blob: 4a3ed99ff6a9cb8d5572c223da3faef44a9bcb1f [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drh23ea97b2010-05-20 16:45:58 +000034** The WAL header is 24 bytes in size and consists of the following six
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan97a31352010-04-16 13:59:31 +000043**
drh23ea97b2010-05-20 16:45:58 +000044** Immediately following the wal-header are zero or more frames. Each
45** frame consists of a 24-byte frame-header followed by a <page-size> bytes
46** of page data. The frame-header is broken into 6 big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000047** integer values, as follows:
48**
dan3de777f2010-04-17 12:31:37 +000049** 0: Page number.
50** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000051** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000052** 8: Salt-1 (copied from the header)
53** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000054** 16: Checksum-1.
55** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000056**
drh7e263722010-05-20 21:21:09 +000057** A frame is considered valid if and only if the following conditions are
58** true:
59**
60** (1) The salt-1 and salt-2 values in the frame-header match
61** salt values in the wal-header
62**
63** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000064** exactly match the checksum computed consecutively on the
65** WAL header and the first 8 bytes and the content of all frames
66** up to and including the current frame.
67**
68** The checksum is computed using 32-bit big-endian integers if the
69** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
70** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000071** The checksum values are always stored in the frame header in a
72** big-endian format regardless of which byte order is used to compute
73** the checksum. The checksum is computed by interpreting the input as
74** an even number of unsigned 32-bit integers: x[0] through x[N]. The
75**
76** for i from 0 to n-1 step 2:
77** s0 += x[i] + s1;
78** s1 += x[i+1] + s0;
79** endfor
drh7e263722010-05-20 21:21:09 +000080**
81** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
82** WAL is transferred into the database, then the database is VFS.xSync-ed.
83** The VFS.xSync operations server as write barriers - all writes launched
84** before the xSync must complete before any write that launches after the
85** xSync begins.
86**
87** After each checkpoint, the salt-1 value is incremented and the salt-2
88** value is randomized. This prevents old and new frames in the WAL from
89** being considered valid at the same time and being checkpointing together
90** following a crash.
91**
drh29d4dbe2010-05-18 23:29:52 +000092** READER ALGORITHM
93**
94** To read a page from the database (call it page number P), a reader
95** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +000096** last valid instance of page P that is a followed by a commit frame
97** or is a commit frame itself becomes the value read. If the WAL
98** contains no copies of page P that are valid and which are a commit
99** frame or are followed by a commit frame, then page P is read from
100** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000101**
drh73b64e42010-05-30 19:55:15 +0000102** To start a read transaction, the reader records the index of the last
103** valid frame in the WAL. The reader uses this recorded "mxFrame" value
104** for all subsequent read operations. New transactions can be appended
105** to the WAL, but as long as the reader uses its original mxFrame value
106** and ignores the newly appended content, it will see a consistent snapshot
107** of the database from a single point in time. This technique allows
108** multiple concurrent readers to view different versions of the database
109** content simultaneously.
110**
111** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000112** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000113** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000114** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000115** and read performance suffers. To overcome this problem, a separate
116** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000117** search for frames of a particular page.
118**
119** WAL-INDEX FORMAT
120**
121** Conceptually, the wal-index is shared memory, though VFS implementations
122** might choose to implement the wal-index using a mmapped file. Because
123** the wal-index is shared memory, SQLite does not support journal_mode=WAL
124** on a network filesystem. All users of the database must be able to
125** share memory.
126**
127** The wal-index is transient. After a crash, the wal-index can (and should
128** be) reconstructed from the original WAL file. In fact, the VFS is required
129** to either truncate or zero the header of the wal-index when the last
130** connection to it closes. Because the wal-index is transient, it can
131** use an architecture-specific format; it does not have to be cross-platform.
132** Hence, unlike the database and WAL file formats which store all values
133** as big endian, the wal-index can store multi-byte values in the native
134** byte order of the host computer.
135**
136** The purpose of the wal-index is to answer this question quickly: Given
137** a page number P, return the index of the last frame for page P in the WAL,
138** or return NULL if there are no frames for page P in the WAL.
139**
140** The wal-index consists of a header region, followed by an one or
141** more index blocks.
142**
drh027a1282010-05-19 01:53:53 +0000143** The wal-index header contains the total number of frames within the WAL
144** in the the mxFrame field. Each index block contains information on
145** HASHTABLE_NPAGE frames. Each index block contains two sections, a
146** mapping which is a database page number for each frame, and a hash
147** table used to look up frames by page number. The mapping section is
148** an array of HASHTABLE_NPAGE 32-bit page numbers. The first entry on the
149** array is the page number for the first frame; the second entry is the
150** page number for the second frame; and so forth. The last index block
151** holds a total of (mxFrame%HASHTABLE_NPAGE) page numbers. All index
152** blocks other than the last are completely full with HASHTABLE_NPAGE
153** page numbers. All index blocks are the same size; the mapping section
154** of the last index block merely contains unused entries if mxFrame is
155** not an even multiple of HASHTABLE_NPAGE.
156**
157** Even without using the hash table, the last frame for page P
158** can be found by scanning the mapping sections of each index block
159** starting with the last index block and moving toward the first, and
160** within each index block, starting at the end and moving toward the
161** beginning. The first entry that equals P corresponds to the frame
162** holding the content for that page.
163**
164** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
165** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
166** hash table for each page number in the mapping section, so the hash
167** table is never more than half full. The expected number of collisions
168** prior to finding a match is 1. Each entry of the hash table is an
169** 1-based index of an entry in the mapping section of the same
170** index block. Let K be the 1-based index of the largest entry in
171** the mapping section. (For index blocks other than the last, K will
172** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
173** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000174** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000175**
176** To look for page P in the hash table, first compute a hash iKey on
177** P as follows:
178**
179** iKey = (P * 383) % HASHTABLE_NSLOT
180**
181** Then start scanning entries of the hash table, starting with iKey
182** (wrapping around to the beginning when the end of the hash table is
183** reached) until an unused hash slot is found. Let the first unused slot
184** be at index iUnused. (iUnused might be less than iKey if there was
185** wrap-around.) Because the hash table is never more than half full,
186** the search is guaranteed to eventually hit an unused entry. Let
187** iMax be the value between iKey and iUnused, closest to iUnused,
188** where aHash[iMax]==P. If there is no iMax entry (if there exists
189** no hash slot such that aHash[i]==p) then page P is not in the
190** current index block. Otherwise the iMax-th mapping entry of the
191** current index block corresponds to the last entry that references
192** page P.
193**
194** A hash search begins with the last index block and moves toward the
195** first index block, looking for entries corresponding to page P. On
196** average, only two or three slots in each index block need to be
197** examined in order to either find the last entry for page P, or to
198** establish that no such entry exists in the block. Each index block
199** holds over 4000 entries. So two or three index blocks are sufficient
200** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
201** comparisons (on average) suffice to either locate a frame in the
202** WAL or to establish that the frame does not exist in the WAL. This
203** is much faster than scanning the entire 10MB WAL.
204**
205** Note that entries are added in order of increasing K. Hence, one
206** reader might be using some value K0 and a second reader that started
207** at a later time (after additional transactions were added to the WAL
208** and to the wal-index) might be using a different value K1, where K1>K0.
209** Both readers can use the same hash table and mapping section to get
210** the correct result. There may be entries in the hash table with
211** K>K0 but to the first reader, those entries will appear to be unused
212** slots in the hash table and so the first reader will get an answer as
213** if no values greater than K0 had ever been inserted into the hash table
214** in the first place - which is what reader one wants. Meanwhile, the
215** second reader using K1 will see additional values that were inserted
216** later, which is exactly what reader two wants.
217**
dan6f150142010-05-21 15:31:56 +0000218** When a rollback occurs, the value of K is decreased. Hash table entries
219** that correspond to frames greater than the new K value are removed
220** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000221*/
drh29d4dbe2010-05-18 23:29:52 +0000222#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000223
drh29d4dbe2010-05-18 23:29:52 +0000224#include "wal.h"
225
drh73b64e42010-05-30 19:55:15 +0000226/*
drhc74c3332010-05-31 12:15:19 +0000227** Trace output macros
228*/
drhc74c3332010-05-31 12:15:19 +0000229#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000230int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000231# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
232#else
233# define WALTRACE(X)
234#endif
235
236
237/*
drh73b64e42010-05-30 19:55:15 +0000238** Indices of various locking bytes. WAL_NREADER is the number
239** of available reader locks and should be at least 3.
240*/
241#define WAL_WRITE_LOCK 0
242#define WAL_ALL_BUT_WRITE 1
243#define WAL_CKPT_LOCK 1
244#define WAL_RECOVER_LOCK 2
245#define WAL_READ_LOCK(I) (3+(I))
246#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
247
dan97a31352010-04-16 13:59:31 +0000248
drh7ed91f22010-04-29 22:34:07 +0000249/* Object declarations */
250typedef struct WalIndexHdr WalIndexHdr;
251typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000252typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000253
254
255/*
drh286a2882010-05-20 23:51:06 +0000256** The following object holds a copy of the wal-index header content.
257**
258** The actual header in the wal-index consists of two copies of this
259** object.
dan7c246102010-04-12 19:00:29 +0000260*/
drh7ed91f22010-04-29 22:34:07 +0000261struct WalIndexHdr {
dan71d89912010-05-24 13:57:42 +0000262 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000263 u8 isInit; /* 1 when initialized */
264 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
dan71d89912010-05-24 13:57:42 +0000265 u16 szPage; /* Database page size in bytes */
dand0aa3422010-05-31 16:41:53 +0000266 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000267 u32 nPage; /* Size of database in pages */
268 u32 aFrameCksum[2]; /* Checksum of last frame in log */
269 u32 aSalt[2]; /* Two salt values copied from WAL header */
270 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000271};
272
drh73b64e42010-05-30 19:55:15 +0000273/*
274** A copy of the following object occurs in the wal-index immediately
275** following the second copy of the WalIndexHdr. This object stores
276** information used by checkpoint.
277**
278** nBackfill is the number of frames in the WAL that have been written
279** back into the database. (We call the act of moving content from WAL to
280** database "backfilling".) The nBackfill number is never greater than
281** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
282** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
283** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
284** mxFrame back to zero when the WAL is reset.
285**
286** There is one entry in aReadMark[] for each reader lock. If a reader
287** holds read-lock K, then the value in aReadMark[K] is no greater than
drhdb7f6472010-06-09 14:45:12 +0000288** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
289** for any aReadMark[] means that entry is unused. aReadMark[0] is
290** a special case; its value is never used and it exists as a place-holder
291** to avoid having to offset aReadMark[] indexs by one. Readers holding
292** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
293** directly from the database.
drh73b64e42010-05-30 19:55:15 +0000294**
295** The value of aReadMark[K] may only be changed by a thread that
296** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
297** aReadMark[K] cannot changed while there is a reader is using that mark
298** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
299**
300** The checkpointer may only transfer frames from WAL to database where
301** the frame numbers are less than or equal to every aReadMark[] that is
302** in use (that is, every aReadMark[j] for which there is a corresponding
303** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
304** largest value and will increase an unused aReadMark[] to mxFrame if there
305** is not already an aReadMark[] equal to mxFrame. The exception to the
306** previous sentence is when nBackfill equals mxFrame (meaning that everything
307** in the WAL has been backfilled into the database) then new readers
308** will choose aReadMark[0] which has value 0 and hence such reader will
309** get all their all content directly from the database file and ignore
310** the WAL.
311**
312** Writers normally append new frames to the end of the WAL. However,
313** if nBackfill equals mxFrame (meaning that all WAL content has been
314** written back into the database) and if no readers are using the WAL
315** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
316** the writer will first "reset" the WAL back to the beginning and start
317** writing new content beginning at frame 1.
318**
319** We assume that 32-bit loads are atomic and so no locks are needed in
320** order to read from any aReadMark[] entries.
321*/
322struct WalCkptInfo {
323 u32 nBackfill; /* Number of WAL frames backfilled into DB */
324 u32 aReadMark[WAL_NREADER]; /* Reader marks */
325};
drhdb7f6472010-06-09 14:45:12 +0000326#define READMARK_NOT_USED 0xffffffff
drh73b64e42010-05-30 19:55:15 +0000327
328
drh7e263722010-05-20 21:21:09 +0000329/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
330** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
331** only support mandatory file-locks, we do not read or write data
332** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000333*/
drh73b64e42010-05-30 19:55:15 +0000334#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
335#define WALINDEX_LOCK_RESERVED 16
drh026ac282010-05-26 15:06:38 +0000336#define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
dan7c246102010-04-12 19:00:29 +0000337
drh7ed91f22010-04-29 22:34:07 +0000338/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000339#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000340
drh7ed91f22010-04-29 22:34:07 +0000341/* Size of write ahead log header */
drh23ea97b2010-05-20 16:45:58 +0000342#define WAL_HDRSIZE 24
dan97a31352010-04-16 13:59:31 +0000343
danb8fd6c22010-05-24 10:39:36 +0000344/* WAL magic value. Either this value, or the same value with the least
345** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
346** big-endian format in the first 4 bytes of a WAL file.
347**
348** If the LSB is set, then the checksums for each frame within the WAL
349** file are calculated by treating all data as an array of 32-bit
350** big-endian words. Otherwise, they are calculated by interpreting
351** all data as 32-bit little-endian words.
