blob: f054e9e73b810a64a1388fb6acfc9f84a35d7e37 [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drhcd285082010-06-23 22:00:35 +000034** The WAL header is 32 bytes in size and consists of the following eight
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan10f5a502010-06-23 15:55:43 +000043** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
dan97a31352010-04-16 13:59:31 +000045**
drh23ea97b2010-05-20 16:45:58 +000046** Immediately following the wal-header are zero or more frames. Each
47** frame consists of a 24-byte frame-header followed by a <page-size> bytes
drhcd285082010-06-23 22:00:35 +000048** of page data. The frame-header is six big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000049** integer values, as follows:
50**
dan3de777f2010-04-17 12:31:37 +000051** 0: Page number.
52** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000053** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000054** 8: Salt-1 (copied from the header)
55** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000056** 16: Checksum-1.
57** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000058**
drh7e263722010-05-20 21:21:09 +000059** A frame is considered valid if and only if the following conditions are
60** true:
61**
62** (1) The salt-1 and salt-2 values in the frame-header match
63** salt values in the wal-header
64**
65** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000066** exactly match the checksum computed consecutively on the
67** WAL header and the first 8 bytes and the content of all frames
68** up to and including the current frame.
69**
70** The checksum is computed using 32-bit big-endian integers if the
71** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000073** The checksum values are always stored in the frame header in a
74** big-endian format regardless of which byte order is used to compute
75** the checksum. The checksum is computed by interpreting the input as
76** an even number of unsigned 32-bit integers: x[0] through x[N]. The
drhffca4302010-06-15 11:21:54 +000077** algorithm used for the checksum is as follows:
drh51b21b12010-05-25 15:53:31 +000078**
79** for i from 0 to n-1 step 2:
80** s0 += x[i] + s1;
81** s1 += x[i+1] + s0;
82** endfor
drh7e263722010-05-20 21:21:09 +000083**
drhcd285082010-06-23 22:00:35 +000084** Note that s0 and s1 are both weighted checksums using fibonacci weights
85** in reverse order (the largest fibonacci weight occurs on the first element
86** of the sequence being summed.) The s1 value spans all 32-bit
87** terms of the sequence whereas s0 omits the final term.
88**
drh7e263722010-05-20 21:21:09 +000089** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90** WAL is transferred into the database, then the database is VFS.xSync-ed.
drhffca4302010-06-15 11:21:54 +000091** The VFS.xSync operations serve as write barriers - all writes launched
drh7e263722010-05-20 21:21:09 +000092** before the xSync must complete before any write that launches after the
93** xSync begins.
94**
95** After each checkpoint, the salt-1 value is incremented and the salt-2
96** value is randomized. This prevents old and new frames in the WAL from
97** being considered valid at the same time and being checkpointing together
98** following a crash.
99**
drh29d4dbe2010-05-18 23:29:52 +0000100** READER ALGORITHM
101**
102** To read a page from the database (call it page number P), a reader
103** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +0000104** last valid instance of page P that is a followed by a commit frame
105** or is a commit frame itself becomes the value read. If the WAL
106** contains no copies of page P that are valid and which are a commit
107** frame or are followed by a commit frame, then page P is read from
108** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000109**
drh73b64e42010-05-30 19:55:15 +0000110** To start a read transaction, the reader records the index of the last
111** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112** for all subsequent read operations. New transactions can be appended
113** to the WAL, but as long as the reader uses its original mxFrame value
114** and ignores the newly appended content, it will see a consistent snapshot
115** of the database from a single point in time. This technique allows
116** multiple concurrent readers to view different versions of the database
117** content simultaneously.
118**
119** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000120** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000121** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000122** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000123** and read performance suffers. To overcome this problem, a separate
124** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000125** search for frames of a particular page.
126**
127** WAL-INDEX FORMAT
128**
129** Conceptually, the wal-index is shared memory, though VFS implementations
130** might choose to implement the wal-index using a mmapped file. Because
131** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132** on a network filesystem. All users of the database must be able to
133** share memory.
134**
135** The wal-index is transient. After a crash, the wal-index can (and should
136** be) reconstructed from the original WAL file. In fact, the VFS is required
137** to either truncate or zero the header of the wal-index when the last
138** connection to it closes. Because the wal-index is transient, it can
139** use an architecture-specific format; it does not have to be cross-platform.
140** Hence, unlike the database and WAL file formats which store all values
141** as big endian, the wal-index can store multi-byte values in the native
142** byte order of the host computer.
143**
144** The purpose of the wal-index is to answer this question quickly: Given
drh3314d122012-07-17 17:46:21 +0000145** a page number P and a maximum frame index M, return the index of the
146** last frame in the wal before frame M for page P in the WAL, or return
147** NULL if there are no frames for page P in the WAL prior to M.
drh29d4dbe2010-05-18 23:29:52 +0000148**
149** The wal-index consists of a header region, followed by an one or
150** more index blocks.
151**
drh027a1282010-05-19 01:53:53 +0000152** The wal-index header contains the total number of frames within the WAL
mistachkind5578432012-08-25 10:01:29 +0000153** in the mxFrame field.
danad3cadd2010-06-14 11:49:26 +0000154**
155** Each index block except for the first contains information on
156** HASHTABLE_NPAGE frames. The first index block contains information on
157** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
158** HASHTABLE_NPAGE are selected so that together the wal-index header and
159** first index block are the same size as all other index blocks in the
160** wal-index.
161**
162** Each index block contains two sections, a page-mapping that contains the
163** database page number associated with each wal frame, and a hash-table
drhffca4302010-06-15 11:21:54 +0000164** that allows readers to query an index block for a specific page number.
danad3cadd2010-06-14 11:49:26 +0000165** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
166** for the first index block) 32-bit page numbers. The first entry in the
167** first index-block contains the database page number corresponding to the
168** first frame in the WAL file. The first entry in the second index block
169** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
170** the log, and so on.
171**
172** The last index block in a wal-index usually contains less than the full
173** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
174** depending on the contents of the WAL file. This does not change the
175** allocated size of the page-mapping array - the page-mapping array merely
176** contains unused entries.
drh027a1282010-05-19 01:53:53 +0000177**
178** Even without using the hash table, the last frame for page P
danad3cadd2010-06-14 11:49:26 +0000179** can be found by scanning the page-mapping sections of each index block
drh027a1282010-05-19 01:53:53 +0000180** starting with the last index block and moving toward the first, and
181** within each index block, starting at the end and moving toward the
182** beginning. The first entry that equals P corresponds to the frame
183** holding the content for that page.
184**
185** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
186** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
187** hash table for each page number in the mapping section, so the hash
188** table is never more than half full. The expected number of collisions
189** prior to finding a match is 1. Each entry of the hash table is an
190** 1-based index of an entry in the mapping section of the same
191** index block. Let K be the 1-based index of the largest entry in
192** the mapping section. (For index blocks other than the last, K will
193** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
194** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000195** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000196**
197** To look for page P in the hash table, first compute a hash iKey on
198** P as follows:
199**
200** iKey = (P * 383) % HASHTABLE_NSLOT
201**
202** Then start scanning entries of the hash table, starting with iKey
203** (wrapping around to the beginning when the end of the hash table is
204** reached) until an unused hash slot is found. Let the first unused slot
205** be at index iUnused. (iUnused might be less than iKey if there was
206** wrap-around.) Because the hash table is never more than half full,
207** the search is guaranteed to eventually hit an unused entry. Let
208** iMax be the value between iKey and iUnused, closest to iUnused,
209** where aHash[iMax]==P. If there is no iMax entry (if there exists
210** no hash slot such that aHash[i]==p) then page P is not in the
211** current index block. Otherwise the iMax-th mapping entry of the
212** current index block corresponds to the last entry that references
213** page P.
214**
215** A hash search begins with the last index block and moves toward the
216** first index block, looking for entries corresponding to page P. On
217** average, only two or three slots in each index block need to be
218** examined in order to either find the last entry for page P, or to
219** establish that no such entry exists in the block. Each index block
220** holds over 4000 entries. So two or three index blocks are sufficient
221** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
222** comparisons (on average) suffice to either locate a frame in the
223** WAL or to establish that the frame does not exist in the WAL. This
224** is much faster than scanning the entire 10MB WAL.
225**
226** Note that entries are added in order of increasing K. Hence, one
227** reader might be using some value K0 and a second reader that started
228** at a later time (after additional transactions were added to the WAL
229** and to the wal-index) might be using a different value K1, where K1>K0.
230** Both readers can use the same hash table and mapping section to get
231** the correct result. There may be entries in the hash table with
232** K>K0 but to the first reader, those entries will appear to be unused
233** slots in the hash table and so the first reader will get an answer as
234** if no values greater than K0 had ever been inserted into the hash table
235** in the first place - which is what reader one wants. Meanwhile, the
236** second reader using K1 will see additional values that were inserted
237** later, which is exactly what reader two wants.
238**
dan6f150142010-05-21 15:31:56 +0000239** When a rollback occurs, the value of K is decreased. Hash table entries
240** that correspond to frames greater than the new K value are removed
241** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000242*/
drh29d4dbe2010-05-18 23:29:52 +0000243#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000244
drh29d4dbe2010-05-18 23:29:52 +0000245#include "wal.h"
246
drh73b64e42010-05-30 19:55:15 +0000247/*
drhc74c3332010-05-31 12:15:19 +0000248** Trace output macros
249*/
drhc74c3332010-05-31 12:15:19 +0000250#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000251int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000252# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
253#else
254# define WALTRACE(X)
255#endif
256
dan10f5a502010-06-23 15:55:43 +0000257/*
258** The maximum (and only) versions of the wal and wal-index formats
259** that may be interpreted by this version of SQLite.
260**
261** If a client begins recovering a WAL file and finds that (a) the checksum
262** values in the wal-header are correct and (b) the version field is not
263** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
264**
265** Similarly, if a client successfully reads a wal-index header (i.e. the
266** checksum test is successful) and finds that the version field is not
267** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
268** returns SQLITE_CANTOPEN.
