blob: f2738a6727db707f6765524b3d438c2373be6a63 [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drhcd285082010-06-23 22:00:35 +000034** The WAL header is 32 bytes in size and consists of the following eight
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan10f5a502010-06-23 15:55:43 +000043** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
dan97a31352010-04-16 13:59:31 +000045**
drh23ea97b2010-05-20 16:45:58 +000046** Immediately following the wal-header are zero or more frames. Each
47** frame consists of a 24-byte frame-header followed by a <page-size> bytes
drhcd285082010-06-23 22:00:35 +000048** of page data. The frame-header is six big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000049** integer values, as follows:
50**
dan3de777f2010-04-17 12:31:37 +000051** 0: Page number.
52** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000053** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000054** 8: Salt-1 (copied from the header)
55** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000056** 16: Checksum-1.
57** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000058**
drh7e263722010-05-20 21:21:09 +000059** A frame is considered valid if and only if the following conditions are
60** true:
61**
62** (1) The salt-1 and salt-2 values in the frame-header match
63** salt values in the wal-header
64**
65** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000066** exactly match the checksum computed consecutively on the
67** WAL header and the first 8 bytes and the content of all frames
68** up to and including the current frame.
69**
70** The checksum is computed using 32-bit big-endian integers if the
71** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000073** The checksum values are always stored in the frame header in a
74** big-endian format regardless of which byte order is used to compute
75** the checksum. The checksum is computed by interpreting the input as
76** an even number of unsigned 32-bit integers: x[0] through x[N]. The
drhffca4302010-06-15 11:21:54 +000077** algorithm used for the checksum is as follows:
drh51b21b12010-05-25 15:53:31 +000078**
79** for i from 0 to n-1 step 2:
80** s0 += x[i] + s1;
81** s1 += x[i+1] + s0;
82** endfor
drh7e263722010-05-20 21:21:09 +000083**
drhcd285082010-06-23 22:00:35 +000084** Note that s0 and s1 are both weighted checksums using fibonacci weights
85** in reverse order (the largest fibonacci weight occurs on the first element
86** of the sequence being summed.) The s1 value spans all 32-bit
87** terms of the sequence whereas s0 omits the final term.
88**
drh7e263722010-05-20 21:21:09 +000089** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90** WAL is transferred into the database, then the database is VFS.xSync-ed.
drhffca4302010-06-15 11:21:54 +000091** The VFS.xSync operations serve as write barriers - all writes launched
drh7e263722010-05-20 21:21:09 +000092** before the xSync must complete before any write that launches after the
93** xSync begins.
94**
95** After each checkpoint, the salt-1 value is incremented and the salt-2
96** value is randomized. This prevents old and new frames in the WAL from
97** being considered valid at the same time and being checkpointing together
98** following a crash.
99**
drh29d4dbe2010-05-18 23:29:52 +0000100** READER ALGORITHM
101**
102** To read a page from the database (call it page number P), a reader
103** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +0000104** last valid instance of page P that is a followed by a commit frame
105** or is a commit frame itself becomes the value read. If the WAL
106** contains no copies of page P that are valid and which are a commit
107** frame or are followed by a commit frame, then page P is read from
108** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000109**
drh73b64e42010-05-30 19:55:15 +0000110** To start a read transaction, the reader records the index of the last
111** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112** for all subsequent read operations. New transactions can be appended
113** to the WAL, but as long as the reader uses its original mxFrame value
114** and ignores the newly appended content, it will see a consistent snapshot
115** of the database from a single point in time. This technique allows
116** multiple concurrent readers to view different versions of the database
117** content simultaneously.
118**
119** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000120** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000121** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000122** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000123** and read performance suffers. To overcome this problem, a separate
124** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000125** search for frames of a particular page.
126**
127** WAL-INDEX FORMAT
128**
129** Conceptually, the wal-index is shared memory, though VFS implementations
130** might choose to implement the wal-index using a mmapped file. Because
131** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132** on a network filesystem. All users of the database must be able to
133** share memory.
134**
135** The wal-index is transient. After a crash, the wal-index can (and should
136** be) reconstructed from the original WAL file. In fact, the VFS is required
137** to either truncate or zero the header of the wal-index when the last
138** connection to it closes. Because the wal-index is transient, it can
139** use an architecture-specific format; it does not have to be cross-platform.
140** Hence, unlike the database and WAL file formats which store all values
141** as big endian, the wal-index can store multi-byte values in the native
142** byte order of the host computer.
143**
144** The purpose of the wal-index is to answer this question quickly: Given
drh610b8d82012-07-17 02:56:05 +0000145** a page number P and a maximum frame index M, return the index of the
146** last frame in the wal before frame M for page P in the WAL, or return
147** NULL if there are no frames for page P in the WAL prior to M.
drh29d4dbe2010-05-18 23:29:52 +0000148**
149** The wal-index consists of a header region, followed by an one or
150** more index blocks.
151**
drh027a1282010-05-19 01:53:53 +0000152** The wal-index header contains the total number of frames within the WAL
mistachkind5578432012-08-25 10:01:29 +0000153** in the mxFrame field.
danad3cadd2010-06-14 11:49:26 +0000154**
155** Each index block except for the first contains information on
156** HASHTABLE_NPAGE frames. The first index block contains information on
157** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
158** HASHTABLE_NPAGE are selected so that together the wal-index header and
159** first index block are the same size as all other index blocks in the
160** wal-index.
161**
162** Each index block contains two sections, a page-mapping that contains the
163** database page number associated with each wal frame, and a hash-table
drhffca4302010-06-15 11:21:54 +0000164** that allows readers to query an index block for a specific page number.
danad3cadd2010-06-14 11:49:26 +0000165** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
166** for the first index block) 32-bit page numbers. The first entry in the
167** first index-block contains the database page number corresponding to the
168** first frame in the WAL file. The first entry in the second index block
169** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
170** the log, and so on.
171**
172** The last index block in a wal-index usually contains less than the full
173** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
174** depending on the contents of the WAL file. This does not change the
175** allocated size of the page-mapping array - the page-mapping array merely
176** contains unused entries.
drh027a1282010-05-19 01:53:53 +0000177**
178** Even without using the hash table, the last frame for page P
danad3cadd2010-06-14 11:49:26 +0000179** can be found by scanning the page-mapping sections of each index block
drh027a1282010-05-19 01:53:53 +0000180** starting with the last index block and moving toward the first, and
181** within each index block, starting at the end and moving toward the
182** beginning. The first entry that equals P corresponds to the frame
183** holding the content for that page.
184**
185** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
186** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
187** hash table for each page number in the mapping section, so the hash
188** table is never more than half full. The expected number of collisions
189** prior to finding a match is 1. Each entry of the hash table is an
190** 1-based index of an entry in the mapping section of the same
191** index block. Let K be the 1-based index of the largest entry in
192** the mapping section. (For index blocks other than the last, K will
193** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
194** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000195** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000196**
197** To look for page P in the hash table, first compute a hash iKey on
198** P as follows:
199**
200** iKey = (P * 383) % HASHTABLE_NSLOT
201**
202** Then start scanning entries of the hash table, starting with iKey
203** (wrapping around to the beginning when the end of the hash table is
204** reached) until an unused hash slot is found. Let the first unused slot
205** be at index iUnused. (iUnused might be less than iKey if there was
206** wrap-around.) Because the hash table is never more than half full,
207** the search is guaranteed to eventually hit an unused entry. Let
208** iMax be the value between iKey and iUnused, closest to iUnused,
209** where aHash[iMax]==P. If there is no iMax entry (if there exists
210** no hash slot such that aHash[i]==p) then page P is not in the
211** current index block. Otherwise the iMax-th mapping entry of the
212** current index block corresponds to the last entry that references
213** page P.
214**
215** A hash search begins with the last index block and moves toward the
216** first index block, looking for entries corresponding to page P. On
217** average, only two or three slots in each index block need to be
218** examined in order to either find the last entry for page P, or to
219** establish that no such entry exists in the block. Each index block
220** holds over 4000 entries. So two or three index blocks are sufficient
221** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
222** comparisons (on average) suffice to either locate a frame in the
223** WAL or to establish that the frame does not exist in the WAL. This
224** is much faster than scanning the entire 10MB WAL.
225**
226** Note that entries are added in order of increasing K. Hence, one
227** reader might be using some value K0 and a second reader that started
228** at a later time (after additional transactions were added to the WAL
229** and to the wal-index) might be using a different value K1, where K1>K0.
230** Both readers can use the same hash table and mapping section to get
231** the correct result. There may be entries in the hash table with
232** K>K0 but to the first reader, those entries will appear to be unused
233** slots in the hash table and so the first reader will get an answer as
234** if no values greater than K0 had ever been inserted into the hash table
235** in the first place - which is what reader one wants. Meanwhile, the
236** second reader using K1 will see additional values that were inserted
237** later, which is exactly what reader two wants.
238**
dan6f150142010-05-21 15:31:56 +0000239** When a rollback occurs, the value of K is decreased. Hash table entries
240** that correspond to frames greater than the new K value are removed
241** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000242*/
drh29d4dbe2010-05-18 23:29:52 +0000243#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000244
drh29d4dbe2010-05-18 23:29:52 +0000245#include "wal.h"
246
drh73b64e42010-05-30 19:55:15 +0000247/*
drhc74c3332010-05-31 12:15:19 +0000248** Trace output macros
249*/
drhc74c3332010-05-31 12:15:19 +0000250#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000251int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000252# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
253#else
254# define WALTRACE(X)
255#endif
256
dan10f5a502010-06-23 15:55:43 +0000257/*
258** The maximum (and only) versions of the wal and wal-index formats
259** that may be interpreted by this version of SQLite.
260**
261** If a client begins recovering a WAL file and finds that (a) the checksum
262** values in the wal-header are correct and (b) the version field is not
263** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
264**
265** Similarly, if a client successfully reads a wal-index header (i.e. the
266** checksum test is successful) and finds that the version field is not
267** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
268** returns SQLITE_CANTOPEN.
269*/
270#define WAL_MAX_VERSION 3007000
271#define WALINDEX_MAX_VERSION 3007000
drhc74c3332010-05-31 12:15:19 +0000272
273/*
drh73b64e42010-05-30 19:55:15 +0000274** Indices of various locking bytes. WAL_NREADER is the number
275** of available reader locks and should be at least 3.
276*/
277#define WAL_WRITE_LOCK 0
278#define WAL_ALL_BUT_WRITE 1
279#define WAL_CKPT_LOCK 1
280#define WAL_RECOVER_LOCK 2
281#define WAL_READ_LOCK(I) (3+(I))
282#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
283
dan97a31352010-04-16 13:59:31 +0000284
drh7ed91f22010-04-29 22:34:07 +0000285/* Object declarations */
286typedef struct WalIndexHdr WalIndexHdr;
287typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000288typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000289
290
291/*
drh286a2882010-05-20 23:51:06 +0000292** The following object holds a copy of the wal-index header content.
293**
294** The actual header in the wal-index consists of two copies of this
295** object.
drh9b78f792010-08-14 21:21:24 +0000296**
297** The szPage value can be any power of 2 between 512 and 32768, inclusive.
298** Or it can be 1 to represent a 65536-byte page. The latter case was
299** added in 3.7.1 when support for 64K pages was added.
dan7c246102010-04-12 19:00:29 +0000300*/
drh7ed91f22010-04-29 22:34:07 +0000301struct WalIndexHdr {
dan10f5a502010-06-23 15:55:43 +0000302 u32 iVersion; /* Wal-index version */
303 u32 unused; /* Unused (padding) field */
dan71d89912010-05-24 13:57:42 +0000304 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000305 u8 isInit; /* 1 when initialized */
306 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
drh9b78f792010-08-14 21:21:24 +0000307 u16 szPage; /* Database page size in bytes. 1==64K */
dand0aa3422010-05-31 16:41:53 +0000308 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000309 u32 nPage; /* Size of database in pages */
310 u32 aFrameCksum[2]; /* Checksum of last frame in log */
311 u32 aSalt[2]; /* Two salt values copied from WAL header */
312 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000313};
314
drh73b64e42010-05-30 19:55:15 +0000315/*
316** A copy of the following object occurs in the wal-index immediately
317** following the second copy of the WalIndexHdr. This object stores
318** information used by checkpoint.
319**
320** nBackfill is the number of frames in the WAL that have been written
321** back into the database. (We call the act of moving content from WAL to
322** database "backfilling".) The nBackfill number is never greater than
323** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
324** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
325** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
326** mxFrame back to zero when the WAL is reset.
327**
328** There is one entry in aReadMark[] for each reader lock. If a reader
329** holds read-lock K, then the value in aReadMark[K] is no greater than
drhdb7f6472010-06-09 14:45:12 +0000330** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
331** for any aReadMark[] means that entry is unused. aReadMark[0] is
332** a special case; its value is never used and it exists as a place-holder
333** to avoid having to offset aReadMark[] indexs by one. Readers holding
334** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
335** directly from the database.
drh73b64e42010-05-30 19:55:15 +0000336**
337** The value of aReadMark[K] may only be changed by a thread that
338** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
339** aReadMark[K] cannot changed while there is a reader is using that mark
340** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
341**
342** The checkpointer may only transfer frames from WAL to database where
343** the frame numbers are less than or equal to every aReadMark[] that is
344** in use (that is, every aReadMark[j] for which there is a corresponding
345** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
346** largest value and will increase an unused aReadMark[] to mxFrame if there
347** is not already an aReadMark[] equal to mxFrame. The exception to the
348** previous sentence is when nBackfill equals mxFrame (meaning that everything
349** in the WAL has been backfilled into the database) then new readers
350** will choose aReadMark[0] which has value 0 and hence such reader will
351** get all their all content directly from the database file and ignore
352** the WAL.
353**
354** Writers normally append new frames to the end of the WAL. However,
355** if nBackfill equals mxFrame (meaning that all WAL content has been
356** written back into the database) and if no readers are using the WAL
357** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
358** the writer will first "reset" the WAL back to the beginning and start
359** writing new content beginning at frame 1.
360**
361** We assume that 32-bit loads are atomic and so no locks are needed in
362** order to read from any aReadMark[] entries.
363*/
364struct WalCkptInfo {
365 u32 nBackfill; /* Number of WAL frames backfilled into DB */
366 u32 aReadMark[WAL_NREADER]; /* Reader marks */
367};
drhdb7f6472010-06-09 14:45:12 +0000368#define READMARK_NOT_USED 0xffffffff
drh73b64e42010-05-30 19:55:15 +0000369
370
drh7e263722010-05-20 21:21:09 +0000371/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
372** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
373** only support mandatory file-locks, we do not read or write data
374** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000375*/
drh73b64e42010-05-30 19:55:15 +0000376#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
377#define WALINDEX_LOCK_RESERVED 16
drh026ac282010-05-26 15:06:38 +0000378#define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
dan7c246102010-04-12 19:00:29 +0000379
drh7ed91f22010-04-29 22:34:07 +0000380/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000381#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000382
dan10f5a502010-06-23 15:55:43 +0000383/* Size of write ahead log header, including checksum. */
384/* #define WAL_HDRSIZE 24 */
385#define WAL_HDRSIZE 32
dan97a31352010-04-16 13:59:31 +0000386
danb8fd6c22010-05-24 10:39:36 +0000387/* WAL magic value. Either this value, or the same value with the least
388** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
389** big-endian format in the first 4 bytes of a WAL file.
390**
391** If the LSB is set, then the checksums for each frame within the WAL
392** file are calculated by treating all data as an array of 32-bit
393** big-endian words. Otherwise, they are calculated by interpreting
394** all data as 32-bit little-endian words.
395*/
396#define WAL_MAGIC 0x377f0682
397
dan97a31352010-04-16 13:59:31 +0000398/*
drh7ed91f22010-04-29 22:34:07 +0000399** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000400** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000401** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000402*/
drh6e810962010-05-19 17:49:50 +0000403#define walFrameOffset(iFrame, szPage) ( \
danbd0e9072010-07-07 09:48:44 +0000404 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000405)
dan7c246102010-04-12 19:00:29 +0000406
407/*
drh7ed91f22010-04-29 22:34:07 +0000408** An open write-ahead log file is represented by an instance of the
409** following object.
dance4f05f2010-04-22 19:14:13 +0000410*/
drh7ed91f22010-04-29 22:34:07 +0000411struct Wal {
drh73b64e42010-05-30 19:55:15 +0000412 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000413 sqlite3_file *pDbFd; /* File handle for the database file */
414 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000415 u32 iCallback; /* Value to pass to log callback (or 0) */
drh85a83752011-05-16 21:00:27 +0000416 i64 mxWalSize; /* Truncate WAL to this size upon reset */
dan13a3cb82010-06-11 19:04:21 +0000417 int nWiData; /* Size of array apWiData */
drh88f975a2011-12-16 19:34:36 +0000418 int szFirstBlock; /* Size of first block written to WAL file */
dan13a3cb82010-06-11 19:04:21 +0000419 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
drhb2eced52010-08-12 02:41:12 +0000420 u32 szPage; /* Database page size */
drh73b64e42010-05-30 19:55:15 +0000421 i16 readLock; /* Which read lock is being held. -1 for none */
drh4eb02a42011-12-16 21:26:26 +0000422 u8 syncFlags; /* Flags to use to sync header writes */
dan55437592010-05-11 12:19:26 +0000423 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000424 u8 writeLock; /* True if in a write transaction */
425 u8 ckptLock; /* True if holding a checkpoint lock */
drh66dfec8b2011-06-01 20:01:49 +0000426 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
danf60b7f32011-12-16 13:24:27 +0000427 u8 truncateOnCommit; /* True to truncate WAL file on commit */
drhd992b152011-12-20 20:13:25 +0000428 u8 syncHeader; /* Fsync the WAL header if true */
drh374f4a02011-12-17 20:02:11 +0000429 u8 padToSectorBoundary; /* Pad transactions out to the next sector */
drh73b64e42010-05-30 19:55:15 +0000430 WalIndexHdr hdr; /* Wal-index header for current transaction */
dan3e875ef2010-07-05 19:03:35 +0000431 const char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000432 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000433#ifdef SQLITE_DEBUG
434 u8 lockError; /* True if a locking error has occurred */
435#endif
dan7c246102010-04-12 19:00:29 +0000436};
437
drh73b64e42010-05-30 19:55:15 +0000438/*
dan8c408002010-11-01 17:38:24 +0000439** Candidate values for Wal.exclusiveMode.
