blob: b9a03dff2380c36bba8a82959ea185b4aa57e69c [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drhcd285082010-06-23 22:00:35 +000034** The WAL header is 32 bytes in size and consists of the following eight
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan10f5a502010-06-23 15:55:43 +000043** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
dan97a31352010-04-16 13:59:31 +000045**
drh23ea97b2010-05-20 16:45:58 +000046** Immediately following the wal-header are zero or more frames. Each
47** frame consists of a 24-byte frame-header followed by a <page-size> bytes
drhcd285082010-06-23 22:00:35 +000048** of page data. The frame-header is six big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000049** integer values, as follows:
50**
dan3de777f2010-04-17 12:31:37 +000051** 0: Page number.
52** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000053** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000054** 8: Salt-1 (copied from the header)
55** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000056** 16: Checksum-1.
57** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000058**
drh7e263722010-05-20 21:21:09 +000059** A frame is considered valid if and only if the following conditions are
60** true:
61**
62** (1) The salt-1 and salt-2 values in the frame-header match
63** salt values in the wal-header
64**
65** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000066** exactly match the checksum computed consecutively on the
67** WAL header and the first 8 bytes and the content of all frames
68** up to and including the current frame.
69**
70** The checksum is computed using 32-bit big-endian integers if the
71** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000073** The checksum values are always stored in the frame header in a
74** big-endian format regardless of which byte order is used to compute
75** the checksum. The checksum is computed by interpreting the input as
76** an even number of unsigned 32-bit integers: x[0] through x[N]. The
drhffca4302010-06-15 11:21:54 +000077** algorithm used for the checksum is as follows:
drh51b21b12010-05-25 15:53:31 +000078**
79** for i from 0 to n-1 step 2:
80** s0 += x[i] + s1;
81** s1 += x[i+1] + s0;
82** endfor
drh7e263722010-05-20 21:21:09 +000083**
drhcd285082010-06-23 22:00:35 +000084** Note that s0 and s1 are both weighted checksums using fibonacci weights
85** in reverse order (the largest fibonacci weight occurs on the first element
86** of the sequence being summed.) The s1 value spans all 32-bit
87** terms of the sequence whereas s0 omits the final term.
88**
drh7e263722010-05-20 21:21:09 +000089** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90** WAL is transferred into the database, then the database is VFS.xSync-ed.
drhffca4302010-06-15 11:21:54 +000091** The VFS.xSync operations serve as write barriers - all writes launched
drh7e263722010-05-20 21:21:09 +000092** before the xSync must complete before any write that launches after the
93** xSync begins.
94**
95** After each checkpoint, the salt-1 value is incremented and the salt-2
96** value is randomized. This prevents old and new frames in the WAL from
97** being considered valid at the same time and being checkpointing together
98** following a crash.
99**
drh29d4dbe2010-05-18 23:29:52 +0000100** READER ALGORITHM
101**
102** To read a page from the database (call it page number P), a reader
103** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +0000104** last valid instance of page P that is a followed by a commit frame
105** or is a commit frame itself becomes the value read. If the WAL
106** contains no copies of page P that are valid and which are a commit
107** frame or are followed by a commit frame, then page P is read from
108** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000109**
drh73b64e42010-05-30 19:55:15 +0000110** To start a read transaction, the reader records the index of the last
111** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112** for all subsequent read operations. New transactions can be appended
113** to the WAL, but as long as the reader uses its original mxFrame value
114** and ignores the newly appended content, it will see a consistent snapshot
115** of the database from a single point in time. This technique allows
116** multiple concurrent readers to view different versions of the database
117** content simultaneously.
118**
119** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000120** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000121** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000122** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000123** and read performance suffers. To overcome this problem, a separate
124** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000125** search for frames of a particular page.
126**
127** WAL-INDEX FORMAT
128**
129** Conceptually, the wal-index is shared memory, though VFS implementations
130** might choose to implement the wal-index using a mmapped file. Because
131** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132** on a network filesystem. All users of the database must be able to
133** share memory.
134**
135** The wal-index is transient. After a crash, the wal-index can (and should
136** be) reconstructed from the original WAL file. In fact, the VFS is required
137** to either truncate or zero the header of the wal-index when the last
138** connection to it closes. Because the wal-index is transient, it can
139** use an architecture-specific format; it does not have to be cross-platform.
140** Hence, unlike the database and WAL file formats which store all values
141** as big endian, the wal-index can store multi-byte values in the native
142** byte order of the host computer.
143**
144** The purpose of the wal-index is to answer this question quickly: Given
145** a page number P, return the index of the last frame for page P in the WAL,
146** or return NULL if there are no frames for page P in the WAL.
147**
148** The wal-index consists of a header region, followed by an one or
149** more index blocks.
150**
drh027a1282010-05-19 01:53:53 +0000151** The wal-index header contains the total number of frames within the WAL
danad3cadd2010-06-14 11:49:26 +0000152** in the the mxFrame field.
153**
154** Each index block except for the first contains information on
155** HASHTABLE_NPAGE frames. The first index block contains information on
156** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
157** HASHTABLE_NPAGE are selected so that together the wal-index header and
158** first index block are the same size as all other index blocks in the
159** wal-index.
160**
161** Each index block contains two sections, a page-mapping that contains the
162** database page number associated with each wal frame, and a hash-table
drhffca4302010-06-15 11:21:54 +0000163** that allows readers to query an index block for a specific page number.
danad3cadd2010-06-14 11:49:26 +0000164** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
165** for the first index block) 32-bit page numbers. The first entry in the
166** first index-block contains the database page number corresponding to the
167** first frame in the WAL file. The first entry in the second index block
168** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
169** the log, and so on.
170**
171** The last index block in a wal-index usually contains less than the full
172** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
173** depending on the contents of the WAL file. This does not change the
174** allocated size of the page-mapping array - the page-mapping array merely
175** contains unused entries.
drh027a1282010-05-19 01:53:53 +0000176**
177** Even without using the hash table, the last frame for page P
danad3cadd2010-06-14 11:49:26 +0000178** can be found by scanning the page-mapping sections of each index block
drh027a1282010-05-19 01:53:53 +0000179** starting with the last index block and moving toward the first, and
180** within each index block, starting at the end and moving toward the
181** beginning. The first entry that equals P corresponds to the frame
182** holding the content for that page.
183**
184** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
185** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
186** hash table for each page number in the mapping section, so the hash
187** table is never more than half full. The expected number of collisions
188** prior to finding a match is 1. Each entry of the hash table is an
189** 1-based index of an entry in the mapping section of the same
190** index block. Let K be the 1-based index of the largest entry in
191** the mapping section. (For index blocks other than the last, K will
192** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
193** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000194** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000195**
196** To look for page P in the hash table, first compute a hash iKey on
197** P as follows:
198**
199** iKey = (P * 383) % HASHTABLE_NSLOT
200**
201** Then start scanning entries of the hash table, starting with iKey
202** (wrapping around to the beginning when the end of the hash table is
203** reached) until an unused hash slot is found. Let the first unused slot
204** be at index iUnused. (iUnused might be less than iKey if there was
205** wrap-around.) Because the hash table is never more than half full,
206** the search is guaranteed to eventually hit an unused entry. Let
207** iMax be the value between iKey and iUnused, closest to iUnused,
208** where aHash[iMax]==P. If there is no iMax entry (if there exists
209** no hash slot such that aHash[i]==p) then page P is not in the
210** current index block. Otherwise the iMax-th mapping entry of the
211** current index block corresponds to the last entry that references
212** page P.
213**
214** A hash search begins with the last index block and moves toward the
215** first index block, looking for entries corresponding to page P. On
216** average, only two or three slots in each index block need to be
217** examined in order to either find the last entry for page P, or to
218** establish that no such entry exists in the block. Each index block
219** holds over 4000 entries. So two or three index blocks are sufficient
220** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
221** comparisons (on average) suffice to either locate a frame in the
222** WAL or to establish that the frame does not exist in the WAL. This
223** is much faster than scanning the entire 10MB WAL.
224**
225** Note that entries are added in order of increasing K. Hence, one
226** reader might be using some value K0 and a second reader that started
227** at a later time (after additional transactions were added to the WAL
228** and to the wal-index) might be using a different value K1, where K1>K0.
229** Both readers can use the same hash table and mapping section to get
230** the correct result. There may be entries in the hash table with
231** K>K0 but to the first reader, those entries will appear to be unused
232** slots in the hash table and so the first reader will get an answer as
233** if no values greater than K0 had ever been inserted into the hash table
234** in the first place - which is what reader one wants. Meanwhile, the
235** second reader using K1 will see additional values that were inserted
236** later, which is exactly what reader two wants.
237**
dan6f150142010-05-21 15:31:56 +0000238** When a rollback occurs, the value of K is decreased. Hash table entries
239** that correspond to frames greater than the new K value are removed
240** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000241*/
drh29d4dbe2010-05-18 23:29:52 +0000242#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000243
drh29d4dbe2010-05-18 23:29:52 +0000244#include "wal.h"
245
drh73b64e42010-05-30 19:55:15 +0000246/*
drhc74c3332010-05-31 12:15:19 +0000247** Trace output macros
248*/
drhc74c3332010-05-31 12:15:19 +0000249#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000250int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000251# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
252#else
253# define WALTRACE(X)
254#endif
255
dan10f5a502010-06-23 15:55:43 +0000256/*
257** The maximum (and only) versions of the wal and wal-index formats
258** that may be interpreted by this version of SQLite.
259**
260** If a client begins recovering a WAL file and finds that (a) the checksum
261** values in the wal-header are correct and (b) the version field is not
262** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
263**
264** Similarly, if a client successfully reads a wal-index header (i.e. the
265** checksum test is successful) and finds that the version field is not
266** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
267** returns SQLITE_CANTOPEN.
268*/
269#define WAL_MAX_VERSION 3007000
270#define WALINDEX_MAX_VERSION 3007000
drhc74c3332010-05-31 12:15:19 +0000271
272/*
drh73b64e42010-05-30 19:55:15 +0000273** Indices of various locking bytes. WAL_NREADER is the number
274** of available reader locks and should be at least 3.
275*/
276#define WAL_WRITE_LOCK 0
277#define WAL_ALL_BUT_WRITE 1
278#define WAL_CKPT_LOCK 1
279#define WAL_RECOVER_LOCK 2
280#define WAL_READ_LOCK(I) (3+(I))
281#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
282
dan97a31352010-04-16 13:59:31 +0000283
drh7ed91f22010-04-29 22:34:07 +0000284/* Object declarations */
285typedef struct WalIndexHdr WalIndexHdr;
286typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000287typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000288
289
290/*
drh286a2882010-05-20 23:51:06 +0000291** The following object holds a copy of the wal-index header content.
292**
293** The actual header in the wal-index consists of two copies of this
294** object.
drh9b78f792010-08-14 21:21:24 +0000295**
296** The szPage value can be any power of 2 between 512 and 32768, inclusive.
297** Or it can be 1 to represent a 65536-byte page. The latter case was
298** added in 3.7.1 when support for 64K pages was added.
dan7c246102010-04-12 19:00:29 +0000299*/
drh7ed91f22010-04-29 22:34:07 +0000300struct WalIndexHdr {
dan10f5a502010-06-23 15:55:43 +0000301 u32 iVersion; /* Wal-index version */
302 u32 unused; /* Unused (padding) field */
dan71d89912010-05-24 13:57:42 +0000303 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000304 u8 isInit; /* 1 when initialized */
305 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
drh9b78f792010-08-14 21:21:24 +0000306 u16 szPage; /* Database page size in bytes. 1==64K */
dand0aa3422010-05-31 16:41:53 +0000307 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000308 u32 nPage; /* Size of database in pages */
309 u32 aFrameCksum[2]; /* Checksum of last frame in log */
310 u32 aSalt[2]; /* Two salt values copied from WAL header */
311 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000312};
313
drh73b64e42010-05-30 19:55:15 +0000314/*
315** A copy of the following object occurs in the wal-index immediately
316** following the second copy of the WalIndexHdr. This object stores
317** information used by checkpoint.
318**
319** nBackfill is the number of frames in the WAL that have been written
320** back into the database. (We call the act of moving content from WAL to
321** database "backfilling".) The nBackfill number is never greater than
322** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
323** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
324** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
325** mxFrame back to zero when the WAL is reset.
326**
327** There is one entry in aReadMark[] for each reader lock. If a reader
328** holds read-lock K, then the value in aReadMark[K] is no greater than
drhdb7f6472010-06-09 14:45:12 +0000329** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
330** for any aReadMark[] means that entry is unused. aReadMark[0] is
331** a special case; its value is never used and it exists as a place-holder
332** to avoid having to offset aReadMark[] indexs by one. Readers holding
333** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
334** directly from the database.
drh73b64e42010-05-30 19:55:15 +0000335**
336** The value of aReadMark[K] may only be changed by a thread that
337** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
338** aReadMark[K] cannot changed while there is a reader is using that mark
339** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
340**
341** The checkpointer may only transfer frames from WAL to database where
342** the frame numbers are less than or equal to every aReadMark[] that is
343** in use (that is, every aReadMark[j] for which there is a corresponding
344** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
345** largest value and will increase an unused aReadMark[] to mxFrame if there
346** is not already an aReadMark[] equal to mxFrame. The exception to the
347** previous sentence is when nBackfill equals mxFrame (meaning that everything
348** in the WAL has been backfilled into the database) then new readers
349** will choose aReadMark[0] which has value 0 and hence such reader will
350** get all their all content directly from the database file and ignore
351** the WAL.
352**
353** Writers normally append new frames to the end of the WAL. However,
354** if nBackfill equals mxFrame (meaning that all WAL content has been
355** written back into the database) and if no readers are using the WAL
356** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
357** the writer will first "reset" the WAL back to the beginning and start
358** writing new content beginning at frame 1.
359**
360** We assume that 32-bit loads are atomic and so no locks are needed in
361** order to read from any aReadMark[] entries.
362*/
363struct WalCkptInfo {
364 u32 nBackfill; /* Number of WAL frames backfilled into DB */
365 u32 aReadMark[WAL_NREADER]; /* Reader marks */
366};
drhdb7f6472010-06-09 14:45:12 +0000367#define READMARK_NOT_USED 0xffffffff
drh73b64e42010-05-30 19:55:15 +0000368
369
drh7e263722010-05-20 21:21:09 +0000370/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
371** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
372** only support mandatory file-locks, we do not read or write data
373** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000374*/
drh73b64e42010-05-30 19:55:15 +0000375#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
376#define WALINDEX_LOCK_RESERVED 16
drh026ac282010-05-26 15:06:38 +0000377#define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
dan7c246102010-04-12 19:00:29 +0000378
drh7ed91f22010-04-29 22:34:07 +0000379/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000380#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000381
dan10f5a502010-06-23 15:55:43 +0000382/* Size of write ahead log header, including checksum. */
383/* #define WAL_HDRSIZE 24 */
384#define WAL_HDRSIZE 32
dan97a31352010-04-16 13:59:31 +0000385
danb8fd6c22010-05-24 10:39:36 +0000386/* WAL magic value. Either this value, or the same value with the least
387** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
388** big-endian format in the first 4 bytes of a WAL file.
389**
390** If the LSB is set, then the checksums for each frame within the WAL
391** file are calculated by treating all data as an array of 32-bit
392** big-endian words. Otherwise, they are calculated by interpreting
393** all data as 32-bit little-endian words.
394*/
395#define WAL_MAGIC 0x377f0682
396
dan97a31352010-04-16 13:59:31 +0000397/*
drh7ed91f22010-04-29 22:34:07 +0000398** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000399** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000400** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000401*/
drh6e810962010-05-19 17:49:50 +0000402#define walFrameOffset(iFrame, szPage) ( \
danbd0e9072010-07-07 09:48:44 +0000403 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000404)
dan7c246102010-04-12 19:00:29 +0000405
406/*
drh7ed91f22010-04-29 22:34:07 +0000407** An open write-ahead log file is represented by an instance of the
408** following object.
dance4f05f2010-04-22 19:14:13 +0000409*/
drh7ed91f22010-04-29 22:34:07 +0000410struct Wal {
drh73b64e42010-05-30 19:55:15 +0000411 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000412 sqlite3_file *pDbFd; /* File handle for the database file */
413 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000414 u32 iCallback; /* Value to pass to log callback (or 0) */
drh85a83752011-05-16 21:00:27 +0000415 i64 mxWalSize; /* Truncate WAL to this size upon reset */
dan13a3cb82010-06-11 19:04:21 +0000416 int nWiData; /* Size of array apWiData */
417 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
drhb2eced52010-08-12 02:41:12 +0000418 u32 szPage; /* Database page size */
drh73b64e42010-05-30 19:55:15 +0000419 i16 readLock; /* Which read lock is being held. -1 for none */
dan55437592010-05-11 12:19:26 +0000420 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000421 u8 writeLock; /* True if in a write transaction */
422 u8 ckptLock; /* True if holding a checkpoint lock */
drh66dfec8b2011-06-01 20:01:49 +0000423 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
drh73b64e42010-05-30 19:55:15 +0000424 WalIndexHdr hdr; /* Wal-index header for current transaction */
dan3e875ef2010-07-05 19:03:35 +0000425 const char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000426 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000427#ifdef SQLITE_DEBUG
428 u8 lockError; /* True if a locking error has occurred */
429#endif
dan7c246102010-04-12 19:00:29 +0000430};
431
drh73b64e42010-05-30 19:55:15 +0000432/*
dan8c408002010-11-01 17:38:24 +0000433** Candidate values for Wal.exclusiveMode.
