 +00001949 walUnlockShared(pWal, WAL_READ_LOCK(0));
1950 return WAL_RETRY;
1951 }
1952 pWal->readLock = 0;
1953 return SQLITE_OK;
1954 }else if( rc!=SQLITE_BUSY ){
1955 return rc;
dan64d039e2010-04-13 19:27:31 +00001956 }
dan7c246102010-04-12 19:00:29 +00001957 }
danba515902010-04-30 09:32:06 +00001958
drh73b64e42010-05-30 19:55:15 +00001959 /* If we get this far, it means that the reader will want to use
1960 ** the WAL to get at content from recent commits. The job now is
1961 ** to select one of the aReadMark[] entries that is closest to
1962 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
1963 */
1964 mxReadMark = 0;
1965 mxI = 0;
1966 for(i=1; i<WAL_NREADER; i++){
1967 u32 thisMark = pInfo->aReadMark[i];
drhdb7f6472010-06-09 14:45:12 +00001968 if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
1969 assert( thisMark!=READMARK_NOT_USED );
drh73b64e42010-05-30 19:55:15 +00001970 mxReadMark = thisMark;
1971 mxI = i;
1972 }
1973 }
1974 if( mxI==0 ){
1975 /* If we get here, it means that all of the aReadMark[] entries between
1976 ** 1 and WAL_NREADER-1 are zero. Try to initialize aReadMark[1] to
1977 ** be mxFrame, then retry.
1978 */
1979 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), 1);
1980 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001981 pInfo->aReadMark[1] = pWal->hdr.mxFrame;
drh73b64e42010-05-30 19:55:15 +00001982 walUnlockExclusive(pWal, WAL_READ_LOCK(1), 1);
drh38933f22010-06-02 15:43:18 +00001983 rc = WAL_RETRY;
1984 }else if( rc==SQLITE_BUSY ){
1985 rc = WAL_RETRY;
drh73b64e42010-05-30 19:55:15 +00001986 }
drh38933f22010-06-02 15:43:18 +00001987 return rc;
drh73b64e42010-05-30 19:55:15 +00001988 }else{
1989 if( mxReadMark < pWal->hdr.mxFrame ){
dand54ff602010-05-31 11:16:30 +00001990 for(i=1; i<WAL_NREADER; i++){
drh73b64e42010-05-30 19:55:15 +00001991 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1992 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001993 mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
drh73b64e42010-05-30 19:55:15 +00001994 mxI = i;
1995 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1996 break;
drh38933f22010-06-02 15:43:18 +00001997 }else if( rc!=SQLITE_BUSY ){
1998 return rc;
drh73b64e42010-05-30 19:55:15 +00001999 }
2000 }
2001 }
2002
2003 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2004 if( rc ){
2005 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2006 }
daneb8cb3a2010-06-05 18:34:26 +00002007 /* Now that the read-lock has been obtained, check that neither the
2008 ** value in the aReadMark[] array or the contents of the wal-index
2009 ** header have changed.
2010 **
2011 ** It is necessary to check that the wal-index header did not change
2012 ** between the time it was read and when the shared-lock was obtained
2013 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2014 ** that the log file may have been wrapped by a writer, or that frames
2015 ** that occur later in the log than pWal->hdr.mxFrame may have been
2016 ** copied into the database by a checkpointer. If either of these things
2017 ** happened, then reading the database with the current value of
2018 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2019 ** instead.
2020 **
dan640aac42010-06-05 19:18:59 +00002021 ** This does not guarantee that the copy of the wal-index header is up to
2022 ** date before proceeding. That would not be possible without somehow
2023 ** blocking writers. It only guarantees that a dangerous checkpoint or
daneb8cb3a2010-06-05 18:34:26 +00002024 ** log-wrap (either of which would require an exclusive lock on
2025 ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
2026 */
2027 sqlite3OsShmBarrier(pWal->pDbFd);
drh73b64e42010-05-30 19:55:15 +00002028 if( pInfo->aReadMark[mxI]!=mxReadMark
dan4280eb32010-06-12 12:02:35 +00002029 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
drh73b64e42010-05-30 19:55:15 +00002030 ){
2031 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2032 return WAL_RETRY;
2033 }else{
drhdb7f6472010-06-09 14:45:12 +00002034 assert( mxReadMark<=pWal->hdr.mxFrame );
shaneh5eba1f62010-07-02 17:05:03 +00002035 pWal->readLock = (i16)mxI;
drh73b64e42010-05-30 19:55:15 +00002036 }
2037 }
2038 return rc;
2039}
2040
2041/*
2042** Begin a read transaction on the database.
2043**
2044** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2045** it takes a snapshot of the state of the WAL and wal-index for the current
2046** instant in time. The current thread will continue to use this snapshot.
