blob: 4602eb2c34a2f4a68caa1f3e5a574491163631a1 [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drhcd285082010-06-23 22:00:35 +000034** The WAL header is 32 bytes in size and consists of the following eight
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan10f5a502010-06-23 15:55:43 +000043** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
dan97a31352010-04-16 13:59:31 +000045**
drh23ea97b2010-05-20 16:45:58 +000046** Immediately following the wal-header are zero or more frames. Each
47** frame consists of a 24-byte frame-header followed by a <page-size> bytes
drhcd285082010-06-23 22:00:35 +000048** of page data. The frame-header is six big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000049** integer values, as follows:
50**
dan3de777f2010-04-17 12:31:37 +000051** 0: Page number.
52** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000053** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000054** 8: Salt-1 (copied from the header)
55** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000056** 16: Checksum-1.
57** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000058**
drh7e263722010-05-20 21:21:09 +000059** A frame is considered valid if and only if the following conditions are
60** true:
61**
62** (1) The salt-1 and salt-2 values in the frame-header match
63** salt values in the wal-header
64**
65** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000066** exactly match the checksum computed consecutively on the
67** WAL header and the first 8 bytes and the content of all frames
68** up to and including the current frame.
69**
70** The checksum is computed using 32-bit big-endian integers if the
71** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000073** The checksum values are always stored in the frame header in a
74** big-endian format regardless of which byte order is used to compute
75** the checksum. The checksum is computed by interpreting the input as
76** an even number of unsigned 32-bit integers: x[0] through x[N]. The
drhffca4302010-06-15 11:21:54 +000077** algorithm used for the checksum is as follows:
drh51b21b12010-05-25 15:53:31 +000078**
79** for i from 0 to n-1 step 2:
80** s0 += x[i] + s1;
81** s1 += x[i+1] + s0;
82** endfor
drh7e263722010-05-20 21:21:09 +000083**
drhcd285082010-06-23 22:00:35 +000084** Note that s0 and s1 are both weighted checksums using fibonacci weights
85** in reverse order (the largest fibonacci weight occurs on the first element
86** of the sequence being summed.) The s1 value spans all 32-bit
87** terms of the sequence whereas s0 omits the final term.
88**
drh7e263722010-05-20 21:21:09 +000089** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90** WAL is transferred into the database, then the database is VFS.xSync-ed.
drhffca4302010-06-15 11:21:54 +000091** The VFS.xSync operations serve as write barriers - all writes launched
drh7e263722010-05-20 21:21:09 +000092** before the xSync must complete before any write that launches after the
93** xSync begins.
94**
95** After each checkpoint, the salt-1 value is incremented and the salt-2
96** value is randomized. This prevents old and new frames in the WAL from
97** being considered valid at the same time and being checkpointing together
98** following a crash.
99**
drh29d4dbe2010-05-18 23:29:52 +0000100** READER ALGORITHM
101**
102** To read a page from the database (call it page number P), a reader
103** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +0000104** last valid instance of page P that is a followed by a commit frame
105** or is a commit frame itself becomes the value read. If the WAL
106** contains no copies of page P that are valid and which are a commit
107** frame or are followed by a commit frame, then page P is read from
108** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000109**
drh73b64e42010-05-30 19:55:15 +0000110** To start a read transaction, the reader records the index of the last
111** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112** for all subsequent read operations. New transactions can be appended
113** to the WAL, but as long as the reader uses its original mxFrame value
114** and ignores the newly appended content, it will see a consistent snapshot
115** of the database from a single point in time. This technique allows
116** multiple concurrent readers to view different versions of the database
117** content simultaneously.
118**
119** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000120** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000121** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000122** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000123** and read performance suffers. To overcome this problem, a separate
124** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000125** search for frames of a particular page.
126**
127** WAL-INDEX FORMAT
128**
129** Conceptually, the wal-index is shared memory, though VFS implementations
130** might choose to implement the wal-index using a mmapped file. Because
131** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132** on a network filesystem. All users of the database must be able to
133** share memory.
134**
135** The wal-index is transient. After a crash, the wal-index can (and should
136** be) reconstructed from the original WAL file. In fact, the VFS is required
137** to either truncate or zero the header of the wal-index when the last
138** connection to it closes. Because the wal-index is transient, it can
139** use an architecture-specific format; it does not have to be cross-platform.
140** Hence, unlike the database and WAL file formats which store all values
141** as big endian, the wal-index can store multi-byte values in the native
142** byte order of the host computer.
143**
144** The purpose of the wal-index is to answer this question quickly: Given
drh610b8d82012-07-17 02:56:05 +0000145** a page number P and a maximum frame index M, return the index of the
146** last frame in the wal before frame M for page P in the WAL, or return
147** NULL if there are no frames for page P in the WAL prior to M.
drh29d4dbe2010-05-18 23:29:52 +0000148**
149** The wal-index consists of a header region, followed by an one or
150** more index blocks.
151**
drh027a1282010-05-19 01:53:53 +0000152** The wal-index header contains the total number of frames within the WAL
mistachkind5578432012-08-25 10:01:29 +0000153** in the mxFrame field.
danad3cadd2010-06-14 11:49:26 +0000154**
155** Each index block except for the first contains information on
156** HASHTABLE_NPAGE frames. The first index block contains information on
157** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
158** HASHTABLE_NPAGE are selected so that together the wal-index header and
159** first index block are the same size as all other index blocks in the
160** wal-index.
161**
162** Each index block contains two sections, a page-mapping that contains the
163** database page number associated with each wal frame, and a hash-table
drhffca4302010-06-15 11:21:54 +0000164** that allows readers to query an index block for a specific page number.
danad3cadd2010-06-14 11:49:26 +0000165** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
166** for the first index block) 32-bit page numbers. The first entry in the
167** first index-block contains the database page number corresponding to the
168** first frame in the WAL file. The first entry in the second index block
169** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
170** the log, and so on.
171**
172** The last index block in a wal-index usually contains less than the full
173** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
174** depending on the contents of the WAL file. This does not change the
175** allocated size of the page-mapping array - the page-mapping array merely
176** contains unused entries.
drh027a1282010-05-19 01:53:53 +0000177**
178** Even without using the hash table, the last frame for page P
danad3cadd2010-06-14 11:49:26 +0000179** can be found by scanning the page-mapping sections of each index block
drh027a1282010-05-19 01:53:53 +0000180** starting with the last index block and moving toward the first, and
181** within each index block, starting at the end and moving toward the
182** beginning. The first entry that equals P corresponds to the frame
183** holding the content for that page.
184**
185** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
186** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
187** hash table for each page number in the mapping section, so the hash
188** table is never more than half full. The expected number of collisions
189** prior to finding a match is 1. Each entry of the hash table is an
190** 1-based index of an entry in the mapping section of the same
191** index block. Let K be the 1-based index of the largest entry in
192** the mapping section. (For index blocks other than the last, K will
193** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
194** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000195** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000196**
197** To look for page P in the hash table, first compute a hash iKey on
198** P as follows:
199**
200** iKey = (P * 383) % HASHTABLE_NSLOT
201**
202** Then start scanning entries of the hash table, starting with iKey
203** (wrapping around to the beginning when the end of the hash table is
204** reached) until an unused hash slot is found. Let the first unused slot
205** be at index iUnused. (iUnused might be less than iKey if there was
206** wrap-around.) Because the hash table is never more than half full,
207** the search is guaranteed to eventually hit an unused entry. Let
208** iMax be the value between iKey and iUnused, closest to iUnused,
209** where aHash[iMax]==P. If there is no iMax entry (if there exists
210** no hash slot such that aHash[i]==p) then page P is not in the
211** current index block. Otherwise the iMax-th mapping entry of the
212** current index block corresponds to the last entry that references
213** page P.
214**
215** A hash search begins with the last index block and moves toward the
216** first index block, looking for entries corresponding to page P. On
217** average, only two or three slots in each index block need to be
218** examined in order to either find the last entry for page P, or to
219** establish that no such entry exists in the block. Each index block
220** holds over 4000 entries. So two or three index blocks are sufficient
221** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
222** comparisons (on average) suffice to either locate a frame in the
223** WAL or to establish that the frame does not exist in the WAL. This
224** is much faster than scanning the entire 10MB WAL.
225**
226** Note that entries are added in order of increasing K. Hence, one
227** reader might be using some value K0 and a second reader that started
228** at a later time (after additional transactions were added to the WAL
229** and to the wal-index) might be using a different value K1, where K1>K0.
230** Both readers can use the same hash table and mapping section to get
231** the correct result. There may be entries in the hash table with
232** K>K0 but to the first reader, those entries will appear to be unused
233** slots in the hash table and so the first reader will get an answer as
234** if no values greater than K0 had ever been inserted into the hash table
235** in the first place - which is what reader one wants. Meanwhile, the
236** second reader using K1 will see additional values that were inserted
237** later, which is exactly what reader two wants.
238**
dan6f150142010-05-21 15:31:56 +0000239** When a rollback occurs, the value of K is decreased. Hash table entries
240** that correspond to frames greater than the new K value are removed
241** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000242*/
drh29d4dbe2010-05-18 23:29:52 +0000243#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000244
drh29d4dbe2010-05-18 23:29:52 +0000245#include "wal.h"
246
drh73b64e42010-05-30 19:55:15 +0000247/*
drhc74c3332010-05-31 12:15:19 +0000248** Trace output macros
249*/
drhc74c3332010-05-31 12:15:19 +0000250#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000251int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000252# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
253#else
254# define WALTRACE(X)
255#endif
256
dan10f5a502010-06-23 15:55:43 +0000257/*
258** The maximum (and only) versions of the wal and wal-index formats
259** that may be interpreted by this version of SQLite.
260**
261** If a client begins recovering a WAL file and finds that (a) the checksum
262** values in the wal-header are correct and (b) the version field is not
263** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
264**
265** Similarly, if a client successfully reads a wal-index header (i.e. the
266** checksum test is successful) and finds that the version field is not
267** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
268** returns SQLITE_CANTOPEN.
269*/
270#define WAL_MAX_VERSION 3007000
271#define WALINDEX_MAX_VERSION 3007000
drhc74c3332010-05-31 12:15:19 +0000272
273/*
drh73b64e42010-05-30 19:55:15 +0000274** Indices of various locking bytes. WAL_NREADER is the number
275** of available reader locks and should be at least 3.
276*/
277#define WAL_WRITE_LOCK 0
278#define WAL_ALL_BUT_WRITE 1
279#define WAL_CKPT_LOCK 1
280#define WAL_RECOVER_LOCK 2
281#define WAL_READ_LOCK(I) (3+(I))
282#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
283
dan97a31352010-04-16 13:59:31 +0000284
drh7ed91f22010-04-29 22:34:07 +0000285/* Object declarations */
286typedef struct WalIndexHdr WalIndexHdr;
287typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000288typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000289
290
291/*
drh286a2882010-05-20 23:51:06 +0000292** The following object holds a copy of the wal-index header content.
293**
294** The actual header in the wal-index consists of two copies of this
295** object.
drh9b78f792010-08-14 21:21:24 +0000296**
297** The szPage value can be any power of 2 between 512 and 32768, inclusive.
298** Or it can be 1 to represent a 65536-byte page. The latter case was
299** added in 3.7.1 when support for 64K pages was added.
dan7c246102010-04-12 19:00:29 +0000300*/
drh7ed91f22010-04-29 22:34:07 +0000301struct WalIndexHdr {
dan10f5a502010-06-23 15:55:43 +0000302 u32 iVersion; /* Wal-index version */
303 u32 unused; /* Unused (padding) field */
dan71d89912010-05-24 13:57:42 +0000304 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000305 u8 isInit; /* 1 when initialized */
306 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
drh9b78f792010-08-14 21:21:24 +0000307 u16 szPage; /* Database page size in bytes. 1==64K */
dand0aa3422010-05-31 16:41:53 +0000308 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000309 u32 nPage; /* Size of database in pages */
310 u32 aFrameCksum[2]; /* Checksum of last frame in log */
311 u32 aSalt[2]; /* Two salt values copied from WAL header */
312 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000313};
314
drh73b64e42010-05-30 19:55:15 +0000315/*
316** A copy of the following object occurs in the wal-index immediately
317** following the second copy of the WalIndexHdr. This object stores
318** information used by checkpoint.
319**
320** nBackfill is the number of frames in the WAL that have been written
321** back into the database. (We call the act of moving content from WAL to
322** database "backfilling".) The nBackfill number is never greater than
323** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
324** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
325** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
326** mxFrame back to zero when the WAL is reset.
327**
328** There is one entry in aReadMark[] for each reader lock. If a reader
329** holds read-lock K, then the value in aReadMark[K] is no greater than
drhdb7f6472010-06-09 14:45:12 +0000330** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
331** for any aReadMark[] means that entry is unused. aReadMark[0] is
332** a special case; its value is never used and it exists as a place-holder
333** to avoid having to offset aReadMark[] indexs by one. Readers holding
334** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
335** directly from the database.
drh73b64e42010-05-30 19:55:15 +0000336**
337** The value of aReadMark[K] may only be changed by a thread that
338** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
339** aReadMark[K] cannot changed while there is a reader is using that mark
340** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
341**
342** The checkpointer may only transfer frames from WAL to database where
343** the frame numbers are less than or equal to every aReadMark[] that is
344** in use (that is, every aReadMark[j] for which there is a corresponding
345** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
346** largest value and will increase an unused aReadMark[] to mxFrame if there
347** is not already an aReadMark[] equal to mxFrame. The exception to the
348** previous sentence is when nBackfill equals mxFrame (meaning that everything
349** in the WAL has been backfilled into the database) then new readers
350** will choose aReadMark[0] which has value 0 and hence such reader will
351** get all their all content directly from the database file and ignore
352** the WAL.
353**
354** Writers normally append new frames to the end of the WAL. However,
355** if nBackfill equals mxFrame (meaning that all WAL content has been
356** written back into the database) and if no readers are using the WAL
357** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
358** the writer will first "reset" the WAL back to the beginning and start
359** writing new content beginning at frame 1.
360**
361** We assume that 32-bit loads are atomic and so no locks are needed in
362** order to read from any aReadMark[] entries.
363*/
364struct WalCkptInfo {
365 u32 nBackfill; /* Number of WAL frames backfilled into DB */
366 u32 aReadMark[WAL_NREADER]; /* Reader marks */
367};
drhdb7f6472010-06-09 14:45:12 +0000368#define READMARK_NOT_USED 0xffffffff
drh73b64e42010-05-30 19:55:15 +0000369
370
drh7e263722010-05-20 21:21:09 +0000371/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
372** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
373** only support mandatory file-locks, we do not read or write data
374** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000375*/
drh73b64e42010-05-30 19:55:15 +0000376#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
377#define WALINDEX_LOCK_RESERVED 16
drh026ac282010-05-26 15:06:38 +0000378#define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
dan7c246102010-04-12 19:00:29 +0000379
drh7ed91f22010-04-29 22:34:07 +0000380/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000381#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000382
dan10f5a502010-06-23 15:55:43 +0000383/* Size of write ahead log header, including checksum. */
384/* #define WAL_HDRSIZE 24 */
385#define WAL_HDRSIZE 32
dan97a31352010-04-16 13:59:31 +0000386
danb8fd6c22010-05-24 10:39:36 +0000387/* WAL magic value. Either this value, or the same value with the least
388** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
389** big-endian format in the first 4 bytes of a WAL file.
390**
391** If the LSB is set, then the checksums for each frame within the WAL
392** file are calculated by treating all data as an array of 32-bit
393** big-endian words. Otherwise, they are calculated by interpreting
394** all data as 32-bit little-endian words.
395*/
396#define WAL_MAGIC 0x377f0682
397
dan97a31352010-04-16 13:59:31 +0000398/*
drh7ed91f22010-04-29 22:34:07 +0000399** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000400** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000401** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000402*/
drh6e810962010-05-19 17:49:50 +0000403#define walFrameOffset(iFrame, szPage) ( \
danbd0e9072010-07-07 09:48:44 +0000404 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000405)
dan7c246102010-04-12 19:00:29 +0000406
407/*
drh7ed91f22010-04-29 22:34:07 +0000408** An open write-ahead log file is represented by an instance of the
409** following object.
dance4f05f2010-04-22 19:14:13 +0000410*/
drh7ed91f22010-04-29 22:34:07 +0000411struct Wal {
drh73b64e42010-05-30 19:55:15 +0000412 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000413 sqlite3_file *pDbFd; /* File handle for the database file */
414 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000415 u32 iCallback; /* Value to pass to log callback (or 0) */
drh85a83752011-05-16 21:00:27 +0000416 i64 mxWalSize; /* Truncate WAL to this size upon reset */
dan13a3cb82010-06-11 19:04:21 +0000417 int nWiData; /* Size of array apWiData */
drh88f975a2011-12-16 19:34:36 +0000418 int szFirstBlock; /* Size of first block written to WAL file */
dan13a3cb82010-06-11 19:04:21 +0000419 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
drhb2eced52010-08-12 02:41:12 +0000420 u32 szPage; /* Database page size */
drh73b64e42010-05-30 19:55:15 +0000421 i16 readLock; /* Which read lock is being held. -1 for none */
drh4eb02a42011-12-16 21:26:26 +0000422 u8 syncFlags; /* Flags to use to sync header writes */
dan55437592010-05-11 12:19:26 +0000423 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000424 u8 writeLock; /* True if in a write transaction */
425 u8 ckptLock; /* True if holding a checkpoint lock */
drh66dfec8b2011-06-01 20:01:49 +0000426 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
danf60b7f32011-12-16 13:24:27 +0000427 u8 truncateOnCommit; /* True to truncate WAL file on commit */
drhd992b152011-12-20 20:13:25 +0000428 u8 syncHeader; /* Fsync the WAL header if true */
drh374f4a02011-12-17 20:02:11 +0000429 u8 padToSectorBoundary; /* Pad transactions out to the next sector */
drh73b64e42010-05-30 19:55:15 +0000430 WalIndexHdr hdr; /* Wal-index header for current transaction */
dan3e875ef2010-07-05 19:03:35 +0000431 const char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000432 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000433#ifdef SQLITE_DEBUG
434 u8 lockError; /* True if a locking error has occurred */
435#endif
dan7c246102010-04-12 19:00:29 +0000436};
437
drh73b64e42010-05-30 19:55:15 +0000438/*
dan8c408002010-11-01 17:38:24 +0000439** Candidate values for Wal.exclusiveMode.
