blob: 22a0688ae608613664571dcb750b01d7f29a3bc7 [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drh23ea97b2010-05-20 16:45:58 +000034** The WAL header is 24 bytes in size and consists of the following six
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan97a31352010-04-16 13:59:31 +000043**
drh23ea97b2010-05-20 16:45:58 +000044** Immediately following the wal-header are zero or more frames. Each
45** frame consists of a 24-byte frame-header followed by a <page-size> bytes
46** of page data. The frame-header is broken into 6 big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000047** integer values, as follows:
48**
dan3de777f2010-04-17 12:31:37 +000049** 0: Page number.
50** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000051** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000052** 8: Salt-1 (copied from the header)
53** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000054** 16: Checksum-1.
55** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000056**
drh7e263722010-05-20 21:21:09 +000057** A frame is considered valid if and only if the following conditions are
58** true:
59**
60** (1) The salt-1 and salt-2 values in the frame-header match
61** salt values in the wal-header
62**
63** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000064** exactly match the checksum computed consecutively on the
65** WAL header and the first 8 bytes and the content of all frames
66** up to and including the current frame.
67**
68** The checksum is computed using 32-bit big-endian integers if the
69** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
70** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000071** The checksum values are always stored in the frame header in a
72** big-endian format regardless of which byte order is used to compute
73** the checksum. The checksum is computed by interpreting the input as
74** an even number of unsigned 32-bit integers: x[0] through x[N]. The
75**
76** for i from 0 to n-1 step 2:
77** s0 += x[i] + s1;
78** s1 += x[i+1] + s0;
79** endfor
drh7e263722010-05-20 21:21:09 +000080**
81** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
82** WAL is transferred into the database, then the database is VFS.xSync-ed.
83** The VFS.xSync operations server as write barriers - all writes launched
84** before the xSync must complete before any write that launches after the
85** xSync begins.
86**
87** After each checkpoint, the salt-1 value is incremented and the salt-2
88** value is randomized. This prevents old and new frames in the WAL from
89** being considered valid at the same time and being checkpointing together
90** following a crash.
91**
drh29d4dbe2010-05-18 23:29:52 +000092** READER ALGORITHM
93**
94** To read a page from the database (call it page number P), a reader
95** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +000096** last valid instance of page P that is a followed by a commit frame
97** or is a commit frame itself becomes the value read. If the WAL
98** contains no copies of page P that are valid and which are a commit
99** frame or are followed by a commit frame, then page P is read from
100** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000101**
drh73b64e42010-05-30 19:55:15 +0000102** To start a read transaction, the reader records the index of the last
103** valid frame in the WAL. The reader uses this recorded "mxFrame" value
104** for all subsequent read operations. New transactions can be appended
105** to the WAL, but as long as the reader uses its original mxFrame value
106** and ignores the newly appended content, it will see a consistent snapshot
107** of the database from a single point in time. This technique allows
108** multiple concurrent readers to view different versions of the database
109** content simultaneously.
110**
111** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000112** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000113** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000114** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000115** and read performance suffers. To overcome this problem, a separate
116** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000117** search for frames of a particular page.
118**
119** WAL-INDEX FORMAT
120**
121** Conceptually, the wal-index is shared memory, though VFS implementations
122** might choose to implement the wal-index using a mmapped file. Because
123** the wal-index is shared memory, SQLite does not support journal_mode=WAL
124** on a network filesystem. All users of the database must be able to
125** share memory.
126**
127** The wal-index is transient. After a crash, the wal-index can (and should
128** be) reconstructed from the original WAL file. In fact, the VFS is required
129** to either truncate or zero the header of the wal-index when the last
130** connection to it closes. Because the wal-index is transient, it can
131** use an architecture-specific format; it does not have to be cross-platform.
132** Hence, unlike the database and WAL file formats which store all values
133** as big endian, the wal-index can store multi-byte values in the native
134** byte order of the host computer.
135**
136** The purpose of the wal-index is to answer this question quickly: Given
137** a page number P, return the index of the last frame for page P in the WAL,
138** or return NULL if there are no frames for page P in the WAL.
139**
140** The wal-index consists of a header region, followed by an one or
141** more index blocks.
142**
drh027a1282010-05-19 01:53:53 +0000143** The wal-index header contains the total number of frames within the WAL
144** in the the mxFrame field. Each index block contains information on
145** HASHTABLE_NPAGE frames. Each index block contains two sections, a
146** mapping which is a database page number for each frame, and a hash
147** table used to look up frames by page number. The mapping section is
148** an array of HASHTABLE_NPAGE 32-bit page numbers. The first entry on the
149** array is the page number for the first frame; the second entry is the
150** page number for the second frame; and so forth. The last index block
151** holds a total of (mxFrame%HASHTABLE_NPAGE) page numbers. All index
152** blocks other than the last are completely full with HASHTABLE_NPAGE
153** page numbers. All index blocks are the same size; the mapping section
154** of the last index block merely contains unused entries if mxFrame is
155** not an even multiple of HASHTABLE_NPAGE.
156**
157** Even without using the hash table, the last frame for page P
158** can be found by scanning the mapping sections of each index block
159** starting with the last index block and moving toward the first, and
160** within each index block, starting at the end and moving toward the
161** beginning. The first entry that equals P corresponds to the frame
162** holding the content for that page.
163**
164** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
165** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
166** hash table for each page number in the mapping section, so the hash
167** table is never more than half full. The expected number of collisions
168** prior to finding a match is 1. Each entry of the hash table is an
169** 1-based index of an entry in the mapping section of the same
170** index block. Let K be the 1-based index of the largest entry in
171** the mapping section. (For index blocks other than the last, K will
172** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
173** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000174** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000175**
176** To look for page P in the hash table, first compute a hash iKey on
177** P as follows:
178**
179** iKey = (P * 383) % HASHTABLE_NSLOT
180**
181** Then start scanning entries of the hash table, starting with iKey
182** (wrapping around to the beginning when the end of the hash table is
183** reached) until an unused hash slot is found. Let the first unused slot
184** be at index iUnused. (iUnused might be less than iKey if there was
185** wrap-around.) Because the hash table is never more than half full,
186** the search is guaranteed to eventually hit an unused entry. Let
187** iMax be the value between iKey and iUnused, closest to iUnused,
188** where aHash[iMax]==P. If there is no iMax entry (if there exists
189** no hash slot such that aHash[i]==p) then page P is not in the
190** current index block. Otherwise the iMax-th mapping entry of the
191** current index block corresponds to the last entry that references
192** page P.
193**
194** A hash search begins with the last index block and moves toward the
195** first index block, looking for entries corresponding to page P. On
196** average, only two or three slots in each index block need to be
197** examined in order to either find the last entry for page P, or to
198** establish that no such entry exists in the block. Each index block
199** holds over 4000 entries. So two or three index blocks are sufficient
200** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
201** comparisons (on average) suffice to either locate a frame in the
202** WAL or to establish that the frame does not exist in the WAL. This
203** is much faster than scanning the entire 10MB WAL.
204**
205** Note that entries are added in order of increasing K. Hence, one
206** reader might be using some value K0 and a second reader that started
207** at a later time (after additional transactions were added to the WAL
208** and to the wal-index) might be using a different value K1, where K1>K0.
209** Both readers can use the same hash table and mapping section to get
210** the correct result. There may be entries in the hash table with
211** K>K0 but to the first reader, those entries will appear to be unused
212** slots in the hash table and so the first reader will get an answer as
213** if no values greater than K0 had ever been inserted into the hash table
214** in the first place - which is what reader one wants. Meanwhile, the
215** second reader using K1 will see additional values that were inserted
216** later, which is exactly what reader two wants.
217**
dan6f150142010-05-21 15:31:56 +0000218** When a rollback occurs, the value of K is decreased. Hash table entries
219** that correspond to frames greater than the new K value are removed
220** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000221*/
drh29d4dbe2010-05-18 23:29:52 +0000222#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000223
drh29d4dbe2010-05-18 23:29:52 +0000224#include "wal.h"
225
drh73b64e42010-05-30 19:55:15 +0000226/*
drhc74c3332010-05-31 12:15:19 +0000227** Trace output macros
228*/
drhc74c3332010-05-31 12:15:19 +0000229#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000230int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000231# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
232#else
233# define WALTRACE(X)
234#endif
235
236
237/*
drh73b64e42010-05-30 19:55:15 +0000238** Indices of various locking bytes. WAL_NREADER is the number
239** of available reader locks and should be at least 3.
240*/
241#define WAL_WRITE_LOCK 0
242#define WAL_ALL_BUT_WRITE 1
243#define WAL_CKPT_LOCK 1
244#define WAL_RECOVER_LOCK 2
245#define WAL_READ_LOCK(I) (3+(I))
246#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
247
dan97a31352010-04-16 13:59:31 +0000248
drh7ed91f22010-04-29 22:34:07 +0000249/* Object declarations */
250typedef struct WalIndexHdr WalIndexHdr;
251typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000252typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000253
254
255/*
drh286a2882010-05-20 23:51:06 +0000256** The following object holds a copy of the wal-index header content.
257**
258** The actual header in the wal-index consists of two copies of this
259** object.
dan7c246102010-04-12 19:00:29 +0000260*/
drh7ed91f22010-04-29 22:34:07 +0000261struct WalIndexHdr {
dan71d89912010-05-24 13:57:42 +0000262 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000263 u8 isInit; /* 1 when initialized */
264 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
dan71d89912010-05-24 13:57:42 +0000265 u16 szPage; /* Database page size in bytes */
dand0aa3422010-05-31 16:41:53 +0000266 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000267 u32 nPage; /* Size of database in pages */
268 u32 aFrameCksum[2]; /* Checksum of last frame in log */
269 u32 aSalt[2]; /* Two salt values copied from WAL header */
270 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000271};
272
drh73b64e42010-05-30 19:55:15 +0000273/*
274** A copy of the following object occurs in the wal-index immediately
275** following the second copy of the WalIndexHdr. This object stores
276** information used by checkpoint.
277**
278** nBackfill is the number of frames in the WAL that have been written
279** back into the database. (We call the act of moving content from WAL to
280** database "backfilling".) The nBackfill number is never greater than
281** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
282** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
283** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
284** mxFrame back to zero when the WAL is reset.
285**
286** There is one entry in aReadMark[] for each reader lock. If a reader
287** holds read-lock K, then the value in aReadMark[K] is no greater than
288** the mxFrame for that reader. aReadMark[0] is a special case. It
289** always holds zero. Readers holding WAL_READ_LOCK(0) always ignore
290** the entire WAL and read all content directly from the database.
291**
292** The value of aReadMark[K] may only be changed by a thread that
293** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
294** aReadMark[K] cannot changed while there is a reader is using that mark
295** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
296**
297** The checkpointer may only transfer frames from WAL to database where
298** the frame numbers are less than or equal to every aReadMark[] that is
299** in use (that is, every aReadMark[j] for which there is a corresponding
300** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
301** largest value and will increase an unused aReadMark[] to mxFrame if there
302** is not already an aReadMark[] equal to mxFrame. The exception to the
303** previous sentence is when nBackfill equals mxFrame (meaning that everything
304** in the WAL has been backfilled into the database) then new readers
305** will choose aReadMark[0] which has value 0 and hence such reader will
306** get all their all content directly from the database file and ignore
307** the WAL.
308**
309** Writers normally append new frames to the end of the WAL. However,
310** if nBackfill equals mxFrame (meaning that all WAL content has been
311** written back into the database) and if no readers are using the WAL
312** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
313** the writer will first "reset" the WAL back to the beginning and start
314** writing new content beginning at frame 1.
315**
316** We assume that 32-bit loads are atomic and so no locks are needed in
317** order to read from any aReadMark[] entries.
318*/
319struct WalCkptInfo {
320 u32 nBackfill; /* Number of WAL frames backfilled into DB */
321 u32 aReadMark[WAL_NREADER]; /* Reader marks */
322};
323
324
drh7e263722010-05-20 21:21:09 +0000325/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
326** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
327** only support mandatory file-locks, we do not read or write data
328** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000329*/
drh73b64e42010-05-30 19:55:15 +0000330#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
331#define WALINDEX_LOCK_RESERVED 16
drh026ac282010-05-26 15:06:38 +0000332#define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
dan7c246102010-04-12 19:00:29 +0000333
drh7ed91f22010-04-29 22:34:07 +0000334/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000335#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000336
drh7ed91f22010-04-29 22:34:07 +0000337/* Size of write ahead log header */
drh23ea97b2010-05-20 16:45:58 +0000338#define WAL_HDRSIZE 24
dan97a31352010-04-16 13:59:31 +0000339
danb8fd6c22010-05-24 10:39:36 +0000340/* WAL magic value. Either this value, or the same value with the least
341** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
342** big-endian format in the first 4 bytes of a WAL file.
343**
344** If the LSB is set, then the checksums for each frame within the WAL
345** file are calculated by treating all data as an array of 32-bit
346** big-endian words. Otherwise, they are calculated by interpreting
347** all data as 32-bit little-endian words.
348*/
349#define WAL_MAGIC 0x377f0682
350
dan97a31352010-04-16 13:59:31 +0000351/*
drh7ed91f22010-04-29 22:34:07 +0000352** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000353** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000354** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000355*/
drh6e810962010-05-19 17:49:50 +0000356#define walFrameOffset(iFrame, szPage) ( \
357 WAL_HDRSIZE + ((iFrame)-1)*((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000358)
dan7c246102010-04-12 19:00:29 +0000359
360/*
drh7ed91f22010-04-29 22:34:07 +0000361** An open write-ahead log file is represented by an instance of the
362** following object.
dance4f05f2010-04-22 19:14:13 +0000363*/
drh7ed91f22010-04-29 22:34:07 +0000364struct Wal {
drh73b64e42010-05-30 19:55:15 +0000365 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000366 sqlite3_file *pDbFd; /* File handle for the database file */
367 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000368 u32 iCallback; /* Value to pass to log callback (or 0) */
drh5530b762010-04-30 14:39:50 +0000369 int szWIndex; /* Size of the wal-index that is mapped in mem */
drh5939f442010-05-18 13:27:12 +0000370 volatile u32 *pWiData; /* Pointer to wal-index content in memory */
drh73b64e42010-05-30 19:55:15 +0000371 u16 szPage; /* Database page size */
372 i16 readLock; /* Which read lock is being held. -1 for none */
dan55437592010-05-11 12:19:26 +0000373 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000374 u8 isWIndexOpen; /* True if ShmOpen() called on pDbFd */
375 u8 writeLock; /* True if in a write transaction */
376 u8 ckptLock; /* True if holding a checkpoint lock */
377 WalIndexHdr hdr; /* Wal-index header for current transaction */
drhd9e5c4f2010-05-12 18:01:39 +0000378 char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000379 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000380#ifdef SQLITE_DEBUG
381 u8 lockError; /* True if a locking error has occurred */
382#endif
dan7c246102010-04-12 19:00:29 +0000383};
384
drh73b64e42010-05-30 19:55:15 +0000385/*
386** Return a pointer to the WalCkptInfo structure in the wal-index.