440*/
441#define WAL_NORMAL_MODE 0
442#define WAL_EXCLUSIVE_MODE 1
443#define WAL_HEAPMEMORY_MODE 2
444
445/*
drh66dfec8b2011-06-01 20:01:49 +0000446** Possible values for WAL.readOnly
447*/
448#define WAL_RDWR 0 /* Normal read/write connection */
449#define WAL_RDONLY 1 /* The WAL file is readonly */
450#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
451
452/*
dan067f3162010-06-14 10:30:12 +0000453** Each page of the wal-index mapping contains a hash-table made up of
454** an array of HASHTABLE_NSLOT elements of the following type.
455*/
456typedef u16 ht_slot;
457
458/*
danad3cadd2010-06-14 11:49:26 +0000459** This structure is used to implement an iterator that loops through
460** all frames in the WAL in database page order. Where two or more frames
461** correspond to the same database page, the iterator visits only the
462** frame most recently written to the WAL (in other words, the frame with
463** the largest index).
464**
465** The internals of this structure are only accessed by:
466**
467** walIteratorInit() - Create a new iterator,
468** walIteratorNext() - Step an iterator,
469** walIteratorFree() - Free an iterator.
470**
471** This functionality is used by the checkpoint code (see walCheckpoint()).
472*/
473struct WalIterator {
474 int iPrior; /* Last result returned from the iterator */
drhd9c9b782010-12-15 21:02:06 +0000475 int nSegment; /* Number of entries in aSegment[] */
danad3cadd2010-06-14 11:49:26 +0000476 struct WalSegment {
477 int iNext; /* Next slot in aIndex[] not yet returned */
478 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
479 u32 *aPgno; /* Array of page numbers. */
drhd9c9b782010-12-15 21:02:06 +0000480 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
danad3cadd2010-06-14 11:49:26 +0000481 int iZero; /* Frame number associated with aPgno[0] */
drhd9c9b782010-12-15 21:02:06 +0000482 } aSegment[1]; /* One for every 32KB page in the wal-index */
danad3cadd2010-06-14 11:49:26 +0000483};
484
485/*
dan13a3cb82010-06-11 19:04:21 +0000486** Define the parameters of the hash tables in the wal-index file. There
487** is a hash-table following every HASHTABLE_NPAGE page numbers in the
488** wal-index.
489**
490** Changing any of these constants will alter the wal-index format and
491** create incompatibilities.
492*/
dan067f3162010-06-14 10:30:12 +0000493#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000494#define HASHTABLE_HASH_1 383 /* Should be prime */
495#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000496
danad3cadd2010-06-14 11:49:26 +0000497/*
498** The block of page numbers associated with the first hash-table in a
dan13a3cb82010-06-11 19:04:21 +0000499** wal-index is smaller than usual. This is so that there is a complete
500** hash-table on each aligned 32KB page of the wal-index.
501*/
dan067f3162010-06-14 10:30:12 +0000502#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
dan13a3cb82010-06-11 19:04:21 +0000503
dan067f3162010-06-14 10:30:12 +0000504/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
505#define WALINDEX_PGSZ ( \
506 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
507)
dan13a3cb82010-06-11 19:04:21 +0000508
509/*
510** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
dan067f3162010-06-14 10:30:12 +0000511** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
dan13a3cb82010-06-11 19:04:21 +0000512** numbered from zero.
513**
514** If this call is successful, *ppPage is set to point to the wal-index
515** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
516** then an SQLite error code is returned and *ppPage is set to 0.
517*/
518static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
519 int rc = SQLITE_OK;
520
521 /* Enlarge the pWal->apWiData[] array if required */
522 if( pWal->nWiData<=iPage ){
drh519426a2010-07-09 03:19:07 +0000523 int nByte = sizeof(u32*)*(iPage+1);
dan13a3cb82010-06-11 19:04:21 +0000524 volatile u32 **apNew;
shaneh8a300f82010-07-02 18:15:31 +0000525 apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte);
dan13a3cb82010-06-11 19:04:21 +0000526 if( !apNew ){
527 *ppPage = 0;
528 return SQLITE_NOMEM;
529 }
drh519426a2010-07-09 03:19:07 +0000530 memset((void*)&apNew[pWal->nWiData], 0,
531 sizeof(u32*)*(iPage+1-pWal->nWiData));
dan13a3cb82010-06-11 19:04:21 +0000532 pWal->apWiData = apNew;
533 pWal->nWiData = iPage+1;
534 }
535
536 /* Request a pointer to the required page from the VFS */
537 if( pWal->apWiData[iPage]==0 ){
dan8c408002010-11-01 17:38:24 +0000538 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
539 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
540 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
541 }else{
542 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
543 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
544 );
drh66dfec8b2011-06-01 20:01:49 +0000545 if( rc==SQLITE_READONLY ){
546 pWal->readOnly |= WAL_SHM_RDONLY;
547 rc = SQLITE_OK;
dan4edc6bf2011-05-10 17:31:29 +0000548 }
dan8c408002010-11-01 17:38:24 +0000549 }
dan13a3cb82010-06-11 19:04:21 +0000550 }
danb6d2f9c2011-05-11 14:57:33 +0000551
drh66dfec8b2011-06-01 20:01:49 +0000552 *ppPage = pWal->apWiData[iPage];
dan13a3cb82010-06-11 19:04:21 +0000553 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
554 return rc;
555}
556
557/*
drh73b64e42010-05-30 19:55:15 +0000558** Return a pointer to the WalCkptInfo structure in the wal-index.
559*/
560static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000561 assert( pWal->nWiData>0 && pWal->apWiData[0] );
562 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
563}
564
565/*
566** Return a pointer to the WalIndexHdr structure in the wal-index.
567*/
568static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
569 assert( pWal->nWiData>0 && pWal->apWiData[0] );
570 return (volatile WalIndexHdr*)pWal->apWiData[0];
drh73b64e42010-05-30 19:55:15 +0000571}
572
dan7c246102010-04-12 19:00:29 +0000573/*
danb8fd6c22010-05-24 10:39:36 +0000574** The argument to this macro must be of type u32. On a little-endian
575** architecture, it returns the u32 value that results from interpreting
576** the 4 bytes as a big-endian value. On a big-endian architecture, it
peter.d.reid60ec9142014-09-06 16:39:46 +0000577** returns the value that would be produced by interpreting the 4 bytes
danb8fd6c22010-05-24 10:39:36 +0000578** of the input value as a little-endian integer.
579*/
580#define BYTESWAP32(x) ( \
581 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
582 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
583)
dan64d039e2010-04-13 19:27:31 +0000584
dan7c246102010-04-12 19:00:29 +0000585/*
drh7e263722010-05-20 21:21:09 +0000586** Generate or extend an 8 byte checksum based on the data in
587** array aByte[] and the initial values of aIn[0] and aIn[1] (or
588** initial values of 0 and 0 if aIn==NULL).
589**
590** The checksum is written back into aOut[] before returning.
591**
592** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000593*/
drh7e263722010-05-20 21:21:09 +0000594static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000595 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000596 u8 *a, /* Content to be checksummed */
597 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
598 const u32 *aIn, /* Initial checksum value input */
599 u32 *aOut /* OUT: Final checksum value output */
600){
601 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000602 u32 *aData = (u32 *)a;
603 u32 *aEnd = (u32 *)&a[nByte];
604
drh7e263722010-05-20 21:21:09 +0000605 if( aIn ){
606 s1 = aIn[0];
607 s2 = aIn[1];
608 }else{
609 s1 = s2 = 0;
610 }
dan7c246102010-04-12 19:00:29 +0000611
drh584c7542010-05-19 18:08:10 +0000612 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000613 assert( (nByte&0x00000007)==0 );
dan7c246102010-04-12 19:00:29 +0000614
danb8fd6c22010-05-24 10:39:36 +0000615 if( nativeCksum ){
616 do {
617 s1 += *aData++ + s2;
618 s2 += *aData++ + s1;
619 }while( aData<aEnd );
620 }else{
621 do {
622 s1 += BYTESWAP32(aData[0]) + s2;
623 s2 += BYTESWAP32(aData[1]) + s1;
624 aData += 2;
625 }while( aData<aEnd );
626 }
627
drh7e263722010-05-20 21:21:09 +0000628 aOut[0] = s1;
629 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000630}
631
dan8c408002010-11-01 17:38:24 +0000632static void walShmBarrier(Wal *pWal){
633 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
634 sqlite3OsShmBarrier(pWal->pDbFd);
635 }
636}
637
dan7c246102010-04-12 19:00:29 +0000638/*
drh7e263722010-05-20 21:21:09 +0000639** Write the header information in pWal->hdr into the wal-index.
640**
641** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000642*/
drh7e263722010-05-20 21:21:09 +0000643static void walIndexWriteHdr(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000644 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
645 const int nCksum = offsetof(WalIndexHdr, aCksum);
drh73b64e42010-05-30 19:55:15 +0000646
647 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000648 pWal->hdr.isInit = 1;
dan10f5a502010-06-23 15:55:43 +0000649 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
dan4280eb32010-06-12 12:02:35 +0000650 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
651 memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
dan8c408002010-11-01 17:38:24 +0000652 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +0000653 memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000654}
655
656/*
657** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000658** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000659** 4-byte big-endian integers, as follows:
660**
drh23ea97b2010-05-20 16:45:58 +0000661** 0: Page number.
662** 4: For commit records, the size of the database image in pages
663** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000664** 8: Salt-1 (copied from the wal-header)
665** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000666** 16: Checksum-1.
667** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000668*/
drh7ed91f22010-04-29 22:34:07 +0000669static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000670 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000671 u32 iPage, /* Database page number for frame */
672 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000673 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000674 u8 *aFrame /* OUT: Write encoded frame here */
675){
danb8fd6c22010-05-24 10:39:36 +0000676 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000677 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000678 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000679 sqlite3Put4byte(&aFrame[0], iPage);
680 sqlite3Put4byte(&aFrame[4], nTruncate);
drh7e263722010-05-20 21:21:09 +0000681 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000682
danb8fd6c22010-05-24 10:39:36 +0000683 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000684 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000685 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000686
drh23ea97b2010-05-20 16:45:58 +0000687 sqlite3Put4byte(&aFrame[16], aCksum[0]);
688 sqlite3Put4byte(&aFrame[20], aCksum[1]);
dan7c246102010-04-12 19:00:29 +0000689}
690
691/*
drh7e263722010-05-20 21:21:09 +0000692** Check to see if the frame with header in aFrame[] and content
693** in aData[] is valid. If it is a valid frame, fill *piPage and
694** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000695*/
drh7ed91f22010-04-29 22:34:07 +0000696static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000697 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000698 u32 *piPage, /* OUT: Database page number for frame */
699 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000700 u8 *aData, /* Pointer to page data (for checksum) */
701 u8 *aFrame /* Frame data */
702){
danb8fd6c22010-05-24 10:39:36 +0000703 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000704 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000705 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000706 assert( WAL_FRAME_HDRSIZE==24 );
707
drh7e263722010-05-20 21:21:09 +0000708 /* A frame is only valid if the salt values in the frame-header
709 ** match the salt values in the wal-header.
710 */
711 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000712 return 0;
713 }
dan4a4b01d2010-04-16 11:30:18 +0000714
drhc8179152010-05-24 13:28:36 +0000715 /* A frame is only valid if the page number is creater than zero.
716 */
717 pgno = sqlite3Get4byte(&aFrame[0]);
718 if( pgno==0 ){
719 return 0;
720 }
721
drh519426a2010-07-09 03:19:07 +0000722 /* A frame is only valid if a checksum of the WAL header,
723 ** all prior frams, the first 16 bytes of this frame-header,
724 ** and the frame-data matches the checksum in the last 8
725 ** bytes of this frame-header.
drh7e263722010-05-20 21:21:09 +0000726 */
danb8fd6c22010-05-24 10:39:36 +0000727 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000728 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000729 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000730 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
731 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000732 ){
733 /* Checksum failed. */
734 return 0;
735 }
736
drh7e263722010-05-20 21:21:09 +0000737 /* If we reach this point, the frame is valid. Return the page number
738 ** and the new database size.
739 */
drhc8179152010-05-24 13:28:36 +0000740 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000741 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000742 return 1;
743}
744
dan7c246102010-04-12 19:00:29 +0000745
drhc74c3332010-05-31 12:15:19 +0000746#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
747/*
drh181e0912010-06-01 01:08:08 +0000748** Names of locks. This routine is used to provide debugging output and is not
749** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000750*/
751static const char *walLockName(int lockIdx){
752 if( lockIdx==WAL_WRITE_LOCK ){
753 return "WRITE-LOCK";
754 }else if( lockIdx==WAL_CKPT_LOCK ){
755 return "CKPT-LOCK";
756 }else if( lockIdx==WAL_RECOVER_LOCK ){
757 return "RECOVER-LOCK";
758 }else{
759 static char zName[15];
760 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
761 lockIdx-WAL_READ_LOCK(0));
762 return zName;
763 }
764}
765#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
766
767
dan7c246102010-04-12 19:00:29 +0000768/*
drh181e0912010-06-01 01:08:08 +0000769** Set or release locks on the WAL. Locks are either shared or exclusive.
770** A lock cannot be moved directly between shared and exclusive - it must go
771** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000772**
773** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
774*/
775static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000776 int rc;
drh73b64e42010-05-30 19:55:15 +0000777 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000778 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
779 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
780 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
781 walLockName(lockIdx), rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000782 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000783 return rc;
drh73b64e42010-05-30 19:55:15 +0000784}
785static void walUnlockShared(Wal *pWal, int lockIdx){
786 if( pWal->exclusiveMode ) return;
787 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
788 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000789 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000790}
791static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000792 int rc;
drh73b64e42010-05-30 19:55:15 +0000793 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000794 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
795 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
796 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
797 walLockName(lockIdx), n, rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000798 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000799 return rc;
drh73b64e42010-05-30 19:55:15 +0000800}
801static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
802 if( pWal->exclusiveMode ) return;
803 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
804 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000805 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
806 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000807}
808
809/*
drh29d4dbe2010-05-18 23:29:52 +0000810** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000811** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
812** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000813*/
814static int walHash(u32 iPage){
815 assert( iPage>0 );
816 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
817 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
818}
819static int walNextHash(int iPriorHash){
820 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000821}
822
dan4280eb32010-06-12 12:02:35 +0000823/*
824** Return pointers to the hash table and page number array stored on
825** page iHash of the wal-index. The wal-index is broken into 32KB pages
826** numbered starting from 0.
827**
828** Set output variable *paHash to point to the start of the hash table
829** in the wal-index file. Set *piZero to one less than the frame
830** number of the first frame indexed by this hash table. If a
831** slot in the hash table is set to N, it refers to frame number
832** (*piZero+N) in the log.
833**
dand60bf112010-06-14 11:18:50 +0000834** Finally, set *paPgno so that *paPgno[1] is the page number of the
835** first frame indexed by the hash table, frame (*piZero+1).
dan4280eb32010-06-12 12:02:35 +0000836*/
837static int walHashGet(
dan13a3cb82010-06-11 19:04:21 +0000838 Wal *pWal, /* WAL handle */
839 int iHash, /* Find the iHash'th table */
dan067f3162010-06-14 10:30:12 +0000840 volatile ht_slot **paHash, /* OUT: Pointer to hash index */
dan13a3cb82010-06-11 19:04:21 +0000841 volatile u32 **paPgno, /* OUT: Pointer to page number array */
842 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
843){
dan4280eb32010-06-12 12:02:35 +0000844 int rc; /* Return code */
dan13a3cb82010-06-11 19:04:21 +0000845 volatile u32 *aPgno;
dan13a3cb82010-06-11 19:04:21 +0000846
dan4280eb32010-06-12 12:02:35 +0000847 rc = walIndexPage(pWal, iHash, &aPgno);
848 assert( rc==SQLITE_OK || iHash>0 );
dan13a3cb82010-06-11 19:04:21 +0000849
dan4280eb32010-06-12 12:02:35 +0000850 if( rc==SQLITE_OK ){
851 u32 iZero;
dan067f3162010-06-14 10:30:12 +0000852 volatile ht_slot *aHash;
dan4280eb32010-06-12 12:02:35 +0000853
dan067f3162010-06-14 10:30:12 +0000854 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
dan4280eb32010-06-12 12:02:35 +0000855 if( iHash==0 ){
dand60bf112010-06-14 11:18:50 +0000856 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
dan4280eb32010-06-12 12:02:35 +0000857 iZero = 0;
858 }else{
859 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
dan4280eb32010-06-12 12:02:35 +0000860 }
861
dand60bf112010-06-14 11:18:50 +0000862 *paPgno = &aPgno[-1];
dan4280eb32010-06-12 12:02:35 +0000863 *paHash = aHash;
864 *piZero = iZero;
dan13a3cb82010-06-11 19:04:21 +0000865 }
dan4280eb32010-06-12 12:02:35 +0000866 return rc;
dan13a3cb82010-06-11 19:04:21 +0000867}
868
dan4280eb32010-06-12 12:02:35 +0000869/*
870** Return the number of the wal-index page that contains the hash-table
871** and page-number array that contain entries corresponding to WAL frame
872** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
873** are numbered starting from 0.
874*/
dan13a3cb82010-06-11 19:04:21 +0000875static int walFramePage(u32 iFrame){
876 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
877 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
878 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
879 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
880 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
881 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
882 );
883 return iHash;
884}
885
886/*
887** Return the page number associated with frame iFrame in this WAL.
888*/
889static u32 walFramePgno(Wal *pWal, u32 iFrame){
890 int iHash = walFramePage(iFrame);
891 if( iHash==0 ){
892 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
893 }
894 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
895}
danbb23aff2010-05-10 14:46:09 +0000896
danca6b5ba2010-05-25 10:50:56 +0000897/*
898** Remove entries from the hash table that point to WAL slots greater
899** than pWal->hdr.mxFrame.
900**
901** This function is called whenever pWal->hdr.mxFrame is decreased due
902** to a rollback or savepoint.