269*/
270#define WAL_MAX_VERSION 3007000
271#define WALINDEX_MAX_VERSION 3007000
drhc74c3332010-05-31 12:15:19 +0000272
273/*
drh73b64e42010-05-30 19:55:15 +0000274** Indices of various locking bytes. WAL_NREADER is the number
drh998147e2015-12-10 02:15:03 +0000275** of available reader locks and should be at least 3. The default
276** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5.
drh73b64e42010-05-30 19:55:15 +0000277*/
278#define WAL_WRITE_LOCK 0
279#define WAL_ALL_BUT_WRITE 1
280#define WAL_CKPT_LOCK 1
281#define WAL_RECOVER_LOCK 2
282#define WAL_READ_LOCK(I) (3+(I))
283#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
284
dan97a31352010-04-16 13:59:31 +0000285
drh7ed91f22010-04-29 22:34:07 +0000286/* Object declarations */
287typedef struct WalIndexHdr WalIndexHdr;
288typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000289typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000290
291
292/*
drh286a2882010-05-20 23:51:06 +0000293** The following object holds a copy of the wal-index header content.
294**
295** The actual header in the wal-index consists of two copies of this
drh998147e2015-12-10 02:15:03 +0000296** object followed by one instance of the WalCkptInfo object.
297** For all versions of SQLite through 3.10.0 and probably beyond,
298** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
299** the total header size is 136 bytes.
drh9b78f792010-08-14 21:21:24 +0000300**
301** The szPage value can be any power of 2 between 512 and 32768, inclusive.
302** Or it can be 1 to represent a 65536-byte page. The latter case was
303** added in 3.7.1 when support for 64K pages was added.
dan7c246102010-04-12 19:00:29 +0000304*/
drh7ed91f22010-04-29 22:34:07 +0000305struct WalIndexHdr {
dan10f5a502010-06-23 15:55:43 +0000306 u32 iVersion; /* Wal-index version */
307 u32 unused; /* Unused (padding) field */
dan71d89912010-05-24 13:57:42 +0000308 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000309 u8 isInit; /* 1 when initialized */
310 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
drh9b78f792010-08-14 21:21:24 +0000311 u16 szPage; /* Database page size in bytes. 1==64K */
dand0aa3422010-05-31 16:41:53 +0000312 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000313 u32 nPage; /* Size of database in pages */
314 u32 aFrameCksum[2]; /* Checksum of last frame in log */
315 u32 aSalt[2]; /* Two salt values copied from WAL header */
316 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000317};
318
drh73b64e42010-05-30 19:55:15 +0000319/*
320** A copy of the following object occurs in the wal-index immediately
321** following the second copy of the WalIndexHdr. This object stores
322** information used by checkpoint.
323**
324** nBackfill is the number of frames in the WAL that have been written
325** back into the database. (We call the act of moving content from WAL to
326** database "backfilling".) The nBackfill number is never greater than
327** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
328** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
329** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
330** mxFrame back to zero when the WAL is reset.
331**
drh998147e2015-12-10 02:15:03 +0000332** nBackfillAttempted is the largest value of nBackfill that a checkpoint
333** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however
334** the nBackfillAttempted is set before any backfilling is done and the
mistachkinc9fb38e2015-12-10 03:16:47 +0000335** nBackfill is only set after all backfilling completes. So if a checkpoint
drh998147e2015-12-10 02:15:03 +0000336** crashes, nBackfillAttempted might be larger than nBackfill. The
337** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
338**
339** The aLock[] field is a set of bytes used for locking. These bytes should
340** never be read or written.
341**
drh73b64e42010-05-30 19:55:15 +0000342** There is one entry in aReadMark[] for each reader lock. If a reader
343** holds read-lock K, then the value in aReadMark[K] is no greater than
drhdb7f6472010-06-09 14:45:12 +0000344** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
345** for any aReadMark[] means that entry is unused. aReadMark[0] is
346** a special case; its value is never used and it exists as a place-holder
347** to avoid having to offset aReadMark[] indexs by one. Readers holding
348** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
349** directly from the database.
drh73b64e42010-05-30 19:55:15 +0000350**
351** The value of aReadMark[K] may only be changed by a thread that
352** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
353** aReadMark[K] cannot changed while there is a reader is using that mark
354** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
355**
356** The checkpointer may only transfer frames from WAL to database where
357** the frame numbers are less than or equal to every aReadMark[] that is
358** in use (that is, every aReadMark[j] for which there is a corresponding
359** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
360** largest value and will increase an unused aReadMark[] to mxFrame if there
361** is not already an aReadMark[] equal to mxFrame. The exception to the
362** previous sentence is when nBackfill equals mxFrame (meaning that everything
363** in the WAL has been backfilled into the database) then new readers
364** will choose aReadMark[0] which has value 0 and hence such reader will
365** get all their all content directly from the database file and ignore
366** the WAL.
367**
368** Writers normally append new frames to the end of the WAL. However,
369** if nBackfill equals mxFrame (meaning that all WAL content has been
370** written back into the database) and if no readers are using the WAL
371** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
372** the writer will first "reset" the WAL back to the beginning and start
373** writing new content beginning at frame 1.
374**
375** We assume that 32-bit loads are atomic and so no locks are needed in
376** order to read from any aReadMark[] entries.
377*/
378struct WalCkptInfo {
379 u32 nBackfill; /* Number of WAL frames backfilled into DB */
380 u32 aReadMark[WAL_NREADER]; /* Reader marks */
drh998147e2015-12-10 02:15:03 +0000381 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */
382 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */
383 u32 notUsed0; /* Available for future enhancements */
drh73b64e42010-05-30 19:55:15 +0000384};
drhdb7f6472010-06-09 14:45:12 +0000385#define READMARK_NOT_USED 0xffffffff
drh73b64e42010-05-30 19:55:15 +0000386
387
drh7e263722010-05-20 21:21:09 +0000388/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
389** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
390** only support mandatory file-locks, we do not read or write data
391** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000392*/
drh998147e2015-12-10 02:15:03 +0000393#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
394#define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
dan7c246102010-04-12 19:00:29 +0000395
drh7ed91f22010-04-29 22:34:07 +0000396/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000397#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000398
dan10f5a502010-06-23 15:55:43 +0000399/* Size of write ahead log header, including checksum. */
400/* #define WAL_HDRSIZE 24 */
401#define WAL_HDRSIZE 32
dan97a31352010-04-16 13:59:31 +0000402
danb8fd6c22010-05-24 10:39:36 +0000403/* WAL magic value. Either this value, or the same value with the least
404** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
405** big-endian format in the first 4 bytes of a WAL file.
406**
407** If the LSB is set, then the checksums for each frame within the WAL
408** file are calculated by treating all data as an array of 32-bit
409** big-endian words. Otherwise, they are calculated by interpreting
410** all data as 32-bit little-endian words.
411*/
412#define WAL_MAGIC 0x377f0682
413
dan97a31352010-04-16 13:59:31 +0000414/*
drh7ed91f22010-04-29 22:34:07 +0000415** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000416** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000417** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000418*/
drh6e810962010-05-19 17:49:50 +0000419#define walFrameOffset(iFrame, szPage) ( \
danbd0e9072010-07-07 09:48:44 +0000420 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000421)
dan7c246102010-04-12 19:00:29 +0000422
423/*
drh7ed91f22010-04-29 22:34:07 +0000424** An open write-ahead log file is represented by an instance of the
425** following object.
dance4f05f2010-04-22 19:14:13 +0000426*/
drh7ed91f22010-04-29 22:34:07 +0000427struct Wal {
drh73b64e42010-05-30 19:55:15 +0000428 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000429 sqlite3_file *pDbFd; /* File handle for the database file */
430 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000431 u32 iCallback; /* Value to pass to log callback (or 0) */
drh85a83752011-05-16 21:00:27 +0000432 i64 mxWalSize; /* Truncate WAL to this size upon reset */
dan13a3cb82010-06-11 19:04:21 +0000433 int nWiData; /* Size of array apWiData */
drh88f975a2011-12-16 19:34:36 +0000434 int szFirstBlock; /* Size of first block written to WAL file */
dan13a3cb82010-06-11 19:04:21 +0000435 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
drhb2eced52010-08-12 02:41:12 +0000436 u32 szPage; /* Database page size */
drh73b64e42010-05-30 19:55:15 +0000437 i16 readLock; /* Which read lock is being held. -1 for none */
drh4eb02a42011-12-16 21:26:26 +0000438 u8 syncFlags; /* Flags to use to sync header writes */
dan55437592010-05-11 12:19:26 +0000439 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000440 u8 writeLock; /* True if in a write transaction */
441 u8 ckptLock; /* True if holding a checkpoint lock */
drh66dfec8b2011-06-01 20:01:49 +0000442 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
danf60b7f32011-12-16 13:24:27 +0000443 u8 truncateOnCommit; /* True to truncate WAL file on commit */
drhd992b152011-12-20 20:13:25 +0000444 u8 syncHeader; /* Fsync the WAL header if true */
drh374f4a02011-12-17 20:02:11 +0000445 u8 padToSectorBoundary; /* Pad transactions out to the next sector */
drh73b64e42010-05-30 19:55:15 +0000446 WalIndexHdr hdr; /* Wal-index header for current transaction */
danb8c7cfb2015-08-13 20:23:46 +0000447 u32 minFrame; /* Ignore wal frames before this one */
danc9a90222016-01-09 18:57:35 +0000448 u32 iReCksum; /* On commit, recalculate checksums from here */
dan3e875ef2010-07-05 19:03:35 +0000449 const char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000450 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000451#ifdef SQLITE_DEBUG
452 u8 lockError; /* True if a locking error has occurred */
453#endif
danfc1acf32015-12-05 20:51:54 +0000454#ifdef SQLITE_ENABLE_SNAPSHOT
drh998147e2015-12-10 02:15:03 +0000455 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */
danfc1acf32015-12-05 20:51:54 +0000456#endif
dan7c246102010-04-12 19:00:29 +0000457};
458
drh73b64e42010-05-30 19:55:15 +0000459/*
dan8c408002010-11-01 17:38:24 +0000460** Candidate values for Wal.exclusiveMode.
