blob: 382be4e0c886d1c77b6842e99df601e889506144 [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drhcd285082010-06-23 22:00:35 +000034** The WAL header is 32 bytes in size and consists of the following eight
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan10f5a502010-06-23 15:55:43 +000043** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
dan97a31352010-04-16 13:59:31 +000045**
drh23ea97b2010-05-20 16:45:58 +000046** Immediately following the wal-header are zero or more frames. Each
47** frame consists of a 24-byte frame-header followed by a <page-size> bytes
drhcd285082010-06-23 22:00:35 +000048** of page data. The frame-header is six big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000049** integer values, as follows:
50**
dan3de777f2010-04-17 12:31:37 +000051** 0: Page number.
52** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000053** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000054** 8: Salt-1 (copied from the header)
55** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000056** 16: Checksum-1.
57** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000058**
drh7e263722010-05-20 21:21:09 +000059** A frame is considered valid if and only if the following conditions are
60** true:
61**
62** (1) The salt-1 and salt-2 values in the frame-header match
63** salt values in the wal-header
64**
65** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000066** exactly match the checksum computed consecutively on the
67** WAL header and the first 8 bytes and the content of all frames
68** up to and including the current frame.
69**
70** The checksum is computed using 32-bit big-endian integers if the
71** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000073** The checksum values are always stored in the frame header in a
74** big-endian format regardless of which byte order is used to compute
75** the checksum. The checksum is computed by interpreting the input as
76** an even number of unsigned 32-bit integers: x[0] through x[N]. The
drhffca4302010-06-15 11:21:54 +000077** algorithm used for the checksum is as follows:
drh51b21b12010-05-25 15:53:31 +000078**
79** for i from 0 to n-1 step 2:
80** s0 += x[i] + s1;
81** s1 += x[i+1] + s0;
82** endfor
drh7e263722010-05-20 21:21:09 +000083**
drhcd285082010-06-23 22:00:35 +000084** Note that s0 and s1 are both weighted checksums using fibonacci weights
85** in reverse order (the largest fibonacci weight occurs on the first element
86** of the sequence being summed.) The s1 value spans all 32-bit
87** terms of the sequence whereas s0 omits the final term.
88**
drh7e263722010-05-20 21:21:09 +000089** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90** WAL is transferred into the database, then the database is VFS.xSync-ed.
drhffca4302010-06-15 11:21:54 +000091** The VFS.xSync operations serve as write barriers - all writes launched
drh7e263722010-05-20 21:21:09 +000092** before the xSync must complete before any write that launches after the
93** xSync begins.
94**
95** After each checkpoint, the salt-1 value is incremented and the salt-2
96** value is randomized. This prevents old and new frames in the WAL from
97** being considered valid at the same time and being checkpointing together
98** following a crash.
99**
drh29d4dbe2010-05-18 23:29:52 +0000100** READER ALGORITHM
101**
102** To read a page from the database (call it page number P), a reader
103** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +0000104** last valid instance of page P that is a followed by a commit frame
105** or is a commit frame itself becomes the value read. If the WAL
106** contains no copies of page P that are valid and which are a commit
107** frame or are followed by a commit frame, then page P is read from
108** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000109**
drh73b64e42010-05-30 19:55:15 +0000110** To start a read transaction, the reader records the index of the last
111** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112** for all subsequent read operations. New transactions can be appended
113** to the WAL, but as long as the reader uses its original mxFrame value
114** and ignores the newly appended content, it will see a consistent snapshot
115** of the database from a single point in time. This technique allows
116** multiple concurrent readers to view different versions of the database
117** content simultaneously.
118**
119** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000120** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000121** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000122** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000123** and read performance suffers. To overcome this problem, a separate
124** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000125** search for frames of a particular page.
126**
127** WAL-INDEX FORMAT
128**
129** Conceptually, the wal-index is shared memory, though VFS implementations
130** might choose to implement the wal-index using a mmapped file. Because
131** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132** on a network filesystem. All users of the database must be able to
133** share memory.
134**
drh07dae082017-10-30 20:44:36 +0000135** In the default unix and windows implementation, the wal-index is a mmapped
136** file whose name is the database name with a "-shm" suffix added. For that
137** reason, the wal-index is sometimes called the "shm" file.
138**
drh29d4dbe2010-05-18 23:29:52 +0000139** The wal-index is transient. After a crash, the wal-index can (and should
140** be) reconstructed from the original WAL file. In fact, the VFS is required
141** to either truncate or zero the header of the wal-index when the last
142** connection to it closes. Because the wal-index is transient, it can
143** use an architecture-specific format; it does not have to be cross-platform.
144** Hence, unlike the database and WAL file formats which store all values
145** as big endian, the wal-index can store multi-byte values in the native
146** byte order of the host computer.
147**
148** The purpose of the wal-index is to answer this question quickly: Given
drh610b8d82012-07-17 02:56:05 +0000149** a page number P and a maximum frame index M, return the index of the
150** last frame in the wal before frame M for page P in the WAL, or return
151** NULL if there are no frames for page P in the WAL prior to M.
drh29d4dbe2010-05-18 23:29:52 +0000152**
153** The wal-index consists of a header region, followed by an one or
154** more index blocks.
155**
drh027a1282010-05-19 01:53:53 +0000156** The wal-index header contains the total number of frames within the WAL
mistachkind5578432012-08-25 10:01:29 +0000157** in the mxFrame field.
danad3cadd2010-06-14 11:49:26 +0000158**
159** Each index block except for the first contains information on
160** HASHTABLE_NPAGE frames. The first index block contains information on
161** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162** HASHTABLE_NPAGE are selected so that together the wal-index header and
163** first index block are the same size as all other index blocks in the
164** wal-index.
165**
166** Each index block contains two sections, a page-mapping that contains the
167** database page number associated with each wal frame, and a hash-table
drhffca4302010-06-15 11:21:54 +0000168** that allows readers to query an index block for a specific page number.
danad3cadd2010-06-14 11:49:26 +0000169** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
170** for the first index block) 32-bit page numbers. The first entry in the
171** first index-block contains the database page number corresponding to the
172** first frame in the WAL file. The first entry in the second index block
173** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
174** the log, and so on.
175**
176** The last index block in a wal-index usually contains less than the full
177** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
178** depending on the contents of the WAL file. This does not change the
179** allocated size of the page-mapping array - the page-mapping array merely
180** contains unused entries.
drh027a1282010-05-19 01:53:53 +0000181**
182** Even without using the hash table, the last frame for page P
danad3cadd2010-06-14 11:49:26 +0000183** can be found by scanning the page-mapping sections of each index block
drh027a1282010-05-19 01:53:53 +0000184** starting with the last index block and moving toward the first, and
185** within each index block, starting at the end and moving toward the
186** beginning. The first entry that equals P corresponds to the frame
187** holding the content for that page.
188**
189** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
190** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
191** hash table for each page number in the mapping section, so the hash
192** table is never more than half full. The expected number of collisions
193** prior to finding a match is 1. Each entry of the hash table is an
194** 1-based index of an entry in the mapping section of the same
195** index block. Let K be the 1-based index of the largest entry in
196** the mapping section. (For index blocks other than the last, K will
197** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
198** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000199** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000200**
201** To look for page P in the hash table, first compute a hash iKey on
202** P as follows:
203**
204** iKey = (P * 383) % HASHTABLE_NSLOT
205**
206** Then start scanning entries of the hash table, starting with iKey
207** (wrapping around to the beginning when the end of the hash table is
208** reached) until an unused hash slot is found. Let the first unused slot
209** be at index iUnused. (iUnused might be less than iKey if there was
210** wrap-around.) Because the hash table is never more than half full,
211** the search is guaranteed to eventually hit an unused entry. Let
212** iMax be the value between iKey and iUnused, closest to iUnused,
213** where aHash[iMax]==P. If there is no iMax entry (if there exists
214** no hash slot such that aHash[i]==p) then page P is not in the
215** current index block. Otherwise the iMax-th mapping entry of the
216** current index block corresponds to the last entry that references
217** page P.
218**
219** A hash search begins with the last index block and moves toward the
220** first index block, looking for entries corresponding to page P. On
221** average, only two or three slots in each index block need to be
222** examined in order to either find the last entry for page P, or to
223** establish that no such entry exists in the block. Each index block
224** holds over 4000 entries. So two or three index blocks are sufficient
225** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
226** comparisons (on average) suffice to either locate a frame in the
227** WAL or to establish that the frame does not exist in the WAL. This
228** is much faster than scanning the entire 10MB WAL.
229**
230** Note that entries are added in order of increasing K. Hence, one
231** reader might be using some value K0 and a second reader that started
232** at a later time (after additional transactions were added to the WAL
233** and to the wal-index) might be using a different value K1, where K1>K0.
234** Both readers can use the same hash table and mapping section to get
235** the correct result. There may be entries in the hash table with
236** K>K0 but to the first reader, those entries will appear to be unused
237** slots in the hash table and so the first reader will get an answer as
238** if no values greater than K0 had ever been inserted into the hash table
239** in the first place - which is what reader one wants. Meanwhile, the
240** second reader using K1 will see additional values that were inserted
241** later, which is exactly what reader two wants.
242**
dan6f150142010-05-21 15:31:56 +0000243** When a rollback occurs, the value of K is decreased. Hash table entries
244** that correspond to frames greater than the new K value are removed
245** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000246*/
drh29d4dbe2010-05-18 23:29:52 +0000247#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000248
drh29d4dbe2010-05-18 23:29:52 +0000249#include "wal.h"
250
drh73b64e42010-05-30 19:55:15 +0000251/*
drhc74c3332010-05-31 12:15:19 +0000252** Trace output macros
253*/
drhc74c3332010-05-31 12:15:19 +0000254#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000255int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000256# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
257#else
258# define WALTRACE(X)
259#endif
260
dan10f5a502010-06-23 15:55:43 +0000261/*
262** The maximum (and only) versions of the wal and wal-index formats
263** that may be interpreted by this version of SQLite.
264**
265** If a client begins recovering a WAL file and finds that (a) the checksum
266** values in the wal-header are correct and (b) the version field is not
267** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
268**
269** Similarly, if a client successfully reads a wal-index header (i.e. the
270** checksum test is successful) and finds that the version field is not
271** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
272** returns SQLITE_CANTOPEN.
273*/
274#define WAL_MAX_VERSION 3007000
275#define WALINDEX_MAX_VERSION 3007000
drhc74c3332010-05-31 12:15:19 +0000276
277/*
drh07dae082017-10-30 20:44:36 +0000278** Index numbers for various locking bytes. WAL_NREADER is the number
drh998147e2015-12-10 02:15:03 +0000279** of available reader locks and should be at least 3. The default
280** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5.
drh07dae082017-10-30 20:44:36 +0000281**
282** Technically, the various VFSes are free to implement these locks however
283** they see fit. However, compatibility is encouraged so that VFSes can
284** interoperate. The standard implemention used on both unix and windows
285** is for the index number to indicate a byte offset into the
286** WalCkptInfo.aLock[] array in the wal-index header. In other words, all
287** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which
288** should be 120) is the location in the shm file for the first locking
289** byte.
drh73b64e42010-05-30 19:55:15 +0000290*/
291#define WAL_WRITE_LOCK 0
292#define WAL_ALL_BUT_WRITE 1
293#define WAL_CKPT_LOCK 1
294#define WAL_RECOVER_LOCK 2
295#define WAL_READ_LOCK(I) (3+(I))
296#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
297
dan97a31352010-04-16 13:59:31 +0000298
drh7ed91f22010-04-29 22:34:07 +0000299/* Object declarations */
300typedef struct WalIndexHdr WalIndexHdr;
301typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000302typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000303
304
305/*
drh286a2882010-05-20 23:51:06 +0000306** The following object holds a copy of the wal-index header content.
307**
308** The actual header in the wal-index consists of two copies of this
drh998147e2015-12-10 02:15:03 +0000309** object followed by one instance of the WalCkptInfo object.
310** For all versions of SQLite through 3.10.0 and probably beyond,
311** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
312** the total header size is 136 bytes.
drh9b78f792010-08-14 21:21:24 +0000313**
314** The szPage value can be any power of 2 between 512 and 32768, inclusive.
315** Or it can be 1 to represent a 65536-byte page. The latter case was
316** added in 3.7.1 when support for 64K pages was added.
dan7c246102010-04-12 19:00:29 +0000317*/
drh7ed91f22010-04-29 22:34:07 +0000318struct WalIndexHdr {
dan10f5a502010-06-23 15:55:43 +0000319 u32 iVersion; /* Wal-index version */
320 u32 unused; /* Unused (padding) field */
dan71d89912010-05-24 13:57:42 +0000321 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000322 u8 isInit; /* 1 when initialized */
323 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
drh9b78f792010-08-14 21:21:24 +0000324 u16 szPage; /* Database page size in bytes. 1==64K */
dand0aa3422010-05-31 16:41:53 +0000325 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000326 u32 nPage; /* Size of database in pages */
327 u32 aFrameCksum[2]; /* Checksum of last frame in log */
328 u32 aSalt[2]; /* Two salt values copied from WAL header */
329 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000330};
331
drh73b64e42010-05-30 19:55:15 +0000332/*
333** A copy of the following object occurs in the wal-index immediately
334** following the second copy of the WalIndexHdr. This object stores
335** information used by checkpoint.
336**
337** nBackfill is the number of frames in the WAL that have been written
338** back into the database. (We call the act of moving content from WAL to
339** database "backfilling".) The nBackfill number is never greater than
340** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
341** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
342** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
343** mxFrame back to zero when the WAL is reset.
344**
drh998147e2015-12-10 02:15:03 +0000345** nBackfillAttempted is the largest value of nBackfill that a checkpoint
346** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however
347** the nBackfillAttempted is set before any backfilling is done and the
mistachkinc9fb38e2015-12-10 03:16:47 +0000348** nBackfill is only set after all backfilling completes. So if a checkpoint
drh998147e2015-12-10 02:15:03 +0000349** crashes, nBackfillAttempted might be larger than nBackfill. The
350** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
351**
352** The aLock[] field is a set of bytes used for locking. These bytes should
353** never be read or written.
354**
drh73b64e42010-05-30 19:55:15 +0000355** There is one entry in aReadMark[] for each reader lock. If a reader
356** holds read-lock K, then the value in aReadMark[K] is no greater than
drhdb7f6472010-06-09 14:45:12 +0000357** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
358** for any aReadMark[] means that entry is unused. aReadMark[0] is
359** a special case; its value is never used and it exists as a place-holder
360** to avoid having to offset aReadMark[] indexs by one. Readers holding
361** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
362** directly from the database.
drh73b64e42010-05-30 19:55:15 +0000363**
364** The value of aReadMark[K] may only be changed by a thread that
365** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
366** aReadMark[K] cannot changed while there is a reader is using that mark
367** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
368**
369** The checkpointer may only transfer frames from WAL to database where
370** the frame numbers are less than or equal to every aReadMark[] that is
371** in use (that is, every aReadMark[j] for which there is a corresponding
372** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
373** largest value and will increase an unused aReadMark[] to mxFrame if there
374** is not already an aReadMark[] equal to mxFrame. The exception to the
375** previous sentence is when nBackfill equals mxFrame (meaning that everything
376** in the WAL has been backfilled into the database) then new readers
377** will choose aReadMark[0] which has value 0 and hence such reader will
378** get all their all content directly from the database file and ignore
379** the WAL.
380**
381** Writers normally append new frames to the end of the WAL. However,
382** if nBackfill equals mxFrame (meaning that all WAL content has been
383** written back into the database) and if no readers are using the WAL
384** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
385** the writer will first "reset" the WAL back to the beginning and start
386** writing new content beginning at frame 1.
387**
388** We assume that 32-bit loads are atomic and so no locks are needed in
389** order to read from any aReadMark[] entries.
390*/
391struct WalCkptInfo {
392 u32 nBackfill; /* Number of WAL frames backfilled into DB */
393 u32 aReadMark[WAL_NREADER]; /* Reader marks */
drh998147e2015-12-10 02:15:03 +0000394 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */
395 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */
396 u32 notUsed0; /* Available for future enhancements */
drh73b64e42010-05-30 19:55:15 +0000397};
drhdb7f6472010-06-09 14:45:12 +0000398#define READMARK_NOT_USED 0xffffffff
drh73b64e42010-05-30 19:55:15 +0000399
400
drh7e263722010-05-20 21:21:09 +0000401/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
402** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
403** only support mandatory file-locks, we do not read or write data
404** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000405*/
drh998147e2015-12-10 02:15:03 +0000406#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
407#define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
dan7c246102010-04-12 19:00:29 +0000408
drh7ed91f22010-04-29 22:34:07 +0000409/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000410#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000411
dan10f5a502010-06-23 15:55:43 +0000412/* Size of write ahead log header, including checksum. */
dan10f5a502010-06-23 15:55:43 +0000413#define WAL_HDRSIZE 32
dan97a31352010-04-16 13:59:31 +0000414
danb8fd6c22010-05-24 10:39:36 +0000415/* WAL magic value. Either this value, or the same value with the least
416** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
417** big-endian format in the first 4 bytes of a WAL file.
418**
419** If the LSB is set, then the checksums for each frame within the WAL
420** file are calculated by treating all data as an array of 32-bit
421** big-endian words. Otherwise, they are calculated by interpreting
422** all data as 32-bit little-endian words.
423*/
424#define WAL_MAGIC 0x377f0682
425
dan97a31352010-04-16 13:59:31 +0000426/*
drh7ed91f22010-04-29 22:34:07 +0000427** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000428** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000429** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000430*/
drh6e810962010-05-19 17:49:50 +0000431#define walFrameOffset(iFrame, szPage) ( \
danbd0e9072010-07-07 09:48:44 +0000432 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000433)
dan7c246102010-04-12 19:00:29 +0000434
435/*
drh7ed91f22010-04-29 22:34:07 +0000436** An open write-ahead log file is represented by an instance of the
437** following object.
dance4f05f2010-04-22 19:14:13 +0000438*/
drh7ed91f22010-04-29 22:34:07 +0000439struct Wal {
drh73b64e42010-05-30 19:55:15 +0000440 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000441 sqlite3_file *pDbFd; /* File handle for the database file */
442 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000443 u32 iCallback; /* Value to pass to log callback (or 0) */
drh85a83752011-05-16 21:00:27 +0000444 i64 mxWalSize; /* Truncate WAL to this size upon reset */
dan13a3cb82010-06-11 19:04:21 +0000445 int nWiData; /* Size of array apWiData */
drh88f975a2011-12-16 19:34:36 +0000446 int szFirstBlock; /* Size of first block written to WAL file */
dan13a3cb82010-06-11 19:04:21 +0000447 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
drhb2eced52010-08-12 02:41:12 +0000448 u32 szPage; /* Database page size */
drh73b64e42010-05-30 19:55:15 +0000449 i16 readLock; /* Which read lock is being held. -1 for none */
drh4eb02a42011-12-16 21:26:26 +0000450 u8 syncFlags; /* Flags to use to sync header writes */
dan55437592010-05-11 12:19:26 +0000451 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000452 u8 writeLock; /* True if in a write transaction */
453 u8 ckptLock; /* True if holding a checkpoint lock */
drh66dfec8b2011-06-01 20:01:49 +0000454 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
danf60b7f32011-12-16 13:24:27 +0000455 u8 truncateOnCommit; /* True to truncate WAL file on commit */
drhd992b152011-12-20 20:13:25 +0000456 u8 syncHeader; /* Fsync the WAL header if true */
drh374f4a02011-12-17 20:02:11 +0000457 u8 padToSectorBoundary; /* Pad transactions out to the next sector */
drh85bc6df2017-11-10 20:00:50 +0000458 u8 bShmUnreliable; /* SHM content is read-only and unreliable */
drh73b64e42010-05-30 19:55:15 +0000459 WalIndexHdr hdr; /* Wal-index header for current transaction */
danb8c7cfb2015-08-13 20:23:46 +0000460 u32 minFrame; /* Ignore wal frames before this one */
danc9a90222016-01-09 18:57:35 +0000461 u32 iReCksum; /* On commit, recalculate checksums from here */
dan3e875ef2010-07-05 19:03:35 +0000462 const char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000463 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000464#ifdef SQLITE_DEBUG
465 u8 lockError; /* True if a locking error has occurred */
466#endif
danfc1acf32015-12-05 20:51:54 +0000467#ifdef SQLITE_ENABLE_SNAPSHOT
drh998147e2015-12-10 02:15:03 +0000468 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */
danfc1acf32015-12-05 20:51:54 +0000469#endif
dan7c246102010-04-12 19:00:29 +0000470};
471
drh73b64e42010-05-30 19:55:15 +0000472/*
dan8c408002010-11-01 17:38:24 +0000473** Candidate values for Wal.exclusiveMode.
474*/
475#define WAL_NORMAL_MODE 0
476#define WAL_EXCLUSIVE_MODE 1
477#define WAL_HEAPMEMORY_MODE 2
478
479/*
drh66dfec8b2011-06-01 20:01:49 +0000480** Possible values for WAL.readOnly
481*/
482#define WAL_RDWR 0 /* Normal read/write connection */
483#define WAL_RDONLY 1 /* The WAL file is readonly */
484#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
485
486/*
dan067f3162010-06-14 10:30:12 +0000487** Each page of the wal-index mapping contains a hash-table made up of
488** an array of HASHTABLE_NSLOT elements of the following type.
489*/
490typedef u16 ht_slot;
491
492/*
danad3cadd2010-06-14 11:49:26 +0000493** This structure is used to implement an iterator that loops through
494** all frames in the WAL in database page order. Where two or more frames
495** correspond to the same database page, the iterator visits only the
496** frame most recently written to the WAL (in other words, the frame with
497** the largest index).
498**
499** The internals of this structure are only accessed by:
500**
501** walIteratorInit() - Create a new iterator,
502** walIteratorNext() - Step an iterator,
503** walIteratorFree() - Free an iterator.
504**
505** This functionality is used by the checkpoint code (see walCheckpoint()).
506*/
507struct WalIterator {
508 int iPrior; /* Last result returned from the iterator */
drhd9c9b782010-12-15 21:02:06 +0000509 int nSegment; /* Number of entries in aSegment[] */
danad3cadd2010-06-14 11:49:26 +0000510 struct WalSegment {
511 int iNext; /* Next slot in aIndex[] not yet returned */
512 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
513 u32 *aPgno; /* Array of page numbers. */
drhd9c9b782010-12-15 21:02:06 +0000514 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
danad3cadd2010-06-14 11:49:26 +0000515 int iZero; /* Frame number associated with aPgno[0] */
drhd9c9b782010-12-15 21:02:06 +0000516 } aSegment[1]; /* One for every 32KB page in the wal-index */
danad3cadd2010-06-14 11:49:26 +0000517};
518
519/*
dan13a3cb82010-06-11 19:04:21 +0000520** Define the parameters of the hash tables in the wal-index file. There
521** is a hash-table following every HASHTABLE_NPAGE page numbers in the
522** wal-index.