387*/
388static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
389 assert( pWal->pWiData!=0 );
390 return (volatile WalCkptInfo*)&pWal->pWiData[sizeof(WalIndexHdr)/2];
391}
392
dan64d039e2010-04-13 19:27:31 +0000393
dan7c246102010-04-12 19:00:29 +0000394/*
drha2a42012010-05-18 18:01:08 +0000395** This structure is used to implement an iterator that loops through
396** all frames in the WAL in database page order. Where two or more frames
dan7c246102010-04-12 19:00:29 +0000397** correspond to the same database page, the iterator visits only the
drha2a42012010-05-18 18:01:08 +0000398** frame most recently written to the WAL (in other words, the frame with
399** the largest index).
dan7c246102010-04-12 19:00:29 +0000400**
401** The internals of this structure are only accessed by:
402**
drh7ed91f22010-04-29 22:34:07 +0000403** walIteratorInit() - Create a new iterator,
404** walIteratorNext() - Step an iterator,
405** walIteratorFree() - Free an iterator.
dan7c246102010-04-12 19:00:29 +0000406**
drh7ed91f22010-04-29 22:34:07 +0000407** This functionality is used by the checkpoint code (see walCheckpoint()).
dan7c246102010-04-12 19:00:29 +0000408*/
drh7ed91f22010-04-29 22:34:07 +0000409struct WalIterator {
drha2a42012010-05-18 18:01:08 +0000410 int iPrior; /* Last result returned from the iterator */
411 int nSegment; /* Size of the aSegment[] array */
412 int nFinal; /* Elements in aSegment[nSegment-1] */
drh7ed91f22010-04-29 22:34:07 +0000413 struct WalSegment {
drha2a42012010-05-18 18:01:08 +0000414 int iNext; /* Next slot in aIndex[] not previously returned */
415 u8 *aIndex; /* i0, i1, i2... such that aPgno[iN] ascending */
416 u32 *aPgno; /* 256 page numbers. Pointer to Wal.pWiData */
417 } aSegment[1]; /* One for every 256 entries in the WAL */
dan7c246102010-04-12 19:00:29 +0000418};
419
danb8fd6c22010-05-24 10:39:36 +0000420/*
421** The argument to this macro must be of type u32. On a little-endian
422** architecture, it returns the u32 value that results from interpreting
423** the 4 bytes as a big-endian value. On a big-endian architecture, it
424** returns the value that would be produced by intepreting the 4 bytes
425** of the input value as a little-endian integer.
426*/
427#define BYTESWAP32(x) ( \
428 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
429 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
430)
dan64d039e2010-04-13 19:27:31 +0000431
dan7c246102010-04-12 19:00:29 +0000432/*
drh7e263722010-05-20 21:21:09 +0000433** Generate or extend an 8 byte checksum based on the data in
434** array aByte[] and the initial values of aIn[0] and aIn[1] (or
435** initial values of 0 and 0 if aIn==NULL).
436**
437** The checksum is written back into aOut[] before returning.
438**
439** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000440*/
drh7e263722010-05-20 21:21:09 +0000441static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000442 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000443 u8 *a, /* Content to be checksummed */
444 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
445 const u32 *aIn, /* Initial checksum value input */
446 u32 *aOut /* OUT: Final checksum value output */
447){
448 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000449 u32 *aData = (u32 *)a;
450 u32 *aEnd = (u32 *)&a[nByte];
451
drh7e263722010-05-20 21:21:09 +0000452 if( aIn ){
453 s1 = aIn[0];
454 s2 = aIn[1];
455 }else{
456 s1 = s2 = 0;
457 }
dan7c246102010-04-12 19:00:29 +0000458
drh584c7542010-05-19 18:08:10 +0000459 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000460 assert( (nByte&0x00000007)==0 );
dan7c246102010-04-12 19:00:29 +0000461
danb8fd6c22010-05-24 10:39:36 +0000462 if( nativeCksum ){
463 do {
464 s1 += *aData++ + s2;
465 s2 += *aData++ + s1;
466 }while( aData<aEnd );
467 }else{
468 do {
469 s1 += BYTESWAP32(aData[0]) + s2;
470 s2 += BYTESWAP32(aData[1]) + s1;
471 aData += 2;
472 }while( aData<aEnd );
473 }
474
drh7e263722010-05-20 21:21:09 +0000475 aOut[0] = s1;
476 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000477}
478
479/*
drh7e263722010-05-20 21:21:09 +0000480** Write the header information in pWal->hdr into the wal-index.
481**
482** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000483*/
drh7e263722010-05-20 21:21:09 +0000484static void walIndexWriteHdr(Wal *pWal){
drh286a2882010-05-20 23:51:06 +0000485 WalIndexHdr *aHdr;
drh73b64e42010-05-30 19:55:15 +0000486
487 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000488 pWal->hdr.isInit = 1;
drh73b64e42010-05-30 19:55:15 +0000489 walChecksumBytes(1, (u8*)&pWal->hdr, offsetof(WalIndexHdr, aCksum),
drh7e263722010-05-20 21:21:09 +0000490 0, pWal->hdr.aCksum);
drh286a2882010-05-20 23:51:06 +0000491 aHdr = (WalIndexHdr*)pWal->pWiData;
drh73b64e42010-05-30 19:55:15 +0000492 memcpy(&aHdr[1], &pWal->hdr, sizeof(WalIndexHdr));
drh286a2882010-05-20 23:51:06 +0000493 sqlite3OsShmBarrier(pWal->pDbFd);
drh73b64e42010-05-30 19:55:15 +0000494 memcpy(&aHdr[0], &pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000495}
496
497/*
498** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000499** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000500** 4-byte big-endian integers, as follows:
501**
drh23ea97b2010-05-20 16:45:58 +0000502** 0: Page number.
503** 4: For commit records, the size of the database image in pages
504** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000505** 8: Salt-1 (copied from the wal-header)
506** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000507** 16: Checksum-1.
508** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000509*/
drh7ed91f22010-04-29 22:34:07 +0000510static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000511 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000512 u32 iPage, /* Database page number for frame */
513 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000514 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000515 u8 *aFrame /* OUT: Write encoded frame here */
516){
danb8fd6c22010-05-24 10:39:36 +0000517 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000518 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000519 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000520 sqlite3Put4byte(&aFrame[0], iPage);
521 sqlite3Put4byte(&aFrame[4], nTruncate);
drh7e263722010-05-20 21:21:09 +0000522 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000523
danb8fd6c22010-05-24 10:39:36 +0000524 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000525 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000526 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000527
drh23ea97b2010-05-20 16:45:58 +0000528 sqlite3Put4byte(&aFrame[16], aCksum[0]);
529 sqlite3Put4byte(&aFrame[20], aCksum[1]);
dan7c246102010-04-12 19:00:29 +0000530}
531
532/*
drh7e263722010-05-20 21:21:09 +0000533** Check to see if the frame with header in aFrame[] and content
534** in aData[] is valid. If it is a valid frame, fill *piPage and
535** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000536*/
drh7ed91f22010-04-29 22:34:07 +0000537static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000538 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000539 u32 *piPage, /* OUT: Database page number for frame */
540 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000541 u8 *aData, /* Pointer to page data (for checksum) */
542 u8 *aFrame /* Frame data */
543){
danb8fd6c22010-05-24 10:39:36 +0000544 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000545 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000546 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000547 assert( WAL_FRAME_HDRSIZE==24 );
548
drh7e263722010-05-20 21:21:09 +0000549 /* A frame is only valid if the salt values in the frame-header
550 ** match the salt values in the wal-header.
551 */
552 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000553 return 0;
554 }
dan4a4b01d2010-04-16 11:30:18 +0000555
drhc8179152010-05-24 13:28:36 +0000556 /* A frame is only valid if the page number is creater than zero.
557 */
558 pgno = sqlite3Get4byte(&aFrame[0]);
559 if( pgno==0 ){
560 return 0;
561 }
562
drh7e263722010-05-20 21:21:09 +0000563 /* A frame is only valid if a checksum of the first 16 bytes
564 ** of the frame-header, and the frame-data matches
565 ** the checksum in the last 8 bytes of the frame-header.
566 */
danb8fd6c22010-05-24 10:39:36 +0000567 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000568 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000569 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000570 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
571 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000572 ){
573 /* Checksum failed. */
574 return 0;
575 }
576
drh7e263722010-05-20 21:21:09 +0000577 /* If we reach this point, the frame is valid. Return the page number
578 ** and the new database size.
579 */
drhc8179152010-05-24 13:28:36 +0000580 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000581 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000582 return 1;
583}
584
danbb23aff2010-05-10 14:46:09 +0000585/*
drh29d4dbe2010-05-18 23:29:52 +0000586** Define the parameters of the hash tables in the wal-index file. There
danbb23aff2010-05-10 14:46:09 +0000587** is a hash-table following every HASHTABLE_NPAGE page numbers in the
588** wal-index.
drh29d4dbe2010-05-18 23:29:52 +0000589**
590** Changing any of these constants will alter the wal-index format and
591** create incompatibilities.
danbb23aff2010-05-10 14:46:09 +0000592*/
drh29d4dbe2010-05-18 23:29:52 +0000593#define HASHTABLE_NPAGE 4096 /* Must be power of 2 and multiple of 256 */
danbb23aff2010-05-10 14:46:09 +0000594#define HASHTABLE_DATATYPE u16
drh29d4dbe2010-05-18 23:29:52 +0000595#define HASHTABLE_HASH_1 383 /* Should be prime */
596#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
597#define HASHTABLE_NBYTE (sizeof(HASHTABLE_DATATYPE)*HASHTABLE_NSLOT)
dan7c246102010-04-12 19:00:29 +0000598
drhc74c3332010-05-31 12:15:19 +0000599#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
600/*
drh181e0912010-06-01 01:08:08 +0000601** Names of locks. This routine is used to provide debugging output and is not
602** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000603*/
604static const char *walLockName(int lockIdx){
605 if( lockIdx==WAL_WRITE_LOCK ){
606 return "WRITE-LOCK";
607 }else if( lockIdx==WAL_CKPT_LOCK ){
608 return "CKPT-LOCK";
609 }else if( lockIdx==WAL_RECOVER_LOCK ){
610 return "RECOVER-LOCK";
611 }else{
612 static char zName[15];
613 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
614 lockIdx-WAL_READ_LOCK(0));
615 return zName;
616 }
617}
618#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
619
620
dan7c246102010-04-12 19:00:29 +0000621/*
drh181e0912010-06-01 01:08:08 +0000622** Set or release locks on the WAL. Locks are either shared or exclusive.
623** A lock cannot be moved directly between shared and exclusive - it must go
624** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000625**
626** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
627*/
628static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000629 int rc;
drh73b64e42010-05-30 19:55:15 +0000630 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000631 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
632 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
633 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
634 walLockName(lockIdx), rc ? "failed" : "ok"));
drhaab4c022010-06-02 14:45:51 +0000635 VVA_ONLY( pWal->lockError = (rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000636 return rc;
drh73b64e42010-05-30 19:55:15 +0000637}
638static void walUnlockShared(Wal *pWal, int lockIdx){
639 if( pWal->exclusiveMode ) return;
640 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
641 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000642 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000643}
644static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000645 int rc;
drh73b64e42010-05-30 19:55:15 +0000646 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000647 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
648 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
649 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
650 walLockName(lockIdx), n, rc ? "failed" : "ok"));
drhaab4c022010-06-02 14:45:51 +0000651 VVA_ONLY( pWal->lockError = (rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000652 return rc;
drh73b64e42010-05-30 19:55:15 +0000653}
654static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
655 if( pWal->exclusiveMode ) return;
656 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
657 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000658 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
659 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000660}
661
662/*
drha2a42012010-05-18 18:01:08 +0000663** Return the index in the Wal.pWiData array that corresponds to
664** frame iFrame.
665**
666** Wal.pWiData is an array of u32 elements that is the wal-index.
667** The array begins with a header and is then followed by alternating
668** "map" and "hash-table" blocks. Each "map" block consists of
669** HASHTABLE_NPAGE u32 elements which are page numbers corresponding
670** to frames in the WAL file.
671**
672** This routine returns an index X such that Wal.pWiData[X] is part
673** of a "map" block that contains the page number of the iFrame-th
674** frame in the WAL file.
dan7c246102010-04-12 19:00:29 +0000675*/
drh7ed91f22010-04-29 22:34:07 +0000676static int walIndexEntry(u32 iFrame){
danff207012010-04-24 04:49:15 +0000677 return (
drh7ed91f22010-04-29 22:34:07 +0000678 (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)/sizeof(u32)
danbb23aff2010-05-10 14:46:09 +0000679 + (((iFrame-1)/HASHTABLE_NPAGE) * HASHTABLE_NBYTE)/sizeof(u32)
680 + (iFrame-1)
danff207012010-04-24 04:49:15 +0000681 );
dan7c246102010-04-12 19:00:29 +0000682}
683
drh7ed91f22010-04-29 22:34:07 +0000684/*
drh181e0912010-06-01 01:08:08 +0000685** Return the minimum size of the shared-memory, in bytes, that is needed
686** to support a wal-index containing frame iFrame. The value returned
687** includes the wal-index header and the complete "block" containing iFrame,
688** including the hash table segment that follows the block.
danb7d53f52010-05-06 17:28:08 +0000689*/
690static int walMappingSize(u32 iFrame){
danbb23aff2010-05-10 14:46:09 +0000691 const int nByte = (sizeof(u32)*HASHTABLE_NPAGE + HASHTABLE_NBYTE) ;
692 return ( WALINDEX_LOCK_OFFSET
693 + WALINDEX_LOCK_RESERVED
694 + nByte * ((iFrame + HASHTABLE_NPAGE - 1)/HASHTABLE_NPAGE)
danb7d53f52010-05-06 17:28:08 +0000695 );
696}
697
698/*
drh5530b762010-04-30 14:39:50 +0000699** Release our reference to the wal-index memory map, if we are holding
700** it.
drh7ed91f22010-04-29 22:34:07 +0000701*/
702static void walIndexUnmap(Wal *pWal){
703 if( pWal->pWiData ){
drhd9e5c4f2010-05-12 18:01:39 +0000704 sqlite3OsShmRelease(pWal->pDbFd);
drh7ed91f22010-04-29 22:34:07 +0000705 }
drh026ac282010-05-26 15:06:38 +0000706 pWal->pWiData = 0;
707 pWal->szWIndex = -1;
drh7ed91f22010-04-29 22:34:07 +0000708}
dan7c246102010-04-12 19:00:29 +0000709
710/*
drh5530b762010-04-30 14:39:50 +0000711** Map the wal-index file into memory if it isn't already.