2047** Other threads might append new content to the WAL and wal-index but
2048** that extra content is ignored by the current thread.
2049**
2050** If the database contents have changes since the previous read
2051** transaction, then *pChanged is set to 1 before returning. The
2052** Pager layer will use this to know that is cache is stale and
2053** needs to be flushed.
2054*/
2055int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2056 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00002057 int cnt = 0; /* Number of TryBeginRead attempts */
drh73b64e42010-05-30 19:55:15 +00002058
2059 do{
drhaab4c022010-06-02 14:45:51 +00002060 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00002061 }while( rc==WAL_RETRY );
dan7c246102010-04-12 19:00:29 +00002062 return rc;
2063}
2064
2065/*
drh73b64e42010-05-30 19:55:15 +00002066** Finish with a read transaction. All this does is release the
2067** read-lock.
dan7c246102010-04-12 19:00:29 +00002068*/
drh73b64e42010-05-30 19:55:15 +00002069void sqlite3WalEndReadTransaction(Wal *pWal){
dan73d66fd2010-08-07 16:17:48 +00002070 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00002071 if( pWal->readLock>=0 ){
2072 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2073 pWal->readLock = -1;
2074 }
dan7c246102010-04-12 19:00:29 +00002075}
2076
dan5e0ce872010-04-28 17:48:44 +00002077/*
drh73b64e42010-05-30 19:55:15 +00002078** Read a page from the WAL, if it is present in the WAL and if the
2079** current read transaction is configured to use the WAL.
2080**
2081** The *pInWal is set to 1 if the requested page is in the WAL and
2082** has been loaded. Or *pInWal is set to 0 if the page was not in
2083** the WAL and needs to be read out of the database.
dan7c246102010-04-12 19:00:29 +00002084*/
danb6e099a2010-05-04 14:47:39 +00002085int sqlite3WalRead(
danbb23aff2010-05-10 14:46:09 +00002086 Wal *pWal, /* WAL handle */
2087 Pgno pgno, /* Database page number to read data for */
2088 int *pInWal, /* OUT: True if data is read from WAL */
2089 int nOut, /* Size of buffer pOut in bytes */
2090 u8 *pOut /* Buffer to write page data to */
danb6e099a2010-05-04 14:47:39 +00002091){
danbb23aff2010-05-10 14:46:09 +00002092 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00002093 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00002094 int iHash; /* Used to loop through N hash tables */
dan7c246102010-04-12 19:00:29 +00002095
drhaab4c022010-06-02 14:45:51 +00002096 /* This routine is only be called from within a read transaction. */
2097 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00002098
danbb23aff2010-05-10 14:46:09 +00002099 /* If the "last page" field of the wal-index header snapshot is 0, then
2100 ** no data will be read from the wal under any circumstances. Return early
drha927e942010-06-24 02:46:48 +00002101 ** in this case as an optimization. Likewise, if pWal->readLock==0,
2102 ** then the WAL is ignored by the reader so return early, as if the
2103 ** WAL were empty.
danbb23aff2010-05-10 14:46:09 +00002104 */
drh73b64e42010-05-30 19:55:15 +00002105 if( iLast==0 || pWal->readLock==0 ){
danbb23aff2010-05-10 14:46:09 +00002106 *pInWal = 0;
2107 return SQLITE_OK;
2108 }
2109
danbb23aff2010-05-10 14:46:09 +00002110 /* Search the hash table or tables for an entry matching page number
2111 ** pgno. Each iteration of the following for() loop searches one
2112 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2113 **
drha927e942010-06-24 02:46:48 +00002114 ** This code might run concurrently to the code in walIndexAppend()
danbb23aff2010-05-10 14:46:09 +00002115 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00002116 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00002117 ** slot (aHash[iKey]) may have been added before or after the
2118 ** current read transaction was opened. Values added after the
2119 ** read transaction was opened may have been written incorrectly -
2120 ** i.e. these slots may contain garbage data. However, we assume
2121 ** that any slots written before the current read transaction was
2122 ** opened remain unmodified.
2123 **
2124 ** For the reasons above, the if(...) condition featured in the inner
2125 ** loop of the following block is more stringent that would be required
2126 ** if we had exclusive access to the hash-table:
2127 **
2128 ** (aPgno[iFrame]==pgno):
2129 ** This condition filters out normal hash-table collisions.