523**
524** Changing any of these constants will alter the wal-index format and
525** create incompatibilities.
526*/
dan067f3162010-06-14 10:30:12 +0000527#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000528#define HASHTABLE_HASH_1 383 /* Should be prime */
529#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000530
danad3cadd2010-06-14 11:49:26 +0000531/*
532** The block of page numbers associated with the first hash-table in a
dan13a3cb82010-06-11 19:04:21 +0000533** wal-index is smaller than usual. This is so that there is a complete
534** hash-table on each aligned 32KB page of the wal-index.
535*/
dan067f3162010-06-14 10:30:12 +0000536#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
dan13a3cb82010-06-11 19:04:21 +0000537
dan067f3162010-06-14 10:30:12 +0000538/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
539#define WALINDEX_PGSZ ( \
540 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
541)
dan13a3cb82010-06-11 19:04:21 +0000542
543/*
544** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
dan067f3162010-06-14 10:30:12 +0000545** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
dan13a3cb82010-06-11 19:04:21 +0000546** numbered from zero.
547**
drhc05a0632017-11-11 20:11:01 +0000548** If the wal-index is currently smaller the iPage pages then the size
549** of the wal-index might be increased, but only if it is safe to do
550** so. It is safe to enlarge the wal-index if pWal->writeLock is true
551** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
552**
dan13a3cb82010-06-11 19:04:21 +0000553** If this call is successful, *ppPage is set to point to the wal-index
554** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
555** then an SQLite error code is returned and *ppPage is set to 0.
556*/
557static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
558 int rc = SQLITE_OK;
559
560 /* Enlarge the pWal->apWiData[] array if required */
561 if( pWal->nWiData<=iPage ){
drh519426a2010-07-09 03:19:07 +0000562 int nByte = sizeof(u32*)*(iPage+1);
dan13a3cb82010-06-11 19:04:21 +0000563 volatile u32 **apNew;
drhf3cdcdc2015-04-29 16:50:28 +0000564 apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
dan13a3cb82010-06-11 19:04:21 +0000565 if( !apNew ){
566 *ppPage = 0;
mistachkinfad30392016-02-13 23:43:46 +0000567 return SQLITE_NOMEM_BKPT;
dan13a3cb82010-06-11 19:04:21 +0000568 }
drh519426a2010-07-09 03:19:07 +0000569 memset((void*)&apNew[pWal->nWiData], 0,
570 sizeof(u32*)*(iPage+1-pWal->nWiData));
dan13a3cb82010-06-11 19:04:21 +0000571 pWal->apWiData = apNew;
572 pWal->nWiData = iPage+1;
573 }
574
575 /* Request a pointer to the required page from the VFS */
576 if( pWal->apWiData[iPage]==0 ){
dan8c408002010-11-01 17:38:24 +0000577 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
578 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
mistachkinfad30392016-02-13 23:43:46 +0000579 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
dan8c408002010-11-01 17:38:24 +0000580 }else{
581 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
582 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
583 );
drhc05a0632017-11-11 20:11:01 +0000584 assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
585 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
dan92c02da2017-11-01 20:59:28 +0000586 if( (rc&0xff)==SQLITE_READONLY ){
drh66dfec8b2011-06-01 20:01:49 +0000587 pWal->readOnly |= WAL_SHM_RDONLY;
dan92c02da2017-11-01 20:59:28 +0000588 if( rc==SQLITE_READONLY ){
589 rc = SQLITE_OK;
590 }
dan4edc6bf2011-05-10 17:31:29 +0000591 }
dan8c408002010-11-01 17:38:24 +0000592 }
dan13a3cb82010-06-11 19:04:21 +0000593 }
danb6d2f9c2011-05-11 14:57:33 +0000594
drh66dfec8b2011-06-01 20:01:49 +0000595 *ppPage = pWal->apWiData[iPage];
dan13a3cb82010-06-11 19:04:21 +0000596 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
597 return rc;
598}
599
600/*
drh73b64e42010-05-30 19:55:15 +0000601** Return a pointer to the WalCkptInfo structure in the wal-index.
602*/
603static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000604 assert( pWal->nWiData>0 && pWal->apWiData[0] );
605 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
606}
607
608/*
609** Return a pointer to the WalIndexHdr structure in the wal-index.
610*/
611static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
612 assert( pWal->nWiData>0 && pWal->apWiData[0] );
613 return (volatile WalIndexHdr*)pWal->apWiData[0];
drh73b64e42010-05-30 19:55:15 +0000614}
615
dan7c246102010-04-12 19:00:29 +0000616/*
danb8fd6c22010-05-24 10:39:36 +0000617** The argument to this macro must be of type u32. On a little-endian
618** architecture, it returns the u32 value that results from interpreting
619** the 4 bytes as a big-endian value. On a big-endian architecture, it
peter.d.reid60ec9142014-09-06 16:39:46 +0000620** returns the value that would be produced by interpreting the 4 bytes
danb8fd6c22010-05-24 10:39:36 +0000621** of the input value as a little-endian integer.
622*/
623#define BYTESWAP32(x) ( \
624 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
625 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
626)
dan64d039e2010-04-13 19:27:31 +0000627
dan7c246102010-04-12 19:00:29 +0000628/*
drh7e263722010-05-20 21:21:09 +0000629** Generate or extend an 8 byte checksum based on the data in
630** array aByte[] and the initial values of aIn[0] and aIn[1] (or
631** initial values of 0 and 0 if aIn==NULL).
632**
633** The checksum is written back into aOut[] before returning.
634**
635** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000636*/
drh7e263722010-05-20 21:21:09 +0000637static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000638 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000639 u8 *a, /* Content to be checksummed */
640 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
641 const u32 *aIn, /* Initial checksum value input */
642 u32 *aOut /* OUT: Final checksum value output */
643){
644 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000645 u32 *aData = (u32 *)a;
646 u32 *aEnd = (u32 *)&a[nByte];
647
drh7e263722010-05-20 21:21:09 +0000648 if( aIn ){
649 s1 = aIn[0];
650 s2 = aIn[1];
651 }else{
652 s1 = s2 = 0;
653 }
dan7c246102010-04-12 19:00:29 +0000654
drh584c7542010-05-19 18:08:10 +0000655 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000656 assert( (nByte&0x00000007)==0 );
dan7c246102010-04-12 19:00:29 +0000657
danb8fd6c22010-05-24 10:39:36 +0000658 if( nativeCksum ){
659 do {
660 s1 += *aData++ + s2;
661 s2 += *aData++ + s1;
662 }while( aData<aEnd );
663 }else{
664 do {
665 s1 += BYTESWAP32(aData[0]) + s2;
666 s2 += BYTESWAP32(aData[1]) + s1;
667 aData += 2;
668 }while( aData<aEnd );
669 }
670
drh7e263722010-05-20 21:21:09 +0000671 aOut[0] = s1;
672 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000673}
674
dan8c408002010-11-01 17:38:24 +0000675static void walShmBarrier(Wal *pWal){
676 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
677 sqlite3OsShmBarrier(pWal->pDbFd);
678 }
679}
680
dan7c246102010-04-12 19:00:29 +0000681/*
drh7e263722010-05-20 21:21:09 +0000682** Write the header information in pWal->hdr into the wal-index.
683**
684** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000685*/
drh7e263722010-05-20 21:21:09 +0000686static void walIndexWriteHdr(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000687 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
688 const int nCksum = offsetof(WalIndexHdr, aCksum);
drh73b64e42010-05-30 19:55:15 +0000689
690 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000691 pWal->hdr.isInit = 1;
dan10f5a502010-06-23 15:55:43 +0000692 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
dan4280eb32010-06-12 12:02:35 +0000693 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
drhf6bff3f2015-07-17 01:16:10 +0000694 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
dan8c408002010-11-01 17:38:24 +0000695 walShmBarrier(pWal);
drhf6bff3f2015-07-17 01:16:10 +0000696 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000697}
698
699/*
700** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000701** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000702** 4-byte big-endian integers, as follows:
703**
drh23ea97b2010-05-20 16:45:58 +0000704** 0: Page number.
705** 4: For commit records, the size of the database image in pages
706** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000707** 8: Salt-1 (copied from the wal-header)
708** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000709** 16: Checksum-1.
710** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000711*/
drh7ed91f22010-04-29 22:34:07 +0000712static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000713 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000714 u32 iPage, /* Database page number for frame */
715 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000716 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000717 u8 *aFrame /* OUT: Write encoded frame here */
718){
danb8fd6c22010-05-24 10:39:36 +0000719 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000720 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000721 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000722 sqlite3Put4byte(&aFrame[0], iPage);
723 sqlite3Put4byte(&aFrame[4], nTruncate);
danc9a90222016-01-09 18:57:35 +0000724 if( pWal->iReCksum==0 ){
725 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000726
danc9a90222016-01-09 18:57:35 +0000727 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
728 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
729 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000730
danc9a90222016-01-09 18:57:35 +0000731 sqlite3Put4byte(&aFrame[16], aCksum[0]);
732 sqlite3Put4byte(&aFrame[20], aCksum[1]);
drh869aaf02016-01-12 02:28:19 +0000733 }else{
734 memset(&aFrame[8], 0, 16);
danc9a90222016-01-09 18:57:35 +0000735 }
dan7c246102010-04-12 19:00:29 +0000736}
737
738/*
drh7e263722010-05-20 21:21:09 +0000739** Check to see if the frame with header in aFrame[] and content
740** in aData[] is valid. If it is a valid frame, fill *piPage and
741** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000742*/
drh7ed91f22010-04-29 22:34:07 +0000743static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000744 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000745 u32 *piPage, /* OUT: Database page number for frame */
746 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000747 u8 *aData, /* Pointer to page data (for checksum) */
748 u8 *aFrame /* Frame data */
749){
danb8fd6c22010-05-24 10:39:36 +0000750 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000751 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000752 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000753 assert( WAL_FRAME_HDRSIZE==24 );
754
drh7e263722010-05-20 21:21:09 +0000755 /* A frame is only valid if the salt values in the frame-header
756 ** match the salt values in the wal-header.
757 */
758 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000759 return 0;
760 }
dan4a4b01d2010-04-16 11:30:18 +0000761
drhc8179152010-05-24 13:28:36 +0000762 /* A frame is only valid if the page number is creater than zero.
763 */
764 pgno = sqlite3Get4byte(&aFrame[0]);
765 if( pgno==0 ){
766 return 0;
767 }
768
drh519426a2010-07-09 03:19:07 +0000769 /* A frame is only valid if a checksum of the WAL header,
770 ** all prior frams, the first 16 bytes of this frame-header,
771 ** and the frame-data matches the checksum in the last 8
772 ** bytes of this frame-header.
drh7e263722010-05-20 21:21:09 +0000773 */
danb8fd6c22010-05-24 10:39:36 +0000774 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000775 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000776 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000777 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
778 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000779 ){
780 /* Checksum failed. */
781 return 0;
782 }
783
drh7e263722010-05-20 21:21:09 +0000784 /* If we reach this point, the frame is valid. Return the page number
785 ** and the new database size.
786 */
drhc8179152010-05-24 13:28:36 +0000787 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000788 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000789 return 1;
790}
791
dan7c246102010-04-12 19:00:29 +0000792
drhc74c3332010-05-31 12:15:19 +0000793#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
794/*
drh181e0912010-06-01 01:08:08 +0000795** Names of locks. This routine is used to provide debugging output and is not
796** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000797*/
798static const char *walLockName(int lockIdx){
799 if( lockIdx==WAL_WRITE_LOCK ){
800 return "WRITE-LOCK";
801 }else if( lockIdx==WAL_CKPT_LOCK ){
802 return "CKPT-LOCK";
803 }else if( lockIdx==WAL_RECOVER_LOCK ){
804 return "RECOVER-LOCK";
805 }else{
806 static char zName[15];
807 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
808 lockIdx-WAL_READ_LOCK(0));
809 return zName;
810 }
811}
812#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
813
814
dan7c246102010-04-12 19:00:29 +0000815/*
drh181e0912010-06-01 01:08:08 +0000816** Set or release locks on the WAL. Locks are either shared or exclusive.
817** A lock cannot be moved directly between shared and exclusive - it must go
818** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000819**
820** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
821*/
822static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000823 int rc;
drh73b64e42010-05-30 19:55:15 +0000824 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000825 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
826 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
827 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
828 walLockName(lockIdx), rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000829 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000830 return rc;
drh73b64e42010-05-30 19:55:15 +0000831}
832static void walUnlockShared(Wal *pWal, int lockIdx){
833 if( pWal->exclusiveMode ) return;
834 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
835 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000836 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000837}
drhab372772015-12-02 16:10:16 +0000838static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000839 int rc;
drh73b64e42010-05-30 19:55:15 +0000840 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000841 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
842 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
843 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
844 walLockName(lockIdx), n, rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000845 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000846 return rc;
drh73b64e42010-05-30 19:55:15 +0000847}
848static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
849 if( pWal->exclusiveMode ) return;
850 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
851 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000852 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
853 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000854}
855
856/*
drh29d4dbe2010-05-18 23:29:52 +0000857** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000858** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
859** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000860*/
861static int walHash(u32 iPage){
862 assert( iPage>0 );
863 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
864 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
865}
866static int walNextHash(int iPriorHash){
867 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000868}
869
dan4280eb32010-06-12 12:02:35 +0000870/*
871** Return pointers to the hash table and page number array stored on
872** page iHash of the wal-index. The wal-index is broken into 32KB pages
873** numbered starting from 0.
874**
875** Set output variable *paHash to point to the start of the hash table
876** in the wal-index file. Set *piZero to one less than the frame
877** number of the first frame indexed by this hash table. If a
878** slot in the hash table is set to N, it refers to frame number
879** (*piZero+N) in the log.
880**
dand60bf112010-06-14 11:18:50 +0000881** Finally, set *paPgno so that *paPgno[1] is the page number of the
882** first frame indexed by the hash table, frame (*piZero+1).
dan4280eb32010-06-12 12:02:35 +0000883*/
884static int walHashGet(
dan13a3cb82010-06-11 19:04:21 +0000885 Wal *pWal, /* WAL handle */
886 int iHash, /* Find the iHash'th table */
dan067f3162010-06-14 10:30:12 +0000887 volatile ht_slot **paHash, /* OUT: Pointer to hash index */
dan13a3cb82010-06-11 19:04:21 +0000888 volatile u32 **paPgno, /* OUT: Pointer to page number array */
889 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
890){
dan4280eb32010-06-12 12:02:35 +0000891 int rc; /* Return code */
dan13a3cb82010-06-11 19:04:21 +0000892 volatile u32 *aPgno;
dan13a3cb82010-06-11 19:04:21 +0000893
dan4280eb32010-06-12 12:02:35 +0000894 rc = walIndexPage(pWal, iHash, &aPgno);
895 assert( rc==SQLITE_OK || iHash>0 );
dan13a3cb82010-06-11 19:04:21 +0000896
dan4280eb32010-06-12 12:02:35 +0000897 if( rc==SQLITE_OK ){
898 u32 iZero;
dan067f3162010-06-14 10:30:12 +0000899 volatile ht_slot *aHash;
dan4280eb32010-06-12 12:02:35 +0000900
dan067f3162010-06-14 10:30:12 +0000901 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
dan4280eb32010-06-12 12:02:35 +0000902 if( iHash==0 ){
dand60bf112010-06-14 11:18:50 +0000903 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
dan4280eb32010-06-12 12:02:35 +0000904 iZero = 0;
905 }else{
906 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
dan4280eb32010-06-12 12:02:35 +0000907 }
908
dand60bf112010-06-14 11:18:50 +0000909 *paPgno = &aPgno[-1];
dan4280eb32010-06-12 12:02:35 +0000910 *paHash = aHash;
911 *piZero = iZero;
dan13a3cb82010-06-11 19:04:21 +0000912 }
dan4280eb32010-06-12 12:02:35 +0000913 return rc;
dan13a3cb82010-06-11 19:04:21 +0000914}
915
dan4280eb32010-06-12 12:02:35 +0000916/*
917** Return the number of the wal-index page that contains the hash-table
918** and page-number array that contain entries corresponding to WAL frame
919** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
920** are numbered starting from 0.
921*/
dan13a3cb82010-06-11 19:04:21 +0000922static int walFramePage(u32 iFrame){
923 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
924 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
925 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
926 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
927 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
928 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
929 );
930 return iHash;
931}
932
933/*
934** Return the page number associated with frame iFrame in this WAL.
935*/
936static u32 walFramePgno(Wal *pWal, u32 iFrame){
937 int iHash = walFramePage(iFrame);
938 if( iHash==0 ){
939 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
940 }
941 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
942}
danbb23aff2010-05-10 14:46:09 +0000943
danca6b5ba2010-05-25 10:50:56 +0000944/*
945** Remove entries from the hash table that point to WAL slots greater
946** than pWal->hdr.mxFrame.
947**
948** This function is called whenever pWal->hdr.mxFrame is decreased due
949** to a rollback or savepoint.
950**
drh181e0912010-06-01 01:08:08 +0000951** At most only the hash table containing pWal->hdr.mxFrame needs to be
952** updated. Any later hash tables will be automatically cleared when
953** pWal->hdr.mxFrame advances to the point where those hash tables are
954** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000955*/
956static void walCleanupHash(Wal *pWal){
drhff828942010-06-26 21:34:06 +0000957 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */
958 volatile u32 *aPgno = 0; /* Page number array for hash table */
959 u32 iZero = 0; /* frame == (aHash[x]+iZero) */
dan067f3162010-06-14 10:30:12 +0000960 int iLimit = 0; /* Zero values greater than this */
961 int nByte; /* Number of bytes to zero in aPgno[] */
962 int i; /* Used to iterate through aHash[] */
danca6b5ba2010-05-25 10:50:56 +0000963
drh73b64e42010-05-30 19:55:15 +0000964 assert( pWal->writeLock );
drhffca4302010-06-15 11:21:54 +0000965 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
966 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
967 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
drh9c156472010-06-01 12:58:41 +0000968
dan4280eb32010-06-12 12:02:35 +0000969 if( pWal->hdr.mxFrame==0 ) return;
970
971 /* Obtain pointers to the hash-table and page-number array containing
972 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
973 ** that the page said hash-table and array reside on is already mapped.
974 */
975 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
976 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
977 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
978
979 /* Zero all hash-table entries that correspond to frame numbers greater
980 ** than pWal->hdr.mxFrame.
981 */
982 iLimit = pWal->hdr.mxFrame - iZero;
983 assert( iLimit>0 );
984 for(i=0; i<HASHTABLE_NSLOT; i++){
985 if( aHash[i]>iLimit ){
986 aHash[i] = 0;
danca6b5ba2010-05-25 10:50:56 +0000987 }
danca6b5ba2010-05-25 10:50:56 +0000988 }
dan4280eb32010-06-12 12:02:35 +0000989
990 /* Zero the entries in the aPgno array that correspond to frames with
991 ** frame numbers greater than pWal->hdr.mxFrame.
992 */
shaneh5eba1f62010-07-02 17:05:03 +0000993 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
dand60bf112010-06-14 11:18:50 +0000994 memset((void *)&aPgno[iLimit+1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000995
996#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
997 /* Verify that the every entry in the mapping region is still reachable
998 ** via the hash table even after the cleanup.
999 */
drhf77bbd92010-06-01 13:17:44 +00001000 if( iLimit ){
mistachkin6b67a8a2015-07-21 19:22:35 +00001001 int j; /* Loop counter */
danca6b5ba2010-05-25 10:50:56 +00001002 int iKey; /* Hash key */
mistachkin6b67a8a2015-07-21 19:22:35 +00001003 for(j=1; j<=iLimit; j++){
1004 for(iKey=walHash(aPgno[j]); aHash[iKey]; iKey=walNextHash(iKey)){
1005 if( aHash[iKey]==j ) break;
danca6b5ba2010-05-25 10:50:56 +00001006 }
mistachkin6b67a8a2015-07-21 19:22:35 +00001007 assert( aHash[iKey]==j );
danca6b5ba2010-05-25 10:50:56 +00001008 }
1009 }
1010#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1011}
1012
danbb23aff2010-05-10 14:46:09 +00001013
drh7ed91f22010-04-29 22:34:07 +00001014/*
drh29d4dbe2010-05-18 23:29:52 +00001015** Set an entry in the wal-index that will map database page number
1016** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +00001017*/
drh7ed91f22010-04-29 22:34:07 +00001018static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
dan4280eb32010-06-12 12:02:35 +00001019 int rc; /* Return code */
drhff828942010-06-26 21:34:06 +00001020 u32 iZero = 0; /* One less than frame number of aPgno[1] */
1021 volatile u32 *aPgno = 0; /* Page number array */
1022 volatile ht_slot *aHash = 0; /* Hash table */
dance4f05f2010-04-22 19:14:13 +00001023
dan4280eb32010-06-12 12:02:35 +00001024 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
1025
1026 /* Assuming the wal-index file was successfully mapped, populate the
1027 ** page number array and hash table entry.
dan7c246102010-04-12 19:00:29 +00001028 */
danbb23aff2010-05-10 14:46:09 +00001029 if( rc==SQLITE_OK ){
1030 int iKey; /* Hash table key */
dan4280eb32010-06-12 12:02:35 +00001031 int idx; /* Value to write to hash-table slot */
drh519426a2010-07-09 03:19:07 +00001032 int nCollide; /* Number of hash collisions */
dan7c246102010-04-12 19:00:29 +00001033
danbb23aff2010-05-10 14:46:09 +00001034 idx = iFrame - iZero;
dan4280eb32010-06-12 12:02:35 +00001035 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1036
1037 /* If this is the first entry to be added to this hash-table, zero the
peter.d.reid60ec9142014-09-06 16:39:46 +00001038 ** entire hash table and aPgno[] array before proceeding.
dan4280eb32010-06-12 12:02:35 +00001039 */
danca6b5ba2010-05-25 10:50:56 +00001040 if( idx==1 ){
shaneh5eba1f62010-07-02 17:05:03 +00001041 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
dand60bf112010-06-14 11:18:50 +00001042 memset((void*)&aPgno[1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +00001043 }
danca6b5ba2010-05-25 10:50:56 +00001044
dan4280eb32010-06-12 12:02:35 +00001045 /* If the entry in aPgno[] is already set, then the previous writer
1046 ** must have exited unexpectedly in the middle of a transaction (after
1047 ** writing one or more dirty pages to the WAL to free up memory).
