blob: 25175d966a9334b182e878375cdca928c45e449d [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drh23ea97b2010-05-20 16:45:58 +000034** The WAL header is 24 bytes in size and consists of the following six
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan97a31352010-04-16 13:59:31 +000043**
drh23ea97b2010-05-20 16:45:58 +000044** Immediately following the wal-header are zero or more frames. Each
45** frame consists of a 24-byte frame-header followed by a <page-size> bytes
46** of page data. The frame-header is broken into 6 big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000047** integer values, as follows:
48**
dan3de777f2010-04-17 12:31:37 +000049** 0: Page number.
50** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000051** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000052** 8: Salt-1 (copied from the header)
53** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000054** 16: Checksum-1.
55** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000056**
drh7e263722010-05-20 21:21:09 +000057** A frame is considered valid if and only if the following conditions are
58** true:
59**
60** (1) The salt-1 and salt-2 values in the frame-header match
61** salt values in the wal-header
62**
63** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000064** exactly match the checksum computed consecutively on the
65** WAL header and the first 8 bytes and the content of all frames
66** up to and including the current frame.
67**
68** The checksum is computed using 32-bit big-endian integers if the
69** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
70** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000071** The checksum values are always stored in the frame header in a
72** big-endian format regardless of which byte order is used to compute
73** the checksum. The checksum is computed by interpreting the input as
74** an even number of unsigned 32-bit integers: x[0] through x[N]. The
75**
76** for i from 0 to n-1 step 2:
77** s0 += x[i] + s1;
78** s1 += x[i+1] + s0;
79** endfor
drh7e263722010-05-20 21:21:09 +000080**
81** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
82** WAL is transferred into the database, then the database is VFS.xSync-ed.
83** The VFS.xSync operations server as write barriers - all writes launched
84** before the xSync must complete before any write that launches after the
85** xSync begins.
86**
87** After each checkpoint, the salt-1 value is incremented and the salt-2
88** value is randomized. This prevents old and new frames in the WAL from
89** being considered valid at the same time and being checkpointing together
90** following a crash.
91**
drh29d4dbe2010-05-18 23:29:52 +000092** READER ALGORITHM
93**
94** To read a page from the database (call it page number P), a reader
95** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +000096** last valid instance of page P that is a followed by a commit frame
97** or is a commit frame itself becomes the value read. If the WAL
98** contains no copies of page P that are valid and which are a commit
99** frame or are followed by a commit frame, then page P is read from
100** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000101**
drh73b64e42010-05-30 19:55:15 +0000102** To start a read transaction, the reader records the index of the last
103** valid frame in the WAL. The reader uses this recorded "mxFrame" value
104** for all subsequent read operations. New transactions can be appended
105** to the WAL, but as long as the reader uses its original mxFrame value
106** and ignores the newly appended content, it will see a consistent snapshot
107** of the database from a single point in time. This technique allows
108** multiple concurrent readers to view different versions of the database
109** content simultaneously.
110**
111** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000112** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000113** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000114** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000115** and read performance suffers. To overcome this problem, a separate
116** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000117** search for frames of a particular page.
118**
119** WAL-INDEX FORMAT
120**
121** Conceptually, the wal-index is shared memory, though VFS implementations
122** might choose to implement the wal-index using a mmapped file. Because
123** the wal-index is shared memory, SQLite does not support journal_mode=WAL
124** on a network filesystem. All users of the database must be able to
125** share memory.
126**
127** The wal-index is transient. After a crash, the wal-index can (and should
128** be) reconstructed from the original WAL file. In fact, the VFS is required
129** to either truncate or zero the header of the wal-index when the last
130** connection to it closes. Because the wal-index is transient, it can
131** use an architecture-specific format; it does not have to be cross-platform.
132** Hence, unlike the database and WAL file formats which store all values
133** as big endian, the wal-index can store multi-byte values in the native
134** byte order of the host computer.
135**
136** The purpose of the wal-index is to answer this question quickly: Given
137** a page number P, return the index of the last frame for page P in the WAL,
138** or return NULL if there are no frames for page P in the WAL.
139**
140** The wal-index consists of a header region, followed by an one or
141** more index blocks.
142**
drh027a1282010-05-19 01:53:53 +0000143** The wal-index header contains the total number of frames within the WAL
144** in the the mxFrame field. Each index block contains information on
145** HASHTABLE_NPAGE frames. Each index block contains two sections, a
146** mapping which is a database page number for each frame, and a hash
147** table used to look up frames by page number. The mapping section is
148** an array of HASHTABLE_NPAGE 32-bit page numbers. The first entry on the
149** array is the page number for the first frame; the second entry is the
150** page number for the second frame; and so forth. The last index block
151** holds a total of (mxFrame%HASHTABLE_NPAGE) page numbers. All index
152** blocks other than the last are completely full with HASHTABLE_NPAGE
153** page numbers. All index blocks are the same size; the mapping section
154** of the last index block merely contains unused entries if mxFrame is
155** not an even multiple of HASHTABLE_NPAGE.
156**
157** Even without using the hash table, the last frame for page P
158** can be found by scanning the mapping sections of each index block
159** starting with the last index block and moving toward the first, and
160** within each index block, starting at the end and moving toward the
161** beginning. The first entry that equals P corresponds to the frame
162** holding the content for that page.
163**
164** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
165** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
166** hash table for each page number in the mapping section, so the hash
167** table is never more than half full. The expected number of collisions
168** prior to finding a match is 1. Each entry of the hash table is an
169** 1-based index of an entry in the mapping section of the same
170** index block. Let K be the 1-based index of the largest entry in
171** the mapping section. (For index blocks other than the last, K will
172** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
173** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000174** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000175**
176** To look for page P in the hash table, first compute a hash iKey on
177** P as follows:
178**
179** iKey = (P * 383) % HASHTABLE_NSLOT
180**
181** Then start scanning entries of the hash table, starting with iKey
182** (wrapping around to the beginning when the end of the hash table is
183** reached) until an unused hash slot is found. Let the first unused slot
184** be at index iUnused. (iUnused might be less than iKey if there was
185** wrap-around.) Because the hash table is never more than half full,
186** the search is guaranteed to eventually hit an unused entry. Let
187** iMax be the value between iKey and iUnused, closest to iUnused,
188** where aHash[iMax]==P. If there is no iMax entry (if there exists
189** no hash slot such that aHash[i]==p) then page P is not in the
190** current index block. Otherwise the iMax-th mapping entry of the
191** current index block corresponds to the last entry that references
192** page P.
193**
194** A hash search begins with the last index block and moves toward the
195** first index block, looking for entries corresponding to page P. On
196** average, only two or three slots in each index block need to be
197** examined in order to either find the last entry for page P, or to
198** establish that no such entry exists in the block. Each index block
199** holds over 4000 entries. So two or three index blocks are sufficient
200** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
201** comparisons (on average) suffice to either locate a frame in the
202** WAL or to establish that the frame does not exist in the WAL. This
203** is much faster than scanning the entire 10MB WAL.
204**
205** Note that entries are added in order of increasing K. Hence, one
206** reader might be using some value K0 and a second reader that started
207** at a later time (after additional transactions were added to the WAL
208** and to the wal-index) might be using a different value K1, where K1>K0.
209** Both readers can use the same hash table and mapping section to get
210** the correct result. There may be entries in the hash table with
211** K>K0 but to the first reader, those entries will appear to be unused
212** slots in the hash table and so the first reader will get an answer as
213** if no values greater than K0 had ever been inserted into the hash table
214** in the first place - which is what reader one wants. Meanwhile, the
215** second reader using K1 will see additional values that were inserted
216** later, which is exactly what reader two wants.
217**
dan6f150142010-05-21 15:31:56 +0000218** When a rollback occurs, the value of K is decreased. Hash table entries
219** that correspond to frames greater than the new K value are removed
220** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000221*/
drh29d4dbe2010-05-18 23:29:52 +0000222#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000223
drh29d4dbe2010-05-18 23:29:52 +0000224#include "wal.h"
225
drh73b64e42010-05-30 19:55:15 +0000226/*
drhc74c3332010-05-31 12:15:19 +0000227** Trace output macros
228*/
drhc74c3332010-05-31 12:15:19 +0000229#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000230int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000231# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
232#else
233# define WALTRACE(X)
234#endif
235
236
237/*
drh73b64e42010-05-30 19:55:15 +0000238** Indices of various locking bytes. WAL_NREADER is the number
239** of available reader locks and should be at least 3.
240*/
241#define WAL_WRITE_LOCK 0
242#define WAL_ALL_BUT_WRITE 1
243#define WAL_CKPT_LOCK 1
244#define WAL_RECOVER_LOCK 2
245#define WAL_READ_LOCK(I) (3+(I))
246#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
247
dan97a31352010-04-16 13:59:31 +0000248
drh7ed91f22010-04-29 22:34:07 +0000249/* Object declarations */
250typedef struct WalIndexHdr WalIndexHdr;
251typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000252typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000253
254
255/*
drh286a2882010-05-20 23:51:06 +0000256** The following object holds a copy of the wal-index header content.
257**
258** The actual header in the wal-index consists of two copies of this
259** object.
dan7c246102010-04-12 19:00:29 +0000260*/
drh7ed91f22010-04-29 22:34:07 +0000261struct WalIndexHdr {
dan71d89912010-05-24 13:57:42 +0000262 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000263 u8 isInit; /* 1 when initialized */
264 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
dan71d89912010-05-24 13:57:42 +0000265 u16 szPage; /* Database page size in bytes */
dand0aa3422010-05-31 16:41:53 +0000266 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000267 u32 nPage; /* Size of database in pages */
268 u32 aFrameCksum[2]; /* Checksum of last frame in log */
269 u32 aSalt[2]; /* Two salt values copied from WAL header */
270 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000271};
272
drh73b64e42010-05-30 19:55:15 +0000273/*
274** A copy of the following object occurs in the wal-index immediately
275** following the second copy of the WalIndexHdr. This object stores
276** information used by checkpoint.
277**
278** nBackfill is the number of frames in the WAL that have been written
279** back into the database. (We call the act of moving content from WAL to
280** database "backfilling".) The nBackfill number is never greater than
281** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
282** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
283** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
284** mxFrame back to zero when the WAL is reset.
285**
286** There is one entry in aReadMark[] for each reader lock. If a reader
287** holds read-lock K, then the value in aReadMark[K] is no greater than
288** the mxFrame for that reader. aReadMark[0] is a special case. It
289** always holds zero. Readers holding WAL_READ_LOCK(0) always ignore
290** the entire WAL and read all content directly from the database.
291**
292** The value of aReadMark[K] may only be changed by a thread that
293** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
294** aReadMark[K] cannot changed while there is a reader is using that mark
295** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
296**
297** The checkpointer may only transfer frames from WAL to database where
298** the frame numbers are less than or equal to every aReadMark[] that is
299** in use (that is, every aReadMark[j] for which there is a corresponding
300** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
301** largest value and will increase an unused aReadMark[] to mxFrame if there
302** is not already an aReadMark[] equal to mxFrame. The exception to the
303** previous sentence is when nBackfill equals mxFrame (meaning that everything
304** in the WAL has been backfilled into the database) then new readers
305** will choose aReadMark[0] which has value 0 and hence such reader will
306** get all their all content directly from the database file and ignore
307** the WAL.
308**
309** Writers normally append new frames to the end of the WAL. However,
310** if nBackfill equals mxFrame (meaning that all WAL content has been
311** written back into the database) and if no readers are using the WAL
312** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
313** the writer will first "reset" the WAL back to the beginning and start
314** writing new content beginning at frame 1.
315**
316** We assume that 32-bit loads are atomic and so no locks are needed in
317** order to read from any aReadMark[] entries.
318*/
319struct WalCkptInfo {
320 u32 nBackfill; /* Number of WAL frames backfilled into DB */
321 u32 aReadMark[WAL_NREADER]; /* Reader marks */
322};
323
324
drh7e263722010-05-20 21:21:09 +0000325/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
326** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
327** only support mandatory file-locks, we do not read or write data
328** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000329*/
drh73b64e42010-05-30 19:55:15 +0000330#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
331#define WALINDEX_LOCK_RESERVED 16
drh026ac282010-05-26 15:06:38 +0000332#define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
dan7c246102010-04-12 19:00:29 +0000333
drh7ed91f22010-04-29 22:34:07 +0000334/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000335#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000336
drh7ed91f22010-04-29 22:34:07 +0000337/* Size of write ahead log header */
drh23ea97b2010-05-20 16:45:58 +0000338#define WAL_HDRSIZE 24
dan97a31352010-04-16 13:59:31 +0000339
danb8fd6c22010-05-24 10:39:36 +0000340/* WAL magic value. Either this value, or the same value with the least
341** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
342** big-endian format in the first 4 bytes of a WAL file.
343**
344** If the LSB is set, then the checksums for each frame within the WAL
345** file are calculated by treating all data as an array of 32-bit
346** big-endian words. Otherwise, they are calculated by interpreting
347** all data as 32-bit little-endian words.
348*/
349#define WAL_MAGIC 0x377f0682
350
dan97a31352010-04-16 13:59:31 +0000351/*
drh7ed91f22010-04-29 22:34:07 +0000352** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000353** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000354** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000355*/
drh6e810962010-05-19 17:49:50 +0000356#define walFrameOffset(iFrame, szPage) ( \
357 WAL_HDRSIZE + ((iFrame)-1)*((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000358)
dan7c246102010-04-12 19:00:29 +0000359
360/*
drh7ed91f22010-04-29 22:34:07 +0000361** An open write-ahead log file is represented by an instance of the
362** following object.
dance4f05f2010-04-22 19:14:13 +0000363*/
drh7ed91f22010-04-29 22:34:07 +0000364struct Wal {
drh73b64e42010-05-30 19:55:15 +0000365 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000366 sqlite3_file *pDbFd; /* File handle for the database file */
367 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000368 u32 iCallback; /* Value to pass to log callback (or 0) */
drh5530b762010-04-30 14:39:50 +0000369 int szWIndex; /* Size of the wal-index that is mapped in mem */
drh5939f442010-05-18 13:27:12 +0000370 volatile u32 *pWiData; /* Pointer to wal-index content in memory */
drh73b64e42010-05-30 19:55:15 +0000371 u16 szPage; /* Database page size */
372 i16 readLock; /* Which read lock is being held. -1 for none */
dan55437592010-05-11 12:19:26 +0000373 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000374 u8 isWIndexOpen; /* True if ShmOpen() called on pDbFd */
375 u8 writeLock; /* True if in a write transaction */
376 u8 ckptLock; /* True if holding a checkpoint lock */
377 WalIndexHdr hdr; /* Wal-index header for current transaction */
drhd9e5c4f2010-05-12 18:01:39 +0000378 char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000379 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000380#ifdef SQLITE_DEBUG
381 u8 lockError; /* True if a locking error has occurred */
382#endif
dan7c246102010-04-12 19:00:29 +0000383};
384
drh73b64e42010-05-30 19:55:15 +0000385/*
386** Return a pointer to the WalCkptInfo structure in the wal-index.
