blob: cab94d3f87acdae037f70d496d9ff956c79349b0 [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drhcd285082010-06-23 22:00:35 +000034** The WAL header is 32 bytes in size and consists of the following eight
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan10f5a502010-06-23 15:55:43 +000043** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
dan97a31352010-04-16 13:59:31 +000045**
drh23ea97b2010-05-20 16:45:58 +000046** Immediately following the wal-header are zero or more frames. Each
47** frame consists of a 24-byte frame-header followed by a <page-size> bytes
drhcd285082010-06-23 22:00:35 +000048** of page data. The frame-header is six big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000049** integer values, as follows:
50**
dan3de777f2010-04-17 12:31:37 +000051** 0: Page number.
52** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000053** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000054** 8: Salt-1 (copied from the header)
55** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000056** 16: Checksum-1.
57** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000058**
drh7e263722010-05-20 21:21:09 +000059** A frame is considered valid if and only if the following conditions are
60** true:
61**
62** (1) The salt-1 and salt-2 values in the frame-header match
63** salt values in the wal-header
64**
65** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000066** exactly match the checksum computed consecutively on the
67** WAL header and the first 8 bytes and the content of all frames
68** up to and including the current frame.
69**
70** The checksum is computed using 32-bit big-endian integers if the
71** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000073** The checksum values are always stored in the frame header in a
74** big-endian format regardless of which byte order is used to compute
75** the checksum. The checksum is computed by interpreting the input as
76** an even number of unsigned 32-bit integers: x[0] through x[N]. The
drhffca4302010-06-15 11:21:54 +000077** algorithm used for the checksum is as follows:
drh51b21b12010-05-25 15:53:31 +000078**
79** for i from 0 to n-1 step 2:
80** s0 += x[i] + s1;
81** s1 += x[i+1] + s0;
82** endfor
drh7e263722010-05-20 21:21:09 +000083**
drhcd285082010-06-23 22:00:35 +000084** Note that s0 and s1 are both weighted checksums using fibonacci weights
85** in reverse order (the largest fibonacci weight occurs on the first element
86** of the sequence being summed.) The s1 value spans all 32-bit
87** terms of the sequence whereas s0 omits the final term.
88**
drh7e263722010-05-20 21:21:09 +000089** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90** WAL is transferred into the database, then the database is VFS.xSync-ed.
drhffca4302010-06-15 11:21:54 +000091** The VFS.xSync operations serve as write barriers - all writes launched
drh7e263722010-05-20 21:21:09 +000092** before the xSync must complete before any write that launches after the
93** xSync begins.
94**
95** After each checkpoint, the salt-1 value is incremented and the salt-2
96** value is randomized. This prevents old and new frames in the WAL from
97** being considered valid at the same time and being checkpointing together
98** following a crash.
99**
drh29d4dbe2010-05-18 23:29:52 +0000100** READER ALGORITHM
101**
102** To read a page from the database (call it page number P), a reader
103** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +0000104** last valid instance of page P that is a followed by a commit frame
105** or is a commit frame itself becomes the value read. If the WAL
106** contains no copies of page P that are valid and which are a commit
107** frame or are followed by a commit frame, then page P is read from
108** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000109**
drh73b64e42010-05-30 19:55:15 +0000110** To start a read transaction, the reader records the index of the last
111** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112** for all subsequent read operations. New transactions can be appended
113** to the WAL, but as long as the reader uses its original mxFrame value
114** and ignores the newly appended content, it will see a consistent snapshot
115** of the database from a single point in time. This technique allows
116** multiple concurrent readers to view different versions of the database
117** content simultaneously.
118**
119** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000120** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000121** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000122** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000123** and read performance suffers. To overcome this problem, a separate
124** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000125** search for frames of a particular page.
126**
127** WAL-INDEX FORMAT
128**
129** Conceptually, the wal-index is shared memory, though VFS implementations
130** might choose to implement the wal-index using a mmapped file. Because
131** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132** on a network filesystem. All users of the database must be able to
133** share memory.
134**
135** The wal-index is transient. After a crash, the wal-index can (and should
136** be) reconstructed from the original WAL file. In fact, the VFS is required
137** to either truncate or zero the header of the wal-index when the last
138** connection to it closes. Because the wal-index is transient, it can
139** use an architecture-specific format; it does not have to be cross-platform.
140** Hence, unlike the database and WAL file formats which store all values
141** as big endian, the wal-index can store multi-byte values in the native
142** byte order of the host computer.
143**
144** The purpose of the wal-index is to answer this question quickly: Given
145** a page number P, return the index of the last frame for page P in the WAL,
146** or return NULL if there are no frames for page P in the WAL.
147**
148** The wal-index consists of a header region, followed by an one or
149** more index blocks.
150**
drh027a1282010-05-19 01:53:53 +0000151** The wal-index header contains the total number of frames within the WAL
danad3cadd2010-06-14 11:49:26 +0000152** in the the mxFrame field.
153**
154** Each index block except for the first contains information on
155** HASHTABLE_NPAGE frames. The first index block contains information on
156** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
157** HASHTABLE_NPAGE are selected so that together the wal-index header and
158** first index block are the same size as all other index blocks in the
159** wal-index.
160**
161** Each index block contains two sections, a page-mapping that contains the
162** database page number associated with each wal frame, and a hash-table
drhffca4302010-06-15 11:21:54 +0000163** that allows readers to query an index block for a specific page number.
danad3cadd2010-06-14 11:49:26 +0000164** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
165** for the first index block) 32-bit page numbers. The first entry in the
166** first index-block contains the database page number corresponding to the
167** first frame in the WAL file. The first entry in the second index block
168** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
169** the log, and so on.
170**
171** The last index block in a wal-index usually contains less than the full
172** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
173** depending on the contents of the WAL file. This does not change the
174** allocated size of the page-mapping array - the page-mapping array merely
175** contains unused entries.
drh027a1282010-05-19 01:53:53 +0000176**
177** Even without using the hash table, the last frame for page P
danad3cadd2010-06-14 11:49:26 +0000178** can be found by scanning the page-mapping sections of each index block
drh027a1282010-05-19 01:53:53 +0000179** starting with the last index block and moving toward the first, and
180** within each index block, starting at the end and moving toward the
181** beginning. The first entry that equals P corresponds to the frame
182** holding the content for that page.
183**
184** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
185** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
186** hash table for each page number in the mapping section, so the hash
187** table is never more than half full. The expected number of collisions
188** prior to finding a match is 1. Each entry of the hash table is an
189** 1-based index of an entry in the mapping section of the same
190** index block. Let K be the 1-based index of the largest entry in
191** the mapping section. (For index blocks other than the last, K will
192** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
193** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000194** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000195**
196** To look for page P in the hash table, first compute a hash iKey on
197** P as follows:
198**
199** iKey = (P * 383) % HASHTABLE_NSLOT
200**
201** Then start scanning entries of the hash table, starting with iKey
202** (wrapping around to the beginning when the end of the hash table is
203** reached) until an unused hash slot is found. Let the first unused slot
204** be at index iUnused. (iUnused might be less than iKey if there was
205** wrap-around.) Because the hash table is never more than half full,
206** the search is guaranteed to eventually hit an unused entry. Let
207** iMax be the value between iKey and iUnused, closest to iUnused,
208** where aHash[iMax]==P. If there is no iMax entry (if there exists
209** no hash slot such that aHash[i]==p) then page P is not in the
210** current index block. Otherwise the iMax-th mapping entry of the
211** current index block corresponds to the last entry that references
212** page P.
213**
214** A hash search begins with the last index block and moves toward the
215** first index block, looking for entries corresponding to page P. On
216** average, only two or three slots in each index block need to be
217** examined in order to either find the last entry for page P, or to
218** establish that no such entry exists in the block. Each index block
219** holds over 4000 entries. So two or three index blocks are sufficient
220** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
221** comparisons (on average) suffice to either locate a frame in the
222** WAL or to establish that the frame does not exist in the WAL. This
223** is much faster than scanning the entire 10MB WAL.
224**
225** Note that entries are added in order of increasing K. Hence, one
226** reader might be using some value K0 and a second reader that started
227** at a later time (after additional transactions were added to the WAL
228** and to the wal-index) might be using a different value K1, where K1>K0.
229** Both readers can use the same hash table and mapping section to get
230** the correct result. There may be entries in the hash table with
231** K>K0 but to the first reader, those entries will appear to be unused
232** slots in the hash table and so the first reader will get an answer as
233** if no values greater than K0 had ever been inserted into the hash table
234** in the first place - which is what reader one wants. Meanwhile, the
235** second reader using K1 will see additional values that were inserted
236** later, which is exactly what reader two wants.
237**
dan6f150142010-05-21 15:31:56 +0000238** When a rollback occurs, the value of K is decreased. Hash table entries
239** that correspond to frames greater than the new K value are removed
240** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000241*/
drh29d4dbe2010-05-18 23:29:52 +0000242#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000243
drh29d4dbe2010-05-18 23:29:52 +0000244#include "wal.h"
245
drh73b64e42010-05-30 19:55:15 +0000246/*
drhc74c3332010-05-31 12:15:19 +0000247** Trace output macros
248*/
drhc74c3332010-05-31 12:15:19 +0000249#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000250int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000251# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
252#else
253# define WALTRACE(X)
254#endif
255
dan10f5a502010-06-23 15:55:43 +0000256/*
257** The maximum (and only) versions of the wal and wal-index formats
258** that may be interpreted by this version of SQLite.
259**
260** If a client begins recovering a WAL file and finds that (a) the checksum
261** values in the wal-header are correct and (b) the version field is not
262** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
263**
264** Similarly, if a client successfully reads a wal-index header (i.e. the
265** checksum test is successful) and finds that the version field is not
266** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
267** returns SQLITE_CANTOPEN.
268*/
269#define WAL_MAX_VERSION 3007000
270#define WALINDEX_MAX_VERSION 3007000
drhc74c3332010-05-31 12:15:19 +0000271
272/*
drh73b64e42010-05-30 19:55:15 +0000273** Indices of various locking bytes. WAL_NREADER is the number
274** of available reader locks and should be at least 3.
275*/
276#define WAL_WRITE_LOCK 0
277#define WAL_ALL_BUT_WRITE 1
278#define WAL_CKPT_LOCK 1
279#define WAL_RECOVER_LOCK 2
280#define WAL_READ_LOCK(I) (3+(I))
281#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
282
dan97a31352010-04-16 13:59:31 +0000283
drh7ed91f22010-04-29 22:34:07 +0000284/* Object declarations */
285typedef struct WalIndexHdr WalIndexHdr;
286typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000287typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000288
289
290/*
drh286a2882010-05-20 23:51:06 +0000291** The following object holds a copy of the wal-index header content.
292**
293** The actual header in the wal-index consists of two copies of this
294** object.
dan7c246102010-04-12 19:00:29 +0000295*/
drh7ed91f22010-04-29 22:34:07 +0000296struct WalIndexHdr {
dan10f5a502010-06-23 15:55:43 +0000297 u32 iVersion; /* Wal-index version */
298 u32 unused; /* Unused (padding) field */
dan71d89912010-05-24 13:57:42 +0000299 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000300 u8 isInit; /* 1 when initialized */
301 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
dan71d89912010-05-24 13:57:42 +0000302 u16 szPage; /* Database page size in bytes */
dand0aa3422010-05-31 16:41:53 +0000303 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000304 u32 nPage; /* Size of database in pages */
305 u32 aFrameCksum[2]; /* Checksum of last frame in log */
306 u32 aSalt[2]; /* Two salt values copied from WAL header */
307 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000308};
309
drh73b64e42010-05-30 19:55:15 +0000310/*
311** A copy of the following object occurs in the wal-index immediately
312** following the second copy of the WalIndexHdr. This object stores
313** information used by checkpoint.
314**
315** nBackfill is the number of frames in the WAL that have been written
316** back into the database. (We call the act of moving content from WAL to
317** database "backfilling".) The nBackfill number is never greater than
318** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
319** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
320** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
321** mxFrame back to zero when the WAL is reset.
322**
323** There is one entry in aReadMark[] for each reader lock. If a reader
324** holds read-lock K, then the value in aReadMark[K] is no greater than
drhdb7f6472010-06-09 14:45:12 +0000325** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
326** for any aReadMark[] means that entry is unused. aReadMark[0] is
327** a special case; its value is never used and it exists as a place-holder
328** to avoid having to offset aReadMark[] indexs by one. Readers holding
329** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
330** directly from the database.
drh73b64e42010-05-30 19:55:15 +0000331**
332** The value of aReadMark[K] may only be changed by a thread that
333** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
334** aReadMark[K] cannot changed while there is a reader is using that mark
335** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
336**
337** The checkpointer may only transfer frames from WAL to database where
338** the frame numbers are less than or equal to every aReadMark[] that is
339** in use (that is, every aReadMark[j] for which there is a corresponding
340** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
341** largest value and will increase an unused aReadMark[] to mxFrame if there
342** is not already an aReadMark[] equal to mxFrame. The exception to the
343** previous sentence is when nBackfill equals mxFrame (meaning that everything
344** in the WAL has been backfilled into the database) then new readers
345** will choose aReadMark[0] which has value 0 and hence such reader will
346** get all their all content directly from the database file and ignore
347** the WAL.
348**
349** Writers normally append new frames to the end of the WAL. However,
350** if nBackfill equals mxFrame (meaning that all WAL content has been
351** written back into the database) and if no readers are using the WAL
352** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
353** the writer will first "reset" the WAL back to the beginning and start
354** writing new content beginning at frame 1.
355**
356** We assume that 32-bit loads are atomic and so no locks are needed in
357** order to read from any aReadMark[] entries.
358*/
359struct WalCkptInfo {
360 u32 nBackfill; /* Number of WAL frames backfilled into DB */
361 u32 aReadMark[WAL_NREADER]; /* Reader marks */
362};
drhdb7f6472010-06-09 14:45:12 +0000363#define READMARK_NOT_USED 0xffffffff
drh73b64e42010-05-30 19:55:15 +0000364
365
drh7e263722010-05-20 21:21:09 +0000366/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
367** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
368** only support mandatory file-locks, we do not read or write data
369** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000370*/
drh73b64e42010-05-30 19:55:15 +0000371#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
372#define WALINDEX_LOCK_RESERVED 16
drh026ac282010-05-26 15:06:38 +0000373#define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
dan7c246102010-04-12 19:00:29 +0000374
drh7ed91f22010-04-29 22:34:07 +0000375/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000376#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000377
dan10f5a502010-06-23 15:55:43 +0000378/* Size of write ahead log header, including checksum. */
379/* #define WAL_HDRSIZE 24 */
380#define WAL_HDRSIZE 32
dan97a31352010-04-16 13:59:31 +0000381
danb8fd6c22010-05-24 10:39:36 +0000382/* WAL magic value. Either this value, or the same value with the least
383** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
384** big-endian format in the first 4 bytes of a WAL file.
385**
386** If the LSB is set, then the checksums for each frame within the WAL
387** file are calculated by treating all data as an array of 32-bit
388** big-endian words. Otherwise, they are calculated by interpreting
389** all data as 32-bit little-endian words.