2130 **
2131 ** (iFrame<=iLast):
2132 ** This condition filters out entries that were added to the hash
2133 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00002134 */
dan13a3cb82010-06-11 19:04:21 +00002135 for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
dan067f3162010-06-14 10:30:12 +00002136 volatile ht_slot *aHash; /* Pointer to hash table */
2137 volatile u32 *aPgno; /* Pointer to array of page numbers */
danbb23aff2010-05-10 14:46:09 +00002138 u32 iZero; /* Frame number corresponding to aPgno[0] */
2139 int iKey; /* Hash slot index */
drh519426a2010-07-09 03:19:07 +00002140 int nCollide; /* Number of hash collisions remaining */
2141 int rc; /* Error code */
danbb23aff2010-05-10 14:46:09 +00002142
dan4280eb32010-06-12 12:02:35 +00002143 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2144 if( rc!=SQLITE_OK ){
2145 return rc;
2146 }
drh519426a2010-07-09 03:19:07 +00002147 nCollide = HASHTABLE_NSLOT;
dan6f150142010-05-21 15:31:56 +00002148 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
danbb23aff2010-05-10 14:46:09 +00002149 u32 iFrame = aHash[iKey] + iZero;
dand60bf112010-06-14 11:18:50 +00002150 if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
dan493cc592010-06-05 18:12:23 +00002151 assert( iFrame>iRead );
danbb23aff2010-05-10 14:46:09 +00002152 iRead = iFrame;
2153 }
drh519426a2010-07-09 03:19:07 +00002154 if( (nCollide--)==0 ){
2155 return SQLITE_CORRUPT_BKPT;
2156 }
dan7c246102010-04-12 19:00:29 +00002157 }
2158 }
dan7c246102010-04-12 19:00:29 +00002159
danbb23aff2010-05-10 14:46:09 +00002160#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2161 /* If expensive assert() statements are available, do a linear search
2162 ** of the wal-index file content. Make sure the results agree with the
2163 ** result obtained using the hash indexes above. */
2164 {
2165 u32 iRead2 = 0;
2166 u32 iTest;
2167 for(iTest=iLast; iTest>0; iTest--){
dan13a3cb82010-06-11 19:04:21 +00002168 if( walFramePgno(pWal, iTest)==pgno ){
danbb23aff2010-05-10 14:46:09 +00002169 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00002170 break;
2171 }
dan7c246102010-04-12 19:00:29 +00002172 }
danbb23aff2010-05-10 14:46:09 +00002173 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00002174 }
danbb23aff2010-05-10 14:46:09 +00002175#endif
dancd11fb22010-04-26 10:40:52 +00002176
dan7c246102010-04-12 19:00:29 +00002177 /* If iRead is non-zero, then it is the log frame number that contains the
2178 ** required page. Read and return data from the log file.
2179 */
2180 if( iRead ){
drhb2eced52010-08-12 02:41:12 +00002181 int sz;
2182 i64 iOffset;
2183 sz = pWal->hdr.szPage;
drh9b78f792010-08-14 21:21:24 +00002184 sz = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2185 testcase( sz<=32768 );
2186 testcase( sz>=65536 );
drhb2eced52010-08-12 02:41:12 +00002187 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
drh7ed91f22010-04-29 22:34:07 +00002188 *pInWal = 1;
drh09b5dbc2010-07-07 14:35:58 +00002189 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
drhd9e5c4f2010-05-12 18:01:39 +00002190 return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset);
dan7c246102010-04-12 19:00:29 +00002191 }
2192
drh7ed91f22010-04-29 22:34:07 +00002193 *pInWal = 0;
dan7c246102010-04-12 19:00:29 +00002194 return SQLITE_OK;
2195}
2196
2197
2198/*
dan763afe62010-08-03 06:42:39 +00002199** Return the size of the database in pages (or zero, if unknown).
dan7c246102010-04-12 19:00:29 +00002200*/
dan763afe62010-08-03 06:42:39 +00002201Pgno sqlite3WalDbsize(Wal *pWal){
drh7e9e70b2010-08-16 14:17:59 +00002202 if( pWal && ALWAYS(pWal->readLock>=0) ){
dan763afe62010-08-03 06:42:39 +00002203 return pWal->hdr.nPage;
2204 }
2205 return 0;
dan7c246102010-04-12 19:00:29 +00002206}
2207
dan30c86292010-04-30 16:24:46 +00002208
drh73b64e42010-05-30 19:55:15 +00002209/*
2210** This function starts a write transaction on the WAL.
2211**
2212** A read transaction must have already been started by a prior call
2213** to sqlite3WalBeginReadTransaction().
2214**
2215** If another thread or process has written into the database since
2216** the read transaction was started, then it is not possible for this
2217** thread to write as doing so would cause a fork. So this routine
2218** returns SQLITE_BUSY in that case and no write transaction is started.
2219**
2220** There can only be a single writer active at a time.
