blob: 504316964de0a68ef2da0aeaae520c8226f3d814 [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drhcd285082010-06-23 22:00:35 +000034** The WAL header is 32 bytes in size and consists of the following eight
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan10f5a502010-06-23 15:55:43 +000043** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
dan97a31352010-04-16 13:59:31 +000045**
drh23ea97b2010-05-20 16:45:58 +000046** Immediately following the wal-header are zero or more frames. Each
47** frame consists of a 24-byte frame-header followed by a <page-size> bytes
drhcd285082010-06-23 22:00:35 +000048** of page data. The frame-header is six big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000049** integer values, as follows:
50**
dan3de777f2010-04-17 12:31:37 +000051** 0: Page number.
52** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000053** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000054** 8: Salt-1 (copied from the header)
55** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000056** 16: Checksum-1.
57** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000058**
drh7e263722010-05-20 21:21:09 +000059** A frame is considered valid if and only if the following conditions are
60** true:
61**
62** (1) The salt-1 and salt-2 values in the frame-header match
63** salt values in the wal-header
64**
65** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000066** exactly match the checksum computed consecutively on the
67** WAL header and the first 8 bytes and the content of all frames
68** up to and including the current frame.
69**
70** The checksum is computed using 32-bit big-endian integers if the
71** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000073** The checksum values are always stored in the frame header in a
74** big-endian format regardless of which byte order is used to compute
75** the checksum. The checksum is computed by interpreting the input as
76** an even number of unsigned 32-bit integers: x[0] through x[N]. The
drhffca4302010-06-15 11:21:54 +000077** algorithm used for the checksum is as follows:
drh51b21b12010-05-25 15:53:31 +000078**
79** for i from 0 to n-1 step 2:
80** s0 += x[i] + s1;
81** s1 += x[i+1] + s0;
82** endfor
drh7e263722010-05-20 21:21:09 +000083**
drhcd285082010-06-23 22:00:35 +000084** Note that s0 and s1 are both weighted checksums using fibonacci weights
85** in reverse order (the largest fibonacci weight occurs on the first element
86** of the sequence being summed.) The s1 value spans all 32-bit
87** terms of the sequence whereas s0 omits the final term.
88**
drh7e263722010-05-20 21:21:09 +000089** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90** WAL is transferred into the database, then the database is VFS.xSync-ed.
drhffca4302010-06-15 11:21:54 +000091** The VFS.xSync operations serve as write barriers - all writes launched
drh7e263722010-05-20 21:21:09 +000092** before the xSync must complete before any write that launches after the
93** xSync begins.
94**
95** After each checkpoint, the salt-1 value is incremented and the salt-2
96** value is randomized. This prevents old and new frames in the WAL from
97** being considered valid at the same time and being checkpointing together
98** following a crash.
99**
drh29d4dbe2010-05-18 23:29:52 +0000100** READER ALGORITHM
101**
102** To read a page from the database (call it page number P), a reader
103** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +0000104** last valid instance of page P that is a followed by a commit frame
105** or is a commit frame itself becomes the value read. If the WAL
106** contains no copies of page P that are valid and which are a commit
107** frame or are followed by a commit frame, then page P is read from
108** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000109**
drh73b64e42010-05-30 19:55:15 +0000110** To start a read transaction, the reader records the index of the last
111** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112** for all subsequent read operations. New transactions can be appended
113** to the WAL, but as long as the reader uses its original mxFrame value
114** and ignores the newly appended content, it will see a consistent snapshot
115** of the database from a single point in time. This technique allows
116** multiple concurrent readers to view different versions of the database
117** content simultaneously.
118**
119** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000120** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000121** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000122** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000123** and read performance suffers. To overcome this problem, a separate
124** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000125** search for frames of a particular page.
126**
127** WAL-INDEX FORMAT
128**
129** Conceptually, the wal-index is shared memory, though VFS implementations
130** might choose to implement the wal-index using a mmapped file. Because
131** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132** on a network filesystem. All users of the database must be able to
133** share memory.
134**
135** The wal-index is transient. After a crash, the wal-index can (and should
136** be) reconstructed from the original WAL file. In fact, the VFS is required
137** to either truncate or zero the header of the wal-index when the last
138** connection to it closes. Because the wal-index is transient, it can
139** use an architecture-specific format; it does not have to be cross-platform.
140** Hence, unlike the database and WAL file formats which store all values
141** as big endian, the wal-index can store multi-byte values in the native
142** byte order of the host computer.
143**
144** The purpose of the wal-index is to answer this question quickly: Given
drh610b8d82012-07-17 02:56:05 +0000145** a page number P and a maximum frame index M, return the index of the
146** last frame in the wal before frame M for page P in the WAL, or return
147** NULL if there are no frames for page P in the WAL prior to M.
drh29d4dbe2010-05-18 23:29:52 +0000148**
149** The wal-index consists of a header region, followed by an one or
150** more index blocks.
151**
drh027a1282010-05-19 01:53:53 +0000152** The wal-index header contains the total number of frames within the WAL
mistachkind5578432012-08-25 10:01:29 +0000153** in the mxFrame field.
danad3cadd2010-06-14 11:49:26 +0000154**
155** Each index block except for the first contains information on
156** HASHTABLE_NPAGE frames. The first index block contains information on
157** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
158** HASHTABLE_NPAGE are selected so that together the wal-index header and
159** first index block are the same size as all other index blocks in the
160** wal-index.
161**
162** Each index block contains two sections, a page-mapping that contains the
163** database page number associated with each wal frame, and a hash-table
drhffca4302010-06-15 11:21:54 +0000164** that allows readers to query an index block for a specific page number.
danad3cadd2010-06-14 11:49:26 +0000165** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
166** for the first index block) 32-bit page numbers. The first entry in the
167** first index-block contains the database page number corresponding to the
168** first frame in the WAL file. The first entry in the second index block
169** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
170** the log, and so on.
171**
172** The last index block in a wal-index usually contains less than the full
173** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
174** depending on the contents of the WAL file. This does not change the
175** allocated size of the page-mapping array - the page-mapping array merely
176** contains unused entries.
drh027a1282010-05-19 01:53:53 +0000177**
178** Even without using the hash table, the last frame for page P
danad3cadd2010-06-14 11:49:26 +0000179** can be found by scanning the page-mapping sections of each index block
drh027a1282010-05-19 01:53:53 +0000180** starting with the last index block and moving toward the first, and
181** within each index block, starting at the end and moving toward the
182** beginning. The first entry that equals P corresponds to the frame
183** holding the content for that page.
184**
185** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
186** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
187** hash table for each page number in the mapping section, so the hash
188** table is never more than half full. The expected number of collisions
189** prior to finding a match is 1. Each entry of the hash table is an
190** 1-based index of an entry in the mapping section of the same
191** index block. Let K be the 1-based index of the largest entry in
192** the mapping section. (For index blocks other than the last, K will
193** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
194** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000195** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000196**
197** To look for page P in the hash table, first compute a hash iKey on
198** P as follows:
199**
200** iKey = (P * 383) % HASHTABLE_NSLOT
201**
202** Then start scanning entries of the hash table, starting with iKey
203** (wrapping around to the beginning when the end of the hash table is
204** reached) until an unused hash slot is found. Let the first unused slot
205** be at index iUnused. (iUnused might be less than iKey if there was
206** wrap-around.) Because the hash table is never more than half full,
207** the search is guaranteed to eventually hit an unused entry. Let
208** iMax be the value between iKey and iUnused, closest to iUnused,
209** where aHash[iMax]==P. If there is no iMax entry (if there exists
210** no hash slot such that aHash[i]==p) then page P is not in the
211** current index block. Otherwise the iMax-th mapping entry of the
212** current index block corresponds to the last entry that references
213** page P.
214**
215** A hash search begins with the last index block and moves toward the
216** first index block, looking for entries corresponding to page P. On
217** average, only two or three slots in each index block need to be
218** examined in order to either find the last entry for page P, or to
219** establish that no such entry exists in the block. Each index block
220** holds over 4000 entries. So two or three index blocks are sufficient
221** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
222** comparisons (on average) suffice to either locate a frame in the
223** WAL or to establish that the frame does not exist in the WAL. This
224** is much faster than scanning the entire 10MB WAL.
225**
226** Note that entries are added in order of increasing K. Hence, one
227** reader might be using some value K0 and a second reader that started
228** at a later time (after additional transactions were added to the WAL
229** and to the wal-index) might be using a different value K1, where K1>K0.
230** Both readers can use the same hash table and mapping section to get
231** the correct result. There may be entries in the hash table with
232** K>K0 but to the first reader, those entries will appear to be unused
233** slots in the hash table and so the first reader will get an answer as
234** if no values greater than K0 had ever been inserted into the hash table
235** in the first place - which is what reader one wants. Meanwhile, the
236** second reader using K1 will see additional values that were inserted
237** later, which is exactly what reader two wants.
238**
dan6f150142010-05-21 15:31:56 +0000239** When a rollback occurs, the value of K is decreased. Hash table entries
240** that correspond to frames greater than the new K value are removed
241** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000242*/
drh29d4dbe2010-05-18 23:29:52 +0000243#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000244
drh29d4dbe2010-05-18 23:29:52 +0000245#include "wal.h"
246
drh73b64e42010-05-30 19:55:15 +0000247/*
drhc74c3332010-05-31 12:15:19 +0000248** Trace output macros
249*/
drhc74c3332010-05-31 12:15:19 +0000250#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000251int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000252# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
253#else
254# define WALTRACE(X)
255#endif
256
dan10f5a502010-06-23 15:55:43 +0000257/*
258** The maximum (and only) versions of the wal and wal-index formats
259** that may be interpreted by this version of SQLite.
260**
261** If a client begins recovering a WAL file and finds that (a) the checksum
262** values in the wal-header are correct and (b) the version field is not
263** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
264**
265** Similarly, if a client successfully reads a wal-index header (i.e. the
266** checksum test is successful) and finds that the version field is not
267** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
268** returns SQLITE_CANTOPEN.
269*/
270#define WAL_MAX_VERSION 3007000
271#define WALINDEX_MAX_VERSION 3007000
drhc74c3332010-05-31 12:15:19 +0000272
273/*
drh73b64e42010-05-30 19:55:15 +0000274** Indices of various locking bytes. WAL_NREADER is the number
drh998147e2015-12-10 02:15:03 +0000275** of available reader locks and should be at least 3. The default
276** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5.
drh73b64e42010-05-30 19:55:15 +0000277*/
278#define WAL_WRITE_LOCK 0
279#define WAL_ALL_BUT_WRITE 1
280#define WAL_CKPT_LOCK 1
281#define WAL_RECOVER_LOCK 2
282#define WAL_READ_LOCK(I) (3+(I))
283#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
284
dan97a31352010-04-16 13:59:31 +0000285
drh7ed91f22010-04-29 22:34:07 +0000286/* Object declarations */
287typedef struct WalIndexHdr WalIndexHdr;
288typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000289typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000290
291
292/*
drh286a2882010-05-20 23:51:06 +0000293** The following object holds a copy of the wal-index header content.
294**
295** The actual header in the wal-index consists of two copies of this
drh998147e2015-12-10 02:15:03 +0000296** object followed by one instance of the WalCkptInfo object.
297** For all versions of SQLite through 3.10.0 and probably beyond,
298** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
299** the total header size is 136 bytes.
drh9b78f792010-08-14 21:21:24 +0000300**
301** The szPage value can be any power of 2 between 512 and 32768, inclusive.
302** Or it can be 1 to represent a 65536-byte page. The latter case was
303** added in 3.7.1 when support for 64K pages was added.
dan7c246102010-04-12 19:00:29 +0000304*/
drh7ed91f22010-04-29 22:34:07 +0000305struct WalIndexHdr {
dan10f5a502010-06-23 15:55:43 +0000306 u32 iVersion; /* Wal-index version */
307 u32 unused; /* Unused (padding) field */
dan71d89912010-05-24 13:57:42 +0000308 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000309 u8 isInit; /* 1 when initialized */
310 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
drh9b78f792010-08-14 21:21:24 +0000311 u16 szPage; /* Database page size in bytes. 1==64K */
dand0aa3422010-05-31 16:41:53 +0000312 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000313 u32 nPage; /* Size of database in pages */
314 u32 aFrameCksum[2]; /* Checksum of last frame in log */
315 u32 aSalt[2]; /* Two salt values copied from WAL header */
316 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000317};
318
drh73b64e42010-05-30 19:55:15 +0000319/*
320** A copy of the following object occurs in the wal-index immediately
321** following the second copy of the WalIndexHdr. This object stores
322** information used by checkpoint.
323**
324** nBackfill is the number of frames in the WAL that have been written
325** back into the database. (We call the act of moving content from WAL to
326** database "backfilling".) The nBackfill number is never greater than
327** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
328** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
329** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
330** mxFrame back to zero when the WAL is reset.
331**
drh998147e2015-12-10 02:15:03 +0000332** nBackfillAttempted is the largest value of nBackfill that a checkpoint
333** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however
334** the nBackfillAttempted is set before any backfilling is done and the
mistachkinc9fb38e2015-12-10 03:16:47 +0000335** nBackfill is only set after all backfilling completes. So if a checkpoint
drh998147e2015-12-10 02:15:03 +0000336** crashes, nBackfillAttempted might be larger than nBackfill. The
337** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
338**
339** The aLock[] field is a set of bytes used for locking. These bytes should
340** never be read or written.
341**
drh73b64e42010-05-30 19:55:15 +0000342** There is one entry in aReadMark[] for each reader lock. If a reader
343** holds read-lock K, then the value in aReadMark[K] is no greater than
drhdb7f6472010-06-09 14:45:12 +0000344** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
345** for any aReadMark[] means that entry is unused. aReadMark[0] is
346** a special case; its value is never used and it exists as a place-holder
347** to avoid having to offset aReadMark[] indexs by one. Readers holding
348** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
349** directly from the database.
drh73b64e42010-05-30 19:55:15 +0000350**
351** The value of aReadMark[K] may only be changed by a thread that
352** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
353** aReadMark[K] cannot changed while there is a reader is using that mark
354** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
355**
356** The checkpointer may only transfer frames from WAL to database where
357** the frame numbers are less than or equal to every aReadMark[] that is
358** in use (that is, every aReadMark[j] for which there is a corresponding
359** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
360** largest value and will increase an unused aReadMark[] to mxFrame if there
361** is not already an aReadMark[] equal to mxFrame. The exception to the
362** previous sentence is when nBackfill equals mxFrame (meaning that everything
363** in the WAL has been backfilled into the database) then new readers
364** will choose aReadMark[0] which has value 0 and hence such reader will
365** get all their all content directly from the database file and ignore
366** the WAL.
367**
368** Writers normally append new frames to the end of the WAL. However,
369** if nBackfill equals mxFrame (meaning that all WAL content has been
370** written back into the database) and if no readers are using the WAL
371** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
372** the writer will first "reset" the WAL back to the beginning and start
373** writing new content beginning at frame 1.
374**
375** We assume that 32-bit loads are atomic and so no locks are needed in
376** order to read from any aReadMark[] entries.
377*/
378struct WalCkptInfo {
379 u32 nBackfill; /* Number of WAL frames backfilled into DB */
380 u32 aReadMark[WAL_NREADER]; /* Reader marks */
drh998147e2015-12-10 02:15:03 +0000381 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */
382 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */
383 u32 notUsed0; /* Available for future enhancements */
drh73b64e42010-05-30 19:55:15 +0000384};
drhdb7f6472010-06-09 14:45:12 +0000385#define READMARK_NOT_USED 0xffffffff
drh73b64e42010-05-30 19:55:15 +0000386
387
drh7e263722010-05-20 21:21:09 +0000388/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
389** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
390** only support mandatory file-locks, we do not read or write data
391** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000392*/
drh998147e2015-12-10 02:15:03 +0000393#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
394#define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
dan7c246102010-04-12 19:00:29 +0000395
drh7ed91f22010-04-29 22:34:07 +0000396/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000397#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000398
dan10f5a502010-06-23 15:55:43 +0000399/* Size of write ahead log header, including checksum. */
400/* #define WAL_HDRSIZE 24 */
401#define WAL_HDRSIZE 32
dan97a31352010-04-16 13:59:31 +0000402
danb8fd6c22010-05-24 10:39:36 +0000403/* WAL magic value. Either this value, or the same value with the least
404** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
405** big-endian format in the first 4 bytes of a WAL file.
406**
407** If the LSB is set, then the checksums for each frame within the WAL
408** file are calculated by treating all data as an array of 32-bit
409** big-endian words. Otherwise, they are calculated by interpreting
410** all data as 32-bit little-endian words.
411*/
412#define WAL_MAGIC 0x377f0682
413
dan97a31352010-04-16 13:59:31 +0000414/*
drh7ed91f22010-04-29 22:34:07 +0000415** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000416** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000417** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000418*/
drh6e810962010-05-19 17:49:50 +0000419#define walFrameOffset(iFrame, szPage) ( \
danbd0e9072010-07-07 09:48:44 +0000420 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000421)
dan7c246102010-04-12 19:00:29 +0000422
423/*
drh7ed91f22010-04-29 22:34:07 +0000424** An open write-ahead log file is represented by an instance of the
425** following object.
dance4f05f2010-04-22 19:14:13 +0000426*/
drh7ed91f22010-04-29 22:34:07 +0000427struct Wal {
drh73b64e42010-05-30 19:55:15 +0000428 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000429 sqlite3_file *pDbFd; /* File handle for the database file */
430 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000431 u32 iCallback; /* Value to pass to log callback (or 0) */
drh85a83752011-05-16 21:00:27 +0000432 i64 mxWalSize; /* Truncate WAL to this size upon reset */
dan13a3cb82010-06-11 19:04:21 +0000433 int nWiData; /* Size of array apWiData */
drh88f975a2011-12-16 19:34:36 +0000434 int szFirstBlock; /* Size of first block written to WAL file */
dan13a3cb82010-06-11 19:04:21 +0000435 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
drhb2eced52010-08-12 02:41:12 +0000436 u32 szPage; /* Database page size */
drh73b64e42010-05-30 19:55:15 +0000437 i16 readLock; /* Which read lock is being held. -1 for none */
drh4eb02a42011-12-16 21:26:26 +0000438 u8 syncFlags; /* Flags to use to sync header writes */
dan55437592010-05-11 12:19:26 +0000439 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000440 u8 writeLock; /* True if in a write transaction */
441 u8 ckptLock; /* True if holding a checkpoint lock */
drh66dfec8b2011-06-01 20:01:49 +0000442 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
danf60b7f32011-12-16 13:24:27 +0000443 u8 truncateOnCommit; /* True to truncate WAL file on commit */
drhd992b152011-12-20 20:13:25 +0000444 u8 syncHeader; /* Fsync the WAL header if true */
drh374f4a02011-12-17 20:02:11 +0000445 u8 padToSectorBoundary; /* Pad transactions out to the next sector */
drh73b64e42010-05-30 19:55:15 +0000446 WalIndexHdr hdr; /* Wal-index header for current transaction */
danb8c7cfb2015-08-13 20:23:46 +0000447 u32 minFrame; /* Ignore wal frames before this one */
dan3e875ef2010-07-05 19:03:35 +0000448 const char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000449 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000450#ifdef SQLITE_DEBUG
451 u8 lockError; /* True if a locking error has occurred */
452#endif
danfc1acf32015-12-05 20:51:54 +0000453#ifdef SQLITE_ENABLE_SNAPSHOT
drh998147e2015-12-10 02:15:03 +0000454 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */
danfc1acf32015-12-05 20:51:54 +0000455#endif
dan7c246102010-04-12 19:00:29 +0000456};
457
drh73b64e42010-05-30 19:55:15 +0000458/*
dan8c408002010-11-01 17:38:24 +0000459** Candidate values for Wal.exclusiveMode.