440*/
441#define WAL_NORMAL_MODE 0
442#define WAL_EXCLUSIVE_MODE 1
443#define WAL_HEAPMEMORY_MODE 2
444
445/*
drh66dfec8b2011-06-01 20:01:49 +0000446** Possible values for WAL.readOnly
447*/
448#define WAL_RDWR 0 /* Normal read/write connection */
449#define WAL_RDONLY 1 /* The WAL file is readonly */
450#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
451
452/*
dan067f3162010-06-14 10:30:12 +0000453** Each page of the wal-index mapping contains a hash-table made up of
454** an array of HASHTABLE_NSLOT elements of the following type.
455*/
456typedef u16 ht_slot;
457
458/*
danad3cadd2010-06-14 11:49:26 +0000459** This structure is used to implement an iterator that loops through
460** all frames in the WAL in database page order. Where two or more frames
461** correspond to the same database page, the iterator visits only the
462** frame most recently written to the WAL (in other words, the frame with
463** the largest index).
464**
465** The internals of this structure are only accessed by:
466**
467** walIteratorInit() - Create a new iterator,
468** walIteratorNext() - Step an iterator,
469** walIteratorFree() - Free an iterator.
470**
471** This functionality is used by the checkpoint code (see walCheckpoint()).
472*/
473struct WalIterator {
474 int iPrior; /* Last result returned from the iterator */
drhd9c9b782010-12-15 21:02:06 +0000475 int nSegment; /* Number of entries in aSegment[] */
danad3cadd2010-06-14 11:49:26 +0000476 struct WalSegment {
477 int iNext; /* Next slot in aIndex[] not yet returned */
478 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
479 u32 *aPgno; /* Array of page numbers. */
drhd9c9b782010-12-15 21:02:06 +0000480 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
danad3cadd2010-06-14 11:49:26 +0000481 int iZero; /* Frame number associated with aPgno[0] */
drhd9c9b782010-12-15 21:02:06 +0000482 } aSegment[1]; /* One for every 32KB page in the wal-index */
danad3cadd2010-06-14 11:49:26 +0000483};
484
485/*
dan13a3cb82010-06-11 19:04:21 +0000486** Define the parameters of the hash tables in the wal-index file. There
487** is a hash-table following every HASHTABLE_NPAGE page numbers in the
488** wal-index.
489**
490** Changing any of these constants will alter the wal-index format and
491** create incompatibilities.
492*/
dan067f3162010-06-14 10:30:12 +0000493#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000494#define HASHTABLE_HASH_1 383 /* Should be prime */
495#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000496
danad3cadd2010-06-14 11:49:26 +0000497/*
498** The block of page numbers associated with the first hash-table in a
dan13a3cb82010-06-11 19:04:21 +0000499** wal-index is smaller than usual. This is so that there is a complete
500** hash-table on each aligned 32KB page of the wal-index.
501*/
dan067f3162010-06-14 10:30:12 +0000502#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
dan13a3cb82010-06-11 19:04:21 +0000503
dan067f3162010-06-14 10:30:12 +0000504/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
505#define WALINDEX_PGSZ ( \
506 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
507)
dan13a3cb82010-06-11 19:04:21 +0000508
509/*
510** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
dan067f3162010-06-14 10:30:12 +0000511** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
dan13a3cb82010-06-11 19:04:21 +0000512** numbered from zero.
513**
514** If this call is successful, *ppPage is set to point to the wal-index
515** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
516** then an SQLite error code is returned and *ppPage is set to 0.
517*/
518static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
519 int rc = SQLITE_OK;
520
521 /* Enlarge the pWal->apWiData[] array if required */
522 if( pWal->nWiData<=iPage ){
drh519426a2010-07-09 03:19:07 +0000523 int nByte = sizeof(u32*)*(iPage+1);
dan13a3cb82010-06-11 19:04:21 +0000524 volatile u32 **apNew;
shaneh8a300f82010-07-02 18:15:31 +0000525 apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte);
dan13a3cb82010-06-11 19:04:21 +0000526 if( !apNew ){
527 *ppPage = 0;
528 return SQLITE_NOMEM;
529 }
drh519426a2010-07-09 03:19:07 +0000530 memset((void*)&apNew[pWal->nWiData], 0,
531 sizeof(u32*)*(iPage+1-pWal->nWiData));
dan13a3cb82010-06-11 19:04:21 +0000532 pWal->apWiData = apNew;
533 pWal->nWiData = iPage+1;
534 }
535
536 /* Request a pointer to the required page from the VFS */
537 if( pWal->apWiData[iPage]==0 ){
dan8c408002010-11-01 17:38:24 +0000538 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
539 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
540 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
541 }else{
542 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
543 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
544 );
drh66dfec8b2011-06-01 20:01:49 +0000545 if( rc==SQLITE_READONLY ){
546 pWal->readOnly |= WAL_SHM_RDONLY;
547 rc = SQLITE_OK;
dan4edc6bf2011-05-10 17:31:29 +0000548 }
dan8c408002010-11-01 17:38:24 +0000549 }
dan13a3cb82010-06-11 19:04:21 +0000550 }
danb6d2f9c2011-05-11 14:57:33 +0000551
drh66dfec8b2011-06-01 20:01:49 +0000552 *ppPage = pWal->apWiData[iPage];
dan13a3cb82010-06-11 19:04:21 +0000553 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
554 return rc;
555}
556
557/*
drh73b64e42010-05-30 19:55:15 +0000558** Return a pointer to the WalCkptInfo structure in the wal-index.
559*/
560static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000561 assert( pWal->nWiData>0 && pWal->apWiData[0] );
562 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
563}
564
565/*
566** Return a pointer to the WalIndexHdr structure in the wal-index.
567*/
568static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
569 assert( pWal->nWiData>0 && pWal->apWiData[0] );
570 return (volatile WalIndexHdr*)pWal->apWiData[0];
drh73b64e42010-05-30 19:55:15 +0000571}
572
dan7c246102010-04-12 19:00:29 +0000573/*
danb8fd6c22010-05-24 10:39:36 +0000574** The argument to this macro must be of type u32. On a little-endian
575** architecture, it returns the u32 value that results from interpreting
576** the 4 bytes as a big-endian value. On a big-endian architecture, it
577** returns the value that would be produced by intepreting the 4 bytes
578** of the input value as a little-endian integer.
579*/
580#define BYTESWAP32(x) ( \
581 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
582 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
583)
dan64d039e2010-04-13 19:27:31 +0000584
dan7c246102010-04-12 19:00:29 +0000585/*
drh7e263722010-05-20 21:21:09 +0000586** Generate or extend an 8 byte checksum based on the data in
587** array aByte[] and the initial values of aIn[0] and aIn[1] (or
588** initial values of 0 and 0 if aIn==NULL).
589**
590** The checksum is written back into aOut[] before returning.
591**
592** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000593*/
drh7e263722010-05-20 21:21:09 +0000594static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000595 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000596 u8 *a, /* Content to be checksummed */
597 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
598 const u32 *aIn, /* Initial checksum value input */
599 u32 *aOut /* OUT: Final checksum value output */
600){
601 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000602 u32 *aData = (u32 *)a;
603 u32 *aEnd = (u32 *)&a[nByte];
604
drh7e263722010-05-20 21:21:09 +0000605 if( aIn ){
606 s1 = aIn[0];
607 s2 = aIn[1];
608 }else{
609 s1 = s2 = 0;
610 }
dan7c246102010-04-12 19:00:29 +0000611
drh584c7542010-05-19 18:08:10 +0000612 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000613 assert( (nByte&0x00000007)==0 );
dan7c246102010-04-12 19:00:29 +0000614
danb8fd6c22010-05-24 10:39:36 +0000615 if( nativeCksum ){
616 do {
617 s1 += *aData++ + s2;
618 s2 += *aData++ + s1;
619 }while( aData<aEnd );
620 }else{
621 do {
622 s1 += BYTESWAP32(aData[0]) + s2;
623 s2 += BYTESWAP32(aData[1]) + s1;
624 aData += 2;
625 }while( aData<aEnd );
626 }
627
drh7e263722010-05-20 21:21:09 +0000628 aOut[0] = s1;
629 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000630}
631
dan8c408002010-11-01 17:38:24 +0000632static void walShmBarrier(Wal *pWal){
633 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
634 sqlite3OsShmBarrier(pWal->pDbFd);
635 }
636}
637
dan7c246102010-04-12 19:00:29 +0000638/*
drh7e263722010-05-20 21:21:09 +0000639** Write the header information in pWal->hdr into the wal-index.
640**
641** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000642*/
drh7e263722010-05-20 21:21:09 +0000643static void walIndexWriteHdr(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000644 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
645 const int nCksum = offsetof(WalIndexHdr, aCksum);
drh73b64e42010-05-30 19:55:15 +0000646
647 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000648 pWal->hdr.isInit = 1;
dan10f5a502010-06-23 15:55:43 +0000649 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
dan4280eb32010-06-12 12:02:35 +0000650 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
651 memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
dan8c408002010-11-01 17:38:24 +0000652 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +0000653 memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000654}
655
656/*
657** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000658** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000659** 4-byte big-endian integers, as follows:
660**
drh23ea97b2010-05-20 16:45:58 +0000661** 0: Page number.
662** 4: For commit records, the size of the database image in pages
663** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000664** 8: Salt-1 (copied from the wal-header)
665** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000666** 16: Checksum-1.
667** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000668*/
drh7ed91f22010-04-29 22:34:07 +0000669static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000670 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000671 u32 iPage, /* Database page number for frame */
672 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000673 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000674 u8 *aFrame /* OUT: Write encoded frame here */
675){
danb8fd6c22010-05-24 10:39:36 +0000676 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000677 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000678 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000679 sqlite3Put4byte(&aFrame[0], iPage);
680 sqlite3Put4byte(&aFrame[4], nTruncate);
drh7e263722010-05-20 21:21:09 +0000681 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000682
danb8fd6c22010-05-24 10:39:36 +0000683 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000684 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000685 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000686
drh23ea97b2010-05-20 16:45:58 +0000687 sqlite3Put4byte(&aFrame[16], aCksum[0]);
688 sqlite3Put4byte(&aFrame[20], aCksum[1]);
dan7c246102010-04-12 19:00:29 +0000689}
690
691/*
drh7e263722010-05-20 21:21:09 +0000692** Check to see if the frame with header in aFrame[] and content
693** in aData[] is valid. If it is a valid frame, fill *piPage and
694** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000695*/
drh7ed91f22010-04-29 22:34:07 +0000696static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000697 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000698 u32 *piPage, /* OUT: Database page number for frame */
699 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000700 u8 *aData, /* Pointer to page data (for checksum) */
701 u8 *aFrame /* Frame data */
702){
danb8fd6c22010-05-24 10:39:36 +0000703 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000704 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000705 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000706 assert( WAL_FRAME_HDRSIZE==24 );
707
drh7e263722010-05-20 21:21:09 +0000708 /* A frame is only valid if the salt values in the frame-header
709 ** match the salt values in the wal-header.
710 */
711 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000712 return 0;
713 }
dan4a4b01d2010-04-16 11:30:18 +0000714
drhc8179152010-05-24 13:28:36 +0000715 /* A frame is only valid if the page number is creater than zero.
716 */
717 pgno = sqlite3Get4byte(&aFrame[0]);
718 if( pgno==0 ){
719 return 0;
720 }
721
drh519426a2010-07-09 03:19:07 +0000722 /* A frame is only valid if a checksum of the WAL header,
723 ** all prior frams, the first 16 bytes of this frame-header,
724 ** and the frame-data matches the checksum in the last 8
725 ** bytes of this frame-header.
drh7e263722010-05-20 21:21:09 +0000726 */
danb8fd6c22010-05-24 10:39:36 +0000727 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000728 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000729 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000730 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
731 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000732 ){
733 /* Checksum failed. */
734 return 0;
735 }
736
drh7e263722010-05-20 21:21:09 +0000737 /* If we reach this point, the frame is valid. Return the page number
738 ** and the new database size.
739 */
drhc8179152010-05-24 13:28:36 +0000740 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000741 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000742 return 1;
743}
744
dan7c246102010-04-12 19:00:29 +0000745
drhc74c3332010-05-31 12:15:19 +0000746#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
747/*
drh181e0912010-06-01 01:08:08 +0000748** Names of locks. This routine is used to provide debugging output and is not
749** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000750*/
751static const char *walLockName(int lockIdx){
752 if( lockIdx==WAL_WRITE_LOCK ){
753 return "WRITE-LOCK";
754 }else if( lockIdx==WAL_CKPT_LOCK ){
755 return "CKPT-LOCK";
756 }else if( lockIdx==WAL_RECOVER_LOCK ){
757 return "RECOVER-LOCK";
758 }else{
759 static char zName[15];
760 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
761 lockIdx-WAL_READ_LOCK(0));
762 return zName;
763 }
764}
765#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
766
767
dan7c246102010-04-12 19:00:29 +0000768/*
drh181e0912010-06-01 01:08:08 +0000769** Set or release locks on the WAL. Locks are either shared or exclusive.
770** A lock cannot be moved directly between shared and exclusive - it must go
771** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000772**
773** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
774*/
775static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000776 int rc;
drh73b64e42010-05-30 19:55:15 +0000777 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000778 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
779 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
780 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
781 walLockName(lockIdx), rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000782 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000783 return rc;
drh73b64e42010-05-30 19:55:15 +0000784}
785static void walUnlockShared(Wal *pWal, int lockIdx){
786 if( pWal->exclusiveMode ) return;
787 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
788 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000789 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000790}
791static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000792 int rc;
drh73b64e42010-05-30 19:55:15 +0000793 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000794 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
795 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
796 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
797 walLockName(lockIdx), n, rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000798 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000799 return rc;
drh73b64e42010-05-30 19:55:15 +0000800}
801static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
802 if( pWal->exclusiveMode ) return;
803 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
804 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000805 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
806 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000807}
808
809/*
drh29d4dbe2010-05-18 23:29:52 +0000810** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000811** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
812** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000813*/
814static int walHash(u32 iPage){
815 assert( iPage>0 );
816 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
817 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
818}
819static int walNextHash(int iPriorHash){
820 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000821}
822
dan4280eb32010-06-12 12:02:35 +0000823/*
824** Return pointers to the hash table and page number array stored on
825** page iHash of the wal-index. The wal-index is broken into 32KB pages
826** numbered starting from 0.
827**
828** Set output variable *paHash to point to the start of the hash table
829** in the wal-index file. Set *piZero to one less than the frame
830** number of the first frame indexed by this hash table. If a
831** slot in the hash table is set to N, it refers to frame number
832** (*piZero+N) in the log.
833**
dand60bf112010-06-14 11:18:50 +0000834** Finally, set *paPgno so that *paPgno[1] is the page number of the
835** first frame indexed by the hash table, frame (*piZero+1).
dan4280eb32010-06-12 12:02:35 +0000836*/
837static int walHashGet(
dan13a3cb82010-06-11 19:04:21 +0000838 Wal *pWal, /* WAL handle */
839 int iHash, /* Find the iHash'th table */
dan067f3162010-06-14 10:30:12 +0000840 volatile ht_slot **paHash, /* OUT: Pointer to hash index */
dan13a3cb82010-06-11 19:04:21 +0000841 volatile u32 **paPgno, /* OUT: Pointer to page number array */
842 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
843){
dan4280eb32010-06-12 12:02:35 +0000844 int rc; /* Return code */
dan13a3cb82010-06-11 19:04:21 +0000845 volatile u32 *aPgno;
dan13a3cb82010-06-11 19:04:21 +0000846
dan4280eb32010-06-12 12:02:35 +0000847 rc = walIndexPage(pWal, iHash, &aPgno);
848 assert( rc==SQLITE_OK || iHash>0 );
dan13a3cb82010-06-11 19:04:21 +0000849
dan4280eb32010-06-12 12:02:35 +0000850 if( rc==SQLITE_OK ){
851 u32 iZero;
dan067f3162010-06-14 10:30:12 +0000852 volatile ht_slot *aHash;
dan4280eb32010-06-12 12:02:35 +0000853
dan067f3162010-06-14 10:30:12 +0000854 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
dan4280eb32010-06-12 12:02:35 +0000855 if( iHash==0 ){
dand60bf112010-06-14 11:18:50 +0000856 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
dan4280eb32010-06-12 12:02:35 +0000857 iZero = 0;
858 }else{
859 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
dan4280eb32010-06-12 12:02:35 +0000860 }
861
dand60bf112010-06-14 11:18:50 +0000862 *paPgno = &aPgno[-1];
dan4280eb32010-06-12 12:02:35 +0000863 *paHash = aHash;
864 *piZero = iZero;
dan13a3cb82010-06-11 19:04:21 +0000865 }
dan4280eb32010-06-12 12:02:35 +0000866 return rc;
dan13a3cb82010-06-11 19:04:21 +0000867}
868
dan4280eb32010-06-12 12:02:35 +0000869/*
870** Return the number of the wal-index page that contains the hash-table
871** and page-number array that contain entries corresponding to WAL frame
872** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
873** are numbered starting from 0.
874*/
dan13a3cb82010-06-11 19:04:21 +0000875static int walFramePage(u32 iFrame){
876 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
877 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
878 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
879 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
880 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
881 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
882 );
883 return iHash;
884}
885
886/*
887** Return the page number associated with frame iFrame in this WAL.
888*/
889static u32 walFramePgno(Wal *pWal, u32 iFrame){
890 int iHash = walFramePage(iFrame);
891 if( iHash==0 ){
892 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
893 }
894 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
895}
danbb23aff2010-05-10 14:46:09 +0000896
danca6b5ba2010-05-25 10:50:56 +0000897/*
898** Remove entries from the hash table that point to WAL slots greater
899** than pWal->hdr.mxFrame.