461*/
462#define WAL_NORMAL_MODE 0
463#define WAL_EXCLUSIVE_MODE 1
464#define WAL_HEAPMEMORY_MODE 2
465
466/*
drh66dfec8b2011-06-01 20:01:49 +0000467** Possible values for WAL.readOnly
468*/
469#define WAL_RDWR 0 /* Normal read/write connection */
470#define WAL_RDONLY 1 /* The WAL file is readonly */
471#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
472
473/*
dan067f3162010-06-14 10:30:12 +0000474** Each page of the wal-index mapping contains a hash-table made up of
475** an array of HASHTABLE_NSLOT elements of the following type.
476*/
477typedef u16 ht_slot;
478
479/*
danad3cadd2010-06-14 11:49:26 +0000480** This structure is used to implement an iterator that loops through
481** all frames in the WAL in database page order. Where two or more frames
482** correspond to the same database page, the iterator visits only the
483** frame most recently written to the WAL (in other words, the frame with
484** the largest index).
485**
486** The internals of this structure are only accessed by:
487**
488** walIteratorInit() - Create a new iterator,
489** walIteratorNext() - Step an iterator,
490** walIteratorFree() - Free an iterator.
491**
492** This functionality is used by the checkpoint code (see walCheckpoint()).
493*/
494struct WalIterator {
495 int iPrior; /* Last result returned from the iterator */
drhd9c9b782010-12-15 21:02:06 +0000496 int nSegment; /* Number of entries in aSegment[] */
danad3cadd2010-06-14 11:49:26 +0000497 struct WalSegment {
498 int iNext; /* Next slot in aIndex[] not yet returned */
499 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
500 u32 *aPgno; /* Array of page numbers. */
drhd9c9b782010-12-15 21:02:06 +0000501 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
danad3cadd2010-06-14 11:49:26 +0000502 int iZero; /* Frame number associated with aPgno[0] */
drhd9c9b782010-12-15 21:02:06 +0000503 } aSegment[1]; /* One for every 32KB page in the wal-index */
danad3cadd2010-06-14 11:49:26 +0000504};
505
506/*
dan13a3cb82010-06-11 19:04:21 +0000507** Define the parameters of the hash tables in the wal-index file. There
508** is a hash-table following every HASHTABLE_NPAGE page numbers in the
509** wal-index.
510**
511** Changing any of these constants will alter the wal-index format and
512** create incompatibilities.
513*/
dan067f3162010-06-14 10:30:12 +0000514#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000515#define HASHTABLE_HASH_1 383 /* Should be prime */
516#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000517
danad3cadd2010-06-14 11:49:26 +0000518/*
519** The block of page numbers associated with the first hash-table in a
dan13a3cb82010-06-11 19:04:21 +0000520** wal-index is smaller than usual. This is so that there is a complete
521** hash-table on each aligned 32KB page of the wal-index.
522*/
dan067f3162010-06-14 10:30:12 +0000523#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
dan13a3cb82010-06-11 19:04:21 +0000524
dan067f3162010-06-14 10:30:12 +0000525/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
526#define WALINDEX_PGSZ ( \
527 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
528)
dan13a3cb82010-06-11 19:04:21 +0000529
530/*
531** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
dan067f3162010-06-14 10:30:12 +0000532** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
dan13a3cb82010-06-11 19:04:21 +0000533** numbered from zero.
534**
535** If this call is successful, *ppPage is set to point to the wal-index
536** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
537** then an SQLite error code is returned and *ppPage is set to 0.
538*/
539static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
540 int rc = SQLITE_OK;
541
542 /* Enlarge the pWal->apWiData[] array if required */
543 if( pWal->nWiData<=iPage ){
drh519426a2010-07-09 03:19:07 +0000544 int nByte = sizeof(u32*)*(iPage+1);
dan13a3cb82010-06-11 19:04:21 +0000545 volatile u32 **apNew;
drhf3cdcdc2015-04-29 16:50:28 +0000546 apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
dan13a3cb82010-06-11 19:04:21 +0000547 if( !apNew ){
548 *ppPage = 0;
mistachkinfad30392016-02-13 23:43:46 +0000549 return SQLITE_NOMEM_BKPT;
dan13a3cb82010-06-11 19:04:21 +0000550 }
drh519426a2010-07-09 03:19:07 +0000551 memset((void*)&apNew[pWal->nWiData], 0,
552 sizeof(u32*)*(iPage+1-pWal->nWiData));
dan13a3cb82010-06-11 19:04:21 +0000553 pWal->apWiData = apNew;
554 pWal->nWiData = iPage+1;
555 }
556
557 /* Request a pointer to the required page from the VFS */
558 if( pWal->apWiData[iPage]==0 ){
dan8c408002010-11-01 17:38:24 +0000559 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
560 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
mistachkinfad30392016-02-13 23:43:46 +0000561 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
dan8c408002010-11-01 17:38:24 +0000562 }else{
563 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
564 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
565 );
drh66dfec8b2011-06-01 20:01:49 +0000566 if( rc==SQLITE_READONLY ){
567 pWal->readOnly |= WAL_SHM_RDONLY;
568 rc = SQLITE_OK;
dan4edc6bf2011-05-10 17:31:29 +0000569 }
dan8c408002010-11-01 17:38:24 +0000570 }
dan13a3cb82010-06-11 19:04:21 +0000571 }
danb6d2f9c2011-05-11 14:57:33 +0000572
drh66dfec8b2011-06-01 20:01:49 +0000573 *ppPage = pWal->apWiData[iPage];
dan13a3cb82010-06-11 19:04:21 +0000574 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
575 return rc;
576}
577
578/*
drh73b64e42010-05-30 19:55:15 +0000579** Return a pointer to the WalCkptInfo structure in the wal-index.
580*/
581static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000582 assert( pWal->nWiData>0 && pWal->apWiData[0] );
583 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
584}
585
586/*
587** Return a pointer to the WalIndexHdr structure in the wal-index.
588*/
589static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
590 assert( pWal->nWiData>0 && pWal->apWiData[0] );
591 return (volatile WalIndexHdr*)pWal->apWiData[0];
drh73b64e42010-05-30 19:55:15 +0000592}
593
dan7c246102010-04-12 19:00:29 +0000594/*
danb8fd6c22010-05-24 10:39:36 +0000595** The argument to this macro must be of type u32. On a little-endian
596** architecture, it returns the u32 value that results from interpreting
597** the 4 bytes as a big-endian value. On a big-endian architecture, it
peter.d.reid60ec9142014-09-06 16:39:46 +0000598** returns the value that would be produced by interpreting the 4 bytes
danb8fd6c22010-05-24 10:39:36 +0000599** of the input value as a little-endian integer.
600*/
601#define BYTESWAP32(x) ( \
602 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
603 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
604)
dan64d039e2010-04-13 19:27:31 +0000605
dan7c246102010-04-12 19:00:29 +0000606/*
drh7e263722010-05-20 21:21:09 +0000607** Generate or extend an 8 byte checksum based on the data in
608** array aByte[] and the initial values of aIn[0] and aIn[1] (or
609** initial values of 0 and 0 if aIn==NULL).
610**
611** The checksum is written back into aOut[] before returning.
612**
613** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000614*/
drh7e263722010-05-20 21:21:09 +0000615static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000616 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000617 u8 *a, /* Content to be checksummed */
618 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
619 const u32 *aIn, /* Initial checksum value input */
620 u32 *aOut /* OUT: Final checksum value output */
621){
622 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000623 u32 *aData = (u32 *)a;
624 u32 *aEnd = (u32 *)&a[nByte];
625
drh7e263722010-05-20 21:21:09 +0000626 if( aIn ){
627 s1 = aIn[0];
628 s2 = aIn[1];
629 }else{
630 s1 = s2 = 0;
631 }
dan7c246102010-04-12 19:00:29 +0000632
drh584c7542010-05-19 18:08:10 +0000633 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000634 assert( (nByte&0x00000007)==0 );
dan7c246102010-04-12 19:00:29 +0000635
danb8fd6c22010-05-24 10:39:36 +0000636 if( nativeCksum ){
637 do {
638 s1 += *aData++ + s2;
639 s2 += *aData++ + s1;
640 }while( aData<aEnd );
641 }else{
642 do {
643 s1 += BYTESWAP32(aData[0]) + s2;
644 s2 += BYTESWAP32(aData[1]) + s1;
645 aData += 2;
646 }while( aData<aEnd );
647 }
648
drh7e263722010-05-20 21:21:09 +0000649 aOut[0] = s1;
650 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000651}
652
dan8c408002010-11-01 17:38:24 +0000653static void walShmBarrier(Wal *pWal){
654 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
655 sqlite3OsShmBarrier(pWal->pDbFd);
656 }
657}
658
dan7c246102010-04-12 19:00:29 +0000659/*
drh7e263722010-05-20 21:21:09 +0000660** Write the header information in pWal->hdr into the wal-index.
661**
662** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000663*/
drh7e263722010-05-20 21:21:09 +0000664static void walIndexWriteHdr(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000665 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
666 const int nCksum = offsetof(WalIndexHdr, aCksum);
drh73b64e42010-05-30 19:55:15 +0000667
668 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000669 pWal->hdr.isInit = 1;
dan10f5a502010-06-23 15:55:43 +0000670 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
dan4280eb32010-06-12 12:02:35 +0000671 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
drhf6bff3f2015-07-17 01:16:10 +0000672 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
dan8c408002010-11-01 17:38:24 +0000673 walShmBarrier(pWal);
drhf6bff3f2015-07-17 01:16:10 +0000674 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000675}
676
677/*
678** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000679** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000680** 4-byte big-endian integers, as follows:
681**
drh23ea97b2010-05-20 16:45:58 +0000682** 0: Page number.
