blob: c4823c7cd2d640148b47d811e18c0b72237abac8 [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drhcd285082010-06-23 22:00:35 +000034** The WAL header is 32 bytes in size and consists of the following eight
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan10f5a502010-06-23 15:55:43 +000043** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
dan97a31352010-04-16 13:59:31 +000045**
drh23ea97b2010-05-20 16:45:58 +000046** Immediately following the wal-header are zero or more frames. Each
47** frame consists of a 24-byte frame-header followed by a <page-size> bytes
drhcd285082010-06-23 22:00:35 +000048** of page data. The frame-header is six big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000049** integer values, as follows:
50**
dan3de777f2010-04-17 12:31:37 +000051** 0: Page number.
52** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000053** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000054** 8: Salt-1 (copied from the header)
55** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000056** 16: Checksum-1.
57** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000058**
drh7e263722010-05-20 21:21:09 +000059** A frame is considered valid if and only if the following conditions are
60** true:
61**
62** (1) The salt-1 and salt-2 values in the frame-header match
63** salt values in the wal-header
64**
65** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000066** exactly match the checksum computed consecutively on the
67** WAL header and the first 8 bytes and the content of all frames
68** up to and including the current frame.
69**
70** The checksum is computed using 32-bit big-endian integers if the
71** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000073** The checksum values are always stored in the frame header in a
74** big-endian format regardless of which byte order is used to compute
75** the checksum. The checksum is computed by interpreting the input as
76** an even number of unsigned 32-bit integers: x[0] through x[N]. The
drhffca4302010-06-15 11:21:54 +000077** algorithm used for the checksum is as follows:
drh51b21b12010-05-25 15:53:31 +000078**
79** for i from 0 to n-1 step 2:
80** s0 += x[i] + s1;
81** s1 += x[i+1] + s0;
82** endfor
drh7e263722010-05-20 21:21:09 +000083**
drhcd285082010-06-23 22:00:35 +000084** Note that s0 and s1 are both weighted checksums using fibonacci weights
85** in reverse order (the largest fibonacci weight occurs on the first element
86** of the sequence being summed.) The s1 value spans all 32-bit
87** terms of the sequence whereas s0 omits the final term.
88**
drh7e263722010-05-20 21:21:09 +000089** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90** WAL is transferred into the database, then the database is VFS.xSync-ed.
drhffca4302010-06-15 11:21:54 +000091** The VFS.xSync operations serve as write barriers - all writes launched
drh7e263722010-05-20 21:21:09 +000092** before the xSync must complete before any write that launches after the
93** xSync begins.
94**
95** After each checkpoint, the salt-1 value is incremented and the salt-2
96** value is randomized. This prevents old and new frames in the WAL from
97** being considered valid at the same time and being checkpointing together
98** following a crash.
99**
drh29d4dbe2010-05-18 23:29:52 +0000100** READER ALGORITHM
101**
102** To read a page from the database (call it page number P), a reader
103** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +0000104** last valid instance of page P that is a followed by a commit frame
105** or is a commit frame itself becomes the value read. If the WAL
106** contains no copies of page P that are valid and which are a commit
107** frame or are followed by a commit frame, then page P is read from
108** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000109**
drh73b64e42010-05-30 19:55:15 +0000110** To start a read transaction, the reader records the index of the last
111** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112** for all subsequent read operations. New transactions can be appended
113** to the WAL, but as long as the reader uses its original mxFrame value
114** and ignores the newly appended content, it will see a consistent snapshot
115** of the database from a single point in time. This technique allows
116** multiple concurrent readers to view different versions of the database
117** content simultaneously.
118**
119** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000120** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000121** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000122** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000123** and read performance suffers. To overcome this problem, a separate
124** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000125** search for frames of a particular page.
126**
127** WAL-INDEX FORMAT
128**
129** Conceptually, the wal-index is shared memory, though VFS implementations
130** might choose to implement the wal-index using a mmapped file. Because
131** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132** on a network filesystem. All users of the database must be able to
133** share memory.
134**
135** The wal-index is transient. After a crash, the wal-index can (and should
136** be) reconstructed from the original WAL file. In fact, the VFS is required
137** to either truncate or zero the header of the wal-index when the last
138** connection to it closes. Because the wal-index is transient, it can
139** use an architecture-specific format; it does not have to be cross-platform.
140** Hence, unlike the database and WAL file formats which store all values
141** as big endian, the wal-index can store multi-byte values in the native
142** byte order of the host computer.
143**
144** The purpose of the wal-index is to answer this question quickly: Given
drh610b8d82012-07-17 02:56:05 +0000145** a page number P and a maximum frame index M, return the index of the
146** last frame in the wal before frame M for page P in the WAL, or return
147** NULL if there are no frames for page P in the WAL prior to M.
drh29d4dbe2010-05-18 23:29:52 +0000148**
149** The wal-index consists of a header region, followed by an one or
150** more index blocks.
151**
drh027a1282010-05-19 01:53:53 +0000152** The wal-index header contains the total number of frames within the WAL
mistachkind5578432012-08-25 10:01:29 +0000153** in the mxFrame field.
danad3cadd2010-06-14 11:49:26 +0000154**
155** Each index block except for the first contains information on
156** HASHTABLE_NPAGE frames. The first index block contains information on
157** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
158** HASHTABLE_NPAGE are selected so that together the wal-index header and
159** first index block are the same size as all other index blocks in the
160** wal-index.
161**
162** Each index block contains two sections, a page-mapping that contains the
163** database page number associated with each wal frame, and a hash-table
drhffca4302010-06-15 11:21:54 +0000164** that allows readers to query an index block for a specific page number.
danad3cadd2010-06-14 11:49:26 +0000165** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
166** for the first index block) 32-bit page numbers. The first entry in the
167** first index-block contains the database page number corresponding to the
168** first frame in the WAL file. The first entry in the second index block
169** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
170** the log, and so on.
171**
172** The last index block in a wal-index usually contains less than the full
173** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
174** depending on the contents of the WAL file. This does not change the
175** allocated size of the page-mapping array - the page-mapping array merely
176** contains unused entries.
drh027a1282010-05-19 01:53:53 +0000177**
178** Even without using the hash table, the last frame for page P
danad3cadd2010-06-14 11:49:26 +0000179** can be found by scanning the page-mapping sections of each index block
drh027a1282010-05-19 01:53:53 +0000180** starting with the last index block and moving toward the first, and
181** within each index block, starting at the end and moving toward the
182** beginning. The first entry that equals P corresponds to the frame
183** holding the content for that page.
184**
185** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
186** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
187** hash table for each page number in the mapping section, so the hash
188** table is never more than half full. The expected number of collisions
189** prior to finding a match is 1. Each entry of the hash table is an
190** 1-based index of an entry in the mapping section of the same
191** index block. Let K be the 1-based index of the largest entry in
192** the mapping section. (For index blocks other than the last, K will
193** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
194** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000195** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000196**
197** To look for page P in the hash table, first compute a hash iKey on
198** P as follows:
199**
200** iKey = (P * 383) % HASHTABLE_NSLOT
201**
202** Then start scanning entries of the hash table, starting with iKey
203** (wrapping around to the beginning when the end of the hash table is
204** reached) until an unused hash slot is found. Let the first unused slot
205** be at index iUnused. (iUnused might be less than iKey if there was
206** wrap-around.) Because the hash table is never more than half full,
207** the search is guaranteed to eventually hit an unused entry. Let
208** iMax be the value between iKey and iUnused, closest to iUnused,
209** where aHash[iMax]==P. If there is no iMax entry (if there exists
210** no hash slot such that aHash[i]==p) then page P is not in the
211** current index block. Otherwise the iMax-th mapping entry of the
212** current index block corresponds to the last entry that references
213** page P.
214**
215** A hash search begins with the last index block and moves toward the
216** first index block, looking for entries corresponding to page P. On
217** average, only two or three slots in each index block need to be
218** examined in order to either find the last entry for page P, or to
219** establish that no such entry exists in the block. Each index block
220** holds over 4000 entries. So two or three index blocks are sufficient
221** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
222** comparisons (on average) suffice to either locate a frame in the
223** WAL or to establish that the frame does not exist in the WAL. This
224** is much faster than scanning the entire 10MB WAL.
225**
226** Note that entries are added in order of increasing K. Hence, one
227** reader might be using some value K0 and a second reader that started
228** at a later time (after additional transactions were added to the WAL
229** and to the wal-index) might be using a different value K1, where K1>K0.
230** Both readers can use the same hash table and mapping section to get
231** the correct result. There may be entries in the hash table with
232** K>K0 but to the first reader, those entries will appear to be unused
233** slots in the hash table and so the first reader will get an answer as
234** if no values greater than K0 had ever been inserted into the hash table
235** in the first place - which is what reader one wants. Meanwhile, the
236** second reader using K1 will see additional values that were inserted
237** later, which is exactly what reader two wants.
238**
dan6f150142010-05-21 15:31:56 +0000239** When a rollback occurs, the value of K is decreased. Hash table entries
240** that correspond to frames greater than the new K value are removed
241** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000242*/
drh29d4dbe2010-05-18 23:29:52 +0000243#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000244
drh29d4dbe2010-05-18 23:29:52 +0000245#include "wal.h"
246
drh73b64e42010-05-30 19:55:15 +0000247/*
drhc74c3332010-05-31 12:15:19 +0000248** Trace output macros
249*/
drhc74c3332010-05-31 12:15:19 +0000250#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000251int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000252# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
253#else
254# define WALTRACE(X)
255#endif
256
dan10f5a502010-06-23 15:55:43 +0000257/*
258** The maximum (and only) versions of the wal and wal-index formats
259** that may be interpreted by this version of SQLite.
260**
261** If a client begins recovering a WAL file and finds that (a) the checksum
262** values in the wal-header are correct and (b) the version field is not
263** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
264**
265** Similarly, if a client successfully reads a wal-index header (i.e. the
266** checksum test is successful) and finds that the version field is not
267** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
268** returns SQLITE_CANTOPEN.
269*/
270#define WAL_MAX_VERSION 3007000
271#define WALINDEX_MAX_VERSION 3007000
drhc74c3332010-05-31 12:15:19 +0000272
273/*
drh73b64e42010-05-30 19:55:15 +0000274** Indices of various locking bytes. WAL_NREADER is the number
275** of available reader locks and should be at least 3.
276*/
277#define WAL_WRITE_LOCK 0
278#define WAL_ALL_BUT_WRITE 1
279#define WAL_CKPT_LOCK 1
280#define WAL_RECOVER_LOCK 2
281#define WAL_READ_LOCK(I) (3+(I))
282#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
283
dan97a31352010-04-16 13:59:31 +0000284
drh7ed91f22010-04-29 22:34:07 +0000285/* Object declarations */
286typedef struct WalIndexHdr WalIndexHdr;
287typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000288typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000289
290
291/*
drh286a2882010-05-20 23:51:06 +0000292** The following object holds a copy of the wal-index header content.
293**
294** The actual header in the wal-index consists of two copies of this
295** object.
drh9b78f792010-08-14 21:21:24 +0000296**
297** The szPage value can be any power of 2 between 512 and 32768, inclusive.
298** Or it can be 1 to represent a 65536-byte page. The latter case was
299** added in 3.7.1 when support for 64K pages was added.
dan7c246102010-04-12 19:00:29 +0000300*/
drh7ed91f22010-04-29 22:34:07 +0000301struct WalIndexHdr {
dan10f5a502010-06-23 15:55:43 +0000302 u32 iVersion; /* Wal-index version */
303 u32 unused; /* Unused (padding) field */
dan71d89912010-05-24 13:57:42 +0000304 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000305 u8 isInit; /* 1 when initialized */
306 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
drh9b78f792010-08-14 21:21:24 +0000307 u16 szPage; /* Database page size in bytes. 1==64K */
dand0aa3422010-05-31 16:41:53 +0000308 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000309 u32 nPage; /* Size of database in pages */
310 u32 aFrameCksum[2]; /* Checksum of last frame in log */
311 u32 aSalt[2]; /* Two salt values copied from WAL header */
312 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000313};
314
drh73b64e42010-05-30 19:55:15 +0000315/*
316** A copy of the following object occurs in the wal-index immediately
317** following the second copy of the WalIndexHdr. This object stores
318** information used by checkpoint.
319**
320** nBackfill is the number of frames in the WAL that have been written
321** back into the database. (We call the act of moving content from WAL to
322** database "backfilling".) The nBackfill number is never greater than
323** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
324** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
325** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
326** mxFrame back to zero when the WAL is reset.
327**
328** There is one entry in aReadMark[] for each reader lock. If a reader
329** holds read-lock K, then the value in aReadMark[K] is no greater than
drhdb7f6472010-06-09 14:45:12 +0000330** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
331** for any aReadMark[] means that entry is unused. aReadMark[0] is
332** a special case; its value is never used and it exists as a place-holder
333** to avoid having to offset aReadMark[] indexs by one. Readers holding
334** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
335** directly from the database.
drh73b64e42010-05-30 19:55:15 +0000336**
337** The value of aReadMark[K] may only be changed by a thread that
338** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
339** aReadMark[K] cannot changed while there is a reader is using that mark
340** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
341**
342** The checkpointer may only transfer frames from WAL to database where
343** the frame numbers are less than or equal to every aReadMark[] that is
344** in use (that is, every aReadMark[j] for which there is a corresponding
345** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
346** largest value and will increase an unused aReadMark[] to mxFrame if there
347** is not already an aReadMark[] equal to mxFrame. The exception to the
348** previous sentence is when nBackfill equals mxFrame (meaning that everything
349** in the WAL has been backfilled into the database) then new readers
350** will choose aReadMark[0] which has value 0 and hence such reader will
351** get all their all content directly from the database file and ignore
352** the WAL.
353**
354** Writers normally append new frames to the end of the WAL. However,
355** if nBackfill equals mxFrame (meaning that all WAL content has been
356** written back into the database) and if no readers are using the WAL
357** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
358** the writer will first "reset" the WAL back to the beginning and start
359** writing new content beginning at frame 1.
360**
361** We assume that 32-bit loads are atomic and so no locks are needed in
362** order to read from any aReadMark[] entries.
363*/
364struct WalCkptInfo {
365 u32 nBackfill; /* Number of WAL frames backfilled into DB */
366 u32 aReadMark[WAL_NREADER]; /* Reader marks */
367};
drhdb7f6472010-06-09 14:45:12 +0000368#define READMARK_NOT_USED 0xffffffff
drh73b64e42010-05-30 19:55:15 +0000369
370
drh7e263722010-05-20 21:21:09 +0000371/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
372** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
373** only support mandatory file-locks, we do not read or write data
374** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000375*/
drh73b64e42010-05-30 19:55:15 +0000376#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
377#define WALINDEX_LOCK_RESERVED 16
drh026ac282010-05-26 15:06:38 +0000378#define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
dan7c246102010-04-12 19:00:29 +0000379
drh7ed91f22010-04-29 22:34:07 +0000380/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000381#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000382
dan10f5a502010-06-23 15:55:43 +0000383/* Size of write ahead log header, including checksum. */
384/* #define WAL_HDRSIZE 24 */
385#define WAL_HDRSIZE 32
dan97a31352010-04-16 13:59:31 +0000386
danb8fd6c22010-05-24 10:39:36 +0000387/* WAL magic value. Either this value, or the same value with the least
388** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
389** big-endian format in the first 4 bytes of a WAL file.
390**
391** If the LSB is set, then the checksums for each frame within the WAL
392** file are calculated by treating all data as an array of 32-bit
393** big-endian words. Otherwise, they are calculated by interpreting
394** all data as 32-bit little-endian words.
395*/
396#define WAL_MAGIC 0x377f0682
397
dan97a31352010-04-16 13:59:31 +0000398/*
drh7ed91f22010-04-29 22:34:07 +0000399** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000400** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000401** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000402*/
drh6e810962010-05-19 17:49:50 +0000403#define walFrameOffset(iFrame, szPage) ( \
danbd0e9072010-07-07 09:48:44 +0000404 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000405)
dan7c246102010-04-12 19:00:29 +0000406
407/*
drh7ed91f22010-04-29 22:34:07 +0000408** An open write-ahead log file is represented by an instance of the
409** following object.
dance4f05f2010-04-22 19:14:13 +0000410*/
drh7ed91f22010-04-29 22:34:07 +0000411struct Wal {
drh73b64e42010-05-30 19:55:15 +0000412 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000413 sqlite3_file *pDbFd; /* File handle for the database file */
414 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000415 u32 iCallback; /* Value to pass to log callback (or 0) */
drh85a83752011-05-16 21:00:27 +0000416 i64 mxWalSize; /* Truncate WAL to this size upon reset */
dan13a3cb82010-06-11 19:04:21 +0000417 int nWiData; /* Size of array apWiData */
drh88f975a2011-12-16 19:34:36 +0000418 int szFirstBlock; /* Size of first block written to WAL file */
dan13a3cb82010-06-11 19:04:21 +0000419 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
drhb2eced52010-08-12 02:41:12 +0000420 u32 szPage; /* Database page size */
drh73b64e42010-05-30 19:55:15 +0000421 i16 readLock; /* Which read lock is being held. -1 for none */
drh4eb02a42011-12-16 21:26:26 +0000422 u8 syncFlags; /* Flags to use to sync header writes */
dan55437592010-05-11 12:19:26 +0000423 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000424 u8 writeLock; /* True if in a write transaction */
425 u8 ckptLock; /* True if holding a checkpoint lock */
drh66dfec8b2011-06-01 20:01:49 +0000426 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
danf60b7f32011-12-16 13:24:27 +0000427 u8 truncateOnCommit; /* True to truncate WAL file on commit */
drhd992b152011-12-20 20:13:25 +0000428 u8 syncHeader; /* Fsync the WAL header if true */
drh374f4a02011-12-17 20:02:11 +0000429 u8 padToSectorBoundary; /* Pad transactions out to the next sector */
drh73b64e42010-05-30 19:55:15 +0000430 WalIndexHdr hdr; /* Wal-index header for current transaction */
danb8c7cfb2015-08-13 20:23:46 +0000431 u32 minFrame; /* Ignore wal frames before this one */
dan3e875ef2010-07-05 19:03:35 +0000432 const char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000433 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000434#ifdef SQLITE_DEBUG
435 u8 lockError; /* True if a locking error has occurred */
436#endif
danfc1acf32015-12-05 20:51:54 +0000437#ifdef SQLITE_ENABLE_SNAPSHOT
438 WalIndexHdr *pSnapshot;
439#endif
dan7c246102010-04-12 19:00:29 +0000440};
441
drh73b64e42010-05-30 19:55:15 +0000442/*
dan8c408002010-11-01 17:38:24 +0000443** Candidate values for Wal.exclusiveMode.