434*/
435#define WAL_NORMAL_MODE 0
436#define WAL_EXCLUSIVE_MODE 1
437#define WAL_HEAPMEMORY_MODE 2
438
439/*
drh66dfec8b2011-06-01 20:01:49 +0000440** Possible values for WAL.readOnly
441*/
442#define WAL_RDWR 0 /* Normal read/write connection */
443#define WAL_RDONLY 1 /* The WAL file is readonly */
444#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
445
446/*
dan067f3162010-06-14 10:30:12 +0000447** Each page of the wal-index mapping contains a hash-table made up of
448** an array of HASHTABLE_NSLOT elements of the following type.
449*/
450typedef u16 ht_slot;
451
452/*
danad3cadd2010-06-14 11:49:26 +0000453** This structure is used to implement an iterator that loops through
454** all frames in the WAL in database page order. Where two or more frames
455** correspond to the same database page, the iterator visits only the
456** frame most recently written to the WAL (in other words, the frame with
457** the largest index).
458**
459** The internals of this structure are only accessed by:
460**
461** walIteratorInit() - Create a new iterator,
462** walIteratorNext() - Step an iterator,
463** walIteratorFree() - Free an iterator.
464**
465** This functionality is used by the checkpoint code (see walCheckpoint()).
466*/
467struct WalIterator {
468 int iPrior; /* Last result returned from the iterator */
drhd9c9b782010-12-15 21:02:06 +0000469 int nSegment; /* Number of entries in aSegment[] */
danad3cadd2010-06-14 11:49:26 +0000470 struct WalSegment {
471 int iNext; /* Next slot in aIndex[] not yet returned */
472 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
473 u32 *aPgno; /* Array of page numbers. */
drhd9c9b782010-12-15 21:02:06 +0000474 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
danad3cadd2010-06-14 11:49:26 +0000475 int iZero; /* Frame number associated with aPgno[0] */
drhd9c9b782010-12-15 21:02:06 +0000476 } aSegment[1]; /* One for every 32KB page in the wal-index */
danad3cadd2010-06-14 11:49:26 +0000477};
478
479/*
dan13a3cb82010-06-11 19:04:21 +0000480** Define the parameters of the hash tables in the wal-index file. There
481** is a hash-table following every HASHTABLE_NPAGE page numbers in the
482** wal-index.
483**
484** Changing any of these constants will alter the wal-index format and
485** create incompatibilities.
486*/
dan067f3162010-06-14 10:30:12 +0000487#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000488#define HASHTABLE_HASH_1 383 /* Should be prime */
489#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000490
danad3cadd2010-06-14 11:49:26 +0000491/*
492** The block of page numbers associated with the first hash-table in a
dan13a3cb82010-06-11 19:04:21 +0000493** wal-index is smaller than usual. This is so that there is a complete
494** hash-table on each aligned 32KB page of the wal-index.
495*/
dan067f3162010-06-14 10:30:12 +0000496#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
dan13a3cb82010-06-11 19:04:21 +0000497
dan067f3162010-06-14 10:30:12 +0000498/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
499#define WALINDEX_PGSZ ( \
500 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
501)
dan13a3cb82010-06-11 19:04:21 +0000502
503/*
504** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
dan067f3162010-06-14 10:30:12 +0000505** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
dan13a3cb82010-06-11 19:04:21 +0000506** numbered from zero.
507**
508** If this call is successful, *ppPage is set to point to the wal-index
509** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
510** then an SQLite error code is returned and *ppPage is set to 0.
511*/
512static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
513 int rc = SQLITE_OK;
514
515 /* Enlarge the pWal->apWiData[] array if required */
516 if( pWal->nWiData<=iPage ){
drh519426a2010-07-09 03:19:07 +0000517 int nByte = sizeof(u32*)*(iPage+1);
dan13a3cb82010-06-11 19:04:21 +0000518 volatile u32 **apNew;
shaneh8a300f82010-07-02 18:15:31 +0000519 apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte);
dan13a3cb82010-06-11 19:04:21 +0000520 if( !apNew ){
521 *ppPage = 0;
522 return SQLITE_NOMEM;
523 }
drh519426a2010-07-09 03:19:07 +0000524 memset((void*)&apNew[pWal->nWiData], 0,
525 sizeof(u32*)*(iPage+1-pWal->nWiData));
dan13a3cb82010-06-11 19:04:21 +0000526 pWal->apWiData = apNew;
527 pWal->nWiData = iPage+1;
528 }
529
530 /* Request a pointer to the required page from the VFS */
531 if( pWal->apWiData[iPage]==0 ){
dan8c408002010-11-01 17:38:24 +0000532 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
533 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
534 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
535 }else{
536 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
537 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
538 );
drh66dfec8b2011-06-01 20:01:49 +0000539 if( rc==SQLITE_READONLY ){
540 pWal->readOnly |= WAL_SHM_RDONLY;
541 rc = SQLITE_OK;
dan4edc6bf2011-05-10 17:31:29 +0000542 }
dan8c408002010-11-01 17:38:24 +0000543 }
dan13a3cb82010-06-11 19:04:21 +0000544 }
danb6d2f9c2011-05-11 14:57:33 +0000545
drh66dfec8b2011-06-01 20:01:49 +0000546 *ppPage = pWal->apWiData[iPage];
dan13a3cb82010-06-11 19:04:21 +0000547 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
548 return rc;
549}
550
551/*
drh73b64e42010-05-30 19:55:15 +0000552** Return a pointer to the WalCkptInfo structure in the wal-index.
553*/
554static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000555 assert( pWal->nWiData>0 && pWal->apWiData[0] );
556 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
557}
558
559/*
560** Return a pointer to the WalIndexHdr structure in the wal-index.
561*/
562static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
563 assert( pWal->nWiData>0 && pWal->apWiData[0] );
564 return (volatile WalIndexHdr*)pWal->apWiData[0];
drh73b64e42010-05-30 19:55:15 +0000565}
566
dan7c246102010-04-12 19:00:29 +0000567/*
danb8fd6c22010-05-24 10:39:36 +0000568** The argument to this macro must be of type u32. On a little-endian
569** architecture, it returns the u32 value that results from interpreting
570** the 4 bytes as a big-endian value. On a big-endian architecture, it
571** returns the value that would be produced by intepreting the 4 bytes
572** of the input value as a little-endian integer.
573*/
574#define BYTESWAP32(x) ( \
575 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
576 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
577)
dan64d039e2010-04-13 19:27:31 +0000578
dan7c246102010-04-12 19:00:29 +0000579/*
drh7e263722010-05-20 21:21:09 +0000580** Generate or extend an 8 byte checksum based on the data in
581** array aByte[] and the initial values of aIn[0] and aIn[1] (or
582** initial values of 0 and 0 if aIn==NULL).
583**
584** The checksum is written back into aOut[] before returning.
585**
586** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000587*/
drh7e263722010-05-20 21:21:09 +0000588static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000589 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000590 u8 *a, /* Content to be checksummed */
591 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
592 const u32 *aIn, /* Initial checksum value input */
593 u32 *aOut /* OUT: Final checksum value output */
594){
595 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000596 u32 *aData = (u32 *)a;
597 u32 *aEnd = (u32 *)&a[nByte];
598
drh7e263722010-05-20 21:21:09 +0000599 if( aIn ){
600 s1 = aIn[0];
601 s2 = aIn[1];
602 }else{
603 s1 = s2 = 0;
604 }
dan7c246102010-04-12 19:00:29 +0000605
drh584c7542010-05-19 18:08:10 +0000606 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000607 assert( (nByte&0x00000007)==0 );
dan7c246102010-04-12 19:00:29 +0000608
danb8fd6c22010-05-24 10:39:36 +0000609 if( nativeCksum ){
610 do {
611 s1 += *aData++ + s2;
612 s2 += *aData++ + s1;
613 }while( aData<aEnd );
614 }else{
615 do {
616 s1 += BYTESWAP32(aData[0]) + s2;
617 s2 += BYTESWAP32(aData[1]) + s1;
618 aData += 2;
619 }while( aData<aEnd );
620 }
621
drh7e263722010-05-20 21:21:09 +0000622 aOut[0] = s1;
623 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000624}
625
dan8c408002010-11-01 17:38:24 +0000626static void walShmBarrier(Wal *pWal){
627 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
628 sqlite3OsShmBarrier(pWal->pDbFd);
629 }
630}
631
dan7c246102010-04-12 19:00:29 +0000632/*
drh7e263722010-05-20 21:21:09 +0000633** Write the header information in pWal->hdr into the wal-index.
634**
635** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000636*/
drh7e263722010-05-20 21:21:09 +0000637static void walIndexWriteHdr(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000638 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
639 const int nCksum = offsetof(WalIndexHdr, aCksum);
drh73b64e42010-05-30 19:55:15 +0000640
641 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000642 pWal->hdr.isInit = 1;
dan10f5a502010-06-23 15:55:43 +0000643 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
dan4280eb32010-06-12 12:02:35 +0000644 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
645 memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
dan8c408002010-11-01 17:38:24 +0000646 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +0000647 memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000648}
649
650/*
651** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000652** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000653** 4-byte big-endian integers, as follows:
654**
drh23ea97b2010-05-20 16:45:58 +0000655** 0: Page number.
656** 4: For commit records, the size of the database image in pages
657** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000658** 8: Salt-1 (copied from the wal-header)
659** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000660** 16: Checksum-1.
661** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000662*/
drh7ed91f22010-04-29 22:34:07 +0000663static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000664 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000665 u32 iPage, /* Database page number for frame */
666 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000667 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000668 u8 *aFrame /* OUT: Write encoded frame here */
669){
danb8fd6c22010-05-24 10:39:36 +0000670 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000671 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000672 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000673 sqlite3Put4byte(&aFrame[0], iPage);
674 sqlite3Put4byte(&aFrame[4], nTruncate);
drh7e263722010-05-20 21:21:09 +0000675 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000676
danb8fd6c22010-05-24 10:39:36 +0000677 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000678 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000679 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000680
drh23ea97b2010-05-20 16:45:58 +0000681 sqlite3Put4byte(&aFrame[16], aCksum[0]);
682 sqlite3Put4byte(&aFrame[20], aCksum[1]);
dan7c246102010-04-12 19:00:29 +0000683}
684
685/*
drh7e263722010-05-20 21:21:09 +0000686** Check to see if the frame with header in aFrame[] and content
687** in aData[] is valid. If it is a valid frame, fill *piPage and
688** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000689*/
drh7ed91f22010-04-29 22:34:07 +0000690static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000691 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000692 u32 *piPage, /* OUT: Database page number for frame */
693 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000694 u8 *aData, /* Pointer to page data (for checksum) */
695 u8 *aFrame /* Frame data */
696){
danb8fd6c22010-05-24 10:39:36 +0000697 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000698 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000699 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000700 assert( WAL_FRAME_HDRSIZE==24 );
701
drh7e263722010-05-20 21:21:09 +0000702 /* A frame is only valid if the salt values in the frame-header
703 ** match the salt values in the wal-header.
704 */
705 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000706 return 0;
707 }
dan4a4b01d2010-04-16 11:30:18 +0000708
drhc8179152010-05-24 13:28:36 +0000709 /* A frame is only valid if the page number is creater than zero.
710 */
711 pgno = sqlite3Get4byte(&aFrame[0]);
712 if( pgno==0 ){
713 return 0;
714 }
715
drh519426a2010-07-09 03:19:07 +0000716 /* A frame is only valid if a checksum of the WAL header,
717 ** all prior frams, the first 16 bytes of this frame-header,
718 ** and the frame-data matches the checksum in the last 8
719 ** bytes of this frame-header.
drh7e263722010-05-20 21:21:09 +0000720 */
danb8fd6c22010-05-24 10:39:36 +0000721 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000722 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000723 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000724 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
725 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000726 ){
727 /* Checksum failed. */
728 return 0;
729 }
730
drh7e263722010-05-20 21:21:09 +0000731 /* If we reach this point, the frame is valid. Return the page number
732 ** and the new database size.
733 */
drhc8179152010-05-24 13:28:36 +0000734 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000735 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000736 return 1;
737}
738
dan7c246102010-04-12 19:00:29 +0000739
drhc74c3332010-05-31 12:15:19 +0000740#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
741/*
drh181e0912010-06-01 01:08:08 +0000742** Names of locks. This routine is used to provide debugging output and is not
743** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000744*/
745static const char *walLockName(int lockIdx){
746 if( lockIdx==WAL_WRITE_LOCK ){
747 return "WRITE-LOCK";
748 }else if( lockIdx==WAL_CKPT_LOCK ){
749 return "CKPT-LOCK";
750 }else if( lockIdx==WAL_RECOVER_LOCK ){
751 return "RECOVER-LOCK";
752 }else{
753 static char zName[15];
754 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
755 lockIdx-WAL_READ_LOCK(0));
756 return zName;
757 }
758}
759#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
760
761
dan7c246102010-04-12 19:00:29 +0000762/*
drh181e0912010-06-01 01:08:08 +0000763** Set or release locks on the WAL. Locks are either shared or exclusive.
764** A lock cannot be moved directly between shared and exclusive - it must go
765** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000766**
767** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
768*/
769static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000770 int rc;
drh73b64e42010-05-30 19:55:15 +0000771 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000772 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
773 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
774 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
775 walLockName(lockIdx), rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000776 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000777 return rc;
drh73b64e42010-05-30 19:55:15 +0000778}
779static void walUnlockShared(Wal *pWal, int lockIdx){
780 if( pWal->exclusiveMode ) return;
781 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
782 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000783 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000784}
785static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000786 int rc;
drh73b64e42010-05-30 19:55:15 +0000787 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000788 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
789 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
790 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
791 walLockName(lockIdx), n, rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000792 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000793 return rc;
drh73b64e42010-05-30 19:55:15 +0000794}
795static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
796 if( pWal->exclusiveMode ) return;
797 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
798 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000799 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
800 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000801}
802
803/*
drh29d4dbe2010-05-18 23:29:52 +0000804** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000805** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
806** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000807*/
808static int walHash(u32 iPage){
809 assert( iPage>0 );
810 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
811 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
812}
813static int walNextHash(int iPriorHash){
814 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000815}
816
dan4280eb32010-06-12 12:02:35 +0000817/*
818** Return pointers to the hash table and page number array stored on
819** page iHash of the wal-index. The wal-index is broken into 32KB pages
820** numbered starting from 0.
821**
822** Set output variable *paHash to point to the start of the hash table
823** in the wal-index file. Set *piZero to one less than the frame
824** number of the first frame indexed by this hash table. If a
825** slot in the hash table is set to N, it refers to frame number
826** (*piZero+N) in the log.
827**
dand60bf112010-06-14 11:18:50 +0000828** Finally, set *paPgno so that *paPgno[1] is the page number of the
829** first frame indexed by the hash table, frame (*piZero+1).
dan4280eb32010-06-12 12:02:35 +0000830*/
831static int walHashGet(
dan13a3cb82010-06-11 19:04:21 +0000832 Wal *pWal, /* WAL handle */
833 int iHash, /* Find the iHash'th table */
dan067f3162010-06-14 10:30:12 +0000834 volatile ht_slot **paHash, /* OUT: Pointer to hash index */
dan13a3cb82010-06-11 19:04:21 +0000835 volatile u32 **paPgno, /* OUT: Pointer to page number array */
836 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
837){
dan4280eb32010-06-12 12:02:35 +0000838 int rc; /* Return code */
dan13a3cb82010-06-11 19:04:21 +0000839 volatile u32 *aPgno;
dan13a3cb82010-06-11 19:04:21 +0000840
dan4280eb32010-06-12 12:02:35 +0000841 rc = walIndexPage(pWal, iHash, &aPgno);
842 assert( rc==SQLITE_OK || iHash>0 );
dan13a3cb82010-06-11 19:04:21 +0000843
dan4280eb32010-06-12 12:02:35 +0000844 if( rc==SQLITE_OK ){
845 u32 iZero;
dan067f3162010-06-14 10:30:12 +0000846 volatile ht_slot *aHash;
dan4280eb32010-06-12 12:02:35 +0000847
dan067f3162010-06-14 10:30:12 +0000848 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
dan4280eb32010-06-12 12:02:35 +0000849 if( iHash==0 ){
dand60bf112010-06-14 11:18:50 +0000850 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
dan4280eb32010-06-12 12:02:35 +0000851 iZero = 0;
852 }else{
853 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
dan4280eb32010-06-12 12:02:35 +0000854 }
855
dand60bf112010-06-14 11:18:50 +0000856 *paPgno = &aPgno[-1];
dan4280eb32010-06-12 12:02:35 +0000857 *paHash = aHash;
858 *piZero = iZero;
dan13a3cb82010-06-11 19:04:21 +0000859 }
dan4280eb32010-06-12 12:02:35 +0000860 return rc;
dan13a3cb82010-06-11 19:04:21 +0000861}
862
dan4280eb32010-06-12 12:02:35 +0000863/*
864** Return the number of the wal-index page that contains the hash-table
865** and page-number array that contain entries corresponding to WAL frame
866** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
867** are numbered starting from 0.