683** 4: For commit records, the size of the database image in pages
684** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000685** 8: Salt-1 (copied from the wal-header)
686** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000687** 16: Checksum-1.
688** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000689*/
drh7ed91f22010-04-29 22:34:07 +0000690static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000691 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000692 u32 iPage, /* Database page number for frame */
693 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000694 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000695 u8 *aFrame /* OUT: Write encoded frame here */
696){
danb8fd6c22010-05-24 10:39:36 +0000697 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000698 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000699 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000700 sqlite3Put4byte(&aFrame[0], iPage);
701 sqlite3Put4byte(&aFrame[4], nTruncate);
danc9a90222016-01-09 18:57:35 +0000702 if( pWal->iReCksum==0 ){
703 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000704
danc9a90222016-01-09 18:57:35 +0000705 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
706 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
707 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000708
danc9a90222016-01-09 18:57:35 +0000709 sqlite3Put4byte(&aFrame[16], aCksum[0]);
710 sqlite3Put4byte(&aFrame[20], aCksum[1]);
drh869aaf02016-01-12 02:28:19 +0000711 }else{
712 memset(&aFrame[8], 0, 16);
danc9a90222016-01-09 18:57:35 +0000713 }
dan7c246102010-04-12 19:00:29 +0000714}
715
716/*
drh7e263722010-05-20 21:21:09 +0000717** Check to see if the frame with header in aFrame[] and content
718** in aData[] is valid. If it is a valid frame, fill *piPage and
719** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000720*/
drh7ed91f22010-04-29 22:34:07 +0000721static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000722 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000723 u32 *piPage, /* OUT: Database page number for frame */
724 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000725 u8 *aData, /* Pointer to page data (for checksum) */
726 u8 *aFrame /* Frame data */
727){
danb8fd6c22010-05-24 10:39:36 +0000728 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000729 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000730 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000731 assert( WAL_FRAME_HDRSIZE==24 );
732
drh7e263722010-05-20 21:21:09 +0000733 /* A frame is only valid if the salt values in the frame-header
734 ** match the salt values in the wal-header.
735 */
736 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000737 return 0;
738 }
dan4a4b01d2010-04-16 11:30:18 +0000739
drhc8179152010-05-24 13:28:36 +0000740 /* A frame is only valid if the page number is creater than zero.
741 */
742 pgno = sqlite3Get4byte(&aFrame[0]);
743 if( pgno==0 ){
744 return 0;
745 }
746
drh519426a2010-07-09 03:19:07 +0000747 /* A frame is only valid if a checksum of the WAL header,
748 ** all prior frams, the first 16 bytes of this frame-header,
749 ** and the frame-data matches the checksum in the last 8
750 ** bytes of this frame-header.
drh7e263722010-05-20 21:21:09 +0000751 */
danb8fd6c22010-05-24 10:39:36 +0000752 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000753 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000754 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000755 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
756 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000757 ){
758 /* Checksum failed. */
759 return 0;
760 }
761
drh7e263722010-05-20 21:21:09 +0000762 /* If we reach this point, the frame is valid. Return the page number
763 ** and the new database size.
764 */
drhc8179152010-05-24 13:28:36 +0000765 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000766 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000767 return 1;
768}
769
dan7c246102010-04-12 19:00:29 +0000770
drhc74c3332010-05-31 12:15:19 +0000771#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
772/*
drh181e0912010-06-01 01:08:08 +0000773** Names of locks. This routine is used to provide debugging output and is not
774** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000775*/
776static const char *walLockName(int lockIdx){
777 if( lockIdx==WAL_WRITE_LOCK ){
778 return "WRITE-LOCK";
779 }else if( lockIdx==WAL_CKPT_LOCK ){
780 return "CKPT-LOCK";
781 }else if( lockIdx==WAL_RECOVER_LOCK ){
782 return "RECOVER-LOCK";
783 }else{
784 static char zName[15];
785 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
786 lockIdx-WAL_READ_LOCK(0));
787 return zName;
788 }
789}
790#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
791
792
dan7c246102010-04-12 19:00:29 +0000793/*
drh181e0912010-06-01 01:08:08 +0000794** Set or release locks on the WAL. Locks are either shared or exclusive.
795** A lock cannot be moved directly between shared and exclusive - it must go
796** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000797**
798** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
799*/
800static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000801 int rc;
drh73b64e42010-05-30 19:55:15 +0000802 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000803 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
804 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
805 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
806 walLockName(lockIdx), rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000807 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000808 return rc;
drh73b64e42010-05-30 19:55:15 +0000809}
810static void walUnlockShared(Wal *pWal, int lockIdx){
811 if( pWal->exclusiveMode ) return;
812 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
813 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000814 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000815}
drhab372772015-12-02 16:10:16 +0000816static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000817 int rc;
drh73b64e42010-05-30 19:55:15 +0000818 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000819 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
820 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
821 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
822 walLockName(lockIdx), n, rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000823 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000824 return rc;
drh73b64e42010-05-30 19:55:15 +0000825}
826static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
827 if( pWal->exclusiveMode ) return;
828 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
829 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000830 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
831 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000832}
833
834/*
drh29d4dbe2010-05-18 23:29:52 +0000835** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000836** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
837** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000838*/
839static int walHash(u32 iPage){
840 assert( iPage>0 );
841 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
842 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
843}
844static int walNextHash(int iPriorHash){
845 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000846}
847
dan4280eb32010-06-12 12:02:35 +0000848/*
849** Return pointers to the hash table and page number array stored on
850** page iHash of the wal-index. The wal-index is broken into 32KB pages
851** numbered starting from 0.
852**
853** Set output variable *paHash to point to the start of the hash table
854** in the wal-index file. Set *piZero to one less than the frame
855** number of the first frame indexed by this hash table. If a
856** slot in the hash table is set to N, it refers to frame number
857** (*piZero+N) in the log.
858**
dand60bf112010-06-14 11:18:50 +0000859** Finally, set *paPgno so that *paPgno[1] is the page number of the
860** first frame indexed by the hash table, frame (*piZero+1).
dan4280eb32010-06-12 12:02:35 +0000861*/
862static int walHashGet(
dan13a3cb82010-06-11 19:04:21 +0000863 Wal *pWal, /* WAL handle */
864 int iHash, /* Find the iHash'th table */
dan067f3162010-06-14 10:30:12 +0000865 volatile ht_slot **paHash, /* OUT: Pointer to hash index */
dan13a3cb82010-06-11 19:04:21 +0000866 volatile u32 **paPgno, /* OUT: Pointer to page number array */
867 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
868){
dan4280eb32010-06-12 12:02:35 +0000869 int rc; /* Return code */
dan13a3cb82010-06-11 19:04:21 +0000870 volatile u32 *aPgno;
dan13a3cb82010-06-11 19:04:21 +0000871
dan4280eb32010-06-12 12:02:35 +0000872 rc = walIndexPage(pWal, iHash, &aPgno);
873 assert( rc==SQLITE_OK || iHash>0 );
dan13a3cb82010-06-11 19:04:21 +0000874
dan4280eb32010-06-12 12:02:35 +0000875 if( rc==SQLITE_OK ){
876 u32 iZero;
dan067f3162010-06-14 10:30:12 +0000877 volatile ht_slot *aHash;
dan4280eb32010-06-12 12:02:35 +0000878
dan067f3162010-06-14 10:30:12 +0000879 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
dan4280eb32010-06-12 12:02:35 +0000880 if( iHash==0 ){
dand60bf112010-06-14 11:18:50 +0000881 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
dan4280eb32010-06-12 12:02:35 +0000882 iZero = 0;
883 }else{
884 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
dan4280eb32010-06-12 12:02:35 +0000885 }
886
dand60bf112010-06-14 11:18:50 +0000887 *paPgno = &aPgno[-1];
dan4280eb32010-06-12 12:02:35 +0000888 *paHash = aHash;
889 *piZero = iZero;
dan13a3cb82010-06-11 19:04:21 +0000890 }
dan4280eb32010-06-12 12:02:35 +0000891 return rc;
dan13a3cb82010-06-11 19:04:21 +0000892}
893
dan4280eb32010-06-12 12:02:35 +0000894/*
895** Return the number of the wal-index page that contains the hash-table
896** and page-number array that contain entries corresponding to WAL frame
897** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
898** are numbered starting from 0.
899*/
dan13a3cb82010-06-11 19:04:21 +0000900static int walFramePage(u32 iFrame){
901 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
902 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
903 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
904 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
905 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
906 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
907 );
908 return iHash;
909}
910
911/*
912** Return the page number associated with frame iFrame in this WAL.
913*/
914static u32 walFramePgno(Wal *pWal, u32 iFrame){
915 int iHash = walFramePage(iFrame);
916 if( iHash==0 ){
917 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
918 }
919 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
920}
danbb23aff2010-05-10 14:46:09 +0000921
danca6b5ba2010-05-25 10:50:56 +0000922/*
923** Remove entries from the hash table that point to WAL slots greater
924** than pWal->hdr.mxFrame.
925**
926** This function is called whenever pWal->hdr.mxFrame is decreased due
927** to a rollback or savepoint.