900**
901** This function is called whenever pWal->hdr.mxFrame is decreased due
902** to a rollback or savepoint.
903**
drh181e0912010-06-01 01:08:08 +0000904** At most only the hash table containing pWal->hdr.mxFrame needs to be
905** updated. Any later hash tables will be automatically cleared when
906** pWal->hdr.mxFrame advances to the point where those hash tables are
907** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000908*/
909static void walCleanupHash(Wal *pWal){
drhff828942010-06-26 21:34:06 +0000910 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */
911 volatile u32 *aPgno = 0; /* Page number array for hash table */
912 u32 iZero = 0; /* frame == (aHash[x]+iZero) */
dan067f3162010-06-14 10:30:12 +0000913 int iLimit = 0; /* Zero values greater than this */
914 int nByte; /* Number of bytes to zero in aPgno[] */
915 int i; /* Used to iterate through aHash[] */
danca6b5ba2010-05-25 10:50:56 +0000916
drh73b64e42010-05-30 19:55:15 +0000917 assert( pWal->writeLock );
drhffca4302010-06-15 11:21:54 +0000918 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
919 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
920 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
drh9c156472010-06-01 12:58:41 +0000921
dan4280eb32010-06-12 12:02:35 +0000922 if( pWal->hdr.mxFrame==0 ) return;
923
924 /* Obtain pointers to the hash-table and page-number array containing
925 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
926 ** that the page said hash-table and array reside on is already mapped.
927 */
928 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
929 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
930 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
931
932 /* Zero all hash-table entries that correspond to frame numbers greater
933 ** than pWal->hdr.mxFrame.
934 */
935 iLimit = pWal->hdr.mxFrame - iZero;
936 assert( iLimit>0 );
937 for(i=0; i<HASHTABLE_NSLOT; i++){
938 if( aHash[i]>iLimit ){
939 aHash[i] = 0;
danca6b5ba2010-05-25 10:50:56 +0000940 }
danca6b5ba2010-05-25 10:50:56 +0000941 }
dan4280eb32010-06-12 12:02:35 +0000942
943 /* Zero the entries in the aPgno array that correspond to frames with
944 ** frame numbers greater than pWal->hdr.mxFrame.
945 */
shaneh5eba1f62010-07-02 17:05:03 +0000946 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
dand60bf112010-06-14 11:18:50 +0000947 memset((void *)&aPgno[iLimit+1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000948
949#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
950 /* Verify that the every entry in the mapping region is still reachable
951 ** via the hash table even after the cleanup.
952 */
drhf77bbd92010-06-01 13:17:44 +0000953 if( iLimit ){
danca6b5ba2010-05-25 10:50:56 +0000954 int i; /* Loop counter */
955 int iKey; /* Hash key */
956 for(i=1; i<=iLimit; i++){
dand60bf112010-06-14 11:18:50 +0000957 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
danca6b5ba2010-05-25 10:50:56 +0000958 if( aHash[iKey]==i ) break;
959 }
960 assert( aHash[iKey]==i );
961 }
962 }
963#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
964}
965
danbb23aff2010-05-10 14:46:09 +0000966
drh7ed91f22010-04-29 22:34:07 +0000967/*
drh29d4dbe2010-05-18 23:29:52 +0000968** Set an entry in the wal-index that will map database page number
969** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +0000970*/
drh7ed91f22010-04-29 22:34:07 +0000971static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
dan4280eb32010-06-12 12:02:35 +0000972 int rc; /* Return code */
drhff828942010-06-26 21:34:06 +0000973 u32 iZero = 0; /* One less than frame number of aPgno[1] */
974 volatile u32 *aPgno = 0; /* Page number array */
975 volatile ht_slot *aHash = 0; /* Hash table */
dance4f05f2010-04-22 19:14:13 +0000976
dan4280eb32010-06-12 12:02:35 +0000977 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
978
979 /* Assuming the wal-index file was successfully mapped, populate the
980 ** page number array and hash table entry.
dan7c246102010-04-12 19:00:29 +0000981 */
danbb23aff2010-05-10 14:46:09 +0000982 if( rc==SQLITE_OK ){
983 int iKey; /* Hash table key */
dan4280eb32010-06-12 12:02:35 +0000984 int idx; /* Value to write to hash-table slot */
drh519426a2010-07-09 03:19:07 +0000985 int nCollide; /* Number of hash collisions */
dan7c246102010-04-12 19:00:29 +0000986
danbb23aff2010-05-10 14:46:09 +0000987 idx = iFrame - iZero;
dan4280eb32010-06-12 12:02:35 +0000988 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
989
990 /* If this is the first entry to be added to this hash-table, zero the
991 ** entire hash table and aPgno[] array before proceding.
992 */
danca6b5ba2010-05-25 10:50:56 +0000993 if( idx==1 ){
shaneh5eba1f62010-07-02 17:05:03 +0000994 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
dand60bf112010-06-14 11:18:50 +0000995 memset((void*)&aPgno[1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000996 }
danca6b5ba2010-05-25 10:50:56 +0000997
dan4280eb32010-06-12 12:02:35 +0000998 /* If the entry in aPgno[] is already set, then the previous writer
999 ** must have exited unexpectedly in the middle of a transaction (after
1000 ** writing one or more dirty pages to the WAL to free up memory).
1001 ** Remove the remnants of that writers uncommitted transaction from
1002 ** the hash-table before writing any new entries.
1003 */
dand60bf112010-06-14 11:18:50 +00001004 if( aPgno[idx] ){
danca6b5ba2010-05-25 10:50:56 +00001005 walCleanupHash(pWal);
dand60bf112010-06-14 11:18:50 +00001006 assert( !aPgno[idx] );
danca6b5ba2010-05-25 10:50:56 +00001007 }
dan4280eb32010-06-12 12:02:35 +00001008
1009 /* Write the aPgno[] array entry and the hash-table slot. */
drh519426a2010-07-09 03:19:07 +00001010 nCollide = idx;
dan6f150142010-05-21 15:31:56 +00001011 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
drh519426a2010-07-09 03:19:07 +00001012 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
drh29d4dbe2010-05-18 23:29:52 +00001013 }
dand60bf112010-06-14 11:18:50 +00001014 aPgno[idx] = iPage;
shaneh5eba1f62010-07-02 17:05:03 +00001015 aHash[iKey] = (ht_slot)idx;
drh4fa95bf2010-05-22 00:55:39 +00001016
1017#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1018 /* Verify that the number of entries in the hash table exactly equals
1019 ** the number of entries in the mapping region.
1020 */
1021 {
1022 int i; /* Loop counter */
1023 int nEntry = 0; /* Number of entries in the hash table */
1024 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1025 assert( nEntry==idx );
1026 }
1027
1028 /* Verify that the every entry in the mapping region is reachable
1029 ** via the hash table. This turns out to be a really, really expensive
1030 ** thing to check, so only do this occasionally - not on every
1031 ** iteration.
1032 */
1033 if( (idx&0x3ff)==0 ){
1034 int i; /* Loop counter */
1035 for(i=1; i<=idx; i++){
dand60bf112010-06-14 11:18:50 +00001036 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
drh4fa95bf2010-05-22 00:55:39 +00001037 if( aHash[iKey]==i ) break;
1038 }
1039 assert( aHash[iKey]==i );
1040 }
1041 }
1042#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +00001043 }
dan31f98fc2010-04-27 05:42:32 +00001044
drh4fa95bf2010-05-22 00:55:39 +00001045
danbb23aff2010-05-10 14:46:09 +00001046 return rc;
dan7c246102010-04-12 19:00:29 +00001047}
1048
1049
1050/*
drh7ed91f22010-04-29 22:34:07 +00001051** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +00001052**
1053** This routine first tries to establish an exclusive lock on the
1054** wal-index to prevent other threads/processes from doing anything
1055** with the WAL or wal-index while recovery is running. The
1056** WAL_RECOVER_LOCK is also held so that other threads will know
1057** that this thread is running recovery. If unable to establish
1058** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +00001059*/
drh7ed91f22010-04-29 22:34:07 +00001060static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +00001061 int rc; /* Return Code */
1062 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +00001063 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +00001064 int iLock; /* Lock offset to lock for checkpoint */
1065 int nLock; /* Number of locks to hold */
dan7c246102010-04-12 19:00:29 +00001066
dand0aa3422010-05-31 16:41:53 +00001067 /* Obtain an exclusive lock on all byte in the locking range not already
1068 ** locked by the caller. The caller is guaranteed to have locked the
1069 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1070 ** If successful, the same bytes that are locked here are unlocked before
1071 ** this function returns.
1072 */
1073 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1074 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1075 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1076 assert( pWal->writeLock );
1077 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1078 nLock = SQLITE_SHM_NLOCK - iLock;
1079 rc = walLockExclusive(pWal, iLock, nLock);
drh73b64e42010-05-30 19:55:15 +00001080 if( rc ){
1081 return rc;
1082 }
drhc74c3332010-05-31 12:15:19 +00001083 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +00001084
dan71d89912010-05-24 13:57:42 +00001085 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +00001086
drhd9e5c4f2010-05-12 18:01:39 +00001087 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +00001088 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001089 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001090 }
1091
danb8fd6c22010-05-24 10:39:36 +00001092 if( nSize>WAL_HDRSIZE ){
1093 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dan7c246102010-04-12 19:00:29 +00001094 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001095 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001096 u8 *aData; /* Pointer to data part of aFrame buffer */
1097 int iFrame; /* Index of last frame read */
1098 i64 iOffset; /* Next offset to read from log file */
drh6e810962010-05-19 17:49:50 +00001099 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001100 u32 magic; /* Magic value read from WAL header */
dan10f5a502010-06-23 15:55:43 +00001101 u32 version; /* Magic value read from WAL header */
drhfe6163d2011-12-17 13:45:28 +00001102 int isValid; /* True if this frame is valid */
dan7c246102010-04-12 19:00:29 +00001103
danb8fd6c22010-05-24 10:39:36 +00001104 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001105 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001106 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001107 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001108 }
1109
1110 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001111 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1112 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1113 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001114 */
danb8fd6c22010-05-24 10:39:36 +00001115 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001116 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001117 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1118 || szPage&(szPage-1)
1119 || szPage>SQLITE_MAX_PAGE_SIZE
1120 || szPage<512
1121 ){
dan7c246102010-04-12 19:00:29 +00001122 goto finished;
1123 }
shaneh5eba1f62010-07-02 17:05:03 +00001124 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
drhb2eced52010-08-12 02:41:12 +00001125 pWal->szPage = szPage;
drh23ea97b2010-05-20 16:45:58 +00001126 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001127 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
drhcd285082010-06-23 22:00:35 +00001128
1129 /* Verify that the WAL header checksum is correct */
dan71d89912010-05-24 13:57:42 +00001130 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
dan10f5a502010-06-23 15:55:43 +00001131 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
dan71d89912010-05-24 13:57:42 +00001132 );
dan10f5a502010-06-23 15:55:43 +00001133 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1134 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1135 ){
1136 goto finished;
1137 }
1138
drhcd285082010-06-23 22:00:35 +00001139 /* Verify that the version number on the WAL format is one that
1140 ** are able to understand */
dan10f5a502010-06-23 15:55:43 +00001141 version = sqlite3Get4byte(&aBuf[4]);
1142 if( version!=WAL_MAX_VERSION ){
1143 rc = SQLITE_CANTOPEN_BKPT;
1144 goto finished;
1145 }
1146
dan7c246102010-04-12 19:00:29 +00001147 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001148 szFrame = szPage + WAL_FRAME_HDRSIZE;
1149 aFrame = (u8 *)sqlite3_malloc(szFrame);
dan7c246102010-04-12 19:00:29 +00001150 if( !aFrame ){
drh73b64e42010-05-30 19:55:15 +00001151 rc = SQLITE_NOMEM;
1152 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001153 }
drh7ed91f22010-04-29 22:34:07 +00001154 aData = &aFrame[WAL_FRAME_HDRSIZE];
dan7c246102010-04-12 19:00:29 +00001155
1156 /* Read all frames from the log file. */
1157 iFrame = 0;
drh584c7542010-05-19 18:08:10 +00001158 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
dan7c246102010-04-12 19:00:29 +00001159 u32 pgno; /* Database page number for frame */
1160 u32 nTruncate; /* dbsize field from frame header */
dan7c246102010-04-12 19:00:29 +00001161
1162 /* Read and decode the next log frame. */
drhfe6163d2011-12-17 13:45:28 +00001163 iFrame++;
drh584c7542010-05-19 18:08:10 +00001164 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
dan7c246102010-04-12 19:00:29 +00001165 if( rc!=SQLITE_OK ) break;
drh7e263722010-05-20 21:21:09 +00001166 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
drhf694aa62011-12-20 22:18:51 +00001167 if( !isValid ) break;
drhfe6163d2011-12-17 13:45:28 +00001168 rc = walIndexAppend(pWal, iFrame, pgno);
danc7991bd2010-05-05 19:04:59 +00001169 if( rc!=SQLITE_OK ) break;
dan7c246102010-04-12 19:00:29 +00001170
1171 /* If nTruncate is non-zero, this is a commit record. */
1172 if( nTruncate ){
dan71d89912010-05-24 13:57:42 +00001173 pWal->hdr.mxFrame = iFrame;
1174 pWal->hdr.nPage = nTruncate;
shaneh1df2db72010-08-18 02:28:48 +00001175 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00001176 testcase( szPage<=32768 );
1177 testcase( szPage>=65536 );
dan71d89912010-05-24 13:57:42 +00001178 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1179 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
dan7c246102010-04-12 19:00:29 +00001180 }
1181 }
1182
1183 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001184 }
1185
1186finished:
dan576bc322010-05-06 18:04:50 +00001187 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001188 volatile WalCkptInfo *pInfo;
1189 int i;
dan71d89912010-05-24 13:57:42 +00001190 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1191 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001192 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001193
drhdb7f6472010-06-09 14:45:12 +00001194 /* Reset the checkpoint-header. This is safe because this thread is
dan3dee6da2010-05-31 16:17:54 +00001195 ** currently holding locks that exclude all other readers, writers and
1196 ** checkpointers.
1197 */
drhdb7f6472010-06-09 14:45:12 +00001198 pInfo = walCkptInfo(pWal);
1199 pInfo->nBackfill = 0;
1200 pInfo->aReadMark[0] = 0;
1201 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
dan5373b762012-07-17 14:37:12 +00001202 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
daneb8763d2010-08-17 14:52:22 +00001203
1204 /* If more than one frame was recovered from the log file, report an
1205 ** event via sqlite3_log(). This is to help with identifying performance
1206 ** problems caused by applications routinely shutting down without
1207 ** checkpointing the log file.
1208 */
1209 if( pWal->hdr.nPage ){
1210 sqlite3_log(SQLITE_OK, "Recovered %d frames from WAL file %s",
1211 pWal->hdr.nPage, pWal->zWalName
1212 );
1213 }
dan576bc322010-05-06 18:04:50 +00001214 }
drh73b64e42010-05-30 19:55:15 +00001215
1216recovery_error:
drhc74c3332010-05-31 12:15:19 +00001217 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dand0aa3422010-05-31 16:41:53 +00001218 walUnlockExclusive(pWal, iLock, nLock);
dan7c246102010-04-12 19:00:29 +00001219 return rc;
1220}
1221
drha8e654e2010-05-04 17:38:42 +00001222/*
dan1018e902010-05-05 15:33:05 +00001223** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001224*/
dan1018e902010-05-05 15:33:05 +00001225static void walIndexClose(Wal *pWal, int isDelete){
dan8c408002010-11-01 17:38:24 +00001226 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
1227 int i;
1228 for(i=0; i<pWal->nWiData; i++){
1229 sqlite3_free((void *)pWal->apWiData[i]);
1230 pWal->apWiData[i] = 0;
1231 }
1232 }else{
1233 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1234 }
drha8e654e2010-05-04 17:38:42 +00001235}
1236
dan7c246102010-04-12 19:00:29 +00001237/*
dan3e875ef2010-07-05 19:03:35 +00001238** Open a connection to the WAL file zWalName. The database file must
1239** already be opened on connection pDbFd. The buffer that zWalName points
1240** to must remain valid for the lifetime of the returned Wal* handle.
dan3de777f2010-04-17 12:31:37 +00001241**
1242** A SHARED lock should be held on the database file when this function
1243** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001244** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001245** were to do this just after this client opened one of these files, the
1246** system would be badly broken.
danef378022010-05-04 11:06:03 +00001247**
1248** If the log file is successfully opened, SQLITE_OK is returned and
1249** *ppWal is set to point to a new WAL handle. If an error occurs,
1250** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001251*/
drhc438efd2010-04-26 00:19:45 +00001252int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001253 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001254 sqlite3_file *pDbFd, /* The open database file */
dan3e875ef2010-07-05 19:03:35 +00001255 const char *zWalName, /* Name of the WAL file */
dan8c408002010-11-01 17:38:24 +00001256 int bNoShm, /* True to run in heap-memory mode */
drh85a83752011-05-16 21:00:27 +00001257 i64 mxWalSize, /* Truncate WAL to this size on reset */
drh7ed91f22010-04-29 22:34:07 +00001258 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001259){
danef378022010-05-04 11:06:03 +00001260 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001261 Wal *pRet; /* Object to allocate and return */
dan7c246102010-04-12 19:00:29 +00001262 int flags; /* Flags passed to OsOpen() */
dan7c246102010-04-12 19:00:29 +00001263
dan3e875ef2010-07-05 19:03:35 +00001264 assert( zWalName && zWalName[0] );
drhd9e5c4f2010-05-12 18:01:39 +00001265 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001266
drh1b78eaf2010-05-25 13:40:03 +00001267 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1268 ** this source file. Verify that the #defines of the locking byte offsets
1269 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1270 */
1271#ifdef WIN_SHM_BASE
1272 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1273#endif
1274#ifdef UNIX_SHM_BASE
1275 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1276#endif
1277
1278
drh7ed91f22010-04-29 22:34:07 +00001279 /* Allocate an instance of struct Wal to return. */
1280 *ppWal = 0;
dan3e875ef2010-07-05 19:03:35 +00001281 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
dan76ed3bc2010-05-03 17:18:24 +00001282 if( !pRet ){
1283 return SQLITE_NOMEM;
1284 }
1285
dan7c246102010-04-12 19:00:29 +00001286 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001287 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1288 pRet->pDbFd = pDbFd;
drh73b64e42010-05-30 19:55:15 +00001289 pRet->readLock = -1;
drh85a83752011-05-16 21:00:27 +00001290 pRet->mxWalSize = mxWalSize;
dan3e875ef2010-07-05 19:03:35 +00001291 pRet->zWalName = zWalName;
drhd992b152011-12-20 20:13:25 +00001292 pRet->syncHeader = 1;
drh374f4a02011-12-17 20:02:11 +00001293 pRet->padToSectorBoundary = 1;
dan8c408002010-11-01 17:38:24 +00001294 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
dan7c246102010-04-12 19:00:29 +00001295
drh7ed91f22010-04-29 22:34:07 +00001296 /* Open file handle on the write-ahead log file. */
danddb0ac42010-07-14 14:48:58 +00001297 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
danda9fe0c2010-07-13 18:44:03 +00001298 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
dan50833e32010-07-14 16:37:17 +00001299 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
drh66dfec8b2011-06-01 20:01:49 +00001300 pRet->readOnly = WAL_RDONLY;
dan50833e32010-07-14 16:37:17 +00001301 }
dan7c246102010-04-12 19:00:29 +00001302
dan7c246102010-04-12 19:00:29 +00001303 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001304 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001305 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001306 sqlite3_free(pRet);
1307 }else{
drh4eb02a42011-12-16 21:26:26 +00001308 int iDC = sqlite3OsDeviceCharacteristics(pRet->pWalFd);
drhd992b152011-12-20 20:13:25 +00001309 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
drhcb15f352011-12-23 01:04:17 +00001310 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1311 pRet->padToSectorBoundary = 0;
1312 }
danef378022010-05-04 11:06:03 +00001313 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001314 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001315 }
dan7c246102010-04-12 19:00:29 +00001316 return rc;
1317}
1318
drha2a42012010-05-18 18:01:08 +00001319/*
drh85a83752011-05-16 21:00:27 +00001320** Change the size to which the WAL file is trucated on each reset.