2221*/
2222int sqlite3WalBeginWriteTransaction(Wal *pWal){
2223 int rc;
drh73b64e42010-05-30 19:55:15 +00002224
2225 /* Cannot start a write transaction without first holding a read
2226 ** transaction. */
2227 assert( pWal->readLock>=0 );
2228
dan1e5de5a2010-07-15 18:20:53 +00002229 if( pWal->readOnly ){
2230 return SQLITE_READONLY;
2231 }
2232
drh73b64e42010-05-30 19:55:15 +00002233 /* Only one writer allowed at a time. Get the write lock. Return
2234 ** SQLITE_BUSY if unable.
2235 */
2236 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2237 if( rc ){
2238 return rc;
2239 }
drhc99597c2010-05-31 01:41:15 +00002240 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00002241
2242 /* If another connection has written to the database file since the
2243 ** time the read transaction on this connection was started, then
2244 ** the write is disallowed.
2245 */
dan4280eb32010-06-12 12:02:35 +00002246 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
drh73b64e42010-05-30 19:55:15 +00002247 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00002248 pWal->writeLock = 0;
dan9971e712010-06-01 15:44:57 +00002249 rc = SQLITE_BUSY;
drh73b64e42010-05-30 19:55:15 +00002250 }
2251
drh7ed91f22010-04-29 22:34:07 +00002252 return rc;
dan7c246102010-04-12 19:00:29 +00002253}
2254
dan74d6cd82010-04-24 18:44:05 +00002255/*
drh73b64e42010-05-30 19:55:15 +00002256** End a write transaction. The commit has already been done. This
2257** routine merely releases the lock.
2258*/
2259int sqlite3WalEndWriteTransaction(Wal *pWal){
danda9fe0c2010-07-13 18:44:03 +00002260 if( pWal->writeLock ){
2261 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2262 pWal->writeLock = 0;
2263 }
drh73b64e42010-05-30 19:55:15 +00002264 return SQLITE_OK;
2265}
2266
2267/*
dan74d6cd82010-04-24 18:44:05 +00002268** If any data has been written (but not committed) to the log file, this
2269** function moves the write-pointer back to the start of the transaction.
2270**
2271** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00002272** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00002273** other than SQLITE_OK, it is not invoked again and the error code is
2274** returned to the caller.
2275**
2276** Otherwise, if the callback function does not return an error, this
2277** function returns SQLITE_OK.
2278*/
drh7ed91f22010-04-29 22:34:07 +00002279int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00002280 int rc = SQLITE_OK;
drh7e9e70b2010-08-16 14:17:59 +00002281 if( ALWAYS(pWal->writeLock) ){
drh027a1282010-05-19 01:53:53 +00002282 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00002283 Pgno iFrame;
2284
dan5d656852010-06-14 07:53:26 +00002285 /* Restore the clients cache of the wal-index header to the state it
2286 ** was in before the client began writing to the database.
2287 */
dan067f3162010-06-14 10:30:12 +00002288 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
dan5d656852010-06-14 07:53:26 +00002289
2290 for(iFrame=pWal->hdr.mxFrame+1;
2291 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
2292 iFrame++
2293 ){
2294 /* This call cannot fail. Unless the page for which the page number
2295 ** is passed as the second argument is (a) in the cache and
2296 ** (b) has an outstanding reference, then xUndo is either a no-op
2297 ** (if (a) is false) or simply expels the page from the cache (if (b)
2298 ** is false).
2299 **
2300 ** If the upper layer is doing a rollback, it is guaranteed that there
2301 ** are no outstanding references to any page other than page 1. And
2302 ** page 1 is never written to the log until the transaction is
2303 ** committed. As a result, the call to xUndo may not fail.
2304 */
dan5d656852010-06-14 07:53:26 +00002305 assert( walFramePgno(pWal, iFrame)!=1 );
2306 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
dan6f150142010-05-21 15:31:56 +00002307 }
dan5d656852010-06-14 07:53:26 +00002308 walCleanupHash(pWal);
dan74d6cd82010-04-24 18:44:05 +00002309 }
dan5d656852010-06-14 07:53:26 +00002310 assert( rc==SQLITE_OK );
dan74d6cd82010-04-24 18:44:05 +00002311 return rc;
2312}
2313
dan71d89912010-05-24 13:57:42 +00002314/*
2315** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2316** values. This function populates the array with values required to
2317** "rollback" the write position of the WAL handle back to the current
2318** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00002319*/
dan71d89912010-05-24 13:57:42 +00002320void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00002321 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00002322 aWalData[0] = pWal->hdr.mxFrame;
2323 aWalData[1] = pWal->hdr.aFrameCksum[0];
2324 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00002325 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00002326}
2327
dan71d89912010-05-24 13:57:42 +00002328/*
2329** Move the write position of the WAL back to the point identified by
2330** the values in the aWalData[] array. aWalData must point to an array
2331** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2332** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00002333*/
dan71d89912010-05-24 13:57:42 +00002334int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00002335 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00002336
dan6e6bd562010-06-02 18:59:03 +00002337 assert( pWal->writeLock );
2338 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2339
2340 if( aWalData[3]!=pWal->nCkpt ){
2341 /* This savepoint was opened immediately after the write-transaction
2342 ** was started. Right after that, the writer decided to wrap around
2343 ** to the start of the log. Update the savepoint values to match.