390*/
391#define WAL_MAGIC 0x377f0682
392
dan97a31352010-04-16 13:59:31 +0000393/*
drh7ed91f22010-04-29 22:34:07 +0000394** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000395** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000396** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000397*/
drh6e810962010-05-19 17:49:50 +0000398#define walFrameOffset(iFrame, szPage) ( \
danbd0e9072010-07-07 09:48:44 +0000399 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000400)
dan7c246102010-04-12 19:00:29 +0000401
402/*
drh7ed91f22010-04-29 22:34:07 +0000403** An open write-ahead log file is represented by an instance of the
404** following object.
dance4f05f2010-04-22 19:14:13 +0000405*/
drh7ed91f22010-04-29 22:34:07 +0000406struct Wal {
drh73b64e42010-05-30 19:55:15 +0000407 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000408 sqlite3_file *pDbFd; /* File handle for the database file */
409 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000410 u32 iCallback; /* Value to pass to log callback (or 0) */
dan13a3cb82010-06-11 19:04:21 +0000411 int nWiData; /* Size of array apWiData */
412 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
drh73b64e42010-05-30 19:55:15 +0000413 u16 szPage; /* Database page size */
414 i16 readLock; /* Which read lock is being held. -1 for none */
dan55437592010-05-11 12:19:26 +0000415 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000416 u8 isWIndexOpen; /* True if ShmOpen() called on pDbFd */
417 u8 writeLock; /* True if in a write transaction */
418 u8 ckptLock; /* True if holding a checkpoint lock */
419 WalIndexHdr hdr; /* Wal-index header for current transaction */
dan3e875ef2010-07-05 19:03:35 +0000420 const char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000421 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000422#ifdef SQLITE_DEBUG
423 u8 lockError; /* True if a locking error has occurred */
424#endif
dan7c246102010-04-12 19:00:29 +0000425};
426
drh73b64e42010-05-30 19:55:15 +0000427/*
dan067f3162010-06-14 10:30:12 +0000428** Each page of the wal-index mapping contains a hash-table made up of
429** an array of HASHTABLE_NSLOT elements of the following type.
430*/
431typedef u16 ht_slot;
432
433/*
danad3cadd2010-06-14 11:49:26 +0000434** This structure is used to implement an iterator that loops through
435** all frames in the WAL in database page order. Where two or more frames
436** correspond to the same database page, the iterator visits only the
437** frame most recently written to the WAL (in other words, the frame with
438** the largest index).
439**
440** The internals of this structure are only accessed by:
441**
442** walIteratorInit() - Create a new iterator,
443** walIteratorNext() - Step an iterator,
444** walIteratorFree() - Free an iterator.
445**
446** This functionality is used by the checkpoint code (see walCheckpoint()).
447*/
448struct WalIterator {
449 int iPrior; /* Last result returned from the iterator */
450 int nSegment; /* Size of the aSegment[] array */
451 struct WalSegment {
452 int iNext; /* Next slot in aIndex[] not yet returned */
453 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
454 u32 *aPgno; /* Array of page numbers. */
455 int nEntry; /* Max size of aPgno[] and aIndex[] arrays */
456 int iZero; /* Frame number associated with aPgno[0] */
457 } aSegment[1]; /* One for every 32KB page in the WAL */
458};
459
460/*
dan13a3cb82010-06-11 19:04:21 +0000461** Define the parameters of the hash tables in the wal-index file. There
462** is a hash-table following every HASHTABLE_NPAGE page numbers in the
463** wal-index.
464**
465** Changing any of these constants will alter the wal-index format and
466** create incompatibilities.
467*/
dan067f3162010-06-14 10:30:12 +0000468#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000469#define HASHTABLE_HASH_1 383 /* Should be prime */
470#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000471
danad3cadd2010-06-14 11:49:26 +0000472/*
473** The block of page numbers associated with the first hash-table in a
dan13a3cb82010-06-11 19:04:21 +0000474** wal-index is smaller than usual. This is so that there is a complete
475** hash-table on each aligned 32KB page of the wal-index.
476*/
dan067f3162010-06-14 10:30:12 +0000477#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
dan13a3cb82010-06-11 19:04:21 +0000478
dan067f3162010-06-14 10:30:12 +0000479/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
480#define WALINDEX_PGSZ ( \
481 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
482)
dan13a3cb82010-06-11 19:04:21 +0000483
484/*
485** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
dan067f3162010-06-14 10:30:12 +0000486** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
dan13a3cb82010-06-11 19:04:21 +0000487** numbered from zero.
488**
489** If this call is successful, *ppPage is set to point to the wal-index
490** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
491** then an SQLite error code is returned and *ppPage is set to 0.
492*/
493static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
494 int rc = SQLITE_OK;
495
496 /* Enlarge the pWal->apWiData[] array if required */
497 if( pWal->nWiData<=iPage ){
498 int nByte = sizeof(u32 *)*(iPage+1);
499 volatile u32 **apNew;
shaneh8a300f82010-07-02 18:15:31 +0000500 apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte);
dan13a3cb82010-06-11 19:04:21 +0000501 if( !apNew ){
502 *ppPage = 0;
503 return SQLITE_NOMEM;
504 }
shaneh8a300f82010-07-02 18:15:31 +0000505 memset((void *)&apNew[pWal->nWiData], 0, sizeof(u32 *)*(iPage+1-pWal->nWiData));
dan13a3cb82010-06-11 19:04:21 +0000506 pWal->apWiData = apNew;
507 pWal->nWiData = iPage+1;
508 }
509
510 /* Request a pointer to the required page from the VFS */
511 if( pWal->apWiData[iPage]==0 ){
dan18801912010-06-14 14:07:50 +0000512 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
dan13a3cb82010-06-11 19:04:21 +0000513 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
514 );
515 }
516
517 *ppPage = pWal->apWiData[iPage];
518 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
519 return rc;
520}
521
522/*
drh73b64e42010-05-30 19:55:15 +0000523** Return a pointer to the WalCkptInfo structure in the wal-index.
524*/
525static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000526 assert( pWal->nWiData>0 && pWal->apWiData[0] );
527 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
528}
529
530/*
531** Return a pointer to the WalIndexHdr structure in the wal-index.
532*/
533static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
534 assert( pWal->nWiData>0 && pWal->apWiData[0] );
535 return (volatile WalIndexHdr*)pWal->apWiData[0];
drh73b64e42010-05-30 19:55:15 +0000536}
537
dan7c246102010-04-12 19:00:29 +0000538/*
danb8fd6c22010-05-24 10:39:36 +0000539** The argument to this macro must be of type u32. On a little-endian
540** architecture, it returns the u32 value that results from interpreting
541** the 4 bytes as a big-endian value. On a big-endian architecture, it
542** returns the value that would be produced by intepreting the 4 bytes
543** of the input value as a little-endian integer.
544*/
545#define BYTESWAP32(x) ( \
546 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
547 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
548)
dan64d039e2010-04-13 19:27:31 +0000549
dan7c246102010-04-12 19:00:29 +0000550/*
drh7e263722010-05-20 21:21:09 +0000551** Generate or extend an 8 byte checksum based on the data in
552** array aByte[] and the initial values of aIn[0] and aIn[1] (or
553** initial values of 0 and 0 if aIn==NULL).
554**
555** The checksum is written back into aOut[] before returning.
556**
557** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000558*/
drh7e263722010-05-20 21:21:09 +0000559static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000560 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000561 u8 *a, /* Content to be checksummed */
562 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
563 const u32 *aIn, /* Initial checksum value input */
564 u32 *aOut /* OUT: Final checksum value output */
565){
566 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000567 u32 *aData = (u32 *)a;
568 u32 *aEnd = (u32 *)&a[nByte];
569
drh7e263722010-05-20 21:21:09 +0000570 if( aIn ){
571 s1 = aIn[0];
572 s2 = aIn[1];
573 }else{
574 s1 = s2 = 0;
575 }
dan7c246102010-04-12 19:00:29 +0000576
drh584c7542010-05-19 18:08:10 +0000577 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000578 assert( (nByte&0x00000007)==0 );
dan7c246102010-04-12 19:00:29 +0000579
danb8fd6c22010-05-24 10:39:36 +0000580 if( nativeCksum ){
581 do {
582 s1 += *aData++ + s2;
583 s2 += *aData++ + s1;
584 }while( aData<aEnd );
585 }else{
586 do {
587 s1 += BYTESWAP32(aData[0]) + s2;
588 s2 += BYTESWAP32(aData[1]) + s1;
589 aData += 2;
590 }while( aData<aEnd );
591 }
592
drh7e263722010-05-20 21:21:09 +0000593 aOut[0] = s1;
594 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000595}
596
597/*
drh7e263722010-05-20 21:21:09 +0000598** Write the header information in pWal->hdr into the wal-index.
599**
600** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000601*/
drh7e263722010-05-20 21:21:09 +0000602static void walIndexWriteHdr(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000603 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
604 const int nCksum = offsetof(WalIndexHdr, aCksum);
drh73b64e42010-05-30 19:55:15 +0000605
606 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000607 pWal->hdr.isInit = 1;
dan10f5a502010-06-23 15:55:43 +0000608 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
dan4280eb32010-06-12 12:02:35 +0000609 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
610 memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
drh286a2882010-05-20 23:51:06 +0000611 sqlite3OsShmBarrier(pWal->pDbFd);
dan4280eb32010-06-12 12:02:35 +0000612 memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000613}
614
615/*
616** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000617** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000618** 4-byte big-endian integers, as follows:
619**
drh23ea97b2010-05-20 16:45:58 +0000620** 0: Page number.
621** 4: For commit records, the size of the database image in pages
622** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000623** 8: Salt-1 (copied from the wal-header)
624** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000625** 16: Checksum-1.
626** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000627*/
drh7ed91f22010-04-29 22:34:07 +0000628static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000629 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000630 u32 iPage, /* Database page number for frame */
631 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000632 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000633 u8 *aFrame /* OUT: Write encoded frame here */
634){
danb8fd6c22010-05-24 10:39:36 +0000635 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000636 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000637 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000638 sqlite3Put4byte(&aFrame[0], iPage);
639 sqlite3Put4byte(&aFrame[4], nTruncate);
drh7e263722010-05-20 21:21:09 +0000640 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000641
danb8fd6c22010-05-24 10:39:36 +0000642 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000643 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000644 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000645
drh23ea97b2010-05-20 16:45:58 +0000646 sqlite3Put4byte(&aFrame[16], aCksum[0]);
647 sqlite3Put4byte(&aFrame[20], aCksum[1]);
dan7c246102010-04-12 19:00:29 +0000648}
649
650/*
drh7e263722010-05-20 21:21:09 +0000651** Check to see if the frame with header in aFrame[] and content
652** in aData[] is valid. If it is a valid frame, fill *piPage and
653** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000654*/
drh7ed91f22010-04-29 22:34:07 +0000655static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000656 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000657 u32 *piPage, /* OUT: Database page number for frame */
658 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000659 u8 *aData, /* Pointer to page data (for checksum) */
660 u8 *aFrame /* Frame data */
661){
danb8fd6c22010-05-24 10:39:36 +0000662 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000663 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000664 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000665 assert( WAL_FRAME_HDRSIZE==24 );
666
drh7e263722010-05-20 21:21:09 +0000667 /* A frame is only valid if the salt values in the frame-header
668 ** match the salt values in the wal-header.
669 */
670 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000671 return 0;
672 }
dan4a4b01d2010-04-16 11:30:18 +0000673
drhc8179152010-05-24 13:28:36 +0000674 /* A frame is only valid if the page number is creater than zero.
675 */
676 pgno = sqlite3Get4byte(&aFrame[0]);
677 if( pgno==0 ){
678 return 0;
679 }
680
drh7e263722010-05-20 21:21:09 +0000681 /* A frame is only valid if a checksum of the first 16 bytes
682 ** of the frame-header, and the frame-data matches
683 ** the checksum in the last 8 bytes of the frame-header.
684 */
danb8fd6c22010-05-24 10:39:36 +0000685 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000686 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000687 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000688 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
689 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000690 ){
691 /* Checksum failed. */
692 return 0;
693 }
694
drh7e263722010-05-20 21:21:09 +0000695 /* If we reach this point, the frame is valid. Return the page number
696 ** and the new database size.
697 */
drhc8179152010-05-24 13:28:36 +0000698 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000699 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000700 return 1;
701}
702
dan7c246102010-04-12 19:00:29 +0000703
drhc74c3332010-05-31 12:15:19 +0000704#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
705/*
drh181e0912010-06-01 01:08:08 +0000706** Names of locks. This routine is used to provide debugging output and is not
707** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000708*/
709static const char *walLockName(int lockIdx){
710 if( lockIdx==WAL_WRITE_LOCK ){
711 return "WRITE-LOCK";
712 }else if( lockIdx==WAL_CKPT_LOCK ){
713 return "CKPT-LOCK";
714 }else if( lockIdx==WAL_RECOVER_LOCK ){
715 return "RECOVER-LOCK";
716 }else{
717 static char zName[15];
718 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
719 lockIdx-WAL_READ_LOCK(0));
720 return zName;
721 }
722}
723#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
724
725
dan7c246102010-04-12 19:00:29 +0000726/*
drh181e0912010-06-01 01:08:08 +0000727** Set or release locks on the WAL. Locks are either shared or exclusive.
728** A lock cannot be moved directly between shared and exclusive - it must go
729** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000730**
731** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
732*/
733static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000734 int rc;
drh73b64e42010-05-30 19:55:15 +0000735 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000736 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
737 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
738 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
739 walLockName(lockIdx), rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000740 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000741 return rc;
drh73b64e42010-05-30 19:55:15 +0000742}
743static void walUnlockShared(Wal *pWal, int lockIdx){
744 if( pWal->exclusiveMode ) return;
745 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
746 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000747 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000748}
749static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000750 int rc;
drh73b64e42010-05-30 19:55:15 +0000751 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000752 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
753 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
754 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
755 walLockName(lockIdx), n, rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000756 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000757 return rc;
drh73b64e42010-05-30 19:55:15 +0000758}
759static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
760 if( pWal->exclusiveMode ) return;
761 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
762 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000763 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
764 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000765}
766
767/*
drh29d4dbe2010-05-18 23:29:52 +0000768** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000769** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
770** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000771*/
772static int walHash(u32 iPage){
773 assert( iPage>0 );
774 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
775 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
776}
777static int walNextHash(int iPriorHash){
778 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000779}
780
dan4280eb32010-06-12 12:02:35 +0000781/*
782** Return pointers to the hash table and page number array stored on
783** page iHash of the wal-index. The wal-index is broken into 32KB pages
784** numbered starting from 0.
785**
786** Set output variable *paHash to point to the start of the hash table
787** in the wal-index file. Set *piZero to one less than the frame
788** number of the first frame indexed by this hash table. If a
789** slot in the hash table is set to N, it refers to frame number
790** (*piZero+N) in the log.