1321*/
1322void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1323 if( pWal ) pWal->mxWalSize = iLimit;
1324}
1325
1326/*
drha2a42012010-05-18 18:01:08 +00001327** Find the smallest page number out of all pages held in the WAL that
1328** has not been returned by any prior invocation of this method on the
1329** same WalIterator object. Write into *piFrame the frame index where
1330** that page was last written into the WAL. Write into *piPage the page
1331** number.
1332**
1333** Return 0 on success. If there are no pages in the WAL with a page
1334** number larger than *piPage, then return 1.
1335*/
drh7ed91f22010-04-29 22:34:07 +00001336static int walIteratorNext(
1337 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001338 u32 *piPage, /* OUT: The page number of the next page */
1339 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001340){
drha2a42012010-05-18 18:01:08 +00001341 u32 iMin; /* Result pgno must be greater than iMin */
1342 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1343 int i; /* For looping through segments */
dan7c246102010-04-12 19:00:29 +00001344
drha2a42012010-05-18 18:01:08 +00001345 iMin = p->iPrior;
1346 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001347 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001348 struct WalSegment *pSegment = &p->aSegment[i];
dan13a3cb82010-06-11 19:04:21 +00001349 while( pSegment->iNext<pSegment->nEntry ){
drha2a42012010-05-18 18:01:08 +00001350 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001351 if( iPg>iMin ){
1352 if( iPg<iRet ){
1353 iRet = iPg;
dan13a3cb82010-06-11 19:04:21 +00001354 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
dan7c246102010-04-12 19:00:29 +00001355 }
1356 break;
1357 }
1358 pSegment->iNext++;
1359 }
dan7c246102010-04-12 19:00:29 +00001360 }
1361
drha2a42012010-05-18 18:01:08 +00001362 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001363 return (iRet==0xFFFFFFFF);
1364}
1365
danf544b4c2010-06-25 11:35:52 +00001366/*
1367** This function merges two sorted lists into a single sorted list.
drhd9c9b782010-12-15 21:02:06 +00001368**
1369** aLeft[] and aRight[] are arrays of indices. The sort key is
1370** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1371** is guaranteed for all J<K:
1372**
1373** aContent[aLeft[J]] < aContent[aLeft[K]]
1374** aContent[aRight[J]] < aContent[aRight[K]]
1375**
1376** This routine overwrites aRight[] with a new (probably longer) sequence
1377** of indices such that the aRight[] contains every index that appears in
1378** either aLeft[] or the old aRight[] and such that the second condition
1379** above is still met.
1380**
1381** The aContent[aLeft[X]] values will be unique for all X. And the
1382** aContent[aRight[X]] values will be unique too. But there might be
1383** one or more combinations of X and Y such that
1384**
1385** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1386**
1387** When that happens, omit the aLeft[X] and use the aRight[Y] index.
danf544b4c2010-06-25 11:35:52 +00001388*/
1389static void walMerge(
drhd9c9b782010-12-15 21:02:06 +00001390 const u32 *aContent, /* Pages in wal - keys for the sort */
danf544b4c2010-06-25 11:35:52 +00001391 ht_slot *aLeft, /* IN: Left hand input list */
1392 int nLeft, /* IN: Elements in array *paLeft */
1393 ht_slot **paRight, /* IN/OUT: Right hand input list */
1394 int *pnRight, /* IN/OUT: Elements in *paRight */
1395 ht_slot *aTmp /* Temporary buffer */
1396){
1397 int iLeft = 0; /* Current index in aLeft */
1398 int iRight = 0; /* Current index in aRight */
1399 int iOut = 0; /* Current index in output buffer */
1400 int nRight = *pnRight;
1401 ht_slot *aRight = *paRight;
dan7c246102010-04-12 19:00:29 +00001402
danf544b4c2010-06-25 11:35:52 +00001403 assert( nLeft>0 && nRight>0 );
1404 while( iRight<nRight || iLeft<nLeft ){
1405 ht_slot logpage;
1406 Pgno dbpage;
1407
1408 if( (iLeft<nLeft)
1409 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1410 ){
1411 logpage = aLeft[iLeft++];
1412 }else{
1413 logpage = aRight[iRight++];
1414 }
1415 dbpage = aContent[logpage];
1416
1417 aTmp[iOut++] = logpage;
1418 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1419
1420 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1421 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1422 }
1423
1424 *paRight = aLeft;
1425 *pnRight = iOut;
1426 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1427}
1428
1429/*
drhd9c9b782010-12-15 21:02:06 +00001430** Sort the elements in list aList using aContent[] as the sort key.
1431** Remove elements with duplicate keys, preferring to keep the
1432** larger aList[] values.
1433**
1434** The aList[] entries are indices into aContent[]. The values in
1435** aList[] are to be sorted so that for all J<K:
1436**
1437** aContent[aList[J]] < aContent[aList[K]]
1438**
1439** For any X and Y such that
1440**
1441** aContent[aList[X]] == aContent[aList[Y]]
1442**
1443** Keep the larger of the two values aList[X] and aList[Y] and discard
1444** the smaller.
danf544b4c2010-06-25 11:35:52 +00001445*/
dan13a3cb82010-06-11 19:04:21 +00001446static void walMergesort(
drhd9c9b782010-12-15 21:02:06 +00001447 const u32 *aContent, /* Pages in wal */
dan067f3162010-06-14 10:30:12 +00001448 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1449 ht_slot *aList, /* IN/OUT: List to sort */
drha2a42012010-05-18 18:01:08 +00001450 int *pnList /* IN/OUT: Number of elements in aList[] */
1451){
danf544b4c2010-06-25 11:35:52 +00001452 struct Sublist {
1453 int nList; /* Number of elements in aList */
1454 ht_slot *aList; /* Pointer to sub-list content */
1455 };
drha2a42012010-05-18 18:01:08 +00001456
danf544b4c2010-06-25 11:35:52 +00001457 const int nList = *pnList; /* Size of input list */
drhff828942010-06-26 21:34:06 +00001458 int nMerge = 0; /* Number of elements in list aMerge */
1459 ht_slot *aMerge = 0; /* List to be merged */
danf544b4c2010-06-25 11:35:52 +00001460 int iList; /* Index into input list */
drh7d113eb2010-06-26 20:00:54 +00001461 int iSub = 0; /* Index into aSub array */
danf544b4c2010-06-25 11:35:52 +00001462 struct Sublist aSub[13]; /* Array of sub-lists */
drha2a42012010-05-18 18:01:08 +00001463
danf544b4c2010-06-25 11:35:52 +00001464 memset(aSub, 0, sizeof(aSub));
1465 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1466 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
drha2a42012010-05-18 18:01:08 +00001467
danf544b4c2010-06-25 11:35:52 +00001468 for(iList=0; iList<nList; iList++){
1469 nMerge = 1;
1470 aMerge = &aList[iList];
1471 for(iSub=0; iList & (1<<iSub); iSub++){
1472 struct Sublist *p = &aSub[iSub];
1473 assert( p->aList && p->nList<=(1<<iSub) );
danbdf1e242010-06-25 15:16:25 +00001474 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001475 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
drha2a42012010-05-18 18:01:08 +00001476 }
danf544b4c2010-06-25 11:35:52 +00001477 aSub[iSub].aList = aMerge;
1478 aSub[iSub].nList = nMerge;
drha2a42012010-05-18 18:01:08 +00001479 }
1480
danf544b4c2010-06-25 11:35:52 +00001481 for(iSub++; iSub<ArraySize(aSub); iSub++){
1482 if( nList & (1<<iSub) ){
1483 struct Sublist *p = &aSub[iSub];
danbdf1e242010-06-25 15:16:25 +00001484 assert( p->nList<=(1<<iSub) );
1485 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001486 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1487 }
1488 }
1489 assert( aMerge==aList );
1490 *pnList = nMerge;
1491
drha2a42012010-05-18 18:01:08 +00001492#ifdef SQLITE_DEBUG
1493 {
1494 int i;
1495 for(i=1; i<*pnList; i++){
1496 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1497 }
1498 }
1499#endif
1500}
1501
dan5d656852010-06-14 07:53:26 +00001502/*
1503** Free an iterator allocated by walIteratorInit().
1504*/
1505static void walIteratorFree(WalIterator *p){
danbdf1e242010-06-25 15:16:25 +00001506 sqlite3ScratchFree(p);
dan5d656852010-06-14 07:53:26 +00001507}
1508
drha2a42012010-05-18 18:01:08 +00001509/*
danbdf1e242010-06-25 15:16:25 +00001510** Construct a WalInterator object that can be used to loop over all
1511** pages in the WAL in ascending order. The caller must hold the checkpoint
drhd9c9b782010-12-15 21:02:06 +00001512** lock.
drha2a42012010-05-18 18:01:08 +00001513**
1514** On success, make *pp point to the newly allocated WalInterator object
danbdf1e242010-06-25 15:16:25 +00001515** return SQLITE_OK. Otherwise, return an error code. If this routine
1516** returns an error, the value of *pp is undefined.
drha2a42012010-05-18 18:01:08 +00001517**
1518** The calling routine should invoke walIteratorFree() to destroy the
danbdf1e242010-06-25 15:16:25 +00001519** WalIterator object when it has finished with it.
drha2a42012010-05-18 18:01:08 +00001520*/
1521static int walIteratorInit(Wal *pWal, WalIterator **pp){
dan067f3162010-06-14 10:30:12 +00001522 WalIterator *p; /* Return value */
1523 int nSegment; /* Number of segments to merge */
1524 u32 iLast; /* Last frame in log */
1525 int nByte; /* Number of bytes to allocate */
1526 int i; /* Iterator variable */
1527 ht_slot *aTmp; /* Temp space used by merge-sort */
danbdf1e242010-06-25 15:16:25 +00001528 int rc = SQLITE_OK; /* Return Code */
drha2a42012010-05-18 18:01:08 +00001529
danbdf1e242010-06-25 15:16:25 +00001530 /* This routine only runs while holding the checkpoint lock. And
1531 ** it only runs if there is actually content in the log (mxFrame>0).
drha2a42012010-05-18 18:01:08 +00001532 */
danbdf1e242010-06-25 15:16:25 +00001533 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
dan13a3cb82010-06-11 19:04:21 +00001534 iLast = pWal->hdr.mxFrame;
drha2a42012010-05-18 18:01:08 +00001535
danbdf1e242010-06-25 15:16:25 +00001536 /* Allocate space for the WalIterator object. */
dan13a3cb82010-06-11 19:04:21 +00001537 nSegment = walFramePage(iLast) + 1;
1538 nByte = sizeof(WalIterator)
dan52d6fc02010-06-25 16:34:32 +00001539 + (nSegment-1)*sizeof(struct WalSegment)
1540 + iLast*sizeof(ht_slot);
danbdf1e242010-06-25 15:16:25 +00001541 p = (WalIterator *)sqlite3ScratchMalloc(nByte);
dan8f6097c2010-05-06 07:43:58 +00001542 if( !p ){
drha2a42012010-05-18 18:01:08 +00001543 return SQLITE_NOMEM;
1544 }
1545 memset(p, 0, nByte);
drha2a42012010-05-18 18:01:08 +00001546 p->nSegment = nSegment;
danbdf1e242010-06-25 15:16:25 +00001547
1548 /* Allocate temporary space used by the merge-sort routine. This block
1549 ** of memory will be freed before this function returns.
1550 */
dan52d6fc02010-06-25 16:34:32 +00001551 aTmp = (ht_slot *)sqlite3ScratchMalloc(
1552 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1553 );
danbdf1e242010-06-25 15:16:25 +00001554 if( !aTmp ){
1555 rc = SQLITE_NOMEM;
1556 }
1557
1558 for(i=0; rc==SQLITE_OK && i<nSegment; i++){
dan067f3162010-06-14 10:30:12 +00001559 volatile ht_slot *aHash;
dan13a3cb82010-06-11 19:04:21 +00001560 u32 iZero;
dan13a3cb82010-06-11 19:04:21 +00001561 volatile u32 *aPgno;
1562
dan4280eb32010-06-12 12:02:35 +00001563 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
danbdf1e242010-06-25 15:16:25 +00001564 if( rc==SQLITE_OK ){
dan52d6fc02010-06-25 16:34:32 +00001565 int j; /* Counter variable */
1566 int nEntry; /* Number of entries in this segment */
1567 ht_slot *aIndex; /* Sorted index for this segment */
1568
danbdf1e242010-06-25 15:16:25 +00001569 aPgno++;
drh519426a2010-07-09 03:19:07 +00001570 if( (i+1)==nSegment ){
1571 nEntry = (int)(iLast - iZero);
1572 }else{
shaneh55897962010-07-09 12:57:53 +00001573 nEntry = (int)((u32*)aHash - (u32*)aPgno);
drh519426a2010-07-09 03:19:07 +00001574 }
dan52d6fc02010-06-25 16:34:32 +00001575 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
danbdf1e242010-06-25 15:16:25 +00001576 iZero++;
1577
danbdf1e242010-06-25 15:16:25 +00001578 for(j=0; j<nEntry; j++){
shaneh5eba1f62010-07-02 17:05:03 +00001579 aIndex[j] = (ht_slot)j;
danbdf1e242010-06-25 15:16:25 +00001580 }
1581 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1582 p->aSegment[i].iZero = iZero;
1583 p->aSegment[i].nEntry = nEntry;
1584 p->aSegment[i].aIndex = aIndex;
1585 p->aSegment[i].aPgno = (u32 *)aPgno;
dan13a3cb82010-06-11 19:04:21 +00001586 }
dan7c246102010-04-12 19:00:29 +00001587 }
danbdf1e242010-06-25 15:16:25 +00001588 sqlite3ScratchFree(aTmp);
dan7c246102010-04-12 19:00:29 +00001589
danbdf1e242010-06-25 15:16:25 +00001590 if( rc!=SQLITE_OK ){
1591 walIteratorFree(p);
1592 }
dan8f6097c2010-05-06 07:43:58 +00001593 *pp = p;
danbdf1e242010-06-25 15:16:25 +00001594 return rc;
dan7c246102010-04-12 19:00:29 +00001595}
1596
dan7c246102010-04-12 19:00:29 +00001597/*
dana58f26f2010-11-16 18:56:51 +00001598** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1599** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1600** busy-handler function. Invoke it and retry the lock until either the
1601** lock is successfully obtained or the busy-handler returns 0.
1602*/
1603static int walBusyLock(
1604 Wal *pWal, /* WAL connection */
1605 int (*xBusy)(void*), /* Function to call when busy */
1606 void *pBusyArg, /* Context argument for xBusyHandler */
1607 int lockIdx, /* Offset of first byte to lock */
1608 int n /* Number of bytes to lock */
1609){
1610 int rc;
1611 do {
1612 rc = walLockExclusive(pWal, lockIdx, n);
1613 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1614 return rc;
1615}
1616
1617/*
danf2b8dd52010-11-18 19:28:01 +00001618** The cache of the wal-index header must be valid to call this function.
1619** Return the page-size in bytes used by the database.
1620*/
1621static int walPagesize(Wal *pWal){
1622 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1623}
1624
1625/*
drh73b64e42010-05-30 19:55:15 +00001626** Copy as much content as we can from the WAL back into the database file
1627** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1628**
1629** The amount of information copies from WAL to database might be limited
1630** by active readers. This routine will never overwrite a database page
1631** that a concurrent reader might be using.
1632**
1633** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1634** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1635** checkpoints are always run by a background thread or background
1636** process, foreground threads will never block on a lengthy fsync call.
1637**
1638** Fsync is called on the WAL before writing content out of the WAL and
1639** into the database. This ensures that if the new content is persistent
1640** in the WAL and can be recovered following a power-loss or hard reset.
1641**
1642** Fsync is also called on the database file if (and only if) the entire
1643** WAL content is copied into the database file. This second fsync makes
1644** it safe to delete the WAL since the new content will persist in the
1645** database file.
1646**
1647** This routine uses and updates the nBackfill field of the wal-index header.