460*/
461#define WAL_NORMAL_MODE 0
462#define WAL_EXCLUSIVE_MODE 1
463#define WAL_HEAPMEMORY_MODE 2
464
465/*
drh66dfec8b2011-06-01 20:01:49 +0000466** Possible values for WAL.readOnly
467*/
468#define WAL_RDWR 0 /* Normal read/write connection */
469#define WAL_RDONLY 1 /* The WAL file is readonly */
470#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
471
472/*
dan067f3162010-06-14 10:30:12 +0000473** Each page of the wal-index mapping contains a hash-table made up of
474** an array of HASHTABLE_NSLOT elements of the following type.
475*/
476typedef u16 ht_slot;
477
478/*
danad3cadd2010-06-14 11:49:26 +0000479** This structure is used to implement an iterator that loops through
480** all frames in the WAL in database page order. Where two or more frames
481** correspond to the same database page, the iterator visits only the
482** frame most recently written to the WAL (in other words, the frame with
483** the largest index).
484**
485** The internals of this structure are only accessed by:
486**
487** walIteratorInit() - Create a new iterator,
488** walIteratorNext() - Step an iterator,
489** walIteratorFree() - Free an iterator.
490**
491** This functionality is used by the checkpoint code (see walCheckpoint()).
492*/
493struct WalIterator {
494 int iPrior; /* Last result returned from the iterator */
drhd9c9b782010-12-15 21:02:06 +0000495 int nSegment; /* Number of entries in aSegment[] */
danad3cadd2010-06-14 11:49:26 +0000496 struct WalSegment {
497 int iNext; /* Next slot in aIndex[] not yet returned */
498 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
499 u32 *aPgno; /* Array of page numbers. */
drhd9c9b782010-12-15 21:02:06 +0000500 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
danad3cadd2010-06-14 11:49:26 +0000501 int iZero; /* Frame number associated with aPgno[0] */
drhd9c9b782010-12-15 21:02:06 +0000502 } aSegment[1]; /* One for every 32KB page in the wal-index */
danad3cadd2010-06-14 11:49:26 +0000503};
504
505/*
dan13a3cb82010-06-11 19:04:21 +0000506** Define the parameters of the hash tables in the wal-index file. There
507** is a hash-table following every HASHTABLE_NPAGE page numbers in the
508** wal-index.
509**
510** Changing any of these constants will alter the wal-index format and
511** create incompatibilities.
512*/
dan067f3162010-06-14 10:30:12 +0000513#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000514#define HASHTABLE_HASH_1 383 /* Should be prime */
515#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000516
danad3cadd2010-06-14 11:49:26 +0000517/*
518** The block of page numbers associated with the first hash-table in a
dan13a3cb82010-06-11 19:04:21 +0000519** wal-index is smaller than usual. This is so that there is a complete
520** hash-table on each aligned 32KB page of the wal-index.
521*/
dan067f3162010-06-14 10:30:12 +0000522#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
dan13a3cb82010-06-11 19:04:21 +0000523
dan067f3162010-06-14 10:30:12 +0000524/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
525#define WALINDEX_PGSZ ( \
526 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
527)
dan13a3cb82010-06-11 19:04:21 +0000528
529/*
530** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
dan067f3162010-06-14 10:30:12 +0000531** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
dan13a3cb82010-06-11 19:04:21 +0000532** numbered from zero.
533**
534** If this call is successful, *ppPage is set to point to the wal-index
535** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
536** then an SQLite error code is returned and *ppPage is set to 0.
537*/
538static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
539 int rc = SQLITE_OK;
540
541 /* Enlarge the pWal->apWiData[] array if required */
542 if( pWal->nWiData<=iPage ){
drh519426a2010-07-09 03:19:07 +0000543 int nByte = sizeof(u32*)*(iPage+1);
dan13a3cb82010-06-11 19:04:21 +0000544 volatile u32 **apNew;
drhf3cdcdc2015-04-29 16:50:28 +0000545 apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
dan13a3cb82010-06-11 19:04:21 +0000546 if( !apNew ){
547 *ppPage = 0;
548 return SQLITE_NOMEM;
549 }
drh519426a2010-07-09 03:19:07 +0000550 memset((void*)&apNew[pWal->nWiData], 0,
551 sizeof(u32*)*(iPage+1-pWal->nWiData));
dan13a3cb82010-06-11 19:04:21 +0000552 pWal->apWiData = apNew;
553 pWal->nWiData = iPage+1;
554 }
555
556 /* Request a pointer to the required page from the VFS */
557 if( pWal->apWiData[iPage]==0 ){
dan8c408002010-11-01 17:38:24 +0000558 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
559 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
560 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
561 }else{
562 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
563 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
564 );
drh66dfec8b2011-06-01 20:01:49 +0000565 if( rc==SQLITE_READONLY ){
566 pWal->readOnly |= WAL_SHM_RDONLY;
567 rc = SQLITE_OK;
dan4edc6bf2011-05-10 17:31:29 +0000568 }
dan8c408002010-11-01 17:38:24 +0000569 }
dan13a3cb82010-06-11 19:04:21 +0000570 }
danb6d2f9c2011-05-11 14:57:33 +0000571
drh66dfec8b2011-06-01 20:01:49 +0000572 *ppPage = pWal->apWiData[iPage];
dan13a3cb82010-06-11 19:04:21 +0000573 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
574 return rc;
575}
576
577/*
drh73b64e42010-05-30 19:55:15 +0000578** Return a pointer to the WalCkptInfo structure in the wal-index.
579*/
580static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000581 assert( pWal->nWiData>0 && pWal->apWiData[0] );
582 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
583}
584
585/*
586** Return a pointer to the WalIndexHdr structure in the wal-index.
587*/
588static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
589 assert( pWal->nWiData>0 && pWal->apWiData[0] );
590 return (volatile WalIndexHdr*)pWal->apWiData[0];
drh73b64e42010-05-30 19:55:15 +0000591}
592
dan7c246102010-04-12 19:00:29 +0000593/*
danb8fd6c22010-05-24 10:39:36 +0000594** The argument to this macro must be of type u32. On a little-endian
595** architecture, it returns the u32 value that results from interpreting
596** the 4 bytes as a big-endian value. On a big-endian architecture, it
peter.d.reid60ec9142014-09-06 16:39:46 +0000597** returns the value that would be produced by interpreting the 4 bytes
danb8fd6c22010-05-24 10:39:36 +0000598** of the input value as a little-endian integer.
599*/
600#define BYTESWAP32(x) ( \
601 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
602 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
603)
dan64d039e2010-04-13 19:27:31 +0000604
dan7c246102010-04-12 19:00:29 +0000605/*
drh7e263722010-05-20 21:21:09 +0000606** Generate or extend an 8 byte checksum based on the data in
607** array aByte[] and the initial values of aIn[0] and aIn[1] (or
608** initial values of 0 and 0 if aIn==NULL).
609**
610** The checksum is written back into aOut[] before returning.
611**
612** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000613*/
drh7e263722010-05-20 21:21:09 +0000614static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000615 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000616 u8 *a, /* Content to be checksummed */
617 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
618 const u32 *aIn, /* Initial checksum value input */
619 u32 *aOut /* OUT: Final checksum value output */
620){
621 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000622 u32 *aData = (u32 *)a;
623 u32 *aEnd = (u32 *)&a[nByte];
624
drh7e263722010-05-20 21:21:09 +0000625 if( aIn ){
626 s1 = aIn[0];
627 s2 = aIn[1];
628 }else{
629 s1 = s2 = 0;
630 }
dan7c246102010-04-12 19:00:29 +0000631
drh584c7542010-05-19 18:08:10 +0000632 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000633 assert( (nByte&0x00000007)==0 );
dan7c246102010-04-12 19:00:29 +0000634
danb8fd6c22010-05-24 10:39:36 +0000635 if( nativeCksum ){
636 do {
637 s1 += *aData++ + s2;
638 s2 += *aData++ + s1;
639 }while( aData<aEnd );
640 }else{
641 do {
642 s1 += BYTESWAP32(aData[0]) + s2;
643 s2 += BYTESWAP32(aData[1]) + s1;
644 aData += 2;
645 }while( aData<aEnd );
646 }
647
drh7e263722010-05-20 21:21:09 +0000648 aOut[0] = s1;
649 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000650}
651
dan8c408002010-11-01 17:38:24 +0000652static void walShmBarrier(Wal *pWal){
653 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
654 sqlite3OsShmBarrier(pWal->pDbFd);
655 }
656}
657
dan7c246102010-04-12 19:00:29 +0000658/*
drh7e263722010-05-20 21:21:09 +0000659** Write the header information in pWal->hdr into the wal-index.
660**
661** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000662*/
drh7e263722010-05-20 21:21:09 +0000663static void walIndexWriteHdr(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000664 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
665 const int nCksum = offsetof(WalIndexHdr, aCksum);
drh73b64e42010-05-30 19:55:15 +0000666
667 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000668 pWal->hdr.isInit = 1;
dan10f5a502010-06-23 15:55:43 +0000669 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
dan4280eb32010-06-12 12:02:35 +0000670 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
drhf6bff3f2015-07-17 01:16:10 +0000671 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
dan8c408002010-11-01 17:38:24 +0000672 walShmBarrier(pWal);
drhf6bff3f2015-07-17 01:16:10 +0000673 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000674}
675
676/*
677** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000678** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000679** 4-byte big-endian integers, as follows:
680**
drh23ea97b2010-05-20 16:45:58 +0000681** 0: Page number.
682** 4: For commit records, the size of the database image in pages
683** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000684** 8: Salt-1 (copied from the wal-header)
685** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000686** 16: Checksum-1.
687** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000688*/
drh7ed91f22010-04-29 22:34:07 +0000689static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000690 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000691 u32 iPage, /* Database page number for frame */
692 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000693 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000694 u8 *aFrame /* OUT: Write encoded frame here */
695){
danb8fd6c22010-05-24 10:39:36 +0000696 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000697 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000698 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000699 sqlite3Put4byte(&aFrame[0], iPage);
700 sqlite3Put4byte(&aFrame[4], nTruncate);
drh7e263722010-05-20 21:21:09 +0000701 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000702
danb8fd6c22010-05-24 10:39:36 +0000703 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000704 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000705 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000706
drh23ea97b2010-05-20 16:45:58 +0000707 sqlite3Put4byte(&aFrame[16], aCksum[0]);
708 sqlite3Put4byte(&aFrame[20], aCksum[1]);
dan7c246102010-04-12 19:00:29 +0000709}
710
711/*
drh7e263722010-05-20 21:21:09 +0000712** Check to see if the frame with header in aFrame[] and content
713** in aData[] is valid. If it is a valid frame, fill *piPage and
714** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000715*/
drh7ed91f22010-04-29 22:34:07 +0000716static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000717 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000718 u32 *piPage, /* OUT: Database page number for frame */
719 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000720 u8 *aData, /* Pointer to page data (for checksum) */
721 u8 *aFrame /* Frame data */
722){
danb8fd6c22010-05-24 10:39:36 +0000723 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000724 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000725 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000726 assert( WAL_FRAME_HDRSIZE==24 );
727
drh7e263722010-05-20 21:21:09 +0000728 /* A frame is only valid if the salt values in the frame-header
729 ** match the salt values in the wal-header.
730 */
731 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000732 return 0;
733 }
dan4a4b01d2010-04-16 11:30:18 +0000734
drhc8179152010-05-24 13:28:36 +0000735 /* A frame is only valid if the page number is creater than zero.
736 */
737 pgno = sqlite3Get4byte(&aFrame[0]);
738 if( pgno==0 ){
739 return 0;
740 }
741
drh519426a2010-07-09 03:19:07 +0000742 /* A frame is only valid if a checksum of the WAL header,
743 ** all prior frams, the first 16 bytes of this frame-header,
744 ** and the frame-data matches the checksum in the last 8
745 ** bytes of this frame-header.
drh7e263722010-05-20 21:21:09 +0000746 */
danb8fd6c22010-05-24 10:39:36 +0000747 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000748 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000749 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000750 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
751 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000752 ){
753 /* Checksum failed. */
754 return 0;
755 }
756
drh7e263722010-05-20 21:21:09 +0000757 /* If we reach this point, the frame is valid. Return the page number
758 ** and the new database size.
759 */
drhc8179152010-05-24 13:28:36 +0000760 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000761 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000762 return 1;
763}
764
dan7c246102010-04-12 19:00:29 +0000765
drhc74c3332010-05-31 12:15:19 +0000766#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
767/*
drh181e0912010-06-01 01:08:08 +0000768** Names of locks. This routine is used to provide debugging output and is not
769** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000770*/
771static const char *walLockName(int lockIdx){
772 if( lockIdx==WAL_WRITE_LOCK ){
773 return "WRITE-LOCK";
774 }else if( lockIdx==WAL_CKPT_LOCK ){
775 return "CKPT-LOCK";
776 }else if( lockIdx==WAL_RECOVER_LOCK ){
777 return "RECOVER-LOCK";
778 }else{
779 static char zName[15];
780 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
781 lockIdx-WAL_READ_LOCK(0));
782 return zName;
783 }
784}
785#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
786
787
dan7c246102010-04-12 19:00:29 +0000788/*
drh181e0912010-06-01 01:08:08 +0000789** Set or release locks on the WAL. Locks are either shared or exclusive.
790** A lock cannot be moved directly between shared and exclusive - it must go
791** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000792**
793** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
794*/
795static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000796 int rc;
drh73b64e42010-05-30 19:55:15 +0000797 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000798 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
799 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
800 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
801 walLockName(lockIdx), rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000802 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000803 return rc;
drh73b64e42010-05-30 19:55:15 +0000804}
805static void walUnlockShared(Wal *pWal, int lockIdx){
806 if( pWal->exclusiveMode ) return;
807 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
808 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000809 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000810}
drhab372772015-12-02 16:10:16 +0000811static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000812 int rc;
drh73b64e42010-05-30 19:55:15 +0000813 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000814 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
815 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
816 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
817 walLockName(lockIdx), n, rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000818 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000819 return rc;
drh73b64e42010-05-30 19:55:15 +0000820}
821static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
822 if( pWal->exclusiveMode ) return;
823 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
824 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000825 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
826 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000827}
828
829/*
drh29d4dbe2010-05-18 23:29:52 +0000830** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000831** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
832** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000833*/
834static int walHash(u32 iPage){
835 assert( iPage>0 );
836 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
837 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
838}
839static int walNextHash(int iPriorHash){
840 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000841}
842
dan4280eb32010-06-12 12:02:35 +0000843/*
844** Return pointers to the hash table and page number array stored on
845** page iHash of the wal-index. The wal-index is broken into 32KB pages
846** numbered starting from 0.
847**
848** Set output variable *paHash to point to the start of the hash table
849** in the wal-index file. Set *piZero to one less than the frame
850** number of the first frame indexed by this hash table. If a
851** slot in the hash table is set to N, it refers to frame number
852** (*piZero+N) in the log.
853**
dand60bf112010-06-14 11:18:50 +0000854** Finally, set *paPgno so that *paPgno[1] is the page number of the
855** first frame indexed by the hash table, frame (*piZero+1).
dan4280eb32010-06-12 12:02:35 +0000856*/
857static int walHashGet(
dan13a3cb82010-06-11 19:04:21 +0000858 Wal *pWal, /* WAL handle */
859 int iHash, /* Find the iHash'th table */
dan067f3162010-06-14 10:30:12 +0000860 volatile ht_slot **paHash, /* OUT: Pointer to hash index */
dan13a3cb82010-06-11 19:04:21 +0000861 volatile u32 **paPgno, /* OUT: Pointer to page number array */
862 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
863){
dan4280eb32010-06-12 12:02:35 +0000864 int rc; /* Return code */
dan13a3cb82010-06-11 19:04:21 +0000865 volatile u32 *aPgno;
dan13a3cb82010-06-11 19:04:21 +0000866
dan4280eb32010-06-12 12:02:35 +0000867 rc = walIndexPage(pWal, iHash, &aPgno);
868 assert( rc==SQLITE_OK || iHash>0 );
dan13a3cb82010-06-11 19:04:21 +0000869
dan4280eb32010-06-12 12:02:35 +0000870 if( rc==SQLITE_OK ){
871 u32 iZero;
dan067f3162010-06-14 10:30:12 +0000872 volatile ht_slot *aHash;
dan4280eb32010-06-12 12:02:35 +0000873
dan067f3162010-06-14 10:30:12 +0000874 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
dan4280eb32010-06-12 12:02:35 +0000875 if( iHash==0 ){
dand60bf112010-06-14 11:18:50 +0000876 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
dan4280eb32010-06-12 12:02:35 +0000877 iZero = 0;
878 }else{
879 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
dan4280eb32010-06-12 12:02:35 +0000880 }
881
dand60bf112010-06-14 11:18:50 +0000882 *paPgno = &aPgno[-1];
dan4280eb32010-06-12 12:02:35 +0000883 *paHash = aHash;
884 *piZero = iZero;
dan13a3cb82010-06-11 19:04:21 +0000885 }
dan4280eb32010-06-12 12:02:35 +0000886 return rc;
dan13a3cb82010-06-11 19:04:21 +0000887}
888
dan4280eb32010-06-12 12:02:35 +0000889/*
890** Return the number of the wal-index page that contains the hash-table
891** and page-number array that contain entries corresponding to WAL frame
892** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
893** are numbered starting from 0.
894*/
dan13a3cb82010-06-11 19:04:21 +0000895static int walFramePage(u32 iFrame){
896 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
897 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
898 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
899 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
900 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
901 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
902 );
903 return iHash;
904}
905
906/*
907** Return the page number associated with frame iFrame in this WAL.
908*/
909static u32 walFramePgno(Wal *pWal, u32 iFrame){
910 int iHash = walFramePage(iFrame);
911 if( iHash==0 ){
912 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
913 }
914 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
915}
danbb23aff2010-05-10 14:46:09 +0000916
danca6b5ba2010-05-25 10:50:56 +0000917/*
918** Remove entries from the hash table that point to WAL slots greater
919** than pWal->hdr.mxFrame.
920**
921** This function is called whenever pWal->hdr.mxFrame is decreased due
922** to a rollback or savepoint.
923**
drh181e0912010-06-01 01:08:08 +0000924** At most only the hash table containing pWal->hdr.mxFrame needs to be
925** updated. Any later hash tables will be automatically cleared when
926** pWal->hdr.mxFrame advances to the point where those hash tables are
927** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000928*/
929static void walCleanupHash(Wal *pWal){
drhff828942010-06-26 21:34:06 +0000930 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */
931 volatile u32 *aPgno = 0; /* Page number array for hash table */
932 u32 iZero = 0; /* frame == (aHash[x]+iZero) */
dan067f3162010-06-14 10:30:12 +0000933 int iLimit = 0; /* Zero values greater than this */
934 int nByte; /* Number of bytes to zero in aPgno[] */
935 int i; /* Used to iterate through aHash[] */
danca6b5ba2010-05-25 10:50:56 +0000936
drh73b64e42010-05-30 19:55:15 +0000937 assert( pWal->writeLock );
drhffca4302010-06-15 11:21:54 +0000938 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
939 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
940 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
drh9c156472010-06-01 12:58:41 +0000941
dan4280eb32010-06-12 12:02:35 +0000942 if( pWal->hdr.mxFrame==0 ) return;
943
944 /* Obtain pointers to the hash-table and page-number array containing
945 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
946 ** that the page said hash-table and array reside on is already mapped.