928**
drh181e0912010-06-01 01:08:08 +0000929** At most only the hash table containing pWal->hdr.mxFrame needs to be
930** updated. Any later hash tables will be automatically cleared when
931** pWal->hdr.mxFrame advances to the point where those hash tables are
932** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000933*/
934static void walCleanupHash(Wal *pWal){
drhff828942010-06-26 21:34:06 +0000935 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */
936 volatile u32 *aPgno = 0; /* Page number array for hash table */
937 u32 iZero = 0; /* frame == (aHash[x]+iZero) */
dan067f3162010-06-14 10:30:12 +0000938 int iLimit = 0; /* Zero values greater than this */
939 int nByte; /* Number of bytes to zero in aPgno[] */
940 int i; /* Used to iterate through aHash[] */
danca6b5ba2010-05-25 10:50:56 +0000941
drh73b64e42010-05-30 19:55:15 +0000942 assert( pWal->writeLock );
drhffca4302010-06-15 11:21:54 +0000943 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
944 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
945 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
drh9c156472010-06-01 12:58:41 +0000946
dan4280eb32010-06-12 12:02:35 +0000947 if( pWal->hdr.mxFrame==0 ) return;
948
949 /* Obtain pointers to the hash-table and page-number array containing
950 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
951 ** that the page said hash-table and array reside on is already mapped.
952 */
953 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
954 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
955 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
956
957 /* Zero all hash-table entries that correspond to frame numbers greater
958 ** than pWal->hdr.mxFrame.
959 */
960 iLimit = pWal->hdr.mxFrame - iZero;
961 assert( iLimit>0 );
962 for(i=0; i<HASHTABLE_NSLOT; i++){
963 if( aHash[i]>iLimit ){
964 aHash[i] = 0;
danca6b5ba2010-05-25 10:50:56 +0000965 }
danca6b5ba2010-05-25 10:50:56 +0000966 }
dan4280eb32010-06-12 12:02:35 +0000967
968 /* Zero the entries in the aPgno array that correspond to frames with
969 ** frame numbers greater than pWal->hdr.mxFrame.
970 */
shaneh5eba1f62010-07-02 17:05:03 +0000971 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
dand60bf112010-06-14 11:18:50 +0000972 memset((void *)&aPgno[iLimit+1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000973
974#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
975 /* Verify that the every entry in the mapping region is still reachable
976 ** via the hash table even after the cleanup.
977 */
drhf77bbd92010-06-01 13:17:44 +0000978 if( iLimit ){
mistachkin6b67a8a2015-07-21 19:22:35 +0000979 int j; /* Loop counter */
danca6b5ba2010-05-25 10:50:56 +0000980 int iKey; /* Hash key */
mistachkin6b67a8a2015-07-21 19:22:35 +0000981 for(j=1; j<=iLimit; j++){
982 for(iKey=walHash(aPgno[j]); aHash[iKey]; iKey=walNextHash(iKey)){
983 if( aHash[iKey]==j ) break;
danca6b5ba2010-05-25 10:50:56 +0000984 }
mistachkin6b67a8a2015-07-21 19:22:35 +0000985 assert( aHash[iKey]==j );
danca6b5ba2010-05-25 10:50:56 +0000986 }
987 }
988#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
989}
990
danbb23aff2010-05-10 14:46:09 +0000991
drh7ed91f22010-04-29 22:34:07 +0000992/*
drh29d4dbe2010-05-18 23:29:52 +0000993** Set an entry in the wal-index that will map database page number
994** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +0000995*/
drh7ed91f22010-04-29 22:34:07 +0000996static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
dan4280eb32010-06-12 12:02:35 +0000997 int rc; /* Return code */
drhff828942010-06-26 21:34:06 +0000998 u32 iZero = 0; /* One less than frame number of aPgno[1] */
999 volatile u32 *aPgno = 0; /* Page number array */
1000 volatile ht_slot *aHash = 0; /* Hash table */
dance4f05f2010-04-22 19:14:13 +00001001
dan4280eb32010-06-12 12:02:35 +00001002 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
1003
1004 /* Assuming the wal-index file was successfully mapped, populate the
1005 ** page number array and hash table entry.
dan7c246102010-04-12 19:00:29 +00001006 */
danbb23aff2010-05-10 14:46:09 +00001007 if( rc==SQLITE_OK ){
1008 int iKey; /* Hash table key */
dan4280eb32010-06-12 12:02:35 +00001009 int idx; /* Value to write to hash-table slot */
drh519426a2010-07-09 03:19:07 +00001010 int nCollide; /* Number of hash collisions */
dan7c246102010-04-12 19:00:29 +00001011
danbb23aff2010-05-10 14:46:09 +00001012 idx = iFrame - iZero;
dan4280eb32010-06-12 12:02:35 +00001013 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1014
1015 /* If this is the first entry to be added to this hash-table, zero the
peter.d.reid60ec9142014-09-06 16:39:46 +00001016 ** entire hash table and aPgno[] array before proceeding.
dan4280eb32010-06-12 12:02:35 +00001017 */
danca6b5ba2010-05-25 10:50:56 +00001018 if( idx==1 ){
shaneh5eba1f62010-07-02 17:05:03 +00001019 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
dand60bf112010-06-14 11:18:50 +00001020 memset((void*)&aPgno[1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +00001021 }
danca6b5ba2010-05-25 10:50:56 +00001022
dan4280eb32010-06-12 12:02:35 +00001023 /* If the entry in aPgno[] is already set, then the previous writer
1024 ** must have exited unexpectedly in the middle of a transaction (after
1025 ** writing one or more dirty pages to the WAL to free up memory).
1026 ** Remove the remnants of that writers uncommitted transaction from
1027 ** the hash-table before writing any new entries.
1028 */
dand60bf112010-06-14 11:18:50 +00001029 if( aPgno[idx] ){
danca6b5ba2010-05-25 10:50:56 +00001030 walCleanupHash(pWal);
dand60bf112010-06-14 11:18:50 +00001031 assert( !aPgno[idx] );
danca6b5ba2010-05-25 10:50:56 +00001032 }
dan4280eb32010-06-12 12:02:35 +00001033
1034 /* Write the aPgno[] array entry and the hash-table slot. */
drh519426a2010-07-09 03:19:07 +00001035 nCollide = idx;
dan6f150142010-05-21 15:31:56 +00001036 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
drh519426a2010-07-09 03:19:07 +00001037 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
drh29d4dbe2010-05-18 23:29:52 +00001038 }
dand60bf112010-06-14 11:18:50 +00001039 aPgno[idx] = iPage;
shaneh5eba1f62010-07-02 17:05:03 +00001040 aHash[iKey] = (ht_slot)idx;
drh4fa95bf2010-05-22 00:55:39 +00001041
1042#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1043 /* Verify that the number of entries in the hash table exactly equals
1044 ** the number of entries in the mapping region.
1045 */
1046 {
1047 int i; /* Loop counter */
1048 int nEntry = 0; /* Number of entries in the hash table */
1049 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1050 assert( nEntry==idx );
1051 }
1052
1053 /* Verify that the every entry in the mapping region is reachable
1054 ** via the hash table. This turns out to be a really, really expensive
1055 ** thing to check, so only do this occasionally - not on every
1056 ** iteration.
1057 */
1058 if( (idx&0x3ff)==0 ){
1059 int i; /* Loop counter */
1060 for(i=1; i<=idx; i++){
dand60bf112010-06-14 11:18:50 +00001061 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
drh4fa95bf2010-05-22 00:55:39 +00001062 if( aHash[iKey]==i ) break;
1063 }
1064 assert( aHash[iKey]==i );
1065 }
1066 }
1067#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +00001068 }
dan31f98fc2010-04-27 05:42:32 +00001069
drh4fa95bf2010-05-22 00:55:39 +00001070
danbb23aff2010-05-10 14:46:09 +00001071 return rc;
dan7c246102010-04-12 19:00:29 +00001072}
1073
1074
1075/*
drh7ed91f22010-04-29 22:34:07 +00001076** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +00001077**
1078** This routine first tries to establish an exclusive lock on the
1079** wal-index to prevent other threads/processes from doing anything
1080** with the WAL or wal-index while recovery is running. The
1081** WAL_RECOVER_LOCK is also held so that other threads will know
1082** that this thread is running recovery. If unable to establish
1083** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +00001084*/
drh7ed91f22010-04-29 22:34:07 +00001085static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +00001086 int rc; /* Return Code */
1087 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +00001088 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +00001089 int iLock; /* Lock offset to lock for checkpoint */
1090 int nLock; /* Number of locks to hold */
dan7c246102010-04-12 19:00:29 +00001091
dand0aa3422010-05-31 16:41:53 +00001092 /* Obtain an exclusive lock on all byte in the locking range not already
1093 ** locked by the caller. The caller is guaranteed to have locked the
1094 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1095 ** If successful, the same bytes that are locked here are unlocked before
1096 ** this function returns.