868*/
dan13a3cb82010-06-11 19:04:21 +0000869static int walFramePage(u32 iFrame){
870 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
871 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
872 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
873 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
874 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
875 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
876 );
877 return iHash;
878}
879
880/*
881** Return the page number associated with frame iFrame in this WAL.
882*/
883static u32 walFramePgno(Wal *pWal, u32 iFrame){
884 int iHash = walFramePage(iFrame);
885 if( iHash==0 ){
886 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
887 }
888 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
889}
danbb23aff2010-05-10 14:46:09 +0000890
danca6b5ba2010-05-25 10:50:56 +0000891/*
892** Remove entries from the hash table that point to WAL slots greater
893** than pWal->hdr.mxFrame.
894**
895** This function is called whenever pWal->hdr.mxFrame is decreased due
896** to a rollback or savepoint.
897**
drh181e0912010-06-01 01:08:08 +0000898** At most only the hash table containing pWal->hdr.mxFrame needs to be
899** updated. Any later hash tables will be automatically cleared when
900** pWal->hdr.mxFrame advances to the point where those hash tables are
901** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000902*/
903static void walCleanupHash(Wal *pWal){
drhff828942010-06-26 21:34:06 +0000904 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */
905 volatile u32 *aPgno = 0; /* Page number array for hash table */
906 u32 iZero = 0; /* frame == (aHash[x]+iZero) */
dan067f3162010-06-14 10:30:12 +0000907 int iLimit = 0; /* Zero values greater than this */
908 int nByte; /* Number of bytes to zero in aPgno[] */
909 int i; /* Used to iterate through aHash[] */
danca6b5ba2010-05-25 10:50:56 +0000910
drh73b64e42010-05-30 19:55:15 +0000911 assert( pWal->writeLock );
drhffca4302010-06-15 11:21:54 +0000912 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
913 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
914 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
drh9c156472010-06-01 12:58:41 +0000915
dan4280eb32010-06-12 12:02:35 +0000916 if( pWal->hdr.mxFrame==0 ) return;
917
918 /* Obtain pointers to the hash-table and page-number array containing
919 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
920 ** that the page said hash-table and array reside on is already mapped.
921 */
922 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
923 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
924 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
925
926 /* Zero all hash-table entries that correspond to frame numbers greater
927 ** than pWal->hdr.mxFrame.
928 */
929 iLimit = pWal->hdr.mxFrame - iZero;
930 assert( iLimit>0 );
931 for(i=0; i<HASHTABLE_NSLOT; i++){
932 if( aHash[i]>iLimit ){
933 aHash[i] = 0;
danca6b5ba2010-05-25 10:50:56 +0000934 }
danca6b5ba2010-05-25 10:50:56 +0000935 }
dan4280eb32010-06-12 12:02:35 +0000936
937 /* Zero the entries in the aPgno array that correspond to frames with
938 ** frame numbers greater than pWal->hdr.mxFrame.
939 */
shaneh5eba1f62010-07-02 17:05:03 +0000940 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
dand60bf112010-06-14 11:18:50 +0000941 memset((void *)&aPgno[iLimit+1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000942
943#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
944 /* Verify that the every entry in the mapping region is still reachable
945 ** via the hash table even after the cleanup.
946 */
drhf77bbd92010-06-01 13:17:44 +0000947 if( iLimit ){
danca6b5ba2010-05-25 10:50:56 +0000948 int i; /* Loop counter */
949 int iKey; /* Hash key */
950 for(i=1; i<=iLimit; i++){
dand60bf112010-06-14 11:18:50 +0000951 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
danca6b5ba2010-05-25 10:50:56 +0000952 if( aHash[iKey]==i ) break;
953 }
954 assert( aHash[iKey]==i );
955 }
956 }
957#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
958}
959
danbb23aff2010-05-10 14:46:09 +0000960
drh7ed91f22010-04-29 22:34:07 +0000961/*
drh29d4dbe2010-05-18 23:29:52 +0000962** Set an entry in the wal-index that will map database page number
963** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +0000964*/
drh7ed91f22010-04-29 22:34:07 +0000965static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
dan4280eb32010-06-12 12:02:35 +0000966 int rc; /* Return code */
drhff828942010-06-26 21:34:06 +0000967 u32 iZero = 0; /* One less than frame number of aPgno[1] */
968 volatile u32 *aPgno = 0; /* Page number array */
969 volatile ht_slot *aHash = 0; /* Hash table */
dance4f05f2010-04-22 19:14:13 +0000970
dan4280eb32010-06-12 12:02:35 +0000971 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
972
973 /* Assuming the wal-index file was successfully mapped, populate the
974 ** page number array and hash table entry.
dan7c246102010-04-12 19:00:29 +0000975 */
danbb23aff2010-05-10 14:46:09 +0000976 if( rc==SQLITE_OK ){
977 int iKey; /* Hash table key */
dan4280eb32010-06-12 12:02:35 +0000978 int idx; /* Value to write to hash-table slot */
drh519426a2010-07-09 03:19:07 +0000979 int nCollide; /* Number of hash collisions */
dan7c246102010-04-12 19:00:29 +0000980
danbb23aff2010-05-10 14:46:09 +0000981 idx = iFrame - iZero;
dan4280eb32010-06-12 12:02:35 +0000982 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
983
984 /* If this is the first entry to be added to this hash-table, zero the
985 ** entire hash table and aPgno[] array before proceding.
986 */
danca6b5ba2010-05-25 10:50:56 +0000987 if( idx==1 ){
shaneh5eba1f62010-07-02 17:05:03 +0000988 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
dand60bf112010-06-14 11:18:50 +0000989 memset((void*)&aPgno[1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000990 }
danca6b5ba2010-05-25 10:50:56 +0000991
dan4280eb32010-06-12 12:02:35 +0000992 /* If the entry in aPgno[] is already set, then the previous writer
993 ** must have exited unexpectedly in the middle of a transaction (after
994 ** writing one or more dirty pages to the WAL to free up memory).
995 ** Remove the remnants of that writers uncommitted transaction from
996 ** the hash-table before writing any new entries.
997 */
dand60bf112010-06-14 11:18:50 +0000998 if( aPgno[idx] ){
danca6b5ba2010-05-25 10:50:56 +0000999 walCleanupHash(pWal);
dand60bf112010-06-14 11:18:50 +00001000 assert( !aPgno[idx] );
danca6b5ba2010-05-25 10:50:56 +00001001 }
dan4280eb32010-06-12 12:02:35 +00001002
1003 /* Write the aPgno[] array entry and the hash-table slot. */
drh519426a2010-07-09 03:19:07 +00001004 nCollide = idx;
dan6f150142010-05-21 15:31:56 +00001005 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
drh519426a2010-07-09 03:19:07 +00001006 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
drh29d4dbe2010-05-18 23:29:52 +00001007 }
dand60bf112010-06-14 11:18:50 +00001008 aPgno[idx] = iPage;
shaneh5eba1f62010-07-02 17:05:03 +00001009 aHash[iKey] = (ht_slot)idx;
drh4fa95bf2010-05-22 00:55:39 +00001010
1011#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1012 /* Verify that the number of entries in the hash table exactly equals
1013 ** the number of entries in the mapping region.
1014 */
1015 {
1016 int i; /* Loop counter */
1017 int nEntry = 0; /* Number of entries in the hash table */
1018 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1019 assert( nEntry==idx );
1020 }
1021
1022 /* Verify that the every entry in the mapping region is reachable
1023 ** via the hash table. This turns out to be a really, really expensive
1024 ** thing to check, so only do this occasionally - not on every
1025 ** iteration.
1026 */
1027 if( (idx&0x3ff)==0 ){
1028 int i; /* Loop counter */
1029 for(i=1; i<=idx; i++){
dand60bf112010-06-14 11:18:50 +00001030 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
drh4fa95bf2010-05-22 00:55:39 +00001031 if( aHash[iKey]==i ) break;
1032 }
1033 assert( aHash[iKey]==i );
1034 }
1035 }
1036#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +00001037 }
dan31f98fc2010-04-27 05:42:32 +00001038
drh4fa95bf2010-05-22 00:55:39 +00001039
danbb23aff2010-05-10 14:46:09 +00001040 return rc;
dan7c246102010-04-12 19:00:29 +00001041}
1042
1043
1044/*
drh7ed91f22010-04-29 22:34:07 +00001045** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +00001046**
1047** This routine first tries to establish an exclusive lock on the
1048** wal-index to prevent other threads/processes from doing anything
1049** with the WAL or wal-index while recovery is running. The
1050** WAL_RECOVER_LOCK is also held so that other threads will know
1051** that this thread is running recovery. If unable to establish
1052** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +00001053*/
drh7ed91f22010-04-29 22:34:07 +00001054static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +00001055 int rc; /* Return Code */
1056 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +00001057 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +00001058 int iLock; /* Lock offset to lock for checkpoint */
1059 int nLock; /* Number of locks to hold */
dan7c246102010-04-12 19:00:29 +00001060
dand0aa3422010-05-31 16:41:53 +00001061 /* Obtain an exclusive lock on all byte in the locking range not already
1062 ** locked by the caller. The caller is guaranteed to have locked the
1063 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1064 ** If successful, the same bytes that are locked here are unlocked before
1065 ** this function returns.
1066 */
1067 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1068 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1069 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1070 assert( pWal->writeLock );
1071 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1072 nLock = SQLITE_SHM_NLOCK - iLock;
1073 rc = walLockExclusive(pWal, iLock, nLock);
drh73b64e42010-05-30 19:55:15 +00001074 if( rc ){
1075 return rc;
1076 }
drhc74c3332010-05-31 12:15:19 +00001077 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +00001078
dan71d89912010-05-24 13:57:42 +00001079 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +00001080
drhd9e5c4f2010-05-12 18:01:39 +00001081 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +00001082 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001083 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001084 }
1085
danb8fd6c22010-05-24 10:39:36 +00001086 if( nSize>WAL_HDRSIZE ){
1087 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dan7c246102010-04-12 19:00:29 +00001088 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001089 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001090 u8 *aData; /* Pointer to data part of aFrame buffer */
1091 int iFrame; /* Index of last frame read */
1092 i64 iOffset; /* Next offset to read from log file */
drh6e810962010-05-19 17:49:50 +00001093 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001094 u32 magic; /* Magic value read from WAL header */
dan10f5a502010-06-23 15:55:43 +00001095 u32 version; /* Magic value read from WAL header */
dan7c246102010-04-12 19:00:29 +00001096
danb8fd6c22010-05-24 10:39:36 +00001097 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001098 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001099 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001100 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001101 }
1102
1103 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001104 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1105 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1106 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001107 */
danb8fd6c22010-05-24 10:39:36 +00001108 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001109 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001110 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1111 || szPage&(szPage-1)
1112 || szPage>SQLITE_MAX_PAGE_SIZE
1113 || szPage<512
1114 ){
dan7c246102010-04-12 19:00:29 +00001115 goto finished;
1116 }
shaneh5eba1f62010-07-02 17:05:03 +00001117 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
drhb2eced52010-08-12 02:41:12 +00001118 pWal->szPage = szPage;
drh23ea97b2010-05-20 16:45:58 +00001119 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001120 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
drhcd285082010-06-23 22:00:35 +00001121
1122 /* Verify that the WAL header checksum is correct */
dan71d89912010-05-24 13:57:42 +00001123 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
dan10f5a502010-06-23 15:55:43 +00001124 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
dan71d89912010-05-24 13:57:42 +00001125 );
dan10f5a502010-06-23 15:55:43 +00001126 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1127 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1128 ){
1129 goto finished;
1130 }
1131
drhcd285082010-06-23 22:00:35 +00001132 /* Verify that the version number on the WAL format is one that
1133 ** are able to understand */
dan10f5a502010-06-23 15:55:43 +00001134 version = sqlite3Get4byte(&aBuf[4]);
1135 if( version!=WAL_MAX_VERSION ){
1136 rc = SQLITE_CANTOPEN_BKPT;
1137 goto finished;
1138 }
1139
dan7c246102010-04-12 19:00:29 +00001140 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001141 szFrame = szPage + WAL_FRAME_HDRSIZE;
1142 aFrame = (u8 *)sqlite3_malloc(szFrame);
dan7c246102010-04-12 19:00:29 +00001143 if( !aFrame ){
drh73b64e42010-05-30 19:55:15 +00001144 rc = SQLITE_NOMEM;
1145 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001146 }
drh7ed91f22010-04-29 22:34:07 +00001147 aData = &aFrame[WAL_FRAME_HDRSIZE];
dan7c246102010-04-12 19:00:29 +00001148
1149 /* Read all frames from the log file. */
1150 iFrame = 0;
drh584c7542010-05-19 18:08:10 +00001151 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
dan7c246102010-04-12 19:00:29 +00001152 u32 pgno; /* Database page number for frame */
1153 u32 nTruncate; /* dbsize field from frame header */
1154 int isValid; /* True if this frame is valid */
1155
1156 /* Read and decode the next log frame. */
drh584c7542010-05-19 18:08:10 +00001157 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
dan7c246102010-04-12 19:00:29 +00001158 if( rc!=SQLITE_OK ) break;
drh7e263722010-05-20 21:21:09 +00001159 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
dan7c246102010-04-12 19:00:29 +00001160 if( !isValid ) break;
danc7991bd2010-05-05 19:04:59 +00001161 rc = walIndexAppend(pWal, ++iFrame, pgno);
1162 if( rc!=SQLITE_OK ) break;
dan7c246102010-04-12 19:00:29 +00001163
1164 /* If nTruncate is non-zero, this is a commit record. */
1165 if( nTruncate ){
dan71d89912010-05-24 13:57:42 +00001166 pWal->hdr.mxFrame = iFrame;
1167 pWal->hdr.nPage = nTruncate;
shaneh1df2db72010-08-18 02:28:48 +00001168 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00001169 testcase( szPage<=32768 );
1170 testcase( szPage>=65536 );
dan71d89912010-05-24 13:57:42 +00001171 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1172 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
dan7c246102010-04-12 19:00:29 +00001173 }
1174 }
1175
1176 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001177 }
1178
1179finished:
dan576bc322010-05-06 18:04:50 +00001180 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001181 volatile WalCkptInfo *pInfo;
1182 int i;
dan71d89912010-05-24 13:57:42 +00001183 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1184 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001185 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001186
drhdb7f6472010-06-09 14:45:12 +00001187 /* Reset the checkpoint-header. This is safe because this thread is
dan3dee6da2010-05-31 16:17:54 +00001188 ** currently holding locks that exclude all other readers, writers and
1189 ** checkpointers.
1190 */
drhdb7f6472010-06-09 14:45:12 +00001191 pInfo = walCkptInfo(pWal);
1192 pInfo->nBackfill = 0;
1193 pInfo->aReadMark[0] = 0;
1194 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
daneb8763d2010-08-17 14:52:22 +00001195
1196 /* If more than one frame was recovered from the log file, report an
1197 ** event via sqlite3_log(). This is to help with identifying performance
1198 ** problems caused by applications routinely shutting down without
1199 ** checkpointing the log file.