712**
drh026ac282010-05-26 15:06:38 +0000713** The reqSize parameter is the requested size of the mapping. The
714** mapping will be at least this big if the underlying storage is
715** that big. But the mapping will never grow larger than the underlying
716** storage. Use the walIndexRemap() to enlarget the storage space.
drh7ed91f22010-04-29 22:34:07 +0000717*/
drh5530b762010-04-30 14:39:50 +0000718static int walIndexMap(Wal *pWal, int reqSize){
719 int rc = SQLITE_OK;
dan998ad212010-05-07 06:59:08 +0000720 if( pWal->pWiData==0 || reqSize>pWal->szWIndex ){
drh5500a1f2010-05-13 09:11:31 +0000721 walIndexUnmap(pWal);
drhd9e5c4f2010-05-12 18:01:39 +0000722 rc = sqlite3OsShmGet(pWal->pDbFd, reqSize, &pWal->szWIndex,
drh5939f442010-05-18 13:27:12 +0000723 (void volatile**)(char volatile*)&pWal->pWiData);
dan65f2ac52010-05-07 09:43:50 +0000724 if( rc!=SQLITE_OK ){
725 walIndexUnmap(pWal);
726 }
drh79e6c782010-04-30 02:13:26 +0000727 }
728 return rc;
729}
730
731/*
drh026ac282010-05-26 15:06:38 +0000732** Enlarge the wal-index to be at least enlargeTo bytes in size and
drh5530b762010-04-30 14:39:50 +0000733** Remap the wal-index so that the mapping covers the full size
734** of the underlying file.
735**
736** If enlargeTo is non-negative, then increase the size of the underlying
737** storage to be at least as big as enlargeTo before remapping.
drh79e6c782010-04-30 02:13:26 +0000738*/
drh5530b762010-04-30 14:39:50 +0000739static int walIndexRemap(Wal *pWal, int enlargeTo){
740 int rc;
741 int sz;
drh73b64e42010-05-30 19:55:15 +0000742 assert( pWal->writeLock );
drhd9e5c4f2010-05-12 18:01:39 +0000743 rc = sqlite3OsShmSize(pWal->pDbFd, enlargeTo, &sz);
drh5530b762010-04-30 14:39:50 +0000744 if( rc==SQLITE_OK && sz>pWal->szWIndex ){
745 walIndexUnmap(pWal);
746 rc = walIndexMap(pWal, sz);
747 }
drh026ac282010-05-26 15:06:38 +0000748 assert( pWal->szWIndex>=enlargeTo || rc!=SQLITE_OK );
drh7ed91f22010-04-29 22:34:07 +0000749 return rc;
750}
751
752/*
drh29d4dbe2010-05-18 23:29:52 +0000753** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000754** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
755** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000756*/
757static int walHash(u32 iPage){
758 assert( iPage>0 );
759 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
760 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
761}
762static int walNextHash(int iPriorHash){
763 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000764}
765
766
767/*
768** Find the hash table and (section of the) page number array used to
769** store data for WAL frame iFrame.
770**
771** Set output variable *paHash to point to the start of the hash table
772** in the wal-index file. Set *piZero to one less than the frame
773** number of the first frame indexed by this hash table. If a
774** slot in the hash table is set to N, it refers to frame number
775** (*piZero+N) in the log.
776**
777** Finally, set *paPgno such that for all frames F between (*piZero+1) and
778** (*piZero+HASHTABLE_NPAGE), (*paPgno)[F] is the database page number
779** associated with frame F.
780*/
781static void walHashFind(
782 Wal *pWal, /* WAL handle */
783 u32 iFrame, /* Find the hash table indexing this frame */
drh5939f442010-05-18 13:27:12 +0000784 volatile HASHTABLE_DATATYPE **paHash, /* OUT: Pointer to hash index */
785 volatile u32 **paPgno, /* OUT: Pointer to page number array */
danbb23aff2010-05-10 14:46:09 +0000786 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
787){
788 u32 iZero;
drh5939f442010-05-18 13:27:12 +0000789 volatile u32 *aPgno;
790 volatile HASHTABLE_DATATYPE *aHash;
danbb23aff2010-05-10 14:46:09 +0000791
792 iZero = ((iFrame-1)/HASHTABLE_NPAGE) * HASHTABLE_NPAGE;
793 aPgno = &pWal->pWiData[walIndexEntry(iZero+1)-iZero-1];
794 aHash = (HASHTABLE_DATATYPE *)&aPgno[iZero+HASHTABLE_NPAGE+1];
795
796 /* Assert that:
797 **
798 ** + the mapping is large enough for this hash-table, and
799 **
800 ** + that aPgno[iZero+1] really is the database page number associated
801 ** with the first frame indexed by this hash table.
802 */
803 assert( (u32*)(&aHash[HASHTABLE_NSLOT])<=&pWal->pWiData[pWal->szWIndex/4] );
804 assert( walIndexEntry(iZero+1)==(&aPgno[iZero+1] - pWal->pWiData) );
805
806 *paHash = aHash;
807 *paPgno = aPgno;
808 *piZero = iZero;
809}
810
danca6b5ba2010-05-25 10:50:56 +0000811/*
812** Remove entries from the hash table that point to WAL slots greater
813** than pWal->hdr.mxFrame.
814**
815** This function is called whenever pWal->hdr.mxFrame is decreased due
816** to a rollback or savepoint.
817**
drh181e0912010-06-01 01:08:08 +0000818** At most only the hash table containing pWal->hdr.mxFrame needs to be
819** updated. Any later hash tables will be automatically cleared when
820** pWal->hdr.mxFrame advances to the point where those hash tables are
821** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000822*/
823static void walCleanupHash(Wal *pWal){
824 volatile HASHTABLE_DATATYPE *aHash; /* Pointer to hash table to clear */
825 volatile u32 *aPgno; /* Unused return from walHashFind() */
826 u32 iZero; /* frame == (aHash[x]+iZero) */
drhf77bbd92010-06-01 13:17:44 +0000827 int iLimit = 0; /* Zero values greater than this */
danca6b5ba2010-05-25 10:50:56 +0000828
drh73b64e42010-05-30 19:55:15 +0000829 assert( pWal->writeLock );
drh9c156472010-06-01 12:58:41 +0000830 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE-1 );
831 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE );
832 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE+1 );
833 if( (pWal->hdr.mxFrame % HASHTABLE_NPAGE)>0 ){
danca6b5ba2010-05-25 10:50:56 +0000834 int nByte; /* Number of bytes to zero in aPgno[] */
835 int i; /* Used to iterate through aHash[] */
drh9c156472010-06-01 12:58:41 +0000836
837 walHashFind(pWal, pWal->hdr.mxFrame+1, &aHash, &aPgno, &iZero);
838 iLimit = pWal->hdr.mxFrame - iZero;
839 assert( iLimit>0 );
danca6b5ba2010-05-25 10:50:56 +0000840 for(i=0; i<HASHTABLE_NSLOT; i++){
841 if( aHash[i]>iLimit ){
842 aHash[i] = 0;
843 }
844 }
845
846 /* Zero the entries in the aPgno array that correspond to frames with
847 ** frame numbers greater than pWal->hdr.mxFrame.
848 */
849 nByte = sizeof(u32) * (HASHTABLE_NPAGE-iLimit);
850 memset((void *)&aPgno[iZero+iLimit+1], 0, nByte);
851 assert( &((u8 *)&aPgno[iZero+iLimit+1])[nByte]==(u8 *)aHash );
852 }
853
854#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
855 /* Verify that the every entry in the mapping region is still reachable
856 ** via the hash table even after the cleanup.
857 */
drhf77bbd92010-06-01 13:17:44 +0000858 if( iLimit ){
danca6b5ba2010-05-25 10:50:56 +0000859 int i; /* Loop counter */
860 int iKey; /* Hash key */
861 for(i=1; i<=iLimit; i++){
862 for(iKey=walHash(aPgno[i+iZero]); aHash[iKey]; iKey=walNextHash(iKey)){
863 if( aHash[iKey]==i ) break;
864 }
865 assert( aHash[iKey]==i );
866 }
867 }
868#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
869}
870
danbb23aff2010-05-10 14:46:09 +0000871
drh7ed91f22010-04-29 22:34:07 +0000872/*
drh29d4dbe2010-05-18 23:29:52 +0000873** Set an entry in the wal-index that will map database page number
874** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +0000875*/
drh7ed91f22010-04-29 22:34:07 +0000876static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
danbb23aff2010-05-10 14:46:09 +0000877 int rc; /* Return code */
878 int nMapping; /* Required mapping size in bytes */
drh7ed91f22010-04-29 22:34:07 +0000879
danbb23aff2010-05-10 14:46:09 +0000880 /* Make sure the wal-index is mapped. Enlarge the mapping if required. */
881 nMapping = walMappingSize(iFrame);
drh026ac282010-05-26 15:06:38 +0000882 rc = walIndexMap(pWal, nMapping);
danbb23aff2010-05-10 14:46:09 +0000883 while( rc==SQLITE_OK && nMapping>pWal->szWIndex ){
drh026ac282010-05-26 15:06:38 +0000884 rc = walIndexRemap(pWal, nMapping);
dance4f05f2010-04-22 19:14:13 +0000885 }
886
danbb23aff2010-05-10 14:46:09 +0000887 /* Assuming the wal-index file was successfully mapped, find the hash
888 ** table and section of of the page number array that pertain to frame
889 ** iFrame of the WAL. Then populate the page number array and the hash
890 ** table entry.
dan7c246102010-04-12 19:00:29 +0000891 */
danbb23aff2010-05-10 14:46:09 +0000892 if( rc==SQLITE_OK ){
893 int iKey; /* Hash table key */
894 u32 iZero; /* One less than frame number of aPgno[1] */
drh5939f442010-05-18 13:27:12 +0000895 volatile u32 *aPgno; /* Page number array */
896 volatile HASHTABLE_DATATYPE *aHash; /* Hash table */
897 int idx; /* Value to write to hash-table slot */
drh29d4dbe2010-05-18 23:29:52 +0000898 TESTONLY( int nCollide = 0; /* Number of hash collisions */ )
dan7c246102010-04-12 19:00:29 +0000899
danbb23aff2010-05-10 14:46:09 +0000900 walHashFind(pWal, iFrame, &aHash, &aPgno, &iZero);
901 idx = iFrame - iZero;
danca6b5ba2010-05-25 10:50:56 +0000902 if( idx==1 ){
903 memset((void*)&aPgno[iZero+1], 0, HASHTABLE_NPAGE*sizeof(u32));
904 memset((void*)aHash, 0, HASHTABLE_NBYTE);
905 }
drh29d4dbe2010-05-18 23:29:52 +0000906 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
danca6b5ba2010-05-25 10:50:56 +0000907
908 if( aPgno[iFrame] ){
909 /* If the entry in aPgno[] is already set, then the previous writer
910 ** must have exited unexpectedly in the middle of a transaction (after
911 ** writing one or more dirty pages to the WAL to free up memory).
912 ** Remove the remnants of that writers uncommitted transaction from
913 ** the hash-table before writing any new entries.
914 */
915 walCleanupHash(pWal);
916 assert( !aPgno[iFrame] );
917 }
danbb23aff2010-05-10 14:46:09 +0000918 aPgno[iFrame] = iPage;
dan6f150142010-05-21 15:31:56 +0000919 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
drh29d4dbe2010-05-18 23:29:52 +0000920 assert( nCollide++ < idx );
921 }
danbb23aff2010-05-10 14:46:09 +0000922 aHash[iKey] = idx;
drh4fa95bf2010-05-22 00:55:39 +0000923
924#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
925 /* Verify that the number of entries in the hash table exactly equals
926 ** the number of entries in the mapping region.
927 */
928 {
929 int i; /* Loop counter */
930 int nEntry = 0; /* Number of entries in the hash table */
931 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
932 assert( nEntry==idx );
933 }
934
935 /* Verify that the every entry in the mapping region is reachable
936 ** via the hash table. This turns out to be a really, really expensive
937 ** thing to check, so only do this occasionally - not on every
938 ** iteration.
939 */
940 if( (idx&0x3ff)==0 ){
941 int i; /* Loop counter */
942 for(i=1; i<=idx; i++){
943 for(iKey=walHash(aPgno[i+iZero]); aHash[iKey]; iKey=walNextHash(iKey)){
944 if( aHash[iKey]==i ) break;
945 }
946 assert( aHash[iKey]==i );
947 }
948 }
949#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +0000950 }
dan31f98fc2010-04-27 05:42:32 +0000951
drh4fa95bf2010-05-22 00:55:39 +0000952
danbb23aff2010-05-10 14:46:09 +0000953 return rc;
dan7c246102010-04-12 19:00:29 +0000954}
955
956
957/*
drh7ed91f22010-04-29 22:34:07 +0000958** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +0000959**
960** This routine first tries to establish an exclusive lock on the
961** wal-index to prevent other threads/processes from doing anything
962** with the WAL or wal-index while recovery is running. The
963** WAL_RECOVER_LOCK is also held so that other threads will know
964** that this thread is running recovery. If unable to establish
965** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +0000966*/
drh7ed91f22010-04-29 22:34:07 +0000967static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +0000968 int rc; /* Return Code */
969 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +0000970 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +0000971 int iLock; /* Lock offset to lock for checkpoint */
972 int nLock; /* Number of locks to hold */
dan7c246102010-04-12 19:00:29 +0000973
dand0aa3422010-05-31 16:41:53 +0000974 /* Obtain an exclusive lock on all byte in the locking range not already
975 ** locked by the caller. The caller is guaranteed to have locked the
976 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
977 ** If successful, the same bytes that are locked here are unlocked before
978 ** this function returns.