444*/
445#define WAL_NORMAL_MODE 0
446#define WAL_EXCLUSIVE_MODE 1
447#define WAL_HEAPMEMORY_MODE 2
448
449/*
drh66dfec8b2011-06-01 20:01:49 +0000450** Possible values for WAL.readOnly
451*/
452#define WAL_RDWR 0 /* Normal read/write connection */
453#define WAL_RDONLY 1 /* The WAL file is readonly */
454#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
455
456/*
dan067f3162010-06-14 10:30:12 +0000457** Each page of the wal-index mapping contains a hash-table made up of
458** an array of HASHTABLE_NSLOT elements of the following type.
459*/
460typedef u16 ht_slot;
461
462/*
danad3cadd2010-06-14 11:49:26 +0000463** This structure is used to implement an iterator that loops through
464** all frames in the WAL in database page order. Where two or more frames
465** correspond to the same database page, the iterator visits only the
466** frame most recently written to the WAL (in other words, the frame with
467** the largest index).
468**
469** The internals of this structure are only accessed by:
470**
471** walIteratorInit() - Create a new iterator,
472** walIteratorNext() - Step an iterator,
473** walIteratorFree() - Free an iterator.
474**
475** This functionality is used by the checkpoint code (see walCheckpoint()).
476*/
477struct WalIterator {
478 int iPrior; /* Last result returned from the iterator */
drhd9c9b782010-12-15 21:02:06 +0000479 int nSegment; /* Number of entries in aSegment[] */
danad3cadd2010-06-14 11:49:26 +0000480 struct WalSegment {
481 int iNext; /* Next slot in aIndex[] not yet returned */
482 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
483 u32 *aPgno; /* Array of page numbers. */
drhd9c9b782010-12-15 21:02:06 +0000484 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
danad3cadd2010-06-14 11:49:26 +0000485 int iZero; /* Frame number associated with aPgno[0] */
drhd9c9b782010-12-15 21:02:06 +0000486 } aSegment[1]; /* One for every 32KB page in the wal-index */
danad3cadd2010-06-14 11:49:26 +0000487};
488
489/*
dan13a3cb82010-06-11 19:04:21 +0000490** Define the parameters of the hash tables in the wal-index file. There
491** is a hash-table following every HASHTABLE_NPAGE page numbers in the
492** wal-index.
493**
494** Changing any of these constants will alter the wal-index format and
495** create incompatibilities.
496*/
dan067f3162010-06-14 10:30:12 +0000497#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000498#define HASHTABLE_HASH_1 383 /* Should be prime */
499#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000500
danad3cadd2010-06-14 11:49:26 +0000501/*
502** The block of page numbers associated with the first hash-table in a
dan13a3cb82010-06-11 19:04:21 +0000503** wal-index is smaller than usual. This is so that there is a complete
504** hash-table on each aligned 32KB page of the wal-index.
505*/
dan067f3162010-06-14 10:30:12 +0000506#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
dan13a3cb82010-06-11 19:04:21 +0000507
dan067f3162010-06-14 10:30:12 +0000508/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
509#define WALINDEX_PGSZ ( \
510 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
511)
dan13a3cb82010-06-11 19:04:21 +0000512
513/*
514** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
dan067f3162010-06-14 10:30:12 +0000515** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
dan13a3cb82010-06-11 19:04:21 +0000516** numbered from zero.
517**
518** If this call is successful, *ppPage is set to point to the wal-index
519** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
520** then an SQLite error code is returned and *ppPage is set to 0.
521*/
522static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
523 int rc = SQLITE_OK;
524
525 /* Enlarge the pWal->apWiData[] array if required */
526 if( pWal->nWiData<=iPage ){
drh519426a2010-07-09 03:19:07 +0000527 int nByte = sizeof(u32*)*(iPage+1);
dan13a3cb82010-06-11 19:04:21 +0000528 volatile u32 **apNew;
drhf3cdcdc2015-04-29 16:50:28 +0000529 apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
dan13a3cb82010-06-11 19:04:21 +0000530 if( !apNew ){
531 *ppPage = 0;
532 return SQLITE_NOMEM;
533 }
drh519426a2010-07-09 03:19:07 +0000534 memset((void*)&apNew[pWal->nWiData], 0,
535 sizeof(u32*)*(iPage+1-pWal->nWiData));
dan13a3cb82010-06-11 19:04:21 +0000536 pWal->apWiData = apNew;
537 pWal->nWiData = iPage+1;
538 }
539
540 /* Request a pointer to the required page from the VFS */
541 if( pWal->apWiData[iPage]==0 ){
dan8c408002010-11-01 17:38:24 +0000542 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
543 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
544 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
545 }else{
546 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
547 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
548 );
drh66dfec8b2011-06-01 20:01:49 +0000549 if( rc==SQLITE_READONLY ){
550 pWal->readOnly |= WAL_SHM_RDONLY;
551 rc = SQLITE_OK;
dan4edc6bf2011-05-10 17:31:29 +0000552 }
dan8c408002010-11-01 17:38:24 +0000553 }
dan13a3cb82010-06-11 19:04:21 +0000554 }
danb6d2f9c2011-05-11 14:57:33 +0000555
drh66dfec8b2011-06-01 20:01:49 +0000556 *ppPage = pWal->apWiData[iPage];
dan13a3cb82010-06-11 19:04:21 +0000557 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
558 return rc;
559}
560
561/*
drh73b64e42010-05-30 19:55:15 +0000562** Return a pointer to the WalCkptInfo structure in the wal-index.
563*/
564static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000565 assert( pWal->nWiData>0 && pWal->apWiData[0] );
566 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
567}
568
569/*
570** Return a pointer to the WalIndexHdr structure in the wal-index.
571*/
572static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
573 assert( pWal->nWiData>0 && pWal->apWiData[0] );
574 return (volatile WalIndexHdr*)pWal->apWiData[0];
drh73b64e42010-05-30 19:55:15 +0000575}
576
dan7c246102010-04-12 19:00:29 +0000577/*
danb8fd6c22010-05-24 10:39:36 +0000578** The argument to this macro must be of type u32. On a little-endian
579** architecture, it returns the u32 value that results from interpreting
580** the 4 bytes as a big-endian value. On a big-endian architecture, it
peter.d.reid60ec9142014-09-06 16:39:46 +0000581** returns the value that would be produced by interpreting the 4 bytes
danb8fd6c22010-05-24 10:39:36 +0000582** of the input value as a little-endian integer.
583*/
584#define BYTESWAP32(x) ( \
585 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
586 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
587)
dan64d039e2010-04-13 19:27:31 +0000588
dan7c246102010-04-12 19:00:29 +0000589/*
drh7e263722010-05-20 21:21:09 +0000590** Generate or extend an 8 byte checksum based on the data in
591** array aByte[] and the initial values of aIn[0] and aIn[1] (or
592** initial values of 0 and 0 if aIn==NULL).
593**
594** The checksum is written back into aOut[] before returning.
595**
596** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000597*/
drh7e263722010-05-20 21:21:09 +0000598static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000599 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000600 u8 *a, /* Content to be checksummed */
601 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
602 const u32 *aIn, /* Initial checksum value input */
603 u32 *aOut /* OUT: Final checksum value output */
604){
605 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000606 u32 *aData = (u32 *)a;
607 u32 *aEnd = (u32 *)&a[nByte];
608
drh7e263722010-05-20 21:21:09 +0000609 if( aIn ){
610 s1 = aIn[0];
611 s2 = aIn[1];
612 }else{
613 s1 = s2 = 0;
614 }
dan7c246102010-04-12 19:00:29 +0000615
drh584c7542010-05-19 18:08:10 +0000616 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000617 assert( (nByte&0x00000007)==0 );
dan7c246102010-04-12 19:00:29 +0000618
danb8fd6c22010-05-24 10:39:36 +0000619 if( nativeCksum ){
620 do {
621 s1 += *aData++ + s2;
622 s2 += *aData++ + s1;
623 }while( aData<aEnd );
624 }else{
625 do {
626 s1 += BYTESWAP32(aData[0]) + s2;
627 s2 += BYTESWAP32(aData[1]) + s1;
628 aData += 2;
629 }while( aData<aEnd );
630 }
631
drh7e263722010-05-20 21:21:09 +0000632 aOut[0] = s1;
633 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000634}
635
dan8c408002010-11-01 17:38:24 +0000636static void walShmBarrier(Wal *pWal){
637 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
638 sqlite3OsShmBarrier(pWal->pDbFd);
639 }
640}
641
dan7c246102010-04-12 19:00:29 +0000642/*
drh7e263722010-05-20 21:21:09 +0000643** Write the header information in pWal->hdr into the wal-index.
644**
645** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000646*/
drh7e263722010-05-20 21:21:09 +0000647static void walIndexWriteHdr(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000648 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
649 const int nCksum = offsetof(WalIndexHdr, aCksum);
drh73b64e42010-05-30 19:55:15 +0000650
651 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000652 pWal->hdr.isInit = 1;
dan10f5a502010-06-23 15:55:43 +0000653 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
dan4280eb32010-06-12 12:02:35 +0000654 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
drhf6bff3f2015-07-17 01:16:10 +0000655 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
dan8c408002010-11-01 17:38:24 +0000656 walShmBarrier(pWal);
drhf6bff3f2015-07-17 01:16:10 +0000657 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000658}
659
660/*
661** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000662** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000663** 4-byte big-endian integers, as follows:
664**
drh23ea97b2010-05-20 16:45:58 +0000665** 0: Page number.
666** 4: For commit records, the size of the database image in pages
667** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000668** 8: Salt-1 (copied from the wal-header)
669** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000670** 16: Checksum-1.
671** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000672*/
drh7ed91f22010-04-29 22:34:07 +0000673static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000674 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000675 u32 iPage, /* Database page number for frame */
676 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000677 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000678 u8 *aFrame /* OUT: Write encoded frame here */
679){
danb8fd6c22010-05-24 10:39:36 +0000680 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000681 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000682 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000683 sqlite3Put4byte(&aFrame[0], iPage);
684 sqlite3Put4byte(&aFrame[4], nTruncate);
drh7e263722010-05-20 21:21:09 +0000685 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000686
danb8fd6c22010-05-24 10:39:36 +0000687 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000688 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000689 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000690
drh23ea97b2010-05-20 16:45:58 +0000691 sqlite3Put4byte(&aFrame[16], aCksum[0]);
692 sqlite3Put4byte(&aFrame[20], aCksum[1]);
dan7c246102010-04-12 19:00:29 +0000693}
694
695/*
drh7e263722010-05-20 21:21:09 +0000696** Check to see if the frame with header in aFrame[] and content
697** in aData[] is valid. If it is a valid frame, fill *piPage and
698** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000699*/
drh7ed91f22010-04-29 22:34:07 +0000700static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000701 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000702 u32 *piPage, /* OUT: Database page number for frame */
703 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000704 u8 *aData, /* Pointer to page data (for checksum) */
705 u8 *aFrame /* Frame data */
706){
danb8fd6c22010-05-24 10:39:36 +0000707 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000708 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000709 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000710 assert( WAL_FRAME_HDRSIZE==24 );
711
drh7e263722010-05-20 21:21:09 +0000712 /* A frame is only valid if the salt values in the frame-header
713 ** match the salt values in the wal-header.
714 */
715 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000716 return 0;
717 }
dan4a4b01d2010-04-16 11:30:18 +0000718
drhc8179152010-05-24 13:28:36 +0000719 /* A frame is only valid if the page number is creater than zero.
720 */
721 pgno = sqlite3Get4byte(&aFrame[0]);
722 if( pgno==0 ){
723 return 0;
724 }
725
drh519426a2010-07-09 03:19:07 +0000726 /* A frame is only valid if a checksum of the WAL header,
727 ** all prior frams, the first 16 bytes of this frame-header,
728 ** and the frame-data matches the checksum in the last 8
729 ** bytes of this frame-header.
drh7e263722010-05-20 21:21:09 +0000730 */
danb8fd6c22010-05-24 10:39:36 +0000731 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000732 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000733 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000734 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
735 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000736 ){
737 /* Checksum failed. */
738 return 0;
739 }
740
drh7e263722010-05-20 21:21:09 +0000741 /* If we reach this point, the frame is valid. Return the page number
742 ** and the new database size.
743 */
drhc8179152010-05-24 13:28:36 +0000744 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000745 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000746 return 1;
747}
748
dan7c246102010-04-12 19:00:29 +0000749
drhc74c3332010-05-31 12:15:19 +0000750#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
751/*
drh181e0912010-06-01 01:08:08 +0000752** Names of locks. This routine is used to provide debugging output and is not
753** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000754*/
755static const char *walLockName(int lockIdx){
756 if( lockIdx==WAL_WRITE_LOCK ){
757 return "WRITE-LOCK";
758 }else if( lockIdx==WAL_CKPT_LOCK ){
759 return "CKPT-LOCK";
760 }else if( lockIdx==WAL_RECOVER_LOCK ){
761 return "RECOVER-LOCK";
762 }else{
763 static char zName[15];
764 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
765 lockIdx-WAL_READ_LOCK(0));
766 return zName;
767 }
768}
769#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
770
771
dan7c246102010-04-12 19:00:29 +0000772/*
drh181e0912010-06-01 01:08:08 +0000773** Set or release locks on the WAL. Locks are either shared or exclusive.
774** A lock cannot be moved directly between shared and exclusive - it must go
775** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000776**
777** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
778*/
779static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000780 int rc;
drh73b64e42010-05-30 19:55:15 +0000781 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000782 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
783 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
784 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
785 walLockName(lockIdx), rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000786 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000787 return rc;
drh73b64e42010-05-30 19:55:15 +0000788}
789static void walUnlockShared(Wal *pWal, int lockIdx){
790 if( pWal->exclusiveMode ) return;
791 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
792 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000793 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000794}
drhab372772015-12-02 16:10:16 +0000795static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000796 int rc;
drh73b64e42010-05-30 19:55:15 +0000797 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000798 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
799 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
800 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
801 walLockName(lockIdx), n, rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000802 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000803 return rc;
drh73b64e42010-05-30 19:55:15 +0000804}
805static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
806 if( pWal->exclusiveMode ) return;
807 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
808 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000809 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
810 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000811}
812
813/*
drh29d4dbe2010-05-18 23:29:52 +0000814** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000815** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
816** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000817*/
818static int walHash(u32 iPage){
819 assert( iPage>0 );
820 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
821 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
822}
823static int walNextHash(int iPriorHash){
824 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000825}
826
dan4280eb32010-06-12 12:02:35 +0000827/*
828** Return pointers to the hash table and page number array stored on
829** page iHash of the wal-index. The wal-index is broken into 32KB pages
830** numbered starting from 0.
831**
832** Set output variable *paHash to point to the start of the hash table
833** in the wal-index file. Set *piZero to one less than the frame
834** number of the first frame indexed by this hash table. If a
835** slot in the hash table is set to N, it refers to frame number
836** (*piZero+N) in the log.
837**
dand60bf112010-06-14 11:18:50 +0000838** Finally, set *paPgno so that *paPgno[1] is the page number of the
839** first frame indexed by the hash table, frame (*piZero+1).
dan4280eb32010-06-12 12:02:35 +0000840*/
841static int walHashGet(
dan13a3cb82010-06-11 19:04:21 +0000842 Wal *pWal, /* WAL handle */
843 int iHash, /* Find the iHash'th table */
dan067f3162010-06-14 10:30:12 +0000844 volatile ht_slot **paHash, /* OUT: Pointer to hash index */
dan13a3cb82010-06-11 19:04:21 +0000845 volatile u32 **paPgno, /* OUT: Pointer to page number array */
846 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
847){
dan4280eb32010-06-12 12:02:35 +0000848 int rc; /* Return code */
dan13a3cb82010-06-11 19:04:21 +0000849 volatile u32 *aPgno;
dan13a3cb82010-06-11 19:04:21 +0000850
dan4280eb32010-06-12 12:02:35 +0000851 rc = walIndexPage(pWal, iHash, &aPgno);
852 assert( rc==SQLITE_OK || iHash>0 );
dan13a3cb82010-06-11 19:04:21 +0000853
dan4280eb32010-06-12 12:02:35 +0000854 if( rc==SQLITE_OK ){
855 u32 iZero;
dan067f3162010-06-14 10:30:12 +0000856 volatile ht_slot *aHash;
dan4280eb32010-06-12 12:02:35 +0000857
dan067f3162010-06-14 10:30:12 +0000858 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
dan4280eb32010-06-12 12:02:35 +0000859 if( iHash==0 ){
dand60bf112010-06-14 11:18:50 +0000860 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
dan4280eb32010-06-12 12:02:35 +0000861 iZero = 0;
862 }else{
863 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
dan4280eb32010-06-12 12:02:35 +0000864 }
865
dand60bf112010-06-14 11:18:50 +0000866 *paPgno = &aPgno[-1];
dan4280eb32010-06-12 12:02:35 +0000867 *paHash = aHash;
868 *piZero = iZero;
dan13a3cb82010-06-11 19:04:21 +0000869 }
dan4280eb32010-06-12 12:02:35 +0000870 return rc;
dan13a3cb82010-06-11 19:04:21 +0000871}
872
dan4280eb32010-06-12 12:02:35 +0000873/*
874** Return the number of the wal-index page that contains the hash-table
875** and page-number array that contain entries corresponding to WAL frame
876** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
877** are numbered starting from 0.
878*/
dan13a3cb82010-06-11 19:04:21 +0000879static int walFramePage(u32 iFrame){
880 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
881 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
882 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
883 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
884 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
885 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
886 );
887 return iHash;
888}
889
890/*
891** Return the page number associated with frame iFrame in this WAL.
892*/
893static u32 walFramePgno(Wal *pWal, u32 iFrame){
894 int iHash = walFramePage(iFrame);
895 if( iHash==0 ){
896 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
897 }
898 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
899}
danbb23aff2010-05-10 14:46:09 +0000900
danca6b5ba2010-05-25 10:50:56 +0000901/*
902** Remove entries from the hash table that point to WAL slots greater
903** than pWal->hdr.mxFrame.
904**
905** This function is called whenever pWal->hdr.mxFrame is decreased due
906** to a rollback or savepoint.
907**
drh181e0912010-06-01 01:08:08 +0000908** At most only the hash table containing pWal->hdr.mxFrame needs to be
909** updated. Any later hash tables will be automatically cleared when
910** pWal->hdr.mxFrame advances to the point where those hash tables are
911** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000912*/
913static void walCleanupHash(Wal *pWal){
drhff828942010-06-26 21:34:06 +0000914 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */
915 volatile u32 *aPgno = 0; /* Page number array for hash table */
916 u32 iZero = 0; /* frame == (aHash[x]+iZero) */
dan067f3162010-06-14 10:30:12 +0000917 int iLimit = 0; /* Zero values greater than this */
918 int nByte; /* Number of bytes to zero in aPgno[] */
919 int i; /* Used to iterate through aHash[] */
danca6b5ba2010-05-25 10:50:56 +0000920
drh73b64e42010-05-30 19:55:15 +0000921 assert( pWal->writeLock );
drhffca4302010-06-15 11:21:54 +0000922 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
923 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
924 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
drh9c156472010-06-01 12:58:41 +0000925
dan4280eb32010-06-12 12:02:35 +0000926 if( pWal->hdr.mxFrame==0 ) return;
927
928 /* Obtain pointers to the hash-table and page-number array containing
929 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
930 ** that the page said hash-table and array reside on is already mapped.