1097 */
1098 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1099 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1100 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1101 assert( pWal->writeLock );
1102 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1103 nLock = SQLITE_SHM_NLOCK - iLock;
drhab372772015-12-02 16:10:16 +00001104 rc = walLockExclusive(pWal, iLock, nLock);
drh73b64e42010-05-30 19:55:15 +00001105 if( rc ){
1106 return rc;
1107 }
drhc74c3332010-05-31 12:15:19 +00001108 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +00001109
dan71d89912010-05-24 13:57:42 +00001110 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +00001111
drhd9e5c4f2010-05-12 18:01:39 +00001112 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +00001113 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001114 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001115 }
1116
danb8fd6c22010-05-24 10:39:36 +00001117 if( nSize>WAL_HDRSIZE ){
1118 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dan7c246102010-04-12 19:00:29 +00001119 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001120 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001121 u8 *aData; /* Pointer to data part of aFrame buffer */
1122 int iFrame; /* Index of last frame read */
1123 i64 iOffset; /* Next offset to read from log file */
drh6e810962010-05-19 17:49:50 +00001124 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001125 u32 magic; /* Magic value read from WAL header */
dan10f5a502010-06-23 15:55:43 +00001126 u32 version; /* Magic value read from WAL header */
drhfe6163d2011-12-17 13:45:28 +00001127 int isValid; /* True if this frame is valid */
dan7c246102010-04-12 19:00:29 +00001128
danb8fd6c22010-05-24 10:39:36 +00001129 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001130 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001131 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001132 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001133 }
1134
1135 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001136 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1137 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1138 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001139 */
danb8fd6c22010-05-24 10:39:36 +00001140 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001141 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001142 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1143 || szPage&(szPage-1)
1144 || szPage>SQLITE_MAX_PAGE_SIZE
1145 || szPage<512
1146 ){
dan7c246102010-04-12 19:00:29 +00001147 goto finished;
1148 }
shaneh5eba1f62010-07-02 17:05:03 +00001149 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
drhb2eced52010-08-12 02:41:12 +00001150 pWal->szPage = szPage;
drh23ea97b2010-05-20 16:45:58 +00001151 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001152 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
drhcd285082010-06-23 22:00:35 +00001153
1154 /* Verify that the WAL header checksum is correct */
dan71d89912010-05-24 13:57:42 +00001155 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
dan10f5a502010-06-23 15:55:43 +00001156 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
dan71d89912010-05-24 13:57:42 +00001157 );
dan10f5a502010-06-23 15:55:43 +00001158 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1159 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1160 ){
1161 goto finished;
1162 }
1163
drhcd285082010-06-23 22:00:35 +00001164 /* Verify that the version number on the WAL format is one that
1165 ** are able to understand */
dan10f5a502010-06-23 15:55:43 +00001166 version = sqlite3Get4byte(&aBuf[4]);
1167 if( version!=WAL_MAX_VERSION ){
1168 rc = SQLITE_CANTOPEN_BKPT;
1169 goto finished;
1170 }
1171
dan7c246102010-04-12 19:00:29 +00001172 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001173 szFrame = szPage + WAL_FRAME_HDRSIZE;
drhf3cdcdc2015-04-29 16:50:28 +00001174 aFrame = (u8 *)sqlite3_malloc64(szFrame);
dan7c246102010-04-12 19:00:29 +00001175 if( !aFrame ){
mistachkinfad30392016-02-13 23:43:46 +00001176 rc = SQLITE_NOMEM_BKPT;
drh73b64e42010-05-30 19:55:15 +00001177 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001178 }
drh7ed91f22010-04-29 22:34:07 +00001179 aData = &aFrame[WAL_FRAME_HDRSIZE];
dan7c246102010-04-12 19:00:29 +00001180
1181 /* Read all frames from the log file. */
1182 iFrame = 0;
drh584c7542010-05-19 18:08:10 +00001183 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
dan7c246102010-04-12 19:00:29 +00001184 u32 pgno; /* Database page number for frame */
1185 u32 nTruncate; /* dbsize field from frame header */
dan7c246102010-04-12 19:00:29 +00001186
1187 /* Read and decode the next log frame. */
drhfe6163d2011-12-17 13:45:28 +00001188 iFrame++;
drh584c7542010-05-19 18:08:10 +00001189 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
dan7c246102010-04-12 19:00:29 +00001190 if( rc!=SQLITE_OK ) break;
drh7e263722010-05-20 21:21:09 +00001191 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
dan7c246102010-04-12 19:00:29 +00001192 if( !isValid ) break;
drhfe6163d2011-12-17 13:45:28 +00001193 rc = walIndexAppend(pWal, iFrame, pgno);
danc7991bd2010-05-05 19:04:59 +00001194 if( rc!=SQLITE_OK ) break;
dan7c246102010-04-12 19:00:29 +00001195
1196 /* If nTruncate is non-zero, this is a commit record. */
1197 if( nTruncate ){
dan71d89912010-05-24 13:57:42 +00001198 pWal->hdr.mxFrame = iFrame;
1199 pWal->hdr.nPage = nTruncate;
shaneh1df2db72010-08-18 02:28:48 +00001200 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00001201 testcase( szPage<=32768 );
1202 testcase( szPage>=65536 );
dan71d89912010-05-24 13:57:42 +00001203 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1204 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
dan7c246102010-04-12 19:00:29 +00001205 }
1206 }
1207
1208 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001209 }
1210
1211finished:
dan576bc322010-05-06 18:04:50 +00001212 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001213 volatile WalCkptInfo *pInfo;
1214 int i;
dan71d89912010-05-24 13:57:42 +00001215 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1216 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001217 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001218
drhdb7f6472010-06-09 14:45:12 +00001219 /* Reset the checkpoint-header. This is safe because this thread is
dan3dee6da2010-05-31 16:17:54 +00001220 ** currently holding locks that exclude all other readers, writers and
1221 ** checkpointers.
1222 */
drhdb7f6472010-06-09 14:45:12 +00001223 pInfo = walCkptInfo(pWal);
1224 pInfo->nBackfill = 0;
dan3bf83cc2015-12-10 15:45:15 +00001225 pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
drhdb7f6472010-06-09 14:45:12 +00001226 pInfo->aReadMark[0] = 0;
1227 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
drh3314d122012-07-17 17:46:21 +00001228 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
daneb8763d2010-08-17 14:52:22 +00001229
1230 /* If more than one frame was recovered from the log file, report an
1231 ** event via sqlite3_log(). This is to help with identifying performance
1232 ** problems caused by applications routinely shutting down without
1233 ** checkpointing the log file.
1234 */
1235 if( pWal->hdr.nPage ){
drhd040e762013-04-10 23:48:37 +00001236 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1237 "recovered %d frames from WAL file %s",
dan0943f0b2013-04-01 14:35:01 +00001238 pWal->hdr.mxFrame, pWal->zWalName
daneb8763d2010-08-17 14:52:22 +00001239 );
1240 }
dan576bc322010-05-06 18:04:50 +00001241 }
drh73b64e42010-05-30 19:55:15 +00001242
1243recovery_error:
drhc74c3332010-05-31 12:15:19 +00001244 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dand0aa3422010-05-31 16:41:53 +00001245 walUnlockExclusive(pWal, iLock, nLock);
dan7c246102010-04-12 19:00:29 +00001246 return rc;
1247}
1248
drha8e654e2010-05-04 17:38:42 +00001249/*
dan1018e902010-05-05 15:33:05 +00001250** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001251*/
dan1018e902010-05-05 15:33:05 +00001252static void walIndexClose(Wal *pWal, int isDelete){
dan8c408002010-11-01 17:38:24 +00001253 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
1254 int i;
1255 for(i=0; i<pWal->nWiData; i++){
1256 sqlite3_free((void *)pWal->apWiData[i]);
1257 pWal->apWiData[i] = 0;
1258 }
1259 }else{
1260 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1261 }
drha8e654e2010-05-04 17:38:42 +00001262}
1263
dan7c246102010-04-12 19:00:29 +00001264/*
dan3e875ef2010-07-05 19:03:35 +00001265** Open a connection to the WAL file zWalName. The database file must
1266** already be opened on connection pDbFd. The buffer that zWalName points
1267** to must remain valid for the lifetime of the returned Wal* handle.
dan3de777f2010-04-17 12:31:37 +00001268**
1269** A SHARED lock should be held on the database file when this function
1270** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001271** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001272** were to do this just after this client opened one of these files, the
1273** system would be badly broken.
danef378022010-05-04 11:06:03 +00001274**
1275** If the log file is successfully opened, SQLITE_OK is returned and
1276** *ppWal is set to point to a new WAL handle. If an error occurs,
1277** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001278*/
drhc438efd2010-04-26 00:19:45 +00001279int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001280 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001281 sqlite3_file *pDbFd, /* The open database file */
dan3e875ef2010-07-05 19:03:35 +00001282 const char *zWalName, /* Name of the WAL file */
dan8c408002010-11-01 17:38:24 +00001283 int bNoShm, /* True to run in heap-memory mode */
drh85a83752011-05-16 21:00:27 +00001284 i64 mxWalSize, /* Truncate WAL to this size on reset */
adam2e4491d2011-06-24 20:47:06 +00001285 int flags, /* VFS file protection flags */
drh7ed91f22010-04-29 22:34:07 +00001286 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001287){
danef378022010-05-04 11:06:03 +00001288 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001289 Wal *pRet; /* Object to allocate and return */
adam2e4491d2011-06-24 20:47:06 +00001290 int vfsFlags; /* Flags passed to OsOpen() */
dan7c246102010-04-12 19:00:29 +00001291
dan3e875ef2010-07-05 19:03:35 +00001292 assert( zWalName && zWalName[0] );
drhd9e5c4f2010-05-12 18:01:39 +00001293 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001294
drh1b78eaf2010-05-25 13:40:03 +00001295 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1296 ** this source file. Verify that the #defines of the locking byte offsets
1297 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
drh998147e2015-12-10 02:15:03 +00001298 ** For that matter, if the lock offset ever changes from its initial design
1299 ** value of 120, we need to know that so there is an assert() to check it.