903**
drh181e0912010-06-01 01:08:08 +0000904** At most only the hash table containing pWal->hdr.mxFrame needs to be
905** updated. Any later hash tables will be automatically cleared when
906** pWal->hdr.mxFrame advances to the point where those hash tables are
907** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000908*/
909static void walCleanupHash(Wal *pWal){
drhff828942010-06-26 21:34:06 +0000910 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */
911 volatile u32 *aPgno = 0; /* Page number array for hash table */
912 u32 iZero = 0; /* frame == (aHash[x]+iZero) */
dan067f3162010-06-14 10:30:12 +0000913 int iLimit = 0; /* Zero values greater than this */
914 int nByte; /* Number of bytes to zero in aPgno[] */
915 int i; /* Used to iterate through aHash[] */
danca6b5ba2010-05-25 10:50:56 +0000916
drh73b64e42010-05-30 19:55:15 +0000917 assert( pWal->writeLock );
drhffca4302010-06-15 11:21:54 +0000918 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
919 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
920 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
drh9c156472010-06-01 12:58:41 +0000921
dan4280eb32010-06-12 12:02:35 +0000922 if( pWal->hdr.mxFrame==0 ) return;
923
924 /* Obtain pointers to the hash-table and page-number array containing
925 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
926 ** that the page said hash-table and array reside on is already mapped.
927 */
928 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
929 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
930 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
931
932 /* Zero all hash-table entries that correspond to frame numbers greater
933 ** than pWal->hdr.mxFrame.
934 */
935 iLimit = pWal->hdr.mxFrame - iZero;
936 assert( iLimit>0 );
937 for(i=0; i<HASHTABLE_NSLOT; i++){
938 if( aHash[i]>iLimit ){
939 aHash[i] = 0;
danca6b5ba2010-05-25 10:50:56 +0000940 }
danca6b5ba2010-05-25 10:50:56 +0000941 }
dan4280eb32010-06-12 12:02:35 +0000942
943 /* Zero the entries in the aPgno array that correspond to frames with
944 ** frame numbers greater than pWal->hdr.mxFrame.
945 */
shaneh5eba1f62010-07-02 17:05:03 +0000946 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
dand60bf112010-06-14 11:18:50 +0000947 memset((void *)&aPgno[iLimit+1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000948
949#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
950 /* Verify that the every entry in the mapping region is still reachable
951 ** via the hash table even after the cleanup.
952 */
drhf77bbd92010-06-01 13:17:44 +0000953 if( iLimit ){
danca6b5ba2010-05-25 10:50:56 +0000954 int i; /* Loop counter */
955 int iKey; /* Hash key */
956 for(i=1; i<=iLimit; i++){
dand60bf112010-06-14 11:18:50 +0000957 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
danca6b5ba2010-05-25 10:50:56 +0000958 if( aHash[iKey]==i ) break;
959 }
960 assert( aHash[iKey]==i );
961 }
962 }
963#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
964}
965
danbb23aff2010-05-10 14:46:09 +0000966
drh7ed91f22010-04-29 22:34:07 +0000967/*
drh29d4dbe2010-05-18 23:29:52 +0000968** Set an entry in the wal-index that will map database page number
969** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +0000970*/
drh7ed91f22010-04-29 22:34:07 +0000971static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
dan4280eb32010-06-12 12:02:35 +0000972 int rc; /* Return code */
drhff828942010-06-26 21:34:06 +0000973 u32 iZero = 0; /* One less than frame number of aPgno[1] */
974 volatile u32 *aPgno = 0; /* Page number array */
975 volatile ht_slot *aHash = 0; /* Hash table */
dance4f05f2010-04-22 19:14:13 +0000976
dan4280eb32010-06-12 12:02:35 +0000977 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
978
979 /* Assuming the wal-index file was successfully mapped, populate the
980 ** page number array and hash table entry.
dan7c246102010-04-12 19:00:29 +0000981 */
danbb23aff2010-05-10 14:46:09 +0000982 if( rc==SQLITE_OK ){
983 int iKey; /* Hash table key */
dan4280eb32010-06-12 12:02:35 +0000984 int idx; /* Value to write to hash-table slot */
drh519426a2010-07-09 03:19:07 +0000985 int nCollide; /* Number of hash collisions */
dan7c246102010-04-12 19:00:29 +0000986
danbb23aff2010-05-10 14:46:09 +0000987 idx = iFrame - iZero;
dan4280eb32010-06-12 12:02:35 +0000988 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
989
990 /* If this is the first entry to be added to this hash-table, zero the
peter.d.reid60ec9142014-09-06 16:39:46 +0000991 ** entire hash table and aPgno[] array before proceeding.
dan4280eb32010-06-12 12:02:35 +0000992 */
danca6b5ba2010-05-25 10:50:56 +0000993 if( idx==1 ){
shaneh5eba1f62010-07-02 17:05:03 +0000994 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
dand60bf112010-06-14 11:18:50 +0000995 memset((void*)&aPgno[1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000996 }
danca6b5ba2010-05-25 10:50:56 +0000997
dan4280eb32010-06-12 12:02:35 +0000998 /* If the entry in aPgno[] is already set, then the previous writer
999 ** must have exited unexpectedly in the middle of a transaction (after
1000 ** writing one or more dirty pages to the WAL to free up memory).
1001 ** Remove the remnants of that writers uncommitted transaction from
1002 ** the hash-table before writing any new entries.
1003 */
dand60bf112010-06-14 11:18:50 +00001004 if( aPgno[idx] ){
danca6b5ba2010-05-25 10:50:56 +00001005 walCleanupHash(pWal);
dand60bf112010-06-14 11:18:50 +00001006 assert( !aPgno[idx] );
danca6b5ba2010-05-25 10:50:56 +00001007 }
dan4280eb32010-06-12 12:02:35 +00001008
1009 /* Write the aPgno[] array entry and the hash-table slot. */
drh519426a2010-07-09 03:19:07 +00001010 nCollide = idx;
dan6f150142010-05-21 15:31:56 +00001011 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
drh519426a2010-07-09 03:19:07 +00001012 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
drh29d4dbe2010-05-18 23:29:52 +00001013 }
dand60bf112010-06-14 11:18:50 +00001014 aPgno[idx] = iPage;
shaneh5eba1f62010-07-02 17:05:03 +00001015 aHash[iKey] = (ht_slot)idx;
drh4fa95bf2010-05-22 00:55:39 +00001016
1017#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1018 /* Verify that the number of entries in the hash table exactly equals
1019 ** the number of entries in the mapping region.
1020 */
1021 {
1022 int i; /* Loop counter */
1023 int nEntry = 0; /* Number of entries in the hash table */
1024 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1025 assert( nEntry==idx );
1026 }
1027
1028 /* Verify that the every entry in the mapping region is reachable
1029 ** via the hash table. This turns out to be a really, really expensive
1030 ** thing to check, so only do this occasionally - not on every
1031 ** iteration.
1032 */
1033 if( (idx&0x3ff)==0 ){
1034 int i; /* Loop counter */
1035 for(i=1; i<=idx; i++){
dand60bf112010-06-14 11:18:50 +00001036 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
drh4fa95bf2010-05-22 00:55:39 +00001037 if( aHash[iKey]==i ) break;
1038 }
1039 assert( aHash[iKey]==i );
1040 }
1041 }
1042#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +00001043 }
dan31f98fc2010-04-27 05:42:32 +00001044
drh4fa95bf2010-05-22 00:55:39 +00001045
danbb23aff2010-05-10 14:46:09 +00001046 return rc;
dan7c246102010-04-12 19:00:29 +00001047}
1048
1049
1050/*
drh7ed91f22010-04-29 22:34:07 +00001051** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +00001052**
1053** This routine first tries to establish an exclusive lock on the
1054** wal-index to prevent other threads/processes from doing anything
1055** with the WAL or wal-index while recovery is running. The
1056** WAL_RECOVER_LOCK is also held so that other threads will know
1057** that this thread is running recovery. If unable to establish
1058** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +00001059*/
drh7ed91f22010-04-29 22:34:07 +00001060static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +00001061 int rc; /* Return Code */
1062 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +00001063 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +00001064 int iLock; /* Lock offset to lock for checkpoint */
1065 int nLock; /* Number of locks to hold */
dan7c246102010-04-12 19:00:29 +00001066
dand0aa3422010-05-31 16:41:53 +00001067 /* Obtain an exclusive lock on all byte in the locking range not already
1068 ** locked by the caller. The caller is guaranteed to have locked the
1069 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1070 ** If successful, the same bytes that are locked here are unlocked before
1071 ** this function returns.
1072 */
1073 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1074 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1075 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1076 assert( pWal->writeLock );
1077 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1078 nLock = SQLITE_SHM_NLOCK - iLock;
1079 rc = walLockExclusive(pWal, iLock, nLock);
drh73b64e42010-05-30 19:55:15 +00001080 if( rc ){
1081 return rc;
1082 }
drhc74c3332010-05-31 12:15:19 +00001083 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +00001084
dan71d89912010-05-24 13:57:42 +00001085 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +00001086
drhd9e5c4f2010-05-12 18:01:39 +00001087 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +00001088 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001089 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001090 }
1091
danb8fd6c22010-05-24 10:39:36 +00001092 if( nSize>WAL_HDRSIZE ){
1093 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dan7c246102010-04-12 19:00:29 +00001094 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001095 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001096 u8 *aData; /* Pointer to data part of aFrame buffer */
1097 int iFrame; /* Index of last frame read */
1098 i64 iOffset; /* Next offset to read from log file */
drh6e810962010-05-19 17:49:50 +00001099 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001100 u32 magic; /* Magic value read from WAL header */
dan10f5a502010-06-23 15:55:43 +00001101 u32 version; /* Magic value read from WAL header */
drhfe6163d2011-12-17 13:45:28 +00001102 int isValid; /* True if this frame is valid */
dan7c246102010-04-12 19:00:29 +00001103
danb8fd6c22010-05-24 10:39:36 +00001104 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001105 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001106 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001107 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001108 }
1109
1110 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001111 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1112 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1113 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001114 */
danb8fd6c22010-05-24 10:39:36 +00001115 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001116 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001117 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1118 || szPage&(szPage-1)
1119 || szPage>SQLITE_MAX_PAGE_SIZE
1120 || szPage<512
1121 ){
dan7c246102010-04-12 19:00:29 +00001122 goto finished;
1123 }
shaneh5eba1f62010-07-02 17:05:03 +00001124 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
drhb2eced52010-08-12 02:41:12 +00001125 pWal->szPage = szPage;
drh23ea97b2010-05-20 16:45:58 +00001126 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001127 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
drhcd285082010-06-23 22:00:35 +00001128
1129 /* Verify that the WAL header checksum is correct */
dan71d89912010-05-24 13:57:42 +00001130 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
dan10f5a502010-06-23 15:55:43 +00001131 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
dan71d89912010-05-24 13:57:42 +00001132 );
dan10f5a502010-06-23 15:55:43 +00001133 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1134 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1135 ){
1136 goto finished;
1137 }
1138
drhcd285082010-06-23 22:00:35 +00001139 /* Verify that the version number on the WAL format is one that
1140 ** are able to understand */
dan10f5a502010-06-23 15:55:43 +00001141 version = sqlite3Get4byte(&aBuf[4]);
1142 if( version!=WAL_MAX_VERSION ){
1143 rc = SQLITE_CANTOPEN_BKPT;
1144 goto finished;
1145 }
1146
dan7c246102010-04-12 19:00:29 +00001147 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001148 szFrame = szPage + WAL_FRAME_HDRSIZE;
1149 aFrame = (u8 *)sqlite3_malloc(szFrame);
dan7c246102010-04-12 19:00:29 +00001150 if( !aFrame ){
drh73b64e42010-05-30 19:55:15 +00001151 rc = SQLITE_NOMEM;
1152 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001153 }
drh7ed91f22010-04-29 22:34:07 +00001154 aData = &aFrame[WAL_FRAME_HDRSIZE];
dan7c246102010-04-12 19:00:29 +00001155
1156 /* Read all frames from the log file. */
1157 iFrame = 0;
drh584c7542010-05-19 18:08:10 +00001158 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
dan7c246102010-04-12 19:00:29 +00001159 u32 pgno; /* Database page number for frame */
1160 u32 nTruncate; /* dbsize field from frame header */
dan7c246102010-04-12 19:00:29 +00001161
1162 /* Read and decode the next log frame. */
drhfe6163d2011-12-17 13:45:28 +00001163 iFrame++;
drh584c7542010-05-19 18:08:10 +00001164 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
dan7c246102010-04-12 19:00:29 +00001165 if( rc!=SQLITE_OK ) break;
drh7e263722010-05-20 21:21:09 +00001166 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
drhf694aa62011-12-20 22:18:51 +00001167 if( !isValid ) break;
drhfe6163d2011-12-17 13:45:28 +00001168 rc = walIndexAppend(pWal, iFrame, pgno);
danc7991bd2010-05-05 19:04:59 +00001169 if( rc!=SQLITE_OK ) break;
dan7c246102010-04-12 19:00:29 +00001170
1171 /* If nTruncate is non-zero, this is a commit record. */
1172 if( nTruncate ){
dan71d89912010-05-24 13:57:42 +00001173 pWal->hdr.mxFrame = iFrame;
1174 pWal->hdr.nPage = nTruncate;
shaneh1df2db72010-08-18 02:28:48 +00001175 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00001176 testcase( szPage<=32768 );
1177 testcase( szPage>=65536 );
dan71d89912010-05-24 13:57:42 +00001178 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1179 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
dan7c246102010-04-12 19:00:29 +00001180 }
1181 }
1182
1183 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001184 }
1185
1186finished:
dan576bc322010-05-06 18:04:50 +00001187 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001188 volatile WalCkptInfo *pInfo;
1189 int i;
dan71d89912010-05-24 13:57:42 +00001190 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1191 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001192 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001193
drhdb7f6472010-06-09 14:45:12 +00001194 /* Reset the checkpoint-header. This is safe because this thread is
dan3dee6da2010-05-31 16:17:54 +00001195 ** currently holding locks that exclude all other readers, writers and
1196 ** checkpointers.
1197 */
drhdb7f6472010-06-09 14:45:12 +00001198 pInfo = walCkptInfo(pWal);
1199 pInfo->nBackfill = 0;
1200 pInfo->aReadMark[0] = 0;
1201 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
dan5373b762012-07-17 14:37:12 +00001202 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
daneb8763d2010-08-17 14:52:22 +00001203
1204 /* If more than one frame was recovered from the log file, report an
1205 ** event via sqlite3_log(). This is to help with identifying performance
1206 ** problems caused by applications routinely shutting down without
1207 ** checkpointing the log file.
1208 */
1209 if( pWal->hdr.nPage ){
drhd040e762013-04-10 23:48:37 +00001210 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1211 "recovered %d frames from WAL file %s",
dan0943f0b2013-04-01 14:35:01 +00001212 pWal->hdr.mxFrame, pWal->zWalName
daneb8763d2010-08-17 14:52:22 +00001213 );
1214 }
dan576bc322010-05-06 18:04:50 +00001215 }
drh73b64e42010-05-30 19:55:15 +00001216
1217recovery_error:
drhc74c3332010-05-31 12:15:19 +00001218 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dand0aa3422010-05-31 16:41:53 +00001219 walUnlockExclusive(pWal, iLock, nLock);
dan7c246102010-04-12 19:00:29 +00001220 return rc;
1221}
1222
drha8e654e2010-05-04 17:38:42 +00001223/*
dan1018e902010-05-05 15:33:05 +00001224** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001225*/
dan1018e902010-05-05 15:33:05 +00001226static void walIndexClose(Wal *pWal, int isDelete){
dan8c408002010-11-01 17:38:24 +00001227 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
1228 int i;
1229 for(i=0; i<pWal->nWiData; i++){
1230 sqlite3_free((void *)pWal->apWiData[i]);
1231 pWal->apWiData[i] = 0;
1232 }
1233 }else{
1234 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1235 }
drha8e654e2010-05-04 17:38:42 +00001236}
1237
dan7c246102010-04-12 19:00:29 +00001238/*
dan3e875ef2010-07-05 19:03:35 +00001239** Open a connection to the WAL file zWalName. The database file must
1240** already be opened on connection pDbFd. The buffer that zWalName points
1241** to must remain valid for the lifetime of the returned Wal* handle.
dan3de777f2010-04-17 12:31:37 +00001242**
1243** A SHARED lock should be held on the database file when this function
1244** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001245** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001246** were to do this just after this client opened one of these files, the
1247** system would be badly broken.
danef378022010-05-04 11:06:03 +00001248**
1249** If the log file is successfully opened, SQLITE_OK is returned and
1250** *ppWal is set to point to a new WAL handle. If an error occurs,
1251** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001252*/
drhc438efd2010-04-26 00:19:45 +00001253int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001254 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001255 sqlite3_file *pDbFd, /* The open database file */
dan3e875ef2010-07-05 19:03:35 +00001256 const char *zWalName, /* Name of the WAL file */
dan8c408002010-11-01 17:38:24 +00001257 int bNoShm, /* True to run in heap-memory mode */
drh85a83752011-05-16 21:00:27 +00001258 i64 mxWalSize, /* Truncate WAL to this size on reset */
drh7ed91f22010-04-29 22:34:07 +00001259 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001260){
danef378022010-05-04 11:06:03 +00001261 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001262 Wal *pRet; /* Object to allocate and return */
dan7c246102010-04-12 19:00:29 +00001263 int flags; /* Flags passed to OsOpen() */
dan7c246102010-04-12 19:00:29 +00001264
dan3e875ef2010-07-05 19:03:35 +00001265 assert( zWalName && zWalName[0] );
drhd9e5c4f2010-05-12 18:01:39 +00001266 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001267
drh1b78eaf2010-05-25 13:40:03 +00001268 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1269 ** this source file. Verify that the #defines of the locking byte offsets
1270 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1271 */
1272#ifdef WIN_SHM_BASE
1273 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1274#endif
1275#ifdef UNIX_SHM_BASE
1276 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1277#endif
1278
1279
drh7ed91f22010-04-29 22:34:07 +00001280 /* Allocate an instance of struct Wal to return. */
1281 *ppWal = 0;
dan3e875ef2010-07-05 19:03:35 +00001282 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
dan76ed3bc2010-05-03 17:18:24 +00001283 if( !pRet ){
1284 return SQLITE_NOMEM;
1285 }
1286
dan7c246102010-04-12 19:00:29 +00001287 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001288 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1289 pRet->pDbFd = pDbFd;
drh73b64e42010-05-30 19:55:15 +00001290 pRet->readLock = -1;
drh85a83752011-05-16 21:00:27 +00001291 pRet->mxWalSize = mxWalSize;
dan3e875ef2010-07-05 19:03:35 +00001292 pRet->zWalName = zWalName;
drhd992b152011-12-20 20:13:25 +00001293 pRet->syncHeader = 1;
drh374f4a02011-12-17 20:02:11 +00001294 pRet->padToSectorBoundary = 1;
dan8c408002010-11-01 17:38:24 +00001295 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
dan7c246102010-04-12 19:00:29 +00001296
drh7ed91f22010-04-29 22:34:07 +00001297 /* Open file handle on the write-ahead log file. */
danddb0ac42010-07-14 14:48:58 +00001298 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
danda9fe0c2010-07-13 18:44:03 +00001299 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
dan50833e32010-07-14 16:37:17 +00001300 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
drh66dfec8b2011-06-01 20:01:49 +00001301 pRet->readOnly = WAL_RDONLY;
dan50833e32010-07-14 16:37:17 +00001302 }
dan7c246102010-04-12 19:00:29 +00001303
dan7c246102010-04-12 19:00:29 +00001304 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001305 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001306 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001307 sqlite3_free(pRet);
1308 }else{
dandd973542014-02-13 19:27:08 +00001309 int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
drhd992b152011-12-20 20:13:25 +00001310 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
drhcb15f352011-12-23 01:04:17 +00001311 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1312 pRet->padToSectorBoundary = 0;
1313 }
danef378022010-05-04 11:06:03 +00001314 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001315 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001316 }
dan7c246102010-04-12 19:00:29 +00001317 return rc;
1318}
1319
drha2a42012010-05-18 18:01:08 +00001320/*
drh85a83752011-05-16 21:00:27 +00001321** Change the size to which the WAL file is trucated on each reset.