979 */
980 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
981 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
982 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
983 assert( pWal->writeLock );
984 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
985 nLock = SQLITE_SHM_NLOCK - iLock;
986 rc = walLockExclusive(pWal, iLock, nLock);
drh73b64e42010-05-30 19:55:15 +0000987 if( rc ){
988 return rc;
989 }
drhc74c3332010-05-31 12:15:19 +0000990 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +0000991
dan71d89912010-05-24 13:57:42 +0000992 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000993
drhd9e5c4f2010-05-12 18:01:39 +0000994 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +0000995 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +0000996 goto recovery_error;
dan7c246102010-04-12 19:00:29 +0000997 }
998
danb8fd6c22010-05-24 10:39:36 +0000999 if( nSize>WAL_HDRSIZE ){
1000 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dan7c246102010-04-12 19:00:29 +00001001 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001002 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001003 u8 *aData; /* Pointer to data part of aFrame buffer */
1004 int iFrame; /* Index of last frame read */
1005 i64 iOffset; /* Next offset to read from log file */
drh6e810962010-05-19 17:49:50 +00001006 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001007 u32 magic; /* Magic value read from WAL header */
dan7c246102010-04-12 19:00:29 +00001008
danb8fd6c22010-05-24 10:39:36 +00001009 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001010 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001011 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001012 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001013 }
1014
1015 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001016 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1017 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1018 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001019 */
danb8fd6c22010-05-24 10:39:36 +00001020 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001021 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001022 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1023 || szPage&(szPage-1)
1024 || szPage>SQLITE_MAX_PAGE_SIZE
1025 || szPage<512
1026 ){
dan7c246102010-04-12 19:00:29 +00001027 goto finished;
1028 }
dan71d89912010-05-24 13:57:42 +00001029 pWal->hdr.bigEndCksum = (magic&0x00000001);
drh7e263722010-05-20 21:21:09 +00001030 pWal->szPage = szPage;
drh23ea97b2010-05-20 16:45:58 +00001031 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001032 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
dan71d89912010-05-24 13:57:42 +00001033 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1034 aBuf, WAL_HDRSIZE, 0, pWal->hdr.aFrameCksum
1035 );
dan7c246102010-04-12 19:00:29 +00001036
1037 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001038 szFrame = szPage + WAL_FRAME_HDRSIZE;
1039 aFrame = (u8 *)sqlite3_malloc(szFrame);
dan7c246102010-04-12 19:00:29 +00001040 if( !aFrame ){
drh73b64e42010-05-30 19:55:15 +00001041 rc = SQLITE_NOMEM;
1042 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001043 }
drh7ed91f22010-04-29 22:34:07 +00001044 aData = &aFrame[WAL_FRAME_HDRSIZE];
dan7c246102010-04-12 19:00:29 +00001045
1046 /* Read all frames from the log file. */
1047 iFrame = 0;
drh584c7542010-05-19 18:08:10 +00001048 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
dan7c246102010-04-12 19:00:29 +00001049 u32 pgno; /* Database page number for frame */
1050 u32 nTruncate; /* dbsize field from frame header */
1051 int isValid; /* True if this frame is valid */
1052
1053 /* Read and decode the next log frame. */
drh584c7542010-05-19 18:08:10 +00001054 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
dan7c246102010-04-12 19:00:29 +00001055 if( rc!=SQLITE_OK ) break;
drh7e263722010-05-20 21:21:09 +00001056 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
dan7c246102010-04-12 19:00:29 +00001057 if( !isValid ) break;
danc7991bd2010-05-05 19:04:59 +00001058 rc = walIndexAppend(pWal, ++iFrame, pgno);
1059 if( rc!=SQLITE_OK ) break;
dan7c246102010-04-12 19:00:29 +00001060
1061 /* If nTruncate is non-zero, this is a commit record. */
1062 if( nTruncate ){
dan71d89912010-05-24 13:57:42 +00001063 pWal->hdr.mxFrame = iFrame;
1064 pWal->hdr.nPage = nTruncate;
1065 pWal->hdr.szPage = szPage;
1066 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1067 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
dan7c246102010-04-12 19:00:29 +00001068 }
1069 }
1070
1071 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001072 }
1073
1074finished:
dan71d89912010-05-24 13:57:42 +00001075 if( rc==SQLITE_OK && pWal->hdr.mxFrame==0 ){
drh026ac282010-05-26 15:06:38 +00001076 rc = walIndexRemap(pWal, walMappingSize(1));
dan576bc322010-05-06 18:04:50 +00001077 }
1078 if( rc==SQLITE_OK ){
dan71d89912010-05-24 13:57:42 +00001079 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1080 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001081 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001082
1083 /* Zero the checkpoint-header. This is safe because this thread is
1084 ** currently holding locks that exclude all other readers, writers and
1085 ** checkpointers.
1086 */
1087 memset((void *)walCkptInfo(pWal), 0, sizeof(WalCkptInfo));
dan576bc322010-05-06 18:04:50 +00001088 }
drh73b64e42010-05-30 19:55:15 +00001089
1090recovery_error:
drhc74c3332010-05-31 12:15:19 +00001091 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dand0aa3422010-05-31 16:41:53 +00001092 walUnlockExclusive(pWal, iLock, nLock);
dan7c246102010-04-12 19:00:29 +00001093 return rc;
1094}
1095
drha8e654e2010-05-04 17:38:42 +00001096/*
dan1018e902010-05-05 15:33:05 +00001097** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001098*/
dan1018e902010-05-05 15:33:05 +00001099static void walIndexClose(Wal *pWal, int isDelete){
drh73b64e42010-05-30 19:55:15 +00001100 if( pWal->isWIndexOpen ){
drhd9e5c4f2010-05-12 18:01:39 +00001101 sqlite3OsShmClose(pWal->pDbFd, isDelete);
drh73b64e42010-05-30 19:55:15 +00001102 pWal->isWIndexOpen = 0;
drha8e654e2010-05-04 17:38:42 +00001103 }
1104}
1105
dan7c246102010-04-12 19:00:29 +00001106/*
drh181e0912010-06-01 01:08:08 +00001107** Open a connection to the WAL file associated with database zDbName.
1108** The database file must already be opened on connection pDbFd.
dan3de777f2010-04-17 12:31:37 +00001109**
1110** A SHARED lock should be held on the database file when this function
1111** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001112** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001113** were to do this just after this client opened one of these files, the
1114** system would be badly broken.
danef378022010-05-04 11:06:03 +00001115**
1116** If the log file is successfully opened, SQLITE_OK is returned and
1117** *ppWal is set to point to a new WAL handle. If an error occurs,
1118** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001119*/
drhc438efd2010-04-26 00:19:45 +00001120int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001121 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001122 sqlite3_file *pDbFd, /* The open database file */
1123 const char *zDbName, /* Name of the database file */
drh7ed91f22010-04-29 22:34:07 +00001124 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001125){
danef378022010-05-04 11:06:03 +00001126 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001127 Wal *pRet; /* Object to allocate and return */
dan7c246102010-04-12 19:00:29 +00001128 int flags; /* Flags passed to OsOpen() */
drhd9e5c4f2010-05-12 18:01:39 +00001129 char *zWal; /* Name of write-ahead log file */
dan7c246102010-04-12 19:00:29 +00001130 int nWal; /* Length of zWal in bytes */
1131
drhd9e5c4f2010-05-12 18:01:39 +00001132 assert( zDbName && zDbName[0] );
1133 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001134
drh1b78eaf2010-05-25 13:40:03 +00001135 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1136 ** this source file. Verify that the #defines of the locking byte offsets
1137 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1138 */
1139#ifdef WIN_SHM_BASE
1140 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1141#endif
1142#ifdef UNIX_SHM_BASE
1143 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1144#endif
1145
1146
drh7ed91f22010-04-29 22:34:07 +00001147 /* Allocate an instance of struct Wal to return. */
1148 *ppWal = 0;
drh686138f2010-05-12 18:10:52 +00001149 nWal = sqlite3Strlen30(zDbName) + 5;
drhd9e5c4f2010-05-12 18:01:39 +00001150 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile + nWal);
dan76ed3bc2010-05-03 17:18:24 +00001151 if( !pRet ){
1152 return SQLITE_NOMEM;
1153 }
1154
dan7c246102010-04-12 19:00:29 +00001155 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001156 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1157 pRet->pDbFd = pDbFd;
drh026ac282010-05-26 15:06:38 +00001158 pRet->szWIndex = -1;
drh73b64e42010-05-30 19:55:15 +00001159 pRet->readLock = -1;
drh7e263722010-05-20 21:21:09 +00001160 sqlite3_randomness(8, &pRet->hdr.aSalt);
drhd9e5c4f2010-05-12 18:01:39 +00001161 pRet->zWalName = zWal = pVfs->szOsFile + (char*)pRet->pWalFd;
1162 sqlite3_snprintf(nWal, zWal, "%s-wal", zDbName);
1163 rc = sqlite3OsShmOpen(pDbFd);
dan7c246102010-04-12 19:00:29 +00001164
drh7ed91f22010-04-29 22:34:07 +00001165 /* Open file handle on the write-ahead log file. */
dan76ed3bc2010-05-03 17:18:24 +00001166 if( rc==SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001167 pRet->isWIndexOpen = 1;
dan76ed3bc2010-05-03 17:18:24 +00001168 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_MAIN_JOURNAL);
drhd9e5c4f2010-05-12 18:01:39 +00001169 rc = sqlite3OsOpen(pVfs, zWal, pRet->pWalFd, flags, &flags);
dan76ed3bc2010-05-03 17:18:24 +00001170 }
dan7c246102010-04-12 19:00:29 +00001171
dan7c246102010-04-12 19:00:29 +00001172 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001173 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001174 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001175 sqlite3_free(pRet);
1176 }else{
1177 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001178 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001179 }
dan7c246102010-04-12 19:00:29 +00001180 return rc;
1181}
1182
drha2a42012010-05-18 18:01:08 +00001183/*
1184** Find the smallest page number out of all pages held in the WAL that
1185** has not been returned by any prior invocation of this method on the
1186** same WalIterator object. Write into *piFrame the frame index where
1187** that page was last written into the WAL. Write into *piPage the page
1188** number.
1189**
1190** Return 0 on success. If there are no pages in the WAL with a page
1191** number larger than *piPage, then return 1.
1192*/
drh7ed91f22010-04-29 22:34:07 +00001193static int walIteratorNext(
1194 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001195 u32 *piPage, /* OUT: The page number of the next page */
1196 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001197){
drha2a42012010-05-18 18:01:08 +00001198 u32 iMin; /* Result pgno must be greater than iMin */
1199 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1200 int i; /* For looping through segments */
1201 int nBlock = p->nFinal; /* Number of entries in current segment */
dan7c246102010-04-12 19:00:29 +00001202
drha2a42012010-05-18 18:01:08 +00001203 iMin = p->iPrior;
1204 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001205 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001206 struct WalSegment *pSegment = &p->aSegment[i];
dan7c246102010-04-12 19:00:29 +00001207 while( pSegment->iNext<nBlock ){
drha2a42012010-05-18 18:01:08 +00001208 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001209 if( iPg>iMin ){
1210 if( iPg<iRet ){
1211 iRet = iPg;
1212 *piFrame = i*256 + 1 + pSegment->aIndex[pSegment->iNext];
1213 }
1214 break;
1215 }
1216 pSegment->iNext++;
1217 }
dan7c246102010-04-12 19:00:29 +00001218 nBlock = 256;
1219 }
1220
drha2a42012010-05-18 18:01:08 +00001221 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001222 return (iRet==0xFFFFFFFF);
1223}
1224
dan7c246102010-04-12 19:00:29 +00001225
drha2a42012010-05-18 18:01:08 +00001226static void walMergesort8(
1227 Pgno *aContent, /* Pages in wal */
1228 u8 *aBuffer, /* Buffer of at least *pnList items to use */
1229 u8 *aList, /* IN/OUT: List to sort */
1230 int *pnList /* IN/OUT: Number of elements in aList[] */
1231){
1232 int nList = *pnList;
1233 if( nList>1 ){
1234 int nLeft = nList / 2; /* Elements in left list */
1235 int nRight = nList - nLeft; /* Elements in right list */
1236 u8 *aLeft = aList; /* Left list */
1237 u8 *aRight = &aList[nLeft]; /* Right list */
1238 int iLeft = 0; /* Current index in aLeft */
1239 int iRight = 0; /* Current index in aright */
1240 int iOut = 0; /* Current index in output buffer */
1241
1242 /* TODO: Change to non-recursive version. */
1243 walMergesort8(aContent, aBuffer, aLeft, &nLeft);
1244 walMergesort8(aContent, aBuffer, aRight, &nRight);
1245
1246 while( iRight<nRight || iLeft<nLeft ){
1247 u8 logpage;
1248 Pgno dbpage;
1249
1250 if( (iLeft<nLeft)
1251 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1252 ){
1253 logpage = aLeft[iLeft++];
1254 }else{
1255 logpage = aRight[iRight++];
1256 }
1257 dbpage = aContent[logpage];
1258
1259 aBuffer[iOut++] = logpage;
1260 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1261
1262 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1263 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1264 }
1265 memcpy(aList, aBuffer, sizeof(aList[0])*iOut);
1266 *pnList = iOut;
1267 }
1268
1269#ifdef SQLITE_DEBUG
1270 {
1271 int i;
1272 for(i=1; i<*pnList; i++){
1273 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1274 }
1275 }
1276#endif
1277}
1278
1279/*
1280** Map the wal-index into memory owned by this thread, if it is not
1281** mapped already. Then construct a WalInterator object that can be
1282** used to loop over all pages in the WAL in ascending order.
1283**
1284** On success, make *pp point to the newly allocated WalInterator object
1285** return SQLITE_OK. Otherwise, leave *pp unchanged and return an error
1286** code.
1287**
1288** The calling routine should invoke walIteratorFree() to destroy the
1289** WalIterator object when it has finished with it. The caller must
1290** also unmap the wal-index. But the wal-index must not be unmapped
1291** prior to the WalIterator object being destroyed.
1292*/
1293static int walIteratorInit(Wal *pWal, WalIterator **pp){
1294 u32 *aData; /* Content of the wal-index file */
1295 WalIterator *p; /* Return value */
1296 int nSegment; /* Number of segments to merge */
1297 u32 iLast; /* Last frame in log */
1298 int nByte; /* Number of bytes to allocate */
1299 int i; /* Iterator variable */
1300 int nFinal; /* Number of unindexed entries */
1301 u8 *aTmp; /* Temp space used by merge-sort */
drha2a42012010-05-18 18:01:08 +00001302 u8 *aSpace; /* Surplus space on the end of the allocation */
1303
1304 /* Make sure the wal-index is mapped into local memory */
dan83f42d12010-06-04 10:37:05 +00001305 assert( pWal->pWiData && pWal->szWIndex>=walMappingSize(pWal->hdr.mxFrame) );
drha2a42012010-05-18 18:01:08 +00001306
1307 /* This routine only runs while holding SQLITE_SHM_CHECKPOINT. No other
1308 ** thread is able to write to shared memory while this routine is
1309 ** running (or, indeed, while the WalIterator object exists). Hence,
1310 ** we can cast off the volatile qualifacation from shared memory
1311 */
dan1beb9392010-05-31 12:02:30 +00001312 assert( pWal->ckptLock );
drh5939f442010-05-18 13:27:12 +00001313 aData = (u32*)pWal->pWiData;
drha2a42012010-05-18 18:01:08 +00001314
1315 /* Allocate space for the WalIterator object */
drh027a1282010-05-19 01:53:53 +00001316 iLast = pWal->hdr.mxFrame;
dan7c246102010-04-12 19:00:29 +00001317 nSegment = (iLast >> 8) + 1;
1318 nFinal = (iLast & 0x000000FF);
danbb23aff2010-05-10 14:46:09 +00001319 nByte = sizeof(WalIterator) + (nSegment+1)*(sizeof(struct WalSegment)+256);
drh7ed91f22010-04-29 22:34:07 +00001320 p = (WalIterator *)sqlite3_malloc(nByte);
dan8f6097c2010-05-06 07:43:58 +00001321 if( !p ){
drha2a42012010-05-18 18:01:08 +00001322 return SQLITE_NOMEM;
1323 }
1324 memset(p, 0, nByte);
dan76ed3bc2010-05-03 17:18:24 +00001325
drha2a42012010-05-18 18:01:08 +00001326 /* Initialize the WalIterator object. Each 256-entry segment is
1327 ** presorted in order to make iterating through all entries much
1328 ** faster.