1648** This is the only routine tha will increase the value of nBackfill.
1649** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1650** its value.)
1651**
1652** The caller must be holding sufficient locks to ensure that no other
1653** checkpoint is running (in any other thread or process) at the same
1654** time.
dan7c246102010-04-12 19:00:29 +00001655*/
drh7ed91f22010-04-29 22:34:07 +00001656static int walCheckpoint(
1657 Wal *pWal, /* Wal connection */
dancdc1f042010-11-18 12:11:05 +00001658 int eMode, /* One of PASSIVE, FULL or RESTART */
danf2b8dd52010-11-18 19:28:01 +00001659 int (*xBusyCall)(void*), /* Function to call when busy */
dana58f26f2010-11-16 18:56:51 +00001660 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00001661 int sync_flags, /* Flags for OsSync() (or 0) */
dan9c5e3682011-02-07 15:12:12 +00001662 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00001663){
1664 int rc; /* Return code */
drhb2eced52010-08-12 02:41:12 +00001665 int szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001666 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001667 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001668 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001669 u32 mxSafeFrame; /* Max frame that can be backfilled */
dan502019c2010-07-28 14:26:17 +00001670 u32 mxPage; /* Max database page to write */
drh73b64e42010-05-30 19:55:15 +00001671 int i; /* Loop counter */
drh73b64e42010-05-30 19:55:15 +00001672 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
danf2b8dd52010-11-18 19:28:01 +00001673 int (*xBusy)(void*) = 0; /* Function to call when waiting for locks */
dan7c246102010-04-12 19:00:29 +00001674
danf2b8dd52010-11-18 19:28:01 +00001675 szPage = walPagesize(pWal);
drh9b78f792010-08-14 21:21:24 +00001676 testcase( szPage<=32768 );
1677 testcase( szPage>=65536 );
drh7d208442010-12-16 02:06:29 +00001678 pInfo = walCkptInfo(pWal);
1679 if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK;
danf544b4c2010-06-25 11:35:52 +00001680
dan7c246102010-04-12 19:00:29 +00001681 /* Allocate the iterator */
dan8f6097c2010-05-06 07:43:58 +00001682 rc = walIteratorInit(pWal, &pIter);
danf544b4c2010-06-25 11:35:52 +00001683 if( rc!=SQLITE_OK ){
danbdf1e242010-06-25 15:16:25 +00001684 return rc;
danb6e099a2010-05-04 14:47:39 +00001685 }
danf544b4c2010-06-25 11:35:52 +00001686 assert( pIter );
danb6e099a2010-05-04 14:47:39 +00001687
danf2b8dd52010-11-18 19:28:01 +00001688 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ) xBusy = xBusyCall;
danb6e099a2010-05-04 14:47:39 +00001689
drh73b64e42010-05-30 19:55:15 +00001690 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1691 ** safe to write into the database. Frames beyond mxSafeFrame might
1692 ** overwrite database pages that are in use by active readers and thus
1693 ** cannot be backfilled from the WAL.
1694 */
dand54ff602010-05-31 11:16:30 +00001695 mxSafeFrame = pWal->hdr.mxFrame;
dan502019c2010-07-28 14:26:17 +00001696 mxPage = pWal->hdr.nPage;
drh73b64e42010-05-30 19:55:15 +00001697 for(i=1; i<WAL_NREADER; i++){
1698 u32 y = pInfo->aReadMark[i];
danf2b8dd52010-11-18 19:28:01 +00001699 if( mxSafeFrame>y ){
dan83f42d12010-06-04 10:37:05 +00001700 assert( y<=pWal->hdr.mxFrame );
danf2b8dd52010-11-18 19:28:01 +00001701 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
dan83f42d12010-06-04 10:37:05 +00001702 if( rc==SQLITE_OK ){
dan5373b762012-07-17 14:37:12 +00001703 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
drh73b64e42010-05-30 19:55:15 +00001704 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
drh2d37e1c2010-06-02 20:38:20 +00001705 }else if( rc==SQLITE_BUSY ){
drhdb7f6472010-06-09 14:45:12 +00001706 mxSafeFrame = y;
danf2b8dd52010-11-18 19:28:01 +00001707 xBusy = 0;
drh2d37e1c2010-06-02 20:38:20 +00001708 }else{
dan83f42d12010-06-04 10:37:05 +00001709 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001710 }
1711 }
danc5118782010-04-17 17:34:41 +00001712 }
dan7c246102010-04-12 19:00:29 +00001713
drh73b64e42010-05-30 19:55:15 +00001714 if( pInfo->nBackfill<mxSafeFrame
dana58f26f2010-11-16 18:56:51 +00001715 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0), 1))==SQLITE_OK
drh73b64e42010-05-30 19:55:15 +00001716 ){
dan502019c2010-07-28 14:26:17 +00001717 i64 nSize; /* Current size of database file */
drh73b64e42010-05-30 19:55:15 +00001718 u32 nBackfill = pInfo->nBackfill;
1719
1720 /* Sync the WAL to disk */
1721 if( sync_flags ){
1722 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1723 }
1724
danf23da962013-03-23 21:00:41 +00001725 /* If the database may grow as a result of this checkpoint, hint
1726 ** about the eventual size of the db file to the VFS layer.
1727 */
dan007820d2010-08-09 07:51:40 +00001728 if( rc==SQLITE_OK ){
1729 i64 nReq = ((i64)mxPage * szPage);
danf23da962013-03-23 21:00:41 +00001730 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1731 if( rc==SQLITE_OK && nSize<nReq ){
1732 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1733 }
dan502019c2010-07-28 14:26:17 +00001734 }
1735
danf23da962013-03-23 21:00:41 +00001736
drh73b64e42010-05-30 19:55:15 +00001737 /* Iterate through the contents of the WAL, copying data to the db file. */
1738 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
drh3e8e7ec2010-07-07 13:43:19 +00001739 i64 iOffset;
dan13a3cb82010-06-11 19:04:21 +00001740 assert( walFramePgno(pWal, iFrame)==iDbpage );
dan502019c2010-07-28 14:26:17 +00001741 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue;
drh3e8e7ec2010-07-07 13:43:19 +00001742 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
drh09b5dbc2010-07-07 14:35:58 +00001743 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
drh3e8e7ec2010-07-07 13:43:19 +00001744 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1745 if( rc!=SQLITE_OK ) break;
1746 iOffset = (iDbpage-1)*(i64)szPage;
1747 testcase( IS_BIG_INT(iOffset) );
danf23da962013-03-23 21:00:41 +00001748 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
drh3e8e7ec2010-07-07 13:43:19 +00001749 if( rc!=SQLITE_OK ) break;
drh73b64e42010-05-30 19:55:15 +00001750 }
1751
1752 /* If work was actually accomplished... */
dand764c7d2010-06-04 11:56:22 +00001753 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00001754 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
drh3e8e7ec2010-07-07 13:43:19 +00001755 i64 szDb = pWal->hdr.nPage*(i64)szPage;
1756 testcase( IS_BIG_INT(szDb) );
1757 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
drh73b64e42010-05-30 19:55:15 +00001758 if( rc==SQLITE_OK && sync_flags ){
1759 rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1760 }
1761 }
dand764c7d2010-06-04 11:56:22 +00001762 if( rc==SQLITE_OK ){
1763 pInfo->nBackfill = mxSafeFrame;
1764 }
drh73b64e42010-05-30 19:55:15 +00001765 }
1766
1767 /* Release the reader lock held while backfilling */
1768 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
dana58f26f2010-11-16 18:56:51 +00001769 }
1770
1771 if( rc==SQLITE_BUSY ){
drh34116ea2010-05-31 12:30:52 +00001772 /* Reset the return code so as not to report a checkpoint failure
dana58f26f2010-11-16 18:56:51 +00001773 ** just because there are active readers. */
drh34116ea2010-05-31 12:30:52 +00001774 rc = SQLITE_OK;
dan7c246102010-04-12 19:00:29 +00001775 }
1776
danf2b8dd52010-11-18 19:28:01 +00001777 /* If this is an SQLITE_CHECKPOINT_RESTART operation, and the entire wal
1778 ** file has been copied into the database file, then block until all
1779 ** readers have finished using the wal file. This ensures that the next
1780 ** process to write to the database restarts the wal file.
1781 */
1782 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dancdc1f042010-11-18 12:11:05 +00001783 assert( pWal->writeLock );
danf2b8dd52010-11-18 19:28:01 +00001784 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1785 rc = SQLITE_BUSY;
1786 }else if( eMode==SQLITE_CHECKPOINT_RESTART ){
1787 assert( mxSafeFrame==pWal->hdr.mxFrame );
1788 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1789 if( rc==SQLITE_OK ){
1790 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1791 }
dancdc1f042010-11-18 12:11:05 +00001792 }
1793 }
1794
dan83f42d12010-06-04 10:37:05 +00001795 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00001796 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00001797 return rc;
1798}
1799
1800/*
danf60b7f32011-12-16 13:24:27 +00001801** If the WAL file is currently larger than nMax bytes in size, truncate
1802** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
drh8dd4afa2011-12-08 19:50:32 +00001803*/
danf60b7f32011-12-16 13:24:27 +00001804static void walLimitSize(Wal *pWal, i64 nMax){
1805 i64 sz;
1806 int rx;
1807 sqlite3BeginBenignMalloc();
1808 rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1809 if( rx==SQLITE_OK && (sz > nMax ) ){
1810 rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1811 }
1812 sqlite3EndBenignMalloc();
1813 if( rx ){
1814 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
drh8dd4afa2011-12-08 19:50:32 +00001815 }
1816}
1817
1818/*
dan7c246102010-04-12 19:00:29 +00001819** Close a connection to a log file.
1820*/
drhc438efd2010-04-26 00:19:45 +00001821int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00001822 Wal *pWal, /* Wal to close */
danc5118782010-04-17 17:34:41 +00001823 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001824 int nBuf,
1825 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00001826){
1827 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00001828 if( pWal ){
dan30c86292010-04-30 16:24:46 +00001829 int isDelete = 0; /* True to unlink wal and wal-index files */
1830
1831 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1832 ** ordinary, rollback-mode locking methods, this guarantees that the
1833 ** connection associated with this log file is the only connection to
1834 ** the database. In this case checkpoint the database and unlink both
1835 ** the wal and wal-index files.
1836 **
1837 ** The EXCLUSIVE lock is not released before returning.
1838 */
drhd9e5c4f2010-05-12 18:01:39 +00001839 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
dan30c86292010-04-30 16:24:46 +00001840 if( rc==SQLITE_OK ){
dan8c408002010-11-01 17:38:24 +00001841 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1842 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1843 }
dancdc1f042010-11-18 12:11:05 +00001844 rc = sqlite3WalCheckpoint(
1845 pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1846 );
drheed42502011-12-16 15:38:52 +00001847 if( rc==SQLITE_OK ){
1848 int bPersist = -1;
drhc02372c2012-01-10 17:59:59 +00001849 sqlite3OsFileControlHint(
dan6f2f19a2012-01-10 16:56:39 +00001850 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
1851 );
drheed42502011-12-16 15:38:52 +00001852 if( bPersist!=1 ){
1853 /* Try to delete the WAL file if the checkpoint completed and
1854 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
1855 ** mode (!bPersist) */
1856 isDelete = 1;
1857 }else if( pWal->mxWalSize>=0 ){
1858 /* Try to truncate the WAL file to zero bytes if the checkpoint
1859 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
1860 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
1861 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
1862 ** to zero bytes as truncating to the journal_size_limit might
1863 ** leave a corrupt WAL file on disk. */
1864 walLimitSize(pWal, 0);
1865 }
dan30c86292010-04-30 16:24:46 +00001866 }
dan30c86292010-04-30 16:24:46 +00001867 }
1868
dan1018e902010-05-05 15:33:05 +00001869 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00001870 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00001871 if( isDelete ){
drh92c45cf2012-01-10 00:24:59 +00001872 sqlite3BeginBenignMalloc();
drhd9e5c4f2010-05-12 18:01:39 +00001873 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
drh92c45cf2012-01-10 00:24:59 +00001874 sqlite3EndBenignMalloc();
dan30c86292010-04-30 16:24:46 +00001875 }
drhc74c3332010-05-31 12:15:19 +00001876 WALTRACE(("WAL%p: closed\n", pWal));
shaneh8a300f82010-07-02 18:15:31 +00001877 sqlite3_free((void *)pWal->apWiData);
drh7ed91f22010-04-29 22:34:07 +00001878 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00001879 }
1880 return rc;
1881}
1882
1883/*
drha2a42012010-05-18 18:01:08 +00001884** Try to read the wal-index header. Return 0 on success and 1 if
1885** there is a problem.
1886**
1887** The wal-index is in shared memory. Another thread or process might
1888** be writing the header at the same time this procedure is trying to
1889** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00001890** by verifying that both copies of the header are the same and also by
1891** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00001892**
1893** If and only if the read is consistent and the header is different from
1894** pWal->hdr, then pWal->hdr is updated to the content of the new header
1895** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00001896**
dan84670502010-05-07 05:46:23 +00001897** If the checksum cannot be verified return non-zero. If the header
1898** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00001899*/
drh7750ab42010-06-26 22:16:02 +00001900static int walIndexTryHdr(Wal *pWal, int *pChanged){
dan4280eb32010-06-12 12:02:35 +00001901 u32 aCksum[2]; /* Checksum on the header content */
1902 WalIndexHdr h1, h2; /* Two copies of the header content */
1903 WalIndexHdr volatile *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00001904
dan4280eb32010-06-12 12:02:35 +00001905 /* The first page of the wal-index must be mapped at this point. */
1906 assert( pWal->nWiData>0 && pWal->apWiData[0] );
drh79e6c782010-04-30 02:13:26 +00001907
drh6cef0cf2010-08-16 16:31:43 +00001908 /* Read the header. This might happen concurrently with a write to the
drh73b64e42010-05-30 19:55:15 +00001909 ** same area of shared memory on a different CPU in a SMP,
1910 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00001911 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00001912 **
1913 ** There are two copies of the header at the beginning of the wal-index.
1914 ** When reading, read [0] first then [1]. Writes are in the reverse order.
1915 ** Memory barriers are used to prevent the compiler or the hardware from
1916 ** reordering the reads and writes.
danb9bf16b2010-04-14 11:23:30 +00001917 */
dan4280eb32010-06-12 12:02:35 +00001918 aHdr = walIndexHdr(pWal);
1919 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
dan8c408002010-11-01 17:38:24 +00001920 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +00001921 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00001922
drhf0b20f82010-05-21 13:16:18 +00001923 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
1924 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00001925 }
drh4b82c382010-05-31 18:24:19 +00001926 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00001927 return 1; /* Malformed header - probably all zeros */
1928 }
danb8fd6c22010-05-24 10:39:36 +00001929 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00001930 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
1931 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00001932 }
1933
drhf0b20f82010-05-21 13:16:18 +00001934 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00001935 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00001936 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh9b78f792010-08-14 21:21:24 +00001937 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1938 testcase( pWal->szPage<=32768 );
1939 testcase( pWal->szPage>=65536 );
danb9bf16b2010-04-14 11:23:30 +00001940 }
dan84670502010-05-07 05:46:23 +00001941
1942 /* The header was successfully read. Return zero. */
1943 return 0;
danb9bf16b2010-04-14 11:23:30 +00001944}
1945
1946/*
drha2a42012010-05-18 18:01:08 +00001947** Read the wal-index header from the wal-index and into pWal->hdr.
drha927e942010-06-24 02:46:48 +00001948** If the wal-header appears to be corrupt, try to reconstruct the
1949** wal-index from the WAL before returning.
drha2a42012010-05-18 18:01:08 +00001950**
1951** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
1952** changed by this opertion. If pWal->hdr is unchanged, set *pChanged
1953** to 0.
1954**
drh7ed91f22010-04-29 22:34:07 +00001955** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00001956** Otherwise an SQLite error code.
1957*/
drh7ed91f22010-04-29 22:34:07 +00001958static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00001959 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00001960 int badHdr; /* True if a header read failed */
drha927e942010-06-24 02:46:48 +00001961 volatile u32 *page0; /* Chunk of wal-index containing header */
danb9bf16b2010-04-14 11:23:30 +00001962
dan4280eb32010-06-12 12:02:35 +00001963 /* Ensure that page 0 of the wal-index (the page that contains the
1964 ** wal-index header) is mapped. Return early if an error occurs here.
1965 */
dana8614692010-05-06 14:42:34 +00001966 assert( pChanged );
dan4280eb32010-06-12 12:02:35 +00001967 rc = walIndexPage(pWal, 0, &page0);
danc7991bd2010-05-05 19:04:59 +00001968 if( rc!=SQLITE_OK ){
1969 return rc;
dan4280eb32010-06-12 12:02:35 +00001970 };
1971 assert( page0 || pWal->writeLock==0 );
drh7ed91f22010-04-29 22:34:07 +00001972
dan4280eb32010-06-12 12:02:35 +00001973 /* If the first page of the wal-index has been mapped, try to read the
1974 ** wal-index header immediately, without holding any lock. This usually
1975 ** works, but may fail if the wal-index header is corrupt or currently
drha927e942010-06-24 02:46:48 +00001976 ** being modified by another thread or process.
danb9bf16b2010-04-14 11:23:30 +00001977 */
dan4280eb32010-06-12 12:02:35 +00001978 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
drhbab7b912010-05-26 17:31:58 +00001979
drh73b64e42010-05-30 19:55:15 +00001980 /* If the first attempt failed, it might have been due to a race
drh66dfec8b2011-06-01 20:01:49 +00001981 ** with a writer. So get a WRITE lock and try again.
drh73b64e42010-05-30 19:55:15 +00001982 */
dand54ff602010-05-31 11:16:30 +00001983 assert( badHdr==0 || pWal->writeLock==0 );
dan4edc6bf2011-05-10 17:31:29 +00001984 if( badHdr ){
drh66dfec8b2011-06-01 20:01:49 +00001985 if( pWal->readOnly & WAL_SHM_RDONLY ){
dan4edc6bf2011-05-10 17:31:29 +00001986 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
1987 walUnlockShared(pWal, WAL_WRITE_LOCK);
1988 rc = SQLITE_READONLY_RECOVERY;
drhbab7b912010-05-26 17:31:58 +00001989 }
dan4edc6bf2011-05-10 17:31:29 +00001990 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
1991 pWal->writeLock = 1;
1992 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
1993 badHdr = walIndexTryHdr(pWal, pChanged);
1994 if( badHdr ){
1995 /* If the wal-index header is still malformed even while holding
1996 ** a WRITE lock, it can only mean that the header is corrupted and
1997 ** needs to be reconstructed. So run recovery to do exactly that.