1200 */
1201 if( pWal->hdr.nPage ){
1202 sqlite3_log(SQLITE_OK, "Recovered %d frames from WAL file %s",
1203 pWal->hdr.nPage, pWal->zWalName
1204 );
1205 }
dan576bc322010-05-06 18:04:50 +00001206 }
drh73b64e42010-05-30 19:55:15 +00001207
1208recovery_error:
drhc74c3332010-05-31 12:15:19 +00001209 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dand0aa3422010-05-31 16:41:53 +00001210 walUnlockExclusive(pWal, iLock, nLock);
dan7c246102010-04-12 19:00:29 +00001211 return rc;
1212}
1213
drha8e654e2010-05-04 17:38:42 +00001214/*
dan1018e902010-05-05 15:33:05 +00001215** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001216*/
dan1018e902010-05-05 15:33:05 +00001217static void walIndexClose(Wal *pWal, int isDelete){
dan8c408002010-11-01 17:38:24 +00001218 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
1219 int i;
1220 for(i=0; i<pWal->nWiData; i++){
1221 sqlite3_free((void *)pWal->apWiData[i]);
1222 pWal->apWiData[i] = 0;
1223 }
1224 }else{
1225 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1226 }
drha8e654e2010-05-04 17:38:42 +00001227}
1228
dan7c246102010-04-12 19:00:29 +00001229/*
dan3e875ef2010-07-05 19:03:35 +00001230** Open a connection to the WAL file zWalName. The database file must
1231** already be opened on connection pDbFd. The buffer that zWalName points
1232** to must remain valid for the lifetime of the returned Wal* handle.
dan3de777f2010-04-17 12:31:37 +00001233**
1234** A SHARED lock should be held on the database file when this function
1235** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001236** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001237** were to do this just after this client opened one of these files, the
1238** system would be badly broken.
danef378022010-05-04 11:06:03 +00001239**
1240** If the log file is successfully opened, SQLITE_OK is returned and
1241** *ppWal is set to point to a new WAL handle. If an error occurs,
1242** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001243*/
drhc438efd2010-04-26 00:19:45 +00001244int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001245 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001246 sqlite3_file *pDbFd, /* The open database file */
dan3e875ef2010-07-05 19:03:35 +00001247 const char *zWalName, /* Name of the WAL file */
dan8c408002010-11-01 17:38:24 +00001248 int bNoShm, /* True to run in heap-memory mode */
drh85a83752011-05-16 21:00:27 +00001249 i64 mxWalSize, /* Truncate WAL to this size on reset */
drh7ed91f22010-04-29 22:34:07 +00001250 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001251){
danef378022010-05-04 11:06:03 +00001252 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001253 Wal *pRet; /* Object to allocate and return */
dan7c246102010-04-12 19:00:29 +00001254 int flags; /* Flags passed to OsOpen() */
dan7c246102010-04-12 19:00:29 +00001255
dan3e875ef2010-07-05 19:03:35 +00001256 assert( zWalName && zWalName[0] );
drhd9e5c4f2010-05-12 18:01:39 +00001257 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001258
drh1b78eaf2010-05-25 13:40:03 +00001259 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1260 ** this source file. Verify that the #defines of the locking byte offsets
1261 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1262 */
1263#ifdef WIN_SHM_BASE
1264 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1265#endif
1266#ifdef UNIX_SHM_BASE
1267 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1268#endif
1269
1270
drh7ed91f22010-04-29 22:34:07 +00001271 /* Allocate an instance of struct Wal to return. */
1272 *ppWal = 0;
dan3e875ef2010-07-05 19:03:35 +00001273 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
dan76ed3bc2010-05-03 17:18:24 +00001274 if( !pRet ){
1275 return SQLITE_NOMEM;
1276 }
1277
dan7c246102010-04-12 19:00:29 +00001278 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001279 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1280 pRet->pDbFd = pDbFd;
drh73b64e42010-05-30 19:55:15 +00001281 pRet->readLock = -1;
drh85a83752011-05-16 21:00:27 +00001282 pRet->mxWalSize = mxWalSize;
dan3e875ef2010-07-05 19:03:35 +00001283 pRet->zWalName = zWalName;
dan8c408002010-11-01 17:38:24 +00001284 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
dan7c246102010-04-12 19:00:29 +00001285
drh7ed91f22010-04-29 22:34:07 +00001286 /* Open file handle on the write-ahead log file. */
danddb0ac42010-07-14 14:48:58 +00001287 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
danda9fe0c2010-07-13 18:44:03 +00001288 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
dan50833e32010-07-14 16:37:17 +00001289 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
drh66dfec8b2011-06-01 20:01:49 +00001290 pRet->readOnly = WAL_RDONLY;
dan50833e32010-07-14 16:37:17 +00001291 }
dan7c246102010-04-12 19:00:29 +00001292
dan7c246102010-04-12 19:00:29 +00001293 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001294 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001295 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001296 sqlite3_free(pRet);
1297 }else{
1298 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001299 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001300 }
dan7c246102010-04-12 19:00:29 +00001301 return rc;
1302}
1303
drha2a42012010-05-18 18:01:08 +00001304/*
drh85a83752011-05-16 21:00:27 +00001305** Change the size to which the WAL file is trucated on each reset.
1306*/
1307void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1308 if( pWal ) pWal->mxWalSize = iLimit;
1309}
1310
1311/*
drha2a42012010-05-18 18:01:08 +00001312** Find the smallest page number out of all pages held in the WAL that
1313** has not been returned by any prior invocation of this method on the
1314** same WalIterator object. Write into *piFrame the frame index where
1315** that page was last written into the WAL. Write into *piPage the page
1316** number.
1317**
1318** Return 0 on success. If there are no pages in the WAL with a page
1319** number larger than *piPage, then return 1.
1320*/
drh7ed91f22010-04-29 22:34:07 +00001321static int walIteratorNext(
1322 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001323 u32 *piPage, /* OUT: The page number of the next page */
1324 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001325){
drha2a42012010-05-18 18:01:08 +00001326 u32 iMin; /* Result pgno must be greater than iMin */
1327 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1328 int i; /* For looping through segments */
dan7c246102010-04-12 19:00:29 +00001329
drha2a42012010-05-18 18:01:08 +00001330 iMin = p->iPrior;
1331 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001332 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001333 struct WalSegment *pSegment = &p->aSegment[i];
dan13a3cb82010-06-11 19:04:21 +00001334 while( pSegment->iNext<pSegment->nEntry ){
drha2a42012010-05-18 18:01:08 +00001335 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001336 if( iPg>iMin ){
1337 if( iPg<iRet ){
1338 iRet = iPg;
dan13a3cb82010-06-11 19:04:21 +00001339 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
dan7c246102010-04-12 19:00:29 +00001340 }
1341 break;
1342 }
1343 pSegment->iNext++;
1344 }
dan7c246102010-04-12 19:00:29 +00001345 }
1346
drha2a42012010-05-18 18:01:08 +00001347 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001348 return (iRet==0xFFFFFFFF);
1349}
1350
danf544b4c2010-06-25 11:35:52 +00001351/*
1352** This function merges two sorted lists into a single sorted list.
drhd9c9b782010-12-15 21:02:06 +00001353**
1354** aLeft[] and aRight[] are arrays of indices. The sort key is
1355** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1356** is guaranteed for all J<K:
1357**
1358** aContent[aLeft[J]] < aContent[aLeft[K]]
1359** aContent[aRight[J]] < aContent[aRight[K]]
1360**
1361** This routine overwrites aRight[] with a new (probably longer) sequence
1362** of indices such that the aRight[] contains every index that appears in
1363** either aLeft[] or the old aRight[] and such that the second condition
1364** above is still met.
1365**
1366** The aContent[aLeft[X]] values will be unique for all X. And the
1367** aContent[aRight[X]] values will be unique too. But there might be
1368** one or more combinations of X and Y such that
1369**
1370** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1371**
1372** When that happens, omit the aLeft[X] and use the aRight[Y] index.
danf544b4c2010-06-25 11:35:52 +00001373*/
1374static void walMerge(
drhd9c9b782010-12-15 21:02:06 +00001375 const u32 *aContent, /* Pages in wal - keys for the sort */
danf544b4c2010-06-25 11:35:52 +00001376 ht_slot *aLeft, /* IN: Left hand input list */
1377 int nLeft, /* IN: Elements in array *paLeft */
1378 ht_slot **paRight, /* IN/OUT: Right hand input list */
1379 int *pnRight, /* IN/OUT: Elements in *paRight */
1380 ht_slot *aTmp /* Temporary buffer */
1381){
1382 int iLeft = 0; /* Current index in aLeft */
1383 int iRight = 0; /* Current index in aRight */
1384 int iOut = 0; /* Current index in output buffer */
1385 int nRight = *pnRight;
1386 ht_slot *aRight = *paRight;
dan7c246102010-04-12 19:00:29 +00001387
danf544b4c2010-06-25 11:35:52 +00001388 assert( nLeft>0 && nRight>0 );
1389 while( iRight<nRight || iLeft<nLeft ){
1390 ht_slot logpage;
1391 Pgno dbpage;
1392
1393 if( (iLeft<nLeft)
1394 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1395 ){
1396 logpage = aLeft[iLeft++];
1397 }else{
1398 logpage = aRight[iRight++];
1399 }
1400 dbpage = aContent[logpage];
1401
1402 aTmp[iOut++] = logpage;
1403 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1404
1405 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1406 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1407 }
1408
1409 *paRight = aLeft;
1410 *pnRight = iOut;
1411 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1412}
1413
1414/*
drhd9c9b782010-12-15 21:02:06 +00001415** Sort the elements in list aList using aContent[] as the sort key.
1416** Remove elements with duplicate keys, preferring to keep the
1417** larger aList[] values.
1418**
1419** The aList[] entries are indices into aContent[]. The values in
1420** aList[] are to be sorted so that for all J<K:
1421**
1422** aContent[aList[J]] < aContent[aList[K]]
1423**
1424** For any X and Y such that
1425**
1426** aContent[aList[X]] == aContent[aList[Y]]
1427**
1428** Keep the larger of the two values aList[X] and aList[Y] and discard
1429** the smaller.
danf544b4c2010-06-25 11:35:52 +00001430*/
dan13a3cb82010-06-11 19:04:21 +00001431static void walMergesort(
drhd9c9b782010-12-15 21:02:06 +00001432 const u32 *aContent, /* Pages in wal */
dan067f3162010-06-14 10:30:12 +00001433 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1434 ht_slot *aList, /* IN/OUT: List to sort */
drha2a42012010-05-18 18:01:08 +00001435 int *pnList /* IN/OUT: Number of elements in aList[] */
1436){
danf544b4c2010-06-25 11:35:52 +00001437 struct Sublist {
1438 int nList; /* Number of elements in aList */
1439 ht_slot *aList; /* Pointer to sub-list content */
1440 };
drha2a42012010-05-18 18:01:08 +00001441
danf544b4c2010-06-25 11:35:52 +00001442 const int nList = *pnList; /* Size of input list */
drhff828942010-06-26 21:34:06 +00001443 int nMerge = 0; /* Number of elements in list aMerge */
1444 ht_slot *aMerge = 0; /* List to be merged */
danf544b4c2010-06-25 11:35:52 +00001445 int iList; /* Index into input list */
drh7d113eb2010-06-26 20:00:54 +00001446 int iSub = 0; /* Index into aSub array */
danf544b4c2010-06-25 11:35:52 +00001447 struct Sublist aSub[13]; /* Array of sub-lists */
drha2a42012010-05-18 18:01:08 +00001448
danf544b4c2010-06-25 11:35:52 +00001449 memset(aSub, 0, sizeof(aSub));
1450 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1451 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
drha2a42012010-05-18 18:01:08 +00001452
danf544b4c2010-06-25 11:35:52 +00001453 for(iList=0; iList<nList; iList++){
1454 nMerge = 1;
1455 aMerge = &aList[iList];
1456 for(iSub=0; iList & (1<<iSub); iSub++){
1457 struct Sublist *p = &aSub[iSub];
1458 assert( p->aList && p->nList<=(1<<iSub) );
danbdf1e242010-06-25 15:16:25 +00001459 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001460 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
drha2a42012010-05-18 18:01:08 +00001461 }
danf544b4c2010-06-25 11:35:52 +00001462 aSub[iSub].aList = aMerge;
1463 aSub[iSub].nList = nMerge;
drha2a42012010-05-18 18:01:08 +00001464 }
1465
danf544b4c2010-06-25 11:35:52 +00001466 for(iSub++; iSub<ArraySize(aSub); iSub++){
1467 if( nList & (1<<iSub) ){
1468 struct Sublist *p = &aSub[iSub];
danbdf1e242010-06-25 15:16:25 +00001469 assert( p->nList<=(1<<iSub) );
1470 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001471 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1472 }
1473 }
1474 assert( aMerge==aList );
1475 *pnList = nMerge;
1476
drha2a42012010-05-18 18:01:08 +00001477#ifdef SQLITE_DEBUG
1478 {
1479 int i;
1480 for(i=1; i<*pnList; i++){
1481 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1482 }
1483 }
1484#endif
1485}
1486
dan5d656852010-06-14 07:53:26 +00001487/*
1488** Free an iterator allocated by walIteratorInit().
1489*/
1490static void walIteratorFree(WalIterator *p){
danbdf1e242010-06-25 15:16:25 +00001491 sqlite3ScratchFree(p);
dan5d656852010-06-14 07:53:26 +00001492}
1493
drha2a42012010-05-18 18:01:08 +00001494/*
danbdf1e242010-06-25 15:16:25 +00001495** Construct a WalInterator object that can be used to loop over all
1496** pages in the WAL in ascending order. The caller must hold the checkpoint
drhd9c9b782010-12-15 21:02:06 +00001497** lock.
drha2a42012010-05-18 18:01:08 +00001498**
1499** On success, make *pp point to the newly allocated WalInterator object
danbdf1e242010-06-25 15:16:25 +00001500** return SQLITE_OK. Otherwise, return an error code. If this routine
1501** returns an error, the value of *pp is undefined.
drha2a42012010-05-18 18:01:08 +00001502**
1503** The calling routine should invoke walIteratorFree() to destroy the
danbdf1e242010-06-25 15:16:25 +00001504** WalIterator object when it has finished with it.
drha2a42012010-05-18 18:01:08 +00001505*/
1506static int walIteratorInit(Wal *pWal, WalIterator **pp){
dan067f3162010-06-14 10:30:12 +00001507 WalIterator *p; /* Return value */
1508 int nSegment; /* Number of segments to merge */
1509 u32 iLast; /* Last frame in log */
1510 int nByte; /* Number of bytes to allocate */
1511 int i; /* Iterator variable */
1512 ht_slot *aTmp; /* Temp space used by merge-sort */
danbdf1e242010-06-25 15:16:25 +00001513 int rc = SQLITE_OK; /* Return Code */
drha2a42012010-05-18 18:01:08 +00001514
danbdf1e242010-06-25 15:16:25 +00001515 /* This routine only runs while holding the checkpoint lock. And
1516 ** it only runs if there is actually content in the log (mxFrame>0).
drha2a42012010-05-18 18:01:08 +00001517 */
danbdf1e242010-06-25 15:16:25 +00001518 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
dan13a3cb82010-06-11 19:04:21 +00001519 iLast = pWal->hdr.mxFrame;
drha2a42012010-05-18 18:01:08 +00001520
danbdf1e242010-06-25 15:16:25 +00001521 /* Allocate space for the WalIterator object. */
dan13a3cb82010-06-11 19:04:21 +00001522 nSegment = walFramePage(iLast) + 1;
1523 nByte = sizeof(WalIterator)
dan52d6fc02010-06-25 16:34:32 +00001524 + (nSegment-1)*sizeof(struct WalSegment)
1525 + iLast*sizeof(ht_slot);
danbdf1e242010-06-25 15:16:25 +00001526 p = (WalIterator *)sqlite3ScratchMalloc(nByte);
dan8f6097c2010-05-06 07:43:58 +00001527 if( !p ){
drha2a42012010-05-18 18:01:08 +00001528 return SQLITE_NOMEM;
1529 }
1530 memset(p, 0, nByte);
drha2a42012010-05-18 18:01:08 +00001531 p->nSegment = nSegment;
danbdf1e242010-06-25 15:16:25 +00001532
1533 /* Allocate temporary space used by the merge-sort routine. This block
1534 ** of memory will be freed before this function returns.
1535 */
dan52d6fc02010-06-25 16:34:32 +00001536 aTmp = (ht_slot *)sqlite3ScratchMalloc(
1537 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1538 );
danbdf1e242010-06-25 15:16:25 +00001539 if( !aTmp ){
1540 rc = SQLITE_NOMEM;
1541 }
1542
1543 for(i=0; rc==SQLITE_OK && i<nSegment; i++){
dan067f3162010-06-14 10:30:12 +00001544 volatile ht_slot *aHash;
dan13a3cb82010-06-11 19:04:21 +00001545 u32 iZero;
dan13a3cb82010-06-11 19:04:21 +00001546 volatile u32 *aPgno;
1547
dan4280eb32010-06-12 12:02:35 +00001548 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
danbdf1e242010-06-25 15:16:25 +00001549 if( rc==SQLITE_OK ){
dan52d6fc02010-06-25 16:34:32 +00001550 int j; /* Counter variable */
1551 int nEntry; /* Number of entries in this segment */
1552 ht_slot *aIndex; /* Sorted index for this segment */
1553
danbdf1e242010-06-25 15:16:25 +00001554 aPgno++;
drh519426a2010-07-09 03:19:07 +00001555 if( (i+1)==nSegment ){
1556 nEntry = (int)(iLast - iZero);
1557 }else{
shaneh55897962010-07-09 12:57:53 +00001558 nEntry = (int)((u32*)aHash - (u32*)aPgno);
drh519426a2010-07-09 03:19:07 +00001559 }
dan52d6fc02010-06-25 16:34:32 +00001560 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
danbdf1e242010-06-25 15:16:25 +00001561 iZero++;
1562
danbdf1e242010-06-25 15:16:25 +00001563 for(j=0; j<nEntry; j++){
shaneh5eba1f62010-07-02 17:05:03 +00001564 aIndex[j] = (ht_slot)j;
danbdf1e242010-06-25 15:16:25 +00001565 }
1566 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1567 p->aSegment[i].iZero = iZero;
1568 p->aSegment[i].nEntry = nEntry;
1569 p->aSegment[i].aIndex = aIndex;
1570 p->aSegment[i].aPgno = (u32 *)aPgno;
dan13a3cb82010-06-11 19:04:21 +00001571 }
dan7c246102010-04-12 19:00:29 +00001572 }
danbdf1e242010-06-25 15:16:25 +00001573 sqlite3ScratchFree(aTmp);
dan7c246102010-04-12 19:00:29 +00001574
danbdf1e242010-06-25 15:16:25 +00001575 if( rc!=SQLITE_OK ){
1576 walIteratorFree(p);
1577 }
dan8f6097c2010-05-06 07:43:58 +00001578 *pp = p;
danbdf1e242010-06-25 15:16:25 +00001579 return rc;
dan7c246102010-04-12 19:00:29 +00001580}
1581
dan7c246102010-04-12 19:00:29 +00001582/*
dana58f26f2010-11-16 18:56:51 +00001583** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1584** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1585** busy-handler function. Invoke it and retry the lock until either the
1586** lock is successfully obtained or the busy-handler returns 0.