352*/
353#define WAL_MAGIC 0x377f0682
354
dan97a31352010-04-16 13:59:31 +0000355/*
drh7ed91f22010-04-29 22:34:07 +0000356** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000357** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000358** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000359*/
drh6e810962010-05-19 17:49:50 +0000360#define walFrameOffset(iFrame, szPage) ( \
361 WAL_HDRSIZE + ((iFrame)-1)*((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000362)
dan7c246102010-04-12 19:00:29 +0000363
364/*
drh7ed91f22010-04-29 22:34:07 +0000365** An open write-ahead log file is represented by an instance of the
366** following object.
dance4f05f2010-04-22 19:14:13 +0000367*/
drh7ed91f22010-04-29 22:34:07 +0000368struct Wal {
drh73b64e42010-05-30 19:55:15 +0000369 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000370 sqlite3_file *pDbFd; /* File handle for the database file */
371 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000372 u32 iCallback; /* Value to pass to log callback (or 0) */
dan13a3cb82010-06-11 19:04:21 +0000373 int nWiData; /* Size of array apWiData */
374 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
drh73b64e42010-05-30 19:55:15 +0000375 u16 szPage; /* Database page size */
376 i16 readLock; /* Which read lock is being held. -1 for none */
dan55437592010-05-11 12:19:26 +0000377 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000378 u8 isWIndexOpen; /* True if ShmOpen() called on pDbFd */
379 u8 writeLock; /* True if in a write transaction */
380 u8 ckptLock; /* True if holding a checkpoint lock */
381 WalIndexHdr hdr; /* Wal-index header for current transaction */
drhd9e5c4f2010-05-12 18:01:39 +0000382 char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000383 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000384#ifdef SQLITE_DEBUG
385 u8 lockError; /* True if a locking error has occurred */
386#endif
dan7c246102010-04-12 19:00:29 +0000387};
388
drh73b64e42010-05-30 19:55:15 +0000389/*
dan067f3162010-06-14 10:30:12 +0000390** Each page of the wal-index mapping contains a hash-table made up of
391** an array of HASHTABLE_NSLOT elements of the following type.
392*/
393typedef u16 ht_slot;
394
395/*
dan13a3cb82010-06-11 19:04:21 +0000396** Define the parameters of the hash tables in the wal-index file. There
397** is a hash-table following every HASHTABLE_NPAGE page numbers in the
398** wal-index.
399**
400** Changing any of these constants will alter the wal-index format and
401** create incompatibilities.
402*/
dan067f3162010-06-14 10:30:12 +0000403#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000404#define HASHTABLE_HASH_1 383 /* Should be prime */
405#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000406
407/* The block of page numbers associated with the first hash-table in a
408** wal-index is smaller than usual. This is so that there is a complete
409** hash-table on each aligned 32KB page of the wal-index.
410*/
dan067f3162010-06-14 10:30:12 +0000411#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
dan13a3cb82010-06-11 19:04:21 +0000412
dan067f3162010-06-14 10:30:12 +0000413/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
414#define WALINDEX_PGSZ ( \
415 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
416)
dan13a3cb82010-06-11 19:04:21 +0000417
418/*
419** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
dan067f3162010-06-14 10:30:12 +0000420** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
dan13a3cb82010-06-11 19:04:21 +0000421** numbered from zero.
422**
423** If this call is successful, *ppPage is set to point to the wal-index
424** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
425** then an SQLite error code is returned and *ppPage is set to 0.
426*/
427static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
428 int rc = SQLITE_OK;
429
430 /* Enlarge the pWal->apWiData[] array if required */
431 if( pWal->nWiData<=iPage ){
432 int nByte = sizeof(u32 *)*(iPage+1);
433 volatile u32 **apNew;
434 apNew = (volatile u32 **)sqlite3_realloc(pWal->apWiData, nByte);
435 if( !apNew ){
436 *ppPage = 0;
437 return SQLITE_NOMEM;
438 }
439 memset(&apNew[pWal->nWiData], 0, sizeof(u32 *)*(iPage+1-pWal->nWiData));
440 pWal->apWiData = apNew;
441 pWal->nWiData = iPage+1;
442 }
443
444 /* Request a pointer to the required page from the VFS */
445 if( pWal->apWiData[iPage]==0 ){
dan067f3162010-06-14 10:30:12 +0000446 rc = sqlite3OsShmPage(pWal->pDbFd, iPage, WALINDEX_PGSZ,
dan13a3cb82010-06-11 19:04:21 +0000447 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
448 );
449 }
450
451 *ppPage = pWal->apWiData[iPage];
452 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
453 return rc;
454}
455
456/*
drh73b64e42010-05-30 19:55:15 +0000457** Return a pointer to the WalCkptInfo structure in the wal-index.
458*/
459static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000460 assert( pWal->nWiData>0 && pWal->apWiData[0] );
461 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
462}
463
464/*
465** Return a pointer to the WalIndexHdr structure in the wal-index.
466*/
467static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
468 assert( pWal->nWiData>0 && pWal->apWiData[0] );
469 return (volatile WalIndexHdr*)pWal->apWiData[0];
drh73b64e42010-05-30 19:55:15 +0000470}
471
dan7c246102010-04-12 19:00:29 +0000472/*
drha2a42012010-05-18 18:01:08 +0000473** This structure is used to implement an iterator that loops through
474** all frames in the WAL in database page order. Where two or more frames
dan7c246102010-04-12 19:00:29 +0000475** correspond to the same database page, the iterator visits only the
drha2a42012010-05-18 18:01:08 +0000476** frame most recently written to the WAL (in other words, the frame with
477** the largest index).
dan7c246102010-04-12 19:00:29 +0000478**
479** The internals of this structure are only accessed by:
480**
drh7ed91f22010-04-29 22:34:07 +0000481** walIteratorInit() - Create a new iterator,
482** walIteratorNext() - Step an iterator,
483** walIteratorFree() - Free an iterator.
dan7c246102010-04-12 19:00:29 +0000484**
drh7ed91f22010-04-29 22:34:07 +0000485** This functionality is used by the checkpoint code (see walCheckpoint()).
dan7c246102010-04-12 19:00:29 +0000486*/
drh7ed91f22010-04-29 22:34:07 +0000487struct WalIterator {
dan067f3162010-06-14 10:30:12 +0000488 int iPrior; /* Last result returned from the iterator */
489 int nSegment; /* Size of the aSegment[] array */
drh7ed91f22010-04-29 22:34:07 +0000490 struct WalSegment {
dan13a3cb82010-06-11 19:04:21 +0000491 int iNext; /* Next slot in aIndex[] not yet returned */
dan067f3162010-06-14 10:30:12 +0000492 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
dan13a3cb82010-06-11 19:04:21 +0000493 u32 *aPgno; /* Array of page numbers. */
494 int nEntry; /* Max size of aPgno[] and aIndex[] arrays */
495 int iZero; /* Frame number associated with aPgno[0] */
dan067f3162010-06-14 10:30:12 +0000496 } aSegment[1]; /* One for every 32KB page in the WAL */
dan7c246102010-04-12 19:00:29 +0000497};
498
danb8fd6c22010-05-24 10:39:36 +0000499/*
500** The argument to this macro must be of type u32. On a little-endian
501** architecture, it returns the u32 value that results from interpreting
502** the 4 bytes as a big-endian value. On a big-endian architecture, it
503** returns the value that would be produced by intepreting the 4 bytes
504** of the input value as a little-endian integer.
505*/
506#define BYTESWAP32(x) ( \
507 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
508 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
509)
dan64d039e2010-04-13 19:27:31 +0000510
dan7c246102010-04-12 19:00:29 +0000511/*
drh7e263722010-05-20 21:21:09 +0000512** Generate or extend an 8 byte checksum based on the data in
513** array aByte[] and the initial values of aIn[0] and aIn[1] (or
514** initial values of 0 and 0 if aIn==NULL).
515**
516** The checksum is written back into aOut[] before returning.
517**
518** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000519*/
drh7e263722010-05-20 21:21:09 +0000520static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000521 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000522 u8 *a, /* Content to be checksummed */
523 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
524 const u32 *aIn, /* Initial checksum value input */
525 u32 *aOut /* OUT: Final checksum value output */
526){
527 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000528 u32 *aData = (u32 *)a;
529 u32 *aEnd = (u32 *)&a[nByte];
530
drh7e263722010-05-20 21:21:09 +0000531 if( aIn ){
532 s1 = aIn[0];
533 s2 = aIn[1];
534 }else{
535 s1 = s2 = 0;
536 }
dan7c246102010-04-12 19:00:29 +0000537
drh584c7542010-05-19 18:08:10 +0000538 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000539 assert( (nByte&0x00000007)==0 );
dan7c246102010-04-12 19:00:29 +0000540
danb8fd6c22010-05-24 10:39:36 +0000541 if( nativeCksum ){
542 do {
543 s1 += *aData++ + s2;
544 s2 += *aData++ + s1;
545 }while( aData<aEnd );
546 }else{
547 do {
548 s1 += BYTESWAP32(aData[0]) + s2;
549 s2 += BYTESWAP32(aData[1]) + s1;
550 aData += 2;
551 }while( aData<aEnd );
552 }
553
drh7e263722010-05-20 21:21:09 +0000554 aOut[0] = s1;
555 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000556}
557
558/*
drh7e263722010-05-20 21:21:09 +0000559** Write the header information in pWal->hdr into the wal-index.
560**
561** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000562*/
drh7e263722010-05-20 21:21:09 +0000563static void walIndexWriteHdr(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000564 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
565 const int nCksum = offsetof(WalIndexHdr, aCksum);
drh73b64e42010-05-30 19:55:15 +0000566
567 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000568 pWal->hdr.isInit = 1;
dan4280eb32010-06-12 12:02:35 +0000569 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
570 memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
drh286a2882010-05-20 23:51:06 +0000571 sqlite3OsShmBarrier(pWal->pDbFd);
dan4280eb32010-06-12 12:02:35 +0000572 memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000573}
574
575/*
576** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000577** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000578** 4-byte big-endian integers, as follows:
579**
drh23ea97b2010-05-20 16:45:58 +0000580** 0: Page number.
581** 4: For commit records, the size of the database image in pages
582** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000583** 8: Salt-1 (copied from the wal-header)
584** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000585** 16: Checksum-1.
586** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000587*/
drh7ed91f22010-04-29 22:34:07 +0000588static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000589 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000590 u32 iPage, /* Database page number for frame */
591 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000592 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000593 u8 *aFrame /* OUT: Write encoded frame here */
594){
danb8fd6c22010-05-24 10:39:36 +0000595 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000596 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000597 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000598 sqlite3Put4byte(&aFrame[0], iPage);
599 sqlite3Put4byte(&aFrame[4], nTruncate);
drh7e263722010-05-20 21:21:09 +0000600 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000601
danb8fd6c22010-05-24 10:39:36 +0000602 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000603 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000604 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000605
drh23ea97b2010-05-20 16:45:58 +0000606 sqlite3Put4byte(&aFrame[16], aCksum[0]);
607 sqlite3Put4byte(&aFrame[20], aCksum[1]);
dan7c246102010-04-12 19:00:29 +0000608}
609
610/*
drh7e263722010-05-20 21:21:09 +0000611** Check to see if the frame with header in aFrame[] and content
612** in aData[] is valid. If it is a valid frame, fill *piPage and
613** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000614*/
drh7ed91f22010-04-29 22:34:07 +0000615static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000616 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000617 u32 *piPage, /* OUT: Database page number for frame */
618 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000619 u8 *aData, /* Pointer to page data (for checksum) */
620 u8 *aFrame /* Frame data */
621){
danb8fd6c22010-05-24 10:39:36 +0000622 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000623 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000624 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000625 assert( WAL_FRAME_HDRSIZE==24 );
626
drh7e263722010-05-20 21:21:09 +0000627 /* A frame is only valid if the salt values in the frame-header
628 ** match the salt values in the wal-header.
629 */
630 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000631 return 0;
632 }
dan4a4b01d2010-04-16 11:30:18 +0000633
drhc8179152010-05-24 13:28:36 +0000634 /* A frame is only valid if the page number is creater than zero.
635 */
636 pgno = sqlite3Get4byte(&aFrame[0]);
637 if( pgno==0 ){
638 return 0;
639 }
640
drh7e263722010-05-20 21:21:09 +0000641 /* A frame is only valid if a checksum of the first 16 bytes
642 ** of the frame-header, and the frame-data matches
643 ** the checksum in the last 8 bytes of the frame-header.
644 */
danb8fd6c22010-05-24 10:39:36 +0000645 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000646 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000647 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000648 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
649 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000650 ){
651 /* Checksum failed. */
652 return 0;
653 }
654
drh7e263722010-05-20 21:21:09 +0000655 /* If we reach this point, the frame is valid. Return the page number
656 ** and the new database size.
657 */
drhc8179152010-05-24 13:28:36 +0000658 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000659 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000660 return 1;
661}
662
dan7c246102010-04-12 19:00:29 +0000663
drhc74c3332010-05-31 12:15:19 +0000664#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
665/*
drh181e0912010-06-01 01:08:08 +0000666** Names of locks. This routine is used to provide debugging output and is not
667** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000668*/
669static const char *walLockName(int lockIdx){
670 if( lockIdx==WAL_WRITE_LOCK ){
671 return "WRITE-LOCK";
672 }else if( lockIdx==WAL_CKPT_LOCK ){
673 return "CKPT-LOCK";
674 }else if( lockIdx==WAL_RECOVER_LOCK ){
675 return "RECOVER-LOCK";
676 }else{
677 static char zName[15];
678 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
679 lockIdx-WAL_READ_LOCK(0));
680 return zName;
681 }
682}
683#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
684
685
dan7c246102010-04-12 19:00:29 +0000686/*
drh181e0912010-06-01 01:08:08 +0000687** Set or release locks on the WAL. Locks are either shared or exclusive.
688** A lock cannot be moved directly between shared and exclusive - it must go
689** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000690**
691** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
692*/
693static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000694 int rc;
drh73b64e42010-05-30 19:55:15 +0000695 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000696 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
697 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
698 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
699 walLockName(lockIdx), rc ? "failed" : "ok"));
drhaab4c022010-06-02 14:45:51 +0000700 VVA_ONLY( pWal->lockError = (rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000701 return rc;
drh73b64e42010-05-30 19:55:15 +0000702}
703static void walUnlockShared(Wal *pWal, int lockIdx){
704 if( pWal->exclusiveMode ) return;
705 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
706 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000707 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000708}
709static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000710 int rc;
drh73b64e42010-05-30 19:55:15 +0000711 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000712 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
713 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
714 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
715 walLockName(lockIdx), n, rc ? "failed" : "ok"));
drhaab4c022010-06-02 14:45:51 +0000716 VVA_ONLY( pWal->lockError = (rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000717 return rc;
drh73b64e42010-05-30 19:55:15 +0000718}
719static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
720 if( pWal->exclusiveMode ) return;
721 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
722 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000723 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
724 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000725}
726
727/*
drh29d4dbe2010-05-18 23:29:52 +0000728** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000729** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
730** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000731*/
732static int walHash(u32 iPage){
733 assert( iPage>0 );
734 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
735 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
736}
737static int walNextHash(int iPriorHash){
738 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000739}
740
dan4280eb32010-06-12 12:02:35 +0000741/*
742** Return pointers to the hash table and page number array stored on
743** page iHash of the wal-index. The wal-index is broken into 32KB pages
744** numbered starting from 0.