2344 */
2345 aWalData[0] = 0;
2346 aWalData[3] = pWal->nCkpt;
2347 }
2348
dan71d89912010-05-24 13:57:42 +00002349 if( aWalData[0]<pWal->hdr.mxFrame ){
dan71d89912010-05-24 13:57:42 +00002350 pWal->hdr.mxFrame = aWalData[0];
2351 pWal->hdr.aFrameCksum[0] = aWalData[1];
2352 pWal->hdr.aFrameCksum[1] = aWalData[2];
dan5d656852010-06-14 07:53:26 +00002353 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00002354 }
dan6e6bd562010-06-02 18:59:03 +00002355
dan4cd78b42010-04-26 16:57:10 +00002356 return rc;
2357}
2358
dan9971e712010-06-01 15:44:57 +00002359/*
2360** This function is called just before writing a set of frames to the log
2361** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2362** to the current log file, it is possible to overwrite the start of the
2363** existing log file with the new frames (i.e. "reset" the log). If so,
2364** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2365** unchanged.
2366**
2367** SQLITE_OK is returned if no error is encountered (regardless of whether
2368** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
2369** if some error
2370*/
2371static int walRestartLog(Wal *pWal){
2372 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00002373 int cnt;
2374
dan13a3cb82010-06-11 19:04:21 +00002375 if( pWal->readLock==0 ){
dan9971e712010-06-01 15:44:57 +00002376 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2377 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2378 if( pInfo->nBackfill>0 ){
2379 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2380 if( rc==SQLITE_OK ){
2381 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2382 ** readers are currently using the WAL), then the transactions
2383 ** frames will overwrite the start of the existing log. Update the
2384 ** wal-index header to reflect this.
2385 **
2386 ** In theory it would be Ok to update the cache of the header only
2387 ** at this point. But updating the actual wal-index header is also
2388 ** safe and means there is no special case for sqlite3WalUndo()
2389 ** to handle if this transaction is rolled back.
2390 */
dan199100e2010-06-09 16:58:49 +00002391 int i; /* Loop counter */
dan9971e712010-06-01 15:44:57 +00002392 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
2393 pWal->nCkpt++;
2394 pWal->hdr.mxFrame = 0;
2395 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
2396 sqlite3_randomness(4, &aSalt[1]);
2397 walIndexWriteHdr(pWal);
dan199100e2010-06-09 16:58:49 +00002398 pInfo->nBackfill = 0;
2399 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
2400 assert( pInfo->aReadMark[0]==0 );
dan9971e712010-06-01 15:44:57 +00002401 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2402 }
2403 }
2404 walUnlockShared(pWal, WAL_READ_LOCK(0));
2405 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00002406 cnt = 0;
dan9971e712010-06-01 15:44:57 +00002407 do{
2408 int notUsed;
drhaab4c022010-06-02 14:45:51 +00002409 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00002410 }while( rc==WAL_RETRY );
dan9971e712010-06-01 15:44:57 +00002411 }
2412 return rc;
2413}
2414
dan7c246102010-04-12 19:00:29 +00002415/*
dan4cd78b42010-04-26 16:57:10 +00002416** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00002417** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00002418*/
drhc438efd2010-04-26 00:19:45 +00002419int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00002420 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00002421 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00002422 PgHdr *pList, /* List of dirty pages to write */
2423 Pgno nTruncate, /* Database size after this commit */
2424 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00002425 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00002426){
dan7c246102010-04-12 19:00:29 +00002427 int rc; /* Used to catch return codes */
2428 u32 iFrame; /* Next frame address */
drh7ed91f22010-04-29 22:34:07 +00002429 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
dan7c246102010-04-12 19:00:29 +00002430 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00002431 PgHdr *pLast = 0; /* Last frame in list */
dan7c246102010-04-12 19:00:29 +00002432 int nLast = 0; /* Number of extra copies of last page */
2433
dan7c246102010-04-12 19:00:29 +00002434 assert( pList );
drh73b64e42010-05-30 19:55:15 +00002435 assert( pWal->writeLock );
dan7c246102010-04-12 19:00:29 +00002436
drhc74c3332010-05-31 12:15:19 +00002437#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2438 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2439 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2440 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2441 }
2442#endif
2443
dan9971e712010-06-01 15:44:57 +00002444 /* See if it is possible to write these frames into the start of the
2445 ** log file, instead of appending to it at pWal->hdr.mxFrame.