931 */
932 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
933 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
934 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
935
936 /* Zero all hash-table entries that correspond to frame numbers greater
937 ** than pWal->hdr.mxFrame.
938 */
939 iLimit = pWal->hdr.mxFrame - iZero;
940 assert( iLimit>0 );
941 for(i=0; i<HASHTABLE_NSLOT; i++){
942 if( aHash[i]>iLimit ){
943 aHash[i] = 0;
danca6b5ba2010-05-25 10:50:56 +0000944 }
danca6b5ba2010-05-25 10:50:56 +0000945 }
dan4280eb32010-06-12 12:02:35 +0000946
947 /* Zero the entries in the aPgno array that correspond to frames with
948 ** frame numbers greater than pWal->hdr.mxFrame.
949 */
shaneh5eba1f62010-07-02 17:05:03 +0000950 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
dand60bf112010-06-14 11:18:50 +0000951 memset((void *)&aPgno[iLimit+1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000952
953#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
954 /* Verify that the every entry in the mapping region is still reachable
955 ** via the hash table even after the cleanup.
956 */
drhf77bbd92010-06-01 13:17:44 +0000957 if( iLimit ){
mistachkin6b67a8a2015-07-21 19:22:35 +0000958 int j; /* Loop counter */
danca6b5ba2010-05-25 10:50:56 +0000959 int iKey; /* Hash key */
mistachkin6b67a8a2015-07-21 19:22:35 +0000960 for(j=1; j<=iLimit; j++){
961 for(iKey=walHash(aPgno[j]); aHash[iKey]; iKey=walNextHash(iKey)){
962 if( aHash[iKey]==j ) break;
danca6b5ba2010-05-25 10:50:56 +0000963 }
mistachkin6b67a8a2015-07-21 19:22:35 +0000964 assert( aHash[iKey]==j );
danca6b5ba2010-05-25 10:50:56 +0000965 }
966 }
967#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
968}
969
danbb23aff2010-05-10 14:46:09 +0000970
drh7ed91f22010-04-29 22:34:07 +0000971/*
drh29d4dbe2010-05-18 23:29:52 +0000972** Set an entry in the wal-index that will map database page number
973** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +0000974*/
drh7ed91f22010-04-29 22:34:07 +0000975static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
dan4280eb32010-06-12 12:02:35 +0000976 int rc; /* Return code */
drhff828942010-06-26 21:34:06 +0000977 u32 iZero = 0; /* One less than frame number of aPgno[1] */
978 volatile u32 *aPgno = 0; /* Page number array */
979 volatile ht_slot *aHash = 0; /* Hash table */
dance4f05f2010-04-22 19:14:13 +0000980
dan4280eb32010-06-12 12:02:35 +0000981 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
982
983 /* Assuming the wal-index file was successfully mapped, populate the
984 ** page number array and hash table entry.
dan7c246102010-04-12 19:00:29 +0000985 */
danbb23aff2010-05-10 14:46:09 +0000986 if( rc==SQLITE_OK ){
987 int iKey; /* Hash table key */
dan4280eb32010-06-12 12:02:35 +0000988 int idx; /* Value to write to hash-table slot */
drh519426a2010-07-09 03:19:07 +0000989 int nCollide; /* Number of hash collisions */
dan7c246102010-04-12 19:00:29 +0000990
danbb23aff2010-05-10 14:46:09 +0000991 idx = iFrame - iZero;
dan4280eb32010-06-12 12:02:35 +0000992 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
993
994 /* If this is the first entry to be added to this hash-table, zero the
peter.d.reid60ec9142014-09-06 16:39:46 +0000995 ** entire hash table and aPgno[] array before proceeding.
dan4280eb32010-06-12 12:02:35 +0000996 */
danca6b5ba2010-05-25 10:50:56 +0000997 if( idx==1 ){
shaneh5eba1f62010-07-02 17:05:03 +0000998 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
dand60bf112010-06-14 11:18:50 +0000999 memset((void*)&aPgno[1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +00001000 }
danca6b5ba2010-05-25 10:50:56 +00001001
dan4280eb32010-06-12 12:02:35 +00001002 /* If the entry in aPgno[] is already set, then the previous writer
1003 ** must have exited unexpectedly in the middle of a transaction (after
1004 ** writing one or more dirty pages to the WAL to free up memory).
1005 ** Remove the remnants of that writers uncommitted transaction from
1006 ** the hash-table before writing any new entries.
1007 */
dand60bf112010-06-14 11:18:50 +00001008 if( aPgno[idx] ){
danca6b5ba2010-05-25 10:50:56 +00001009 walCleanupHash(pWal);
dand60bf112010-06-14 11:18:50 +00001010 assert( !aPgno[idx] );
danca6b5ba2010-05-25 10:50:56 +00001011 }
dan4280eb32010-06-12 12:02:35 +00001012
1013 /* Write the aPgno[] array entry and the hash-table slot. */
drh519426a2010-07-09 03:19:07 +00001014 nCollide = idx;
dan6f150142010-05-21 15:31:56 +00001015 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
drh519426a2010-07-09 03:19:07 +00001016 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
drh29d4dbe2010-05-18 23:29:52 +00001017 }
dand60bf112010-06-14 11:18:50 +00001018 aPgno[idx] = iPage;
shaneh5eba1f62010-07-02 17:05:03 +00001019 aHash[iKey] = (ht_slot)idx;
drh4fa95bf2010-05-22 00:55:39 +00001020
1021#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1022 /* Verify that the number of entries in the hash table exactly equals
1023 ** the number of entries in the mapping region.
1024 */
1025 {
1026 int i; /* Loop counter */
1027 int nEntry = 0; /* Number of entries in the hash table */
1028 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1029 assert( nEntry==idx );
1030 }
1031
1032 /* Verify that the every entry in the mapping region is reachable
1033 ** via the hash table. This turns out to be a really, really expensive
1034 ** thing to check, so only do this occasionally - not on every
1035 ** iteration.
1036 */
1037 if( (idx&0x3ff)==0 ){
1038 int i; /* Loop counter */
1039 for(i=1; i<=idx; i++){
dand60bf112010-06-14 11:18:50 +00001040 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
drh4fa95bf2010-05-22 00:55:39 +00001041 if( aHash[iKey]==i ) break;
1042 }
1043 assert( aHash[iKey]==i );
1044 }
1045 }
1046#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +00001047 }
dan31f98fc2010-04-27 05:42:32 +00001048
drh4fa95bf2010-05-22 00:55:39 +00001049
danbb23aff2010-05-10 14:46:09 +00001050 return rc;
dan7c246102010-04-12 19:00:29 +00001051}
1052
1053
1054/*
drh7ed91f22010-04-29 22:34:07 +00001055** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +00001056**
1057** This routine first tries to establish an exclusive lock on the
1058** wal-index to prevent other threads/processes from doing anything
1059** with the WAL or wal-index while recovery is running. The
1060** WAL_RECOVER_LOCK is also held so that other threads will know
1061** that this thread is running recovery. If unable to establish
1062** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +00001063*/
drh7ed91f22010-04-29 22:34:07 +00001064static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +00001065 int rc; /* Return Code */
1066 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +00001067 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +00001068 int iLock; /* Lock offset to lock for checkpoint */
1069 int nLock; /* Number of locks to hold */
dan7c246102010-04-12 19:00:29 +00001070
dand0aa3422010-05-31 16:41:53 +00001071 /* Obtain an exclusive lock on all byte in the locking range not already
1072 ** locked by the caller. The caller is guaranteed to have locked the
1073 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1074 ** If successful, the same bytes that are locked here are unlocked before
1075 ** this function returns.
1076 */
1077 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1078 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1079 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1080 assert( pWal->writeLock );
1081 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1082 nLock = SQLITE_SHM_NLOCK - iLock;
drhab372772015-12-02 16:10:16 +00001083 rc = walLockExclusive(pWal, iLock, nLock);
drh73b64e42010-05-30 19:55:15 +00001084 if( rc ){
1085 return rc;
1086 }
drhc74c3332010-05-31 12:15:19 +00001087 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +00001088
dan71d89912010-05-24 13:57:42 +00001089 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +00001090
drhd9e5c4f2010-05-12 18:01:39 +00001091 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +00001092 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001093 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001094 }
1095
danb8fd6c22010-05-24 10:39:36 +00001096 if( nSize>WAL_HDRSIZE ){
1097 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dan7c246102010-04-12 19:00:29 +00001098 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001099 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001100 u8 *aData; /* Pointer to data part of aFrame buffer */
1101 int iFrame; /* Index of last frame read */
1102 i64 iOffset; /* Next offset to read from log file */
drh6e810962010-05-19 17:49:50 +00001103 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001104 u32 magic; /* Magic value read from WAL header */
dan10f5a502010-06-23 15:55:43 +00001105 u32 version; /* Magic value read from WAL header */
drhfe6163d2011-12-17 13:45:28 +00001106 int isValid; /* True if this frame is valid */
dan7c246102010-04-12 19:00:29 +00001107
danb8fd6c22010-05-24 10:39:36 +00001108 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001109 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001110 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001111 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001112 }
1113
1114 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001115 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1116 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1117 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001118 */
danb8fd6c22010-05-24 10:39:36 +00001119 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001120 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001121 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1122 || szPage&(szPage-1)
1123 || szPage>SQLITE_MAX_PAGE_SIZE
1124 || szPage<512
1125 ){
dan7c246102010-04-12 19:00:29 +00001126 goto finished;
1127 }
shaneh5eba1f62010-07-02 17:05:03 +00001128 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
drhb2eced52010-08-12 02:41:12 +00001129 pWal->szPage = szPage;
drh23ea97b2010-05-20 16:45:58 +00001130 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001131 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
drhcd285082010-06-23 22:00:35 +00001132
1133 /* Verify that the WAL header checksum is correct */
dan71d89912010-05-24 13:57:42 +00001134 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
dan10f5a502010-06-23 15:55:43 +00001135 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
dan71d89912010-05-24 13:57:42 +00001136 );
dan10f5a502010-06-23 15:55:43 +00001137 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1138 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1139 ){
1140 goto finished;
1141 }
1142
drhcd285082010-06-23 22:00:35 +00001143 /* Verify that the version number on the WAL format is one that
1144 ** are able to understand */
dan10f5a502010-06-23 15:55:43 +00001145 version = sqlite3Get4byte(&aBuf[4]);
1146 if( version!=WAL_MAX_VERSION ){
1147 rc = SQLITE_CANTOPEN_BKPT;
1148 goto finished;
1149 }
1150
dan7c246102010-04-12 19:00:29 +00001151 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001152 szFrame = szPage + WAL_FRAME_HDRSIZE;
drhf3cdcdc2015-04-29 16:50:28 +00001153 aFrame = (u8 *)sqlite3_malloc64(szFrame);
dan7c246102010-04-12 19:00:29 +00001154 if( !aFrame ){
drh73b64e42010-05-30 19:55:15 +00001155 rc = SQLITE_NOMEM;
1156 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001157 }
drh7ed91f22010-04-29 22:34:07 +00001158 aData = &aFrame[WAL_FRAME_HDRSIZE];
dan7c246102010-04-12 19:00:29 +00001159
1160 /* Read all frames from the log file. */
1161 iFrame = 0;
drh584c7542010-05-19 18:08:10 +00001162 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
dan7c246102010-04-12 19:00:29 +00001163 u32 pgno; /* Database page number for frame */
1164 u32 nTruncate; /* dbsize field from frame header */
dan7c246102010-04-12 19:00:29 +00001165
1166 /* Read and decode the next log frame. */
drhfe6163d2011-12-17 13:45:28 +00001167 iFrame++;
drh584c7542010-05-19 18:08:10 +00001168 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
dan7c246102010-04-12 19:00:29 +00001169 if( rc!=SQLITE_OK ) break;
drh7e263722010-05-20 21:21:09 +00001170 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
drhf694aa62011-12-20 22:18:51 +00001171 if( !isValid ) break;
drhfe6163d2011-12-17 13:45:28 +00001172 rc = walIndexAppend(pWal, iFrame, pgno);
danc7991bd2010-05-05 19:04:59 +00001173 if( rc!=SQLITE_OK ) break;
dan7c246102010-04-12 19:00:29 +00001174
1175 /* If nTruncate is non-zero, this is a commit record. */
1176 if( nTruncate ){
dan71d89912010-05-24 13:57:42 +00001177 pWal->hdr.mxFrame = iFrame;
1178 pWal->hdr.nPage = nTruncate;
shaneh1df2db72010-08-18 02:28:48 +00001179 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00001180 testcase( szPage<=32768 );
1181 testcase( szPage>=65536 );
dan71d89912010-05-24 13:57:42 +00001182 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1183 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
dan7c246102010-04-12 19:00:29 +00001184 }
1185 }
1186
1187 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001188 }
1189
1190finished:
dan576bc322010-05-06 18:04:50 +00001191 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001192 volatile WalCkptInfo *pInfo;
1193 int i;
dan71d89912010-05-24 13:57:42 +00001194 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1195 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001196 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001197
drhdb7f6472010-06-09 14:45:12 +00001198 /* Reset the checkpoint-header. This is safe because this thread is
dan3dee6da2010-05-31 16:17:54 +00001199 ** currently holding locks that exclude all other readers, writers and
1200 ** checkpointers.
1201 */
drhdb7f6472010-06-09 14:45:12 +00001202 pInfo = walCkptInfo(pWal);
1203 pInfo->nBackfill = 0;
1204 pInfo->aReadMark[0] = 0;
1205 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
dan5373b762012-07-17 14:37:12 +00001206 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
daneb8763d2010-08-17 14:52:22 +00001207
1208 /* If more than one frame was recovered from the log file, report an
1209 ** event via sqlite3_log(). This is to help with identifying performance
1210 ** problems caused by applications routinely shutting down without
1211 ** checkpointing the log file.
1212 */
1213 if( pWal->hdr.nPage ){
drhd040e762013-04-10 23:48:37 +00001214 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1215 "recovered %d frames from WAL file %s",
dan0943f0b2013-04-01 14:35:01 +00001216 pWal->hdr.mxFrame, pWal->zWalName
daneb8763d2010-08-17 14:52:22 +00001217 );
1218 }
dan576bc322010-05-06 18:04:50 +00001219 }
drh73b64e42010-05-30 19:55:15 +00001220
1221recovery_error:
drhc74c3332010-05-31 12:15:19 +00001222 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dand0aa3422010-05-31 16:41:53 +00001223 walUnlockExclusive(pWal, iLock, nLock);
dan7c246102010-04-12 19:00:29 +00001224 return rc;
1225}
1226
drha8e654e2010-05-04 17:38:42 +00001227/*
dan1018e902010-05-05 15:33:05 +00001228** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001229*/
dan1018e902010-05-05 15:33:05 +00001230static void walIndexClose(Wal *pWal, int isDelete){
dan8c408002010-11-01 17:38:24 +00001231 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
1232 int i;
1233 for(i=0; i<pWal->nWiData; i++){
1234 sqlite3_free((void *)pWal->apWiData[i]);
1235 pWal->apWiData[i] = 0;
1236 }
1237 }else{
1238 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1239 }
drha8e654e2010-05-04 17:38:42 +00001240}
1241
dan7c246102010-04-12 19:00:29 +00001242/*
dan3e875ef2010-07-05 19:03:35 +00001243** Open a connection to the WAL file zWalName. The database file must
1244** already be opened on connection pDbFd. The buffer that zWalName points
1245** to must remain valid for the lifetime of the returned Wal* handle.
dan3de777f2010-04-17 12:31:37 +00001246**
1247** A SHARED lock should be held on the database file when this function
1248** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001249** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001250** were to do this just after this client opened one of these files, the
1251** system would be badly broken.
danef378022010-05-04 11:06:03 +00001252**
1253** If the log file is successfully opened, SQLITE_OK is returned and
1254** *ppWal is set to point to a new WAL handle. If an error occurs,
1255** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001256*/
drhc438efd2010-04-26 00:19:45 +00001257int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001258 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001259 sqlite3_file *pDbFd, /* The open database file */
dan3e875ef2010-07-05 19:03:35 +00001260 const char *zWalName, /* Name of the WAL file */
dan8c408002010-11-01 17:38:24 +00001261 int bNoShm, /* True to run in heap-memory mode */
drh85a83752011-05-16 21:00:27 +00001262 i64 mxWalSize, /* Truncate WAL to this size on reset */
drh7ed91f22010-04-29 22:34:07 +00001263 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001264){
danef378022010-05-04 11:06:03 +00001265 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001266 Wal *pRet; /* Object to allocate and return */
dan7c246102010-04-12 19:00:29 +00001267 int flags; /* Flags passed to OsOpen() */
dan7c246102010-04-12 19:00:29 +00001268
dan3e875ef2010-07-05 19:03:35 +00001269 assert( zWalName && zWalName[0] );
drhd9e5c4f2010-05-12 18:01:39 +00001270 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001271
drh1b78eaf2010-05-25 13:40:03 +00001272 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1273 ** this source file. Verify that the #defines of the locking byte offsets
1274 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1275 */
1276#ifdef WIN_SHM_BASE
1277 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1278#endif
1279#ifdef UNIX_SHM_BASE
1280 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1281#endif
1282
1283
drh7ed91f22010-04-29 22:34:07 +00001284 /* Allocate an instance of struct Wal to return. */
1285 *ppWal = 0;
dan3e875ef2010-07-05 19:03:35 +00001286 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
dan76ed3bc2010-05-03 17:18:24 +00001287 if( !pRet ){
1288 return SQLITE_NOMEM;
1289 }
1290
dan7c246102010-04-12 19:00:29 +00001291 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001292 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1293 pRet->pDbFd = pDbFd;
drh73b64e42010-05-30 19:55:15 +00001294 pRet->readLock = -1;
drh85a83752011-05-16 21:00:27 +00001295 pRet->mxWalSize = mxWalSize;
dan3e875ef2010-07-05 19:03:35 +00001296 pRet->zWalName = zWalName;
drhd992b152011-12-20 20:13:25 +00001297 pRet->syncHeader = 1;
drh374f4a02011-12-17 20:02:11 +00001298 pRet->padToSectorBoundary = 1;
dan8c408002010-11-01 17:38:24 +00001299 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
dan7c246102010-04-12 19:00:29 +00001300
drh7ed91f22010-04-29 22:34:07 +00001301 /* Open file handle on the write-ahead log file. */
danddb0ac42010-07-14 14:48:58 +00001302 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
danda9fe0c2010-07-13 18:44:03 +00001303 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
dan50833e32010-07-14 16:37:17 +00001304 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
drh66dfec8b2011-06-01 20:01:49 +00001305 pRet->readOnly = WAL_RDONLY;
dan50833e32010-07-14 16:37:17 +00001306 }
dan7c246102010-04-12 19:00:29 +00001307
dan7c246102010-04-12 19:00:29 +00001308 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001309 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001310 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001311 sqlite3_free(pRet);
1312 }else{
dandd973542014-02-13 19:27:08 +00001313 int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
drhd992b152011-12-20 20:13:25 +00001314 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
drhcb15f352011-12-23 01:04:17 +00001315 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1316 pRet->padToSectorBoundary = 0;
1317 }
danef378022010-05-04 11:06:03 +00001318 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001319 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001320 }
dan7c246102010-04-12 19:00:29 +00001321 return rc;
1322}
1323
drha2a42012010-05-18 18:01:08 +00001324/*
drh85a83752011-05-16 21:00:27 +00001325** Change the size to which the WAL file is trucated on each reset.