1329 */
1330 p->nSegment = nSegment;
1331 aSpace = (u8 *)&p->aSegment[nSegment];
1332 aTmp = &aSpace[nSegment*256];
1333 for(i=0; i<nSegment; i++){
1334 int j;
1335 int nIndex = (i==nSegment-1) ? nFinal : 256;
1336 p->aSegment[i].aPgno = &aData[walIndexEntry(i*256+1)];
1337 p->aSegment[i].aIndex = aSpace;
1338 for(j=0; j<nIndex; j++){
1339 aSpace[j] = j;
dan76ed3bc2010-05-03 17:18:24 +00001340 }
drha2a42012010-05-18 18:01:08 +00001341 walMergesort8(p->aSegment[i].aPgno, aTmp, aSpace, &nIndex);
1342 memset(&aSpace[nIndex], aSpace[nIndex-1], 256-nIndex);
1343 aSpace += 256;
1344 p->nFinal = nIndex;
dan7c246102010-04-12 19:00:29 +00001345 }
1346
drha2a42012010-05-18 18:01:08 +00001347 /* Return the fully initializd WalIterator object */
dan8f6097c2010-05-06 07:43:58 +00001348 *pp = p;
drha2a42012010-05-18 18:01:08 +00001349 return SQLITE_OK ;
dan7c246102010-04-12 19:00:29 +00001350}
1351
1352/*
drha2a42012010-05-18 18:01:08 +00001353** Free an iterator allocated by walIteratorInit().
dan7c246102010-04-12 19:00:29 +00001354*/
drh7ed91f22010-04-29 22:34:07 +00001355static void walIteratorFree(WalIterator *p){
dan7c246102010-04-12 19:00:29 +00001356 sqlite3_free(p);
1357}
1358
1359/*
drh73b64e42010-05-30 19:55:15 +00001360** Copy as much content as we can from the WAL back into the database file
1361** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1362**
1363** The amount of information copies from WAL to database might be limited
1364** by active readers. This routine will never overwrite a database page
1365** that a concurrent reader might be using.
1366**
1367** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1368** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1369** checkpoints are always run by a background thread or background
1370** process, foreground threads will never block on a lengthy fsync call.
1371**
1372** Fsync is called on the WAL before writing content out of the WAL and
1373** into the database. This ensures that if the new content is persistent
1374** in the WAL and can be recovered following a power-loss or hard reset.
1375**
1376** Fsync is also called on the database file if (and only if) the entire
1377** WAL content is copied into the database file. This second fsync makes
1378** it safe to delete the WAL since the new content will persist in the
1379** database file.
1380**
1381** This routine uses and updates the nBackfill field of the wal-index header.
1382** This is the only routine tha will increase the value of nBackfill.
1383** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1384** its value.)
1385**
1386** The caller must be holding sufficient locks to ensure that no other
1387** checkpoint is running (in any other thread or process) at the same
1388** time.
dan7c246102010-04-12 19:00:29 +00001389*/
drh7ed91f22010-04-29 22:34:07 +00001390static int walCheckpoint(
1391 Wal *pWal, /* Wal connection */
danc5118782010-04-17 17:34:41 +00001392 int sync_flags, /* Flags for OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001393 int nBuf, /* Size of zBuf in bytes */
dan7c246102010-04-12 19:00:29 +00001394 u8 *zBuf /* Temporary buffer to use */
1395){
1396 int rc; /* Return code */
drh6e810962010-05-19 17:49:50 +00001397 int szPage = pWal->hdr.szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001398 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001399 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001400 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001401 u32 mxSafeFrame; /* Max frame that can be backfilled */
1402 int i; /* Loop counter */
1403 volatile WalIndexHdr *pHdr; /* The actual wal-index header in SHM */
1404 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
dan7c246102010-04-12 19:00:29 +00001405
1406 /* Allocate the iterator */
dan8f6097c2010-05-06 07:43:58 +00001407 rc = walIteratorInit(pWal, &pIter);
drh027a1282010-05-19 01:53:53 +00001408 if( rc!=SQLITE_OK || pWal->hdr.mxFrame==0 ){
dan83f42d12010-06-04 10:37:05 +00001409 goto walcheckpoint_out;
danb6e099a2010-05-04 14:47:39 +00001410 }
1411
drh73b64e42010-05-30 19:55:15 +00001412 /*** TODO: Move this test out to the caller. Make it an assert() here ***/
drh6e810962010-05-19 17:49:50 +00001413 if( pWal->hdr.szPage!=nBuf ){
dan83f42d12010-06-04 10:37:05 +00001414 rc = SQLITE_CORRUPT_BKPT;
1415 goto walcheckpoint_out;
danb6e099a2010-05-04 14:47:39 +00001416 }
1417
drh73b64e42010-05-30 19:55:15 +00001418 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1419 ** safe to write into the database. Frames beyond mxSafeFrame might
1420 ** overwrite database pages that are in use by active readers and thus
1421 ** cannot be backfilled from the WAL.
1422 */
dand54ff602010-05-31 11:16:30 +00001423 mxSafeFrame = pWal->hdr.mxFrame;
drh73b64e42010-05-30 19:55:15 +00001424 pHdr = (volatile WalIndexHdr*)pWal->pWiData;
1425 pInfo = (volatile WalCkptInfo*)&pHdr[2];
1426 assert( pInfo==walCkptInfo(pWal) );
1427 for(i=1; i<WAL_NREADER; i++){
1428 u32 y = pInfo->aReadMark[i];
dan83f42d12010-06-04 10:37:05 +00001429 if( y>0 && mxSafeFrame>=y ){
1430 assert( y<=pWal->hdr.mxFrame );
1431 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1432 if( rc==SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001433 pInfo->aReadMark[i] = 0;
1434 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
drh2d37e1c2010-06-02 20:38:20 +00001435 }else if( rc==SQLITE_BUSY ){
dand54ff602010-05-31 11:16:30 +00001436 mxSafeFrame = y-1;
drh2d37e1c2010-06-02 20:38:20 +00001437 }else{
dan83f42d12010-06-04 10:37:05 +00001438 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001439 }
1440 }
danc5118782010-04-17 17:34:41 +00001441 }
dan7c246102010-04-12 19:00:29 +00001442
drh73b64e42010-05-30 19:55:15 +00001443 if( pInfo->nBackfill<mxSafeFrame
1444 && (rc = walLockExclusive(pWal, WAL_READ_LOCK(0), 1))==SQLITE_OK
1445 ){
1446 u32 nBackfill = pInfo->nBackfill;
1447
1448 /* Sync the WAL to disk */
1449 if( sync_flags ){
1450 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1451 }
1452
1453 /* Iterate through the contents of the WAL, copying data to the db file. */
1454 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1455 if( iFrame<=nBackfill || iFrame>mxSafeFrame ) continue;
1456 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage,
1457 walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE
1458 );
1459 if( rc!=SQLITE_OK ) break;
1460 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, (iDbpage-1)*szPage);
1461 if( rc!=SQLITE_OK ) break;
1462 }
1463
1464 /* If work was actually accomplished... */
dand764c7d2010-06-04 11:56:22 +00001465 if( rc==SQLITE_OK ){
1466 if( mxSafeFrame==pHdr[0].mxFrame ){
drh73b64e42010-05-30 19:55:15 +00001467 rc = sqlite3OsTruncate(pWal->pDbFd, ((i64)pWal->hdr.nPage*(i64)szPage));
1468 if( rc==SQLITE_OK && sync_flags ){
1469 rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1470 }
1471 }
dand764c7d2010-06-04 11:56:22 +00001472 if( rc==SQLITE_OK ){
1473 pInfo->nBackfill = mxSafeFrame;
1474 }
drh73b64e42010-05-30 19:55:15 +00001475 }
1476
1477 /* Release the reader lock held while backfilling */
1478 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
drh2d37e1c2010-06-02 20:38:20 +00001479 }else if( rc==SQLITE_BUSY ){
drh34116ea2010-05-31 12:30:52 +00001480 /* Reset the return code so as not to report a checkpoint failure
1481 ** just because active readers prevent any backfill.
1482 */
1483 rc = SQLITE_OK;
dan7c246102010-04-12 19:00:29 +00001484 }
1485
dan83f42d12010-06-04 10:37:05 +00001486 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00001487 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00001488 return rc;
1489}
1490
1491/*
1492** Close a connection to a log file.
1493*/
drhc438efd2010-04-26 00:19:45 +00001494int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00001495 Wal *pWal, /* Wal to close */
danc5118782010-04-17 17:34:41 +00001496 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001497 int nBuf,
1498 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00001499){
1500 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00001501 if( pWal ){
dan30c86292010-04-30 16:24:46 +00001502 int isDelete = 0; /* True to unlink wal and wal-index files */
1503
1504 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1505 ** ordinary, rollback-mode locking methods, this guarantees that the
1506 ** connection associated with this log file is the only connection to
1507 ** the database. In this case checkpoint the database and unlink both
1508 ** the wal and wal-index files.
1509 **
1510 ** The EXCLUSIVE lock is not released before returning.
1511 */
drhd9e5c4f2010-05-12 18:01:39 +00001512 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
dan30c86292010-04-30 16:24:46 +00001513 if( rc==SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001514 pWal->exclusiveMode = 1;
dan1beb9392010-05-31 12:02:30 +00001515 rc = sqlite3WalCheckpoint(pWal, sync_flags, nBuf, zBuf);
dan30c86292010-04-30 16:24:46 +00001516 if( rc==SQLITE_OK ){
1517 isDelete = 1;
1518 }
1519 walIndexUnmap(pWal);
1520 }
1521
dan1018e902010-05-05 15:33:05 +00001522 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00001523 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00001524 if( isDelete ){
drhd9e5c4f2010-05-12 18:01:39 +00001525 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
dan30c86292010-04-30 16:24:46 +00001526 }
drhc74c3332010-05-31 12:15:19 +00001527 WALTRACE(("WAL%p: closed\n", pWal));
drh7ed91f22010-04-29 22:34:07 +00001528 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00001529 }
1530 return rc;
1531}
1532
1533/*
drha2a42012010-05-18 18:01:08 +00001534** Try to read the wal-index header. Return 0 on success and 1 if
1535** there is a problem.
1536**
1537** The wal-index is in shared memory. Another thread or process might
1538** be writing the header at the same time this procedure is trying to
1539** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00001540** by verifying that both copies of the header are the same and also by
1541** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00001542**
1543** If and only if the read is consistent and the header is different from
1544** pWal->hdr, then pWal->hdr is updated to the content of the new header
1545** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00001546**
dan84670502010-05-07 05:46:23 +00001547** If the checksum cannot be verified return non-zero. If the header
1548** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00001549*/
dan84670502010-05-07 05:46:23 +00001550int walIndexTryHdr(Wal *pWal, int *pChanged){
drh286a2882010-05-20 23:51:06 +00001551 u32 aCksum[2]; /* Checksum on the header content */
drhf0b20f82010-05-21 13:16:18 +00001552 WalIndexHdr h1, h2; /* Two copies of the header content */
drh286a2882010-05-20 23:51:06 +00001553 WalIndexHdr *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00001554
drh026ac282010-05-26 15:06:38 +00001555 if( pWal->szWIndex < WALINDEX_HDR_SIZE ){
1556 /* The wal-index is not large enough to hold the header, then assume
1557 ** header is invalid. */
dan84670502010-05-07 05:46:23 +00001558 return 1;
drh79e6c782010-04-30 02:13:26 +00001559 }
drh026ac282010-05-26 15:06:38 +00001560 assert( pWal->pWiData );
drh79e6c782010-04-30 02:13:26 +00001561
drh73b64e42010-05-30 19:55:15 +00001562 /* Read the header. This might happen currently with a write to the
1563 ** same area of shared memory on a different CPU in a SMP,
1564 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00001565 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00001566 **
1567 ** There are two copies of the header at the beginning of the wal-index.
1568 ** When reading, read [0] first then [1]. Writes are in the reverse order.
1569 ** Memory barriers are used to prevent the compiler or the hardware from
1570 ** reordering the reads and writes.
danb9bf16b2010-04-14 11:23:30 +00001571 */
drh286a2882010-05-20 23:51:06 +00001572 aHdr = (WalIndexHdr*)pWal->pWiData;
drhf0b20f82010-05-21 13:16:18 +00001573 memcpy(&h1, &aHdr[0], sizeof(h1));
drh286a2882010-05-20 23:51:06 +00001574 sqlite3OsShmBarrier(pWal->pDbFd);
drhf0b20f82010-05-21 13:16:18 +00001575 memcpy(&h2, &aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00001576
drhf0b20f82010-05-21 13:16:18 +00001577 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
1578 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00001579 }
drh4b82c382010-05-31 18:24:19 +00001580 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00001581 return 1; /* Malformed header - probably all zeros */
1582 }
danb8fd6c22010-05-24 10:39:36 +00001583 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00001584 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
1585 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00001586 }
1587
drhf0b20f82010-05-21 13:16:18 +00001588 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00001589 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00001590 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh7e263722010-05-20 21:21:09 +00001591 pWal->szPage = pWal->hdr.szPage;
danb9bf16b2010-04-14 11:23:30 +00001592 }
dan84670502010-05-07 05:46:23 +00001593
1594 /* The header was successfully read. Return zero. */
1595 return 0;
danb9bf16b2010-04-14 11:23:30 +00001596}
1597
1598/*
drha2a42012010-05-18 18:01:08 +00001599** Read the wal-index header from the wal-index and into pWal->hdr.
1600** If the wal-header appears to be corrupt, try to recover the log
1601** before returning.
1602**
1603** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
1604** changed by this opertion. If pWal->hdr is unchanged, set *pChanged
1605** to 0.
1606**
1607** This routine also maps the wal-index content into memory and assigns
1608** ownership of that mapping to the current thread. In some implementations,
1609** only one thread at a time can hold a mapping of the wal-index. Hence,
1610** the caller should strive to invoke walIndexUnmap() as soon as possible
1611** after this routine returns.
danb9bf16b2010-04-14 11:23:30 +00001612**
drh7ed91f22010-04-29 22:34:07 +00001613** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00001614** Otherwise an SQLite error code.