791**
dand60bf112010-06-14 11:18:50 +0000792** Finally, set *paPgno so that *paPgno[1] is the page number of the
793** first frame indexed by the hash table, frame (*piZero+1).
dan4280eb32010-06-12 12:02:35 +0000794*/
795static int walHashGet(
dan13a3cb82010-06-11 19:04:21 +0000796 Wal *pWal, /* WAL handle */
797 int iHash, /* Find the iHash'th table */
dan067f3162010-06-14 10:30:12 +0000798 volatile ht_slot **paHash, /* OUT: Pointer to hash index */
dan13a3cb82010-06-11 19:04:21 +0000799 volatile u32 **paPgno, /* OUT: Pointer to page number array */
800 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
801){
dan4280eb32010-06-12 12:02:35 +0000802 int rc; /* Return code */
dan13a3cb82010-06-11 19:04:21 +0000803 volatile u32 *aPgno;
dan13a3cb82010-06-11 19:04:21 +0000804
dan4280eb32010-06-12 12:02:35 +0000805 rc = walIndexPage(pWal, iHash, &aPgno);
806 assert( rc==SQLITE_OK || iHash>0 );
dan13a3cb82010-06-11 19:04:21 +0000807
dan4280eb32010-06-12 12:02:35 +0000808 if( rc==SQLITE_OK ){
809 u32 iZero;
dan067f3162010-06-14 10:30:12 +0000810 volatile ht_slot *aHash;
dan4280eb32010-06-12 12:02:35 +0000811
dan067f3162010-06-14 10:30:12 +0000812 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
dan4280eb32010-06-12 12:02:35 +0000813 if( iHash==0 ){
dand60bf112010-06-14 11:18:50 +0000814 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
dan4280eb32010-06-12 12:02:35 +0000815 iZero = 0;
816 }else{
817 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
dan4280eb32010-06-12 12:02:35 +0000818 }
819
dand60bf112010-06-14 11:18:50 +0000820 *paPgno = &aPgno[-1];
dan4280eb32010-06-12 12:02:35 +0000821 *paHash = aHash;
822 *piZero = iZero;
dan13a3cb82010-06-11 19:04:21 +0000823 }
dan4280eb32010-06-12 12:02:35 +0000824 return rc;
dan13a3cb82010-06-11 19:04:21 +0000825}
826
dan4280eb32010-06-12 12:02:35 +0000827/*
828** Return the number of the wal-index page that contains the hash-table
829** and page-number array that contain entries corresponding to WAL frame
830** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
831** are numbered starting from 0.
832*/
dan13a3cb82010-06-11 19:04:21 +0000833static int walFramePage(u32 iFrame){
834 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
835 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
836 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
837 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
838 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
839 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
840 );
841 return iHash;
842}
843
844/*
845** Return the page number associated with frame iFrame in this WAL.
846*/
847static u32 walFramePgno(Wal *pWal, u32 iFrame){
848 int iHash = walFramePage(iFrame);
849 if( iHash==0 ){
850 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
851 }
852 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
853}
danbb23aff2010-05-10 14:46:09 +0000854
danca6b5ba2010-05-25 10:50:56 +0000855/*
856** Remove entries from the hash table that point to WAL slots greater
857** than pWal->hdr.mxFrame.
858**
859** This function is called whenever pWal->hdr.mxFrame is decreased due
860** to a rollback or savepoint.
861**
drh181e0912010-06-01 01:08:08 +0000862** At most only the hash table containing pWal->hdr.mxFrame needs to be
863** updated. Any later hash tables will be automatically cleared when
864** pWal->hdr.mxFrame advances to the point where those hash tables are
865** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000866*/
867static void walCleanupHash(Wal *pWal){
drhff828942010-06-26 21:34:06 +0000868 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */
869 volatile u32 *aPgno = 0; /* Page number array for hash table */
870 u32 iZero = 0; /* frame == (aHash[x]+iZero) */
dan067f3162010-06-14 10:30:12 +0000871 int iLimit = 0; /* Zero values greater than this */
872 int nByte; /* Number of bytes to zero in aPgno[] */
873 int i; /* Used to iterate through aHash[] */
danca6b5ba2010-05-25 10:50:56 +0000874
drh73b64e42010-05-30 19:55:15 +0000875 assert( pWal->writeLock );
drhffca4302010-06-15 11:21:54 +0000876 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
877 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
878 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
drh9c156472010-06-01 12:58:41 +0000879
dan4280eb32010-06-12 12:02:35 +0000880 if( pWal->hdr.mxFrame==0 ) return;
881
882 /* Obtain pointers to the hash-table and page-number array containing
883 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
884 ** that the page said hash-table and array reside on is already mapped.
885 */
886 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
887 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
888 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
889
890 /* Zero all hash-table entries that correspond to frame numbers greater
891 ** than pWal->hdr.mxFrame.
892 */
893 iLimit = pWal->hdr.mxFrame - iZero;
894 assert( iLimit>0 );
895 for(i=0; i<HASHTABLE_NSLOT; i++){
896 if( aHash[i]>iLimit ){
897 aHash[i] = 0;
danca6b5ba2010-05-25 10:50:56 +0000898 }
danca6b5ba2010-05-25 10:50:56 +0000899 }
dan4280eb32010-06-12 12:02:35 +0000900
901 /* Zero the entries in the aPgno array that correspond to frames with
902 ** frame numbers greater than pWal->hdr.mxFrame.
903 */
shaneh5eba1f62010-07-02 17:05:03 +0000904 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
dand60bf112010-06-14 11:18:50 +0000905 memset((void *)&aPgno[iLimit+1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000906
907#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
908 /* Verify that the every entry in the mapping region is still reachable
909 ** via the hash table even after the cleanup.
910 */
drhf77bbd92010-06-01 13:17:44 +0000911 if( iLimit ){
danca6b5ba2010-05-25 10:50:56 +0000912 int i; /* Loop counter */
913 int iKey; /* Hash key */
914 for(i=1; i<=iLimit; i++){
dand60bf112010-06-14 11:18:50 +0000915 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
danca6b5ba2010-05-25 10:50:56 +0000916 if( aHash[iKey]==i ) break;
917 }
918 assert( aHash[iKey]==i );
919 }
920 }
921#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
922}
923
danbb23aff2010-05-10 14:46:09 +0000924
drh7ed91f22010-04-29 22:34:07 +0000925/*
drh29d4dbe2010-05-18 23:29:52 +0000926** Set an entry in the wal-index that will map database page number
927** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +0000928*/
drh7ed91f22010-04-29 22:34:07 +0000929static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
dan4280eb32010-06-12 12:02:35 +0000930 int rc; /* Return code */
drhff828942010-06-26 21:34:06 +0000931 u32 iZero = 0; /* One less than frame number of aPgno[1] */
932 volatile u32 *aPgno = 0; /* Page number array */
933 volatile ht_slot *aHash = 0; /* Hash table */
dance4f05f2010-04-22 19:14:13 +0000934
dan4280eb32010-06-12 12:02:35 +0000935 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
936
937 /* Assuming the wal-index file was successfully mapped, populate the
938 ** page number array and hash table entry.
dan7c246102010-04-12 19:00:29 +0000939 */
danbb23aff2010-05-10 14:46:09 +0000940 if( rc==SQLITE_OK ){
941 int iKey; /* Hash table key */
dan4280eb32010-06-12 12:02:35 +0000942 int idx; /* Value to write to hash-table slot */
943 TESTONLY( int nCollide = 0; /* Number of hash collisions */ )
dan7c246102010-04-12 19:00:29 +0000944
danbb23aff2010-05-10 14:46:09 +0000945 idx = iFrame - iZero;
dan4280eb32010-06-12 12:02:35 +0000946 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
947
948 /* If this is the first entry to be added to this hash-table, zero the
949 ** entire hash table and aPgno[] array before proceding.
950 */
danca6b5ba2010-05-25 10:50:56 +0000951 if( idx==1 ){
shaneh5eba1f62010-07-02 17:05:03 +0000952 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
dand60bf112010-06-14 11:18:50 +0000953 memset((void*)&aPgno[1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000954 }
danca6b5ba2010-05-25 10:50:56 +0000955
dan4280eb32010-06-12 12:02:35 +0000956 /* If the entry in aPgno[] is already set, then the previous writer
957 ** must have exited unexpectedly in the middle of a transaction (after
958 ** writing one or more dirty pages to the WAL to free up memory).
959 ** Remove the remnants of that writers uncommitted transaction from
960 ** the hash-table before writing any new entries.
961 */
dand60bf112010-06-14 11:18:50 +0000962 if( aPgno[idx] ){
danca6b5ba2010-05-25 10:50:56 +0000963 walCleanupHash(pWal);
dand60bf112010-06-14 11:18:50 +0000964 assert( !aPgno[idx] );
danca6b5ba2010-05-25 10:50:56 +0000965 }
dan4280eb32010-06-12 12:02:35 +0000966
967 /* Write the aPgno[] array entry and the hash-table slot. */
dan6f150142010-05-21 15:31:56 +0000968 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
drh29d4dbe2010-05-18 23:29:52 +0000969 assert( nCollide++ < idx );
970 }
dand60bf112010-06-14 11:18:50 +0000971 aPgno[idx] = iPage;
shaneh5eba1f62010-07-02 17:05:03 +0000972 aHash[iKey] = (ht_slot)idx;
drh4fa95bf2010-05-22 00:55:39 +0000973
974#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
975 /* Verify that the number of entries in the hash table exactly equals
976 ** the number of entries in the mapping region.
977 */
978 {
979 int i; /* Loop counter */
980 int nEntry = 0; /* Number of entries in the hash table */
981 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
982 assert( nEntry==idx );
983 }
984
985 /* Verify that the every entry in the mapping region is reachable
986 ** via the hash table. This turns out to be a really, really expensive
987 ** thing to check, so only do this occasionally - not on every
988 ** iteration.
989 */
990 if( (idx&0x3ff)==0 ){
991 int i; /* Loop counter */
992 for(i=1; i<=idx; i++){
dand60bf112010-06-14 11:18:50 +0000993 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
drh4fa95bf2010-05-22 00:55:39 +0000994 if( aHash[iKey]==i ) break;
995 }
996 assert( aHash[iKey]==i );
997 }
998 }
999#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +00001000 }
dan31f98fc2010-04-27 05:42:32 +00001001
drh4fa95bf2010-05-22 00:55:39 +00001002
danbb23aff2010-05-10 14:46:09 +00001003 return rc;
dan7c246102010-04-12 19:00:29 +00001004}
1005
1006
1007/*
drh7ed91f22010-04-29 22:34:07 +00001008** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +00001009**
1010** This routine first tries to establish an exclusive lock on the
1011** wal-index to prevent other threads/processes from doing anything
1012** with the WAL or wal-index while recovery is running. The
1013** WAL_RECOVER_LOCK is also held so that other threads will know
1014** that this thread is running recovery. If unable to establish
1015** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +00001016*/
drh7ed91f22010-04-29 22:34:07 +00001017static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +00001018 int rc; /* Return Code */
1019 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +00001020 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +00001021 int iLock; /* Lock offset to lock for checkpoint */
1022 int nLock; /* Number of locks to hold */
dan7c246102010-04-12 19:00:29 +00001023
dand0aa3422010-05-31 16:41:53 +00001024 /* Obtain an exclusive lock on all byte in the locking range not already
1025 ** locked by the caller. The caller is guaranteed to have locked the
1026 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1027 ** If successful, the same bytes that are locked here are unlocked before
1028 ** this function returns.
1029 */
1030 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1031 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1032 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1033 assert( pWal->writeLock );
1034 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1035 nLock = SQLITE_SHM_NLOCK - iLock;
1036 rc = walLockExclusive(pWal, iLock, nLock);
drh73b64e42010-05-30 19:55:15 +00001037 if( rc ){
1038 return rc;
1039 }
drhc74c3332010-05-31 12:15:19 +00001040 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +00001041
dan71d89912010-05-24 13:57:42 +00001042 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +00001043
drhd9e5c4f2010-05-12 18:01:39 +00001044 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +00001045 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001046 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001047 }
1048
danb8fd6c22010-05-24 10:39:36 +00001049 if( nSize>WAL_HDRSIZE ){
1050 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dan7c246102010-04-12 19:00:29 +00001051 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001052 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001053 u8 *aData; /* Pointer to data part of aFrame buffer */
1054 int iFrame; /* Index of last frame read */
1055 i64 iOffset; /* Next offset to read from log file */
drh6e810962010-05-19 17:49:50 +00001056 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001057 u32 magic; /* Magic value read from WAL header */
dan10f5a502010-06-23 15:55:43 +00001058 u32 version; /* Magic value read from WAL header */
dan7c246102010-04-12 19:00:29 +00001059
danb8fd6c22010-05-24 10:39:36 +00001060 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001061 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001062 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001063 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001064 }
1065
1066 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001067 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1068 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1069 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001070 */
danb8fd6c22010-05-24 10:39:36 +00001071 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001072 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001073 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1074 || szPage&(szPage-1)
1075 || szPage>SQLITE_MAX_PAGE_SIZE
1076 || szPage<512
1077 ){
dan7c246102010-04-12 19:00:29 +00001078 goto finished;
1079 }
shaneh5eba1f62010-07-02 17:05:03 +00001080 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1081 pWal->szPage = (u16)szPage;
drh23ea97b2010-05-20 16:45:58 +00001082 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001083 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
drhcd285082010-06-23 22:00:35 +00001084
1085 /* Verify that the WAL header checksum is correct */
dan71d89912010-05-24 13:57:42 +00001086 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
dan10f5a502010-06-23 15:55:43 +00001087 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
dan71d89912010-05-24 13:57:42 +00001088 );
dan10f5a502010-06-23 15:55:43 +00001089 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1090 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1091 ){
1092 goto finished;
1093 }
1094
drhcd285082010-06-23 22:00:35 +00001095 /* Verify that the version number on the WAL format is one that
1096 ** are able to understand */
dan10f5a502010-06-23 15:55:43 +00001097 version = sqlite3Get4byte(&aBuf[4]);
1098 if( version!=WAL_MAX_VERSION ){
1099 rc = SQLITE_CANTOPEN_BKPT;
1100 goto finished;
1101 }
1102
dan7c246102010-04-12 19:00:29 +00001103 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001104 szFrame = szPage + WAL_FRAME_HDRSIZE;
1105 aFrame = (u8 *)sqlite3_malloc(szFrame);
dan7c246102010-04-12 19:00:29 +00001106 if( !aFrame ){
drh73b64e42010-05-30 19:55:15 +00001107 rc = SQLITE_NOMEM;
1108 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001109 }
drh7ed91f22010-04-29 22:34:07 +00001110 aData = &aFrame[WAL_FRAME_HDRSIZE];
dan7c246102010-04-12 19:00:29 +00001111
1112 /* Read all frames from the log file. */
1113 iFrame = 0;
drh584c7542010-05-19 18:08:10 +00001114 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
dan7c246102010-04-12 19:00:29 +00001115 u32 pgno; /* Database page number for frame */
1116 u32 nTruncate; /* dbsize field from frame header */
1117 int isValid; /* True if this frame is valid */
1118
1119 /* Read and decode the next log frame. */
drh584c7542010-05-19 18:08:10 +00001120 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
dan7c246102010-04-12 19:00:29 +00001121 if( rc!=SQLITE_OK ) break;
drh7e263722010-05-20 21:21:09 +00001122 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
dan7c246102010-04-12 19:00:29 +00001123 if( !isValid ) break;
danc7991bd2010-05-05 19:04:59 +00001124 rc = walIndexAppend(pWal, ++iFrame, pgno);
1125 if( rc!=SQLITE_OK ) break;
dan7c246102010-04-12 19:00:29 +00001126
1127 /* If nTruncate is non-zero, this is a commit record. */
1128 if( nTruncate ){
dan71d89912010-05-24 13:57:42 +00001129 pWal->hdr.mxFrame = iFrame;
1130 pWal->hdr.nPage = nTruncate;
shaneh5eba1f62010-07-02 17:05:03 +00001131 pWal->hdr.szPage = (u16)szPage;
dan71d89912010-05-24 13:57:42 +00001132 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1133 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
dan7c246102010-04-12 19:00:29 +00001134 }
1135 }
1136
1137 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001138 }
1139
1140finished:
dan576bc322010-05-06 18:04:50 +00001141 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001142 volatile WalCkptInfo *pInfo;
1143 int i;
dan71d89912010-05-24 13:57:42 +00001144 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1145 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001146 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001147
drhdb7f6472010-06-09 14:45:12 +00001148 /* Reset the checkpoint-header. This is safe because this thread is
dan3dee6da2010-05-31 16:17:54 +00001149 ** currently holding locks that exclude all other readers, writers and
1150 ** checkpointers.