1048 ** Remove the remnants of that writers uncommitted transaction from
1049 ** the hash-table before writing any new entries.
1050 */
dand60bf112010-06-14 11:18:50 +00001051 if( aPgno[idx] ){
danca6b5ba2010-05-25 10:50:56 +00001052 walCleanupHash(pWal);
dand60bf112010-06-14 11:18:50 +00001053 assert( !aPgno[idx] );
danca6b5ba2010-05-25 10:50:56 +00001054 }
dan4280eb32010-06-12 12:02:35 +00001055
1056 /* Write the aPgno[] array entry and the hash-table slot. */
drh519426a2010-07-09 03:19:07 +00001057 nCollide = idx;
dan6f150142010-05-21 15:31:56 +00001058 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
drh519426a2010-07-09 03:19:07 +00001059 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
drh29d4dbe2010-05-18 23:29:52 +00001060 }
dand60bf112010-06-14 11:18:50 +00001061 aPgno[idx] = iPage;
shaneh5eba1f62010-07-02 17:05:03 +00001062 aHash[iKey] = (ht_slot)idx;
drh4fa95bf2010-05-22 00:55:39 +00001063
1064#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1065 /* Verify that the number of entries in the hash table exactly equals
1066 ** the number of entries in the mapping region.
1067 */
1068 {
1069 int i; /* Loop counter */
1070 int nEntry = 0; /* Number of entries in the hash table */
1071 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1072 assert( nEntry==idx );
1073 }
1074
1075 /* Verify that the every entry in the mapping region is reachable
1076 ** via the hash table. This turns out to be a really, really expensive
1077 ** thing to check, so only do this occasionally - not on every
1078 ** iteration.
1079 */
1080 if( (idx&0x3ff)==0 ){
1081 int i; /* Loop counter */
1082 for(i=1; i<=idx; i++){
dand60bf112010-06-14 11:18:50 +00001083 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
drh4fa95bf2010-05-22 00:55:39 +00001084 if( aHash[iKey]==i ) break;
1085 }
1086 assert( aHash[iKey]==i );
1087 }
1088 }
1089#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +00001090 }
dan31f98fc2010-04-27 05:42:32 +00001091
drh4fa95bf2010-05-22 00:55:39 +00001092
danbb23aff2010-05-10 14:46:09 +00001093 return rc;
dan7c246102010-04-12 19:00:29 +00001094}
1095
1096
1097/*
drh7ed91f22010-04-29 22:34:07 +00001098** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +00001099**
1100** This routine first tries to establish an exclusive lock on the
1101** wal-index to prevent other threads/processes from doing anything
1102** with the WAL or wal-index while recovery is running. The
1103** WAL_RECOVER_LOCK is also held so that other threads will know
1104** that this thread is running recovery. If unable to establish
1105** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +00001106*/
drh7ed91f22010-04-29 22:34:07 +00001107static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +00001108 int rc; /* Return Code */
1109 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +00001110 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +00001111 int iLock; /* Lock offset to lock for checkpoint */
dan7c246102010-04-12 19:00:29 +00001112
dand0aa3422010-05-31 16:41:53 +00001113 /* Obtain an exclusive lock on all byte in the locking range not already
1114 ** locked by the caller. The caller is guaranteed to have locked the
1115 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1116 ** If successful, the same bytes that are locked here are unlocked before
1117 ** this function returns.
1118 */
1119 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1120 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1121 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1122 assert( pWal->writeLock );
1123 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
dandea5ce32017-11-02 11:12:03 +00001124 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1125 if( rc==SQLITE_OK ){
1126 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1127 if( rc!=SQLITE_OK ){
1128 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1129 }
1130 }
drh73b64e42010-05-30 19:55:15 +00001131 if( rc ){
1132 return rc;
1133 }
dandea5ce32017-11-02 11:12:03 +00001134
drhc74c3332010-05-31 12:15:19 +00001135 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +00001136
dan71d89912010-05-24 13:57:42 +00001137 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +00001138
drhd9e5c4f2010-05-12 18:01:39 +00001139 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +00001140 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001141 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001142 }
1143
danb8fd6c22010-05-24 10:39:36 +00001144 if( nSize>WAL_HDRSIZE ){
1145 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dan7c246102010-04-12 19:00:29 +00001146 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001147 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001148 u8 *aData; /* Pointer to data part of aFrame buffer */
1149 int iFrame; /* Index of last frame read */
1150 i64 iOffset; /* Next offset to read from log file */
drh6e810962010-05-19 17:49:50 +00001151 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001152 u32 magic; /* Magic value read from WAL header */
dan10f5a502010-06-23 15:55:43 +00001153 u32 version; /* Magic value read from WAL header */
drhfe6163d2011-12-17 13:45:28 +00001154 int isValid; /* True if this frame is valid */
dan7c246102010-04-12 19:00:29 +00001155
danb8fd6c22010-05-24 10:39:36 +00001156 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001157 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001158 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001159 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001160 }
1161
1162 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001163 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1164 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1165 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001166 */
danb8fd6c22010-05-24 10:39:36 +00001167 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001168 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001169 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1170 || szPage&(szPage-1)
1171 || szPage>SQLITE_MAX_PAGE_SIZE
1172 || szPage<512
1173 ){
dan7c246102010-04-12 19:00:29 +00001174 goto finished;
1175 }
shaneh5eba1f62010-07-02 17:05:03 +00001176 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
drhb2eced52010-08-12 02:41:12 +00001177 pWal->szPage = szPage;
drh23ea97b2010-05-20 16:45:58 +00001178 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001179 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
drhcd285082010-06-23 22:00:35 +00001180
1181 /* Verify that the WAL header checksum is correct */
dan71d89912010-05-24 13:57:42 +00001182 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
dan10f5a502010-06-23 15:55:43 +00001183 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
dan71d89912010-05-24 13:57:42 +00001184 );
dan10f5a502010-06-23 15:55:43 +00001185 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1186 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1187 ){
1188 goto finished;
1189 }
1190
drhcd285082010-06-23 22:00:35 +00001191 /* Verify that the version number on the WAL format is one that
1192 ** are able to understand */
dan10f5a502010-06-23 15:55:43 +00001193 version = sqlite3Get4byte(&aBuf[4]);
1194 if( version!=WAL_MAX_VERSION ){
1195 rc = SQLITE_CANTOPEN_BKPT;
1196 goto finished;
1197 }
1198
dan7c246102010-04-12 19:00:29 +00001199 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001200 szFrame = szPage + WAL_FRAME_HDRSIZE;
drhf3cdcdc2015-04-29 16:50:28 +00001201 aFrame = (u8 *)sqlite3_malloc64(szFrame);
dan7c246102010-04-12 19:00:29 +00001202 if( !aFrame ){
mistachkinfad30392016-02-13 23:43:46 +00001203 rc = SQLITE_NOMEM_BKPT;
drh73b64e42010-05-30 19:55:15 +00001204 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001205 }
drh7ed91f22010-04-29 22:34:07 +00001206 aData = &aFrame[WAL_FRAME_HDRSIZE];
dan7c246102010-04-12 19:00:29 +00001207
1208 /* Read all frames from the log file. */
1209 iFrame = 0;
drh584c7542010-05-19 18:08:10 +00001210 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
dan7c246102010-04-12 19:00:29 +00001211 u32 pgno; /* Database page number for frame */
1212 u32 nTruncate; /* dbsize field from frame header */
dan7c246102010-04-12 19:00:29 +00001213
1214 /* Read and decode the next log frame. */
drhfe6163d2011-12-17 13:45:28 +00001215 iFrame++;
drh584c7542010-05-19 18:08:10 +00001216 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
dan7c246102010-04-12 19:00:29 +00001217 if( rc!=SQLITE_OK ) break;
drh7e263722010-05-20 21:21:09 +00001218 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
drhf694aa62011-12-20 22:18:51 +00001219 if( !isValid ) break;
drhfe6163d2011-12-17 13:45:28 +00001220 rc = walIndexAppend(pWal, iFrame, pgno);
danc7991bd2010-05-05 19:04:59 +00001221 if( rc!=SQLITE_OK ) break;
dan7c246102010-04-12 19:00:29 +00001222
1223 /* If nTruncate is non-zero, this is a commit record. */
1224 if( nTruncate ){
dan71d89912010-05-24 13:57:42 +00001225 pWal->hdr.mxFrame = iFrame;
1226 pWal->hdr.nPage = nTruncate;
shaneh1df2db72010-08-18 02:28:48 +00001227 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00001228 testcase( szPage<=32768 );
1229 testcase( szPage>=65536 );
dan71d89912010-05-24 13:57:42 +00001230 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1231 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
dan7c246102010-04-12 19:00:29 +00001232 }
1233 }
1234
1235 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001236 }
1237
1238finished:
dan576bc322010-05-06 18:04:50 +00001239 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001240 volatile WalCkptInfo *pInfo;
1241 int i;
dan71d89912010-05-24 13:57:42 +00001242 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1243 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001244 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001245
drhdb7f6472010-06-09 14:45:12 +00001246 /* Reset the checkpoint-header. This is safe because this thread is
dan3dee6da2010-05-31 16:17:54 +00001247 ** currently holding locks that exclude all other readers, writers and
1248 ** checkpointers.
1249 */
drhdb7f6472010-06-09 14:45:12 +00001250 pInfo = walCkptInfo(pWal);
1251 pInfo->nBackfill = 0;
dan3bf83cc2015-12-10 15:45:15 +00001252 pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
drhdb7f6472010-06-09 14:45:12 +00001253 pInfo->aReadMark[0] = 0;
1254 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
dan5373b762012-07-17 14:37:12 +00001255 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
daneb8763d2010-08-17 14:52:22 +00001256
1257 /* If more than one frame was recovered from the log file, report an
1258 ** event via sqlite3_log(). This is to help with identifying performance
1259 ** problems caused by applications routinely shutting down without
1260 ** checkpointing the log file.
1261 */
1262 if( pWal->hdr.nPage ){
drhd040e762013-04-10 23:48:37 +00001263 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1264 "recovered %d frames from WAL file %s",
dan0943f0b2013-04-01 14:35:01 +00001265 pWal->hdr.mxFrame, pWal->zWalName
daneb8763d2010-08-17 14:52:22 +00001266 );
1267 }
dan576bc322010-05-06 18:04:50 +00001268 }
drh73b64e42010-05-30 19:55:15 +00001269
1270recovery_error:
drhc74c3332010-05-31 12:15:19 +00001271 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dandea5ce32017-11-02 11:12:03 +00001272 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1273 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
dan7c246102010-04-12 19:00:29 +00001274 return rc;
1275}
1276
drha8e654e2010-05-04 17:38:42 +00001277/*
dan1018e902010-05-05 15:33:05 +00001278** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001279*/
dan1018e902010-05-05 15:33:05 +00001280static void walIndexClose(Wal *pWal, int isDelete){
drh85bc6df2017-11-10 20:00:50 +00001281 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
dan8c408002010-11-01 17:38:24 +00001282 int i;
1283 for(i=0; i<pWal->nWiData; i++){
1284 sqlite3_free((void *)pWal->apWiData[i]);
1285 pWal->apWiData[i] = 0;
1286 }
dan11caf4f2017-11-04 18:10:03 +00001287 }
1288 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
dan8c408002010-11-01 17:38:24 +00001289 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1290 }
drha8e654e2010-05-04 17:38:42 +00001291}
1292
dan7c246102010-04-12 19:00:29 +00001293/*
dan3e875ef2010-07-05 19:03:35 +00001294** Open a connection to the WAL file zWalName. The database file must
1295** already be opened on connection pDbFd. The buffer that zWalName points
1296** to must remain valid for the lifetime of the returned Wal* handle.
dan3de777f2010-04-17 12:31:37 +00001297**
1298** A SHARED lock should be held on the database file when this function
1299** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001300** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001301** were to do this just after this client opened one of these files, the
1302** system would be badly broken.
danef378022010-05-04 11:06:03 +00001303**
1304** If the log file is successfully opened, SQLITE_OK is returned and
1305** *ppWal is set to point to a new WAL handle. If an error occurs,
1306** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001307*/
drhc438efd2010-04-26 00:19:45 +00001308int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001309 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001310 sqlite3_file *pDbFd, /* The open database file */
dan3e875ef2010-07-05 19:03:35 +00001311 const char *zWalName, /* Name of the WAL file */
dan8c408002010-11-01 17:38:24 +00001312 int bNoShm, /* True to run in heap-memory mode */
drh85a83752011-05-16 21:00:27 +00001313 i64 mxWalSize, /* Truncate WAL to this size on reset */
drh7ed91f22010-04-29 22:34:07 +00001314 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001315){
danef378022010-05-04 11:06:03 +00001316 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001317 Wal *pRet; /* Object to allocate and return */
dan7c246102010-04-12 19:00:29 +00001318 int flags; /* Flags passed to OsOpen() */
dan7c246102010-04-12 19:00:29 +00001319
dan3e875ef2010-07-05 19:03:35 +00001320 assert( zWalName && zWalName[0] );
drhd9e5c4f2010-05-12 18:01:39 +00001321 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001322
drh1b78eaf2010-05-25 13:40:03 +00001323 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1324 ** this source file. Verify that the #defines of the locking byte offsets
1325 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
drh998147e2015-12-10 02:15:03 +00001326 ** For that matter, if the lock offset ever changes from its initial design
1327 ** value of 120, we need to know that so there is an assert() to check it.
drh1b78eaf2010-05-25 13:40:03 +00001328 */
drh998147e2015-12-10 02:15:03 +00001329 assert( 120==WALINDEX_LOCK_OFFSET );
1330 assert( 136==WALINDEX_HDR_SIZE );
drh1b78eaf2010-05-25 13:40:03 +00001331#ifdef WIN_SHM_BASE
1332 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1333#endif
1334#ifdef UNIX_SHM_BASE
1335 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1336#endif
1337
1338
drh7ed91f22010-04-29 22:34:07 +00001339 /* Allocate an instance of struct Wal to return. */
1340 *ppWal = 0;
dan3e875ef2010-07-05 19:03:35 +00001341 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
dan76ed3bc2010-05-03 17:18:24 +00001342 if( !pRet ){
mistachkinfad30392016-02-13 23:43:46 +00001343 return SQLITE_NOMEM_BKPT;
dan76ed3bc2010-05-03 17:18:24 +00001344 }
1345
dan7c246102010-04-12 19:00:29 +00001346 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001347 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1348 pRet->pDbFd = pDbFd;
drh73b64e42010-05-30 19:55:15 +00001349 pRet->readLock = -1;
drh85a83752011-05-16 21:00:27 +00001350 pRet->mxWalSize = mxWalSize;
dan3e875ef2010-07-05 19:03:35 +00001351 pRet->zWalName = zWalName;
drhd992b152011-12-20 20:13:25 +00001352 pRet->syncHeader = 1;
drh374f4a02011-12-17 20:02:11 +00001353 pRet->padToSectorBoundary = 1;
dan8c408002010-11-01 17:38:24 +00001354 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
dan7c246102010-04-12 19:00:29 +00001355
drh7ed91f22010-04-29 22:34:07 +00001356 /* Open file handle on the write-ahead log file. */
danddb0ac42010-07-14 14:48:58 +00001357 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
danda9fe0c2010-07-13 18:44:03 +00001358 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
dan50833e32010-07-14 16:37:17 +00001359 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
drh66dfec8b2011-06-01 20:01:49 +00001360 pRet->readOnly = WAL_RDONLY;
dan50833e32010-07-14 16:37:17 +00001361 }
dan7c246102010-04-12 19:00:29 +00001362
dan7c246102010-04-12 19:00:29 +00001363 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001364 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001365 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001366 sqlite3_free(pRet);
1367 }else{
dandd973542014-02-13 19:27:08 +00001368 int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
drhd992b152011-12-20 20:13:25 +00001369 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
drhcb15f352011-12-23 01:04:17 +00001370 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1371 pRet->padToSectorBoundary = 0;
1372 }
danef378022010-05-04 11:06:03 +00001373 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001374 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001375 }
dan7c246102010-04-12 19:00:29 +00001376 return rc;
1377}
1378
drha2a42012010-05-18 18:01:08 +00001379/*
drh85a83752011-05-16 21:00:27 +00001380** Change the size to which the WAL file is trucated on each reset.
1381*/
1382void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1383 if( pWal ) pWal->mxWalSize = iLimit;
1384}
1385
1386/*
drha2a42012010-05-18 18:01:08 +00001387** Find the smallest page number out of all pages held in the WAL that
1388** has not been returned by any prior invocation of this method on the
1389** same WalIterator object. Write into *piFrame the frame index where
1390** that page was last written into the WAL. Write into *piPage the page
1391** number.
1392**
1393** Return 0 on success. If there are no pages in the WAL with a page
1394** number larger than *piPage, then return 1.
1395*/
drh7ed91f22010-04-29 22:34:07 +00001396static int walIteratorNext(
1397 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001398 u32 *piPage, /* OUT: The page number of the next page */
1399 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001400){
drha2a42012010-05-18 18:01:08 +00001401 u32 iMin; /* Result pgno must be greater than iMin */
1402 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1403 int i; /* For looping through segments */
dan7c246102010-04-12 19:00:29 +00001404
drha2a42012010-05-18 18:01:08 +00001405 iMin = p->iPrior;
1406 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001407 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001408 struct WalSegment *pSegment = &p->aSegment[i];
dan13a3cb82010-06-11 19:04:21 +00001409 while( pSegment->iNext<pSegment->nEntry ){
drha2a42012010-05-18 18:01:08 +00001410 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001411 if( iPg>iMin ){
1412 if( iPg<iRet ){
1413 iRet = iPg;
dan13a3cb82010-06-11 19:04:21 +00001414 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
dan7c246102010-04-12 19:00:29 +00001415 }
1416 break;
1417 }
1418 pSegment->iNext++;
1419 }
dan7c246102010-04-12 19:00:29 +00001420 }
1421
drha2a42012010-05-18 18:01:08 +00001422 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001423 return (iRet==0xFFFFFFFF);
1424}
1425
danf544b4c2010-06-25 11:35:52 +00001426/*
1427** This function merges two sorted lists into a single sorted list.
drhd9c9b782010-12-15 21:02:06 +00001428**
1429** aLeft[] and aRight[] are arrays of indices. The sort key is
1430** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1431** is guaranteed for all J<K:
1432**
1433** aContent[aLeft[J]] < aContent[aLeft[K]]
1434** aContent[aRight[J]] < aContent[aRight[K]]
1435**
1436** This routine overwrites aRight[] with a new (probably longer) sequence
1437** of indices such that the aRight[] contains every index that appears in
1438** either aLeft[] or the old aRight[] and such that the second condition
1439** above is still met.
1440**
1441** The aContent[aLeft[X]] values will be unique for all X. And the
1442** aContent[aRight[X]] values will be unique too. But there might be
1443** one or more combinations of X and Y such that
1444**
1445** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1446**
1447** When that happens, omit the aLeft[X] and use the aRight[Y] index.
danf544b4c2010-06-25 11:35:52 +00001448*/
1449static void walMerge(
drhd9c9b782010-12-15 21:02:06 +00001450 const u32 *aContent, /* Pages in wal - keys for the sort */
danf544b4c2010-06-25 11:35:52 +00001451 ht_slot *aLeft, /* IN: Left hand input list */
1452 int nLeft, /* IN: Elements in array *paLeft */
1453 ht_slot **paRight, /* IN/OUT: Right hand input list */
1454 int *pnRight, /* IN/OUT: Elements in *paRight */
1455 ht_slot *aTmp /* Temporary buffer */
1456){
1457 int iLeft = 0; /* Current index in aLeft */
1458 int iRight = 0; /* Current index in aRight */
1459 int iOut = 0; /* Current index in output buffer */
1460 int nRight = *pnRight;
1461 ht_slot *aRight = *paRight;
dan7c246102010-04-12 19:00:29 +00001462
danf544b4c2010-06-25 11:35:52 +00001463 assert( nLeft>0 && nRight>0 );
1464 while( iRight<nRight || iLeft<nLeft ){
1465 ht_slot logpage;
1466 Pgno dbpage;
1467
1468 if( (iLeft<nLeft)
1469 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1470 ){
1471 logpage = aLeft[iLeft++];
1472 }else{
1473 logpage = aRight[iRight++];
1474 }
1475 dbpage = aContent[logpage];
1476
1477 aTmp[iOut++] = logpage;
1478 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1479
1480 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1481 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1482 }
1483
1484 *paRight = aLeft;
1485 *pnRight = iOut;
1486 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1487}
1488
1489/*
drhd9c9b782010-12-15 21:02:06 +00001490** Sort the elements in list aList using aContent[] as the sort key.
1491** Remove elements with duplicate keys, preferring to keep the
1492** larger aList[] values.
