blob: d2addb757540bfdc84723d13cd88fc50b55193de [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drhcd285082010-06-23 22:00:35 +000034** The WAL header is 32 bytes in size and consists of the following eight
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan10f5a502010-06-23 15:55:43 +000043** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
dan97a31352010-04-16 13:59:31 +000045**
drh23ea97b2010-05-20 16:45:58 +000046** Immediately following the wal-header are zero or more frames. Each
47** frame consists of a 24-byte frame-header followed by a <page-size> bytes
drhcd285082010-06-23 22:00:35 +000048** of page data. The frame-header is six big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000049** integer values, as follows:
50**
dan3de777f2010-04-17 12:31:37 +000051** 0: Page number.
52** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000053** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000054** 8: Salt-1 (copied from the header)
55** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000056** 16: Checksum-1.
57** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000058**
drh7e263722010-05-20 21:21:09 +000059** A frame is considered valid if and only if the following conditions are
60** true:
61**
62** (1) The salt-1 and salt-2 values in the frame-header match
63** salt values in the wal-header
64**
65** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000066** exactly match the checksum computed consecutively on the
67** WAL header and the first 8 bytes and the content of all frames
68** up to and including the current frame.
69**
70** The checksum is computed using 32-bit big-endian integers if the
71** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000073** The checksum values are always stored in the frame header in a
74** big-endian format regardless of which byte order is used to compute
75** the checksum. The checksum is computed by interpreting the input as
76** an even number of unsigned 32-bit integers: x[0] through x[N]. The
drhffca4302010-06-15 11:21:54 +000077** algorithm used for the checksum is as follows:
drh51b21b12010-05-25 15:53:31 +000078**
79** for i from 0 to n-1 step 2:
80** s0 += x[i] + s1;
81** s1 += x[i+1] + s0;
82** endfor
drh7e263722010-05-20 21:21:09 +000083**
drhcd285082010-06-23 22:00:35 +000084** Note that s0 and s1 are both weighted checksums using fibonacci weights
85** in reverse order (the largest fibonacci weight occurs on the first element
86** of the sequence being summed.) The s1 value spans all 32-bit
87** terms of the sequence whereas s0 omits the final term.
88**
drh7e263722010-05-20 21:21:09 +000089** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90** WAL is transferred into the database, then the database is VFS.xSync-ed.
drhffca4302010-06-15 11:21:54 +000091** The VFS.xSync operations serve as write barriers - all writes launched
drh7e263722010-05-20 21:21:09 +000092** before the xSync must complete before any write that launches after the
93** xSync begins.
94**
95** After each checkpoint, the salt-1 value is incremented and the salt-2
96** value is randomized. This prevents old and new frames in the WAL from
97** being considered valid at the same time and being checkpointing together
98** following a crash.
99**
drh29d4dbe2010-05-18 23:29:52 +0000100** READER ALGORITHM
101**
102** To read a page from the database (call it page number P), a reader
103** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +0000104** last valid instance of page P that is a followed by a commit frame
105** or is a commit frame itself becomes the value read. If the WAL
106** contains no copies of page P that are valid and which are a commit
107** frame or are followed by a commit frame, then page P is read from
108** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000109**
drh73b64e42010-05-30 19:55:15 +0000110** To start a read transaction, the reader records the index of the last
111** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112** for all subsequent read operations. New transactions can be appended
113** to the WAL, but as long as the reader uses its original mxFrame value
114** and ignores the newly appended content, it will see a consistent snapshot
115** of the database from a single point in time. This technique allows
116** multiple concurrent readers to view different versions of the database
117** content simultaneously.
118**
119** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000120** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000121** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000122** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000123** and read performance suffers. To overcome this problem, a separate
124** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000125** search for frames of a particular page.
126**
127** WAL-INDEX FORMAT
128**
129** Conceptually, the wal-index is shared memory, though VFS implementations
130** might choose to implement the wal-index using a mmapped file. Because
131** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132** on a network filesystem. All users of the database must be able to
133** share memory.
134**
135** The wal-index is transient. After a crash, the wal-index can (and should
136** be) reconstructed from the original WAL file. In fact, the VFS is required
137** to either truncate or zero the header of the wal-index when the last
138** connection to it closes. Because the wal-index is transient, it can
139** use an architecture-specific format; it does not have to be cross-platform.
140** Hence, unlike the database and WAL file formats which store all values
141** as big endian, the wal-index can store multi-byte values in the native
142** byte order of the host computer.
143**
144** The purpose of the wal-index is to answer this question quickly: Given
145** a page number P, return the index of the last frame for page P in the WAL,
146** or return NULL if there are no frames for page P in the WAL.
147**
148** The wal-index consists of a header region, followed by an one or
149** more index blocks.
150**
drh027a1282010-05-19 01:53:53 +0000151** The wal-index header contains the total number of frames within the WAL
danad3cadd2010-06-14 11:49:26 +0000152** in the the mxFrame field.
153**
154** Each index block except for the first contains information on
155** HASHTABLE_NPAGE frames. The first index block contains information on
156** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
157** HASHTABLE_NPAGE are selected so that together the wal-index header and
158** first index block are the same size as all other index blocks in the
159** wal-index.
160**
161** Each index block contains two sections, a page-mapping that contains the
162** database page number associated with each wal frame, and a hash-table
drhffca4302010-06-15 11:21:54 +0000163** that allows readers to query an index block for a specific page number.
danad3cadd2010-06-14 11:49:26 +0000164** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
165** for the first index block) 32-bit page numbers. The first entry in the
166** first index-block contains the database page number corresponding to the
167** first frame in the WAL file. The first entry in the second index block
168** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
169** the log, and so on.
170**
171** The last index block in a wal-index usually contains less than the full
172** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
173** depending on the contents of the WAL file. This does not change the
174** allocated size of the page-mapping array - the page-mapping array merely
175** contains unused entries.
drh027a1282010-05-19 01:53:53 +0000176**
177** Even without using the hash table, the last frame for page P
danad3cadd2010-06-14 11:49:26 +0000178** can be found by scanning the page-mapping sections of each index block
drh027a1282010-05-19 01:53:53 +0000179** starting with the last index block and moving toward the first, and
180** within each index block, starting at the end and moving toward the
181** beginning. The first entry that equals P corresponds to the frame
182** holding the content for that page.
183**
184** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
185** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
186** hash table for each page number in the mapping section, so the hash
187** table is never more than half full. The expected number of collisions
188** prior to finding a match is 1. Each entry of the hash table is an
189** 1-based index of an entry in the mapping section of the same
190** index block. Let K be the 1-based index of the largest entry in
191** the mapping section. (For index blocks other than the last, K will
192** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
193** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000194** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000195**
196** To look for page P in the hash table, first compute a hash iKey on
197** P as follows:
198**
199** iKey = (P * 383) % HASHTABLE_NSLOT
200**
201** Then start scanning entries of the hash table, starting with iKey
202** (wrapping around to the beginning when the end of the hash table is
203** reached) until an unused hash slot is found. Let the first unused slot
204** be at index iUnused. (iUnused might be less than iKey if there was
205** wrap-around.) Because the hash table is never more than half full,
206** the search is guaranteed to eventually hit an unused entry. Let
207** iMax be the value between iKey and iUnused, closest to iUnused,
208** where aHash[iMax]==P. If there is no iMax entry (if there exists
209** no hash slot such that aHash[i]==p) then page P is not in the
210** current index block. Otherwise the iMax-th mapping entry of the
211** current index block corresponds to the last entry that references
212** page P.
213**
214** A hash search begins with the last index block and moves toward the
215** first index block, looking for entries corresponding to page P. On
216** average, only two or three slots in each index block need to be
217** examined in order to either find the last entry for page P, or to
218** establish that no such entry exists in the block. Each index block
219** holds over 4000 entries. So two or three index blocks are sufficient
220** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
221** comparisons (on average) suffice to either locate a frame in the
222** WAL or to establish that the frame does not exist in the WAL. This
223** is much faster than scanning the entire 10MB WAL.
224**
225** Note that entries are added in order of increasing K. Hence, one
226** reader might be using some value K0 and a second reader that started
227** at a later time (after additional transactions were added to the WAL
228** and to the wal-index) might be using a different value K1, where K1>K0.
229** Both readers can use the same hash table and mapping section to get
230** the correct result. There may be entries in the hash table with
231** K>K0 but to the first reader, those entries will appear to be unused
232** slots in the hash table and so the first reader will get an answer as
233** if no values greater than K0 had ever been inserted into the hash table
234** in the first place - which is what reader one wants. Meanwhile, the
235** second reader using K1 will see additional values that were inserted
236** later, which is exactly what reader two wants.
237**
dan6f150142010-05-21 15:31:56 +0000238** When a rollback occurs, the value of K is decreased. Hash table entries
239** that correspond to frames greater than the new K value are removed
240** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000241*/
drh29d4dbe2010-05-18 23:29:52 +0000242#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000243
drh29d4dbe2010-05-18 23:29:52 +0000244#include "wal.h"
245
drh73b64e42010-05-30 19:55:15 +0000246/*
drhc74c3332010-05-31 12:15:19 +0000247** Trace output macros
248*/
drhc74c3332010-05-31 12:15:19 +0000249#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000250int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000251# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
252#else
253# define WALTRACE(X)
254#endif
255
dan10f5a502010-06-23 15:55:43 +0000256/*
257** The maximum (and only) versions of the wal and wal-index formats
258** that may be interpreted by this version of SQLite.
259**
260** If a client begins recovering a WAL file and finds that (a) the checksum
261** values in the wal-header are correct and (b) the version field is not
262** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
263**
264** Similarly, if a client successfully reads a wal-index header (i.e. the
265** checksum test is successful) and finds that the version field is not
266** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
267** returns SQLITE_CANTOPEN.
268*/
269#define WAL_MAX_VERSION 3007000
270#define WALINDEX_MAX_VERSION 3007000
drhc74c3332010-05-31 12:15:19 +0000271
272/*
drh73b64e42010-05-30 19:55:15 +0000273** Indices of various locking bytes. WAL_NREADER is the number
274** of available reader locks and should be at least 3.
275*/
276#define WAL_WRITE_LOCK 0
277#define WAL_ALL_BUT_WRITE 1
278#define WAL_CKPT_LOCK 1
279#define WAL_RECOVER_LOCK 2
280#define WAL_READ_LOCK(I) (3+(I))
281#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
282
dan97a31352010-04-16 13:59:31 +0000283
drh7ed91f22010-04-29 22:34:07 +0000284/* Object declarations */
285typedef struct WalIndexHdr WalIndexHdr;
286typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000287typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000288
289
290/*
drh286a2882010-05-20 23:51:06 +0000291** The following object holds a copy of the wal-index header content.
292**
293** The actual header in the wal-index consists of two copies of this
294** object.
drh9b78f792010-08-14 21:21:24 +0000295**
296** The szPage value can be any power of 2 between 512 and 32768, inclusive.
297** Or it can be 1 to represent a 65536-byte page. The latter case was
298** added in 3.7.1 when support for 64K pages was added.
dan7c246102010-04-12 19:00:29 +0000299*/
drh7ed91f22010-04-29 22:34:07 +0000300struct WalIndexHdr {
dan10f5a502010-06-23 15:55:43 +0000301 u32 iVersion; /* Wal-index version */
302 u32 unused; /* Unused (padding) field */
dan71d89912010-05-24 13:57:42 +0000303 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000304 u8 isInit; /* 1 when initialized */
305 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
drh9b78f792010-08-14 21:21:24 +0000306 u16 szPage; /* Database page size in bytes. 1==64K */
dand0aa3422010-05-31 16:41:53 +0000307 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000308 u32 nPage; /* Size of database in pages */
309 u32 aFrameCksum[2]; /* Checksum of last frame in log */
310 u32 aSalt[2]; /* Two salt values copied from WAL header */
311 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000312};
313
drh73b64e42010-05-30 19:55:15 +0000314/*
315** A copy of the following object occurs in the wal-index immediately
316** following the second copy of the WalIndexHdr. This object stores
317** information used by checkpoint.
318**
319** nBackfill is the number of frames in the WAL that have been written
320** back into the database. (We call the act of moving content from WAL to
321** database "backfilling".) The nBackfill number is never greater than
322** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
323** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
324** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
325** mxFrame back to zero when the WAL is reset.
326**
327** There is one entry in aReadMark[] for each reader lock. If a reader
328** holds read-lock K, then the value in aReadMark[K] is no greater than
drhdb7f6472010-06-09 14:45:12 +0000329** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
330** for any aReadMark[] means that entry is unused. aReadMark[0] is
331** a special case; its value is never used and it exists as a place-holder
332** to avoid having to offset aReadMark[] indexs by one. Readers holding
333** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
334** directly from the database.
drh73b64e42010-05-30 19:55:15 +0000335**
336** The value of aReadMark[K] may only be changed by a thread that
337** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
338** aReadMark[K] cannot changed while there is a reader is using that mark
339** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
340**
341** The checkpointer may only transfer frames from WAL to database where
342** the frame numbers are less than or equal to every aReadMark[] that is
343** in use (that is, every aReadMark[j] for which there is a corresponding
344** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
345** largest value and will increase an unused aReadMark[] to mxFrame if there
346** is not already an aReadMark[] equal to mxFrame. The exception to the
347** previous sentence is when nBackfill equals mxFrame (meaning that everything
348** in the WAL has been backfilled into the database) then new readers
349** will choose aReadMark[0] which has value 0 and hence such reader will
350** get all their all content directly from the database file and ignore
351** the WAL.
352**
353** Writers normally append new frames to the end of the WAL. However,
354** if nBackfill equals mxFrame (meaning that all WAL content has been
355** written back into the database) and if no readers are using the WAL
356** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
357** the writer will first "reset" the WAL back to the beginning and start
358** writing new content beginning at frame 1.
359**
360** We assume that 32-bit loads are atomic and so no locks are needed in
361** order to read from any aReadMark[] entries.
362*/
363struct WalCkptInfo {
364 u32 nBackfill; /* Number of WAL frames backfilled into DB */
365 u32 aReadMark[WAL_NREADER]; /* Reader marks */
366};
drhdb7f6472010-06-09 14:45:12 +0000367#define READMARK_NOT_USED 0xffffffff
drh73b64e42010-05-30 19:55:15 +0000368
369
drh7e263722010-05-20 21:21:09 +0000370/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
371** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
372** only support mandatory file-locks, we do not read or write data
373** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000374*/
drh73b64e42010-05-30 19:55:15 +0000375#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
376#define WALINDEX_LOCK_RESERVED 16
drh026ac282010-05-26 15:06:38 +0000377#define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
dan7c246102010-04-12 19:00:29 +0000378
drh7ed91f22010-04-29 22:34:07 +0000379/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000380#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000381
dan10f5a502010-06-23 15:55:43 +0000382/* Size of write ahead log header, including checksum. */
383/* #define WAL_HDRSIZE 24 */
384#define WAL_HDRSIZE 32
dan97a31352010-04-16 13:59:31 +0000385
danb8fd6c22010-05-24 10:39:36 +0000386/* WAL magic value. Either this value, or the same value with the least
387** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
388** big-endian format in the first 4 bytes of a WAL file.
389**
390** If the LSB is set, then the checksums for each frame within the WAL
391** file are calculated by treating all data as an array of 32-bit
392** big-endian words. Otherwise, they are calculated by interpreting
393** all data as 32-bit little-endian words.
394*/
395#define WAL_MAGIC 0x377f0682
396
dan97a31352010-04-16 13:59:31 +0000397/*
drh7ed91f22010-04-29 22:34:07 +0000398** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000399** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000400** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000401*/
drh6e810962010-05-19 17:49:50 +0000402#define walFrameOffset(iFrame, szPage) ( \
danbd0e9072010-07-07 09:48:44 +0000403 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000404)
dan7c246102010-04-12 19:00:29 +0000405
406/*
drh7ed91f22010-04-29 22:34:07 +0000407** An open write-ahead log file is represented by an instance of the
408** following object.
dance4f05f2010-04-22 19:14:13 +0000409*/
drh7ed91f22010-04-29 22:34:07 +0000410struct Wal {
drh73b64e42010-05-30 19:55:15 +0000411 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000412 sqlite3_file *pDbFd; /* File handle for the database file */
413 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000414 u32 iCallback; /* Value to pass to log callback (or 0) */
drh85a83752011-05-16 21:00:27 +0000415 i64 mxWalSize; /* Truncate WAL to this size upon reset */
dan13a3cb82010-06-11 19:04:21 +0000416 int nWiData; /* Size of array apWiData */
drh88f975a2011-12-16 19:34:36 +0000417 int szFirstBlock; /* Size of first block written to WAL file */
dan13a3cb82010-06-11 19:04:21 +0000418 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
drhb2eced52010-08-12 02:41:12 +0000419 u32 szPage; /* Database page size */
drh73b64e42010-05-30 19:55:15 +0000420 i16 readLock; /* Which read lock is being held. -1 for none */
drh4eb02a42011-12-16 21:26:26 +0000421 u8 syncFlags; /* Flags to use to sync header writes */
dan55437592010-05-11 12:19:26 +0000422 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000423 u8 writeLock; /* True if in a write transaction */
424 u8 ckptLock; /* True if holding a checkpoint lock */
drh66dfec8b2011-06-01 20:01:49 +0000425 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
danf60b7f32011-12-16 13:24:27 +0000426 u8 truncateOnCommit; /* True to truncate WAL file on commit */
drhd992b152011-12-20 20:13:25 +0000427 u8 syncHeader; /* Fsync the WAL header if true */
drh374f4a02011-12-17 20:02:11 +0000428 u8 padToSectorBoundary; /* Pad transactions out to the next sector */
drh73b64e42010-05-30 19:55:15 +0000429 WalIndexHdr hdr; /* Wal-index header for current transaction */
dan3e875ef2010-07-05 19:03:35 +0000430 const char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000431 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000432#ifdef SQLITE_DEBUG
433 u8 lockError; /* True if a locking error has occurred */
434#endif
dan7c246102010-04-12 19:00:29 +0000435};
436
drh73b64e42010-05-30 19:55:15 +0000437/*
dan8c408002010-11-01 17:38:24 +0000438** Candidate values for Wal.exclusiveMode.