drh1b78eaf2010-05-25 13:40:03 +00001300 */
drh998147e2015-12-10 02:15:03 +00001301 assert( 120==WALINDEX_LOCK_OFFSET );
1302 assert( 136==WALINDEX_HDR_SIZE );
drh1b78eaf2010-05-25 13:40:03 +00001303#ifdef WIN_SHM_BASE
1304 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1305#endif
1306#ifdef UNIX_SHM_BASE
1307 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1308#endif
1309
1310
drh7ed91f22010-04-29 22:34:07 +00001311 /* Allocate an instance of struct Wal to return. */
1312 *ppWal = 0;
dan3e875ef2010-07-05 19:03:35 +00001313 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
dan76ed3bc2010-05-03 17:18:24 +00001314 if( !pRet ){
mistachkinfad30392016-02-13 23:43:46 +00001315 return SQLITE_NOMEM_BKPT;
dan76ed3bc2010-05-03 17:18:24 +00001316 }
1317
dan7c246102010-04-12 19:00:29 +00001318 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001319 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1320 pRet->pDbFd = pDbFd;
drh73b64e42010-05-30 19:55:15 +00001321 pRet->readLock = -1;
drh85a83752011-05-16 21:00:27 +00001322 pRet->mxWalSize = mxWalSize;
dan3e875ef2010-07-05 19:03:35 +00001323 pRet->zWalName = zWalName;
drhd992b152011-12-20 20:13:25 +00001324 pRet->syncHeader = 1;
drh374f4a02011-12-17 20:02:11 +00001325 pRet->padToSectorBoundary = 1;
dan8c408002010-11-01 17:38:24 +00001326 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
dan7c246102010-04-12 19:00:29 +00001327
drh7ed91f22010-04-29 22:34:07 +00001328 /* Open file handle on the write-ahead log file. */
adamaec336a2011-10-10 22:11:44 +00001329 if( flags&SQLITE_OPEN_READONLY ){
1330 vfsFlags = flags | SQLITE_OPEN_WAL;
1331 } else {
1332 vfsFlags = flags | (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1333 }
adam2e4491d2011-06-24 20:47:06 +00001334 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, vfsFlags, &vfsFlags);
1335 if( rc==SQLITE_OK && vfsFlags&SQLITE_OPEN_READONLY ){
drh66dfec8b2011-06-01 20:01:49 +00001336 pRet->readOnly = WAL_RDONLY;
dan50833e32010-07-14 16:37:17 +00001337 }
dan7c246102010-04-12 19:00:29 +00001338
dan7c246102010-04-12 19:00:29 +00001339 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001340 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001341 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001342 sqlite3_free(pRet);
1343 }else{
dandd973542014-02-13 19:27:08 +00001344 int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
drhd992b152011-12-20 20:13:25 +00001345 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
drhcb15f352011-12-23 01:04:17 +00001346 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1347 pRet->padToSectorBoundary = 0;
1348 }
danef378022010-05-04 11:06:03 +00001349 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001350 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001351 }
dan7c246102010-04-12 19:00:29 +00001352 return rc;
1353}
1354
drha2a42012010-05-18 18:01:08 +00001355/*
drh85a83752011-05-16 21:00:27 +00001356** Change the size to which the WAL file is trucated on each reset.
1357*/
1358void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1359 if( pWal ) pWal->mxWalSize = iLimit;
1360}
1361
1362/*
drha2a42012010-05-18 18:01:08 +00001363** Find the smallest page number out of all pages held in the WAL that
1364** has not been returned by any prior invocation of this method on the
1365** same WalIterator object. Write into *piFrame the frame index where
1366** that page was last written into the WAL. Write into *piPage the page
1367** number.
1368**
1369** Return 0 on success. If there are no pages in the WAL with a page
1370** number larger than *piPage, then return 1.
1371*/
drh7ed91f22010-04-29 22:34:07 +00001372static int walIteratorNext(
1373 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001374 u32 *piPage, /* OUT: The page number of the next page */
1375 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001376){
drha2a42012010-05-18 18:01:08 +00001377 u32 iMin; /* Result pgno must be greater than iMin */
1378 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1379 int i; /* For looping through segments */
dan7c246102010-04-12 19:00:29 +00001380
drha2a42012010-05-18 18:01:08 +00001381 iMin = p->iPrior;
1382 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001383 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001384 struct WalSegment *pSegment = &p->aSegment[i];
dan13a3cb82010-06-11 19:04:21 +00001385 while( pSegment->iNext<pSegment->nEntry ){
drha2a42012010-05-18 18:01:08 +00001386 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001387 if( iPg>iMin ){
1388 if( iPg<iRet ){
1389 iRet = iPg;
dan13a3cb82010-06-11 19:04:21 +00001390 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
dan7c246102010-04-12 19:00:29 +00001391 }
1392 break;
1393 }
1394 pSegment->iNext++;
1395 }
dan7c246102010-04-12 19:00:29 +00001396 }
1397
drha2a42012010-05-18 18:01:08 +00001398 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001399 return (iRet==0xFFFFFFFF);
1400}
1401
danf544b4c2010-06-25 11:35:52 +00001402/*
1403** This function merges two sorted lists into a single sorted list.
drhd9c9b782010-12-15 21:02:06 +00001404**
1405** aLeft[] and aRight[] are arrays of indices. The sort key is
1406** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1407** is guaranteed for all J<K:
1408**
1409** aContent[aLeft[J]] < aContent[aLeft[K]]
1410** aContent[aRight[J]] < aContent[aRight[K]]
1411**
1412** This routine overwrites aRight[] with a new (probably longer) sequence
1413** of indices such that the aRight[] contains every index that appears in
1414** either aLeft[] or the old aRight[] and such that the second condition
1415** above is still met.
1416**
1417** The aContent[aLeft[X]] values will be unique for all X. And the
1418** aContent[aRight[X]] values will be unique too. But there might be
1419** one or more combinations of X and Y such that
1420**
1421** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1422**
1423** When that happens, omit the aLeft[X] and use the aRight[Y] index.
danf544b4c2010-06-25 11:35:52 +00001424*/
1425static void walMerge(
drhd9c9b782010-12-15 21:02:06 +00001426 const u32 *aContent, /* Pages in wal - keys for the sort */
danf544b4c2010-06-25 11:35:52 +00001427 ht_slot *aLeft, /* IN: Left hand input list */
1428 int nLeft, /* IN: Elements in array *paLeft */
1429 ht_slot **paRight, /* IN/OUT: Right hand input list */
1430 int *pnRight, /* IN/OUT: Elements in *paRight */
1431 ht_slot *aTmp /* Temporary buffer */
1432){
1433 int iLeft = 0; /* Current index in aLeft */
1434 int iRight = 0; /* Current index in aRight */
1435 int iOut = 0; /* Current index in output buffer */
1436 int nRight = *pnRight;
1437 ht_slot *aRight = *paRight;
dan7c246102010-04-12 19:00:29 +00001438
danf544b4c2010-06-25 11:35:52 +00001439 assert( nLeft>0 && nRight>0 );
1440 while( iRight<nRight || iLeft<nLeft ){
1441 ht_slot logpage;
1442 Pgno dbpage;
1443
1444 if( (iLeft<nLeft)
1445 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1446 ){
1447 logpage = aLeft[iLeft++];
1448 }else{
1449 logpage = aRight[iRight++];
1450 }
1451 dbpage = aContent[logpage];
1452
1453 aTmp[iOut++] = logpage;
1454 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1455
1456 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1457 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1458 }
1459
1460 *paRight = aLeft;
1461 *pnRight = iOut;
1462 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1463}
1464
1465/*
drhd9c9b782010-12-15 21:02:06 +00001466** Sort the elements in list aList using aContent[] as the sort key.
1467** Remove elements with duplicate keys, preferring to keep the
1468** larger aList[] values.
1469**
1470** The aList[] entries are indices into aContent[]. The values in
1471** aList[] are to be sorted so that for all J<K:
1472**
1473** aContent[aList[J]] < aContent[aList[K]]
1474**
1475** For any X and Y such that
1476**
1477** aContent[aList[X]] == aContent[aList[Y]]
1478**
1479** Keep the larger of the two values aList[X] and aList[Y] and discard
1480** the smaller.
danf544b4c2010-06-25 11:35:52 +00001481*/
dan13a3cb82010-06-11 19:04:21 +00001482static void walMergesort(
drhd9c9b782010-12-15 21:02:06 +00001483 const u32 *aContent, /* Pages in wal */
dan067f3162010-06-14 10:30:12 +00001484 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1485 ht_slot *aList, /* IN/OUT: List to sort */
drha2a42012010-05-18 18:01:08 +00001486 int *pnList /* IN/OUT: Number of elements in aList[] */
1487){
danf544b4c2010-06-25 11:35:52 +00001488 struct Sublist {
1489 int nList; /* Number of elements in aList */
1490 ht_slot *aList; /* Pointer to sub-list content */
1491 };
drha2a42012010-05-18 18:01:08 +00001492
danf544b4c2010-06-25 11:35:52 +00001493 const int nList = *pnList; /* Size of input list */
drhff828942010-06-26 21:34:06 +00001494 int nMerge = 0; /* Number of elements in list aMerge */
1495 ht_slot *aMerge = 0; /* List to be merged */
danf544b4c2010-06-25 11:35:52 +00001496 int iList; /* Index into input list */
drhf4fa0b82015-07-15 18:35:54 +00001497 u32 iSub = 0; /* Index into aSub array */
danf544b4c2010-06-25 11:35:52 +00001498 struct Sublist aSub[13]; /* Array of sub-lists */
drha2a42012010-05-18 18:01:08 +00001499
danf544b4c2010-06-25 11:35:52 +00001500 memset(aSub, 0, sizeof(aSub));
1501 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1502 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
drha2a42012010-05-18 18:01:08 +00001503
danf544b4c2010-06-25 11:35:52 +00001504 for(iList=0; iList<nList; iList++){
1505 nMerge = 1;
1506 aMerge = &aList[iList];
1507 for(iSub=0; iList & (1<<iSub); iSub++){
drhf4fa0b82015-07-15 18:35:54 +00001508 struct Sublist *p;
1509 assert( iSub<ArraySize(aSub) );
1510 p = &aSub[iSub];
danf544b4c2010-06-25 11:35:52 +00001511 assert( p->aList && p->nList<=(1<<iSub) );
danbdf1e242010-06-25 15:16:25 +00001512 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001513 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
drha2a42012010-05-18 18:01:08 +00001514 }
danf544b4c2010-06-25 11:35:52 +00001515 aSub[iSub].aList = aMerge;
1516 aSub[iSub].nList = nMerge;
drha2a42012010-05-18 18:01:08 +00001517 }
1518
danf544b4c2010-06-25 11:35:52 +00001519 for(iSub++; iSub<ArraySize(aSub); iSub++){
1520 if( nList & (1<<iSub) ){
drhf4fa0b82015-07-15 18:35:54 +00001521 struct Sublist *p;
1522 assert( iSub<ArraySize(aSub) );
1523 p = &aSub[iSub];
danbdf1e242010-06-25 15:16:25 +00001524 assert( p->nList<=(1<<iSub) );
1525 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001526 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1527 }
1528 }
1529 assert( aMerge==aList );
1530 *pnList = nMerge;
1531
drha2a42012010-05-18 18:01:08 +00001532#ifdef SQLITE_DEBUG
1533 {
1534 int i;
1535 for(i=1; i<*pnList; i++){
1536 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1537 }
1538 }
1539#endif
1540}
1541
dan5d656852010-06-14 07:53:26 +00001542/*
1543** Free an iterator allocated by walIteratorInit().