1587*/
1588static int walBusyLock(
1589 Wal *pWal, /* WAL connection */
1590 int (*xBusy)(void*), /* Function to call when busy */
1591 void *pBusyArg, /* Context argument for xBusyHandler */
1592 int lockIdx, /* Offset of first byte to lock */
1593 int n /* Number of bytes to lock */
1594){
1595 int rc;
1596 do {
1597 rc = walLockExclusive(pWal, lockIdx, n);
1598 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1599 return rc;
1600}
1601
1602/*
danf2b8dd52010-11-18 19:28:01 +00001603** The cache of the wal-index header must be valid to call this function.
1604** Return the page-size in bytes used by the database.
1605*/
1606static int walPagesize(Wal *pWal){
1607 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1608}
1609
1610/*
drh73b64e42010-05-30 19:55:15 +00001611** Copy as much content as we can from the WAL back into the database file
1612** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1613**
1614** The amount of information copies from WAL to database might be limited
1615** by active readers. This routine will never overwrite a database page
1616** that a concurrent reader might be using.
1617**
1618** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1619** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1620** checkpoints are always run by a background thread or background
1621** process, foreground threads will never block on a lengthy fsync call.
1622**
1623** Fsync is called on the WAL before writing content out of the WAL and
1624** into the database. This ensures that if the new content is persistent
1625** in the WAL and can be recovered following a power-loss or hard reset.
1626**
1627** Fsync is also called on the database file if (and only if) the entire
1628** WAL content is copied into the database file. This second fsync makes
1629** it safe to delete the WAL since the new content will persist in the
1630** database file.
1631**
1632** This routine uses and updates the nBackfill field of the wal-index header.
1633** This is the only routine tha will increase the value of nBackfill.
1634** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1635** its value.)
1636**
1637** The caller must be holding sufficient locks to ensure that no other
1638** checkpoint is running (in any other thread or process) at the same
1639** time.
dan7c246102010-04-12 19:00:29 +00001640*/
drh7ed91f22010-04-29 22:34:07 +00001641static int walCheckpoint(
1642 Wal *pWal, /* Wal connection */
dancdc1f042010-11-18 12:11:05 +00001643 int eMode, /* One of PASSIVE, FULL or RESTART */
danf2b8dd52010-11-18 19:28:01 +00001644 int (*xBusyCall)(void*), /* Function to call when busy */
dana58f26f2010-11-16 18:56:51 +00001645 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00001646 int sync_flags, /* Flags for OsSync() (or 0) */
dan9c5e3682011-02-07 15:12:12 +00001647 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00001648){
1649 int rc; /* Return code */
drhb2eced52010-08-12 02:41:12 +00001650 int szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001651 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001652 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001653 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001654 u32 mxSafeFrame; /* Max frame that can be backfilled */
dan502019c2010-07-28 14:26:17 +00001655 u32 mxPage; /* Max database page to write */
drh73b64e42010-05-30 19:55:15 +00001656 int i; /* Loop counter */
drh73b64e42010-05-30 19:55:15 +00001657 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
danf2b8dd52010-11-18 19:28:01 +00001658 int (*xBusy)(void*) = 0; /* Function to call when waiting for locks */
dan7c246102010-04-12 19:00:29 +00001659
danf2b8dd52010-11-18 19:28:01 +00001660 szPage = walPagesize(pWal);
drh9b78f792010-08-14 21:21:24 +00001661 testcase( szPage<=32768 );
1662 testcase( szPage>=65536 );
drh7d208442010-12-16 02:06:29 +00001663 pInfo = walCkptInfo(pWal);
1664 if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK;
danf544b4c2010-06-25 11:35:52 +00001665
dan7c246102010-04-12 19:00:29 +00001666 /* Allocate the iterator */
dan8f6097c2010-05-06 07:43:58 +00001667 rc = walIteratorInit(pWal, &pIter);
danf544b4c2010-06-25 11:35:52 +00001668 if( rc!=SQLITE_OK ){
danbdf1e242010-06-25 15:16:25 +00001669 return rc;
danb6e099a2010-05-04 14:47:39 +00001670 }
danf544b4c2010-06-25 11:35:52 +00001671 assert( pIter );
danb6e099a2010-05-04 14:47:39 +00001672
danf2b8dd52010-11-18 19:28:01 +00001673 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ) xBusy = xBusyCall;
danb6e099a2010-05-04 14:47:39 +00001674
drh73b64e42010-05-30 19:55:15 +00001675 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1676 ** safe to write into the database. Frames beyond mxSafeFrame might
1677 ** overwrite database pages that are in use by active readers and thus
1678 ** cannot be backfilled from the WAL.
1679 */
dand54ff602010-05-31 11:16:30 +00001680 mxSafeFrame = pWal->hdr.mxFrame;
dan502019c2010-07-28 14:26:17 +00001681 mxPage = pWal->hdr.nPage;
drh73b64e42010-05-30 19:55:15 +00001682 for(i=1; i<WAL_NREADER; i++){
1683 u32 y = pInfo->aReadMark[i];
danf2b8dd52010-11-18 19:28:01 +00001684 if( mxSafeFrame>y ){
dan83f42d12010-06-04 10:37:05 +00001685 assert( y<=pWal->hdr.mxFrame );
danf2b8dd52010-11-18 19:28:01 +00001686 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
dan83f42d12010-06-04 10:37:05 +00001687 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001688 pInfo->aReadMark[i] = READMARK_NOT_USED;
drh73b64e42010-05-30 19:55:15 +00001689 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
drh2d37e1c2010-06-02 20:38:20 +00001690 }else if( rc==SQLITE_BUSY ){
drhdb7f6472010-06-09 14:45:12 +00001691 mxSafeFrame = y;
danf2b8dd52010-11-18 19:28:01 +00001692 xBusy = 0;
drh2d37e1c2010-06-02 20:38:20 +00001693 }else{
dan83f42d12010-06-04 10:37:05 +00001694 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001695 }
1696 }
danc5118782010-04-17 17:34:41 +00001697 }
dan7c246102010-04-12 19:00:29 +00001698
drh73b64e42010-05-30 19:55:15 +00001699 if( pInfo->nBackfill<mxSafeFrame
dana58f26f2010-11-16 18:56:51 +00001700 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0), 1))==SQLITE_OK
drh73b64e42010-05-30 19:55:15 +00001701 ){
dan502019c2010-07-28 14:26:17 +00001702 i64 nSize; /* Current size of database file */
drh73b64e42010-05-30 19:55:15 +00001703 u32 nBackfill = pInfo->nBackfill;
1704
1705 /* Sync the WAL to disk */
1706 if( sync_flags ){
1707 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1708 }
1709
dan502019c2010-07-28 14:26:17 +00001710 /* If the database file may grow as a result of this checkpoint, hint
1711 ** about the eventual size of the db file to the VFS layer.
1712 */
dan007820d2010-08-09 07:51:40 +00001713 if( rc==SQLITE_OK ){
1714 i64 nReq = ((i64)mxPage * szPage);
1715 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1716 if( rc==SQLITE_OK && nSize<nReq ){
1717 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1718 }
dan502019c2010-07-28 14:26:17 +00001719 }
1720
drh73b64e42010-05-30 19:55:15 +00001721 /* Iterate through the contents of the WAL, copying data to the db file. */
1722 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
drh3e8e7ec2010-07-07 13:43:19 +00001723 i64 iOffset;
dan13a3cb82010-06-11 19:04:21 +00001724 assert( walFramePgno(pWal, iFrame)==iDbpage );
dan502019c2010-07-28 14:26:17 +00001725 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue;
drh3e8e7ec2010-07-07 13:43:19 +00001726 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
drh09b5dbc2010-07-07 14:35:58 +00001727 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
drh3e8e7ec2010-07-07 13:43:19 +00001728 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1729 if( rc!=SQLITE_OK ) break;
1730 iOffset = (iDbpage-1)*(i64)szPage;
1731 testcase( IS_BIG_INT(iOffset) );
1732 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1733 if( rc!=SQLITE_OK ) break;
drh73b64e42010-05-30 19:55:15 +00001734 }
1735
1736 /* If work was actually accomplished... */
dand764c7d2010-06-04 11:56:22 +00001737 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00001738 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
drh3e8e7ec2010-07-07 13:43:19 +00001739 i64 szDb = pWal->hdr.nPage*(i64)szPage;
1740 testcase( IS_BIG_INT(szDb) );
1741 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
drh73b64e42010-05-30 19:55:15 +00001742 if( rc==SQLITE_OK && sync_flags ){
1743 rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1744 }
1745 }
dand764c7d2010-06-04 11:56:22 +00001746 if( rc==SQLITE_OK ){
1747 pInfo->nBackfill = mxSafeFrame;
1748 }
drh73b64e42010-05-30 19:55:15 +00001749 }
1750
1751 /* Release the reader lock held while backfilling */
1752 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
dana58f26f2010-11-16 18:56:51 +00001753 }
1754
1755 if( rc==SQLITE_BUSY ){
drh34116ea2010-05-31 12:30:52 +00001756 /* Reset the return code so as not to report a checkpoint failure
dana58f26f2010-11-16 18:56:51 +00001757 ** just because there are active readers. */
drh34116ea2010-05-31 12:30:52 +00001758 rc = SQLITE_OK;
dan7c246102010-04-12 19:00:29 +00001759 }
1760
danf2b8dd52010-11-18 19:28:01 +00001761 /* If this is an SQLITE_CHECKPOINT_RESTART operation, and the entire wal
1762 ** file has been copied into the database file, then block until all
1763 ** readers have finished using the wal file. This ensures that the next
1764 ** process to write to the database restarts the wal file.
1765 */
1766 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dancdc1f042010-11-18 12:11:05 +00001767 assert( pWal->writeLock );
danf2b8dd52010-11-18 19:28:01 +00001768 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1769 rc = SQLITE_BUSY;
1770 }else if( eMode==SQLITE_CHECKPOINT_RESTART ){
1771 assert( mxSafeFrame==pWal->hdr.mxFrame );
1772 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1773 if( rc==SQLITE_OK ){
1774 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1775 }
dancdc1f042010-11-18 12:11:05 +00001776 }
1777 }
1778
dan83f42d12010-06-04 10:37:05 +00001779 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00001780 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00001781 return rc;
1782}
1783
1784/*
1785** Close a connection to a log file.
1786*/
drhc438efd2010-04-26 00:19:45 +00001787int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00001788 Wal *pWal, /* Wal to close */
danc5118782010-04-17 17:34:41 +00001789 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001790 int nBuf,
1791 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00001792){
1793 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00001794 if( pWal ){
dan30c86292010-04-30 16:24:46 +00001795 int isDelete = 0; /* True to unlink wal and wal-index files */
1796
1797 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1798 ** ordinary, rollback-mode locking methods, this guarantees that the
1799 ** connection associated with this log file is the only connection to
1800 ** the database. In this case checkpoint the database and unlink both
1801 ** the wal and wal-index files.
1802 **
1803 ** The EXCLUSIVE lock is not released before returning.
1804 */
drhd9e5c4f2010-05-12 18:01:39 +00001805 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
dan30c86292010-04-30 16:24:46 +00001806 if( rc==SQLITE_OK ){
dan8c408002010-11-01 17:38:24 +00001807 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1808 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1809 }
dancdc1f042010-11-18 12:11:05 +00001810 rc = sqlite3WalCheckpoint(
1811 pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1812 );
dan30c86292010-04-30 16:24:46 +00001813 if( rc==SQLITE_OK ){
1814 isDelete = 1;
1815 }
dan30c86292010-04-30 16:24:46 +00001816 }
1817
dan1018e902010-05-05 15:33:05 +00001818 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00001819 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00001820 if( isDelete ){
drhd9e5c4f2010-05-12 18:01:39 +00001821 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
dan30c86292010-04-30 16:24:46 +00001822 }
drhc74c3332010-05-31 12:15:19 +00001823 WALTRACE(("WAL%p: closed\n", pWal));
shaneh8a300f82010-07-02 18:15:31 +00001824 sqlite3_free((void *)pWal->apWiData);
drh7ed91f22010-04-29 22:34:07 +00001825 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00001826 }
1827 return rc;
1828}
1829
1830/*
drha2a42012010-05-18 18:01:08 +00001831** Try to read the wal-index header. Return 0 on success and 1 if
1832** there is a problem.
1833**
1834** The wal-index is in shared memory. Another thread or process might
1835** be writing the header at the same time this procedure is trying to
1836** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00001837** by verifying that both copies of the header are the same and also by
1838** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00001839**
1840** If and only if the read is consistent and the header is different from
1841** pWal->hdr, then pWal->hdr is updated to the content of the new header
1842** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00001843**
dan84670502010-05-07 05:46:23 +00001844** If the checksum cannot be verified return non-zero. If the header
1845** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00001846*/
drh7750ab42010-06-26 22:16:02 +00001847static int walIndexTryHdr(Wal *pWal, int *pChanged){
dan4280eb32010-06-12 12:02:35 +00001848 u32 aCksum[2]; /* Checksum on the header content */
1849 WalIndexHdr h1, h2; /* Two copies of the header content */
1850 WalIndexHdr volatile *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00001851
dan4280eb32010-06-12 12:02:35 +00001852 /* The first page of the wal-index must be mapped at this point. */
1853 assert( pWal->nWiData>0 && pWal->apWiData[0] );
drh79e6c782010-04-30 02:13:26 +00001854
drh6cef0cf2010-08-16 16:31:43 +00001855 /* Read the header. This might happen concurrently with a write to the
drh73b64e42010-05-30 19:55:15 +00001856 ** same area of shared memory on a different CPU in a SMP,
1857 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00001858 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00001859 **
1860 ** There are two copies of the header at the beginning of the wal-index.
1861 ** When reading, read [0] first then [1]. Writes are in the reverse order.
1862 ** Memory barriers are used to prevent the compiler or the hardware from
1863 ** reordering the reads and writes.
danb9bf16b2010-04-14 11:23:30 +00001864 */
dan4280eb32010-06-12 12:02:35 +00001865 aHdr = walIndexHdr(pWal);
1866 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
dan8c408002010-11-01 17:38:24 +00001867 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +00001868 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00001869
drhf0b20f82010-05-21 13:16:18 +00001870 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
1871 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00001872 }
drh4b82c382010-05-31 18:24:19 +00001873 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00001874 return 1; /* Malformed header - probably all zeros */
1875 }
danb8fd6c22010-05-24 10:39:36 +00001876 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00001877 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
1878 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00001879 }
1880
drhf0b20f82010-05-21 13:16:18 +00001881 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00001882 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00001883 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh9b78f792010-08-14 21:21:24 +00001884 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1885 testcase( pWal->szPage<=32768 );
1886 testcase( pWal->szPage>=65536 );
danb9bf16b2010-04-14 11:23:30 +00001887 }
dan84670502010-05-07 05:46:23 +00001888
1889 /* The header was successfully read. Return zero. */
1890 return 0;
danb9bf16b2010-04-14 11:23:30 +00001891}
1892
1893/*
drha2a42012010-05-18 18:01:08 +00001894** Read the wal-index header from the wal-index and into pWal->hdr.
drha927e942010-06-24 02:46:48 +00001895** If the wal-header appears to be corrupt, try to reconstruct the
1896** wal-index from the WAL before returning.
drha2a42012010-05-18 18:01:08 +00001897**
1898** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
1899** changed by this opertion. If pWal->hdr is unchanged, set *pChanged
1900** to 0.
1901**
drh7ed91f22010-04-29 22:34:07 +00001902** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00001903** Otherwise an SQLite error code.
1904*/
drh7ed91f22010-04-29 22:34:07 +00001905static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00001906 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00001907 int badHdr; /* True if a header read failed */
drha927e942010-06-24 02:46:48 +00001908 volatile u32 *page0; /* Chunk of wal-index containing header */
danb9bf16b2010-04-14 11:23:30 +00001909
dan4280eb32010-06-12 12:02:35 +00001910 /* Ensure that page 0 of the wal-index (the page that contains the
1911 ** wal-index header) is mapped. Return early if an error occurs here.