439*/
440#define WAL_NORMAL_MODE 0
441#define WAL_EXCLUSIVE_MODE 1
442#define WAL_HEAPMEMORY_MODE 2
443
444/*
drh66dfec8b2011-06-01 20:01:49 +0000445** Possible values for WAL.readOnly
446*/
447#define WAL_RDWR 0 /* Normal read/write connection */
448#define WAL_RDONLY 1 /* The WAL file is readonly */
449#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
450
451/*
dan067f3162010-06-14 10:30:12 +0000452** Each page of the wal-index mapping contains a hash-table made up of
453** an array of HASHTABLE_NSLOT elements of the following type.
454*/
455typedef u16 ht_slot;
456
457/*
danad3cadd2010-06-14 11:49:26 +0000458** This structure is used to implement an iterator that loops through
459** all frames in the WAL in database page order. Where two or more frames
460** correspond to the same database page, the iterator visits only the
461** frame most recently written to the WAL (in other words, the frame with
462** the largest index).
463**
464** The internals of this structure are only accessed by:
465**
466** walIteratorInit() - Create a new iterator,
467** walIteratorNext() - Step an iterator,
468** walIteratorFree() - Free an iterator.
469**
470** This functionality is used by the checkpoint code (see walCheckpoint()).
471*/
472struct WalIterator {
473 int iPrior; /* Last result returned from the iterator */
drhd9c9b782010-12-15 21:02:06 +0000474 int nSegment; /* Number of entries in aSegment[] */
danad3cadd2010-06-14 11:49:26 +0000475 struct WalSegment {
476 int iNext; /* Next slot in aIndex[] not yet returned */
477 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
478 u32 *aPgno; /* Array of page numbers. */
drhd9c9b782010-12-15 21:02:06 +0000479 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
danad3cadd2010-06-14 11:49:26 +0000480 int iZero; /* Frame number associated with aPgno[0] */
drhd9c9b782010-12-15 21:02:06 +0000481 } aSegment[1]; /* One for every 32KB page in the wal-index */
danad3cadd2010-06-14 11:49:26 +0000482};
483
484/*
dan13a3cb82010-06-11 19:04:21 +0000485** Define the parameters of the hash tables in the wal-index file. There
486** is a hash-table following every HASHTABLE_NPAGE page numbers in the
487** wal-index.
488**
489** Changing any of these constants will alter the wal-index format and
490** create incompatibilities.
491*/
dan067f3162010-06-14 10:30:12 +0000492#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000493#define HASHTABLE_HASH_1 383 /* Should be prime */
494#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000495
danad3cadd2010-06-14 11:49:26 +0000496/*
497** The block of page numbers associated with the first hash-table in a
dan13a3cb82010-06-11 19:04:21 +0000498** wal-index is smaller than usual. This is so that there is a complete
499** hash-table on each aligned 32KB page of the wal-index.
500*/
dan067f3162010-06-14 10:30:12 +0000501#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
dan13a3cb82010-06-11 19:04:21 +0000502
dan067f3162010-06-14 10:30:12 +0000503/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
504#define WALINDEX_PGSZ ( \
505 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
506)
dan13a3cb82010-06-11 19:04:21 +0000507
508/*
509** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
dan067f3162010-06-14 10:30:12 +0000510** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
dan13a3cb82010-06-11 19:04:21 +0000511** numbered from zero.
512**
513** If this call is successful, *ppPage is set to point to the wal-index
514** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
515** then an SQLite error code is returned and *ppPage is set to 0.
516*/
517static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
518 int rc = SQLITE_OK;
519
520 /* Enlarge the pWal->apWiData[] array if required */
521 if( pWal->nWiData<=iPage ){
drh519426a2010-07-09 03:19:07 +0000522 int nByte = sizeof(u32*)*(iPage+1);
dan13a3cb82010-06-11 19:04:21 +0000523 volatile u32 **apNew;
shaneh8a300f82010-07-02 18:15:31 +0000524 apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte);
dan13a3cb82010-06-11 19:04:21 +0000525 if( !apNew ){
526 *ppPage = 0;
527 return SQLITE_NOMEM;
528 }
drh519426a2010-07-09 03:19:07 +0000529 memset((void*)&apNew[pWal->nWiData], 0,
530 sizeof(u32*)*(iPage+1-pWal->nWiData));
dan13a3cb82010-06-11 19:04:21 +0000531 pWal->apWiData = apNew;
532 pWal->nWiData = iPage+1;
533 }
534
535 /* Request a pointer to the required page from the VFS */
536 if( pWal->apWiData[iPage]==0 ){
dan8c408002010-11-01 17:38:24 +0000537 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
538 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
539 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
540 }else{
541 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
542 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
543 );
drh66dfec8b2011-06-01 20:01:49 +0000544 if( rc==SQLITE_READONLY ){
545 pWal->readOnly |= WAL_SHM_RDONLY;
546 rc = SQLITE_OK;
dan4edc6bf2011-05-10 17:31:29 +0000547 }
dan8c408002010-11-01 17:38:24 +0000548 }
dan13a3cb82010-06-11 19:04:21 +0000549 }
danb6d2f9c2011-05-11 14:57:33 +0000550
drh66dfec8b2011-06-01 20:01:49 +0000551 *ppPage = pWal->apWiData[iPage];
dan13a3cb82010-06-11 19:04:21 +0000552 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
553 return rc;
554}
555
556/*
drh73b64e42010-05-30 19:55:15 +0000557** Return a pointer to the WalCkptInfo structure in the wal-index.
558*/
559static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000560 assert( pWal->nWiData>0 && pWal->apWiData[0] );
561 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
562}
563
564/*
565** Return a pointer to the WalIndexHdr structure in the wal-index.
566*/
567static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
568 assert( pWal->nWiData>0 && pWal->apWiData[0] );
569 return (volatile WalIndexHdr*)pWal->apWiData[0];
drh73b64e42010-05-30 19:55:15 +0000570}
571
dan7c246102010-04-12 19:00:29 +0000572/*
danb8fd6c22010-05-24 10:39:36 +0000573** The argument to this macro must be of type u32. On a little-endian
574** architecture, it returns the u32 value that results from interpreting
575** the 4 bytes as a big-endian value. On a big-endian architecture, it
576** returns the value that would be produced by intepreting the 4 bytes
577** of the input value as a little-endian integer.
578*/
579#define BYTESWAP32(x) ( \
580 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
581 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
582)
dan64d039e2010-04-13 19:27:31 +0000583
dan7c246102010-04-12 19:00:29 +0000584/*
drh7e263722010-05-20 21:21:09 +0000585** Generate or extend an 8 byte checksum based on the data in
586** array aByte[] and the initial values of aIn[0] and aIn[1] (or
587** initial values of 0 and 0 if aIn==NULL).
588**
589** The checksum is written back into aOut[] before returning.
590**
591** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000592*/
drh7e263722010-05-20 21:21:09 +0000593static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000594 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000595 u8 *a, /* Content to be checksummed */
596 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
597 const u32 *aIn, /* Initial checksum value input */
598 u32 *aOut /* OUT: Final checksum value output */
599){
600 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000601 u32 *aData = (u32 *)a;
602 u32 *aEnd = (u32 *)&a[nByte];
603
drh7e263722010-05-20 21:21:09 +0000604 if( aIn ){
605 s1 = aIn[0];
606 s2 = aIn[1];
607 }else{
608 s1 = s2 = 0;
609 }
dan7c246102010-04-12 19:00:29 +0000610
drh584c7542010-05-19 18:08:10 +0000611 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000612 assert( (nByte&0x00000007)==0 );
dan7c246102010-04-12 19:00:29 +0000613
danb8fd6c22010-05-24 10:39:36 +0000614 if( nativeCksum ){
615 do {
616 s1 += *aData++ + s2;
617 s2 += *aData++ + s1;
618 }while( aData<aEnd );
619 }else{
620 do {
621 s1 += BYTESWAP32(aData[0]) + s2;
622 s2 += BYTESWAP32(aData[1]) + s1;
623 aData += 2;
624 }while( aData<aEnd );
625 }
626
drh7e263722010-05-20 21:21:09 +0000627 aOut[0] = s1;
628 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000629}
630
dan8c408002010-11-01 17:38:24 +0000631static void walShmBarrier(Wal *pWal){
632 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
633 sqlite3OsShmBarrier(pWal->pDbFd);
634 }
635}
636
dan7c246102010-04-12 19:00:29 +0000637/*
drh7e263722010-05-20 21:21:09 +0000638** Write the header information in pWal->hdr into the wal-index.
639**
640** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000641*/
drh7e263722010-05-20 21:21:09 +0000642static void walIndexWriteHdr(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000643 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
644 const int nCksum = offsetof(WalIndexHdr, aCksum);
drh73b64e42010-05-30 19:55:15 +0000645
646 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000647 pWal->hdr.isInit = 1;
dan10f5a502010-06-23 15:55:43 +0000648 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
dan4280eb32010-06-12 12:02:35 +0000649 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
650 memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
dan8c408002010-11-01 17:38:24 +0000651 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +0000652 memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000653}
654
655/*
656** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000657** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000658** 4-byte big-endian integers, as follows:
659**
drh23ea97b2010-05-20 16:45:58 +0000660** 0: Page number.
661** 4: For commit records, the size of the database image in pages
662** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000663** 8: Salt-1 (copied from the wal-header)
664** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000665** 16: Checksum-1.
666** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000667*/
drh7ed91f22010-04-29 22:34:07 +0000668static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000669 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000670 u32 iPage, /* Database page number for frame */
671 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000672 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000673 u8 *aFrame /* OUT: Write encoded frame here */
674){
danb8fd6c22010-05-24 10:39:36 +0000675 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000676 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000677 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000678 sqlite3Put4byte(&aFrame[0], iPage);
679 sqlite3Put4byte(&aFrame[4], nTruncate);
drh7e263722010-05-20 21:21:09 +0000680 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000681
danb8fd6c22010-05-24 10:39:36 +0000682 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000683 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000684 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000685
drh23ea97b2010-05-20 16:45:58 +0000686 sqlite3Put4byte(&aFrame[16], aCksum[0]);
687 sqlite3Put4byte(&aFrame[20], aCksum[1]);
dan7c246102010-04-12 19:00:29 +0000688}
689
690/*
drh7e263722010-05-20 21:21:09 +0000691** Check to see if the frame with header in aFrame[] and content
692** in aData[] is valid. If it is a valid frame, fill *piPage and
693** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000694*/
drh7ed91f22010-04-29 22:34:07 +0000695static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000696 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000697 u32 *piPage, /* OUT: Database page number for frame */
698 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000699 u8 *aData, /* Pointer to page data (for checksum) */
700 u8 *aFrame /* Frame data */
701){
danb8fd6c22010-05-24 10:39:36 +0000702 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000703 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000704 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000705 assert( WAL_FRAME_HDRSIZE==24 );
706
drh7e263722010-05-20 21:21:09 +0000707 /* A frame is only valid if the salt values in the frame-header
708 ** match the salt values in the wal-header.
709 */
710 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000711 return 0;
712 }
dan4a4b01d2010-04-16 11:30:18 +0000713
drhc8179152010-05-24 13:28:36 +0000714 /* A frame is only valid if the page number is creater than zero.
715 */
716 pgno = sqlite3Get4byte(&aFrame[0]);
717 if( pgno==0 ){
718 return 0;
719 }
720
drh519426a2010-07-09 03:19:07 +0000721 /* A frame is only valid if a checksum of the WAL header,
722 ** all prior frams, the first 16 bytes of this frame-header,
723 ** and the frame-data matches the checksum in the last 8
724 ** bytes of this frame-header.
drh7e263722010-05-20 21:21:09 +0000725 */
danb8fd6c22010-05-24 10:39:36 +0000726 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000727 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000728 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000729 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
730 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000731 ){
732 /* Checksum failed. */
733 return 0;
734 }
735
drh7e263722010-05-20 21:21:09 +0000736 /* If we reach this point, the frame is valid. Return the page number
737 ** and the new database size.
738 */
drhc8179152010-05-24 13:28:36 +0000739 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000740 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000741 return 1;
742}
743
dan7c246102010-04-12 19:00:29 +0000744
drhc74c3332010-05-31 12:15:19 +0000745#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
746/*
drh181e0912010-06-01 01:08:08 +0000747** Names of locks. This routine is used to provide debugging output and is not
748** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000749*/
750static const char *walLockName(int lockIdx){
751 if( lockIdx==WAL_WRITE_LOCK ){
752 return "WRITE-LOCK";
753 }else if( lockIdx==WAL_CKPT_LOCK ){
754 return "CKPT-LOCK";
755 }else if( lockIdx==WAL_RECOVER_LOCK ){
756 return "RECOVER-LOCK";
757 }else{
758 static char zName[15];
759 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
760 lockIdx-WAL_READ_LOCK(0));
761 return zName;
762 }
763}
764#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
765
766
dan7c246102010-04-12 19:00:29 +0000767/*
drh181e0912010-06-01 01:08:08 +0000768** Set or release locks on the WAL. Locks are either shared or exclusive.
769** A lock cannot be moved directly between shared and exclusive - it must go
770** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000771**
772** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
773*/
774static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000775 int rc;
drh73b64e42010-05-30 19:55:15 +0000776 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000777 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
778 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
779 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
780 walLockName(lockIdx), rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000781 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000782 return rc;
drh73b64e42010-05-30 19:55:15 +0000783}
784static void walUnlockShared(Wal *pWal, int lockIdx){
785 if( pWal->exclusiveMode ) return;
786 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
787 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000788 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000789}
790static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000791 int rc;
drh73b64e42010-05-30 19:55:15 +0000792 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000793 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
794 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
795 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
796 walLockName(lockIdx), n, rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000797 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000798 return rc;
drh73b64e42010-05-30 19:55:15 +0000799}
800static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
801 if( pWal->exclusiveMode ) return;
802 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
803 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000804 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
805 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000806}
807
808/*
drh29d4dbe2010-05-18 23:29:52 +0000809** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000810** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
811** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000812*/
813static int walHash(u32 iPage){
814 assert( iPage>0 );
815 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
816 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
817}
818static int walNextHash(int iPriorHash){
819 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000820}
821
dan4280eb32010-06-12 12:02:35 +0000822/*
823** Return pointers to the hash table and page number array stored on
824** page iHash of the wal-index. The wal-index is broken into 32KB pages
825** numbered starting from 0.
826**
827** Set output variable *paHash to point to the start of the hash table
828** in the wal-index file. Set *piZero to one less than the frame
829** number of the first frame indexed by this hash table. If a
830** slot in the hash table is set to N, it refers to frame number
831** (*piZero+N) in the log.
832**
dand60bf112010-06-14 11:18:50 +0000833** Finally, set *paPgno so that *paPgno[1] is the page number of the
834** first frame indexed by the hash table, frame (*piZero+1).
dan4280eb32010-06-12 12:02:35 +0000835*/
836static int walHashGet(
dan13a3cb82010-06-11 19:04:21 +0000837 Wal *pWal, /* WAL handle */
838 int iHash, /* Find the iHash'th table */
dan067f3162010-06-14 10:30:12 +0000839 volatile ht_slot **paHash, /* OUT: Pointer to hash index */
dan13a3cb82010-06-11 19:04:21 +0000840 volatile u32 **paPgno, /* OUT: Pointer to page number array */
841 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
842){
dan4280eb32010-06-12 12:02:35 +0000843 int rc; /* Return code */
dan13a3cb82010-06-11 19:04:21 +0000844 volatile u32 *aPgno;
dan13a3cb82010-06-11 19:04:21 +0000845
dan4280eb32010-06-12 12:02:35 +0000846 rc = walIndexPage(pWal, iHash, &aPgno);
847 assert( rc==SQLITE_OK || iHash>0 );
dan13a3cb82010-06-11 19:04:21 +0000848
dan4280eb32010-06-12 12:02:35 +0000849 if( rc==SQLITE_OK ){
850 u32 iZero;
dan067f3162010-06-14 10:30:12 +0000851 volatile ht_slot *aHash;
dan4280eb32010-06-12 12:02:35 +0000852
dan067f3162010-06-14 10:30:12 +0000853 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
dan4280eb32010-06-12 12:02:35 +0000854 if( iHash==0 ){
dand60bf112010-06-14 11:18:50 +0000855 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
dan4280eb32010-06-12 12:02:35 +0000856 iZero = 0;
857 }else{
858 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
dan4280eb32010-06-12 12:02:35 +0000859 }
860
dand60bf112010-06-14 11:18:50 +0000861 *paPgno = &aPgno[-1];
dan4280eb32010-06-12 12:02:35 +0000862 *paHash = aHash;
863 *piZero = iZero;
dan13a3cb82010-06-11 19:04:21 +0000864 }
dan4280eb32010-06-12 12:02:35 +0000865 return rc;
dan13a3cb82010-06-11 19:04:21 +0000866}
867
dan4280eb32010-06-12 12:02:35 +0000868/*
869** Return the number of the wal-index page that contains the hash-table
870** and page-number array that contain entries corresponding to WAL frame
871** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
872** are numbered starting from 0.
873*/
dan13a3cb82010-06-11 19:04:21 +0000874static int walFramePage(u32 iFrame){
875 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
876 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
877 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
878 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
879 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
880 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
881 );
882 return iHash;
883}
884
885/*
886** Return the page number associated with frame iFrame in this WAL.
887*/
888static u32 walFramePgno(Wal *pWal, u32 iFrame){
889 int iHash = walFramePage(iFrame);
890 if( iHash==0 ){
891 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
892 }
893 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
894}
danbb23aff2010-05-10 14:46:09 +0000895
danca6b5ba2010-05-25 10:50:56 +0000896/*
897** Remove entries from the hash table that point to WAL slots greater
898** than pWal->hdr.mxFrame.
899**
900** This function is called whenever pWal->hdr.mxFrame is decreased due
901** to a rollback or savepoint.
902**
drh181e0912010-06-01 01:08:08 +0000903** At most only the hash table containing pWal->hdr.mxFrame needs to be
904** updated. Any later hash tables will be automatically cleared when
905** pWal->hdr.mxFrame advances to the point where those hash tables are
906** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000907*/
908static void walCleanupHash(Wal *pWal){
drhff828942010-06-26 21:34:06 +0000909 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */
910 volatile u32 *aPgno = 0; /* Page number array for hash table */
911 u32 iZero = 0; /* frame == (aHash[x]+iZero) */
dan067f3162010-06-14 10:30:12 +0000912 int iLimit = 0; /* Zero values greater than this */
913 int nByte; /* Number of bytes to zero in aPgno[] */
914 int i; /* Used to iterate through aHash[] */
danca6b5ba2010-05-25 10:50:56 +0000915
drh73b64e42010-05-30 19:55:15 +0000916 assert( pWal->writeLock );
drhffca4302010-06-15 11:21:54 +0000917 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
918 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
919 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
drh9c156472010-06-01 12:58:41 +0000920
dan4280eb32010-06-12 12:02:35 +0000921 if( pWal->hdr.mxFrame==0 ) return;
922
923 /* Obtain pointers to the hash-table and page-number array containing
924 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
925 ** that the page said hash-table and array reside on is already mapped.