1326*/
1327void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1328 if( pWal ) pWal->mxWalSize = iLimit;
1329}
1330
1331/*
drha2a42012010-05-18 18:01:08 +00001332** Find the smallest page number out of all pages held in the WAL that
1333** has not been returned by any prior invocation of this method on the
1334** same WalIterator object. Write into *piFrame the frame index where
1335** that page was last written into the WAL. Write into *piPage the page
1336** number.
1337**
1338** Return 0 on success. If there are no pages in the WAL with a page
1339** number larger than *piPage, then return 1.
1340*/
drh7ed91f22010-04-29 22:34:07 +00001341static int walIteratorNext(
1342 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001343 u32 *piPage, /* OUT: The page number of the next page */
1344 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001345){
drha2a42012010-05-18 18:01:08 +00001346 u32 iMin; /* Result pgno must be greater than iMin */
1347 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1348 int i; /* For looping through segments */
dan7c246102010-04-12 19:00:29 +00001349
drha2a42012010-05-18 18:01:08 +00001350 iMin = p->iPrior;
1351 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001352 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001353 struct WalSegment *pSegment = &p->aSegment[i];
dan13a3cb82010-06-11 19:04:21 +00001354 while( pSegment->iNext<pSegment->nEntry ){
drha2a42012010-05-18 18:01:08 +00001355 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001356 if( iPg>iMin ){
1357 if( iPg<iRet ){
1358 iRet = iPg;
dan13a3cb82010-06-11 19:04:21 +00001359 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
dan7c246102010-04-12 19:00:29 +00001360 }
1361 break;
1362 }
1363 pSegment->iNext++;
1364 }
dan7c246102010-04-12 19:00:29 +00001365 }
1366
drha2a42012010-05-18 18:01:08 +00001367 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001368 return (iRet==0xFFFFFFFF);
1369}
1370
danf544b4c2010-06-25 11:35:52 +00001371/*
1372** This function merges two sorted lists into a single sorted list.
drhd9c9b782010-12-15 21:02:06 +00001373**
1374** aLeft[] and aRight[] are arrays of indices. The sort key is
1375** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1376** is guaranteed for all J<K:
1377**
1378** aContent[aLeft[J]] < aContent[aLeft[K]]
1379** aContent[aRight[J]] < aContent[aRight[K]]
1380**
1381** This routine overwrites aRight[] with a new (probably longer) sequence
1382** of indices such that the aRight[] contains every index that appears in
1383** either aLeft[] or the old aRight[] and such that the second condition
1384** above is still met.
1385**
1386** The aContent[aLeft[X]] values will be unique for all X. And the
1387** aContent[aRight[X]] values will be unique too. But there might be
1388** one or more combinations of X and Y such that
1389**
1390** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1391**
1392** When that happens, omit the aLeft[X] and use the aRight[Y] index.
danf544b4c2010-06-25 11:35:52 +00001393*/
1394static void walMerge(
drhd9c9b782010-12-15 21:02:06 +00001395 const u32 *aContent, /* Pages in wal - keys for the sort */
danf544b4c2010-06-25 11:35:52 +00001396 ht_slot *aLeft, /* IN: Left hand input list */
1397 int nLeft, /* IN: Elements in array *paLeft */
1398 ht_slot **paRight, /* IN/OUT: Right hand input list */
1399 int *pnRight, /* IN/OUT: Elements in *paRight */
1400 ht_slot *aTmp /* Temporary buffer */
1401){
1402 int iLeft = 0; /* Current index in aLeft */
1403 int iRight = 0; /* Current index in aRight */
1404 int iOut = 0; /* Current index in output buffer */
1405 int nRight = *pnRight;
1406 ht_slot *aRight = *paRight;
dan7c246102010-04-12 19:00:29 +00001407
danf544b4c2010-06-25 11:35:52 +00001408 assert( nLeft>0 && nRight>0 );
1409 while( iRight<nRight || iLeft<nLeft ){
1410 ht_slot logpage;
1411 Pgno dbpage;
1412
1413 if( (iLeft<nLeft)
1414 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1415 ){
1416 logpage = aLeft[iLeft++];
1417 }else{
1418 logpage = aRight[iRight++];
1419 }
1420 dbpage = aContent[logpage];
1421
1422 aTmp[iOut++] = logpage;
1423 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1424
1425 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1426 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1427 }
1428
1429 *paRight = aLeft;
1430 *pnRight = iOut;
1431 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1432}
1433
1434/*
drhd9c9b782010-12-15 21:02:06 +00001435** Sort the elements in list aList using aContent[] as the sort key.
1436** Remove elements with duplicate keys, preferring to keep the
1437** larger aList[] values.
1438**
1439** The aList[] entries are indices into aContent[]. The values in
1440** aList[] are to be sorted so that for all J<K:
1441**
1442** aContent[aList[J]] < aContent[aList[K]]
1443**
1444** For any X and Y such that
1445**
1446** aContent[aList[X]] == aContent[aList[Y]]
1447**
1448** Keep the larger of the two values aList[X] and aList[Y] and discard
1449** the smaller.
danf544b4c2010-06-25 11:35:52 +00001450*/
dan13a3cb82010-06-11 19:04:21 +00001451static void walMergesort(
drhd9c9b782010-12-15 21:02:06 +00001452 const u32 *aContent, /* Pages in wal */
dan067f3162010-06-14 10:30:12 +00001453 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1454 ht_slot *aList, /* IN/OUT: List to sort */
drha2a42012010-05-18 18:01:08 +00001455 int *pnList /* IN/OUT: Number of elements in aList[] */
1456){
danf544b4c2010-06-25 11:35:52 +00001457 struct Sublist {
1458 int nList; /* Number of elements in aList */
1459 ht_slot *aList; /* Pointer to sub-list content */
1460 };
drha2a42012010-05-18 18:01:08 +00001461
danf544b4c2010-06-25 11:35:52 +00001462 const int nList = *pnList; /* Size of input list */
drhff828942010-06-26 21:34:06 +00001463 int nMerge = 0; /* Number of elements in list aMerge */
1464 ht_slot *aMerge = 0; /* List to be merged */
danf544b4c2010-06-25 11:35:52 +00001465 int iList; /* Index into input list */
drhf4fa0b82015-07-15 18:35:54 +00001466 u32 iSub = 0; /* Index into aSub array */
danf544b4c2010-06-25 11:35:52 +00001467 struct Sublist aSub[13]; /* Array of sub-lists */
drha2a42012010-05-18 18:01:08 +00001468
danf544b4c2010-06-25 11:35:52 +00001469 memset(aSub, 0, sizeof(aSub));
1470 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1471 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
drha2a42012010-05-18 18:01:08 +00001472
danf544b4c2010-06-25 11:35:52 +00001473 for(iList=0; iList<nList; iList++){
1474 nMerge = 1;
1475 aMerge = &aList[iList];
1476 for(iSub=0; iList & (1<<iSub); iSub++){
drhf4fa0b82015-07-15 18:35:54 +00001477 struct Sublist *p;
1478 assert( iSub<ArraySize(aSub) );
1479 p = &aSub[iSub];
danf544b4c2010-06-25 11:35:52 +00001480 assert( p->aList && p->nList<=(1<<iSub) );
danbdf1e242010-06-25 15:16:25 +00001481 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001482 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
drha2a42012010-05-18 18:01:08 +00001483 }
danf544b4c2010-06-25 11:35:52 +00001484 aSub[iSub].aList = aMerge;
1485 aSub[iSub].nList = nMerge;
drha2a42012010-05-18 18:01:08 +00001486 }
1487
danf544b4c2010-06-25 11:35:52 +00001488 for(iSub++; iSub<ArraySize(aSub); iSub++){
1489 if( nList & (1<<iSub) ){
drhf4fa0b82015-07-15 18:35:54 +00001490 struct Sublist *p;
1491 assert( iSub<ArraySize(aSub) );
1492 p = &aSub[iSub];
danbdf1e242010-06-25 15:16:25 +00001493 assert( p->nList<=(1<<iSub) );
1494 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001495 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1496 }
1497 }
1498 assert( aMerge==aList );
1499 *pnList = nMerge;
1500
drha2a42012010-05-18 18:01:08 +00001501#ifdef SQLITE_DEBUG
1502 {
1503 int i;
1504 for(i=1; i<*pnList; i++){
1505 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1506 }
1507 }
1508#endif
1509}
1510
dan5d656852010-06-14 07:53:26 +00001511/*
1512** Free an iterator allocated by walIteratorInit().
1513*/
1514static void walIteratorFree(WalIterator *p){
drhcbd55b02014-11-04 14:22:27 +00001515 sqlite3_free(p);
dan5d656852010-06-14 07:53:26 +00001516}
1517
drha2a42012010-05-18 18:01:08 +00001518/*
danbdf1e242010-06-25 15:16:25 +00001519** Construct a WalInterator object that can be used to loop over all
1520** pages in the WAL in ascending order. The caller must hold the checkpoint
drhd9c9b782010-12-15 21:02:06 +00001521** lock.
drha2a42012010-05-18 18:01:08 +00001522**
1523** On success, make *pp point to the newly allocated WalInterator object
danbdf1e242010-06-25 15:16:25 +00001524** return SQLITE_OK. Otherwise, return an error code. If this routine
1525** returns an error, the value of *pp is undefined.
drha2a42012010-05-18 18:01:08 +00001526**
1527** The calling routine should invoke walIteratorFree() to destroy the
danbdf1e242010-06-25 15:16:25 +00001528** WalIterator object when it has finished with it.
drha2a42012010-05-18 18:01:08 +00001529*/
1530static int walIteratorInit(Wal *pWal, WalIterator **pp){
dan067f3162010-06-14 10:30:12 +00001531 WalIterator *p; /* Return value */
1532 int nSegment; /* Number of segments to merge */
1533 u32 iLast; /* Last frame in log */
1534 int nByte; /* Number of bytes to allocate */
1535 int i; /* Iterator variable */
1536 ht_slot *aTmp; /* Temp space used by merge-sort */
danbdf1e242010-06-25 15:16:25 +00001537 int rc = SQLITE_OK; /* Return Code */
drha2a42012010-05-18 18:01:08 +00001538
danbdf1e242010-06-25 15:16:25 +00001539 /* This routine only runs while holding the checkpoint lock. And
1540 ** it only runs if there is actually content in the log (mxFrame>0).
drha2a42012010-05-18 18:01:08 +00001541 */
danbdf1e242010-06-25 15:16:25 +00001542 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
dan13a3cb82010-06-11 19:04:21 +00001543 iLast = pWal->hdr.mxFrame;
drha2a42012010-05-18 18:01:08 +00001544
danbdf1e242010-06-25 15:16:25 +00001545 /* Allocate space for the WalIterator object. */
dan13a3cb82010-06-11 19:04:21 +00001546 nSegment = walFramePage(iLast) + 1;
1547 nByte = sizeof(WalIterator)
dan52d6fc02010-06-25 16:34:32 +00001548 + (nSegment-1)*sizeof(struct WalSegment)
1549 + iLast*sizeof(ht_slot);
drhf3cdcdc2015-04-29 16:50:28 +00001550 p = (WalIterator *)sqlite3_malloc64(nByte);
dan8f6097c2010-05-06 07:43:58 +00001551 if( !p ){
drha2a42012010-05-18 18:01:08 +00001552 return SQLITE_NOMEM;
1553 }
1554 memset(p, 0, nByte);
drha2a42012010-05-18 18:01:08 +00001555 p->nSegment = nSegment;
danbdf1e242010-06-25 15:16:25 +00001556
1557 /* Allocate temporary space used by the merge-sort routine. This block
1558 ** of memory will be freed before this function returns.
1559 */
drhf3cdcdc2015-04-29 16:50:28 +00001560 aTmp = (ht_slot *)sqlite3_malloc64(
dan52d6fc02010-06-25 16:34:32 +00001561 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1562 );
danbdf1e242010-06-25 15:16:25 +00001563 if( !aTmp ){
1564 rc = SQLITE_NOMEM;
1565 }
1566
1567 for(i=0; rc==SQLITE_OK && i<nSegment; i++){
dan067f3162010-06-14 10:30:12 +00001568 volatile ht_slot *aHash;
dan13a3cb82010-06-11 19:04:21 +00001569 u32 iZero;
dan13a3cb82010-06-11 19:04:21 +00001570 volatile u32 *aPgno;
1571
dan4280eb32010-06-12 12:02:35 +00001572 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
danbdf1e242010-06-25 15:16:25 +00001573 if( rc==SQLITE_OK ){
dan52d6fc02010-06-25 16:34:32 +00001574 int j; /* Counter variable */
1575 int nEntry; /* Number of entries in this segment */
1576 ht_slot *aIndex; /* Sorted index for this segment */
1577
danbdf1e242010-06-25 15:16:25 +00001578 aPgno++;
drh519426a2010-07-09 03:19:07 +00001579 if( (i+1)==nSegment ){
1580 nEntry = (int)(iLast - iZero);
1581 }else{
shaneh55897962010-07-09 12:57:53 +00001582 nEntry = (int)((u32*)aHash - (u32*)aPgno);
drh519426a2010-07-09 03:19:07 +00001583 }
dan52d6fc02010-06-25 16:34:32 +00001584 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
danbdf1e242010-06-25 15:16:25 +00001585 iZero++;
1586
danbdf1e242010-06-25 15:16:25 +00001587 for(j=0; j<nEntry; j++){
shaneh5eba1f62010-07-02 17:05:03 +00001588 aIndex[j] = (ht_slot)j;
danbdf1e242010-06-25 15:16:25 +00001589 }
1590 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1591 p->aSegment[i].iZero = iZero;
1592 p->aSegment[i].nEntry = nEntry;
1593 p->aSegment[i].aIndex = aIndex;
1594 p->aSegment[i].aPgno = (u32 *)aPgno;
dan13a3cb82010-06-11 19:04:21 +00001595 }
dan7c246102010-04-12 19:00:29 +00001596 }
drhcbd55b02014-11-04 14:22:27 +00001597 sqlite3_free(aTmp);
dan7c246102010-04-12 19:00:29 +00001598
danbdf1e242010-06-25 15:16:25 +00001599 if( rc!=SQLITE_OK ){
1600 walIteratorFree(p);
1601 }
dan8f6097c2010-05-06 07:43:58 +00001602 *pp = p;
danbdf1e242010-06-25 15:16:25 +00001603 return rc;
dan7c246102010-04-12 19:00:29 +00001604}
1605
dan7c246102010-04-12 19:00:29 +00001606/*
dana58f26f2010-11-16 18:56:51 +00001607** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1608** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1609** busy-handler function. Invoke it and retry the lock until either the
1610** lock is successfully obtained or the busy-handler returns 0.
1611*/
1612static int walBusyLock(
1613 Wal *pWal, /* WAL connection */
1614 int (*xBusy)(void*), /* Function to call when busy */
1615 void *pBusyArg, /* Context argument for xBusyHandler */
1616 int lockIdx, /* Offset of first byte to lock */
1617 int n /* Number of bytes to lock */
1618){
1619 int rc;
1620 do {
drhab372772015-12-02 16:10:16 +00001621 rc = walLockExclusive(pWal, lockIdx, n);
dana58f26f2010-11-16 18:56:51 +00001622 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1623 return rc;
1624}
1625
1626/*
danf2b8dd52010-11-18 19:28:01 +00001627** The cache of the wal-index header must be valid to call this function.
1628** Return the page-size in bytes used by the database.
1629*/
1630static int walPagesize(Wal *pWal){
1631 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1632}
1633
1634/*
danf26a1542014-12-02 19:04:54 +00001635** The following is guaranteed when this function is called:
1636**
1637** a) the WRITER lock is held,
1638** b) the entire log file has been checkpointed, and
1639** c) any existing readers are reading exclusively from the database
1640** file - there are no readers that may attempt to read a frame from
1641** the log file.
1642**
1643** This function updates the shared-memory structures so that the next
1644** client to write to the database (which may be this one) does so by
1645** writing frames into the start of the log file.
dan0fe8c1b2014-12-02 19:35:09 +00001646**
1647** The value of parameter salt1 is used as the aSalt[1] value in the
1648** new wal-index header. It should be passed a pseudo-random value (i.e.
1649** one obtained from sqlite3_randomness()).
danf26a1542014-12-02 19:04:54 +00001650*/
dan0fe8c1b2014-12-02 19:35:09 +00001651static void walRestartHdr(Wal *pWal, u32 salt1){
danf26a1542014-12-02 19:04:54 +00001652 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1653 int i; /* Loop counter */
1654 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
1655 pWal->nCkpt++;
1656 pWal->hdr.mxFrame = 0;
1657 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
dan0fe8c1b2014-12-02 19:35:09 +00001658 memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
danf26a1542014-12-02 19:04:54 +00001659 walIndexWriteHdr(pWal);
1660 pInfo->nBackfill = 0;
1661 pInfo->aReadMark[1] = 0;
1662 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1663 assert( pInfo->aReadMark[0]==0 );
1664}
1665
1666/*
drh73b64e42010-05-30 19:55:15 +00001667** Copy as much content as we can from the WAL back into the database file
1668** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1669**
1670** The amount of information copies from WAL to database might be limited
1671** by active readers. This routine will never overwrite a database page
1672** that a concurrent reader might be using.
1673**
1674** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1675** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1676** checkpoints are always run by a background thread or background
1677** process, foreground threads will never block on a lengthy fsync call.
1678**
1679** Fsync is called on the WAL before writing content out of the WAL and
1680** into the database. This ensures that if the new content is persistent
1681** in the WAL and can be recovered following a power-loss or hard reset.
1682**
1683** Fsync is also called on the database file if (and only if) the entire
1684** WAL content is copied into the database file. This second fsync makes
1685** it safe to delete the WAL since the new content will persist in the
1686** database file.
1687**
1688** This routine uses and updates the nBackfill field of the wal-index header.
peter.d.reid60ec9142014-09-06 16:39:46 +00001689** This is the only routine that will increase the value of nBackfill.
drh73b64e42010-05-30 19:55:15 +00001690** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1691** its value.)