1322*/
1323void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1324 if( pWal ) pWal->mxWalSize = iLimit;
1325}
1326
1327/*
drha2a42012010-05-18 18:01:08 +00001328** Find the smallest page number out of all pages held in the WAL that
1329** has not been returned by any prior invocation of this method on the
1330** same WalIterator object. Write into *piFrame the frame index where
1331** that page was last written into the WAL. Write into *piPage the page
1332** number.
1333**
1334** Return 0 on success. If there are no pages in the WAL with a page
1335** number larger than *piPage, then return 1.
1336*/
drh7ed91f22010-04-29 22:34:07 +00001337static int walIteratorNext(
1338 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001339 u32 *piPage, /* OUT: The page number of the next page */
1340 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001341){
drha2a42012010-05-18 18:01:08 +00001342 u32 iMin; /* Result pgno must be greater than iMin */
1343 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1344 int i; /* For looping through segments */
dan7c246102010-04-12 19:00:29 +00001345
drha2a42012010-05-18 18:01:08 +00001346 iMin = p->iPrior;
1347 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001348 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001349 struct WalSegment *pSegment = &p->aSegment[i];
dan13a3cb82010-06-11 19:04:21 +00001350 while( pSegment->iNext<pSegment->nEntry ){
drha2a42012010-05-18 18:01:08 +00001351 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001352 if( iPg>iMin ){
1353 if( iPg<iRet ){
1354 iRet = iPg;
dan13a3cb82010-06-11 19:04:21 +00001355 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
dan7c246102010-04-12 19:00:29 +00001356 }
1357 break;
1358 }
1359 pSegment->iNext++;
1360 }
dan7c246102010-04-12 19:00:29 +00001361 }
1362
drha2a42012010-05-18 18:01:08 +00001363 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001364 return (iRet==0xFFFFFFFF);
1365}
1366
danf544b4c2010-06-25 11:35:52 +00001367/*
1368** This function merges two sorted lists into a single sorted list.
drhd9c9b782010-12-15 21:02:06 +00001369**
1370** aLeft[] and aRight[] are arrays of indices. The sort key is
1371** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1372** is guaranteed for all J<K:
1373**
1374** aContent[aLeft[J]] < aContent[aLeft[K]]
1375** aContent[aRight[J]] < aContent[aRight[K]]
1376**
1377** This routine overwrites aRight[] with a new (probably longer) sequence
1378** of indices such that the aRight[] contains every index that appears in
1379** either aLeft[] or the old aRight[] and such that the second condition
1380** above is still met.
1381**
1382** The aContent[aLeft[X]] values will be unique for all X. And the
1383** aContent[aRight[X]] values will be unique too. But there might be
1384** one or more combinations of X and Y such that
1385**
1386** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1387**
1388** When that happens, omit the aLeft[X] and use the aRight[Y] index.
danf544b4c2010-06-25 11:35:52 +00001389*/
1390static void walMerge(
drhd9c9b782010-12-15 21:02:06 +00001391 const u32 *aContent, /* Pages in wal - keys for the sort */
danf544b4c2010-06-25 11:35:52 +00001392 ht_slot *aLeft, /* IN: Left hand input list */
1393 int nLeft, /* IN: Elements in array *paLeft */
1394 ht_slot **paRight, /* IN/OUT: Right hand input list */
1395 int *pnRight, /* IN/OUT: Elements in *paRight */
1396 ht_slot *aTmp /* Temporary buffer */
1397){
1398 int iLeft = 0; /* Current index in aLeft */
1399 int iRight = 0; /* Current index in aRight */
1400 int iOut = 0; /* Current index in output buffer */
1401 int nRight = *pnRight;
1402 ht_slot *aRight = *paRight;
dan7c246102010-04-12 19:00:29 +00001403
danf544b4c2010-06-25 11:35:52 +00001404 assert( nLeft>0 && nRight>0 );
1405 while( iRight<nRight || iLeft<nLeft ){
1406 ht_slot logpage;
1407 Pgno dbpage;
1408
1409 if( (iLeft<nLeft)
1410 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1411 ){
1412 logpage = aLeft[iLeft++];
1413 }else{
1414 logpage = aRight[iRight++];
1415 }
1416 dbpage = aContent[logpage];
1417
1418 aTmp[iOut++] = logpage;
1419 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1420
1421 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1422 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1423 }
1424
1425 *paRight = aLeft;
1426 *pnRight = iOut;
1427 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1428}
1429
1430/*
drhd9c9b782010-12-15 21:02:06 +00001431** Sort the elements in list aList using aContent[] as the sort key.
1432** Remove elements with duplicate keys, preferring to keep the
1433** larger aList[] values.
1434**
1435** The aList[] entries are indices into aContent[]. The values in
1436** aList[] are to be sorted so that for all J<K:
1437**
1438** aContent[aList[J]] < aContent[aList[K]]
1439**
1440** For any X and Y such that
1441**
1442** aContent[aList[X]] == aContent[aList[Y]]
1443**
1444** Keep the larger of the two values aList[X] and aList[Y] and discard
1445** the smaller.
danf544b4c2010-06-25 11:35:52 +00001446*/
dan13a3cb82010-06-11 19:04:21 +00001447static void walMergesort(
drhd9c9b782010-12-15 21:02:06 +00001448 const u32 *aContent, /* Pages in wal */
dan067f3162010-06-14 10:30:12 +00001449 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1450 ht_slot *aList, /* IN/OUT: List to sort */
drha2a42012010-05-18 18:01:08 +00001451 int *pnList /* IN/OUT: Number of elements in aList[] */
1452){
danf544b4c2010-06-25 11:35:52 +00001453 struct Sublist {
1454 int nList; /* Number of elements in aList */
1455 ht_slot *aList; /* Pointer to sub-list content */
1456 };
drha2a42012010-05-18 18:01:08 +00001457
danf544b4c2010-06-25 11:35:52 +00001458 const int nList = *pnList; /* Size of input list */
drhff828942010-06-26 21:34:06 +00001459 int nMerge = 0; /* Number of elements in list aMerge */
1460 ht_slot *aMerge = 0; /* List to be merged */
danf544b4c2010-06-25 11:35:52 +00001461 int iList; /* Index into input list */
drh7d113eb2010-06-26 20:00:54 +00001462 int iSub = 0; /* Index into aSub array */
danf544b4c2010-06-25 11:35:52 +00001463 struct Sublist aSub[13]; /* Array of sub-lists */
drha2a42012010-05-18 18:01:08 +00001464
danf544b4c2010-06-25 11:35:52 +00001465 memset(aSub, 0, sizeof(aSub));
1466 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1467 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
drha2a42012010-05-18 18:01:08 +00001468
danf544b4c2010-06-25 11:35:52 +00001469 for(iList=0; iList<nList; iList++){
1470 nMerge = 1;
1471 aMerge = &aList[iList];
1472 for(iSub=0; iList & (1<<iSub); iSub++){
1473 struct Sublist *p = &aSub[iSub];
1474 assert( p->aList && p->nList<=(1<<iSub) );
danbdf1e242010-06-25 15:16:25 +00001475 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001476 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
drha2a42012010-05-18 18:01:08 +00001477 }
danf544b4c2010-06-25 11:35:52 +00001478 aSub[iSub].aList = aMerge;
1479 aSub[iSub].nList = nMerge;
drha2a42012010-05-18 18:01:08 +00001480 }
1481
danf544b4c2010-06-25 11:35:52 +00001482 for(iSub++; iSub<ArraySize(aSub); iSub++){
1483 if( nList & (1<<iSub) ){
1484 struct Sublist *p = &aSub[iSub];
danbdf1e242010-06-25 15:16:25 +00001485 assert( p->nList<=(1<<iSub) );
1486 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001487 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1488 }
1489 }
1490 assert( aMerge==aList );
1491 *pnList = nMerge;
1492
drha2a42012010-05-18 18:01:08 +00001493#ifdef SQLITE_DEBUG
1494 {
1495 int i;
1496 for(i=1; i<*pnList; i++){
1497 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1498 }
1499 }
1500#endif
1501}
1502
dan5d656852010-06-14 07:53:26 +00001503/*
1504** Free an iterator allocated by walIteratorInit().
1505*/
1506static void walIteratorFree(WalIterator *p){
drhcbd55b02014-11-04 14:22:27 +00001507 sqlite3_free(p);
dan5d656852010-06-14 07:53:26 +00001508}
1509
drha2a42012010-05-18 18:01:08 +00001510/*
danbdf1e242010-06-25 15:16:25 +00001511** Construct a WalInterator object that can be used to loop over all
1512** pages in the WAL in ascending order. The caller must hold the checkpoint
drhd9c9b782010-12-15 21:02:06 +00001513** lock.
drha2a42012010-05-18 18:01:08 +00001514**
1515** On success, make *pp point to the newly allocated WalInterator object
danbdf1e242010-06-25 15:16:25 +00001516** return SQLITE_OK. Otherwise, return an error code. If this routine
1517** returns an error, the value of *pp is undefined.
drha2a42012010-05-18 18:01:08 +00001518**
1519** The calling routine should invoke walIteratorFree() to destroy the
danbdf1e242010-06-25 15:16:25 +00001520** WalIterator object when it has finished with it.
drha2a42012010-05-18 18:01:08 +00001521*/
1522static int walIteratorInit(Wal *pWal, WalIterator **pp){
dan067f3162010-06-14 10:30:12 +00001523 WalIterator *p; /* Return value */
1524 int nSegment; /* Number of segments to merge */
1525 u32 iLast; /* Last frame in log */
1526 int nByte; /* Number of bytes to allocate */
1527 int i; /* Iterator variable */
1528 ht_slot *aTmp; /* Temp space used by merge-sort */
danbdf1e242010-06-25 15:16:25 +00001529 int rc = SQLITE_OK; /* Return Code */
drha2a42012010-05-18 18:01:08 +00001530
danbdf1e242010-06-25 15:16:25 +00001531 /* This routine only runs while holding the checkpoint lock. And
1532 ** it only runs if there is actually content in the log (mxFrame>0).
drha2a42012010-05-18 18:01:08 +00001533 */
danbdf1e242010-06-25 15:16:25 +00001534 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
dan13a3cb82010-06-11 19:04:21 +00001535 iLast = pWal->hdr.mxFrame;
drha2a42012010-05-18 18:01:08 +00001536
danbdf1e242010-06-25 15:16:25 +00001537 /* Allocate space for the WalIterator object. */
dan13a3cb82010-06-11 19:04:21 +00001538 nSegment = walFramePage(iLast) + 1;
1539 nByte = sizeof(WalIterator)
dan52d6fc02010-06-25 16:34:32 +00001540 + (nSegment-1)*sizeof(struct WalSegment)
1541 + iLast*sizeof(ht_slot);
drhcbd55b02014-11-04 14:22:27 +00001542 p = (WalIterator *)sqlite3_malloc(nByte);
dan8f6097c2010-05-06 07:43:58 +00001543 if( !p ){
drha2a42012010-05-18 18:01:08 +00001544 return SQLITE_NOMEM;
1545 }
1546 memset(p, 0, nByte);
drha2a42012010-05-18 18:01:08 +00001547 p->nSegment = nSegment;
danbdf1e242010-06-25 15:16:25 +00001548
1549 /* Allocate temporary space used by the merge-sort routine. This block
1550 ** of memory will be freed before this function returns.
1551 */
drhcbd55b02014-11-04 14:22:27 +00001552 aTmp = (ht_slot *)sqlite3_malloc(
dan52d6fc02010-06-25 16:34:32 +00001553 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1554 );
danbdf1e242010-06-25 15:16:25 +00001555 if( !aTmp ){
1556 rc = SQLITE_NOMEM;
1557 }
1558
1559 for(i=0; rc==SQLITE_OK && i<nSegment; i++){
dan067f3162010-06-14 10:30:12 +00001560 volatile ht_slot *aHash;
dan13a3cb82010-06-11 19:04:21 +00001561 u32 iZero;
dan13a3cb82010-06-11 19:04:21 +00001562 volatile u32 *aPgno;
1563
dan4280eb32010-06-12 12:02:35 +00001564 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
danbdf1e242010-06-25 15:16:25 +00001565 if( rc==SQLITE_OK ){
dan52d6fc02010-06-25 16:34:32 +00001566 int j; /* Counter variable */
1567 int nEntry; /* Number of entries in this segment */
1568 ht_slot *aIndex; /* Sorted index for this segment */
1569
danbdf1e242010-06-25 15:16:25 +00001570 aPgno++;
drh519426a2010-07-09 03:19:07 +00001571 if( (i+1)==nSegment ){
1572 nEntry = (int)(iLast - iZero);
1573 }else{
shaneh55897962010-07-09 12:57:53 +00001574 nEntry = (int)((u32*)aHash - (u32*)aPgno);
drh519426a2010-07-09 03:19:07 +00001575 }
dan52d6fc02010-06-25 16:34:32 +00001576 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
danbdf1e242010-06-25 15:16:25 +00001577 iZero++;
1578
danbdf1e242010-06-25 15:16:25 +00001579 for(j=0; j<nEntry; j++){
shaneh5eba1f62010-07-02 17:05:03 +00001580 aIndex[j] = (ht_slot)j;
danbdf1e242010-06-25 15:16:25 +00001581 }
1582 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1583 p->aSegment[i].iZero = iZero;
1584 p->aSegment[i].nEntry = nEntry;
1585 p->aSegment[i].aIndex = aIndex;
1586 p->aSegment[i].aPgno = (u32 *)aPgno;
dan13a3cb82010-06-11 19:04:21 +00001587 }
dan7c246102010-04-12 19:00:29 +00001588 }
drhcbd55b02014-11-04 14:22:27 +00001589 sqlite3_free(aTmp);
dan7c246102010-04-12 19:00:29 +00001590
danbdf1e242010-06-25 15:16:25 +00001591 if( rc!=SQLITE_OK ){
1592 walIteratorFree(p);
1593 }
dan8f6097c2010-05-06 07:43:58 +00001594 *pp = p;
danbdf1e242010-06-25 15:16:25 +00001595 return rc;
dan7c246102010-04-12 19:00:29 +00001596}
1597
dan7c246102010-04-12 19:00:29 +00001598/*
dana58f26f2010-11-16 18:56:51 +00001599** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1600** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1601** busy-handler function. Invoke it and retry the lock until either the
1602** lock is successfully obtained or the busy-handler returns 0.
1603*/
1604static int walBusyLock(
1605 Wal *pWal, /* WAL connection */
1606 int (*xBusy)(void*), /* Function to call when busy */
1607 void *pBusyArg, /* Context argument for xBusyHandler */
1608 int lockIdx, /* Offset of first byte to lock */
1609 int n /* Number of bytes to lock */
1610){
1611 int rc;
1612 do {
1613 rc = walLockExclusive(pWal, lockIdx, n);
1614 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1615 return rc;
1616}
1617
1618/*
danf2b8dd52010-11-18 19:28:01 +00001619** The cache of the wal-index header must be valid to call this function.
1620** Return the page-size in bytes used by the database.
1621*/
1622static int walPagesize(Wal *pWal){
1623 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1624}
1625
1626/*
danf26a1542014-12-02 19:04:54 +00001627** The following is guaranteed when this function is called:
1628**
1629** a) the WRITER lock is held,
1630** b) the entire log file has been checkpointed, and
1631** c) any existing readers are reading exclusively from the database
1632** file - there are no readers that may attempt to read a frame from
1633** the log file.
1634**
1635** This function updates the shared-memory structures so that the next
1636** client to write to the database (which may be this one) does so by
1637** writing frames into the start of the log file.
dan0fe8c1b2014-12-02 19:35:09 +00001638**
1639** The value of parameter salt1 is used as the aSalt[1] value in the
1640** new wal-index header. It should be passed a pseudo-random value (i.e.
1641** one obtained from sqlite3_randomness()).
danf26a1542014-12-02 19:04:54 +00001642*/
dan0fe8c1b2014-12-02 19:35:09 +00001643static void walRestartHdr(Wal *pWal, u32 salt1){
danf26a1542014-12-02 19:04:54 +00001644 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1645 int i; /* Loop counter */
1646 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
1647 pWal->nCkpt++;
1648 pWal->hdr.mxFrame = 0;
1649 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
dan0fe8c1b2014-12-02 19:35:09 +00001650 memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
danf26a1542014-12-02 19:04:54 +00001651 walIndexWriteHdr(pWal);
1652 pInfo->nBackfill = 0;
1653 pInfo->aReadMark[1] = 0;
1654 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1655 assert( pInfo->aReadMark[0]==0 );
1656}
1657
1658/*
drh73b64e42010-05-30 19:55:15 +00001659** Copy as much content as we can from the WAL back into the database file
1660** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1661**
1662** The amount of information copies from WAL to database might be limited
1663** by active readers. This routine will never overwrite a database page
1664** that a concurrent reader might be using.
1665**
1666** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1667** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1668** checkpoints are always run by a background thread or background
1669** process, foreground threads will never block on a lengthy fsync call.
1670**
1671** Fsync is called on the WAL before writing content out of the WAL and
1672** into the database. This ensures that if the new content is persistent
1673** in the WAL and can be recovered following a power-loss or hard reset.