926 */
927 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
928 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
929 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
930
931 /* Zero all hash-table entries that correspond to frame numbers greater
932 ** than pWal->hdr.mxFrame.
933 */
934 iLimit = pWal->hdr.mxFrame - iZero;
935 assert( iLimit>0 );
936 for(i=0; i<HASHTABLE_NSLOT; i++){
937 if( aHash[i]>iLimit ){
938 aHash[i] = 0;
danca6b5ba2010-05-25 10:50:56 +0000939 }
danca6b5ba2010-05-25 10:50:56 +0000940 }
dan4280eb32010-06-12 12:02:35 +0000941
942 /* Zero the entries in the aPgno array that correspond to frames with
943 ** frame numbers greater than pWal->hdr.mxFrame.
944 */
shaneh5eba1f62010-07-02 17:05:03 +0000945 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
dand60bf112010-06-14 11:18:50 +0000946 memset((void *)&aPgno[iLimit+1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000947
948#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
949 /* Verify that the every entry in the mapping region is still reachable
950 ** via the hash table even after the cleanup.
951 */
drhf77bbd92010-06-01 13:17:44 +0000952 if( iLimit ){
danca6b5ba2010-05-25 10:50:56 +0000953 int i; /* Loop counter */
954 int iKey; /* Hash key */
955 for(i=1; i<=iLimit; i++){
dand60bf112010-06-14 11:18:50 +0000956 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
danca6b5ba2010-05-25 10:50:56 +0000957 if( aHash[iKey]==i ) break;
958 }
959 assert( aHash[iKey]==i );
960 }
961 }
962#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
963}
964
danbb23aff2010-05-10 14:46:09 +0000965
drh7ed91f22010-04-29 22:34:07 +0000966/*
drh29d4dbe2010-05-18 23:29:52 +0000967** Set an entry in the wal-index that will map database page number
968** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +0000969*/
drh7ed91f22010-04-29 22:34:07 +0000970static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
dan4280eb32010-06-12 12:02:35 +0000971 int rc; /* Return code */
drhff828942010-06-26 21:34:06 +0000972 u32 iZero = 0; /* One less than frame number of aPgno[1] */
973 volatile u32 *aPgno = 0; /* Page number array */
974 volatile ht_slot *aHash = 0; /* Hash table */
dance4f05f2010-04-22 19:14:13 +0000975
dan4280eb32010-06-12 12:02:35 +0000976 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
977
978 /* Assuming the wal-index file was successfully mapped, populate the
979 ** page number array and hash table entry.
dan7c246102010-04-12 19:00:29 +0000980 */
danbb23aff2010-05-10 14:46:09 +0000981 if( rc==SQLITE_OK ){
982 int iKey; /* Hash table key */
dan4280eb32010-06-12 12:02:35 +0000983 int idx; /* Value to write to hash-table slot */
drh519426a2010-07-09 03:19:07 +0000984 int nCollide; /* Number of hash collisions */
dan7c246102010-04-12 19:00:29 +0000985
danbb23aff2010-05-10 14:46:09 +0000986 idx = iFrame - iZero;
dan4280eb32010-06-12 12:02:35 +0000987 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
988
989 /* If this is the first entry to be added to this hash-table, zero the
990 ** entire hash table and aPgno[] array before proceding.
991 */
danca6b5ba2010-05-25 10:50:56 +0000992 if( idx==1 ){
shaneh5eba1f62010-07-02 17:05:03 +0000993 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
dand60bf112010-06-14 11:18:50 +0000994 memset((void*)&aPgno[1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000995 }
danca6b5ba2010-05-25 10:50:56 +0000996
dan4280eb32010-06-12 12:02:35 +0000997 /* If the entry in aPgno[] is already set, then the previous writer
998 ** must have exited unexpectedly in the middle of a transaction (after
999 ** writing one or more dirty pages to the WAL to free up memory).
1000 ** Remove the remnants of that writers uncommitted transaction from
1001 ** the hash-table before writing any new entries.
1002 */
dand60bf112010-06-14 11:18:50 +00001003 if( aPgno[idx] ){
danca6b5ba2010-05-25 10:50:56 +00001004 walCleanupHash(pWal);
dand60bf112010-06-14 11:18:50 +00001005 assert( !aPgno[idx] );
danca6b5ba2010-05-25 10:50:56 +00001006 }
dan4280eb32010-06-12 12:02:35 +00001007
1008 /* Write the aPgno[] array entry and the hash-table slot. */
drh519426a2010-07-09 03:19:07 +00001009 nCollide = idx;
dan6f150142010-05-21 15:31:56 +00001010 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
drh519426a2010-07-09 03:19:07 +00001011 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
drh29d4dbe2010-05-18 23:29:52 +00001012 }
dand60bf112010-06-14 11:18:50 +00001013 aPgno[idx] = iPage;
shaneh5eba1f62010-07-02 17:05:03 +00001014 aHash[iKey] = (ht_slot)idx;
drh4fa95bf2010-05-22 00:55:39 +00001015
1016#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1017 /* Verify that the number of entries in the hash table exactly equals
1018 ** the number of entries in the mapping region.
1019 */
1020 {
1021 int i; /* Loop counter */
1022 int nEntry = 0; /* Number of entries in the hash table */
1023 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1024 assert( nEntry==idx );
1025 }
1026
1027 /* Verify that the every entry in the mapping region is reachable
1028 ** via the hash table. This turns out to be a really, really expensive
1029 ** thing to check, so only do this occasionally - not on every
1030 ** iteration.
1031 */
1032 if( (idx&0x3ff)==0 ){
1033 int i; /* Loop counter */
1034 for(i=1; i<=idx; i++){
dand60bf112010-06-14 11:18:50 +00001035 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
drh4fa95bf2010-05-22 00:55:39 +00001036 if( aHash[iKey]==i ) break;
1037 }
1038 assert( aHash[iKey]==i );
1039 }
1040 }
1041#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +00001042 }
dan31f98fc2010-04-27 05:42:32 +00001043
drh4fa95bf2010-05-22 00:55:39 +00001044
danbb23aff2010-05-10 14:46:09 +00001045 return rc;
dan7c246102010-04-12 19:00:29 +00001046}
1047
1048
1049/*
drh7ed91f22010-04-29 22:34:07 +00001050** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +00001051**
1052** This routine first tries to establish an exclusive lock on the
1053** wal-index to prevent other threads/processes from doing anything
1054** with the WAL or wal-index while recovery is running. The
1055** WAL_RECOVER_LOCK is also held so that other threads will know
1056** that this thread is running recovery. If unable to establish
1057** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +00001058*/
drh7ed91f22010-04-29 22:34:07 +00001059static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +00001060 int rc; /* Return Code */
1061 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +00001062 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +00001063 int iLock; /* Lock offset to lock for checkpoint */
1064 int nLock; /* Number of locks to hold */
dan7c246102010-04-12 19:00:29 +00001065
dand0aa3422010-05-31 16:41:53 +00001066 /* Obtain an exclusive lock on all byte in the locking range not already
1067 ** locked by the caller. The caller is guaranteed to have locked the
1068 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1069 ** If successful, the same bytes that are locked here are unlocked before
1070 ** this function returns.
1071 */
1072 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1073 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1074 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1075 assert( pWal->writeLock );
1076 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1077 nLock = SQLITE_SHM_NLOCK - iLock;
1078 rc = walLockExclusive(pWal, iLock, nLock);
drh73b64e42010-05-30 19:55:15 +00001079 if( rc ){
1080 return rc;
1081 }
drhc74c3332010-05-31 12:15:19 +00001082 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +00001083
dan71d89912010-05-24 13:57:42 +00001084 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +00001085
drhd9e5c4f2010-05-12 18:01:39 +00001086 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +00001087 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001088 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001089 }
1090
danb8fd6c22010-05-24 10:39:36 +00001091 if( nSize>WAL_HDRSIZE ){
1092 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dan7c246102010-04-12 19:00:29 +00001093 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001094 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001095 u8 *aData; /* Pointer to data part of aFrame buffer */
1096 int iFrame; /* Index of last frame read */
1097 i64 iOffset; /* Next offset to read from log file */
drh6e810962010-05-19 17:49:50 +00001098 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001099 u32 magic; /* Magic value read from WAL header */
dan10f5a502010-06-23 15:55:43 +00001100 u32 version; /* Magic value read from WAL header */
drhfe6163d2011-12-17 13:45:28 +00001101 int isValid; /* True if this frame is valid */
dan7c246102010-04-12 19:00:29 +00001102
danb8fd6c22010-05-24 10:39:36 +00001103 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001104 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001105 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001106 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001107 }
1108
1109 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001110 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1111 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1112 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001113 */
danb8fd6c22010-05-24 10:39:36 +00001114 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001115 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001116 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1117 || szPage&(szPage-1)
1118 || szPage>SQLITE_MAX_PAGE_SIZE
1119 || szPage<512
1120 ){
dan7c246102010-04-12 19:00:29 +00001121 goto finished;
1122 }
shaneh5eba1f62010-07-02 17:05:03 +00001123 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
drhb2eced52010-08-12 02:41:12 +00001124 pWal->szPage = szPage;
drh23ea97b2010-05-20 16:45:58 +00001125 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001126 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
drhcd285082010-06-23 22:00:35 +00001127
1128 /* Verify that the WAL header checksum is correct */
dan71d89912010-05-24 13:57:42 +00001129 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
dan10f5a502010-06-23 15:55:43 +00001130 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
dan71d89912010-05-24 13:57:42 +00001131 );
dan10f5a502010-06-23 15:55:43 +00001132 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1133 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1134 ){
1135 goto finished;
1136 }
1137
drhcd285082010-06-23 22:00:35 +00001138 /* Verify that the version number on the WAL format is one that
1139 ** are able to understand */
dan10f5a502010-06-23 15:55:43 +00001140 version = sqlite3Get4byte(&aBuf[4]);
1141 if( version!=WAL_MAX_VERSION ){
1142 rc = SQLITE_CANTOPEN_BKPT;
1143 goto finished;
1144 }
1145
dan7c246102010-04-12 19:00:29 +00001146 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001147 szFrame = szPage + WAL_FRAME_HDRSIZE;
1148 aFrame = (u8 *)sqlite3_malloc(szFrame);
dan7c246102010-04-12 19:00:29 +00001149 if( !aFrame ){
drh73b64e42010-05-30 19:55:15 +00001150 rc = SQLITE_NOMEM;
1151 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001152 }
drh7ed91f22010-04-29 22:34:07 +00001153 aData = &aFrame[WAL_FRAME_HDRSIZE];
dan7c246102010-04-12 19:00:29 +00001154
1155 /* Read all frames from the log file. */
1156 iFrame = 0;
drh584c7542010-05-19 18:08:10 +00001157 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
dan7c246102010-04-12 19:00:29 +00001158 u32 pgno; /* Database page number for frame */
1159 u32 nTruncate; /* dbsize field from frame header */
dan7c246102010-04-12 19:00:29 +00001160
1161 /* Read and decode the next log frame. */
drhfe6163d2011-12-17 13:45:28 +00001162 iFrame++;
drh584c7542010-05-19 18:08:10 +00001163 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
dan7c246102010-04-12 19:00:29 +00001164 if( rc!=SQLITE_OK ) break;
drh7e263722010-05-20 21:21:09 +00001165 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
dan7c246102010-04-12 19:00:29 +00001166 if( !isValid ) break;
drhfe6163d2011-12-17 13:45:28 +00001167 rc = walIndexAppend(pWal, iFrame, pgno);
danc7991bd2010-05-05 19:04:59 +00001168 if( rc!=SQLITE_OK ) break;
dan7c246102010-04-12 19:00:29 +00001169
1170 /* If nTruncate is non-zero, this is a commit record. */
1171 if( nTruncate ){
dan71d89912010-05-24 13:57:42 +00001172 pWal->hdr.mxFrame = iFrame;
1173 pWal->hdr.nPage = nTruncate;
shaneh1df2db72010-08-18 02:28:48 +00001174 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00001175 testcase( szPage<=32768 );
1176 testcase( szPage>=65536 );
dan71d89912010-05-24 13:57:42 +00001177 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1178 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
dan7c246102010-04-12 19:00:29 +00001179 }
1180 }
1181
1182 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001183 }
1184
1185finished:
dan576bc322010-05-06 18:04:50 +00001186 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001187 volatile WalCkptInfo *pInfo;
1188 int i;
dan71d89912010-05-24 13:57:42 +00001189 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1190 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001191 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001192
drhdb7f6472010-06-09 14:45:12 +00001193 /* Reset the checkpoint-header. This is safe because this thread is
dan3dee6da2010-05-31 16:17:54 +00001194 ** currently holding locks that exclude all other readers, writers and
1195 ** checkpointers.
1196 */
drhdb7f6472010-06-09 14:45:12 +00001197 pInfo = walCkptInfo(pWal);
1198 pInfo->nBackfill = 0;
1199 pInfo->aReadMark[0] = 0;
1200 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
daneb8763d2010-08-17 14:52:22 +00001201
1202 /* If more than one frame was recovered from the log file, report an
1203 ** event via sqlite3_log(). This is to help with identifying performance
1204 ** problems caused by applications routinely shutting down without
1205 ** checkpointing the log file.
1206 */
1207 if( pWal->hdr.nPage ){
1208 sqlite3_log(SQLITE_OK, "Recovered %d frames from WAL file %s",
1209 pWal->hdr.nPage, pWal->zWalName
1210 );
1211 }
dan576bc322010-05-06 18:04:50 +00001212 }
drh73b64e42010-05-30 19:55:15 +00001213
1214recovery_error:
drhc74c3332010-05-31 12:15:19 +00001215 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dand0aa3422010-05-31 16:41:53 +00001216 walUnlockExclusive(pWal, iLock, nLock);
dan7c246102010-04-12 19:00:29 +00001217 return rc;
1218}
1219
drha8e654e2010-05-04 17:38:42 +00001220/*
dan1018e902010-05-05 15:33:05 +00001221** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001222*/
dan1018e902010-05-05 15:33:05 +00001223static void walIndexClose(Wal *pWal, int isDelete){
dan8c408002010-11-01 17:38:24 +00001224 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
1225 int i;
1226 for(i=0; i<pWal->nWiData; i++){
1227 sqlite3_free((void *)pWal->apWiData[i]);
1228 pWal->apWiData[i] = 0;
1229 }
1230 }else{
1231 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1232 }
drha8e654e2010-05-04 17:38:42 +00001233}
1234
dan7c246102010-04-12 19:00:29 +00001235/*
dan3e875ef2010-07-05 19:03:35 +00001236** Open a connection to the WAL file zWalName. The database file must
1237** already be opened on connection pDbFd. The buffer that zWalName points
1238** to must remain valid for the lifetime of the returned Wal* handle.
dan3de777f2010-04-17 12:31:37 +00001239**
1240** A SHARED lock should be held on the database file when this function
1241** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001242** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001243** were to do this just after this client opened one of these files, the
1244** system would be badly broken.
danef378022010-05-04 11:06:03 +00001245**
1246** If the log file is successfully opened, SQLITE_OK is returned and
1247** *ppWal is set to point to a new WAL handle. If an error occurs,
1248** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001249*/
drhc438efd2010-04-26 00:19:45 +00001250int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001251 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001252 sqlite3_file *pDbFd, /* The open database file */
dan3e875ef2010-07-05 19:03:35 +00001253 const char *zWalName, /* Name of the WAL file */
dan8c408002010-11-01 17:38:24 +00001254 int bNoShm, /* True to run in heap-memory mode */
drh85a83752011-05-16 21:00:27 +00001255 i64 mxWalSize, /* Truncate WAL to this size on reset */
adam2e4491d2011-06-24 20:47:06 +00001256 int flags, /* VFS file protection flags */
drh7ed91f22010-04-29 22:34:07 +00001257 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001258){
danef378022010-05-04 11:06:03 +00001259 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001260 Wal *pRet; /* Object to allocate and return */
adam2e4491d2011-06-24 20:47:06 +00001261 int vfsFlags; /* Flags passed to OsOpen() */
dan7c246102010-04-12 19:00:29 +00001262
dan3e875ef2010-07-05 19:03:35 +00001263 assert( zWalName && zWalName[0] );
drhd9e5c4f2010-05-12 18:01:39 +00001264 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001265
drh1b78eaf2010-05-25 13:40:03 +00001266 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1267 ** this source file. Verify that the #defines of the locking byte offsets
1268 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1269 */
1270#ifdef WIN_SHM_BASE
1271 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1272#endif
1273#ifdef UNIX_SHM_BASE
1274 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1275#endif
1276
1277
drh7ed91f22010-04-29 22:34:07 +00001278 /* Allocate an instance of struct Wal to return. */
1279 *ppWal = 0;
dan3e875ef2010-07-05 19:03:35 +00001280 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
dan76ed3bc2010-05-03 17:18:24 +00001281 if( !pRet ){
1282 return SQLITE_NOMEM;
1283 }
1284
dan7c246102010-04-12 19:00:29 +00001285 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001286 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1287 pRet->pDbFd = pDbFd;
drh73b64e42010-05-30 19:55:15 +00001288 pRet->readLock = -1;
drh85a83752011-05-16 21:00:27 +00001289 pRet->mxWalSize = mxWalSize;
dan3e875ef2010-07-05 19:03:35 +00001290 pRet->zWalName = zWalName;
drhd992b152011-12-20 20:13:25 +00001291 pRet->syncHeader = 1;
drh374f4a02011-12-17 20:02:11 +00001292 pRet->padToSectorBoundary = 1;
dan8c408002010-11-01 17:38:24 +00001293 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
dan7c246102010-04-12 19:00:29 +00001294
drh7ed91f22010-04-29 22:34:07 +00001295 /* Open file handle on the write-ahead log file. */
adamaec336a2011-10-10 22:11:44 +00001296 if( flags&SQLITE_OPEN_READONLY ){
1297 vfsFlags = flags | SQLITE_OPEN_WAL;
1298 } else {
1299 vfsFlags = flags | (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1300 }
adam2e4491d2011-06-24 20:47:06 +00001301 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, vfsFlags, &vfsFlags);
1302 if( rc==SQLITE_OK && vfsFlags&SQLITE_OPEN_READONLY ){
drh66dfec8b2011-06-01 20:01:49 +00001303 pRet->readOnly = WAL_RDONLY;
dan50833e32010-07-14 16:37:17 +00001304 }
dan7c246102010-04-12 19:00:29 +00001305
dan7c246102010-04-12 19:00:29 +00001306 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001307 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001308 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001309 sqlite3_free(pRet);
1310 }else{
drh4eb02a42011-12-16 21:26:26 +00001311 int iDC = sqlite3OsDeviceCharacteristics(pRet->pWalFd);
drhd992b152011-12-20 20:13:25 +00001312 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
drhcb15f352011-12-23 01:04:17 +00001313 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1314 pRet->padToSectorBoundary = 0;
1315 }
danef378022010-05-04 11:06:03 +00001316 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001317 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001318 }
dan7c246102010-04-12 19:00:29 +00001319 return rc;
1320}
1321
drha2a42012010-05-18 18:01:08 +00001322/*
drh85a83752011-05-16 21:00:27 +00001323** Change the size to which the WAL file is trucated on each reset.