1998 */
1999 rc = walIndexRecover(pWal);
2000 *pChanged = 1;
2001 }
2002 }
2003 pWal->writeLock = 0;
2004 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhbab7b912010-05-26 17:31:58 +00002005 }
danb9bf16b2010-04-14 11:23:30 +00002006 }
2007
drha927e942010-06-24 02:46:48 +00002008 /* If the header is read successfully, check the version number to make
2009 ** sure the wal-index was not constructed with some future format that
2010 ** this version of SQLite cannot understand.
2011 */
2012 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2013 rc = SQLITE_CANTOPEN_BKPT;
2014 }
2015
danb9bf16b2010-04-14 11:23:30 +00002016 return rc;
2017}
2018
2019/*
drh73b64e42010-05-30 19:55:15 +00002020** This is the value that walTryBeginRead returns when it needs to
2021** be retried.
dan7c246102010-04-12 19:00:29 +00002022*/
drh73b64e42010-05-30 19:55:15 +00002023#define WAL_RETRY (-1)
dan64d039e2010-04-13 19:27:31 +00002024
drh73b64e42010-05-30 19:55:15 +00002025/*
2026** Attempt to start a read transaction. This might fail due to a race or
2027** other transient condition. When that happens, it returns WAL_RETRY to
2028** indicate to the caller that it is safe to retry immediately.
2029**
drha927e942010-06-24 02:46:48 +00002030** On success return SQLITE_OK. On a permanent failure (such an
drh73b64e42010-05-30 19:55:15 +00002031** I/O error or an SQLITE_BUSY because another process is running
2032** recovery) return a positive error code.
2033**
drha927e942010-06-24 02:46:48 +00002034** The useWal parameter is true to force the use of the WAL and disable
2035** the case where the WAL is bypassed because it has been completely
2036** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
2037** to make a copy of the wal-index header into pWal->hdr. If the
2038** wal-index header has changed, *pChanged is set to 1 (as an indication
2039** to the caller that the local paget cache is obsolete and needs to be
2040** flushed.) When useWal==1, the wal-index header is assumed to already
2041** be loaded and the pChanged parameter is unused.
2042**
2043** The caller must set the cnt parameter to the number of prior calls to
2044** this routine during the current read attempt that returned WAL_RETRY.
2045** This routine will start taking more aggressive measures to clear the
2046** race conditions after multiple WAL_RETRY returns, and after an excessive
2047** number of errors will ultimately return SQLITE_PROTOCOL. The
2048** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2049** and is not honoring the locking protocol. There is a vanishingly small
2050** chance that SQLITE_PROTOCOL could be returned because of a run of really
2051** bad luck when there is lots of contention for the wal-index, but that
2052** possibility is so small that it can be safely neglected, we believe.
2053**
drh73b64e42010-05-30 19:55:15 +00002054** On success, this routine obtains a read lock on
2055** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
2056** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
2057** that means the Wal does not hold any read lock. The reader must not
2058** access any database page that is modified by a WAL frame up to and
2059** including frame number aReadMark[pWal->readLock]. The reader will
2060** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2061** Or if pWal->readLock==0, then the reader will ignore the WAL
2062** completely and get all content directly from the database file.
drha927e942010-06-24 02:46:48 +00002063** If the useWal parameter is 1 then the WAL will never be ignored and
2064** this routine will always set pWal->readLock>0 on success.
drh73b64e42010-05-30 19:55:15 +00002065** When the read transaction is completed, the caller must release the
2066** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2067**
2068** This routine uses the nBackfill and aReadMark[] fields of the header
2069** to select a particular WAL_READ_LOCK() that strives to let the
2070** checkpoint process do as much work as possible. This routine might
2071** update values of the aReadMark[] array in the header, but if it does
2072** so it takes care to hold an exclusive lock on the corresponding
2073** WAL_READ_LOCK() while changing values.
2074*/
drhaab4c022010-06-02 14:45:51 +00002075static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00002076 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
2077 u32 mxReadMark; /* Largest aReadMark[] value */
2078 int mxI; /* Index of largest aReadMark[] value */
2079 int i; /* Loop counter */
dan13a3cb82010-06-11 19:04:21 +00002080 int rc = SQLITE_OK; /* Return code */
dan64d039e2010-04-13 19:27:31 +00002081
drh61e4ace2010-05-31 20:28:37 +00002082 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00002083
drh658d76c2011-02-19 15:22:14 +00002084 /* Take steps to avoid spinning forever if there is a protocol error.
2085 **
2086 ** Circumstances that cause a RETRY should only last for the briefest
2087 ** instances of time. No I/O or other system calls are done while the
2088 ** locks are held, so the locks should not be held for very long. But
2089 ** if we are unlucky, another process that is holding a lock might get
2090 ** paged out or take a page-fault that is time-consuming to resolve,
2091 ** during the few nanoseconds that it is holding the lock. In that case,
2092 ** it might take longer than normal for the lock to free.
2093 **
2094 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2095 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2096 ** is more of a scheduler yield than an actual delay. But on the 10th
2097 ** an subsequent retries, the delays start becoming longer and longer,
2098 ** so that on the 100th (and last) RETRY we delay for 21 milliseconds.
2099 ** The total delay time before giving up is less than 1 second.
2100 */
drhaab4c022010-06-02 14:45:51 +00002101 if( cnt>5 ){
drh658d76c2011-02-19 15:22:14 +00002102 int nDelay = 1; /* Pause time in microseconds */
drh03c69672011-02-19 23:18:12 +00002103 if( cnt>100 ){
2104 VVA_ONLY( pWal->lockError = 1; )
2105 return SQLITE_PROTOCOL;
2106 }
drh658d76c2011-02-19 15:22:14 +00002107 if( cnt>=10 ) nDelay = (cnt-9)*238; /* Max delay 21ms. Total delay 996ms */
2108 sqlite3OsSleep(pWal->pVfs, nDelay);
drhaab4c022010-06-02 14:45:51 +00002109 }
2110
drh73b64e42010-05-30 19:55:15 +00002111 if( !useWal ){
drh7ed91f22010-04-29 22:34:07 +00002112 rc = walIndexReadHdr(pWal, pChanged);
drh73b64e42010-05-30 19:55:15 +00002113 if( rc==SQLITE_BUSY ){
2114 /* If there is not a recovery running in another thread or process
2115 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2116 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2117 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2118 ** would be technically correct. But the race is benign since with
2119 ** WAL_RETRY this routine will be called again and will probably be
2120 ** right on the second iteration.
2121 */
dan7d4514a2010-07-15 17:54:14 +00002122 if( pWal->apWiData[0]==0 ){
2123 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2124 ** We assume this is a transient condition, so return WAL_RETRY. The
2125 ** xShmMap() implementation used by the default unix and win32 VFS
2126 ** modules may return SQLITE_BUSY due to a race condition in the
2127 ** code that determines whether or not the shared-memory region
2128 ** must be zeroed before the requested page is returned.
2129 */
2130 rc = WAL_RETRY;
2131 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
drh73b64e42010-05-30 19:55:15 +00002132 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2133 rc = WAL_RETRY;
2134 }else if( rc==SQLITE_BUSY ){
2135 rc = SQLITE_BUSY_RECOVERY;
2136 }
2137 }
drha927e942010-06-24 02:46:48 +00002138 if( rc!=SQLITE_OK ){
2139 return rc;
2140 }
drh73b64e42010-05-30 19:55:15 +00002141 }
2142
dan13a3cb82010-06-11 19:04:21 +00002143 pInfo = walCkptInfo(pWal);
drh73b64e42010-05-30 19:55:15 +00002144 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
2145 /* The WAL has been completely backfilled (or it is empty).
2146 ** and can be safely ignored.
2147 */
2148 rc = walLockShared(pWal, WAL_READ_LOCK(0));
dan8c408002010-11-01 17:38:24 +00002149 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002150 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00002151 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00002152 /* It is not safe to allow the reader to continue here if frames
2153 ** may have been appended to the log before READ_LOCK(0) was obtained.
2154 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2155 ** which implies that the database file contains a trustworthy
2156 ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from
2157 ** happening, this is usually correct.
2158 **
2159 ** However, if frames have been appended to the log (or if the log
2160 ** is wrapped and written for that matter) before the READ_LOCK(0)
2161 ** is obtained, that is not necessarily true. A checkpointer may
2162 ** have started to backfill the appended frames but crashed before
2163 ** it finished. Leaving a corrupt image in the database file.
2164 */
drh73b64e42010-05-30 19:55:15 +00002165 walUnlockShared(pWal, WAL_READ_LOCK(0));
2166 return WAL_RETRY;
2167 }
2168 pWal->readLock = 0;
2169 return SQLITE_OK;
2170 }else if( rc!=SQLITE_BUSY ){
2171 return rc;
dan64d039e2010-04-13 19:27:31 +00002172 }
dan7c246102010-04-12 19:00:29 +00002173 }
danba515902010-04-30 09:32:06 +00002174
drh73b64e42010-05-30 19:55:15 +00002175 /* If we get this far, it means that the reader will want to use
2176 ** the WAL to get at content from recent commits. The job now is
2177 ** to select one of the aReadMark[] entries that is closest to
2178 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2179 */
2180 mxReadMark = 0;
2181 mxI = 0;
2182 for(i=1; i<WAL_NREADER; i++){
2183 u32 thisMark = pInfo->aReadMark[i];
drhdb7f6472010-06-09 14:45:12 +00002184 if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
2185 assert( thisMark!=READMARK_NOT_USED );
drh73b64e42010-05-30 19:55:15 +00002186 mxReadMark = thisMark;
2187 mxI = i;
2188 }
2189 }
drh658d76c2011-02-19 15:22:14 +00002190 /* There was once an "if" here. The extra "{" is to preserve indentation. */
2191 {
drh66dfec8b2011-06-01 20:01:49 +00002192 if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2193 && (mxReadMark<pWal->hdr.mxFrame || mxI==0)
2194 ){
dand54ff602010-05-31 11:16:30 +00002195 for(i=1; i<WAL_NREADER; i++){
drh73b64e42010-05-30 19:55:15 +00002196 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2197 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00002198 mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
drh73b64e42010-05-30 19:55:15 +00002199 mxI = i;
2200 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2201 break;
drh38933f22010-06-02 15:43:18 +00002202 }else if( rc!=SQLITE_BUSY ){
2203 return rc;
drh73b64e42010-05-30 19:55:15 +00002204 }
2205 }
2206 }
drh658d76c2011-02-19 15:22:14 +00002207 if( mxI==0 ){
drh5bf39342011-06-02 17:24:49 +00002208 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
dan4edc6bf2011-05-10 17:31:29 +00002209 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
drh658d76c2011-02-19 15:22:14 +00002210 }
drh73b64e42010-05-30 19:55:15 +00002211
2212 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2213 if( rc ){
2214 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2215 }
daneb8cb3a2010-06-05 18:34:26 +00002216 /* Now that the read-lock has been obtained, check that neither the
2217 ** value in the aReadMark[] array or the contents of the wal-index
2218 ** header have changed.
2219 **
2220 ** It is necessary to check that the wal-index header did not change
2221 ** between the time it was read and when the shared-lock was obtained
2222 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2223 ** that the log file may have been wrapped by a writer, or that frames
2224 ** that occur later in the log than pWal->hdr.mxFrame may have been
2225 ** copied into the database by a checkpointer. If either of these things
2226 ** happened, then reading the database with the current value of
2227 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2228 ** instead.
2229 **
dan640aac42010-06-05 19:18:59 +00002230 ** This does not guarantee that the copy of the wal-index header is up to
2231 ** date before proceeding. That would not be possible without somehow
2232 ** blocking writers. It only guarantees that a dangerous checkpoint or
daneb8cb3a2010-06-05 18:34:26 +00002233 ** log-wrap (either of which would require an exclusive lock on
2234 ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
2235 */
dan8c408002010-11-01 17:38:24 +00002236 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002237 if( pInfo->aReadMark[mxI]!=mxReadMark
dan4280eb32010-06-12 12:02:35 +00002238 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
drh73b64e42010-05-30 19:55:15 +00002239 ){
2240 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2241 return WAL_RETRY;
2242 }else{
drhdb7f6472010-06-09 14:45:12 +00002243 assert( mxReadMark<=pWal->hdr.mxFrame );
shaneh5eba1f62010-07-02 17:05:03 +00002244 pWal->readLock = (i16)mxI;
drh73b64e42010-05-30 19:55:15 +00002245 }
2246 }
2247 return rc;
2248}
2249
2250/*
2251** Begin a read transaction on the database.
2252**
2253** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2254** it takes a snapshot of the state of the WAL and wal-index for the current
2255** instant in time. The current thread will continue to use this snapshot.
2256** Other threads might append new content to the WAL and wal-index but
2257** that extra content is ignored by the current thread.
2258**
2259** If the database contents have changes since the previous read
2260** transaction, then *pChanged is set to 1 before returning. The
2261** Pager layer will use this to know that is cache is stale and
2262** needs to be flushed.
2263*/
drh66dfec8b2011-06-01 20:01:49 +00002264int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
drh73b64e42010-05-30 19:55:15 +00002265 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00002266 int cnt = 0; /* Number of TryBeginRead attempts */
drh73b64e42010-05-30 19:55:15 +00002267
2268 do{
drhaab4c022010-06-02 14:45:51 +00002269 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00002270 }while( rc==WAL_RETRY );
drhab1cc742011-02-19 16:51:45 +00002271 testcase( (rc&0xff)==SQLITE_BUSY );
2272 testcase( (rc&0xff)==SQLITE_IOERR );
2273 testcase( rc==SQLITE_PROTOCOL );
2274 testcase( rc==SQLITE_OK );
dan7c246102010-04-12 19:00:29 +00002275 return rc;
2276}
2277
2278/*
drh73b64e42010-05-30 19:55:15 +00002279** Finish with a read transaction. All this does is release the
2280** read-lock.
dan7c246102010-04-12 19:00:29 +00002281*/
drh73b64e42010-05-30 19:55:15 +00002282void sqlite3WalEndReadTransaction(Wal *pWal){
dan73d66fd2010-08-07 16:17:48 +00002283 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00002284 if( pWal->readLock>=0 ){
2285 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2286 pWal->readLock = -1;
2287 }
dan7c246102010-04-12 19:00:29 +00002288}
2289
dan5e0ce872010-04-28 17:48:44 +00002290/*
dan99bd1092013-03-22 18:20:14 +00002291** Search the wal file for page pgno. If found, set *piRead to the frame that
2292** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2293** to zero.
drh73b64e42010-05-30 19:55:15 +00002294**
dan99bd1092013-03-22 18:20:14 +00002295** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2296** error does occur, the final value of *piRead is undefined.
dan7c246102010-04-12 19:00:29 +00002297*/
dan99bd1092013-03-22 18:20:14 +00002298int sqlite3WalFindFrame(
danbb23aff2010-05-10 14:46:09 +00002299 Wal *pWal, /* WAL handle */
2300 Pgno pgno, /* Database page number to read data for */
dan99bd1092013-03-22 18:20:14 +00002301 u32 *piRead /* OUT: Frame number (or zero) */
danb6e099a2010-05-04 14:47:39 +00002302){
danbb23aff2010-05-10 14:46:09 +00002303 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00002304 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00002305 int iHash; /* Used to loop through N hash tables */
dan7c246102010-04-12 19:00:29 +00002306
drhaab4c022010-06-02 14:45:51 +00002307 /* This routine is only be called from within a read transaction. */
2308 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00002309
danbb23aff2010-05-10 14:46:09 +00002310 /* If the "last page" field of the wal-index header snapshot is 0, then
2311 ** no data will be read from the wal under any circumstances. Return early
drha927e942010-06-24 02:46:48 +00002312 ** in this case as an optimization. Likewise, if pWal->readLock==0,
2313 ** then the WAL is ignored by the reader so return early, as if the
2314 ** WAL were empty.
danbb23aff2010-05-10 14:46:09 +00002315 */
drh73b64e42010-05-30 19:55:15 +00002316 if( iLast==0 || pWal->readLock==0 ){
dan99bd1092013-03-22 18:20:14 +00002317 *piRead = 0;
danbb23aff2010-05-10 14:46:09 +00002318 return SQLITE_OK;
2319 }
2320
danbb23aff2010-05-10 14:46:09 +00002321 /* Search the hash table or tables for an entry matching page number
2322 ** pgno. Each iteration of the following for() loop searches one
2323 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2324 **
drha927e942010-06-24 02:46:48 +00002325 ** This code might run concurrently to the code in walIndexAppend()
danbb23aff2010-05-10 14:46:09 +00002326 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00002327 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00002328 ** slot (aHash[iKey]) may have been added before or after the
2329 ** current read transaction was opened. Values added after the
2330 ** read transaction was opened may have been written incorrectly -
2331 ** i.e. these slots may contain garbage data. However, we assume
2332 ** that any slots written before the current read transaction was
2333 ** opened remain unmodified.
2334 **
2335 ** For the reasons above, the if(...) condition featured in the inner
2336 ** loop of the following block is more stringent that would be required
2337 ** if we had exclusive access to the hash-table:
2338 **
2339 ** (aPgno[iFrame]==pgno):
2340 ** This condition filters out normal hash-table collisions.