1493**
1494** The aList[] entries are indices into aContent[]. The values in
1495** aList[] are to be sorted so that for all J<K:
1496**
1497** aContent[aList[J]] < aContent[aList[K]]
1498**
1499** For any X and Y such that
1500**
1501** aContent[aList[X]] == aContent[aList[Y]]
1502**
1503** Keep the larger of the two values aList[X] and aList[Y] and discard
1504** the smaller.
danf544b4c2010-06-25 11:35:52 +00001505*/
dan13a3cb82010-06-11 19:04:21 +00001506static void walMergesort(
drhd9c9b782010-12-15 21:02:06 +00001507 const u32 *aContent, /* Pages in wal */
dan067f3162010-06-14 10:30:12 +00001508 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1509 ht_slot *aList, /* IN/OUT: List to sort */
drha2a42012010-05-18 18:01:08 +00001510 int *pnList /* IN/OUT: Number of elements in aList[] */
1511){
danf544b4c2010-06-25 11:35:52 +00001512 struct Sublist {
1513 int nList; /* Number of elements in aList */
1514 ht_slot *aList; /* Pointer to sub-list content */
1515 };
drha2a42012010-05-18 18:01:08 +00001516
danf544b4c2010-06-25 11:35:52 +00001517 const int nList = *pnList; /* Size of input list */
drhff828942010-06-26 21:34:06 +00001518 int nMerge = 0; /* Number of elements in list aMerge */
1519 ht_slot *aMerge = 0; /* List to be merged */
danf544b4c2010-06-25 11:35:52 +00001520 int iList; /* Index into input list */
drhf4fa0b82015-07-15 18:35:54 +00001521 u32 iSub = 0; /* Index into aSub array */
danf544b4c2010-06-25 11:35:52 +00001522 struct Sublist aSub[13]; /* Array of sub-lists */
drha2a42012010-05-18 18:01:08 +00001523
danf544b4c2010-06-25 11:35:52 +00001524 memset(aSub, 0, sizeof(aSub));
1525 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1526 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
drha2a42012010-05-18 18:01:08 +00001527
danf544b4c2010-06-25 11:35:52 +00001528 for(iList=0; iList<nList; iList++){
1529 nMerge = 1;
1530 aMerge = &aList[iList];
1531 for(iSub=0; iList & (1<<iSub); iSub++){
drhf4fa0b82015-07-15 18:35:54 +00001532 struct Sublist *p;
1533 assert( iSub<ArraySize(aSub) );
1534 p = &aSub[iSub];
danf544b4c2010-06-25 11:35:52 +00001535 assert( p->aList && p->nList<=(1<<iSub) );
danbdf1e242010-06-25 15:16:25 +00001536 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001537 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
drha2a42012010-05-18 18:01:08 +00001538 }
danf544b4c2010-06-25 11:35:52 +00001539 aSub[iSub].aList = aMerge;
1540 aSub[iSub].nList = nMerge;
drha2a42012010-05-18 18:01:08 +00001541 }
1542
danf544b4c2010-06-25 11:35:52 +00001543 for(iSub++; iSub<ArraySize(aSub); iSub++){
1544 if( nList & (1<<iSub) ){
drhf4fa0b82015-07-15 18:35:54 +00001545 struct Sublist *p;
1546 assert( iSub<ArraySize(aSub) );
1547 p = &aSub[iSub];
danbdf1e242010-06-25 15:16:25 +00001548 assert( p->nList<=(1<<iSub) );
1549 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001550 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1551 }
1552 }
1553 assert( aMerge==aList );
1554 *pnList = nMerge;
1555
drha2a42012010-05-18 18:01:08 +00001556#ifdef SQLITE_DEBUG
1557 {
1558 int i;
1559 for(i=1; i<*pnList; i++){
1560 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1561 }
1562 }
1563#endif
1564}
1565
dan5d656852010-06-14 07:53:26 +00001566/*
1567** Free an iterator allocated by walIteratorInit().
1568*/
1569static void walIteratorFree(WalIterator *p){
drhcbd55b02014-11-04 14:22:27 +00001570 sqlite3_free(p);
dan5d656852010-06-14 07:53:26 +00001571}
1572
drha2a42012010-05-18 18:01:08 +00001573/*
danbdf1e242010-06-25 15:16:25 +00001574** Construct a WalInterator object that can be used to loop over all
1575** pages in the WAL in ascending order. The caller must hold the checkpoint
drhd9c9b782010-12-15 21:02:06 +00001576** lock.
drha2a42012010-05-18 18:01:08 +00001577**
1578** On success, make *pp point to the newly allocated WalInterator object
danbdf1e242010-06-25 15:16:25 +00001579** return SQLITE_OK. Otherwise, return an error code. If this routine
1580** returns an error, the value of *pp is undefined.
drha2a42012010-05-18 18:01:08 +00001581**
1582** The calling routine should invoke walIteratorFree() to destroy the
danbdf1e242010-06-25 15:16:25 +00001583** WalIterator object when it has finished with it.
drha2a42012010-05-18 18:01:08 +00001584*/
1585static int walIteratorInit(Wal *pWal, WalIterator **pp){
dan067f3162010-06-14 10:30:12 +00001586 WalIterator *p; /* Return value */
1587 int nSegment; /* Number of segments to merge */
1588 u32 iLast; /* Last frame in log */
1589 int nByte; /* Number of bytes to allocate */
1590 int i; /* Iterator variable */
1591 ht_slot *aTmp; /* Temp space used by merge-sort */
danbdf1e242010-06-25 15:16:25 +00001592 int rc = SQLITE_OK; /* Return Code */
drha2a42012010-05-18 18:01:08 +00001593
danbdf1e242010-06-25 15:16:25 +00001594 /* This routine only runs while holding the checkpoint lock. And
1595 ** it only runs if there is actually content in the log (mxFrame>0).
drha2a42012010-05-18 18:01:08 +00001596 */
danbdf1e242010-06-25 15:16:25 +00001597 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
dan13a3cb82010-06-11 19:04:21 +00001598 iLast = pWal->hdr.mxFrame;
drha2a42012010-05-18 18:01:08 +00001599
danbdf1e242010-06-25 15:16:25 +00001600 /* Allocate space for the WalIterator object. */
dan13a3cb82010-06-11 19:04:21 +00001601 nSegment = walFramePage(iLast) + 1;
1602 nByte = sizeof(WalIterator)
dan52d6fc02010-06-25 16:34:32 +00001603 + (nSegment-1)*sizeof(struct WalSegment)
1604 + iLast*sizeof(ht_slot);
drhf3cdcdc2015-04-29 16:50:28 +00001605 p = (WalIterator *)sqlite3_malloc64(nByte);
dan8f6097c2010-05-06 07:43:58 +00001606 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00001607 return SQLITE_NOMEM_BKPT;
drha2a42012010-05-18 18:01:08 +00001608 }
1609 memset(p, 0, nByte);
drha2a42012010-05-18 18:01:08 +00001610 p->nSegment = nSegment;
danbdf1e242010-06-25 15:16:25 +00001611
1612 /* Allocate temporary space used by the merge-sort routine. This block
1613 ** of memory will be freed before this function returns.
1614 */
drhf3cdcdc2015-04-29 16:50:28 +00001615 aTmp = (ht_slot *)sqlite3_malloc64(
dan52d6fc02010-06-25 16:34:32 +00001616 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1617 );
danbdf1e242010-06-25 15:16:25 +00001618 if( !aTmp ){
mistachkinfad30392016-02-13 23:43:46 +00001619 rc = SQLITE_NOMEM_BKPT;
danbdf1e242010-06-25 15:16:25 +00001620 }
1621
1622 for(i=0; rc==SQLITE_OK && i<nSegment; i++){
dan067f3162010-06-14 10:30:12 +00001623 volatile ht_slot *aHash;
dan13a3cb82010-06-11 19:04:21 +00001624 u32 iZero;
dan13a3cb82010-06-11 19:04:21 +00001625 volatile u32 *aPgno;
1626
dan4280eb32010-06-12 12:02:35 +00001627 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
danbdf1e242010-06-25 15:16:25 +00001628 if( rc==SQLITE_OK ){
dan52d6fc02010-06-25 16:34:32 +00001629 int j; /* Counter variable */
1630 int nEntry; /* Number of entries in this segment */
1631 ht_slot *aIndex; /* Sorted index for this segment */
1632
danbdf1e242010-06-25 15:16:25 +00001633 aPgno++;
drh519426a2010-07-09 03:19:07 +00001634 if( (i+1)==nSegment ){
1635 nEntry = (int)(iLast - iZero);
1636 }else{
shaneh55897962010-07-09 12:57:53 +00001637 nEntry = (int)((u32*)aHash - (u32*)aPgno);
drh519426a2010-07-09 03:19:07 +00001638 }
dan52d6fc02010-06-25 16:34:32 +00001639 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
danbdf1e242010-06-25 15:16:25 +00001640 iZero++;
1641
danbdf1e242010-06-25 15:16:25 +00001642 for(j=0; j<nEntry; j++){
shaneh5eba1f62010-07-02 17:05:03 +00001643 aIndex[j] = (ht_slot)j;
danbdf1e242010-06-25 15:16:25 +00001644 }
1645 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1646 p->aSegment[i].iZero = iZero;
1647 p->aSegment[i].nEntry = nEntry;
1648 p->aSegment[i].aIndex = aIndex;
1649 p->aSegment[i].aPgno = (u32 *)aPgno;
dan13a3cb82010-06-11 19:04:21 +00001650 }
dan7c246102010-04-12 19:00:29 +00001651 }
drhcbd55b02014-11-04 14:22:27 +00001652 sqlite3_free(aTmp);
dan7c246102010-04-12 19:00:29 +00001653
danbdf1e242010-06-25 15:16:25 +00001654 if( rc!=SQLITE_OK ){
1655 walIteratorFree(p);
1656 }
dan8f6097c2010-05-06 07:43:58 +00001657 *pp = p;
danbdf1e242010-06-25 15:16:25 +00001658 return rc;
dan7c246102010-04-12 19:00:29 +00001659}
1660
dan7c246102010-04-12 19:00:29 +00001661/*
dana58f26f2010-11-16 18:56:51 +00001662** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1663** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1664** busy-handler function. Invoke it and retry the lock until either the
1665** lock is successfully obtained or the busy-handler returns 0.
1666*/
1667static int walBusyLock(
1668 Wal *pWal, /* WAL connection */
1669 int (*xBusy)(void*), /* Function to call when busy */
1670 void *pBusyArg, /* Context argument for xBusyHandler */
1671 int lockIdx, /* Offset of first byte to lock */
1672 int n /* Number of bytes to lock */
1673){
1674 int rc;
1675 do {
drhab372772015-12-02 16:10:16 +00001676 rc = walLockExclusive(pWal, lockIdx, n);
dana58f26f2010-11-16 18:56:51 +00001677 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1678 return rc;
1679}
1680
1681/*
danf2b8dd52010-11-18 19:28:01 +00001682** The cache of the wal-index header must be valid to call this function.
1683** Return the page-size in bytes used by the database.
1684*/
1685static int walPagesize(Wal *pWal){
1686 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1687}
1688
1689/*
danf26a1542014-12-02 19:04:54 +00001690** The following is guaranteed when this function is called:
1691**
1692** a) the WRITER lock is held,
1693** b) the entire log file has been checkpointed, and
1694** c) any existing readers are reading exclusively from the database
1695** file - there are no readers that may attempt to read a frame from
1696** the log file.
1697**
1698** This function updates the shared-memory structures so that the next
1699** client to write to the database (which may be this one) does so by
1700** writing frames into the start of the log file.
dan0fe8c1b2014-12-02 19:35:09 +00001701**
1702** The value of parameter salt1 is used as the aSalt[1] value in the
1703** new wal-index header. It should be passed a pseudo-random value (i.e.
1704** one obtained from sqlite3_randomness()).
danf26a1542014-12-02 19:04:54 +00001705*/
dan0fe8c1b2014-12-02 19:35:09 +00001706static void walRestartHdr(Wal *pWal, u32 salt1){
danf26a1542014-12-02 19:04:54 +00001707 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1708 int i; /* Loop counter */
1709 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
1710 pWal->nCkpt++;
1711 pWal->hdr.mxFrame = 0;
1712 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
dan0fe8c1b2014-12-02 19:35:09 +00001713 memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
danf26a1542014-12-02 19:04:54 +00001714 walIndexWriteHdr(pWal);
1715 pInfo->nBackfill = 0;
drh998147e2015-12-10 02:15:03 +00001716 pInfo->nBackfillAttempted = 0;
danf26a1542014-12-02 19:04:54 +00001717 pInfo->aReadMark[1] = 0;
1718 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1719 assert( pInfo->aReadMark[0]==0 );
1720}
1721
1722/*
drh73b64e42010-05-30 19:55:15 +00001723** Copy as much content as we can from the WAL back into the database file
1724** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1725**
1726** The amount of information copies from WAL to database might be limited
1727** by active readers. This routine will never overwrite a database page
1728** that a concurrent reader might be using.
1729**
1730** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1731** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1732** checkpoints are always run by a background thread or background
1733** process, foreground threads will never block on a lengthy fsync call.
1734**
1735** Fsync is called on the WAL before writing content out of the WAL and
1736** into the database. This ensures that if the new content is persistent
1737** in the WAL and can be recovered following a power-loss or hard reset.
1738**
1739** Fsync is also called on the database file if (and only if) the entire
1740** WAL content is copied into the database file. This second fsync makes
1741** it safe to delete the WAL since the new content will persist in the
1742** database file.
1743**
1744** This routine uses and updates the nBackfill field of the wal-index header.
peter.d.reid60ec9142014-09-06 16:39:46 +00001745** This is the only routine that will increase the value of nBackfill.
drh73b64e42010-05-30 19:55:15 +00001746** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1747** its value.)
1748**
1749** The caller must be holding sufficient locks to ensure that no other
1750** checkpoint is running (in any other thread or process) at the same
1751** time.
dan7c246102010-04-12 19:00:29 +00001752*/
drh7ed91f22010-04-29 22:34:07 +00001753static int walCheckpoint(
1754 Wal *pWal, /* Wal connection */
dan7fb89902016-08-12 16:21:15 +00001755 sqlite3 *db, /* Check for interrupts on this handle */
dancdc1f042010-11-18 12:11:05 +00001756 int eMode, /* One of PASSIVE, FULL or RESTART */
drhdd90d7e2014-12-03 19:25:41 +00001757 int (*xBusy)(void*), /* Function to call when busy */
dana58f26f2010-11-16 18:56:51 +00001758 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00001759 int sync_flags, /* Flags for OsSync() (or 0) */
dan9c5e3682011-02-07 15:12:12 +00001760 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00001761){
dan976b0032015-01-29 19:12:12 +00001762 int rc = SQLITE_OK; /* Return code */
drhb2eced52010-08-12 02:41:12 +00001763 int szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001764 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001765 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001766 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001767 u32 mxSafeFrame; /* Max frame that can be backfilled */
dan502019c2010-07-28 14:26:17 +00001768 u32 mxPage; /* Max database page to write */
drh73b64e42010-05-30 19:55:15 +00001769 int i; /* Loop counter */
drh73b64e42010-05-30 19:55:15 +00001770 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
dan7c246102010-04-12 19:00:29 +00001771
danf2b8dd52010-11-18 19:28:01 +00001772 szPage = walPagesize(pWal);
drh9b78f792010-08-14 21:21:24 +00001773 testcase( szPage<=32768 );
1774 testcase( szPage>=65536 );
drh7d208442010-12-16 02:06:29 +00001775 pInfo = walCkptInfo(pWal);
dan976b0032015-01-29 19:12:12 +00001776 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
danf544b4c2010-06-25 11:35:52 +00001777
dan976b0032015-01-29 19:12:12 +00001778 /* Allocate the iterator */
1779 rc = walIteratorInit(pWal, &pIter);
1780 if( rc!=SQLITE_OK ){
1781 return rc;
drh73b64e42010-05-30 19:55:15 +00001782 }
dan976b0032015-01-29 19:12:12 +00001783 assert( pIter );
dan7c246102010-04-12 19:00:29 +00001784
dan976b0032015-01-29 19:12:12 +00001785 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1786 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1787 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
drh73b64e42010-05-30 19:55:15 +00001788
dan976b0032015-01-29 19:12:12 +00001789 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1790 ** safe to write into the database. Frames beyond mxSafeFrame might
1791 ** overwrite database pages that are in use by active readers and thus
1792 ** cannot be backfilled from the WAL.
danf23da962013-03-23 21:00:41 +00001793 */
dan976b0032015-01-29 19:12:12 +00001794 mxSafeFrame = pWal->hdr.mxFrame;
1795 mxPage = pWal->hdr.nPage;
1796 for(i=1; i<WAL_NREADER; i++){
dan1fe0af22015-04-13 17:43:43 +00001797 /* Thread-sanitizer reports that the following is an unsafe read,
1798 ** as some other thread may be in the process of updating the value
1799 ** of the aReadMark[] slot. The assumption here is that if that is
1800 ** happening, the other client may only be increasing the value,
1801 ** not decreasing it. So assuming either that either the "old" or
1802 ** "new" version of the value is read, and not some arbitrary value
1803 ** that would never be written by a real client, things are still
1804 ** safe. */
dan976b0032015-01-29 19:12:12 +00001805 u32 y = pInfo->aReadMark[i];
1806 if( mxSafeFrame>y ){
1807 assert( y<=pWal->hdr.mxFrame );
1808 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1809 if( rc==SQLITE_OK ){
1810 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1811 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1812 }else if( rc==SQLITE_BUSY ){
1813 mxSafeFrame = y;
1814 xBusy = 0;
1815 }else{
1816 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001817 }
1818 }
1819 }
1820
dan976b0032015-01-29 19:12:12 +00001821 if( pInfo->nBackfill<mxSafeFrame
1822 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
1823 ){
1824 i64 nSize; /* Current size of database file */
1825 u32 nBackfill = pInfo->nBackfill;
dana58f26f2010-11-16 18:56:51 +00001826
dan3bf83cc2015-12-10 15:45:15 +00001827 pInfo->nBackfillAttempted = mxSafeFrame;
1828
dan976b0032015-01-29 19:12:12 +00001829 /* Sync the WAL to disk */
drhdaaae7b2017-08-25 01:14:43 +00001830 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
dan976b0032015-01-29 19:12:12 +00001831
1832 /* If the database may grow as a result of this checkpoint, hint
1833 ** about the eventual size of the db file to the VFS layer.
1834 */
1835 if( rc==SQLITE_OK ){
1836 i64 nReq = ((i64)mxPage * szPage);
1837 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1838 if( rc==SQLITE_OK && nSize<nReq ){
1839 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1840 }
1841 }
1842
1843
1844 /* Iterate through the contents of the WAL, copying data to the db file */
1845 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1846 i64 iOffset;
1847 assert( walFramePgno(pWal, iFrame)==iDbpage );
dan7fb89902016-08-12 16:21:15 +00001848 if( db->u1.isInterrupted ){
1849 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
1850 break;
1851 }
dan976b0032015-01-29 19:12:12 +00001852 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1853 continue;
1854 }
1855 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1856 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1857 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1858 if( rc!=SQLITE_OK ) break;
1859 iOffset = (iDbpage-1)*(i64)szPage;
1860 testcase( IS_BIG_INT(iOffset) );
1861 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1862 if( rc!=SQLITE_OK ) break;
1863 }
1864
1865 /* If work was actually accomplished... */
1866 if( rc==SQLITE_OK ){
1867 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1868 i64 szDb = pWal->hdr.nPage*(i64)szPage;
1869 testcase( IS_BIG_INT(szDb) );
1870 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
drhdaaae7b2017-08-25 01:14:43 +00001871 if( rc==SQLITE_OK ){
1872 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
dan976b0032015-01-29 19:12:12 +00001873 }
1874 }
1875 if( rc==SQLITE_OK ){
1876 pInfo->nBackfill = mxSafeFrame;
1877 }
1878 }
1879
1880 /* Release the reader lock held while backfilling */
1881 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1882 }
1883
1884 if( rc==SQLITE_BUSY ){
1885 /* Reset the return code so as not to report a checkpoint failure
1886 ** just because there are active readers. */
1887 rc = SQLITE_OK;
1888 }
dan7c246102010-04-12 19:00:29 +00001889 }
1890
danf26a1542014-12-02 19:04:54 +00001891 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
1892 ** entire wal file has been copied into the database file, then block
1893 ** until all readers have finished using the wal file. This ensures that
1894 ** the next process to write to the database restarts the wal file.
danf2b8dd52010-11-18 19:28:01 +00001895 */
1896 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dancdc1f042010-11-18 12:11:05 +00001897 assert( pWal->writeLock );
danf2b8dd52010-11-18 19:28:01 +00001898 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1899 rc = SQLITE_BUSY;
danf26a1542014-12-02 19:04:54 +00001900 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
dan0fe8c1b2014-12-02 19:35:09 +00001901 u32 salt1;
1902 sqlite3_randomness(4, &salt1);
dan976b0032015-01-29 19:12:12 +00001903 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
danf2b8dd52010-11-18 19:28:01 +00001904 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1905 if( rc==SQLITE_OK ){
danf26a1542014-12-02 19:04:54 +00001906 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
drha25165f2014-12-04 04:50:59 +00001907 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
1908 ** SQLITE_CHECKPOINT_RESTART with the addition that it also
1909 ** truncates the log file to zero bytes just prior to a
1910 ** successful return.
danf26a1542014-12-02 19:04:54 +00001911 **
1912 ** In theory, it might be safe to do this without updating the
1913 ** wal-index header in shared memory, as all subsequent reader or
1914 ** writer clients should see that the entire log file has been
1915 ** checkpointed and behave accordingly. This seems unsafe though,
1916 ** as it would leave the system in a state where the contents of
1917 ** the wal-index header do not match the contents of the
1918 ** file-system. To avoid this, update the wal-index header to
1919 ** indicate that the log file contains zero valid frames. */
dan0fe8c1b2014-12-02 19:35:09 +00001920 walRestartHdr(pWal, salt1);
danf26a1542014-12-02 19:04:54 +00001921 rc = sqlite3OsTruncate(pWal->pWalFd, 0);
1922 }
danf2b8dd52010-11-18 19:28:01 +00001923 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1924 }
dancdc1f042010-11-18 12:11:05 +00001925 }
1926 }
1927
dan83f42d12010-06-04 10:37:05 +00001928 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00001929 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00001930 return rc;
1931}
1932
1933/*
danf60b7f32011-12-16 13:24:27 +00001934** If the WAL file is currently larger than nMax bytes in size, truncate
1935** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
drh8dd4afa2011-12-08 19:50:32 +00001936*/
danf60b7f32011-12-16 13:24:27 +00001937static void walLimitSize(Wal *pWal, i64 nMax){
1938 i64 sz;
1939 int rx;
1940 sqlite3BeginBenignMalloc();
1941 rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1942 if( rx==SQLITE_OK && (sz > nMax ) ){
1943 rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1944 }
1945 sqlite3EndBenignMalloc();
1946 if( rx ){
1947 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
drh8dd4afa2011-12-08 19:50:32 +00001948 }
1949}
1950
1951/*
dan7c246102010-04-12 19:00:29 +00001952** Close a connection to a log file.
1953*/
drhc438efd2010-04-26 00:19:45 +00001954int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00001955 Wal *pWal, /* Wal to close */
dan7fb89902016-08-12 16:21:15 +00001956 sqlite3 *db, /* For interrupt flag */
danc5118782010-04-17 17:34:41 +00001957 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001958 int nBuf,
1959 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00001960){
1961 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00001962 if( pWal ){
dan30c86292010-04-30 16:24:46 +00001963 int isDelete = 0; /* True to unlink wal and wal-index files */
1964
1965 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1966 ** ordinary, rollback-mode locking methods, this guarantees that the
1967 ** connection associated with this log file is the only connection to
1968 ** the database. In this case checkpoint the database and unlink both
1969 ** the wal and wal-index files.
1970 **
1971 ** The EXCLUSIVE lock is not released before returning.