1324*/
1325void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1326 if( pWal ) pWal->mxWalSize = iLimit;
1327}
1328
1329/*
drha2a42012010-05-18 18:01:08 +00001330** Find the smallest page number out of all pages held in the WAL that
1331** has not been returned by any prior invocation of this method on the
1332** same WalIterator object. Write into *piFrame the frame index where
1333** that page was last written into the WAL. Write into *piPage the page
1334** number.
1335**
1336** Return 0 on success. If there are no pages in the WAL with a page
1337** number larger than *piPage, then return 1.
1338*/
drh7ed91f22010-04-29 22:34:07 +00001339static int walIteratorNext(
1340 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001341 u32 *piPage, /* OUT: The page number of the next page */
1342 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001343){
drha2a42012010-05-18 18:01:08 +00001344 u32 iMin; /* Result pgno must be greater than iMin */
1345 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1346 int i; /* For looping through segments */
dan7c246102010-04-12 19:00:29 +00001347
drha2a42012010-05-18 18:01:08 +00001348 iMin = p->iPrior;
1349 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001350 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001351 struct WalSegment *pSegment = &p->aSegment[i];
dan13a3cb82010-06-11 19:04:21 +00001352 while( pSegment->iNext<pSegment->nEntry ){
drha2a42012010-05-18 18:01:08 +00001353 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001354 if( iPg>iMin ){
1355 if( iPg<iRet ){
1356 iRet = iPg;
dan13a3cb82010-06-11 19:04:21 +00001357 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
dan7c246102010-04-12 19:00:29 +00001358 }
1359 break;
1360 }
1361 pSegment->iNext++;
1362 }
dan7c246102010-04-12 19:00:29 +00001363 }
1364
drha2a42012010-05-18 18:01:08 +00001365 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001366 return (iRet==0xFFFFFFFF);
1367}
1368
danf544b4c2010-06-25 11:35:52 +00001369/*
1370** This function merges two sorted lists into a single sorted list.
drhd9c9b782010-12-15 21:02:06 +00001371**
1372** aLeft[] and aRight[] are arrays of indices. The sort key is
1373** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1374** is guaranteed for all J<K:
1375**
1376** aContent[aLeft[J]] < aContent[aLeft[K]]
1377** aContent[aRight[J]] < aContent[aRight[K]]
1378**
1379** This routine overwrites aRight[] with a new (probably longer) sequence
1380** of indices such that the aRight[] contains every index that appears in
1381** either aLeft[] or the old aRight[] and such that the second condition
1382** above is still met.
1383**
1384** The aContent[aLeft[X]] values will be unique for all X. And the
1385** aContent[aRight[X]] values will be unique too. But there might be
1386** one or more combinations of X and Y such that
1387**
1388** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1389**
1390** When that happens, omit the aLeft[X] and use the aRight[Y] index.
danf544b4c2010-06-25 11:35:52 +00001391*/
1392static void walMerge(
drhd9c9b782010-12-15 21:02:06 +00001393 const u32 *aContent, /* Pages in wal - keys for the sort */
danf544b4c2010-06-25 11:35:52 +00001394 ht_slot *aLeft, /* IN: Left hand input list */
1395 int nLeft, /* IN: Elements in array *paLeft */
1396 ht_slot **paRight, /* IN/OUT: Right hand input list */
1397 int *pnRight, /* IN/OUT: Elements in *paRight */
1398 ht_slot *aTmp /* Temporary buffer */
1399){
1400 int iLeft = 0; /* Current index in aLeft */
1401 int iRight = 0; /* Current index in aRight */
1402 int iOut = 0; /* Current index in output buffer */
1403 int nRight = *pnRight;
1404 ht_slot *aRight = *paRight;
dan7c246102010-04-12 19:00:29 +00001405
danf544b4c2010-06-25 11:35:52 +00001406 assert( nLeft>0 && nRight>0 );
1407 while( iRight<nRight || iLeft<nLeft ){
1408 ht_slot logpage;
1409 Pgno dbpage;
1410
1411 if( (iLeft<nLeft)
1412 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1413 ){
1414 logpage = aLeft[iLeft++];
1415 }else{
1416 logpage = aRight[iRight++];
1417 }
1418 dbpage = aContent[logpage];
1419
1420 aTmp[iOut++] = logpage;
1421 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1422
1423 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1424 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1425 }
1426
1427 *paRight = aLeft;
1428 *pnRight = iOut;
1429 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1430}
1431
1432/*
drhd9c9b782010-12-15 21:02:06 +00001433** Sort the elements in list aList using aContent[] as the sort key.
1434** Remove elements with duplicate keys, preferring to keep the
1435** larger aList[] values.
1436**
1437** The aList[] entries are indices into aContent[]. The values in
1438** aList[] are to be sorted so that for all J<K:
1439**
1440** aContent[aList[J]] < aContent[aList[K]]
1441**
1442** For any X and Y such that
1443**
1444** aContent[aList[X]] == aContent[aList[Y]]
1445**
1446** Keep the larger of the two values aList[X] and aList[Y] and discard
1447** the smaller.
danf544b4c2010-06-25 11:35:52 +00001448*/
dan13a3cb82010-06-11 19:04:21 +00001449static void walMergesort(
drhd9c9b782010-12-15 21:02:06 +00001450 const u32 *aContent, /* Pages in wal */
dan067f3162010-06-14 10:30:12 +00001451 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1452 ht_slot *aList, /* IN/OUT: List to sort */
drha2a42012010-05-18 18:01:08 +00001453 int *pnList /* IN/OUT: Number of elements in aList[] */
1454){
danf544b4c2010-06-25 11:35:52 +00001455 struct Sublist {
1456 int nList; /* Number of elements in aList */
1457 ht_slot *aList; /* Pointer to sub-list content */
1458 };
drha2a42012010-05-18 18:01:08 +00001459
danf544b4c2010-06-25 11:35:52 +00001460 const int nList = *pnList; /* Size of input list */
drhff828942010-06-26 21:34:06 +00001461 int nMerge = 0; /* Number of elements in list aMerge */
1462 ht_slot *aMerge = 0; /* List to be merged */
danf544b4c2010-06-25 11:35:52 +00001463 int iList; /* Index into input list */
drh7d113eb2010-06-26 20:00:54 +00001464 int iSub = 0; /* Index into aSub array */
danf544b4c2010-06-25 11:35:52 +00001465 struct Sublist aSub[13]; /* Array of sub-lists */
drha2a42012010-05-18 18:01:08 +00001466
danf544b4c2010-06-25 11:35:52 +00001467 memset(aSub, 0, sizeof(aSub));
1468 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1469 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
drha2a42012010-05-18 18:01:08 +00001470
danf544b4c2010-06-25 11:35:52 +00001471 for(iList=0; iList<nList; iList++){
1472 nMerge = 1;
1473 aMerge = &aList[iList];
1474 for(iSub=0; iList & (1<<iSub); iSub++){
1475 struct Sublist *p = &aSub[iSub];
1476 assert( p->aList && p->nList<=(1<<iSub) );
danbdf1e242010-06-25 15:16:25 +00001477 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001478 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
drha2a42012010-05-18 18:01:08 +00001479 }
danf544b4c2010-06-25 11:35:52 +00001480 aSub[iSub].aList = aMerge;
1481 aSub[iSub].nList = nMerge;
drha2a42012010-05-18 18:01:08 +00001482 }
1483
danf544b4c2010-06-25 11:35:52 +00001484 for(iSub++; iSub<ArraySize(aSub); iSub++){
1485 if( nList & (1<<iSub) ){
1486 struct Sublist *p = &aSub[iSub];
danbdf1e242010-06-25 15:16:25 +00001487 assert( p->nList<=(1<<iSub) );
1488 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001489 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1490 }
1491 }
1492 assert( aMerge==aList );
1493 *pnList = nMerge;
1494
drha2a42012010-05-18 18:01:08 +00001495#ifdef SQLITE_DEBUG
1496 {
1497 int i;
1498 for(i=1; i<*pnList; i++){
1499 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1500 }
1501 }
1502#endif
1503}
1504
dan5d656852010-06-14 07:53:26 +00001505/*
1506** Free an iterator allocated by walIteratorInit().
1507*/
1508static void walIteratorFree(WalIterator *p){
danbdf1e242010-06-25 15:16:25 +00001509 sqlite3ScratchFree(p);
dan5d656852010-06-14 07:53:26 +00001510}
1511
drha2a42012010-05-18 18:01:08 +00001512/*
danbdf1e242010-06-25 15:16:25 +00001513** Construct a WalInterator object that can be used to loop over all
1514** pages in the WAL in ascending order. The caller must hold the checkpoint
drhd9c9b782010-12-15 21:02:06 +00001515** lock.
drha2a42012010-05-18 18:01:08 +00001516**
1517** On success, make *pp point to the newly allocated WalInterator object
danbdf1e242010-06-25 15:16:25 +00001518** return SQLITE_OK. Otherwise, return an error code. If this routine
1519** returns an error, the value of *pp is undefined.
drha2a42012010-05-18 18:01:08 +00001520**
1521** The calling routine should invoke walIteratorFree() to destroy the
danbdf1e242010-06-25 15:16:25 +00001522** WalIterator object when it has finished with it.
drha2a42012010-05-18 18:01:08 +00001523*/
1524static int walIteratorInit(Wal *pWal, WalIterator **pp){
dan067f3162010-06-14 10:30:12 +00001525 WalIterator *p; /* Return value */
1526 int nSegment; /* Number of segments to merge */
1527 u32 iLast; /* Last frame in log */
1528 int nByte; /* Number of bytes to allocate */
1529 int i; /* Iterator variable */
1530 ht_slot *aTmp; /* Temp space used by merge-sort */
danbdf1e242010-06-25 15:16:25 +00001531 int rc = SQLITE_OK; /* Return Code */
drha2a42012010-05-18 18:01:08 +00001532
danbdf1e242010-06-25 15:16:25 +00001533 /* This routine only runs while holding the checkpoint lock. And
1534 ** it only runs if there is actually content in the log (mxFrame>0).
drha2a42012010-05-18 18:01:08 +00001535 */
danbdf1e242010-06-25 15:16:25 +00001536 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
dan13a3cb82010-06-11 19:04:21 +00001537 iLast = pWal->hdr.mxFrame;
drha2a42012010-05-18 18:01:08 +00001538
danbdf1e242010-06-25 15:16:25 +00001539 /* Allocate space for the WalIterator object. */
dan13a3cb82010-06-11 19:04:21 +00001540 nSegment = walFramePage(iLast) + 1;
1541 nByte = sizeof(WalIterator)
dan52d6fc02010-06-25 16:34:32 +00001542 + (nSegment-1)*sizeof(struct WalSegment)
1543 + iLast*sizeof(ht_slot);
danbdf1e242010-06-25 15:16:25 +00001544 p = (WalIterator *)sqlite3ScratchMalloc(nByte);
dan8f6097c2010-05-06 07:43:58 +00001545 if( !p ){
drha2a42012010-05-18 18:01:08 +00001546 return SQLITE_NOMEM;
1547 }
1548 memset(p, 0, nByte);
drha2a42012010-05-18 18:01:08 +00001549 p->nSegment = nSegment;
danbdf1e242010-06-25 15:16:25 +00001550
1551 /* Allocate temporary space used by the merge-sort routine. This block
1552 ** of memory will be freed before this function returns.
1553 */
dan52d6fc02010-06-25 16:34:32 +00001554 aTmp = (ht_slot *)sqlite3ScratchMalloc(
1555 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1556 );
danbdf1e242010-06-25 15:16:25 +00001557 if( !aTmp ){
1558 rc = SQLITE_NOMEM;
1559 }
1560
1561 for(i=0; rc==SQLITE_OK && i<nSegment; i++){
dan067f3162010-06-14 10:30:12 +00001562 volatile ht_slot *aHash;
dan13a3cb82010-06-11 19:04:21 +00001563 u32 iZero;
dan13a3cb82010-06-11 19:04:21 +00001564 volatile u32 *aPgno;
1565
dan4280eb32010-06-12 12:02:35 +00001566 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
danbdf1e242010-06-25 15:16:25 +00001567 if( rc==SQLITE_OK ){
dan52d6fc02010-06-25 16:34:32 +00001568 int j; /* Counter variable */
1569 int nEntry; /* Number of entries in this segment */
1570 ht_slot *aIndex; /* Sorted index for this segment */
1571
danbdf1e242010-06-25 15:16:25 +00001572 aPgno++;
drh519426a2010-07-09 03:19:07 +00001573 if( (i+1)==nSegment ){
1574 nEntry = (int)(iLast - iZero);
1575 }else{
shaneh55897962010-07-09 12:57:53 +00001576 nEntry = (int)((u32*)aHash - (u32*)aPgno);
drh519426a2010-07-09 03:19:07 +00001577 }
dan52d6fc02010-06-25 16:34:32 +00001578 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
danbdf1e242010-06-25 15:16:25 +00001579 iZero++;
1580
danbdf1e242010-06-25 15:16:25 +00001581 for(j=0; j<nEntry; j++){
shaneh5eba1f62010-07-02 17:05:03 +00001582 aIndex[j] = (ht_slot)j;
danbdf1e242010-06-25 15:16:25 +00001583 }
1584 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1585 p->aSegment[i].iZero = iZero;
1586 p->aSegment[i].nEntry = nEntry;
1587 p->aSegment[i].aIndex = aIndex;
1588 p->aSegment[i].aPgno = (u32 *)aPgno;
dan13a3cb82010-06-11 19:04:21 +00001589 }
dan7c246102010-04-12 19:00:29 +00001590 }
danbdf1e242010-06-25 15:16:25 +00001591 sqlite3ScratchFree(aTmp);
dan7c246102010-04-12 19:00:29 +00001592
danbdf1e242010-06-25 15:16:25 +00001593 if( rc!=SQLITE_OK ){
1594 walIteratorFree(p);
1595 }
dan8f6097c2010-05-06 07:43:58 +00001596 *pp = p;
danbdf1e242010-06-25 15:16:25 +00001597 return rc;
dan7c246102010-04-12 19:00:29 +00001598}
1599
dan7c246102010-04-12 19:00:29 +00001600/*
dana58f26f2010-11-16 18:56:51 +00001601** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1602** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1603** busy-handler function. Invoke it and retry the lock until either the
1604** lock is successfully obtained or the busy-handler returns 0.
1605*/
1606static int walBusyLock(
1607 Wal *pWal, /* WAL connection */
1608 int (*xBusy)(void*), /* Function to call when busy */
1609 void *pBusyArg, /* Context argument for xBusyHandler */
1610 int lockIdx, /* Offset of first byte to lock */
1611 int n /* Number of bytes to lock */
1612){
1613 int rc;
1614 do {
1615 rc = walLockExclusive(pWal, lockIdx, n);
1616 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1617 return rc;
1618}
1619
1620/*
danf2b8dd52010-11-18 19:28:01 +00001621** The cache of the wal-index header must be valid to call this function.
1622** Return the page-size in bytes used by the database.
1623*/
1624static int walPagesize(Wal *pWal){
1625 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1626}
1627
1628/*
drh73b64e42010-05-30 19:55:15 +00001629** Copy as much content as we can from the WAL back into the database file
1630** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1631**
1632** The amount of information copies from WAL to database might be limited
1633** by active readers. This routine will never overwrite a database page
1634** that a concurrent reader might be using.
1635**
1636** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1637** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1638** checkpoints are always run by a background thread or background
1639** process, foreground threads will never block on a lengthy fsync call.
1640**
1641** Fsync is called on the WAL before writing content out of the WAL and
1642** into the database. This ensures that if the new content is persistent
1643** in the WAL and can be recovered following a power-loss or hard reset.
1644**
1645** Fsync is also called on the database file if (and only if) the entire
1646** WAL content is copied into the database file. This second fsync makes
1647** it safe to delete the WAL since the new content will persist in the
1648** database file.
1649**
1650** This routine uses and updates the nBackfill field of the wal-index header.
1651** This is the only routine tha will increase the value of nBackfill.
1652** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1653** its value.)