1151 */
drhdb7f6472010-06-09 14:45:12 +00001152 pInfo = walCkptInfo(pWal);
1153 pInfo->nBackfill = 0;
1154 pInfo->aReadMark[0] = 0;
1155 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
dan576bc322010-05-06 18:04:50 +00001156 }
drh73b64e42010-05-30 19:55:15 +00001157
1158recovery_error:
drhc74c3332010-05-31 12:15:19 +00001159 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dand0aa3422010-05-31 16:41:53 +00001160 walUnlockExclusive(pWal, iLock, nLock);
dan7c246102010-04-12 19:00:29 +00001161 return rc;
1162}
1163
drha8e654e2010-05-04 17:38:42 +00001164/*
dan1018e902010-05-05 15:33:05 +00001165** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001166*/
dan1018e902010-05-05 15:33:05 +00001167static void walIndexClose(Wal *pWal, int isDelete){
drh73b64e42010-05-30 19:55:15 +00001168 if( pWal->isWIndexOpen ){
drhd9e5c4f2010-05-12 18:01:39 +00001169 sqlite3OsShmClose(pWal->pDbFd, isDelete);
drh73b64e42010-05-30 19:55:15 +00001170 pWal->isWIndexOpen = 0;
drha8e654e2010-05-04 17:38:42 +00001171 }
1172}
1173
dan7c246102010-04-12 19:00:29 +00001174/*
dan3e875ef2010-07-05 19:03:35 +00001175** Open a connection to the WAL file zWalName. The database file must
1176** already be opened on connection pDbFd. The buffer that zWalName points
1177** to must remain valid for the lifetime of the returned Wal* handle.
dan3de777f2010-04-17 12:31:37 +00001178**
1179** A SHARED lock should be held on the database file when this function
1180** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001181** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001182** were to do this just after this client opened one of these files, the
1183** system would be badly broken.
danef378022010-05-04 11:06:03 +00001184**
1185** If the log file is successfully opened, SQLITE_OK is returned and
1186** *ppWal is set to point to a new WAL handle. If an error occurs,
1187** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001188*/
drhc438efd2010-04-26 00:19:45 +00001189int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001190 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001191 sqlite3_file *pDbFd, /* The open database file */
dan3e875ef2010-07-05 19:03:35 +00001192 const char *zWalName, /* Name of the WAL file */
drh7ed91f22010-04-29 22:34:07 +00001193 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001194){
danef378022010-05-04 11:06:03 +00001195 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001196 Wal *pRet; /* Object to allocate and return */
dan7c246102010-04-12 19:00:29 +00001197 int flags; /* Flags passed to OsOpen() */
dan7c246102010-04-12 19:00:29 +00001198
dan3e875ef2010-07-05 19:03:35 +00001199 assert( zWalName && zWalName[0] );
drhd9e5c4f2010-05-12 18:01:39 +00001200 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001201
drh1b78eaf2010-05-25 13:40:03 +00001202 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1203 ** this source file. Verify that the #defines of the locking byte offsets
1204 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1205 */
1206#ifdef WIN_SHM_BASE
1207 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1208#endif
1209#ifdef UNIX_SHM_BASE
1210 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1211#endif
1212
1213
drh7ed91f22010-04-29 22:34:07 +00001214 /* Allocate an instance of struct Wal to return. */
1215 *ppWal = 0;
dan3e875ef2010-07-05 19:03:35 +00001216 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
dan76ed3bc2010-05-03 17:18:24 +00001217 if( !pRet ){
1218 return SQLITE_NOMEM;
1219 }
1220
dan7c246102010-04-12 19:00:29 +00001221 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001222 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1223 pRet->pDbFd = pDbFd;
drh73b64e42010-05-30 19:55:15 +00001224 pRet->readLock = -1;
drh7e263722010-05-20 21:21:09 +00001225 sqlite3_randomness(8, &pRet->hdr.aSalt);
dan3e875ef2010-07-05 19:03:35 +00001226 pRet->zWalName = zWalName;
drhd9e5c4f2010-05-12 18:01:39 +00001227 rc = sqlite3OsShmOpen(pDbFd);
dan7c246102010-04-12 19:00:29 +00001228
drh7ed91f22010-04-29 22:34:07 +00001229 /* Open file handle on the write-ahead log file. */
dan76ed3bc2010-05-03 17:18:24 +00001230 if( rc==SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001231 pRet->isWIndexOpen = 1;
dan76ed3bc2010-05-03 17:18:24 +00001232 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_MAIN_JOURNAL);
dan3e875ef2010-07-05 19:03:35 +00001233 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
dan76ed3bc2010-05-03 17:18:24 +00001234 }
dan7c246102010-04-12 19:00:29 +00001235
dan7c246102010-04-12 19:00:29 +00001236 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001237 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001238 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001239 sqlite3_free(pRet);
1240 }else{
1241 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001242 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001243 }
dan7c246102010-04-12 19:00:29 +00001244 return rc;
1245}
1246
drha2a42012010-05-18 18:01:08 +00001247/*
1248** Find the smallest page number out of all pages held in the WAL that
1249** has not been returned by any prior invocation of this method on the
1250** same WalIterator object. Write into *piFrame the frame index where
1251** that page was last written into the WAL. Write into *piPage the page
1252** number.
1253**
1254** Return 0 on success. If there are no pages in the WAL with a page
1255** number larger than *piPage, then return 1.
1256*/
drh7ed91f22010-04-29 22:34:07 +00001257static int walIteratorNext(
1258 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001259 u32 *piPage, /* OUT: The page number of the next page */
1260 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001261){
drha2a42012010-05-18 18:01:08 +00001262 u32 iMin; /* Result pgno must be greater than iMin */
1263 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1264 int i; /* For looping through segments */
dan7c246102010-04-12 19:00:29 +00001265
drha2a42012010-05-18 18:01:08 +00001266 iMin = p->iPrior;
1267 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001268 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001269 struct WalSegment *pSegment = &p->aSegment[i];
dan13a3cb82010-06-11 19:04:21 +00001270 while( pSegment->iNext<pSegment->nEntry ){
drha2a42012010-05-18 18:01:08 +00001271 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001272 if( iPg>iMin ){
1273 if( iPg<iRet ){
1274 iRet = iPg;
dan13a3cb82010-06-11 19:04:21 +00001275 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
dan7c246102010-04-12 19:00:29 +00001276 }
1277 break;
1278 }
1279 pSegment->iNext++;
1280 }
dan7c246102010-04-12 19:00:29 +00001281 }
1282
drha2a42012010-05-18 18:01:08 +00001283 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001284 return (iRet==0xFFFFFFFF);
1285}
1286
danf544b4c2010-06-25 11:35:52 +00001287/*
1288** This function merges two sorted lists into a single sorted list.
1289*/
1290static void walMerge(
1291 u32 *aContent, /* Pages in wal */
1292 ht_slot *aLeft, /* IN: Left hand input list */
1293 int nLeft, /* IN: Elements in array *paLeft */
1294 ht_slot **paRight, /* IN/OUT: Right hand input list */
1295 int *pnRight, /* IN/OUT: Elements in *paRight */
1296 ht_slot *aTmp /* Temporary buffer */
1297){
1298 int iLeft = 0; /* Current index in aLeft */
1299 int iRight = 0; /* Current index in aRight */
1300 int iOut = 0; /* Current index in output buffer */
1301 int nRight = *pnRight;
1302 ht_slot *aRight = *paRight;
dan7c246102010-04-12 19:00:29 +00001303
danf544b4c2010-06-25 11:35:52 +00001304 assert( nLeft>0 && nRight>0 );
1305 while( iRight<nRight || iLeft<nLeft ){
1306 ht_slot logpage;
1307 Pgno dbpage;
1308
1309 if( (iLeft<nLeft)
1310 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1311 ){
1312 logpage = aLeft[iLeft++];
1313 }else{
1314 logpage = aRight[iRight++];
1315 }
1316 dbpage = aContent[logpage];
1317
1318 aTmp[iOut++] = logpage;
1319 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1320
1321 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1322 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1323 }
1324
1325 *paRight = aLeft;
1326 *pnRight = iOut;
1327 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1328}
1329
1330/*
1331** Sort the elements in list aList, removing any duplicates.
1332*/
dan13a3cb82010-06-11 19:04:21 +00001333static void walMergesort(
1334 u32 *aContent, /* Pages in wal */
dan067f3162010-06-14 10:30:12 +00001335 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1336 ht_slot *aList, /* IN/OUT: List to sort */
drha2a42012010-05-18 18:01:08 +00001337 int *pnList /* IN/OUT: Number of elements in aList[] */
1338){
danf544b4c2010-06-25 11:35:52 +00001339 struct Sublist {
1340 int nList; /* Number of elements in aList */
1341 ht_slot *aList; /* Pointer to sub-list content */
1342 };
drha2a42012010-05-18 18:01:08 +00001343
danf544b4c2010-06-25 11:35:52 +00001344 const int nList = *pnList; /* Size of input list */
drhff828942010-06-26 21:34:06 +00001345 int nMerge = 0; /* Number of elements in list aMerge */
1346 ht_slot *aMerge = 0; /* List to be merged */
danf544b4c2010-06-25 11:35:52 +00001347 int iList; /* Index into input list */
drh7d113eb2010-06-26 20:00:54 +00001348 int iSub = 0; /* Index into aSub array */
danf544b4c2010-06-25 11:35:52 +00001349 struct Sublist aSub[13]; /* Array of sub-lists */
drha2a42012010-05-18 18:01:08 +00001350
danf544b4c2010-06-25 11:35:52 +00001351 memset(aSub, 0, sizeof(aSub));
1352 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1353 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
drha2a42012010-05-18 18:01:08 +00001354
danf544b4c2010-06-25 11:35:52 +00001355 for(iList=0; iList<nList; iList++){
1356 nMerge = 1;
1357 aMerge = &aList[iList];
1358 for(iSub=0; iList & (1<<iSub); iSub++){
1359 struct Sublist *p = &aSub[iSub];
1360 assert( p->aList && p->nList<=(1<<iSub) );
danbdf1e242010-06-25 15:16:25 +00001361 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001362 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
drha2a42012010-05-18 18:01:08 +00001363 }
danf544b4c2010-06-25 11:35:52 +00001364 aSub[iSub].aList = aMerge;
1365 aSub[iSub].nList = nMerge;
drha2a42012010-05-18 18:01:08 +00001366 }
1367
danf544b4c2010-06-25 11:35:52 +00001368 for(iSub++; iSub<ArraySize(aSub); iSub++){
1369 if( nList & (1<<iSub) ){
1370 struct Sublist *p = &aSub[iSub];
danbdf1e242010-06-25 15:16:25 +00001371 assert( p->nList<=(1<<iSub) );
1372 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001373 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1374 }
1375 }
1376 assert( aMerge==aList );
1377 *pnList = nMerge;
1378
drha2a42012010-05-18 18:01:08 +00001379#ifdef SQLITE_DEBUG
1380 {
1381 int i;
1382 for(i=1; i<*pnList; i++){
1383 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1384 }
1385 }
1386#endif
1387}
1388
dan5d656852010-06-14 07:53:26 +00001389/*
1390** Free an iterator allocated by walIteratorInit().
1391*/
1392static void walIteratorFree(WalIterator *p){
danbdf1e242010-06-25 15:16:25 +00001393 sqlite3ScratchFree(p);
dan5d656852010-06-14 07:53:26 +00001394}
1395
drha2a42012010-05-18 18:01:08 +00001396/*
danbdf1e242010-06-25 15:16:25 +00001397** Construct a WalInterator object that can be used to loop over all
1398** pages in the WAL in ascending order. The caller must hold the checkpoint
drha2a42012010-05-18 18:01:08 +00001399**
1400** On success, make *pp point to the newly allocated WalInterator object
danbdf1e242010-06-25 15:16:25 +00001401** return SQLITE_OK. Otherwise, return an error code. If this routine
1402** returns an error, the value of *pp is undefined.
drha2a42012010-05-18 18:01:08 +00001403**
1404** The calling routine should invoke walIteratorFree() to destroy the
danbdf1e242010-06-25 15:16:25 +00001405** WalIterator object when it has finished with it.
drha2a42012010-05-18 18:01:08 +00001406*/
1407static int walIteratorInit(Wal *pWal, WalIterator **pp){
dan067f3162010-06-14 10:30:12 +00001408 WalIterator *p; /* Return value */
1409 int nSegment; /* Number of segments to merge */
1410 u32 iLast; /* Last frame in log */
1411 int nByte; /* Number of bytes to allocate */
1412 int i; /* Iterator variable */
1413 ht_slot *aTmp; /* Temp space used by merge-sort */
danbdf1e242010-06-25 15:16:25 +00001414 int rc = SQLITE_OK; /* Return Code */
drha2a42012010-05-18 18:01:08 +00001415
danbdf1e242010-06-25 15:16:25 +00001416 /* This routine only runs while holding the checkpoint lock. And
1417 ** it only runs if there is actually content in the log (mxFrame>0).
drha2a42012010-05-18 18:01:08 +00001418 */
danbdf1e242010-06-25 15:16:25 +00001419 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
dan13a3cb82010-06-11 19:04:21 +00001420 iLast = pWal->hdr.mxFrame;
drha2a42012010-05-18 18:01:08 +00001421
danbdf1e242010-06-25 15:16:25 +00001422 /* Allocate space for the WalIterator object. */
dan13a3cb82010-06-11 19:04:21 +00001423 nSegment = walFramePage(iLast) + 1;
1424 nByte = sizeof(WalIterator)
dan52d6fc02010-06-25 16:34:32 +00001425 + (nSegment-1)*sizeof(struct WalSegment)
1426 + iLast*sizeof(ht_slot);
danbdf1e242010-06-25 15:16:25 +00001427 p = (WalIterator *)sqlite3ScratchMalloc(nByte);
dan8f6097c2010-05-06 07:43:58 +00001428 if( !p ){
drha2a42012010-05-18 18:01:08 +00001429 return SQLITE_NOMEM;
1430 }
1431 memset(p, 0, nByte);
drha2a42012010-05-18 18:01:08 +00001432 p->nSegment = nSegment;
danbdf1e242010-06-25 15:16:25 +00001433
1434 /* Allocate temporary space used by the merge-sort routine. This block
1435 ** of memory will be freed before this function returns.