745**
746** Set output variable *paHash to point to the start of the hash table
747** in the wal-index file. Set *piZero to one less than the frame
748** number of the first frame indexed by this hash table. If a
749** slot in the hash table is set to N, it refers to frame number
750** (*piZero+N) in the log.
751**
dand60bf112010-06-14 11:18:50 +0000752** Finally, set *paPgno so that *paPgno[1] is the page number of the
753** first frame indexed by the hash table, frame (*piZero+1).
dan4280eb32010-06-12 12:02:35 +0000754*/
755static int walHashGet(
dan13a3cb82010-06-11 19:04:21 +0000756 Wal *pWal, /* WAL handle */
757 int iHash, /* Find the iHash'th table */
dan067f3162010-06-14 10:30:12 +0000758 volatile ht_slot **paHash, /* OUT: Pointer to hash index */
dan13a3cb82010-06-11 19:04:21 +0000759 volatile u32 **paPgno, /* OUT: Pointer to page number array */
760 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
761){
dan4280eb32010-06-12 12:02:35 +0000762 int rc; /* Return code */
dan13a3cb82010-06-11 19:04:21 +0000763 volatile u32 *aPgno;
dan13a3cb82010-06-11 19:04:21 +0000764
dan4280eb32010-06-12 12:02:35 +0000765 rc = walIndexPage(pWal, iHash, &aPgno);
766 assert( rc==SQLITE_OK || iHash>0 );
dan13a3cb82010-06-11 19:04:21 +0000767
dan4280eb32010-06-12 12:02:35 +0000768 if( rc==SQLITE_OK ){
769 u32 iZero;
dan067f3162010-06-14 10:30:12 +0000770 volatile ht_slot *aHash;
dan4280eb32010-06-12 12:02:35 +0000771
dan067f3162010-06-14 10:30:12 +0000772 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
dan4280eb32010-06-12 12:02:35 +0000773 if( iHash==0 ){
dand60bf112010-06-14 11:18:50 +0000774 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
dan4280eb32010-06-12 12:02:35 +0000775 iZero = 0;
776 }else{
777 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
dan4280eb32010-06-12 12:02:35 +0000778 }
779
dand60bf112010-06-14 11:18:50 +0000780 *paPgno = &aPgno[-1];
dan4280eb32010-06-12 12:02:35 +0000781 *paHash = aHash;
782 *piZero = iZero;
dan13a3cb82010-06-11 19:04:21 +0000783 }
dan4280eb32010-06-12 12:02:35 +0000784 return rc;
dan13a3cb82010-06-11 19:04:21 +0000785}
786
dan4280eb32010-06-12 12:02:35 +0000787/*
788** Return the number of the wal-index page that contains the hash-table
789** and page-number array that contain entries corresponding to WAL frame
790** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
791** are numbered starting from 0.
792*/
dan13a3cb82010-06-11 19:04:21 +0000793static int walFramePage(u32 iFrame){
794 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
795 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
796 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
797 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
798 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
799 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
800 );
801 return iHash;
802}
803
804/*
805** Return the page number associated with frame iFrame in this WAL.
806*/
807static u32 walFramePgno(Wal *pWal, u32 iFrame){
808 int iHash = walFramePage(iFrame);
809 if( iHash==0 ){
810 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
811 }
812 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
813}
danbb23aff2010-05-10 14:46:09 +0000814
danca6b5ba2010-05-25 10:50:56 +0000815/*
816** Remove entries from the hash table that point to WAL slots greater
817** than pWal->hdr.mxFrame.
818**
819** This function is called whenever pWal->hdr.mxFrame is decreased due
820** to a rollback or savepoint.
821**
drh181e0912010-06-01 01:08:08 +0000822** At most only the hash table containing pWal->hdr.mxFrame needs to be
823** updated. Any later hash tables will be automatically cleared when
824** pWal->hdr.mxFrame advances to the point where those hash tables are
825** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000826*/
827static void walCleanupHash(Wal *pWal){
dan067f3162010-06-14 10:30:12 +0000828 volatile ht_slot *aHash; /* Pointer to hash table to clear */
829 volatile u32 *aPgno; /* Page number array for hash table */
830 u32 iZero; /* frame == (aHash[x]+iZero) */
831 int iLimit = 0; /* Zero values greater than this */
832 int nByte; /* Number of bytes to zero in aPgno[] */
833 int i; /* Used to iterate through aHash[] */
danca6b5ba2010-05-25 10:50:56 +0000834
drh73b64e42010-05-30 19:55:15 +0000835 assert( pWal->writeLock );
drh9c156472010-06-01 12:58:41 +0000836 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE-1 );
837 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE );
838 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE+1 );
drh9c156472010-06-01 12:58:41 +0000839
dan4280eb32010-06-12 12:02:35 +0000840 if( pWal->hdr.mxFrame==0 ) return;
841
842 /* Obtain pointers to the hash-table and page-number array containing
843 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
844 ** that the page said hash-table and array reside on is already mapped.
845 */
846 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
847 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
848 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
849
850 /* Zero all hash-table entries that correspond to frame numbers greater
851 ** than pWal->hdr.mxFrame.
852 */
853 iLimit = pWal->hdr.mxFrame - iZero;
854 assert( iLimit>0 );
855 for(i=0; i<HASHTABLE_NSLOT; i++){
856 if( aHash[i]>iLimit ){
857 aHash[i] = 0;
danca6b5ba2010-05-25 10:50:56 +0000858 }
danca6b5ba2010-05-25 10:50:56 +0000859 }
dan4280eb32010-06-12 12:02:35 +0000860
861 /* Zero the entries in the aPgno array that correspond to frames with
862 ** frame numbers greater than pWal->hdr.mxFrame.
863 */
dand60bf112010-06-14 11:18:50 +0000864 nByte = ((char *)aHash - (char *)&aPgno[iLimit+1]);
865 memset((void *)&aPgno[iLimit+1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000866
867#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
868 /* Verify that the every entry in the mapping region is still reachable
869 ** via the hash table even after the cleanup.
870 */
drhf77bbd92010-06-01 13:17:44 +0000871 if( iLimit ){
danca6b5ba2010-05-25 10:50:56 +0000872 int i; /* Loop counter */
873 int iKey; /* Hash key */
874 for(i=1; i<=iLimit; i++){
dand60bf112010-06-14 11:18:50 +0000875 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
danca6b5ba2010-05-25 10:50:56 +0000876 if( aHash[iKey]==i ) break;
877 }
878 assert( aHash[iKey]==i );
879 }
880 }
881#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
882}
883
danbb23aff2010-05-10 14:46:09 +0000884
drh7ed91f22010-04-29 22:34:07 +0000885/*
drh29d4dbe2010-05-18 23:29:52 +0000886** Set an entry in the wal-index that will map database page number
887** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +0000888*/
drh7ed91f22010-04-29 22:34:07 +0000889static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
dan4280eb32010-06-12 12:02:35 +0000890 int rc; /* Return code */
891 u32 iZero; /* One less than frame number of aPgno[1] */
892 volatile u32 *aPgno; /* Page number array */
dan067f3162010-06-14 10:30:12 +0000893 volatile ht_slot *aHash; /* Hash table */
dance4f05f2010-04-22 19:14:13 +0000894
dan4280eb32010-06-12 12:02:35 +0000895 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
896
897 /* Assuming the wal-index file was successfully mapped, populate the
898 ** page number array and hash table entry.
dan7c246102010-04-12 19:00:29 +0000899 */
danbb23aff2010-05-10 14:46:09 +0000900 if( rc==SQLITE_OK ){
901 int iKey; /* Hash table key */
dan4280eb32010-06-12 12:02:35 +0000902 int idx; /* Value to write to hash-table slot */
903 TESTONLY( int nCollide = 0; /* Number of hash collisions */ )
dan7c246102010-04-12 19:00:29 +0000904
danbb23aff2010-05-10 14:46:09 +0000905 idx = iFrame - iZero;
dan4280eb32010-06-12 12:02:35 +0000906 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
907
908 /* If this is the first entry to be added to this hash-table, zero the
909 ** entire hash table and aPgno[] array before proceding.
910 */
danca6b5ba2010-05-25 10:50:56 +0000911 if( idx==1 ){
dand60bf112010-06-14 11:18:50 +0000912 int nByte = (u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1];
913 memset((void*)&aPgno[1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000914 }
danca6b5ba2010-05-25 10:50:56 +0000915
dan4280eb32010-06-12 12:02:35 +0000916 /* If the entry in aPgno[] is already set, then the previous writer
917 ** must have exited unexpectedly in the middle of a transaction (after
918 ** writing one or more dirty pages to the WAL to free up memory).
919 ** Remove the remnants of that writers uncommitted transaction from
920 ** the hash-table before writing any new entries.
921 */
dand60bf112010-06-14 11:18:50 +0000922 if( aPgno[idx] ){
danca6b5ba2010-05-25 10:50:56 +0000923 walCleanupHash(pWal);
dand60bf112010-06-14 11:18:50 +0000924 assert( !aPgno[idx] );
danca6b5ba2010-05-25 10:50:56 +0000925 }
dan4280eb32010-06-12 12:02:35 +0000926
927 /* Write the aPgno[] array entry and the hash-table slot. */
dan6f150142010-05-21 15:31:56 +0000928 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
drh29d4dbe2010-05-18 23:29:52 +0000929 assert( nCollide++ < idx );
930 }
dand60bf112010-06-14 11:18:50 +0000931 aPgno[idx] = iPage;
danbb23aff2010-05-10 14:46:09 +0000932 aHash[iKey] = idx;
drh4fa95bf2010-05-22 00:55:39 +0000933
934#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
935 /* Verify that the number of entries in the hash table exactly equals
936 ** the number of entries in the mapping region.
937 */
938 {
939 int i; /* Loop counter */
940 int nEntry = 0; /* Number of entries in the hash table */
941 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
942 assert( nEntry==idx );
943 }
944
945 /* Verify that the every entry in the mapping region is reachable
946 ** via the hash table. This turns out to be a really, really expensive
947 ** thing to check, so only do this occasionally - not on every
948 ** iteration.
949 */
950 if( (idx&0x3ff)==0 ){
951 int i; /* Loop counter */
952 for(i=1; i<=idx; i++){
dand60bf112010-06-14 11:18:50 +0000953 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
drh4fa95bf2010-05-22 00:55:39 +0000954 if( aHash[iKey]==i ) break;
955 }
956 assert( aHash[iKey]==i );
957 }
958 }
959#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +0000960 }
dan31f98fc2010-04-27 05:42:32 +0000961
drh4fa95bf2010-05-22 00:55:39 +0000962
danbb23aff2010-05-10 14:46:09 +0000963 return rc;
dan7c246102010-04-12 19:00:29 +0000964}
965
966
967/*
drh7ed91f22010-04-29 22:34:07 +0000968** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +0000969**
970** This routine first tries to establish an exclusive lock on the
971** wal-index to prevent other threads/processes from doing anything
972** with the WAL or wal-index while recovery is running. The
973** WAL_RECOVER_LOCK is also held so that other threads will know
974** that this thread is running recovery. If unable to establish
975** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +0000976*/
drh7ed91f22010-04-29 22:34:07 +0000977static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +0000978 int rc; /* Return Code */
979 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +0000980 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +0000981 int iLock; /* Lock offset to lock for checkpoint */
982 int nLock; /* Number of locks to hold */
dan7c246102010-04-12 19:00:29 +0000983
dand0aa3422010-05-31 16:41:53 +0000984 /* Obtain an exclusive lock on all byte in the locking range not already
985 ** locked by the caller. The caller is guaranteed to have locked the
986 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
987 ** If successful, the same bytes that are locked here are unlocked before
988 ** this function returns.
989 */
990 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
991 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
992 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
993 assert( pWal->writeLock );
994 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
995 nLock = SQLITE_SHM_NLOCK - iLock;
996 rc = walLockExclusive(pWal, iLock, nLock);
drh73b64e42010-05-30 19:55:15 +0000997 if( rc ){
998 return rc;
999 }
drhc74c3332010-05-31 12:15:19 +00001000 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +00001001
dan71d89912010-05-24 13:57:42 +00001002 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +00001003
drhd9e5c4f2010-05-12 18:01:39 +00001004 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +00001005 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001006 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001007 }
1008
danb8fd6c22010-05-24 10:39:36 +00001009 if( nSize>WAL_HDRSIZE ){
1010 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dan7c246102010-04-12 19:00:29 +00001011 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001012 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001013 u8 *aData; /* Pointer to data part of aFrame buffer */
1014 int iFrame; /* Index of last frame read */
1015 i64 iOffset; /* Next offset to read from log file */
drh6e810962010-05-19 17:49:50 +00001016 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001017 u32 magic; /* Magic value read from WAL header */
dan7c246102010-04-12 19:00:29 +00001018
danb8fd6c22010-05-24 10:39:36 +00001019 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001020 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001021 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001022 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001023 }
1024
1025 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001026 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1027 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1028 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001029 */
danb8fd6c22010-05-24 10:39:36 +00001030 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001031 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001032 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1033 || szPage&(szPage-1)
1034 || szPage>SQLITE_MAX_PAGE_SIZE
1035 || szPage<512
1036 ){
dan7c246102010-04-12 19:00:29 +00001037 goto finished;
1038 }
dan71d89912010-05-24 13:57:42 +00001039 pWal->hdr.bigEndCksum = (magic&0x00000001);
drh7e263722010-05-20 21:21:09 +00001040 pWal->szPage = szPage;
drh23ea97b2010-05-20 16:45:58 +00001041 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001042 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
dan71d89912010-05-24 13:57:42 +00001043 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1044 aBuf, WAL_HDRSIZE, 0, pWal->hdr.aFrameCksum
1045 );
dan7c246102010-04-12 19:00:29 +00001046
1047 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001048 szFrame = szPage + WAL_FRAME_HDRSIZE;
1049 aFrame = (u8 *)sqlite3_malloc(szFrame);
dan7c246102010-04-12 19:00:29 +00001050 if( !aFrame ){
drh73b64e42010-05-30 19:55:15 +00001051 rc = SQLITE_NOMEM;
1052 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001053 }
drh7ed91f22010-04-29 22:34:07 +00001054 aData = &aFrame[WAL_FRAME_HDRSIZE];
dan7c246102010-04-12 19:00:29 +00001055
1056 /* Read all frames from the log file. */
1057 iFrame = 0;
drh584c7542010-05-19 18:08:10 +00001058 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
dan7c246102010-04-12 19:00:29 +00001059 u32 pgno; /* Database page number for frame */
1060 u32 nTruncate; /* dbsize field from frame header */
1061 int isValid; /* True if this frame is valid */
1062
1063 /* Read and decode the next log frame. */
drh584c7542010-05-19 18:08:10 +00001064 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
dan7c246102010-04-12 19:00:29 +00001065 if( rc!=SQLITE_OK ) break;
drh7e263722010-05-20 21:21:09 +00001066 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
dan7c246102010-04-12 19:00:29 +00001067 if( !isValid ) break;
danc7991bd2010-05-05 19:04:59 +00001068 rc = walIndexAppend(pWal, ++iFrame, pgno);
1069 if( rc!=SQLITE_OK ) break;
dan7c246102010-04-12 19:00:29 +00001070
1071 /* If nTruncate is non-zero, this is a commit record. */
1072 if( nTruncate ){
dan71d89912010-05-24 13:57:42 +00001073 pWal->hdr.mxFrame = iFrame;
1074 pWal->hdr.nPage = nTruncate;
1075 pWal->hdr.szPage = szPage;
1076 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1077 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
dan7c246102010-04-12 19:00:29 +00001078 }
1079 }
1080
1081 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001082 }
1083
1084finished:
dan576bc322010-05-06 18:04:50 +00001085 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001086 volatile WalCkptInfo *pInfo;
1087 int i;
dan71d89912010-05-24 13:57:42 +00001088 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1089 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001090 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001091
drhdb7f6472010-06-09 14:45:12 +00001092 /* Reset the checkpoint-header. This is safe because this thread is
dan3dee6da2010-05-31 16:17:54 +00001093 ** currently holding locks that exclude all other readers, writers and
1094 ** checkpointers.