387*/
388static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
389 assert( pWal->pWiData!=0 );
390 return (volatile WalCkptInfo*)&pWal->pWiData[sizeof(WalIndexHdr)/2];
391}
392
dan64d039e2010-04-13 19:27:31 +0000393
dan7c246102010-04-12 19:00:29 +0000394/*
drha2a42012010-05-18 18:01:08 +0000395** This structure is used to implement an iterator that loops through
396** all frames in the WAL in database page order. Where two or more frames
dan7c246102010-04-12 19:00:29 +0000397** correspond to the same database page, the iterator visits only the
drha2a42012010-05-18 18:01:08 +0000398** frame most recently written to the WAL (in other words, the frame with
399** the largest index).
dan7c246102010-04-12 19:00:29 +0000400**
401** The internals of this structure are only accessed by:
402**
drh7ed91f22010-04-29 22:34:07 +0000403** walIteratorInit() - Create a new iterator,
404** walIteratorNext() - Step an iterator,
405** walIteratorFree() - Free an iterator.
dan7c246102010-04-12 19:00:29 +0000406**
drh7ed91f22010-04-29 22:34:07 +0000407** This functionality is used by the checkpoint code (see walCheckpoint()).
dan7c246102010-04-12 19:00:29 +0000408*/
drh7ed91f22010-04-29 22:34:07 +0000409struct WalIterator {
drha2a42012010-05-18 18:01:08 +0000410 int iPrior; /* Last result returned from the iterator */
411 int nSegment; /* Size of the aSegment[] array */
412 int nFinal; /* Elements in aSegment[nSegment-1] */
drh7ed91f22010-04-29 22:34:07 +0000413 struct WalSegment {
drha2a42012010-05-18 18:01:08 +0000414 int iNext; /* Next slot in aIndex[] not previously returned */
415 u8 *aIndex; /* i0, i1, i2... such that aPgno[iN] ascending */
416 u32 *aPgno; /* 256 page numbers. Pointer to Wal.pWiData */
417 } aSegment[1]; /* One for every 256 entries in the WAL */
dan7c246102010-04-12 19:00:29 +0000418};
419
danb8fd6c22010-05-24 10:39:36 +0000420/*
421** The argument to this macro must be of type u32. On a little-endian
422** architecture, it returns the u32 value that results from interpreting
423** the 4 bytes as a big-endian value. On a big-endian architecture, it
424** returns the value that would be produced by intepreting the 4 bytes
425** of the input value as a little-endian integer.
426*/
427#define BYTESWAP32(x) ( \
428 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
429 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
430)
dan64d039e2010-04-13 19:27:31 +0000431
dan7c246102010-04-12 19:00:29 +0000432/*
drh7e263722010-05-20 21:21:09 +0000433** Generate or extend an 8 byte checksum based on the data in
434** array aByte[] and the initial values of aIn[0] and aIn[1] (or
435** initial values of 0 and 0 if aIn==NULL).
436**
437** The checksum is written back into aOut[] before returning.
438**
439** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000440*/
drh7e263722010-05-20 21:21:09 +0000441static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000442 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000443 u8 *a, /* Content to be checksummed */
444 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
445 const u32 *aIn, /* Initial checksum value input */
446 u32 *aOut /* OUT: Final checksum value output */
447){
448 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000449 u32 *aData = (u32 *)a;
450 u32 *aEnd = (u32 *)&a[nByte];
451
drh7e263722010-05-20 21:21:09 +0000452 if( aIn ){
453 s1 = aIn[0];
454 s2 = aIn[1];
455 }else{
456 s1 = s2 = 0;
457 }
dan7c246102010-04-12 19:00:29 +0000458
drh584c7542010-05-19 18:08:10 +0000459 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000460 assert( (nByte&0x00000007)==0 );
dan7c246102010-04-12 19:00:29 +0000461
danb8fd6c22010-05-24 10:39:36 +0000462 if( nativeCksum ){
463 do {
464 s1 += *aData++ + s2;
465 s2 += *aData++ + s1;
466 }while( aData<aEnd );
467 }else{
468 do {
469 s1 += BYTESWAP32(aData[0]) + s2;
470 s2 += BYTESWAP32(aData[1]) + s1;
471 aData += 2;
472 }while( aData<aEnd );
473 }
474
drh7e263722010-05-20 21:21:09 +0000475 aOut[0] = s1;
476 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000477}
478
479/*
drh7e263722010-05-20 21:21:09 +0000480** Write the header information in pWal->hdr into the wal-index.
481**
482** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000483*/
drh7e263722010-05-20 21:21:09 +0000484static void walIndexWriteHdr(Wal *pWal){
drh286a2882010-05-20 23:51:06 +0000485 WalIndexHdr *aHdr;
drh73b64e42010-05-30 19:55:15 +0000486
487 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000488 pWal->hdr.isInit = 1;
drh73b64e42010-05-30 19:55:15 +0000489 walChecksumBytes(1, (u8*)&pWal->hdr, offsetof(WalIndexHdr, aCksum),
drh7e263722010-05-20 21:21:09 +0000490 0, pWal->hdr.aCksum);
drh286a2882010-05-20 23:51:06 +0000491 aHdr = (WalIndexHdr*)pWal->pWiData;
drh73b64e42010-05-30 19:55:15 +0000492 memcpy(&aHdr[1], &pWal->hdr, sizeof(WalIndexHdr));
drh286a2882010-05-20 23:51:06 +0000493 sqlite3OsShmBarrier(pWal->pDbFd);
drh73b64e42010-05-30 19:55:15 +0000494 memcpy(&aHdr[0], &pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000495}
496
497/*
498** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000499** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000500** 4-byte big-endian integers, as follows:
501**
drh23ea97b2010-05-20 16:45:58 +0000502** 0: Page number.
503** 4: For commit records, the size of the database image in pages
504** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000505** 8: Salt-1 (copied from the wal-header)
506** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000507** 16: Checksum-1.
508** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000509*/
drh7ed91f22010-04-29 22:34:07 +0000510static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000511 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000512 u32 iPage, /* Database page number for frame */
513 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000514 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000515 u8 *aFrame /* OUT: Write encoded frame here */
516){
danb8fd6c22010-05-24 10:39:36 +0000517 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000518 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000519 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000520 sqlite3Put4byte(&aFrame[0], iPage);
521 sqlite3Put4byte(&aFrame[4], nTruncate);
drh7e263722010-05-20 21:21:09 +0000522 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000523
danb8fd6c22010-05-24 10:39:36 +0000524 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000525 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000526 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000527
drh23ea97b2010-05-20 16:45:58 +0000528 sqlite3Put4byte(&aFrame[16], aCksum[0]);
529 sqlite3Put4byte(&aFrame[20], aCksum[1]);
dan7c246102010-04-12 19:00:29 +0000530}
531
532/*
drh7e263722010-05-20 21:21:09 +0000533** Check to see if the frame with header in aFrame[] and content
534** in aData[] is valid. If it is a valid frame, fill *piPage and
535** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000536*/
drh7ed91f22010-04-29 22:34:07 +0000537static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000538 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000539 u32 *piPage, /* OUT: Database page number for frame */
540 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000541 u8 *aData, /* Pointer to page data (for checksum) */
542 u8 *aFrame /* Frame data */
543){
danb8fd6c22010-05-24 10:39:36 +0000544 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000545 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000546 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000547 assert( WAL_FRAME_HDRSIZE==24 );
548
drh7e263722010-05-20 21:21:09 +0000549 /* A frame is only valid if the salt values in the frame-header
550 ** match the salt values in the wal-header.
551 */
552 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000553 return 0;
554 }
dan4a4b01d2010-04-16 11:30:18 +0000555
drhc8179152010-05-24 13:28:36 +0000556 /* A frame is only valid if the page number is creater than zero.
557 */
558 pgno = sqlite3Get4byte(&aFrame[0]);
559 if( pgno==0 ){
560 return 0;
561 }
562
drh7e263722010-05-20 21:21:09 +0000563 /* A frame is only valid if a checksum of the first 16 bytes
564 ** of the frame-header, and the frame-data matches
565 ** the checksum in the last 8 bytes of the frame-header.
566 */
danb8fd6c22010-05-24 10:39:36 +0000567 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000568 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000569 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000570 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
571 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000572 ){
573 /* Checksum failed. */
574 return 0;
575 }
576
drh7e263722010-05-20 21:21:09 +0000577 /* If we reach this point, the frame is valid. Return the page number
578 ** and the new database size.
579 */
drhc8179152010-05-24 13:28:36 +0000580 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000581 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000582 return 1;
583}
584
danbb23aff2010-05-10 14:46:09 +0000585/*
drh29d4dbe2010-05-18 23:29:52 +0000586** Define the parameters of the hash tables in the wal-index file. There
danbb23aff2010-05-10 14:46:09 +0000587** is a hash-table following every HASHTABLE_NPAGE page numbers in the
588** wal-index.
drh29d4dbe2010-05-18 23:29:52 +0000589**
590** Changing any of these constants will alter the wal-index format and
591** create incompatibilities.
danbb23aff2010-05-10 14:46:09 +0000592*/
drh29d4dbe2010-05-18 23:29:52 +0000593#define HASHTABLE_NPAGE 4096 /* Must be power of 2 and multiple of 256 */
danbb23aff2010-05-10 14:46:09 +0000594#define HASHTABLE_DATATYPE u16
drh29d4dbe2010-05-18 23:29:52 +0000595#define HASHTABLE_HASH_1 383 /* Should be prime */
596#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
597#define HASHTABLE_NBYTE (sizeof(HASHTABLE_DATATYPE)*HASHTABLE_NSLOT)
dan7c246102010-04-12 19:00:29 +0000598
drhc74c3332010-05-31 12:15:19 +0000599#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
600/*
drh181e0912010-06-01 01:08:08 +0000601** Names of locks. This routine is used to provide debugging output and is not
602** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000603*/
604static const char *walLockName(int lockIdx){
605 if( lockIdx==WAL_WRITE_LOCK ){
606 return "WRITE-LOCK";
607 }else if( lockIdx==WAL_CKPT_LOCK ){
608 return "CKPT-LOCK";
609 }else if( lockIdx==WAL_RECOVER_LOCK ){
610 return "RECOVER-LOCK";
611 }else{
612 static char zName[15];
613 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
614 lockIdx-WAL_READ_LOCK(0));
615 return zName;
616 }
617}
618#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
619
620
dan7c246102010-04-12 19:00:29 +0000621/*
drh181e0912010-06-01 01:08:08 +0000622** Set or release locks on the WAL. Locks are either shared or exclusive.
623** A lock cannot be moved directly between shared and exclusive - it must go
624** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000625**
626** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
627*/
628static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000629 int rc;
drh73b64e42010-05-30 19:55:15 +0000630 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000631 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
632 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
633 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
634 walLockName(lockIdx), rc ? "failed" : "ok"));
drhaab4c022010-06-02 14:45:51 +0000635 VVA_ONLY( pWal->lockError = (rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000636 return rc;
drh73b64e42010-05-30 19:55:15 +0000637}
638static void walUnlockShared(Wal *pWal, int lockIdx){
639 if( pWal->exclusiveMode ) return;
640 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
641 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000642 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000643}
644static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000645 int rc;
drh73b64e42010-05-30 19:55:15 +0000646 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000647 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
648 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
649 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
650 walLockName(lockIdx), n, rc ? "failed" : "ok"));
drhaab4c022010-06-02 14:45:51 +0000651 VVA_ONLY( pWal->lockError = (rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000652 return rc;
drh73b64e42010-05-30 19:55:15 +0000653}
654static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
655 if( pWal->exclusiveMode ) return;
656 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
657 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000658 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
659 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000660}
661
662/*
drha2a42012010-05-18 18:01:08 +0000663** Return the index in the Wal.pWiData array that corresponds to
664** frame iFrame.
665**
666** Wal.pWiData is an array of u32 elements that is the wal-index.
667** The array begins with a header and is then followed by alternating
668** "map" and "hash-table" blocks. Each "map" block consists of
669** HASHTABLE_NPAGE u32 elements which are page numbers corresponding
670** to frames in the WAL file.
671**
672** This routine returns an index X such that Wal.pWiData[X] is part
673** of a "map" block that contains the page number of the iFrame-th
674** frame in the WAL file.
dan7c246102010-04-12 19:00:29 +0000675*/
drh7ed91f22010-04-29 22:34:07 +0000676static int walIndexEntry(u32 iFrame){
danff207012010-04-24 04:49:15 +0000677 return (
drh7ed91f22010-04-29 22:34:07 +0000678 (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)/sizeof(u32)
danbb23aff2010-05-10 14:46:09 +0000679 + (((iFrame-1)/HASHTABLE_NPAGE) * HASHTABLE_NBYTE)/sizeof(u32)
680 + (iFrame-1)
danff207012010-04-24 04:49:15 +0000681 );
dan7c246102010-04-12 19:00:29 +0000682}
683
drh7ed91f22010-04-29 22:34:07 +0000684/*
drh181e0912010-06-01 01:08:08 +0000685** Return the minimum size of the shared-memory, in bytes, that is needed
686** to support a wal-index containing frame iFrame. The value returned
687** includes the wal-index header and the complete "block" containing iFrame,
688** including the hash table segment that follows the block.
danb7d53f52010-05-06 17:28:08 +0000689*/
690static int walMappingSize(u32 iFrame){
danbb23aff2010-05-10 14:46:09 +0000691 const int nByte = (sizeof(u32)*HASHTABLE_NPAGE + HASHTABLE_NBYTE) ;
692 return ( WALINDEX_LOCK_OFFSET
693 + WALINDEX_LOCK_RESERVED
694 + nByte * ((iFrame + HASHTABLE_NPAGE - 1)/HASHTABLE_NPAGE)
danb7d53f52010-05-06 17:28:08 +0000695 );
696}
697
698/*
drh5530b762010-04-30 14:39:50 +0000699** Release our reference to the wal-index memory map, if we are holding
700** it.
drh7ed91f22010-04-29 22:34:07 +0000701*/
702static void walIndexUnmap(Wal *pWal){
703 if( pWal->pWiData ){
drhd9e5c4f2010-05-12 18:01:39 +0000704 sqlite3OsShmRelease(pWal->pDbFd);
drh7ed91f22010-04-29 22:34:07 +0000705 }
drh026ac282010-05-26 15:06:38 +0000706 pWal->pWiData = 0;
707 pWal->szWIndex = -1;
drh7ed91f22010-04-29 22:34:07 +0000708}
dan7c246102010-04-12 19:00:29 +0000709
710/*
drh5530b762010-04-30 14:39:50 +0000711** Map the wal-index file into memory if it isn't already.