1436 */
dan52d6fc02010-06-25 16:34:32 +00001437 aTmp = (ht_slot *)sqlite3ScratchMalloc(
1438 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1439 );
danbdf1e242010-06-25 15:16:25 +00001440 if( !aTmp ){
1441 rc = SQLITE_NOMEM;
1442 }
1443
1444 for(i=0; rc==SQLITE_OK && i<nSegment; i++){
dan067f3162010-06-14 10:30:12 +00001445 volatile ht_slot *aHash;
dan13a3cb82010-06-11 19:04:21 +00001446 u32 iZero;
dan13a3cb82010-06-11 19:04:21 +00001447 volatile u32 *aPgno;
1448
dan4280eb32010-06-12 12:02:35 +00001449 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
danbdf1e242010-06-25 15:16:25 +00001450 if( rc==SQLITE_OK ){
dan52d6fc02010-06-25 16:34:32 +00001451 int j; /* Counter variable */
1452 int nEntry; /* Number of entries in this segment */
1453 ht_slot *aIndex; /* Sorted index for this segment */
1454
danbdf1e242010-06-25 15:16:25 +00001455 aPgno++;
shaneh5eba1f62010-07-02 17:05:03 +00001456 nEntry = (int)(((i+1)==nSegment)?(int)(iLast-iZero):(u32 *)aHash-(u32 *)aPgno);
dan52d6fc02010-06-25 16:34:32 +00001457 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
danbdf1e242010-06-25 15:16:25 +00001458 iZero++;
1459
danbdf1e242010-06-25 15:16:25 +00001460 for(j=0; j<nEntry; j++){
shaneh5eba1f62010-07-02 17:05:03 +00001461 aIndex[j] = (ht_slot)j;
danbdf1e242010-06-25 15:16:25 +00001462 }
1463 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1464 p->aSegment[i].iZero = iZero;
1465 p->aSegment[i].nEntry = nEntry;
1466 p->aSegment[i].aIndex = aIndex;
1467 p->aSegment[i].aPgno = (u32 *)aPgno;
dan13a3cb82010-06-11 19:04:21 +00001468 }
dan7c246102010-04-12 19:00:29 +00001469 }
danbdf1e242010-06-25 15:16:25 +00001470 sqlite3ScratchFree(aTmp);
dan7c246102010-04-12 19:00:29 +00001471
danbdf1e242010-06-25 15:16:25 +00001472 if( rc!=SQLITE_OK ){
1473 walIteratorFree(p);
1474 }
dan8f6097c2010-05-06 07:43:58 +00001475 *pp = p;
danbdf1e242010-06-25 15:16:25 +00001476 return rc;
dan7c246102010-04-12 19:00:29 +00001477}
1478
dan7c246102010-04-12 19:00:29 +00001479/*
drh73b64e42010-05-30 19:55:15 +00001480** Copy as much content as we can from the WAL back into the database file
1481** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1482**
1483** The amount of information copies from WAL to database might be limited
1484** by active readers. This routine will never overwrite a database page
1485** that a concurrent reader might be using.
1486**
1487** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1488** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1489** checkpoints are always run by a background thread or background
1490** process, foreground threads will never block on a lengthy fsync call.
1491**
1492** Fsync is called on the WAL before writing content out of the WAL and
1493** into the database. This ensures that if the new content is persistent
1494** in the WAL and can be recovered following a power-loss or hard reset.
1495**
1496** Fsync is also called on the database file if (and only if) the entire
1497** WAL content is copied into the database file. This second fsync makes
1498** it safe to delete the WAL since the new content will persist in the
1499** database file.
1500**
1501** This routine uses and updates the nBackfill field of the wal-index header.
1502** This is the only routine tha will increase the value of nBackfill.
1503** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1504** its value.)
1505**
1506** The caller must be holding sufficient locks to ensure that no other
1507** checkpoint is running (in any other thread or process) at the same
1508** time.
dan7c246102010-04-12 19:00:29 +00001509*/
drh7ed91f22010-04-29 22:34:07 +00001510static int walCheckpoint(
1511 Wal *pWal, /* Wal connection */
danc5118782010-04-17 17:34:41 +00001512 int sync_flags, /* Flags for OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001513 int nBuf, /* Size of zBuf in bytes */
dan7c246102010-04-12 19:00:29 +00001514 u8 *zBuf /* Temporary buffer to use */
1515){
1516 int rc; /* Return code */
drh6e810962010-05-19 17:49:50 +00001517 int szPage = pWal->hdr.szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001518 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001519 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001520 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001521 u32 mxSafeFrame; /* Max frame that can be backfilled */
1522 int i; /* Loop counter */
drh73b64e42010-05-30 19:55:15 +00001523 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
dan7c246102010-04-12 19:00:29 +00001524
danf544b4c2010-06-25 11:35:52 +00001525 if( pWal->hdr.mxFrame==0 ) return SQLITE_OK;
1526
dan7c246102010-04-12 19:00:29 +00001527 /* Allocate the iterator */
dan8f6097c2010-05-06 07:43:58 +00001528 rc = walIteratorInit(pWal, &pIter);
danf544b4c2010-06-25 11:35:52 +00001529 if( rc!=SQLITE_OK ){
danbdf1e242010-06-25 15:16:25 +00001530 return rc;
danb6e099a2010-05-04 14:47:39 +00001531 }
danf544b4c2010-06-25 11:35:52 +00001532 assert( pIter );
danb6e099a2010-05-04 14:47:39 +00001533
drh73b64e42010-05-30 19:55:15 +00001534 /*** TODO: Move this test out to the caller. Make it an assert() here ***/
drh6e810962010-05-19 17:49:50 +00001535 if( pWal->hdr.szPage!=nBuf ){
dan83f42d12010-06-04 10:37:05 +00001536 rc = SQLITE_CORRUPT_BKPT;
1537 goto walcheckpoint_out;
danb6e099a2010-05-04 14:47:39 +00001538 }
1539
drh73b64e42010-05-30 19:55:15 +00001540 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1541 ** safe to write into the database. Frames beyond mxSafeFrame might
1542 ** overwrite database pages that are in use by active readers and thus
1543 ** cannot be backfilled from the WAL.
1544 */
dand54ff602010-05-31 11:16:30 +00001545 mxSafeFrame = pWal->hdr.mxFrame;
dan13a3cb82010-06-11 19:04:21 +00001546 pInfo = walCkptInfo(pWal);
drh73b64e42010-05-30 19:55:15 +00001547 for(i=1; i<WAL_NREADER; i++){
1548 u32 y = pInfo->aReadMark[i];
drhdb7f6472010-06-09 14:45:12 +00001549 if( mxSafeFrame>=y ){
dan83f42d12010-06-04 10:37:05 +00001550 assert( y<=pWal->hdr.mxFrame );
1551 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1552 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001553 pInfo->aReadMark[i] = READMARK_NOT_USED;
drh73b64e42010-05-30 19:55:15 +00001554 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
drh2d37e1c2010-06-02 20:38:20 +00001555 }else if( rc==SQLITE_BUSY ){
drhdb7f6472010-06-09 14:45:12 +00001556 mxSafeFrame = y;
drh2d37e1c2010-06-02 20:38:20 +00001557 }else{
dan83f42d12010-06-04 10:37:05 +00001558 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001559 }
1560 }
danc5118782010-04-17 17:34:41 +00001561 }
dan7c246102010-04-12 19:00:29 +00001562
drh73b64e42010-05-30 19:55:15 +00001563 if( pInfo->nBackfill<mxSafeFrame
1564 && (rc = walLockExclusive(pWal, WAL_READ_LOCK(0), 1))==SQLITE_OK
1565 ){
1566 u32 nBackfill = pInfo->nBackfill;
1567
1568 /* Sync the WAL to disk */
1569 if( sync_flags ){
1570 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1571 }
1572
1573 /* Iterate through the contents of the WAL, copying data to the db file. */
1574 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
dan13a3cb82010-06-11 19:04:21 +00001575 assert( walFramePgno(pWal, iFrame)==iDbpage );
drh73b64e42010-05-30 19:55:15 +00001576 if( iFrame<=nBackfill || iFrame>mxSafeFrame ) continue;
1577 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage,
1578 walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE
1579 );
danbd0e9072010-07-07 09:48:44 +00001580 if( rc==SQLITE_OK ){
1581 i64 iOffset = (i64)(iDbpage-1)*szPage;
1582 testcase( iOffset > (((i64)1)<<32) );
1583 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1584 }
drh73b64e42010-05-30 19:55:15 +00001585 }
1586
1587 /* If work was actually accomplished... */
dand764c7d2010-06-04 11:56:22 +00001588 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00001589 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
drh73b64e42010-05-30 19:55:15 +00001590 rc = sqlite3OsTruncate(pWal->pDbFd, ((i64)pWal->hdr.nPage*(i64)szPage));
1591 if( rc==SQLITE_OK && sync_flags ){
1592 rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1593 }
1594 }
dand764c7d2010-06-04 11:56:22 +00001595 if( rc==SQLITE_OK ){
1596 pInfo->nBackfill = mxSafeFrame;
1597 }
drh73b64e42010-05-30 19:55:15 +00001598 }
1599
1600 /* Release the reader lock held while backfilling */
1601 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
drh2d37e1c2010-06-02 20:38:20 +00001602 }else if( rc==SQLITE_BUSY ){
drh34116ea2010-05-31 12:30:52 +00001603 /* Reset the return code so as not to report a checkpoint failure
1604 ** just because active readers prevent any backfill.
1605 */
1606 rc = SQLITE_OK;
dan7c246102010-04-12 19:00:29 +00001607 }
1608
dan83f42d12010-06-04 10:37:05 +00001609 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00001610 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00001611 return rc;
1612}
1613
1614/*
1615** Close a connection to a log file.
1616*/
drhc438efd2010-04-26 00:19:45 +00001617int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00001618 Wal *pWal, /* Wal to close */
danc5118782010-04-17 17:34:41 +00001619 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001620 int nBuf,
1621 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00001622){
1623 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00001624 if( pWal ){
dan30c86292010-04-30 16:24:46 +00001625 int isDelete = 0; /* True to unlink wal and wal-index files */
1626
1627 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1628 ** ordinary, rollback-mode locking methods, this guarantees that the
1629 ** connection associated with this log file is the only connection to
1630 ** the database. In this case checkpoint the database and unlink both
1631 ** the wal and wal-index files.
1632 **
1633 ** The EXCLUSIVE lock is not released before returning.
1634 */
drhd9e5c4f2010-05-12 18:01:39 +00001635 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
dan30c86292010-04-30 16:24:46 +00001636 if( rc==SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001637 pWal->exclusiveMode = 1;
dan1beb9392010-05-31 12:02:30 +00001638 rc = sqlite3WalCheckpoint(pWal, sync_flags, nBuf, zBuf);
dan30c86292010-04-30 16:24:46 +00001639 if( rc==SQLITE_OK ){
1640 isDelete = 1;
1641 }
dan30c86292010-04-30 16:24:46 +00001642 }
1643
dan1018e902010-05-05 15:33:05 +00001644 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00001645 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00001646 if( isDelete ){
drhd9e5c4f2010-05-12 18:01:39 +00001647 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
dan30c86292010-04-30 16:24:46 +00001648 }
drhc74c3332010-05-31 12:15:19 +00001649 WALTRACE(("WAL%p: closed\n", pWal));
shaneh8a300f82010-07-02 18:15:31 +00001650 sqlite3_free((void *)pWal->apWiData);
drh7ed91f22010-04-29 22:34:07 +00001651 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00001652 }
1653 return rc;
1654}
1655
1656/*
drha2a42012010-05-18 18:01:08 +00001657** Try to read the wal-index header. Return 0 on success and 1 if
1658** there is a problem.
1659**
1660** The wal-index is in shared memory. Another thread or process might
1661** be writing the header at the same time this procedure is trying to
1662** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00001663** by verifying that both copies of the header are the same and also by
1664** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00001665**
1666** If and only if the read is consistent and the header is different from
1667** pWal->hdr, then pWal->hdr is updated to the content of the new header
1668** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00001669**
dan84670502010-05-07 05:46:23 +00001670** If the checksum cannot be verified return non-zero. If the header
1671** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00001672*/
drh7750ab42010-06-26 22:16:02 +00001673static int walIndexTryHdr(Wal *pWal, int *pChanged){
dan4280eb32010-06-12 12:02:35 +00001674 u32 aCksum[2]; /* Checksum on the header content */
1675 WalIndexHdr h1, h2; /* Two copies of the header content */
1676 WalIndexHdr volatile *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00001677
dan4280eb32010-06-12 12:02:35 +00001678 /* The first page of the wal-index must be mapped at this point. */
1679 assert( pWal->nWiData>0 && pWal->apWiData[0] );
drh79e6c782010-04-30 02:13:26 +00001680
drh73b64e42010-05-30 19:55:15 +00001681 /* Read the header. This might happen currently with a write to the
1682 ** same area of shared memory on a different CPU in a SMP,
1683 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00001684 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00001685 **
1686 ** There are two copies of the header at the beginning of the wal-index.
1687 ** When reading, read [0] first then [1]. Writes are in the reverse order.
1688 ** Memory barriers are used to prevent the compiler or the hardware from
1689 ** reordering the reads and writes.
danb9bf16b2010-04-14 11:23:30 +00001690 */
dan4280eb32010-06-12 12:02:35 +00001691 aHdr = walIndexHdr(pWal);
1692 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
drh286a2882010-05-20 23:51:06 +00001693 sqlite3OsShmBarrier(pWal->pDbFd);
dan4280eb32010-06-12 12:02:35 +00001694 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00001695
drhf0b20f82010-05-21 13:16:18 +00001696 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
1697 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00001698 }
drh4b82c382010-05-31 18:24:19 +00001699 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00001700 return 1; /* Malformed header - probably all zeros */
1701 }
danb8fd6c22010-05-24 10:39:36 +00001702 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00001703 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
1704 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00001705 }
1706
drhf0b20f82010-05-21 13:16:18 +00001707 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00001708 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00001709 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh7e263722010-05-20 21:21:09 +00001710 pWal->szPage = pWal->hdr.szPage;
danb9bf16b2010-04-14 11:23:30 +00001711 }
dan84670502010-05-07 05:46:23 +00001712
1713 /* The header was successfully read. Return zero. */
1714 return 0;
danb9bf16b2010-04-14 11:23:30 +00001715}
1716
1717/*
drha2a42012010-05-18 18:01:08 +00001718** Read the wal-index header from the wal-index and into pWal->hdr.
drha927e942010-06-24 02:46:48 +00001719** If the wal-header appears to be corrupt, try to reconstruct the
1720** wal-index from the WAL before returning.
drha2a42012010-05-18 18:01:08 +00001721**
1722** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
1723** changed by this opertion. If pWal->hdr is unchanged, set *pChanged
1724** to 0.