947 */
948 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
949 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
950 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
951
952 /* Zero all hash-table entries that correspond to frame numbers greater
953 ** than pWal->hdr.mxFrame.
954 */
955 iLimit = pWal->hdr.mxFrame - iZero;
956 assert( iLimit>0 );
957 for(i=0; i<HASHTABLE_NSLOT; i++){
958 if( aHash[i]>iLimit ){
959 aHash[i] = 0;
danca6b5ba2010-05-25 10:50:56 +0000960 }
danca6b5ba2010-05-25 10:50:56 +0000961 }
dan4280eb32010-06-12 12:02:35 +0000962
963 /* Zero the entries in the aPgno array that correspond to frames with
964 ** frame numbers greater than pWal->hdr.mxFrame.
965 */
shaneh5eba1f62010-07-02 17:05:03 +0000966 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
dand60bf112010-06-14 11:18:50 +0000967 memset((void *)&aPgno[iLimit+1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000968
969#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
970 /* Verify that the every entry in the mapping region is still reachable
971 ** via the hash table even after the cleanup.
972 */
drhf77bbd92010-06-01 13:17:44 +0000973 if( iLimit ){
mistachkin6b67a8a2015-07-21 19:22:35 +0000974 int j; /* Loop counter */
danca6b5ba2010-05-25 10:50:56 +0000975 int iKey; /* Hash key */
mistachkin6b67a8a2015-07-21 19:22:35 +0000976 for(j=1; j<=iLimit; j++){
977 for(iKey=walHash(aPgno[j]); aHash[iKey]; iKey=walNextHash(iKey)){
978 if( aHash[iKey]==j ) break;
danca6b5ba2010-05-25 10:50:56 +0000979 }
mistachkin6b67a8a2015-07-21 19:22:35 +0000980 assert( aHash[iKey]==j );
danca6b5ba2010-05-25 10:50:56 +0000981 }
982 }
983#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
984}
985
danbb23aff2010-05-10 14:46:09 +0000986
drh7ed91f22010-04-29 22:34:07 +0000987/*
drh29d4dbe2010-05-18 23:29:52 +0000988** Set an entry in the wal-index that will map database page number
989** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +0000990*/
drh7ed91f22010-04-29 22:34:07 +0000991static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
dan4280eb32010-06-12 12:02:35 +0000992 int rc; /* Return code */
drhff828942010-06-26 21:34:06 +0000993 u32 iZero = 0; /* One less than frame number of aPgno[1] */
994 volatile u32 *aPgno = 0; /* Page number array */
995 volatile ht_slot *aHash = 0; /* Hash table */
dance4f05f2010-04-22 19:14:13 +0000996
dan4280eb32010-06-12 12:02:35 +0000997 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
998
999 /* Assuming the wal-index file was successfully mapped, populate the
1000 ** page number array and hash table entry.
dan7c246102010-04-12 19:00:29 +00001001 */
danbb23aff2010-05-10 14:46:09 +00001002 if( rc==SQLITE_OK ){
1003 int iKey; /* Hash table key */
dan4280eb32010-06-12 12:02:35 +00001004 int idx; /* Value to write to hash-table slot */
drh519426a2010-07-09 03:19:07 +00001005 int nCollide; /* Number of hash collisions */
dan7c246102010-04-12 19:00:29 +00001006
danbb23aff2010-05-10 14:46:09 +00001007 idx = iFrame - iZero;
dan4280eb32010-06-12 12:02:35 +00001008 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1009
1010 /* If this is the first entry to be added to this hash-table, zero the
peter.d.reid60ec9142014-09-06 16:39:46 +00001011 ** entire hash table and aPgno[] array before proceeding.
dan4280eb32010-06-12 12:02:35 +00001012 */
danca6b5ba2010-05-25 10:50:56 +00001013 if( idx==1 ){
shaneh5eba1f62010-07-02 17:05:03 +00001014 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
dand60bf112010-06-14 11:18:50 +00001015 memset((void*)&aPgno[1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +00001016 }
danca6b5ba2010-05-25 10:50:56 +00001017
dan4280eb32010-06-12 12:02:35 +00001018 /* If the entry in aPgno[] is already set, then the previous writer
1019 ** must have exited unexpectedly in the middle of a transaction (after
1020 ** writing one or more dirty pages to the WAL to free up memory).
1021 ** Remove the remnants of that writers uncommitted transaction from
1022 ** the hash-table before writing any new entries.
1023 */
dand60bf112010-06-14 11:18:50 +00001024 if( aPgno[idx] ){
danca6b5ba2010-05-25 10:50:56 +00001025 walCleanupHash(pWal);
dand60bf112010-06-14 11:18:50 +00001026 assert( !aPgno[idx] );
danca6b5ba2010-05-25 10:50:56 +00001027 }
dan4280eb32010-06-12 12:02:35 +00001028
1029 /* Write the aPgno[] array entry and the hash-table slot. */
drh519426a2010-07-09 03:19:07 +00001030 nCollide = idx;
dan6f150142010-05-21 15:31:56 +00001031 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
drh519426a2010-07-09 03:19:07 +00001032 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
drh29d4dbe2010-05-18 23:29:52 +00001033 }
dand60bf112010-06-14 11:18:50 +00001034 aPgno[idx] = iPage;
shaneh5eba1f62010-07-02 17:05:03 +00001035 aHash[iKey] = (ht_slot)idx;
drh4fa95bf2010-05-22 00:55:39 +00001036
1037#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1038 /* Verify that the number of entries in the hash table exactly equals
1039 ** the number of entries in the mapping region.
1040 */
1041 {
1042 int i; /* Loop counter */
1043 int nEntry = 0; /* Number of entries in the hash table */
1044 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1045 assert( nEntry==idx );
1046 }
1047
1048 /* Verify that the every entry in the mapping region is reachable
1049 ** via the hash table. This turns out to be a really, really expensive
1050 ** thing to check, so only do this occasionally - not on every
1051 ** iteration.
1052 */
1053 if( (idx&0x3ff)==0 ){
1054 int i; /* Loop counter */
1055 for(i=1; i<=idx; i++){
dand60bf112010-06-14 11:18:50 +00001056 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
drh4fa95bf2010-05-22 00:55:39 +00001057 if( aHash[iKey]==i ) break;
1058 }
1059 assert( aHash[iKey]==i );
1060 }
1061 }
1062#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +00001063 }
dan31f98fc2010-04-27 05:42:32 +00001064
drh4fa95bf2010-05-22 00:55:39 +00001065
danbb23aff2010-05-10 14:46:09 +00001066 return rc;
dan7c246102010-04-12 19:00:29 +00001067}
1068
1069
1070/*
drh7ed91f22010-04-29 22:34:07 +00001071** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +00001072**
1073** This routine first tries to establish an exclusive lock on the
1074** wal-index to prevent other threads/processes from doing anything
1075** with the WAL or wal-index while recovery is running. The
1076** WAL_RECOVER_LOCK is also held so that other threads will know
1077** that this thread is running recovery. If unable to establish
1078** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +00001079*/
drh7ed91f22010-04-29 22:34:07 +00001080static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +00001081 int rc; /* Return Code */
1082 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +00001083 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +00001084 int iLock; /* Lock offset to lock for checkpoint */
1085 int nLock; /* Number of locks to hold */
dan7c246102010-04-12 19:00:29 +00001086
dand0aa3422010-05-31 16:41:53 +00001087 /* Obtain an exclusive lock on all byte in the locking range not already
1088 ** locked by the caller. The caller is guaranteed to have locked the
1089 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1090 ** If successful, the same bytes that are locked here are unlocked before
1091 ** this function returns.
1092 */
1093 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1094 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1095 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1096 assert( pWal->writeLock );
1097 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1098 nLock = SQLITE_SHM_NLOCK - iLock;
drhab372772015-12-02 16:10:16 +00001099 rc = walLockExclusive(pWal, iLock, nLock);
drh73b64e42010-05-30 19:55:15 +00001100 if( rc ){
1101 return rc;
1102 }
drhc74c3332010-05-31 12:15:19 +00001103 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +00001104
dan71d89912010-05-24 13:57:42 +00001105 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +00001106
drhd9e5c4f2010-05-12 18:01:39 +00001107 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +00001108 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001109 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001110 }
1111
danb8fd6c22010-05-24 10:39:36 +00001112 if( nSize>WAL_HDRSIZE ){
1113 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dan7c246102010-04-12 19:00:29 +00001114 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001115 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001116 u8 *aData; /* Pointer to data part of aFrame buffer */
1117 int iFrame; /* Index of last frame read */
1118 i64 iOffset; /* Next offset to read from log file */
drh6e810962010-05-19 17:49:50 +00001119 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001120 u32 magic; /* Magic value read from WAL header */
dan10f5a502010-06-23 15:55:43 +00001121 u32 version; /* Magic value read from WAL header */
drhfe6163d2011-12-17 13:45:28 +00001122 int isValid; /* True if this frame is valid */
dan7c246102010-04-12 19:00:29 +00001123
danb8fd6c22010-05-24 10:39:36 +00001124 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001125 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001126 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001127 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001128 }
1129
1130 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001131 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1132 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1133 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001134 */
danb8fd6c22010-05-24 10:39:36 +00001135 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001136 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001137 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1138 || szPage&(szPage-1)
1139 || szPage>SQLITE_MAX_PAGE_SIZE
1140 || szPage<512
1141 ){
dan7c246102010-04-12 19:00:29 +00001142 goto finished;
1143 }
shaneh5eba1f62010-07-02 17:05:03 +00001144 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
drhb2eced52010-08-12 02:41:12 +00001145 pWal->szPage = szPage;
drh23ea97b2010-05-20 16:45:58 +00001146 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001147 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
drhcd285082010-06-23 22:00:35 +00001148
1149 /* Verify that the WAL header checksum is correct */
dan71d89912010-05-24 13:57:42 +00001150 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
dan10f5a502010-06-23 15:55:43 +00001151 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
dan71d89912010-05-24 13:57:42 +00001152 );
dan10f5a502010-06-23 15:55:43 +00001153 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1154 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1155 ){
1156 goto finished;
1157 }
1158
drhcd285082010-06-23 22:00:35 +00001159 /* Verify that the version number on the WAL format is one that
1160 ** are able to understand */
dan10f5a502010-06-23 15:55:43 +00001161 version = sqlite3Get4byte(&aBuf[4]);
1162 if( version!=WAL_MAX_VERSION ){
1163 rc = SQLITE_CANTOPEN_BKPT;
1164 goto finished;
1165 }
1166
dan7c246102010-04-12 19:00:29 +00001167 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001168 szFrame = szPage + WAL_FRAME_HDRSIZE;
drhf3cdcdc2015-04-29 16:50:28 +00001169 aFrame = (u8 *)sqlite3_malloc64(szFrame);
dan7c246102010-04-12 19:00:29 +00001170 if( !aFrame ){
drh73b64e42010-05-30 19:55:15 +00001171 rc = SQLITE_NOMEM;
1172 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001173 }
drh7ed91f22010-04-29 22:34:07 +00001174 aData = &aFrame[WAL_FRAME_HDRSIZE];
dan7c246102010-04-12 19:00:29 +00001175
1176 /* Read all frames from the log file. */
1177 iFrame = 0;
drh584c7542010-05-19 18:08:10 +00001178 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
dan7c246102010-04-12 19:00:29 +00001179 u32 pgno; /* Database page number for frame */
1180 u32 nTruncate; /* dbsize field from frame header */
dan7c246102010-04-12 19:00:29 +00001181
1182 /* Read and decode the next log frame. */
drhfe6163d2011-12-17 13:45:28 +00001183 iFrame++;
drh584c7542010-05-19 18:08:10 +00001184 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
dan7c246102010-04-12 19:00:29 +00001185 if( rc!=SQLITE_OK ) break;
drh7e263722010-05-20 21:21:09 +00001186 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
drhf694aa62011-12-20 22:18:51 +00001187 if( !isValid ) break;
drhfe6163d2011-12-17 13:45:28 +00001188 rc = walIndexAppend(pWal, iFrame, pgno);
danc7991bd2010-05-05 19:04:59 +00001189 if( rc!=SQLITE_OK ) break;
dan7c246102010-04-12 19:00:29 +00001190
1191 /* If nTruncate is non-zero, this is a commit record. */
1192 if( nTruncate ){
dan71d89912010-05-24 13:57:42 +00001193 pWal->hdr.mxFrame = iFrame;
1194 pWal->hdr.nPage = nTruncate;
shaneh1df2db72010-08-18 02:28:48 +00001195 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00001196 testcase( szPage<=32768 );
1197 testcase( szPage>=65536 );
dan71d89912010-05-24 13:57:42 +00001198 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1199 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
dan7c246102010-04-12 19:00:29 +00001200 }
1201 }
1202
1203 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001204 }
1205
1206finished:
dan576bc322010-05-06 18:04:50 +00001207 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001208 volatile WalCkptInfo *pInfo;
1209 int i;
dan71d89912010-05-24 13:57:42 +00001210 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1211 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001212 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001213
drhdb7f6472010-06-09 14:45:12 +00001214 /* Reset the checkpoint-header. This is safe because this thread is
dan3dee6da2010-05-31 16:17:54 +00001215 ** currently holding locks that exclude all other readers, writers and
1216 ** checkpointers.
1217 */
drhdb7f6472010-06-09 14:45:12 +00001218 pInfo = walCkptInfo(pWal);
1219 pInfo->nBackfill = 0;
dan3bf83cc2015-12-10 15:45:15 +00001220 pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
drhdb7f6472010-06-09 14:45:12 +00001221 pInfo->aReadMark[0] = 0;
1222 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
dan5373b762012-07-17 14:37:12 +00001223 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
daneb8763d2010-08-17 14:52:22 +00001224
1225 /* If more than one frame was recovered from the log file, report an
1226 ** event via sqlite3_log(). This is to help with identifying performance
1227 ** problems caused by applications routinely shutting down without
1228 ** checkpointing the log file.
1229 */
1230 if( pWal->hdr.nPage ){
drhd040e762013-04-10 23:48:37 +00001231 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1232 "recovered %d frames from WAL file %s",
dan0943f0b2013-04-01 14:35:01 +00001233 pWal->hdr.mxFrame, pWal->zWalName
daneb8763d2010-08-17 14:52:22 +00001234 );
1235 }
dan576bc322010-05-06 18:04:50 +00001236 }
drh73b64e42010-05-30 19:55:15 +00001237
1238recovery_error:
drhc74c3332010-05-31 12:15:19 +00001239 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dand0aa3422010-05-31 16:41:53 +00001240 walUnlockExclusive(pWal, iLock, nLock);
dan7c246102010-04-12 19:00:29 +00001241 return rc;
1242}
1243
drha8e654e2010-05-04 17:38:42 +00001244/*
dan1018e902010-05-05 15:33:05 +00001245** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001246*/
dan1018e902010-05-05 15:33:05 +00001247static void walIndexClose(Wal *pWal, int isDelete){
dan8c408002010-11-01 17:38:24 +00001248 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
1249 int i;
1250 for(i=0; i<pWal->nWiData; i++){
1251 sqlite3_free((void *)pWal->apWiData[i]);
1252 pWal->apWiData[i] = 0;
1253 }
1254 }else{
1255 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1256 }
drha8e654e2010-05-04 17:38:42 +00001257}
1258
dan7c246102010-04-12 19:00:29 +00001259/*
dan3e875ef2010-07-05 19:03:35 +00001260** Open a connection to the WAL file zWalName. The database file must
1261** already be opened on connection pDbFd. The buffer that zWalName points
1262** to must remain valid for the lifetime of the returned Wal* handle.
dan3de777f2010-04-17 12:31:37 +00001263**
1264** A SHARED lock should be held on the database file when this function
1265** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001266** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001267** were to do this just after this client opened one of these files, the
1268** system would be badly broken.
danef378022010-05-04 11:06:03 +00001269**
1270** If the log file is successfully opened, SQLITE_OK is returned and
1271** *ppWal is set to point to a new WAL handle. If an error occurs,
1272** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001273*/
drhc438efd2010-04-26 00:19:45 +00001274int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001275 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001276 sqlite3_file *pDbFd, /* The open database file */
dan3e875ef2010-07-05 19:03:35 +00001277 const char *zWalName, /* Name of the WAL file */
dan8c408002010-11-01 17:38:24 +00001278 int bNoShm, /* True to run in heap-memory mode */
drh85a83752011-05-16 21:00:27 +00001279 i64 mxWalSize, /* Truncate WAL to this size on reset */
drh7ed91f22010-04-29 22:34:07 +00001280 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001281){
danef378022010-05-04 11:06:03 +00001282 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001283 Wal *pRet; /* Object to allocate and return */
dan7c246102010-04-12 19:00:29 +00001284 int flags; /* Flags passed to OsOpen() */
dan7c246102010-04-12 19:00:29 +00001285
dan3e875ef2010-07-05 19:03:35 +00001286 assert( zWalName && zWalName[0] );
drhd9e5c4f2010-05-12 18:01:39 +00001287 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001288
drh1b78eaf2010-05-25 13:40:03 +00001289 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1290 ** this source file. Verify that the #defines of the locking byte offsets
1291 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
drh998147e2015-12-10 02:15:03 +00001292 ** For that matter, if the lock offset ever changes from its initial design
1293 ** value of 120, we need to know that so there is an assert() to check it.
drh1b78eaf2010-05-25 13:40:03 +00001294 */
drh998147e2015-12-10 02:15:03 +00001295 assert( 120==WALINDEX_LOCK_OFFSET );
1296 assert( 136==WALINDEX_HDR_SIZE );
drh1b78eaf2010-05-25 13:40:03 +00001297#ifdef WIN_SHM_BASE
1298 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1299#endif
1300#ifdef UNIX_SHM_BASE
1301 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1302#endif
1303
1304
drh7ed91f22010-04-29 22:34:07 +00001305 /* Allocate an instance of struct Wal to return. */
1306 *ppWal = 0;
dan3e875ef2010-07-05 19:03:35 +00001307 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
dan76ed3bc2010-05-03 17:18:24 +00001308 if( !pRet ){
1309 return SQLITE_NOMEM;
1310 }
1311
dan7c246102010-04-12 19:00:29 +00001312 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001313 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1314 pRet->pDbFd = pDbFd;
drh73b64e42010-05-30 19:55:15 +00001315 pRet->readLock = -1;
drh85a83752011-05-16 21:00:27 +00001316 pRet->mxWalSize = mxWalSize;
dan3e875ef2010-07-05 19:03:35 +00001317 pRet->zWalName = zWalName;
drhd992b152011-12-20 20:13:25 +00001318 pRet->syncHeader = 1;
drh374f4a02011-12-17 20:02:11 +00001319 pRet->padToSectorBoundary = 1;
dan8c408002010-11-01 17:38:24 +00001320 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
dan7c246102010-04-12 19:00:29 +00001321
drh7ed91f22010-04-29 22:34:07 +00001322 /* Open file handle on the write-ahead log file. */
danddb0ac42010-07-14 14:48:58 +00001323 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
danda9fe0c2010-07-13 18:44:03 +00001324 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
dan50833e32010-07-14 16:37:17 +00001325 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
drh66dfec8b2011-06-01 20:01:49 +00001326 pRet->readOnly = WAL_RDONLY;
dan50833e32010-07-14 16:37:17 +00001327 }
dan7c246102010-04-12 19:00:29 +00001328
dan7c246102010-04-12 19:00:29 +00001329 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001330 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001331 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001332 sqlite3_free(pRet);
1333 }else{
dandd973542014-02-13 19:27:08 +00001334 int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
drhd992b152011-12-20 20:13:25 +00001335 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
drhcb15f352011-12-23 01:04:17 +00001336 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1337 pRet->padToSectorBoundary = 0;
1338 }
danef378022010-05-04 11:06:03 +00001339 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001340 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001341 }
dan7c246102010-04-12 19:00:29 +00001342 return rc;
1343}
1344
drha2a42012010-05-18 18:01:08 +00001345/*
drh85a83752011-05-16 21:00:27 +00001346** Change the size to which the WAL file is trucated on each reset.