712**
drh026ac282010-05-26 15:06:38 +0000713** The reqSize parameter is the requested size of the mapping. The
714** mapping will be at least this big if the underlying storage is
715** that big. But the mapping will never grow larger than the underlying
716** storage. Use the walIndexRemap() to enlarget the storage space.
drh7ed91f22010-04-29 22:34:07 +0000717*/
drh5530b762010-04-30 14:39:50 +0000718static int walIndexMap(Wal *pWal, int reqSize){
719 int rc = SQLITE_OK;
dan998ad212010-05-07 06:59:08 +0000720 if( pWal->pWiData==0 || reqSize>pWal->szWIndex ){
drh5500a1f2010-05-13 09:11:31 +0000721 walIndexUnmap(pWal);
drhd9e5c4f2010-05-12 18:01:39 +0000722 rc = sqlite3OsShmGet(pWal->pDbFd, reqSize, &pWal->szWIndex,
drh5939f442010-05-18 13:27:12 +0000723 (void volatile**)(char volatile*)&pWal->pWiData);
dan65f2ac52010-05-07 09:43:50 +0000724 if( rc!=SQLITE_OK ){
725 walIndexUnmap(pWal);
726 }
drh79e6c782010-04-30 02:13:26 +0000727 }
728 return rc;
729}
730
731/*
drh026ac282010-05-26 15:06:38 +0000732** Enlarge the wal-index to be at least enlargeTo bytes in size and
drh5530b762010-04-30 14:39:50 +0000733** Remap the wal-index so that the mapping covers the full size
734** of the underlying file.
735**
736** If enlargeTo is non-negative, then increase the size of the underlying
737** storage to be at least as big as enlargeTo before remapping.
drh79e6c782010-04-30 02:13:26 +0000738*/
drh5530b762010-04-30 14:39:50 +0000739static int walIndexRemap(Wal *pWal, int enlargeTo){
740 int rc;
741 int sz;
drh73b64e42010-05-30 19:55:15 +0000742 assert( pWal->writeLock );
drhd9e5c4f2010-05-12 18:01:39 +0000743 rc = sqlite3OsShmSize(pWal->pDbFd, enlargeTo, &sz);
drh5530b762010-04-30 14:39:50 +0000744 if( rc==SQLITE_OK && sz>pWal->szWIndex ){
745 walIndexUnmap(pWal);
746 rc = walIndexMap(pWal, sz);
747 }
drh026ac282010-05-26 15:06:38 +0000748 assert( pWal->szWIndex>=enlargeTo || rc!=SQLITE_OK );
drh7ed91f22010-04-29 22:34:07 +0000749 return rc;
750}
751
752/*
drh29d4dbe2010-05-18 23:29:52 +0000753** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000754** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
755** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000756*/
757static int walHash(u32 iPage){
758 assert( iPage>0 );
759 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
760 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
761}
762static int walNextHash(int iPriorHash){
763 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000764}
765
766
767/*
768** Find the hash table and (section of the) page number array used to
769** store data for WAL frame iFrame.
770**
771** Set output variable *paHash to point to the start of the hash table
772** in the wal-index file. Set *piZero to one less than the frame
773** number of the first frame indexed by this hash table. If a
774** slot in the hash table is set to N, it refers to frame number
775** (*piZero+N) in the log.
776**
777** Finally, set *paPgno such that for all frames F between (*piZero+1) and
778** (*piZero+HASHTABLE_NPAGE), (*paPgno)[F] is the database page number
779** associated with frame F.
780*/
781static void walHashFind(
782 Wal *pWal, /* WAL handle */
783 u32 iFrame, /* Find the hash table indexing this frame */
drh5939f442010-05-18 13:27:12 +0000784 volatile HASHTABLE_DATATYPE **paHash, /* OUT: Pointer to hash index */
785 volatile u32 **paPgno, /* OUT: Pointer to page number array */
danbb23aff2010-05-10 14:46:09 +0000786 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
787){
788 u32 iZero;
drh5939f442010-05-18 13:27:12 +0000789 volatile u32 *aPgno;
790 volatile HASHTABLE_DATATYPE *aHash;
danbb23aff2010-05-10 14:46:09 +0000791
792 iZero = ((iFrame-1)/HASHTABLE_NPAGE) * HASHTABLE_NPAGE;
793 aPgno = &pWal->pWiData[walIndexEntry(iZero+1)-iZero-1];
794 aHash = (HASHTABLE_DATATYPE *)&aPgno[iZero+HASHTABLE_NPAGE+1];
795
796 /* Assert that:
797 **
798 ** + the mapping is large enough for this hash-table, and
799 **
800 ** + that aPgno[iZero+1] really is the database page number associated
801 ** with the first frame indexed by this hash table.
802 */
803 assert( (u32*)(&aHash[HASHTABLE_NSLOT])<=&pWal->pWiData[pWal->szWIndex/4] );
804 assert( walIndexEntry(iZero+1)==(&aPgno[iZero+1] - pWal->pWiData) );
805
806 *paHash = aHash;
807 *paPgno = aPgno;
808 *piZero = iZero;
809}
810
danca6b5ba2010-05-25 10:50:56 +0000811/*
812** Remove entries from the hash table that point to WAL slots greater
813** than pWal->hdr.mxFrame.
814**
815** This function is called whenever pWal->hdr.mxFrame is decreased due
816** to a rollback or savepoint.
817**
drh181e0912010-06-01 01:08:08 +0000818** At most only the hash table containing pWal->hdr.mxFrame needs to be
819** updated. Any later hash tables will be automatically cleared when
820** pWal->hdr.mxFrame advances to the point where those hash tables are
821** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000822*/
823static void walCleanupHash(Wal *pWal){
824 volatile HASHTABLE_DATATYPE *aHash; /* Pointer to hash table to clear */
825 volatile u32 *aPgno; /* Unused return from walHashFind() */
826 u32 iZero; /* frame == (aHash[x]+iZero) */
drhf77bbd92010-06-01 13:17:44 +0000827 int iLimit = 0; /* Zero values greater than this */
danca6b5ba2010-05-25 10:50:56 +0000828
drh73b64e42010-05-30 19:55:15 +0000829 assert( pWal->writeLock );
drh9c156472010-06-01 12:58:41 +0000830 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE-1 );
831 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE );
832 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE+1 );
833 if( (pWal->hdr.mxFrame % HASHTABLE_NPAGE)>0 ){
danca6b5ba2010-05-25 10:50:56 +0000834 int nByte; /* Number of bytes to zero in aPgno[] */
835 int i; /* Used to iterate through aHash[] */
drh9c156472010-06-01 12:58:41 +0000836
837 walHashFind(pWal, pWal->hdr.mxFrame+1, &aHash, &aPgno, &iZero);
838 iLimit = pWal->hdr.mxFrame - iZero;
839 assert( iLimit>0 );
danca6b5ba2010-05-25 10:50:56 +0000840 for(i=0; i<HASHTABLE_NSLOT; i++){
841 if( aHash[i]>iLimit ){
842 aHash[i] = 0;
843 }
844 }
845
846 /* Zero the entries in the aPgno array that correspond to frames with
847 ** frame numbers greater than pWal->hdr.mxFrame.
848 */
849 nByte = sizeof(u32) * (HASHTABLE_NPAGE-iLimit);
850 memset((void *)&aPgno[iZero+iLimit+1], 0, nByte);
851 assert( &((u8 *)&aPgno[iZero+iLimit+1])[nByte]==(u8 *)aHash );
852 }
853
854#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
855 /* Verify that the every entry in the mapping region is still reachable
856 ** via the hash table even after the cleanup.
857 */
drhf77bbd92010-06-01 13:17:44 +0000858 if( iLimit ){
danca6b5ba2010-05-25 10:50:56 +0000859 int i; /* Loop counter */
860 int iKey; /* Hash key */
861 for(i=1; i<=iLimit; i++){
862 for(iKey=walHash(aPgno[i+iZero]); aHash[iKey]; iKey=walNextHash(iKey)){
863 if( aHash[iKey]==i ) break;
864 }
865 assert( aHash[iKey]==i );
866 }
867 }
868#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
869}
870
danbb23aff2010-05-10 14:46:09 +0000871
drh7ed91f22010-04-29 22:34:07 +0000872/*
drh29d4dbe2010-05-18 23:29:52 +0000873** Set an entry in the wal-index that will map database page number
874** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +0000875*/
drh7ed91f22010-04-29 22:34:07 +0000876static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
danbb23aff2010-05-10 14:46:09 +0000877 int rc; /* Return code */
878 int nMapping; /* Required mapping size in bytes */
drh7ed91f22010-04-29 22:34:07 +0000879
danbb23aff2010-05-10 14:46:09 +0000880 /* Make sure the wal-index is mapped. Enlarge the mapping if required. */
881 nMapping = walMappingSize(iFrame);
drh026ac282010-05-26 15:06:38 +0000882 rc = walIndexMap(pWal, nMapping);
danbb23aff2010-05-10 14:46:09 +0000883 while( rc==SQLITE_OK && nMapping>pWal->szWIndex ){
drh026ac282010-05-26 15:06:38 +0000884 rc = walIndexRemap(pWal, nMapping);
dance4f05f2010-04-22 19:14:13 +0000885 }
886
danbb23aff2010-05-10 14:46:09 +0000887 /* Assuming the wal-index file was successfully mapped, find the hash
888 ** table and section of of the page number array that pertain to frame
889 ** iFrame of the WAL. Then populate the page number array and the hash
890 ** table entry.
dan7c246102010-04-12 19:00:29 +0000891 */
danbb23aff2010-05-10 14:46:09 +0000892 if( rc==SQLITE_OK ){
893 int iKey; /* Hash table key */
894 u32 iZero; /* One less than frame number of aPgno[1] */
drh5939f442010-05-18 13:27:12 +0000895 volatile u32 *aPgno; /* Page number array */
896 volatile HASHTABLE_DATATYPE *aHash; /* Hash table */
897 int idx; /* Value to write to hash-table slot */
drh29d4dbe2010-05-18 23:29:52 +0000898 TESTONLY( int nCollide = 0; /* Number of hash collisions */ )
dan7c246102010-04-12 19:00:29 +0000899
danbb23aff2010-05-10 14:46:09 +0000900 walHashFind(pWal, iFrame, &aHash, &aPgno, &iZero);
901 idx = iFrame - iZero;
danca6b5ba2010-05-25 10:50:56 +0000902 if( idx==1 ){
903 memset((void*)&aPgno[iZero+1], 0, HASHTABLE_NPAGE*sizeof(u32));
904 memset((void*)aHash, 0, HASHTABLE_NBYTE);
905 }
drh29d4dbe2010-05-18 23:29:52 +0000906 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
danca6b5ba2010-05-25 10:50:56 +0000907
908 if( aPgno[iFrame] ){
909 /* If the entry in aPgno[] is already set, then the previous writer
910 ** must have exited unexpectedly in the middle of a transaction (after
911 ** writing one or more dirty pages to the WAL to free up memory).
912 ** Remove the remnants of that writers uncommitted transaction from
913 ** the hash-table before writing any new entries.
914 */
915 walCleanupHash(pWal);
916 assert( !aPgno[iFrame] );
917 }
danbb23aff2010-05-10 14:46:09 +0000918 aPgno[iFrame] = iPage;
dan6f150142010-05-21 15:31:56 +0000919 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
drh29d4dbe2010-05-18 23:29:52 +0000920 assert( nCollide++ < idx );
921 }
danbb23aff2010-05-10 14:46:09 +0000922 aHash[iKey] = idx;
drh4fa95bf2010-05-22 00:55:39 +0000923
924#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
925 /* Verify that the number of entries in the hash table exactly equals
926 ** the number of entries in the mapping region.
927 */
928 {
929 int i; /* Loop counter */
930 int nEntry = 0; /* Number of entries in the hash table */
931 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
932 assert( nEntry==idx );
933 }
934
935 /* Verify that the every entry in the mapping region is reachable
936 ** via the hash table. This turns out to be a really, really expensive
937 ** thing to check, so only do this occasionally - not on every
938 ** iteration.
939 */
940 if( (idx&0x3ff)==0 ){
941 int i; /* Loop counter */
942 for(i=1; i<=idx; i++){
943 for(iKey=walHash(aPgno[i+iZero]); aHash[iKey]; iKey=walNextHash(iKey)){
944 if( aHash[iKey]==i ) break;
945 }
946 assert( aHash[iKey]==i );
947 }
948 }
949#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +0000950 }
dan31f98fc2010-04-27 05:42:32 +0000951
drh4fa95bf2010-05-22 00:55:39 +0000952
danbb23aff2010-05-10 14:46:09 +0000953 return rc;
dan7c246102010-04-12 19:00:29 +0000954}
955
956
957/*
drh7ed91f22010-04-29 22:34:07 +0000958** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +0000959**
960** This routine first tries to establish an exclusive lock on the
961** wal-index to prevent other threads/processes from doing anything
962** with the WAL or wal-index while recovery is running. The
963** WAL_RECOVER_LOCK is also held so that other threads will know
964** that this thread is running recovery. If unable to establish
965** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +0000966*/
drh7ed91f22010-04-29 22:34:07 +0000967static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +0000968 int rc; /* Return Code */
969 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +0000970 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +0000971 int iLock; /* Lock offset to lock for checkpoint */
972 int nLock; /* Number of locks to hold */
dan7c246102010-04-12 19:00:29 +0000973
dand0aa3422010-05-31 16:41:53 +0000974 /* Obtain an exclusive lock on all byte in the locking range not already
975 ** locked by the caller. The caller is guaranteed to have locked the
976 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
977 ** If successful, the same bytes that are locked here are unlocked before
978 ** this function returns.