1725**
drh7ed91f22010-04-29 22:34:07 +00001726** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00001727** Otherwise an SQLite error code.
1728*/
drh7ed91f22010-04-29 22:34:07 +00001729static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00001730 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00001731 int badHdr; /* True if a header read failed */
drha927e942010-06-24 02:46:48 +00001732 volatile u32 *page0; /* Chunk of wal-index containing header */
danb9bf16b2010-04-14 11:23:30 +00001733
dan4280eb32010-06-12 12:02:35 +00001734 /* Ensure that page 0 of the wal-index (the page that contains the
1735 ** wal-index header) is mapped. Return early if an error occurs here.
1736 */
dana8614692010-05-06 14:42:34 +00001737 assert( pChanged );
dan4280eb32010-06-12 12:02:35 +00001738 rc = walIndexPage(pWal, 0, &page0);
danc7991bd2010-05-05 19:04:59 +00001739 if( rc!=SQLITE_OK ){
1740 return rc;
dan4280eb32010-06-12 12:02:35 +00001741 };
1742 assert( page0 || pWal->writeLock==0 );
drh7ed91f22010-04-29 22:34:07 +00001743
dan4280eb32010-06-12 12:02:35 +00001744 /* If the first page of the wal-index has been mapped, try to read the
1745 ** wal-index header immediately, without holding any lock. This usually
1746 ** works, but may fail if the wal-index header is corrupt or currently
drha927e942010-06-24 02:46:48 +00001747 ** being modified by another thread or process.
danb9bf16b2010-04-14 11:23:30 +00001748 */
dan4280eb32010-06-12 12:02:35 +00001749 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
drhbab7b912010-05-26 17:31:58 +00001750
drh73b64e42010-05-30 19:55:15 +00001751 /* If the first attempt failed, it might have been due to a race
1752 ** with a writer. So get a WRITE lock and try again.
1753 */
dand54ff602010-05-31 11:16:30 +00001754 assert( badHdr==0 || pWal->writeLock==0 );
dan4280eb32010-06-12 12:02:35 +00001755 if( badHdr && SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
1756 pWal->writeLock = 1;
1757 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
drh73b64e42010-05-30 19:55:15 +00001758 badHdr = walIndexTryHdr(pWal, pChanged);
1759 if( badHdr ){
1760 /* If the wal-index header is still malformed even while holding
1761 ** a WRITE lock, it can only mean that the header is corrupted and
1762 ** needs to be reconstructed. So run recovery to do exactly that.
1763 */
drhbab7b912010-05-26 17:31:58 +00001764 rc = walIndexRecover(pWal);
dan3dee6da2010-05-31 16:17:54 +00001765 *pChanged = 1;
drhbab7b912010-05-26 17:31:58 +00001766 }
drhbab7b912010-05-26 17:31:58 +00001767 }
dan4280eb32010-06-12 12:02:35 +00001768 pWal->writeLock = 0;
1769 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
danb9bf16b2010-04-14 11:23:30 +00001770 }
1771
drha927e942010-06-24 02:46:48 +00001772 /* If the header is read successfully, check the version number to make
1773 ** sure the wal-index was not constructed with some future format that
1774 ** this version of SQLite cannot understand.
1775 */
1776 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
1777 rc = SQLITE_CANTOPEN_BKPT;
1778 }
1779
danb9bf16b2010-04-14 11:23:30 +00001780 return rc;
1781}
1782
1783/*
drh73b64e42010-05-30 19:55:15 +00001784** This is the value that walTryBeginRead returns when it needs to
1785** be retried.
dan7c246102010-04-12 19:00:29 +00001786*/
drh73b64e42010-05-30 19:55:15 +00001787#define WAL_RETRY (-1)
dan64d039e2010-04-13 19:27:31 +00001788
drh73b64e42010-05-30 19:55:15 +00001789/*
1790** Attempt to start a read transaction. This might fail due to a race or
1791** other transient condition. When that happens, it returns WAL_RETRY to
1792** indicate to the caller that it is safe to retry immediately.
1793**
drha927e942010-06-24 02:46:48 +00001794** On success return SQLITE_OK. On a permanent failure (such an
drh73b64e42010-05-30 19:55:15 +00001795** I/O error or an SQLITE_BUSY because another process is running
1796** recovery) return a positive error code.
1797**
drha927e942010-06-24 02:46:48 +00001798** The useWal parameter is true to force the use of the WAL and disable
1799** the case where the WAL is bypassed because it has been completely
1800** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
1801** to make a copy of the wal-index header into pWal->hdr. If the
1802** wal-index header has changed, *pChanged is set to 1 (as an indication
1803** to the caller that the local paget cache is obsolete and needs to be
1804** flushed.) When useWal==1, the wal-index header is assumed to already
1805** be loaded and the pChanged parameter is unused.
1806**
1807** The caller must set the cnt parameter to the number of prior calls to
1808** this routine during the current read attempt that returned WAL_RETRY.
1809** This routine will start taking more aggressive measures to clear the
1810** race conditions after multiple WAL_RETRY returns, and after an excessive
1811** number of errors will ultimately return SQLITE_PROTOCOL. The
1812** SQLITE_PROTOCOL return indicates that some other process has gone rogue
1813** and is not honoring the locking protocol. There is a vanishingly small
1814** chance that SQLITE_PROTOCOL could be returned because of a run of really
1815** bad luck when there is lots of contention for the wal-index, but that
1816** possibility is so small that it can be safely neglected, we believe.
1817**
drh73b64e42010-05-30 19:55:15 +00001818** On success, this routine obtains a read lock on
1819** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
1820** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
1821** that means the Wal does not hold any read lock. The reader must not
1822** access any database page that is modified by a WAL frame up to and
1823** including frame number aReadMark[pWal->readLock]. The reader will
1824** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
1825** Or if pWal->readLock==0, then the reader will ignore the WAL
1826** completely and get all content directly from the database file.
drha927e942010-06-24 02:46:48 +00001827** If the useWal parameter is 1 then the WAL will never be ignored and
1828** this routine will always set pWal->readLock>0 on success.
drh73b64e42010-05-30 19:55:15 +00001829** When the read transaction is completed, the caller must release the
1830** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
1831**
1832** This routine uses the nBackfill and aReadMark[] fields of the header
1833** to select a particular WAL_READ_LOCK() that strives to let the
1834** checkpoint process do as much work as possible. This routine might
1835** update values of the aReadMark[] array in the header, but if it does
1836** so it takes care to hold an exclusive lock on the corresponding
1837** WAL_READ_LOCK() while changing values.
1838*/
drhaab4c022010-06-02 14:45:51 +00001839static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00001840 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
1841 u32 mxReadMark; /* Largest aReadMark[] value */
1842 int mxI; /* Index of largest aReadMark[] value */
1843 int i; /* Loop counter */
dan13a3cb82010-06-11 19:04:21 +00001844 int rc = SQLITE_OK; /* Return code */
dan64d039e2010-04-13 19:27:31 +00001845
drh61e4ace2010-05-31 20:28:37 +00001846 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00001847
drhaab4c022010-06-02 14:45:51 +00001848 /* Take steps to avoid spinning forever if there is a protocol error. */
1849 if( cnt>5 ){
1850 if( cnt>100 ) return SQLITE_PROTOCOL;
1851 sqlite3OsSleep(pWal->pVfs, 1);
1852 }
1853
drh73b64e42010-05-30 19:55:15 +00001854 if( !useWal ){
drh7ed91f22010-04-29 22:34:07 +00001855 rc = walIndexReadHdr(pWal, pChanged);
drh73b64e42010-05-30 19:55:15 +00001856 if( rc==SQLITE_BUSY ){
1857 /* If there is not a recovery running in another thread or process
1858 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
1859 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
1860 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
1861 ** would be technically correct. But the race is benign since with
1862 ** WAL_RETRY this routine will be called again and will probably be
1863 ** right on the second iteration.
1864 */
1865 rc = walLockShared(pWal, WAL_RECOVER_LOCK);
1866 if( rc==SQLITE_OK ){
1867 walUnlockShared(pWal, WAL_RECOVER_LOCK);
1868 rc = WAL_RETRY;
1869 }else if( rc==SQLITE_BUSY ){
1870 rc = SQLITE_BUSY_RECOVERY;
1871 }
1872 }
drha927e942010-06-24 02:46:48 +00001873 if( rc!=SQLITE_OK ){
1874 return rc;
1875 }
drh73b64e42010-05-30 19:55:15 +00001876 }
1877
dan13a3cb82010-06-11 19:04:21 +00001878 pInfo = walCkptInfo(pWal);
drh73b64e42010-05-30 19:55:15 +00001879 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
1880 /* The WAL has been completely backfilled (or it is empty).
1881 ** and can be safely ignored.
1882 */
1883 rc = walLockShared(pWal, WAL_READ_LOCK(0));
daneb8cb3a2010-06-05 18:34:26 +00001884 sqlite3OsShmBarrier(pWal->pDbFd);
drh73b64e42010-05-30 19:55:15 +00001885 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00001886 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00001887 /* It is not safe to allow the reader to continue here if frames
1888 ** may have been appended to the log before READ_LOCK(0) was obtained.
1889 ** When holding READ_LOCK(0), the reader ignores the entire log file,
1890 ** which implies that the database file contains a trustworthy
1891 ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from
1892 ** happening, this is usually correct.
1893 **
1894 ** However, if frames have been appended to the log (or if the log
1895 ** is wrapped and written for that matter) before the READ_LOCK(0)
1896 ** is obtained, that is not necessarily true. A checkpointer may
1897 ** have started to backfill the appended frames but crashed before
1898 ** it finished. Leaving a corrupt image in the database file.
1899 */
drh73b64e42010-05-30 19:55:15 +00001900 walUnlockShared(pWal, WAL_READ_LOCK(0));
1901 return WAL_RETRY;
1902 }
1903 pWal->readLock = 0;
1904 return SQLITE_OK;
1905 }else if( rc!=SQLITE_BUSY ){
1906 return rc;
dan64d039e2010-04-13 19:27:31 +00001907 }
dan7c246102010-04-12 19:00:29 +00001908 }
danba515902010-04-30 09:32:06 +00001909
drh73b64e42010-05-30 19:55:15 +00001910 /* If we get this far, it means that the reader will want to use
1911 ** the WAL to get at content from recent commits. The job now is
1912 ** to select one of the aReadMark[] entries that is closest to
1913 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
1914 */
1915 mxReadMark = 0;
1916 mxI = 0;
1917 for(i=1; i<WAL_NREADER; i++){
1918 u32 thisMark = pInfo->aReadMark[i];
drhdb7f6472010-06-09 14:45:12 +00001919 if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
1920 assert( thisMark!=READMARK_NOT_USED );
drh73b64e42010-05-30 19:55:15 +00001921 mxReadMark = thisMark;
1922 mxI = i;
1923 }
1924 }
1925 if( mxI==0 ){
1926 /* If we get here, it means that all of the aReadMark[] entries between
1927 ** 1 and WAL_NREADER-1 are zero. Try to initialize aReadMark[1] to
1928 ** be mxFrame, then retry.
1929 */
1930 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), 1);
1931 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001932 pInfo->aReadMark[1] = pWal->hdr.mxFrame;
drh73b64e42010-05-30 19:55:15 +00001933 walUnlockExclusive(pWal, WAL_READ_LOCK(1), 1);
drh38933f22010-06-02 15:43:18 +00001934 rc = WAL_RETRY;
1935 }else if( rc==SQLITE_BUSY ){
1936 rc = WAL_RETRY;
drh73b64e42010-05-30 19:55:15 +00001937 }
drh38933f22010-06-02 15:43:18 +00001938 return rc;
drh73b64e42010-05-30 19:55:15 +00001939 }else{
1940 if( mxReadMark < pWal->hdr.mxFrame ){
dand54ff602010-05-31 11:16:30 +00001941 for(i=1; i<WAL_NREADER; i++){
drh73b64e42010-05-30 19:55:15 +00001942 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1943 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001944 mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
drh73b64e42010-05-30 19:55:15 +00001945 mxI = i;
1946 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1947 break;
drh38933f22010-06-02 15:43:18 +00001948 }else if( rc!=SQLITE_BUSY ){
1949 return rc;
drh73b64e42010-05-30 19:55:15 +00001950 }
1951 }
1952 }
1953
1954 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
1955 if( rc ){
1956 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
1957 }
daneb8cb3a2010-06-05 18:34:26 +00001958 /* Now that the read-lock has been obtained, check that neither the
1959 ** value in the aReadMark[] array or the contents of the wal-index
1960 ** header have changed.
1961 **
1962 ** It is necessary to check that the wal-index header did not change
1963 ** between the time it was read and when the shared-lock was obtained
1964 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
1965 ** that the log file may have been wrapped by a writer, or that frames
1966 ** that occur later in the log than pWal->hdr.mxFrame may have been
1967 ** copied into the database by a checkpointer. If either of these things
1968 ** happened, then reading the database with the current value of
1969 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
1970 ** instead.
1971 **
dan640aac42010-06-05 19:18:59 +00001972 ** This does not guarantee that the copy of the wal-index header is up to
1973 ** date before proceeding. That would not be possible without somehow
1974 ** blocking writers. It only guarantees that a dangerous checkpoint or
daneb8cb3a2010-06-05 18:34:26 +00001975 ** log-wrap (either of which would require an exclusive lock on
1976 ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
1977 */
1978 sqlite3OsShmBarrier(pWal->pDbFd);
drh73b64e42010-05-30 19:55:15 +00001979 if( pInfo->aReadMark[mxI]!=mxReadMark
dan4280eb32010-06-12 12:02:35 +00001980 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
drh73b64e42010-05-30 19:55:15 +00001981 ){
1982 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
1983 return WAL_RETRY;
1984 }else{
drhdb7f6472010-06-09 14:45:12 +00001985 assert( mxReadMark<=pWal->hdr.mxFrame );
shaneh5eba1f62010-07-02 17:05:03 +00001986 pWal->readLock = (i16)mxI;
drh73b64e42010-05-30 19:55:15 +00001987 }
1988 }
1989 return rc;
1990}
1991
1992/*
1993** Begin a read transaction on the database.
1994**
1995** This routine used to be called sqlite3OpenSnapshot() and with good reason:
1996** it takes a snapshot of the state of the WAL and wal-index for the current
1997** instant in time. The current thread will continue to use this snapshot.
1998** Other threads might append new content to the WAL and wal-index but
1999** that extra content is ignored by the current thread.
2000**
2001** If the database contents have changes since the previous read
2002** transaction, then *pChanged is set to 1 before returning. The
2003** Pager layer will use this to know that is cache is stale and
2004** needs to be flushed.