1692**
1693** The caller must be holding sufficient locks to ensure that no other
1694** checkpoint is running (in any other thread or process) at the same
1695** time.
dan7c246102010-04-12 19:00:29 +00001696*/
drh7ed91f22010-04-29 22:34:07 +00001697static int walCheckpoint(
1698 Wal *pWal, /* Wal connection */
dancdc1f042010-11-18 12:11:05 +00001699 int eMode, /* One of PASSIVE, FULL or RESTART */
drhdd90d7e2014-12-03 19:25:41 +00001700 int (*xBusy)(void*), /* Function to call when busy */
dana58f26f2010-11-16 18:56:51 +00001701 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00001702 int sync_flags, /* Flags for OsSync() (or 0) */
dan9c5e3682011-02-07 15:12:12 +00001703 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00001704){
dan976b0032015-01-29 19:12:12 +00001705 int rc = SQLITE_OK; /* Return code */
drhb2eced52010-08-12 02:41:12 +00001706 int szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001707 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001708 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001709 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001710 u32 mxSafeFrame; /* Max frame that can be backfilled */
dan502019c2010-07-28 14:26:17 +00001711 u32 mxPage; /* Max database page to write */
drh73b64e42010-05-30 19:55:15 +00001712 int i; /* Loop counter */
drh73b64e42010-05-30 19:55:15 +00001713 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
dan7c246102010-04-12 19:00:29 +00001714
danf2b8dd52010-11-18 19:28:01 +00001715 szPage = walPagesize(pWal);
drh9b78f792010-08-14 21:21:24 +00001716 testcase( szPage<=32768 );
1717 testcase( szPage>=65536 );
drh7d208442010-12-16 02:06:29 +00001718 pInfo = walCkptInfo(pWal);
dan976b0032015-01-29 19:12:12 +00001719 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
danf544b4c2010-06-25 11:35:52 +00001720
dan976b0032015-01-29 19:12:12 +00001721 /* Allocate the iterator */
1722 rc = walIteratorInit(pWal, &pIter);
1723 if( rc!=SQLITE_OK ){
1724 return rc;
drh73b64e42010-05-30 19:55:15 +00001725 }
dan976b0032015-01-29 19:12:12 +00001726 assert( pIter );
dan7c246102010-04-12 19:00:29 +00001727
dan976b0032015-01-29 19:12:12 +00001728 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1729 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1730 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
drh73b64e42010-05-30 19:55:15 +00001731
dan976b0032015-01-29 19:12:12 +00001732 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1733 ** safe to write into the database. Frames beyond mxSafeFrame might
1734 ** overwrite database pages that are in use by active readers and thus
1735 ** cannot be backfilled from the WAL.
danf23da962013-03-23 21:00:41 +00001736 */
dan976b0032015-01-29 19:12:12 +00001737 mxSafeFrame = pWal->hdr.mxFrame;
1738 mxPage = pWal->hdr.nPage;
1739 for(i=1; i<WAL_NREADER; i++){
dan1fe0af22015-04-13 17:43:43 +00001740 /* Thread-sanitizer reports that the following is an unsafe read,
1741 ** as some other thread may be in the process of updating the value
1742 ** of the aReadMark[] slot. The assumption here is that if that is
1743 ** happening, the other client may only be increasing the value,
1744 ** not decreasing it. So assuming either that either the "old" or
1745 ** "new" version of the value is read, and not some arbitrary value
1746 ** that would never be written by a real client, things are still
1747 ** safe. */
dan976b0032015-01-29 19:12:12 +00001748 u32 y = pInfo->aReadMark[i];
1749 if( mxSafeFrame>y ){
1750 assert( y<=pWal->hdr.mxFrame );
1751 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1752 if( rc==SQLITE_OK ){
1753 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1754 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1755 }else if( rc==SQLITE_BUSY ){
1756 mxSafeFrame = y;
1757 xBusy = 0;
1758 }else{
1759 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001760 }
1761 }
1762 }
1763
dan976b0032015-01-29 19:12:12 +00001764 if( pInfo->nBackfill<mxSafeFrame
1765 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
1766 ){
1767 i64 nSize; /* Current size of database file */
1768 u32 nBackfill = pInfo->nBackfill;
dana58f26f2010-11-16 18:56:51 +00001769
dan976b0032015-01-29 19:12:12 +00001770 /* Sync the WAL to disk */
1771 if( sync_flags ){
1772 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1773 }
1774
1775 /* If the database may grow as a result of this checkpoint, hint
1776 ** about the eventual size of the db file to the VFS layer.
1777 */
1778 if( rc==SQLITE_OK ){
1779 i64 nReq = ((i64)mxPage * szPage);
1780 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1781 if( rc==SQLITE_OK && nSize<nReq ){
1782 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1783 }
1784 }
1785
1786
1787 /* Iterate through the contents of the WAL, copying data to the db file */
1788 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1789 i64 iOffset;
1790 assert( walFramePgno(pWal, iFrame)==iDbpage );
1791 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1792 continue;
1793 }
1794 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1795 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1796 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1797 if( rc!=SQLITE_OK ) break;
1798 iOffset = (iDbpage-1)*(i64)szPage;
1799 testcase( IS_BIG_INT(iOffset) );
1800 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1801 if( rc!=SQLITE_OK ) break;
1802 }
1803
1804 /* If work was actually accomplished... */
1805 if( rc==SQLITE_OK ){
1806 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1807 i64 szDb = pWal->hdr.nPage*(i64)szPage;
1808 testcase( IS_BIG_INT(szDb) );
1809 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1810 if( rc==SQLITE_OK && sync_flags ){
1811 rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1812 }
1813 }
1814 if( rc==SQLITE_OK ){
1815 pInfo->nBackfill = mxSafeFrame;
1816 }
1817 }
1818
1819 /* Release the reader lock held while backfilling */
1820 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1821 }
1822
1823 if( rc==SQLITE_BUSY ){
1824 /* Reset the return code so as not to report a checkpoint failure
1825 ** just because there are active readers. */
1826 rc = SQLITE_OK;
1827 }
dan7c246102010-04-12 19:00:29 +00001828 }
1829
danf26a1542014-12-02 19:04:54 +00001830 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
1831 ** entire wal file has been copied into the database file, then block
1832 ** until all readers have finished using the wal file. This ensures that
1833 ** the next process to write to the database restarts the wal file.
danf2b8dd52010-11-18 19:28:01 +00001834 */
1835 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dancdc1f042010-11-18 12:11:05 +00001836 assert( pWal->writeLock );
danf2b8dd52010-11-18 19:28:01 +00001837 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1838 rc = SQLITE_BUSY;
danf26a1542014-12-02 19:04:54 +00001839 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
dan0fe8c1b2014-12-02 19:35:09 +00001840 u32 salt1;
1841 sqlite3_randomness(4, &salt1);
dan976b0032015-01-29 19:12:12 +00001842 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
danf2b8dd52010-11-18 19:28:01 +00001843 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1844 if( rc==SQLITE_OK ){
danf26a1542014-12-02 19:04:54 +00001845 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
drha25165f2014-12-04 04:50:59 +00001846 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
1847 ** SQLITE_CHECKPOINT_RESTART with the addition that it also
1848 ** truncates the log file to zero bytes just prior to a
1849 ** successful return.
danf26a1542014-12-02 19:04:54 +00001850 **
1851 ** In theory, it might be safe to do this without updating the
1852 ** wal-index header in shared memory, as all subsequent reader or
1853 ** writer clients should see that the entire log file has been
1854 ** checkpointed and behave accordingly. This seems unsafe though,
1855 ** as it would leave the system in a state where the contents of
1856 ** the wal-index header do not match the contents of the
1857 ** file-system. To avoid this, update the wal-index header to
1858 ** indicate that the log file contains zero valid frames. */
dan0fe8c1b2014-12-02 19:35:09 +00001859 walRestartHdr(pWal, salt1);
danf26a1542014-12-02 19:04:54 +00001860 rc = sqlite3OsTruncate(pWal->pWalFd, 0);
1861 }
danf2b8dd52010-11-18 19:28:01 +00001862 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1863 }
dancdc1f042010-11-18 12:11:05 +00001864 }
1865 }
1866
dan83f42d12010-06-04 10:37:05 +00001867 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00001868 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00001869 return rc;
1870}
1871
1872/*
danf60b7f32011-12-16 13:24:27 +00001873** If the WAL file is currently larger than nMax bytes in size, truncate
1874** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
drh8dd4afa2011-12-08 19:50:32 +00001875*/
danf60b7f32011-12-16 13:24:27 +00001876static void walLimitSize(Wal *pWal, i64 nMax){
1877 i64 sz;
1878 int rx;
1879 sqlite3BeginBenignMalloc();
1880 rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1881 if( rx==SQLITE_OK && (sz > nMax ) ){
1882 rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1883 }
1884 sqlite3EndBenignMalloc();
1885 if( rx ){
1886 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
drh8dd4afa2011-12-08 19:50:32 +00001887 }
1888}
1889
1890/*
dan7c246102010-04-12 19:00:29 +00001891** Close a connection to a log file.
1892*/
drhc438efd2010-04-26 00:19:45 +00001893int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00001894 Wal *pWal, /* Wal to close */
danc5118782010-04-17 17:34:41 +00001895 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001896 int nBuf,
1897 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00001898){
1899 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00001900 if( pWal ){
dan30c86292010-04-30 16:24:46 +00001901 int isDelete = 0; /* True to unlink wal and wal-index files */
1902
1903 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1904 ** ordinary, rollback-mode locking methods, this guarantees that the
1905 ** connection associated with this log file is the only connection to
1906 ** the database. In this case checkpoint the database and unlink both
1907 ** the wal and wal-index files.
1908 **
1909 ** The EXCLUSIVE lock is not released before returning.
1910 */
drhd9e5c4f2010-05-12 18:01:39 +00001911 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
dan30c86292010-04-30 16:24:46 +00001912 if( rc==SQLITE_OK ){
dan8c408002010-11-01 17:38:24 +00001913 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1914 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1915 }
dancdc1f042010-11-18 12:11:05 +00001916 rc = sqlite3WalCheckpoint(
1917 pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1918 );
drheed42502011-12-16 15:38:52 +00001919 if( rc==SQLITE_OK ){
1920 int bPersist = -1;
drhc02372c2012-01-10 17:59:59 +00001921 sqlite3OsFileControlHint(
dan6f2f19a2012-01-10 16:56:39 +00001922 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
1923 );
drheed42502011-12-16 15:38:52 +00001924 if( bPersist!=1 ){
1925 /* Try to delete the WAL file if the checkpoint completed and
1926 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
1927 ** mode (!bPersist) */
1928 isDelete = 1;
1929 }else if( pWal->mxWalSize>=0 ){
1930 /* Try to truncate the WAL file to zero bytes if the checkpoint
1931 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
1932 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
1933 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
1934 ** to zero bytes as truncating to the journal_size_limit might
1935 ** leave a corrupt WAL file on disk. */
1936 walLimitSize(pWal, 0);
1937 }
dan30c86292010-04-30 16:24:46 +00001938 }
dan30c86292010-04-30 16:24:46 +00001939 }
1940
dan1018e902010-05-05 15:33:05 +00001941 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00001942 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00001943 if( isDelete ){
drh92c45cf2012-01-10 00:24:59 +00001944 sqlite3BeginBenignMalloc();
drhd9e5c4f2010-05-12 18:01:39 +00001945 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
drh92c45cf2012-01-10 00:24:59 +00001946 sqlite3EndBenignMalloc();
dan30c86292010-04-30 16:24:46 +00001947 }
drhc74c3332010-05-31 12:15:19 +00001948 WALTRACE(("WAL%p: closed\n", pWal));
shaneh8a300f82010-07-02 18:15:31 +00001949 sqlite3_free((void *)pWal->apWiData);
drh7ed91f22010-04-29 22:34:07 +00001950 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00001951 }
1952 return rc;
1953}
1954
1955/*
drha2a42012010-05-18 18:01:08 +00001956** Try to read the wal-index header. Return 0 on success and 1 if
1957** there is a problem.
1958**
1959** The wal-index is in shared memory. Another thread or process might
1960** be writing the header at the same time this procedure is trying to
1961** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00001962** by verifying that both copies of the header are the same and also by
1963** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00001964**
1965** If and only if the read is consistent and the header is different from
1966** pWal->hdr, then pWal->hdr is updated to the content of the new header
1967** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00001968**
dan84670502010-05-07 05:46:23 +00001969** If the checksum cannot be verified return non-zero. If the header
1970** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00001971*/
drh7750ab42010-06-26 22:16:02 +00001972static int walIndexTryHdr(Wal *pWal, int *pChanged){
dan4280eb32010-06-12 12:02:35 +00001973 u32 aCksum[2]; /* Checksum on the header content */
1974 WalIndexHdr h1, h2; /* Two copies of the header content */
1975 WalIndexHdr volatile *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00001976
dan4280eb32010-06-12 12:02:35 +00001977 /* The first page of the wal-index must be mapped at this point. */
1978 assert( pWal->nWiData>0 && pWal->apWiData[0] );
drh79e6c782010-04-30 02:13:26 +00001979
drh6cef0cf2010-08-16 16:31:43 +00001980 /* Read the header. This might happen concurrently with a write to the
drh73b64e42010-05-30 19:55:15 +00001981 ** same area of shared memory on a different CPU in a SMP,
1982 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00001983 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00001984 **
1985 ** There are two copies of the header at the beginning of the wal-index.
1986 ** When reading, read [0] first then [1]. Writes are in the reverse order.
1987 ** Memory barriers are used to prevent the compiler or the hardware from
1988 ** reordering the reads and writes.
danb9bf16b2010-04-14 11:23:30 +00001989 */
dan4280eb32010-06-12 12:02:35 +00001990 aHdr = walIndexHdr(pWal);
1991 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
dan8c408002010-11-01 17:38:24 +00001992 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +00001993 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00001994
drhf0b20f82010-05-21 13:16:18 +00001995 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
1996 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00001997 }
drh4b82c382010-05-31 18:24:19 +00001998 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00001999 return 1; /* Malformed header - probably all zeros */
2000 }
danb8fd6c22010-05-24 10:39:36 +00002001 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00002002 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2003 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00002004 }
2005
drhf0b20f82010-05-21 13:16:18 +00002006 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00002007 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00002008 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh9b78f792010-08-14 21:21:24 +00002009 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2010 testcase( pWal->szPage<=32768 );
2011 testcase( pWal->szPage>=65536 );
danb9bf16b2010-04-14 11:23:30 +00002012 }
dan84670502010-05-07 05:46:23 +00002013
2014 /* The header was successfully read. Return zero. */
2015 return 0;
danb9bf16b2010-04-14 11:23:30 +00002016}
2017
2018/*
drha2a42012010-05-18 18:01:08 +00002019** Read the wal-index header from the wal-index and into pWal->hdr.
drha927e942010-06-24 02:46:48 +00002020** If the wal-header appears to be corrupt, try to reconstruct the
2021** wal-index from the WAL before returning.
drha2a42012010-05-18 18:01:08 +00002022**
2023** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
peter.d.reid60ec9142014-09-06 16:39:46 +00002024** changed by this operation. If pWal->hdr is unchanged, set *pChanged
drha2a42012010-05-18 18:01:08 +00002025** to 0.
2026**
drh7ed91f22010-04-29 22:34:07 +00002027** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00002028** Otherwise an SQLite error code.
2029*/
drh7ed91f22010-04-29 22:34:07 +00002030static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00002031 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00002032 int badHdr; /* True if a header read failed */
drha927e942010-06-24 02:46:48 +00002033 volatile u32 *page0; /* Chunk of wal-index containing header */
danb9bf16b2010-04-14 11:23:30 +00002034
dan4280eb32010-06-12 12:02:35 +00002035 /* Ensure that page 0 of the wal-index (the page that contains the
2036 ** wal-index header) is mapped. Return early if an error occurs here.
2037 */
dana8614692010-05-06 14:42:34 +00002038 assert( pChanged );
dan4280eb32010-06-12 12:02:35 +00002039 rc = walIndexPage(pWal, 0, &page0);
danc7991bd2010-05-05 19:04:59 +00002040 if( rc!=SQLITE_OK ){
2041 return rc;
dan4280eb32010-06-12 12:02:35 +00002042 };
2043 assert( page0 || pWal->writeLock==0 );
drh7ed91f22010-04-29 22:34:07 +00002044
dan4280eb32010-06-12 12:02:35 +00002045 /* If the first page of the wal-index has been mapped, try to read the
2046 ** wal-index header immediately, without holding any lock. This usually
2047 ** works, but may fail if the wal-index header is corrupt or currently
drha927e942010-06-24 02:46:48 +00002048 ** being modified by another thread or process.
danb9bf16b2010-04-14 11:23:30 +00002049 */
dan4280eb32010-06-12 12:02:35 +00002050 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
drhbab7b912010-05-26 17:31:58 +00002051
drh73b64e42010-05-30 19:55:15 +00002052 /* If the first attempt failed, it might have been due to a race
drh66dfec8b2011-06-01 20:01:49 +00002053 ** with a writer. So get a WRITE lock and try again.
drh73b64e42010-05-30 19:55:15 +00002054 */
dand54ff602010-05-31 11:16:30 +00002055 assert( badHdr==0 || pWal->writeLock==0 );
dan4edc6bf2011-05-10 17:31:29 +00002056 if( badHdr ){
drh66dfec8b2011-06-01 20:01:49 +00002057 if( pWal->readOnly & WAL_SHM_RDONLY ){
dan4edc6bf2011-05-10 17:31:29 +00002058 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2059 walUnlockShared(pWal, WAL_WRITE_LOCK);
2060 rc = SQLITE_READONLY_RECOVERY;
drhbab7b912010-05-26 17:31:58 +00002061 }
drhab372772015-12-02 16:10:16 +00002062 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
dan4edc6bf2011-05-10 17:31:29 +00002063 pWal->writeLock = 1;
2064 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2065 badHdr = walIndexTryHdr(pWal, pChanged);
2066 if( badHdr ){
2067 /* If the wal-index header is still malformed even while holding
2068 ** a WRITE lock, it can only mean that the header is corrupted and
2069 ** needs to be reconstructed. So run recovery to do exactly that.
2070 */
2071 rc = walIndexRecover(pWal);
2072 *pChanged = 1;
2073 }
2074 }
2075 pWal->writeLock = 0;
2076 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhbab7b912010-05-26 17:31:58 +00002077 }
danb9bf16b2010-04-14 11:23:30 +00002078 }
2079
drha927e942010-06-24 02:46:48 +00002080 /* If the header is read successfully, check the version number to make
2081 ** sure the wal-index was not constructed with some future format that
2082 ** this version of SQLite cannot understand.
2083 */
2084 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2085 rc = SQLITE_CANTOPEN_BKPT;
2086 }
2087
danb9bf16b2010-04-14 11:23:30 +00002088 return rc;
2089}
2090
2091/*
drh73b64e42010-05-30 19:55:15 +00002092** This is the value that walTryBeginRead returns when it needs to
2093** be retried.
dan7c246102010-04-12 19:00:29 +00002094*/
drh73b64e42010-05-30 19:55:15 +00002095#define WAL_RETRY (-1)
dan64d039e2010-04-13 19:27:31 +00002096
drh73b64e42010-05-30 19:55:15 +00002097/*
2098** Attempt to start a read transaction. This might fail due to a race or
2099** other transient condition. When that happens, it returns WAL_RETRY to
2100** indicate to the caller that it is safe to retry immediately.