979 */
980 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
981 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
982 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
983 assert( pWal->writeLock );
984 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
985 nLock = SQLITE_SHM_NLOCK - iLock;
986 rc = walLockExclusive(pWal, iLock, nLock);
drh73b64e42010-05-30 19:55:15 +0000987 if( rc ){
988 return rc;
989 }
drhc74c3332010-05-31 12:15:19 +0000990 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +0000991
dan71d89912010-05-24 13:57:42 +0000992 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000993
drhd9e5c4f2010-05-12 18:01:39 +0000994 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +0000995 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +0000996 goto recovery_error;
dan7c246102010-04-12 19:00:29 +0000997 }
998
danb8fd6c22010-05-24 10:39:36 +0000999 if( nSize>WAL_HDRSIZE ){
1000 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dan7c246102010-04-12 19:00:29 +00001001 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001002 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001003 u8 *aData; /* Pointer to data part of aFrame buffer */
1004 int iFrame; /* Index of last frame read */
1005 i64 iOffset; /* Next offset to read from log file */
drh6e810962010-05-19 17:49:50 +00001006 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001007 u32 magic; /* Magic value read from WAL header */
dan7c246102010-04-12 19:00:29 +00001008
danb8fd6c22010-05-24 10:39:36 +00001009 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001010 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001011 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001012 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001013 }
1014
1015 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001016 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1017 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1018 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001019 */
danb8fd6c22010-05-24 10:39:36 +00001020 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001021 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001022 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1023 || szPage&(szPage-1)
1024 || szPage>SQLITE_MAX_PAGE_SIZE
1025 || szPage<512
1026 ){
dan7c246102010-04-12 19:00:29 +00001027 goto finished;
1028 }
dan71d89912010-05-24 13:57:42 +00001029 pWal->hdr.bigEndCksum = (magic&0x00000001);
drh7e263722010-05-20 21:21:09 +00001030 pWal->szPage = szPage;
drh23ea97b2010-05-20 16:45:58 +00001031 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001032 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
dan71d89912010-05-24 13:57:42 +00001033 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1034 aBuf, WAL_HDRSIZE, 0, pWal->hdr.aFrameCksum
1035 );
dan7c246102010-04-12 19:00:29 +00001036
1037 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001038 szFrame = szPage + WAL_FRAME_HDRSIZE;
1039 aFrame = (u8 *)sqlite3_malloc(szFrame);
dan7c246102010-04-12 19:00:29 +00001040 if( !aFrame ){
drh73b64e42010-05-30 19:55:15 +00001041 rc = SQLITE_NOMEM;
1042 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001043 }
drh7ed91f22010-04-29 22:34:07 +00001044 aData = &aFrame[WAL_FRAME_HDRSIZE];
dan7c246102010-04-12 19:00:29 +00001045
1046 /* Read all frames from the log file. */
1047 iFrame = 0;
drh584c7542010-05-19 18:08:10 +00001048 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
dan7c246102010-04-12 19:00:29 +00001049 u32 pgno; /* Database page number for frame */
1050 u32 nTruncate; /* dbsize field from frame header */
1051 int isValid; /* True if this frame is valid */
1052
1053 /* Read and decode the next log frame. */
drh584c7542010-05-19 18:08:10 +00001054 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
dan7c246102010-04-12 19:00:29 +00001055 if( rc!=SQLITE_OK ) break;
drh7e263722010-05-20 21:21:09 +00001056 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
dan7c246102010-04-12 19:00:29 +00001057 if( !isValid ) break;
danc7991bd2010-05-05 19:04:59 +00001058 rc = walIndexAppend(pWal, ++iFrame, pgno);
1059 if( rc!=SQLITE_OK ) break;
dan7c246102010-04-12 19:00:29 +00001060
1061 /* If nTruncate is non-zero, this is a commit record. */
1062 if( nTruncate ){
dan71d89912010-05-24 13:57:42 +00001063 pWal->hdr.mxFrame = iFrame;
1064 pWal->hdr.nPage = nTruncate;
1065 pWal->hdr.szPage = szPage;
1066 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1067 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
dan7c246102010-04-12 19:00:29 +00001068 }
1069 }
1070
1071 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001072 }
1073
1074finished:
dan71d89912010-05-24 13:57:42 +00001075 if( rc==SQLITE_OK && pWal->hdr.mxFrame==0 ){
drh026ac282010-05-26 15:06:38 +00001076 rc = walIndexRemap(pWal, walMappingSize(1));
dan576bc322010-05-06 18:04:50 +00001077 }
1078 if( rc==SQLITE_OK ){
dan71d89912010-05-24 13:57:42 +00001079 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1080 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001081 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001082
1083 /* Zero the checkpoint-header. This is safe because this thread is
1084 ** currently holding locks that exclude all other readers, writers and
1085 ** checkpointers.
1086 */
1087 memset((void *)walCkptInfo(pWal), 0, sizeof(WalCkptInfo));
dan576bc322010-05-06 18:04:50 +00001088 }
drh73b64e42010-05-30 19:55:15 +00001089
1090recovery_error:
drhc74c3332010-05-31 12:15:19 +00001091 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dand0aa3422010-05-31 16:41:53 +00001092 walUnlockExclusive(pWal, iLock, nLock);
dan7c246102010-04-12 19:00:29 +00001093 return rc;
1094}
1095
drha8e654e2010-05-04 17:38:42 +00001096/*
dan1018e902010-05-05 15:33:05 +00001097** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001098*/
dan1018e902010-05-05 15:33:05 +00001099static void walIndexClose(Wal *pWal, int isDelete){
drh73b64e42010-05-30 19:55:15 +00001100 if( pWal->isWIndexOpen ){
drhd9e5c4f2010-05-12 18:01:39 +00001101 sqlite3OsShmClose(pWal->pDbFd, isDelete);
drh73b64e42010-05-30 19:55:15 +00001102 pWal->isWIndexOpen = 0;
drha8e654e2010-05-04 17:38:42 +00001103 }
1104}
1105
dan7c246102010-04-12 19:00:29 +00001106/*
drh181e0912010-06-01 01:08:08 +00001107** Open a connection to the WAL file associated with database zDbName.
1108** The database file must already be opened on connection pDbFd.
dan3de777f2010-04-17 12:31:37 +00001109**
1110** A SHARED lock should be held on the database file when this function
1111** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001112** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001113** were to do this just after this client opened one of these files, the
1114** system would be badly broken.
danef378022010-05-04 11:06:03 +00001115**
1116** If the log file is successfully opened, SQLITE_OK is returned and
1117** *ppWal is set to point to a new WAL handle. If an error occurs,
1118** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001119*/
drhc438efd2010-04-26 00:19:45 +00001120int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001121 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001122 sqlite3_file *pDbFd, /* The open database file */
1123 const char *zDbName, /* Name of the database file */
drh7ed91f22010-04-29 22:34:07 +00001124 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001125){
danef378022010-05-04 11:06:03 +00001126 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001127 Wal *pRet; /* Object to allocate and return */
dan7c246102010-04-12 19:00:29 +00001128 int flags; /* Flags passed to OsOpen() */
drhd9e5c4f2010-05-12 18:01:39 +00001129 char *zWal; /* Name of write-ahead log file */
dan7c246102010-04-12 19:00:29 +00001130 int nWal; /* Length of zWal in bytes */
1131
drhd9e5c4f2010-05-12 18:01:39 +00001132 assert( zDbName && zDbName[0] );
1133 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001134
drh1b78eaf2010-05-25 13:40:03 +00001135 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1136 ** this source file. Verify that the #defines of the locking byte offsets
1137 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1138 */
1139#ifdef WIN_SHM_BASE
1140 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1141#endif
1142#ifdef UNIX_SHM_BASE
1143 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1144#endif
1145
1146
drh7ed91f22010-04-29 22:34:07 +00001147 /* Allocate an instance of struct Wal to return. */
1148 *ppWal = 0;
drh686138f2010-05-12 18:10:52 +00001149 nWal = sqlite3Strlen30(zDbName) + 5;
drhd9e5c4f2010-05-12 18:01:39 +00001150 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile + nWal);
dan76ed3bc2010-05-03 17:18:24 +00001151 if( !pRet ){
1152 return SQLITE_NOMEM;
1153 }
1154
dan7c246102010-04-12 19:00:29 +00001155 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001156 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1157 pRet->pDbFd = pDbFd;
drh026ac282010-05-26 15:06:38 +00001158 pRet->szWIndex = -1;
drh73b64e42010-05-30 19:55:15 +00001159 pRet->readLock = -1;
drh7e263722010-05-20 21:21:09 +00001160 sqlite3_randomness(8, &pRet->hdr.aSalt);
drhd9e5c4f2010-05-12 18:01:39 +00001161 pRet->zWalName = zWal = pVfs->szOsFile + (char*)pRet->pWalFd;
1162 sqlite3_snprintf(nWal, zWal, "%s-wal", zDbName);
1163 rc = sqlite3OsShmOpen(pDbFd);
dan7c246102010-04-12 19:00:29 +00001164
drh7ed91f22010-04-29 22:34:07 +00001165 /* Open file handle on the write-ahead log file. */
dan76ed3bc2010-05-03 17:18:24 +00001166 if( rc==SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001167 pRet->isWIndexOpen = 1;
dan76ed3bc2010-05-03 17:18:24 +00001168 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_MAIN_JOURNAL);
drhd9e5c4f2010-05-12 18:01:39 +00001169 rc = sqlite3OsOpen(pVfs, zWal, pRet->pWalFd, flags, &flags);
dan76ed3bc2010-05-03 17:18:24 +00001170 }
dan7c246102010-04-12 19:00:29 +00001171
dan7c246102010-04-12 19:00:29 +00001172 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001173 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001174 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001175 sqlite3_free(pRet);
1176 }else{
1177 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001178 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001179 }
dan7c246102010-04-12 19:00:29 +00001180 return rc;
1181}
1182
drha2a42012010-05-18 18:01:08 +00001183/*
1184** Find the smallest page number out of all pages held in the WAL that
1185** has not been returned by any prior invocation of this method on the
1186** same WalIterator object. Write into *piFrame the frame index where
1187** that page was last written into the WAL. Write into *piPage the page
1188** number.
1189**
1190** Return 0 on success. If there are no pages in the WAL with a page
1191** number larger than *piPage, then return 1.
1192*/
drh7ed91f22010-04-29 22:34:07 +00001193static int walIteratorNext(
1194 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001195 u32 *piPage, /* OUT: The page number of the next page */
1196 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001197){
drha2a42012010-05-18 18:01:08 +00001198 u32 iMin; /* Result pgno must be greater than iMin */
1199 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1200 int i; /* For looping through segments */
1201 int nBlock = p->nFinal; /* Number of entries in current segment */
dan7c246102010-04-12 19:00:29 +00001202
drha2a42012010-05-18 18:01:08 +00001203 iMin = p->iPrior;
1204 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001205 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001206 struct WalSegment *pSegment = &p->aSegment[i];
dan7c246102010-04-12 19:00:29 +00001207 while( pSegment->iNext<nBlock ){
drha2a42012010-05-18 18:01:08 +00001208 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001209 if( iPg>iMin ){
1210 if( iPg<iRet ){
1211 iRet = iPg;
1212 *piFrame = i*256 + 1 + pSegment->aIndex[pSegment->iNext];
1213 }
1214 break;
1215 }
1216 pSegment->iNext++;
1217 }
dan7c246102010-04-12 19:00:29 +00001218 nBlock = 256;
1219 }
1220
drha2a42012010-05-18 18:01:08 +00001221 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001222 return (iRet==0xFFFFFFFF);
1223}
1224
dan7c246102010-04-12 19:00:29 +00001225
drha2a42012010-05-18 18:01:08 +00001226static void walMergesort8(
1227 Pgno *aContent, /* Pages in wal */
1228 u8 *aBuffer, /* Buffer of at least *pnList items to use */
1229 u8 *aList, /* IN/OUT: List to sort */
1230 int *pnList /* IN/OUT: Number of elements in aList[] */
1231){
1232 int nList = *pnList;
1233 if( nList>1 ){
1234 int nLeft = nList / 2; /* Elements in left list */
1235 int nRight = nList - nLeft; /* Elements in right list */
1236 u8 *aLeft = aList; /* Left list */
1237 u8 *aRight = &aList[nLeft]; /* Right list */
1238 int iLeft = 0; /* Current index in aLeft */
1239 int iRight = 0; /* Current index in aright */
1240 int iOut = 0; /* Current index in output buffer */
1241
1242 /* TODO: Change to non-recursive version. */
1243 walMergesort8(aContent, aBuffer, aLeft, &nLeft);
1244 walMergesort8(aContent, aBuffer, aRight, &nRight);
1245
1246 while( iRight<nRight || iLeft<nLeft ){
1247 u8 logpage;
1248 Pgno dbpage;
1249
1250 if( (iLeft<nLeft)
1251 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1252 ){
1253 logpage = aLeft[iLeft++];
1254 }else{
1255 logpage = aRight[iRight++];
1256 }
1257 dbpage = aContent[logpage];
1258
1259 aBuffer[iOut++] = logpage;
1260 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1261
1262 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1263 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1264 }
1265 memcpy(aList, aBuffer, sizeof(aList[0])*iOut);
1266 *pnList = iOut;
1267 }
1268
1269#ifdef SQLITE_DEBUG
1270 {
1271 int i;
1272 for(i=1; i<*pnList; i++){
1273 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1274 }
1275 }
1276#endif
1277}
1278
1279/*
1280** Map the wal-index into memory owned by this thread, if it is not
1281** mapped already. Then construct a WalInterator object that can be
1282** used to loop over all pages in the WAL in ascending order.
1283**
1284** On success, make *pp point to the newly allocated WalInterator object
1285** return SQLITE_OK. Otherwise, leave *pp unchanged and return an error
1286** code.
1287**
1288** The calling routine should invoke walIteratorFree() to destroy the
1289** WalIterator object when it has finished with it. The caller must
1290** also unmap the wal-index. But the wal-index must not be unmapped
1291** prior to the WalIterator object being destroyed.
1292*/
1293static int walIteratorInit(Wal *pWal, WalIterator **pp){
1294 u32 *aData; /* Content of the wal-index file */
1295 WalIterator *p; /* Return value */
1296 int nSegment; /* Number of segments to merge */
1297 u32 iLast; /* Last frame in log */
1298 int nByte; /* Number of bytes to allocate */
1299 int i; /* Iterator variable */
1300 int nFinal; /* Number of unindexed entries */
1301 u8 *aTmp; /* Temp space used by merge-sort */
1302 int rc; /* Return code of walIndexMap() */
1303 u8 *aSpace; /* Surplus space on the end of the allocation */
1304
1305 /* Make sure the wal-index is mapped into local memory */
drh027a1282010-05-19 01:53:53 +00001306 rc = walIndexMap(pWal, walMappingSize(pWal->hdr.mxFrame));
dan8f6097c2010-05-06 07:43:58 +00001307 if( rc!=SQLITE_OK ){
1308 return rc;
1309 }
drha2a42012010-05-18 18:01:08 +00001310
1311 /* This routine only runs while holding SQLITE_SHM_CHECKPOINT. No other
1312 ** thread is able to write to shared memory while this routine is
1313 ** running (or, indeed, while the WalIterator object exists). Hence,
1314 ** we can cast off the volatile qualifacation from shared memory
1315 */
dan1beb9392010-05-31 12:02:30 +00001316 assert( pWal->ckptLock );
drh5939f442010-05-18 13:27:12 +00001317 aData = (u32*)pWal->pWiData;
drha2a42012010-05-18 18:01:08 +00001318
1319 /* Allocate space for the WalIterator object */
drh027a1282010-05-19 01:53:53 +00001320 iLast = pWal->hdr.mxFrame;
dan7c246102010-04-12 19:00:29 +00001321 nSegment = (iLast >> 8) + 1;
1322 nFinal = (iLast & 0x000000FF);
danbb23aff2010-05-10 14:46:09 +00001323 nByte = sizeof(WalIterator) + (nSegment+1)*(sizeof(struct WalSegment)+256);
drh7ed91f22010-04-29 22:34:07 +00001324 p = (WalIterator *)sqlite3_malloc(nByte);
dan8f6097c2010-05-06 07:43:58 +00001325 if( !p ){
drha2a42012010-05-18 18:01:08 +00001326 return SQLITE_NOMEM;
1327 }
1328 memset(p, 0, nByte);
dan76ed3bc2010-05-03 17:18:24 +00001329
drha2a42012010-05-18 18:01:08 +00001330 /* Initialize the WalIterator object. Each 256-entry segment is
1331 ** presorted in order to make iterating through all entries much
1332 ** faster.