1654**
1655** The caller must be holding sufficient locks to ensure that no other
1656** checkpoint is running (in any other thread or process) at the same
1657** time.
dan7c246102010-04-12 19:00:29 +00001658*/
drh7ed91f22010-04-29 22:34:07 +00001659static int walCheckpoint(
1660 Wal *pWal, /* Wal connection */
dancdc1f042010-11-18 12:11:05 +00001661 int eMode, /* One of PASSIVE, FULL or RESTART */
danf2b8dd52010-11-18 19:28:01 +00001662 int (*xBusyCall)(void*), /* Function to call when busy */
dana58f26f2010-11-16 18:56:51 +00001663 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00001664 int sync_flags, /* Flags for OsSync() (or 0) */
dan9c5e3682011-02-07 15:12:12 +00001665 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00001666){
1667 int rc; /* Return code */
drhb2eced52010-08-12 02:41:12 +00001668 int szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001669 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001670 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001671 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001672 u32 mxSafeFrame; /* Max frame that can be backfilled */
dan502019c2010-07-28 14:26:17 +00001673 u32 mxPage; /* Max database page to write */
drh73b64e42010-05-30 19:55:15 +00001674 int i; /* Loop counter */
drh73b64e42010-05-30 19:55:15 +00001675 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
danf2b8dd52010-11-18 19:28:01 +00001676 int (*xBusy)(void*) = 0; /* Function to call when waiting for locks */
dan7c246102010-04-12 19:00:29 +00001677
danf2b8dd52010-11-18 19:28:01 +00001678 szPage = walPagesize(pWal);
drh9b78f792010-08-14 21:21:24 +00001679 testcase( szPage<=32768 );
1680 testcase( szPage>=65536 );
drh7d208442010-12-16 02:06:29 +00001681 pInfo = walCkptInfo(pWal);
1682 if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK;
danf544b4c2010-06-25 11:35:52 +00001683
dan7c246102010-04-12 19:00:29 +00001684 /* Allocate the iterator */
dan8f6097c2010-05-06 07:43:58 +00001685 rc = walIteratorInit(pWal, &pIter);
danf544b4c2010-06-25 11:35:52 +00001686 if( rc!=SQLITE_OK ){
danbdf1e242010-06-25 15:16:25 +00001687 return rc;
danb6e099a2010-05-04 14:47:39 +00001688 }
danf544b4c2010-06-25 11:35:52 +00001689 assert( pIter );
danb6e099a2010-05-04 14:47:39 +00001690
danf2b8dd52010-11-18 19:28:01 +00001691 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ) xBusy = xBusyCall;
danb6e099a2010-05-04 14:47:39 +00001692
drh73b64e42010-05-30 19:55:15 +00001693 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1694 ** safe to write into the database. Frames beyond mxSafeFrame might
1695 ** overwrite database pages that are in use by active readers and thus
1696 ** cannot be backfilled from the WAL.
1697 */
dand54ff602010-05-31 11:16:30 +00001698 mxSafeFrame = pWal->hdr.mxFrame;
dan502019c2010-07-28 14:26:17 +00001699 mxPage = pWal->hdr.nPage;
drh73b64e42010-05-30 19:55:15 +00001700 for(i=1; i<WAL_NREADER; i++){
1701 u32 y = pInfo->aReadMark[i];
danf2b8dd52010-11-18 19:28:01 +00001702 if( mxSafeFrame>y ){
dan83f42d12010-06-04 10:37:05 +00001703 assert( y<=pWal->hdr.mxFrame );
danf2b8dd52010-11-18 19:28:01 +00001704 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
dan83f42d12010-06-04 10:37:05 +00001705 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001706 pInfo->aReadMark[i] = READMARK_NOT_USED;
drh73b64e42010-05-30 19:55:15 +00001707 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
drh2d37e1c2010-06-02 20:38:20 +00001708 }else if( rc==SQLITE_BUSY ){
drhdb7f6472010-06-09 14:45:12 +00001709 mxSafeFrame = y;
danf2b8dd52010-11-18 19:28:01 +00001710 xBusy = 0;
drh2d37e1c2010-06-02 20:38:20 +00001711 }else{
dan83f42d12010-06-04 10:37:05 +00001712 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001713 }
1714 }
danc5118782010-04-17 17:34:41 +00001715 }
dan7c246102010-04-12 19:00:29 +00001716
drh73b64e42010-05-30 19:55:15 +00001717 if( pInfo->nBackfill<mxSafeFrame
dana58f26f2010-11-16 18:56:51 +00001718 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0), 1))==SQLITE_OK
drh73b64e42010-05-30 19:55:15 +00001719 ){
dan502019c2010-07-28 14:26:17 +00001720 i64 nSize; /* Current size of database file */
drh73b64e42010-05-30 19:55:15 +00001721 u32 nBackfill = pInfo->nBackfill;
1722
1723 /* Sync the WAL to disk */
1724 if( sync_flags ){
1725 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1726 }
1727
dan502019c2010-07-28 14:26:17 +00001728 /* If the database file may grow as a result of this checkpoint, hint
1729 ** about the eventual size of the db file to the VFS layer.
1730 */
dan007820d2010-08-09 07:51:40 +00001731 if( rc==SQLITE_OK ){
1732 i64 nReq = ((i64)mxPage * szPage);
1733 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1734 if( rc==SQLITE_OK && nSize<nReq ){
drhc02372c2012-01-10 17:59:59 +00001735 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
dan007820d2010-08-09 07:51:40 +00001736 }
dan502019c2010-07-28 14:26:17 +00001737 }
1738
drh73b64e42010-05-30 19:55:15 +00001739 /* Iterate through the contents of the WAL, copying data to the db file. */
1740 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
drh3e8e7ec2010-07-07 13:43:19 +00001741 i64 iOffset;
dan13a3cb82010-06-11 19:04:21 +00001742 assert( walFramePgno(pWal, iFrame)==iDbpage );
dan502019c2010-07-28 14:26:17 +00001743 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue;
drh3e8e7ec2010-07-07 13:43:19 +00001744 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
drh09b5dbc2010-07-07 14:35:58 +00001745 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
drh3e8e7ec2010-07-07 13:43:19 +00001746 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1747 if( rc!=SQLITE_OK ) break;
1748 iOffset = (iDbpage-1)*(i64)szPage;
1749 testcase( IS_BIG_INT(iOffset) );
1750 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1751 if( rc!=SQLITE_OK ) break;
drh73b64e42010-05-30 19:55:15 +00001752 }
1753
1754 /* If work was actually accomplished... */
dand764c7d2010-06-04 11:56:22 +00001755 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00001756 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
drh3e8e7ec2010-07-07 13:43:19 +00001757 i64 szDb = pWal->hdr.nPage*(i64)szPage;
1758 testcase( IS_BIG_INT(szDb) );
1759 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
drh73b64e42010-05-30 19:55:15 +00001760 if( rc==SQLITE_OK && sync_flags ){
1761 rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1762 }
1763 }
dand764c7d2010-06-04 11:56:22 +00001764 if( rc==SQLITE_OK ){
1765 pInfo->nBackfill = mxSafeFrame;
1766 }
drh73b64e42010-05-30 19:55:15 +00001767 }
1768
1769 /* Release the reader lock held while backfilling */
1770 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
dana58f26f2010-11-16 18:56:51 +00001771 }
1772
1773 if( rc==SQLITE_BUSY ){
drh34116ea2010-05-31 12:30:52 +00001774 /* Reset the return code so as not to report a checkpoint failure
dana58f26f2010-11-16 18:56:51 +00001775 ** just because there are active readers. */
drh34116ea2010-05-31 12:30:52 +00001776 rc = SQLITE_OK;
dan7c246102010-04-12 19:00:29 +00001777 }
1778
danf2b8dd52010-11-18 19:28:01 +00001779 /* If this is an SQLITE_CHECKPOINT_RESTART operation, and the entire wal
1780 ** file has been copied into the database file, then block until all
1781 ** readers have finished using the wal file. This ensures that the next
1782 ** process to write to the database restarts the wal file.
1783 */
1784 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dancdc1f042010-11-18 12:11:05 +00001785 assert( pWal->writeLock );
danf2b8dd52010-11-18 19:28:01 +00001786 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1787 rc = SQLITE_BUSY;
1788 }else if( eMode==SQLITE_CHECKPOINT_RESTART ){
1789 assert( mxSafeFrame==pWal->hdr.mxFrame );
1790 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1791 if( rc==SQLITE_OK ){
1792 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1793 }
dancdc1f042010-11-18 12:11:05 +00001794 }
1795 }
1796
dan83f42d12010-06-04 10:37:05 +00001797 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00001798 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00001799 return rc;
1800}
1801
1802/*
danf60b7f32011-12-16 13:24:27 +00001803** If the WAL file is currently larger than nMax bytes in size, truncate
1804** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
drh8dd4afa2011-12-08 19:50:32 +00001805*/
danf60b7f32011-12-16 13:24:27 +00001806static void walLimitSize(Wal *pWal, i64 nMax){
1807 i64 sz;
1808 int rx;
1809 sqlite3BeginBenignMalloc();
1810 rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1811 if( rx==SQLITE_OK && (sz > nMax ) ){
1812 rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1813 }
1814 sqlite3EndBenignMalloc();
1815 if( rx ){
1816 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
drh8dd4afa2011-12-08 19:50:32 +00001817 }
1818}
1819
1820/*
dan7c246102010-04-12 19:00:29 +00001821** Close a connection to a log file.
1822*/
drhc438efd2010-04-26 00:19:45 +00001823int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00001824 Wal *pWal, /* Wal to close */
danc5118782010-04-17 17:34:41 +00001825 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001826 int nBuf,
1827 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00001828){
1829 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00001830 if( pWal ){
dan30c86292010-04-30 16:24:46 +00001831 int isDelete = 0; /* True to unlink wal and wal-index files */
1832
1833 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1834 ** ordinary, rollback-mode locking methods, this guarantees that the
1835 ** connection associated with this log file is the only connection to
1836 ** the database. In this case checkpoint the database and unlink both
1837 ** the wal and wal-index files.
1838 **
1839 ** The EXCLUSIVE lock is not released before returning.
1840 */
drhd9e5c4f2010-05-12 18:01:39 +00001841 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
dan30c86292010-04-30 16:24:46 +00001842 if( rc==SQLITE_OK ){
dan8c408002010-11-01 17:38:24 +00001843 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1844 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1845 }
dancdc1f042010-11-18 12:11:05 +00001846 rc = sqlite3WalCheckpoint(
1847 pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1848 );
drheed42502011-12-16 15:38:52 +00001849 if( rc==SQLITE_OK ){
1850 int bPersist = -1;
drhc02372c2012-01-10 17:59:59 +00001851 sqlite3OsFileControlHint(
dan6f2f19a2012-01-10 16:56:39 +00001852 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
1853 );
drheed42502011-12-16 15:38:52 +00001854 if( bPersist!=1 ){
1855 /* Try to delete the WAL file if the checkpoint completed and
1856 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
1857 ** mode (!bPersist) */
1858 isDelete = 1;
1859 }else if( pWal->mxWalSize>=0 ){
1860 /* Try to truncate the WAL file to zero bytes if the checkpoint
1861 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
1862 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
1863 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
1864 ** to zero bytes as truncating to the journal_size_limit might
1865 ** leave a corrupt WAL file on disk. */
1866 walLimitSize(pWal, 0);
1867 }
dan30c86292010-04-30 16:24:46 +00001868 }
dan30c86292010-04-30 16:24:46 +00001869 }
1870
dan1018e902010-05-05 15:33:05 +00001871 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00001872 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00001873 if( isDelete ){
drh92c45cf2012-01-10 00:24:59 +00001874 sqlite3BeginBenignMalloc();
drhd9e5c4f2010-05-12 18:01:39 +00001875 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
drh92c45cf2012-01-10 00:24:59 +00001876 sqlite3EndBenignMalloc();
dan30c86292010-04-30 16:24:46 +00001877 }
drhc74c3332010-05-31 12:15:19 +00001878 WALTRACE(("WAL%p: closed\n", pWal));
shaneh8a300f82010-07-02 18:15:31 +00001879 sqlite3_free((void *)pWal->apWiData);
drh7ed91f22010-04-29 22:34:07 +00001880 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00001881 }
1882 return rc;
1883}
1884
1885/*
drha2a42012010-05-18 18:01:08 +00001886** Try to read the wal-index header. Return 0 on success and 1 if
1887** there is a problem.
1888**
1889** The wal-index is in shared memory. Another thread or process might
1890** be writing the header at the same time this procedure is trying to
1891** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00001892** by verifying that both copies of the header are the same and also by
1893** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00001894**
1895** If and only if the read is consistent and the header is different from
1896** pWal->hdr, then pWal->hdr is updated to the content of the new header
1897** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00001898**
dan84670502010-05-07 05:46:23 +00001899** If the checksum cannot be verified return non-zero. If the header
1900** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00001901*/
drh7750ab42010-06-26 22:16:02 +00001902static int walIndexTryHdr(Wal *pWal, int *pChanged){
dan4280eb32010-06-12 12:02:35 +00001903 u32 aCksum[2]; /* Checksum on the header content */
1904 WalIndexHdr h1, h2; /* Two copies of the header content */
1905 WalIndexHdr volatile *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00001906
dan4280eb32010-06-12 12:02:35 +00001907 /* The first page of the wal-index must be mapped at this point. */
1908 assert( pWal->nWiData>0 && pWal->apWiData[0] );
drh79e6c782010-04-30 02:13:26 +00001909
drh6cef0cf2010-08-16 16:31:43 +00001910 /* Read the header. This might happen concurrently with a write to the
drh73b64e42010-05-30 19:55:15 +00001911 ** same area of shared memory on a different CPU in a SMP,
1912 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00001913 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00001914 **
1915 ** There are two copies of the header at the beginning of the wal-index.
1916 ** When reading, read [0] first then [1]. Writes are in the reverse order.
1917 ** Memory barriers are used to prevent the compiler or the hardware from
1918 ** reordering the reads and writes.
danb9bf16b2010-04-14 11:23:30 +00001919 */
dan4280eb32010-06-12 12:02:35 +00001920 aHdr = walIndexHdr(pWal);
adamaec336a2011-10-10 22:11:44 +00001921 if( aHdr==NULL ){
1922 return 1; /* Shouldn't be getting NULL from walIndexHdr, but we are */
1923 }
dan4280eb32010-06-12 12:02:35 +00001924 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
dan8c408002010-11-01 17:38:24 +00001925 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +00001926 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00001927
drhf0b20f82010-05-21 13:16:18 +00001928 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
1929 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00001930 }
drh4b82c382010-05-31 18:24:19 +00001931 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00001932 return 1; /* Malformed header - probably all zeros */
1933 }
danb8fd6c22010-05-24 10:39:36 +00001934 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00001935 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
1936 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00001937 }
1938
drhf0b20f82010-05-21 13:16:18 +00001939 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00001940 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00001941 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh9b78f792010-08-14 21:21:24 +00001942 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1943 testcase( pWal->szPage<=32768 );
1944 testcase( pWal->szPage>=65536 );
danb9bf16b2010-04-14 11:23:30 +00001945 }
dan84670502010-05-07 05:46:23 +00001946
1947 /* The header was successfully read. Return zero. */
1948 return 0;
danb9bf16b2010-04-14 11:23:30 +00001949}
1950
1951/*
drha2a42012010-05-18 18:01:08 +00001952** Read the wal-index header from the wal-index and into pWal->hdr.
drha927e942010-06-24 02:46:48 +00001953** If the wal-header appears to be corrupt, try to reconstruct the
1954** wal-index from the WAL before returning.
drha2a42012010-05-18 18:01:08 +00001955**
1956** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
1957** changed by this opertion. If pWal->hdr is unchanged, set *pChanged
1958** to 0.
1959**
drh7ed91f22010-04-29 22:34:07 +00001960** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00001961** Otherwise an SQLite error code.
1962*/
drh7ed91f22010-04-29 22:34:07 +00001963static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00001964 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00001965 int badHdr; /* True if a header read failed */
drha927e942010-06-24 02:46:48 +00001966 volatile u32 *page0; /* Chunk of wal-index containing header */
danb9bf16b2010-04-14 11:23:30 +00001967
dan4280eb32010-06-12 12:02:35 +00001968 /* Ensure that page 0 of the wal-index (the page that contains the
1969 ** wal-index header) is mapped. Return early if an error occurs here.
1970 */
dana8614692010-05-06 14:42:34 +00001971 assert( pChanged );
dan4280eb32010-06-12 12:02:35 +00001972 rc = walIndexPage(pWal, 0, &page0);
danc7991bd2010-05-05 19:04:59 +00001973 if( rc!=SQLITE_OK ){
1974 return rc;
dan4280eb32010-06-12 12:02:35 +00001975 };
1976 assert( page0 || pWal->writeLock==0 );
drh7ed91f22010-04-29 22:34:07 +00001977
dan4280eb32010-06-12 12:02:35 +00001978 /* If the first page of the wal-index has been mapped, try to read the
1979 ** wal-index header immediately, without holding any lock. This usually
1980 ** works, but may fail if the wal-index header is corrupt or currently
drha927e942010-06-24 02:46:48 +00001981 ** being modified by another thread or process.
danb9bf16b2010-04-14 11:23:30 +00001982 */
dan4280eb32010-06-12 12:02:35 +00001983 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
drhbab7b912010-05-26 17:31:58 +00001984
drh73b64e42010-05-30 19:55:15 +00001985 /* If the first attempt failed, it might have been due to a race
drh66dfec8b2011-06-01 20:01:49 +00001986 ** with a writer. So get a WRITE lock and try again.
drh73b64e42010-05-30 19:55:15 +00001987 */
dand54ff602010-05-31 11:16:30 +00001988 assert( badHdr==0 || pWal->writeLock==0 );
dan4edc6bf2011-05-10 17:31:29 +00001989 if( badHdr ){
drh66dfec8b2011-06-01 20:01:49 +00001990 if( pWal->readOnly & WAL_SHM_RDONLY ){
dan4edc6bf2011-05-10 17:31:29 +00001991 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
1992 walUnlockShared(pWal, WAL_WRITE_LOCK);
1993 rc = SQLITE_READONLY_RECOVERY;
drhbab7b912010-05-26 17:31:58 +00001994 }
dan4edc6bf2011-05-10 17:31:29 +00001995 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
1996 pWal->writeLock = 1;
1997 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
1998 badHdr = walIndexTryHdr(pWal, pChanged);
1999 if( badHdr ){
2000 /* If the wal-index header is still malformed even while holding
2001 ** a WRITE lock, it can only mean that the header is corrupted and
2002 ** needs to be reconstructed. So run recovery to do exactly that.
2003 */
2004 rc = walIndexRecover(pWal);
2005 *pChanged = 1;
2006 }
2007 }
2008 pWal->writeLock = 0;
2009 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhbab7b912010-05-26 17:31:58 +00002010 }
danb9bf16b2010-04-14 11:23:30 +00002011 }
2012
drha927e942010-06-24 02:46:48 +00002013 /* If the header is read successfully, check the version number to make
2014 ** sure the wal-index was not constructed with some future format that
2015 ** this version of SQLite cannot understand.