1615*/
drh7ed91f22010-04-29 22:34:07 +00001616static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00001617 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00001618 int badHdr; /* True if a header read failed */
danb9bf16b2010-04-14 11:23:30 +00001619
dana8614692010-05-06 14:42:34 +00001620 assert( pChanged );
drh026ac282010-05-26 15:06:38 +00001621 rc = walIndexMap(pWal, walMappingSize(1));
danc7991bd2010-05-05 19:04:59 +00001622 if( rc!=SQLITE_OK ){
1623 return rc;
1624 }
drh7ed91f22010-04-29 22:34:07 +00001625
drh73b64e42010-05-30 19:55:15 +00001626 /* Try once to read the header straight out. This works most of the
1627 ** time.
danb9bf16b2010-04-14 11:23:30 +00001628 */
drh73b64e42010-05-30 19:55:15 +00001629 badHdr = walIndexTryHdr(pWal, pChanged);
drhbab7b912010-05-26 17:31:58 +00001630
drh73b64e42010-05-30 19:55:15 +00001631 /* If the first attempt failed, it might have been due to a race
1632 ** with a writer. So get a WRITE lock and try again.
1633 */
dand54ff602010-05-31 11:16:30 +00001634 assert( badHdr==0 || pWal->writeLock==0 );
drh73b64e42010-05-30 19:55:15 +00001635 if( badHdr ){
1636 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1637 if( rc==SQLITE_OK ){
1638 pWal->writeLock = 1;
1639 badHdr = walIndexTryHdr(pWal, pChanged);
1640 if( badHdr ){
1641 /* If the wal-index header is still malformed even while holding
1642 ** a WRITE lock, it can only mean that the header is corrupted and
1643 ** needs to be reconstructed. So run recovery to do exactly that.
1644 */
drhbab7b912010-05-26 17:31:58 +00001645 rc = walIndexRecover(pWal);
dan3dee6da2010-05-31 16:17:54 +00001646 *pChanged = 1;
drhbab7b912010-05-26 17:31:58 +00001647 }
drh73b64e42010-05-30 19:55:15 +00001648 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
1649 pWal->writeLock = 0;
drhbab7b912010-05-26 17:31:58 +00001650 }
danb9bf16b2010-04-14 11:23:30 +00001651 }
1652
drhbab7b912010-05-26 17:31:58 +00001653 /* Make sure the mapping is large enough to cover the entire wal-index */
1654 if( rc==SQLITE_OK ){
1655 int szWanted = walMappingSize(pWal->hdr.mxFrame);
1656 if( pWal->szWIndex<szWanted ){
1657 rc = walIndexMap(pWal, szWanted);
dan65be0d82010-05-06 18:48:27 +00001658 }
danb9bf16b2010-04-14 11:23:30 +00001659 }
1660
1661 return rc;
1662}
1663
1664/*
drh73b64e42010-05-30 19:55:15 +00001665** This is the value that walTryBeginRead returns when it needs to
1666** be retried.
dan7c246102010-04-12 19:00:29 +00001667*/
drh73b64e42010-05-30 19:55:15 +00001668#define WAL_RETRY (-1)
dan64d039e2010-04-13 19:27:31 +00001669
drh73b64e42010-05-30 19:55:15 +00001670/*
1671** Attempt to start a read transaction. This might fail due to a race or
1672** other transient condition. When that happens, it returns WAL_RETRY to
1673** indicate to the caller that it is safe to retry immediately.
1674**
1675** On success return SQLITE_OK. On a permantent failure (such an
1676** I/O error or an SQLITE_BUSY because another process is running
1677** recovery) return a positive error code.
1678**
1679** On success, this routine obtains a read lock on
1680** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
1681** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
1682** that means the Wal does not hold any read lock. The reader must not
1683** access any database page that is modified by a WAL frame up to and
1684** including frame number aReadMark[pWal->readLock]. The reader will
1685** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
1686** Or if pWal->readLock==0, then the reader will ignore the WAL
1687** completely and get all content directly from the database file.
1688** When the read transaction is completed, the caller must release the
1689** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
1690**
1691** This routine uses the nBackfill and aReadMark[] fields of the header
1692** to select a particular WAL_READ_LOCK() that strives to let the
1693** checkpoint process do as much work as possible. This routine might
1694** update values of the aReadMark[] array in the header, but if it does
1695** so it takes care to hold an exclusive lock on the corresponding
1696** WAL_READ_LOCK() while changing values.
1697*/
drhaab4c022010-06-02 14:45:51 +00001698static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00001699 volatile WalIndexHdr *pHdr; /* Header of the wal-index */
1700 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
1701 u32 mxReadMark; /* Largest aReadMark[] value */
1702 int mxI; /* Index of largest aReadMark[] value */
1703 int i; /* Loop counter */
1704 int rc; /* Return code */
dan64d039e2010-04-13 19:27:31 +00001705
drh61e4ace2010-05-31 20:28:37 +00001706 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00001707
drhaab4c022010-06-02 14:45:51 +00001708 /* Take steps to avoid spinning forever if there is a protocol error. */
1709 if( cnt>5 ){
1710 if( cnt>100 ) return SQLITE_PROTOCOL;
1711 sqlite3OsSleep(pWal->pVfs, 1);
1712 }
1713
drh73b64e42010-05-30 19:55:15 +00001714 if( !useWal ){
drh7ed91f22010-04-29 22:34:07 +00001715 rc = walIndexReadHdr(pWal, pChanged);
drh73b64e42010-05-30 19:55:15 +00001716 if( rc==SQLITE_BUSY ){
1717 /* If there is not a recovery running in another thread or process
1718 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
1719 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
1720 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
1721 ** would be technically correct. But the race is benign since with
1722 ** WAL_RETRY this routine will be called again and will probably be
1723 ** right on the second iteration.
1724 */
1725 rc = walLockShared(pWal, WAL_RECOVER_LOCK);
1726 if( rc==SQLITE_OK ){
1727 walUnlockShared(pWal, WAL_RECOVER_LOCK);
1728 rc = WAL_RETRY;
1729 }else if( rc==SQLITE_BUSY ){
1730 rc = SQLITE_BUSY_RECOVERY;
1731 }
1732 }
1733 }else{
drh18b7f602010-05-31 14:39:31 +00001734 rc = walIndexMap(pWal, walMappingSize(pWal->hdr.mxFrame));
drh73b64e42010-05-30 19:55:15 +00001735 }
1736 if( rc!=SQLITE_OK ){
1737 return rc;
1738 }
1739
1740 pHdr = (volatile WalIndexHdr*)pWal->pWiData;
1741 pInfo = (volatile WalCkptInfo*)&pHdr[2];
1742 assert( pInfo==walCkptInfo(pWal) );
1743 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
1744 /* The WAL has been completely backfilled (or it is empty).
1745 ** and can be safely ignored.
1746 */
1747 rc = walLockShared(pWal, WAL_READ_LOCK(0));
daneb8cb3a2010-06-05 18:34:26 +00001748 sqlite3OsShmBarrier(pWal->pDbFd);
drh73b64e42010-05-30 19:55:15 +00001749 if( rc==SQLITE_OK ){
dan640aac42010-06-05 19:18:59 +00001750 if( memcmp((void *)pHdr, &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00001751 /* It is not safe to allow the reader to continue here if frames
1752 ** may have been appended to the log before READ_LOCK(0) was obtained.
1753 ** When holding READ_LOCK(0), the reader ignores the entire log file,
1754 ** which implies that the database file contains a trustworthy
1755 ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from
1756 ** happening, this is usually correct.
1757 **
1758 ** However, if frames have been appended to the log (or if the log
1759 ** is wrapped and written for that matter) before the READ_LOCK(0)
1760 ** is obtained, that is not necessarily true. A checkpointer may
1761 ** have started to backfill the appended frames but crashed before
1762 ** it finished. Leaving a corrupt image in the database file.
1763 */
drh73b64e42010-05-30 19:55:15 +00001764 walUnlockShared(pWal, WAL_READ_LOCK(0));
1765 return WAL_RETRY;
1766 }
1767 pWal->readLock = 0;
1768 return SQLITE_OK;
1769 }else if( rc!=SQLITE_BUSY ){
1770 return rc;
dan64d039e2010-04-13 19:27:31 +00001771 }
dan7c246102010-04-12 19:00:29 +00001772 }
danba515902010-04-30 09:32:06 +00001773
drh73b64e42010-05-30 19:55:15 +00001774 /* If we get this far, it means that the reader will want to use
1775 ** the WAL to get at content from recent commits. The job now is
1776 ** to select one of the aReadMark[] entries that is closest to
1777 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
1778 */
1779 mxReadMark = 0;
1780 mxI = 0;
1781 for(i=1; i<WAL_NREADER; i++){
1782 u32 thisMark = pInfo->aReadMark[i];
1783 if( mxReadMark<thisMark ){
1784 mxReadMark = thisMark;
1785 mxI = i;
1786 }
1787 }
1788 if( mxI==0 ){
1789 /* If we get here, it means that all of the aReadMark[] entries between
1790 ** 1 and WAL_NREADER-1 are zero. Try to initialize aReadMark[1] to
1791 ** be mxFrame, then retry.
1792 */
1793 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), 1);
1794 if( rc==SQLITE_OK ){
dand54ff602010-05-31 11:16:30 +00001795 pInfo->aReadMark[1] = pWal->hdr.mxFrame+1;
drh73b64e42010-05-30 19:55:15 +00001796 walUnlockExclusive(pWal, WAL_READ_LOCK(1), 1);
drh38933f22010-06-02 15:43:18 +00001797 rc = WAL_RETRY;
1798 }else if( rc==SQLITE_BUSY ){
1799 rc = WAL_RETRY;
drh73b64e42010-05-30 19:55:15 +00001800 }
drh38933f22010-06-02 15:43:18 +00001801 return rc;
drh73b64e42010-05-30 19:55:15 +00001802 }else{
1803 if( mxReadMark < pWal->hdr.mxFrame ){
dand54ff602010-05-31 11:16:30 +00001804 for(i=1; i<WAL_NREADER; i++){
drh73b64e42010-05-30 19:55:15 +00001805 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1806 if( rc==SQLITE_OK ){
dan3dee6da2010-05-31 16:17:54 +00001807 mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame+1;
drh73b64e42010-05-30 19:55:15 +00001808 mxI = i;
1809 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1810 break;
drh38933f22010-06-02 15:43:18 +00001811 }else if( rc!=SQLITE_BUSY ){
1812 return rc;
drh73b64e42010-05-30 19:55:15 +00001813 }
1814 }
1815 }
1816
1817 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
1818 if( rc ){
1819 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
1820 }
daneb8cb3a2010-06-05 18:34:26 +00001821 /* Now that the read-lock has been obtained, check that neither the
1822 ** value in the aReadMark[] array or the contents of the wal-index
1823 ** header have changed.
1824 **
1825 ** It is necessary to check that the wal-index header did not change
1826 ** between the time it was read and when the shared-lock was obtained
1827 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
1828 ** that the log file may have been wrapped by a writer, or that frames
1829 ** that occur later in the log than pWal->hdr.mxFrame may have been
1830 ** copied into the database by a checkpointer. If either of these things
1831 ** happened, then reading the database with the current value of
1832 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
1833 ** instead.
1834 **
dan640aac42010-06-05 19:18:59 +00001835 ** This does not guarantee that the copy of the wal-index header is up to
1836 ** date before proceeding. That would not be possible without somehow
1837 ** blocking writers. It only guarantees that a dangerous checkpoint or
daneb8cb3a2010-06-05 18:34:26 +00001838 ** log-wrap (either of which would require an exclusive lock on
1839 ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
1840 */
1841 sqlite3OsShmBarrier(pWal->pDbFd);
drh73b64e42010-05-30 19:55:15 +00001842 if( pInfo->aReadMark[mxI]!=mxReadMark
dan640aac42010-06-05 19:18:59 +00001843 || memcmp((void *)pHdr, &pWal->hdr, sizeof(WalIndexHdr))
drh73b64e42010-05-30 19:55:15 +00001844 ){
1845 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
1846 return WAL_RETRY;
1847 }else{
1848 pWal->readLock = mxI;
1849 }
1850 }
1851 return rc;
1852}
1853
1854/*
1855** Begin a read transaction on the database.
1856**
1857** This routine used to be called sqlite3OpenSnapshot() and with good reason:
1858** it takes a snapshot of the state of the WAL and wal-index for the current
1859** instant in time. The current thread will continue to use this snapshot.
1860** Other threads might append new content to the WAL and wal-index but
1861** that extra content is ignored by the current thread.
1862**
1863** If the database contents have changes since the previous read
1864** transaction, then *pChanged is set to 1 before returning. The
1865** Pager layer will use this to know that is cache is stale and
1866** needs to be flushed.
1867*/
1868int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
1869 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00001870 int cnt = 0; /* Number of TryBeginRead attempts */
drh73b64e42010-05-30 19:55:15 +00001871
1872 do{
drhaab4c022010-06-02 14:45:51 +00001873 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00001874 }while( rc==WAL_RETRY );
danba515902010-04-30 09:32:06 +00001875 walIndexUnmap(pWal);
dan7c246102010-04-12 19:00:29 +00001876 return rc;
1877}
1878
1879/*
drh73b64e42010-05-30 19:55:15 +00001880** Finish with a read transaction. All this does is release the
1881** read-lock.
dan7c246102010-04-12 19:00:29 +00001882*/
drh73b64e42010-05-30 19:55:15 +00001883void sqlite3WalEndReadTransaction(Wal *pWal){
1884 if( pWal->readLock>=0 ){
1885 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
1886 pWal->readLock = -1;
1887 }
dan7c246102010-04-12 19:00:29 +00001888}
1889
dan5e0ce872010-04-28 17:48:44 +00001890/*
drh73b64e42010-05-30 19:55:15 +00001891** Read a page from the WAL, if it is present in the WAL and if the
1892** current read transaction is configured to use the WAL.
1893**
1894** The *pInWal is set to 1 if the requested page is in the WAL and
1895** has been loaded. Or *pInWal is set to 0 if the page was not in
1896** the WAL and needs to be read out of the database.
dan7c246102010-04-12 19:00:29 +00001897*/
danb6e099a2010-05-04 14:47:39 +00001898int sqlite3WalRead(
danbb23aff2010-05-10 14:46:09 +00001899 Wal *pWal, /* WAL handle */
1900 Pgno pgno, /* Database page number to read data for */
1901 int *pInWal, /* OUT: True if data is read from WAL */
1902 int nOut, /* Size of buffer pOut in bytes */
1903 u8 *pOut /* Buffer to write page data to */
danb6e099a2010-05-04 14:47:39 +00001904){
danc7991bd2010-05-05 19:04:59 +00001905 int rc; /* Return code */
danbb23aff2010-05-10 14:46:09 +00001906 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00001907 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00001908 int iHash; /* Used to loop through N hash tables */
dan7c246102010-04-12 19:00:29 +00001909
drhaab4c022010-06-02 14:45:51 +00001910 /* This routine is only be called from within a read transaction. */
1911 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00001912
danbb23aff2010-05-10 14:46:09 +00001913 /* If the "last page" field of the wal-index header snapshot is 0, then
1914 ** no data will be read from the wal under any circumstances. Return early
drh73b64e42010-05-30 19:55:15 +00001915 ** in this case to avoid the walIndexMap/Unmap overhead. Likewise, if
1916 ** pWal->readLock==0, then the WAL is ignored by the reader so
1917 ** return early, as if the WAL were empty.
danbb23aff2010-05-10 14:46:09 +00001918 */
drh73b64e42010-05-30 19:55:15 +00001919 if( iLast==0 || pWal->readLock==0 ){
danbb23aff2010-05-10 14:46:09 +00001920 *pInWal = 0;
1921 return SQLITE_OK;
1922 }
1923
1924 /* Ensure the wal-index is mapped. */
danbb23aff2010-05-10 14:46:09 +00001925 rc = walIndexMap(pWal, walMappingSize(iLast));
danc7991bd2010-05-05 19:04:59 +00001926 if( rc!=SQLITE_OK ){
1927 return rc;
1928 }
dancd11fb22010-04-26 10:40:52 +00001929
danbb23aff2010-05-10 14:46:09 +00001930 /* Search the hash table or tables for an entry matching page number
1931 ** pgno. Each iteration of the following for() loop searches one
1932 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
1933 **
1934 ** This code may run concurrently to the code in walIndexAppend()
1935 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00001936 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00001937 ** slot (aHash[iKey]) may have been added before or after the
1938 ** current read transaction was opened. Values added after the
1939 ** read transaction was opened may have been written incorrectly -
1940 ** i.e. these slots may contain garbage data. However, we assume
1941 ** that any slots written before the current read transaction was
1942 ** opened remain unmodified.