2446 */
2447 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
dan9971e712010-06-01 15:44:57 +00002448 return rc;
2449 }
dan9971e712010-06-01 15:44:57 +00002450
drha2a42012010-05-18 18:01:08 +00002451 /* If this is the first frame written into the log, write the WAL
2452 ** header to the start of the WAL file. See comments at the top of
2453 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00002454 */
drh027a1282010-05-19 01:53:53 +00002455 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00002456 if( iFrame==0 ){
dan10f5a502010-06-23 15:55:43 +00002457 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
2458 u32 aCksum[2]; /* Checksum for wal-header */
2459
danb8fd6c22010-05-24 10:39:36 +00002460 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
dan10f5a502010-06-23 15:55:43 +00002461 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
drh23ea97b2010-05-20 16:45:58 +00002462 sqlite3Put4byte(&aWalHdr[8], szPage);
2463 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drh2327f5a2010-07-07 21:06:48 +00002464 sqlite3_randomness(8, pWal->hdr.aSalt);
drh7e263722010-05-20 21:21:09 +00002465 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
dan10f5a502010-06-23 15:55:43 +00002466 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
2467 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
2468 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
2469
drhb2eced52010-08-12 02:41:12 +00002470 pWal->szPage = szPage;
dan10f5a502010-06-23 15:55:43 +00002471 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
2472 pWal->hdr.aFrameCksum[0] = aCksum[0];
2473 pWal->hdr.aFrameCksum[1] = aCksum[1];
2474
drh23ea97b2010-05-20 16:45:58 +00002475 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00002476 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00002477 if( rc!=SQLITE_OK ){
2478 return rc;
2479 }
2480 }
shanehbd2aaf92010-09-01 02:38:21 +00002481 assert( (int)pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00002482
dan9971e712010-06-01 15:44:57 +00002483 /* Write the log file. */
dan7c246102010-04-12 19:00:29 +00002484 for(p=pList; p; p=p->pDirty){
2485 u32 nDbsize; /* Db-size field for frame header */
2486 i64 iOffset; /* Write offset in log file */
dan47ee3862010-06-22 15:18:44 +00002487 void *pData;
2488
drh6e810962010-05-19 17:49:50 +00002489 iOffset = walFrameOffset(++iFrame, szPage);
drhe9187b42010-07-07 14:39:59 +00002490 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
dan7c246102010-04-12 19:00:29 +00002491
2492 /* Populate and write the frame header */
2493 nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0;
drha7152112010-06-22 21:15:49 +00002494#if defined(SQLITE_HAS_CODEC)
dan47ee3862010-06-22 15:18:44 +00002495 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
drha7152112010-06-22 21:15:49 +00002496#else
2497 pData = p->pData;
2498#endif
dan47ee3862010-06-22 15:18:44 +00002499 walEncodeFrame(pWal, p->pgno, nDbsize, pData, aFrame);
drhd9e5c4f2010-05-12 18:01:39 +00002500 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
dan7c246102010-04-12 19:00:29 +00002501 if( rc!=SQLITE_OK ){
2502 return rc;
2503 }
2504
2505 /* Write the page data */
dan47ee3862010-06-22 15:18:44 +00002506 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset+sizeof(aFrame));
dan7c246102010-04-12 19:00:29 +00002507 if( rc!=SQLITE_OK ){
2508 return rc;
2509 }
2510 pLast = p;
2511 }
2512
2513 /* Sync the log file if the 'isSync' flag was specified. */
danc5118782010-04-17 17:34:41 +00002514 if( sync_flags ){
drhd9e5c4f2010-05-12 18:01:39 +00002515 i64 iSegment = sqlite3OsSectorSize(pWal->pWalFd);
drh6e810962010-05-19 17:49:50 +00002516 i64 iOffset = walFrameOffset(iFrame+1, szPage);
dan67032392010-04-17 15:42:43 +00002517
2518 assert( isCommit );
drh69c46962010-05-17 20:16:50 +00002519 assert( iSegment>0 );
dan7c246102010-04-12 19:00:29 +00002520
dan7c246102010-04-12 19:00:29 +00002521 iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment);
2522 while( iOffset<iSegment ){
dan47ee3862010-06-22 15:18:44 +00002523 void *pData;
drha7152112010-06-22 21:15:49 +00002524#if defined(SQLITE_HAS_CODEC)
dan47ee3862010-06-22 15:18:44 +00002525 if( (pData = sqlite3PagerCodec(pLast))==0 ) return SQLITE_NOMEM;
drha7152112010-06-22 21:15:49 +00002526#else
2527 pData = pLast->pData;
2528#endif
dan47ee3862010-06-22 15:18:44 +00002529 walEncodeFrame(pWal, pLast->pgno, nTruncate, pData, aFrame);
drhe9187b42010-07-07 14:39:59 +00002530 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
drhd9e5c4f2010-05-12 18:01:39 +00002531 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
dan7c246102010-04-12 19:00:29 +00002532 if( rc!=SQLITE_OK ){
2533 return rc;
2534 }
drh7ed91f22010-04-29 22:34:07 +00002535 iOffset += WAL_FRAME_HDRSIZE;
dan47ee3862010-06-22 15:18:44 +00002536 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset);
dan7c246102010-04-12 19:00:29 +00002537 if( rc!=SQLITE_OK ){
2538 return rc;
2539 }
2540 nLast++;
drh6e810962010-05-19 17:49:50 +00002541 iOffset += szPage;
dan7c246102010-04-12 19:00:29 +00002542 }
dan7c246102010-04-12 19:00:29 +00002543
drhd9e5c4f2010-05-12 18:01:39 +00002544 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
dan7c246102010-04-12 19:00:29 +00002545 }
2546
drhe730fec2010-05-18 12:56:50 +00002547 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00002548 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00002549 ** guarantees that there are no other writers, and no data that may
2550 ** be in use by existing readers is being overwritten.