2341 **
2342 ** (iFrame<=iLast):
2343 ** This condition filters out entries that were added to the hash
2344 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00002345 */
dan13a3cb82010-06-11 19:04:21 +00002346 for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
dan067f3162010-06-14 10:30:12 +00002347 volatile ht_slot *aHash; /* Pointer to hash table */
2348 volatile u32 *aPgno; /* Pointer to array of page numbers */
danbb23aff2010-05-10 14:46:09 +00002349 u32 iZero; /* Frame number corresponding to aPgno[0] */
2350 int iKey; /* Hash slot index */
drh519426a2010-07-09 03:19:07 +00002351 int nCollide; /* Number of hash collisions remaining */
2352 int rc; /* Error code */
danbb23aff2010-05-10 14:46:09 +00002353
dan4280eb32010-06-12 12:02:35 +00002354 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2355 if( rc!=SQLITE_OK ){
2356 return rc;
2357 }
drh519426a2010-07-09 03:19:07 +00002358 nCollide = HASHTABLE_NSLOT;
dan6f150142010-05-21 15:31:56 +00002359 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
danbb23aff2010-05-10 14:46:09 +00002360 u32 iFrame = aHash[iKey] + iZero;
dand60bf112010-06-14 11:18:50 +00002361 if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
drhd5156602011-11-12 16:46:55 +00002362 /* assert( iFrame>iRead ); -- not true if there is corruption */
danbb23aff2010-05-10 14:46:09 +00002363 iRead = iFrame;
2364 }
drh519426a2010-07-09 03:19:07 +00002365 if( (nCollide--)==0 ){
2366 return SQLITE_CORRUPT_BKPT;
2367 }
dan7c246102010-04-12 19:00:29 +00002368 }
2369 }
dan7c246102010-04-12 19:00:29 +00002370
danbb23aff2010-05-10 14:46:09 +00002371#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2372 /* If expensive assert() statements are available, do a linear search
2373 ** of the wal-index file content. Make sure the results agree with the
2374 ** result obtained using the hash indexes above. */
2375 {
2376 u32 iRead2 = 0;
2377 u32 iTest;
2378 for(iTest=iLast; iTest>0; iTest--){
dan13a3cb82010-06-11 19:04:21 +00002379 if( walFramePgno(pWal, iTest)==pgno ){
danbb23aff2010-05-10 14:46:09 +00002380 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00002381 break;
2382 }
dan7c246102010-04-12 19:00:29 +00002383 }
danbb23aff2010-05-10 14:46:09 +00002384 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00002385 }
danbb23aff2010-05-10 14:46:09 +00002386#endif
dancd11fb22010-04-26 10:40:52 +00002387
dan99bd1092013-03-22 18:20:14 +00002388 *piRead = iRead;
dan7c246102010-04-12 19:00:29 +00002389 return SQLITE_OK;
2390}
2391
dan99bd1092013-03-22 18:20:14 +00002392/*
2393** Read the contents of frame iRead from the wal file into buffer pOut
2394** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2395** error code otherwise.
2396*/
2397int sqlite3WalReadFrame(
2398 Wal *pWal, /* WAL handle */
2399 u32 iRead, /* Frame to read */
2400 int nOut, /* Size of buffer pOut in bytes */
2401 u8 *pOut /* Buffer to write page data to */
2402){
2403 int sz;
2404 i64 iOffset;
2405 sz = pWal->hdr.szPage;
2406 sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2407 testcase( sz<=32768 );
2408 testcase( sz>=65536 );
2409 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2410 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2411 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2412}
dan7c246102010-04-12 19:00:29 +00002413
2414/*
dan763afe62010-08-03 06:42:39 +00002415** Return the size of the database in pages (or zero, if unknown).
dan7c246102010-04-12 19:00:29 +00002416*/
dan763afe62010-08-03 06:42:39 +00002417Pgno sqlite3WalDbsize(Wal *pWal){
drh7e9e70b2010-08-16 14:17:59 +00002418 if( pWal && ALWAYS(pWal->readLock>=0) ){
dan763afe62010-08-03 06:42:39 +00002419 return pWal->hdr.nPage;
2420 }
2421 return 0;
dan7c246102010-04-12 19:00:29 +00002422}
2423
dan30c86292010-04-30 16:24:46 +00002424
drh73b64e42010-05-30 19:55:15 +00002425/*
2426** This function starts a write transaction on the WAL.
2427**
2428** A read transaction must have already been started by a prior call
2429** to sqlite3WalBeginReadTransaction().
2430**
2431** If another thread or process has written into the database since
2432** the read transaction was started, then it is not possible for this
2433** thread to write as doing so would cause a fork. So this routine
2434** returns SQLITE_BUSY in that case and no write transaction is started.
2435**
2436** There can only be a single writer active at a time.
2437*/
2438int sqlite3WalBeginWriteTransaction(Wal *pWal){
2439 int rc;
drh73b64e42010-05-30 19:55:15 +00002440
2441 /* Cannot start a write transaction without first holding a read
2442 ** transaction. */
2443 assert( pWal->readLock>=0 );
2444
dan1e5de5a2010-07-15 18:20:53 +00002445 if( pWal->readOnly ){
2446 return SQLITE_READONLY;
2447 }
2448
drh73b64e42010-05-30 19:55:15 +00002449 /* Only one writer allowed at a time. Get the write lock. Return
2450 ** SQLITE_BUSY if unable.
2451 */
2452 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2453 if( rc ){
2454 return rc;
2455 }
drhc99597c2010-05-31 01:41:15 +00002456 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00002457
2458 /* If another connection has written to the database file since the
2459 ** time the read transaction on this connection was started, then
2460 ** the write is disallowed.
2461 */
dan4280eb32010-06-12 12:02:35 +00002462 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
drh73b64e42010-05-30 19:55:15 +00002463 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00002464 pWal->writeLock = 0;
dan9971e712010-06-01 15:44:57 +00002465 rc = SQLITE_BUSY;
drh73b64e42010-05-30 19:55:15 +00002466 }
2467
drh7ed91f22010-04-29 22:34:07 +00002468 return rc;
dan7c246102010-04-12 19:00:29 +00002469}
2470
dan74d6cd82010-04-24 18:44:05 +00002471/*
drh73b64e42010-05-30 19:55:15 +00002472** End a write transaction. The commit has already been done. This
2473** routine merely releases the lock.
2474*/
2475int sqlite3WalEndWriteTransaction(Wal *pWal){
danda9fe0c2010-07-13 18:44:03 +00002476 if( pWal->writeLock ){
2477 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2478 pWal->writeLock = 0;
danf60b7f32011-12-16 13:24:27 +00002479 pWal->truncateOnCommit = 0;
danda9fe0c2010-07-13 18:44:03 +00002480 }
drh73b64e42010-05-30 19:55:15 +00002481 return SQLITE_OK;
2482}
2483
2484/*
dan74d6cd82010-04-24 18:44:05 +00002485** If any data has been written (but not committed) to the log file, this
2486** function moves the write-pointer back to the start of the transaction.
2487**
2488** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00002489** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00002490** other than SQLITE_OK, it is not invoked again and the error code is
2491** returned to the caller.
2492**
2493** Otherwise, if the callback function does not return an error, this
2494** function returns SQLITE_OK.
2495*/
drh7ed91f22010-04-29 22:34:07 +00002496int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00002497 int rc = SQLITE_OK;
drh7e9e70b2010-08-16 14:17:59 +00002498 if( ALWAYS(pWal->writeLock) ){
drh027a1282010-05-19 01:53:53 +00002499 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00002500 Pgno iFrame;
2501
dan5d656852010-06-14 07:53:26 +00002502 /* Restore the clients cache of the wal-index header to the state it
2503 ** was in before the client began writing to the database.
2504 */
dan067f3162010-06-14 10:30:12 +00002505 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
dan5d656852010-06-14 07:53:26 +00002506
2507 for(iFrame=pWal->hdr.mxFrame+1;
2508 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
2509 iFrame++
2510 ){
2511 /* This call cannot fail. Unless the page for which the page number
2512 ** is passed as the second argument is (a) in the cache and
2513 ** (b) has an outstanding reference, then xUndo is either a no-op
2514 ** (if (a) is false) or simply expels the page from the cache (if (b)
2515 ** is false).
2516 **
2517 ** If the upper layer is doing a rollback, it is guaranteed that there
2518 ** are no outstanding references to any page other than page 1. And
2519 ** page 1 is never written to the log until the transaction is
2520 ** committed. As a result, the call to xUndo may not fail.
2521 */
dan5d656852010-06-14 07:53:26 +00002522 assert( walFramePgno(pWal, iFrame)!=1 );
2523 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
dan6f150142010-05-21 15:31:56 +00002524 }
dan7eb05752012-10-15 11:28:24 +00002525 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
dan74d6cd82010-04-24 18:44:05 +00002526 }
dan5d656852010-06-14 07:53:26 +00002527 assert( rc==SQLITE_OK );
dan74d6cd82010-04-24 18:44:05 +00002528 return rc;
2529}
2530
dan71d89912010-05-24 13:57:42 +00002531/*
2532** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2533** values. This function populates the array with values required to
2534** "rollback" the write position of the WAL handle back to the current
2535** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00002536*/
dan71d89912010-05-24 13:57:42 +00002537void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00002538 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00002539 aWalData[0] = pWal->hdr.mxFrame;
2540 aWalData[1] = pWal->hdr.aFrameCksum[0];
2541 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00002542 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00002543}
2544
dan71d89912010-05-24 13:57:42 +00002545/*
2546** Move the write position of the WAL back to the point identified by
2547** the values in the aWalData[] array. aWalData must point to an array
2548** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2549** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00002550*/
dan71d89912010-05-24 13:57:42 +00002551int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00002552 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00002553
dan6e6bd562010-06-02 18:59:03 +00002554 assert( pWal->writeLock );
2555 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2556
2557 if( aWalData[3]!=pWal->nCkpt ){
2558 /* This savepoint was opened immediately after the write-transaction
2559 ** was started. Right after that, the writer decided to wrap around
2560 ** to the start of the log. Update the savepoint values to match.
2561 */
2562 aWalData[0] = 0;
2563 aWalData[3] = pWal->nCkpt;
2564 }
2565
dan71d89912010-05-24 13:57:42 +00002566 if( aWalData[0]<pWal->hdr.mxFrame ){
dan71d89912010-05-24 13:57:42 +00002567 pWal->hdr.mxFrame = aWalData[0];
2568 pWal->hdr.aFrameCksum[0] = aWalData[1];
2569 pWal->hdr.aFrameCksum[1] = aWalData[2];
dan5d656852010-06-14 07:53:26 +00002570 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00002571 }
dan6e6bd562010-06-02 18:59:03 +00002572
dan4cd78b42010-04-26 16:57:10 +00002573 return rc;
2574}
2575
drh8dd4afa2011-12-08 19:50:32 +00002576
dan9971e712010-06-01 15:44:57 +00002577/*
2578** This function is called just before writing a set of frames to the log
2579** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2580** to the current log file, it is possible to overwrite the start of the
2581** existing log file with the new frames (i.e. "reset" the log). If so,
2582** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2583** unchanged.
2584**
2585** SQLITE_OK is returned if no error is encountered (regardless of whether
2586** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
drh4533cd02010-10-05 15:41:05 +00002587** if an error occurs.
dan9971e712010-06-01 15:44:57 +00002588*/
2589static int walRestartLog(Wal *pWal){
2590 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00002591 int cnt;
2592
dan13a3cb82010-06-11 19:04:21 +00002593 if( pWal->readLock==0 ){
dan9971e712010-06-01 15:44:57 +00002594 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2595 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2596 if( pInfo->nBackfill>0 ){
drh658d76c2011-02-19 15:22:14 +00002597 u32 salt1;
2598 sqlite3_randomness(4, &salt1);
dan9971e712010-06-01 15:44:57 +00002599 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2600 if( rc==SQLITE_OK ){
2601 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2602 ** readers are currently using the WAL), then the transactions
2603 ** frames will overwrite the start of the existing log. Update the
2604 ** wal-index header to reflect this.
2605 **
2606 ** In theory it would be Ok to update the cache of the header only
2607 ** at this point. But updating the actual wal-index header is also
2608 ** safe and means there is no special case for sqlite3WalUndo()
2609 ** to handle if this transaction is rolled back.
2610 */
dan199100e2010-06-09 16:58:49 +00002611 int i; /* Loop counter */
dan9971e712010-06-01 15:44:57 +00002612 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
drh85a83752011-05-16 21:00:27 +00002613
dan9971e712010-06-01 15:44:57 +00002614 pWal->nCkpt++;
2615 pWal->hdr.mxFrame = 0;
2616 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
drh658d76c2011-02-19 15:22:14 +00002617 aSalt[1] = salt1;
dan9971e712010-06-01 15:44:57 +00002618 walIndexWriteHdr(pWal);
dan199100e2010-06-09 16:58:49 +00002619 pInfo->nBackfill = 0;
drh610b8d82012-07-17 02:56:05 +00002620 pInfo->aReadMark[1] = 0;
2621 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
dan199100e2010-06-09 16:58:49 +00002622 assert( pInfo->aReadMark[0]==0 );
dan9971e712010-06-01 15:44:57 +00002623 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
drh4533cd02010-10-05 15:41:05 +00002624 }else if( rc!=SQLITE_BUSY ){
2625 return rc;
dan9971e712010-06-01 15:44:57 +00002626 }
2627 }
2628 walUnlockShared(pWal, WAL_READ_LOCK(0));
2629 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00002630 cnt = 0;
dan9971e712010-06-01 15:44:57 +00002631 do{
2632 int notUsed;
drhaab4c022010-06-02 14:45:51 +00002633 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00002634 }while( rc==WAL_RETRY );
drhc90e0812011-02-19 17:02:44 +00002635 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
drhab1cc742011-02-19 16:51:45 +00002636 testcase( (rc&0xff)==SQLITE_IOERR );
2637 testcase( rc==SQLITE_PROTOCOL );
2638 testcase( rc==SQLITE_OK );
dan9971e712010-06-01 15:44:57 +00002639 }
2640 return rc;
2641}
2642
drh88f975a2011-12-16 19:34:36 +00002643/*
drhd992b152011-12-20 20:13:25 +00002644** Information about the current state of the WAL file and where
2645** the next fsync should occur - passed from sqlite3WalFrames() into
2646** walWriteToLog().
2647*/
2648typedef struct WalWriter {
2649 Wal *pWal; /* The complete WAL information */
2650 sqlite3_file *pFd; /* The WAL file to which we write */
2651 sqlite3_int64 iSyncPoint; /* Fsync at this offset */
2652 int syncFlags; /* Flags for the fsync */
2653 int szPage; /* Size of one page */
2654} WalWriter;
2655
2656/*
drh88f975a2011-12-16 19:34:36 +00002657** Write iAmt bytes of content into the WAL file beginning at iOffset.
drhd992b152011-12-20 20:13:25 +00002658** Do a sync when crossing the p->iSyncPoint boundary.
drh88f975a2011-12-16 19:34:36 +00002659**
drhd992b152011-12-20 20:13:25 +00002660** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
2661** first write the part before iSyncPoint, then sync, then write the
2662** rest.
drh88f975a2011-12-16 19:34:36 +00002663*/
2664static int walWriteToLog(
drhd992b152011-12-20 20:13:25 +00002665 WalWriter *p, /* WAL to write to */
drh88f975a2011-12-16 19:34:36 +00002666 void *pContent, /* Content to be written */
2667 int iAmt, /* Number of bytes to write */
2668 sqlite3_int64 iOffset /* Start writing at this offset */
2669){
2670 int rc;
drhd992b152011-12-20 20:13:25 +00002671 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
2672 int iFirstAmt = (int)(p->iSyncPoint - iOffset);
2673 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
drh88f975a2011-12-16 19:34:36 +00002674 if( rc ) return rc;
drhd992b152011-12-20 20:13:25 +00002675 iOffset += iFirstAmt;
2676 iAmt -= iFirstAmt;
drh88f975a2011-12-16 19:34:36 +00002677 pContent = (void*)(iFirstAmt + (char*)pContent);
drhd992b152011-12-20 20:13:25 +00002678 assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) );
2679 rc = sqlite3OsSync(p->pFd, p->syncFlags);
drhcc8d10a2011-12-23 02:07:10 +00002680 if( iAmt==0 || rc ) return rc;
drh88f975a2011-12-16 19:34:36 +00002681 }
drhd992b152011-12-20 20:13:25 +00002682 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
2683 return rc;
2684}
2685
2686/*
2687** Write out a single frame of the WAL
2688*/
2689static int walWriteOneFrame(
2690 WalWriter *p, /* Where to write the frame */
2691 PgHdr *pPage, /* The page of the frame to be written */
2692 int nTruncate, /* The commit flag. Usually 0. >0 for commit */
2693 sqlite3_int64 iOffset /* Byte offset at which to write */
2694){
2695 int rc; /* Result code from subfunctions */
2696 void *pData; /* Data actually written */
2697 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
2698#if defined(SQLITE_HAS_CODEC)
2699 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM;
2700#else
2701 pData = pPage->pData;
2702#endif
2703 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
2704 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
2705 if( rc ) return rc;
2706 /* Write the page data */
2707 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
drh88f975a2011-12-16 19:34:36 +00002708 return rc;
2709}
2710
dan7c246102010-04-12 19:00:29 +00002711/*
dan4cd78b42010-04-26 16:57:10 +00002712** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00002713** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00002714*/
drhc438efd2010-04-26 00:19:45 +00002715int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00002716 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00002717 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00002718 PgHdr *pList, /* List of dirty pages to write */
2719 Pgno nTruncate, /* Database size after this commit */
2720 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00002721 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00002722){
dan7c246102010-04-12 19:00:29 +00002723 int rc; /* Used to catch return codes */
2724 u32 iFrame; /* Next frame address */
dan7c246102010-04-12 19:00:29 +00002725 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00002726 PgHdr *pLast = 0; /* Last frame in list */
drhd992b152011-12-20 20:13:25 +00002727 int nExtra = 0; /* Number of extra copies of last page */
2728 int szFrame; /* The size of a single frame */
2729 i64 iOffset; /* Next byte to write in WAL file */
2730 WalWriter w; /* The writer */
dan7c246102010-04-12 19:00:29 +00002731
dan7c246102010-04-12 19:00:29 +00002732 assert( pList );
drh73b64e42010-05-30 19:55:15 +00002733 assert( pWal->writeLock );
dan7c246102010-04-12 19:00:29 +00002734
drh41209942011-12-20 13:13:09 +00002735 /* If this frame set completes a transaction, then nTruncate>0. If
2736 ** nTruncate==0 then this frame set does not complete the transaction. */
2737 assert( (isCommit!=0)==(nTruncate!=0) );
2738
drhc74c3332010-05-31 12:15:19 +00002739#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2740 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2741 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2742 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2743 }
2744#endif
2745
dan9971e712010-06-01 15:44:57 +00002746 /* See if it is possible to write these frames into the start of the
2747 ** log file, instead of appending to it at pWal->hdr.mxFrame.