1333 */
1334 p->nSegment = nSegment;
1335 aSpace = (u8 *)&p->aSegment[nSegment];
1336 aTmp = &aSpace[nSegment*256];
1337 for(i=0; i<nSegment; i++){
1338 int j;
1339 int nIndex = (i==nSegment-1) ? nFinal : 256;
1340 p->aSegment[i].aPgno = &aData[walIndexEntry(i*256+1)];
1341 p->aSegment[i].aIndex = aSpace;
1342 for(j=0; j<nIndex; j++){
1343 aSpace[j] = j;
dan76ed3bc2010-05-03 17:18:24 +00001344 }
drha2a42012010-05-18 18:01:08 +00001345 walMergesort8(p->aSegment[i].aPgno, aTmp, aSpace, &nIndex);
1346 memset(&aSpace[nIndex], aSpace[nIndex-1], 256-nIndex);
1347 aSpace += 256;
1348 p->nFinal = nIndex;
dan7c246102010-04-12 19:00:29 +00001349 }
1350
drha2a42012010-05-18 18:01:08 +00001351 /* Return the fully initializd WalIterator object */
dan8f6097c2010-05-06 07:43:58 +00001352 *pp = p;
drha2a42012010-05-18 18:01:08 +00001353 return SQLITE_OK ;
dan7c246102010-04-12 19:00:29 +00001354}
1355
1356/*
drha2a42012010-05-18 18:01:08 +00001357** Free an iterator allocated by walIteratorInit().
dan7c246102010-04-12 19:00:29 +00001358*/
drh7ed91f22010-04-29 22:34:07 +00001359static void walIteratorFree(WalIterator *p){
dan7c246102010-04-12 19:00:29 +00001360 sqlite3_free(p);
1361}
1362
drh73b64e42010-05-30 19:55:15 +00001363
dan7c246102010-04-12 19:00:29 +00001364/*
drh73b64e42010-05-30 19:55:15 +00001365** Copy as much content as we can from the WAL back into the database file
1366** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1367**
1368** The amount of information copies from WAL to database might be limited
1369** by active readers. This routine will never overwrite a database page
1370** that a concurrent reader might be using.
1371**
1372** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1373** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1374** checkpoints are always run by a background thread or background
1375** process, foreground threads will never block on a lengthy fsync call.
1376**
1377** Fsync is called on the WAL before writing content out of the WAL and
1378** into the database. This ensures that if the new content is persistent
1379** in the WAL and can be recovered following a power-loss or hard reset.
1380**
1381** Fsync is also called on the database file if (and only if) the entire
1382** WAL content is copied into the database file. This second fsync makes
1383** it safe to delete the WAL since the new content will persist in the
1384** database file.
1385**
1386** This routine uses and updates the nBackfill field of the wal-index header.
1387** This is the only routine tha will increase the value of nBackfill.
1388** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1389** its value.)
1390**
1391** The caller must be holding sufficient locks to ensure that no other
1392** checkpoint is running (in any other thread or process) at the same
1393** time.
dan7c246102010-04-12 19:00:29 +00001394*/
drh7ed91f22010-04-29 22:34:07 +00001395static int walCheckpoint(
1396 Wal *pWal, /* Wal connection */
danc5118782010-04-17 17:34:41 +00001397 int sync_flags, /* Flags for OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001398 int nBuf, /* Size of zBuf in bytes */
dan7c246102010-04-12 19:00:29 +00001399 u8 *zBuf /* Temporary buffer to use */
1400){
1401 int rc; /* Return code */
drh6e810962010-05-19 17:49:50 +00001402 int szPage = pWal->hdr.szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001403 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001404 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001405 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001406 u32 mxSafeFrame; /* Max frame that can be backfilled */
1407 int i; /* Loop counter */
1408 volatile WalIndexHdr *pHdr; /* The actual wal-index header in SHM */
1409 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
dan7c246102010-04-12 19:00:29 +00001410
1411 /* Allocate the iterator */
dan8f6097c2010-05-06 07:43:58 +00001412 rc = walIteratorInit(pWal, &pIter);
drh027a1282010-05-19 01:53:53 +00001413 if( rc!=SQLITE_OK || pWal->hdr.mxFrame==0 ){
drh73b64e42010-05-30 19:55:15 +00001414 walIteratorFree(pIter);
1415 return rc;
danb6e099a2010-05-04 14:47:39 +00001416 }
1417
drh73b64e42010-05-30 19:55:15 +00001418 /*** TODO: Move this test out to the caller. Make it an assert() here ***/
drh6e810962010-05-19 17:49:50 +00001419 if( pWal->hdr.szPage!=nBuf ){
drh73b64e42010-05-30 19:55:15 +00001420 walIteratorFree(pIter);
1421 return SQLITE_CORRUPT_BKPT;
danb6e099a2010-05-04 14:47:39 +00001422 }
1423
drh73b64e42010-05-30 19:55:15 +00001424 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1425 ** safe to write into the database. Frames beyond mxSafeFrame might
1426 ** overwrite database pages that are in use by active readers and thus
1427 ** cannot be backfilled from the WAL.
1428 */
dand54ff602010-05-31 11:16:30 +00001429 mxSafeFrame = pWal->hdr.mxFrame;
drh73b64e42010-05-30 19:55:15 +00001430 pHdr = (volatile WalIndexHdr*)pWal->pWiData;
1431 pInfo = (volatile WalCkptInfo*)&pHdr[2];
1432 assert( pInfo==walCkptInfo(pWal) );
1433 for(i=1; i<WAL_NREADER; i++){
1434 u32 y = pInfo->aReadMark[i];
dand54ff602010-05-31 11:16:30 +00001435 if( y>0 && (mxSafeFrame==0 || mxSafeFrame>=y) ){
dan0cc5b2b2010-05-31 11:39:53 +00001436 if( y<=pWal->hdr.mxFrame
dane8772962010-06-01 10:44:28 +00001437 && walLockExclusive(pWal, WAL_READ_LOCK(i), 1)==SQLITE_OK
drh73b64e42010-05-30 19:55:15 +00001438 ){
1439 pInfo->aReadMark[i] = 0;
1440 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
drh2d37e1c2010-06-02 20:38:20 +00001441 }else if( rc==SQLITE_BUSY ){
dand54ff602010-05-31 11:16:30 +00001442 mxSafeFrame = y-1;
drh2d37e1c2010-06-02 20:38:20 +00001443 }else{
1444 walIteratorFree(pIter);
1445 return rc;
drh73b64e42010-05-30 19:55:15 +00001446 }
1447 }
danc5118782010-04-17 17:34:41 +00001448 }
dan7c246102010-04-12 19:00:29 +00001449
drh73b64e42010-05-30 19:55:15 +00001450 if( pInfo->nBackfill<mxSafeFrame
1451 && (rc = walLockExclusive(pWal, WAL_READ_LOCK(0), 1))==SQLITE_OK
1452 ){
1453 u32 nBackfill = pInfo->nBackfill;
1454
1455 /* Sync the WAL to disk */
1456 if( sync_flags ){
1457 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1458 }
1459
1460 /* Iterate through the contents of the WAL, copying data to the db file. */
1461 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1462 if( iFrame<=nBackfill || iFrame>mxSafeFrame ) continue;
1463 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage,
1464 walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE
1465 );
1466 if( rc!=SQLITE_OK ) break;
1467 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, (iDbpage-1)*szPage);
1468 if( rc!=SQLITE_OK ) break;
1469 }
1470
1471 /* If work was actually accomplished... */
1472 if( rc==SQLITE_OK && pInfo->nBackfill<mxSafeFrame ){
1473 pInfo->nBackfill = mxSafeFrame;
1474 if( mxSafeFrame==pHdr[0].mxFrame && sync_flags ){
1475 rc = sqlite3OsTruncate(pWal->pDbFd, ((i64)pWal->hdr.nPage*(i64)szPage));
1476 if( rc==SQLITE_OK && sync_flags ){
1477 rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1478 }
1479 }
1480 }
1481
1482 /* Release the reader lock held while backfilling */
1483 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
drh2d37e1c2010-06-02 20:38:20 +00001484 }else if( rc==SQLITE_BUSY ){
drh34116ea2010-05-31 12:30:52 +00001485 /* Reset the return code so as not to report a checkpoint failure
1486 ** just because active readers prevent any backfill.
1487 */
1488 rc = SQLITE_OK;
dan7c246102010-04-12 19:00:29 +00001489 }
1490
drh7ed91f22010-04-29 22:34:07 +00001491 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00001492 return rc;
1493}
1494
1495/*
1496** Close a connection to a log file.
1497*/
drhc438efd2010-04-26 00:19:45 +00001498int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00001499 Wal *pWal, /* Wal to close */
danc5118782010-04-17 17:34:41 +00001500 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001501 int nBuf,
1502 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00001503){
1504 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00001505 if( pWal ){
dan30c86292010-04-30 16:24:46 +00001506 int isDelete = 0; /* True to unlink wal and wal-index files */
1507
1508 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1509 ** ordinary, rollback-mode locking methods, this guarantees that the
1510 ** connection associated with this log file is the only connection to
1511 ** the database. In this case checkpoint the database and unlink both
1512 ** the wal and wal-index files.
1513 **
1514 ** The EXCLUSIVE lock is not released before returning.
1515 */
drhd9e5c4f2010-05-12 18:01:39 +00001516 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
dan30c86292010-04-30 16:24:46 +00001517 if( rc==SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001518 pWal->exclusiveMode = 1;
dan1beb9392010-05-31 12:02:30 +00001519 rc = sqlite3WalCheckpoint(pWal, sync_flags, nBuf, zBuf);
dan30c86292010-04-30 16:24:46 +00001520 if( rc==SQLITE_OK ){
1521 isDelete = 1;
1522 }
1523 walIndexUnmap(pWal);
1524 }
1525
dan1018e902010-05-05 15:33:05 +00001526 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00001527 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00001528 if( isDelete ){
drhd9e5c4f2010-05-12 18:01:39 +00001529 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
dan30c86292010-04-30 16:24:46 +00001530 }
drhc74c3332010-05-31 12:15:19 +00001531 WALTRACE(("WAL%p: closed\n", pWal));
drh7ed91f22010-04-29 22:34:07 +00001532 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00001533 }
1534 return rc;
1535}
1536
1537/*
drha2a42012010-05-18 18:01:08 +00001538** Try to read the wal-index header. Return 0 on success and 1 if
1539** there is a problem.
1540**
1541** The wal-index is in shared memory. Another thread or process might
1542** be writing the header at the same time this procedure is trying to
1543** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00001544** by verifying that both copies of the header are the same and also by
1545** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00001546**
1547** If and only if the read is consistent and the header is different from
1548** pWal->hdr, then pWal->hdr is updated to the content of the new header
1549** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00001550**
dan84670502010-05-07 05:46:23 +00001551** If the checksum cannot be verified return non-zero. If the header
1552** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00001553*/
dan84670502010-05-07 05:46:23 +00001554int walIndexTryHdr(Wal *pWal, int *pChanged){
drh286a2882010-05-20 23:51:06 +00001555 u32 aCksum[2]; /* Checksum on the header content */
drhf0b20f82010-05-21 13:16:18 +00001556 WalIndexHdr h1, h2; /* Two copies of the header content */
drh286a2882010-05-20 23:51:06 +00001557 WalIndexHdr *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00001558
drh026ac282010-05-26 15:06:38 +00001559 if( pWal->szWIndex < WALINDEX_HDR_SIZE ){
1560 /* The wal-index is not large enough to hold the header, then assume
1561 ** header is invalid. */
dan84670502010-05-07 05:46:23 +00001562 return 1;
drh79e6c782010-04-30 02:13:26 +00001563 }
drh026ac282010-05-26 15:06:38 +00001564 assert( pWal->pWiData );
drh79e6c782010-04-30 02:13:26 +00001565
drh73b64e42010-05-30 19:55:15 +00001566 /* Read the header. This might happen currently with a write to the
1567 ** same area of shared memory on a different CPU in a SMP,
1568 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00001569 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00001570 **
1571 ** There are two copies of the header at the beginning of the wal-index.
1572 ** When reading, read [0] first then [1]. Writes are in the reverse order.
1573 ** Memory barriers are used to prevent the compiler or the hardware from
1574 ** reordering the reads and writes.
danb9bf16b2010-04-14 11:23:30 +00001575 */
drh286a2882010-05-20 23:51:06 +00001576 aHdr = (WalIndexHdr*)pWal->pWiData;
drhf0b20f82010-05-21 13:16:18 +00001577 memcpy(&h1, &aHdr[0], sizeof(h1));
drh286a2882010-05-20 23:51:06 +00001578 sqlite3OsShmBarrier(pWal->pDbFd);
drhf0b20f82010-05-21 13:16:18 +00001579 memcpy(&h2, &aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00001580
drhf0b20f82010-05-21 13:16:18 +00001581 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
1582 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00001583 }
drh4b82c382010-05-31 18:24:19 +00001584 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00001585 return 1; /* Malformed header - probably all zeros */
1586 }
danb8fd6c22010-05-24 10:39:36 +00001587 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00001588 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
1589 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00001590 }
1591
drhf0b20f82010-05-21 13:16:18 +00001592 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00001593 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00001594 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh7e263722010-05-20 21:21:09 +00001595 pWal->szPage = pWal->hdr.szPage;
danb9bf16b2010-04-14 11:23:30 +00001596 }
dan84670502010-05-07 05:46:23 +00001597
1598 /* The header was successfully read. Return zero. */
1599 return 0;
danb9bf16b2010-04-14 11:23:30 +00001600}
1601
1602/*
drha2a42012010-05-18 18:01:08 +00001603** Read the wal-index header from the wal-index and into pWal->hdr.
1604** If the wal-header appears to be corrupt, try to recover the log
1605** before returning.