1943 **
1944 ** For the reasons above, the if(...) condition featured in the inner
1945 ** loop of the following block is more stringent that would be required
1946 ** if we had exclusive access to the hash-table:
1947 **
1948 ** (aPgno[iFrame]==pgno):
1949 ** This condition filters out normal hash-table collisions.
1950 **
1951 ** (iFrame<=iLast):
1952 ** This condition filters out entries that were added to the hash
1953 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00001954 */
danbb23aff2010-05-10 14:46:09 +00001955 for(iHash=iLast; iHash>0 && iRead==0; iHash-=HASHTABLE_NPAGE){
drh5939f442010-05-18 13:27:12 +00001956 volatile HASHTABLE_DATATYPE *aHash; /* Pointer to hash table */
1957 volatile u32 *aPgno; /* Pointer to array of page numbers */
danbb23aff2010-05-10 14:46:09 +00001958 u32 iZero; /* Frame number corresponding to aPgno[0] */
1959 int iKey; /* Hash slot index */
drh29d4dbe2010-05-18 23:29:52 +00001960 int mxHash; /* upper bound on aHash[] values */
danbb23aff2010-05-10 14:46:09 +00001961
1962 walHashFind(pWal, iHash, &aHash, &aPgno, &iZero);
drh29d4dbe2010-05-18 23:29:52 +00001963 mxHash = iLast - iZero;
1964 if( mxHash > HASHTABLE_NPAGE ) mxHash = HASHTABLE_NPAGE;
dan6f150142010-05-21 15:31:56 +00001965 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
danbb23aff2010-05-10 14:46:09 +00001966 u32 iFrame = aHash[iKey] + iZero;
dan493cc592010-06-05 18:12:23 +00001967 if( iFrame<=iLast && aPgno[iFrame]==pgno ){
1968 assert( iFrame>iRead );
danbb23aff2010-05-10 14:46:09 +00001969 iRead = iFrame;
1970 }
dan7c246102010-04-12 19:00:29 +00001971 }
1972 }
danbb23aff2010-05-10 14:46:09 +00001973 assert( iRead==0 || pWal->pWiData[walIndexEntry(iRead)]==pgno );
dan7c246102010-04-12 19:00:29 +00001974
danbb23aff2010-05-10 14:46:09 +00001975#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1976 /* If expensive assert() statements are available, do a linear search
1977 ** of the wal-index file content. Make sure the results agree with the
1978 ** result obtained using the hash indexes above. */
1979 {
1980 u32 iRead2 = 0;
1981 u32 iTest;
1982 for(iTest=iLast; iTest>0; iTest--){
1983 if( pWal->pWiData[walIndexEntry(iTest)]==pgno ){
1984 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00001985 break;
1986 }
dan7c246102010-04-12 19:00:29 +00001987 }
danbb23aff2010-05-10 14:46:09 +00001988 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00001989 }
danbb23aff2010-05-10 14:46:09 +00001990#endif
dancd11fb22010-04-26 10:40:52 +00001991
dan7c246102010-04-12 19:00:29 +00001992 /* If iRead is non-zero, then it is the log frame number that contains the
1993 ** required page. Read and return data from the log file.
1994 */
danbb23aff2010-05-10 14:46:09 +00001995 walIndexUnmap(pWal);
dan7c246102010-04-12 19:00:29 +00001996 if( iRead ){
drh6e810962010-05-19 17:49:50 +00001997 i64 iOffset = walFrameOffset(iRead, pWal->hdr.szPage) + WAL_FRAME_HDRSIZE;
drh7ed91f22010-04-29 22:34:07 +00001998 *pInWal = 1;
drhd9e5c4f2010-05-12 18:01:39 +00001999 return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset);
dan7c246102010-04-12 19:00:29 +00002000 }
2001
drh7ed91f22010-04-29 22:34:07 +00002002 *pInWal = 0;
dan7c246102010-04-12 19:00:29 +00002003 return SQLITE_OK;
2004}
2005
2006
2007/*
2008** Set *pPgno to the size of the database file (or zero, if unknown).
2009*/
drh7ed91f22010-04-29 22:34:07 +00002010void sqlite3WalDbsize(Wal *pWal, Pgno *pPgno){
drhaab4c022010-06-02 14:45:51 +00002011 assert( pWal->readLock>=0 || pWal->lockError );
drh7ed91f22010-04-29 22:34:07 +00002012 *pPgno = pWal->hdr.nPage;
dan7c246102010-04-12 19:00:29 +00002013}
2014
dan30c86292010-04-30 16:24:46 +00002015
drh73b64e42010-05-30 19:55:15 +00002016/*
2017** This function starts a write transaction on the WAL.
2018**
2019** A read transaction must have already been started by a prior call
2020** to sqlite3WalBeginReadTransaction().
2021**
2022** If another thread or process has written into the database since
2023** the read transaction was started, then it is not possible for this
2024** thread to write as doing so would cause a fork. So this routine
2025** returns SQLITE_BUSY in that case and no write transaction is started.
2026**
2027** There can only be a single writer active at a time.
2028*/
2029int sqlite3WalBeginWriteTransaction(Wal *pWal){
2030 int rc;
drh73b64e42010-05-30 19:55:15 +00002031
2032 /* Cannot start a write transaction without first holding a read
2033 ** transaction. */
2034 assert( pWal->readLock>=0 );
2035
2036 /* Only one writer allowed at a time. Get the write lock. Return
2037 ** SQLITE_BUSY if unable.
2038 */
2039 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2040 if( rc ){
2041 return rc;
2042 }
drhc99597c2010-05-31 01:41:15 +00002043 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00002044
2045 /* If another connection has written to the database file since the
2046 ** time the read transaction on this connection was started, then
2047 ** the write is disallowed.
2048 */
drh18b7f602010-05-31 14:39:31 +00002049 rc = walIndexMap(pWal, walMappingSize(pWal->hdr.mxFrame));
drh73b64e42010-05-30 19:55:15 +00002050 if( rc ){
2051 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00002052 pWal->writeLock = 0;
drh73b64e42010-05-30 19:55:15 +00002053 return rc;
2054 }
2055 if( memcmp(&pWal->hdr, (void*)pWal->pWiData, sizeof(WalIndexHdr))!=0 ){
2056 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00002057 pWal->writeLock = 0;
dan9971e712010-06-01 15:44:57 +00002058 rc = SQLITE_BUSY;
drh73b64e42010-05-30 19:55:15 +00002059 }
2060
dand54ff602010-05-31 11:16:30 +00002061 walIndexUnmap(pWal);
drh7ed91f22010-04-29 22:34:07 +00002062 return rc;
dan7c246102010-04-12 19:00:29 +00002063}
2064
dan74d6cd82010-04-24 18:44:05 +00002065/*
drh73b64e42010-05-30 19:55:15 +00002066** End a write transaction. The commit has already been done. This
2067** routine merely releases the lock.
2068*/
2069int sqlite3WalEndWriteTransaction(Wal *pWal){
2070 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00002071 pWal->writeLock = 0;
drh73b64e42010-05-30 19:55:15 +00002072 return SQLITE_OK;
2073}
2074
2075/*
dan74d6cd82010-04-24 18:44:05 +00002076** If any data has been written (but not committed) to the log file, this
2077** function moves the write-pointer back to the start of the transaction.
2078**
2079** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00002080** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00002081** other than SQLITE_OK, it is not invoked again and the error code is
2082** returned to the caller.
2083**
2084** Otherwise, if the callback function does not return an error, this
2085** function returns SQLITE_OK.
2086*/
drh7ed91f22010-04-29 22:34:07 +00002087int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00002088 int rc = SQLITE_OK;
drh73b64e42010-05-30 19:55:15 +00002089 if( pWal->writeLock ){
dan55437592010-05-11 12:19:26 +00002090 int unused;
drh027a1282010-05-19 01:53:53 +00002091 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00002092 Pgno iFrame;
2093
2094 assert( pWal->pWiData==0 );
2095 rc = walIndexReadHdr(pWal, &unused);
dan6f150142010-05-21 15:31:56 +00002096 if( rc==SQLITE_OK ){
drhbab7b912010-05-26 17:31:58 +00002097 rc = walIndexMap(pWal, walMappingSize(iMax));
2098 }
2099 if( rc==SQLITE_OK ){
dan0626bd62010-06-05 14:42:57 +00002100 for(iFrame=pWal->hdr.mxFrame+1;
2101 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
2102 iFrame++
2103 ){
2104 /* This call cannot fail. Unless the page for which the page number
2105 ** is passed as the second argument is (a) in the cache and
2106 ** (b) has an outstanding reference, then xUndo is either a no-op
2107 ** (if (a) is false) or simply expels the page from the cache (if (b)
2108 ** is false).
2109 **
2110 ** If the upper layer is doing a rollback, it is guaranteed that there
2111 ** are no outstanding references to any page other than page 1. And
2112 ** page 1 is never written to the log until the transaction is
2113 ** committed. As a result, the call to xUndo may not fail.
2114 */
drh73b64e42010-05-30 19:55:15 +00002115 assert( pWal->writeLock );
dan0626bd62010-06-05 14:42:57 +00002116 assert( pWal->pWiData[walIndexEntry(iFrame)]!=1 );
drh4fa95bf2010-05-22 00:55:39 +00002117 rc = xUndo(pUndoCtx, pWal->pWiData[walIndexEntry(iFrame)]);
2118 }
danca6b5ba2010-05-25 10:50:56 +00002119 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00002120 }
dan55437592010-05-11 12:19:26 +00002121 walIndexUnmap(pWal);
dan74d6cd82010-04-24 18:44:05 +00002122 }
2123 return rc;
2124}
2125
dan71d89912010-05-24 13:57:42 +00002126/*
2127** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2128** values. This function populates the array with values required to
2129** "rollback" the write position of the WAL handle back to the current
2130** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00002131*/
dan71d89912010-05-24 13:57:42 +00002132void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00002133 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00002134 aWalData[0] = pWal->hdr.mxFrame;
2135 aWalData[1] = pWal->hdr.aFrameCksum[0];
2136 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00002137 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00002138}
2139
dan71d89912010-05-24 13:57:42 +00002140/*
2141** Move the write position of the WAL back to the point identified by
2142** the values in the aWalData[] array. aWalData must point to an array
2143** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2144** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00002145*/
dan71d89912010-05-24 13:57:42 +00002146int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00002147 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00002148
dan6e6bd562010-06-02 18:59:03 +00002149 assert( pWal->writeLock );
2150 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2151
2152 if( aWalData[3]!=pWal->nCkpt ){
2153 /* This savepoint was opened immediately after the write-transaction
2154 ** was started. Right after that, the writer decided to wrap around
2155 ** to the start of the log. Update the savepoint values to match.
2156 */
2157 aWalData[0] = 0;
2158 aWalData[3] = pWal->nCkpt;
2159 }
2160
dan71d89912010-05-24 13:57:42 +00002161 if( aWalData[0]<pWal->hdr.mxFrame ){
drh4fa95bf2010-05-22 00:55:39 +00002162 rc = walIndexMap(pWal, walMappingSize(pWal->hdr.mxFrame));
dan71d89912010-05-24 13:57:42 +00002163 pWal->hdr.mxFrame = aWalData[0];
2164 pWal->hdr.aFrameCksum[0] = aWalData[1];
2165 pWal->hdr.aFrameCksum[1] = aWalData[2];
drh4fa95bf2010-05-22 00:55:39 +00002166 if( rc==SQLITE_OK ){
2167 walCleanupHash(pWal);
drh4fa95bf2010-05-22 00:55:39 +00002168 }
dan6f150142010-05-21 15:31:56 +00002169 }
dan6e6bd562010-06-02 18:59:03 +00002170
2171 walIndexUnmap(pWal);
dan4cd78b42010-04-26 16:57:10 +00002172 return rc;
2173}
2174
dan9971e712010-06-01 15:44:57 +00002175/*
2176** This function is called just before writing a set of frames to the log
2177** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2178** to the current log file, it is possible to overwrite the start of the
2179** existing log file with the new frames (i.e. "reset" the log). If so,
2180** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2181** unchanged.
2182**
2183** SQLITE_OK is returned if no error is encountered (regardless of whether
2184** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
2185** if some error
2186*/
2187static int walRestartLog(Wal *pWal){
2188 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00002189 int cnt;
2190
dan9971e712010-06-01 15:44:57 +00002191 if( pWal->readLock==0
2192 && SQLITE_OK==(rc = walIndexMap(pWal, walMappingSize(pWal->hdr.mxFrame)))
2193 ){
2194 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2195 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2196 if( pInfo->nBackfill>0 ){
2197 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2198 if( rc==SQLITE_OK ){
2199 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2200 ** readers are currently using the WAL), then the transactions
2201 ** frames will overwrite the start of the existing log. Update the
2202 ** wal-index header to reflect this.
2203 **
2204 ** In theory it would be Ok to update the cache of the header only
2205 ** at this point. But updating the actual wal-index header is also
2206 ** safe and means there is no special case for sqlite3WalUndo()
2207 ** to handle if this transaction is rolled back.
2208 */
2209 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
2210 pWal->nCkpt++;
2211 pWal->hdr.mxFrame = 0;
2212 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
2213 sqlite3_randomness(4, &aSalt[1]);
2214 walIndexWriteHdr(pWal);
2215 memset((void*)pInfo, 0, sizeof(*pInfo));
2216 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2217 }
2218 }
2219 walUnlockShared(pWal, WAL_READ_LOCK(0));
2220 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00002221 cnt = 0;
dan9971e712010-06-01 15:44:57 +00002222 do{
2223 int notUsed;
drhaab4c022010-06-02 14:45:51 +00002224 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00002225 }while( rc==WAL_RETRY );
2226
2227 /* Unmap the wal-index before returning. Otherwise the VFS layer may
2228 ** hold a mutex for the duration of the IO performed by WalFrames().