1674**
1675** Fsync is also called on the database file if (and only if) the entire
1676** WAL content is copied into the database file. This second fsync makes
1677** it safe to delete the WAL since the new content will persist in the
1678** database file.
1679**
1680** This routine uses and updates the nBackfill field of the wal-index header.
peter.d.reid60ec9142014-09-06 16:39:46 +00001681** This is the only routine that will increase the value of nBackfill.
drh73b64e42010-05-30 19:55:15 +00001682** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1683** its value.)
1684**
1685** The caller must be holding sufficient locks to ensure that no other
1686** checkpoint is running (in any other thread or process) at the same
1687** time.
dan7c246102010-04-12 19:00:29 +00001688*/
drh7ed91f22010-04-29 22:34:07 +00001689static int walCheckpoint(
1690 Wal *pWal, /* Wal connection */
dancdc1f042010-11-18 12:11:05 +00001691 int eMode, /* One of PASSIVE, FULL or RESTART */
drhdd90d7e2014-12-03 19:25:41 +00001692 int (*xBusy)(void*), /* Function to call when busy */
dana58f26f2010-11-16 18:56:51 +00001693 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00001694 int sync_flags, /* Flags for OsSync() (or 0) */
dan9c5e3682011-02-07 15:12:12 +00001695 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00001696){
1697 int rc; /* Return code */
drhb2eced52010-08-12 02:41:12 +00001698 int szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001699 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001700 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001701 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001702 u32 mxSafeFrame; /* Max frame that can be backfilled */
dan502019c2010-07-28 14:26:17 +00001703 u32 mxPage; /* Max database page to write */
drh73b64e42010-05-30 19:55:15 +00001704 int i; /* Loop counter */
drh73b64e42010-05-30 19:55:15 +00001705 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
dan7c246102010-04-12 19:00:29 +00001706
danf2b8dd52010-11-18 19:28:01 +00001707 szPage = walPagesize(pWal);
drh9b78f792010-08-14 21:21:24 +00001708 testcase( szPage<=32768 );
1709 testcase( szPage>=65536 );
drh7d208442010-12-16 02:06:29 +00001710 pInfo = walCkptInfo(pWal);
1711 if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK;
danf544b4c2010-06-25 11:35:52 +00001712
dan7c246102010-04-12 19:00:29 +00001713 /* Allocate the iterator */
dan8f6097c2010-05-06 07:43:58 +00001714 rc = walIteratorInit(pWal, &pIter);
danf544b4c2010-06-25 11:35:52 +00001715 if( rc!=SQLITE_OK ){
danbdf1e242010-06-25 15:16:25 +00001716 return rc;
danb6e099a2010-05-04 14:47:39 +00001717 }
danf544b4c2010-06-25 11:35:52 +00001718 assert( pIter );
danb6e099a2010-05-04 14:47:39 +00001719
drhdd90d7e2014-12-03 19:25:41 +00001720 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1721 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1722 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
danb6e099a2010-05-04 14:47:39 +00001723
drh73b64e42010-05-30 19:55:15 +00001724 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1725 ** safe to write into the database. Frames beyond mxSafeFrame might
1726 ** overwrite database pages that are in use by active readers and thus
1727 ** cannot be backfilled from the WAL.
1728 */
dand54ff602010-05-31 11:16:30 +00001729 mxSafeFrame = pWal->hdr.mxFrame;
dan502019c2010-07-28 14:26:17 +00001730 mxPage = pWal->hdr.nPage;
drh73b64e42010-05-30 19:55:15 +00001731 for(i=1; i<WAL_NREADER; i++){
1732 u32 y = pInfo->aReadMark[i];
danf2b8dd52010-11-18 19:28:01 +00001733 if( mxSafeFrame>y ){
dan83f42d12010-06-04 10:37:05 +00001734 assert( y<=pWal->hdr.mxFrame );
danf2b8dd52010-11-18 19:28:01 +00001735 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
dan83f42d12010-06-04 10:37:05 +00001736 if( rc==SQLITE_OK ){
dan5373b762012-07-17 14:37:12 +00001737 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
drh73b64e42010-05-30 19:55:15 +00001738 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
drh2d37e1c2010-06-02 20:38:20 +00001739 }else if( rc==SQLITE_BUSY ){
drhdb7f6472010-06-09 14:45:12 +00001740 mxSafeFrame = y;
danf2b8dd52010-11-18 19:28:01 +00001741 xBusy = 0;
drh2d37e1c2010-06-02 20:38:20 +00001742 }else{
dan83f42d12010-06-04 10:37:05 +00001743 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001744 }
1745 }
danc5118782010-04-17 17:34:41 +00001746 }
dan7c246102010-04-12 19:00:29 +00001747
drh73b64e42010-05-30 19:55:15 +00001748 if( pInfo->nBackfill<mxSafeFrame
dana58f26f2010-11-16 18:56:51 +00001749 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0), 1))==SQLITE_OK
drh73b64e42010-05-30 19:55:15 +00001750 ){
dan502019c2010-07-28 14:26:17 +00001751 i64 nSize; /* Current size of database file */
drh73b64e42010-05-30 19:55:15 +00001752 u32 nBackfill = pInfo->nBackfill;
1753
1754 /* Sync the WAL to disk */
1755 if( sync_flags ){
1756 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1757 }
1758
danf23da962013-03-23 21:00:41 +00001759 /* If the database may grow as a result of this checkpoint, hint
1760 ** about the eventual size of the db file to the VFS layer.
1761 */
dan007820d2010-08-09 07:51:40 +00001762 if( rc==SQLITE_OK ){
1763 i64 nReq = ((i64)mxPage * szPage);
danf23da962013-03-23 21:00:41 +00001764 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1765 if( rc==SQLITE_OK && nSize<nReq ){
1766 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1767 }
dan502019c2010-07-28 14:26:17 +00001768 }
1769
danf23da962013-03-23 21:00:41 +00001770
drh73b64e42010-05-30 19:55:15 +00001771 /* Iterate through the contents of the WAL, copying data to the db file. */
1772 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
drh3e8e7ec2010-07-07 13:43:19 +00001773 i64 iOffset;
dan13a3cb82010-06-11 19:04:21 +00001774 assert( walFramePgno(pWal, iFrame)==iDbpage );
dan502019c2010-07-28 14:26:17 +00001775 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue;
drh3e8e7ec2010-07-07 13:43:19 +00001776 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
drh09b5dbc2010-07-07 14:35:58 +00001777 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
drh3e8e7ec2010-07-07 13:43:19 +00001778 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1779 if( rc!=SQLITE_OK ) break;
1780 iOffset = (iDbpage-1)*(i64)szPage;
1781 testcase( IS_BIG_INT(iOffset) );
danf23da962013-03-23 21:00:41 +00001782 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
drh3e8e7ec2010-07-07 13:43:19 +00001783 if( rc!=SQLITE_OK ) break;
drh73b64e42010-05-30 19:55:15 +00001784 }
1785
1786 /* If work was actually accomplished... */
dand764c7d2010-06-04 11:56:22 +00001787 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00001788 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
drh3e8e7ec2010-07-07 13:43:19 +00001789 i64 szDb = pWal->hdr.nPage*(i64)szPage;
1790 testcase( IS_BIG_INT(szDb) );
1791 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
drh73b64e42010-05-30 19:55:15 +00001792 if( rc==SQLITE_OK && sync_flags ){
1793 rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1794 }
1795 }
dand764c7d2010-06-04 11:56:22 +00001796 if( rc==SQLITE_OK ){
1797 pInfo->nBackfill = mxSafeFrame;
1798 }
drh73b64e42010-05-30 19:55:15 +00001799 }
1800
1801 /* Release the reader lock held while backfilling */
1802 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
dana58f26f2010-11-16 18:56:51 +00001803 }
1804
1805 if( rc==SQLITE_BUSY ){
drh34116ea2010-05-31 12:30:52 +00001806 /* Reset the return code so as not to report a checkpoint failure
dana58f26f2010-11-16 18:56:51 +00001807 ** just because there are active readers. */
drh34116ea2010-05-31 12:30:52 +00001808 rc = SQLITE_OK;
dan7c246102010-04-12 19:00:29 +00001809 }
1810
danf26a1542014-12-02 19:04:54 +00001811 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
1812 ** entire wal file has been copied into the database file, then block
1813 ** until all readers have finished using the wal file. This ensures that
1814 ** the next process to write to the database restarts the wal file.
danf2b8dd52010-11-18 19:28:01 +00001815 */
1816 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dancdc1f042010-11-18 12:11:05 +00001817 assert( pWal->writeLock );
danf2b8dd52010-11-18 19:28:01 +00001818 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1819 rc = SQLITE_BUSY;
danf26a1542014-12-02 19:04:54 +00001820 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
dan0fe8c1b2014-12-02 19:35:09 +00001821 u32 salt1;
1822 sqlite3_randomness(4, &salt1);
danf2b8dd52010-11-18 19:28:01 +00001823 assert( mxSafeFrame==pWal->hdr.mxFrame );
1824 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1825 if( rc==SQLITE_OK ){
danf26a1542014-12-02 19:04:54 +00001826 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
drha25165f2014-12-04 04:50:59 +00001827 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
1828 ** SQLITE_CHECKPOINT_RESTART with the addition that it also
1829 ** truncates the log file to zero bytes just prior to a
1830 ** successful return.
danf26a1542014-12-02 19:04:54 +00001831 **
1832 ** In theory, it might be safe to do this without updating the
1833 ** wal-index header in shared memory, as all subsequent reader or
1834 ** writer clients should see that the entire log file has been
1835 ** checkpointed and behave accordingly. This seems unsafe though,
1836 ** as it would leave the system in a state where the contents of
1837 ** the wal-index header do not match the contents of the
1838 ** file-system. To avoid this, update the wal-index header to
1839 ** indicate that the log file contains zero valid frames. */
dan0fe8c1b2014-12-02 19:35:09 +00001840 walRestartHdr(pWal, salt1);
danf26a1542014-12-02 19:04:54 +00001841 rc = sqlite3OsTruncate(pWal->pWalFd, 0);
1842 }
danf2b8dd52010-11-18 19:28:01 +00001843 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1844 }
dancdc1f042010-11-18 12:11:05 +00001845 }
1846 }
1847
dan83f42d12010-06-04 10:37:05 +00001848 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00001849 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00001850 return rc;
1851}
1852
1853/*
danf60b7f32011-12-16 13:24:27 +00001854** If the WAL file is currently larger than nMax bytes in size, truncate
1855** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
drh8dd4afa2011-12-08 19:50:32 +00001856*/
danf60b7f32011-12-16 13:24:27 +00001857static void walLimitSize(Wal *pWal, i64 nMax){
1858 i64 sz;
1859 int rx;
1860 sqlite3BeginBenignMalloc();
1861 rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1862 if( rx==SQLITE_OK && (sz > nMax ) ){
1863 rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1864 }
1865 sqlite3EndBenignMalloc();
1866 if( rx ){
1867 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
drh8dd4afa2011-12-08 19:50:32 +00001868 }
1869}
1870
1871/*
dan7c246102010-04-12 19:00:29 +00001872** Close a connection to a log file.
1873*/
drhc438efd2010-04-26 00:19:45 +00001874int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00001875 Wal *pWal, /* Wal to close */
danc5118782010-04-17 17:34:41 +00001876 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001877 int nBuf,
1878 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00001879){
1880 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00001881 if( pWal ){
dan30c86292010-04-30 16:24:46 +00001882 int isDelete = 0; /* True to unlink wal and wal-index files */
1883
1884 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1885 ** ordinary, rollback-mode locking methods, this guarantees that the
1886 ** connection associated with this log file is the only connection to
1887 ** the database. In this case checkpoint the database and unlink both
1888 ** the wal and wal-index files.
1889 **
1890 ** The EXCLUSIVE lock is not released before returning.
1891 */
drhd9e5c4f2010-05-12 18:01:39 +00001892 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
dan30c86292010-04-30 16:24:46 +00001893 if( rc==SQLITE_OK ){
dan8c408002010-11-01 17:38:24 +00001894 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1895 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1896 }
dancdc1f042010-11-18 12:11:05 +00001897 rc = sqlite3WalCheckpoint(
1898 pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1899 );
drheed42502011-12-16 15:38:52 +00001900 if( rc==SQLITE_OK ){
1901 int bPersist = -1;
drhc02372c2012-01-10 17:59:59 +00001902 sqlite3OsFileControlHint(
dan6f2f19a2012-01-10 16:56:39 +00001903 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
1904 );
drheed42502011-12-16 15:38:52 +00001905 if( bPersist!=1 ){
1906 /* Try to delete the WAL file if the checkpoint completed and
1907 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
1908 ** mode (!bPersist) */
1909 isDelete = 1;
1910 }else if( pWal->mxWalSize>=0 ){
1911 /* Try to truncate the WAL file to zero bytes if the checkpoint
1912 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
1913 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
1914 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
1915 ** to zero bytes as truncating to the journal_size_limit might
1916 ** leave a corrupt WAL file on disk. */
1917 walLimitSize(pWal, 0);
1918 }
dan30c86292010-04-30 16:24:46 +00001919 }
dan30c86292010-04-30 16:24:46 +00001920 }
1921
dan1018e902010-05-05 15:33:05 +00001922 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00001923 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00001924 if( isDelete ){
drh92c45cf2012-01-10 00:24:59 +00001925 sqlite3BeginBenignMalloc();
drhd9e5c4f2010-05-12 18:01:39 +00001926 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
drh92c45cf2012-01-10 00:24:59 +00001927 sqlite3EndBenignMalloc();
dan30c86292010-04-30 16:24:46 +00001928 }
drhc74c3332010-05-31 12:15:19 +00001929 WALTRACE(("WAL%p: closed\n", pWal));
shaneh8a300f82010-07-02 18:15:31 +00001930 sqlite3_free((void *)pWal->apWiData);
drh7ed91f22010-04-29 22:34:07 +00001931 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00001932 }
1933 return rc;
1934}
1935
1936/*
drha2a42012010-05-18 18:01:08 +00001937** Try to read the wal-index header. Return 0 on success and 1 if
1938** there is a problem.
1939**
1940** The wal-index is in shared memory. Another thread or process might
1941** be writing the header at the same time this procedure is trying to
1942** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00001943** by verifying that both copies of the header are the same and also by
1944** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00001945**
1946** If and only if the read is consistent and the header is different from
1947** pWal->hdr, then pWal->hdr is updated to the content of the new header
1948** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00001949**
dan84670502010-05-07 05:46:23 +00001950** If the checksum cannot be verified return non-zero. If the header
1951** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00001952*/
drh7750ab42010-06-26 22:16:02 +00001953static int walIndexTryHdr(Wal *pWal, int *pChanged){
dan4280eb32010-06-12 12:02:35 +00001954 u32 aCksum[2]; /* Checksum on the header content */
1955 WalIndexHdr h1, h2; /* Two copies of the header content */
1956 WalIndexHdr volatile *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00001957
dan4280eb32010-06-12 12:02:35 +00001958 /* The first page of the wal-index must be mapped at this point. */
1959 assert( pWal->nWiData>0 && pWal->apWiData[0] );
drh79e6c782010-04-30 02:13:26 +00001960
drh6cef0cf2010-08-16 16:31:43 +00001961 /* Read the header. This might happen concurrently with a write to the
drh73b64e42010-05-30 19:55:15 +00001962 ** same area of shared memory on a different CPU in a SMP,
1963 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00001964 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00001965 **
1966 ** There are two copies of the header at the beginning of the wal-index.
1967 ** When reading, read [0] first then [1]. Writes are in the reverse order.
1968 ** Memory barriers are used to prevent the compiler or the hardware from
1969 ** reordering the reads and writes.
danb9bf16b2010-04-14 11:23:30 +00001970 */
dan4280eb32010-06-12 12:02:35 +00001971 aHdr = walIndexHdr(pWal);
1972 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
dan8c408002010-11-01 17:38:24 +00001973 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +00001974 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00001975
drhf0b20f82010-05-21 13:16:18 +00001976 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
1977 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00001978 }
drh4b82c382010-05-31 18:24:19 +00001979 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00001980 return 1; /* Malformed header - probably all zeros */
1981 }
danb8fd6c22010-05-24 10:39:36 +00001982 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00001983 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
1984 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00001985 }
1986
drhf0b20f82010-05-21 13:16:18 +00001987 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00001988 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00001989 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh9b78f792010-08-14 21:21:24 +00001990 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1991 testcase( pWal->szPage<=32768 );
1992 testcase( pWal->szPage>=65536 );
danb9bf16b2010-04-14 11:23:30 +00001993 }
dan84670502010-05-07 05:46:23 +00001994
1995 /* The header was successfully read. Return zero. */
1996 return 0;
danb9bf16b2010-04-14 11:23:30 +00001997}
1998
1999/*
drha2a42012010-05-18 18:01:08 +00002000** Read the wal-index header from the wal-index and into pWal->hdr.
drha927e942010-06-24 02:46:48 +00002001** If the wal-header appears to be corrupt, try to reconstruct the
2002** wal-index from the WAL before returning.
drha2a42012010-05-18 18:01:08 +00002003**
2004** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
peter.d.reid60ec9142014-09-06 16:39:46 +00002005** changed by this operation. If pWal->hdr is unchanged, set *pChanged
drha2a42012010-05-18 18:01:08 +00002006** to 0.
2007**
drh7ed91f22010-04-29 22:34:07 +00002008** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00002009** Otherwise an SQLite error code.
2010*/
drh7ed91f22010-04-29 22:34:07 +00002011static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00002012 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00002013 int badHdr; /* True if a header read failed */
drha927e942010-06-24 02:46:48 +00002014 volatile u32 *page0; /* Chunk of wal-index containing header */
danb9bf16b2010-04-14 11:23:30 +00002015
dan4280eb32010-06-12 12:02:35 +00002016 /* Ensure that page 0 of the wal-index (the page that contains the
2017 ** wal-index header) is mapped. Return early if an error occurs here.