1606**
1607** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
1608** changed by this opertion. If pWal->hdr is unchanged, set *pChanged
1609** to 0.
1610**
1611** This routine also maps the wal-index content into memory and assigns
1612** ownership of that mapping to the current thread. In some implementations,
1613** only one thread at a time can hold a mapping of the wal-index. Hence,
1614** the caller should strive to invoke walIndexUnmap() as soon as possible
1615** after this routine returns.
danb9bf16b2010-04-14 11:23:30 +00001616**
drh7ed91f22010-04-29 22:34:07 +00001617** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00001618** Otherwise an SQLite error code.
1619*/
drh7ed91f22010-04-29 22:34:07 +00001620static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00001621 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00001622 int badHdr; /* True if a header read failed */
danb9bf16b2010-04-14 11:23:30 +00001623
dana8614692010-05-06 14:42:34 +00001624 assert( pChanged );
drh026ac282010-05-26 15:06:38 +00001625 rc = walIndexMap(pWal, walMappingSize(1));
danc7991bd2010-05-05 19:04:59 +00001626 if( rc!=SQLITE_OK ){
1627 return rc;
1628 }
drh7ed91f22010-04-29 22:34:07 +00001629
drh73b64e42010-05-30 19:55:15 +00001630 /* Try once to read the header straight out. This works most of the
1631 ** time.
danb9bf16b2010-04-14 11:23:30 +00001632 */
drh73b64e42010-05-30 19:55:15 +00001633 badHdr = walIndexTryHdr(pWal, pChanged);
drhbab7b912010-05-26 17:31:58 +00001634
drh73b64e42010-05-30 19:55:15 +00001635 /* If the first attempt failed, it might have been due to a race
1636 ** with a writer. So get a WRITE lock and try again.
1637 */
dand54ff602010-05-31 11:16:30 +00001638 assert( badHdr==0 || pWal->writeLock==0 );
drh73b64e42010-05-30 19:55:15 +00001639 if( badHdr ){
1640 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1641 if( rc==SQLITE_OK ){
1642 pWal->writeLock = 1;
1643 badHdr = walIndexTryHdr(pWal, pChanged);
1644 if( badHdr ){
1645 /* If the wal-index header is still malformed even while holding
1646 ** a WRITE lock, it can only mean that the header is corrupted and
1647 ** needs to be reconstructed. So run recovery to do exactly that.
1648 */
drhbab7b912010-05-26 17:31:58 +00001649 rc = walIndexRecover(pWal);
dan3dee6da2010-05-31 16:17:54 +00001650 *pChanged = 1;
drhbab7b912010-05-26 17:31:58 +00001651 }
drh73b64e42010-05-30 19:55:15 +00001652 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
1653 pWal->writeLock = 0;
1654 }else if( rc!=SQLITE_BUSY ){
1655 return rc;
drhbab7b912010-05-26 17:31:58 +00001656 }
danb9bf16b2010-04-14 11:23:30 +00001657 }
1658
drhbab7b912010-05-26 17:31:58 +00001659 /* Make sure the mapping is large enough to cover the entire wal-index */
1660 if( rc==SQLITE_OK ){
1661 int szWanted = walMappingSize(pWal->hdr.mxFrame);
1662 if( pWal->szWIndex<szWanted ){
1663 rc = walIndexMap(pWal, szWanted);
dan65be0d82010-05-06 18:48:27 +00001664 }
danb9bf16b2010-04-14 11:23:30 +00001665 }
1666
1667 return rc;
1668}
1669
1670/*
drh73b64e42010-05-30 19:55:15 +00001671** This is the value that walTryBeginRead returns when it needs to
1672** be retried.
dan7c246102010-04-12 19:00:29 +00001673*/
drh73b64e42010-05-30 19:55:15 +00001674#define WAL_RETRY (-1)
dan64d039e2010-04-13 19:27:31 +00001675
drh73b64e42010-05-30 19:55:15 +00001676/*
1677** Attempt to start a read transaction. This might fail due to a race or
1678** other transient condition. When that happens, it returns WAL_RETRY to
1679** indicate to the caller that it is safe to retry immediately.
1680**
1681** On success return SQLITE_OK. On a permantent failure (such an
1682** I/O error or an SQLITE_BUSY because another process is running
1683** recovery) return a positive error code.
1684**
1685** On success, this routine obtains a read lock on
1686** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
1687** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
1688** that means the Wal does not hold any read lock. The reader must not
1689** access any database page that is modified by a WAL frame up to and
1690** including frame number aReadMark[pWal->readLock]. The reader will
1691** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
1692** Or if pWal->readLock==0, then the reader will ignore the WAL
1693** completely and get all content directly from the database file.
1694** When the read transaction is completed, the caller must release the
1695** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
1696**
1697** This routine uses the nBackfill and aReadMark[] fields of the header
1698** to select a particular WAL_READ_LOCK() that strives to let the
1699** checkpoint process do as much work as possible. This routine might
1700** update values of the aReadMark[] array in the header, but if it does
1701** so it takes care to hold an exclusive lock on the corresponding
1702** WAL_READ_LOCK() while changing values.
1703*/
drhaab4c022010-06-02 14:45:51 +00001704static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00001705 volatile WalIndexHdr *pHdr; /* Header of the wal-index */
1706 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
1707 u32 mxReadMark; /* Largest aReadMark[] value */
1708 int mxI; /* Index of largest aReadMark[] value */
1709 int i; /* Loop counter */
1710 int rc; /* Return code */
dan64d039e2010-04-13 19:27:31 +00001711
drh61e4ace2010-05-31 20:28:37 +00001712 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00001713
drhaab4c022010-06-02 14:45:51 +00001714 /* Take steps to avoid spinning forever if there is a protocol error. */
1715 if( cnt>5 ){
1716 if( cnt>100 ) return SQLITE_PROTOCOL;
1717 sqlite3OsSleep(pWal->pVfs, 1);
1718 }
1719
drh73b64e42010-05-30 19:55:15 +00001720 if( !useWal ){
drh7ed91f22010-04-29 22:34:07 +00001721 rc = walIndexReadHdr(pWal, pChanged);
drh73b64e42010-05-30 19:55:15 +00001722 if( rc==SQLITE_BUSY ){
1723 /* If there is not a recovery running in another thread or process
1724 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
1725 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
1726 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
1727 ** would be technically correct. But the race is benign since with
1728 ** WAL_RETRY this routine will be called again and will probably be
1729 ** right on the second iteration.
1730 */
1731 rc = walLockShared(pWal, WAL_RECOVER_LOCK);
1732 if( rc==SQLITE_OK ){
1733 walUnlockShared(pWal, WAL_RECOVER_LOCK);
1734 rc = WAL_RETRY;
1735 }else if( rc==SQLITE_BUSY ){
1736 rc = SQLITE_BUSY_RECOVERY;
1737 }
1738 }
1739 }else{
drh18b7f602010-05-31 14:39:31 +00001740 rc = walIndexMap(pWal, walMappingSize(pWal->hdr.mxFrame));
drh73b64e42010-05-30 19:55:15 +00001741 }
1742 if( rc!=SQLITE_OK ){
1743 return rc;
1744 }
1745
1746 pHdr = (volatile WalIndexHdr*)pWal->pWiData;
1747 pInfo = (volatile WalCkptInfo*)&pHdr[2];
1748 assert( pInfo==walCkptInfo(pWal) );
1749 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
1750 /* The WAL has been completely backfilled (or it is empty).
1751 ** and can be safely ignored.
1752 */
1753 rc = walLockShared(pWal, WAL_READ_LOCK(0));
1754 if( rc==SQLITE_OK ){
1755 if( pHdr->mxFrame!=pWal->hdr.mxFrame ){
1756 walUnlockShared(pWal, WAL_READ_LOCK(0));
1757 return WAL_RETRY;
1758 }
1759 pWal->readLock = 0;
1760 return SQLITE_OK;
1761 }else if( rc!=SQLITE_BUSY ){
1762 return rc;
dan64d039e2010-04-13 19:27:31 +00001763 }
dan7c246102010-04-12 19:00:29 +00001764 }
danba515902010-04-30 09:32:06 +00001765
drh73b64e42010-05-30 19:55:15 +00001766 /* If we get this far, it means that the reader will want to use
1767 ** the WAL to get at content from recent commits. The job now is
1768 ** to select one of the aReadMark[] entries that is closest to
1769 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
1770 */
1771 mxReadMark = 0;
1772 mxI = 0;
1773 for(i=1; i<WAL_NREADER; i++){
1774 u32 thisMark = pInfo->aReadMark[i];
1775 if( mxReadMark<thisMark ){
1776 mxReadMark = thisMark;
1777 mxI = i;
1778 }
1779 }
1780 if( mxI==0 ){
1781 /* If we get here, it means that all of the aReadMark[] entries between
1782 ** 1 and WAL_NREADER-1 are zero. Try to initialize aReadMark[1] to
1783 ** be mxFrame, then retry.
1784 */
1785 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), 1);
1786 if( rc==SQLITE_OK ){
dand54ff602010-05-31 11:16:30 +00001787 pInfo->aReadMark[1] = pWal->hdr.mxFrame+1;
drh73b64e42010-05-30 19:55:15 +00001788 walUnlockExclusive(pWal, WAL_READ_LOCK(1), 1);
drh38933f22010-06-02 15:43:18 +00001789 rc = WAL_RETRY;
1790 }else if( rc==SQLITE_BUSY ){
1791 rc = WAL_RETRY;
drh73b64e42010-05-30 19:55:15 +00001792 }
drh38933f22010-06-02 15:43:18 +00001793 return rc;
drh73b64e42010-05-30 19:55:15 +00001794 }else{
1795 if( mxReadMark < pWal->hdr.mxFrame ){
dand54ff602010-05-31 11:16:30 +00001796 for(i=1; i<WAL_NREADER; i++){
drh73b64e42010-05-30 19:55:15 +00001797 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1798 if( rc==SQLITE_OK ){
dan3dee6da2010-05-31 16:17:54 +00001799 mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame+1;
drh73b64e42010-05-30 19:55:15 +00001800 mxI = i;
1801 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1802 break;
drh38933f22010-06-02 15:43:18 +00001803 }else if( rc!=SQLITE_BUSY ){
1804 return rc;
drh73b64e42010-05-30 19:55:15 +00001805 }
1806 }
1807 }
1808
1809 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
1810 if( rc ){
1811 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
1812 }
1813 if( pInfo->aReadMark[mxI]!=mxReadMark
1814 || pHdr[0].mxFrame!=pWal->hdr.mxFrame
1815 || (sqlite3OsShmBarrier(pWal->pDbFd), pHdr[1].mxFrame!=pWal->hdr.mxFrame)
1816 ){
1817 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
1818 return WAL_RETRY;
1819 }else{
1820 pWal->readLock = mxI;
1821 }
1822 }
1823 return rc;
1824}
1825
1826/*
1827** Begin a read transaction on the database.
1828**
1829** This routine used to be called sqlite3OpenSnapshot() and with good reason:
1830** it takes a snapshot of the state of the WAL and wal-index for the current
1831** instant in time. The current thread will continue to use this snapshot.
1832** Other threads might append new content to the WAL and wal-index but
1833** that extra content is ignored by the current thread.
1834**
1835** If the database contents have changes since the previous read
1836** transaction, then *pChanged is set to 1 before returning. The
1837** Pager layer will use this to know that is cache is stale and
1838** needs to be flushed.
1839*/
1840int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
1841 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00001842 int cnt = 0; /* Number of TryBeginRead attempts */
drh73b64e42010-05-30 19:55:15 +00001843
1844 do{
drhaab4c022010-06-02 14:45:51 +00001845 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00001846 }while( rc==WAL_RETRY );
danba515902010-04-30 09:32:06 +00001847 walIndexUnmap(pWal);
dan7c246102010-04-12 19:00:29 +00001848 return rc;
1849}
1850
1851/*
drh73b64e42010-05-30 19:55:15 +00001852** Finish with a read transaction. All this does is release the
1853** read-lock.
dan7c246102010-04-12 19:00:29 +00001854*/
drh73b64e42010-05-30 19:55:15 +00001855void sqlite3WalEndReadTransaction(Wal *pWal){
1856 if( pWal->readLock>=0 ){
1857 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
1858 pWal->readLock = -1;
1859 }
dan7c246102010-04-12 19:00:29 +00001860}
1861
dan5e0ce872010-04-28 17:48:44 +00001862/*
drh73b64e42010-05-30 19:55:15 +00001863** Read a page from the WAL, if it is present in the WAL and if the
1864** current read transaction is configured to use the WAL.
1865**
1866** The *pInWal is set to 1 if the requested page is in the WAL and
1867** has been loaded. Or *pInWal is set to 0 if the page was not in
1868** the WAL and needs to be read out of the database.
dan7c246102010-04-12 19:00:29 +00001869*/
danb6e099a2010-05-04 14:47:39 +00001870int sqlite3WalRead(
danbb23aff2010-05-10 14:46:09 +00001871 Wal *pWal, /* WAL handle */
1872 Pgno pgno, /* Database page number to read data for */
1873 int *pInWal, /* OUT: True if data is read from WAL */
1874 int nOut, /* Size of buffer pOut in bytes */
1875 u8 *pOut /* Buffer to write page data to */
danb6e099a2010-05-04 14:47:39 +00001876){
danc7991bd2010-05-05 19:04:59 +00001877 int rc; /* Return code */
danbb23aff2010-05-10 14:46:09 +00001878 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00001879 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00001880 int iHash; /* Used to loop through N hash tables */
dan7c246102010-04-12 19:00:29 +00001881
drhaab4c022010-06-02 14:45:51 +00001882 /* This routine is only be called from within a read transaction. */
1883 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00001884
danbb23aff2010-05-10 14:46:09 +00001885 /* If the "last page" field of the wal-index header snapshot is 0, then
1886 ** no data will be read from the wal under any circumstances. Return early
drh73b64e42010-05-30 19:55:15 +00001887 ** in this case to avoid the walIndexMap/Unmap overhead. Likewise, if
1888 ** pWal->readLock==0, then the WAL is ignored by the reader so
1889 ** return early, as if the WAL were empty.
danbb23aff2010-05-10 14:46:09 +00001890 */
drh73b64e42010-05-30 19:55:15 +00001891 if( iLast==0 || pWal->readLock==0 ){
danbb23aff2010-05-10 14:46:09 +00001892 *pInWal = 0;
1893 return SQLITE_OK;
1894 }
1895
1896 /* Ensure the wal-index is mapped. */
danbb23aff2010-05-10 14:46:09 +00001897 rc = walIndexMap(pWal, walMappingSize(iLast));
danc7991bd2010-05-05 19:04:59 +00001898 if( rc!=SQLITE_OK ){
1899 return rc;
1900 }
dancd11fb22010-04-26 10:40:52 +00001901
danbb23aff2010-05-10 14:46:09 +00001902 /* Search the hash table or tables for an entry matching page number
1903 ** pgno. Each iteration of the following for() loop searches one
1904 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
1905 **
1906 ** This code may run concurrently to the code in walIndexAppend()
1907 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00001908 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00001909 ** slot (aHash[iKey]) may have been added before or after the
1910 ** current read transaction was opened. Values added after the
1911 ** read transaction was opened may have been written incorrectly -
1912 ** i.e. these slots may contain garbage data. However, we assume
1913 ** that any slots written before the current read transaction was
1914 ** opened remain unmodified.