2551 */
drh027a1282010-05-19 01:53:53 +00002552 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00002553 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dan7c246102010-04-12 19:00:29 +00002554 iFrame++;
danc7991bd2010-05-05 19:04:59 +00002555 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00002556 }
danc7991bd2010-05-05 19:04:59 +00002557 while( nLast>0 && rc==SQLITE_OK ){
dan7c246102010-04-12 19:00:29 +00002558 iFrame++;
2559 nLast--;
danc7991bd2010-05-05 19:04:59 +00002560 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00002561 }
2562
danc7991bd2010-05-05 19:04:59 +00002563 if( rc==SQLITE_OK ){
2564 /* Update the private copy of the header. */
shaneh1df2db72010-08-18 02:28:48 +00002565 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00002566 testcase( szPage<=32768 );
2567 testcase( szPage>=65536 );
drh027a1282010-05-19 01:53:53 +00002568 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00002569 if( isCommit ){
2570 pWal->hdr.iChange++;
2571 pWal->hdr.nPage = nTruncate;
2572 }
danc7991bd2010-05-05 19:04:59 +00002573 /* If this is a commit, update the wal-index header too. */
2574 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00002575 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00002576 pWal->iCallback = iFrame;
2577 }
dan7c246102010-04-12 19:00:29 +00002578 }
danc7991bd2010-05-05 19:04:59 +00002579
drhc74c3332010-05-31 12:15:19 +00002580 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00002581 return rc;
dan7c246102010-04-12 19:00:29 +00002582}
2583
2584/*
drh73b64e42010-05-30 19:55:15 +00002585** This routine is called to implement sqlite3_wal_checkpoint() and
2586** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00002587**
drh73b64e42010-05-30 19:55:15 +00002588** Obtain a CHECKPOINT lock and then backfill as much information as
2589** we can from WAL into the database.
dan7c246102010-04-12 19:00:29 +00002590*/
drhc438efd2010-04-26 00:19:45 +00002591int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00002592 Wal *pWal, /* Wal connection */
danc5118782010-04-17 17:34:41 +00002593 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00002594 int nBuf, /* Size of temporary buffer */
drh73b64e42010-05-30 19:55:15 +00002595 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00002596){
danb9bf16b2010-04-14 11:23:30 +00002597 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00002598 int isChanged = 0; /* True if a new wal-index header is loaded */
dan7c246102010-04-12 19:00:29 +00002599
dand54ff602010-05-31 11:16:30 +00002600 assert( pWal->ckptLock==0 );
dan39c79f52010-04-15 10:58:51 +00002601
drhc74c3332010-05-31 12:15:19 +00002602 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drh73b64e42010-05-30 19:55:15 +00002603 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2604 if( rc ){
2605 /* Usually this is SQLITE_BUSY meaning that another thread or process
2606 ** is already running a checkpoint, or maybe a recovery. But it might
2607 ** also be SQLITE_IOERR. */
danb9bf16b2010-04-14 11:23:30 +00002608 return rc;
2609 }
dand54ff602010-05-31 11:16:30 +00002610 pWal->ckptLock = 1;
dan64d039e2010-04-13 19:27:31 +00002611
danb9bf16b2010-04-14 11:23:30 +00002612 /* Copy data from the log to the database file. */
drh7ed91f22010-04-29 22:34:07 +00002613 rc = walIndexReadHdr(pWal, &isChanged);
danb9bf16b2010-04-14 11:23:30 +00002614 if( rc==SQLITE_OK ){
drhd9e5c4f2010-05-12 18:01:39 +00002615 rc = walCheckpoint(pWal, sync_flags, nBuf, zBuf);
danb9bf16b2010-04-14 11:23:30 +00002616 }
dan31c03902010-04-29 14:51:33 +00002617 if( isChanged ){
2618 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00002619 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00002620 ** out of date. So zero the cached wal-index header to ensure that
2621 ** next time the pager opens a snapshot on this database it knows that
2622 ** the cache needs to be reset.