2018 */
dana8614692010-05-06 14:42:34 +00002019 assert( pChanged );
dan4280eb32010-06-12 12:02:35 +00002020 rc = walIndexPage(pWal, 0, &page0);
danc7991bd2010-05-05 19:04:59 +00002021 if( rc!=SQLITE_OK ){
2022 return rc;
dan4280eb32010-06-12 12:02:35 +00002023 };
2024 assert( page0 || pWal->writeLock==0 );
drh7ed91f22010-04-29 22:34:07 +00002025
dan4280eb32010-06-12 12:02:35 +00002026 /* If the first page of the wal-index has been mapped, try to read the
2027 ** wal-index header immediately, without holding any lock. This usually
2028 ** works, but may fail if the wal-index header is corrupt or currently
drha927e942010-06-24 02:46:48 +00002029 ** being modified by another thread or process.
danb9bf16b2010-04-14 11:23:30 +00002030 */
dan4280eb32010-06-12 12:02:35 +00002031 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
drhbab7b912010-05-26 17:31:58 +00002032
drh73b64e42010-05-30 19:55:15 +00002033 /* If the first attempt failed, it might have been due to a race
drh66dfec8b2011-06-01 20:01:49 +00002034 ** with a writer. So get a WRITE lock and try again.
drh73b64e42010-05-30 19:55:15 +00002035 */
dand54ff602010-05-31 11:16:30 +00002036 assert( badHdr==0 || pWal->writeLock==0 );
dan4edc6bf2011-05-10 17:31:29 +00002037 if( badHdr ){
drh66dfec8b2011-06-01 20:01:49 +00002038 if( pWal->readOnly & WAL_SHM_RDONLY ){
dan4edc6bf2011-05-10 17:31:29 +00002039 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2040 walUnlockShared(pWal, WAL_WRITE_LOCK);
2041 rc = SQLITE_READONLY_RECOVERY;
drhbab7b912010-05-26 17:31:58 +00002042 }
dan4edc6bf2011-05-10 17:31:29 +00002043 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
2044 pWal->writeLock = 1;
2045 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2046 badHdr = walIndexTryHdr(pWal, pChanged);
2047 if( badHdr ){
2048 /* If the wal-index header is still malformed even while holding
2049 ** a WRITE lock, it can only mean that the header is corrupted and
2050 ** needs to be reconstructed. So run recovery to do exactly that.
2051 */
2052 rc = walIndexRecover(pWal);
2053 *pChanged = 1;
2054 }
2055 }
2056 pWal->writeLock = 0;
2057 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhbab7b912010-05-26 17:31:58 +00002058 }
danb9bf16b2010-04-14 11:23:30 +00002059 }
2060
drha927e942010-06-24 02:46:48 +00002061 /* If the header is read successfully, check the version number to make
2062 ** sure the wal-index was not constructed with some future format that
2063 ** this version of SQLite cannot understand.
2064 */
2065 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2066 rc = SQLITE_CANTOPEN_BKPT;
2067 }
2068
danb9bf16b2010-04-14 11:23:30 +00002069 return rc;
2070}
2071
2072/*
drh73b64e42010-05-30 19:55:15 +00002073** This is the value that walTryBeginRead returns when it needs to
2074** be retried.
dan7c246102010-04-12 19:00:29 +00002075*/
drh73b64e42010-05-30 19:55:15 +00002076#define WAL_RETRY (-1)
dan64d039e2010-04-13 19:27:31 +00002077
drh73b64e42010-05-30 19:55:15 +00002078/*
2079** Attempt to start a read transaction. This might fail due to a race or
2080** other transient condition. When that happens, it returns WAL_RETRY to
2081** indicate to the caller that it is safe to retry immediately.
2082**
drha927e942010-06-24 02:46:48 +00002083** On success return SQLITE_OK. On a permanent failure (such an
drh73b64e42010-05-30 19:55:15 +00002084** I/O error or an SQLITE_BUSY because another process is running
2085** recovery) return a positive error code.
2086**
drha927e942010-06-24 02:46:48 +00002087** The useWal parameter is true to force the use of the WAL and disable
2088** the case where the WAL is bypassed because it has been completely
2089** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
2090** to make a copy of the wal-index header into pWal->hdr. If the
2091** wal-index header has changed, *pChanged is set to 1 (as an indication
2092** to the caller that the local paget cache is obsolete and needs to be
2093** flushed.) When useWal==1, the wal-index header is assumed to already
2094** be loaded and the pChanged parameter is unused.
2095**
2096** The caller must set the cnt parameter to the number of prior calls to
2097** this routine during the current read attempt that returned WAL_RETRY.
2098** This routine will start taking more aggressive measures to clear the
2099** race conditions after multiple WAL_RETRY returns, and after an excessive
2100** number of errors will ultimately return SQLITE_PROTOCOL. The
2101** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2102** and is not honoring the locking protocol. There is a vanishingly small
2103** chance that SQLITE_PROTOCOL could be returned because of a run of really
2104** bad luck when there is lots of contention for the wal-index, but that
2105** possibility is so small that it can be safely neglected, we believe.
2106**
drh73b64e42010-05-30 19:55:15 +00002107** On success, this routine obtains a read lock on
2108** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
2109** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
2110** that means the Wal does not hold any read lock. The reader must not
2111** access any database page that is modified by a WAL frame up to and
2112** including frame number aReadMark[pWal->readLock]. The reader will
2113** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2114** Or if pWal->readLock==0, then the reader will ignore the WAL
2115** completely and get all content directly from the database file.
drha927e942010-06-24 02:46:48 +00002116** If the useWal parameter is 1 then the WAL will never be ignored and
2117** this routine will always set pWal->readLock>0 on success.
drh73b64e42010-05-30 19:55:15 +00002118** When the read transaction is completed, the caller must release the
2119** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2120**
2121** This routine uses the nBackfill and aReadMark[] fields of the header
2122** to select a particular WAL_READ_LOCK() that strives to let the
2123** checkpoint process do as much work as possible. This routine might
2124** update values of the aReadMark[] array in the header, but if it does
2125** so it takes care to hold an exclusive lock on the corresponding
2126** WAL_READ_LOCK() while changing values.
2127*/
drhaab4c022010-06-02 14:45:51 +00002128static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00002129 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
2130 u32 mxReadMark; /* Largest aReadMark[] value */
2131 int mxI; /* Index of largest aReadMark[] value */
2132 int i; /* Loop counter */
dan13a3cb82010-06-11 19:04:21 +00002133 int rc = SQLITE_OK; /* Return code */
dan64d039e2010-04-13 19:27:31 +00002134
drh61e4ace2010-05-31 20:28:37 +00002135 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00002136
drh658d76c2011-02-19 15:22:14 +00002137 /* Take steps to avoid spinning forever if there is a protocol error.
2138 **
2139 ** Circumstances that cause a RETRY should only last for the briefest
2140 ** instances of time. No I/O or other system calls are done while the
2141 ** locks are held, so the locks should not be held for very long. But
2142 ** if we are unlucky, another process that is holding a lock might get
2143 ** paged out or take a page-fault that is time-consuming to resolve,
2144 ** during the few nanoseconds that it is holding the lock. In that case,
2145 ** it might take longer than normal for the lock to free.
2146 **
2147 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2148 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2149 ** is more of a scheduler yield than an actual delay. But on the 10th
2150 ** an subsequent retries, the delays start becoming longer and longer,
drh5b6e3b92014-06-12 17:10:18 +00002151 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2152 ** The total delay time before giving up is less than 10 seconds.
drh658d76c2011-02-19 15:22:14 +00002153 */
drhaab4c022010-06-02 14:45:51 +00002154 if( cnt>5 ){
drh658d76c2011-02-19 15:22:14 +00002155 int nDelay = 1; /* Pause time in microseconds */
drh03c69672011-02-19 23:18:12 +00002156 if( cnt>100 ){
2157 VVA_ONLY( pWal->lockError = 1; )
2158 return SQLITE_PROTOCOL;
2159 }
drh5b6e3b92014-06-12 17:10:18 +00002160 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
drh658d76c2011-02-19 15:22:14 +00002161 sqlite3OsSleep(pWal->pVfs, nDelay);
drhaab4c022010-06-02 14:45:51 +00002162 }
2163
drh73b64e42010-05-30 19:55:15 +00002164 if( !useWal ){
drh7ed91f22010-04-29 22:34:07 +00002165 rc = walIndexReadHdr(pWal, pChanged);
drh73b64e42010-05-30 19:55:15 +00002166 if( rc==SQLITE_BUSY ){
2167 /* If there is not a recovery running in another thread or process
2168 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2169 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2170 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2171 ** would be technically correct. But the race is benign since with
2172 ** WAL_RETRY this routine will be called again and will probably be
2173 ** right on the second iteration.
2174 */
dan7d4514a2010-07-15 17:54:14 +00002175 if( pWal->apWiData[0]==0 ){
2176 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2177 ** We assume this is a transient condition, so return WAL_RETRY. The
2178 ** xShmMap() implementation used by the default unix and win32 VFS
2179 ** modules may return SQLITE_BUSY due to a race condition in the
2180 ** code that determines whether or not the shared-memory region
2181 ** must be zeroed before the requested page is returned.
2182 */
2183 rc = WAL_RETRY;
2184 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
drh73b64e42010-05-30 19:55:15 +00002185 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2186 rc = WAL_RETRY;
2187 }else if( rc==SQLITE_BUSY ){
2188 rc = SQLITE_BUSY_RECOVERY;
2189 }
2190 }
drha927e942010-06-24 02:46:48 +00002191 if( rc!=SQLITE_OK ){
2192 return rc;
2193 }
drh73b64e42010-05-30 19:55:15 +00002194 }
2195
dan13a3cb82010-06-11 19:04:21 +00002196 pInfo = walCkptInfo(pWal);
drh73b64e42010-05-30 19:55:15 +00002197 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
2198 /* The WAL has been completely backfilled (or it is empty).
2199 ** and can be safely ignored.
2200 */
2201 rc = walLockShared(pWal, WAL_READ_LOCK(0));
dan8c408002010-11-01 17:38:24 +00002202 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002203 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00002204 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00002205 /* It is not safe to allow the reader to continue here if frames
2206 ** may have been appended to the log before READ_LOCK(0) was obtained.
2207 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2208 ** which implies that the database file contains a trustworthy
peter.d.reid60ec9142014-09-06 16:39:46 +00002209 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
dan493cc592010-06-05 18:12:23 +00002210 ** happening, this is usually correct.
2211 **
2212 ** However, if frames have been appended to the log (or if the log
2213 ** is wrapped and written for that matter) before the READ_LOCK(0)
2214 ** is obtained, that is not necessarily true. A checkpointer may
2215 ** have started to backfill the appended frames but crashed before
2216 ** it finished. Leaving a corrupt image in the database file.
2217 */
drh73b64e42010-05-30 19:55:15 +00002218 walUnlockShared(pWal, WAL_READ_LOCK(0));
2219 return WAL_RETRY;
2220 }
2221 pWal->readLock = 0;
2222 return SQLITE_OK;
2223 }else if( rc!=SQLITE_BUSY ){
2224 return rc;
dan64d039e2010-04-13 19:27:31 +00002225 }
dan7c246102010-04-12 19:00:29 +00002226 }
danba515902010-04-30 09:32:06 +00002227
drh73b64e42010-05-30 19:55:15 +00002228 /* If we get this far, it means that the reader will want to use
2229 ** the WAL to get at content from recent commits. The job now is
2230 ** to select one of the aReadMark[] entries that is closest to
2231 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2232 */
2233 mxReadMark = 0;
2234 mxI = 0;
2235 for(i=1; i<WAL_NREADER; i++){
2236 u32 thisMark = pInfo->aReadMark[i];
drhdb7f6472010-06-09 14:45:12 +00002237 if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
2238 assert( thisMark!=READMARK_NOT_USED );
drh73b64e42010-05-30 19:55:15 +00002239 mxReadMark = thisMark;
2240 mxI = i;
2241 }
2242 }
drh658d76c2011-02-19 15:22:14 +00002243 /* There was once an "if" here. The extra "{" is to preserve indentation. */
2244 {
drh66dfec8b2011-06-01 20:01:49 +00002245 if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2246 && (mxReadMark<pWal->hdr.mxFrame || mxI==0)
2247 ){
dand54ff602010-05-31 11:16:30 +00002248 for(i=1; i<WAL_NREADER; i++){
drh73b64e42010-05-30 19:55:15 +00002249 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2250 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00002251 mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
drh73b64e42010-05-30 19:55:15 +00002252 mxI = i;
2253 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2254 break;
drh38933f22010-06-02 15:43:18 +00002255 }else if( rc!=SQLITE_BUSY ){
2256 return rc;
drh73b64e42010-05-30 19:55:15 +00002257 }
2258 }
2259 }
drh658d76c2011-02-19 15:22:14 +00002260 if( mxI==0 ){
drh5bf39342011-06-02 17:24:49 +00002261 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
dan4edc6bf2011-05-10 17:31:29 +00002262 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
drh658d76c2011-02-19 15:22:14 +00002263 }
drh73b64e42010-05-30 19:55:15 +00002264
2265 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2266 if( rc ){
2267 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2268 }
daneb8cb3a2010-06-05 18:34:26 +00002269 /* Now that the read-lock has been obtained, check that neither the
2270 ** value in the aReadMark[] array or the contents of the wal-index
2271 ** header have changed.
2272 **
2273 ** It is necessary to check that the wal-index header did not change
2274 ** between the time it was read and when the shared-lock was obtained
2275 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2276 ** that the log file may have been wrapped by a writer, or that frames
2277 ** that occur later in the log than pWal->hdr.mxFrame may have been
2278 ** copied into the database by a checkpointer. If either of these things
2279 ** happened, then reading the database with the current value of
2280 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2281 ** instead.
2282 **
dan640aac42010-06-05 19:18:59 +00002283 ** This does not guarantee that the copy of the wal-index header is up to
2284 ** date before proceeding. That would not be possible without somehow
2285 ** blocking writers. It only guarantees that a dangerous checkpoint or
daneb8cb3a2010-06-05 18:34:26 +00002286 ** log-wrap (either of which would require an exclusive lock on
2287 ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
2288 */
dan8c408002010-11-01 17:38:24 +00002289 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002290 if( pInfo->aReadMark[mxI]!=mxReadMark
dan4280eb32010-06-12 12:02:35 +00002291 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
drh73b64e42010-05-30 19:55:15 +00002292 ){
2293 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2294 return WAL_RETRY;
2295 }else{
drhdb7f6472010-06-09 14:45:12 +00002296 assert( mxReadMark<=pWal->hdr.mxFrame );
shaneh5eba1f62010-07-02 17:05:03 +00002297 pWal->readLock = (i16)mxI;
drh73b64e42010-05-30 19:55:15 +00002298 }
2299 }
2300 return rc;
2301}
2302
2303/*
2304** Begin a read transaction on the database.
2305**
2306** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2307** it takes a snapshot of the state of the WAL and wal-index for the current
2308** instant in time. The current thread will continue to use this snapshot.
2309** Other threads might append new content to the WAL and wal-index but
2310** that extra content is ignored by the current thread.
2311**
2312** If the database contents have changes since the previous read
2313** transaction, then *pChanged is set to 1 before returning. The
2314** Pager layer will use this to know that is cache is stale and
2315** needs to be flushed.
2316*/
drh66dfec8b2011-06-01 20:01:49 +00002317int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
drh73b64e42010-05-30 19:55:15 +00002318 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00002319 int cnt = 0; /* Number of TryBeginRead attempts */
drh73b64e42010-05-30 19:55:15 +00002320
2321 do{
drhaab4c022010-06-02 14:45:51 +00002322 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00002323 }while( rc==WAL_RETRY );
drhab1cc742011-02-19 16:51:45 +00002324 testcase( (rc&0xff)==SQLITE_BUSY );
2325 testcase( (rc&0xff)==SQLITE_IOERR );
2326 testcase( rc==SQLITE_PROTOCOL );
2327 testcase( rc==SQLITE_OK );
dan7c246102010-04-12 19:00:29 +00002328 return rc;
2329}
2330
2331/*
drh73b64e42010-05-30 19:55:15 +00002332** Finish with a read transaction. All this does is release the
2333** read-lock.
dan7c246102010-04-12 19:00:29 +00002334*/
drh73b64e42010-05-30 19:55:15 +00002335void sqlite3WalEndReadTransaction(Wal *pWal){
dan73d66fd2010-08-07 16:17:48 +00002336 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00002337 if( pWal->readLock>=0 ){
2338 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2339 pWal->readLock = -1;
2340 }
dan7c246102010-04-12 19:00:29 +00002341}
2342
dan5e0ce872010-04-28 17:48:44 +00002343/*
dan99bd1092013-03-22 18:20:14 +00002344** Search the wal file for page pgno. If found, set *piRead to the frame that
2345** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2346** to zero.
drh73b64e42010-05-30 19:55:15 +00002347**
dan99bd1092013-03-22 18:20:14 +00002348** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2349** error does occur, the final value of *piRead is undefined.
dan7c246102010-04-12 19:00:29 +00002350*/
dan99bd1092013-03-22 18:20:14 +00002351int sqlite3WalFindFrame(
danbb23aff2010-05-10 14:46:09 +00002352 Wal *pWal, /* WAL handle */
2353 Pgno pgno, /* Database page number to read data for */
dan99bd1092013-03-22 18:20:14 +00002354 u32 *piRead /* OUT: Frame number (or zero) */
danb6e099a2010-05-04 14:47:39 +00002355){
danbb23aff2010-05-10 14:46:09 +00002356 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00002357 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00002358 int iHash; /* Used to loop through N hash tables */
dan7c246102010-04-12 19:00:29 +00002359
drhaab4c022010-06-02 14:45:51 +00002360 /* This routine is only be called from within a read transaction. */
2361 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00002362
danbb23aff2010-05-10 14:46:09 +00002363 /* If the "last page" field of the wal-index header snapshot is 0, then
2364 ** no data will be read from the wal under any circumstances. Return early
drha927e942010-06-24 02:46:48 +00002365 ** in this case as an optimization. Likewise, if pWal->readLock==0,
2366 ** then the WAL is ignored by the reader so return early, as if the
2367 ** WAL were empty.
danbb23aff2010-05-10 14:46:09 +00002368 */
drh73b64e42010-05-30 19:55:15 +00002369 if( iLast==0 || pWal->readLock==0 ){
dan99bd1092013-03-22 18:20:14 +00002370 *piRead = 0;
danbb23aff2010-05-10 14:46:09 +00002371 return SQLITE_OK;
2372 }
2373
danbb23aff2010-05-10 14:46:09 +00002374 /* Search the hash table or tables for an entry matching page number
2375 ** pgno. Each iteration of the following for() loop searches one
2376 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2377 **
drha927e942010-06-24 02:46:48 +00002378 ** This code might run concurrently to the code in walIndexAppend()
danbb23aff2010-05-10 14:46:09 +00002379 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00002380 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00002381 ** slot (aHash[iKey]) may have been added before or after the
2382 ** current read transaction was opened. Values added after the
2383 ** read transaction was opened may have been written incorrectly -
2384 ** i.e. these slots may contain garbage data. However, we assume
2385 ** that any slots written before the current read transaction was
2386 ** opened remain unmodified.