1912 */
dana8614692010-05-06 14:42:34 +00001913 assert( pChanged );
dan4280eb32010-06-12 12:02:35 +00001914 rc = walIndexPage(pWal, 0, &page0);
danc7991bd2010-05-05 19:04:59 +00001915 if( rc!=SQLITE_OK ){
1916 return rc;
dan4280eb32010-06-12 12:02:35 +00001917 };
1918 assert( page0 || pWal->writeLock==0 );
drh7ed91f22010-04-29 22:34:07 +00001919
dan4280eb32010-06-12 12:02:35 +00001920 /* If the first page of the wal-index has been mapped, try to read the
1921 ** wal-index header immediately, without holding any lock. This usually
1922 ** works, but may fail if the wal-index header is corrupt or currently
drha927e942010-06-24 02:46:48 +00001923 ** being modified by another thread or process.
danb9bf16b2010-04-14 11:23:30 +00001924 */
dan4280eb32010-06-12 12:02:35 +00001925 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
drhbab7b912010-05-26 17:31:58 +00001926
drh73b64e42010-05-30 19:55:15 +00001927 /* If the first attempt failed, it might have been due to a race
drh66dfec8b2011-06-01 20:01:49 +00001928 ** with a writer. So get a WRITE lock and try again.
drh73b64e42010-05-30 19:55:15 +00001929 */
dand54ff602010-05-31 11:16:30 +00001930 assert( badHdr==0 || pWal->writeLock==0 );
dan4edc6bf2011-05-10 17:31:29 +00001931 if( badHdr ){
drh66dfec8b2011-06-01 20:01:49 +00001932 if( pWal->readOnly & WAL_SHM_RDONLY ){
dan4edc6bf2011-05-10 17:31:29 +00001933 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
1934 walUnlockShared(pWal, WAL_WRITE_LOCK);
1935 rc = SQLITE_READONLY_RECOVERY;
drhbab7b912010-05-26 17:31:58 +00001936 }
dan4edc6bf2011-05-10 17:31:29 +00001937 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
1938 pWal->writeLock = 1;
1939 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
1940 badHdr = walIndexTryHdr(pWal, pChanged);
1941 if( badHdr ){
1942 /* If the wal-index header is still malformed even while holding
1943 ** a WRITE lock, it can only mean that the header is corrupted and
1944 ** needs to be reconstructed. So run recovery to do exactly that.
1945 */
1946 rc = walIndexRecover(pWal);
1947 *pChanged = 1;
1948 }
1949 }
1950 pWal->writeLock = 0;
1951 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhbab7b912010-05-26 17:31:58 +00001952 }
danb9bf16b2010-04-14 11:23:30 +00001953 }
1954
drha927e942010-06-24 02:46:48 +00001955 /* If the header is read successfully, check the version number to make
1956 ** sure the wal-index was not constructed with some future format that
1957 ** this version of SQLite cannot understand.
1958 */
1959 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
1960 rc = SQLITE_CANTOPEN_BKPT;
1961 }
1962
danb9bf16b2010-04-14 11:23:30 +00001963 return rc;
1964}
1965
1966/*
drh73b64e42010-05-30 19:55:15 +00001967** This is the value that walTryBeginRead returns when it needs to
1968** be retried.
dan7c246102010-04-12 19:00:29 +00001969*/
drh73b64e42010-05-30 19:55:15 +00001970#define WAL_RETRY (-1)
dan64d039e2010-04-13 19:27:31 +00001971
drh73b64e42010-05-30 19:55:15 +00001972/*
1973** Attempt to start a read transaction. This might fail due to a race or
1974** other transient condition. When that happens, it returns WAL_RETRY to
1975** indicate to the caller that it is safe to retry immediately.
1976**
drha927e942010-06-24 02:46:48 +00001977** On success return SQLITE_OK. On a permanent failure (such an
drh73b64e42010-05-30 19:55:15 +00001978** I/O error or an SQLITE_BUSY because another process is running
1979** recovery) return a positive error code.
1980**
drha927e942010-06-24 02:46:48 +00001981** The useWal parameter is true to force the use of the WAL and disable
1982** the case where the WAL is bypassed because it has been completely
1983** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
1984** to make a copy of the wal-index header into pWal->hdr. If the
1985** wal-index header has changed, *pChanged is set to 1 (as an indication
1986** to the caller that the local paget cache is obsolete and needs to be
1987** flushed.) When useWal==1, the wal-index header is assumed to already
1988** be loaded and the pChanged parameter is unused.
1989**
1990** The caller must set the cnt parameter to the number of prior calls to
1991** this routine during the current read attempt that returned WAL_RETRY.
1992** This routine will start taking more aggressive measures to clear the
1993** race conditions after multiple WAL_RETRY returns, and after an excessive
1994** number of errors will ultimately return SQLITE_PROTOCOL. The
1995** SQLITE_PROTOCOL return indicates that some other process has gone rogue
1996** and is not honoring the locking protocol. There is a vanishingly small
1997** chance that SQLITE_PROTOCOL could be returned because of a run of really
1998** bad luck when there is lots of contention for the wal-index, but that
1999** possibility is so small that it can be safely neglected, we believe.
2000**
drh73b64e42010-05-30 19:55:15 +00002001** On success, this routine obtains a read lock on
2002** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
2003** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
2004** that means the Wal does not hold any read lock. The reader must not
2005** access any database page that is modified by a WAL frame up to and
2006** including frame number aReadMark[pWal->readLock]. The reader will
2007** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2008** Or if pWal->readLock==0, then the reader will ignore the WAL
2009** completely and get all content directly from the database file.
drha927e942010-06-24 02:46:48 +00002010** If the useWal parameter is 1 then the WAL will never be ignored and
2011** this routine will always set pWal->readLock>0 on success.
drh73b64e42010-05-30 19:55:15 +00002012** When the read transaction is completed, the caller must release the
2013** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2014**
2015** This routine uses the nBackfill and aReadMark[] fields of the header
2016** to select a particular WAL_READ_LOCK() that strives to let the
2017** checkpoint process do as much work as possible. This routine might
2018** update values of the aReadMark[] array in the header, but if it does
2019** so it takes care to hold an exclusive lock on the corresponding
2020** WAL_READ_LOCK() while changing values.
2021*/
drhaab4c022010-06-02 14:45:51 +00002022static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00002023 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
2024 u32 mxReadMark; /* Largest aReadMark[] value */
2025 int mxI; /* Index of largest aReadMark[] value */
2026 int i; /* Loop counter */
dan13a3cb82010-06-11 19:04:21 +00002027 int rc = SQLITE_OK; /* Return code */
dan64d039e2010-04-13 19:27:31 +00002028
drh61e4ace2010-05-31 20:28:37 +00002029 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00002030
drh658d76c2011-02-19 15:22:14 +00002031 /* Take steps to avoid spinning forever if there is a protocol error.
2032 **
2033 ** Circumstances that cause a RETRY should only last for the briefest
2034 ** instances of time. No I/O or other system calls are done while the
2035 ** locks are held, so the locks should not be held for very long. But
2036 ** if we are unlucky, another process that is holding a lock might get
2037 ** paged out or take a page-fault that is time-consuming to resolve,
2038 ** during the few nanoseconds that it is holding the lock. In that case,
2039 ** it might take longer than normal for the lock to free.
2040 **
2041 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2042 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2043 ** is more of a scheduler yield than an actual delay. But on the 10th
2044 ** an subsequent retries, the delays start becoming longer and longer,
2045 ** so that on the 100th (and last) RETRY we delay for 21 milliseconds.
2046 ** The total delay time before giving up is less than 1 second.
2047 */
drhaab4c022010-06-02 14:45:51 +00002048 if( cnt>5 ){
drh658d76c2011-02-19 15:22:14 +00002049 int nDelay = 1; /* Pause time in microseconds */
drh03c69672011-02-19 23:18:12 +00002050 if( cnt>100 ){
2051 VVA_ONLY( pWal->lockError = 1; )
2052 return SQLITE_PROTOCOL;
2053 }
drh658d76c2011-02-19 15:22:14 +00002054 if( cnt>=10 ) nDelay = (cnt-9)*238; /* Max delay 21ms. Total delay 996ms */
2055 sqlite3OsSleep(pWal->pVfs, nDelay);
drhaab4c022010-06-02 14:45:51 +00002056 }
2057
drh73b64e42010-05-30 19:55:15 +00002058 if( !useWal ){
drh7ed91f22010-04-29 22:34:07 +00002059 rc = walIndexReadHdr(pWal, pChanged);
drh73b64e42010-05-30 19:55:15 +00002060 if( rc==SQLITE_BUSY ){
2061 /* If there is not a recovery running in another thread or process
2062 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2063 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2064 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2065 ** would be technically correct. But the race is benign since with
2066 ** WAL_RETRY this routine will be called again and will probably be
2067 ** right on the second iteration.
2068 */
dan7d4514a2010-07-15 17:54:14 +00002069 if( pWal->apWiData[0]==0 ){
2070 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2071 ** We assume this is a transient condition, so return WAL_RETRY. The
2072 ** xShmMap() implementation used by the default unix and win32 VFS
2073 ** modules may return SQLITE_BUSY due to a race condition in the
2074 ** code that determines whether or not the shared-memory region
2075 ** must be zeroed before the requested page is returned.
2076 */
2077 rc = WAL_RETRY;
2078 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
drh73b64e42010-05-30 19:55:15 +00002079 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2080 rc = WAL_RETRY;
2081 }else if( rc==SQLITE_BUSY ){
2082 rc = SQLITE_BUSY_RECOVERY;
2083 }
2084 }
drha927e942010-06-24 02:46:48 +00002085 if( rc!=SQLITE_OK ){
2086 return rc;
2087 }
drh73b64e42010-05-30 19:55:15 +00002088 }
2089
dan13a3cb82010-06-11 19:04:21 +00002090 pInfo = walCkptInfo(pWal);
drh73b64e42010-05-30 19:55:15 +00002091 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
2092 /* The WAL has been completely backfilled (or it is empty).
2093 ** and can be safely ignored.
2094 */
2095 rc = walLockShared(pWal, WAL_READ_LOCK(0));
dan8c408002010-11-01 17:38:24 +00002096 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002097 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00002098 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00002099 /* It is not safe to allow the reader to continue here if frames
2100 ** may have been appended to the log before READ_LOCK(0) was obtained.
2101 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2102 ** which implies that the database file contains a trustworthy
2103 ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from
2104 ** happening, this is usually correct.
2105 **
2106 ** However, if frames have been appended to the log (or if the log
2107 ** is wrapped and written for that matter) before the READ_LOCK(0)
2108 ** is obtained, that is not necessarily true. A checkpointer may
2109 ** have started to backfill the appended frames but crashed before
2110 ** it finished. Leaving a corrupt image in the database file.
2111 */
drh73b64e42010-05-30 19:55:15 +00002112 walUnlockShared(pWal, WAL_READ_LOCK(0));
2113 return WAL_RETRY;
2114 }
2115 pWal->readLock = 0;
2116 return SQLITE_OK;
2117 }else if( rc!=SQLITE_BUSY ){
2118 return rc;
dan64d039e2010-04-13 19:27:31 +00002119 }
dan7c246102010-04-12 19:00:29 +00002120 }
danba515902010-04-30 09:32:06 +00002121
drh73b64e42010-05-30 19:55:15 +00002122 /* If we get this far, it means that the reader will want to use
2123 ** the WAL to get at content from recent commits. The job now is
2124 ** to select one of the aReadMark[] entries that is closest to
2125 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2126 */
2127 mxReadMark = 0;
2128 mxI = 0;
2129 for(i=1; i<WAL_NREADER; i++){
2130 u32 thisMark = pInfo->aReadMark[i];
drhdb7f6472010-06-09 14:45:12 +00002131 if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
2132 assert( thisMark!=READMARK_NOT_USED );
drh73b64e42010-05-30 19:55:15 +00002133 mxReadMark = thisMark;
2134 mxI = i;
2135 }
2136 }
drh658d76c2011-02-19 15:22:14 +00002137 /* There was once an "if" here. The extra "{" is to preserve indentation. */
2138 {
drh66dfec8b2011-06-01 20:01:49 +00002139 if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2140 && (mxReadMark<pWal->hdr.mxFrame || mxI==0)
2141 ){
dand54ff602010-05-31 11:16:30 +00002142 for(i=1; i<WAL_NREADER; i++){
drh73b64e42010-05-30 19:55:15 +00002143 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2144 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00002145 mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
drh73b64e42010-05-30 19:55:15 +00002146 mxI = i;
2147 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2148 break;
drh38933f22010-06-02 15:43:18 +00002149 }else if( rc!=SQLITE_BUSY ){
2150 return rc;
drh73b64e42010-05-30 19:55:15 +00002151 }
2152 }
2153 }
drh658d76c2011-02-19 15:22:14 +00002154 if( mxI==0 ){
drh5bf39342011-06-02 17:24:49 +00002155 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
dan4edc6bf2011-05-10 17:31:29 +00002156 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
drh658d76c2011-02-19 15:22:14 +00002157 }
drh73b64e42010-05-30 19:55:15 +00002158
2159 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2160 if( rc ){
2161 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2162 }
daneb8cb3a2010-06-05 18:34:26 +00002163 /* Now that the read-lock has been obtained, check that neither the
2164 ** value in the aReadMark[] array or the contents of the wal-index
2165 ** header have changed.
2166 **
2167 ** It is necessary to check that the wal-index header did not change
2168 ** between the time it was read and when the shared-lock was obtained
2169 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2170 ** that the log file may have been wrapped by a writer, or that frames
2171 ** that occur later in the log than pWal->hdr.mxFrame may have been
2172 ** copied into the database by a checkpointer. If either of these things
2173 ** happened, then reading the database with the current value of
2174 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2175 ** instead.
2176 **
dan640aac42010-06-05 19:18:59 +00002177 ** This does not guarantee that the copy of the wal-index header is up to
2178 ** date before proceeding. That would not be possible without somehow
2179 ** blocking writers. It only guarantees that a dangerous checkpoint or
daneb8cb3a2010-06-05 18:34:26 +00002180 ** log-wrap (either of which would require an exclusive lock on
2181 ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
2182 */
dan8c408002010-11-01 17:38:24 +00002183 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002184 if( pInfo->aReadMark[mxI]!=mxReadMark
dan4280eb32010-06-12 12:02:35 +00002185 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
drh73b64e42010-05-30 19:55:15 +00002186 ){
2187 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2188 return WAL_RETRY;
2189 }else{
drhdb7f6472010-06-09 14:45:12 +00002190 assert( mxReadMark<=pWal->hdr.mxFrame );
shaneh5eba1f62010-07-02 17:05:03 +00002191 pWal->readLock = (i16)mxI;
drh73b64e42010-05-30 19:55:15 +00002192 }
2193 }
2194 return rc;
2195}
2196
2197/*
2198** Begin a read transaction on the database.
2199**
2200** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2201** it takes a snapshot of the state of the WAL and wal-index for the current
2202** instant in time. The current thread will continue to use this snapshot.
2203** Other threads might append new content to the WAL and wal-index but
2204** that extra content is ignored by the current thread.
2205**
2206** If the database contents have changes since the previous read
2207** transaction, then *pChanged is set to 1 before returning. The
2208** Pager layer will use this to know that is cache is stale and
2209** needs to be flushed.
2210*/
drh66dfec8b2011-06-01 20:01:49 +00002211int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
drh73b64e42010-05-30 19:55:15 +00002212 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00002213 int cnt = 0; /* Number of TryBeginRead attempts */
drh73b64e42010-05-30 19:55:15 +00002214
2215 do{
drhaab4c022010-06-02 14:45:51 +00002216 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00002217 }while( rc==WAL_RETRY );
drhab1cc742011-02-19 16:51:45 +00002218 testcase( (rc&0xff)==SQLITE_BUSY );
2219 testcase( (rc&0xff)==SQLITE_IOERR );
2220 testcase( rc==SQLITE_PROTOCOL );
2221 testcase( rc==SQLITE_OK );
dan7c246102010-04-12 19:00:29 +00002222 return rc;
2223}
2224
2225/*
drh73b64e42010-05-30 19:55:15 +00002226** Finish with a read transaction. All this does is release the
2227** read-lock.
dan7c246102010-04-12 19:00:29 +00002228*/
drh73b64e42010-05-30 19:55:15 +00002229void sqlite3WalEndReadTransaction(Wal *pWal){
dan73d66fd2010-08-07 16:17:48 +00002230 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00002231 if( pWal->readLock>=0 ){
2232 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2233 pWal->readLock = -1;
2234 }
dan7c246102010-04-12 19:00:29 +00002235}
2236
dan5e0ce872010-04-28 17:48:44 +00002237/*
drh73b64e42010-05-30 19:55:15 +00002238** Read a page from the WAL, if it is present in the WAL and if the
2239** current read transaction is configured to use the WAL.