1347*/
1348void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1349 if( pWal ) pWal->mxWalSize = iLimit;
1350}
1351
1352/*
drha2a42012010-05-18 18:01:08 +00001353** Find the smallest page number out of all pages held in the WAL that
1354** has not been returned by any prior invocation of this method on the
1355** same WalIterator object. Write into *piFrame the frame index where
1356** that page was last written into the WAL. Write into *piPage the page
1357** number.
1358**
1359** Return 0 on success. If there are no pages in the WAL with a page
1360** number larger than *piPage, then return 1.
1361*/
drh7ed91f22010-04-29 22:34:07 +00001362static int walIteratorNext(
1363 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001364 u32 *piPage, /* OUT: The page number of the next page */
1365 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001366){
drha2a42012010-05-18 18:01:08 +00001367 u32 iMin; /* Result pgno must be greater than iMin */
1368 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1369 int i; /* For looping through segments */
dan7c246102010-04-12 19:00:29 +00001370
drha2a42012010-05-18 18:01:08 +00001371 iMin = p->iPrior;
1372 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001373 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001374 struct WalSegment *pSegment = &p->aSegment[i];
dan13a3cb82010-06-11 19:04:21 +00001375 while( pSegment->iNext<pSegment->nEntry ){
drha2a42012010-05-18 18:01:08 +00001376 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001377 if( iPg>iMin ){
1378 if( iPg<iRet ){
1379 iRet = iPg;
dan13a3cb82010-06-11 19:04:21 +00001380 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
dan7c246102010-04-12 19:00:29 +00001381 }
1382 break;
1383 }
1384 pSegment->iNext++;
1385 }
dan7c246102010-04-12 19:00:29 +00001386 }
1387
drha2a42012010-05-18 18:01:08 +00001388 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001389 return (iRet==0xFFFFFFFF);
1390}
1391
danf544b4c2010-06-25 11:35:52 +00001392/*
1393** This function merges two sorted lists into a single sorted list.
drhd9c9b782010-12-15 21:02:06 +00001394**
1395** aLeft[] and aRight[] are arrays of indices. The sort key is
1396** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1397** is guaranteed for all J<K:
1398**
1399** aContent[aLeft[J]] < aContent[aLeft[K]]
1400** aContent[aRight[J]] < aContent[aRight[K]]
1401**
1402** This routine overwrites aRight[] with a new (probably longer) sequence
1403** of indices such that the aRight[] contains every index that appears in
1404** either aLeft[] or the old aRight[] and such that the second condition
1405** above is still met.
1406**
1407** The aContent[aLeft[X]] values will be unique for all X. And the
1408** aContent[aRight[X]] values will be unique too. But there might be
1409** one or more combinations of X and Y such that
1410**
1411** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1412**
1413** When that happens, omit the aLeft[X] and use the aRight[Y] index.
danf544b4c2010-06-25 11:35:52 +00001414*/
1415static void walMerge(
drhd9c9b782010-12-15 21:02:06 +00001416 const u32 *aContent, /* Pages in wal - keys for the sort */
danf544b4c2010-06-25 11:35:52 +00001417 ht_slot *aLeft, /* IN: Left hand input list */
1418 int nLeft, /* IN: Elements in array *paLeft */
1419 ht_slot **paRight, /* IN/OUT: Right hand input list */
1420 int *pnRight, /* IN/OUT: Elements in *paRight */
1421 ht_slot *aTmp /* Temporary buffer */
1422){
1423 int iLeft = 0; /* Current index in aLeft */
1424 int iRight = 0; /* Current index in aRight */
1425 int iOut = 0; /* Current index in output buffer */
1426 int nRight = *pnRight;
1427 ht_slot *aRight = *paRight;
dan7c246102010-04-12 19:00:29 +00001428
danf544b4c2010-06-25 11:35:52 +00001429 assert( nLeft>0 && nRight>0 );
1430 while( iRight<nRight || iLeft<nLeft ){
1431 ht_slot logpage;
1432 Pgno dbpage;
1433
1434 if( (iLeft<nLeft)
1435 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1436 ){
1437 logpage = aLeft[iLeft++];
1438 }else{
1439 logpage = aRight[iRight++];
1440 }
1441 dbpage = aContent[logpage];
1442
1443 aTmp[iOut++] = logpage;
1444 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1445
1446 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1447 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1448 }
1449
1450 *paRight = aLeft;
1451 *pnRight = iOut;
1452 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1453}
1454
1455/*
drhd9c9b782010-12-15 21:02:06 +00001456** Sort the elements in list aList using aContent[] as the sort key.
1457** Remove elements with duplicate keys, preferring to keep the
1458** larger aList[] values.
1459**
1460** The aList[] entries are indices into aContent[]. The values in
1461** aList[] are to be sorted so that for all J<K:
1462**
1463** aContent[aList[J]] < aContent[aList[K]]
1464**
1465** For any X and Y such that
1466**
1467** aContent[aList[X]] == aContent[aList[Y]]
1468**
1469** Keep the larger of the two values aList[X] and aList[Y] and discard
1470** the smaller.
danf544b4c2010-06-25 11:35:52 +00001471*/
dan13a3cb82010-06-11 19:04:21 +00001472static void walMergesort(
drhd9c9b782010-12-15 21:02:06 +00001473 const u32 *aContent, /* Pages in wal */
dan067f3162010-06-14 10:30:12 +00001474 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1475 ht_slot *aList, /* IN/OUT: List to sort */
drha2a42012010-05-18 18:01:08 +00001476 int *pnList /* IN/OUT: Number of elements in aList[] */
1477){
danf544b4c2010-06-25 11:35:52 +00001478 struct Sublist {
1479 int nList; /* Number of elements in aList */
1480 ht_slot *aList; /* Pointer to sub-list content */
1481 };
drha2a42012010-05-18 18:01:08 +00001482
danf544b4c2010-06-25 11:35:52 +00001483 const int nList = *pnList; /* Size of input list */
drhff828942010-06-26 21:34:06 +00001484 int nMerge = 0; /* Number of elements in list aMerge */
1485 ht_slot *aMerge = 0; /* List to be merged */
danf544b4c2010-06-25 11:35:52 +00001486 int iList; /* Index into input list */
drhf4fa0b82015-07-15 18:35:54 +00001487 u32 iSub = 0; /* Index into aSub array */
danf544b4c2010-06-25 11:35:52 +00001488 struct Sublist aSub[13]; /* Array of sub-lists */
drha2a42012010-05-18 18:01:08 +00001489
danf544b4c2010-06-25 11:35:52 +00001490 memset(aSub, 0, sizeof(aSub));
1491 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1492 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
drha2a42012010-05-18 18:01:08 +00001493
danf544b4c2010-06-25 11:35:52 +00001494 for(iList=0; iList<nList; iList++){
1495 nMerge = 1;
1496 aMerge = &aList[iList];
1497 for(iSub=0; iList & (1<<iSub); iSub++){
drhf4fa0b82015-07-15 18:35:54 +00001498 struct Sublist *p;
1499 assert( iSub<ArraySize(aSub) );
1500 p = &aSub[iSub];
danf544b4c2010-06-25 11:35:52 +00001501 assert( p->aList && p->nList<=(1<<iSub) );
danbdf1e242010-06-25 15:16:25 +00001502 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001503 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
drha2a42012010-05-18 18:01:08 +00001504 }
danf544b4c2010-06-25 11:35:52 +00001505 aSub[iSub].aList = aMerge;
1506 aSub[iSub].nList = nMerge;
drha2a42012010-05-18 18:01:08 +00001507 }
1508
danf544b4c2010-06-25 11:35:52 +00001509 for(iSub++; iSub<ArraySize(aSub); iSub++){
1510 if( nList & (1<<iSub) ){
drhf4fa0b82015-07-15 18:35:54 +00001511 struct Sublist *p;
1512 assert( iSub<ArraySize(aSub) );
1513 p = &aSub[iSub];
danbdf1e242010-06-25 15:16:25 +00001514 assert( p->nList<=(1<<iSub) );
1515 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001516 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1517 }
1518 }
1519 assert( aMerge==aList );
1520 *pnList = nMerge;
1521
drha2a42012010-05-18 18:01:08 +00001522#ifdef SQLITE_DEBUG
1523 {
1524 int i;
1525 for(i=1; i<*pnList; i++){
1526 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1527 }
1528 }
1529#endif
1530}
1531
dan5d656852010-06-14 07:53:26 +00001532/*
1533** Free an iterator allocated by walIteratorInit().
1534*/
1535static void walIteratorFree(WalIterator *p){
drhcbd55b02014-11-04 14:22:27 +00001536 sqlite3_free(p);
dan5d656852010-06-14 07:53:26 +00001537}
1538
drha2a42012010-05-18 18:01:08 +00001539/*
danbdf1e242010-06-25 15:16:25 +00001540** Construct a WalInterator object that can be used to loop over all
1541** pages in the WAL in ascending order. The caller must hold the checkpoint
drhd9c9b782010-12-15 21:02:06 +00001542** lock.
drha2a42012010-05-18 18:01:08 +00001543**
1544** On success, make *pp point to the newly allocated WalInterator object
danbdf1e242010-06-25 15:16:25 +00001545** return SQLITE_OK. Otherwise, return an error code. If this routine
1546** returns an error, the value of *pp is undefined.
drha2a42012010-05-18 18:01:08 +00001547**
1548** The calling routine should invoke walIteratorFree() to destroy the
danbdf1e242010-06-25 15:16:25 +00001549** WalIterator object when it has finished with it.
drha2a42012010-05-18 18:01:08 +00001550*/
1551static int walIteratorInit(Wal *pWal, WalIterator **pp){
dan067f3162010-06-14 10:30:12 +00001552 WalIterator *p; /* Return value */
1553 int nSegment; /* Number of segments to merge */
1554 u32 iLast; /* Last frame in log */
1555 int nByte; /* Number of bytes to allocate */
1556 int i; /* Iterator variable */
1557 ht_slot *aTmp; /* Temp space used by merge-sort */
danbdf1e242010-06-25 15:16:25 +00001558 int rc = SQLITE_OK; /* Return Code */
drha2a42012010-05-18 18:01:08 +00001559
danbdf1e242010-06-25 15:16:25 +00001560 /* This routine only runs while holding the checkpoint lock. And
1561 ** it only runs if there is actually content in the log (mxFrame>0).
drha2a42012010-05-18 18:01:08 +00001562 */
danbdf1e242010-06-25 15:16:25 +00001563 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
dan13a3cb82010-06-11 19:04:21 +00001564 iLast = pWal->hdr.mxFrame;
drha2a42012010-05-18 18:01:08 +00001565
danbdf1e242010-06-25 15:16:25 +00001566 /* Allocate space for the WalIterator object. */
dan13a3cb82010-06-11 19:04:21 +00001567 nSegment = walFramePage(iLast) + 1;
1568 nByte = sizeof(WalIterator)
dan52d6fc02010-06-25 16:34:32 +00001569 + (nSegment-1)*sizeof(struct WalSegment)
1570 + iLast*sizeof(ht_slot);
drhf3cdcdc2015-04-29 16:50:28 +00001571 p = (WalIterator *)sqlite3_malloc64(nByte);
dan8f6097c2010-05-06 07:43:58 +00001572 if( !p ){
drha2a42012010-05-18 18:01:08 +00001573 return SQLITE_NOMEM;
1574 }
1575 memset(p, 0, nByte);
drha2a42012010-05-18 18:01:08 +00001576 p->nSegment = nSegment;
danbdf1e242010-06-25 15:16:25 +00001577
1578 /* Allocate temporary space used by the merge-sort routine. This block
1579 ** of memory will be freed before this function returns.
1580 */
drhf3cdcdc2015-04-29 16:50:28 +00001581 aTmp = (ht_slot *)sqlite3_malloc64(
dan52d6fc02010-06-25 16:34:32 +00001582 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1583 );
danbdf1e242010-06-25 15:16:25 +00001584 if( !aTmp ){
1585 rc = SQLITE_NOMEM;
1586 }
1587
1588 for(i=0; rc==SQLITE_OK && i<nSegment; i++){
dan067f3162010-06-14 10:30:12 +00001589 volatile ht_slot *aHash;
dan13a3cb82010-06-11 19:04:21 +00001590 u32 iZero;
dan13a3cb82010-06-11 19:04:21 +00001591 volatile u32 *aPgno;
1592
dan4280eb32010-06-12 12:02:35 +00001593 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
danbdf1e242010-06-25 15:16:25 +00001594 if( rc==SQLITE_OK ){
dan52d6fc02010-06-25 16:34:32 +00001595 int j; /* Counter variable */
1596 int nEntry; /* Number of entries in this segment */
1597 ht_slot *aIndex; /* Sorted index for this segment */
1598
danbdf1e242010-06-25 15:16:25 +00001599 aPgno++;
drh519426a2010-07-09 03:19:07 +00001600 if( (i+1)==nSegment ){
1601 nEntry = (int)(iLast - iZero);
1602 }else{
shaneh55897962010-07-09 12:57:53 +00001603 nEntry = (int)((u32*)aHash - (u32*)aPgno);
drh519426a2010-07-09 03:19:07 +00001604 }
dan52d6fc02010-06-25 16:34:32 +00001605 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
danbdf1e242010-06-25 15:16:25 +00001606 iZero++;
1607
danbdf1e242010-06-25 15:16:25 +00001608 for(j=0; j<nEntry; j++){
shaneh5eba1f62010-07-02 17:05:03 +00001609 aIndex[j] = (ht_slot)j;
danbdf1e242010-06-25 15:16:25 +00001610 }
1611 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1612 p->aSegment[i].iZero = iZero;
1613 p->aSegment[i].nEntry = nEntry;
1614 p->aSegment[i].aIndex = aIndex;
1615 p->aSegment[i].aPgno = (u32 *)aPgno;
dan13a3cb82010-06-11 19:04:21 +00001616 }
dan7c246102010-04-12 19:00:29 +00001617 }
drhcbd55b02014-11-04 14:22:27 +00001618 sqlite3_free(aTmp);
dan7c246102010-04-12 19:00:29 +00001619
danbdf1e242010-06-25 15:16:25 +00001620 if( rc!=SQLITE_OK ){
1621 walIteratorFree(p);
1622 }
dan8f6097c2010-05-06 07:43:58 +00001623 *pp = p;
danbdf1e242010-06-25 15:16:25 +00001624 return rc;
dan7c246102010-04-12 19:00:29 +00001625}
1626
dan7c246102010-04-12 19:00:29 +00001627/*
dana58f26f2010-11-16 18:56:51 +00001628** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1629** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1630** busy-handler function. Invoke it and retry the lock until either the
1631** lock is successfully obtained or the busy-handler returns 0.
1632*/
1633static int walBusyLock(
1634 Wal *pWal, /* WAL connection */
1635 int (*xBusy)(void*), /* Function to call when busy */
1636 void *pBusyArg, /* Context argument for xBusyHandler */
1637 int lockIdx, /* Offset of first byte to lock */
1638 int n /* Number of bytes to lock */
1639){
1640 int rc;
1641 do {
drhab372772015-12-02 16:10:16 +00001642 rc = walLockExclusive(pWal, lockIdx, n);
dana58f26f2010-11-16 18:56:51 +00001643 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1644 return rc;
1645}
1646
1647/*
danf2b8dd52010-11-18 19:28:01 +00001648** The cache of the wal-index header must be valid to call this function.
1649** Return the page-size in bytes used by the database.
1650*/
1651static int walPagesize(Wal *pWal){
1652 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1653}
1654
1655/*
danf26a1542014-12-02 19:04:54 +00001656** The following is guaranteed when this function is called:
1657**
1658** a) the WRITER lock is held,
1659** b) the entire log file has been checkpointed, and
1660** c) any existing readers are reading exclusively from the database
1661** file - there are no readers that may attempt to read a frame from
1662** the log file.
1663**
1664** This function updates the shared-memory structures so that the next
1665** client to write to the database (which may be this one) does so by
1666** writing frames into the start of the log file.
dan0fe8c1b2014-12-02 19:35:09 +00001667**
1668** The value of parameter salt1 is used as the aSalt[1] value in the
1669** new wal-index header. It should be passed a pseudo-random value (i.e.
1670** one obtained from sqlite3_randomness()).
danf26a1542014-12-02 19:04:54 +00001671*/
dan0fe8c1b2014-12-02 19:35:09 +00001672static void walRestartHdr(Wal *pWal, u32 salt1){
danf26a1542014-12-02 19:04:54 +00001673 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1674 int i; /* Loop counter */
1675 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
1676 pWal->nCkpt++;
1677 pWal->hdr.mxFrame = 0;
1678 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
dan0fe8c1b2014-12-02 19:35:09 +00001679 memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
danf26a1542014-12-02 19:04:54 +00001680 walIndexWriteHdr(pWal);
1681 pInfo->nBackfill = 0;
drh998147e2015-12-10 02:15:03 +00001682 pInfo->nBackfillAttempted = 0;
danf26a1542014-12-02 19:04:54 +00001683 pInfo->aReadMark[1] = 0;
1684 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1685 assert( pInfo->aReadMark[0]==0 );
1686}
1687
1688/*
drh73b64e42010-05-30 19:55:15 +00001689** Copy as much content as we can from the WAL back into the database file
1690** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1691**
1692** The amount of information copies from WAL to database might be limited
1693** by active readers. This routine will never overwrite a database page
1694** that a concurrent reader might be using.
1695**
1696** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1697** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1698** checkpoints are always run by a background thread or background
1699** process, foreground threads will never block on a lengthy fsync call.
1700**
1701** Fsync is called on the WAL before writing content out of the WAL and
1702** into the database. This ensures that if the new content is persistent
1703** in the WAL and can be recovered following a power-loss or hard reset.
1704**
1705** Fsync is also called on the database file if (and only if) the entire
1706** WAL content is copied into the database file. This second fsync makes
1707** it safe to delete the WAL since the new content will persist in the
1708** database file.
1709**
1710** This routine uses and updates the nBackfill field of the wal-index header.
peter.d.reid60ec9142014-09-06 16:39:46 +00001711** This is the only routine that will increase the value of nBackfill.
drh73b64e42010-05-30 19:55:15 +00001712** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1713** its value.)