1095 */
drhdb7f6472010-06-09 14:45:12 +00001096 pInfo = walCkptInfo(pWal);
1097 pInfo->nBackfill = 0;
1098 pInfo->aReadMark[0] = 0;
1099 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
dan576bc322010-05-06 18:04:50 +00001100 }
drh73b64e42010-05-30 19:55:15 +00001101
1102recovery_error:
drhc74c3332010-05-31 12:15:19 +00001103 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dand0aa3422010-05-31 16:41:53 +00001104 walUnlockExclusive(pWal, iLock, nLock);
dan7c246102010-04-12 19:00:29 +00001105 return rc;
1106}
1107
drha8e654e2010-05-04 17:38:42 +00001108/*
dan1018e902010-05-05 15:33:05 +00001109** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001110*/
dan1018e902010-05-05 15:33:05 +00001111static void walIndexClose(Wal *pWal, int isDelete){
drh73b64e42010-05-30 19:55:15 +00001112 if( pWal->isWIndexOpen ){
drhd9e5c4f2010-05-12 18:01:39 +00001113 sqlite3OsShmClose(pWal->pDbFd, isDelete);
drh73b64e42010-05-30 19:55:15 +00001114 pWal->isWIndexOpen = 0;
drha8e654e2010-05-04 17:38:42 +00001115 }
1116}
1117
dan7c246102010-04-12 19:00:29 +00001118/*
drh181e0912010-06-01 01:08:08 +00001119** Open a connection to the WAL file associated with database zDbName.
1120** The database file must already be opened on connection pDbFd.
dan3de777f2010-04-17 12:31:37 +00001121**
1122** A SHARED lock should be held on the database file when this function
1123** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001124** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001125** were to do this just after this client opened one of these files, the
1126** system would be badly broken.
danef378022010-05-04 11:06:03 +00001127**
1128** If the log file is successfully opened, SQLITE_OK is returned and
1129** *ppWal is set to point to a new WAL handle. If an error occurs,
1130** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001131*/
drhc438efd2010-04-26 00:19:45 +00001132int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001133 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001134 sqlite3_file *pDbFd, /* The open database file */
1135 const char *zDbName, /* Name of the database file */
drh7ed91f22010-04-29 22:34:07 +00001136 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001137){
danef378022010-05-04 11:06:03 +00001138 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001139 Wal *pRet; /* Object to allocate and return */
dan7c246102010-04-12 19:00:29 +00001140 int flags; /* Flags passed to OsOpen() */
drhd9e5c4f2010-05-12 18:01:39 +00001141 char *zWal; /* Name of write-ahead log file */
dan7c246102010-04-12 19:00:29 +00001142 int nWal; /* Length of zWal in bytes */
1143
drhd9e5c4f2010-05-12 18:01:39 +00001144 assert( zDbName && zDbName[0] );
1145 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001146
drh1b78eaf2010-05-25 13:40:03 +00001147 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1148 ** this source file. Verify that the #defines of the locking byte offsets
1149 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1150 */
1151#ifdef WIN_SHM_BASE
1152 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1153#endif
1154#ifdef UNIX_SHM_BASE
1155 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1156#endif
1157
1158
drh7ed91f22010-04-29 22:34:07 +00001159 /* Allocate an instance of struct Wal to return. */
1160 *ppWal = 0;
drh686138f2010-05-12 18:10:52 +00001161 nWal = sqlite3Strlen30(zDbName) + 5;
drhd9e5c4f2010-05-12 18:01:39 +00001162 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile + nWal);
dan76ed3bc2010-05-03 17:18:24 +00001163 if( !pRet ){
1164 return SQLITE_NOMEM;
1165 }
1166
dan7c246102010-04-12 19:00:29 +00001167 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001168 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1169 pRet->pDbFd = pDbFd;
drh73b64e42010-05-30 19:55:15 +00001170 pRet->readLock = -1;
drh7e263722010-05-20 21:21:09 +00001171 sqlite3_randomness(8, &pRet->hdr.aSalt);
drhd9e5c4f2010-05-12 18:01:39 +00001172 pRet->zWalName = zWal = pVfs->szOsFile + (char*)pRet->pWalFd;
1173 sqlite3_snprintf(nWal, zWal, "%s-wal", zDbName);
1174 rc = sqlite3OsShmOpen(pDbFd);
dan7c246102010-04-12 19:00:29 +00001175
drh7ed91f22010-04-29 22:34:07 +00001176 /* Open file handle on the write-ahead log file. */
dan76ed3bc2010-05-03 17:18:24 +00001177 if( rc==SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001178 pRet->isWIndexOpen = 1;
dan76ed3bc2010-05-03 17:18:24 +00001179 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_MAIN_JOURNAL);
drhd9e5c4f2010-05-12 18:01:39 +00001180 rc = sqlite3OsOpen(pVfs, zWal, pRet->pWalFd, flags, &flags);
dan76ed3bc2010-05-03 17:18:24 +00001181 }
dan7c246102010-04-12 19:00:29 +00001182
dan7c246102010-04-12 19:00:29 +00001183 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001184 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001185 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001186 sqlite3_free(pRet);
1187 }else{
1188 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001189 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001190 }
dan7c246102010-04-12 19:00:29 +00001191 return rc;
1192}
1193
drha2a42012010-05-18 18:01:08 +00001194/*
1195** Find the smallest page number out of all pages held in the WAL that
1196** has not been returned by any prior invocation of this method on the
1197** same WalIterator object. Write into *piFrame the frame index where
1198** that page was last written into the WAL. Write into *piPage the page
1199** number.
1200**
1201** Return 0 on success. If there are no pages in the WAL with a page
1202** number larger than *piPage, then return 1.
1203*/
drh7ed91f22010-04-29 22:34:07 +00001204static int walIteratorNext(
1205 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001206 u32 *piPage, /* OUT: The page number of the next page */
1207 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001208){
drha2a42012010-05-18 18:01:08 +00001209 u32 iMin; /* Result pgno must be greater than iMin */
1210 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1211 int i; /* For looping through segments */
dan7c246102010-04-12 19:00:29 +00001212
drha2a42012010-05-18 18:01:08 +00001213 iMin = p->iPrior;
1214 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001215 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001216 struct WalSegment *pSegment = &p->aSegment[i];
dan13a3cb82010-06-11 19:04:21 +00001217 while( pSegment->iNext<pSegment->nEntry ){
drha2a42012010-05-18 18:01:08 +00001218 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001219 if( iPg>iMin ){
1220 if( iPg<iRet ){
1221 iRet = iPg;
dan13a3cb82010-06-11 19:04:21 +00001222 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
dan7c246102010-04-12 19:00:29 +00001223 }
1224 break;
1225 }
1226 pSegment->iNext++;
1227 }
dan7c246102010-04-12 19:00:29 +00001228 }
1229
drha2a42012010-05-18 18:01:08 +00001230 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001231 return (iRet==0xFFFFFFFF);
1232}
1233
dan7c246102010-04-12 19:00:29 +00001234
dan13a3cb82010-06-11 19:04:21 +00001235static void walMergesort(
1236 u32 *aContent, /* Pages in wal */
dan067f3162010-06-14 10:30:12 +00001237 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1238 ht_slot *aList, /* IN/OUT: List to sort */
drha2a42012010-05-18 18:01:08 +00001239 int *pnList /* IN/OUT: Number of elements in aList[] */
1240){
1241 int nList = *pnList;
1242 if( nList>1 ){
1243 int nLeft = nList / 2; /* Elements in left list */
1244 int nRight = nList - nLeft; /* Elements in right list */
drha2a42012010-05-18 18:01:08 +00001245 int iLeft = 0; /* Current index in aLeft */
1246 int iRight = 0; /* Current index in aright */
1247 int iOut = 0; /* Current index in output buffer */
dan067f3162010-06-14 10:30:12 +00001248 ht_slot *aLeft = aList; /* Left list */
1249 ht_slot *aRight = aList+nLeft;/* Right list */
drha2a42012010-05-18 18:01:08 +00001250
1251 /* TODO: Change to non-recursive version. */
dan13a3cb82010-06-11 19:04:21 +00001252 walMergesort(aContent, aBuffer, aLeft, &nLeft);
1253 walMergesort(aContent, aBuffer, aRight, &nRight);
drha2a42012010-05-18 18:01:08 +00001254
1255 while( iRight<nRight || iLeft<nLeft ){
dan067f3162010-06-14 10:30:12 +00001256 ht_slot logpage;
drha2a42012010-05-18 18:01:08 +00001257 Pgno dbpage;
1258
1259 if( (iLeft<nLeft)
1260 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1261 ){
1262 logpage = aLeft[iLeft++];
1263 }else{
1264 logpage = aRight[iRight++];
1265 }
1266 dbpage = aContent[logpage];
1267
1268 aBuffer[iOut++] = logpage;
1269 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1270
1271 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1272 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1273 }
1274 memcpy(aList, aBuffer, sizeof(aList[0])*iOut);
1275 *pnList = iOut;
1276 }
1277
1278#ifdef SQLITE_DEBUG
1279 {
1280 int i;
1281 for(i=1; i<*pnList; i++){
1282 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1283 }
1284 }
1285#endif
1286}
1287
dan5d656852010-06-14 07:53:26 +00001288/*
1289** Free an iterator allocated by walIteratorInit().
1290*/
1291static void walIteratorFree(WalIterator *p){
1292 sqlite3_free(p);
1293}
1294
drha2a42012010-05-18 18:01:08 +00001295/*
1296** Map the wal-index into memory owned by this thread, if it is not
1297** mapped already. Then construct a WalInterator object that can be
1298** used to loop over all pages in the WAL in ascending order.
1299**
1300** On success, make *pp point to the newly allocated WalInterator object
1301** return SQLITE_OK. Otherwise, leave *pp unchanged and return an error
1302** code.
1303**
1304** The calling routine should invoke walIteratorFree() to destroy the
1305** WalIterator object when it has finished with it. The caller must
1306** also unmap the wal-index. But the wal-index must not be unmapped
1307** prior to the WalIterator object being destroyed.