2748 */
2749 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
dan9971e712010-06-01 15:44:57 +00002750 return rc;
2751 }
dan9971e712010-06-01 15:44:57 +00002752
drha2a42012010-05-18 18:01:08 +00002753 /* If this is the first frame written into the log, write the WAL
2754 ** header to the start of the WAL file. See comments at the top of
2755 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00002756 */
drh027a1282010-05-19 01:53:53 +00002757 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00002758 if( iFrame==0 ){
dan10f5a502010-06-23 15:55:43 +00002759 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
2760 u32 aCksum[2]; /* Checksum for wal-header */
2761
danb8fd6c22010-05-24 10:39:36 +00002762 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
dan10f5a502010-06-23 15:55:43 +00002763 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
drh23ea97b2010-05-20 16:45:58 +00002764 sqlite3Put4byte(&aWalHdr[8], szPage);
2765 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drhd2980312011-12-17 01:31:44 +00002766 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
drh7e263722010-05-20 21:21:09 +00002767 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
dan10f5a502010-06-23 15:55:43 +00002768 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
2769 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
2770 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
2771
drhb2eced52010-08-12 02:41:12 +00002772 pWal->szPage = szPage;
dan10f5a502010-06-23 15:55:43 +00002773 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
2774 pWal->hdr.aFrameCksum[0] = aCksum[0];
2775 pWal->hdr.aFrameCksum[1] = aCksum[1];
danf60b7f32011-12-16 13:24:27 +00002776 pWal->truncateOnCommit = 1;
dan10f5a502010-06-23 15:55:43 +00002777
drh23ea97b2010-05-20 16:45:58 +00002778 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00002779 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00002780 if( rc!=SQLITE_OK ){
2781 return rc;
2782 }
drhd992b152011-12-20 20:13:25 +00002783
2784 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
2785 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
2786 ** an out-of-order write following a WAL restart could result in
2787 ** database corruption. See the ticket:
2788 **
2789 ** http://localhost:591/sqlite/info/ff5be73dee
2790 */
2791 if( pWal->syncHeader && sync_flags ){
2792 rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK);
2793 if( rc ) return rc;
2794 }
dan97a31352010-04-16 13:59:31 +00002795 }
shanehbd2aaf92010-09-01 02:38:21 +00002796 assert( (int)pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00002797
drhd992b152011-12-20 20:13:25 +00002798 /* Setup information needed to write frames into the WAL */
2799 w.pWal = pWal;
2800 w.pFd = pWal->pWalFd;
2801 w.iSyncPoint = 0;
2802 w.syncFlags = sync_flags;
2803 w.szPage = szPage;
2804 iOffset = walFrameOffset(iFrame+1, szPage);
2805 szFrame = szPage + WAL_FRAME_HDRSIZE;
drh88f975a2011-12-16 19:34:36 +00002806
drhd992b152011-12-20 20:13:25 +00002807 /* Write all frames into the log file exactly once */
dan7c246102010-04-12 19:00:29 +00002808 for(p=pList; p; p=p->pDirty){
drhd992b152011-12-20 20:13:25 +00002809 int nDbSize; /* 0 normally. Positive == commit flag */
2810 iFrame++;
2811 assert( iOffset==walFrameOffset(iFrame, szPage) );
2812 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
2813 rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
2814 if( rc ) return rc;
dan7c246102010-04-12 19:00:29 +00002815 pLast = p;
drhd992b152011-12-20 20:13:25 +00002816 iOffset += szFrame;
dan7c246102010-04-12 19:00:29 +00002817 }
2818
drhd992b152011-12-20 20:13:25 +00002819 /* If this is the end of a transaction, then we might need to pad
2820 ** the transaction and/or sync the WAL file.
2821 **
2822 ** Padding and syncing only occur if this set of frames complete a
2823 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
2824 ** or synchonous==OFF, then no padding or syncing are needed.
2825 **
drhcb15f352011-12-23 01:04:17 +00002826 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
2827 ** needed and only the sync is done. If padding is needed, then the
2828 ** final frame is repeated (with its commit mark) until the next sector
drhd992b152011-12-20 20:13:25 +00002829 ** boundary is crossed. Only the part of the WAL prior to the last
2830 ** sector boundary is synced; the part of the last frame that extends
2831 ** past the sector boundary is written after the sync.
2832 */
drh4eb02a42011-12-16 21:26:26 +00002833 if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){
drh374f4a02011-12-17 20:02:11 +00002834 if( pWal->padToSectorBoundary ){
danc9a53262012-10-01 06:50:55 +00002835 int sectorSize = sqlite3SectorSize(pWal->pWalFd);
drhd992b152011-12-20 20:13:25 +00002836 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
2837 while( iOffset<w.iSyncPoint ){
2838 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
2839 if( rc ) return rc;
2840 iOffset += szFrame;
2841 nExtra++;
dan7c246102010-04-12 19:00:29 +00002842 }
drh4e5e1082011-12-23 13:32:07 +00002843 }else{
2844 rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK);
dan7c246102010-04-12 19:00:29 +00002845 }
dan7c246102010-04-12 19:00:29 +00002846 }
2847
drhd992b152011-12-20 20:13:25 +00002848 /* If this frame set completes the first transaction in the WAL and
2849 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
2850 ** journal size limit, if possible.
2851 */
danf60b7f32011-12-16 13:24:27 +00002852 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
2853 i64 sz = pWal->mxWalSize;
drhd992b152011-12-20 20:13:25 +00002854 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
2855 sz = walFrameOffset(iFrame+nExtra+1, szPage);
danf60b7f32011-12-16 13:24:27 +00002856 }
2857 walLimitSize(pWal, sz);
2858 pWal->truncateOnCommit = 0;
2859 }
2860
drhe730fec2010-05-18 12:56:50 +00002861 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00002862 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00002863 ** guarantees that there are no other writers, and no data that may
2864 ** be in use by existing readers is being overwritten.
2865 */
drh027a1282010-05-19 01:53:53 +00002866 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00002867 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dan7c246102010-04-12 19:00:29 +00002868 iFrame++;
danc7991bd2010-05-05 19:04:59 +00002869 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00002870 }
drh20e226d2012-01-01 13:58:53 +00002871 while( rc==SQLITE_OK && nExtra>0 ){
dan7c246102010-04-12 19:00:29 +00002872 iFrame++;
drhd992b152011-12-20 20:13:25 +00002873 nExtra--;
danc7991bd2010-05-05 19:04:59 +00002874 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00002875 }
2876
danc7991bd2010-05-05 19:04:59 +00002877 if( rc==SQLITE_OK ){
2878 /* Update the private copy of the header. */
shaneh1df2db72010-08-18 02:28:48 +00002879 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00002880 testcase( szPage<=32768 );
2881 testcase( szPage>=65536 );
drh027a1282010-05-19 01:53:53 +00002882 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00002883 if( isCommit ){
2884 pWal->hdr.iChange++;
2885 pWal->hdr.nPage = nTruncate;
2886 }
danc7991bd2010-05-05 19:04:59 +00002887 /* If this is a commit, update the wal-index header too. */
2888 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00002889 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00002890 pWal->iCallback = iFrame;
2891 }
dan7c246102010-04-12 19:00:29 +00002892 }
danc7991bd2010-05-05 19:04:59 +00002893
drhc74c3332010-05-31 12:15:19 +00002894 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00002895 return rc;
dan7c246102010-04-12 19:00:29 +00002896}
2897
2898/*
drh73b64e42010-05-30 19:55:15 +00002899** This routine is called to implement sqlite3_wal_checkpoint() and
2900** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00002901**
drh73b64e42010-05-30 19:55:15 +00002902** Obtain a CHECKPOINT lock and then backfill as much information as
2903** we can from WAL into the database.
dana58f26f2010-11-16 18:56:51 +00002904**
2905** If parameter xBusy is not NULL, it is a pointer to a busy-handler
2906** callback. In this case this function runs a blocking checkpoint.
dan7c246102010-04-12 19:00:29 +00002907*/
drhc438efd2010-04-26 00:19:45 +00002908int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00002909 Wal *pWal, /* Wal connection */
dancdc1f042010-11-18 12:11:05 +00002910 int eMode, /* PASSIVE, FULL or RESTART */
dana58f26f2010-11-16 18:56:51 +00002911 int (*xBusy)(void*), /* Function to call when busy */
2912 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00002913 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00002914 int nBuf, /* Size of temporary buffer */
dancdc1f042010-11-18 12:11:05 +00002915 u8 *zBuf, /* Temporary buffer to use */
2916 int *pnLog, /* OUT: Number of frames in WAL */
2917 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
dan7c246102010-04-12 19:00:29 +00002918){
danb9bf16b2010-04-14 11:23:30 +00002919 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00002920 int isChanged = 0; /* True if a new wal-index header is loaded */
danf2b8dd52010-11-18 19:28:01 +00002921 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
dan7c246102010-04-12 19:00:29 +00002922
dand54ff602010-05-31 11:16:30 +00002923 assert( pWal->ckptLock==0 );
dana58f26f2010-11-16 18:56:51 +00002924 assert( pWal->writeLock==0 );
dan39c79f52010-04-15 10:58:51 +00002925
drh66dfec8b2011-06-01 20:01:49 +00002926 if( pWal->readOnly ) return SQLITE_READONLY;
drhc74c3332010-05-31 12:15:19 +00002927 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drh73b64e42010-05-30 19:55:15 +00002928 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2929 if( rc ){
2930 /* Usually this is SQLITE_BUSY meaning that another thread or process
2931 ** is already running a checkpoint, or maybe a recovery. But it might
2932 ** also be SQLITE_IOERR. */
danb9bf16b2010-04-14 11:23:30 +00002933 return rc;
2934 }
dand54ff602010-05-31 11:16:30 +00002935 pWal->ckptLock = 1;
dan64d039e2010-04-13 19:27:31 +00002936
dana58f26f2010-11-16 18:56:51 +00002937 /* If this is a blocking-checkpoint, then obtain the write-lock as well
2938 ** to prevent any writers from running while the checkpoint is underway.
2939 ** This has to be done before the call to walIndexReadHdr() below.
danf2b8dd52010-11-18 19:28:01 +00002940 **
2941 ** If the writer lock cannot be obtained, then a passive checkpoint is
2942 ** run instead. Since the checkpointer is not holding the writer lock,
2943 ** there is no point in blocking waiting for any readers. Assuming no
2944 ** other error occurs, this function will return SQLITE_BUSY to the caller.
dana58f26f2010-11-16 18:56:51 +00002945 */
dancdc1f042010-11-18 12:11:05 +00002946 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dana58f26f2010-11-16 18:56:51 +00002947 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
danf2b8dd52010-11-18 19:28:01 +00002948 if( rc==SQLITE_OK ){
2949 pWal->writeLock = 1;
2950 }else if( rc==SQLITE_BUSY ){
2951 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
2952 rc = SQLITE_OK;
2953 }
danb9bf16b2010-04-14 11:23:30 +00002954 }
dana58f26f2010-11-16 18:56:51 +00002955
danf2b8dd52010-11-18 19:28:01 +00002956 /* Read the wal-index header. */
drh7ed91f22010-04-29 22:34:07 +00002957 if( rc==SQLITE_OK ){
dana58f26f2010-11-16 18:56:51 +00002958 rc = walIndexReadHdr(pWal, &isChanged);
2959 }
danf2b8dd52010-11-18 19:28:01 +00002960
2961 /* Copy data from the log to the database file. */
dan9c5e3682011-02-07 15:12:12 +00002962 if( rc==SQLITE_OK ){
2963 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
danf2b8dd52010-11-18 19:28:01 +00002964 rc = SQLITE_CORRUPT_BKPT;
2965 }else{
dan9c5e3682011-02-07 15:12:12 +00002966 rc = walCheckpoint(pWal, eMode2, xBusy, pBusyArg, sync_flags, zBuf);
2967 }
2968
2969 /* If no error occurred, set the output variables. */
2970 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
danf2b8dd52010-11-18 19:28:01 +00002971 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
dan9c5e3682011-02-07 15:12:12 +00002972 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
danf2b8dd52010-11-18 19:28:01 +00002973 }
danb9bf16b2010-04-14 11:23:30 +00002974 }
danf2b8dd52010-11-18 19:28:01 +00002975
dan31c03902010-04-29 14:51:33 +00002976 if( isChanged ){
2977 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00002978 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00002979 ** out of date. So zero the cached wal-index header to ensure that
2980 ** next time the pager opens a snapshot on this database it knows that
2981 ** the cache needs to be reset.
2982 */
2983 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
2984 }
danb9bf16b2010-04-14 11:23:30 +00002985
2986 /* Release the locks. */
dana58f26f2010-11-16 18:56:51 +00002987 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00002988 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00002989 pWal->ckptLock = 0;
drhc74c3332010-05-31 12:15:19 +00002990 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
danf2b8dd52010-11-18 19:28:01 +00002991 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
dan7c246102010-04-12 19:00:29 +00002992}
2993
drh7ed91f22010-04-29 22:34:07 +00002994/* Return the value to pass to a sqlite3_wal_hook callback, the
2995** number of frames in the WAL at the point of the last commit since
2996** sqlite3WalCallback() was called. If no commits have occurred since
2997** the last call, then return 0.
2998*/
2999int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00003000 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00003001 if( pWal ){
3002 ret = pWal->iCallback;
3003 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00003004 }
3005 return (int)ret;
3006}
dan55437592010-05-11 12:19:26 +00003007
3008/*
drh61e4ace2010-05-31 20:28:37 +00003009** This function is called to change the WAL subsystem into or out
3010** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00003011**
drh61e4ace2010-05-31 20:28:37 +00003012** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3013** into locking_mode=NORMAL. This means that we must acquire a lock
3014** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
3015** or if the acquisition of the lock fails, then return 0. If the
3016** transition out of exclusive-mode is successful, return 1. This
3017** operation must occur while the pager is still holding the exclusive
3018** lock on the main database file.
dan55437592010-05-11 12:19:26 +00003019**
drh61e4ace2010-05-31 20:28:37 +00003020** If op is one, then change from locking_mode=NORMAL into
3021** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
3022** be released. Return 1 if the transition is made and 0 if the
3023** WAL is already in exclusive-locking mode - meaning that this
3024** routine is a no-op. The pager must already hold the exclusive lock
3025** on the main database file before invoking this operation.
3026**
3027** If op is negative, then do a dry-run of the op==1 case but do
dan8c408002010-11-01 17:38:24 +00003028** not actually change anything. The pager uses this to see if it
drh61e4ace2010-05-31 20:28:37 +00003029** should acquire the database exclusive lock prior to invoking
3030** the op==1 case.
dan55437592010-05-11 12:19:26 +00003031*/
3032int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00003033 int rc;
drhaab4c022010-06-02 14:45:51 +00003034 assert( pWal->writeLock==0 );
dan8c408002010-11-01 17:38:24 +00003035 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
dan3cac5dc2010-06-04 18:37:59 +00003036
3037 /* pWal->readLock is usually set, but might be -1 if there was a
3038 ** prior error while attempting to acquire are read-lock. This cannot
3039 ** happen if the connection is actually in exclusive mode (as no xShmLock
3040 ** locks are taken in this case). Nor should the pager attempt to
3041 ** upgrade to exclusive-mode following such an error.
3042 */
drhaab4c022010-06-02 14:45:51 +00003043 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00003044 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3045
drh61e4ace2010-05-31 20:28:37 +00003046 if( op==0 ){
3047 if( pWal->exclusiveMode ){
3048 pWal->exclusiveMode = 0;
dan3cac5dc2010-06-04 18:37:59 +00003049 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drh61e4ace2010-05-31 20:28:37 +00003050 pWal->exclusiveMode = 1;
3051 }
3052 rc = pWal->exclusiveMode==0;
3053 }else{
drhaab4c022010-06-02 14:45:51 +00003054 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00003055 rc = 0;
3056 }
3057 }else if( op>0 ){
3058 assert( pWal->exclusiveMode==0 );
drhaab4c022010-06-02 14:45:51 +00003059 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00003060 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3061 pWal->exclusiveMode = 1;
3062 rc = 1;
3063 }else{
3064 rc = pWal->exclusiveMode==0;
dan55437592010-05-11 12:19:26 +00003065 }
drh61e4ace2010-05-31 20:28:37 +00003066 return rc;
dan55437592010-05-11 12:19:26 +00003067}
3068
dan8c408002010-11-01 17:38:24 +00003069/*
3070** Return true if the argument is non-NULL and the WAL module is using
3071** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3072** WAL module is using shared-memory, return false.
3073*/
3074int sqlite3WalHeapMemory(Wal *pWal){
3075 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3076}
3077
drh70708602012-02-24 14:33:28 +00003078#ifdef SQLITE_ENABLE_ZIPVFS
danb3bdc722012-02-23 15:35:49 +00003079/*
3080** If the argument is not NULL, it points to a Wal object that holds a
3081** read-lock. This function returns the database page-size if it is known,
3082** or zero if it is not (or if pWal is NULL).
3083*/
3084int sqlite3WalFramesize(Wal *pWal){
danb3bdc722012-02-23 15:35:49 +00003085 assert( pWal==0 || pWal->readLock>=0 );
3086 return (pWal ? pWal->szPage : 0);
3087}
drh70708602012-02-24 14:33:28 +00003088#endif
danb3bdc722012-02-23 15:35:49 +00003089
dan5cf53532010-05-01 16:40:20 +00003090#endif /* #ifndef SQLITE_OMIT_WAL */