2005*/
2006int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2007 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00002008 int cnt = 0; /* Number of TryBeginRead attempts */
drh73b64e42010-05-30 19:55:15 +00002009
2010 do{
drhaab4c022010-06-02 14:45:51 +00002011 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00002012 }while( rc==WAL_RETRY );
dan7c246102010-04-12 19:00:29 +00002013 return rc;
2014}
2015
2016/*
drh73b64e42010-05-30 19:55:15 +00002017** Finish with a read transaction. All this does is release the
2018** read-lock.
dan7c246102010-04-12 19:00:29 +00002019*/
drh73b64e42010-05-30 19:55:15 +00002020void sqlite3WalEndReadTransaction(Wal *pWal){
2021 if( pWal->readLock>=0 ){
2022 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2023 pWal->readLock = -1;
2024 }
dan7c246102010-04-12 19:00:29 +00002025}
2026
dan5e0ce872010-04-28 17:48:44 +00002027/*
drh73b64e42010-05-30 19:55:15 +00002028** Read a page from the WAL, if it is present in the WAL and if the
2029** current read transaction is configured to use the WAL.
2030**
2031** The *pInWal is set to 1 if the requested page is in the WAL and
2032** has been loaded. Or *pInWal is set to 0 if the page was not in
2033** the WAL and needs to be read out of the database.
dan7c246102010-04-12 19:00:29 +00002034*/
danb6e099a2010-05-04 14:47:39 +00002035int sqlite3WalRead(
danbb23aff2010-05-10 14:46:09 +00002036 Wal *pWal, /* WAL handle */
2037 Pgno pgno, /* Database page number to read data for */
2038 int *pInWal, /* OUT: True if data is read from WAL */
2039 int nOut, /* Size of buffer pOut in bytes */
2040 u8 *pOut /* Buffer to write page data to */
danb6e099a2010-05-04 14:47:39 +00002041){
danbb23aff2010-05-10 14:46:09 +00002042 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00002043 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00002044 int iHash; /* Used to loop through N hash tables */
dan7c246102010-04-12 19:00:29 +00002045
drhaab4c022010-06-02 14:45:51 +00002046 /* This routine is only be called from within a read transaction. */
2047 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00002048
danbb23aff2010-05-10 14:46:09 +00002049 /* If the "last page" field of the wal-index header snapshot is 0, then
2050 ** no data will be read from the wal under any circumstances. Return early
drha927e942010-06-24 02:46:48 +00002051 ** in this case as an optimization. Likewise, if pWal->readLock==0,
2052 ** then the WAL is ignored by the reader so return early, as if the
2053 ** WAL were empty.
danbb23aff2010-05-10 14:46:09 +00002054 */
drh73b64e42010-05-30 19:55:15 +00002055 if( iLast==0 || pWal->readLock==0 ){
danbb23aff2010-05-10 14:46:09 +00002056 *pInWal = 0;
2057 return SQLITE_OK;
2058 }
2059
danbb23aff2010-05-10 14:46:09 +00002060 /* Search the hash table or tables for an entry matching page number
2061 ** pgno. Each iteration of the following for() loop searches one
2062 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2063 **
drha927e942010-06-24 02:46:48 +00002064 ** This code might run concurrently to the code in walIndexAppend()
danbb23aff2010-05-10 14:46:09 +00002065 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00002066 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00002067 ** slot (aHash[iKey]) may have been added before or after the
2068 ** current read transaction was opened. Values added after the
2069 ** read transaction was opened may have been written incorrectly -
2070 ** i.e. these slots may contain garbage data. However, we assume
2071 ** that any slots written before the current read transaction was
2072 ** opened remain unmodified.
2073 **
2074 ** For the reasons above, the if(...) condition featured in the inner
2075 ** loop of the following block is more stringent that would be required
2076 ** if we had exclusive access to the hash-table:
2077 **
2078 ** (aPgno[iFrame]==pgno):
2079 ** This condition filters out normal hash-table collisions.
2080 **
2081 ** (iFrame<=iLast):
2082 ** This condition filters out entries that were added to the hash
2083 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00002084 */
dan13a3cb82010-06-11 19:04:21 +00002085 for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
dan067f3162010-06-14 10:30:12 +00002086 volatile ht_slot *aHash; /* Pointer to hash table */
2087 volatile u32 *aPgno; /* Pointer to array of page numbers */
danbb23aff2010-05-10 14:46:09 +00002088 u32 iZero; /* Frame number corresponding to aPgno[0] */
2089 int iKey; /* Hash slot index */
dan4280eb32010-06-12 12:02:35 +00002090 int rc;
danbb23aff2010-05-10 14:46:09 +00002091
dan4280eb32010-06-12 12:02:35 +00002092 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2093 if( rc!=SQLITE_OK ){
2094 return rc;
2095 }
dan6f150142010-05-21 15:31:56 +00002096 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
danbb23aff2010-05-10 14:46:09 +00002097 u32 iFrame = aHash[iKey] + iZero;
dand60bf112010-06-14 11:18:50 +00002098 if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
dan493cc592010-06-05 18:12:23 +00002099 assert( iFrame>iRead );
danbb23aff2010-05-10 14:46:09 +00002100 iRead = iFrame;
2101 }
dan7c246102010-04-12 19:00:29 +00002102 }
2103 }
dan7c246102010-04-12 19:00:29 +00002104
danbb23aff2010-05-10 14:46:09 +00002105#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2106 /* If expensive assert() statements are available, do a linear search
2107 ** of the wal-index file content. Make sure the results agree with the
2108 ** result obtained using the hash indexes above. */
2109 {
2110 u32 iRead2 = 0;
2111 u32 iTest;
2112 for(iTest=iLast; iTest>0; iTest--){
dan13a3cb82010-06-11 19:04:21 +00002113 if( walFramePgno(pWal, iTest)==pgno ){
danbb23aff2010-05-10 14:46:09 +00002114 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00002115 break;
2116 }
dan7c246102010-04-12 19:00:29 +00002117 }
danbb23aff2010-05-10 14:46:09 +00002118 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00002119 }
danbb23aff2010-05-10 14:46:09 +00002120#endif
dancd11fb22010-04-26 10:40:52 +00002121
dan7c246102010-04-12 19:00:29 +00002122 /* If iRead is non-zero, then it is the log frame number that contains the
2123 ** required page. Read and return data from the log file.
2124 */
2125 if( iRead ){
drh6e810962010-05-19 17:49:50 +00002126 i64 iOffset = walFrameOffset(iRead, pWal->hdr.szPage) + WAL_FRAME_HDRSIZE;
drh7ed91f22010-04-29 22:34:07 +00002127 *pInWal = 1;
drhd9e5c4f2010-05-12 18:01:39 +00002128 return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset);
dan7c246102010-04-12 19:00:29 +00002129 }
2130
drh7ed91f22010-04-29 22:34:07 +00002131 *pInWal = 0;
dan7c246102010-04-12 19:00:29 +00002132 return SQLITE_OK;
2133}
2134
2135
2136/*
2137** Set *pPgno to the size of the database file (or zero, if unknown).
2138*/
drh7ed91f22010-04-29 22:34:07 +00002139void sqlite3WalDbsize(Wal *pWal, Pgno *pPgno){
drhaab4c022010-06-02 14:45:51 +00002140 assert( pWal->readLock>=0 || pWal->lockError );
drh7ed91f22010-04-29 22:34:07 +00002141 *pPgno = pWal->hdr.nPage;
dan7c246102010-04-12 19:00:29 +00002142}
2143
dan30c86292010-04-30 16:24:46 +00002144
drh73b64e42010-05-30 19:55:15 +00002145/*
2146** This function starts a write transaction on the WAL.
2147**
2148** A read transaction must have already been started by a prior call
2149** to sqlite3WalBeginReadTransaction().
2150**
2151** If another thread or process has written into the database since
2152** the read transaction was started, then it is not possible for this
2153** thread to write as doing so would cause a fork. So this routine
2154** returns SQLITE_BUSY in that case and no write transaction is started.
2155**
2156** There can only be a single writer active at a time.
2157*/
2158int sqlite3WalBeginWriteTransaction(Wal *pWal){
2159 int rc;
drh73b64e42010-05-30 19:55:15 +00002160
2161 /* Cannot start a write transaction without first holding a read
2162 ** transaction. */
2163 assert( pWal->readLock>=0 );
2164
2165 /* Only one writer allowed at a time. Get the write lock. Return
2166 ** SQLITE_BUSY if unable.
2167 */
2168 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2169 if( rc ){
2170 return rc;
2171 }
drhc99597c2010-05-31 01:41:15 +00002172 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00002173
2174 /* If another connection has written to the database file since the
2175 ** time the read transaction on this connection was started, then
2176 ** the write is disallowed.
2177 */
dan4280eb32010-06-12 12:02:35 +00002178 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
drh73b64e42010-05-30 19:55:15 +00002179 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00002180 pWal->writeLock = 0;
dan9971e712010-06-01 15:44:57 +00002181 rc = SQLITE_BUSY;
drh73b64e42010-05-30 19:55:15 +00002182 }
2183
drh7ed91f22010-04-29 22:34:07 +00002184 return rc;
dan7c246102010-04-12 19:00:29 +00002185}
2186
dan74d6cd82010-04-24 18:44:05 +00002187/*
drh73b64e42010-05-30 19:55:15 +00002188** End a write transaction. The commit has already been done. This
2189** routine merely releases the lock.
2190*/
2191int sqlite3WalEndWriteTransaction(Wal *pWal){
2192 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00002193 pWal->writeLock = 0;
drh73b64e42010-05-30 19:55:15 +00002194 return SQLITE_OK;
2195}
2196
2197/*
dan74d6cd82010-04-24 18:44:05 +00002198** If any data has been written (but not committed) to the log file, this
2199** function moves the write-pointer back to the start of the transaction.
2200**
2201** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00002202** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00002203** other than SQLITE_OK, it is not invoked again and the error code is
2204** returned to the caller.
2205**
2206** Otherwise, if the callback function does not return an error, this
2207** function returns SQLITE_OK.
2208*/
drh7ed91f22010-04-29 22:34:07 +00002209int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00002210 int rc = SQLITE_OK;
drh73b64e42010-05-30 19:55:15 +00002211 if( pWal->writeLock ){
drh027a1282010-05-19 01:53:53 +00002212 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00002213 Pgno iFrame;
2214
dan5d656852010-06-14 07:53:26 +00002215 /* Restore the clients cache of the wal-index header to the state it
2216 ** was in before the client began writing to the database.
2217 */
dan067f3162010-06-14 10:30:12 +00002218 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
dan5d656852010-06-14 07:53:26 +00002219
2220 for(iFrame=pWal->hdr.mxFrame+1;
2221 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
2222 iFrame++
2223 ){
2224 /* This call cannot fail. Unless the page for which the page number
2225 ** is passed as the second argument is (a) in the cache and
2226 ** (b) has an outstanding reference, then xUndo is either a no-op
2227 ** (if (a) is false) or simply expels the page from the cache (if (b)
2228 ** is false).
2229 **
2230 ** If the upper layer is doing a rollback, it is guaranteed that there
2231 ** are no outstanding references to any page other than page 1. And
2232 ** page 1 is never written to the log until the transaction is
2233 ** committed. As a result, the call to xUndo may not fail.
2234 */
dan5d656852010-06-14 07:53:26 +00002235 assert( walFramePgno(pWal, iFrame)!=1 );
2236 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
dan6f150142010-05-21 15:31:56 +00002237 }
dan5d656852010-06-14 07:53:26 +00002238 walCleanupHash(pWal);
dan74d6cd82010-04-24 18:44:05 +00002239 }
dan5d656852010-06-14 07:53:26 +00002240 assert( rc==SQLITE_OK );
dan74d6cd82010-04-24 18:44:05 +00002241 return rc;
2242}
2243
dan71d89912010-05-24 13:57:42 +00002244/*
2245** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2246** values. This function populates the array with values required to
2247** "rollback" the write position of the WAL handle back to the current
2248** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00002249*/
dan71d89912010-05-24 13:57:42 +00002250void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00002251 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00002252 aWalData[0] = pWal->hdr.mxFrame;
2253 aWalData[1] = pWal->hdr.aFrameCksum[0];
2254 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00002255 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00002256}
2257
dan71d89912010-05-24 13:57:42 +00002258/*
2259** Move the write position of the WAL back to the point identified by
2260** the values in the aWalData[] array. aWalData must point to an array
2261** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2262** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00002263*/
dan71d89912010-05-24 13:57:42 +00002264int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00002265 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00002266
dan6e6bd562010-06-02 18:59:03 +00002267 assert( pWal->writeLock );
2268 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2269
2270 if( aWalData[3]!=pWal->nCkpt ){
2271 /* This savepoint was opened immediately after the write-transaction
2272 ** was started. Right after that, the writer decided to wrap around
2273 ** to the start of the log. Update the savepoint values to match.
2274 */
2275 aWalData[0] = 0;
2276 aWalData[3] = pWal->nCkpt;
2277 }
2278
dan71d89912010-05-24 13:57:42 +00002279 if( aWalData[0]<pWal->hdr.mxFrame ){
dan71d89912010-05-24 13:57:42 +00002280 pWal->hdr.mxFrame = aWalData[0];
2281 pWal->hdr.aFrameCksum[0] = aWalData[1];
2282 pWal->hdr.aFrameCksum[1] = aWalData[2];
dan5d656852010-06-14 07:53:26 +00002283 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00002284 }
dan6e6bd562010-06-02 18:59:03 +00002285
dan4cd78b42010-04-26 16:57:10 +00002286 return rc;
2287}
2288
dan9971e712010-06-01 15:44:57 +00002289/*
2290** This function is called just before writing a set of frames to the log
2291** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2292** to the current log file, it is possible to overwrite the start of the
2293** existing log file with the new frames (i.e. "reset" the log). If so,
2294** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2295** unchanged.
2296**
2297** SQLITE_OK is returned if no error is encountered (regardless of whether
2298** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
2299** if some error
2300*/
2301static int walRestartLog(Wal *pWal){
2302 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00002303 int cnt;
2304
dan13a3cb82010-06-11 19:04:21 +00002305 if( pWal->readLock==0 ){
dan9971e712010-06-01 15:44:57 +00002306 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2307 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2308 if( pInfo->nBackfill>0 ){
2309 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2310 if( rc==SQLITE_OK ){
2311 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2312 ** readers are currently using the WAL), then the transactions
2313 ** frames will overwrite the start of the existing log. Update the
2314 ** wal-index header to reflect this.
2315 **
2316 ** In theory it would be Ok to update the cache of the header only
2317 ** at this point. But updating the actual wal-index header is also
2318 ** safe and means there is no special case for sqlite3WalUndo()
2319 ** to handle if this transaction is rolled back.