2387 **
2388 ** For the reasons above, the if(...) condition featured in the inner
2389 ** loop of the following block is more stringent that would be required
2390 ** if we had exclusive access to the hash-table:
2391 **
2392 ** (aPgno[iFrame]==pgno):
2393 ** This condition filters out normal hash-table collisions.
2394 **
2395 ** (iFrame<=iLast):
2396 ** This condition filters out entries that were added to the hash
2397 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00002398 */
dan13a3cb82010-06-11 19:04:21 +00002399 for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
dan067f3162010-06-14 10:30:12 +00002400 volatile ht_slot *aHash; /* Pointer to hash table */
2401 volatile u32 *aPgno; /* Pointer to array of page numbers */
danbb23aff2010-05-10 14:46:09 +00002402 u32 iZero; /* Frame number corresponding to aPgno[0] */
2403 int iKey; /* Hash slot index */
drh519426a2010-07-09 03:19:07 +00002404 int nCollide; /* Number of hash collisions remaining */
2405 int rc; /* Error code */
danbb23aff2010-05-10 14:46:09 +00002406
dan4280eb32010-06-12 12:02:35 +00002407 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2408 if( rc!=SQLITE_OK ){
2409 return rc;
2410 }
drh519426a2010-07-09 03:19:07 +00002411 nCollide = HASHTABLE_NSLOT;
dan6f150142010-05-21 15:31:56 +00002412 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
danbb23aff2010-05-10 14:46:09 +00002413 u32 iFrame = aHash[iKey] + iZero;
dand60bf112010-06-14 11:18:50 +00002414 if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
drh622a53d2014-12-29 11:50:39 +00002415 assert( iFrame>iRead || CORRUPT_DB );
danbb23aff2010-05-10 14:46:09 +00002416 iRead = iFrame;
2417 }
drh519426a2010-07-09 03:19:07 +00002418 if( (nCollide--)==0 ){
2419 return SQLITE_CORRUPT_BKPT;
2420 }
dan7c246102010-04-12 19:00:29 +00002421 }
2422 }
dan7c246102010-04-12 19:00:29 +00002423
danbb23aff2010-05-10 14:46:09 +00002424#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2425 /* If expensive assert() statements are available, do a linear search
2426 ** of the wal-index file content. Make sure the results agree with the
2427 ** result obtained using the hash indexes above. */
2428 {
2429 u32 iRead2 = 0;
2430 u32 iTest;
2431 for(iTest=iLast; iTest>0; iTest--){
dan13a3cb82010-06-11 19:04:21 +00002432 if( walFramePgno(pWal, iTest)==pgno ){
danbb23aff2010-05-10 14:46:09 +00002433 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00002434 break;
2435 }
dan7c246102010-04-12 19:00:29 +00002436 }
danbb23aff2010-05-10 14:46:09 +00002437 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00002438 }
danbb23aff2010-05-10 14:46:09 +00002439#endif
dancd11fb22010-04-26 10:40:52 +00002440
dan99bd1092013-03-22 18:20:14 +00002441 *piRead = iRead;
dan7c246102010-04-12 19:00:29 +00002442 return SQLITE_OK;
2443}
2444
dan99bd1092013-03-22 18:20:14 +00002445/*
2446** Read the contents of frame iRead from the wal file into buffer pOut
2447** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2448** error code otherwise.
2449*/
2450int sqlite3WalReadFrame(
2451 Wal *pWal, /* WAL handle */
2452 u32 iRead, /* Frame to read */
2453 int nOut, /* Size of buffer pOut in bytes */
2454 u8 *pOut /* Buffer to write page data to */
2455){
2456 int sz;
2457 i64 iOffset;
2458 sz = pWal->hdr.szPage;
2459 sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2460 testcase( sz<=32768 );
2461 testcase( sz>=65536 );
2462 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2463 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2464 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2465}
dan7c246102010-04-12 19:00:29 +00002466
2467/*
dan763afe62010-08-03 06:42:39 +00002468** Return the size of the database in pages (or zero, if unknown).
dan7c246102010-04-12 19:00:29 +00002469*/
dan763afe62010-08-03 06:42:39 +00002470Pgno sqlite3WalDbsize(Wal *pWal){
drh7e9e70b2010-08-16 14:17:59 +00002471 if( pWal && ALWAYS(pWal->readLock>=0) ){
dan763afe62010-08-03 06:42:39 +00002472 return pWal->hdr.nPage;
2473 }
2474 return 0;
dan7c246102010-04-12 19:00:29 +00002475}
2476
dan30c86292010-04-30 16:24:46 +00002477
drh73b64e42010-05-30 19:55:15 +00002478/*
2479** This function starts a write transaction on the WAL.
2480**
2481** A read transaction must have already been started by a prior call
2482** to sqlite3WalBeginReadTransaction().
2483**
2484** If another thread or process has written into the database since
2485** the read transaction was started, then it is not possible for this
2486** thread to write as doing so would cause a fork. So this routine
2487** returns SQLITE_BUSY in that case and no write transaction is started.
2488**
2489** There can only be a single writer active at a time.
2490*/
2491int sqlite3WalBeginWriteTransaction(Wal *pWal){
2492 int rc;
drh73b64e42010-05-30 19:55:15 +00002493
2494 /* Cannot start a write transaction without first holding a read
2495 ** transaction. */
2496 assert( pWal->readLock>=0 );
2497
dan1e5de5a2010-07-15 18:20:53 +00002498 if( pWal->readOnly ){
2499 return SQLITE_READONLY;
2500 }
2501
drh73b64e42010-05-30 19:55:15 +00002502 /* Only one writer allowed at a time. Get the write lock. Return
2503 ** SQLITE_BUSY if unable.
2504 */
2505 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2506 if( rc ){
2507 return rc;
2508 }
drhc99597c2010-05-31 01:41:15 +00002509 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00002510
2511 /* If another connection has written to the database file since the
2512 ** time the read transaction on this connection was started, then
2513 ** the write is disallowed.
2514 */
dan4280eb32010-06-12 12:02:35 +00002515 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
drh73b64e42010-05-30 19:55:15 +00002516 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00002517 pWal->writeLock = 0;
danf73819a2013-06-27 11:46:27 +00002518 rc = SQLITE_BUSY_SNAPSHOT;
drh73b64e42010-05-30 19:55:15 +00002519 }
2520
drh7ed91f22010-04-29 22:34:07 +00002521 return rc;
dan7c246102010-04-12 19:00:29 +00002522}
2523
dan74d6cd82010-04-24 18:44:05 +00002524/*
drh73b64e42010-05-30 19:55:15 +00002525** End a write transaction. The commit has already been done. This
2526** routine merely releases the lock.
2527*/
2528int sqlite3WalEndWriteTransaction(Wal *pWal){
danda9fe0c2010-07-13 18:44:03 +00002529 if( pWal->writeLock ){
2530 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2531 pWal->writeLock = 0;
danf60b7f32011-12-16 13:24:27 +00002532 pWal->truncateOnCommit = 0;
danda9fe0c2010-07-13 18:44:03 +00002533 }
drh73b64e42010-05-30 19:55:15 +00002534 return SQLITE_OK;
2535}
2536
2537/*
dan74d6cd82010-04-24 18:44:05 +00002538** If any data has been written (but not committed) to the log file, this
2539** function moves the write-pointer back to the start of the transaction.
2540**
2541** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00002542** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00002543** other than SQLITE_OK, it is not invoked again and the error code is
2544** returned to the caller.
2545**
2546** Otherwise, if the callback function does not return an error, this
2547** function returns SQLITE_OK.
2548*/
drh7ed91f22010-04-29 22:34:07 +00002549int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00002550 int rc = SQLITE_OK;
drh7e9e70b2010-08-16 14:17:59 +00002551 if( ALWAYS(pWal->writeLock) ){
drh027a1282010-05-19 01:53:53 +00002552 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00002553 Pgno iFrame;
2554
dan5d656852010-06-14 07:53:26 +00002555 /* Restore the clients cache of the wal-index header to the state it
2556 ** was in before the client began writing to the database.
2557 */
dan067f3162010-06-14 10:30:12 +00002558 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
dan5d656852010-06-14 07:53:26 +00002559
2560 for(iFrame=pWal->hdr.mxFrame+1;
drh664f85d2014-11-19 14:05:41 +00002561 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
dan5d656852010-06-14 07:53:26 +00002562 iFrame++
2563 ){
2564 /* This call cannot fail. Unless the page for which the page number
2565 ** is passed as the second argument is (a) in the cache and
2566 ** (b) has an outstanding reference, then xUndo is either a no-op
2567 ** (if (a) is false) or simply expels the page from the cache (if (b)
2568 ** is false).
2569 **
2570 ** If the upper layer is doing a rollback, it is guaranteed that there
2571 ** are no outstanding references to any page other than page 1. And
2572 ** page 1 is never written to the log until the transaction is
2573 ** committed. As a result, the call to xUndo may not fail.
2574 */
dan5d656852010-06-14 07:53:26 +00002575 assert( walFramePgno(pWal, iFrame)!=1 );
2576 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
dan6f150142010-05-21 15:31:56 +00002577 }
dan7eb05752012-10-15 11:28:24 +00002578 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
dan74d6cd82010-04-24 18:44:05 +00002579 }
2580 return rc;
2581}
2582
dan71d89912010-05-24 13:57:42 +00002583/*
2584** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2585** values. This function populates the array with values required to
2586** "rollback" the write position of the WAL handle back to the current
2587** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00002588*/
dan71d89912010-05-24 13:57:42 +00002589void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00002590 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00002591 aWalData[0] = pWal->hdr.mxFrame;
2592 aWalData[1] = pWal->hdr.aFrameCksum[0];
2593 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00002594 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00002595}
2596
dan71d89912010-05-24 13:57:42 +00002597/*
2598** Move the write position of the WAL back to the point identified by
2599** the values in the aWalData[] array. aWalData must point to an array
2600** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2601** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00002602*/
dan71d89912010-05-24 13:57:42 +00002603int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00002604 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00002605
dan6e6bd562010-06-02 18:59:03 +00002606 assert( pWal->writeLock );
2607 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2608
2609 if( aWalData[3]!=pWal->nCkpt ){
2610 /* This savepoint was opened immediately after the write-transaction
2611 ** was started. Right after that, the writer decided to wrap around
2612 ** to the start of the log. Update the savepoint values to match.
2613 */
2614 aWalData[0] = 0;
2615 aWalData[3] = pWal->nCkpt;
2616 }
2617
dan71d89912010-05-24 13:57:42 +00002618 if( aWalData[0]<pWal->hdr.mxFrame ){
dan71d89912010-05-24 13:57:42 +00002619 pWal->hdr.mxFrame = aWalData[0];
2620 pWal->hdr.aFrameCksum[0] = aWalData[1];
2621 pWal->hdr.aFrameCksum[1] = aWalData[2];
dan5d656852010-06-14 07:53:26 +00002622 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00002623 }
dan6e6bd562010-06-02 18:59:03 +00002624
dan4cd78b42010-04-26 16:57:10 +00002625 return rc;
2626}
2627
dan9971e712010-06-01 15:44:57 +00002628/*
2629** This function is called just before writing a set of frames to the log
2630** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2631** to the current log file, it is possible to overwrite the start of the
2632** existing log file with the new frames (i.e. "reset" the log). If so,
2633** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2634** unchanged.
2635**
2636** SQLITE_OK is returned if no error is encountered (regardless of whether
2637** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
drh4533cd02010-10-05 15:41:05 +00002638** if an error occurs.
dan9971e712010-06-01 15:44:57 +00002639*/
2640static int walRestartLog(Wal *pWal){
2641 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00002642 int cnt;
2643
dan13a3cb82010-06-11 19:04:21 +00002644 if( pWal->readLock==0 ){
dan9971e712010-06-01 15:44:57 +00002645 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2646 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2647 if( pInfo->nBackfill>0 ){
drh658d76c2011-02-19 15:22:14 +00002648 u32 salt1;
2649 sqlite3_randomness(4, &salt1);
dan9971e712010-06-01 15:44:57 +00002650 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2651 if( rc==SQLITE_OK ){
2652 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2653 ** readers are currently using the WAL), then the transactions
2654 ** frames will overwrite the start of the existing log. Update the
2655 ** wal-index header to reflect this.
2656 **
2657 ** In theory it would be Ok to update the cache of the header only
2658 ** at this point. But updating the actual wal-index header is also
2659 ** safe and means there is no special case for sqlite3WalUndo()
danf26a1542014-12-02 19:04:54 +00002660 ** to handle if this transaction is rolled back. */
dan0fe8c1b2014-12-02 19:35:09 +00002661 walRestartHdr(pWal, salt1);
dan9971e712010-06-01 15:44:57 +00002662 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
drh4533cd02010-10-05 15:41:05 +00002663 }else if( rc!=SQLITE_BUSY ){
2664 return rc;
dan9971e712010-06-01 15:44:57 +00002665 }
2666 }
2667 walUnlockShared(pWal, WAL_READ_LOCK(0));
2668 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00002669 cnt = 0;
dan9971e712010-06-01 15:44:57 +00002670 do{
2671 int notUsed;
drhaab4c022010-06-02 14:45:51 +00002672 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00002673 }while( rc==WAL_RETRY );
drhc90e0812011-02-19 17:02:44 +00002674 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
drhab1cc742011-02-19 16:51:45 +00002675 testcase( (rc&0xff)==SQLITE_IOERR );
2676 testcase( rc==SQLITE_PROTOCOL );
2677 testcase( rc==SQLITE_OK );
dan9971e712010-06-01 15:44:57 +00002678 }
2679 return rc;
2680}
2681
drh88f975a2011-12-16 19:34:36 +00002682/*
drhd992b152011-12-20 20:13:25 +00002683** Information about the current state of the WAL file and where
2684** the next fsync should occur - passed from sqlite3WalFrames() into
2685** walWriteToLog().
2686*/
2687typedef struct WalWriter {
2688 Wal *pWal; /* The complete WAL information */
2689 sqlite3_file *pFd; /* The WAL file to which we write */
2690 sqlite3_int64 iSyncPoint; /* Fsync at this offset */
2691 int syncFlags; /* Flags for the fsync */
2692 int szPage; /* Size of one page */
2693} WalWriter;
2694
2695/*
drh88f975a2011-12-16 19:34:36 +00002696** Write iAmt bytes of content into the WAL file beginning at iOffset.
drhd992b152011-12-20 20:13:25 +00002697** Do a sync when crossing the p->iSyncPoint boundary.
drh88f975a2011-12-16 19:34:36 +00002698**
drhd992b152011-12-20 20:13:25 +00002699** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
2700** first write the part before iSyncPoint, then sync, then write the
2701** rest.
drh88f975a2011-12-16 19:34:36 +00002702*/
2703static int walWriteToLog(
drhd992b152011-12-20 20:13:25 +00002704 WalWriter *p, /* WAL to write to */
drh88f975a2011-12-16 19:34:36 +00002705 void *pContent, /* Content to be written */
2706 int iAmt, /* Number of bytes to write */
2707 sqlite3_int64 iOffset /* Start writing at this offset */
2708){
2709 int rc;
drhd992b152011-12-20 20:13:25 +00002710 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
2711 int iFirstAmt = (int)(p->iSyncPoint - iOffset);
2712 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
drh88f975a2011-12-16 19:34:36 +00002713 if( rc ) return rc;
drhd992b152011-12-20 20:13:25 +00002714 iOffset += iFirstAmt;
2715 iAmt -= iFirstAmt;
drh88f975a2011-12-16 19:34:36 +00002716 pContent = (void*)(iFirstAmt + (char*)pContent);
drhd992b152011-12-20 20:13:25 +00002717 assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) );
dane5b6ea72014-02-13 18:46:59 +00002718 rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK);
drhcc8d10a2011-12-23 02:07:10 +00002719 if( iAmt==0 || rc ) return rc;
drh88f975a2011-12-16 19:34:36 +00002720 }
drhd992b152011-12-20 20:13:25 +00002721 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
2722 return rc;
2723}
2724
2725/*
2726** Write out a single frame of the WAL
2727*/
2728static int walWriteOneFrame(
2729 WalWriter *p, /* Where to write the frame */
2730 PgHdr *pPage, /* The page of the frame to be written */
2731 int nTruncate, /* The commit flag. Usually 0. >0 for commit */
2732 sqlite3_int64 iOffset /* Byte offset at which to write */
2733){
2734 int rc; /* Result code from subfunctions */
2735 void *pData; /* Data actually written */
2736 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
2737#if defined(SQLITE_HAS_CODEC)
2738 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM;
2739#else
2740 pData = pPage->pData;
2741#endif
2742 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
2743 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
2744 if( rc ) return rc;
2745 /* Write the page data */
2746 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
drh88f975a2011-12-16 19:34:36 +00002747 return rc;
2748}
2749
dan7c246102010-04-12 19:00:29 +00002750/*
dan4cd78b42010-04-26 16:57:10 +00002751** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00002752** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00002753*/
drhc438efd2010-04-26 00:19:45 +00002754int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00002755 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00002756 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00002757 PgHdr *pList, /* List of dirty pages to write */
2758 Pgno nTruncate, /* Database size after this commit */
2759 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00002760 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00002761){
dan7c246102010-04-12 19:00:29 +00002762 int rc; /* Used to catch return codes */
2763 u32 iFrame; /* Next frame address */
dan7c246102010-04-12 19:00:29 +00002764 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00002765 PgHdr *pLast = 0; /* Last frame in list */
drhd992b152011-12-20 20:13:25 +00002766 int nExtra = 0; /* Number of extra copies of last page */
2767 int szFrame; /* The size of a single frame */
2768 i64 iOffset; /* Next byte to write in WAL file */
2769 WalWriter w; /* The writer */
dan7c246102010-04-12 19:00:29 +00002770
dan7c246102010-04-12 19:00:29 +00002771 assert( pList );
drh73b64e42010-05-30 19:55:15 +00002772 assert( pWal->writeLock );
dan7c246102010-04-12 19:00:29 +00002773
drh41209942011-12-20 13:13:09 +00002774 /* If this frame set completes a transaction, then nTruncate>0. If
2775 ** nTruncate==0 then this frame set does not complete the transaction. */
2776 assert( (isCommit!=0)==(nTruncate!=0) );
2777
drhc74c3332010-05-31 12:15:19 +00002778#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2779 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2780 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2781 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2782 }
2783#endif
2784
dan9971e712010-06-01 15:44:57 +00002785 /* See if it is possible to write these frames into the start of the
2786 ** log file, instead of appending to it at pWal->hdr.mxFrame.