1915 **
1916 ** For the reasons above, the if(...) condition featured in the inner
1917 ** loop of the following block is more stringent that would be required
1918 ** if we had exclusive access to the hash-table:
1919 **
1920 ** (aPgno[iFrame]==pgno):
1921 ** This condition filters out normal hash-table collisions.
1922 **
1923 ** (iFrame<=iLast):
1924 ** This condition filters out entries that were added to the hash
1925 ** table after the current read-transaction had started.
1926 **
1927 ** (iFrame>iRead):
1928 ** This filters out a dangerous class of garbage data. The
1929 ** garbage hash slot may refer to a frame with the correct page
1930 ** number, but not the most recent version of the frame. For
drh6e810962010-05-19 17:49:50 +00001931 ** example, if at the start of the read-transaction the WAL
danbb23aff2010-05-10 14:46:09 +00001932 ** contains three copies of the desired page in frames 2, 3 and 4,
1933 ** the hash table may contain the following:
1934 **
drh6e810962010-05-19 17:49:50 +00001935 ** { ..., 2, 3, 4, 99, 99, ..... }
danbb23aff2010-05-10 14:46:09 +00001936 **
1937 ** The correct answer is to read data from frame 4. But a
1938 ** dirty-read may potentially cause the hash-table to appear as
1939 ** follows to the reader:
1940 **
drh6e810962010-05-19 17:49:50 +00001941 ** { ..., 2, 3, 4, 3, 99, ..... }
danbb23aff2010-05-10 14:46:09 +00001942 **
1943 ** Without this part of the if(...) clause, the reader might
1944 ** incorrectly read data from frame 3 instead of 4. This would be
1945 ** an error.
1946 **
1947 ** It is not actually clear to the developers that such a dirty-read
1948 ** can occur. But if it does, it should not cause any problems.
dan7c246102010-04-12 19:00:29 +00001949 */
danbb23aff2010-05-10 14:46:09 +00001950 for(iHash=iLast; iHash>0 && iRead==0; iHash-=HASHTABLE_NPAGE){
drh5939f442010-05-18 13:27:12 +00001951 volatile HASHTABLE_DATATYPE *aHash; /* Pointer to hash table */
1952 volatile u32 *aPgno; /* Pointer to array of page numbers */
danbb23aff2010-05-10 14:46:09 +00001953 u32 iZero; /* Frame number corresponding to aPgno[0] */
1954 int iKey; /* Hash slot index */
drh29d4dbe2010-05-18 23:29:52 +00001955 int mxHash; /* upper bound on aHash[] values */
danbb23aff2010-05-10 14:46:09 +00001956
1957 walHashFind(pWal, iHash, &aHash, &aPgno, &iZero);
drh29d4dbe2010-05-18 23:29:52 +00001958 mxHash = iLast - iZero;
1959 if( mxHash > HASHTABLE_NPAGE ) mxHash = HASHTABLE_NPAGE;
dan6f150142010-05-21 15:31:56 +00001960 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
danbb23aff2010-05-10 14:46:09 +00001961 u32 iFrame = aHash[iKey] + iZero;
dan6f150142010-05-21 15:31:56 +00001962 if( iFrame<=iLast && aPgno[iFrame]==pgno && iFrame>iRead ){
danbb23aff2010-05-10 14:46:09 +00001963 iRead = iFrame;
1964 }
dan7c246102010-04-12 19:00:29 +00001965 }
1966 }
danbb23aff2010-05-10 14:46:09 +00001967 assert( iRead==0 || pWal->pWiData[walIndexEntry(iRead)]==pgno );
dan7c246102010-04-12 19:00:29 +00001968
danbb23aff2010-05-10 14:46:09 +00001969#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1970 /* If expensive assert() statements are available, do a linear search
1971 ** of the wal-index file content. Make sure the results agree with the
1972 ** result obtained using the hash indexes above. */
1973 {
1974 u32 iRead2 = 0;
1975 u32 iTest;
1976 for(iTest=iLast; iTest>0; iTest--){
1977 if( pWal->pWiData[walIndexEntry(iTest)]==pgno ){
1978 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00001979 break;
1980 }
dan7c246102010-04-12 19:00:29 +00001981 }
danbb23aff2010-05-10 14:46:09 +00001982 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00001983 }
danbb23aff2010-05-10 14:46:09 +00001984#endif
dancd11fb22010-04-26 10:40:52 +00001985
dan7c246102010-04-12 19:00:29 +00001986 /* If iRead is non-zero, then it is the log frame number that contains the
1987 ** required page. Read and return data from the log file.
1988 */
danbb23aff2010-05-10 14:46:09 +00001989 walIndexUnmap(pWal);
dan7c246102010-04-12 19:00:29 +00001990 if( iRead ){
drh6e810962010-05-19 17:49:50 +00001991 i64 iOffset = walFrameOffset(iRead, pWal->hdr.szPage) + WAL_FRAME_HDRSIZE;
drh7ed91f22010-04-29 22:34:07 +00001992 *pInWal = 1;
drhd9e5c4f2010-05-12 18:01:39 +00001993 return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset);
dan7c246102010-04-12 19:00:29 +00001994 }
1995
drh7ed91f22010-04-29 22:34:07 +00001996 *pInWal = 0;
dan7c246102010-04-12 19:00:29 +00001997 return SQLITE_OK;
1998}
1999
2000
2001/*
2002** Set *pPgno to the size of the database file (or zero, if unknown).
2003*/
drh7ed91f22010-04-29 22:34:07 +00002004void sqlite3WalDbsize(Wal *pWal, Pgno *pPgno){
drhaab4c022010-06-02 14:45:51 +00002005 assert( pWal->readLock>=0 || pWal->lockError );
drh7ed91f22010-04-29 22:34:07 +00002006 *pPgno = pWal->hdr.nPage;
dan7c246102010-04-12 19:00:29 +00002007}
2008
dan30c86292010-04-30 16:24:46 +00002009
drh73b64e42010-05-30 19:55:15 +00002010/*
2011** This function starts a write transaction on the WAL.
2012**
2013** A read transaction must have already been started by a prior call
2014** to sqlite3WalBeginReadTransaction().
2015**
2016** If another thread or process has written into the database since
2017** the read transaction was started, then it is not possible for this
2018** thread to write as doing so would cause a fork. So this routine
2019** returns SQLITE_BUSY in that case and no write transaction is started.
2020**
2021** There can only be a single writer active at a time.
2022*/
2023int sqlite3WalBeginWriteTransaction(Wal *pWal){
2024 int rc;
drh73b64e42010-05-30 19:55:15 +00002025
2026 /* Cannot start a write transaction without first holding a read
2027 ** transaction. */
2028 assert( pWal->readLock>=0 );
2029
2030 /* Only one writer allowed at a time. Get the write lock. Return
2031 ** SQLITE_BUSY if unable.
2032 */
2033 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2034 if( rc ){
2035 return rc;
2036 }
drhc99597c2010-05-31 01:41:15 +00002037 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00002038
2039 /* If another connection has written to the database file since the
2040 ** time the read transaction on this connection was started, then
2041 ** the write is disallowed.
2042 */
drh18b7f602010-05-31 14:39:31 +00002043 rc = walIndexMap(pWal, walMappingSize(pWal->hdr.mxFrame));
drh73b64e42010-05-30 19:55:15 +00002044 if( rc ){
2045 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00002046 pWal->writeLock = 0;
drh73b64e42010-05-30 19:55:15 +00002047 return rc;
2048 }
2049 if( memcmp(&pWal->hdr, (void*)pWal->pWiData, sizeof(WalIndexHdr))!=0 ){
2050 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00002051 pWal->writeLock = 0;
dan9971e712010-06-01 15:44:57 +00002052 rc = SQLITE_BUSY;
drh73b64e42010-05-30 19:55:15 +00002053 }
2054
dand54ff602010-05-31 11:16:30 +00002055 walIndexUnmap(pWal);
drh7ed91f22010-04-29 22:34:07 +00002056 return rc;
dan7c246102010-04-12 19:00:29 +00002057}
2058
dan74d6cd82010-04-24 18:44:05 +00002059/*
drh73b64e42010-05-30 19:55:15 +00002060** End a write transaction. The commit has already been done. This
2061** routine merely releases the lock.
2062*/
2063int sqlite3WalEndWriteTransaction(Wal *pWal){
2064 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00002065 pWal->writeLock = 0;
drh73b64e42010-05-30 19:55:15 +00002066 return SQLITE_OK;
2067}
2068
2069/*
dan74d6cd82010-04-24 18:44:05 +00002070** If any data has been written (but not committed) to the log file, this
2071** function moves the write-pointer back to the start of the transaction.
2072**
2073** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00002074** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00002075** other than SQLITE_OK, it is not invoked again and the error code is
2076** returned to the caller.
2077**
2078** Otherwise, if the callback function does not return an error, this
2079** function returns SQLITE_OK.
2080*/
drh7ed91f22010-04-29 22:34:07 +00002081int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00002082 int rc = SQLITE_OK;
drh73b64e42010-05-30 19:55:15 +00002083 if( pWal->writeLock ){
dan55437592010-05-11 12:19:26 +00002084 int unused;
drh027a1282010-05-19 01:53:53 +00002085 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00002086 Pgno iFrame;
2087
2088 assert( pWal->pWiData==0 );
2089 rc = walIndexReadHdr(pWal, &unused);
dan6f150142010-05-21 15:31:56 +00002090 if( rc==SQLITE_OK ){
drhbab7b912010-05-26 17:31:58 +00002091 rc = walIndexMap(pWal, walMappingSize(iMax));
2092 }
2093 if( rc==SQLITE_OK ){
drh4fa95bf2010-05-22 00:55:39 +00002094 for(iFrame=pWal->hdr.mxFrame+1; rc==SQLITE_OK && iFrame<=iMax; iFrame++){
drh73b64e42010-05-30 19:55:15 +00002095 assert( pWal->writeLock );
drh4fa95bf2010-05-22 00:55:39 +00002096 rc = xUndo(pUndoCtx, pWal->pWiData[walIndexEntry(iFrame)]);
2097 }
danca6b5ba2010-05-25 10:50:56 +00002098 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00002099 }
dan55437592010-05-11 12:19:26 +00002100 walIndexUnmap(pWal);
dan74d6cd82010-04-24 18:44:05 +00002101 }
2102 return rc;
2103}
2104
dan71d89912010-05-24 13:57:42 +00002105/*
2106** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2107** values. This function populates the array with values required to
2108** "rollback" the write position of the WAL handle back to the current
2109** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00002110*/
dan71d89912010-05-24 13:57:42 +00002111void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00002112 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00002113 aWalData[0] = pWal->hdr.mxFrame;
2114 aWalData[1] = pWal->hdr.aFrameCksum[0];
2115 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00002116 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00002117}
2118
dan71d89912010-05-24 13:57:42 +00002119/*
2120** Move the write position of the WAL back to the point identified by
2121** the values in the aWalData[] array. aWalData must point to an array
2122** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2123** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00002124*/
dan71d89912010-05-24 13:57:42 +00002125int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00002126 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00002127
dan6e6bd562010-06-02 18:59:03 +00002128 assert( pWal->writeLock );
2129 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2130
2131 if( aWalData[3]!=pWal->nCkpt ){
2132 /* This savepoint was opened immediately after the write-transaction
2133 ** was started. Right after that, the writer decided to wrap around
2134 ** to the start of the log. Update the savepoint values to match.
2135 */
2136 aWalData[0] = 0;
2137 aWalData[3] = pWal->nCkpt;
2138 }
2139
dan71d89912010-05-24 13:57:42 +00002140 if( aWalData[0]<pWal->hdr.mxFrame ){
drh4fa95bf2010-05-22 00:55:39 +00002141 rc = walIndexMap(pWal, walMappingSize(pWal->hdr.mxFrame));
dan71d89912010-05-24 13:57:42 +00002142 pWal->hdr.mxFrame = aWalData[0];
2143 pWal->hdr.aFrameCksum[0] = aWalData[1];
2144 pWal->hdr.aFrameCksum[1] = aWalData[2];
drh4fa95bf2010-05-22 00:55:39 +00002145 if( rc==SQLITE_OK ){
2146 walCleanupHash(pWal);
drh4fa95bf2010-05-22 00:55:39 +00002147 }
dan6f150142010-05-21 15:31:56 +00002148 }
dan6e6bd562010-06-02 18:59:03 +00002149
2150 walIndexUnmap(pWal);
dan4cd78b42010-04-26 16:57:10 +00002151 return rc;
2152}
2153
dan9971e712010-06-01 15:44:57 +00002154/*
2155** This function is called just before writing a set of frames to the log
2156** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2157** to the current log file, it is possible to overwrite the start of the
2158** existing log file with the new frames (i.e. "reset" the log). If so,
2159** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2160** unchanged.
2161**
2162** SQLITE_OK is returned if no error is encountered (regardless of whether
2163** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
2164** if some error
2165*/
2166static int walRestartLog(Wal *pWal){
2167 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00002168 int cnt;
2169
dan9971e712010-06-01 15:44:57 +00002170 if( pWal->readLock==0
2171 && SQLITE_OK==(rc = walIndexMap(pWal, walMappingSize(pWal->hdr.mxFrame)))
2172 ){
2173 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2174 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2175 if( pInfo->nBackfill>0 ){
2176 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2177 if( rc==SQLITE_OK ){
2178 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2179 ** readers are currently using the WAL), then the transactions
2180 ** frames will overwrite the start of the existing log. Update the
2181 ** wal-index header to reflect this.
2182 **
2183 ** In theory it would be Ok to update the cache of the header only
2184 ** at this point. But updating the actual wal-index header is also
2185 ** safe and means there is no special case for sqlite3WalUndo()
2186 ** to handle if this transaction is rolled back.
2187 */
2188 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
2189 pWal->nCkpt++;
2190 pWal->hdr.mxFrame = 0;
2191 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
2192 sqlite3_randomness(4, &aSalt[1]);
2193 walIndexWriteHdr(pWal);
2194 memset((void*)pInfo, 0, sizeof(*pInfo));
2195 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2196 }
2197 }
2198 walUnlockShared(pWal, WAL_READ_LOCK(0));
2199 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00002200 cnt = 0;
dan9971e712010-06-01 15:44:57 +00002201 do{
2202 int notUsed;
drhaab4c022010-06-02 14:45:51 +00002203 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00002204 }while( rc==WAL_RETRY );
2205
2206 /* Unmap the wal-index before returning. Otherwise the VFS layer may
2207 ** hold a mutex for the duration of the IO performed by WalFrames().