1972 */
dan4a5bad52016-11-11 17:08:51 +00001973 if( zBuf!=0
dan298af022016-10-31 16:16:49 +00001974 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
1975 ){
dan8c408002010-11-01 17:38:24 +00001976 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1977 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1978 }
dan7fb89902016-08-12 16:21:15 +00001979 rc = sqlite3WalCheckpoint(pWal, db,
1980 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
dancdc1f042010-11-18 12:11:05 +00001981 );
drheed42502011-12-16 15:38:52 +00001982 if( rc==SQLITE_OK ){
1983 int bPersist = -1;
drhc02372c2012-01-10 17:59:59 +00001984 sqlite3OsFileControlHint(
dan6f2f19a2012-01-10 16:56:39 +00001985 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
1986 );
drheed42502011-12-16 15:38:52 +00001987 if( bPersist!=1 ){
1988 /* Try to delete the WAL file if the checkpoint completed and
1989 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
1990 ** mode (!bPersist) */
1991 isDelete = 1;
1992 }else if( pWal->mxWalSize>=0 ){
1993 /* Try to truncate the WAL file to zero bytes if the checkpoint
1994 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
1995 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
1996 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
1997 ** to zero bytes as truncating to the journal_size_limit might
1998 ** leave a corrupt WAL file on disk. */
1999 walLimitSize(pWal, 0);
2000 }
dan30c86292010-04-30 16:24:46 +00002001 }
dan30c86292010-04-30 16:24:46 +00002002 }
2003
dan1018e902010-05-05 15:33:05 +00002004 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00002005 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00002006 if( isDelete ){
drh92c45cf2012-01-10 00:24:59 +00002007 sqlite3BeginBenignMalloc();
drhd9e5c4f2010-05-12 18:01:39 +00002008 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
drh92c45cf2012-01-10 00:24:59 +00002009 sqlite3EndBenignMalloc();
dan30c86292010-04-30 16:24:46 +00002010 }
drhc74c3332010-05-31 12:15:19 +00002011 WALTRACE(("WAL%p: closed\n", pWal));
shaneh8a300f82010-07-02 18:15:31 +00002012 sqlite3_free((void *)pWal->apWiData);
drh7ed91f22010-04-29 22:34:07 +00002013 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00002014 }
2015 return rc;
2016}
2017
2018/*
drha2a42012010-05-18 18:01:08 +00002019** Try to read the wal-index header. Return 0 on success and 1 if
2020** there is a problem.
2021**
2022** The wal-index is in shared memory. Another thread or process might
2023** be writing the header at the same time this procedure is trying to
2024** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00002025** by verifying that both copies of the header are the same and also by
2026** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00002027**
2028** If and only if the read is consistent and the header is different from
2029** pWal->hdr, then pWal->hdr is updated to the content of the new header
2030** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00002031**
dan84670502010-05-07 05:46:23 +00002032** If the checksum cannot be verified return non-zero. If the header
2033** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00002034*/
drh7750ab42010-06-26 22:16:02 +00002035static int walIndexTryHdr(Wal *pWal, int *pChanged){
dan4280eb32010-06-12 12:02:35 +00002036 u32 aCksum[2]; /* Checksum on the header content */
2037 WalIndexHdr h1, h2; /* Two copies of the header content */
2038 WalIndexHdr volatile *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00002039
dan4280eb32010-06-12 12:02:35 +00002040 /* The first page of the wal-index must be mapped at this point. */
2041 assert( pWal->nWiData>0 && pWal->apWiData[0] );
drh79e6c782010-04-30 02:13:26 +00002042
drh6cef0cf2010-08-16 16:31:43 +00002043 /* Read the header. This might happen concurrently with a write to the
drh73b64e42010-05-30 19:55:15 +00002044 ** same area of shared memory on a different CPU in a SMP,
2045 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00002046 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00002047 **
2048 ** There are two copies of the header at the beginning of the wal-index.
2049 ** When reading, read [0] first then [1]. Writes are in the reverse order.
2050 ** Memory barriers are used to prevent the compiler or the hardware from
2051 ** reordering the reads and writes.
danb9bf16b2010-04-14 11:23:30 +00002052 */
dan4280eb32010-06-12 12:02:35 +00002053 aHdr = walIndexHdr(pWal);
2054 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
dan8c408002010-11-01 17:38:24 +00002055 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +00002056 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00002057
drhf0b20f82010-05-21 13:16:18 +00002058 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2059 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00002060 }
drh4b82c382010-05-31 18:24:19 +00002061 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00002062 return 1; /* Malformed header - probably all zeros */
2063 }
danb8fd6c22010-05-24 10:39:36 +00002064 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00002065 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2066 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00002067 }
2068
drhf0b20f82010-05-21 13:16:18 +00002069 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00002070 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00002071 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh9b78f792010-08-14 21:21:24 +00002072 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2073 testcase( pWal->szPage<=32768 );
2074 testcase( pWal->szPage>=65536 );
danb9bf16b2010-04-14 11:23:30 +00002075 }
dan84670502010-05-07 05:46:23 +00002076
2077 /* The header was successfully read. Return zero. */
2078 return 0;
danb9bf16b2010-04-14 11:23:30 +00002079}
2080
2081/*
dan08ecefc2017-11-07 21:15:07 +00002082** This is the value that walTryBeginRead returns when it needs to
2083** be retried.
2084*/
2085#define WAL_RETRY (-1)
2086
2087/*
drha2a42012010-05-18 18:01:08 +00002088** Read the wal-index header from the wal-index and into pWal->hdr.
drha927e942010-06-24 02:46:48 +00002089** If the wal-header appears to be corrupt, try to reconstruct the
2090** wal-index from the WAL before returning.
drha2a42012010-05-18 18:01:08 +00002091**
2092** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
peter.d.reid60ec9142014-09-06 16:39:46 +00002093** changed by this operation. If pWal->hdr is unchanged, set *pChanged
drha2a42012010-05-18 18:01:08 +00002094** to 0.
2095**
drh7ed91f22010-04-29 22:34:07 +00002096** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00002097** Otherwise an SQLite error code.
2098*/
drh7ed91f22010-04-29 22:34:07 +00002099static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00002100 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00002101 int badHdr; /* True if a header read failed */
drha927e942010-06-24 02:46:48 +00002102 volatile u32 *page0; /* Chunk of wal-index containing header */
danb9bf16b2010-04-14 11:23:30 +00002103
dan4280eb32010-06-12 12:02:35 +00002104 /* Ensure that page 0 of the wal-index (the page that contains the
2105 ** wal-index header) is mapped. Return early if an error occurs here.
2106 */
dana8614692010-05-06 14:42:34 +00002107 assert( pChanged );
dan4280eb32010-06-12 12:02:35 +00002108 rc = walIndexPage(pWal, 0, &page0);
danc7991bd2010-05-05 19:04:59 +00002109 if( rc!=SQLITE_OK ){
drh85bc6df2017-11-10 20:00:50 +00002110 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2111 if( rc==SQLITE_READONLY_CANTINIT ){
2112 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2113 ** was openable but is not writable, and this thread is unable to
2114 ** confirm that another write-capable connection has the shared-memory
2115 ** open, and hence the content of the shared-memory is unreliable,
2116 ** since the shared-memory might be inconsistent with the WAL file
2117 ** and there is no writer on hand to fix it. */
drhc05a0632017-11-11 20:11:01 +00002118 assert( page0==0 );
2119 assert( pWal->writeLock==0 );
2120 assert( pWal->readOnly & WAL_SHM_RDONLY );
drh85bc6df2017-11-10 20:00:50 +00002121 pWal->bShmUnreliable = 1;
2122 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2123 *pChanged = 1;
2124 }else{
2125 return rc; /* Any other non-OK return is just an error */
2126 }
drhc05a0632017-11-11 20:11:01 +00002127 }else{
2128 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2129 ** is zero, which prevents the SHM from growing */
2130 testcase( page0!=0 );
2131 }
2132 assert( page0!=0 || pWal->writeLock==0 );
drh7ed91f22010-04-29 22:34:07 +00002133
dan4280eb32010-06-12 12:02:35 +00002134 /* If the first page of the wal-index has been mapped, try to read the
2135 ** wal-index header immediately, without holding any lock. This usually
2136 ** works, but may fail if the wal-index header is corrupt or currently
drha927e942010-06-24 02:46:48 +00002137 ** being modified by another thread or process.
danb9bf16b2010-04-14 11:23:30 +00002138 */
dan4280eb32010-06-12 12:02:35 +00002139 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
drhbab7b912010-05-26 17:31:58 +00002140
drh73b64e42010-05-30 19:55:15 +00002141 /* If the first attempt failed, it might have been due to a race
drh66dfec8b2011-06-01 20:01:49 +00002142 ** with a writer. So get a WRITE lock and try again.
drh73b64e42010-05-30 19:55:15 +00002143 */
dand54ff602010-05-31 11:16:30 +00002144 assert( badHdr==0 || pWal->writeLock==0 );
dan4edc6bf2011-05-10 17:31:29 +00002145 if( badHdr ){
drh85bc6df2017-11-10 20:00:50 +00002146 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
dan4edc6bf2011-05-10 17:31:29 +00002147 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2148 walUnlockShared(pWal, WAL_WRITE_LOCK);
2149 rc = SQLITE_READONLY_RECOVERY;
drhbab7b912010-05-26 17:31:58 +00002150 }
drhab372772015-12-02 16:10:16 +00002151 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
dan4edc6bf2011-05-10 17:31:29 +00002152 pWal->writeLock = 1;
2153 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2154 badHdr = walIndexTryHdr(pWal, pChanged);
2155 if( badHdr ){
2156 /* If the wal-index header is still malformed even while holding
2157 ** a WRITE lock, it can only mean that the header is corrupted and
2158 ** needs to be reconstructed. So run recovery to do exactly that.
2159 */
2160 rc = walIndexRecover(pWal);
2161 *pChanged = 1;
2162 }
2163 }
2164 pWal->writeLock = 0;
2165 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhbab7b912010-05-26 17:31:58 +00002166 }
danb9bf16b2010-04-14 11:23:30 +00002167 }
2168
drha927e942010-06-24 02:46:48 +00002169 /* If the header is read successfully, check the version number to make
2170 ** sure the wal-index was not constructed with some future format that
2171 ** this version of SQLite cannot understand.
2172 */
2173 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2174 rc = SQLITE_CANTOPEN_BKPT;
2175 }
drh85bc6df2017-11-10 20:00:50 +00002176 if( pWal->bShmUnreliable ){
dan11caf4f2017-11-04 18:10:03 +00002177 if( rc!=SQLITE_OK ){
2178 walIndexClose(pWal, 0);
drh85bc6df2017-11-10 20:00:50 +00002179 pWal->bShmUnreliable = 0;
dan08ecefc2017-11-07 21:15:07 +00002180 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
2181 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
dan11caf4f2017-11-04 18:10:03 +00002182 }
2183 pWal->exclusiveMode = WAL_NORMAL_MODE;
2184 }
drha927e942010-06-24 02:46:48 +00002185
danb9bf16b2010-04-14 11:23:30 +00002186 return rc;
2187}
2188
2189/*
drh85bc6df2017-11-10 20:00:50 +00002190** Open a transaction in a connection where the shared-memory is read-only
2191** and where we cannot verify that there is a separate write-capable connection
2192** on hand to keep the shared-memory up-to-date with the WAL file.
2193**
2194** This can happen, for example, when the shared-memory is implemented by
2195** memory-mapping a *-shm file, where a prior writer has shut down and
2196** left the *-shm file on disk, and now the present connection is trying
2197** to use that database but lacks write permission on the *-shm file.
2198** Other scenarios are also possible, depending on the VFS implementation.
2199**
2200** Precondition:
2201**
2202** The *-wal file has been read and an appropriate wal-index has been
2203** constructed in pWal->apWiData[] using heap memory instead of shared
2204** memory.
dan11caf4f2017-11-04 18:10:03 +00002205**
2206** If this function returns SQLITE_OK, then the read transaction has
2207** been successfully opened. In this case output variable (*pChanged)
2208** is set to true before returning if the caller should discard the
2209** contents of the page cache before proceeding. Or, if it returns
2210** WAL_RETRY, then the heap memory wal-index has been discarded and
2211** the caller should retry opening the read transaction from the
2212** beginning (including attempting to map the *-shm file).
2213**
2214** If an error occurs, an SQLite error code is returned.
2215*/
drh85bc6df2017-11-10 20:00:50 +00002216static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
dan11caf4f2017-11-04 18:10:03 +00002217 i64 szWal; /* Size of wal file on disk in bytes */
2218 i64 iOffset; /* Current offset when reading wal file */
2219 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
2220 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
2221 int szFrame; /* Number of bytes in buffer aFrame[] */
2222 u8 *aData; /* Pointer to data part of aFrame buffer */
2223 volatile void *pDummy; /* Dummy argument for xShmMap */
2224 int rc; /* Return code */
2225 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */
2226
drh85bc6df2017-11-10 20:00:50 +00002227 assert( pWal->bShmUnreliable );
dan11caf4f2017-11-04 18:10:03 +00002228 assert( pWal->readOnly & WAL_SHM_RDONLY );
2229 assert( pWal->nWiData>0 && pWal->apWiData[0] );
2230
2231 /* Take WAL_READ_LOCK(0). This has the effect of preventing any
drh85bc6df2017-11-10 20:00:50 +00002232 ** writers from running a checkpoint, but does not stop them
dan11caf4f2017-11-04 18:10:03 +00002233 ** from running recovery. */
2234 rc = walLockShared(pWal, WAL_READ_LOCK(0));
2235 if( rc!=SQLITE_OK ){
danab548382017-11-06 19:49:34 +00002236 if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
drh85bc6df2017-11-10 20:00:50 +00002237 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002238 }
2239 pWal->readLock = 0;
2240
drh85bc6df2017-11-10 20:00:50 +00002241 /* Check to see if a separate writer has attached to the shared-memory area,
2242 ** thus making the shared-memory "reliable" again. Do this by invoking
2243 ** the xShmMap() routine of the VFS and looking to see if the return
2244 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
drh9214c1e2017-11-08 19:26:27 +00002245 **
drh85bc6df2017-11-10 20:00:50 +00002246 ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2247 ** cause the heap-memory WAL-index to be discarded and the actual
2248 ** shared memory to be used in its place.
drh870655b2017-11-11 13:30:44 +00002249 **
2250 ** This step is important because, even though this connection is holding
2251 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2252 ** have already checkpointed the WAL file and, while the current
2253 ** is active, wrap the WAL and start overwriting frames that this
2254 ** process wants to use.
2255 **
2256 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2257 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2258 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2259 ** even if some external agent does a "chmod" to make the shared-memory
2260 ** writable by us, until sqlite3OsShmUnmap() has been called.
2261 ** This is a requirement on the VFS implementation.
2262 */
dan11caf4f2017-11-04 18:10:03 +00002263 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
drh9214c1e2017-11-08 19:26:27 +00002264 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
drh7e45e3a2017-11-08 17:32:12 +00002265 if( rc!=SQLITE_READONLY_CANTINIT ){
dan11caf4f2017-11-04 18:10:03 +00002266 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
drh85bc6df2017-11-10 20:00:50 +00002267 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002268 }
2269
drh870655b2017-11-11 13:30:44 +00002270 /* We reach this point only if the real shared-memory is still unreliable.
drh85bc6df2017-11-10 20:00:50 +00002271 ** Assume the in-memory WAL-index substitute is correct and load it
2272 ** into pWal->hdr.
2273 */
dan11caf4f2017-11-04 18:10:03 +00002274 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
drh85bc6df2017-11-10 20:00:50 +00002275
drh870655b2017-11-11 13:30:44 +00002276 /* Make sure some writer hasn't come in and changed the WAL file out
2277 ** from under us, then disconnected, while we were not looking.
drh85bc6df2017-11-10 20:00:50 +00002278 */
dan11caf4f2017-11-04 18:10:03 +00002279 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
danab548382017-11-06 19:49:34 +00002280 if( rc!=SQLITE_OK ){
drh85bc6df2017-11-10 20:00:50 +00002281 goto begin_unreliable_shm_out;
danab548382017-11-06 19:49:34 +00002282 }
2283 if( szWal<WAL_HDRSIZE ){
dan11caf4f2017-11-04 18:10:03 +00002284 /* If the wal file is too small to contain a wal-header and the
2285 ** wal-index header has mxFrame==0, then it must be safe to proceed
2286 ** reading the database file only. However, the page cache cannot
2287 ** be trusted, as a read/write connection may have connected, written
2288 ** the db, run a checkpoint, truncated the wal file and disconnected
2289 ** since this client's last read transaction. */
2290 *pChanged = 1;
danab548382017-11-06 19:49:34 +00002291 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
drh85bc6df2017-11-10 20:00:50 +00002292 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002293 }
2294
2295 /* Check the salt keys at the start of the wal file still match. */
2296 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2297 if( rc!=SQLITE_OK ){
drh85bc6df2017-11-10 20:00:50 +00002298 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002299 }
2300 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
drh870655b2017-11-11 13:30:44 +00002301 /* Some writer has wrapped the WAL file while we were not looking.
2302 ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2303 ** rebuilt. */
dan11caf4f2017-11-04 18:10:03 +00002304 rc = WAL_RETRY;
drh85bc6df2017-11-10 20:00:50 +00002305 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002306 }
2307
2308 /* Allocate a buffer to read frames into */
2309 szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2310 aFrame = (u8 *)sqlite3_malloc64(szFrame);
2311 if( aFrame==0 ){
2312 rc = SQLITE_NOMEM_BKPT;
drh85bc6df2017-11-10 20:00:50 +00002313 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002314 }
2315 aData = &aFrame[WAL_FRAME_HDRSIZE];
2316
dancbd33212017-11-04 21:06:35 +00002317 /* Check to see if a complete transaction has been appended to the
2318 ** wal file since the heap-memory wal-index was created. If so, the
2319 ** heap-memory wal-index is discarded and WAL_RETRY returned to
2320 ** the caller. */
dan11caf4f2017-11-04 18:10:03 +00002321 aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2322 aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2323 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2324 iOffset+szFrame<=szWal;
2325 iOffset+=szFrame
2326 ){
2327 u32 pgno; /* Database page number for frame */
2328 u32 nTruncate; /* dbsize field from frame header */
2329
2330 /* Read and decode the next log frame. */
2331 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
danab548382017-11-06 19:49:34 +00002332 if( rc!=SQLITE_OK ) break;
dan11caf4f2017-11-04 18:10:03 +00002333 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2334
dancbd33212017-11-04 21:06:35 +00002335 /* If nTruncate is non-zero, then a complete transaction has been
2336 ** appended to this wal file. Set rc to WAL_RETRY and break out of
2337 ** the loop. */
dan11caf4f2017-11-04 18:10:03 +00002338 if( nTruncate ){
2339 rc = WAL_RETRY;
2340 break;
2341 }
2342 }
2343 pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2344 pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2345
drh85bc6df2017-11-10 20:00:50 +00002346 begin_unreliable_shm_out:
dan11caf4f2017-11-04 18:10:03 +00002347 sqlite3_free(aFrame);
2348 if( rc!=SQLITE_OK ){
2349 int i;
2350 for(i=0; i<pWal->nWiData; i++){
2351 sqlite3_free((void*)pWal->apWiData[i]);
2352 pWal->apWiData[i] = 0;
2353 }
drh85bc6df2017-11-10 20:00:50 +00002354 pWal->bShmUnreliable = 0;
dan11caf4f2017-11-04 18:10:03 +00002355 sqlite3WalEndReadTransaction(pWal);
2356 *pChanged = 1;
2357 }
2358 return rc;
2359}
2360
2361/*
drh73b64e42010-05-30 19:55:15 +00002362** Attempt to start a read transaction. This might fail due to a race or
2363** other transient condition. When that happens, it returns WAL_RETRY to
2364** indicate to the caller that it is safe to retry immediately.
2365**
drha927e942010-06-24 02:46:48 +00002366** On success return SQLITE_OK. On a permanent failure (such an
drh73b64e42010-05-30 19:55:15 +00002367** I/O error or an SQLITE_BUSY because another process is running
2368** recovery) return a positive error code.
2369**
drha927e942010-06-24 02:46:48 +00002370** The useWal parameter is true to force the use of the WAL and disable
2371** the case where the WAL is bypassed because it has been completely
2372** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
2373** to make a copy of the wal-index header into pWal->hdr. If the
2374** wal-index header has changed, *pChanged is set to 1 (as an indication
drh183f0aa2017-10-31 12:06:29 +00002375** to the caller that the local page cache is obsolete and needs to be
drha927e942010-06-24 02:46:48 +00002376** flushed.) When useWal==1, the wal-index header is assumed to already
2377** be loaded and the pChanged parameter is unused.
2378**
2379** The caller must set the cnt parameter to the number of prior calls to
2380** this routine during the current read attempt that returned WAL_RETRY.
2381** This routine will start taking more aggressive measures to clear the
2382** race conditions after multiple WAL_RETRY returns, and after an excessive
2383** number of errors will ultimately return SQLITE_PROTOCOL. The
2384** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2385** and is not honoring the locking protocol. There is a vanishingly small
2386** chance that SQLITE_PROTOCOL could be returned because of a run of really
2387** bad luck when there is lots of contention for the wal-index, but that
2388** possibility is so small that it can be safely neglected, we believe.
2389**
drh73b64e42010-05-30 19:55:15 +00002390** On success, this routine obtains a read lock on
2391** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
2392** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
2393** that means the Wal does not hold any read lock. The reader must not
2394** access any database page that is modified by a WAL frame up to and
2395** including frame number aReadMark[pWal->readLock]. The reader will
2396** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2397** Or if pWal->readLock==0, then the reader will ignore the WAL
2398** completely and get all content directly from the database file.
drha927e942010-06-24 02:46:48 +00002399** If the useWal parameter is 1 then the WAL will never be ignored and
2400** this routine will always set pWal->readLock>0 on success.
drh73b64e42010-05-30 19:55:15 +00002401** When the read transaction is completed, the caller must release the
2402** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2403**
2404** This routine uses the nBackfill and aReadMark[] fields of the header
2405** to select a particular WAL_READ_LOCK() that strives to let the
2406** checkpoint process do as much work as possible. This routine might
2407** update values of the aReadMark[] array in the header, but if it does
2408** so it takes care to hold an exclusive lock on the corresponding
2409** WAL_READ_LOCK() while changing values.
2410*/
drhaab4c022010-06-02 14:45:51 +00002411static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00002412 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
2413 u32 mxReadMark; /* Largest aReadMark[] value */
2414 int mxI; /* Index of largest aReadMark[] value */
2415 int i; /* Loop counter */
dan13a3cb82010-06-11 19:04:21 +00002416 int rc = SQLITE_OK; /* Return code */
drhc49e9602015-12-11 03:16:54 +00002417 u32 mxFrame; /* Wal frame to lock to */
dan64d039e2010-04-13 19:27:31 +00002418
drh61e4ace2010-05-31 20:28:37 +00002419 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00002420
drh2e9b0922017-11-13 05:51:37 +00002421 /* useWal may only be set for read/write connections */
2422 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2423
drh658d76c2011-02-19 15:22:14 +00002424 /* Take steps to avoid spinning forever if there is a protocol error.