2787 */
2788 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
dan9971e712010-06-01 15:44:57 +00002789 return rc;
2790 }
dan9971e712010-06-01 15:44:57 +00002791
drha2a42012010-05-18 18:01:08 +00002792 /* If this is the first frame written into the log, write the WAL
2793 ** header to the start of the WAL file. See comments at the top of
2794 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00002795 */
drh027a1282010-05-19 01:53:53 +00002796 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00002797 if( iFrame==0 ){
dan10f5a502010-06-23 15:55:43 +00002798 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
2799 u32 aCksum[2]; /* Checksum for wal-header */
2800
danb8fd6c22010-05-24 10:39:36 +00002801 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
dan10f5a502010-06-23 15:55:43 +00002802 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
drh23ea97b2010-05-20 16:45:58 +00002803 sqlite3Put4byte(&aWalHdr[8], szPage);
2804 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drhd2980312011-12-17 01:31:44 +00002805 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
drh7e263722010-05-20 21:21:09 +00002806 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
dan10f5a502010-06-23 15:55:43 +00002807 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
2808 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
2809 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
2810
drhb2eced52010-08-12 02:41:12 +00002811 pWal->szPage = szPage;
dan10f5a502010-06-23 15:55:43 +00002812 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
2813 pWal->hdr.aFrameCksum[0] = aCksum[0];
2814 pWal->hdr.aFrameCksum[1] = aCksum[1];
danf60b7f32011-12-16 13:24:27 +00002815 pWal->truncateOnCommit = 1;
dan10f5a502010-06-23 15:55:43 +00002816
drh23ea97b2010-05-20 16:45:58 +00002817 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00002818 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00002819 if( rc!=SQLITE_OK ){
2820 return rc;
2821 }
drhd992b152011-12-20 20:13:25 +00002822
2823 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
2824 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
2825 ** an out-of-order write following a WAL restart could result in
2826 ** database corruption. See the ticket:
2827 **
2828 ** http://localhost:591/sqlite/info/ff5be73dee
2829 */
2830 if( pWal->syncHeader && sync_flags ){
2831 rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK);
2832 if( rc ) return rc;
2833 }
dan97a31352010-04-16 13:59:31 +00002834 }
shanehbd2aaf92010-09-01 02:38:21 +00002835 assert( (int)pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00002836
drhd992b152011-12-20 20:13:25 +00002837 /* Setup information needed to write frames into the WAL */
2838 w.pWal = pWal;
2839 w.pFd = pWal->pWalFd;
2840 w.iSyncPoint = 0;
2841 w.syncFlags = sync_flags;
2842 w.szPage = szPage;
2843 iOffset = walFrameOffset(iFrame+1, szPage);
2844 szFrame = szPage + WAL_FRAME_HDRSIZE;
drh88f975a2011-12-16 19:34:36 +00002845
drhd992b152011-12-20 20:13:25 +00002846 /* Write all frames into the log file exactly once */
dan7c246102010-04-12 19:00:29 +00002847 for(p=pList; p; p=p->pDirty){
drhd992b152011-12-20 20:13:25 +00002848 int nDbSize; /* 0 normally. Positive == commit flag */
2849 iFrame++;
2850 assert( iOffset==walFrameOffset(iFrame, szPage) );
2851 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
2852 rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
2853 if( rc ) return rc;
dan7c246102010-04-12 19:00:29 +00002854 pLast = p;
drhd992b152011-12-20 20:13:25 +00002855 iOffset += szFrame;
dan7c246102010-04-12 19:00:29 +00002856 }
2857
drhd992b152011-12-20 20:13:25 +00002858 /* If this is the end of a transaction, then we might need to pad
2859 ** the transaction and/or sync the WAL file.
2860 **
2861 ** Padding and syncing only occur if this set of frames complete a
2862 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
peter.d.reid60ec9142014-09-06 16:39:46 +00002863 ** or synchronous==OFF, then no padding or syncing are needed.
drhd992b152011-12-20 20:13:25 +00002864 **
drhcb15f352011-12-23 01:04:17 +00002865 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
2866 ** needed and only the sync is done. If padding is needed, then the
2867 ** final frame is repeated (with its commit mark) until the next sector
drhd992b152011-12-20 20:13:25 +00002868 ** boundary is crossed. Only the part of the WAL prior to the last
2869 ** sector boundary is synced; the part of the last frame that extends
2870 ** past the sector boundary is written after the sync.
2871 */
drh4eb02a42011-12-16 21:26:26 +00002872 if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){
drh374f4a02011-12-17 20:02:11 +00002873 if( pWal->padToSectorBoundary ){
danc9a53262012-10-01 06:50:55 +00002874 int sectorSize = sqlite3SectorSize(pWal->pWalFd);
drhd992b152011-12-20 20:13:25 +00002875 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
2876 while( iOffset<w.iSyncPoint ){
2877 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
2878 if( rc ) return rc;
2879 iOffset += szFrame;
2880 nExtra++;
dan7c246102010-04-12 19:00:29 +00002881 }
drh4e5e1082011-12-23 13:32:07 +00002882 }else{
2883 rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK);
dan7c246102010-04-12 19:00:29 +00002884 }
dan7c246102010-04-12 19:00:29 +00002885 }
2886
drhd992b152011-12-20 20:13:25 +00002887 /* If this frame set completes the first transaction in the WAL and
2888 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
2889 ** journal size limit, if possible.
2890 */
danf60b7f32011-12-16 13:24:27 +00002891 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
2892 i64 sz = pWal->mxWalSize;
drhd992b152011-12-20 20:13:25 +00002893 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
2894 sz = walFrameOffset(iFrame+nExtra+1, szPage);
danf60b7f32011-12-16 13:24:27 +00002895 }
2896 walLimitSize(pWal, sz);
2897 pWal->truncateOnCommit = 0;
2898 }
2899
drhe730fec2010-05-18 12:56:50 +00002900 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00002901 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00002902 ** guarantees that there are no other writers, and no data that may
2903 ** be in use by existing readers is being overwritten.
2904 */
drh027a1282010-05-19 01:53:53 +00002905 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00002906 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dan7c246102010-04-12 19:00:29 +00002907 iFrame++;
danc7991bd2010-05-05 19:04:59 +00002908 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00002909 }
drh20e226d2012-01-01 13:58:53 +00002910 while( rc==SQLITE_OK && nExtra>0 ){
dan7c246102010-04-12 19:00:29 +00002911 iFrame++;
drhd992b152011-12-20 20:13:25 +00002912 nExtra--;
danc7991bd2010-05-05 19:04:59 +00002913 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00002914 }
2915
danc7991bd2010-05-05 19:04:59 +00002916 if( rc==SQLITE_OK ){
2917 /* Update the private copy of the header. */
shaneh1df2db72010-08-18 02:28:48 +00002918 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00002919 testcase( szPage<=32768 );
2920 testcase( szPage>=65536 );
drh027a1282010-05-19 01:53:53 +00002921 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00002922 if( isCommit ){
2923 pWal->hdr.iChange++;
2924 pWal->hdr.nPage = nTruncate;
2925 }
danc7991bd2010-05-05 19:04:59 +00002926 /* If this is a commit, update the wal-index header too. */
2927 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00002928 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00002929 pWal->iCallback = iFrame;
2930 }
dan7c246102010-04-12 19:00:29 +00002931 }
danc7991bd2010-05-05 19:04:59 +00002932
drhc74c3332010-05-31 12:15:19 +00002933 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00002934 return rc;
dan7c246102010-04-12 19:00:29 +00002935}
2936
2937/*
drh73b64e42010-05-30 19:55:15 +00002938** This routine is called to implement sqlite3_wal_checkpoint() and
2939** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00002940**
drh73b64e42010-05-30 19:55:15 +00002941** Obtain a CHECKPOINT lock and then backfill as much information as
2942** we can from WAL into the database.
dana58f26f2010-11-16 18:56:51 +00002943**
2944** If parameter xBusy is not NULL, it is a pointer to a busy-handler
2945** callback. In this case this function runs a blocking checkpoint.
dan7c246102010-04-12 19:00:29 +00002946*/
drhc438efd2010-04-26 00:19:45 +00002947int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00002948 Wal *pWal, /* Wal connection */
drhdd90d7e2014-12-03 19:25:41 +00002949 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */
dana58f26f2010-11-16 18:56:51 +00002950 int (*xBusy)(void*), /* Function to call when busy */
2951 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00002952 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00002953 int nBuf, /* Size of temporary buffer */
dancdc1f042010-11-18 12:11:05 +00002954 u8 *zBuf, /* Temporary buffer to use */
2955 int *pnLog, /* OUT: Number of frames in WAL */
2956 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
dan7c246102010-04-12 19:00:29 +00002957){
danb9bf16b2010-04-14 11:23:30 +00002958 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00002959 int isChanged = 0; /* True if a new wal-index header is loaded */
danf2b8dd52010-11-18 19:28:01 +00002960 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
drhdd90d7e2014-12-03 19:25:41 +00002961 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */
dan7c246102010-04-12 19:00:29 +00002962
dand54ff602010-05-31 11:16:30 +00002963 assert( pWal->ckptLock==0 );
dana58f26f2010-11-16 18:56:51 +00002964 assert( pWal->writeLock==0 );
dan39c79f52010-04-15 10:58:51 +00002965
drhdd90d7e2014-12-03 19:25:41 +00002966 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
2967 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
2968 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
2969
drh66dfec8b2011-06-01 20:01:49 +00002970 if( pWal->readOnly ) return SQLITE_READONLY;
drhc74c3332010-05-31 12:15:19 +00002971 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drhdd90d7e2014-12-03 19:25:41 +00002972
2973 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
2974 ** "checkpoint" lock on the database file. */
drh73b64e42010-05-30 19:55:15 +00002975 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2976 if( rc ){
drhdd90d7e2014-12-03 19:25:41 +00002977 /* EVIDENCE-OF: R-10421-19736 If any other process is running a
2978 ** checkpoint operation at the same time, the lock cannot be obtained and
2979 ** SQLITE_BUSY is returned.
2980 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
2981 ** it will not be invoked in this case.
2982 */
2983 testcase( rc==SQLITE_BUSY );
2984 testcase( xBusy!=0 );
danb9bf16b2010-04-14 11:23:30 +00002985 return rc;
2986 }
dand54ff602010-05-31 11:16:30 +00002987 pWal->ckptLock = 1;
dan64d039e2010-04-13 19:27:31 +00002988
drhdd90d7e2014-12-03 19:25:41 +00002989 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
2990 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
2991 ** file.
danf2b8dd52010-11-18 19:28:01 +00002992 **
drhdd90d7e2014-12-03 19:25:41 +00002993 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
2994 ** immediately, and a busy-handler is configured, it is invoked and the
2995 ** writer lock retried until either the busy-handler returns 0 or the
2996 ** lock is successfully obtained.
dana58f26f2010-11-16 18:56:51 +00002997 */
dancdc1f042010-11-18 12:11:05 +00002998 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dana58f26f2010-11-16 18:56:51 +00002999 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
danf2b8dd52010-11-18 19:28:01 +00003000 if( rc==SQLITE_OK ){
3001 pWal->writeLock = 1;
3002 }else if( rc==SQLITE_BUSY ){
3003 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
drhdd90d7e2014-12-03 19:25:41 +00003004 xBusy2 = 0;
danf2b8dd52010-11-18 19:28:01 +00003005 rc = SQLITE_OK;
3006 }
danb9bf16b2010-04-14 11:23:30 +00003007 }
dana58f26f2010-11-16 18:56:51 +00003008
danf2b8dd52010-11-18 19:28:01 +00003009 /* Read the wal-index header. */
drh7ed91f22010-04-29 22:34:07 +00003010 if( rc==SQLITE_OK ){
dana58f26f2010-11-16 18:56:51 +00003011 rc = walIndexReadHdr(pWal, &isChanged);
danf55a4cf2013-04-01 16:56:41 +00003012 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3013 sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3014 }
dana58f26f2010-11-16 18:56:51 +00003015 }
danf2b8dd52010-11-18 19:28:01 +00003016
3017 /* Copy data from the log to the database file. */
dan9c5e3682011-02-07 15:12:12 +00003018 if( rc==SQLITE_OK ){
3019 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
danf2b8dd52010-11-18 19:28:01 +00003020 rc = SQLITE_CORRUPT_BKPT;
3021 }else{
drhdd90d7e2014-12-03 19:25:41 +00003022 rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
dan9c5e3682011-02-07 15:12:12 +00003023 }
3024
3025 /* If no error occurred, set the output variables. */
3026 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
danf2b8dd52010-11-18 19:28:01 +00003027 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
dan9c5e3682011-02-07 15:12:12 +00003028 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
danf2b8dd52010-11-18 19:28:01 +00003029 }
danb9bf16b2010-04-14 11:23:30 +00003030 }
danf2b8dd52010-11-18 19:28:01 +00003031
dan31c03902010-04-29 14:51:33 +00003032 if( isChanged ){
3033 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00003034 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00003035 ** out of date. So zero the cached wal-index header to ensure that
3036 ** next time the pager opens a snapshot on this database it knows that
3037 ** the cache needs to be reset.
3038 */
3039 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3040 }
danb9bf16b2010-04-14 11:23:30 +00003041
3042 /* Release the locks. */
dana58f26f2010-11-16 18:56:51 +00003043 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00003044 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00003045 pWal->ckptLock = 0;
drhc74c3332010-05-31 12:15:19 +00003046 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
danf2b8dd52010-11-18 19:28:01 +00003047 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
dan7c246102010-04-12 19:00:29 +00003048}
3049
drh7ed91f22010-04-29 22:34:07 +00003050/* Return the value to pass to a sqlite3_wal_hook callback, the
3051** number of frames in the WAL at the point of the last commit since
3052** sqlite3WalCallback() was called. If no commits have occurred since
3053** the last call, then return 0.
3054*/
3055int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00003056 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00003057 if( pWal ){
3058 ret = pWal->iCallback;
3059 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00003060 }
3061 return (int)ret;
3062}
dan55437592010-05-11 12:19:26 +00003063
3064/*
drh61e4ace2010-05-31 20:28:37 +00003065** This function is called to change the WAL subsystem into or out
3066** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00003067**
drh61e4ace2010-05-31 20:28:37 +00003068** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3069** into locking_mode=NORMAL. This means that we must acquire a lock
3070** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
3071** or if the acquisition of the lock fails, then return 0. If the
3072** transition out of exclusive-mode is successful, return 1. This
3073** operation must occur while the pager is still holding the exclusive
3074** lock on the main database file.
dan55437592010-05-11 12:19:26 +00003075**
drh61e4ace2010-05-31 20:28:37 +00003076** If op is one, then change from locking_mode=NORMAL into
3077** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
3078** be released. Return 1 if the transition is made and 0 if the
3079** WAL is already in exclusive-locking mode - meaning that this
3080** routine is a no-op. The pager must already hold the exclusive lock
3081** on the main database file before invoking this operation.
3082**
3083** If op is negative, then do a dry-run of the op==1 case but do
dan8c408002010-11-01 17:38:24 +00003084** not actually change anything. The pager uses this to see if it
drh61e4ace2010-05-31 20:28:37 +00003085** should acquire the database exclusive lock prior to invoking
3086** the op==1 case.
dan55437592010-05-11 12:19:26 +00003087*/
3088int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00003089 int rc;
drhaab4c022010-06-02 14:45:51 +00003090 assert( pWal->writeLock==0 );
dan8c408002010-11-01 17:38:24 +00003091 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
dan3cac5dc2010-06-04 18:37:59 +00003092
3093 /* pWal->readLock is usually set, but might be -1 if there was a
3094 ** prior error while attempting to acquire are read-lock. This cannot
3095 ** happen if the connection is actually in exclusive mode (as no xShmLock
3096 ** locks are taken in this case). Nor should the pager attempt to
3097 ** upgrade to exclusive-mode following such an error.
3098 */
drhaab4c022010-06-02 14:45:51 +00003099 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00003100 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3101
drh61e4ace2010-05-31 20:28:37 +00003102 if( op==0 ){
3103 if( pWal->exclusiveMode ){
3104 pWal->exclusiveMode = 0;
dan3cac5dc2010-06-04 18:37:59 +00003105 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drh61e4ace2010-05-31 20:28:37 +00003106 pWal->exclusiveMode = 1;
3107 }
3108 rc = pWal->exclusiveMode==0;
3109 }else{
drhaab4c022010-06-02 14:45:51 +00003110 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00003111 rc = 0;
3112 }
3113 }else if( op>0 ){
3114 assert( pWal->exclusiveMode==0 );
drhaab4c022010-06-02 14:45:51 +00003115 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00003116 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3117 pWal->exclusiveMode = 1;
3118 rc = 1;
3119 }else{
3120 rc = pWal->exclusiveMode==0;
dan55437592010-05-11 12:19:26 +00003121 }
drh61e4ace2010-05-31 20:28:37 +00003122 return rc;
dan55437592010-05-11 12:19:26 +00003123}
3124
dan8c408002010-11-01 17:38:24 +00003125/*
3126** Return true if the argument is non-NULL and the WAL module is using
3127** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3128** WAL module is using shared-memory, return false.
3129*/
3130int sqlite3WalHeapMemory(Wal *pWal){
3131 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3132}
3133
drh70708602012-02-24 14:33:28 +00003134#ifdef SQLITE_ENABLE_ZIPVFS
danb3bdc722012-02-23 15:35:49 +00003135/*
3136** If the argument is not NULL, it points to a Wal object that holds a
3137** read-lock. This function returns the database page-size if it is known,
3138** or zero if it is not (or if pWal is NULL).
3139*/
3140int sqlite3WalFramesize(Wal *pWal){
danb3bdc722012-02-23 15:35:49 +00003141 assert( pWal==0 || pWal->readLock>=0 );
3142 return (pWal ? pWal->szPage : 0);
3143}
drh70708602012-02-24 14:33:28 +00003144#endif
danb3bdc722012-02-23 15:35:49 +00003145
dan5cf53532010-05-01 16:40:20 +00003146#endif /* #ifndef SQLITE_OMIT_WAL */