1714**
1715** The caller must be holding sufficient locks to ensure that no other
1716** checkpoint is running (in any other thread or process) at the same
1717** time.
dan7c246102010-04-12 19:00:29 +00001718*/
drh7ed91f22010-04-29 22:34:07 +00001719static int walCheckpoint(
1720 Wal *pWal, /* Wal connection */
dancdc1f042010-11-18 12:11:05 +00001721 int eMode, /* One of PASSIVE, FULL or RESTART */
drhdd90d7e2014-12-03 19:25:41 +00001722 int (*xBusy)(void*), /* Function to call when busy */
dana58f26f2010-11-16 18:56:51 +00001723 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00001724 int sync_flags, /* Flags for OsSync() (or 0) */
dan9c5e3682011-02-07 15:12:12 +00001725 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00001726){
dan976b0032015-01-29 19:12:12 +00001727 int rc = SQLITE_OK; /* Return code */
drhb2eced52010-08-12 02:41:12 +00001728 int szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001729 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001730 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001731 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001732 u32 mxSafeFrame; /* Max frame that can be backfilled */
dan502019c2010-07-28 14:26:17 +00001733 u32 mxPage; /* Max database page to write */
drh73b64e42010-05-30 19:55:15 +00001734 int i; /* Loop counter */
drh73b64e42010-05-30 19:55:15 +00001735 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
dan7c246102010-04-12 19:00:29 +00001736
danf2b8dd52010-11-18 19:28:01 +00001737 szPage = walPagesize(pWal);
drh9b78f792010-08-14 21:21:24 +00001738 testcase( szPage<=32768 );
1739 testcase( szPage>=65536 );
drh7d208442010-12-16 02:06:29 +00001740 pInfo = walCkptInfo(pWal);
dan976b0032015-01-29 19:12:12 +00001741 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
danf544b4c2010-06-25 11:35:52 +00001742
dan976b0032015-01-29 19:12:12 +00001743 /* Allocate the iterator */
1744 rc = walIteratorInit(pWal, &pIter);
1745 if( rc!=SQLITE_OK ){
1746 return rc;
drh73b64e42010-05-30 19:55:15 +00001747 }
dan976b0032015-01-29 19:12:12 +00001748 assert( pIter );
dan7c246102010-04-12 19:00:29 +00001749
dan976b0032015-01-29 19:12:12 +00001750 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1751 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1752 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
drh73b64e42010-05-30 19:55:15 +00001753
dan976b0032015-01-29 19:12:12 +00001754 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1755 ** safe to write into the database. Frames beyond mxSafeFrame might
1756 ** overwrite database pages that are in use by active readers and thus
1757 ** cannot be backfilled from the WAL.
danf23da962013-03-23 21:00:41 +00001758 */
dan976b0032015-01-29 19:12:12 +00001759 mxSafeFrame = pWal->hdr.mxFrame;
1760 mxPage = pWal->hdr.nPage;
1761 for(i=1; i<WAL_NREADER; i++){
dan1fe0af22015-04-13 17:43:43 +00001762 /* Thread-sanitizer reports that the following is an unsafe read,
1763 ** as some other thread may be in the process of updating the value
1764 ** of the aReadMark[] slot. The assumption here is that if that is
1765 ** happening, the other client may only be increasing the value,
1766 ** not decreasing it. So assuming either that either the "old" or
1767 ** "new" version of the value is read, and not some arbitrary value
1768 ** that would never be written by a real client, things are still
1769 ** safe. */
dan976b0032015-01-29 19:12:12 +00001770 u32 y = pInfo->aReadMark[i];
1771 if( mxSafeFrame>y ){
1772 assert( y<=pWal->hdr.mxFrame );
1773 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1774 if( rc==SQLITE_OK ){
1775 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1776 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1777 }else if( rc==SQLITE_BUSY ){
1778 mxSafeFrame = y;
1779 xBusy = 0;
1780 }else{
1781 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001782 }
1783 }
1784 }
1785
dan976b0032015-01-29 19:12:12 +00001786 if( pInfo->nBackfill<mxSafeFrame
1787 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
1788 ){
1789 i64 nSize; /* Current size of database file */
1790 u32 nBackfill = pInfo->nBackfill;
dana58f26f2010-11-16 18:56:51 +00001791
dan3bf83cc2015-12-10 15:45:15 +00001792 pInfo->nBackfillAttempted = mxSafeFrame;
1793
dan976b0032015-01-29 19:12:12 +00001794 /* Sync the WAL to disk */
1795 if( sync_flags ){
1796 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1797 }
1798
1799 /* If the database may grow as a result of this checkpoint, hint
1800 ** about the eventual size of the db file to the VFS layer.
1801 */
1802 if( rc==SQLITE_OK ){
1803 i64 nReq = ((i64)mxPage * szPage);
1804 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1805 if( rc==SQLITE_OK && nSize<nReq ){
1806 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1807 }
1808 }
1809
1810
1811 /* Iterate through the contents of the WAL, copying data to the db file */
1812 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1813 i64 iOffset;
1814 assert( walFramePgno(pWal, iFrame)==iDbpage );
1815 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1816 continue;
1817 }
1818 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1819 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1820 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1821 if( rc!=SQLITE_OK ) break;
1822 iOffset = (iDbpage-1)*(i64)szPage;
1823 testcase( IS_BIG_INT(iOffset) );
1824 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1825 if( rc!=SQLITE_OK ) break;
1826 }
1827
1828 /* If work was actually accomplished... */
1829 if( rc==SQLITE_OK ){
1830 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1831 i64 szDb = pWal->hdr.nPage*(i64)szPage;
1832 testcase( IS_BIG_INT(szDb) );
1833 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1834 if( rc==SQLITE_OK && sync_flags ){
1835 rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1836 }
1837 }
1838 if( rc==SQLITE_OK ){
1839 pInfo->nBackfill = mxSafeFrame;
1840 }
1841 }
1842
1843 /* Release the reader lock held while backfilling */
1844 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1845 }
1846
1847 if( rc==SQLITE_BUSY ){
1848 /* Reset the return code so as not to report a checkpoint failure
1849 ** just because there are active readers. */
1850 rc = SQLITE_OK;
1851 }
dan7c246102010-04-12 19:00:29 +00001852 }
1853
danf26a1542014-12-02 19:04:54 +00001854 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
1855 ** entire wal file has been copied into the database file, then block
1856 ** until all readers have finished using the wal file. This ensures that
1857 ** the next process to write to the database restarts the wal file.
danf2b8dd52010-11-18 19:28:01 +00001858 */
1859 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dancdc1f042010-11-18 12:11:05 +00001860 assert( pWal->writeLock );
danf2b8dd52010-11-18 19:28:01 +00001861 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1862 rc = SQLITE_BUSY;
danf26a1542014-12-02 19:04:54 +00001863 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
dan0fe8c1b2014-12-02 19:35:09 +00001864 u32 salt1;
1865 sqlite3_randomness(4, &salt1);
dan976b0032015-01-29 19:12:12 +00001866 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
danf2b8dd52010-11-18 19:28:01 +00001867 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1868 if( rc==SQLITE_OK ){
danf26a1542014-12-02 19:04:54 +00001869 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
drha25165f2014-12-04 04:50:59 +00001870 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
1871 ** SQLITE_CHECKPOINT_RESTART with the addition that it also
1872 ** truncates the log file to zero bytes just prior to a
1873 ** successful return.
danf26a1542014-12-02 19:04:54 +00001874 **
1875 ** In theory, it might be safe to do this without updating the
1876 ** wal-index header in shared memory, as all subsequent reader or
1877 ** writer clients should see that the entire log file has been
1878 ** checkpointed and behave accordingly. This seems unsafe though,
1879 ** as it would leave the system in a state where the contents of
1880 ** the wal-index header do not match the contents of the
1881 ** file-system. To avoid this, update the wal-index header to
1882 ** indicate that the log file contains zero valid frames. */
dan0fe8c1b2014-12-02 19:35:09 +00001883 walRestartHdr(pWal, salt1);
danf26a1542014-12-02 19:04:54 +00001884 rc = sqlite3OsTruncate(pWal->pWalFd, 0);
1885 }
danf2b8dd52010-11-18 19:28:01 +00001886 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1887 }
dancdc1f042010-11-18 12:11:05 +00001888 }
1889 }
1890
dan83f42d12010-06-04 10:37:05 +00001891 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00001892 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00001893 return rc;
1894}
1895
1896/*
danf60b7f32011-12-16 13:24:27 +00001897** If the WAL file is currently larger than nMax bytes in size, truncate
1898** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
drh8dd4afa2011-12-08 19:50:32 +00001899*/
danf60b7f32011-12-16 13:24:27 +00001900static void walLimitSize(Wal *pWal, i64 nMax){
1901 i64 sz;
1902 int rx;
1903 sqlite3BeginBenignMalloc();
1904 rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1905 if( rx==SQLITE_OK && (sz > nMax ) ){
1906 rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1907 }
1908 sqlite3EndBenignMalloc();
1909 if( rx ){
1910 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
drh8dd4afa2011-12-08 19:50:32 +00001911 }
1912}
1913
1914/*
dan7c246102010-04-12 19:00:29 +00001915** Close a connection to a log file.
1916*/
drhc438efd2010-04-26 00:19:45 +00001917int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00001918 Wal *pWal, /* Wal to close */
danc5118782010-04-17 17:34:41 +00001919 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001920 int nBuf,
1921 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00001922){
1923 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00001924 if( pWal ){
dan30c86292010-04-30 16:24:46 +00001925 int isDelete = 0; /* True to unlink wal and wal-index files */
1926
1927 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1928 ** ordinary, rollback-mode locking methods, this guarantees that the
1929 ** connection associated with this log file is the only connection to
1930 ** the database. In this case checkpoint the database and unlink both
1931 ** the wal and wal-index files.
1932 **
1933 ** The EXCLUSIVE lock is not released before returning.
1934 */
drhd9e5c4f2010-05-12 18:01:39 +00001935 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
dan30c86292010-04-30 16:24:46 +00001936 if( rc==SQLITE_OK ){
dan8c408002010-11-01 17:38:24 +00001937 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1938 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1939 }
dancdc1f042010-11-18 12:11:05 +00001940 rc = sqlite3WalCheckpoint(
1941 pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1942 );
drheed42502011-12-16 15:38:52 +00001943 if( rc==SQLITE_OK ){
1944 int bPersist = -1;
drhc02372c2012-01-10 17:59:59 +00001945 sqlite3OsFileControlHint(
dan6f2f19a2012-01-10 16:56:39 +00001946 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
1947 );
drheed42502011-12-16 15:38:52 +00001948 if( bPersist!=1 ){
1949 /* Try to delete the WAL file if the checkpoint completed and
1950 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
1951 ** mode (!bPersist) */
1952 isDelete = 1;
1953 }else if( pWal->mxWalSize>=0 ){
1954 /* Try to truncate the WAL file to zero bytes if the checkpoint
1955 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
1956 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
1957 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
1958 ** to zero bytes as truncating to the journal_size_limit might
1959 ** leave a corrupt WAL file on disk. */
1960 walLimitSize(pWal, 0);
1961 }
dan30c86292010-04-30 16:24:46 +00001962 }
dan30c86292010-04-30 16:24:46 +00001963 }
1964
dan1018e902010-05-05 15:33:05 +00001965 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00001966 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00001967 if( isDelete ){
drh92c45cf2012-01-10 00:24:59 +00001968 sqlite3BeginBenignMalloc();
drhd9e5c4f2010-05-12 18:01:39 +00001969 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
drh92c45cf2012-01-10 00:24:59 +00001970 sqlite3EndBenignMalloc();
dan30c86292010-04-30 16:24:46 +00001971 }
drhc74c3332010-05-31 12:15:19 +00001972 WALTRACE(("WAL%p: closed\n", pWal));
shaneh8a300f82010-07-02 18:15:31 +00001973 sqlite3_free((void *)pWal->apWiData);
drh7ed91f22010-04-29 22:34:07 +00001974 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00001975 }
1976 return rc;
1977}
1978
1979/*
drha2a42012010-05-18 18:01:08 +00001980** Try to read the wal-index header. Return 0 on success and 1 if
1981** there is a problem.
1982**
1983** The wal-index is in shared memory. Another thread or process might
1984** be writing the header at the same time this procedure is trying to
1985** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00001986** by verifying that both copies of the header are the same and also by
1987** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00001988**
1989** If and only if the read is consistent and the header is different from
1990** pWal->hdr, then pWal->hdr is updated to the content of the new header
1991** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00001992**
dan84670502010-05-07 05:46:23 +00001993** If the checksum cannot be verified return non-zero. If the header
1994** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00001995*/
drh7750ab42010-06-26 22:16:02 +00001996static int walIndexTryHdr(Wal *pWal, int *pChanged){
dan4280eb32010-06-12 12:02:35 +00001997 u32 aCksum[2]; /* Checksum on the header content */
1998 WalIndexHdr h1, h2; /* Two copies of the header content */
1999 WalIndexHdr volatile *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00002000
dan4280eb32010-06-12 12:02:35 +00002001 /* The first page of the wal-index must be mapped at this point. */
2002 assert( pWal->nWiData>0 && pWal->apWiData[0] );
drh79e6c782010-04-30 02:13:26 +00002003
drh6cef0cf2010-08-16 16:31:43 +00002004 /* Read the header. This might happen concurrently with a write to the
drh73b64e42010-05-30 19:55:15 +00002005 ** same area of shared memory on a different CPU in a SMP,
2006 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00002007 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00002008 **
2009 ** There are two copies of the header at the beginning of the wal-index.
2010 ** When reading, read [0] first then [1]. Writes are in the reverse order.
2011 ** Memory barriers are used to prevent the compiler or the hardware from
2012 ** reordering the reads and writes.
danb9bf16b2010-04-14 11:23:30 +00002013 */
dan4280eb32010-06-12 12:02:35 +00002014 aHdr = walIndexHdr(pWal);
2015 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
dan8c408002010-11-01 17:38:24 +00002016 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +00002017 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00002018
drhf0b20f82010-05-21 13:16:18 +00002019 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2020 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00002021 }
drh4b82c382010-05-31 18:24:19 +00002022 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00002023 return 1; /* Malformed header - probably all zeros */
2024 }
danb8fd6c22010-05-24 10:39:36 +00002025 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00002026 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2027 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00002028 }
2029
drhf0b20f82010-05-21 13:16:18 +00002030 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00002031 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00002032 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh9b78f792010-08-14 21:21:24 +00002033 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2034 testcase( pWal->szPage<=32768 );
2035 testcase( pWal->szPage>=65536 );
danb9bf16b2010-04-14 11:23:30 +00002036 }
dan84670502010-05-07 05:46:23 +00002037
2038 /* The header was successfully read. Return zero. */
2039 return 0;
danb9bf16b2010-04-14 11:23:30 +00002040}
2041
2042/*
drha2a42012010-05-18 18:01:08 +00002043** Read the wal-index header from the wal-index and into pWal->hdr.
drha927e942010-06-24 02:46:48 +00002044** If the wal-header appears to be corrupt, try to reconstruct the
2045** wal-index from the WAL before returning.
drha2a42012010-05-18 18:01:08 +00002046**
2047** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
peter.d.reid60ec9142014-09-06 16:39:46 +00002048** changed by this operation. If pWal->hdr is unchanged, set *pChanged
drha2a42012010-05-18 18:01:08 +00002049** to 0.
2050**
drh7ed91f22010-04-29 22:34:07 +00002051** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00002052** Otherwise an SQLite error code.
2053*/
drh7ed91f22010-04-29 22:34:07 +00002054static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00002055 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00002056 int badHdr; /* True if a header read failed */
drha927e942010-06-24 02:46:48 +00002057 volatile u32 *page0; /* Chunk of wal-index containing header */
danb9bf16b2010-04-14 11:23:30 +00002058
dan4280eb32010-06-12 12:02:35 +00002059 /* Ensure that page 0 of the wal-index (the page that contains the
2060 ** wal-index header) is mapped. Return early if an error occurs here.
2061 */
dana8614692010-05-06 14:42:34 +00002062 assert( pChanged );
dan4280eb32010-06-12 12:02:35 +00002063 rc = walIndexPage(pWal, 0, &page0);
danc7991bd2010-05-05 19:04:59 +00002064 if( rc!=SQLITE_OK ){
2065 return rc;
dan4280eb32010-06-12 12:02:35 +00002066 };
2067 assert( page0 || pWal->writeLock==0 );
drh7ed91f22010-04-29 22:34:07 +00002068
dan4280eb32010-06-12 12:02:35 +00002069 /* If the first page of the wal-index has been mapped, try to read the
2070 ** wal-index header immediately, without holding any lock. This usually
2071 ** works, but may fail if the wal-index header is corrupt or currently
drha927e942010-06-24 02:46:48 +00002072 ** being modified by another thread or process.
danb9bf16b2010-04-14 11:23:30 +00002073 */
dan4280eb32010-06-12 12:02:35 +00002074 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
drhbab7b912010-05-26 17:31:58 +00002075
drh73b64e42010-05-30 19:55:15 +00002076 /* If the first attempt failed, it might have been due to a race
drh66dfec8b2011-06-01 20:01:49 +00002077 ** with a writer. So get a WRITE lock and try again.
drh73b64e42010-05-30 19:55:15 +00002078 */
dand54ff602010-05-31 11:16:30 +00002079 assert( badHdr==0 || pWal->writeLock==0 );
dan4edc6bf2011-05-10 17:31:29 +00002080 if( badHdr ){
drh66dfec8b2011-06-01 20:01:49 +00002081 if( pWal->readOnly & WAL_SHM_RDONLY ){
dan4edc6bf2011-05-10 17:31:29 +00002082 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2083 walUnlockShared(pWal, WAL_WRITE_LOCK);
2084 rc = SQLITE_READONLY_RECOVERY;
drhbab7b912010-05-26 17:31:58 +00002085 }
drhab372772015-12-02 16:10:16 +00002086 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
dan4edc6bf2011-05-10 17:31:29 +00002087 pWal->writeLock = 1;
2088 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2089 badHdr = walIndexTryHdr(pWal, pChanged);
2090 if( badHdr ){
2091 /* If the wal-index header is still malformed even while holding
2092 ** a WRITE lock, it can only mean that the header is corrupted and
2093 ** needs to be reconstructed. So run recovery to do exactly that.
2094 */
2095 rc = walIndexRecover(pWal);
2096 *pChanged = 1;
2097 }
2098 }
2099 pWal->writeLock = 0;
2100 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhbab7b912010-05-26 17:31:58 +00002101 }
danb9bf16b2010-04-14 11:23:30 +00002102 }
2103
drha927e942010-06-24 02:46:48 +00002104 /* If the header is read successfully, check the version number to make
2105 ** sure the wal-index was not constructed with some future format that
2106 ** this version of SQLite cannot understand.
2107 */
2108 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2109 rc = SQLITE_CANTOPEN_BKPT;
2110 }
2111
danb9bf16b2010-04-14 11:23:30 +00002112 return rc;
2113}
2114
2115/*
drh73b64e42010-05-30 19:55:15 +00002116** This is the value that walTryBeginRead returns when it needs to
2117** be retried.
dan7c246102010-04-12 19:00:29 +00002118*/
drh73b64e42010-05-30 19:55:15 +00002119#define WAL_RETRY (-1)
dan64d039e2010-04-13 19:27:31 +00002120
drh73b64e42010-05-30 19:55:15 +00002121/*
2122** Attempt to start a read transaction. This might fail due to a race or
2123** other transient condition. When that happens, it returns WAL_RETRY to
2124** indicate to the caller that it is safe to retry immediately.
2125**
drha927e942010-06-24 02:46:48 +00002126** On success return SQLITE_OK. On a permanent failure (such an
drh73b64e42010-05-30 19:55:15 +00002127** I/O error or an SQLITE_BUSY because another process is running
2128** recovery) return a positive error code.