2425 **
2426 ** Circumstances that cause a RETRY should only last for the briefest
2427 ** instances of time. No I/O or other system calls are done while the
2428 ** locks are held, so the locks should not be held for very long. But
2429 ** if we are unlucky, another process that is holding a lock might get
2430 ** paged out or take a page-fault that is time-consuming to resolve,
2431 ** during the few nanoseconds that it is holding the lock. In that case,
2432 ** it might take longer than normal for the lock to free.
2433 **
2434 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2435 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2436 ** is more of a scheduler yield than an actual delay. But on the 10th
2437 ** an subsequent retries, the delays start becoming longer and longer,
drh5b6e3b92014-06-12 17:10:18 +00002438 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2439 ** The total delay time before giving up is less than 10 seconds.
drh658d76c2011-02-19 15:22:14 +00002440 */
drhaab4c022010-06-02 14:45:51 +00002441 if( cnt>5 ){
drh658d76c2011-02-19 15:22:14 +00002442 int nDelay = 1; /* Pause time in microseconds */
drh03c69672011-02-19 23:18:12 +00002443 if( cnt>100 ){
2444 VVA_ONLY( pWal->lockError = 1; )
2445 return SQLITE_PROTOCOL;
2446 }
drh5b6e3b92014-06-12 17:10:18 +00002447 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
drh658d76c2011-02-19 15:22:14 +00002448 sqlite3OsSleep(pWal->pVfs, nDelay);
drhaab4c022010-06-02 14:45:51 +00002449 }
2450
drh73b64e42010-05-30 19:55:15 +00002451 if( !useWal ){
dan11caf4f2017-11-04 18:10:03 +00002452 assert( rc==SQLITE_OK );
drh85bc6df2017-11-10 20:00:50 +00002453 if( pWal->bShmUnreliable==0 ){
dan11caf4f2017-11-04 18:10:03 +00002454 rc = walIndexReadHdr(pWal, pChanged);
2455 }
drh73b64e42010-05-30 19:55:15 +00002456 if( rc==SQLITE_BUSY ){
2457 /* If there is not a recovery running in another thread or process
2458 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2459 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2460 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2461 ** would be technically correct. But the race is benign since with
2462 ** WAL_RETRY this routine will be called again and will probably be
2463 ** right on the second iteration.
2464 */
dan7d4514a2010-07-15 17:54:14 +00002465 if( pWal->apWiData[0]==0 ){
2466 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2467 ** We assume this is a transient condition, so return WAL_RETRY. The
2468 ** xShmMap() implementation used by the default unix and win32 VFS
2469 ** modules may return SQLITE_BUSY due to a race condition in the
2470 ** code that determines whether or not the shared-memory region
2471 ** must be zeroed before the requested page is returned.
2472 */
2473 rc = WAL_RETRY;
2474 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
drh73b64e42010-05-30 19:55:15 +00002475 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2476 rc = WAL_RETRY;
2477 }else if( rc==SQLITE_BUSY ){
2478 rc = SQLITE_BUSY_RECOVERY;
2479 }
2480 }
drha927e942010-06-24 02:46:48 +00002481 if( rc!=SQLITE_OK ){
2482 return rc;
2483 }
drh85bc6df2017-11-10 20:00:50 +00002484 else if( pWal->bShmUnreliable ){
2485 return walBeginShmUnreliable(pWal, pChanged);
dan11caf4f2017-11-04 18:10:03 +00002486 }
drh73b64e42010-05-30 19:55:15 +00002487 }
2488
dan92c02da2017-11-01 20:59:28 +00002489 assert( pWal->nWiData>0 );
drh2e9b0922017-11-13 05:51:37 +00002490 assert( pWal->apWiData[0]!=0 );
2491 pInfo = walCkptInfo(pWal);
2492 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame
danfc1acf32015-12-05 20:51:54 +00002493#ifdef SQLITE_ENABLE_SNAPSHOT
2494 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0
2495 || 0==memcmp(&pWal->hdr, pWal->pSnapshot, sizeof(WalIndexHdr)))
2496#endif
2497 ){
drh73b64e42010-05-30 19:55:15 +00002498 /* The WAL has been completely backfilled (or it is empty).
2499 ** and can be safely ignored.
2500 */
2501 rc = walLockShared(pWal, WAL_READ_LOCK(0));
dan8c408002010-11-01 17:38:24 +00002502 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002503 if( rc==SQLITE_OK ){
drh2e9b0922017-11-13 05:51:37 +00002504 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00002505 /* It is not safe to allow the reader to continue here if frames
2506 ** may have been appended to the log before READ_LOCK(0) was obtained.
2507 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2508 ** which implies that the database file contains a trustworthy
peter.d.reid60ec9142014-09-06 16:39:46 +00002509 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
dan493cc592010-06-05 18:12:23 +00002510 ** happening, this is usually correct.
2511 **
2512 ** However, if frames have been appended to the log (or if the log
2513 ** is wrapped and written for that matter) before the READ_LOCK(0)
2514 ** is obtained, that is not necessarily true. A checkpointer may
2515 ** have started to backfill the appended frames but crashed before
2516 ** it finished. Leaving a corrupt image in the database file.
2517 */
drh73b64e42010-05-30 19:55:15 +00002518 walUnlockShared(pWal, WAL_READ_LOCK(0));
2519 return WAL_RETRY;
2520 }
2521 pWal->readLock = 0;
2522 return SQLITE_OK;
2523 }else if( rc!=SQLITE_BUSY ){
2524 return rc;
dan64d039e2010-04-13 19:27:31 +00002525 }
dan7c246102010-04-12 19:00:29 +00002526 }
danba515902010-04-30 09:32:06 +00002527
drh73b64e42010-05-30 19:55:15 +00002528 /* If we get this far, it means that the reader will want to use
2529 ** the WAL to get at content from recent commits. The job now is
2530 ** to select one of the aReadMark[] entries that is closest to
2531 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2532 */
2533 mxReadMark = 0;
2534 mxI = 0;
danfc1acf32015-12-05 20:51:54 +00002535 mxFrame = pWal->hdr.mxFrame;
2536#ifdef SQLITE_ENABLE_SNAPSHOT
dan818b11a2015-12-07 14:33:07 +00002537 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2538 mxFrame = pWal->pSnapshot->mxFrame;
2539 }
danfc1acf32015-12-05 20:51:54 +00002540#endif
drh73b64e42010-05-30 19:55:15 +00002541 for(i=1; i<WAL_NREADER; i++){
2542 u32 thisMark = pInfo->aReadMark[i];
danfc1acf32015-12-05 20:51:54 +00002543 if( mxReadMark<=thisMark && thisMark<=mxFrame ){
drhdb7f6472010-06-09 14:45:12 +00002544 assert( thisMark!=READMARK_NOT_USED );
drh73b64e42010-05-30 19:55:15 +00002545 mxReadMark = thisMark;
2546 mxI = i;
2547 }
2548 }
drh998147e2015-12-10 02:15:03 +00002549 if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2550 && (mxReadMark<mxFrame || mxI==0)
drh998147e2015-12-10 02:15:03 +00002551 ){
2552 for(i=1; i<WAL_NREADER; i++){
2553 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2554 if( rc==SQLITE_OK ){
2555 mxReadMark = pInfo->aReadMark[i] = mxFrame;
2556 mxI = i;
2557 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2558 break;
2559 }else if( rc!=SQLITE_BUSY ){
2560 return rc;
drh73b64e42010-05-30 19:55:15 +00002561 }
2562 }
drh998147e2015-12-10 02:15:03 +00002563 }
2564 if( mxI==0 ){
drh998147e2015-12-10 02:15:03 +00002565 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
drh7e45e3a2017-11-08 17:32:12 +00002566 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
drh998147e2015-12-10 02:15:03 +00002567 }
drh73b64e42010-05-30 19:55:15 +00002568
drh998147e2015-12-10 02:15:03 +00002569 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2570 if( rc ){
2571 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2572 }
2573 /* Now that the read-lock has been obtained, check that neither the
2574 ** value in the aReadMark[] array or the contents of the wal-index
2575 ** header have changed.
2576 **
2577 ** It is necessary to check that the wal-index header did not change
2578 ** between the time it was read and when the shared-lock was obtained
2579 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2580 ** that the log file may have been wrapped by a writer, or that frames
2581 ** that occur later in the log than pWal->hdr.mxFrame may have been
2582 ** copied into the database by a checkpointer. If either of these things
2583 ** happened, then reading the database with the current value of
2584 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2585 ** instead.
2586 **
2587 ** Before checking that the live wal-index header has not changed
2588 ** since it was read, set Wal.minFrame to the first frame in the wal
2589 ** file that has not yet been checkpointed. This client will not need
2590 ** to read any frames earlier than minFrame from the wal file - they
2591 ** can be safely read directly from the database file.
2592 **
2593 ** Because a ShmBarrier() call is made between taking the copy of
2594 ** nBackfill and checking that the wal-header in shared-memory still
2595 ** matches the one cached in pWal->hdr, it is guaranteed that the
2596 ** checkpointer that set nBackfill was not working with a wal-index
2597 ** header newer than that cached in pWal->hdr. If it were, that could
2598 ** cause a problem. The checkpointer could omit to checkpoint
2599 ** a version of page X that lies before pWal->minFrame (call that version
2600 ** A) on the basis that there is a newer version (version B) of the same
2601 ** page later in the wal file. But if version B happens to like past
2602 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2603 ** that it can read version A from the database file. However, since
2604 ** we can guarantee that the checkpointer that set nBackfill could not
2605 ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2606 */
2607 pWal->minFrame = pInfo->nBackfill+1;
2608 walShmBarrier(pWal);
2609 if( pInfo->aReadMark[mxI]!=mxReadMark
2610 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2611 ){
2612 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2613 return WAL_RETRY;
2614 }else{
2615 assert( mxReadMark<=pWal->hdr.mxFrame );
2616 pWal->readLock = (i16)mxI;
drh73b64e42010-05-30 19:55:15 +00002617 }
2618 return rc;
2619}
2620
drhbc887112016-11-22 21:11:59 +00002621#ifdef SQLITE_ENABLE_SNAPSHOT
drh73b64e42010-05-30 19:55:15 +00002622/*
dan93f51132016-11-19 18:31:37 +00002623** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2624** variable so that older snapshots can be accessed. To do this, loop
2625** through all wal frames from nBackfillAttempted to (nBackfill+1),
2626** comparing their content to the corresponding page with the database
2627** file, if any. Set nBackfillAttempted to the frame number of the
2628** first frame for which the wal file content matches the db file.
2629**
2630** This is only really safe if the file-system is such that any page
2631** writes made by earlier checkpointers were atomic operations, which
2632** is not always true. It is also possible that nBackfillAttempted
2633** may be left set to a value larger than expected, if a wal frame
2634** contains content that duplicate of an earlier version of the same
2635** page.
2636**
2637** SQLITE_OK is returned if successful, or an SQLite error code if an
2638** error occurs. It is not an error if nBackfillAttempted cannot be
2639** decreased at all.
dan11584982016-11-18 20:49:43 +00002640*/
2641int sqlite3WalSnapshotRecover(Wal *pWal){
dan11584982016-11-18 20:49:43 +00002642 int rc;
2643
dan93f51132016-11-19 18:31:37 +00002644 assert( pWal->readLock>=0 );
2645 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
dan11584982016-11-18 20:49:43 +00002646 if( rc==SQLITE_OK ){
dan93f51132016-11-19 18:31:37 +00002647 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2648 int szPage = (int)pWal->szPage;
2649 i64 szDb; /* Size of db file in bytes */
2650
2651 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
dan11584982016-11-18 20:49:43 +00002652 if( rc==SQLITE_OK ){
dan93f51132016-11-19 18:31:37 +00002653 void *pBuf1 = sqlite3_malloc(szPage);
2654 void *pBuf2 = sqlite3_malloc(szPage);
2655 if( pBuf1==0 || pBuf2==0 ){
2656 rc = SQLITE_NOMEM;
2657 }else{
2658 u32 i = pInfo->nBackfillAttempted;
2659 for(i=pInfo->nBackfillAttempted; i>pInfo->nBackfill; i--){
2660 volatile ht_slot *dummy;
2661 volatile u32 *aPgno; /* Array of page numbers */
2662 u32 iZero; /* Frame corresponding to aPgno[0] */
2663 u32 pgno; /* Page number in db file */
2664 i64 iDbOff; /* Offset of db file entry */
2665 i64 iWalOff; /* Offset of wal file entry */
dan11584982016-11-18 20:49:43 +00002666
dan93f51132016-11-19 18:31:37 +00002667 rc = walHashGet(pWal, walFramePage(i), &dummy, &aPgno, &iZero);
2668 if( rc!=SQLITE_OK ) break;
2669 pgno = aPgno[i-iZero];
2670 iDbOff = (i64)(pgno-1) * szPage;
dan11584982016-11-18 20:49:43 +00002671
dan93f51132016-11-19 18:31:37 +00002672 if( iDbOff+szPage<=szDb ){
2673 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2674 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
dan11584982016-11-18 20:49:43 +00002675
dan93f51132016-11-19 18:31:37 +00002676 if( rc==SQLITE_OK ){
2677 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
dan6a9e7f12016-11-19 16:35:53 +00002678 }
2679
dan93f51132016-11-19 18:31:37 +00002680 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2681 break;
2682 }
dan6a9e7f12016-11-19 16:35:53 +00002683 }
dan93f51132016-11-19 18:31:37 +00002684
2685 pInfo->nBackfillAttempted = i-1;
dan11584982016-11-18 20:49:43 +00002686 }
dan6a9e7f12016-11-19 16:35:53 +00002687 }
dan11584982016-11-18 20:49:43 +00002688
dan93f51132016-11-19 18:31:37 +00002689 sqlite3_free(pBuf1);
2690 sqlite3_free(pBuf2);
2691 }
2692 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dan11584982016-11-18 20:49:43 +00002693 }
2694
2695 return rc;
2696}
drhbc887112016-11-22 21:11:59 +00002697#endif /* SQLITE_ENABLE_SNAPSHOT */
dan11584982016-11-18 20:49:43 +00002698
2699/*
drh73b64e42010-05-30 19:55:15 +00002700** Begin a read transaction on the database.
2701**
2702** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2703** it takes a snapshot of the state of the WAL and wal-index for the current
2704** instant in time. The current thread will continue to use this snapshot.
2705** Other threads might append new content to the WAL and wal-index but
2706** that extra content is ignored by the current thread.
2707**
2708** If the database contents have changes since the previous read
2709** transaction, then *pChanged is set to 1 before returning. The
2710** Pager layer will use this to know that is cache is stale and
2711** needs to be flushed.
2712*/
drh66dfec8b2011-06-01 20:01:49 +00002713int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
drh73b64e42010-05-30 19:55:15 +00002714 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00002715 int cnt = 0; /* Number of TryBeginRead attempts */
drh73b64e42010-05-30 19:55:15 +00002716
danfc1acf32015-12-05 20:51:54 +00002717#ifdef SQLITE_ENABLE_SNAPSHOT
2718 int bChanged = 0;
2719 WalIndexHdr *pSnapshot = pWal->pSnapshot;
drh998147e2015-12-10 02:15:03 +00002720 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
danfc1acf32015-12-05 20:51:54 +00002721 bChanged = 1;
2722 }
2723#endif
2724
drh73b64e42010-05-30 19:55:15 +00002725 do{
drhaab4c022010-06-02 14:45:51 +00002726 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00002727 }while( rc==WAL_RETRY );
drhab1cc742011-02-19 16:51:45 +00002728 testcase( (rc&0xff)==SQLITE_BUSY );
2729 testcase( (rc&0xff)==SQLITE_IOERR );
2730 testcase( rc==SQLITE_PROTOCOL );
2731 testcase( rc==SQLITE_OK );
danfc1acf32015-12-05 20:51:54 +00002732
2733#ifdef SQLITE_ENABLE_SNAPSHOT
2734 if( rc==SQLITE_OK ){
drh998147e2015-12-10 02:15:03 +00002735 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
dan65127cd2015-12-09 20:05:27 +00002736 /* At this point the client has a lock on an aReadMark[] slot holding
dan3bf83cc2015-12-10 15:45:15 +00002737 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2738 ** is populated with the wal-index header corresponding to the head
2739 ** of the wal file. Verify that pSnapshot is still valid before
2740 ** continuing. Reasons why pSnapshot might no longer be valid:
dan65127cd2015-12-09 20:05:27 +00002741 **
drh998147e2015-12-10 02:15:03 +00002742 ** (1) The WAL file has been reset since the snapshot was taken.
2743 ** In this case, the salt will have changed.
dan65127cd2015-12-09 20:05:27 +00002744 **
drh998147e2015-12-10 02:15:03 +00002745 ** (2) A checkpoint as been attempted that wrote frames past
2746 ** pSnapshot->mxFrame into the database file. Note that the
2747 ** checkpoint need not have completed for this to cause problems.
dan65127cd2015-12-09 20:05:27 +00002748 */
danfc1acf32015-12-05 20:51:54 +00002749 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
dan65127cd2015-12-09 20:05:27 +00002750
drh71b62fa2015-12-11 01:22:22 +00002751 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
dan65127cd2015-12-09 20:05:27 +00002752 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2753
dan3bf83cc2015-12-10 15:45:15 +00002754 /* It is possible that there is a checkpointer thread running
2755 ** concurrent with this code. If this is the case, it may be that the
2756 ** checkpointer has already determined that it will checkpoint
2757 ** snapshot X, where X is later in the wal file than pSnapshot, but
2758 ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2759 ** its intent. To avoid the race condition this leads to, ensure that
2760 ** there is no checkpointer process by taking a shared CKPT lock
dan11584982016-11-18 20:49:43 +00002761 ** before checking pInfo->nBackfillAttempted.
2762 **
2763 ** TODO: Does the aReadMark[] lock prevent a checkpointer from doing
2764 ** this already?
2765 */
dan3bf83cc2015-12-10 15:45:15 +00002766 rc = walLockShared(pWal, WAL_CKPT_LOCK);
2767
dana7aeb392015-12-10 19:11:34 +00002768 if( rc==SQLITE_OK ){
2769 /* Check that the wal file has not been wrapped. Assuming that it has
2770 ** not, also check that no checkpointer has attempted to checkpoint any
2771 ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2772 ** true, return SQLITE_BUSY_SNAPSHOT. Otherwise, overwrite pWal->hdr
2773 ** with *pSnapshot and set *pChanged as appropriate for opening the
2774 ** snapshot. */
2775 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2776 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2777 ){
dan0f308f52015-12-11 14:59:49 +00002778 assert( pWal->readLock>0 );
dana7aeb392015-12-10 19:11:34 +00002779 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2780 *pChanged = bChanged;
2781 }else{
2782 rc = SQLITE_BUSY_SNAPSHOT;
2783 }
2784
2785 /* Release the shared CKPT lock obtained above. */
2786 walUnlockShared(pWal, WAL_CKPT_LOCK);
danfc1acf32015-12-05 20:51:54 +00002787 }
dan65127cd2015-12-09 20:05:27 +00002788
dan3bf83cc2015-12-10 15:45:15 +00002789
danfc1acf32015-12-05 20:51:54 +00002790 if( rc!=SQLITE_OK ){
2791 sqlite3WalEndReadTransaction(pWal);
2792 }
2793 }
2794 }
2795#endif
dan7c246102010-04-12 19:00:29 +00002796 return rc;
2797}
2798
2799/*
drh73b64e42010-05-30 19:55:15 +00002800** Finish with a read transaction. All this does is release the
2801** read-lock.
dan7c246102010-04-12 19:00:29 +00002802*/
drh73b64e42010-05-30 19:55:15 +00002803void sqlite3WalEndReadTransaction(Wal *pWal){
dan73d66fd2010-08-07 16:17:48 +00002804 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00002805 if( pWal->readLock>=0 ){
2806 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2807 pWal->readLock = -1;
2808 }
dan7c246102010-04-12 19:00:29 +00002809}
2810
dan5e0ce872010-04-28 17:48:44 +00002811/*
dan99bd1092013-03-22 18:20:14 +00002812** Search the wal file for page pgno. If found, set *piRead to the frame that
2813** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2814** to zero.
drh73b64e42010-05-30 19:55:15 +00002815**
dan99bd1092013-03-22 18:20:14 +00002816** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2817** error does occur, the final value of *piRead is undefined.
dan7c246102010-04-12 19:00:29 +00002818*/
dan99bd1092013-03-22 18:20:14 +00002819int sqlite3WalFindFrame(
danbb23aff2010-05-10 14:46:09 +00002820 Wal *pWal, /* WAL handle */
2821 Pgno pgno, /* Database page number to read data for */
dan99bd1092013-03-22 18:20:14 +00002822 u32 *piRead /* OUT: Frame number (or zero) */
danb6e099a2010-05-04 14:47:39 +00002823){
danbb23aff2010-05-10 14:46:09 +00002824 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00002825 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00002826 int iHash; /* Used to loop through N hash tables */
dan6df003c2015-08-12 19:42:08 +00002827 int iMinHash;
dan7c246102010-04-12 19:00:29 +00002828
drhaab4c022010-06-02 14:45:51 +00002829 /* This routine is only be called from within a read transaction. */
2830 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00002831
danbb23aff2010-05-10 14:46:09 +00002832 /* If the "last page" field of the wal-index header snapshot is 0, then
2833 ** no data will be read from the wal under any circumstances. Return early
drha927e942010-06-24 02:46:48 +00002834 ** in this case as an optimization. Likewise, if pWal->readLock==0,
2835 ** then the WAL is ignored by the reader so return early, as if the
2836 ** WAL were empty.
danbb23aff2010-05-10 14:46:09 +00002837 */
drh85bc6df2017-11-10 20:00:50 +00002838 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
dan99bd1092013-03-22 18:20:14 +00002839 *piRead = 0;
danbb23aff2010-05-10 14:46:09 +00002840 return SQLITE_OK;
2841 }
2842
danbb23aff2010-05-10 14:46:09 +00002843 /* Search the hash table or tables for an entry matching page number
2844 ** pgno. Each iteration of the following for() loop searches one
2845 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2846 **
drha927e942010-06-24 02:46:48 +00002847 ** This code might run concurrently to the code in walIndexAppend()
danbb23aff2010-05-10 14:46:09 +00002848 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00002849 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00002850 ** slot (aHash[iKey]) may have been added before or after the
2851 ** current read transaction was opened. Values added after the
2852 ** read transaction was opened may have been written incorrectly -
2853 ** i.e. these slots may contain garbage data. However, we assume
2854 ** that any slots written before the current read transaction was
2855 ** opened remain unmodified.