2320 */
dan199100e2010-06-09 16:58:49 +00002321 int i; /* Loop counter */
dan9971e712010-06-01 15:44:57 +00002322 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
2323 pWal->nCkpt++;
2324 pWal->hdr.mxFrame = 0;
2325 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
2326 sqlite3_randomness(4, &aSalt[1]);
2327 walIndexWriteHdr(pWal);
dan199100e2010-06-09 16:58:49 +00002328 pInfo->nBackfill = 0;
2329 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
2330 assert( pInfo->aReadMark[0]==0 );
dan9971e712010-06-01 15:44:57 +00002331 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2332 }
2333 }
2334 walUnlockShared(pWal, WAL_READ_LOCK(0));
2335 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00002336 cnt = 0;
dan9971e712010-06-01 15:44:57 +00002337 do{
2338 int notUsed;
drhaab4c022010-06-02 14:45:51 +00002339 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00002340 }while( rc==WAL_RETRY );
dan9971e712010-06-01 15:44:57 +00002341 }
2342 return rc;
2343}
2344
dan7c246102010-04-12 19:00:29 +00002345/*
dan4cd78b42010-04-26 16:57:10 +00002346** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00002347** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00002348*/
drhc438efd2010-04-26 00:19:45 +00002349int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00002350 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00002351 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00002352 PgHdr *pList, /* List of dirty pages to write */
2353 Pgno nTruncate, /* Database size after this commit */
2354 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00002355 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00002356){
dan7c246102010-04-12 19:00:29 +00002357 int rc; /* Used to catch return codes */
2358 u32 iFrame; /* Next frame address */
drh7ed91f22010-04-29 22:34:07 +00002359 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
dan7c246102010-04-12 19:00:29 +00002360 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00002361 PgHdr *pLast = 0; /* Last frame in list */
dan7c246102010-04-12 19:00:29 +00002362 int nLast = 0; /* Number of extra copies of last page */
2363
dan7c246102010-04-12 19:00:29 +00002364 assert( pList );
drh73b64e42010-05-30 19:55:15 +00002365 assert( pWal->writeLock );
dan7c246102010-04-12 19:00:29 +00002366
drhc74c3332010-05-31 12:15:19 +00002367#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2368 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2369 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2370 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2371 }
2372#endif
2373
dan9971e712010-06-01 15:44:57 +00002374 /* See if it is possible to write these frames into the start of the
2375 ** log file, instead of appending to it at pWal->hdr.mxFrame.
2376 */
2377 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
dan9971e712010-06-01 15:44:57 +00002378 return rc;
2379 }
dan9971e712010-06-01 15:44:57 +00002380
drha2a42012010-05-18 18:01:08 +00002381 /* If this is the first frame written into the log, write the WAL
2382 ** header to the start of the WAL file. See comments at the top of
2383 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00002384 */
drh027a1282010-05-19 01:53:53 +00002385 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00002386 if( iFrame==0 ){
dan10f5a502010-06-23 15:55:43 +00002387 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
2388 u32 aCksum[2]; /* Checksum for wal-header */
2389
danb8fd6c22010-05-24 10:39:36 +00002390 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
dan10f5a502010-06-23 15:55:43 +00002391 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
drh23ea97b2010-05-20 16:45:58 +00002392 sqlite3Put4byte(&aWalHdr[8], szPage);
2393 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drh7e263722010-05-20 21:21:09 +00002394 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
dan10f5a502010-06-23 15:55:43 +00002395 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
2396 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
2397 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
2398
shaneh5eba1f62010-07-02 17:05:03 +00002399 pWal->szPage = (u16)szPage;
dan10f5a502010-06-23 15:55:43 +00002400 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
2401 pWal->hdr.aFrameCksum[0] = aCksum[0];
2402 pWal->hdr.aFrameCksum[1] = aCksum[1];
2403
drh23ea97b2010-05-20 16:45:58 +00002404 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00002405 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00002406 if( rc!=SQLITE_OK ){
2407 return rc;
2408 }
2409 }
drh7e263722010-05-20 21:21:09 +00002410 assert( pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00002411
dan9971e712010-06-01 15:44:57 +00002412 /* Write the log file. */
dan7c246102010-04-12 19:00:29 +00002413 for(p=pList; p; p=p->pDirty){
2414 u32 nDbsize; /* Db-size field for frame header */
2415 i64 iOffset; /* Write offset in log file */
dan47ee3862010-06-22 15:18:44 +00002416 void *pData;
2417
drh6e810962010-05-19 17:49:50 +00002418 iOffset = walFrameOffset(++iFrame, szPage);
dan7c246102010-04-12 19:00:29 +00002419
2420 /* Populate and write the frame header */
2421 nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0;
drha7152112010-06-22 21:15:49 +00002422#if defined(SQLITE_HAS_CODEC)
dan47ee3862010-06-22 15:18:44 +00002423 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
drha7152112010-06-22 21:15:49 +00002424#else
2425 pData = p->pData;
2426#endif
dan47ee3862010-06-22 15:18:44 +00002427 walEncodeFrame(pWal, p->pgno, nDbsize, pData, aFrame);
drhd9e5c4f2010-05-12 18:01:39 +00002428 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
dan7c246102010-04-12 19:00:29 +00002429 if( rc!=SQLITE_OK ){
2430 return rc;
2431 }
2432
2433 /* Write the page data */
dan47ee3862010-06-22 15:18:44 +00002434 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset+sizeof(aFrame));
dan7c246102010-04-12 19:00:29 +00002435 if( rc!=SQLITE_OK ){
2436 return rc;
2437 }
2438 pLast = p;
2439 }
2440
2441 /* Sync the log file if the 'isSync' flag was specified. */
danc5118782010-04-17 17:34:41 +00002442 if( sync_flags ){
drhd9e5c4f2010-05-12 18:01:39 +00002443 i64 iSegment = sqlite3OsSectorSize(pWal->pWalFd);
drh6e810962010-05-19 17:49:50 +00002444 i64 iOffset = walFrameOffset(iFrame+1, szPage);
dan67032392010-04-17 15:42:43 +00002445
2446 assert( isCommit );
drh69c46962010-05-17 20:16:50 +00002447 assert( iSegment>0 );
dan7c246102010-04-12 19:00:29 +00002448
dan7c246102010-04-12 19:00:29 +00002449 iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment);
2450 while( iOffset<iSegment ){
dan47ee3862010-06-22 15:18:44 +00002451 void *pData;
drha7152112010-06-22 21:15:49 +00002452#if defined(SQLITE_HAS_CODEC)
dan47ee3862010-06-22 15:18:44 +00002453 if( (pData = sqlite3PagerCodec(pLast))==0 ) return SQLITE_NOMEM;
drha7152112010-06-22 21:15:49 +00002454#else
2455 pData = pLast->pData;
2456#endif
dan47ee3862010-06-22 15:18:44 +00002457 walEncodeFrame(pWal, pLast->pgno, nTruncate, pData, aFrame);
drhd9e5c4f2010-05-12 18:01:39 +00002458 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
dan7c246102010-04-12 19:00:29 +00002459 if( rc!=SQLITE_OK ){
2460 return rc;
2461 }
drh7ed91f22010-04-29 22:34:07 +00002462 iOffset += WAL_FRAME_HDRSIZE;
dan47ee3862010-06-22 15:18:44 +00002463 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset);
dan7c246102010-04-12 19:00:29 +00002464 if( rc!=SQLITE_OK ){
2465 return rc;
2466 }
2467 nLast++;
drh6e810962010-05-19 17:49:50 +00002468 iOffset += szPage;
dan7c246102010-04-12 19:00:29 +00002469 }
dan7c246102010-04-12 19:00:29 +00002470
drhd9e5c4f2010-05-12 18:01:39 +00002471 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
dan7c246102010-04-12 19:00:29 +00002472 }
2473
drhe730fec2010-05-18 12:56:50 +00002474 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00002475 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00002476 ** guarantees that there are no other writers, and no data that may
2477 ** be in use by existing readers is being overwritten.
2478 */
drh027a1282010-05-19 01:53:53 +00002479 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00002480 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dan7c246102010-04-12 19:00:29 +00002481 iFrame++;
danc7991bd2010-05-05 19:04:59 +00002482 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00002483 }
danc7991bd2010-05-05 19:04:59 +00002484 while( nLast>0 && rc==SQLITE_OK ){
dan7c246102010-04-12 19:00:29 +00002485 iFrame++;
2486 nLast--;
danc7991bd2010-05-05 19:04:59 +00002487 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00002488 }
2489
danc7991bd2010-05-05 19:04:59 +00002490 if( rc==SQLITE_OK ){
2491 /* Update the private copy of the header. */
shaneh5eba1f62010-07-02 17:05:03 +00002492 pWal->hdr.szPage = (u16)szPage;
drh027a1282010-05-19 01:53:53 +00002493 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00002494 if( isCommit ){
2495 pWal->hdr.iChange++;
2496 pWal->hdr.nPage = nTruncate;
2497 }
danc7991bd2010-05-05 19:04:59 +00002498 /* If this is a commit, update the wal-index header too. */
2499 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00002500 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00002501 pWal->iCallback = iFrame;
2502 }
dan7c246102010-04-12 19:00:29 +00002503 }
danc7991bd2010-05-05 19:04:59 +00002504
drhc74c3332010-05-31 12:15:19 +00002505 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00002506 return rc;
dan7c246102010-04-12 19:00:29 +00002507}
2508
2509/*
drh73b64e42010-05-30 19:55:15 +00002510** This routine is called to implement sqlite3_wal_checkpoint() and
2511** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00002512**
drh73b64e42010-05-30 19:55:15 +00002513** Obtain a CHECKPOINT lock and then backfill as much information as
2514** we can from WAL into the database.
dan7c246102010-04-12 19:00:29 +00002515*/
drhc438efd2010-04-26 00:19:45 +00002516int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00002517 Wal *pWal, /* Wal connection */
danc5118782010-04-17 17:34:41 +00002518 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00002519 int nBuf, /* Size of temporary buffer */
drh73b64e42010-05-30 19:55:15 +00002520 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00002521){
danb9bf16b2010-04-14 11:23:30 +00002522 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00002523 int isChanged = 0; /* True if a new wal-index header is loaded */
dan7c246102010-04-12 19:00:29 +00002524
dand54ff602010-05-31 11:16:30 +00002525 assert( pWal->ckptLock==0 );
dan39c79f52010-04-15 10:58:51 +00002526
drhc74c3332010-05-31 12:15:19 +00002527 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drh73b64e42010-05-30 19:55:15 +00002528 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2529 if( rc ){
2530 /* Usually this is SQLITE_BUSY meaning that another thread or process
2531 ** is already running a checkpoint, or maybe a recovery. But it might
2532 ** also be SQLITE_IOERR. */
danb9bf16b2010-04-14 11:23:30 +00002533 return rc;
2534 }
dand54ff602010-05-31 11:16:30 +00002535 pWal->ckptLock = 1;
dan64d039e2010-04-13 19:27:31 +00002536
danb9bf16b2010-04-14 11:23:30 +00002537 /* Copy data from the log to the database file. */
drh7ed91f22010-04-29 22:34:07 +00002538 rc = walIndexReadHdr(pWal, &isChanged);
danb9bf16b2010-04-14 11:23:30 +00002539 if( rc==SQLITE_OK ){
drhd9e5c4f2010-05-12 18:01:39 +00002540 rc = walCheckpoint(pWal, sync_flags, nBuf, zBuf);
danb9bf16b2010-04-14 11:23:30 +00002541 }
dan31c03902010-04-29 14:51:33 +00002542 if( isChanged ){
2543 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00002544 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00002545 ** out of date. So zero the cached wal-index header to ensure that
2546 ** next time the pager opens a snapshot on this database it knows that
2547 ** the cache needs to be reset.
2548 */
drh7ed91f22010-04-29 22:34:07 +00002549 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan31c03902010-04-29 14:51:33 +00002550 }
danb9bf16b2010-04-14 11:23:30 +00002551
2552 /* Release the locks. */
drh73b64e42010-05-30 19:55:15 +00002553 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00002554 pWal->ckptLock = 0;
drhc74c3332010-05-31 12:15:19 +00002555 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
dan64d039e2010-04-13 19:27:31 +00002556 return rc;
dan7c246102010-04-12 19:00:29 +00002557}
2558
drh7ed91f22010-04-29 22:34:07 +00002559/* Return the value to pass to a sqlite3_wal_hook callback, the
2560** number of frames in the WAL at the point of the last commit since
2561** sqlite3WalCallback() was called. If no commits have occurred since
2562** the last call, then return 0.
2563*/
2564int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00002565 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00002566 if( pWal ){
2567 ret = pWal->iCallback;
2568 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00002569 }
2570 return (int)ret;
2571}
dan55437592010-05-11 12:19:26 +00002572
2573/*
drh61e4ace2010-05-31 20:28:37 +00002574** This function is called to change the WAL subsystem into or out
2575** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00002576**
drh61e4ace2010-05-31 20:28:37 +00002577** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
2578** into locking_mode=NORMAL. This means that we must acquire a lock
2579** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
2580** or if the acquisition of the lock fails, then return 0. If the
2581** transition out of exclusive-mode is successful, return 1. This
2582** operation must occur while the pager is still holding the exclusive
2583** lock on the main database file.
dan55437592010-05-11 12:19:26 +00002584**
drh61e4ace2010-05-31 20:28:37 +00002585** If op is one, then change from locking_mode=NORMAL into
2586** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
2587** be released. Return 1 if the transition is made and 0 if the
2588** WAL is already in exclusive-locking mode - meaning that this
2589** routine is a no-op. The pager must already hold the exclusive lock
2590** on the main database file before invoking this operation.
2591**
2592** If op is negative, then do a dry-run of the op==1 case but do
2593** not actually change anything. The pager uses this to see if it
2594** should acquire the database exclusive lock prior to invoking
2595** the op==1 case.
dan55437592010-05-11 12:19:26 +00002596*/
2597int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00002598 int rc;
drhaab4c022010-06-02 14:45:51 +00002599 assert( pWal->writeLock==0 );
dan3cac5dc2010-06-04 18:37:59 +00002600
2601 /* pWal->readLock is usually set, but might be -1 if there was a
2602 ** prior error while attempting to acquire are read-lock. This cannot
2603 ** happen if the connection is actually in exclusive mode (as no xShmLock
2604 ** locks are taken in this case). Nor should the pager attempt to
2605 ** upgrade to exclusive-mode following such an error.
2606 */
drhaab4c022010-06-02 14:45:51 +00002607 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00002608 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
2609
drh61e4ace2010-05-31 20:28:37 +00002610 if( op==0 ){
2611 if( pWal->exclusiveMode ){
2612 pWal->exclusiveMode = 0;
dan3cac5dc2010-06-04 18:37:59 +00002613 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drh61e4ace2010-05-31 20:28:37 +00002614 pWal->exclusiveMode = 1;
2615 }
2616 rc = pWal->exclusiveMode==0;
2617 }else{
drhaab4c022010-06-02 14:45:51 +00002618 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00002619 rc = 0;
2620 }
2621 }else if( op>0 ){
2622 assert( pWal->exclusiveMode==0 );
drhaab4c022010-06-02 14:45:51 +00002623 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00002624 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2625 pWal->exclusiveMode = 1;
2626 rc = 1;
2627 }else{
2628 rc = pWal->exclusiveMode==0;
dan55437592010-05-11 12:19:26 +00002629 }
drh61e4ace2010-05-31 20:28:37 +00002630 return rc;
dan55437592010-05-11 12:19:26 +00002631}
2632
dan5cf53532010-05-01 16:40:20 +00002633#endif /* #ifndef SQLITE_OMIT_WAL */