2101**
drha927e942010-06-24 02:46:48 +00002102** On success return SQLITE_OK. On a permanent failure (such an
drh73b64e42010-05-30 19:55:15 +00002103** I/O error or an SQLITE_BUSY because another process is running
2104** recovery) return a positive error code.
2105**
drha927e942010-06-24 02:46:48 +00002106** The useWal parameter is true to force the use of the WAL and disable
2107** the case where the WAL is bypassed because it has been completely
2108** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
2109** to make a copy of the wal-index header into pWal->hdr. If the
2110** wal-index header has changed, *pChanged is set to 1 (as an indication
2111** to the caller that the local paget cache is obsolete and needs to be
2112** flushed.) When useWal==1, the wal-index header is assumed to already
2113** be loaded and the pChanged parameter is unused.
2114**
2115** The caller must set the cnt parameter to the number of prior calls to
2116** this routine during the current read attempt that returned WAL_RETRY.
2117** This routine will start taking more aggressive measures to clear the
2118** race conditions after multiple WAL_RETRY returns, and after an excessive
2119** number of errors will ultimately return SQLITE_PROTOCOL. The
2120** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2121** and is not honoring the locking protocol. There is a vanishingly small
2122** chance that SQLITE_PROTOCOL could be returned because of a run of really
2123** bad luck when there is lots of contention for the wal-index, but that
2124** possibility is so small that it can be safely neglected, we believe.
2125**
drh73b64e42010-05-30 19:55:15 +00002126** On success, this routine obtains a read lock on
2127** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
2128** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
2129** that means the Wal does not hold any read lock. The reader must not
2130** access any database page that is modified by a WAL frame up to and
2131** including frame number aReadMark[pWal->readLock]. The reader will
2132** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2133** Or if pWal->readLock==0, then the reader will ignore the WAL
2134** completely and get all content directly from the database file.
drha927e942010-06-24 02:46:48 +00002135** If the useWal parameter is 1 then the WAL will never be ignored and
2136** this routine will always set pWal->readLock>0 on success.
drh73b64e42010-05-30 19:55:15 +00002137** When the read transaction is completed, the caller must release the
2138** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2139**
2140** This routine uses the nBackfill and aReadMark[] fields of the header
2141** to select a particular WAL_READ_LOCK() that strives to let the
2142** checkpoint process do as much work as possible. This routine might
2143** update values of the aReadMark[] array in the header, but if it does
2144** so it takes care to hold an exclusive lock on the corresponding
2145** WAL_READ_LOCK() while changing values.
2146*/
drhaab4c022010-06-02 14:45:51 +00002147static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00002148 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
2149 u32 mxReadMark; /* Largest aReadMark[] value */
2150 int mxI; /* Index of largest aReadMark[] value */
2151 int i; /* Loop counter */
dan13a3cb82010-06-11 19:04:21 +00002152 int rc = SQLITE_OK; /* Return code */
danfc1acf32015-12-05 20:51:54 +00002153 int mxFrame; /* Wal frame to lock to */
dan64d039e2010-04-13 19:27:31 +00002154
drh61e4ace2010-05-31 20:28:37 +00002155 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00002156
drh658d76c2011-02-19 15:22:14 +00002157 /* Take steps to avoid spinning forever if there is a protocol error.
2158 **
2159 ** Circumstances that cause a RETRY should only last for the briefest
2160 ** instances of time. No I/O or other system calls are done while the
2161 ** locks are held, so the locks should not be held for very long. But
2162 ** if we are unlucky, another process that is holding a lock might get
2163 ** paged out or take a page-fault that is time-consuming to resolve,
2164 ** during the few nanoseconds that it is holding the lock. In that case,
2165 ** it might take longer than normal for the lock to free.
2166 **
2167 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2168 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2169 ** is more of a scheduler yield than an actual delay. But on the 10th
2170 ** an subsequent retries, the delays start becoming longer and longer,
drh5b6e3b92014-06-12 17:10:18 +00002171 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2172 ** The total delay time before giving up is less than 10 seconds.
drh658d76c2011-02-19 15:22:14 +00002173 */
drhaab4c022010-06-02 14:45:51 +00002174 if( cnt>5 ){
drh658d76c2011-02-19 15:22:14 +00002175 int nDelay = 1; /* Pause time in microseconds */
drh03c69672011-02-19 23:18:12 +00002176 if( cnt>100 ){
2177 VVA_ONLY( pWal->lockError = 1; )
2178 return SQLITE_PROTOCOL;
2179 }
drh5b6e3b92014-06-12 17:10:18 +00002180 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
drh658d76c2011-02-19 15:22:14 +00002181 sqlite3OsSleep(pWal->pVfs, nDelay);
drhaab4c022010-06-02 14:45:51 +00002182 }
2183
drh73b64e42010-05-30 19:55:15 +00002184 if( !useWal ){
drh7ed91f22010-04-29 22:34:07 +00002185 rc = walIndexReadHdr(pWal, pChanged);
drh73b64e42010-05-30 19:55:15 +00002186 if( rc==SQLITE_BUSY ){
2187 /* If there is not a recovery running in another thread or process
2188 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2189 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2190 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2191 ** would be technically correct. But the race is benign since with
2192 ** WAL_RETRY this routine will be called again and will probably be
2193 ** right on the second iteration.
2194 */
dan7d4514a2010-07-15 17:54:14 +00002195 if( pWal->apWiData[0]==0 ){
2196 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2197 ** We assume this is a transient condition, so return WAL_RETRY. The
2198 ** xShmMap() implementation used by the default unix and win32 VFS
2199 ** modules may return SQLITE_BUSY due to a race condition in the
2200 ** code that determines whether or not the shared-memory region
2201 ** must be zeroed before the requested page is returned.
2202 */
2203 rc = WAL_RETRY;
2204 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
drh73b64e42010-05-30 19:55:15 +00002205 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2206 rc = WAL_RETRY;
2207 }else if( rc==SQLITE_BUSY ){
2208 rc = SQLITE_BUSY_RECOVERY;
2209 }
2210 }
drha927e942010-06-24 02:46:48 +00002211 if( rc!=SQLITE_OK ){
2212 return rc;
2213 }
drh73b64e42010-05-30 19:55:15 +00002214 }
2215
dan13a3cb82010-06-11 19:04:21 +00002216 pInfo = walCkptInfo(pWal);
danfc1acf32015-12-05 20:51:54 +00002217 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame
2218#ifdef SQLITE_ENABLE_SNAPSHOT
2219 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0
2220 || 0==memcmp(&pWal->hdr, pWal->pSnapshot, sizeof(WalIndexHdr)))
2221#endif
2222 ){
drh73b64e42010-05-30 19:55:15 +00002223 /* The WAL has been completely backfilled (or it is empty).
2224 ** and can be safely ignored.
2225 */
2226 rc = walLockShared(pWal, WAL_READ_LOCK(0));
dan8c408002010-11-01 17:38:24 +00002227 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002228 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00002229 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00002230 /* It is not safe to allow the reader to continue here if frames
2231 ** may have been appended to the log before READ_LOCK(0) was obtained.
2232 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2233 ** which implies that the database file contains a trustworthy
peter.d.reid60ec9142014-09-06 16:39:46 +00002234 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
dan493cc592010-06-05 18:12:23 +00002235 ** happening, this is usually correct.
2236 **
2237 ** However, if frames have been appended to the log (or if the log
2238 ** is wrapped and written for that matter) before the READ_LOCK(0)
2239 ** is obtained, that is not necessarily true. A checkpointer may
2240 ** have started to backfill the appended frames but crashed before
2241 ** it finished. Leaving a corrupt image in the database file.
2242 */
drh73b64e42010-05-30 19:55:15 +00002243 walUnlockShared(pWal, WAL_READ_LOCK(0));
2244 return WAL_RETRY;
2245 }
2246 pWal->readLock = 0;
2247 return SQLITE_OK;
2248 }else if( rc!=SQLITE_BUSY ){
2249 return rc;
dan64d039e2010-04-13 19:27:31 +00002250 }
dan7c246102010-04-12 19:00:29 +00002251 }
danba515902010-04-30 09:32:06 +00002252
drh73b64e42010-05-30 19:55:15 +00002253 /* If we get this far, it means that the reader will want to use
2254 ** the WAL to get at content from recent commits. The job now is
2255 ** to select one of the aReadMark[] entries that is closest to
2256 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2257 */
2258 mxReadMark = 0;
2259 mxI = 0;
danfc1acf32015-12-05 20:51:54 +00002260 mxFrame = pWal->hdr.mxFrame;
2261#ifdef SQLITE_ENABLE_SNAPSHOT
2262 if( pWal->pSnapshot ) mxFrame = pWal->pSnapshot->mxFrame;
2263#endif
drh73b64e42010-05-30 19:55:15 +00002264 for(i=1; i<WAL_NREADER; i++){
2265 u32 thisMark = pInfo->aReadMark[i];
danfc1acf32015-12-05 20:51:54 +00002266 if( mxReadMark<=thisMark && thisMark<=mxFrame ){
drhdb7f6472010-06-09 14:45:12 +00002267 assert( thisMark!=READMARK_NOT_USED );
drh73b64e42010-05-30 19:55:15 +00002268 mxReadMark = thisMark;
2269 mxI = i;
2270 }
2271 }
drh658d76c2011-02-19 15:22:14 +00002272 /* There was once an "if" here. The extra "{" is to preserve indentation. */
2273 {
drh66dfec8b2011-06-01 20:01:49 +00002274 if( (pWal->readOnly & WAL_SHM_RDONLY)==0
danfc1acf32015-12-05 20:51:54 +00002275 && (mxReadMark<mxFrame || mxI==0)
drh66dfec8b2011-06-01 20:01:49 +00002276 ){
dand54ff602010-05-31 11:16:30 +00002277 for(i=1; i<WAL_NREADER; i++){
drhab372772015-12-02 16:10:16 +00002278 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
drh73b64e42010-05-30 19:55:15 +00002279 if( rc==SQLITE_OK ){
danfc1acf32015-12-05 20:51:54 +00002280 mxReadMark = pInfo->aReadMark[i] = mxFrame;
drh73b64e42010-05-30 19:55:15 +00002281 mxI = i;
2282 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2283 break;
drh38933f22010-06-02 15:43:18 +00002284 }else if( rc!=SQLITE_BUSY ){
2285 return rc;
drh73b64e42010-05-30 19:55:15 +00002286 }
2287 }
2288 }
drh658d76c2011-02-19 15:22:14 +00002289 if( mxI==0 ){
drh5bf39342011-06-02 17:24:49 +00002290 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
dan4edc6bf2011-05-10 17:31:29 +00002291 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
drh658d76c2011-02-19 15:22:14 +00002292 }
drh73b64e42010-05-30 19:55:15 +00002293
2294 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2295 if( rc ){
2296 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2297 }
daneb8cb3a2010-06-05 18:34:26 +00002298 /* Now that the read-lock has been obtained, check that neither the
2299 ** value in the aReadMark[] array or the contents of the wal-index
2300 ** header have changed.
2301 **
2302 ** It is necessary to check that the wal-index header did not change
2303 ** between the time it was read and when the shared-lock was obtained
2304 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2305 ** that the log file may have been wrapped by a writer, or that frames
2306 ** that occur later in the log than pWal->hdr.mxFrame may have been
2307 ** copied into the database by a checkpointer. If either of these things
2308 ** happened, then reading the database with the current value of
2309 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2310 ** instead.
2311 **
danb8c7cfb2015-08-13 20:23:46 +00002312 ** Before checking that the live wal-index header has not changed
2313 ** since it was read, set Wal.minFrame to the first frame in the wal
2314 ** file that has not yet been checkpointed. This client will not need
2315 ** to read any frames earlier than minFrame from the wal file - they
2316 ** can be safely read directly from the database file.
2317 **
2318 ** Because a ShmBarrier() call is made between taking the copy of
2319 ** nBackfill and checking that the wal-header in shared-memory still
2320 ** matches the one cached in pWal->hdr, it is guaranteed that the
2321 ** checkpointer that set nBackfill was not working with a wal-index
2322 ** header newer than that cached in pWal->hdr. If it were, that could
2323 ** cause a problem. The checkpointer could omit to checkpoint
2324 ** a version of page X that lies before pWal->minFrame (call that version
2325 ** A) on the basis that there is a newer version (version B) of the same
2326 ** page later in the wal file. But if version B happens to like past
2327 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2328 ** that it can read version A from the database file. However, since
2329 ** we can guarantee that the checkpointer that set nBackfill could not
2330 ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
daneb8cb3a2010-06-05 18:34:26 +00002331 */
danb8c7cfb2015-08-13 20:23:46 +00002332 pWal->minFrame = pInfo->nBackfill+1;
dan8c408002010-11-01 17:38:24 +00002333 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002334 if( pInfo->aReadMark[mxI]!=mxReadMark
dan4280eb32010-06-12 12:02:35 +00002335 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
drh73b64e42010-05-30 19:55:15 +00002336 ){
2337 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2338 return WAL_RETRY;
2339 }else{
drhdb7f6472010-06-09 14:45:12 +00002340 assert( mxReadMark<=pWal->hdr.mxFrame );
shaneh5eba1f62010-07-02 17:05:03 +00002341 pWal->readLock = (i16)mxI;
drh73b64e42010-05-30 19:55:15 +00002342 }
2343 }
2344 return rc;
2345}
2346
2347/*
2348** Begin a read transaction on the database.
2349**
2350** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2351** it takes a snapshot of the state of the WAL and wal-index for the current
2352** instant in time. The current thread will continue to use this snapshot.
2353** Other threads might append new content to the WAL and wal-index but
2354** that extra content is ignored by the current thread.
2355**
2356** If the database contents have changes since the previous read
2357** transaction, then *pChanged is set to 1 before returning. The
2358** Pager layer will use this to know that is cache is stale and
2359** needs to be flushed.
2360*/
drh66dfec8b2011-06-01 20:01:49 +00002361int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
drh73b64e42010-05-30 19:55:15 +00002362 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00002363 int cnt = 0; /* Number of TryBeginRead attempts */
drh73b64e42010-05-30 19:55:15 +00002364
danfc1acf32015-12-05 20:51:54 +00002365#ifdef SQLITE_ENABLE_SNAPSHOT
2366 int bChanged = 0;
2367 WalIndexHdr *pSnapshot = pWal->pSnapshot;
2368 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))){
2369 bChanged = 1;
2370 }
2371#endif
2372
drh73b64e42010-05-30 19:55:15 +00002373 do{
drhaab4c022010-06-02 14:45:51 +00002374 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00002375 }while( rc==WAL_RETRY );
drhab1cc742011-02-19 16:51:45 +00002376 testcase( (rc&0xff)==SQLITE_BUSY );
2377 testcase( (rc&0xff)==SQLITE_IOERR );
2378 testcase( rc==SQLITE_PROTOCOL );
2379 testcase( rc==SQLITE_OK );
danfc1acf32015-12-05 20:51:54 +00002380
2381#ifdef SQLITE_ENABLE_SNAPSHOT
2382 if( rc==SQLITE_OK ){
2383 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr)) ){
2384 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2385 rc = walLockShared(pWal, WAL_READ_LOCK(0));
2386 if( rc==SQLITE_OK ){
2387 if( pInfo->nBackfill<=pSnapshot->mxFrame
2388 && pSnapshot->aSalt[0]==pWal->hdr.aSalt[0]
2389 && pSnapshot->aSalt[1]==pWal->hdr.aSalt[1]
2390 ){
2391 assert( pWal->readLock>0 );
2392 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2393 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2394 *pChanged = bChanged;
2395 }else{
2396 rc = SQLITE_BUSY_SNAPSHOT;
2397 }
2398 walUnlockShared(pWal, WAL_READ_LOCK(0));
2399 }
2400 if( rc!=SQLITE_OK ){
2401 sqlite3WalEndReadTransaction(pWal);
2402 }
2403 }
2404 }
2405#endif
dan7c246102010-04-12 19:00:29 +00002406 return rc;
2407}
2408
2409/*
drh73b64e42010-05-30 19:55:15 +00002410** Finish with a read transaction. All this does is release the
2411** read-lock.
dan7c246102010-04-12 19:00:29 +00002412*/
drh73b64e42010-05-30 19:55:15 +00002413void sqlite3WalEndReadTransaction(Wal *pWal){
dan73d66fd2010-08-07 16:17:48 +00002414 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00002415 if( pWal->readLock>=0 ){
2416 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2417 pWal->readLock = -1;
2418 }
dan7c246102010-04-12 19:00:29 +00002419}
2420
dan5e0ce872010-04-28 17:48:44 +00002421/*
dan99bd1092013-03-22 18:20:14 +00002422** Search the wal file for page pgno. If found, set *piRead to the frame that
2423** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2424** to zero.
drh73b64e42010-05-30 19:55:15 +00002425**
dan99bd1092013-03-22 18:20:14 +00002426** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2427** error does occur, the final value of *piRead is undefined.
dan7c246102010-04-12 19:00:29 +00002428*/
dan99bd1092013-03-22 18:20:14 +00002429int sqlite3WalFindFrame(
danbb23aff2010-05-10 14:46:09 +00002430 Wal *pWal, /* WAL handle */
2431 Pgno pgno, /* Database page number to read data for */
dan99bd1092013-03-22 18:20:14 +00002432 u32 *piRead /* OUT: Frame number (or zero) */
danb6e099a2010-05-04 14:47:39 +00002433){
danbb23aff2010-05-10 14:46:09 +00002434 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00002435 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00002436 int iHash; /* Used to loop through N hash tables */
dan6df003c2015-08-12 19:42:08 +00002437 int iMinHash;
dan7c246102010-04-12 19:00:29 +00002438
drhaab4c022010-06-02 14:45:51 +00002439 /* This routine is only be called from within a read transaction. */
2440 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00002441
danbb23aff2010-05-10 14:46:09 +00002442 /* If the "last page" field of the wal-index header snapshot is 0, then
2443 ** no data will be read from the wal under any circumstances. Return early
drha927e942010-06-24 02:46:48 +00002444 ** in this case as an optimization. Likewise, if pWal->readLock==0,
2445 ** then the WAL is ignored by the reader so return early, as if the
2446 ** WAL were empty.
danbb23aff2010-05-10 14:46:09 +00002447 */
danb8c7cfb2015-08-13 20:23:46 +00002448 if( iLast==0 || pWal->readLock==0 ){
dan99bd1092013-03-22 18:20:14 +00002449 *piRead = 0;
danbb23aff2010-05-10 14:46:09 +00002450 return SQLITE_OK;
2451 }
2452
danbb23aff2010-05-10 14:46:09 +00002453 /* Search the hash table or tables for an entry matching page number
2454 ** pgno. Each iteration of the following for() loop searches one
2455 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2456 **
drha927e942010-06-24 02:46:48 +00002457 ** This code might run concurrently to the code in walIndexAppend()
danbb23aff2010-05-10 14:46:09 +00002458 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00002459 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00002460 ** slot (aHash[iKey]) may have been added before or after the
2461 ** current read transaction was opened. Values added after the
2462 ** read transaction was opened may have been written incorrectly -
2463 ** i.e. these slots may contain garbage data. However, we assume
2464 ** that any slots written before the current read transaction was
2465 ** opened remain unmodified.