2129**
drha927e942010-06-24 02:46:48 +00002130** The useWal parameter is true to force the use of the WAL and disable
2131** the case where the WAL is bypassed because it has been completely
2132** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
2133** to make a copy of the wal-index header into pWal->hdr. If the
2134** wal-index header has changed, *pChanged is set to 1 (as an indication
2135** to the caller that the local paget cache is obsolete and needs to be
2136** flushed.) When useWal==1, the wal-index header is assumed to already
2137** be loaded and the pChanged parameter is unused.
2138**
2139** The caller must set the cnt parameter to the number of prior calls to
2140** this routine during the current read attempt that returned WAL_RETRY.
2141** This routine will start taking more aggressive measures to clear the
2142** race conditions after multiple WAL_RETRY returns, and after an excessive
2143** number of errors will ultimately return SQLITE_PROTOCOL. The
2144** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2145** and is not honoring the locking protocol. There is a vanishingly small
2146** chance that SQLITE_PROTOCOL could be returned because of a run of really
2147** bad luck when there is lots of contention for the wal-index, but that
2148** possibility is so small that it can be safely neglected, we believe.
2149**
drh73b64e42010-05-30 19:55:15 +00002150** On success, this routine obtains a read lock on
2151** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
2152** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
2153** that means the Wal does not hold any read lock. The reader must not
2154** access any database page that is modified by a WAL frame up to and
2155** including frame number aReadMark[pWal->readLock]. The reader will
2156** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2157** Or if pWal->readLock==0, then the reader will ignore the WAL
2158** completely and get all content directly from the database file.
drha927e942010-06-24 02:46:48 +00002159** If the useWal parameter is 1 then the WAL will never be ignored and
2160** this routine will always set pWal->readLock>0 on success.
drh73b64e42010-05-30 19:55:15 +00002161** When the read transaction is completed, the caller must release the
2162** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2163**
2164** This routine uses the nBackfill and aReadMark[] fields of the header
2165** to select a particular WAL_READ_LOCK() that strives to let the
2166** checkpoint process do as much work as possible. This routine might
2167** update values of the aReadMark[] array in the header, but if it does
2168** so it takes care to hold an exclusive lock on the corresponding
2169** WAL_READ_LOCK() while changing values.
2170*/
drhaab4c022010-06-02 14:45:51 +00002171static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00002172 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
2173 u32 mxReadMark; /* Largest aReadMark[] value */
2174 int mxI; /* Index of largest aReadMark[] value */
2175 int i; /* Loop counter */
dan13a3cb82010-06-11 19:04:21 +00002176 int rc = SQLITE_OK; /* Return code */
danfc1acf32015-12-05 20:51:54 +00002177 int mxFrame; /* Wal frame to lock to */
dan64d039e2010-04-13 19:27:31 +00002178
drh61e4ace2010-05-31 20:28:37 +00002179 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00002180
drh658d76c2011-02-19 15:22:14 +00002181 /* Take steps to avoid spinning forever if there is a protocol error.
2182 **
2183 ** Circumstances that cause a RETRY should only last for the briefest
2184 ** instances of time. No I/O or other system calls are done while the
2185 ** locks are held, so the locks should not be held for very long. But
2186 ** if we are unlucky, another process that is holding a lock might get
2187 ** paged out or take a page-fault that is time-consuming to resolve,
2188 ** during the few nanoseconds that it is holding the lock. In that case,
2189 ** it might take longer than normal for the lock to free.
2190 **
2191 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2192 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2193 ** is more of a scheduler yield than an actual delay. But on the 10th
2194 ** an subsequent retries, the delays start becoming longer and longer,
drh5b6e3b92014-06-12 17:10:18 +00002195 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2196 ** The total delay time before giving up is less than 10 seconds.
drh658d76c2011-02-19 15:22:14 +00002197 */
drhaab4c022010-06-02 14:45:51 +00002198 if( cnt>5 ){
drh658d76c2011-02-19 15:22:14 +00002199 int nDelay = 1; /* Pause time in microseconds */
drh03c69672011-02-19 23:18:12 +00002200 if( cnt>100 ){
2201 VVA_ONLY( pWal->lockError = 1; )
2202 return SQLITE_PROTOCOL;
2203 }
drh5b6e3b92014-06-12 17:10:18 +00002204 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
drh658d76c2011-02-19 15:22:14 +00002205 sqlite3OsSleep(pWal->pVfs, nDelay);
drhaab4c022010-06-02 14:45:51 +00002206 }
2207
drh73b64e42010-05-30 19:55:15 +00002208 if( !useWal ){
drh7ed91f22010-04-29 22:34:07 +00002209 rc = walIndexReadHdr(pWal, pChanged);
drh73b64e42010-05-30 19:55:15 +00002210 if( rc==SQLITE_BUSY ){
2211 /* If there is not a recovery running in another thread or process
2212 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2213 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2214 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2215 ** would be technically correct. But the race is benign since with
2216 ** WAL_RETRY this routine will be called again and will probably be
2217 ** right on the second iteration.
2218 */
dan7d4514a2010-07-15 17:54:14 +00002219 if( pWal->apWiData[0]==0 ){
2220 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2221 ** We assume this is a transient condition, so return WAL_RETRY. The
2222 ** xShmMap() implementation used by the default unix and win32 VFS
2223 ** modules may return SQLITE_BUSY due to a race condition in the
2224 ** code that determines whether or not the shared-memory region
2225 ** must be zeroed before the requested page is returned.
2226 */
2227 rc = WAL_RETRY;
2228 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
drh73b64e42010-05-30 19:55:15 +00002229 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2230 rc = WAL_RETRY;
2231 }else if( rc==SQLITE_BUSY ){
2232 rc = SQLITE_BUSY_RECOVERY;
2233 }
2234 }
drha927e942010-06-24 02:46:48 +00002235 if( rc!=SQLITE_OK ){
2236 return rc;
2237 }
drh73b64e42010-05-30 19:55:15 +00002238 }
2239
dan13a3cb82010-06-11 19:04:21 +00002240 pInfo = walCkptInfo(pWal);
danfc1acf32015-12-05 20:51:54 +00002241 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame
2242#ifdef SQLITE_ENABLE_SNAPSHOT
2243 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0
2244 || 0==memcmp(&pWal->hdr, pWal->pSnapshot, sizeof(WalIndexHdr)))
2245#endif
2246 ){
drh73b64e42010-05-30 19:55:15 +00002247 /* The WAL has been completely backfilled (or it is empty).
2248 ** and can be safely ignored.
2249 */
2250 rc = walLockShared(pWal, WAL_READ_LOCK(0));
dan8c408002010-11-01 17:38:24 +00002251 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002252 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00002253 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00002254 /* It is not safe to allow the reader to continue here if frames
2255 ** may have been appended to the log before READ_LOCK(0) was obtained.
2256 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2257 ** which implies that the database file contains a trustworthy
peter.d.reid60ec9142014-09-06 16:39:46 +00002258 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
dan493cc592010-06-05 18:12:23 +00002259 ** happening, this is usually correct.
2260 **
2261 ** However, if frames have been appended to the log (or if the log
2262 ** is wrapped and written for that matter) before the READ_LOCK(0)
2263 ** is obtained, that is not necessarily true. A checkpointer may
2264 ** have started to backfill the appended frames but crashed before
2265 ** it finished. Leaving a corrupt image in the database file.
2266 */
drh73b64e42010-05-30 19:55:15 +00002267 walUnlockShared(pWal, WAL_READ_LOCK(0));
2268 return WAL_RETRY;
2269 }
2270 pWal->readLock = 0;
2271 return SQLITE_OK;
2272 }else if( rc!=SQLITE_BUSY ){
2273 return rc;
dan64d039e2010-04-13 19:27:31 +00002274 }
dan7c246102010-04-12 19:00:29 +00002275 }
danba515902010-04-30 09:32:06 +00002276
drh73b64e42010-05-30 19:55:15 +00002277 /* If we get this far, it means that the reader will want to use
2278 ** the WAL to get at content from recent commits. The job now is
2279 ** to select one of the aReadMark[] entries that is closest to
2280 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2281 */
2282 mxReadMark = 0;
2283 mxI = 0;
danfc1acf32015-12-05 20:51:54 +00002284 mxFrame = pWal->hdr.mxFrame;
2285#ifdef SQLITE_ENABLE_SNAPSHOT
dan818b11a2015-12-07 14:33:07 +00002286 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2287 mxFrame = pWal->pSnapshot->mxFrame;
2288 }
danfc1acf32015-12-05 20:51:54 +00002289#endif
drh73b64e42010-05-30 19:55:15 +00002290 for(i=1; i<WAL_NREADER; i++){
2291 u32 thisMark = pInfo->aReadMark[i];
danfc1acf32015-12-05 20:51:54 +00002292 if( mxReadMark<=thisMark && thisMark<=mxFrame ){
drhdb7f6472010-06-09 14:45:12 +00002293 assert( thisMark!=READMARK_NOT_USED );
drh73b64e42010-05-30 19:55:15 +00002294 mxReadMark = thisMark;
2295 mxI = i;
2296 }
2297 }
drh998147e2015-12-10 02:15:03 +00002298 if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2299 && (mxReadMark<mxFrame || mxI==0)
drh998147e2015-12-10 02:15:03 +00002300 ){
2301 for(i=1; i<WAL_NREADER; i++){
2302 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2303 if( rc==SQLITE_OK ){
2304 mxReadMark = pInfo->aReadMark[i] = mxFrame;
2305 mxI = i;
2306 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2307 break;
2308 }else if( rc!=SQLITE_BUSY ){
2309 return rc;
drh73b64e42010-05-30 19:55:15 +00002310 }
2311 }
drh998147e2015-12-10 02:15:03 +00002312 }
2313 if( mxI==0 ){
drh998147e2015-12-10 02:15:03 +00002314 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2315 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
2316 }
drh73b64e42010-05-30 19:55:15 +00002317
drh998147e2015-12-10 02:15:03 +00002318 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2319 if( rc ){
2320 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2321 }
2322 /* Now that the read-lock has been obtained, check that neither the
2323 ** value in the aReadMark[] array or the contents of the wal-index
2324 ** header have changed.
2325 **
2326 ** It is necessary to check that the wal-index header did not change
2327 ** between the time it was read and when the shared-lock was obtained
2328 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2329 ** that the log file may have been wrapped by a writer, or that frames
2330 ** that occur later in the log than pWal->hdr.mxFrame may have been
2331 ** copied into the database by a checkpointer. If either of these things
2332 ** happened, then reading the database with the current value of
2333 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2334 ** instead.
2335 **
2336 ** Before checking that the live wal-index header has not changed
2337 ** since it was read, set Wal.minFrame to the first frame in the wal
2338 ** file that has not yet been checkpointed. This client will not need
2339 ** to read any frames earlier than minFrame from the wal file - they
2340 ** can be safely read directly from the database file.
2341 **
2342 ** Because a ShmBarrier() call is made between taking the copy of
2343 ** nBackfill and checking that the wal-header in shared-memory still
2344 ** matches the one cached in pWal->hdr, it is guaranteed that the
2345 ** checkpointer that set nBackfill was not working with a wal-index
2346 ** header newer than that cached in pWal->hdr. If it were, that could
2347 ** cause a problem. The checkpointer could omit to checkpoint
2348 ** a version of page X that lies before pWal->minFrame (call that version
2349 ** A) on the basis that there is a newer version (version B) of the same
2350 ** page later in the wal file. But if version B happens to like past
2351 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2352 ** that it can read version A from the database file. However, since
2353 ** we can guarantee that the checkpointer that set nBackfill could not
2354 ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2355 */
2356 pWal->minFrame = pInfo->nBackfill+1;
2357 walShmBarrier(pWal);
2358 if( pInfo->aReadMark[mxI]!=mxReadMark
2359 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2360 ){
2361 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2362 return WAL_RETRY;
2363 }else{
2364 assert( mxReadMark<=pWal->hdr.mxFrame );
2365 pWal->readLock = (i16)mxI;
drh73b64e42010-05-30 19:55:15 +00002366 }
2367 return rc;
2368}
2369
2370/*
2371** Begin a read transaction on the database.
2372**
2373** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2374** it takes a snapshot of the state of the WAL and wal-index for the current
2375** instant in time. The current thread will continue to use this snapshot.
2376** Other threads might append new content to the WAL and wal-index but
2377** that extra content is ignored by the current thread.
2378**
2379** If the database contents have changes since the previous read
2380** transaction, then *pChanged is set to 1 before returning. The
2381** Pager layer will use this to know that is cache is stale and
2382** needs to be flushed.
2383*/
drh66dfec8b2011-06-01 20:01:49 +00002384int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
drh73b64e42010-05-30 19:55:15 +00002385 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00002386 int cnt = 0; /* Number of TryBeginRead attempts */
drh73b64e42010-05-30 19:55:15 +00002387
danfc1acf32015-12-05 20:51:54 +00002388#ifdef SQLITE_ENABLE_SNAPSHOT
2389 int bChanged = 0;
2390 WalIndexHdr *pSnapshot = pWal->pSnapshot;
drh998147e2015-12-10 02:15:03 +00002391 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
danfc1acf32015-12-05 20:51:54 +00002392 bChanged = 1;
2393 }
2394#endif
2395
drh73b64e42010-05-30 19:55:15 +00002396 do{
drhaab4c022010-06-02 14:45:51 +00002397 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00002398 }while( rc==WAL_RETRY );
drhab1cc742011-02-19 16:51:45 +00002399 testcase( (rc&0xff)==SQLITE_BUSY );
2400 testcase( (rc&0xff)==SQLITE_IOERR );
2401 testcase( rc==SQLITE_PROTOCOL );
2402 testcase( rc==SQLITE_OK );
danfc1acf32015-12-05 20:51:54 +00002403
2404#ifdef SQLITE_ENABLE_SNAPSHOT
2405 if( rc==SQLITE_OK ){
drh998147e2015-12-10 02:15:03 +00002406 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
dan65127cd2015-12-09 20:05:27 +00002407 /* At this point the client has a lock on an aReadMark[] slot holding
dan3bf83cc2015-12-10 15:45:15 +00002408 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2409 ** is populated with the wal-index header corresponding to the head
2410 ** of the wal file. Verify that pSnapshot is still valid before
2411 ** continuing. Reasons why pSnapshot might no longer be valid:
dan65127cd2015-12-09 20:05:27 +00002412 **
drh998147e2015-12-10 02:15:03 +00002413 ** (1) The WAL file has been reset since the snapshot was taken.
2414 ** In this case, the salt will have changed.
dan65127cd2015-12-09 20:05:27 +00002415 **
drh998147e2015-12-10 02:15:03 +00002416 ** (2) A checkpoint as been attempted that wrote frames past
2417 ** pSnapshot->mxFrame into the database file. Note that the
2418 ** checkpoint need not have completed for this to cause problems.
dan65127cd2015-12-09 20:05:27 +00002419 */
danfc1acf32015-12-05 20:51:54 +00002420 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
dan65127cd2015-12-09 20:05:27 +00002421
drh71b62fa2015-12-11 01:22:22 +00002422 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
dan65127cd2015-12-09 20:05:27 +00002423 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2424
dan3bf83cc2015-12-10 15:45:15 +00002425 /* It is possible that there is a checkpointer thread running
2426 ** concurrent with this code. If this is the case, it may be that the
2427 ** checkpointer has already determined that it will checkpoint
2428 ** snapshot X, where X is later in the wal file than pSnapshot, but
2429 ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2430 ** its intent. To avoid the race condition this leads to, ensure that
2431 ** there is no checkpointer process by taking a shared CKPT lock
2432 ** before checking pInfo->nBackfillAttempted. */
2433 rc = walLockShared(pWal, WAL_CKPT_LOCK);
2434
dana7aeb392015-12-10 19:11:34 +00002435 if( rc==SQLITE_OK ){
2436 /* Check that the wal file has not been wrapped. Assuming that it has
2437 ** not, also check that no checkpointer has attempted to checkpoint any
2438 ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2439 ** true, return SQLITE_BUSY_SNAPSHOT. Otherwise, overwrite pWal->hdr
2440 ** with *pSnapshot and set *pChanged as appropriate for opening the
2441 ** snapshot. */
2442 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2443 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2444 ){
2445 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2446 *pChanged = bChanged;
2447 }else{
2448 rc = SQLITE_BUSY_SNAPSHOT;
2449 }
2450
2451 /* Release the shared CKPT lock obtained above. */
2452 walUnlockShared(pWal, WAL_CKPT_LOCK);
danfc1acf32015-12-05 20:51:54 +00002453 }
dan65127cd2015-12-09 20:05:27 +00002454
dan3bf83cc2015-12-10 15:45:15 +00002455
danfc1acf32015-12-05 20:51:54 +00002456 if( rc!=SQLITE_OK ){
2457 sqlite3WalEndReadTransaction(pWal);
2458 }
2459 }
2460 }
2461#endif
dan7c246102010-04-12 19:00:29 +00002462 return rc;
2463}
2464
2465/*
drh73b64e42010-05-30 19:55:15 +00002466** Finish with a read transaction. All this does is release the
2467** read-lock.
dan7c246102010-04-12 19:00:29 +00002468*/
drh73b64e42010-05-30 19:55:15 +00002469void sqlite3WalEndReadTransaction(Wal *pWal){
dan73d66fd2010-08-07 16:17:48 +00002470 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00002471 if( pWal->readLock>=0 ){
2472 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2473 pWal->readLock = -1;
2474 }
dan7c246102010-04-12 19:00:29 +00002475}
2476
dan5e0ce872010-04-28 17:48:44 +00002477/*
dan99bd1092013-03-22 18:20:14 +00002478** Search the wal file for page pgno. If found, set *piRead to the frame that
2479** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2480** to zero.
drh73b64e42010-05-30 19:55:15 +00002481**
dan99bd1092013-03-22 18:20:14 +00002482** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2483** error does occur, the final value of *piRead is undefined.
dan7c246102010-04-12 19:00:29 +00002484*/
dan99bd1092013-03-22 18:20:14 +00002485int sqlite3WalFindFrame(
danbb23aff2010-05-10 14:46:09 +00002486 Wal *pWal, /* WAL handle */
2487 Pgno pgno, /* Database page number to read data for */
dan99bd1092013-03-22 18:20:14 +00002488 u32 *piRead /* OUT: Frame number (or zero) */
danb6e099a2010-05-04 14:47:39 +00002489){
danbb23aff2010-05-10 14:46:09 +00002490 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00002491 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00002492 int iHash; /* Used to loop through N hash tables */
dan6df003c2015-08-12 19:42:08 +00002493 int iMinHash;
dan7c246102010-04-12 19:00:29 +00002494
drhaab4c022010-06-02 14:45:51 +00002495 /* This routine is only be called from within a read transaction. */
2496 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00002497
danbb23aff2010-05-10 14:46:09 +00002498 /* If the "last page" field of the wal-index header snapshot is 0, then
2499 ** no data will be read from the wal under any circumstances. Return early
drha927e942010-06-24 02:46:48 +00002500 ** in this case as an optimization. Likewise, if pWal->readLock==0,
2501 ** then the WAL is ignored by the reader so return early, as if the
2502 ** WAL were empty.
danbb23aff2010-05-10 14:46:09 +00002503 */
danb8c7cfb2015-08-13 20:23:46 +00002504 if( iLast==0 || pWal->readLock==0 ){
dan99bd1092013-03-22 18:20:14 +00002505 *piRead = 0;
danbb23aff2010-05-10 14:46:09 +00002506 return SQLITE_OK;
2507 }
2508
danbb23aff2010-05-10 14:46:09 +00002509 /* Search the hash table or tables for an entry matching page number
2510 ** pgno. Each iteration of the following for() loop searches one
2511 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2512 **
drha927e942010-06-24 02:46:48 +00002513 ** This code might run concurrently to the code in walIndexAppend()
danbb23aff2010-05-10 14:46:09 +00002514 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00002515 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00002516 ** slot (aHash[iKey]) may have been added before or after the
2517 ** current read transaction was opened. Values added after the
2518 ** read transaction was opened may have been written incorrectly -
2519 ** i.e. these slots may contain garbage data. However, we assume
2520 ** that any slots written before the current read transaction was
2521 ** opened remain unmodified.