1308*/
1309static int walIteratorInit(Wal *pWal, WalIterator **pp){
dan067f3162010-06-14 10:30:12 +00001310 WalIterator *p; /* Return value */
1311 int nSegment; /* Number of segments to merge */
1312 u32 iLast; /* Last frame in log */
1313 int nByte; /* Number of bytes to allocate */
1314 int i; /* Iterator variable */
1315 ht_slot *aTmp; /* Temp space used by merge-sort */
1316 ht_slot *aSpace; /* Space at the end of the allocation */
drha2a42012010-05-18 18:01:08 +00001317
1318 /* This routine only runs while holding SQLITE_SHM_CHECKPOINT. No other
1319 ** thread is able to write to shared memory while this routine is
1320 ** running (or, indeed, while the WalIterator object exists). Hence,
dan13a3cb82010-06-11 19:04:21 +00001321 ** we can cast off the volatile qualification from shared memory
drha2a42012010-05-18 18:01:08 +00001322 */
dan1beb9392010-05-31 12:02:30 +00001323 assert( pWal->ckptLock );
dan13a3cb82010-06-11 19:04:21 +00001324 iLast = pWal->hdr.mxFrame;
drha2a42012010-05-18 18:01:08 +00001325
1326 /* Allocate space for the WalIterator object */
dan13a3cb82010-06-11 19:04:21 +00001327 nSegment = walFramePage(iLast) + 1;
1328 nByte = sizeof(WalIterator)
1329 + nSegment*(sizeof(struct WalSegment))
dan067f3162010-06-14 10:30:12 +00001330 + (nSegment+1)*(HASHTABLE_NPAGE * sizeof(ht_slot));
drh7ed91f22010-04-29 22:34:07 +00001331 p = (WalIterator *)sqlite3_malloc(nByte);
dan8f6097c2010-05-06 07:43:58 +00001332 if( !p ){
drha2a42012010-05-18 18:01:08 +00001333 return SQLITE_NOMEM;
1334 }
1335 memset(p, 0, nByte);
dan76ed3bc2010-05-03 17:18:24 +00001336
dan13a3cb82010-06-11 19:04:21 +00001337 /* Allocate space for the WalIterator object */
drha2a42012010-05-18 18:01:08 +00001338 p->nSegment = nSegment;
dan067f3162010-06-14 10:30:12 +00001339 aSpace = (ht_slot *)&p->aSegment[nSegment];
dan13a3cb82010-06-11 19:04:21 +00001340 aTmp = &aSpace[HASHTABLE_NPAGE*nSegment];
drha2a42012010-05-18 18:01:08 +00001341 for(i=0; i<nSegment; i++){
dan067f3162010-06-14 10:30:12 +00001342 volatile ht_slot *aHash;
drha2a42012010-05-18 18:01:08 +00001343 int j;
dan13a3cb82010-06-11 19:04:21 +00001344 u32 iZero;
1345 int nEntry;
1346 volatile u32 *aPgno;
dan4280eb32010-06-12 12:02:35 +00001347 int rc;
dan13a3cb82010-06-11 19:04:21 +00001348
dan4280eb32010-06-12 12:02:35 +00001349 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
1350 if( rc!=SQLITE_OK ){
dan5d656852010-06-14 07:53:26 +00001351 walIteratorFree(p);
dan4280eb32010-06-12 12:02:35 +00001352 return rc;
dan13a3cb82010-06-11 19:04:21 +00001353 }
dand60bf112010-06-14 11:18:50 +00001354 aPgno++;
1355 nEntry = ((i+1)==nSegment)?iLast-iZero:(u32 *)aHash-(u32 *)aPgno;
dan13a3cb82010-06-11 19:04:21 +00001356 iZero++;
dan13a3cb82010-06-11 19:04:21 +00001357
1358 for(j=0; j<nEntry; j++){
drha2a42012010-05-18 18:01:08 +00001359 aSpace[j] = j;
dan76ed3bc2010-05-03 17:18:24 +00001360 }
dan13a3cb82010-06-11 19:04:21 +00001361 walMergesort((u32 *)aPgno, aTmp, aSpace, &nEntry);
1362 p->aSegment[i].iZero = iZero;
1363 p->aSegment[i].nEntry = nEntry;
1364 p->aSegment[i].aIndex = aSpace;
1365 p->aSegment[i].aPgno = (u32 *)aPgno;
1366 aSpace += HASHTABLE_NPAGE;
dan7c246102010-04-12 19:00:29 +00001367 }
dan13a3cb82010-06-11 19:04:21 +00001368 assert( aSpace==aTmp );
dan7c246102010-04-12 19:00:29 +00001369
dan13a3cb82010-06-11 19:04:21 +00001370 /* Return the fully initialized WalIterator object */
dan8f6097c2010-05-06 07:43:58 +00001371 *pp = p;
drha2a42012010-05-18 18:01:08 +00001372 return SQLITE_OK ;
dan7c246102010-04-12 19:00:29 +00001373}
1374
dan7c246102010-04-12 19:00:29 +00001375/*
drh73b64e42010-05-30 19:55:15 +00001376** Copy as much content as we can from the WAL back into the database file
1377** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1378**
1379** The amount of information copies from WAL to database might be limited
1380** by active readers. This routine will never overwrite a database page
1381** that a concurrent reader might be using.
1382**
1383** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1384** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1385** checkpoints are always run by a background thread or background
1386** process, foreground threads will never block on a lengthy fsync call.
1387**
1388** Fsync is called on the WAL before writing content out of the WAL and
1389** into the database. This ensures that if the new content is persistent
1390** in the WAL and can be recovered following a power-loss or hard reset.
1391**
1392** Fsync is also called on the database file if (and only if) the entire
1393** WAL content is copied into the database file. This second fsync makes
1394** it safe to delete the WAL since the new content will persist in the
1395** database file.
1396**
1397** This routine uses and updates the nBackfill field of the wal-index header.
1398** This is the only routine tha will increase the value of nBackfill.
1399** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1400** its value.)
1401**
1402** The caller must be holding sufficient locks to ensure that no other
1403** checkpoint is running (in any other thread or process) at the same
1404** time.
dan7c246102010-04-12 19:00:29 +00001405*/
drh7ed91f22010-04-29 22:34:07 +00001406static int walCheckpoint(
1407 Wal *pWal, /* Wal connection */
danc5118782010-04-17 17:34:41 +00001408 int sync_flags, /* Flags for OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001409 int nBuf, /* Size of zBuf in bytes */
dan7c246102010-04-12 19:00:29 +00001410 u8 *zBuf /* Temporary buffer to use */
1411){
1412 int rc; /* Return code */
drh6e810962010-05-19 17:49:50 +00001413 int szPage = pWal->hdr.szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001414 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001415 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001416 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001417 u32 mxSafeFrame; /* Max frame that can be backfilled */
1418 int i; /* Loop counter */
drh73b64e42010-05-30 19:55:15 +00001419 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
dan7c246102010-04-12 19:00:29 +00001420
1421 /* Allocate the iterator */
dan8f6097c2010-05-06 07:43:58 +00001422 rc = walIteratorInit(pWal, &pIter);
drh027a1282010-05-19 01:53:53 +00001423 if( rc!=SQLITE_OK || pWal->hdr.mxFrame==0 ){
dan83f42d12010-06-04 10:37:05 +00001424 goto walcheckpoint_out;
danb6e099a2010-05-04 14:47:39 +00001425 }
1426
drh73b64e42010-05-30 19:55:15 +00001427 /*** TODO: Move this test out to the caller. Make it an assert() here ***/
drh6e810962010-05-19 17:49:50 +00001428 if( pWal->hdr.szPage!=nBuf ){
dan83f42d12010-06-04 10:37:05 +00001429 rc = SQLITE_CORRUPT_BKPT;
1430 goto walcheckpoint_out;
danb6e099a2010-05-04 14:47:39 +00001431 }
1432
drh73b64e42010-05-30 19:55:15 +00001433 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1434 ** safe to write into the database. Frames beyond mxSafeFrame might
1435 ** overwrite database pages that are in use by active readers and thus
1436 ** cannot be backfilled from the WAL.
1437 */
dand54ff602010-05-31 11:16:30 +00001438 mxSafeFrame = pWal->hdr.mxFrame;
dan13a3cb82010-06-11 19:04:21 +00001439 pInfo = walCkptInfo(pWal);
drh73b64e42010-05-30 19:55:15 +00001440 for(i=1; i<WAL_NREADER; i++){
1441 u32 y = pInfo->aReadMark[i];
drhdb7f6472010-06-09 14:45:12 +00001442 if( mxSafeFrame>=y ){
dan83f42d12010-06-04 10:37:05 +00001443 assert( y<=pWal->hdr.mxFrame );
1444 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1445 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001446 pInfo->aReadMark[i] = READMARK_NOT_USED;
drh73b64e42010-05-30 19:55:15 +00001447 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
drh2d37e1c2010-06-02 20:38:20 +00001448 }else if( rc==SQLITE_BUSY ){
drhdb7f6472010-06-09 14:45:12 +00001449 mxSafeFrame = y;
drh2d37e1c2010-06-02 20:38:20 +00001450 }else{
dan83f42d12010-06-04 10:37:05 +00001451 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001452 }
1453 }
danc5118782010-04-17 17:34:41 +00001454 }
dan7c246102010-04-12 19:00:29 +00001455
drh73b64e42010-05-30 19:55:15 +00001456 if( pInfo->nBackfill<mxSafeFrame
1457 && (rc = walLockExclusive(pWal, WAL_READ_LOCK(0), 1))==SQLITE_OK
1458 ){
1459 u32 nBackfill = pInfo->nBackfill;
1460
1461 /* Sync the WAL to disk */
1462 if( sync_flags ){
1463 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1464 }
1465
1466 /* Iterate through the contents of the WAL, copying data to the db file. */
1467 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
dan13a3cb82010-06-11 19:04:21 +00001468 assert( walFramePgno(pWal, iFrame)==iDbpage );
drh73b64e42010-05-30 19:55:15 +00001469 if( iFrame<=nBackfill || iFrame>mxSafeFrame ) continue;
1470 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage,
1471 walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE
1472 );
1473 if( rc!=SQLITE_OK ) break;
1474 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, (iDbpage-1)*szPage);
1475 if( rc!=SQLITE_OK ) break;
1476 }
1477
1478 /* If work was actually accomplished... */
dand764c7d2010-06-04 11:56:22 +00001479 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00001480 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
drh73b64e42010-05-30 19:55:15 +00001481 rc = sqlite3OsTruncate(pWal->pDbFd, ((i64)pWal->hdr.nPage*(i64)szPage));
1482 if( rc==SQLITE_OK && sync_flags ){
1483 rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1484 }
1485 }
dand764c7d2010-06-04 11:56:22 +00001486 if( rc==SQLITE_OK ){
1487 pInfo->nBackfill = mxSafeFrame;
1488 }
drh73b64e42010-05-30 19:55:15 +00001489 }
1490
1491 /* Release the reader lock held while backfilling */
1492 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
drh2d37e1c2010-06-02 20:38:20 +00001493 }else if( rc==SQLITE_BUSY ){
drh34116ea2010-05-31 12:30:52 +00001494 /* Reset the return code so as not to report a checkpoint failure
1495 ** just because active readers prevent any backfill.
1496 */
1497 rc = SQLITE_OK;
dan7c246102010-04-12 19:00:29 +00001498 }
1499
dan83f42d12010-06-04 10:37:05 +00001500 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00001501 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00001502 return rc;
1503}
1504
1505/*
1506** Close a connection to a log file.
1507*/
drhc438efd2010-04-26 00:19:45 +00001508int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00001509 Wal *pWal, /* Wal to close */
danc5118782010-04-17 17:34:41 +00001510 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001511 int nBuf,
1512 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00001513){
1514 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00001515 if( pWal ){
dan30c86292010-04-30 16:24:46 +00001516 int isDelete = 0; /* True to unlink wal and wal-index files */
1517
1518 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1519 ** ordinary, rollback-mode locking methods, this guarantees that the
1520 ** connection associated with this log file is the only connection to
1521 ** the database. In this case checkpoint the database and unlink both
1522 ** the wal and wal-index files.
1523 **
1524 ** The EXCLUSIVE lock is not released before returning.
1525 */
drhd9e5c4f2010-05-12 18:01:39 +00001526 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
dan30c86292010-04-30 16:24:46 +00001527 if( rc==SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001528 pWal->exclusiveMode = 1;
dan1beb9392010-05-31 12:02:30 +00001529 rc = sqlite3WalCheckpoint(pWal, sync_flags, nBuf, zBuf);
dan30c86292010-04-30 16:24:46 +00001530 if( rc==SQLITE_OK ){
1531 isDelete = 1;
1532 }
dan30c86292010-04-30 16:24:46 +00001533 }
1534
dan1018e902010-05-05 15:33:05 +00001535 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00001536 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00001537 if( isDelete ){
drhd9e5c4f2010-05-12 18:01:39 +00001538 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
dan30c86292010-04-30 16:24:46 +00001539 }
drhc74c3332010-05-31 12:15:19 +00001540 WALTRACE(("WAL%p: closed\n", pWal));
dan13a3cb82010-06-11 19:04:21 +00001541 sqlite3_free(pWal->apWiData);
drh7ed91f22010-04-29 22:34:07 +00001542 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00001543 }
1544 return rc;
1545}
1546
1547/*
drha2a42012010-05-18 18:01:08 +00001548** Try to read the wal-index header. Return 0 on success and 1 if
1549** there is a problem.
1550**
1551** The wal-index is in shared memory. Another thread or process might
1552** be writing the header at the same time this procedure is trying to
1553** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00001554** by verifying that both copies of the header are the same and also by
1555** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00001556**
1557** If and only if the read is consistent and the header is different from
1558** pWal->hdr, then pWal->hdr is updated to the content of the new header
1559** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00001560**
dan84670502010-05-07 05:46:23 +00001561** If the checksum cannot be verified return non-zero. If the header
1562** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00001563*/
dan84670502010-05-07 05:46:23 +00001564int walIndexTryHdr(Wal *pWal, int *pChanged){
dan4280eb32010-06-12 12:02:35 +00001565 u32 aCksum[2]; /* Checksum on the header content */
1566 WalIndexHdr h1, h2; /* Two copies of the header content */
1567 WalIndexHdr volatile *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00001568
dan4280eb32010-06-12 12:02:35 +00001569 /* The first page of the wal-index must be mapped at this point. */
1570 assert( pWal->nWiData>0 && pWal->apWiData[0] );
drh79e6c782010-04-30 02:13:26 +00001571
drh73b64e42010-05-30 19:55:15 +00001572 /* Read the header. This might happen currently with a write to the
1573 ** same area of shared memory on a different CPU in a SMP,
1574 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00001575 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00001576 **
1577 ** There are two copies of the header at the beginning of the wal-index.
1578 ** When reading, read [0] first then [1]. Writes are in the reverse order.
1579 ** Memory barriers are used to prevent the compiler or the hardware from
1580 ** reordering the reads and writes.
danb9bf16b2010-04-14 11:23:30 +00001581 */
dan4280eb32010-06-12 12:02:35 +00001582 aHdr = walIndexHdr(pWal);
1583 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
drh286a2882010-05-20 23:51:06 +00001584 sqlite3OsShmBarrier(pWal->pDbFd);
dan4280eb32010-06-12 12:02:35 +00001585 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00001586
drhf0b20f82010-05-21 13:16:18 +00001587 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
1588 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00001589 }
drh4b82c382010-05-31 18:24:19 +00001590 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00001591 return 1; /* Malformed header - probably all zeros */
1592 }
danb8fd6c22010-05-24 10:39:36 +00001593 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00001594 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
1595 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00001596 }
1597
drhf0b20f82010-05-21 13:16:18 +00001598 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00001599 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00001600 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh7e263722010-05-20 21:21:09 +00001601 pWal->szPage = pWal->hdr.szPage;
danb9bf16b2010-04-14 11:23:30 +00001602 }
dan84670502010-05-07 05:46:23 +00001603
1604 /* The header was successfully read. Return zero. */
1605 return 0;
danb9bf16b2010-04-14 11:23:30 +00001606}
1607
1608/*
drha2a42012010-05-18 18:01:08 +00001609** Read the wal-index header from the wal-index and into pWal->hdr.
1610** If the wal-header appears to be corrupt, try to recover the log
1611** before returning.