2229 */
2230 walIndexUnmap(pWal);
2231 }
2232 return rc;
2233}
2234
dan7c246102010-04-12 19:00:29 +00002235/*
dan4cd78b42010-04-26 16:57:10 +00002236** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00002237** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00002238*/
drhc438efd2010-04-26 00:19:45 +00002239int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00002240 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00002241 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00002242 PgHdr *pList, /* List of dirty pages to write */
2243 Pgno nTruncate, /* Database size after this commit */
2244 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00002245 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00002246){
dan7c246102010-04-12 19:00:29 +00002247 int rc; /* Used to catch return codes */
2248 u32 iFrame; /* Next frame address */
drh7ed91f22010-04-29 22:34:07 +00002249 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
dan7c246102010-04-12 19:00:29 +00002250 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00002251 PgHdr *pLast = 0; /* Last frame in list */
dan7c246102010-04-12 19:00:29 +00002252 int nLast = 0; /* Number of extra copies of last page */
2253
dan7c246102010-04-12 19:00:29 +00002254 assert( pList );
drh73b64e42010-05-30 19:55:15 +00002255 assert( pWal->writeLock );
danba515902010-04-30 09:32:06 +00002256 assert( pWal->pWiData==0 );
dan7c246102010-04-12 19:00:29 +00002257
drhc74c3332010-05-31 12:15:19 +00002258#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2259 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2260 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2261 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2262 }
2263#endif
2264
dan9971e712010-06-01 15:44:57 +00002265 /* See if it is possible to write these frames into the start of the
2266 ** log file, instead of appending to it at pWal->hdr.mxFrame.
2267 */
2268 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
2269 assert( pWal->pWiData==0 );
2270 return rc;
2271 }
2272 assert( pWal->pWiData==0 && pWal->readLock>0 );
2273
drha2a42012010-05-18 18:01:08 +00002274 /* If this is the first frame written into the log, write the WAL
2275 ** header to the start of the WAL file. See comments at the top of
2276 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00002277 */
drh027a1282010-05-19 01:53:53 +00002278 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00002279 if( iFrame==0 ){
drh23ea97b2010-05-20 16:45:58 +00002280 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assembly wal-header in */
danb8fd6c22010-05-24 10:39:36 +00002281 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
drh23ea97b2010-05-20 16:45:58 +00002282 sqlite3Put4byte(&aWalHdr[4], 3007000);
2283 sqlite3Put4byte(&aWalHdr[8], szPage);
drh7e263722010-05-20 21:21:09 +00002284 pWal->szPage = szPage;
danb8fd6c22010-05-24 10:39:36 +00002285 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
drh23ea97b2010-05-20 16:45:58 +00002286 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drh7e263722010-05-20 21:21:09 +00002287 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
drh23ea97b2010-05-20 16:45:58 +00002288 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00002289 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00002290 if( rc!=SQLITE_OK ){
2291 return rc;
2292 }
dan71d89912010-05-24 13:57:42 +00002293 walChecksumBytes(1, aWalHdr, sizeof(aWalHdr), 0, pWal->hdr.aFrameCksum);
dan97a31352010-04-16 13:59:31 +00002294 }
drh7e263722010-05-20 21:21:09 +00002295 assert( pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00002296
dan9971e712010-06-01 15:44:57 +00002297 /* Write the log file. */
dan7c246102010-04-12 19:00:29 +00002298 for(p=pList; p; p=p->pDirty){
2299 u32 nDbsize; /* Db-size field for frame header */
2300 i64 iOffset; /* Write offset in log file */
2301
drh6e810962010-05-19 17:49:50 +00002302 iOffset = walFrameOffset(++iFrame, szPage);
dan7c246102010-04-12 19:00:29 +00002303
2304 /* Populate and write the frame header */
2305 nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0;
drh7e263722010-05-20 21:21:09 +00002306 walEncodeFrame(pWal, p->pgno, nDbsize, p->pData, aFrame);
drhd9e5c4f2010-05-12 18:01:39 +00002307 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
dan7c246102010-04-12 19:00:29 +00002308 if( rc!=SQLITE_OK ){
2309 return rc;
2310 }
2311
2312 /* Write the page data */
drh6e810962010-05-19 17:49:50 +00002313 rc = sqlite3OsWrite(pWal->pWalFd, p->pData, szPage, iOffset+sizeof(aFrame));
dan7c246102010-04-12 19:00:29 +00002314 if( rc!=SQLITE_OK ){
2315 return rc;
2316 }
2317 pLast = p;
2318 }
2319
2320 /* Sync the log file if the 'isSync' flag was specified. */
danc5118782010-04-17 17:34:41 +00002321 if( sync_flags ){
drhd9e5c4f2010-05-12 18:01:39 +00002322 i64 iSegment = sqlite3OsSectorSize(pWal->pWalFd);
drh6e810962010-05-19 17:49:50 +00002323 i64 iOffset = walFrameOffset(iFrame+1, szPage);
dan67032392010-04-17 15:42:43 +00002324
2325 assert( isCommit );
drh69c46962010-05-17 20:16:50 +00002326 assert( iSegment>0 );
dan7c246102010-04-12 19:00:29 +00002327
dan7c246102010-04-12 19:00:29 +00002328 iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment);
2329 while( iOffset<iSegment ){
drh7e263722010-05-20 21:21:09 +00002330 walEncodeFrame(pWal, pLast->pgno, nTruncate, pLast->pData, aFrame);
drhd9e5c4f2010-05-12 18:01:39 +00002331 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
dan7c246102010-04-12 19:00:29 +00002332 if( rc!=SQLITE_OK ){
2333 return rc;
2334 }
2335
drh7ed91f22010-04-29 22:34:07 +00002336 iOffset += WAL_FRAME_HDRSIZE;
drh6e810962010-05-19 17:49:50 +00002337 rc = sqlite3OsWrite(pWal->pWalFd, pLast->pData, szPage, iOffset);
dan7c246102010-04-12 19:00:29 +00002338 if( rc!=SQLITE_OK ){
2339 return rc;
2340 }
2341 nLast++;
drh6e810962010-05-19 17:49:50 +00002342 iOffset += szPage;
dan7c246102010-04-12 19:00:29 +00002343 }
dan7c246102010-04-12 19:00:29 +00002344
drhd9e5c4f2010-05-12 18:01:39 +00002345 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
dan7c246102010-04-12 19:00:29 +00002346 }
danba515902010-04-30 09:32:06 +00002347 assert( pWal->pWiData==0 );
dan7c246102010-04-12 19:00:29 +00002348
drhe730fec2010-05-18 12:56:50 +00002349 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00002350 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00002351 ** guarantees that there are no other writers, and no data that may
2352 ** be in use by existing readers is being overwritten.
2353 */
drh027a1282010-05-19 01:53:53 +00002354 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00002355 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dan7c246102010-04-12 19:00:29 +00002356 iFrame++;
danc7991bd2010-05-05 19:04:59 +00002357 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00002358 }
danc7991bd2010-05-05 19:04:59 +00002359 while( nLast>0 && rc==SQLITE_OK ){
dan7c246102010-04-12 19:00:29 +00002360 iFrame++;
2361 nLast--;
danc7991bd2010-05-05 19:04:59 +00002362 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00002363 }
2364
danc7991bd2010-05-05 19:04:59 +00002365 if( rc==SQLITE_OK ){
2366 /* Update the private copy of the header. */
drh6e810962010-05-19 17:49:50 +00002367 pWal->hdr.szPage = szPage;
drh027a1282010-05-19 01:53:53 +00002368 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00002369 if( isCommit ){
2370 pWal->hdr.iChange++;
2371 pWal->hdr.nPage = nTruncate;
2372 }
danc7991bd2010-05-05 19:04:59 +00002373 /* If this is a commit, update the wal-index header too. */
2374 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00002375 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00002376 pWal->iCallback = iFrame;
2377 }
dan7c246102010-04-12 19:00:29 +00002378 }
danc7991bd2010-05-05 19:04:59 +00002379
drh7ed91f22010-04-29 22:34:07 +00002380 walIndexUnmap(pWal);
drhc74c3332010-05-31 12:15:19 +00002381 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00002382 return rc;
dan7c246102010-04-12 19:00:29 +00002383}
2384
2385/*
drh73b64e42010-05-30 19:55:15 +00002386** This routine is called to implement sqlite3_wal_checkpoint() and
2387** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00002388**
drh73b64e42010-05-30 19:55:15 +00002389** Obtain a CHECKPOINT lock and then backfill as much information as
2390** we can from WAL into the database.
dan7c246102010-04-12 19:00:29 +00002391*/
drhc438efd2010-04-26 00:19:45 +00002392int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00002393 Wal *pWal, /* Wal connection */
danc5118782010-04-17 17:34:41 +00002394 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00002395 int nBuf, /* Size of temporary buffer */
drh73b64e42010-05-30 19:55:15 +00002396 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00002397){
danb9bf16b2010-04-14 11:23:30 +00002398 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00002399 int isChanged = 0; /* True if a new wal-index header is loaded */
dan7c246102010-04-12 19:00:29 +00002400
dan5cf53532010-05-01 16:40:20 +00002401 assert( pWal->pWiData==0 );
dand54ff602010-05-31 11:16:30 +00002402 assert( pWal->ckptLock==0 );
dan39c79f52010-04-15 10:58:51 +00002403
drhc74c3332010-05-31 12:15:19 +00002404 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drh73b64e42010-05-30 19:55:15 +00002405 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2406 if( rc ){
2407 /* Usually this is SQLITE_BUSY meaning that another thread or process
2408 ** is already running a checkpoint, or maybe a recovery. But it might
2409 ** also be SQLITE_IOERR. */
danb9bf16b2010-04-14 11:23:30 +00002410 return rc;
2411 }
dand54ff602010-05-31 11:16:30 +00002412 pWal->ckptLock = 1;
dan64d039e2010-04-13 19:27:31 +00002413
danb9bf16b2010-04-14 11:23:30 +00002414 /* Copy data from the log to the database file. */
drh7ed91f22010-04-29 22:34:07 +00002415 rc = walIndexReadHdr(pWal, &isChanged);
danb9bf16b2010-04-14 11:23:30 +00002416 if( rc==SQLITE_OK ){
drhd9e5c4f2010-05-12 18:01:39 +00002417 rc = walCheckpoint(pWal, sync_flags, nBuf, zBuf);
danb9bf16b2010-04-14 11:23:30 +00002418 }
dan31c03902010-04-29 14:51:33 +00002419 if( isChanged ){
2420 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00002421 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00002422 ** out of date. So zero the cached wal-index header to ensure that
2423 ** next time the pager opens a snapshot on this database it knows that
2424 ** the cache needs to be reset.
2425 */
drh7ed91f22010-04-29 22:34:07 +00002426 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan31c03902010-04-29 14:51:33 +00002427 }
danb9bf16b2010-04-14 11:23:30 +00002428
2429 /* Release the locks. */
dan87bfb512010-04-30 11:43:28 +00002430 walIndexUnmap(pWal);
drh73b64e42010-05-30 19:55:15 +00002431 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00002432 pWal->ckptLock = 0;
drhc74c3332010-05-31 12:15:19 +00002433 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
dan64d039e2010-04-13 19:27:31 +00002434 return rc;
dan7c246102010-04-12 19:00:29 +00002435}
2436
drh7ed91f22010-04-29 22:34:07 +00002437/* Return the value to pass to a sqlite3_wal_hook callback, the
2438** number of frames in the WAL at the point of the last commit since
2439** sqlite3WalCallback() was called. If no commits have occurred since
2440** the last call, then return 0.
2441*/
2442int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00002443 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00002444 if( pWal ){
2445 ret = pWal->iCallback;
2446 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00002447 }
2448 return (int)ret;
2449}
dan55437592010-05-11 12:19:26 +00002450
2451/*
drh61e4ace2010-05-31 20:28:37 +00002452** This function is called to change the WAL subsystem into or out
2453** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00002454**
drh61e4ace2010-05-31 20:28:37 +00002455** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
2456** into locking_mode=NORMAL. This means that we must acquire a lock
2457** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
2458** or if the acquisition of the lock fails, then return 0. If the
2459** transition out of exclusive-mode is successful, return 1. This
2460** operation must occur while the pager is still holding the exclusive
2461** lock on the main database file.
dan55437592010-05-11 12:19:26 +00002462**
drh61e4ace2010-05-31 20:28:37 +00002463** If op is one, then change from locking_mode=NORMAL into
2464** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
2465** be released. Return 1 if the transition is made and 0 if the
2466** WAL is already in exclusive-locking mode - meaning that this
2467** routine is a no-op. The pager must already hold the exclusive lock
2468** on the main database file before invoking this operation.
2469**
2470** If op is negative, then do a dry-run of the op==1 case but do
2471** not actually change anything. The pager uses this to see if it
2472** should acquire the database exclusive lock prior to invoking
2473** the op==1 case.
dan55437592010-05-11 12:19:26 +00002474*/
2475int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00002476 int rc;
drhaab4c022010-06-02 14:45:51 +00002477 assert( pWal->writeLock==0 );
dan3cac5dc2010-06-04 18:37:59 +00002478
2479 /* pWal->readLock is usually set, but might be -1 if there was a
2480 ** prior error while attempting to acquire are read-lock. This cannot
2481 ** happen if the connection is actually in exclusive mode (as no xShmLock
2482 ** locks are taken in this case). Nor should the pager attempt to
2483 ** upgrade to exclusive-mode following such an error.
2484 */
drhaab4c022010-06-02 14:45:51 +00002485 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00002486 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
2487
drh61e4ace2010-05-31 20:28:37 +00002488 if( op==0 ){
2489 if( pWal->exclusiveMode ){
2490 pWal->exclusiveMode = 0;
dan3cac5dc2010-06-04 18:37:59 +00002491 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drh61e4ace2010-05-31 20:28:37 +00002492 pWal->exclusiveMode = 1;
2493 }
2494 rc = pWal->exclusiveMode==0;
2495 }else{
drhaab4c022010-06-02 14:45:51 +00002496 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00002497 rc = 0;
2498 }
2499 }else if( op>0 ){
2500 assert( pWal->exclusiveMode==0 );
drhaab4c022010-06-02 14:45:51 +00002501 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00002502 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2503 pWal->exclusiveMode = 1;
2504 rc = 1;
2505 }else{
2506 rc = pWal->exclusiveMode==0;
dan55437592010-05-11 12:19:26 +00002507 }
drh61e4ace2010-05-31 20:28:37 +00002508 return rc;
dan55437592010-05-11 12:19:26 +00002509}
2510
dan5cf53532010-05-01 16:40:20 +00002511#endif /* #ifndef SQLITE_OMIT_WAL */