2522 **
2523 ** For the reasons above, the if(...) condition featured in the inner
2524 ** loop of the following block is more stringent that would be required
2525 ** if we had exclusive access to the hash-table:
2526 **
2527 ** (aPgno[iFrame]==pgno):
2528 ** This condition filters out normal hash-table collisions.
2529 **
2530 ** (iFrame<=iLast):
2531 ** This condition filters out entries that were added to the hash
2532 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00002533 */
danb8c7cfb2015-08-13 20:23:46 +00002534 iMinHash = walFramePage(pWal->minFrame);
dan6df003c2015-08-12 19:42:08 +00002535 for(iHash=walFramePage(iLast); iHash>=iMinHash && iRead==0; iHash--){
dan067f3162010-06-14 10:30:12 +00002536 volatile ht_slot *aHash; /* Pointer to hash table */
2537 volatile u32 *aPgno; /* Pointer to array of page numbers */
danbb23aff2010-05-10 14:46:09 +00002538 u32 iZero; /* Frame number corresponding to aPgno[0] */
2539 int iKey; /* Hash slot index */
drh519426a2010-07-09 03:19:07 +00002540 int nCollide; /* Number of hash collisions remaining */
2541 int rc; /* Error code */
danbb23aff2010-05-10 14:46:09 +00002542
dan4280eb32010-06-12 12:02:35 +00002543 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2544 if( rc!=SQLITE_OK ){
2545 return rc;
2546 }
drh519426a2010-07-09 03:19:07 +00002547 nCollide = HASHTABLE_NSLOT;
dan6f150142010-05-21 15:31:56 +00002548 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
danbb23aff2010-05-10 14:46:09 +00002549 u32 iFrame = aHash[iKey] + iZero;
danb8c7cfb2015-08-13 20:23:46 +00002550 if( iFrame<=iLast && iFrame>=pWal->minFrame && aPgno[aHash[iKey]]==pgno ){
drh622a53d2014-12-29 11:50:39 +00002551 assert( iFrame>iRead || CORRUPT_DB );
danbb23aff2010-05-10 14:46:09 +00002552 iRead = iFrame;
2553 }
drh519426a2010-07-09 03:19:07 +00002554 if( (nCollide--)==0 ){
2555 return SQLITE_CORRUPT_BKPT;
2556 }
dan7c246102010-04-12 19:00:29 +00002557 }
2558 }
dan7c246102010-04-12 19:00:29 +00002559
danbb23aff2010-05-10 14:46:09 +00002560#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2561 /* If expensive assert() statements are available, do a linear search
2562 ** of the wal-index file content. Make sure the results agree with the
2563 ** result obtained using the hash indexes above. */
2564 {
2565 u32 iRead2 = 0;
2566 u32 iTest;
dan5c472d02015-09-09 19:44:33 +00002567 assert( pWal->minFrame>0 );
2568 for(iTest=iLast; iTest>=pWal->minFrame; iTest--){
dan13a3cb82010-06-11 19:04:21 +00002569 if( walFramePgno(pWal, iTest)==pgno ){
danbb23aff2010-05-10 14:46:09 +00002570 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00002571 break;
2572 }
dan7c246102010-04-12 19:00:29 +00002573 }
danbb23aff2010-05-10 14:46:09 +00002574 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00002575 }
danbb23aff2010-05-10 14:46:09 +00002576#endif
dancd11fb22010-04-26 10:40:52 +00002577
dan99bd1092013-03-22 18:20:14 +00002578 *piRead = iRead;
dan7c246102010-04-12 19:00:29 +00002579 return SQLITE_OK;
2580}
2581
dan99bd1092013-03-22 18:20:14 +00002582/*
2583** Read the contents of frame iRead from the wal file into buffer pOut
2584** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2585** error code otherwise.
2586*/
2587int sqlite3WalReadFrame(
2588 Wal *pWal, /* WAL handle */
2589 u32 iRead, /* Frame to read */
2590 int nOut, /* Size of buffer pOut in bytes */
2591 u8 *pOut /* Buffer to write page data to */
2592){
2593 int sz;
2594 i64 iOffset;
2595 sz = pWal->hdr.szPage;
2596 sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2597 testcase( sz<=32768 );
2598 testcase( sz>=65536 );
2599 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2600 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2601 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2602}
dan7c246102010-04-12 19:00:29 +00002603
2604/*
dan763afe62010-08-03 06:42:39 +00002605** Return the size of the database in pages (or zero, if unknown).
dan7c246102010-04-12 19:00:29 +00002606*/
dan763afe62010-08-03 06:42:39 +00002607Pgno sqlite3WalDbsize(Wal *pWal){
drh7e9e70b2010-08-16 14:17:59 +00002608 if( pWal && ALWAYS(pWal->readLock>=0) ){
dan763afe62010-08-03 06:42:39 +00002609 return pWal->hdr.nPage;
2610 }
2611 return 0;
dan7c246102010-04-12 19:00:29 +00002612}
2613
dan30c86292010-04-30 16:24:46 +00002614
drh73b64e42010-05-30 19:55:15 +00002615/*
2616** This function starts a write transaction on the WAL.
2617**
2618** A read transaction must have already been started by a prior call
2619** to sqlite3WalBeginReadTransaction().
2620**
2621** If another thread or process has written into the database since
2622** the read transaction was started, then it is not possible for this
2623** thread to write as doing so would cause a fork. So this routine
2624** returns SQLITE_BUSY in that case and no write transaction is started.
2625**
2626** There can only be a single writer active at a time.
2627*/
2628int sqlite3WalBeginWriteTransaction(Wal *pWal){
2629 int rc;
drh73b64e42010-05-30 19:55:15 +00002630
2631 /* Cannot start a write transaction without first holding a read
2632 ** transaction. */
2633 assert( pWal->readLock>=0 );
2634
dan1e5de5a2010-07-15 18:20:53 +00002635 if( pWal->readOnly ){
2636 return SQLITE_READONLY;
2637 }
2638
drh73b64e42010-05-30 19:55:15 +00002639 /* Only one writer allowed at a time. Get the write lock. Return
2640 ** SQLITE_BUSY if unable.
2641 */
drhab372772015-12-02 16:10:16 +00002642 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
drh73b64e42010-05-30 19:55:15 +00002643 if( rc ){
2644 return rc;
2645 }
drhc99597c2010-05-31 01:41:15 +00002646 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00002647
2648 /* If another connection has written to the database file since the
2649 ** time the read transaction on this connection was started, then
2650 ** the write is disallowed.
2651 */
dan4280eb32010-06-12 12:02:35 +00002652 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
drh73b64e42010-05-30 19:55:15 +00002653 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00002654 pWal->writeLock = 0;
danf73819a2013-06-27 11:46:27 +00002655 rc = SQLITE_BUSY_SNAPSHOT;
drh73b64e42010-05-30 19:55:15 +00002656 }
2657
drh7ed91f22010-04-29 22:34:07 +00002658 return rc;
dan7c246102010-04-12 19:00:29 +00002659}
2660
dan74d6cd82010-04-24 18:44:05 +00002661/*
drh73b64e42010-05-30 19:55:15 +00002662** End a write transaction. The commit has already been done. This
2663** routine merely releases the lock.
2664*/
2665int sqlite3WalEndWriteTransaction(Wal *pWal){
danda9fe0c2010-07-13 18:44:03 +00002666 if( pWal->writeLock ){
2667 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2668 pWal->writeLock = 0;
danf60b7f32011-12-16 13:24:27 +00002669 pWal->truncateOnCommit = 0;
danda9fe0c2010-07-13 18:44:03 +00002670 }
drh73b64e42010-05-30 19:55:15 +00002671 return SQLITE_OK;
2672}
2673
2674/*
dan74d6cd82010-04-24 18:44:05 +00002675** If any data has been written (but not committed) to the log file, this
2676** function moves the write-pointer back to the start of the transaction.
2677**
2678** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00002679** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00002680** other than SQLITE_OK, it is not invoked again and the error code is
2681** returned to the caller.
2682**
2683** Otherwise, if the callback function does not return an error, this
2684** function returns SQLITE_OK.
2685*/
drh7ed91f22010-04-29 22:34:07 +00002686int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00002687 int rc = SQLITE_OK;
drh7e9e70b2010-08-16 14:17:59 +00002688 if( ALWAYS(pWal->writeLock) ){
drh027a1282010-05-19 01:53:53 +00002689 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00002690 Pgno iFrame;
2691
dan5d656852010-06-14 07:53:26 +00002692 /* Restore the clients cache of the wal-index header to the state it
2693 ** was in before the client began writing to the database.
2694 */
dan067f3162010-06-14 10:30:12 +00002695 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
dan5d656852010-06-14 07:53:26 +00002696
2697 for(iFrame=pWal->hdr.mxFrame+1;
drh664f85d2014-11-19 14:05:41 +00002698 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
dan5d656852010-06-14 07:53:26 +00002699 iFrame++
2700 ){
2701 /* This call cannot fail. Unless the page for which the page number
2702 ** is passed as the second argument is (a) in the cache and
2703 ** (b) has an outstanding reference, then xUndo is either a no-op
2704 ** (if (a) is false) or simply expels the page from the cache (if (b)
2705 ** is false).
2706 **
2707 ** If the upper layer is doing a rollback, it is guaranteed that there
2708 ** are no outstanding references to any page other than page 1. And
2709 ** page 1 is never written to the log until the transaction is
2710 ** committed. As a result, the call to xUndo may not fail.
2711 */
dan5d656852010-06-14 07:53:26 +00002712 assert( walFramePgno(pWal, iFrame)!=1 );
2713 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
dan6f150142010-05-21 15:31:56 +00002714 }
dan7eb05752012-10-15 11:28:24 +00002715 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
dan74d6cd82010-04-24 18:44:05 +00002716 }
2717 return rc;
2718}
2719
dan71d89912010-05-24 13:57:42 +00002720/*
2721** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2722** values. This function populates the array with values required to
2723** "rollback" the write position of the WAL handle back to the current
2724** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00002725*/
dan71d89912010-05-24 13:57:42 +00002726void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00002727 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00002728 aWalData[0] = pWal->hdr.mxFrame;
2729 aWalData[1] = pWal->hdr.aFrameCksum[0];
2730 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00002731 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00002732}
2733
dan71d89912010-05-24 13:57:42 +00002734/*
2735** Move the write position of the WAL back to the point identified by
2736** the values in the aWalData[] array. aWalData must point to an array
2737** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2738** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00002739*/
dan71d89912010-05-24 13:57:42 +00002740int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00002741 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00002742
dan6e6bd562010-06-02 18:59:03 +00002743 assert( pWal->writeLock );
2744 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2745
2746 if( aWalData[3]!=pWal->nCkpt ){
2747 /* This savepoint was opened immediately after the write-transaction
2748 ** was started. Right after that, the writer decided to wrap around
2749 ** to the start of the log. Update the savepoint values to match.
2750 */
2751 aWalData[0] = 0;
2752 aWalData[3] = pWal->nCkpt;
2753 }
2754
dan71d89912010-05-24 13:57:42 +00002755 if( aWalData[0]<pWal->hdr.mxFrame ){
dan71d89912010-05-24 13:57:42 +00002756 pWal->hdr.mxFrame = aWalData[0];
2757 pWal->hdr.aFrameCksum[0] = aWalData[1];
2758 pWal->hdr.aFrameCksum[1] = aWalData[2];
dan5d656852010-06-14 07:53:26 +00002759 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00002760 }
dan6e6bd562010-06-02 18:59:03 +00002761
dan4cd78b42010-04-26 16:57:10 +00002762 return rc;
2763}
2764
dan9971e712010-06-01 15:44:57 +00002765/*
2766** This function is called just before writing a set of frames to the log
2767** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2768** to the current log file, it is possible to overwrite the start of the
2769** existing log file with the new frames (i.e. "reset" the log). If so,
2770** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2771** unchanged.
2772**
2773** SQLITE_OK is returned if no error is encountered (regardless of whether
2774** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
drh4533cd02010-10-05 15:41:05 +00002775** if an error occurs.
dan9971e712010-06-01 15:44:57 +00002776*/
2777static int walRestartLog(Wal *pWal){
2778 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00002779 int cnt;
2780
dan13a3cb82010-06-11 19:04:21 +00002781 if( pWal->readLock==0 ){
dan9971e712010-06-01 15:44:57 +00002782 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2783 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2784 if( pInfo->nBackfill>0 ){
drh658d76c2011-02-19 15:22:14 +00002785 u32 salt1;
2786 sqlite3_randomness(4, &salt1);
drhab372772015-12-02 16:10:16 +00002787 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
dan9971e712010-06-01 15:44:57 +00002788 if( rc==SQLITE_OK ){
2789 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2790 ** readers are currently using the WAL), then the transactions
2791 ** frames will overwrite the start of the existing log. Update the
2792 ** wal-index header to reflect this.
2793 **
2794 ** In theory it would be Ok to update the cache of the header only
2795 ** at this point. But updating the actual wal-index header is also
2796 ** safe and means there is no special case for sqlite3WalUndo()
danf26a1542014-12-02 19:04:54 +00002797 ** to handle if this transaction is rolled back. */
dan0fe8c1b2014-12-02 19:35:09 +00002798 walRestartHdr(pWal, salt1);
dan9971e712010-06-01 15:44:57 +00002799 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
drh4533cd02010-10-05 15:41:05 +00002800 }else if( rc!=SQLITE_BUSY ){
2801 return rc;
dan9971e712010-06-01 15:44:57 +00002802 }
2803 }
2804 walUnlockShared(pWal, WAL_READ_LOCK(0));
2805 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00002806 cnt = 0;
dan9971e712010-06-01 15:44:57 +00002807 do{
2808 int notUsed;
drhaab4c022010-06-02 14:45:51 +00002809 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00002810 }while( rc==WAL_RETRY );
drhc90e0812011-02-19 17:02:44 +00002811 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
drhab1cc742011-02-19 16:51:45 +00002812 testcase( (rc&0xff)==SQLITE_IOERR );
2813 testcase( rc==SQLITE_PROTOCOL );
2814 testcase( rc==SQLITE_OK );
dan9971e712010-06-01 15:44:57 +00002815 }
2816 return rc;
2817}
2818
drh88f975a2011-12-16 19:34:36 +00002819/*
drhd992b152011-12-20 20:13:25 +00002820** Information about the current state of the WAL file and where
2821** the next fsync should occur - passed from sqlite3WalFrames() into
2822** walWriteToLog().
2823*/
2824typedef struct WalWriter {
2825 Wal *pWal; /* The complete WAL information */
2826 sqlite3_file *pFd; /* The WAL file to which we write */
2827 sqlite3_int64 iSyncPoint; /* Fsync at this offset */
2828 int syncFlags; /* Flags for the fsync */
2829 int szPage; /* Size of one page */
2830} WalWriter;
2831
2832/*
drh88f975a2011-12-16 19:34:36 +00002833** Write iAmt bytes of content into the WAL file beginning at iOffset.
drhd992b152011-12-20 20:13:25 +00002834** Do a sync when crossing the p->iSyncPoint boundary.
drh88f975a2011-12-16 19:34:36 +00002835**
drhd992b152011-12-20 20:13:25 +00002836** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
2837** first write the part before iSyncPoint, then sync, then write the
2838** rest.
drh88f975a2011-12-16 19:34:36 +00002839*/
2840static int walWriteToLog(
drhd992b152011-12-20 20:13:25 +00002841 WalWriter *p, /* WAL to write to */
drh88f975a2011-12-16 19:34:36 +00002842 void *pContent, /* Content to be written */
2843 int iAmt, /* Number of bytes to write */
2844 sqlite3_int64 iOffset /* Start writing at this offset */
2845){
2846 int rc;
drhd992b152011-12-20 20:13:25 +00002847 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
2848 int iFirstAmt = (int)(p->iSyncPoint - iOffset);
2849 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
drh88f975a2011-12-16 19:34:36 +00002850 if( rc ) return rc;
drhd992b152011-12-20 20:13:25 +00002851 iOffset += iFirstAmt;
2852 iAmt -= iFirstAmt;
drh88f975a2011-12-16 19:34:36 +00002853 pContent = (void*)(iFirstAmt + (char*)pContent);
drhd992b152011-12-20 20:13:25 +00002854 assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) );
dane5b6ea72014-02-13 18:46:59 +00002855 rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK);
drhcc8d10a2011-12-23 02:07:10 +00002856 if( iAmt==0 || rc ) return rc;
drh88f975a2011-12-16 19:34:36 +00002857 }
drhd992b152011-12-20 20:13:25 +00002858 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
2859 return rc;
2860}
2861
2862/*
2863** Write out a single frame of the WAL
2864*/
2865static int walWriteOneFrame(
2866 WalWriter *p, /* Where to write the frame */
2867 PgHdr *pPage, /* The page of the frame to be written */
2868 int nTruncate, /* The commit flag. Usually 0. >0 for commit */
2869 sqlite3_int64 iOffset /* Byte offset at which to write */
2870){
2871 int rc; /* Result code from subfunctions */
2872 void *pData; /* Data actually written */
2873 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
2874#if defined(SQLITE_HAS_CODEC)
2875 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM;
2876#else
2877 pData = pPage->pData;
2878#endif
2879 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
2880 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
2881 if( rc ) return rc;
2882 /* Write the page data */
2883 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
drh88f975a2011-12-16 19:34:36 +00002884 return rc;
2885}
2886
dan7c246102010-04-12 19:00:29 +00002887/*
dan4cd78b42010-04-26 16:57:10 +00002888** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00002889** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00002890*/
drhc438efd2010-04-26 00:19:45 +00002891int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00002892 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00002893 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00002894 PgHdr *pList, /* List of dirty pages to write */
2895 Pgno nTruncate, /* Database size after this commit */
2896 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00002897 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00002898){
dan7c246102010-04-12 19:00:29 +00002899 int rc; /* Used to catch return codes */
2900 u32 iFrame; /* Next frame address */
dan7c246102010-04-12 19:00:29 +00002901 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00002902 PgHdr *pLast = 0; /* Last frame in list */
drhd992b152011-12-20 20:13:25 +00002903 int nExtra = 0; /* Number of extra copies of last page */
2904 int szFrame; /* The size of a single frame */
2905 i64 iOffset; /* Next byte to write in WAL file */
2906 WalWriter w; /* The writer */
dan7c246102010-04-12 19:00:29 +00002907
dan7c246102010-04-12 19:00:29 +00002908 assert( pList );
drh73b64e42010-05-30 19:55:15 +00002909 assert( pWal->writeLock );
dan7c246102010-04-12 19:00:29 +00002910
drh41209942011-12-20 13:13:09 +00002911 /* If this frame set completes a transaction, then nTruncate>0. If
2912 ** nTruncate==0 then this frame set does not complete the transaction. */
2913 assert( (isCommit!=0)==(nTruncate!=0) );
2914
drhc74c3332010-05-31 12:15:19 +00002915#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2916 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2917 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2918 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2919 }
2920#endif
2921
dan9971e712010-06-01 15:44:57 +00002922 /* See if it is possible to write these frames into the start of the
2923 ** log file, instead of appending to it at pWal->hdr.mxFrame.