1612**
1613** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
1614** changed by this opertion. If pWal->hdr is unchanged, set *pChanged
1615** to 0.
1616**
1617** This routine also maps the wal-index content into memory and assigns
1618** ownership of that mapping to the current thread. In some implementations,
1619** only one thread at a time can hold a mapping of the wal-index. Hence,
1620** the caller should strive to invoke walIndexUnmap() as soon as possible
1621** after this routine returns.
danb9bf16b2010-04-14 11:23:30 +00001622**
drh7ed91f22010-04-29 22:34:07 +00001623** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00001624** Otherwise an SQLite error code.
1625*/
drh7ed91f22010-04-29 22:34:07 +00001626static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00001627 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00001628 int badHdr; /* True if a header read failed */
dan4280eb32010-06-12 12:02:35 +00001629 volatile u32 *page0;
danb9bf16b2010-04-14 11:23:30 +00001630
dan4280eb32010-06-12 12:02:35 +00001631 /* Ensure that page 0 of the wal-index (the page that contains the
1632 ** wal-index header) is mapped. Return early if an error occurs here.
1633 */
dana8614692010-05-06 14:42:34 +00001634 assert( pChanged );
dan4280eb32010-06-12 12:02:35 +00001635 rc = walIndexPage(pWal, 0, &page0);
danc7991bd2010-05-05 19:04:59 +00001636 if( rc!=SQLITE_OK ){
1637 return rc;
dan4280eb32010-06-12 12:02:35 +00001638 };
1639 assert( page0 || pWal->writeLock==0 );
drh7ed91f22010-04-29 22:34:07 +00001640
dan4280eb32010-06-12 12:02:35 +00001641 /* If the first page of the wal-index has been mapped, try to read the
1642 ** wal-index header immediately, without holding any lock. This usually
1643 ** works, but may fail if the wal-index header is corrupt or currently
1644 ** being modified by another user.
danb9bf16b2010-04-14 11:23:30 +00001645 */
dan4280eb32010-06-12 12:02:35 +00001646 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
drhbab7b912010-05-26 17:31:58 +00001647
drh73b64e42010-05-30 19:55:15 +00001648 /* If the first attempt failed, it might have been due to a race
1649 ** with a writer. So get a WRITE lock and try again.
1650 */
dand54ff602010-05-31 11:16:30 +00001651 assert( badHdr==0 || pWal->writeLock==0 );
dan4280eb32010-06-12 12:02:35 +00001652 if( badHdr && SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
1653 pWal->writeLock = 1;
1654 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
drh73b64e42010-05-30 19:55:15 +00001655 badHdr = walIndexTryHdr(pWal, pChanged);
1656 if( badHdr ){
1657 /* If the wal-index header is still malformed even while holding
1658 ** a WRITE lock, it can only mean that the header is corrupted and
1659 ** needs to be reconstructed. So run recovery to do exactly that.
1660 */
drhbab7b912010-05-26 17:31:58 +00001661 rc = walIndexRecover(pWal);
dan3dee6da2010-05-31 16:17:54 +00001662 *pChanged = 1;
drhbab7b912010-05-26 17:31:58 +00001663 }
drhbab7b912010-05-26 17:31:58 +00001664 }
dan4280eb32010-06-12 12:02:35 +00001665 pWal->writeLock = 0;
1666 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
danb9bf16b2010-04-14 11:23:30 +00001667 }
1668
danb9bf16b2010-04-14 11:23:30 +00001669 return rc;
1670}
1671
1672/*
drh73b64e42010-05-30 19:55:15 +00001673** This is the value that walTryBeginRead returns when it needs to
1674** be retried.
dan7c246102010-04-12 19:00:29 +00001675*/
drh73b64e42010-05-30 19:55:15 +00001676#define WAL_RETRY (-1)
dan64d039e2010-04-13 19:27:31 +00001677
drh73b64e42010-05-30 19:55:15 +00001678/*
1679** Attempt to start a read transaction. This might fail due to a race or
1680** other transient condition. When that happens, it returns WAL_RETRY to
1681** indicate to the caller that it is safe to retry immediately.
1682**
1683** On success return SQLITE_OK. On a permantent failure (such an
1684** I/O error or an SQLITE_BUSY because another process is running
1685** recovery) return a positive error code.
1686**
1687** On success, this routine obtains a read lock on
1688** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
1689** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
1690** that means the Wal does not hold any read lock. The reader must not
1691** access any database page that is modified by a WAL frame up to and
1692** including frame number aReadMark[pWal->readLock]. The reader will
1693** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
1694** Or if pWal->readLock==0, then the reader will ignore the WAL
1695** completely and get all content directly from the database file.
1696** When the read transaction is completed, the caller must release the
1697** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
1698**
1699** This routine uses the nBackfill and aReadMark[] fields of the header
1700** to select a particular WAL_READ_LOCK() that strives to let the
1701** checkpoint process do as much work as possible. This routine might
1702** update values of the aReadMark[] array in the header, but if it does
1703** so it takes care to hold an exclusive lock on the corresponding
1704** WAL_READ_LOCK() while changing values.
1705*/
drhaab4c022010-06-02 14:45:51 +00001706static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00001707 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
1708 u32 mxReadMark; /* Largest aReadMark[] value */
1709 int mxI; /* Index of largest aReadMark[] value */
1710 int i; /* Loop counter */
dan13a3cb82010-06-11 19:04:21 +00001711 int rc = SQLITE_OK; /* Return code */
dan64d039e2010-04-13 19:27:31 +00001712
drh61e4ace2010-05-31 20:28:37 +00001713 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00001714
drhaab4c022010-06-02 14:45:51 +00001715 /* Take steps to avoid spinning forever if there is a protocol error. */
1716 if( cnt>5 ){
1717 if( cnt>100 ) return SQLITE_PROTOCOL;
1718 sqlite3OsSleep(pWal->pVfs, 1);
1719 }
1720
drh73b64e42010-05-30 19:55:15 +00001721 if( !useWal ){
drh7ed91f22010-04-29 22:34:07 +00001722 rc = walIndexReadHdr(pWal, pChanged);
drh73b64e42010-05-30 19:55:15 +00001723 if( rc==SQLITE_BUSY ){
1724 /* If there is not a recovery running in another thread or process
1725 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
1726 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
1727 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
1728 ** would be technically correct. But the race is benign since with
1729 ** WAL_RETRY this routine will be called again and will probably be
1730 ** right on the second iteration.
1731 */
1732 rc = walLockShared(pWal, WAL_RECOVER_LOCK);
1733 if( rc==SQLITE_OK ){
1734 walUnlockShared(pWal, WAL_RECOVER_LOCK);
1735 rc = WAL_RETRY;
1736 }else if( rc==SQLITE_BUSY ){
1737 rc = SQLITE_BUSY_RECOVERY;
1738 }
1739 }
drh73b64e42010-05-30 19:55:15 +00001740 }
1741 if( rc!=SQLITE_OK ){
1742 return rc;
1743 }
1744
dan13a3cb82010-06-11 19:04:21 +00001745 pInfo = walCkptInfo(pWal);
drh73b64e42010-05-30 19:55:15 +00001746 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
1747 /* The WAL has been completely backfilled (or it is empty).
1748 ** and can be safely ignored.
1749 */
1750 rc = walLockShared(pWal, WAL_READ_LOCK(0));
daneb8cb3a2010-06-05 18:34:26 +00001751 sqlite3OsShmBarrier(pWal->pDbFd);
drh73b64e42010-05-30 19:55:15 +00001752 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00001753 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00001754 /* It is not safe to allow the reader to continue here if frames
1755 ** may have been appended to the log before READ_LOCK(0) was obtained.
1756 ** When holding READ_LOCK(0), the reader ignores the entire log file,
1757 ** which implies that the database file contains a trustworthy
1758 ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from
1759 ** happening, this is usually correct.
1760 **
1761 ** However, if frames have been appended to the log (or if the log
1762 ** is wrapped and written for that matter) before the READ_LOCK(0)
1763 ** is obtained, that is not necessarily true. A checkpointer may
1764 ** have started to backfill the appended frames but crashed before
1765 ** it finished. Leaving a corrupt image in the database file.
1766 */
drh73b64e42010-05-30 19:55:15 +00001767 walUnlockShared(pWal, WAL_READ_LOCK(0));
1768 return WAL_RETRY;
1769 }
1770 pWal->readLock = 0;
1771 return SQLITE_OK;
1772 }else if( rc!=SQLITE_BUSY ){
1773 return rc;
dan64d039e2010-04-13 19:27:31 +00001774 }
dan7c246102010-04-12 19:00:29 +00001775 }
danba515902010-04-30 09:32:06 +00001776
drh73b64e42010-05-30 19:55:15 +00001777 /* If we get this far, it means that the reader will want to use
1778 ** the WAL to get at content from recent commits. The job now is
1779 ** to select one of the aReadMark[] entries that is closest to
1780 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
1781 */
1782 mxReadMark = 0;
1783 mxI = 0;
1784 for(i=1; i<WAL_NREADER; i++){
1785 u32 thisMark = pInfo->aReadMark[i];
drhdb7f6472010-06-09 14:45:12 +00001786 if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
1787 assert( thisMark!=READMARK_NOT_USED );
drh73b64e42010-05-30 19:55:15 +00001788 mxReadMark = thisMark;
1789 mxI = i;
1790 }
1791 }
1792 if( mxI==0 ){
1793 /* If we get here, it means that all of the aReadMark[] entries between
1794 ** 1 and WAL_NREADER-1 are zero. Try to initialize aReadMark[1] to
1795 ** be mxFrame, then retry.
1796 */
1797 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), 1);
1798 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001799 pInfo->aReadMark[1] = pWal->hdr.mxFrame;
drh73b64e42010-05-30 19:55:15 +00001800 walUnlockExclusive(pWal, WAL_READ_LOCK(1), 1);
drh38933f22010-06-02 15:43:18 +00001801 rc = WAL_RETRY;
1802 }else if( rc==SQLITE_BUSY ){
1803 rc = WAL_RETRY;
drh73b64e42010-05-30 19:55:15 +00001804 }
drh38933f22010-06-02 15:43:18 +00001805 return rc;
drh73b64e42010-05-30 19:55:15 +00001806 }else{
1807 if( mxReadMark < pWal->hdr.mxFrame ){
dand54ff602010-05-31 11:16:30 +00001808 for(i=1; i<WAL_NREADER; i++){
drh73b64e42010-05-30 19:55:15 +00001809 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1810 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001811 mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
drh73b64e42010-05-30 19:55:15 +00001812 mxI = i;
1813 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1814 break;
drh38933f22010-06-02 15:43:18 +00001815 }else if( rc!=SQLITE_BUSY ){
1816 return rc;
drh73b64e42010-05-30 19:55:15 +00001817 }
1818 }
1819 }
1820
1821 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
1822 if( rc ){
1823 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
1824 }
daneb8cb3a2010-06-05 18:34:26 +00001825 /* Now that the read-lock has been obtained, check that neither the
1826 ** value in the aReadMark[] array or the contents of the wal-index
1827 ** header have changed.
1828 **
1829 ** It is necessary to check that the wal-index header did not change
1830 ** between the time it was read and when the shared-lock was obtained
1831 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
1832 ** that the log file may have been wrapped by a writer, or that frames
1833 ** that occur later in the log than pWal->hdr.mxFrame may have been
1834 ** copied into the database by a checkpointer. If either of these things
1835 ** happened, then reading the database with the current value of
1836 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
1837 ** instead.
1838 **
dan640aac42010-06-05 19:18:59 +00001839 ** This does not guarantee that the copy of the wal-index header is up to
1840 ** date before proceeding. That would not be possible without somehow
1841 ** blocking writers. It only guarantees that a dangerous checkpoint or
daneb8cb3a2010-06-05 18:34:26 +00001842 ** log-wrap (either of which would require an exclusive lock on
1843 ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
1844 */
1845 sqlite3OsShmBarrier(pWal->pDbFd);
drh73b64e42010-05-30 19:55:15 +00001846 if( pInfo->aReadMark[mxI]!=mxReadMark
dan4280eb32010-06-12 12:02:35 +00001847 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
drh73b64e42010-05-30 19:55:15 +00001848 ){
1849 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
1850 return WAL_RETRY;
1851 }else{
drhdb7f6472010-06-09 14:45:12 +00001852 assert( mxReadMark<=pWal->hdr.mxFrame );
drh73b64e42010-05-30 19:55:15 +00001853 pWal->readLock = mxI;
1854 }
1855 }
1856 return rc;
1857}
1858
1859/*
1860** Begin a read transaction on the database.
1861**
1862** This routine used to be called sqlite3OpenSnapshot() and with good reason:
1863** it takes a snapshot of the state of the WAL and wal-index for the current
1864** instant in time. The current thread will continue to use this snapshot.
1865** Other threads might append new content to the WAL and wal-index but
1866** that extra content is ignored by the current thread.
1867**
1868** If the database contents have changes since the previous read
1869** transaction, then *pChanged is set to 1 before returning. The
1870** Pager layer will use this to know that is cache is stale and
1871** needs to be flushed.
1872*/
1873int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
1874 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00001875 int cnt = 0; /* Number of TryBeginRead attempts */
drh73b64e42010-05-30 19:55:15 +00001876
1877 do{
drhaab4c022010-06-02 14:45:51 +00001878 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00001879 }while( rc==WAL_RETRY );
dan7c246102010-04-12 19:00:29 +00001880 return rc;
1881}
1882
1883/*
drh73b64e42010-05-30 19:55:15 +00001884** Finish with a read transaction. All this does is release the
1885** read-lock.
dan7c246102010-04-12 19:00:29 +00001886*/
drh73b64e42010-05-30 19:55:15 +00001887void sqlite3WalEndReadTransaction(Wal *pWal){
1888 if( pWal->readLock>=0 ){
1889 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
1890 pWal->readLock = -1;
1891 }
dan7c246102010-04-12 19:00:29 +00001892}
1893
dan5e0ce872010-04-28 17:48:44 +00001894/*
drh73b64e42010-05-30 19:55:15 +00001895** Read a page from the WAL, if it is present in the WAL and if the
1896** current read transaction is configured to use the WAL.