2623 */
drh7ed91f22010-04-29 22:34:07 +00002624 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan31c03902010-04-29 14:51:33 +00002625 }
danb9bf16b2010-04-14 11:23:30 +00002626
2627 /* Release the locks. */
drh73b64e42010-05-30 19:55:15 +00002628 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00002629 pWal->ckptLock = 0;
drhc74c3332010-05-31 12:15:19 +00002630 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
dan64d039e2010-04-13 19:27:31 +00002631 return rc;
dan7c246102010-04-12 19:00:29 +00002632}
2633
drh7ed91f22010-04-29 22:34:07 +00002634/* Return the value to pass to a sqlite3_wal_hook callback, the
2635** number of frames in the WAL at the point of the last commit since
2636** sqlite3WalCallback() was called. If no commits have occurred since
2637** the last call, then return 0.
2638*/
2639int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00002640 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00002641 if( pWal ){
2642 ret = pWal->iCallback;
2643 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00002644 }
2645 return (int)ret;
2646}
dan55437592010-05-11 12:19:26 +00002647
2648/*
drh61e4ace2010-05-31 20:28:37 +00002649** This function is called to change the WAL subsystem into or out
2650** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00002651**
drh61e4ace2010-05-31 20:28:37 +00002652** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
2653** into locking_mode=NORMAL. This means that we must acquire a lock
2654** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
2655** or if the acquisition of the lock fails, then return 0. If the
2656** transition out of exclusive-mode is successful, return 1. This
2657** operation must occur while the pager is still holding the exclusive
2658** lock on the main database file.
dan55437592010-05-11 12:19:26 +00002659**
drh61e4ace2010-05-31 20:28:37 +00002660** If op is one, then change from locking_mode=NORMAL into
2661** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
2662** be released. Return 1 if the transition is made and 0 if the
2663** WAL is already in exclusive-locking mode - meaning that this
2664** routine is a no-op. The pager must already hold the exclusive lock
2665** on the main database file before invoking this operation.
2666**
2667** If op is negative, then do a dry-run of the op==1 case but do
2668** not actually change anything. The pager uses this to see if it
2669** should acquire the database exclusive lock prior to invoking
2670** the op==1 case.
dan55437592010-05-11 12:19:26 +00002671*/
2672int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00002673 int rc;
drhaab4c022010-06-02 14:45:51 +00002674 assert( pWal->writeLock==0 );
dan3cac5dc2010-06-04 18:37:59 +00002675
2676 /* pWal->readLock is usually set, but might be -1 if there was a
2677 ** prior error while attempting to acquire are read-lock. This cannot
2678 ** happen if the connection is actually in exclusive mode (as no xShmLock
2679 ** locks are taken in this case). Nor should the pager attempt to
2680 ** upgrade to exclusive-mode following such an error.
2681 */
drhaab4c022010-06-02 14:45:51 +00002682 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00002683 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
2684
drh61e4ace2010-05-31 20:28:37 +00002685 if( op==0 ){
2686 if( pWal->exclusiveMode ){
2687 pWal->exclusiveMode = 0;
dan3cac5dc2010-06-04 18:37:59 +00002688 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drh61e4ace2010-05-31 20:28:37 +00002689 pWal->exclusiveMode = 1;
2690 }
2691 rc = pWal->exclusiveMode==0;
2692 }else{
drhaab4c022010-06-02 14:45:51 +00002693 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00002694 rc = 0;
2695 }
2696 }else if( op>0 ){
2697 assert( pWal->exclusiveMode==0 );
drhaab4c022010-06-02 14:45:51 +00002698 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00002699 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2700 pWal->exclusiveMode = 1;
2701 rc = 1;
2702 }else{
2703 rc = pWal->exclusiveMode==0;
dan55437592010-05-11 12:19:26 +00002704 }
drh61e4ace2010-05-31 20:28:37 +00002705 return rc;
dan55437592010-05-11 12:19:26 +00002706}
2707
dan5cf53532010-05-01 16:40:20 +00002708#endif /* #ifndef SQLITE_OMIT_WAL */