2856 **
2857 ** For the reasons above, the if(...) condition featured in the inner
2858 ** loop of the following block is more stringent that would be required
2859 ** if we had exclusive access to the hash-table:
2860 **
2861 ** (aPgno[iFrame]==pgno):
2862 ** This condition filters out normal hash-table collisions.
2863 **
2864 ** (iFrame<=iLast):
2865 ** This condition filters out entries that were added to the hash
2866 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00002867 */
danb8c7cfb2015-08-13 20:23:46 +00002868 iMinHash = walFramePage(pWal->minFrame);
dan6df003c2015-08-12 19:42:08 +00002869 for(iHash=walFramePage(iLast); iHash>=iMinHash && iRead==0; iHash--){
dan067f3162010-06-14 10:30:12 +00002870 volatile ht_slot *aHash; /* Pointer to hash table */
2871 volatile u32 *aPgno; /* Pointer to array of page numbers */
danbb23aff2010-05-10 14:46:09 +00002872 u32 iZero; /* Frame number corresponding to aPgno[0] */
2873 int iKey; /* Hash slot index */
drh519426a2010-07-09 03:19:07 +00002874 int nCollide; /* Number of hash collisions remaining */
2875 int rc; /* Error code */
danbb23aff2010-05-10 14:46:09 +00002876
dan4280eb32010-06-12 12:02:35 +00002877 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2878 if( rc!=SQLITE_OK ){
2879 return rc;
2880 }
drh519426a2010-07-09 03:19:07 +00002881 nCollide = HASHTABLE_NSLOT;
dan6f150142010-05-21 15:31:56 +00002882 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
danbb23aff2010-05-10 14:46:09 +00002883 u32 iFrame = aHash[iKey] + iZero;
danb8c7cfb2015-08-13 20:23:46 +00002884 if( iFrame<=iLast && iFrame>=pWal->minFrame && aPgno[aHash[iKey]]==pgno ){
drh622a53d2014-12-29 11:50:39 +00002885 assert( iFrame>iRead || CORRUPT_DB );
danbb23aff2010-05-10 14:46:09 +00002886 iRead = iFrame;
2887 }
drh519426a2010-07-09 03:19:07 +00002888 if( (nCollide--)==0 ){
2889 return SQLITE_CORRUPT_BKPT;
2890 }
dan7c246102010-04-12 19:00:29 +00002891 }
2892 }
dan7c246102010-04-12 19:00:29 +00002893
danbb23aff2010-05-10 14:46:09 +00002894#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2895 /* If expensive assert() statements are available, do a linear search
2896 ** of the wal-index file content. Make sure the results agree with the
2897 ** result obtained using the hash indexes above. */
2898 {
2899 u32 iRead2 = 0;
2900 u32 iTest;
drh85bc6df2017-11-10 20:00:50 +00002901 assert( pWal->bShmUnreliable || pWal->minFrame>0 );
dan6c9d8f62017-11-07 21:25:15 +00002902 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
dan13a3cb82010-06-11 19:04:21 +00002903 if( walFramePgno(pWal, iTest)==pgno ){
danbb23aff2010-05-10 14:46:09 +00002904 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00002905 break;
2906 }
dan7c246102010-04-12 19:00:29 +00002907 }
danbb23aff2010-05-10 14:46:09 +00002908 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00002909 }
danbb23aff2010-05-10 14:46:09 +00002910#endif
dancd11fb22010-04-26 10:40:52 +00002911
dan99bd1092013-03-22 18:20:14 +00002912 *piRead = iRead;
dan7c246102010-04-12 19:00:29 +00002913 return SQLITE_OK;
2914}
2915
dan99bd1092013-03-22 18:20:14 +00002916/*
2917** Read the contents of frame iRead from the wal file into buffer pOut
2918** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2919** error code otherwise.
2920*/
2921int sqlite3WalReadFrame(
2922 Wal *pWal, /* WAL handle */
2923 u32 iRead, /* Frame to read */
2924 int nOut, /* Size of buffer pOut in bytes */
2925 u8 *pOut /* Buffer to write page data to */
2926){
2927 int sz;
2928 i64 iOffset;
2929 sz = pWal->hdr.szPage;
2930 sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2931 testcase( sz<=32768 );
2932 testcase( sz>=65536 );
2933 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2934 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2935 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2936}
dan7c246102010-04-12 19:00:29 +00002937
2938/*
dan763afe62010-08-03 06:42:39 +00002939** Return the size of the database in pages (or zero, if unknown).
dan7c246102010-04-12 19:00:29 +00002940*/
dan763afe62010-08-03 06:42:39 +00002941Pgno sqlite3WalDbsize(Wal *pWal){
drh7e9e70b2010-08-16 14:17:59 +00002942 if( pWal && ALWAYS(pWal->readLock>=0) ){
dan763afe62010-08-03 06:42:39 +00002943 return pWal->hdr.nPage;
2944 }
2945 return 0;
dan7c246102010-04-12 19:00:29 +00002946}
2947
dan30c86292010-04-30 16:24:46 +00002948
drh73b64e42010-05-30 19:55:15 +00002949/*
2950** This function starts a write transaction on the WAL.
2951**
2952** A read transaction must have already been started by a prior call
2953** to sqlite3WalBeginReadTransaction().
2954**
2955** If another thread or process has written into the database since
2956** the read transaction was started, then it is not possible for this
2957** thread to write as doing so would cause a fork. So this routine
2958** returns SQLITE_BUSY in that case and no write transaction is started.
2959**
2960** There can only be a single writer active at a time.
2961*/
2962int sqlite3WalBeginWriteTransaction(Wal *pWal){
2963 int rc;
drh73b64e42010-05-30 19:55:15 +00002964
2965 /* Cannot start a write transaction without first holding a read
2966 ** transaction. */
2967 assert( pWal->readLock>=0 );
danc9a90222016-01-09 18:57:35 +00002968 assert( pWal->writeLock==0 && pWal->iReCksum==0 );
drh73b64e42010-05-30 19:55:15 +00002969
dan1e5de5a2010-07-15 18:20:53 +00002970 if( pWal->readOnly ){
2971 return SQLITE_READONLY;
2972 }
2973
drh73b64e42010-05-30 19:55:15 +00002974 /* Only one writer allowed at a time. Get the write lock. Return
2975 ** SQLITE_BUSY if unable.
2976 */
drhab372772015-12-02 16:10:16 +00002977 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
drh73b64e42010-05-30 19:55:15 +00002978 if( rc ){
2979 return rc;
2980 }
drhc99597c2010-05-31 01:41:15 +00002981 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00002982
2983 /* If another connection has written to the database file since the
2984 ** time the read transaction on this connection was started, then
2985 ** the write is disallowed.
2986 */
dan4280eb32010-06-12 12:02:35 +00002987 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
drh73b64e42010-05-30 19:55:15 +00002988 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00002989 pWal->writeLock = 0;
danf73819a2013-06-27 11:46:27 +00002990 rc = SQLITE_BUSY_SNAPSHOT;
drh73b64e42010-05-30 19:55:15 +00002991 }
2992
drh7ed91f22010-04-29 22:34:07 +00002993 return rc;
dan7c246102010-04-12 19:00:29 +00002994}
2995
dan74d6cd82010-04-24 18:44:05 +00002996/*
drh73b64e42010-05-30 19:55:15 +00002997** End a write transaction. The commit has already been done. This
2998** routine merely releases the lock.
2999*/
3000int sqlite3WalEndWriteTransaction(Wal *pWal){
danda9fe0c2010-07-13 18:44:03 +00003001 if( pWal->writeLock ){
3002 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3003 pWal->writeLock = 0;
danc9a90222016-01-09 18:57:35 +00003004 pWal->iReCksum = 0;
danf60b7f32011-12-16 13:24:27 +00003005 pWal->truncateOnCommit = 0;
danda9fe0c2010-07-13 18:44:03 +00003006 }
drh73b64e42010-05-30 19:55:15 +00003007 return SQLITE_OK;
3008}
3009
3010/*
dan74d6cd82010-04-24 18:44:05 +00003011** If any data has been written (but not committed) to the log file, this
3012** function moves the write-pointer back to the start of the transaction.
3013**
3014** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00003015** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00003016** other than SQLITE_OK, it is not invoked again and the error code is
3017** returned to the caller.
3018**
3019** Otherwise, if the callback function does not return an error, this
3020** function returns SQLITE_OK.
3021*/
drh7ed91f22010-04-29 22:34:07 +00003022int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00003023 int rc = SQLITE_OK;
drh7e9e70b2010-08-16 14:17:59 +00003024 if( ALWAYS(pWal->writeLock) ){
drh027a1282010-05-19 01:53:53 +00003025 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00003026 Pgno iFrame;
3027
dan5d656852010-06-14 07:53:26 +00003028 /* Restore the clients cache of the wal-index header to the state it
3029 ** was in before the client began writing to the database.
3030 */
dan067f3162010-06-14 10:30:12 +00003031 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
dan5d656852010-06-14 07:53:26 +00003032
3033 for(iFrame=pWal->hdr.mxFrame+1;
drh664f85d2014-11-19 14:05:41 +00003034 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
dan5d656852010-06-14 07:53:26 +00003035 iFrame++
3036 ){
3037 /* This call cannot fail. Unless the page for which the page number
3038 ** is passed as the second argument is (a) in the cache and
3039 ** (b) has an outstanding reference, then xUndo is either a no-op
3040 ** (if (a) is false) or simply expels the page from the cache (if (b)
3041 ** is false).
3042 **
3043 ** If the upper layer is doing a rollback, it is guaranteed that there
3044 ** are no outstanding references to any page other than page 1. And
3045 ** page 1 is never written to the log until the transaction is
3046 ** committed. As a result, the call to xUndo may not fail.
3047 */
dan5d656852010-06-14 07:53:26 +00003048 assert( walFramePgno(pWal, iFrame)!=1 );
3049 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
dan6f150142010-05-21 15:31:56 +00003050 }
dan7eb05752012-10-15 11:28:24 +00003051 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
dan74d6cd82010-04-24 18:44:05 +00003052 }
3053 return rc;
3054}
3055
dan71d89912010-05-24 13:57:42 +00003056/*
3057** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3058** values. This function populates the array with values required to
3059** "rollback" the write position of the WAL handle back to the current
3060** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00003061*/
dan71d89912010-05-24 13:57:42 +00003062void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00003063 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00003064 aWalData[0] = pWal->hdr.mxFrame;
3065 aWalData[1] = pWal->hdr.aFrameCksum[0];
3066 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00003067 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00003068}
3069
dan71d89912010-05-24 13:57:42 +00003070/*
3071** Move the write position of the WAL back to the point identified by
3072** the values in the aWalData[] array. aWalData must point to an array
3073** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3074** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00003075*/
dan71d89912010-05-24 13:57:42 +00003076int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00003077 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00003078
dan6e6bd562010-06-02 18:59:03 +00003079 assert( pWal->writeLock );
3080 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3081
3082 if( aWalData[3]!=pWal->nCkpt ){
3083 /* This savepoint was opened immediately after the write-transaction
3084 ** was started. Right after that, the writer decided to wrap around
3085 ** to the start of the log. Update the savepoint values to match.
3086 */
3087 aWalData[0] = 0;
3088 aWalData[3] = pWal->nCkpt;
3089 }
3090
dan71d89912010-05-24 13:57:42 +00003091 if( aWalData[0]<pWal->hdr.mxFrame ){
dan71d89912010-05-24 13:57:42 +00003092 pWal->hdr.mxFrame = aWalData[0];
3093 pWal->hdr.aFrameCksum[0] = aWalData[1];
3094 pWal->hdr.aFrameCksum[1] = aWalData[2];
dan5d656852010-06-14 07:53:26 +00003095 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00003096 }
dan6e6bd562010-06-02 18:59:03 +00003097
dan4cd78b42010-04-26 16:57:10 +00003098 return rc;
3099}
3100
dan9971e712010-06-01 15:44:57 +00003101/*
3102** This function is called just before writing a set of frames to the log
3103** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3104** to the current log file, it is possible to overwrite the start of the
3105** existing log file with the new frames (i.e. "reset" the log). If so,
3106** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3107** unchanged.
3108**
3109** SQLITE_OK is returned if no error is encountered (regardless of whether
3110** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
drh4533cd02010-10-05 15:41:05 +00003111** if an error occurs.
dan9971e712010-06-01 15:44:57 +00003112*/
3113static int walRestartLog(Wal *pWal){
3114 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00003115 int cnt;
3116
dan13a3cb82010-06-11 19:04:21 +00003117 if( pWal->readLock==0 ){
dan9971e712010-06-01 15:44:57 +00003118 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3119 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3120 if( pInfo->nBackfill>0 ){
drh658d76c2011-02-19 15:22:14 +00003121 u32 salt1;
3122 sqlite3_randomness(4, &salt1);
drhab372772015-12-02 16:10:16 +00003123 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
dan9971e712010-06-01 15:44:57 +00003124 if( rc==SQLITE_OK ){
3125 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3126 ** readers are currently using the WAL), then the transactions
3127 ** frames will overwrite the start of the existing log. Update the
3128 ** wal-index header to reflect this.
3129 **
3130 ** In theory it would be Ok to update the cache of the header only
3131 ** at this point. But updating the actual wal-index header is also
3132 ** safe and means there is no special case for sqlite3WalUndo()
danf26a1542014-12-02 19:04:54 +00003133 ** to handle if this transaction is rolled back. */
dan0fe8c1b2014-12-02 19:35:09 +00003134 walRestartHdr(pWal, salt1);
dan9971e712010-06-01 15:44:57 +00003135 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
drh4533cd02010-10-05 15:41:05 +00003136 }else if( rc!=SQLITE_BUSY ){
3137 return rc;
dan9971e712010-06-01 15:44:57 +00003138 }
3139 }
3140 walUnlockShared(pWal, WAL_READ_LOCK(0));
3141 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00003142 cnt = 0;
dan9971e712010-06-01 15:44:57 +00003143 do{
3144 int notUsed;
drhaab4c022010-06-02 14:45:51 +00003145 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00003146 }while( rc==WAL_RETRY );
drhc90e0812011-02-19 17:02:44 +00003147 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
drhab1cc742011-02-19 16:51:45 +00003148 testcase( (rc&0xff)==SQLITE_IOERR );
3149 testcase( rc==SQLITE_PROTOCOL );
3150 testcase( rc==SQLITE_OK );
dan9971e712010-06-01 15:44:57 +00003151 }
3152 return rc;
3153}
3154
drh88f975a2011-12-16 19:34:36 +00003155/*
drhd992b152011-12-20 20:13:25 +00003156** Information about the current state of the WAL file and where
3157** the next fsync should occur - passed from sqlite3WalFrames() into
3158** walWriteToLog().
3159*/
3160typedef struct WalWriter {
3161 Wal *pWal; /* The complete WAL information */
3162 sqlite3_file *pFd; /* The WAL file to which we write */
3163 sqlite3_int64 iSyncPoint; /* Fsync at this offset */
3164 int syncFlags; /* Flags for the fsync */
3165 int szPage; /* Size of one page */
3166} WalWriter;
3167
3168/*
drh88f975a2011-12-16 19:34:36 +00003169** Write iAmt bytes of content into the WAL file beginning at iOffset.
drhd992b152011-12-20 20:13:25 +00003170** Do a sync when crossing the p->iSyncPoint boundary.
drh88f975a2011-12-16 19:34:36 +00003171**
drhd992b152011-12-20 20:13:25 +00003172** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3173** first write the part before iSyncPoint, then sync, then write the
3174** rest.
drh88f975a2011-12-16 19:34:36 +00003175*/
3176static int walWriteToLog(
drhd992b152011-12-20 20:13:25 +00003177 WalWriter *p, /* WAL to write to */
drh88f975a2011-12-16 19:34:36 +00003178 void *pContent, /* Content to be written */
3179 int iAmt, /* Number of bytes to write */
3180 sqlite3_int64 iOffset /* Start writing at this offset */
3181){
3182 int rc;
drhd992b152011-12-20 20:13:25 +00003183 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3184 int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3185 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
drh88f975a2011-12-16 19:34:36 +00003186 if( rc ) return rc;
drhd992b152011-12-20 20:13:25 +00003187 iOffset += iFirstAmt;
3188 iAmt -= iFirstAmt;
drh88f975a2011-12-16 19:34:36 +00003189 pContent = (void*)(iFirstAmt + (char*)pContent);
drhdaaae7b2017-08-25 01:14:43 +00003190 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3191 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
drhcc8d10a2011-12-23 02:07:10 +00003192 if( iAmt==0 || rc ) return rc;
drh88f975a2011-12-16 19:34:36 +00003193 }
drhd992b152011-12-20 20:13:25 +00003194 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3195 return rc;
3196}
3197
3198/*
3199** Write out a single frame of the WAL
3200*/
3201static int walWriteOneFrame(
3202 WalWriter *p, /* Where to write the frame */
3203 PgHdr *pPage, /* The page of the frame to be written */
3204 int nTruncate, /* The commit flag. Usually 0. >0 for commit */
3205 sqlite3_int64 iOffset /* Byte offset at which to write */
3206){
3207 int rc; /* Result code from subfunctions */
3208 void *pData; /* Data actually written */
3209 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
3210#if defined(SQLITE_HAS_CODEC)
mistachkinfad30392016-02-13 23:43:46 +00003211 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT;
drhd992b152011-12-20 20:13:25 +00003212#else
3213 pData = pPage->pData;
3214#endif
3215 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3216 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3217 if( rc ) return rc;
3218 /* Write the page data */
3219 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
drh88f975a2011-12-16 19:34:36 +00003220 return rc;
3221}
3222
dand6f7c972016-01-09 16:39:29 +00003223/*
3224** This function is called as part of committing a transaction within which
3225** one or more frames have been overwritten. It updates the checksums for
danc9a90222016-01-09 18:57:35 +00003226** all frames written to the wal file by the current transaction starting
3227** with the earliest to have been overwritten.
dand6f7c972016-01-09 16:39:29 +00003228**
3229** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3230*/
danc9a90222016-01-09 18:57:35 +00003231static int walRewriteChecksums(Wal *pWal, u32 iLast){
dand6f7c972016-01-09 16:39:29 +00003232 const int szPage = pWal->szPage;/* Database page size */
3233 int rc = SQLITE_OK; /* Return code */
3234 u8 *aBuf; /* Buffer to load data from wal file into */
3235 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */
3236 u32 iRead; /* Next frame to read from wal file */
danc9a90222016-01-09 18:57:35 +00003237 i64 iCksumOff;
dand6f7c972016-01-09 16:39:29 +00003238
3239 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
mistachkinfad30392016-02-13 23:43:46 +00003240 if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
dand6f7c972016-01-09 16:39:29 +00003241
danc9a90222016-01-09 18:57:35 +00003242 /* Find the checksum values to use as input for the recalculating the
3243 ** first checksum. If the first frame is frame 1 (implying that the current
3244 ** transaction restarted the wal file), these values must be read from the
3245 ** wal-file header. Otherwise, read them from the frame header of the
3246 ** previous frame. */
3247 assert( pWal->iReCksum>0 );
3248 if( pWal->iReCksum==1 ){
3249 iCksumOff = 24;
dand6f7c972016-01-09 16:39:29 +00003250 }else{
danc9a90222016-01-09 18:57:35 +00003251 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
dand6f7c972016-01-09 16:39:29 +00003252 }
danc9a90222016-01-09 18:57:35 +00003253 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3254 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3255 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
dand6f7c972016-01-09 16:39:29 +00003256
danc9a90222016-01-09 18:57:35 +00003257 iRead = pWal->iReCksum;
3258 pWal->iReCksum = 0;
3259 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
dand6f7c972016-01-09 16:39:29 +00003260 i64 iOff = walFrameOffset(iRead, szPage);
3261 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3262 if( rc==SQLITE_OK ){
3263 u32 iPgno, nDbSize;
3264 iPgno = sqlite3Get4byte(aBuf);
3265 nDbSize = sqlite3Get4byte(&aBuf[4]);
3266
3267 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3268 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3269 }
3270 }
3271
3272 sqlite3_free(aBuf);
3273 return rc;
3274}
3275
dan7c246102010-04-12 19:00:29 +00003276/*
dan4cd78b42010-04-26 16:57:10 +00003277** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00003278** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00003279*/
drhc438efd2010-04-26 00:19:45 +00003280int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00003281 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00003282 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00003283 PgHdr *pList, /* List of dirty pages to write */
3284 Pgno nTruncate, /* Database size after this commit */
3285 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00003286 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00003287){
dan7c246102010-04-12 19:00:29 +00003288 int rc; /* Used to catch return codes */
3289 u32 iFrame; /* Next frame address */
dan7c246102010-04-12 19:00:29 +00003290 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00003291 PgHdr *pLast = 0; /* Last frame in list */
drhd992b152011-12-20 20:13:25 +00003292 int nExtra = 0; /* Number of extra copies of last page */
3293 int szFrame; /* The size of a single frame */
3294 i64 iOffset; /* Next byte to write in WAL file */
3295 WalWriter w; /* The writer */
dand6f7c972016-01-09 16:39:29 +00003296 u32 iFirst = 0; /* First frame that may be overwritten */
3297 WalIndexHdr *pLive; /* Pointer to shared header */
dan7c246102010-04-12 19:00:29 +00003298
dan7c246102010-04-12 19:00:29 +00003299 assert( pList );
drh73b64e42010-05-30 19:55:15 +00003300 assert( pWal->writeLock );
dan7c246102010-04-12 19:00:29 +00003301
drh41209942011-12-20 13:13:09 +00003302 /* If this frame set completes a transaction, then nTruncate>0. If
3303 ** nTruncate==0 then this frame set does not complete the transaction. */
3304 assert( (isCommit!=0)==(nTruncate!=0) );
3305
drhc74c3332010-05-31 12:15:19 +00003306#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3307 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3308 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3309 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3310 }
3311#endif
3312
dand6f7c972016-01-09 16:39:29 +00003313 pLive = (WalIndexHdr*)walIndexHdr(pWal);
drhb7c2f862016-01-09 23:55:47 +00003314 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
dand6f7c972016-01-09 16:39:29 +00003315 iFirst = pLive->mxFrame+1;
3316 }
3317
dan9971e712010-06-01 15:44:57 +00003318 /* See if it is possible to write these frames into the start of the
3319 ** log file, instead of appending to it at pWal->hdr.mxFrame.