1897**
1898** The *pInWal is set to 1 if the requested page is in the WAL and
1899** has been loaded. Or *pInWal is set to 0 if the page was not in
1900** the WAL and needs to be read out of the database.
dan7c246102010-04-12 19:00:29 +00001901*/
danb6e099a2010-05-04 14:47:39 +00001902int sqlite3WalRead(
danbb23aff2010-05-10 14:46:09 +00001903 Wal *pWal, /* WAL handle */
1904 Pgno pgno, /* Database page number to read data for */
1905 int *pInWal, /* OUT: True if data is read from WAL */
1906 int nOut, /* Size of buffer pOut in bytes */
1907 u8 *pOut /* Buffer to write page data to */
danb6e099a2010-05-04 14:47:39 +00001908){
danbb23aff2010-05-10 14:46:09 +00001909 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00001910 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00001911 int iHash; /* Used to loop through N hash tables */
dan7c246102010-04-12 19:00:29 +00001912
drhaab4c022010-06-02 14:45:51 +00001913 /* This routine is only be called from within a read transaction. */
1914 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00001915
danbb23aff2010-05-10 14:46:09 +00001916 /* If the "last page" field of the wal-index header snapshot is 0, then
1917 ** no data will be read from the wal under any circumstances. Return early
drh73b64e42010-05-30 19:55:15 +00001918 ** in this case to avoid the walIndexMap/Unmap overhead. Likewise, if
1919 ** pWal->readLock==0, then the WAL is ignored by the reader so
1920 ** return early, as if the WAL were empty.
danbb23aff2010-05-10 14:46:09 +00001921 */
drh73b64e42010-05-30 19:55:15 +00001922 if( iLast==0 || pWal->readLock==0 ){
danbb23aff2010-05-10 14:46:09 +00001923 *pInWal = 0;
1924 return SQLITE_OK;
1925 }
1926
danbb23aff2010-05-10 14:46:09 +00001927 /* Search the hash table or tables for an entry matching page number
1928 ** pgno. Each iteration of the following for() loop searches one
1929 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
1930 **
1931 ** This code may run concurrently to the code in walIndexAppend()
1932 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00001933 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00001934 ** slot (aHash[iKey]) may have been added before or after the
1935 ** current read transaction was opened. Values added after the
1936 ** read transaction was opened may have been written incorrectly -
1937 ** i.e. these slots may contain garbage data. However, we assume
1938 ** that any slots written before the current read transaction was
1939 ** opened remain unmodified.
1940 **
1941 ** For the reasons above, the if(...) condition featured in the inner
1942 ** loop of the following block is more stringent that would be required
1943 ** if we had exclusive access to the hash-table:
1944 **
1945 ** (aPgno[iFrame]==pgno):
1946 ** This condition filters out normal hash-table collisions.
1947 **
1948 ** (iFrame<=iLast):
1949 ** This condition filters out entries that were added to the hash
1950 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00001951 */
dan13a3cb82010-06-11 19:04:21 +00001952 for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
dan067f3162010-06-14 10:30:12 +00001953 volatile ht_slot *aHash; /* Pointer to hash table */
1954 volatile u32 *aPgno; /* Pointer to array of page numbers */
danbb23aff2010-05-10 14:46:09 +00001955 u32 iZero; /* Frame number corresponding to aPgno[0] */
1956 int iKey; /* Hash slot index */
dan4280eb32010-06-12 12:02:35 +00001957 int rc;
danbb23aff2010-05-10 14:46:09 +00001958
dan4280eb32010-06-12 12:02:35 +00001959 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
1960 if( rc!=SQLITE_OK ){
1961 return rc;
1962 }
dan6f150142010-05-21 15:31:56 +00001963 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
danbb23aff2010-05-10 14:46:09 +00001964 u32 iFrame = aHash[iKey] + iZero;
dand60bf112010-06-14 11:18:50 +00001965 if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
dan493cc592010-06-05 18:12:23 +00001966 assert( iFrame>iRead );
danbb23aff2010-05-10 14:46:09 +00001967 iRead = iFrame;
1968 }
dan7c246102010-04-12 19:00:29 +00001969 }
1970 }
dan7c246102010-04-12 19:00:29 +00001971
danbb23aff2010-05-10 14:46:09 +00001972#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1973 /* If expensive assert() statements are available, do a linear search
1974 ** of the wal-index file content. Make sure the results agree with the
1975 ** result obtained using the hash indexes above. */
1976 {
1977 u32 iRead2 = 0;
1978 u32 iTest;
1979 for(iTest=iLast; iTest>0; iTest--){
dan13a3cb82010-06-11 19:04:21 +00001980 if( walFramePgno(pWal, iTest)==pgno ){
danbb23aff2010-05-10 14:46:09 +00001981 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00001982 break;
1983 }
dan7c246102010-04-12 19:00:29 +00001984 }
danbb23aff2010-05-10 14:46:09 +00001985 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00001986 }
danbb23aff2010-05-10 14:46:09 +00001987#endif
dancd11fb22010-04-26 10:40:52 +00001988
dan7c246102010-04-12 19:00:29 +00001989 /* If iRead is non-zero, then it is the log frame number that contains the
1990 ** required page. Read and return data from the log file.
1991 */
1992 if( iRead ){
drh6e810962010-05-19 17:49:50 +00001993 i64 iOffset = walFrameOffset(iRead, pWal->hdr.szPage) + WAL_FRAME_HDRSIZE;
drh7ed91f22010-04-29 22:34:07 +00001994 *pInWal = 1;
drhd9e5c4f2010-05-12 18:01:39 +00001995 return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset);
dan7c246102010-04-12 19:00:29 +00001996 }
1997
drh7ed91f22010-04-29 22:34:07 +00001998 *pInWal = 0;
dan7c246102010-04-12 19:00:29 +00001999 return SQLITE_OK;
2000}
2001
2002
2003/*
2004** Set *pPgno to the size of the database file (or zero, if unknown).
2005*/
drh7ed91f22010-04-29 22:34:07 +00002006void sqlite3WalDbsize(Wal *pWal, Pgno *pPgno){
drhaab4c022010-06-02 14:45:51 +00002007 assert( pWal->readLock>=0 || pWal->lockError );
drh7ed91f22010-04-29 22:34:07 +00002008 *pPgno = pWal->hdr.nPage;
dan7c246102010-04-12 19:00:29 +00002009}
2010
dan30c86292010-04-30 16:24:46 +00002011
drh73b64e42010-05-30 19:55:15 +00002012/*
2013** This function starts a write transaction on the WAL.
2014**
2015** A read transaction must have already been started by a prior call
2016** to sqlite3WalBeginReadTransaction().
2017**
2018** If another thread or process has written into the database since
2019** the read transaction was started, then it is not possible for this
2020** thread to write as doing so would cause a fork. So this routine
2021** returns SQLITE_BUSY in that case and no write transaction is started.
2022**
2023** There can only be a single writer active at a time.
2024*/
2025int sqlite3WalBeginWriteTransaction(Wal *pWal){
2026 int rc;
drh73b64e42010-05-30 19:55:15 +00002027
2028 /* Cannot start a write transaction without first holding a read
2029 ** transaction. */
2030 assert( pWal->readLock>=0 );
2031
2032 /* Only one writer allowed at a time. Get the write lock. Return
2033 ** SQLITE_BUSY if unable.
2034 */
2035 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2036 if( rc ){
2037 return rc;
2038 }
drhc99597c2010-05-31 01:41:15 +00002039 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00002040
2041 /* If another connection has written to the database file since the
2042 ** time the read transaction on this connection was started, then
2043 ** the write is disallowed.
2044 */
dan4280eb32010-06-12 12:02:35 +00002045 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
drh73b64e42010-05-30 19:55:15 +00002046 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00002047 pWal->writeLock = 0;
dan9971e712010-06-01 15:44:57 +00002048 rc = SQLITE_BUSY;
drh73b64e42010-05-30 19:55:15 +00002049 }
2050
drh7ed91f22010-04-29 22:34:07 +00002051 return rc;
dan7c246102010-04-12 19:00:29 +00002052}
2053
dan74d6cd82010-04-24 18:44:05 +00002054/*
drh73b64e42010-05-30 19:55:15 +00002055** End a write transaction. The commit has already been done. This
2056** routine merely releases the lock.
2057*/
2058int sqlite3WalEndWriteTransaction(Wal *pWal){
2059 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00002060 pWal->writeLock = 0;
drh73b64e42010-05-30 19:55:15 +00002061 return SQLITE_OK;
2062}
2063
2064/*
dan74d6cd82010-04-24 18:44:05 +00002065** If any data has been written (but not committed) to the log file, this
2066** function moves the write-pointer back to the start of the transaction.
2067**
2068** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00002069** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00002070** other than SQLITE_OK, it is not invoked again and the error code is
2071** returned to the caller.
2072**
2073** Otherwise, if the callback function does not return an error, this
2074** function returns SQLITE_OK.
2075*/
drh7ed91f22010-04-29 22:34:07 +00002076int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00002077 int rc = SQLITE_OK;
drh73b64e42010-05-30 19:55:15 +00002078 if( pWal->writeLock ){
drh027a1282010-05-19 01:53:53 +00002079 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00002080 Pgno iFrame;
2081
dan5d656852010-06-14 07:53:26 +00002082 /* Restore the clients cache of the wal-index header to the state it
2083 ** was in before the client began writing to the database.
2084 */
dan067f3162010-06-14 10:30:12 +00002085 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
dan5d656852010-06-14 07:53:26 +00002086
2087 for(iFrame=pWal->hdr.mxFrame+1;
2088 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
2089 iFrame++
2090 ){
2091 /* This call cannot fail. Unless the page for which the page number
2092 ** is passed as the second argument is (a) in the cache and
2093 ** (b) has an outstanding reference, then xUndo is either a no-op
2094 ** (if (a) is false) or simply expels the page from the cache (if (b)
2095 ** is false).
2096 **
2097 ** If the upper layer is doing a rollback, it is guaranteed that there
2098 ** are no outstanding references to any page other than page 1. And
2099 ** page 1 is never written to the log until the transaction is
2100 ** committed. As a result, the call to xUndo may not fail.
2101 */
dan5d656852010-06-14 07:53:26 +00002102 assert( walFramePgno(pWal, iFrame)!=1 );
2103 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
dan6f150142010-05-21 15:31:56 +00002104 }
dan5d656852010-06-14 07:53:26 +00002105 walCleanupHash(pWal);
dan74d6cd82010-04-24 18:44:05 +00002106 }
dan5d656852010-06-14 07:53:26 +00002107 assert( rc==SQLITE_OK );
dan74d6cd82010-04-24 18:44:05 +00002108 return rc;
2109}
2110
dan71d89912010-05-24 13:57:42 +00002111/*
2112** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2113** values. This function populates the array with values required to
2114** "rollback" the write position of the WAL handle back to the current
2115** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00002116*/
dan71d89912010-05-24 13:57:42 +00002117void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00002118 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00002119 aWalData[0] = pWal->hdr.mxFrame;
2120 aWalData[1] = pWal->hdr.aFrameCksum[0];
2121 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00002122 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00002123}
2124
dan71d89912010-05-24 13:57:42 +00002125/*
2126** Move the write position of the WAL back to the point identified by
2127** the values in the aWalData[] array. aWalData must point to an array
2128** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2129** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00002130*/
dan71d89912010-05-24 13:57:42 +00002131int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00002132 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00002133
dan6e6bd562010-06-02 18:59:03 +00002134 assert( pWal->writeLock );
2135 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2136
2137 if( aWalData[3]!=pWal->nCkpt ){
2138 /* This savepoint was opened immediately after the write-transaction
2139 ** was started. Right after that, the writer decided to wrap around
2140 ** to the start of the log. Update the savepoint values to match.
2141 */
2142 aWalData[0] = 0;
2143 aWalData[3] = pWal->nCkpt;
2144 }
2145
dan71d89912010-05-24 13:57:42 +00002146 if( aWalData[0]<pWal->hdr.mxFrame ){
dan71d89912010-05-24 13:57:42 +00002147 pWal->hdr.mxFrame = aWalData[0];
2148 pWal->hdr.aFrameCksum[0] = aWalData[1];
2149 pWal->hdr.aFrameCksum[1] = aWalData[2];
dan5d656852010-06-14 07:53:26 +00002150 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00002151 }
dan6e6bd562010-06-02 18:59:03 +00002152
dan4cd78b42010-04-26 16:57:10 +00002153 return rc;
2154}
2155
dan9971e712010-06-01 15:44:57 +00002156/*
2157** This function is called just before writing a set of frames to the log
2158** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2159** to the current log file, it is possible to overwrite the start of the
2160** existing log file with the new frames (i.e. "reset" the log). If so,
2161** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2162** unchanged.
2163**
2164** SQLITE_OK is returned if no error is encountered (regardless of whether
2165** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
2166** if some error
2167*/
2168static int walRestartLog(Wal *pWal){
2169 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00002170 int cnt;
2171
dan13a3cb82010-06-11 19:04:21 +00002172 if( pWal->readLock==0 ){
dan9971e712010-06-01 15:44:57 +00002173 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2174 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2175 if( pInfo->nBackfill>0 ){
2176 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2177 if( rc==SQLITE_OK ){
2178 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2179 ** readers are currently using the WAL), then the transactions
2180 ** frames will overwrite the start of the existing log. Update the
2181 ** wal-index header to reflect this.
2182 **
2183 ** In theory it would be Ok to update the cache of the header only
2184 ** at this point. But updating the actual wal-index header is also
2185 ** safe and means there is no special case for sqlite3WalUndo()
2186 ** to handle if this transaction is rolled back.