2208 */
2209 walIndexUnmap(pWal);
2210 }
2211 return rc;
2212}
2213
dan7c246102010-04-12 19:00:29 +00002214/*
dan4cd78b42010-04-26 16:57:10 +00002215** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00002216** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00002217*/
drhc438efd2010-04-26 00:19:45 +00002218int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00002219 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00002220 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00002221 PgHdr *pList, /* List of dirty pages to write */
2222 Pgno nTruncate, /* Database size after this commit */
2223 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00002224 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00002225){
dan7c246102010-04-12 19:00:29 +00002226 int rc; /* Used to catch return codes */
2227 u32 iFrame; /* Next frame address */
drh7ed91f22010-04-29 22:34:07 +00002228 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
dan7c246102010-04-12 19:00:29 +00002229 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00002230 PgHdr *pLast = 0; /* Last frame in list */
dan7c246102010-04-12 19:00:29 +00002231 int nLast = 0; /* Number of extra copies of last page */
2232
dan7c246102010-04-12 19:00:29 +00002233 assert( pList );
drh73b64e42010-05-30 19:55:15 +00002234 assert( pWal->writeLock );
danba515902010-04-30 09:32:06 +00002235 assert( pWal->pWiData==0 );
dan7c246102010-04-12 19:00:29 +00002236
drhc74c3332010-05-31 12:15:19 +00002237#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2238 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2239 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2240 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2241 }
2242#endif
2243
dan9971e712010-06-01 15:44:57 +00002244 /* See if it is possible to write these frames into the start of the
2245 ** log file, instead of appending to it at pWal->hdr.mxFrame.
2246 */
2247 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
2248 assert( pWal->pWiData==0 );
2249 return rc;
2250 }
2251 assert( pWal->pWiData==0 && pWal->readLock>0 );
2252
drha2a42012010-05-18 18:01:08 +00002253 /* If this is the first frame written into the log, write the WAL
2254 ** header to the start of the WAL file. See comments at the top of
2255 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00002256 */
drh027a1282010-05-19 01:53:53 +00002257 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00002258 if( iFrame==0 ){
drh23ea97b2010-05-20 16:45:58 +00002259 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assembly wal-header in */
danb8fd6c22010-05-24 10:39:36 +00002260 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
drh23ea97b2010-05-20 16:45:58 +00002261 sqlite3Put4byte(&aWalHdr[4], 3007000);
2262 sqlite3Put4byte(&aWalHdr[8], szPage);
drh7e263722010-05-20 21:21:09 +00002263 pWal->szPage = szPage;
danb8fd6c22010-05-24 10:39:36 +00002264 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
drh23ea97b2010-05-20 16:45:58 +00002265 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drh7e263722010-05-20 21:21:09 +00002266 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
drh23ea97b2010-05-20 16:45:58 +00002267 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00002268 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00002269 if( rc!=SQLITE_OK ){
2270 return rc;
2271 }
dan71d89912010-05-24 13:57:42 +00002272 walChecksumBytes(1, aWalHdr, sizeof(aWalHdr), 0, pWal->hdr.aFrameCksum);
dan97a31352010-04-16 13:59:31 +00002273 }
drh7e263722010-05-20 21:21:09 +00002274 assert( pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00002275
dan9971e712010-06-01 15:44:57 +00002276 /* Write the log file. */
dan7c246102010-04-12 19:00:29 +00002277 for(p=pList; p; p=p->pDirty){
2278 u32 nDbsize; /* Db-size field for frame header */
2279 i64 iOffset; /* Write offset in log file */
2280
drh6e810962010-05-19 17:49:50 +00002281 iOffset = walFrameOffset(++iFrame, szPage);
dan7c246102010-04-12 19:00:29 +00002282
2283 /* Populate and write the frame header */
2284 nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0;
drh7e263722010-05-20 21:21:09 +00002285 walEncodeFrame(pWal, p->pgno, nDbsize, p->pData, aFrame);
drhd9e5c4f2010-05-12 18:01:39 +00002286 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
dan7c246102010-04-12 19:00:29 +00002287 if( rc!=SQLITE_OK ){
2288 return rc;
2289 }
2290
2291 /* Write the page data */
drh6e810962010-05-19 17:49:50 +00002292 rc = sqlite3OsWrite(pWal->pWalFd, p->pData, szPage, iOffset+sizeof(aFrame));
dan7c246102010-04-12 19:00:29 +00002293 if( rc!=SQLITE_OK ){
2294 return rc;
2295 }
2296 pLast = p;
2297 }
2298
2299 /* Sync the log file if the 'isSync' flag was specified. */
danc5118782010-04-17 17:34:41 +00002300 if( sync_flags ){
drhd9e5c4f2010-05-12 18:01:39 +00002301 i64 iSegment = sqlite3OsSectorSize(pWal->pWalFd);
drh6e810962010-05-19 17:49:50 +00002302 i64 iOffset = walFrameOffset(iFrame+1, szPage);
dan67032392010-04-17 15:42:43 +00002303
2304 assert( isCommit );
drh69c46962010-05-17 20:16:50 +00002305 assert( iSegment>0 );
dan7c246102010-04-12 19:00:29 +00002306
dan7c246102010-04-12 19:00:29 +00002307 iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment);
2308 while( iOffset<iSegment ){
drh7e263722010-05-20 21:21:09 +00002309 walEncodeFrame(pWal, pLast->pgno, nTruncate, pLast->pData, aFrame);
drhd9e5c4f2010-05-12 18:01:39 +00002310 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
dan7c246102010-04-12 19:00:29 +00002311 if( rc!=SQLITE_OK ){
2312 return rc;
2313 }
2314
drh7ed91f22010-04-29 22:34:07 +00002315 iOffset += WAL_FRAME_HDRSIZE;
drh6e810962010-05-19 17:49:50 +00002316 rc = sqlite3OsWrite(pWal->pWalFd, pLast->pData, szPage, iOffset);
dan7c246102010-04-12 19:00:29 +00002317 if( rc!=SQLITE_OK ){
2318 return rc;
2319 }
2320 nLast++;
drh6e810962010-05-19 17:49:50 +00002321 iOffset += szPage;
dan7c246102010-04-12 19:00:29 +00002322 }
dan7c246102010-04-12 19:00:29 +00002323
drhd9e5c4f2010-05-12 18:01:39 +00002324 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
dan7c246102010-04-12 19:00:29 +00002325 }
danba515902010-04-30 09:32:06 +00002326 assert( pWal->pWiData==0 );
dan7c246102010-04-12 19:00:29 +00002327
drhe730fec2010-05-18 12:56:50 +00002328 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00002329 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00002330 ** guarantees that there are no other writers, and no data that may
2331 ** be in use by existing readers is being overwritten.
2332 */
drh027a1282010-05-19 01:53:53 +00002333 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00002334 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dan7c246102010-04-12 19:00:29 +00002335 iFrame++;
danc7991bd2010-05-05 19:04:59 +00002336 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00002337 }
danc7991bd2010-05-05 19:04:59 +00002338 while( nLast>0 && rc==SQLITE_OK ){
dan7c246102010-04-12 19:00:29 +00002339 iFrame++;
2340 nLast--;
danc7991bd2010-05-05 19:04:59 +00002341 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00002342 }
2343
danc7991bd2010-05-05 19:04:59 +00002344 if( rc==SQLITE_OK ){
2345 /* Update the private copy of the header. */
drh6e810962010-05-19 17:49:50 +00002346 pWal->hdr.szPage = szPage;
drh027a1282010-05-19 01:53:53 +00002347 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00002348 if( isCommit ){
2349 pWal->hdr.iChange++;
2350 pWal->hdr.nPage = nTruncate;
2351 }
danc7991bd2010-05-05 19:04:59 +00002352 /* If this is a commit, update the wal-index header too. */
2353 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00002354 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00002355 pWal->iCallback = iFrame;
2356 }
dan7c246102010-04-12 19:00:29 +00002357 }
danc7991bd2010-05-05 19:04:59 +00002358
drh7ed91f22010-04-29 22:34:07 +00002359 walIndexUnmap(pWal);
drhc74c3332010-05-31 12:15:19 +00002360 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00002361 return rc;
dan7c246102010-04-12 19:00:29 +00002362}
2363
2364/*
drh73b64e42010-05-30 19:55:15 +00002365** This routine is called to implement sqlite3_wal_checkpoint() and
2366** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00002367**
drh73b64e42010-05-30 19:55:15 +00002368** Obtain a CHECKPOINT lock and then backfill as much information as
2369** we can from WAL into the database.
dan7c246102010-04-12 19:00:29 +00002370*/
drhc438efd2010-04-26 00:19:45 +00002371int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00002372 Wal *pWal, /* Wal connection */
danc5118782010-04-17 17:34:41 +00002373 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00002374 int nBuf, /* Size of temporary buffer */
drh73b64e42010-05-30 19:55:15 +00002375 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00002376){
danb9bf16b2010-04-14 11:23:30 +00002377 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00002378 int isChanged = 0; /* True if a new wal-index header is loaded */
dan7c246102010-04-12 19:00:29 +00002379
dan5cf53532010-05-01 16:40:20 +00002380 assert( pWal->pWiData==0 );
dand54ff602010-05-31 11:16:30 +00002381 assert( pWal->ckptLock==0 );
dan39c79f52010-04-15 10:58:51 +00002382
drhc74c3332010-05-31 12:15:19 +00002383 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drh73b64e42010-05-30 19:55:15 +00002384 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2385 if( rc ){
2386 /* Usually this is SQLITE_BUSY meaning that another thread or process
2387 ** is already running a checkpoint, or maybe a recovery. But it might
2388 ** also be SQLITE_IOERR. */
danb9bf16b2010-04-14 11:23:30 +00002389 return rc;
2390 }
dand54ff602010-05-31 11:16:30 +00002391 pWal->ckptLock = 1;
dan64d039e2010-04-13 19:27:31 +00002392
danb9bf16b2010-04-14 11:23:30 +00002393 /* Copy data from the log to the database file. */
drh7ed91f22010-04-29 22:34:07 +00002394 rc = walIndexReadHdr(pWal, &isChanged);
danb9bf16b2010-04-14 11:23:30 +00002395 if( rc==SQLITE_OK ){
drhd9e5c4f2010-05-12 18:01:39 +00002396 rc = walCheckpoint(pWal, sync_flags, nBuf, zBuf);
danb9bf16b2010-04-14 11:23:30 +00002397 }
dan31c03902010-04-29 14:51:33 +00002398 if( isChanged ){
2399 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00002400 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00002401 ** out of date. So zero the cached wal-index header to ensure that
2402 ** next time the pager opens a snapshot on this database it knows that
2403 ** the cache needs to be reset.
2404 */
drh7ed91f22010-04-29 22:34:07 +00002405 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan31c03902010-04-29 14:51:33 +00002406 }
danb9bf16b2010-04-14 11:23:30 +00002407
2408 /* Release the locks. */
dan87bfb512010-04-30 11:43:28 +00002409 walIndexUnmap(pWal);
drh73b64e42010-05-30 19:55:15 +00002410 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00002411 pWal->ckptLock = 0;
drhc74c3332010-05-31 12:15:19 +00002412 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
dan64d039e2010-04-13 19:27:31 +00002413 return rc;
dan7c246102010-04-12 19:00:29 +00002414}
2415
drh7ed91f22010-04-29 22:34:07 +00002416/* Return the value to pass to a sqlite3_wal_hook callback, the
2417** number of frames in the WAL at the point of the last commit since
2418** sqlite3WalCallback() was called. If no commits have occurred since
2419** the last call, then return 0.
2420*/
2421int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00002422 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00002423 if( pWal ){
2424 ret = pWal->iCallback;
2425 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00002426 }
2427 return (int)ret;
2428}
dan55437592010-05-11 12:19:26 +00002429
2430/*
drh61e4ace2010-05-31 20:28:37 +00002431** This function is called to change the WAL subsystem into or out
2432** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00002433**
drh61e4ace2010-05-31 20:28:37 +00002434** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
2435** into locking_mode=NORMAL. This means that we must acquire a lock
2436** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
2437** or if the acquisition of the lock fails, then return 0. If the
2438** transition out of exclusive-mode is successful, return 1. This
2439** operation must occur while the pager is still holding the exclusive
2440** lock on the main database file.
dan55437592010-05-11 12:19:26 +00002441**
drh61e4ace2010-05-31 20:28:37 +00002442** If op is one, then change from locking_mode=NORMAL into
2443** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
2444** be released. Return 1 if the transition is made and 0 if the
2445** WAL is already in exclusive-locking mode - meaning that this
2446** routine is a no-op. The pager must already hold the exclusive lock
2447** on the main database file before invoking this operation.
2448**
2449** If op is negative, then do a dry-run of the op==1 case but do
2450** not actually change anything. The pager uses this to see if it
2451** should acquire the database exclusive lock prior to invoking
2452** the op==1 case.
dan55437592010-05-11 12:19:26 +00002453*/
2454int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00002455 int rc;
drhaab4c022010-06-02 14:45:51 +00002456 assert( pWal->writeLock==0 );
2457 /* pWal->readLock is usually set, but might be -1 if there was a prior OOM */
2458 assert( pWal->readLock>=0 || pWal->lockError );
drh61e4ace2010-05-31 20:28:37 +00002459 if( op==0 ){
2460 if( pWal->exclusiveMode ){
2461 pWal->exclusiveMode = 0;
drhaab4c022010-06-02 14:45:51 +00002462 if( pWal->readLock>=0
2463 && walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK
2464 ){
drh61e4ace2010-05-31 20:28:37 +00002465 pWal->exclusiveMode = 1;
2466 }
2467 rc = pWal->exclusiveMode==0;
2468 }else{
drhaab4c022010-06-02 14:45:51 +00002469 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00002470 rc = 0;
2471 }
2472 }else if( op>0 ){
2473 assert( pWal->exclusiveMode==0 );
drhaab4c022010-06-02 14:45:51 +00002474 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00002475 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2476 pWal->exclusiveMode = 1;
2477 rc = 1;
2478 }else{
2479 rc = pWal->exclusiveMode==0;
dan55437592010-05-11 12:19:26 +00002480 }
drh61e4ace2010-05-31 20:28:37 +00002481 return rc;
dan55437592010-05-11 12:19:26 +00002482}
2483
dan5cf53532010-05-01 16:40:20 +00002484#endif /* #ifndef SQLITE_OMIT_WAL */