2466 **
2467 ** For the reasons above, the if(...) condition featured in the inner
2468 ** loop of the following block is more stringent that would be required
2469 ** if we had exclusive access to the hash-table:
2470 **
2471 ** (aPgno[iFrame]==pgno):
2472 ** This condition filters out normal hash-table collisions.
2473 **
2474 ** (iFrame<=iLast):
2475 ** This condition filters out entries that were added to the hash
2476 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00002477 */
danb8c7cfb2015-08-13 20:23:46 +00002478 iMinHash = walFramePage(pWal->minFrame);
dan6df003c2015-08-12 19:42:08 +00002479 for(iHash=walFramePage(iLast); iHash>=iMinHash && iRead==0; iHash--){
dan067f3162010-06-14 10:30:12 +00002480 volatile ht_slot *aHash; /* Pointer to hash table */
2481 volatile u32 *aPgno; /* Pointer to array of page numbers */
danbb23aff2010-05-10 14:46:09 +00002482 u32 iZero; /* Frame number corresponding to aPgno[0] */
2483 int iKey; /* Hash slot index */
drh519426a2010-07-09 03:19:07 +00002484 int nCollide; /* Number of hash collisions remaining */
2485 int rc; /* Error code */
danbb23aff2010-05-10 14:46:09 +00002486
dan4280eb32010-06-12 12:02:35 +00002487 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2488 if( rc!=SQLITE_OK ){
2489 return rc;
2490 }
drh519426a2010-07-09 03:19:07 +00002491 nCollide = HASHTABLE_NSLOT;
dan6f150142010-05-21 15:31:56 +00002492 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
danbb23aff2010-05-10 14:46:09 +00002493 u32 iFrame = aHash[iKey] + iZero;
danb8c7cfb2015-08-13 20:23:46 +00002494 if( iFrame<=iLast && iFrame>=pWal->minFrame && aPgno[aHash[iKey]]==pgno ){
drh622a53d2014-12-29 11:50:39 +00002495 assert( iFrame>iRead || CORRUPT_DB );
danbb23aff2010-05-10 14:46:09 +00002496 iRead = iFrame;
2497 }
drh519426a2010-07-09 03:19:07 +00002498 if( (nCollide--)==0 ){
2499 return SQLITE_CORRUPT_BKPT;
2500 }
dan7c246102010-04-12 19:00:29 +00002501 }
2502 }
dan7c246102010-04-12 19:00:29 +00002503
danbb23aff2010-05-10 14:46:09 +00002504#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2505 /* If expensive assert() statements are available, do a linear search
2506 ** of the wal-index file content. Make sure the results agree with the
2507 ** result obtained using the hash indexes above. */
2508 {
2509 u32 iRead2 = 0;
2510 u32 iTest;
dan5c472d02015-09-09 19:44:33 +00002511 assert( pWal->minFrame>0 );
2512 for(iTest=iLast; iTest>=pWal->minFrame; iTest--){
dan13a3cb82010-06-11 19:04:21 +00002513 if( walFramePgno(pWal, iTest)==pgno ){
danbb23aff2010-05-10 14:46:09 +00002514 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00002515 break;
2516 }
dan7c246102010-04-12 19:00:29 +00002517 }
danbb23aff2010-05-10 14:46:09 +00002518 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00002519 }
danbb23aff2010-05-10 14:46:09 +00002520#endif
dancd11fb22010-04-26 10:40:52 +00002521
dan99bd1092013-03-22 18:20:14 +00002522 *piRead = iRead;
dan7c246102010-04-12 19:00:29 +00002523 return SQLITE_OK;
2524}
2525
dan99bd1092013-03-22 18:20:14 +00002526/*
2527** Read the contents of frame iRead from the wal file into buffer pOut
2528** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2529** error code otherwise.
2530*/
2531int sqlite3WalReadFrame(
2532 Wal *pWal, /* WAL handle */
2533 u32 iRead, /* Frame to read */
2534 int nOut, /* Size of buffer pOut in bytes */
2535 u8 *pOut /* Buffer to write page data to */
2536){
2537 int sz;
2538 i64 iOffset;
2539 sz = pWal->hdr.szPage;
2540 sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2541 testcase( sz<=32768 );
2542 testcase( sz>=65536 );
2543 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2544 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2545 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2546}
dan7c246102010-04-12 19:00:29 +00002547
2548/*
dan763afe62010-08-03 06:42:39 +00002549** Return the size of the database in pages (or zero, if unknown).
dan7c246102010-04-12 19:00:29 +00002550*/
dan763afe62010-08-03 06:42:39 +00002551Pgno sqlite3WalDbsize(Wal *pWal){
drh7e9e70b2010-08-16 14:17:59 +00002552 if( pWal && ALWAYS(pWal->readLock>=0) ){
dan763afe62010-08-03 06:42:39 +00002553 return pWal->hdr.nPage;
2554 }
2555 return 0;
dan7c246102010-04-12 19:00:29 +00002556}
2557
dan30c86292010-04-30 16:24:46 +00002558
drh73b64e42010-05-30 19:55:15 +00002559/*
2560** This function starts a write transaction on the WAL.
2561**
2562** A read transaction must have already been started by a prior call
2563** to sqlite3WalBeginReadTransaction().
2564**
2565** If another thread or process has written into the database since
2566** the read transaction was started, then it is not possible for this
2567** thread to write as doing so would cause a fork. So this routine
2568** returns SQLITE_BUSY in that case and no write transaction is started.
2569**
2570** There can only be a single writer active at a time.
2571*/
2572int sqlite3WalBeginWriteTransaction(Wal *pWal){
2573 int rc;
drh73b64e42010-05-30 19:55:15 +00002574
2575 /* Cannot start a write transaction without first holding a read
2576 ** transaction. */
2577 assert( pWal->readLock>=0 );
2578
dan1e5de5a2010-07-15 18:20:53 +00002579 if( pWal->readOnly ){
2580 return SQLITE_READONLY;
2581 }
2582
drh73b64e42010-05-30 19:55:15 +00002583 /* Only one writer allowed at a time. Get the write lock. Return
2584 ** SQLITE_BUSY if unable.
2585 */
drhab372772015-12-02 16:10:16 +00002586 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
drh73b64e42010-05-30 19:55:15 +00002587 if( rc ){
2588 return rc;
2589 }
drhc99597c2010-05-31 01:41:15 +00002590 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00002591
2592 /* If another connection has written to the database file since the
2593 ** time the read transaction on this connection was started, then
2594 ** the write is disallowed.
2595 */
dan4280eb32010-06-12 12:02:35 +00002596 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
drh73b64e42010-05-30 19:55:15 +00002597 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00002598 pWal->writeLock = 0;
danf73819a2013-06-27 11:46:27 +00002599 rc = SQLITE_BUSY_SNAPSHOT;
drh73b64e42010-05-30 19:55:15 +00002600 }
2601
drh7ed91f22010-04-29 22:34:07 +00002602 return rc;
dan7c246102010-04-12 19:00:29 +00002603}
2604
dan74d6cd82010-04-24 18:44:05 +00002605/*
drh73b64e42010-05-30 19:55:15 +00002606** End a write transaction. The commit has already been done. This
2607** routine merely releases the lock.
2608*/
2609int sqlite3WalEndWriteTransaction(Wal *pWal){
danda9fe0c2010-07-13 18:44:03 +00002610 if( pWal->writeLock ){
2611 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2612 pWal->writeLock = 0;
danf60b7f32011-12-16 13:24:27 +00002613 pWal->truncateOnCommit = 0;
danda9fe0c2010-07-13 18:44:03 +00002614 }
drh73b64e42010-05-30 19:55:15 +00002615 return SQLITE_OK;
2616}
2617
2618/*
dan74d6cd82010-04-24 18:44:05 +00002619** If any data has been written (but not committed) to the log file, this
2620** function moves the write-pointer back to the start of the transaction.
2621**
2622** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00002623** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00002624** other than SQLITE_OK, it is not invoked again and the error code is
2625** returned to the caller.
2626**
2627** Otherwise, if the callback function does not return an error, this
2628** function returns SQLITE_OK.
2629*/
drh7ed91f22010-04-29 22:34:07 +00002630int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00002631 int rc = SQLITE_OK;
drh7e9e70b2010-08-16 14:17:59 +00002632 if( ALWAYS(pWal->writeLock) ){
drh027a1282010-05-19 01:53:53 +00002633 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00002634 Pgno iFrame;
2635
dan5d656852010-06-14 07:53:26 +00002636 /* Restore the clients cache of the wal-index header to the state it
2637 ** was in before the client began writing to the database.
2638 */
dan067f3162010-06-14 10:30:12 +00002639 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
dan5d656852010-06-14 07:53:26 +00002640
2641 for(iFrame=pWal->hdr.mxFrame+1;
drh664f85d2014-11-19 14:05:41 +00002642 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
dan5d656852010-06-14 07:53:26 +00002643 iFrame++
2644 ){
2645 /* This call cannot fail. Unless the page for which the page number
2646 ** is passed as the second argument is (a) in the cache and
2647 ** (b) has an outstanding reference, then xUndo is either a no-op
2648 ** (if (a) is false) or simply expels the page from the cache (if (b)
2649 ** is false).
2650 **
2651 ** If the upper layer is doing a rollback, it is guaranteed that there
2652 ** are no outstanding references to any page other than page 1. And
2653 ** page 1 is never written to the log until the transaction is
2654 ** committed. As a result, the call to xUndo may not fail.
2655 */
dan5d656852010-06-14 07:53:26 +00002656 assert( walFramePgno(pWal, iFrame)!=1 );
2657 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
dan6f150142010-05-21 15:31:56 +00002658 }
dan7eb05752012-10-15 11:28:24 +00002659 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
dan74d6cd82010-04-24 18:44:05 +00002660 }
2661 return rc;
2662}
2663
dan71d89912010-05-24 13:57:42 +00002664/*
2665** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2666** values. This function populates the array with values required to
2667** "rollback" the write position of the WAL handle back to the current
2668** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00002669*/
dan71d89912010-05-24 13:57:42 +00002670void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00002671 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00002672 aWalData[0] = pWal->hdr.mxFrame;
2673 aWalData[1] = pWal->hdr.aFrameCksum[0];
2674 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00002675 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00002676}
2677
dan71d89912010-05-24 13:57:42 +00002678/*
2679** Move the write position of the WAL back to the point identified by
2680** the values in the aWalData[] array. aWalData must point to an array
2681** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2682** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00002683*/
dan71d89912010-05-24 13:57:42 +00002684int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00002685 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00002686
dan6e6bd562010-06-02 18:59:03 +00002687 assert( pWal->writeLock );
2688 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2689
2690 if( aWalData[3]!=pWal->nCkpt ){
2691 /* This savepoint was opened immediately after the write-transaction
2692 ** was started. Right after that, the writer decided to wrap around
2693 ** to the start of the log. Update the savepoint values to match.
2694 */
2695 aWalData[0] = 0;
2696 aWalData[3] = pWal->nCkpt;
2697 }
2698
dan71d89912010-05-24 13:57:42 +00002699 if( aWalData[0]<pWal->hdr.mxFrame ){
dan71d89912010-05-24 13:57:42 +00002700 pWal->hdr.mxFrame = aWalData[0];
2701 pWal->hdr.aFrameCksum[0] = aWalData[1];
2702 pWal->hdr.aFrameCksum[1] = aWalData[2];
dan5d656852010-06-14 07:53:26 +00002703 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00002704 }
dan6e6bd562010-06-02 18:59:03 +00002705
dan4cd78b42010-04-26 16:57:10 +00002706 return rc;
2707}
2708
dan9971e712010-06-01 15:44:57 +00002709/*
2710** This function is called just before writing a set of frames to the log
2711** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2712** to the current log file, it is possible to overwrite the start of the
2713** existing log file with the new frames (i.e. "reset" the log). If so,
2714** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2715** unchanged.
2716**
2717** SQLITE_OK is returned if no error is encountered (regardless of whether
2718** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
drh4533cd02010-10-05 15:41:05 +00002719** if an error occurs.
dan9971e712010-06-01 15:44:57 +00002720*/
2721static int walRestartLog(Wal *pWal){
2722 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00002723 int cnt;
2724
dan13a3cb82010-06-11 19:04:21 +00002725 if( pWal->readLock==0 ){
dan9971e712010-06-01 15:44:57 +00002726 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2727 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2728 if( pInfo->nBackfill>0 ){
drh658d76c2011-02-19 15:22:14 +00002729 u32 salt1;
2730 sqlite3_randomness(4, &salt1);
drhab372772015-12-02 16:10:16 +00002731 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
dan9971e712010-06-01 15:44:57 +00002732 if( rc==SQLITE_OK ){
2733 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2734 ** readers are currently using the WAL), then the transactions
2735 ** frames will overwrite the start of the existing log. Update the
2736 ** wal-index header to reflect this.
2737 **
2738 ** In theory it would be Ok to update the cache of the header only
2739 ** at this point. But updating the actual wal-index header is also
2740 ** safe and means there is no special case for sqlite3WalUndo()
danf26a1542014-12-02 19:04:54 +00002741 ** to handle if this transaction is rolled back. */
dan0fe8c1b2014-12-02 19:35:09 +00002742 walRestartHdr(pWal, salt1);
dan9971e712010-06-01 15:44:57 +00002743 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
drh4533cd02010-10-05 15:41:05 +00002744 }else if( rc!=SQLITE_BUSY ){
2745 return rc;
dan9971e712010-06-01 15:44:57 +00002746 }
2747 }
2748 walUnlockShared(pWal, WAL_READ_LOCK(0));
2749 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00002750 cnt = 0;
dan9971e712010-06-01 15:44:57 +00002751 do{
2752 int notUsed;
drhaab4c022010-06-02 14:45:51 +00002753 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00002754 }while( rc==WAL_RETRY );
drhc90e0812011-02-19 17:02:44 +00002755 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
drhab1cc742011-02-19 16:51:45 +00002756 testcase( (rc&0xff)==SQLITE_IOERR );
2757 testcase( rc==SQLITE_PROTOCOL );
2758 testcase( rc==SQLITE_OK );
dan9971e712010-06-01 15:44:57 +00002759 }
2760 return rc;
2761}
2762
drh88f975a2011-12-16 19:34:36 +00002763/*
drhd992b152011-12-20 20:13:25 +00002764** Information about the current state of the WAL file and where
2765** the next fsync should occur - passed from sqlite3WalFrames() into
2766** walWriteToLog().
2767*/
2768typedef struct WalWriter {
2769 Wal *pWal; /* The complete WAL information */
2770 sqlite3_file *pFd; /* The WAL file to which we write */
2771 sqlite3_int64 iSyncPoint; /* Fsync at this offset */
2772 int syncFlags; /* Flags for the fsync */
2773 int szPage; /* Size of one page */
2774} WalWriter;
2775
2776/*
drh88f975a2011-12-16 19:34:36 +00002777** Write iAmt bytes of content into the WAL file beginning at iOffset.
drhd992b152011-12-20 20:13:25 +00002778** Do a sync when crossing the p->iSyncPoint boundary.
drh88f975a2011-12-16 19:34:36 +00002779**
drhd992b152011-12-20 20:13:25 +00002780** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
2781** first write the part before iSyncPoint, then sync, then write the
2782** rest.
drh88f975a2011-12-16 19:34:36 +00002783*/
2784static int walWriteToLog(
drhd992b152011-12-20 20:13:25 +00002785 WalWriter *p, /* WAL to write to */
drh88f975a2011-12-16 19:34:36 +00002786 void *pContent, /* Content to be written */
2787 int iAmt, /* Number of bytes to write */
2788 sqlite3_int64 iOffset /* Start writing at this offset */
2789){
2790 int rc;
drhd992b152011-12-20 20:13:25 +00002791 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
2792 int iFirstAmt = (int)(p->iSyncPoint - iOffset);
2793 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
drh88f975a2011-12-16 19:34:36 +00002794 if( rc ) return rc;
drhd992b152011-12-20 20:13:25 +00002795 iOffset += iFirstAmt;
2796 iAmt -= iFirstAmt;
drh88f975a2011-12-16 19:34:36 +00002797 pContent = (void*)(iFirstAmt + (char*)pContent);
drhd992b152011-12-20 20:13:25 +00002798 assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) );
dane5b6ea72014-02-13 18:46:59 +00002799 rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK);
drhcc8d10a2011-12-23 02:07:10 +00002800 if( iAmt==0 || rc ) return rc;
drh88f975a2011-12-16 19:34:36 +00002801 }
drhd992b152011-12-20 20:13:25 +00002802 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
2803 return rc;
2804}
2805
2806/*
2807** Write out a single frame of the WAL
2808*/
2809static int walWriteOneFrame(
2810 WalWriter *p, /* Where to write the frame */
2811 PgHdr *pPage, /* The page of the frame to be written */
2812 int nTruncate, /* The commit flag. Usually 0. >0 for commit */
2813 sqlite3_int64 iOffset /* Byte offset at which to write */
2814){
2815 int rc; /* Result code from subfunctions */
2816 void *pData; /* Data actually written */
2817 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
2818#if defined(SQLITE_HAS_CODEC)
2819 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM;
2820#else
2821 pData = pPage->pData;
2822#endif
2823 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
2824 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
2825 if( rc ) return rc;
2826 /* Write the page data */
2827 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
drh88f975a2011-12-16 19:34:36 +00002828 return rc;
2829}
2830
dan7c246102010-04-12 19:00:29 +00002831/*
dan4cd78b42010-04-26 16:57:10 +00002832** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00002833** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00002834*/
drhc438efd2010-04-26 00:19:45 +00002835int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00002836 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00002837 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00002838 PgHdr *pList, /* List of dirty pages to write */
2839 Pgno nTruncate, /* Database size after this commit */
2840 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00002841 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00002842){
dan7c246102010-04-12 19:00:29 +00002843 int rc; /* Used to catch return codes */
2844 u32 iFrame; /* Next frame address */
dan7c246102010-04-12 19:00:29 +00002845 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00002846 PgHdr *pLast = 0; /* Last frame in list */
drhd992b152011-12-20 20:13:25 +00002847 int nExtra = 0; /* Number of extra copies of last page */
2848 int szFrame; /* The size of a single frame */
2849 i64 iOffset; /* Next byte to write in WAL file */
2850 WalWriter w; /* The writer */
dan7c246102010-04-12 19:00:29 +00002851
dan7c246102010-04-12 19:00:29 +00002852 assert( pList );
drh73b64e42010-05-30 19:55:15 +00002853 assert( pWal->writeLock );
dan7c246102010-04-12 19:00:29 +00002854
drh41209942011-12-20 13:13:09 +00002855 /* If this frame set completes a transaction, then nTruncate>0. If
2856 ** nTruncate==0 then this frame set does not complete the transaction. */
2857 assert( (isCommit!=0)==(nTruncate!=0) );
2858
drhc74c3332010-05-31 12:15:19 +00002859#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2860 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2861 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2862 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2863 }
2864#endif
2865
dan9971e712010-06-01 15:44:57 +00002866 /* See if it is possible to write these frames into the start of the
2867 ** log file, instead of appending to it at pWal->hdr.mxFrame.