2924 */
2925 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
dan9971e712010-06-01 15:44:57 +00002926 return rc;
2927 }
dan9971e712010-06-01 15:44:57 +00002928
drha2a42012010-05-18 18:01:08 +00002929 /* If this is the first frame written into the log, write the WAL
2930 ** header to the start of the WAL file. See comments at the top of
2931 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00002932 */
drh027a1282010-05-19 01:53:53 +00002933 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00002934 if( iFrame==0 ){
dan10f5a502010-06-23 15:55:43 +00002935 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
2936 u32 aCksum[2]; /* Checksum for wal-header */
2937
danb8fd6c22010-05-24 10:39:36 +00002938 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
dan10f5a502010-06-23 15:55:43 +00002939 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
drh23ea97b2010-05-20 16:45:58 +00002940 sqlite3Put4byte(&aWalHdr[8], szPage);
2941 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drhd2980312011-12-17 01:31:44 +00002942 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
drh7e263722010-05-20 21:21:09 +00002943 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
dan10f5a502010-06-23 15:55:43 +00002944 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
2945 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
2946 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
2947
drhb2eced52010-08-12 02:41:12 +00002948 pWal->szPage = szPage;
dan10f5a502010-06-23 15:55:43 +00002949 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
2950 pWal->hdr.aFrameCksum[0] = aCksum[0];
2951 pWal->hdr.aFrameCksum[1] = aCksum[1];
danf60b7f32011-12-16 13:24:27 +00002952 pWal->truncateOnCommit = 1;
dan10f5a502010-06-23 15:55:43 +00002953
drh23ea97b2010-05-20 16:45:58 +00002954 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00002955 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00002956 if( rc!=SQLITE_OK ){
2957 return rc;
2958 }
drhd992b152011-12-20 20:13:25 +00002959
2960 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
2961 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
2962 ** an out-of-order write following a WAL restart could result in
2963 ** database corruption. See the ticket:
2964 **
2965 ** http://localhost:591/sqlite/info/ff5be73dee
2966 */
2967 if( pWal->syncHeader && sync_flags ){
2968 rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK);
2969 if( rc ) return rc;
2970 }
dan97a31352010-04-16 13:59:31 +00002971 }
shanehbd2aaf92010-09-01 02:38:21 +00002972 assert( (int)pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00002973
drhd992b152011-12-20 20:13:25 +00002974 /* Setup information needed to write frames into the WAL */
2975 w.pWal = pWal;
2976 w.pFd = pWal->pWalFd;
2977 w.iSyncPoint = 0;
2978 w.syncFlags = sync_flags;
2979 w.szPage = szPage;
2980 iOffset = walFrameOffset(iFrame+1, szPage);
2981 szFrame = szPage + WAL_FRAME_HDRSIZE;
drh88f975a2011-12-16 19:34:36 +00002982
drhd992b152011-12-20 20:13:25 +00002983 /* Write all frames into the log file exactly once */
dan7c246102010-04-12 19:00:29 +00002984 for(p=pList; p; p=p->pDirty){
drhd992b152011-12-20 20:13:25 +00002985 int nDbSize; /* 0 normally. Positive == commit flag */
2986 iFrame++;
2987 assert( iOffset==walFrameOffset(iFrame, szPage) );
2988 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
2989 rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
2990 if( rc ) return rc;
dan7c246102010-04-12 19:00:29 +00002991 pLast = p;
drhd992b152011-12-20 20:13:25 +00002992 iOffset += szFrame;
dan7c246102010-04-12 19:00:29 +00002993 }
2994
drhd992b152011-12-20 20:13:25 +00002995 /* If this is the end of a transaction, then we might need to pad
2996 ** the transaction and/or sync the WAL file.
2997 **
2998 ** Padding and syncing only occur if this set of frames complete a
2999 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
peter.d.reid60ec9142014-09-06 16:39:46 +00003000 ** or synchronous==OFF, then no padding or syncing are needed.
drhd992b152011-12-20 20:13:25 +00003001 **
drhcb15f352011-12-23 01:04:17 +00003002 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3003 ** needed and only the sync is done. If padding is needed, then the
3004 ** final frame is repeated (with its commit mark) until the next sector
drhd992b152011-12-20 20:13:25 +00003005 ** boundary is crossed. Only the part of the WAL prior to the last
3006 ** sector boundary is synced; the part of the last frame that extends
3007 ** past the sector boundary is written after the sync.
3008 */
drh4eb02a42011-12-16 21:26:26 +00003009 if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){
drh374f4a02011-12-17 20:02:11 +00003010 if( pWal->padToSectorBoundary ){
danc9a53262012-10-01 06:50:55 +00003011 int sectorSize = sqlite3SectorSize(pWal->pWalFd);
drhd992b152011-12-20 20:13:25 +00003012 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
3013 while( iOffset<w.iSyncPoint ){
3014 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3015 if( rc ) return rc;
3016 iOffset += szFrame;
3017 nExtra++;
dan7c246102010-04-12 19:00:29 +00003018 }
drh4e5e1082011-12-23 13:32:07 +00003019 }else{
3020 rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK);
dan7c246102010-04-12 19:00:29 +00003021 }
dan7c246102010-04-12 19:00:29 +00003022 }
3023
drhd992b152011-12-20 20:13:25 +00003024 /* If this frame set completes the first transaction in the WAL and
3025 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3026 ** journal size limit, if possible.
3027 */
danf60b7f32011-12-16 13:24:27 +00003028 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3029 i64 sz = pWal->mxWalSize;
drhd992b152011-12-20 20:13:25 +00003030 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3031 sz = walFrameOffset(iFrame+nExtra+1, szPage);
danf60b7f32011-12-16 13:24:27 +00003032 }
3033 walLimitSize(pWal, sz);
3034 pWal->truncateOnCommit = 0;
3035 }
3036
drhe730fec2010-05-18 12:56:50 +00003037 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00003038 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00003039 ** guarantees that there are no other writers, and no data that may
3040 ** be in use by existing readers is being overwritten.
3041 */
drh027a1282010-05-19 01:53:53 +00003042 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00003043 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dan7c246102010-04-12 19:00:29 +00003044 iFrame++;
danc7991bd2010-05-05 19:04:59 +00003045 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00003046 }
drh20e226d2012-01-01 13:58:53 +00003047 while( rc==SQLITE_OK && nExtra>0 ){
dan7c246102010-04-12 19:00:29 +00003048 iFrame++;
drhd992b152011-12-20 20:13:25 +00003049 nExtra--;
danc7991bd2010-05-05 19:04:59 +00003050 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00003051 }
3052
danc7991bd2010-05-05 19:04:59 +00003053 if( rc==SQLITE_OK ){
3054 /* Update the private copy of the header. */
shaneh1df2db72010-08-18 02:28:48 +00003055 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00003056 testcase( szPage<=32768 );
3057 testcase( szPage>=65536 );
drh027a1282010-05-19 01:53:53 +00003058 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00003059 if( isCommit ){
3060 pWal->hdr.iChange++;
3061 pWal->hdr.nPage = nTruncate;
3062 }
danc7991bd2010-05-05 19:04:59 +00003063 /* If this is a commit, update the wal-index header too. */
3064 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00003065 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00003066 pWal->iCallback = iFrame;
3067 }
dan7c246102010-04-12 19:00:29 +00003068 }
danc7991bd2010-05-05 19:04:59 +00003069
drhc74c3332010-05-31 12:15:19 +00003070 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00003071 return rc;
dan7c246102010-04-12 19:00:29 +00003072}
3073
3074/*
drh73b64e42010-05-30 19:55:15 +00003075** This routine is called to implement sqlite3_wal_checkpoint() and
3076** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00003077**
drh73b64e42010-05-30 19:55:15 +00003078** Obtain a CHECKPOINT lock and then backfill as much information as
3079** we can from WAL into the database.
dana58f26f2010-11-16 18:56:51 +00003080**
3081** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3082** callback. In this case this function runs a blocking checkpoint.
dan7c246102010-04-12 19:00:29 +00003083*/
drhc438efd2010-04-26 00:19:45 +00003084int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00003085 Wal *pWal, /* Wal connection */
drhdd90d7e2014-12-03 19:25:41 +00003086 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */
dana58f26f2010-11-16 18:56:51 +00003087 int (*xBusy)(void*), /* Function to call when busy */
3088 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00003089 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00003090 int nBuf, /* Size of temporary buffer */
dancdc1f042010-11-18 12:11:05 +00003091 u8 *zBuf, /* Temporary buffer to use */
3092 int *pnLog, /* OUT: Number of frames in WAL */
3093 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
dan7c246102010-04-12 19:00:29 +00003094){
danb9bf16b2010-04-14 11:23:30 +00003095 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00003096 int isChanged = 0; /* True if a new wal-index header is loaded */
danf2b8dd52010-11-18 19:28:01 +00003097 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
drhdd90d7e2014-12-03 19:25:41 +00003098 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */
dan7c246102010-04-12 19:00:29 +00003099
dand54ff602010-05-31 11:16:30 +00003100 assert( pWal->ckptLock==0 );
dana58f26f2010-11-16 18:56:51 +00003101 assert( pWal->writeLock==0 );
dan39c79f52010-04-15 10:58:51 +00003102
drhdd90d7e2014-12-03 19:25:41 +00003103 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3104 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3105 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3106
drh66dfec8b2011-06-01 20:01:49 +00003107 if( pWal->readOnly ) return SQLITE_READONLY;
drhc74c3332010-05-31 12:15:19 +00003108 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drhdd90d7e2014-12-03 19:25:41 +00003109
3110 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3111 ** "checkpoint" lock on the database file. */
drhab372772015-12-02 16:10:16 +00003112 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
drh73b64e42010-05-30 19:55:15 +00003113 if( rc ){
drhdd90d7e2014-12-03 19:25:41 +00003114 /* EVIDENCE-OF: R-10421-19736 If any other process is running a
3115 ** checkpoint operation at the same time, the lock cannot be obtained and
3116 ** SQLITE_BUSY is returned.
3117 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3118 ** it will not be invoked in this case.
3119 */
3120 testcase( rc==SQLITE_BUSY );
3121 testcase( xBusy!=0 );
danb9bf16b2010-04-14 11:23:30 +00003122 return rc;
3123 }
dand54ff602010-05-31 11:16:30 +00003124 pWal->ckptLock = 1;
dan64d039e2010-04-13 19:27:31 +00003125
drhdd90d7e2014-12-03 19:25:41 +00003126 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3127 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3128 ** file.
danf2b8dd52010-11-18 19:28:01 +00003129 **
drhdd90d7e2014-12-03 19:25:41 +00003130 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3131 ** immediately, and a busy-handler is configured, it is invoked and the
3132 ** writer lock retried until either the busy-handler returns 0 or the
3133 ** lock is successfully obtained.
dana58f26f2010-11-16 18:56:51 +00003134 */
dancdc1f042010-11-18 12:11:05 +00003135 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dana58f26f2010-11-16 18:56:51 +00003136 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
danf2b8dd52010-11-18 19:28:01 +00003137 if( rc==SQLITE_OK ){
3138 pWal->writeLock = 1;
3139 }else if( rc==SQLITE_BUSY ){
3140 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
drhdd90d7e2014-12-03 19:25:41 +00003141 xBusy2 = 0;
danf2b8dd52010-11-18 19:28:01 +00003142 rc = SQLITE_OK;
3143 }
danb9bf16b2010-04-14 11:23:30 +00003144 }
dana58f26f2010-11-16 18:56:51 +00003145
danf2b8dd52010-11-18 19:28:01 +00003146 /* Read the wal-index header. */
drh7ed91f22010-04-29 22:34:07 +00003147 if( rc==SQLITE_OK ){
dana58f26f2010-11-16 18:56:51 +00003148 rc = walIndexReadHdr(pWal, &isChanged);
danf55a4cf2013-04-01 16:56:41 +00003149 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3150 sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3151 }
dana58f26f2010-11-16 18:56:51 +00003152 }
danf2b8dd52010-11-18 19:28:01 +00003153
3154 /* Copy data from the log to the database file. */
dan9c5e3682011-02-07 15:12:12 +00003155 if( rc==SQLITE_OK ){
3156 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
danf2b8dd52010-11-18 19:28:01 +00003157 rc = SQLITE_CORRUPT_BKPT;
3158 }else{
drhdd90d7e2014-12-03 19:25:41 +00003159 rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
dan9c5e3682011-02-07 15:12:12 +00003160 }
3161
3162 /* If no error occurred, set the output variables. */
3163 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
danf2b8dd52010-11-18 19:28:01 +00003164 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
dan9c5e3682011-02-07 15:12:12 +00003165 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
danf2b8dd52010-11-18 19:28:01 +00003166 }
danb9bf16b2010-04-14 11:23:30 +00003167 }
danf2b8dd52010-11-18 19:28:01 +00003168
dan31c03902010-04-29 14:51:33 +00003169 if( isChanged ){
3170 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00003171 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00003172 ** out of date. So zero the cached wal-index header to ensure that
3173 ** next time the pager opens a snapshot on this database it knows that
3174 ** the cache needs to be reset.
3175 */
3176 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3177 }
danb9bf16b2010-04-14 11:23:30 +00003178
3179 /* Release the locks. */
dana58f26f2010-11-16 18:56:51 +00003180 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00003181 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00003182 pWal->ckptLock = 0;
drhc74c3332010-05-31 12:15:19 +00003183 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
danf2b8dd52010-11-18 19:28:01 +00003184 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
dan7c246102010-04-12 19:00:29 +00003185}
3186
drh7ed91f22010-04-29 22:34:07 +00003187/* Return the value to pass to a sqlite3_wal_hook callback, the
3188** number of frames in the WAL at the point of the last commit since
3189** sqlite3WalCallback() was called. If no commits have occurred since
3190** the last call, then return 0.
3191*/
3192int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00003193 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00003194 if( pWal ){
3195 ret = pWal->iCallback;
3196 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00003197 }
3198 return (int)ret;
3199}
dan55437592010-05-11 12:19:26 +00003200
3201/*
drh61e4ace2010-05-31 20:28:37 +00003202** This function is called to change the WAL subsystem into or out
3203** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00003204**
drh61e4ace2010-05-31 20:28:37 +00003205** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3206** into locking_mode=NORMAL. This means that we must acquire a lock
3207** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
3208** or if the acquisition of the lock fails, then return 0. If the
3209** transition out of exclusive-mode is successful, return 1. This
3210** operation must occur while the pager is still holding the exclusive
3211** lock on the main database file.
dan55437592010-05-11 12:19:26 +00003212**
drh61e4ace2010-05-31 20:28:37 +00003213** If op is one, then change from locking_mode=NORMAL into
3214** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
3215** be released. Return 1 if the transition is made and 0 if the
3216** WAL is already in exclusive-locking mode - meaning that this
3217** routine is a no-op. The pager must already hold the exclusive lock
3218** on the main database file before invoking this operation.
3219**
3220** If op is negative, then do a dry-run of the op==1 case but do
dan8c408002010-11-01 17:38:24 +00003221** not actually change anything. The pager uses this to see if it
drh61e4ace2010-05-31 20:28:37 +00003222** should acquire the database exclusive lock prior to invoking
3223** the op==1 case.
dan55437592010-05-11 12:19:26 +00003224*/
3225int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00003226 int rc;
drhaab4c022010-06-02 14:45:51 +00003227 assert( pWal->writeLock==0 );
dan8c408002010-11-01 17:38:24 +00003228 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
dan3cac5dc2010-06-04 18:37:59 +00003229
3230 /* pWal->readLock is usually set, but might be -1 if there was a
3231 ** prior error while attempting to acquire are read-lock. This cannot
3232 ** happen if the connection is actually in exclusive mode (as no xShmLock
3233 ** locks are taken in this case). Nor should the pager attempt to
3234 ** upgrade to exclusive-mode following such an error.
3235 */
drhaab4c022010-06-02 14:45:51 +00003236 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00003237 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3238
drh61e4ace2010-05-31 20:28:37 +00003239 if( op==0 ){
3240 if( pWal->exclusiveMode ){
3241 pWal->exclusiveMode = 0;
dan3cac5dc2010-06-04 18:37:59 +00003242 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drh61e4ace2010-05-31 20:28:37 +00003243 pWal->exclusiveMode = 1;
3244 }
3245 rc = pWal->exclusiveMode==0;
3246 }else{
drhaab4c022010-06-02 14:45:51 +00003247 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00003248 rc = 0;
3249 }
3250 }else if( op>0 ){
3251 assert( pWal->exclusiveMode==0 );
drhaab4c022010-06-02 14:45:51 +00003252 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00003253 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3254 pWal->exclusiveMode = 1;
3255 rc = 1;
3256 }else{
3257 rc = pWal->exclusiveMode==0;
dan55437592010-05-11 12:19:26 +00003258 }
drh61e4ace2010-05-31 20:28:37 +00003259 return rc;
dan55437592010-05-11 12:19:26 +00003260}
3261
dan8c408002010-11-01 17:38:24 +00003262/*
3263** Return true if the argument is non-NULL and the WAL module is using
3264** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3265** WAL module is using shared-memory, return false.
3266*/
3267int sqlite3WalHeapMemory(Wal *pWal){
3268 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3269}
3270
danfc1acf32015-12-05 20:51:54 +00003271#ifdef SQLITE_ENABLE_SNAPSHOT
drhe230a892015-12-10 22:48:22 +00003272/* Create a snapshot object. The content of a snapshot is opaque to
3273** every other subsystem, so the WAL module can put whatever it needs
3274** in the object.
3275*/
danfc1acf32015-12-05 20:51:54 +00003276int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3277 int rc = SQLITE_OK;
3278 WalIndexHdr *pRet;
3279
3280 assert( pWal->readLock>=0 && pWal->writeLock==0 );
3281
3282 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3283 if( pRet==0 ){
3284 rc = SQLITE_NOMEM;
3285 }else{
3286 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3287 *ppSnapshot = (sqlite3_snapshot*)pRet;
3288 }
3289
3290 return rc;
3291}
3292
drhe230a892015-12-10 22:48:22 +00003293/* Try to open on pSnapshot when the next read-transaction starts
3294*/
danfc1acf32015-12-05 20:51:54 +00003295void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){
3296 pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3297}
3298#endif /* SQLITE_ENABLE_SNAPSHOT */
3299
drh70708602012-02-24 14:33:28 +00003300#ifdef SQLITE_ENABLE_ZIPVFS
danb3bdc722012-02-23 15:35:49 +00003301/*
3302** If the argument is not NULL, it points to a Wal object that holds a
3303** read-lock. This function returns the database page-size if it is known,
3304** or zero if it is not (or if pWal is NULL).
3305*/
3306int sqlite3WalFramesize(Wal *pWal){
danb3bdc722012-02-23 15:35:49 +00003307 assert( pWal==0 || pWal->readLock>=0 );
3308 return (pWal ? pWal->szPage : 0);
3309}
drh70708602012-02-24 14:33:28 +00003310#endif
danb3bdc722012-02-23 15:35:49 +00003311
dan5cf53532010-05-01 16:40:20 +00003312#endif /* #ifndef SQLITE_OMIT_WAL */