2187 */
dan199100e2010-06-09 16:58:49 +00002188 int i; /* Loop counter */
dan9971e712010-06-01 15:44:57 +00002189 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
2190 pWal->nCkpt++;
2191 pWal->hdr.mxFrame = 0;
2192 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
2193 sqlite3_randomness(4, &aSalt[1]);
2194 walIndexWriteHdr(pWal);
dan199100e2010-06-09 16:58:49 +00002195 pInfo->nBackfill = 0;
2196 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
2197 assert( pInfo->aReadMark[0]==0 );
dan9971e712010-06-01 15:44:57 +00002198 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2199 }
2200 }
2201 walUnlockShared(pWal, WAL_READ_LOCK(0));
2202 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00002203 cnt = 0;
dan9971e712010-06-01 15:44:57 +00002204 do{
2205 int notUsed;
drhaab4c022010-06-02 14:45:51 +00002206 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00002207 }while( rc==WAL_RETRY );
dan9971e712010-06-01 15:44:57 +00002208 }
2209 return rc;
2210}
2211
dan7c246102010-04-12 19:00:29 +00002212/*
dan4cd78b42010-04-26 16:57:10 +00002213** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00002214** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00002215*/
drhc438efd2010-04-26 00:19:45 +00002216int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00002217 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00002218 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00002219 PgHdr *pList, /* List of dirty pages to write */
2220 Pgno nTruncate, /* Database size after this commit */
2221 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00002222 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00002223){
dan7c246102010-04-12 19:00:29 +00002224 int rc; /* Used to catch return codes */
2225 u32 iFrame; /* Next frame address */
drh7ed91f22010-04-29 22:34:07 +00002226 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
dan7c246102010-04-12 19:00:29 +00002227 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00002228 PgHdr *pLast = 0; /* Last frame in list */
dan7c246102010-04-12 19:00:29 +00002229 int nLast = 0; /* Number of extra copies of last page */
2230
dan7c246102010-04-12 19:00:29 +00002231 assert( pList );
drh73b64e42010-05-30 19:55:15 +00002232 assert( pWal->writeLock );
dan7c246102010-04-12 19:00:29 +00002233
drhc74c3332010-05-31 12:15:19 +00002234#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2235 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2236 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2237 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2238 }
2239#endif
2240
dan9971e712010-06-01 15:44:57 +00002241 /* See if it is possible to write these frames into the start of the
2242 ** log file, instead of appending to it at pWal->hdr.mxFrame.
2243 */
2244 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
dan9971e712010-06-01 15:44:57 +00002245 return rc;
2246 }
dan9971e712010-06-01 15:44:57 +00002247
drha2a42012010-05-18 18:01:08 +00002248 /* If this is the first frame written into the log, write the WAL
2249 ** header to the start of the WAL file. See comments at the top of
2250 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00002251 */
drh027a1282010-05-19 01:53:53 +00002252 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00002253 if( iFrame==0 ){
drh23ea97b2010-05-20 16:45:58 +00002254 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assembly wal-header in */
danb8fd6c22010-05-24 10:39:36 +00002255 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
drh23ea97b2010-05-20 16:45:58 +00002256 sqlite3Put4byte(&aWalHdr[4], 3007000);
2257 sqlite3Put4byte(&aWalHdr[8], szPage);
drh7e263722010-05-20 21:21:09 +00002258 pWal->szPage = szPage;
danb8fd6c22010-05-24 10:39:36 +00002259 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
drh23ea97b2010-05-20 16:45:58 +00002260 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drh7e263722010-05-20 21:21:09 +00002261 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
drh23ea97b2010-05-20 16:45:58 +00002262 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00002263 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00002264 if( rc!=SQLITE_OK ){
2265 return rc;
2266 }
dan71d89912010-05-24 13:57:42 +00002267 walChecksumBytes(1, aWalHdr, sizeof(aWalHdr), 0, pWal->hdr.aFrameCksum);
dan97a31352010-04-16 13:59:31 +00002268 }
drh7e263722010-05-20 21:21:09 +00002269 assert( pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00002270
dan9971e712010-06-01 15:44:57 +00002271 /* Write the log file. */
dan7c246102010-04-12 19:00:29 +00002272 for(p=pList; p; p=p->pDirty){
2273 u32 nDbsize; /* Db-size field for frame header */
2274 i64 iOffset; /* Write offset in log file */
2275
drh6e810962010-05-19 17:49:50 +00002276 iOffset = walFrameOffset(++iFrame, szPage);
dan7c246102010-04-12 19:00:29 +00002277
2278 /* Populate and write the frame header */
2279 nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0;
drh7e263722010-05-20 21:21:09 +00002280 walEncodeFrame(pWal, p->pgno, nDbsize, p->pData, aFrame);
drhd9e5c4f2010-05-12 18:01:39 +00002281 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
dan7c246102010-04-12 19:00:29 +00002282 if( rc!=SQLITE_OK ){
2283 return rc;
2284 }
2285
2286 /* Write the page data */
drh6e810962010-05-19 17:49:50 +00002287 rc = sqlite3OsWrite(pWal->pWalFd, p->pData, szPage, iOffset+sizeof(aFrame));
dan7c246102010-04-12 19:00:29 +00002288 if( rc!=SQLITE_OK ){
2289 return rc;
2290 }
2291 pLast = p;
2292 }
2293
2294 /* Sync the log file if the 'isSync' flag was specified. */
danc5118782010-04-17 17:34:41 +00002295 if( sync_flags ){
drhd9e5c4f2010-05-12 18:01:39 +00002296 i64 iSegment = sqlite3OsSectorSize(pWal->pWalFd);
drh6e810962010-05-19 17:49:50 +00002297 i64 iOffset = walFrameOffset(iFrame+1, szPage);
dan67032392010-04-17 15:42:43 +00002298
2299 assert( isCommit );
drh69c46962010-05-17 20:16:50 +00002300 assert( iSegment>0 );
dan7c246102010-04-12 19:00:29 +00002301
dan7c246102010-04-12 19:00:29 +00002302 iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment);
2303 while( iOffset<iSegment ){
drh7e263722010-05-20 21:21:09 +00002304 walEncodeFrame(pWal, pLast->pgno, nTruncate, pLast->pData, aFrame);
drhd9e5c4f2010-05-12 18:01:39 +00002305 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
dan7c246102010-04-12 19:00:29 +00002306 if( rc!=SQLITE_OK ){
2307 return rc;
2308 }
2309
drh7ed91f22010-04-29 22:34:07 +00002310 iOffset += WAL_FRAME_HDRSIZE;
drh6e810962010-05-19 17:49:50 +00002311 rc = sqlite3OsWrite(pWal->pWalFd, pLast->pData, szPage, iOffset);
dan7c246102010-04-12 19:00:29 +00002312 if( rc!=SQLITE_OK ){
2313 return rc;
2314 }
2315 nLast++;
drh6e810962010-05-19 17:49:50 +00002316 iOffset += szPage;
dan7c246102010-04-12 19:00:29 +00002317 }
dan7c246102010-04-12 19:00:29 +00002318
drhd9e5c4f2010-05-12 18:01:39 +00002319 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
dan7c246102010-04-12 19:00:29 +00002320 }
2321
drhe730fec2010-05-18 12:56:50 +00002322 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00002323 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00002324 ** guarantees that there are no other writers, and no data that may
2325 ** be in use by existing readers is being overwritten.
2326 */
drh027a1282010-05-19 01:53:53 +00002327 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00002328 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dan7c246102010-04-12 19:00:29 +00002329 iFrame++;
danc7991bd2010-05-05 19:04:59 +00002330 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00002331 }
danc7991bd2010-05-05 19:04:59 +00002332 while( nLast>0 && rc==SQLITE_OK ){
dan7c246102010-04-12 19:00:29 +00002333 iFrame++;
2334 nLast--;
danc7991bd2010-05-05 19:04:59 +00002335 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00002336 }
2337
danc7991bd2010-05-05 19:04:59 +00002338 if( rc==SQLITE_OK ){
2339 /* Update the private copy of the header. */
drh6e810962010-05-19 17:49:50 +00002340 pWal->hdr.szPage = szPage;
drh027a1282010-05-19 01:53:53 +00002341 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00002342 if( isCommit ){
2343 pWal->hdr.iChange++;
2344 pWal->hdr.nPage = nTruncate;
2345 }
danc7991bd2010-05-05 19:04:59 +00002346 /* If this is a commit, update the wal-index header too. */
2347 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00002348 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00002349 pWal->iCallback = iFrame;
2350 }
dan7c246102010-04-12 19:00:29 +00002351 }
danc7991bd2010-05-05 19:04:59 +00002352
drhc74c3332010-05-31 12:15:19 +00002353 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00002354 return rc;
dan7c246102010-04-12 19:00:29 +00002355}
2356
2357/*
drh73b64e42010-05-30 19:55:15 +00002358** This routine is called to implement sqlite3_wal_checkpoint() and
2359** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00002360**
drh73b64e42010-05-30 19:55:15 +00002361** Obtain a CHECKPOINT lock and then backfill as much information as
2362** we can from WAL into the database.
dan7c246102010-04-12 19:00:29 +00002363*/
drhc438efd2010-04-26 00:19:45 +00002364int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00002365 Wal *pWal, /* Wal connection */
danc5118782010-04-17 17:34:41 +00002366 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00002367 int nBuf, /* Size of temporary buffer */
drh73b64e42010-05-30 19:55:15 +00002368 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00002369){
danb9bf16b2010-04-14 11:23:30 +00002370 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00002371 int isChanged = 0; /* True if a new wal-index header is loaded */
dan7c246102010-04-12 19:00:29 +00002372
dand54ff602010-05-31 11:16:30 +00002373 assert( pWal->ckptLock==0 );
dan39c79f52010-04-15 10:58:51 +00002374
drhc74c3332010-05-31 12:15:19 +00002375 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drh73b64e42010-05-30 19:55:15 +00002376 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2377 if( rc ){
2378 /* Usually this is SQLITE_BUSY meaning that another thread or process
2379 ** is already running a checkpoint, or maybe a recovery. But it might
2380 ** also be SQLITE_IOERR. */
danb9bf16b2010-04-14 11:23:30 +00002381 return rc;
2382 }
dand54ff602010-05-31 11:16:30 +00002383 pWal->ckptLock = 1;
dan64d039e2010-04-13 19:27:31 +00002384
danb9bf16b2010-04-14 11:23:30 +00002385 /* Copy data from the log to the database file. */
drh7ed91f22010-04-29 22:34:07 +00002386 rc = walIndexReadHdr(pWal, &isChanged);
danb9bf16b2010-04-14 11:23:30 +00002387 if( rc==SQLITE_OK ){
drhd9e5c4f2010-05-12 18:01:39 +00002388 rc = walCheckpoint(pWal, sync_flags, nBuf, zBuf);
danb9bf16b2010-04-14 11:23:30 +00002389 }
dan31c03902010-04-29 14:51:33 +00002390 if( isChanged ){
2391 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00002392 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00002393 ** out of date. So zero the cached wal-index header to ensure that
2394 ** next time the pager opens a snapshot on this database it knows that
2395 ** the cache needs to be reset.
2396 */
drh7ed91f22010-04-29 22:34:07 +00002397 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan31c03902010-04-29 14:51:33 +00002398 }
danb9bf16b2010-04-14 11:23:30 +00002399
2400 /* Release the locks. */
drh73b64e42010-05-30 19:55:15 +00002401 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00002402 pWal->ckptLock = 0;
drhc74c3332010-05-31 12:15:19 +00002403 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
dan64d039e2010-04-13 19:27:31 +00002404 return rc;
dan7c246102010-04-12 19:00:29 +00002405}
2406
drh7ed91f22010-04-29 22:34:07 +00002407/* Return the value to pass to a sqlite3_wal_hook callback, the
2408** number of frames in the WAL at the point of the last commit since
2409** sqlite3WalCallback() was called. If no commits have occurred since
2410** the last call, then return 0.
2411*/
2412int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00002413 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00002414 if( pWal ){
2415 ret = pWal->iCallback;
2416 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00002417 }
2418 return (int)ret;
2419}
dan55437592010-05-11 12:19:26 +00002420
2421/*
drh61e4ace2010-05-31 20:28:37 +00002422** This function is called to change the WAL subsystem into or out
2423** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00002424**
drh61e4ace2010-05-31 20:28:37 +00002425** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
2426** into locking_mode=NORMAL. This means that we must acquire a lock
2427** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
2428** or if the acquisition of the lock fails, then return 0. If the
2429** transition out of exclusive-mode is successful, return 1. This
2430** operation must occur while the pager is still holding the exclusive
2431** lock on the main database file.
dan55437592010-05-11 12:19:26 +00002432**
drh61e4ace2010-05-31 20:28:37 +00002433** If op is one, then change from locking_mode=NORMAL into
2434** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
2435** be released. Return 1 if the transition is made and 0 if the
2436** WAL is already in exclusive-locking mode - meaning that this
2437** routine is a no-op. The pager must already hold the exclusive lock
2438** on the main database file before invoking this operation.
2439**
2440** If op is negative, then do a dry-run of the op==1 case but do
2441** not actually change anything. The pager uses this to see if it
2442** should acquire the database exclusive lock prior to invoking
2443** the op==1 case.
dan55437592010-05-11 12:19:26 +00002444*/
2445int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00002446 int rc;
drhaab4c022010-06-02 14:45:51 +00002447 assert( pWal->writeLock==0 );
dan3cac5dc2010-06-04 18:37:59 +00002448
2449 /* pWal->readLock is usually set, but might be -1 if there was a
2450 ** prior error while attempting to acquire are read-lock. This cannot
2451 ** happen if the connection is actually in exclusive mode (as no xShmLock
2452 ** locks are taken in this case). Nor should the pager attempt to
2453 ** upgrade to exclusive-mode following such an error.
2454 */
drhaab4c022010-06-02 14:45:51 +00002455 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00002456 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
2457
drh61e4ace2010-05-31 20:28:37 +00002458 if( op==0 ){
2459 if( pWal->exclusiveMode ){
2460 pWal->exclusiveMode = 0;
dan3cac5dc2010-06-04 18:37:59 +00002461 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drh61e4ace2010-05-31 20:28:37 +00002462 pWal->exclusiveMode = 1;
2463 }
2464 rc = pWal->exclusiveMode==0;
2465 }else{
drhaab4c022010-06-02 14:45:51 +00002466 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00002467 rc = 0;
2468 }
2469 }else if( op>0 ){
2470 assert( pWal->exclusiveMode==0 );
drhaab4c022010-06-02 14:45:51 +00002471 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00002472 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2473 pWal->exclusiveMode = 1;
2474 rc = 1;
2475 }else{
2476 rc = pWal->exclusiveMode==0;
dan55437592010-05-11 12:19:26 +00002477 }
drh61e4ace2010-05-31 20:28:37 +00002478 return rc;
dan55437592010-05-11 12:19:26 +00002479}
2480
dan5cf53532010-05-01 16:40:20 +00002481#endif /* #ifndef SQLITE_OMIT_WAL */