2240**
2241** The *pInWal is set to 1 if the requested page is in the WAL and
2242** has been loaded. Or *pInWal is set to 0 if the page was not in
2243** the WAL and needs to be read out of the database.
dan7c246102010-04-12 19:00:29 +00002244*/
danb6e099a2010-05-04 14:47:39 +00002245int sqlite3WalRead(
danbb23aff2010-05-10 14:46:09 +00002246 Wal *pWal, /* WAL handle */
2247 Pgno pgno, /* Database page number to read data for */
2248 int *pInWal, /* OUT: True if data is read from WAL */
2249 int nOut, /* Size of buffer pOut in bytes */
2250 u8 *pOut /* Buffer to write page data to */
danb6e099a2010-05-04 14:47:39 +00002251){
danbb23aff2010-05-10 14:46:09 +00002252 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00002253 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00002254 int iHash; /* Used to loop through N hash tables */
dan7c246102010-04-12 19:00:29 +00002255
drhaab4c022010-06-02 14:45:51 +00002256 /* This routine is only be called from within a read transaction. */
2257 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00002258
danbb23aff2010-05-10 14:46:09 +00002259 /* If the "last page" field of the wal-index header snapshot is 0, then
2260 ** no data will be read from the wal under any circumstances. Return early
drha927e942010-06-24 02:46:48 +00002261 ** in this case as an optimization. Likewise, if pWal->readLock==0,
2262 ** then the WAL is ignored by the reader so return early, as if the
2263 ** WAL were empty.
danbb23aff2010-05-10 14:46:09 +00002264 */
drh73b64e42010-05-30 19:55:15 +00002265 if( iLast==0 || pWal->readLock==0 ){
danbb23aff2010-05-10 14:46:09 +00002266 *pInWal = 0;
2267 return SQLITE_OK;
2268 }
2269
danbb23aff2010-05-10 14:46:09 +00002270 /* Search the hash table or tables for an entry matching page number
2271 ** pgno. Each iteration of the following for() loop searches one
2272 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2273 **
drha927e942010-06-24 02:46:48 +00002274 ** This code might run concurrently to the code in walIndexAppend()
danbb23aff2010-05-10 14:46:09 +00002275 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00002276 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00002277 ** slot (aHash[iKey]) may have been added before or after the
2278 ** current read transaction was opened. Values added after the
2279 ** read transaction was opened may have been written incorrectly -
2280 ** i.e. these slots may contain garbage data. However, we assume
2281 ** that any slots written before the current read transaction was
2282 ** opened remain unmodified.
2283 **
2284 ** For the reasons above, the if(...) condition featured in the inner
2285 ** loop of the following block is more stringent that would be required
2286 ** if we had exclusive access to the hash-table:
2287 **
2288 ** (aPgno[iFrame]==pgno):
2289 ** This condition filters out normal hash-table collisions.
2290 **
2291 ** (iFrame<=iLast):
2292 ** This condition filters out entries that were added to the hash
2293 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00002294 */
dan13a3cb82010-06-11 19:04:21 +00002295 for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
dan067f3162010-06-14 10:30:12 +00002296 volatile ht_slot *aHash; /* Pointer to hash table */
2297 volatile u32 *aPgno; /* Pointer to array of page numbers */
danbb23aff2010-05-10 14:46:09 +00002298 u32 iZero; /* Frame number corresponding to aPgno[0] */
2299 int iKey; /* Hash slot index */
drh519426a2010-07-09 03:19:07 +00002300 int nCollide; /* Number of hash collisions remaining */
2301 int rc; /* Error code */
danbb23aff2010-05-10 14:46:09 +00002302
dan4280eb32010-06-12 12:02:35 +00002303 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2304 if( rc!=SQLITE_OK ){
2305 return rc;
2306 }
drh519426a2010-07-09 03:19:07 +00002307 nCollide = HASHTABLE_NSLOT;
dan6f150142010-05-21 15:31:56 +00002308 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
danbb23aff2010-05-10 14:46:09 +00002309 u32 iFrame = aHash[iKey] + iZero;
dand60bf112010-06-14 11:18:50 +00002310 if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
dan493cc592010-06-05 18:12:23 +00002311 assert( iFrame>iRead );
danbb23aff2010-05-10 14:46:09 +00002312 iRead = iFrame;
2313 }
drh519426a2010-07-09 03:19:07 +00002314 if( (nCollide--)==0 ){
2315 return SQLITE_CORRUPT_BKPT;
2316 }
dan7c246102010-04-12 19:00:29 +00002317 }
2318 }
dan7c246102010-04-12 19:00:29 +00002319
danbb23aff2010-05-10 14:46:09 +00002320#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2321 /* If expensive assert() statements are available, do a linear search
2322 ** of the wal-index file content. Make sure the results agree with the
2323 ** result obtained using the hash indexes above. */
2324 {
2325 u32 iRead2 = 0;
2326 u32 iTest;
2327 for(iTest=iLast; iTest>0; iTest--){
dan13a3cb82010-06-11 19:04:21 +00002328 if( walFramePgno(pWal, iTest)==pgno ){
danbb23aff2010-05-10 14:46:09 +00002329 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00002330 break;
2331 }
dan7c246102010-04-12 19:00:29 +00002332 }
danbb23aff2010-05-10 14:46:09 +00002333 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00002334 }
danbb23aff2010-05-10 14:46:09 +00002335#endif
dancd11fb22010-04-26 10:40:52 +00002336
dan7c246102010-04-12 19:00:29 +00002337 /* If iRead is non-zero, then it is the log frame number that contains the
2338 ** required page. Read and return data from the log file.
2339 */
2340 if( iRead ){
drhb2eced52010-08-12 02:41:12 +00002341 int sz;
2342 i64 iOffset;
2343 sz = pWal->hdr.szPage;
drh9b78f792010-08-14 21:21:24 +00002344 sz = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2345 testcase( sz<=32768 );
2346 testcase( sz>=65536 );
drhb2eced52010-08-12 02:41:12 +00002347 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
drh7ed91f22010-04-29 22:34:07 +00002348 *pInWal = 1;
drh09b5dbc2010-07-07 14:35:58 +00002349 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
drhd9e5c4f2010-05-12 18:01:39 +00002350 return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset);
dan7c246102010-04-12 19:00:29 +00002351 }
2352
drh7ed91f22010-04-29 22:34:07 +00002353 *pInWal = 0;
dan7c246102010-04-12 19:00:29 +00002354 return SQLITE_OK;
2355}
2356
2357
2358/*
dan763afe62010-08-03 06:42:39 +00002359** Return the size of the database in pages (or zero, if unknown).
dan7c246102010-04-12 19:00:29 +00002360*/
dan763afe62010-08-03 06:42:39 +00002361Pgno sqlite3WalDbsize(Wal *pWal){
drh7e9e70b2010-08-16 14:17:59 +00002362 if( pWal && ALWAYS(pWal->readLock>=0) ){
dan763afe62010-08-03 06:42:39 +00002363 return pWal->hdr.nPage;
2364 }
2365 return 0;
dan7c246102010-04-12 19:00:29 +00002366}
2367
dan30c86292010-04-30 16:24:46 +00002368
drh73b64e42010-05-30 19:55:15 +00002369/*
2370** This function starts a write transaction on the WAL.
2371**
2372** A read transaction must have already been started by a prior call
2373** to sqlite3WalBeginReadTransaction().
2374**
2375** If another thread or process has written into the database since
2376** the read transaction was started, then it is not possible for this
2377** thread to write as doing so would cause a fork. So this routine
2378** returns SQLITE_BUSY in that case and no write transaction is started.
2379**
2380** There can only be a single writer active at a time.
2381*/
2382int sqlite3WalBeginWriteTransaction(Wal *pWal){
2383 int rc;
drh73b64e42010-05-30 19:55:15 +00002384
2385 /* Cannot start a write transaction without first holding a read
2386 ** transaction. */
2387 assert( pWal->readLock>=0 );
2388
dan1e5de5a2010-07-15 18:20:53 +00002389 if( pWal->readOnly ){
2390 return SQLITE_READONLY;
2391 }
2392
drh73b64e42010-05-30 19:55:15 +00002393 /* Only one writer allowed at a time. Get the write lock. Return
2394 ** SQLITE_BUSY if unable.
2395 */
2396 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2397 if( rc ){
2398 return rc;
2399 }
drhc99597c2010-05-31 01:41:15 +00002400 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00002401
2402 /* If another connection has written to the database file since the
2403 ** time the read transaction on this connection was started, then
2404 ** the write is disallowed.
2405 */
dan4280eb32010-06-12 12:02:35 +00002406 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
drh73b64e42010-05-30 19:55:15 +00002407 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00002408 pWal->writeLock = 0;
dan9971e712010-06-01 15:44:57 +00002409 rc = SQLITE_BUSY;
drh73b64e42010-05-30 19:55:15 +00002410 }
2411
drh7ed91f22010-04-29 22:34:07 +00002412 return rc;
dan7c246102010-04-12 19:00:29 +00002413}
2414
dan74d6cd82010-04-24 18:44:05 +00002415/*
drh73b64e42010-05-30 19:55:15 +00002416** End a write transaction. The commit has already been done. This
2417** routine merely releases the lock.
2418*/
2419int sqlite3WalEndWriteTransaction(Wal *pWal){
danda9fe0c2010-07-13 18:44:03 +00002420 if( pWal->writeLock ){
2421 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2422 pWal->writeLock = 0;
2423 }
drh73b64e42010-05-30 19:55:15 +00002424 return SQLITE_OK;
2425}
2426
2427/*
dan74d6cd82010-04-24 18:44:05 +00002428** If any data has been written (but not committed) to the log file, this
2429** function moves the write-pointer back to the start of the transaction.
2430**
2431** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00002432** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00002433** other than SQLITE_OK, it is not invoked again and the error code is
2434** returned to the caller.
2435**
2436** Otherwise, if the callback function does not return an error, this
2437** function returns SQLITE_OK.
2438*/
drh7ed91f22010-04-29 22:34:07 +00002439int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00002440 int rc = SQLITE_OK;
drh7e9e70b2010-08-16 14:17:59 +00002441 if( ALWAYS(pWal->writeLock) ){
drh027a1282010-05-19 01:53:53 +00002442 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00002443 Pgno iFrame;
2444
dan5d656852010-06-14 07:53:26 +00002445 /* Restore the clients cache of the wal-index header to the state it
2446 ** was in before the client began writing to the database.
2447 */
dan067f3162010-06-14 10:30:12 +00002448 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
dan5d656852010-06-14 07:53:26 +00002449
2450 for(iFrame=pWal->hdr.mxFrame+1;
2451 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
2452 iFrame++
2453 ){
2454 /* This call cannot fail. Unless the page for which the page number
2455 ** is passed as the second argument is (a) in the cache and
2456 ** (b) has an outstanding reference, then xUndo is either a no-op
2457 ** (if (a) is false) or simply expels the page from the cache (if (b)
2458 ** is false).
2459 **
2460 ** If the upper layer is doing a rollback, it is guaranteed that there
2461 ** are no outstanding references to any page other than page 1. And
2462 ** page 1 is never written to the log until the transaction is
2463 ** committed. As a result, the call to xUndo may not fail.
2464 */
dan5d656852010-06-14 07:53:26 +00002465 assert( walFramePgno(pWal, iFrame)!=1 );
2466 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
dan6f150142010-05-21 15:31:56 +00002467 }
dan5d656852010-06-14 07:53:26 +00002468 walCleanupHash(pWal);
dan74d6cd82010-04-24 18:44:05 +00002469 }
dan5d656852010-06-14 07:53:26 +00002470 assert( rc==SQLITE_OK );
dan74d6cd82010-04-24 18:44:05 +00002471 return rc;
2472}
2473
dan71d89912010-05-24 13:57:42 +00002474/*
2475** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2476** values. This function populates the array with values required to
2477** "rollback" the write position of the WAL handle back to the current
2478** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00002479*/
dan71d89912010-05-24 13:57:42 +00002480void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00002481 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00002482 aWalData[0] = pWal->hdr.mxFrame;
2483 aWalData[1] = pWal->hdr.aFrameCksum[0];
2484 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00002485 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00002486}
2487
dan71d89912010-05-24 13:57:42 +00002488/*
2489** Move the write position of the WAL back to the point identified by
2490** the values in the aWalData[] array. aWalData must point to an array
2491** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2492** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00002493*/
dan71d89912010-05-24 13:57:42 +00002494int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00002495 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00002496
dan6e6bd562010-06-02 18:59:03 +00002497 assert( pWal->writeLock );
2498 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2499
2500 if( aWalData[3]!=pWal->nCkpt ){
2501 /* This savepoint was opened immediately after the write-transaction
2502 ** was started. Right after that, the writer decided to wrap around
2503 ** to the start of the log. Update the savepoint values to match.
2504 */
2505 aWalData[0] = 0;
2506 aWalData[3] = pWal->nCkpt;
2507 }
2508
dan71d89912010-05-24 13:57:42 +00002509 if( aWalData[0]<pWal->hdr.mxFrame ){
dan71d89912010-05-24 13:57:42 +00002510 pWal->hdr.mxFrame = aWalData[0];
2511 pWal->hdr.aFrameCksum[0] = aWalData[1];
2512 pWal->hdr.aFrameCksum[1] = aWalData[2];
dan5d656852010-06-14 07:53:26 +00002513 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00002514 }
dan6e6bd562010-06-02 18:59:03 +00002515
dan4cd78b42010-04-26 16:57:10 +00002516 return rc;
2517}
2518
dan9971e712010-06-01 15:44:57 +00002519/*
2520** This function is called just before writing a set of frames to the log
2521** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2522** to the current log file, it is possible to overwrite the start of the
2523** existing log file with the new frames (i.e. "reset" the log). If so,
2524** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2525** unchanged.
2526**
2527** SQLITE_OK is returned if no error is encountered (regardless of whether
2528** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
drh4533cd02010-10-05 15:41:05 +00002529** if an error occurs.
dan9971e712010-06-01 15:44:57 +00002530*/
2531static int walRestartLog(Wal *pWal){
2532 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00002533 int cnt;
2534
dan13a3cb82010-06-11 19:04:21 +00002535 if( pWal->readLock==0 ){
dan9971e712010-06-01 15:44:57 +00002536 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2537 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2538 if( pInfo->nBackfill>0 ){
drh658d76c2011-02-19 15:22:14 +00002539 u32 salt1;
2540 sqlite3_randomness(4, &salt1);
dan9971e712010-06-01 15:44:57 +00002541 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2542 if( rc==SQLITE_OK ){
2543 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2544 ** readers are currently using the WAL), then the transactions
2545 ** frames will overwrite the start of the existing log. Update the
2546 ** wal-index header to reflect this.
2547 **
2548 ** In theory it would be Ok to update the cache of the header only
2549 ** at this point. But updating the actual wal-index header is also
2550 ** safe and means there is no special case for sqlite3WalUndo()
2551 ** to handle if this transaction is rolled back.
2552 */
dan199100e2010-06-09 16:58:49 +00002553 int i; /* Loop counter */
dan9971e712010-06-01 15:44:57 +00002554 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
drh85a83752011-05-16 21:00:27 +00002555
2556 /* Limit the size of WAL file if the journal_size_limit PRAGMA is
2557 ** set to a non-negative value. Log errors encountered
2558 ** during the truncation attempt. */
2559 if( pWal->mxWalSize>=0 ){
2560 i64 sz;
2561 int rx;
drhef05c392011-05-25 20:25:10 +00002562 sqlite3BeginBenignMalloc();
drh85a83752011-05-16 21:00:27 +00002563 rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
2564 if( rx==SQLITE_OK && (sz > pWal->mxWalSize) ){
2565 rx = sqlite3OsTruncate(pWal->pWalFd, pWal->mxWalSize);
2566 }
drhef05c392011-05-25 20:25:10 +00002567 sqlite3EndBenignMalloc();
drh85a83752011-05-16 21:00:27 +00002568 if( rx ){
2569 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
2570 }
2571 }
2572
dan9971e712010-06-01 15:44:57 +00002573 pWal->nCkpt++;
2574 pWal->hdr.mxFrame = 0;
2575 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
drh658d76c2011-02-19 15:22:14 +00002576 aSalt[1] = salt1;
dan9971e712010-06-01 15:44:57 +00002577 walIndexWriteHdr(pWal);
dan199100e2010-06-09 16:58:49 +00002578 pInfo->nBackfill = 0;
2579 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
2580 assert( pInfo->aReadMark[0]==0 );
dan9971e712010-06-01 15:44:57 +00002581 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
drh4533cd02010-10-05 15:41:05 +00002582 }else if( rc!=SQLITE_BUSY ){
2583 return rc;
dan9971e712010-06-01 15:44:57 +00002584 }
2585 }
2586 walUnlockShared(pWal, WAL_READ_LOCK(0));
2587 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00002588 cnt = 0;
dan9971e712010-06-01 15:44:57 +00002589 do{
2590 int notUsed;
drhaab4c022010-06-02 14:45:51 +00002591 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00002592 }while( rc==WAL_RETRY );
drhc90e0812011-02-19 17:02:44 +00002593 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
drhab1cc742011-02-19 16:51:45 +00002594 testcase( (rc&0xff)==SQLITE_IOERR );
2595 testcase( rc==SQLITE_PROTOCOL );
2596 testcase( rc==SQLITE_OK );
dan9971e712010-06-01 15:44:57 +00002597 }
2598 return rc;
2599}
2600
dan7c246102010-04-12 19:00:29 +00002601/*
dan4cd78b42010-04-26 16:57:10 +00002602** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00002603** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00002604*/
drhc438efd2010-04-26 00:19:45 +00002605int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00002606 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00002607 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00002608 PgHdr *pList, /* List of dirty pages to write */
2609 Pgno nTruncate, /* Database size after this commit */
2610 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00002611 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00002612){
dan7c246102010-04-12 19:00:29 +00002613 int rc; /* Used to catch return codes */
2614 u32 iFrame; /* Next frame address */
drh7ed91f22010-04-29 22:34:07 +00002615 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
dan7c246102010-04-12 19:00:29 +00002616 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00002617 PgHdr *pLast = 0; /* Last frame in list */
dan7c246102010-04-12 19:00:29 +00002618 int nLast = 0; /* Number of extra copies of last page */
2619
dan7c246102010-04-12 19:00:29 +00002620 assert( pList );
drh73b64e42010-05-30 19:55:15 +00002621 assert( pWal->writeLock );
dan7c246102010-04-12 19:00:29 +00002622
drhc74c3332010-05-31 12:15:19 +00002623#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2624 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2625 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2626 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2627 }
2628#endif
2629
dan9971e712010-06-01 15:44:57 +00002630 /* See if it is possible to write these frames into the start of the
2631 ** log file, instead of appending to it at pWal->hdr.mxFrame.