3320 */
3321 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
dan9971e712010-06-01 15:44:57 +00003322 return rc;
3323 }
dan9971e712010-06-01 15:44:57 +00003324
drha2a42012010-05-18 18:01:08 +00003325 /* If this is the first frame written into the log, write the WAL
3326 ** header to the start of the WAL file. See comments at the top of
3327 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00003328 */
drh027a1282010-05-19 01:53:53 +00003329 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00003330 if( iFrame==0 ){
dan10f5a502010-06-23 15:55:43 +00003331 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
3332 u32 aCksum[2]; /* Checksum for wal-header */
3333
danb8fd6c22010-05-24 10:39:36 +00003334 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
dan10f5a502010-06-23 15:55:43 +00003335 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
drh23ea97b2010-05-20 16:45:58 +00003336 sqlite3Put4byte(&aWalHdr[8], szPage);
3337 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drhd2980312011-12-17 01:31:44 +00003338 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
drh7e263722010-05-20 21:21:09 +00003339 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
dan10f5a502010-06-23 15:55:43 +00003340 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3341 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3342 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3343
drhb2eced52010-08-12 02:41:12 +00003344 pWal->szPage = szPage;
dan10f5a502010-06-23 15:55:43 +00003345 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3346 pWal->hdr.aFrameCksum[0] = aCksum[0];
3347 pWal->hdr.aFrameCksum[1] = aCksum[1];
danf60b7f32011-12-16 13:24:27 +00003348 pWal->truncateOnCommit = 1;
dan10f5a502010-06-23 15:55:43 +00003349
drh23ea97b2010-05-20 16:45:58 +00003350 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00003351 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00003352 if( rc!=SQLITE_OK ){
3353 return rc;
3354 }
drhd992b152011-12-20 20:13:25 +00003355
3356 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3357 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
3358 ** an out-of-order write following a WAL restart could result in
3359 ** database corruption. See the ticket:
3360 **
drh9c6e07d2017-08-24 20:54:42 +00003361 ** https://sqlite.org/src/info/ff5be73dee
drhd992b152011-12-20 20:13:25 +00003362 */
drhdaaae7b2017-08-25 01:14:43 +00003363 if( pWal->syncHeader ){
3364 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
drhd992b152011-12-20 20:13:25 +00003365 if( rc ) return rc;
3366 }
dan97a31352010-04-16 13:59:31 +00003367 }
shanehbd2aaf92010-09-01 02:38:21 +00003368 assert( (int)pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00003369
drhd992b152011-12-20 20:13:25 +00003370 /* Setup information needed to write frames into the WAL */
3371 w.pWal = pWal;
3372 w.pFd = pWal->pWalFd;
3373 w.iSyncPoint = 0;
3374 w.syncFlags = sync_flags;
3375 w.szPage = szPage;
3376 iOffset = walFrameOffset(iFrame+1, szPage);
3377 szFrame = szPage + WAL_FRAME_HDRSIZE;
drh88f975a2011-12-16 19:34:36 +00003378
drhd992b152011-12-20 20:13:25 +00003379 /* Write all frames into the log file exactly once */
dan7c246102010-04-12 19:00:29 +00003380 for(p=pList; p; p=p->pDirty){
drhd992b152011-12-20 20:13:25 +00003381 int nDbSize; /* 0 normally. Positive == commit flag */
dand6f7c972016-01-09 16:39:29 +00003382
3383 /* Check if this page has already been written into the wal file by
3384 ** the current transaction. If so, overwrite the existing frame and
3385 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3386 ** checksums must be recomputed when the transaction is committed. */
3387 if( iFirst && (p->pDirty || isCommit==0) ){
3388 u32 iWrite = 0;
drh89970872016-01-11 00:52:32 +00003389 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3390 assert( rc==SQLITE_OK || iWrite==0 );
dand6f7c972016-01-09 16:39:29 +00003391 if( iWrite>=iFirst ){
3392 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
drh8e0cea12016-02-15 15:06:47 +00003393 void *pData;
danc9a90222016-01-09 18:57:35 +00003394 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3395 pWal->iReCksum = iWrite;
3396 }
drh8e0cea12016-02-15 15:06:47 +00003397#if defined(SQLITE_HAS_CODEC)
3398 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
3399#else
3400 pData = p->pData;
3401#endif
3402 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
dand6f7c972016-01-09 16:39:29 +00003403 if( rc ) return rc;
3404 p->flags &= ~PGHDR_WAL_APPEND;
3405 continue;
3406 }
3407 }
3408
drhd992b152011-12-20 20:13:25 +00003409 iFrame++;
3410 assert( iOffset==walFrameOffset(iFrame, szPage) );
3411 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3412 rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3413 if( rc ) return rc;
dan7c246102010-04-12 19:00:29 +00003414 pLast = p;
drhd992b152011-12-20 20:13:25 +00003415 iOffset += szFrame;
dand6f7c972016-01-09 16:39:29 +00003416 p->flags |= PGHDR_WAL_APPEND;
3417 }
3418
3419 /* Recalculate checksums within the wal file if required. */
danc9a90222016-01-09 18:57:35 +00003420 if( isCommit && pWal->iReCksum ){
3421 rc = walRewriteChecksums(pWal, iFrame);
dand6f7c972016-01-09 16:39:29 +00003422 if( rc ) return rc;
dan7c246102010-04-12 19:00:29 +00003423 }
3424
drhd992b152011-12-20 20:13:25 +00003425 /* If this is the end of a transaction, then we might need to pad
3426 ** the transaction and/or sync the WAL file.
3427 **
3428 ** Padding and syncing only occur if this set of frames complete a
3429 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
peter.d.reid60ec9142014-09-06 16:39:46 +00003430 ** or synchronous==OFF, then no padding or syncing are needed.
drhd992b152011-12-20 20:13:25 +00003431 **
drhcb15f352011-12-23 01:04:17 +00003432 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3433 ** needed and only the sync is done. If padding is needed, then the
3434 ** final frame is repeated (with its commit mark) until the next sector
drhd992b152011-12-20 20:13:25 +00003435 ** boundary is crossed. Only the part of the WAL prior to the last
3436 ** sector boundary is synced; the part of the last frame that extends
3437 ** past the sector boundary is written after the sync.
3438 */
drhdaaae7b2017-08-25 01:14:43 +00003439 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
danfe912512016-05-24 16:20:51 +00003440 int bSync = 1;
drh374f4a02011-12-17 20:02:11 +00003441 if( pWal->padToSectorBoundary ){
danc9a53262012-10-01 06:50:55 +00003442 int sectorSize = sqlite3SectorSize(pWal->pWalFd);
drhd992b152011-12-20 20:13:25 +00003443 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
danfe912512016-05-24 16:20:51 +00003444 bSync = (w.iSyncPoint==iOffset);
3445 testcase( bSync );
drhd992b152011-12-20 20:13:25 +00003446 while( iOffset<w.iSyncPoint ){
3447 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3448 if( rc ) return rc;
3449 iOffset += szFrame;
3450 nExtra++;
dan7c246102010-04-12 19:00:29 +00003451 }
danfe912512016-05-24 16:20:51 +00003452 }
3453 if( bSync ){
3454 assert( rc==SQLITE_OK );
drhdaaae7b2017-08-25 01:14:43 +00003455 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
dan7c246102010-04-12 19:00:29 +00003456 }
dan7c246102010-04-12 19:00:29 +00003457 }
3458
drhd992b152011-12-20 20:13:25 +00003459 /* If this frame set completes the first transaction in the WAL and
3460 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3461 ** journal size limit, if possible.
3462 */
danf60b7f32011-12-16 13:24:27 +00003463 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3464 i64 sz = pWal->mxWalSize;
drhd992b152011-12-20 20:13:25 +00003465 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3466 sz = walFrameOffset(iFrame+nExtra+1, szPage);
danf60b7f32011-12-16 13:24:27 +00003467 }
3468 walLimitSize(pWal, sz);
3469 pWal->truncateOnCommit = 0;
3470 }
3471
drhe730fec2010-05-18 12:56:50 +00003472 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00003473 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00003474 ** guarantees that there are no other writers, and no data that may
3475 ** be in use by existing readers is being overwritten.
3476 */
drh027a1282010-05-19 01:53:53 +00003477 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00003478 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dand6f7c972016-01-09 16:39:29 +00003479 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
dan7c246102010-04-12 19:00:29 +00003480 iFrame++;
danc7991bd2010-05-05 19:04:59 +00003481 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00003482 }
drh20e226d2012-01-01 13:58:53 +00003483 while( rc==SQLITE_OK && nExtra>0 ){
dan7c246102010-04-12 19:00:29 +00003484 iFrame++;
drhd992b152011-12-20 20:13:25 +00003485 nExtra--;
danc7991bd2010-05-05 19:04:59 +00003486 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00003487 }
3488
danc7991bd2010-05-05 19:04:59 +00003489 if( rc==SQLITE_OK ){
3490 /* Update the private copy of the header. */
shaneh1df2db72010-08-18 02:28:48 +00003491 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00003492 testcase( szPage<=32768 );
3493 testcase( szPage>=65536 );
drh027a1282010-05-19 01:53:53 +00003494 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00003495 if( isCommit ){
3496 pWal->hdr.iChange++;
3497 pWal->hdr.nPage = nTruncate;
3498 }
danc7991bd2010-05-05 19:04:59 +00003499 /* If this is a commit, update the wal-index header too. */
3500 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00003501 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00003502 pWal->iCallback = iFrame;
3503 }
dan7c246102010-04-12 19:00:29 +00003504 }
danc7991bd2010-05-05 19:04:59 +00003505
drhc74c3332010-05-31 12:15:19 +00003506 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00003507 return rc;
dan7c246102010-04-12 19:00:29 +00003508}
3509
3510/*
drh73b64e42010-05-30 19:55:15 +00003511** This routine is called to implement sqlite3_wal_checkpoint() and
3512** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00003513**
drh73b64e42010-05-30 19:55:15 +00003514** Obtain a CHECKPOINT lock and then backfill as much information as
3515** we can from WAL into the database.
dana58f26f2010-11-16 18:56:51 +00003516**
3517** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3518** callback. In this case this function runs a blocking checkpoint.
dan7c246102010-04-12 19:00:29 +00003519*/
drhc438efd2010-04-26 00:19:45 +00003520int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00003521 Wal *pWal, /* Wal connection */
dan7fb89902016-08-12 16:21:15 +00003522 sqlite3 *db, /* Check this handle's interrupt flag */
drhdd90d7e2014-12-03 19:25:41 +00003523 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */
dana58f26f2010-11-16 18:56:51 +00003524 int (*xBusy)(void*), /* Function to call when busy */
3525 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00003526 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00003527 int nBuf, /* Size of temporary buffer */
dancdc1f042010-11-18 12:11:05 +00003528 u8 *zBuf, /* Temporary buffer to use */
3529 int *pnLog, /* OUT: Number of frames in WAL */
3530 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
dan7c246102010-04-12 19:00:29 +00003531){
danb9bf16b2010-04-14 11:23:30 +00003532 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00003533 int isChanged = 0; /* True if a new wal-index header is loaded */
danf2b8dd52010-11-18 19:28:01 +00003534 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
drhdd90d7e2014-12-03 19:25:41 +00003535 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */
dan7c246102010-04-12 19:00:29 +00003536
dand54ff602010-05-31 11:16:30 +00003537 assert( pWal->ckptLock==0 );
dana58f26f2010-11-16 18:56:51 +00003538 assert( pWal->writeLock==0 );
dan39c79f52010-04-15 10:58:51 +00003539
drhdd90d7e2014-12-03 19:25:41 +00003540 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3541 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3542 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3543
drh66dfec8b2011-06-01 20:01:49 +00003544 if( pWal->readOnly ) return SQLITE_READONLY;
drhc74c3332010-05-31 12:15:19 +00003545 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drhdd90d7e2014-12-03 19:25:41 +00003546
3547 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3548 ** "checkpoint" lock on the database file. */
drhab372772015-12-02 16:10:16 +00003549 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
drh73b64e42010-05-30 19:55:15 +00003550 if( rc ){
drhdd90d7e2014-12-03 19:25:41 +00003551 /* EVIDENCE-OF: R-10421-19736 If any other process is running a
3552 ** checkpoint operation at the same time, the lock cannot be obtained and
3553 ** SQLITE_BUSY is returned.
3554 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3555 ** it will not be invoked in this case.
3556 */
3557 testcase( rc==SQLITE_BUSY );
3558 testcase( xBusy!=0 );
danb9bf16b2010-04-14 11:23:30 +00003559 return rc;
3560 }
dand54ff602010-05-31 11:16:30 +00003561 pWal->ckptLock = 1;
dan64d039e2010-04-13 19:27:31 +00003562
drhdd90d7e2014-12-03 19:25:41 +00003563 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3564 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3565 ** file.
danf2b8dd52010-11-18 19:28:01 +00003566 **
drhdd90d7e2014-12-03 19:25:41 +00003567 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3568 ** immediately, and a busy-handler is configured, it is invoked and the
3569 ** writer lock retried until either the busy-handler returns 0 or the
3570 ** lock is successfully obtained.
dana58f26f2010-11-16 18:56:51 +00003571 */
dancdc1f042010-11-18 12:11:05 +00003572 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dana58f26f2010-11-16 18:56:51 +00003573 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
danf2b8dd52010-11-18 19:28:01 +00003574 if( rc==SQLITE_OK ){
3575 pWal->writeLock = 1;
3576 }else if( rc==SQLITE_BUSY ){
3577 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
drhdd90d7e2014-12-03 19:25:41 +00003578 xBusy2 = 0;
danf2b8dd52010-11-18 19:28:01 +00003579 rc = SQLITE_OK;
3580 }
danb9bf16b2010-04-14 11:23:30 +00003581 }
dana58f26f2010-11-16 18:56:51 +00003582
danf2b8dd52010-11-18 19:28:01 +00003583 /* Read the wal-index header. */
drh7ed91f22010-04-29 22:34:07 +00003584 if( rc==SQLITE_OK ){
dana58f26f2010-11-16 18:56:51 +00003585 rc = walIndexReadHdr(pWal, &isChanged);
danf55a4cf2013-04-01 16:56:41 +00003586 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3587 sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3588 }
dana58f26f2010-11-16 18:56:51 +00003589 }
danf2b8dd52010-11-18 19:28:01 +00003590
3591 /* Copy data from the log to the database file. */
dan9c5e3682011-02-07 15:12:12 +00003592 if( rc==SQLITE_OK ){
dand6f7c972016-01-09 16:39:29 +00003593
dan9c5e3682011-02-07 15:12:12 +00003594 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
danf2b8dd52010-11-18 19:28:01 +00003595 rc = SQLITE_CORRUPT_BKPT;
3596 }else{
dan7fb89902016-08-12 16:21:15 +00003597 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
dan9c5e3682011-02-07 15:12:12 +00003598 }
3599
3600 /* If no error occurred, set the output variables. */
3601 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
danf2b8dd52010-11-18 19:28:01 +00003602 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
dan9c5e3682011-02-07 15:12:12 +00003603 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
danf2b8dd52010-11-18 19:28:01 +00003604 }
danb9bf16b2010-04-14 11:23:30 +00003605 }
danf2b8dd52010-11-18 19:28:01 +00003606
dan31c03902010-04-29 14:51:33 +00003607 if( isChanged ){
3608 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00003609 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00003610 ** out of date. So zero the cached wal-index header to ensure that
3611 ** next time the pager opens a snapshot on this database it knows that
3612 ** the cache needs to be reset.
3613 */
3614 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3615 }
danb9bf16b2010-04-14 11:23:30 +00003616
3617 /* Release the locks. */
dana58f26f2010-11-16 18:56:51 +00003618 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00003619 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00003620 pWal->ckptLock = 0;
drhc74c3332010-05-31 12:15:19 +00003621 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
danf2b8dd52010-11-18 19:28:01 +00003622 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
dan7c246102010-04-12 19:00:29 +00003623}
3624
drh7ed91f22010-04-29 22:34:07 +00003625/* Return the value to pass to a sqlite3_wal_hook callback, the
3626** number of frames in the WAL at the point of the last commit since
3627** sqlite3WalCallback() was called. If no commits have occurred since
3628** the last call, then return 0.
3629*/
3630int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00003631 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00003632 if( pWal ){
3633 ret = pWal->iCallback;
3634 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00003635 }
3636 return (int)ret;
3637}
dan55437592010-05-11 12:19:26 +00003638
3639/*
drh61e4ace2010-05-31 20:28:37 +00003640** This function is called to change the WAL subsystem into or out
3641** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00003642**
drh61e4ace2010-05-31 20:28:37 +00003643** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3644** into locking_mode=NORMAL. This means that we must acquire a lock
3645** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
3646** or if the acquisition of the lock fails, then return 0. If the
3647** transition out of exclusive-mode is successful, return 1. This
3648** operation must occur while the pager is still holding the exclusive
3649** lock on the main database file.
dan55437592010-05-11 12:19:26 +00003650**
drh61e4ace2010-05-31 20:28:37 +00003651** If op is one, then change from locking_mode=NORMAL into
3652** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
3653** be released. Return 1 if the transition is made and 0 if the
3654** WAL is already in exclusive-locking mode - meaning that this
3655** routine is a no-op. The pager must already hold the exclusive lock
3656** on the main database file before invoking this operation.
3657**
3658** If op is negative, then do a dry-run of the op==1 case but do
dan8c408002010-11-01 17:38:24 +00003659** not actually change anything. The pager uses this to see if it
drh61e4ace2010-05-31 20:28:37 +00003660** should acquire the database exclusive lock prior to invoking
3661** the op==1 case.
dan55437592010-05-11 12:19:26 +00003662*/
3663int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00003664 int rc;
drhaab4c022010-06-02 14:45:51 +00003665 assert( pWal->writeLock==0 );
dan8c408002010-11-01 17:38:24 +00003666 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
dan3cac5dc2010-06-04 18:37:59 +00003667
3668 /* pWal->readLock is usually set, but might be -1 if there was a
3669 ** prior error while attempting to acquire are read-lock. This cannot
3670 ** happen if the connection is actually in exclusive mode (as no xShmLock
3671 ** locks are taken in this case). Nor should the pager attempt to
3672 ** upgrade to exclusive-mode following such an error.
3673 */
drhaab4c022010-06-02 14:45:51 +00003674 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00003675 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3676
drh61e4ace2010-05-31 20:28:37 +00003677 if( op==0 ){
drhc05a0632017-11-11 20:11:01 +00003678 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
3679 pWal->exclusiveMode = WAL_NORMAL_MODE;
dan3cac5dc2010-06-04 18:37:59 +00003680 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drhc05a0632017-11-11 20:11:01 +00003681 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
drh61e4ace2010-05-31 20:28:37 +00003682 }
drhc05a0632017-11-11 20:11:01 +00003683 rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
drh61e4ace2010-05-31 20:28:37 +00003684 }else{
drhaab4c022010-06-02 14:45:51 +00003685 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00003686 rc = 0;
3687 }
3688 }else if( op>0 ){
drhc05a0632017-11-11 20:11:01 +00003689 assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
drhaab4c022010-06-02 14:45:51 +00003690 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00003691 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
drhc05a0632017-11-11 20:11:01 +00003692 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
drh61e4ace2010-05-31 20:28:37 +00003693 rc = 1;
3694 }else{
drhc05a0632017-11-11 20:11:01 +00003695 rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
dan55437592010-05-11 12:19:26 +00003696 }
drh61e4ace2010-05-31 20:28:37 +00003697 return rc;
dan55437592010-05-11 12:19:26 +00003698}
3699
dan8c408002010-11-01 17:38:24 +00003700/*
3701** Return true if the argument is non-NULL and the WAL module is using
3702** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3703** WAL module is using shared-memory, return false.
3704*/
3705int sqlite3WalHeapMemory(Wal *pWal){
3706 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3707}
3708
danfc1acf32015-12-05 20:51:54 +00003709#ifdef SQLITE_ENABLE_SNAPSHOT
drhe230a892015-12-10 22:48:22 +00003710/* Create a snapshot object. The content of a snapshot is opaque to
3711** every other subsystem, so the WAL module can put whatever it needs
3712** in the object.
3713*/
danfc1acf32015-12-05 20:51:54 +00003714int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3715 int rc = SQLITE_OK;
3716 WalIndexHdr *pRet;
drhba6eb872016-11-15 17:37:56 +00003717 static const u32 aZero[4] = { 0, 0, 0, 0 };
danfc1acf32015-12-05 20:51:54 +00003718
3719 assert( pWal->readLock>=0 && pWal->writeLock==0 );
3720
drhba6eb872016-11-15 17:37:56 +00003721 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
3722 *ppSnapshot = 0;
3723 return SQLITE_ERROR;
3724 }
danfc1acf32015-12-05 20:51:54 +00003725 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3726 if( pRet==0 ){
mistachkinfad30392016-02-13 23:43:46 +00003727 rc = SQLITE_NOMEM_BKPT;
danfc1acf32015-12-05 20:51:54 +00003728 }else{
3729 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3730 *ppSnapshot = (sqlite3_snapshot*)pRet;
3731 }
3732
3733 return rc;
3734}
3735
drhe230a892015-12-10 22:48:22 +00003736/* Try to open on pSnapshot when the next read-transaction starts
3737*/
danfc1acf32015-12-05 20:51:54 +00003738void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){
3739 pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3740}
danad2d5ba2016-04-11 19:59:52 +00003741
3742/*
3743** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
3744** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
3745*/
3746int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
3747 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
3748 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
3749
3750 /* aSalt[0] is a copy of the value stored in the wal file header. It
3751 ** is incremented each time the wal file is restarted. */
3752 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
3753 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
3754 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
3755 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
3756 return 0;
3757}
danfc1acf32015-12-05 20:51:54 +00003758#endif /* SQLITE_ENABLE_SNAPSHOT */
3759
drh70708602012-02-24 14:33:28 +00003760#ifdef SQLITE_ENABLE_ZIPVFS
danb3bdc722012-02-23 15:35:49 +00003761/*
3762** If the argument is not NULL, it points to a Wal object that holds a
3763** read-lock. This function returns the database page-size if it is known,
3764** or zero if it is not (or if pWal is NULL).
3765*/
3766int sqlite3WalFramesize(Wal *pWal){
danb3bdc722012-02-23 15:35:49 +00003767 assert( pWal==0 || pWal->readLock>=0 );
3768 return (pWal ? pWal->szPage : 0);
3769}
drh70708602012-02-24 14:33:28 +00003770#endif
danb3bdc722012-02-23 15:35:49 +00003771
drh21d61852016-01-08 02:27:01 +00003772/* Return the sqlite3_file object for the WAL file
3773*/
3774sqlite3_file *sqlite3WalFile(Wal *pWal){
3775 return pWal->pWalFd;
3776}
3777
dan5cf53532010-05-01 16:40:20 +00003778#endif /* #ifndef SQLITE_OMIT_WAL */