2016 */
2017 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2018 rc = SQLITE_CANTOPEN_BKPT;
2019 }
2020
danb9bf16b2010-04-14 11:23:30 +00002021 return rc;
2022}
2023
2024/*
drh73b64e42010-05-30 19:55:15 +00002025** This is the value that walTryBeginRead returns when it needs to
2026** be retried.
dan7c246102010-04-12 19:00:29 +00002027*/
drh73b64e42010-05-30 19:55:15 +00002028#define WAL_RETRY (-1)
dan64d039e2010-04-13 19:27:31 +00002029
drh73b64e42010-05-30 19:55:15 +00002030/*
2031** Attempt to start a read transaction. This might fail due to a race or
2032** other transient condition. When that happens, it returns WAL_RETRY to
2033** indicate to the caller that it is safe to retry immediately.
2034**
drha927e942010-06-24 02:46:48 +00002035** On success return SQLITE_OK. On a permanent failure (such an
drh73b64e42010-05-30 19:55:15 +00002036** I/O error or an SQLITE_BUSY because another process is running
2037** recovery) return a positive error code.
2038**
drha927e942010-06-24 02:46:48 +00002039** The useWal parameter is true to force the use of the WAL and disable
2040** the case where the WAL is bypassed because it has been completely
2041** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
2042** to make a copy of the wal-index header into pWal->hdr. If the
2043** wal-index header has changed, *pChanged is set to 1 (as an indication
2044** to the caller that the local paget cache is obsolete and needs to be
2045** flushed.) When useWal==1, the wal-index header is assumed to already
2046** be loaded and the pChanged parameter is unused.
2047**
2048** The caller must set the cnt parameter to the number of prior calls to
2049** this routine during the current read attempt that returned WAL_RETRY.
2050** This routine will start taking more aggressive measures to clear the
2051** race conditions after multiple WAL_RETRY returns, and after an excessive
2052** number of errors will ultimately return SQLITE_PROTOCOL. The
2053** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2054** and is not honoring the locking protocol. There is a vanishingly small
2055** chance that SQLITE_PROTOCOL could be returned because of a run of really
2056** bad luck when there is lots of contention for the wal-index, but that
2057** possibility is so small that it can be safely neglected, we believe.
2058**
drh73b64e42010-05-30 19:55:15 +00002059** On success, this routine obtains a read lock on
2060** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
2061** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
2062** that means the Wal does not hold any read lock. The reader must not
2063** access any database page that is modified by a WAL frame up to and
2064** including frame number aReadMark[pWal->readLock]. The reader will
2065** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2066** Or if pWal->readLock==0, then the reader will ignore the WAL
2067** completely and get all content directly from the database file.
drha927e942010-06-24 02:46:48 +00002068** If the useWal parameter is 1 then the WAL will never be ignored and
2069** this routine will always set pWal->readLock>0 on success.
drh73b64e42010-05-30 19:55:15 +00002070** When the read transaction is completed, the caller must release the
2071** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2072**
2073** This routine uses the nBackfill and aReadMark[] fields of the header
2074** to select a particular WAL_READ_LOCK() that strives to let the
2075** checkpoint process do as much work as possible. This routine might
2076** update values of the aReadMark[] array in the header, but if it does
2077** so it takes care to hold an exclusive lock on the corresponding
2078** WAL_READ_LOCK() while changing values.
2079*/
drhaab4c022010-06-02 14:45:51 +00002080static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00002081 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
2082 u32 mxReadMark; /* Largest aReadMark[] value */
2083 int mxI; /* Index of largest aReadMark[] value */
2084 int i; /* Loop counter */
dan13a3cb82010-06-11 19:04:21 +00002085 int rc = SQLITE_OK; /* Return code */
dan64d039e2010-04-13 19:27:31 +00002086
drh61e4ace2010-05-31 20:28:37 +00002087 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00002088
drh658d76c2011-02-19 15:22:14 +00002089 /* Take steps to avoid spinning forever if there is a protocol error.
2090 **
2091 ** Circumstances that cause a RETRY should only last for the briefest
2092 ** instances of time. No I/O or other system calls are done while the
2093 ** locks are held, so the locks should not be held for very long. But
2094 ** if we are unlucky, another process that is holding a lock might get
2095 ** paged out or take a page-fault that is time-consuming to resolve,
2096 ** during the few nanoseconds that it is holding the lock. In that case,
2097 ** it might take longer than normal for the lock to free.
2098 **
2099 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2100 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2101 ** is more of a scheduler yield than an actual delay. But on the 10th
2102 ** an subsequent retries, the delays start becoming longer and longer,
2103 ** so that on the 100th (and last) RETRY we delay for 21 milliseconds.
2104 ** The total delay time before giving up is less than 1 second.
2105 */
drhaab4c022010-06-02 14:45:51 +00002106 if( cnt>5 ){
drh658d76c2011-02-19 15:22:14 +00002107 int nDelay = 1; /* Pause time in microseconds */
adamaec336a2011-10-10 22:11:44 +00002108 if( cnt>500 ){
drh03c69672011-02-19 23:18:12 +00002109 VVA_ONLY( pWal->lockError = 1; )
2110 return SQLITE_PROTOCOL;
2111 }
drh658d76c2011-02-19 15:22:14 +00002112 if( cnt>=10 ) nDelay = (cnt-9)*238; /* Max delay 21ms. Total delay 996ms */
2113 sqlite3OsSleep(pWal->pVfs, nDelay);
drhaab4c022010-06-02 14:45:51 +00002114 }
2115
drh73b64e42010-05-30 19:55:15 +00002116 if( !useWal ){
drh7ed91f22010-04-29 22:34:07 +00002117 rc = walIndexReadHdr(pWal, pChanged);
drh73b64e42010-05-30 19:55:15 +00002118 if( rc==SQLITE_BUSY ){
2119 /* If there is not a recovery running in another thread or process
2120 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2121 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2122 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2123 ** would be technically correct. But the race is benign since with
2124 ** WAL_RETRY this routine will be called again and will probably be
2125 ** right on the second iteration.
2126 */
dan7d4514a2010-07-15 17:54:14 +00002127 if( pWal->apWiData[0]==0 ){
2128 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2129 ** We assume this is a transient condition, so return WAL_RETRY. The
2130 ** xShmMap() implementation used by the default unix and win32 VFS
2131 ** modules may return SQLITE_BUSY due to a race condition in the
2132 ** code that determines whether or not the shared-memory region
2133 ** must be zeroed before the requested page is returned.
2134 */
2135 rc = WAL_RETRY;
2136 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
drh73b64e42010-05-30 19:55:15 +00002137 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2138 rc = WAL_RETRY;
2139 }else if( rc==SQLITE_BUSY ){
2140 rc = SQLITE_BUSY_RECOVERY;
2141 }
2142 }
drha927e942010-06-24 02:46:48 +00002143 if( rc!=SQLITE_OK ){
2144 return rc;
2145 }
drh73b64e42010-05-30 19:55:15 +00002146 }
2147
dan13a3cb82010-06-11 19:04:21 +00002148 pInfo = walCkptInfo(pWal);
drh73b64e42010-05-30 19:55:15 +00002149 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
2150 /* The WAL has been completely backfilled (or it is empty).
2151 ** and can be safely ignored.
2152 */
2153 rc = walLockShared(pWal, WAL_READ_LOCK(0));
dan8c408002010-11-01 17:38:24 +00002154 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002155 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00002156 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00002157 /* It is not safe to allow the reader to continue here if frames
2158 ** may have been appended to the log before READ_LOCK(0) was obtained.
2159 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2160 ** which implies that the database file contains a trustworthy
2161 ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from
2162 ** happening, this is usually correct.
2163 **
2164 ** However, if frames have been appended to the log (or if the log
2165 ** is wrapped and written for that matter) before the READ_LOCK(0)
2166 ** is obtained, that is not necessarily true. A checkpointer may
2167 ** have started to backfill the appended frames but crashed before
2168 ** it finished. Leaving a corrupt image in the database file.
2169 */
drh73b64e42010-05-30 19:55:15 +00002170 walUnlockShared(pWal, WAL_READ_LOCK(0));
2171 return WAL_RETRY;
2172 }
2173 pWal->readLock = 0;
2174 return SQLITE_OK;
2175 }else if( rc!=SQLITE_BUSY ){
2176 return rc;
dan64d039e2010-04-13 19:27:31 +00002177 }
dan7c246102010-04-12 19:00:29 +00002178 }
danba515902010-04-30 09:32:06 +00002179
drh73b64e42010-05-30 19:55:15 +00002180 /* If we get this far, it means that the reader will want to use
2181 ** the WAL to get at content from recent commits. The job now is
2182 ** to select one of the aReadMark[] entries that is closest to
2183 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2184 */
2185 mxReadMark = 0;
2186 mxI = 0;
2187 for(i=1; i<WAL_NREADER; i++){
2188 u32 thisMark = pInfo->aReadMark[i];
drhdb7f6472010-06-09 14:45:12 +00002189 if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
2190 assert( thisMark!=READMARK_NOT_USED );
drh73b64e42010-05-30 19:55:15 +00002191 mxReadMark = thisMark;
2192 mxI = i;
2193 }
2194 }
drh658d76c2011-02-19 15:22:14 +00002195 /* There was once an "if" here. The extra "{" is to preserve indentation. */
2196 {
drh66dfec8b2011-06-01 20:01:49 +00002197 if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2198 && (mxReadMark<pWal->hdr.mxFrame || mxI==0)
2199 ){
dand54ff602010-05-31 11:16:30 +00002200 for(i=1; i<WAL_NREADER; i++){
drh73b64e42010-05-30 19:55:15 +00002201 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2202 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00002203 mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
drh73b64e42010-05-30 19:55:15 +00002204 mxI = i;
2205 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2206 break;
drh38933f22010-06-02 15:43:18 +00002207 }else if( rc!=SQLITE_BUSY ){
2208 return rc;
drh73b64e42010-05-30 19:55:15 +00002209 }
2210 }
2211 }
drh658d76c2011-02-19 15:22:14 +00002212 if( mxI==0 ){
drh5bf39342011-06-02 17:24:49 +00002213 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
dan4edc6bf2011-05-10 17:31:29 +00002214 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
drh658d76c2011-02-19 15:22:14 +00002215 }
drh73b64e42010-05-30 19:55:15 +00002216
2217 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2218 if( rc ){
2219 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2220 }
daneb8cb3a2010-06-05 18:34:26 +00002221 /* Now that the read-lock has been obtained, check that neither the
2222 ** value in the aReadMark[] array or the contents of the wal-index
2223 ** header have changed.
2224 **
2225 ** It is necessary to check that the wal-index header did not change
2226 ** between the time it was read and when the shared-lock was obtained
2227 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2228 ** that the log file may have been wrapped by a writer, or that frames
2229 ** that occur later in the log than pWal->hdr.mxFrame may have been
2230 ** copied into the database by a checkpointer. If either of these things
2231 ** happened, then reading the database with the current value of
2232 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2233 ** instead.
2234 **
dan640aac42010-06-05 19:18:59 +00002235 ** This does not guarantee that the copy of the wal-index header is up to
2236 ** date before proceeding. That would not be possible without somehow
2237 ** blocking writers. It only guarantees that a dangerous checkpoint or
daneb8cb3a2010-06-05 18:34:26 +00002238 ** log-wrap (either of which would require an exclusive lock on
2239 ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
2240 */
dan8c408002010-11-01 17:38:24 +00002241 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002242 if( pInfo->aReadMark[mxI]!=mxReadMark
dan4280eb32010-06-12 12:02:35 +00002243 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
drh73b64e42010-05-30 19:55:15 +00002244 ){
2245 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2246 return WAL_RETRY;
2247 }else{
drhdb7f6472010-06-09 14:45:12 +00002248 assert( mxReadMark<=pWal->hdr.mxFrame );
shaneh5eba1f62010-07-02 17:05:03 +00002249 pWal->readLock = (i16)mxI;
drh73b64e42010-05-30 19:55:15 +00002250 }
2251 }
2252 return rc;
2253}
2254
2255/*
2256** Begin a read transaction on the database.
2257**
2258** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2259** it takes a snapshot of the state of the WAL and wal-index for the current
2260** instant in time. The current thread will continue to use this snapshot.
2261** Other threads might append new content to the WAL and wal-index but
2262** that extra content is ignored by the current thread.
2263**
2264** If the database contents have changes since the previous read
2265** transaction, then *pChanged is set to 1 before returning. The
2266** Pager layer will use this to know that is cache is stale and
2267** needs to be flushed.
2268*/
drh66dfec8b2011-06-01 20:01:49 +00002269int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
drh73b64e42010-05-30 19:55:15 +00002270 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00002271 int cnt = 0; /* Number of TryBeginRead attempts */
drh73b64e42010-05-30 19:55:15 +00002272
2273 do{
drhaab4c022010-06-02 14:45:51 +00002274 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00002275 }while( rc==WAL_RETRY );
drhab1cc742011-02-19 16:51:45 +00002276 testcase( (rc&0xff)==SQLITE_BUSY );
2277 testcase( (rc&0xff)==SQLITE_IOERR );
2278 testcase( rc==SQLITE_PROTOCOL );
2279 testcase( rc==SQLITE_OK );
dan7c246102010-04-12 19:00:29 +00002280 return rc;
2281}
2282
2283/*
drh73b64e42010-05-30 19:55:15 +00002284** Finish with a read transaction. All this does is release the
2285** read-lock.
dan7c246102010-04-12 19:00:29 +00002286*/
drh73b64e42010-05-30 19:55:15 +00002287void sqlite3WalEndReadTransaction(Wal *pWal){
dan73d66fd2010-08-07 16:17:48 +00002288 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00002289 if( pWal->readLock>=0 ){
2290 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2291 pWal->readLock = -1;
2292 }
dan7c246102010-04-12 19:00:29 +00002293}
2294
dan5e0ce872010-04-28 17:48:44 +00002295/*
drh73b64e42010-05-30 19:55:15 +00002296** Read a page from the WAL, if it is present in the WAL and if the
2297** current read transaction is configured to use the WAL.
2298**
2299** The *pInWal is set to 1 if the requested page is in the WAL and
2300** has been loaded. Or *pInWal is set to 0 if the page was not in
2301** the WAL and needs to be read out of the database.
dan7c246102010-04-12 19:00:29 +00002302*/
danb6e099a2010-05-04 14:47:39 +00002303int sqlite3WalRead(
danbb23aff2010-05-10 14:46:09 +00002304 Wal *pWal, /* WAL handle */
2305 Pgno pgno, /* Database page number to read data for */
2306 int *pInWal, /* OUT: True if data is read from WAL */
2307 int nOut, /* Size of buffer pOut in bytes */
2308 u8 *pOut /* Buffer to write page data to */
danb6e099a2010-05-04 14:47:39 +00002309){
danbb23aff2010-05-10 14:46:09 +00002310 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00002311 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00002312 int iHash; /* Used to loop through N hash tables */
dan7c246102010-04-12 19:00:29 +00002313
drhaab4c022010-06-02 14:45:51 +00002314 /* This routine is only be called from within a read transaction. */
2315 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00002316
danbb23aff2010-05-10 14:46:09 +00002317 /* If the "last page" field of the wal-index header snapshot is 0, then
2318 ** no data will be read from the wal under any circumstances. Return early
drha927e942010-06-24 02:46:48 +00002319 ** in this case as an optimization. Likewise, if pWal->readLock==0,
2320 ** then the WAL is ignored by the reader so return early, as if the
2321 ** WAL were empty.
danbb23aff2010-05-10 14:46:09 +00002322 */
drh73b64e42010-05-30 19:55:15 +00002323 if( iLast==0 || pWal->readLock==0 ){
danbb23aff2010-05-10 14:46:09 +00002324 *pInWal = 0;
2325 return SQLITE_OK;
2326 }
2327
danbb23aff2010-05-10 14:46:09 +00002328 /* Search the hash table or tables for an entry matching page number
2329 ** pgno. Each iteration of the following for() loop searches one
2330 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2331 **
drha927e942010-06-24 02:46:48 +00002332 ** This code might run concurrently to the code in walIndexAppend()
danbb23aff2010-05-10 14:46:09 +00002333 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00002334 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00002335 ** slot (aHash[iKey]) may have been added before or after the
2336 ** current read transaction was opened. Values added after the
2337 ** read transaction was opened may have been written incorrectly -
2338 ** i.e. these slots may contain garbage data. However, we assume
2339 ** that any slots written before the current read transaction was
2340 ** opened remain unmodified.
2341 **
2342 ** For the reasons above, the if(...) condition featured in the inner
2343 ** loop of the following block is more stringent that would be required
2344 ** if we had exclusive access to the hash-table:
2345 **
2346 ** (aPgno[iFrame]==pgno):
2347 ** This condition filters out normal hash-table collisions.
2348 **
2349 ** (iFrame<=iLast):
2350 ** This condition filters out entries that were added to the hash
2351 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00002352 */
dan13a3cb82010-06-11 19:04:21 +00002353 for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
dan067f3162010-06-14 10:30:12 +00002354 volatile ht_slot *aHash; /* Pointer to hash table */
2355 volatile u32 *aPgno; /* Pointer to array of page numbers */
danbb23aff2010-05-10 14:46:09 +00002356 u32 iZero; /* Frame number corresponding to aPgno[0] */
2357 int iKey; /* Hash slot index */
drh519426a2010-07-09 03:19:07 +00002358 int nCollide; /* Number of hash collisions remaining */
2359 int rc; /* Error code */
danbb23aff2010-05-10 14:46:09 +00002360
dan4280eb32010-06-12 12:02:35 +00002361 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2362 if( rc!=SQLITE_OK ){
2363 return rc;
2364 }
drh519426a2010-07-09 03:19:07 +00002365 nCollide = HASHTABLE_NSLOT;
dan6f150142010-05-21 15:31:56 +00002366 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
danbb23aff2010-05-10 14:46:09 +00002367 u32 iFrame = aHash[iKey] + iZero;
dand60bf112010-06-14 11:18:50 +00002368 if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
drhd5156602011-11-12 16:46:55 +00002369 /* assert( iFrame>iRead ); -- not true if there is corruption */
danbb23aff2010-05-10 14:46:09 +00002370 iRead = iFrame;
2371 }
drh519426a2010-07-09 03:19:07 +00002372 if( (nCollide--)==0 ){
2373 return SQLITE_CORRUPT_BKPT;
2374 }
dan7c246102010-04-12 19:00:29 +00002375 }
2376 }
dan7c246102010-04-12 19:00:29 +00002377
danbb23aff2010-05-10 14:46:09 +00002378#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2379 /* If expensive assert() statements are available, do a linear search
2380 ** of the wal-index file content. Make sure the results agree with the
2381 ** result obtained using the hash indexes above. */
2382 {
2383 u32 iRead2 = 0;
2384 u32 iTest;
2385 for(iTest=iLast; iTest>0; iTest--){
dan13a3cb82010-06-11 19:04:21 +00002386 if( walFramePgno(pWal, iTest)==pgno ){
danbb23aff2010-05-10 14:46:09 +00002387 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00002388 break;
2389 }
dan7c246102010-04-12 19:00:29 +00002390 }
danbb23aff2010-05-10 14:46:09 +00002391 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00002392 }
danbb23aff2010-05-10 14:46:09 +00002393#endif
dancd11fb22010-04-26 10:40:52 +00002394
dan7c246102010-04-12 19:00:29 +00002395 /* If iRead is non-zero, then it is the log frame number that contains the
2396 ** required page. Read and return data from the log file.