2632 */
2633 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
dan9971e712010-06-01 15:44:57 +00002634 return rc;
2635 }
dan9971e712010-06-01 15:44:57 +00002636
drha2a42012010-05-18 18:01:08 +00002637 /* If this is the first frame written into the log, write the WAL
2638 ** header to the start of the WAL file. See comments at the top of
2639 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00002640 */
drh027a1282010-05-19 01:53:53 +00002641 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00002642 if( iFrame==0 ){
dan10f5a502010-06-23 15:55:43 +00002643 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
2644 u32 aCksum[2]; /* Checksum for wal-header */
2645
danb8fd6c22010-05-24 10:39:36 +00002646 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
dan10f5a502010-06-23 15:55:43 +00002647 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
drh23ea97b2010-05-20 16:45:58 +00002648 sqlite3Put4byte(&aWalHdr[8], szPage);
2649 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drh2327f5a2010-07-07 21:06:48 +00002650 sqlite3_randomness(8, pWal->hdr.aSalt);
drh7e263722010-05-20 21:21:09 +00002651 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
dan10f5a502010-06-23 15:55:43 +00002652 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
2653 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
2654 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
2655
drhb2eced52010-08-12 02:41:12 +00002656 pWal->szPage = szPage;
dan10f5a502010-06-23 15:55:43 +00002657 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
2658 pWal->hdr.aFrameCksum[0] = aCksum[0];
2659 pWal->hdr.aFrameCksum[1] = aCksum[1];
2660
drh23ea97b2010-05-20 16:45:58 +00002661 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00002662 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00002663 if( rc!=SQLITE_OK ){
2664 return rc;
2665 }
2666 }
shanehbd2aaf92010-09-01 02:38:21 +00002667 assert( (int)pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00002668
dan9971e712010-06-01 15:44:57 +00002669 /* Write the log file. */
dan7c246102010-04-12 19:00:29 +00002670 for(p=pList; p; p=p->pDirty){
2671 u32 nDbsize; /* Db-size field for frame header */
2672 i64 iOffset; /* Write offset in log file */
dan47ee3862010-06-22 15:18:44 +00002673 void *pData;
2674
drh6e810962010-05-19 17:49:50 +00002675 iOffset = walFrameOffset(++iFrame, szPage);
drhe9187b42010-07-07 14:39:59 +00002676 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
dan7c246102010-04-12 19:00:29 +00002677
2678 /* Populate and write the frame header */
2679 nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0;
drha7152112010-06-22 21:15:49 +00002680#if defined(SQLITE_HAS_CODEC)
dan47ee3862010-06-22 15:18:44 +00002681 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
drha7152112010-06-22 21:15:49 +00002682#else
2683 pData = p->pData;
2684#endif
dan47ee3862010-06-22 15:18:44 +00002685 walEncodeFrame(pWal, p->pgno, nDbsize, pData, aFrame);
drhd9e5c4f2010-05-12 18:01:39 +00002686 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
dan7c246102010-04-12 19:00:29 +00002687 if( rc!=SQLITE_OK ){
2688 return rc;
2689 }
2690
2691 /* Write the page data */
dan47ee3862010-06-22 15:18:44 +00002692 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset+sizeof(aFrame));
dan7c246102010-04-12 19:00:29 +00002693 if( rc!=SQLITE_OK ){
2694 return rc;
2695 }
2696 pLast = p;
2697 }
2698
2699 /* Sync the log file if the 'isSync' flag was specified. */
danc5118782010-04-17 17:34:41 +00002700 if( sync_flags ){
drhd9e5c4f2010-05-12 18:01:39 +00002701 i64 iSegment = sqlite3OsSectorSize(pWal->pWalFd);
drh6e810962010-05-19 17:49:50 +00002702 i64 iOffset = walFrameOffset(iFrame+1, szPage);
dan67032392010-04-17 15:42:43 +00002703
2704 assert( isCommit );
drh69c46962010-05-17 20:16:50 +00002705 assert( iSegment>0 );
dan7c246102010-04-12 19:00:29 +00002706
dan7c246102010-04-12 19:00:29 +00002707 iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment);
2708 while( iOffset<iSegment ){
dan47ee3862010-06-22 15:18:44 +00002709 void *pData;
drha7152112010-06-22 21:15:49 +00002710#if defined(SQLITE_HAS_CODEC)
dan47ee3862010-06-22 15:18:44 +00002711 if( (pData = sqlite3PagerCodec(pLast))==0 ) return SQLITE_NOMEM;
drha7152112010-06-22 21:15:49 +00002712#else
2713 pData = pLast->pData;
2714#endif
dan47ee3862010-06-22 15:18:44 +00002715 walEncodeFrame(pWal, pLast->pgno, nTruncate, pData, aFrame);
drhe9187b42010-07-07 14:39:59 +00002716 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
drhd9e5c4f2010-05-12 18:01:39 +00002717 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
dan7c246102010-04-12 19:00:29 +00002718 if( rc!=SQLITE_OK ){
2719 return rc;
2720 }
drh7ed91f22010-04-29 22:34:07 +00002721 iOffset += WAL_FRAME_HDRSIZE;
dan47ee3862010-06-22 15:18:44 +00002722 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset);
dan7c246102010-04-12 19:00:29 +00002723 if( rc!=SQLITE_OK ){
2724 return rc;
2725 }
2726 nLast++;
drh6e810962010-05-19 17:49:50 +00002727 iOffset += szPage;
dan7c246102010-04-12 19:00:29 +00002728 }
dan7c246102010-04-12 19:00:29 +00002729
drhd9e5c4f2010-05-12 18:01:39 +00002730 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
dan7c246102010-04-12 19:00:29 +00002731 }
2732
drhe730fec2010-05-18 12:56:50 +00002733 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00002734 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00002735 ** guarantees that there are no other writers, and no data that may
2736 ** be in use by existing readers is being overwritten.
2737 */
drh027a1282010-05-19 01:53:53 +00002738 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00002739 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dan7c246102010-04-12 19:00:29 +00002740 iFrame++;
danc7991bd2010-05-05 19:04:59 +00002741 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00002742 }
danc7991bd2010-05-05 19:04:59 +00002743 while( nLast>0 && rc==SQLITE_OK ){
dan7c246102010-04-12 19:00:29 +00002744 iFrame++;
2745 nLast--;
danc7991bd2010-05-05 19:04:59 +00002746 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00002747 }
2748
danc7991bd2010-05-05 19:04:59 +00002749 if( rc==SQLITE_OK ){
2750 /* Update the private copy of the header. */
shaneh1df2db72010-08-18 02:28:48 +00002751 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00002752 testcase( szPage<=32768 );
2753 testcase( szPage>=65536 );
drh027a1282010-05-19 01:53:53 +00002754 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00002755 if( isCommit ){
2756 pWal->hdr.iChange++;
2757 pWal->hdr.nPage = nTruncate;
2758 }
danc7991bd2010-05-05 19:04:59 +00002759 /* If this is a commit, update the wal-index header too. */
2760 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00002761 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00002762 pWal->iCallback = iFrame;
2763 }
dan7c246102010-04-12 19:00:29 +00002764 }
danc7991bd2010-05-05 19:04:59 +00002765
drhc74c3332010-05-31 12:15:19 +00002766 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00002767 return rc;
dan7c246102010-04-12 19:00:29 +00002768}
2769
2770/*
drh73b64e42010-05-30 19:55:15 +00002771** This routine is called to implement sqlite3_wal_checkpoint() and
2772** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00002773**
drh73b64e42010-05-30 19:55:15 +00002774** Obtain a CHECKPOINT lock and then backfill as much information as
2775** we can from WAL into the database.
dana58f26f2010-11-16 18:56:51 +00002776**
2777** If parameter xBusy is not NULL, it is a pointer to a busy-handler
2778** callback. In this case this function runs a blocking checkpoint.
dan7c246102010-04-12 19:00:29 +00002779*/
drhc438efd2010-04-26 00:19:45 +00002780int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00002781 Wal *pWal, /* Wal connection */
dancdc1f042010-11-18 12:11:05 +00002782 int eMode, /* PASSIVE, FULL or RESTART */
dana58f26f2010-11-16 18:56:51 +00002783 int (*xBusy)(void*), /* Function to call when busy */
2784 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00002785 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00002786 int nBuf, /* Size of temporary buffer */
dancdc1f042010-11-18 12:11:05 +00002787 u8 *zBuf, /* Temporary buffer to use */
2788 int *pnLog, /* OUT: Number of frames in WAL */
2789 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
dan7c246102010-04-12 19:00:29 +00002790){
danb9bf16b2010-04-14 11:23:30 +00002791 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00002792 int isChanged = 0; /* True if a new wal-index header is loaded */
danf2b8dd52010-11-18 19:28:01 +00002793 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
dan7c246102010-04-12 19:00:29 +00002794
dand54ff602010-05-31 11:16:30 +00002795 assert( pWal->ckptLock==0 );
dana58f26f2010-11-16 18:56:51 +00002796 assert( pWal->writeLock==0 );
dan39c79f52010-04-15 10:58:51 +00002797
drh66dfec8b2011-06-01 20:01:49 +00002798 if( pWal->readOnly ) return SQLITE_READONLY;
drhc74c3332010-05-31 12:15:19 +00002799 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drh73b64e42010-05-30 19:55:15 +00002800 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2801 if( rc ){
2802 /* Usually this is SQLITE_BUSY meaning that another thread or process
2803 ** is already running a checkpoint, or maybe a recovery. But it might
2804 ** also be SQLITE_IOERR. */
danb9bf16b2010-04-14 11:23:30 +00002805 return rc;
2806 }
dand54ff602010-05-31 11:16:30 +00002807 pWal->ckptLock = 1;
dan64d039e2010-04-13 19:27:31 +00002808
dana58f26f2010-11-16 18:56:51 +00002809 /* If this is a blocking-checkpoint, then obtain the write-lock as well
2810 ** to prevent any writers from running while the checkpoint is underway.
2811 ** This has to be done before the call to walIndexReadHdr() below.
danf2b8dd52010-11-18 19:28:01 +00002812 **
2813 ** If the writer lock cannot be obtained, then a passive checkpoint is
2814 ** run instead. Since the checkpointer is not holding the writer lock,
2815 ** there is no point in blocking waiting for any readers. Assuming no
2816 ** other error occurs, this function will return SQLITE_BUSY to the caller.
dana58f26f2010-11-16 18:56:51 +00002817 */
dancdc1f042010-11-18 12:11:05 +00002818 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dana58f26f2010-11-16 18:56:51 +00002819 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
danf2b8dd52010-11-18 19:28:01 +00002820 if( rc==SQLITE_OK ){
2821 pWal->writeLock = 1;
2822 }else if( rc==SQLITE_BUSY ){
2823 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
2824 rc = SQLITE_OK;
2825 }
danb9bf16b2010-04-14 11:23:30 +00002826 }
dana58f26f2010-11-16 18:56:51 +00002827
danf2b8dd52010-11-18 19:28:01 +00002828 /* Read the wal-index header. */
drh7ed91f22010-04-29 22:34:07 +00002829 if( rc==SQLITE_OK ){
dana58f26f2010-11-16 18:56:51 +00002830 rc = walIndexReadHdr(pWal, &isChanged);
2831 }
danf2b8dd52010-11-18 19:28:01 +00002832
2833 /* Copy data from the log to the database file. */
dan9c5e3682011-02-07 15:12:12 +00002834 if( rc==SQLITE_OK ){
2835 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
danf2b8dd52010-11-18 19:28:01 +00002836 rc = SQLITE_CORRUPT_BKPT;
2837 }else{
dan9c5e3682011-02-07 15:12:12 +00002838 rc = walCheckpoint(pWal, eMode2, xBusy, pBusyArg, sync_flags, zBuf);
2839 }
2840
2841 /* If no error occurred, set the output variables. */
2842 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
danf2b8dd52010-11-18 19:28:01 +00002843 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
dan9c5e3682011-02-07 15:12:12 +00002844 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
danf2b8dd52010-11-18 19:28:01 +00002845 }
danb9bf16b2010-04-14 11:23:30 +00002846 }
danf2b8dd52010-11-18 19:28:01 +00002847
dan31c03902010-04-29 14:51:33 +00002848 if( isChanged ){
2849 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00002850 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00002851 ** out of date. So zero the cached wal-index header to ensure that
2852 ** next time the pager opens a snapshot on this database it knows that
2853 ** the cache needs to be reset.
2854 */
2855 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
2856 }
danb9bf16b2010-04-14 11:23:30 +00002857
2858 /* Release the locks. */
dana58f26f2010-11-16 18:56:51 +00002859 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00002860 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00002861 pWal->ckptLock = 0;
drhc74c3332010-05-31 12:15:19 +00002862 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
danf2b8dd52010-11-18 19:28:01 +00002863 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
dan7c246102010-04-12 19:00:29 +00002864}
2865
drh7ed91f22010-04-29 22:34:07 +00002866/* Return the value to pass to a sqlite3_wal_hook callback, the
2867** number of frames in the WAL at the point of the last commit since
2868** sqlite3WalCallback() was called. If no commits have occurred since
2869** the last call, then return 0.
2870*/
2871int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00002872 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00002873 if( pWal ){
2874 ret = pWal->iCallback;
2875 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00002876 }
2877 return (int)ret;
2878}
dan55437592010-05-11 12:19:26 +00002879
2880/*
drh61e4ace2010-05-31 20:28:37 +00002881** This function is called to change the WAL subsystem into or out
2882** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00002883**
drh61e4ace2010-05-31 20:28:37 +00002884** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
2885** into locking_mode=NORMAL. This means that we must acquire a lock
2886** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
2887** or if the acquisition of the lock fails, then return 0. If the
2888** transition out of exclusive-mode is successful, return 1. This
2889** operation must occur while the pager is still holding the exclusive
2890** lock on the main database file.
dan55437592010-05-11 12:19:26 +00002891**
drh61e4ace2010-05-31 20:28:37 +00002892** If op is one, then change from locking_mode=NORMAL into
2893** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
2894** be released. Return 1 if the transition is made and 0 if the
2895** WAL is already in exclusive-locking mode - meaning that this
2896** routine is a no-op. The pager must already hold the exclusive lock
2897** on the main database file before invoking this operation.
2898**
2899** If op is negative, then do a dry-run of the op==1 case but do
dan8c408002010-11-01 17:38:24 +00002900** not actually change anything. The pager uses this to see if it
drh61e4ace2010-05-31 20:28:37 +00002901** should acquire the database exclusive lock prior to invoking
2902** the op==1 case.
dan55437592010-05-11 12:19:26 +00002903*/
2904int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00002905 int rc;
drhaab4c022010-06-02 14:45:51 +00002906 assert( pWal->writeLock==0 );
dan8c408002010-11-01 17:38:24 +00002907 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
dan3cac5dc2010-06-04 18:37:59 +00002908
2909 /* pWal->readLock is usually set, but might be -1 if there was a
2910 ** prior error while attempting to acquire are read-lock. This cannot
2911 ** happen if the connection is actually in exclusive mode (as no xShmLock
2912 ** locks are taken in this case). Nor should the pager attempt to
2913 ** upgrade to exclusive-mode following such an error.
2914 */
drhaab4c022010-06-02 14:45:51 +00002915 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00002916 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
2917
drh61e4ace2010-05-31 20:28:37 +00002918 if( op==0 ){
2919 if( pWal->exclusiveMode ){
2920 pWal->exclusiveMode = 0;
dan3cac5dc2010-06-04 18:37:59 +00002921 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drh61e4ace2010-05-31 20:28:37 +00002922 pWal->exclusiveMode = 1;
2923 }
2924 rc = pWal->exclusiveMode==0;
2925 }else{
drhaab4c022010-06-02 14:45:51 +00002926 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00002927 rc = 0;
2928 }
2929 }else if( op>0 ){
2930 assert( pWal->exclusiveMode==0 );
drhaab4c022010-06-02 14:45:51 +00002931 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00002932 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2933 pWal->exclusiveMode = 1;
2934 rc = 1;
2935 }else{
2936 rc = pWal->exclusiveMode==0;
dan55437592010-05-11 12:19:26 +00002937 }
drh61e4ace2010-05-31 20:28:37 +00002938 return rc;
dan55437592010-05-11 12:19:26 +00002939}
2940
dan8c408002010-11-01 17:38:24 +00002941/*
2942** Return true if the argument is non-NULL and the WAL module is using
2943** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
2944** WAL module is using shared-memory, return false.
2945*/
2946int sqlite3WalHeapMemory(Wal *pWal){
2947 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
2948}
2949
dan5cf53532010-05-01 16:40:20 +00002950#endif /* #ifndef SQLITE_OMIT_WAL */