2868 */
2869 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
dan9971e712010-06-01 15:44:57 +00002870 return rc;
2871 }
dan9971e712010-06-01 15:44:57 +00002872
drha2a42012010-05-18 18:01:08 +00002873 /* If this is the first frame written into the log, write the WAL
2874 ** header to the start of the WAL file. See comments at the top of
2875 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00002876 */
drh027a1282010-05-19 01:53:53 +00002877 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00002878 if( iFrame==0 ){
dan10f5a502010-06-23 15:55:43 +00002879 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
2880 u32 aCksum[2]; /* Checksum for wal-header */
2881
danb8fd6c22010-05-24 10:39:36 +00002882 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
dan10f5a502010-06-23 15:55:43 +00002883 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
drh23ea97b2010-05-20 16:45:58 +00002884 sqlite3Put4byte(&aWalHdr[8], szPage);
2885 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drhd2980312011-12-17 01:31:44 +00002886 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
drh7e263722010-05-20 21:21:09 +00002887 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
dan10f5a502010-06-23 15:55:43 +00002888 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
2889 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
2890 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
2891
drhb2eced52010-08-12 02:41:12 +00002892 pWal->szPage = szPage;
dan10f5a502010-06-23 15:55:43 +00002893 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
2894 pWal->hdr.aFrameCksum[0] = aCksum[0];
2895 pWal->hdr.aFrameCksum[1] = aCksum[1];
danf60b7f32011-12-16 13:24:27 +00002896 pWal->truncateOnCommit = 1;
dan10f5a502010-06-23 15:55:43 +00002897
drh23ea97b2010-05-20 16:45:58 +00002898 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00002899 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00002900 if( rc!=SQLITE_OK ){
2901 return rc;
2902 }
drhd992b152011-12-20 20:13:25 +00002903
2904 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
2905 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
2906 ** an out-of-order write following a WAL restart could result in
2907 ** database corruption. See the ticket:
2908 **
2909 ** http://localhost:591/sqlite/info/ff5be73dee
2910 */
2911 if( pWal->syncHeader && sync_flags ){
2912 rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK);
2913 if( rc ) return rc;
2914 }
dan97a31352010-04-16 13:59:31 +00002915 }
shanehbd2aaf92010-09-01 02:38:21 +00002916 assert( (int)pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00002917
drhd992b152011-12-20 20:13:25 +00002918 /* Setup information needed to write frames into the WAL */
2919 w.pWal = pWal;
2920 w.pFd = pWal->pWalFd;
2921 w.iSyncPoint = 0;
2922 w.syncFlags = sync_flags;
2923 w.szPage = szPage;
2924 iOffset = walFrameOffset(iFrame+1, szPage);
2925 szFrame = szPage + WAL_FRAME_HDRSIZE;
drh88f975a2011-12-16 19:34:36 +00002926
drhd992b152011-12-20 20:13:25 +00002927 /* Write all frames into the log file exactly once */
dan7c246102010-04-12 19:00:29 +00002928 for(p=pList; p; p=p->pDirty){
drhd992b152011-12-20 20:13:25 +00002929 int nDbSize; /* 0 normally. Positive == commit flag */
2930 iFrame++;
2931 assert( iOffset==walFrameOffset(iFrame, szPage) );
2932 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
2933 rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
2934 if( rc ) return rc;
dan7c246102010-04-12 19:00:29 +00002935 pLast = p;
drhd992b152011-12-20 20:13:25 +00002936 iOffset += szFrame;
dan7c246102010-04-12 19:00:29 +00002937 }
2938
drhd992b152011-12-20 20:13:25 +00002939 /* If this is the end of a transaction, then we might need to pad
2940 ** the transaction and/or sync the WAL file.
2941 **
2942 ** Padding and syncing only occur if this set of frames complete a
2943 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
peter.d.reid60ec9142014-09-06 16:39:46 +00002944 ** or synchronous==OFF, then no padding or syncing are needed.
drhd992b152011-12-20 20:13:25 +00002945 **
drhcb15f352011-12-23 01:04:17 +00002946 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
2947 ** needed and only the sync is done. If padding is needed, then the
2948 ** final frame is repeated (with its commit mark) until the next sector
drhd992b152011-12-20 20:13:25 +00002949 ** boundary is crossed. Only the part of the WAL prior to the last
2950 ** sector boundary is synced; the part of the last frame that extends
2951 ** past the sector boundary is written after the sync.
2952 */
drh4eb02a42011-12-16 21:26:26 +00002953 if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){
drh374f4a02011-12-17 20:02:11 +00002954 if( pWal->padToSectorBoundary ){
danc9a53262012-10-01 06:50:55 +00002955 int sectorSize = sqlite3SectorSize(pWal->pWalFd);
drhd992b152011-12-20 20:13:25 +00002956 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
2957 while( iOffset<w.iSyncPoint ){
2958 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
2959 if( rc ) return rc;
2960 iOffset += szFrame;
2961 nExtra++;
dan7c246102010-04-12 19:00:29 +00002962 }
drh4e5e1082011-12-23 13:32:07 +00002963 }else{
2964 rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK);
dan7c246102010-04-12 19:00:29 +00002965 }
dan7c246102010-04-12 19:00:29 +00002966 }
2967
drhd992b152011-12-20 20:13:25 +00002968 /* If this frame set completes the first transaction in the WAL and
2969 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
2970 ** journal size limit, if possible.
2971 */
danf60b7f32011-12-16 13:24:27 +00002972 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
2973 i64 sz = pWal->mxWalSize;
drhd992b152011-12-20 20:13:25 +00002974 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
2975 sz = walFrameOffset(iFrame+nExtra+1, szPage);
danf60b7f32011-12-16 13:24:27 +00002976 }
2977 walLimitSize(pWal, sz);
2978 pWal->truncateOnCommit = 0;
2979 }
2980
drhe730fec2010-05-18 12:56:50 +00002981 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00002982 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00002983 ** guarantees that there are no other writers, and no data that may
2984 ** be in use by existing readers is being overwritten.
2985 */
drh027a1282010-05-19 01:53:53 +00002986 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00002987 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dan7c246102010-04-12 19:00:29 +00002988 iFrame++;
danc7991bd2010-05-05 19:04:59 +00002989 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00002990 }
drh20e226d2012-01-01 13:58:53 +00002991 while( rc==SQLITE_OK && nExtra>0 ){
dan7c246102010-04-12 19:00:29 +00002992 iFrame++;
drhd992b152011-12-20 20:13:25 +00002993 nExtra--;
danc7991bd2010-05-05 19:04:59 +00002994 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00002995 }
2996
danc7991bd2010-05-05 19:04:59 +00002997 if( rc==SQLITE_OK ){
2998 /* Update the private copy of the header. */
shaneh1df2db72010-08-18 02:28:48 +00002999 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00003000 testcase( szPage<=32768 );
3001 testcase( szPage>=65536 );
drh027a1282010-05-19 01:53:53 +00003002 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00003003 if( isCommit ){
3004 pWal->hdr.iChange++;
3005 pWal->hdr.nPage = nTruncate;
3006 }
danc7991bd2010-05-05 19:04:59 +00003007 /* If this is a commit, update the wal-index header too. */
3008 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00003009 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00003010 pWal->iCallback = iFrame;
3011 }
dan7c246102010-04-12 19:00:29 +00003012 }
danc7991bd2010-05-05 19:04:59 +00003013
drhc74c3332010-05-31 12:15:19 +00003014 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00003015 return rc;
dan7c246102010-04-12 19:00:29 +00003016}
3017
3018/*
drh73b64e42010-05-30 19:55:15 +00003019** This routine is called to implement sqlite3_wal_checkpoint() and
3020** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00003021**
drh73b64e42010-05-30 19:55:15 +00003022** Obtain a CHECKPOINT lock and then backfill as much information as
3023** we can from WAL into the database.
dana58f26f2010-11-16 18:56:51 +00003024**
3025** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3026** callback. In this case this function runs a blocking checkpoint.
dan7c246102010-04-12 19:00:29 +00003027*/
drhc438efd2010-04-26 00:19:45 +00003028int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00003029 Wal *pWal, /* Wal connection */
drhdd90d7e2014-12-03 19:25:41 +00003030 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */
dana58f26f2010-11-16 18:56:51 +00003031 int (*xBusy)(void*), /* Function to call when busy */
3032 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00003033 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00003034 int nBuf, /* Size of temporary buffer */
dancdc1f042010-11-18 12:11:05 +00003035 u8 *zBuf, /* Temporary buffer to use */
3036 int *pnLog, /* OUT: Number of frames in WAL */
3037 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
dan7c246102010-04-12 19:00:29 +00003038){
danb9bf16b2010-04-14 11:23:30 +00003039 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00003040 int isChanged = 0; /* True if a new wal-index header is loaded */
danf2b8dd52010-11-18 19:28:01 +00003041 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
drhdd90d7e2014-12-03 19:25:41 +00003042 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */
dan7c246102010-04-12 19:00:29 +00003043
dand54ff602010-05-31 11:16:30 +00003044 assert( pWal->ckptLock==0 );
dana58f26f2010-11-16 18:56:51 +00003045 assert( pWal->writeLock==0 );
dan39c79f52010-04-15 10:58:51 +00003046
drhdd90d7e2014-12-03 19:25:41 +00003047 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3048 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3049 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3050
drh66dfec8b2011-06-01 20:01:49 +00003051 if( pWal->readOnly ) return SQLITE_READONLY;
drhc74c3332010-05-31 12:15:19 +00003052 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drhdd90d7e2014-12-03 19:25:41 +00003053
3054 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3055 ** "checkpoint" lock on the database file. */
drhab372772015-12-02 16:10:16 +00003056 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
drh73b64e42010-05-30 19:55:15 +00003057 if( rc ){
drhdd90d7e2014-12-03 19:25:41 +00003058 /* EVIDENCE-OF: R-10421-19736 If any other process is running a
3059 ** checkpoint operation at the same time, the lock cannot be obtained and
3060 ** SQLITE_BUSY is returned.
3061 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3062 ** it will not be invoked in this case.
3063 */
3064 testcase( rc==SQLITE_BUSY );
3065 testcase( xBusy!=0 );
danb9bf16b2010-04-14 11:23:30 +00003066 return rc;
3067 }
dand54ff602010-05-31 11:16:30 +00003068 pWal->ckptLock = 1;
dan64d039e2010-04-13 19:27:31 +00003069
drhdd90d7e2014-12-03 19:25:41 +00003070 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3071 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3072 ** file.
danf2b8dd52010-11-18 19:28:01 +00003073 **
drhdd90d7e2014-12-03 19:25:41 +00003074 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3075 ** immediately, and a busy-handler is configured, it is invoked and the
3076 ** writer lock retried until either the busy-handler returns 0 or the
3077 ** lock is successfully obtained.
dana58f26f2010-11-16 18:56:51 +00003078 */
dancdc1f042010-11-18 12:11:05 +00003079 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dana58f26f2010-11-16 18:56:51 +00003080 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
danf2b8dd52010-11-18 19:28:01 +00003081 if( rc==SQLITE_OK ){
3082 pWal->writeLock = 1;
3083 }else if( rc==SQLITE_BUSY ){
3084 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
drhdd90d7e2014-12-03 19:25:41 +00003085 xBusy2 = 0;
danf2b8dd52010-11-18 19:28:01 +00003086 rc = SQLITE_OK;
3087 }
danb9bf16b2010-04-14 11:23:30 +00003088 }
dana58f26f2010-11-16 18:56:51 +00003089
danf2b8dd52010-11-18 19:28:01 +00003090 /* Read the wal-index header. */
drh7ed91f22010-04-29 22:34:07 +00003091 if( rc==SQLITE_OK ){
dana58f26f2010-11-16 18:56:51 +00003092 rc = walIndexReadHdr(pWal, &isChanged);
danf55a4cf2013-04-01 16:56:41 +00003093 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3094 sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3095 }
dana58f26f2010-11-16 18:56:51 +00003096 }
danf2b8dd52010-11-18 19:28:01 +00003097
3098 /* Copy data from the log to the database file. */
dan9c5e3682011-02-07 15:12:12 +00003099 if( rc==SQLITE_OK ){
3100 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
danf2b8dd52010-11-18 19:28:01 +00003101 rc = SQLITE_CORRUPT_BKPT;
3102 }else{
drhdd90d7e2014-12-03 19:25:41 +00003103 rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
dan9c5e3682011-02-07 15:12:12 +00003104 }
3105
3106 /* If no error occurred, set the output variables. */
3107 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
danf2b8dd52010-11-18 19:28:01 +00003108 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
dan9c5e3682011-02-07 15:12:12 +00003109 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
danf2b8dd52010-11-18 19:28:01 +00003110 }
danb9bf16b2010-04-14 11:23:30 +00003111 }
danf2b8dd52010-11-18 19:28:01 +00003112
dan31c03902010-04-29 14:51:33 +00003113 if( isChanged ){
3114 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00003115 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00003116 ** out of date. So zero the cached wal-index header to ensure that
3117 ** next time the pager opens a snapshot on this database it knows that
3118 ** the cache needs to be reset.
3119 */
3120 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3121 }
danb9bf16b2010-04-14 11:23:30 +00003122
3123 /* Release the locks. */
dana58f26f2010-11-16 18:56:51 +00003124 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00003125 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00003126 pWal->ckptLock = 0;
drhc74c3332010-05-31 12:15:19 +00003127 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
danf2b8dd52010-11-18 19:28:01 +00003128 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
dan7c246102010-04-12 19:00:29 +00003129}
3130
drh7ed91f22010-04-29 22:34:07 +00003131/* Return the value to pass to a sqlite3_wal_hook callback, the
3132** number of frames in the WAL at the point of the last commit since
3133** sqlite3WalCallback() was called. If no commits have occurred since
3134** the last call, then return 0.
3135*/
3136int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00003137 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00003138 if( pWal ){
3139 ret = pWal->iCallback;
3140 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00003141 }
3142 return (int)ret;
3143}
dan55437592010-05-11 12:19:26 +00003144
3145/*
drh61e4ace2010-05-31 20:28:37 +00003146** This function is called to change the WAL subsystem into or out
3147** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00003148**
drh61e4ace2010-05-31 20:28:37 +00003149** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3150** into locking_mode=NORMAL. This means that we must acquire a lock
3151** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
3152** or if the acquisition of the lock fails, then return 0. If the
3153** transition out of exclusive-mode is successful, return 1. This
3154** operation must occur while the pager is still holding the exclusive
3155** lock on the main database file.
dan55437592010-05-11 12:19:26 +00003156**
drh61e4ace2010-05-31 20:28:37 +00003157** If op is one, then change from locking_mode=NORMAL into
3158** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
3159** be released. Return 1 if the transition is made and 0 if the
3160** WAL is already in exclusive-locking mode - meaning that this
3161** routine is a no-op. The pager must already hold the exclusive lock
3162** on the main database file before invoking this operation.
3163**
3164** If op is negative, then do a dry-run of the op==1 case but do
dan8c408002010-11-01 17:38:24 +00003165** not actually change anything. The pager uses this to see if it
drh61e4ace2010-05-31 20:28:37 +00003166** should acquire the database exclusive lock prior to invoking
3167** the op==1 case.
dan55437592010-05-11 12:19:26 +00003168*/
3169int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00003170 int rc;
drhaab4c022010-06-02 14:45:51 +00003171 assert( pWal->writeLock==0 );
dan8c408002010-11-01 17:38:24 +00003172 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
dan3cac5dc2010-06-04 18:37:59 +00003173
3174 /* pWal->readLock is usually set, but might be -1 if there was a
3175 ** prior error while attempting to acquire are read-lock. This cannot
3176 ** happen if the connection is actually in exclusive mode (as no xShmLock
3177 ** locks are taken in this case). Nor should the pager attempt to
3178 ** upgrade to exclusive-mode following such an error.
3179 */
drhaab4c022010-06-02 14:45:51 +00003180 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00003181 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3182
drh61e4ace2010-05-31 20:28:37 +00003183 if( op==0 ){
3184 if( pWal->exclusiveMode ){
3185 pWal->exclusiveMode = 0;
dan3cac5dc2010-06-04 18:37:59 +00003186 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drh61e4ace2010-05-31 20:28:37 +00003187 pWal->exclusiveMode = 1;
3188 }
3189 rc = pWal->exclusiveMode==0;
3190 }else{
drhaab4c022010-06-02 14:45:51 +00003191 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00003192 rc = 0;
3193 }
3194 }else if( op>0 ){
3195 assert( pWal->exclusiveMode==0 );
drhaab4c022010-06-02 14:45:51 +00003196 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00003197 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3198 pWal->exclusiveMode = 1;
3199 rc = 1;
3200 }else{
3201 rc = pWal->exclusiveMode==0;
dan55437592010-05-11 12:19:26 +00003202 }
drh61e4ace2010-05-31 20:28:37 +00003203 return rc;
dan55437592010-05-11 12:19:26 +00003204}
3205
dan8c408002010-11-01 17:38:24 +00003206/*
3207** Return true if the argument is non-NULL and the WAL module is using
3208** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3209** WAL module is using shared-memory, return false.
3210*/
3211int sqlite3WalHeapMemory(Wal *pWal){
3212 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3213}
3214
danfc1acf32015-12-05 20:51:54 +00003215#ifdef SQLITE_ENABLE_SNAPSHOT
3216int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3217 int rc = SQLITE_OK;
3218 WalIndexHdr *pRet;
3219
3220 assert( pWal->readLock>=0 && pWal->writeLock==0 );
3221
3222 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3223 if( pRet==0 ){
3224 rc = SQLITE_NOMEM;
3225 }else{
3226 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3227 *ppSnapshot = (sqlite3_snapshot*)pRet;
3228 }
3229
3230 return rc;
3231}
3232
3233void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){
3234 pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3235}
3236#endif /* SQLITE_ENABLE_SNAPSHOT */
3237
drh70708602012-02-24 14:33:28 +00003238#ifdef SQLITE_ENABLE_ZIPVFS
danb3bdc722012-02-23 15:35:49 +00003239/*
3240** If the argument is not NULL, it points to a Wal object that holds a
3241** read-lock. This function returns the database page-size if it is known,
3242** or zero if it is not (or if pWal is NULL).
3243*/
3244int sqlite3WalFramesize(Wal *pWal){
danb3bdc722012-02-23 15:35:49 +00003245 assert( pWal==0 || pWal->readLock>=0 );
3246 return (pWal ? pWal->szPage : 0);
3247}
drh70708602012-02-24 14:33:28 +00003248#endif
danb3bdc722012-02-23 15:35:49 +00003249
dan5cf53532010-05-01 16:40:20 +00003250#endif /* #ifndef SQLITE_OMIT_WAL */