2397 */
2398 if( iRead ){
drhb2eced52010-08-12 02:41:12 +00002399 int sz;
2400 i64 iOffset;
2401 sz = pWal->hdr.szPage;
drhb07028f2011-10-14 21:49:18 +00002402 sz = (sz&0xfe00) + ((sz&0x0001)<<16);
drh9b78f792010-08-14 21:21:24 +00002403 testcase( sz<=32768 );
2404 testcase( sz>=65536 );
drhb2eced52010-08-12 02:41:12 +00002405 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
drh7ed91f22010-04-29 22:34:07 +00002406 *pInWal = 1;
drh09b5dbc2010-07-07 14:35:58 +00002407 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
danf6029632012-02-28 17:57:34 +00002408 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
dan7c246102010-04-12 19:00:29 +00002409 }
2410
drh7ed91f22010-04-29 22:34:07 +00002411 *pInWal = 0;
dan7c246102010-04-12 19:00:29 +00002412 return SQLITE_OK;
2413}
2414
2415
2416/*
dan763afe62010-08-03 06:42:39 +00002417** Return the size of the database in pages (or zero, if unknown).
dan7c246102010-04-12 19:00:29 +00002418*/
dan763afe62010-08-03 06:42:39 +00002419Pgno sqlite3WalDbsize(Wal *pWal){
drh7e9e70b2010-08-16 14:17:59 +00002420 if( pWal && ALWAYS(pWal->readLock>=0) ){
dan763afe62010-08-03 06:42:39 +00002421 return pWal->hdr.nPage;
2422 }
2423 return 0;
dan7c246102010-04-12 19:00:29 +00002424}
2425
dan30c86292010-04-30 16:24:46 +00002426
drh73b64e42010-05-30 19:55:15 +00002427/*
2428** This function starts a write transaction on the WAL.
2429**
2430** A read transaction must have already been started by a prior call
2431** to sqlite3WalBeginReadTransaction().
2432**
2433** If another thread or process has written into the database since
2434** the read transaction was started, then it is not possible for this
2435** thread to write as doing so would cause a fork. So this routine
2436** returns SQLITE_BUSY in that case and no write transaction is started.
2437**
2438** There can only be a single writer active at a time.
2439*/
2440int sqlite3WalBeginWriteTransaction(Wal *pWal){
2441 int rc;
drh73b64e42010-05-30 19:55:15 +00002442
2443 /* Cannot start a write transaction without first holding a read
2444 ** transaction. */
2445 assert( pWal->readLock>=0 );
2446
dan1e5de5a2010-07-15 18:20:53 +00002447 if( pWal->readOnly ){
2448 return SQLITE_READONLY;
2449 }
2450
drh73b64e42010-05-30 19:55:15 +00002451 /* Only one writer allowed at a time. Get the write lock. Return
2452 ** SQLITE_BUSY if unable.
2453 */
2454 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2455 if( rc ){
2456 return rc;
2457 }
drhc99597c2010-05-31 01:41:15 +00002458 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00002459
2460 /* If another connection has written to the database file since the
2461 ** time the read transaction on this connection was started, then
2462 ** the write is disallowed.
2463 */
dan4280eb32010-06-12 12:02:35 +00002464 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
drh73b64e42010-05-30 19:55:15 +00002465 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00002466 pWal->writeLock = 0;
dan9971e712010-06-01 15:44:57 +00002467 rc = SQLITE_BUSY;
drh73b64e42010-05-30 19:55:15 +00002468 }
2469
drh7ed91f22010-04-29 22:34:07 +00002470 return rc;
dan7c246102010-04-12 19:00:29 +00002471}
2472
dan74d6cd82010-04-24 18:44:05 +00002473/*
drh73b64e42010-05-30 19:55:15 +00002474** End a write transaction. The commit has already been done. This
2475** routine merely releases the lock.
2476*/
2477int sqlite3WalEndWriteTransaction(Wal *pWal){
danda9fe0c2010-07-13 18:44:03 +00002478 if( pWal->writeLock ){
2479 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2480 pWal->writeLock = 0;
danf60b7f32011-12-16 13:24:27 +00002481 pWal->truncateOnCommit = 0;
danda9fe0c2010-07-13 18:44:03 +00002482 }
drh73b64e42010-05-30 19:55:15 +00002483 return SQLITE_OK;
2484}
2485
2486/*
dan74d6cd82010-04-24 18:44:05 +00002487** If any data has been written (but not committed) to the log file, this
2488** function moves the write-pointer back to the start of the transaction.
2489**
2490** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00002491** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00002492** other than SQLITE_OK, it is not invoked again and the error code is
2493** returned to the caller.
2494**
2495** Otherwise, if the callback function does not return an error, this
2496** function returns SQLITE_OK.
2497*/
drh7ed91f22010-04-29 22:34:07 +00002498int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00002499 int rc = SQLITE_OK;
drh7e9e70b2010-08-16 14:17:59 +00002500 if( ALWAYS(pWal->writeLock) ){
drh027a1282010-05-19 01:53:53 +00002501 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00002502 Pgno iFrame;
2503
dan5d656852010-06-14 07:53:26 +00002504 /* Restore the clients cache of the wal-index header to the state it
2505 ** was in before the client began writing to the database.
2506 */
dan067f3162010-06-14 10:30:12 +00002507 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
dan5d656852010-06-14 07:53:26 +00002508
2509 for(iFrame=pWal->hdr.mxFrame+1;
2510 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
2511 iFrame++
2512 ){
2513 /* This call cannot fail. Unless the page for which the page number
2514 ** is passed as the second argument is (a) in the cache and
2515 ** (b) has an outstanding reference, then xUndo is either a no-op
2516 ** (if (a) is false) or simply expels the page from the cache (if (b)
2517 ** is false).
2518 **
2519 ** If the upper layer is doing a rollback, it is guaranteed that there
2520 ** are no outstanding references to any page other than page 1. And
2521 ** page 1 is never written to the log until the transaction is
2522 ** committed. As a result, the call to xUndo may not fail.
2523 */
dan5d656852010-06-14 07:53:26 +00002524 assert( walFramePgno(pWal, iFrame)!=1 );
2525 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
dan6f150142010-05-21 15:31:56 +00002526 }
dan5d656852010-06-14 07:53:26 +00002527 walCleanupHash(pWal);
dan74d6cd82010-04-24 18:44:05 +00002528 }
dan5d656852010-06-14 07:53:26 +00002529 assert( rc==SQLITE_OK );
dan74d6cd82010-04-24 18:44:05 +00002530 return rc;
2531}
2532
dan71d89912010-05-24 13:57:42 +00002533/*
2534** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2535** values. This function populates the array with values required to
2536** "rollback" the write position of the WAL handle back to the current
2537** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00002538*/
dan71d89912010-05-24 13:57:42 +00002539void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00002540 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00002541 aWalData[0] = pWal->hdr.mxFrame;
2542 aWalData[1] = pWal->hdr.aFrameCksum[0];
2543 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00002544 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00002545}
2546
dan71d89912010-05-24 13:57:42 +00002547/*
2548** Move the write position of the WAL back to the point identified by
2549** the values in the aWalData[] array. aWalData must point to an array
2550** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2551** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00002552*/
dan71d89912010-05-24 13:57:42 +00002553int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00002554 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00002555
dan6e6bd562010-06-02 18:59:03 +00002556 assert( pWal->writeLock );
2557 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2558
2559 if( aWalData[3]!=pWal->nCkpt ){
2560 /* This savepoint was opened immediately after the write-transaction
2561 ** was started. Right after that, the writer decided to wrap around
2562 ** to the start of the log. Update the savepoint values to match.
2563 */
2564 aWalData[0] = 0;
2565 aWalData[3] = pWal->nCkpt;
2566 }
2567
dan71d89912010-05-24 13:57:42 +00002568 if( aWalData[0]<pWal->hdr.mxFrame ){
dan71d89912010-05-24 13:57:42 +00002569 pWal->hdr.mxFrame = aWalData[0];
2570 pWal->hdr.aFrameCksum[0] = aWalData[1];
2571 pWal->hdr.aFrameCksum[1] = aWalData[2];
dan5d656852010-06-14 07:53:26 +00002572 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00002573 }
dan6e6bd562010-06-02 18:59:03 +00002574
dan4cd78b42010-04-26 16:57:10 +00002575 return rc;
2576}
2577
drh8dd4afa2011-12-08 19:50:32 +00002578
dan9971e712010-06-01 15:44:57 +00002579/*
2580** This function is called just before writing a set of frames to the log
2581** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2582** to the current log file, it is possible to overwrite the start of the
2583** existing log file with the new frames (i.e. "reset" the log). If so,
2584** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2585** unchanged.
2586**
2587** SQLITE_OK is returned if no error is encountered (regardless of whether
2588** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
drh4533cd02010-10-05 15:41:05 +00002589** if an error occurs.
dan9971e712010-06-01 15:44:57 +00002590*/
2591static int walRestartLog(Wal *pWal){
2592 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00002593 int cnt;
2594
dan13a3cb82010-06-11 19:04:21 +00002595 if( pWal->readLock==0 ){
dan9971e712010-06-01 15:44:57 +00002596 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2597 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2598 if( pInfo->nBackfill>0 ){
drh658d76c2011-02-19 15:22:14 +00002599 u32 salt1;
2600 sqlite3_randomness(4, &salt1);
dan9971e712010-06-01 15:44:57 +00002601 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2602 if( rc==SQLITE_OK ){
2603 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2604 ** readers are currently using the WAL), then the transactions
2605 ** frames will overwrite the start of the existing log. Update the
2606 ** wal-index header to reflect this.
2607 **
2608 ** In theory it would be Ok to update the cache of the header only
2609 ** at this point. But updating the actual wal-index header is also
2610 ** safe and means there is no special case for sqlite3WalUndo()
2611 ** to handle if this transaction is rolled back.
2612 */
dan199100e2010-06-09 16:58:49 +00002613 int i; /* Loop counter */
dan9971e712010-06-01 15:44:57 +00002614 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
drh85a83752011-05-16 21:00:27 +00002615
dan9971e712010-06-01 15:44:57 +00002616 pWal->nCkpt++;
2617 pWal->hdr.mxFrame = 0;
2618 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
drh658d76c2011-02-19 15:22:14 +00002619 aSalt[1] = salt1;
dan9971e712010-06-01 15:44:57 +00002620 walIndexWriteHdr(pWal);
dan199100e2010-06-09 16:58:49 +00002621 pInfo->nBackfill = 0;
2622 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
2623 assert( pInfo->aReadMark[0]==0 );
dan9971e712010-06-01 15:44:57 +00002624 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
drh4533cd02010-10-05 15:41:05 +00002625 }else if( rc!=SQLITE_BUSY ){
2626 return rc;
dan9971e712010-06-01 15:44:57 +00002627 }
2628 }
2629 walUnlockShared(pWal, WAL_READ_LOCK(0));
2630 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00002631 cnt = 0;
dan9971e712010-06-01 15:44:57 +00002632 do{
2633 int notUsed;
drhaab4c022010-06-02 14:45:51 +00002634 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00002635 }while( rc==WAL_RETRY );
drhc90e0812011-02-19 17:02:44 +00002636 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
drhab1cc742011-02-19 16:51:45 +00002637 testcase( (rc&0xff)==SQLITE_IOERR );
2638 testcase( rc==SQLITE_PROTOCOL );
2639 testcase( rc==SQLITE_OK );
dan9971e712010-06-01 15:44:57 +00002640 }
2641 return rc;
2642}
2643
drh88f975a2011-12-16 19:34:36 +00002644/*
drhd992b152011-12-20 20:13:25 +00002645** Information about the current state of the WAL file and where
2646** the next fsync should occur - passed from sqlite3WalFrames() into
2647** walWriteToLog().
2648*/
2649typedef struct WalWriter {
2650 Wal *pWal; /* The complete WAL information */
2651 sqlite3_file *pFd; /* The WAL file to which we write */
2652 sqlite3_int64 iSyncPoint; /* Fsync at this offset */
2653 int syncFlags; /* Flags for the fsync */
2654 int szPage; /* Size of one page */
adam0cb33b62012-04-02 23:35:45 +00002655#if defined(SQLITE_WRITE_WALFRAME_PREBUFFERED)
2656 void *aFrameBuf; /* Frame buffer */
2657 size_t szFrameBuf; /* Size of frame buffer */
2658#endif
drhd992b152011-12-20 20:13:25 +00002659} WalWriter;
2660
2661/*
drh88f975a2011-12-16 19:34:36 +00002662** Write iAmt bytes of content into the WAL file beginning at iOffset.
drhd992b152011-12-20 20:13:25 +00002663** Do a sync when crossing the p->iSyncPoint boundary.
drh88f975a2011-12-16 19:34:36 +00002664**
drhd992b152011-12-20 20:13:25 +00002665** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
2666** first write the part before iSyncPoint, then sync, then write the
2667** rest.
drh88f975a2011-12-16 19:34:36 +00002668*/
2669static int walWriteToLog(
drhd992b152011-12-20 20:13:25 +00002670 WalWriter *p, /* WAL to write to */
drh88f975a2011-12-16 19:34:36 +00002671 void *pContent, /* Content to be written */
2672 int iAmt, /* Number of bytes to write */
2673 sqlite3_int64 iOffset /* Start writing at this offset */
2674){
2675 int rc;
drhd992b152011-12-20 20:13:25 +00002676 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
2677 int iFirstAmt = (int)(p->iSyncPoint - iOffset);
2678 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
drh88f975a2011-12-16 19:34:36 +00002679 if( rc ) return rc;
drhd992b152011-12-20 20:13:25 +00002680 iOffset += iFirstAmt;
2681 iAmt -= iFirstAmt;
drh88f975a2011-12-16 19:34:36 +00002682 pContent = (void*)(iFirstAmt + (char*)pContent);
drhd992b152011-12-20 20:13:25 +00002683 assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) );
2684 rc = sqlite3OsSync(p->pFd, p->syncFlags);
drhcc8d10a2011-12-23 02:07:10 +00002685 if( iAmt==0 || rc ) return rc;
drh88f975a2011-12-16 19:34:36 +00002686 }
drhd992b152011-12-20 20:13:25 +00002687 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
2688 return rc;
2689}
2690
2691/*
2692** Write out a single frame of the WAL
2693*/
2694static int walWriteOneFrame(
2695 WalWriter *p, /* Where to write the frame */
2696 PgHdr *pPage, /* The page of the frame to be written */
2697 int nTruncate, /* The commit flag. Usually 0. >0 for commit */
2698 sqlite3_int64 iOffset /* Byte offset at which to write */
2699){
2700 int rc; /* Result code from subfunctions */
2701 void *pData; /* Data actually written */
adam0cb33b62012-04-02 23:35:45 +00002702#if defined(SQLITE_WRITE_WALFRAME_PREBUFFERED)
2703 void *aFrame;
2704
2705 assert(sizeof(p->aFrameBuf) == (p->szPage + WAL_FRAME_HDRSIZE));
2706 aFrame = p->aFrameBuf;
2707#else
drhd992b152011-12-20 20:13:25 +00002708 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
adam0cb33b62012-04-02 23:35:45 +00002709#endif
2710
drhd992b152011-12-20 20:13:25 +00002711#if defined(SQLITE_HAS_CODEC)
2712 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM;
2713#else
2714 pData = pPage->pData;
2715#endif
adam0cb33b62012-04-02 23:35:45 +00002716
drhd992b152011-12-20 20:13:25 +00002717 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
adam0cb33b62012-04-02 23:35:45 +00002718
2719#if defined(SQLITE_WRITE_WALFRAME_PREBUFFERED)
2720 memcpy(&aFrame[WAL_FRAME_HDRSIZE], pData, p->szPage);
2721 rc = walWriteToLog(p, aFrame, (p->szPage + WAL_FRAME_HDRSIZE), iOffset);
2722#else
drhd992b152011-12-20 20:13:25 +00002723 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
2724 if( rc ) return rc;
2725 /* Write the page data */
2726 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
adam0cb33b62012-04-02 23:35:45 +00002727#endif
drh88f975a2011-12-16 19:34:36 +00002728 return rc;
2729}
2730
dan7c246102010-04-12 19:00:29 +00002731/*
dan4cd78b42010-04-26 16:57:10 +00002732** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00002733** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00002734*/
drhc438efd2010-04-26 00:19:45 +00002735int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00002736 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00002737 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00002738 PgHdr *pList, /* List of dirty pages to write */
2739 Pgno nTruncate, /* Database size after this commit */
2740 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00002741 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00002742){
dan7c246102010-04-12 19:00:29 +00002743 int rc; /* Used to catch return codes */
2744 u32 iFrame; /* Next frame address */
dan7c246102010-04-12 19:00:29 +00002745 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00002746 PgHdr *pLast = 0; /* Last frame in list */
drhd992b152011-12-20 20:13:25 +00002747 int nExtra = 0; /* Number of extra copies of last page */
2748 int szFrame; /* The size of a single frame */
2749 i64 iOffset; /* Next byte to write in WAL file */
2750 WalWriter w; /* The writer */
dan7c246102010-04-12 19:00:29 +00002751
dan7c246102010-04-12 19:00:29 +00002752 assert( pList );
drh73b64e42010-05-30 19:55:15 +00002753 assert( pWal->writeLock );
dan7c246102010-04-12 19:00:29 +00002754
drh41209942011-12-20 13:13:09 +00002755 /* If this frame set completes a transaction, then nTruncate>0. If
2756 ** nTruncate==0 then this frame set does not complete the transaction. */
2757 assert( (isCommit!=0)==(nTruncate!=0) );
2758
drhc74c3332010-05-31 12:15:19 +00002759#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2760 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2761 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2762 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2763 }
2764#endif
2765
dan9971e712010-06-01 15:44:57 +00002766 /* See if it is possible to write these frames into the start of the
2767 ** log file, instead of appending to it at pWal->hdr.mxFrame.
2768 */
2769 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
dan9971e712010-06-01 15:44:57 +00002770 return rc;
2771 }
dan9971e712010-06-01 15:44:57 +00002772
drha2a42012010-05-18 18:01:08 +00002773 /* If this is the first frame written into the log, write the WAL
2774 ** header to the start of the WAL file. See comments at the top of
2775 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00002776 */
drh027a1282010-05-19 01:53:53 +00002777 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00002778 if( iFrame==0 ){
dan10f5a502010-06-23 15:55:43 +00002779 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
2780 u32 aCksum[2]; /* Checksum for wal-header */
2781
danb8fd6c22010-05-24 10:39:36 +00002782 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
dan10f5a502010-06-23 15:55:43 +00002783 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
drh23ea97b2010-05-20 16:45:58 +00002784 sqlite3Put4byte(&aWalHdr[8], szPage);
2785 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drhd2980312011-12-17 01:31:44 +00002786 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
drh7e263722010-05-20 21:21:09 +00002787 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
dan10f5a502010-06-23 15:55:43 +00002788 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
2789 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
2790 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
2791
drhb2eced52010-08-12 02:41:12 +00002792 pWal->szPage = szPage;
dan10f5a502010-06-23 15:55:43 +00002793 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
2794 pWal->hdr.aFrameCksum[0] = aCksum[0];
2795 pWal->hdr.aFrameCksum[1] = aCksum[1];
danf60b7f32011-12-16 13:24:27 +00002796 pWal->truncateOnCommit = 1;
dan10f5a502010-06-23 15:55:43 +00002797
drh23ea97b2010-05-20 16:45:58 +00002798 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00002799 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00002800 if( rc!=SQLITE_OK ){
2801 return rc;
2802 }
drhd992b152011-12-20 20:13:25 +00002803
2804 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
2805 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
2806 ** an out-of-order write following a WAL restart could result in
2807 ** database corruption. See the ticket:
2808 **
2809 ** http://localhost:591/sqlite/info/ff5be73dee
2810 */
2811 if( pWal->syncHeader && sync_flags ){
2812 rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK);
2813 if( rc ) return rc;
2814 }
dan97a31352010-04-16 13:59:31 +00002815 }
shanehbd2aaf92010-09-01 02:38:21 +00002816 assert( (int)pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00002817
drhd992b152011-12-20 20:13:25 +00002818 /* Setup information needed to write frames into the WAL */
2819 w.pWal = pWal;
2820 w.pFd = pWal->pWalFd;
2821 w.iSyncPoint = 0;
2822 w.syncFlags = sync_flags;
2823 w.szPage = szPage;
2824 iOffset = walFrameOffset(iFrame+1, szPage);
2825 szFrame = szPage + WAL_FRAME_HDRSIZE;
adam0cb33b62012-04-02 23:35:45 +00002826#if defined(SQLITE_WRITE_WALFRAME_PREBUFFERED)
2827 w.aFrameBuf = (void *)malloc(szFrame);
2828 if( NULL==w.aFrameBuf ){
2829 return SQLITE_NOMEM;
2830 }
2831#endif
2832
dan7c246102010-04-12 19:00:29 +00002833
drhd992b152011-12-20 20:13:25 +00002834 /* Write all frames into the log file exactly once */
dan7c246102010-04-12 19:00:29 +00002835 for(p=pList; p; p=p->pDirty){
drhd992b152011-12-20 20:13:25 +00002836 int nDbSize; /* 0 normally. Positive == commit flag */
2837 iFrame++;
2838 assert( iOffset==walFrameOffset(iFrame, szPage) );
2839 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
2840 rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
2841 if( rc ) return rc;
dan7c246102010-04-12 19:00:29 +00002842 pLast = p;
drhd992b152011-12-20 20:13:25 +00002843 iOffset += szFrame;
dan7c246102010-04-12 19:00:29 +00002844 }
2845
drhd992b152011-12-20 20:13:25 +00002846 /* If this is the end of a transaction, then we might need to pad
2847 ** the transaction and/or sync the WAL file.
2848 **
2849 ** Padding and syncing only occur if this set of frames complete a
2850 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
2851 ** or synchonous==OFF, then no padding or syncing are needed.
2852 **
drhcb15f352011-12-23 01:04:17 +00002853 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
2854 ** needed and only the sync is done. If padding is needed, then the
2855 ** final frame is repeated (with its commit mark) until the next sector
drhd992b152011-12-20 20:13:25 +00002856 ** boundary is crossed. Only the part of the WAL prior to the last
2857 ** sector boundary is synced; the part of the last frame that extends
2858 ** past the sector boundary is written after the sync.
2859 */
drh4eb02a42011-12-16 21:26:26 +00002860 if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){
drh374f4a02011-12-17 20:02:11 +00002861 if( pWal->padToSectorBoundary ){
drhd992b152011-12-20 20:13:25 +00002862 int sectorSize = sqlite3OsSectorSize(pWal->pWalFd);
2863 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
2864 while( iOffset<w.iSyncPoint ){
2865 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
2866 if( rc ) return rc;
2867 iOffset += szFrame;
2868 nExtra++;
dan7c246102010-04-12 19:00:29 +00002869 }
drh4e5e1082011-12-23 13:32:07 +00002870 }else{
2871 rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK);
dan7c246102010-04-12 19:00:29 +00002872 }
dan7c246102010-04-12 19:00:29 +00002873 }
dan7c246102010-04-12 19:00:29 +00002874
adam0cb33b62012-04-02 23:35:45 +00002875#if defined(SQLITE_WRITE_WALFRAME_PREBUFFERED)
2876 free(w.aFrameBuf);
2877#endif
drhd992b152011-12-20 20:13:25 +00002878 /* If this frame set completes the first transaction in the WAL and
2879 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
2880 ** journal size limit, if possible.
2881 */
danf60b7f32011-12-16 13:24:27 +00002882 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
2883 i64 sz = pWal->mxWalSize;
drhd992b152011-12-20 20:13:25 +00002884 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
2885 sz = walFrameOffset(iFrame+nExtra+1, szPage);
danf60b7f32011-12-16 13:24:27 +00002886 }
2887 walLimitSize(pWal, sz);
2888 pWal->truncateOnCommit = 0;
dan7c246102010-04-12 19:00:29 +00002889 }
2890
drhe730fec2010-05-18 12:56:50 +00002891 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00002892 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00002893 ** guarantees that there are no other writers, and no data that may
2894 ** be in use by existing readers is being overwritten.
2895 */
drh027a1282010-05-19 01:53:53 +00002896 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00002897 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dan7c246102010-04-12 19:00:29 +00002898 iFrame++;
danc7991bd2010-05-05 19:04:59 +00002899 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00002900 }
drh20e226d2012-01-01 13:58:53 +00002901 while( rc==SQLITE_OK && nExtra>0 ){
dan7c246102010-04-12 19:00:29 +00002902 iFrame++;
drhd992b152011-12-20 20:13:25 +00002903 nExtra--;
danc7991bd2010-05-05 19:04:59 +00002904 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00002905 }
2906
danc7991bd2010-05-05 19:04:59 +00002907 if( rc==SQLITE_OK ){
2908 /* Update the private copy of the header. */
shaneh1df2db72010-08-18 02:28:48 +00002909 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00002910 testcase( szPage<=32768 );
2911 testcase( szPage>=65536 );
drh027a1282010-05-19 01:53:53 +00002912 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00002913 if( isCommit ){
2914 pWal->hdr.iChange++;
2915 pWal->hdr.nPage = nTruncate;
2916 }
danc7991bd2010-05-05 19:04:59 +00002917 /* If this is a commit, update the wal-index header too. */
2918 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00002919 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00002920 pWal->iCallback = iFrame;
2921 }
dan7c246102010-04-12 19:00:29 +00002922 }
danc7991bd2010-05-05 19:04:59 +00002923
drhc74c3332010-05-31 12:15:19 +00002924 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00002925 return rc;
dan7c246102010-04-12 19:00:29 +00002926}
2927
2928/*
drh73b64e42010-05-30 19:55:15 +00002929** This routine is called to implement sqlite3_wal_checkpoint() and
2930** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00002931**
drh73b64e42010-05-30 19:55:15 +00002932** Obtain a CHECKPOINT lock and then backfill as much information as
2933** we can from WAL into the database.
dana58f26f2010-11-16 18:56:51 +00002934**
2935** If parameter xBusy is not NULL, it is a pointer to a busy-handler
2936** callback. In this case this function runs a blocking checkpoint.
dan7c246102010-04-12 19:00:29 +00002937*/
drhc438efd2010-04-26 00:19:45 +00002938int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00002939 Wal *pWal, /* Wal connection */
dancdc1f042010-11-18 12:11:05 +00002940 int eMode, /* PASSIVE, FULL or RESTART */
dana58f26f2010-11-16 18:56:51 +00002941 int (*xBusy)(void*), /* Function to call when busy */
2942 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00002943 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00002944 int nBuf, /* Size of temporary buffer */
dancdc1f042010-11-18 12:11:05 +00002945 u8 *zBuf, /* Temporary buffer to use */
2946 int *pnLog, /* OUT: Number of frames in WAL */
2947 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
dan7c246102010-04-12 19:00:29 +00002948){
danb9bf16b2010-04-14 11:23:30 +00002949 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00002950 int isChanged = 0; /* True if a new wal-index header is loaded */
danf2b8dd52010-11-18 19:28:01 +00002951 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
dan7c246102010-04-12 19:00:29 +00002952
dand54ff602010-05-31 11:16:30 +00002953 assert( pWal->ckptLock==0 );
dana58f26f2010-11-16 18:56:51 +00002954 assert( pWal->writeLock==0 );
dan39c79f52010-04-15 10:58:51 +00002955
drh66dfec8b2011-06-01 20:01:49 +00002956 if( pWal->readOnly ) return SQLITE_READONLY;
drhc74c3332010-05-31 12:15:19 +00002957 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drh73b64e42010-05-30 19:55:15 +00002958 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2959 if( rc ){
2960 /* Usually this is SQLITE_BUSY meaning that another thread or process
2961 ** is already running a checkpoint, or maybe a recovery. But it might
2962 ** also be SQLITE_IOERR. */
danb9bf16b2010-04-14 11:23:30 +00002963 return rc;
2964 }
dand54ff602010-05-31 11:16:30 +00002965 pWal->ckptLock = 1;
dan64d039e2010-04-13 19:27:31 +00002966
dana58f26f2010-11-16 18:56:51 +00002967 /* If this is a blocking-checkpoint, then obtain the write-lock as well
2968 ** to prevent any writers from running while the checkpoint is underway.
2969 ** This has to be done before the call to walIndexReadHdr() below.
danf2b8dd52010-11-18 19:28:01 +00002970 **
2971 ** If the writer lock cannot be obtained, then a passive checkpoint is
2972 ** run instead. Since the checkpointer is not holding the writer lock,
2973 ** there is no point in blocking waiting for any readers. Assuming no
2974 ** other error occurs, this function will return SQLITE_BUSY to the caller.
dana58f26f2010-11-16 18:56:51 +00002975 */
dancdc1f042010-11-18 12:11:05 +00002976 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dana58f26f2010-11-16 18:56:51 +00002977 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
danf2b8dd52010-11-18 19:28:01 +00002978 if( rc==SQLITE_OK ){
2979 pWal->writeLock = 1;
2980 }else if( rc==SQLITE_BUSY ){
2981 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
2982 rc = SQLITE_OK;
2983 }
danb9bf16b2010-04-14 11:23:30 +00002984 }
dana58f26f2010-11-16 18:56:51 +00002985
danf2b8dd52010-11-18 19:28:01 +00002986 /* Read the wal-index header. */
drh7ed91f22010-04-29 22:34:07 +00002987 if( rc==SQLITE_OK ){
dana58f26f2010-11-16 18:56:51 +00002988 rc = walIndexReadHdr(pWal, &isChanged);
2989 }
danf2b8dd52010-11-18 19:28:01 +00002990
2991 /* Copy data from the log to the database file. */
dan9c5e3682011-02-07 15:12:12 +00002992 if( rc==SQLITE_OK ){
2993 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
danf2b8dd52010-11-18 19:28:01 +00002994 rc = SQLITE_CORRUPT_BKPT;
2995 }else{
dan9c5e3682011-02-07 15:12:12 +00002996 rc = walCheckpoint(pWal, eMode2, xBusy, pBusyArg, sync_flags, zBuf);
2997 }
2998
2999 /* If no error occurred, set the output variables. */
3000 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
danf2b8dd52010-11-18 19:28:01 +00003001 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
dan9c5e3682011-02-07 15:12:12 +00003002 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
danf2b8dd52010-11-18 19:28:01 +00003003 }
danb9bf16b2010-04-14 11:23:30 +00003004 }
danf2b8dd52010-11-18 19:28:01 +00003005
dan31c03902010-04-29 14:51:33 +00003006 if( isChanged ){
3007 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00003008 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00003009 ** out of date. So zero the cached wal-index header to ensure that
3010 ** next time the pager opens a snapshot on this database it knows that
3011 ** the cache needs to be reset.
3012 */
3013 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3014 }
danb9bf16b2010-04-14 11:23:30 +00003015
3016 /* Release the locks. */
dana58f26f2010-11-16 18:56:51 +00003017 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00003018 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00003019 pWal->ckptLock = 0;
drhc74c3332010-05-31 12:15:19 +00003020 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
danf2b8dd52010-11-18 19:28:01 +00003021 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
dan7c246102010-04-12 19:00:29 +00003022}
3023
drh7ed91f22010-04-29 22:34:07 +00003024/* Return the value to pass to a sqlite3_wal_hook callback, the
3025** number of frames in the WAL at the point of the last commit since
3026** sqlite3WalCallback() was called. If no commits have occurred since
3027** the last call, then return 0.
3028*/
3029int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00003030 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00003031 if( pWal ){
3032 ret = pWal->iCallback;
3033 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00003034 }
3035 return (int)ret;
3036}
dan55437592010-05-11 12:19:26 +00003037
3038/*
drh61e4ace2010-05-31 20:28:37 +00003039** This function is called to change the WAL subsystem into or out
3040** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00003041**
drh61e4ace2010-05-31 20:28:37 +00003042** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3043** into locking_mode=NORMAL. This means that we must acquire a lock
3044** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
3045** or if the acquisition of the lock fails, then return 0. If the
3046** transition out of exclusive-mode is successful, return 1. This
3047** operation must occur while the pager is still holding the exclusive
3048** lock on the main database file.
dan55437592010-05-11 12:19:26 +00003049**
drh61e4ace2010-05-31 20:28:37 +00003050** If op is one, then change from locking_mode=NORMAL into
3051** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
3052** be released. Return 1 if the transition is made and 0 if the
3053** WAL is already in exclusive-locking mode - meaning that this
3054** routine is a no-op. The pager must already hold the exclusive lock
3055** on the main database file before invoking this operation.
3056**
3057** If op is negative, then do a dry-run of the op==1 case but do
dan8c408002010-11-01 17:38:24 +00003058** not actually change anything. The pager uses this to see if it
drh61e4ace2010-05-31 20:28:37 +00003059** should acquire the database exclusive lock prior to invoking
3060** the op==1 case.
dan55437592010-05-11 12:19:26 +00003061*/
3062int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00003063 int rc;
drhaab4c022010-06-02 14:45:51 +00003064 assert( pWal->writeLock==0 );
dan8c408002010-11-01 17:38:24 +00003065 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
dan3cac5dc2010-06-04 18:37:59 +00003066
3067 /* pWal->readLock is usually set, but might be -1 if there was a
3068 ** prior error while attempting to acquire are read-lock. This cannot
3069 ** happen if the connection is actually in exclusive mode (as no xShmLock
3070 ** locks are taken in this case). Nor should the pager attempt to
3071 ** upgrade to exclusive-mode following such an error.
3072 */
drhaab4c022010-06-02 14:45:51 +00003073 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00003074 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3075
drh61e4ace2010-05-31 20:28:37 +00003076 if( op==0 ){
3077 if( pWal->exclusiveMode ){
3078 pWal->exclusiveMode = 0;
dan3cac5dc2010-06-04 18:37:59 +00003079 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drh61e4ace2010-05-31 20:28:37 +00003080 pWal->exclusiveMode = 1;
3081 }
3082 rc = pWal->exclusiveMode==0;
3083 }else{
drhaab4c022010-06-02 14:45:51 +00003084 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00003085 rc = 0;
3086 }
3087 }else if( op>0 ){
3088 assert( pWal->exclusiveMode==0 );
drhaab4c022010-06-02 14:45:51 +00003089 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00003090 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3091 pWal->exclusiveMode = 1;
3092 rc = 1;
3093 }else{
3094 rc = pWal->exclusiveMode==0;
dan55437592010-05-11 12:19:26 +00003095 }
drh61e4ace2010-05-31 20:28:37 +00003096 return rc;
dan55437592010-05-11 12:19:26 +00003097}
3098
dan8c408002010-11-01 17:38:24 +00003099/*
3100** Return true if the argument is non-NULL and the WAL module is using
3101** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3102** WAL module is using shared-memory, return false.
3103*/
3104int sqlite3WalHeapMemory(Wal *pWal){
3105 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3106}
3107
drh70708602012-02-24 14:33:28 +00003108#ifdef SQLITE_ENABLE_ZIPVFS
danb3bdc722012-02-23 15:35:49 +00003109/*
3110** If the argument is not NULL, it points to a Wal object that holds a
3111** read-lock. This function returns the database page-size if it is known,
3112** or zero if it is not (or if pWal is NULL).
3113*/
3114int sqlite3WalFramesize(Wal *pWal){
danb3bdc722012-02-23 15:35:49 +00003115 assert( pWal==0 || pWal->readLock>=0 );
3116 return (pWal ? pWal->szPage : 0);
3117}
drh70708602012-02-24 14:33:28 +00003118#endif
danb3bdc722012-02-23 15:35:49 +00003119
dan5cf53532010-05-01 16:40:20 +00003120#endif /* #ifndef SQLITE_OMIT_WAL */