1544*/
1545static void walIteratorFree(WalIterator *p){
drhcbd55b02014-11-04 14:22:27 +00001546 sqlite3_free(p);
dan5d656852010-06-14 07:53:26 +00001547}
1548
drha2a42012010-05-18 18:01:08 +00001549/*
danbdf1e242010-06-25 15:16:25 +00001550** Construct a WalInterator object that can be used to loop over all
1551** pages in the WAL in ascending order. The caller must hold the checkpoint
drhd9c9b782010-12-15 21:02:06 +00001552** lock.
drha2a42012010-05-18 18:01:08 +00001553**
1554** On success, make *pp point to the newly allocated WalInterator object
danbdf1e242010-06-25 15:16:25 +00001555** return SQLITE_OK. Otherwise, return an error code. If this routine
1556** returns an error, the value of *pp is undefined.
drha2a42012010-05-18 18:01:08 +00001557**
1558** The calling routine should invoke walIteratorFree() to destroy the
danbdf1e242010-06-25 15:16:25 +00001559** WalIterator object when it has finished with it.
drha2a42012010-05-18 18:01:08 +00001560*/
1561static int walIteratorInit(Wal *pWal, WalIterator **pp){
dan067f3162010-06-14 10:30:12 +00001562 WalIterator *p; /* Return value */
1563 int nSegment; /* Number of segments to merge */
1564 u32 iLast; /* Last frame in log */
1565 int nByte; /* Number of bytes to allocate */
1566 int i; /* Iterator variable */
1567 ht_slot *aTmp; /* Temp space used by merge-sort */
danbdf1e242010-06-25 15:16:25 +00001568 int rc = SQLITE_OK; /* Return Code */
drha2a42012010-05-18 18:01:08 +00001569
danbdf1e242010-06-25 15:16:25 +00001570 /* This routine only runs while holding the checkpoint lock. And
1571 ** it only runs if there is actually content in the log (mxFrame>0).
drha2a42012010-05-18 18:01:08 +00001572 */
danbdf1e242010-06-25 15:16:25 +00001573 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
dan13a3cb82010-06-11 19:04:21 +00001574 iLast = pWal->hdr.mxFrame;
drha2a42012010-05-18 18:01:08 +00001575
danbdf1e242010-06-25 15:16:25 +00001576 /* Allocate space for the WalIterator object. */
dan13a3cb82010-06-11 19:04:21 +00001577 nSegment = walFramePage(iLast) + 1;
1578 nByte = sizeof(WalIterator)
dan52d6fc02010-06-25 16:34:32 +00001579 + (nSegment-1)*sizeof(struct WalSegment)
1580 + iLast*sizeof(ht_slot);
drhf3cdcdc2015-04-29 16:50:28 +00001581 p = (WalIterator *)sqlite3_malloc64(nByte);
dan8f6097c2010-05-06 07:43:58 +00001582 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00001583 return SQLITE_NOMEM_BKPT;
drha2a42012010-05-18 18:01:08 +00001584 }
1585 memset(p, 0, nByte);
drha2a42012010-05-18 18:01:08 +00001586 p->nSegment = nSegment;
danbdf1e242010-06-25 15:16:25 +00001587
1588 /* Allocate temporary space used by the merge-sort routine. This block
1589 ** of memory will be freed before this function returns.
1590 */
drhf3cdcdc2015-04-29 16:50:28 +00001591 aTmp = (ht_slot *)sqlite3_malloc64(
dan52d6fc02010-06-25 16:34:32 +00001592 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1593 );
danbdf1e242010-06-25 15:16:25 +00001594 if( !aTmp ){
mistachkinfad30392016-02-13 23:43:46 +00001595 rc = SQLITE_NOMEM_BKPT;
danbdf1e242010-06-25 15:16:25 +00001596 }
1597
1598 for(i=0; rc==SQLITE_OK && i<nSegment; i++){
dan067f3162010-06-14 10:30:12 +00001599 volatile ht_slot *aHash;
dan13a3cb82010-06-11 19:04:21 +00001600 u32 iZero;
dan13a3cb82010-06-11 19:04:21 +00001601 volatile u32 *aPgno;
1602
dan4280eb32010-06-12 12:02:35 +00001603 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
danbdf1e242010-06-25 15:16:25 +00001604 if( rc==SQLITE_OK ){
dan52d6fc02010-06-25 16:34:32 +00001605 int j; /* Counter variable */
1606 int nEntry; /* Number of entries in this segment */
1607 ht_slot *aIndex; /* Sorted index for this segment */
1608
danbdf1e242010-06-25 15:16:25 +00001609 aPgno++;
drh519426a2010-07-09 03:19:07 +00001610 if( (i+1)==nSegment ){
1611 nEntry = (int)(iLast - iZero);
1612 }else{
shaneh55897962010-07-09 12:57:53 +00001613 nEntry = (int)((u32*)aHash - (u32*)aPgno);
drh519426a2010-07-09 03:19:07 +00001614 }
dan52d6fc02010-06-25 16:34:32 +00001615 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
danbdf1e242010-06-25 15:16:25 +00001616 iZero++;
1617
danbdf1e242010-06-25 15:16:25 +00001618 for(j=0; j<nEntry; j++){
shaneh5eba1f62010-07-02 17:05:03 +00001619 aIndex[j] = (ht_slot)j;
danbdf1e242010-06-25 15:16:25 +00001620 }
1621 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1622 p->aSegment[i].iZero = iZero;
1623 p->aSegment[i].nEntry = nEntry;
1624 p->aSegment[i].aIndex = aIndex;
1625 p->aSegment[i].aPgno = (u32 *)aPgno;
dan13a3cb82010-06-11 19:04:21 +00001626 }
dan7c246102010-04-12 19:00:29 +00001627 }
drhcbd55b02014-11-04 14:22:27 +00001628 sqlite3_free(aTmp);
dan7c246102010-04-12 19:00:29 +00001629
danbdf1e242010-06-25 15:16:25 +00001630 if( rc!=SQLITE_OK ){
1631 walIteratorFree(p);
1632 }
dan8f6097c2010-05-06 07:43:58 +00001633 *pp = p;
danbdf1e242010-06-25 15:16:25 +00001634 return rc;
dan7c246102010-04-12 19:00:29 +00001635}
1636
dan7c246102010-04-12 19:00:29 +00001637/*
dana58f26f2010-11-16 18:56:51 +00001638** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1639** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1640** busy-handler function. Invoke it and retry the lock until either the
1641** lock is successfully obtained or the busy-handler returns 0.
1642*/
1643static int walBusyLock(
1644 Wal *pWal, /* WAL connection */
1645 int (*xBusy)(void*), /* Function to call when busy */
1646 void *pBusyArg, /* Context argument for xBusyHandler */
1647 int lockIdx, /* Offset of first byte to lock */
1648 int n /* Number of bytes to lock */
1649){
1650 int rc;
1651 do {
drhab372772015-12-02 16:10:16 +00001652 rc = walLockExclusive(pWal, lockIdx, n);
dana58f26f2010-11-16 18:56:51 +00001653 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1654 return rc;
1655}
1656
1657/*
danf2b8dd52010-11-18 19:28:01 +00001658** The cache of the wal-index header must be valid to call this function.
1659** Return the page-size in bytes used by the database.
1660*/
1661static int walPagesize(Wal *pWal){
1662 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1663}
1664
1665/*
danf26a1542014-12-02 19:04:54 +00001666** The following is guaranteed when this function is called:
1667**
1668** a) the WRITER lock is held,
1669** b) the entire log file has been checkpointed, and
1670** c) any existing readers are reading exclusively from the database
1671** file - there are no readers that may attempt to read a frame from
1672** the log file.
1673**
1674** This function updates the shared-memory structures so that the next
1675** client to write to the database (which may be this one) does so by
1676** writing frames into the start of the log file.
dan0fe8c1b2014-12-02 19:35:09 +00001677**
1678** The value of parameter salt1 is used as the aSalt[1] value in the
1679** new wal-index header. It should be passed a pseudo-random value (i.e.
1680** one obtained from sqlite3_randomness()).
danf26a1542014-12-02 19:04:54 +00001681*/
dan0fe8c1b2014-12-02 19:35:09 +00001682static void walRestartHdr(Wal *pWal, u32 salt1){
danf26a1542014-12-02 19:04:54 +00001683 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1684 int i; /* Loop counter */
1685 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
1686 pWal->nCkpt++;
1687 pWal->hdr.mxFrame = 0;
1688 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
dan0fe8c1b2014-12-02 19:35:09 +00001689 memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
danf26a1542014-12-02 19:04:54 +00001690 walIndexWriteHdr(pWal);
1691 pInfo->nBackfill = 0;
drh998147e2015-12-10 02:15:03 +00001692 pInfo->nBackfillAttempted = 0;
danf26a1542014-12-02 19:04:54 +00001693 pInfo->aReadMark[1] = 0;
1694 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1695 assert( pInfo->aReadMark[0]==0 );
1696}
1697
1698/*
drh73b64e42010-05-30 19:55:15 +00001699** Copy as much content as we can from the WAL back into the database file
1700** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1701**
1702** The amount of information copies from WAL to database might be limited
1703** by active readers. This routine will never overwrite a database page
1704** that a concurrent reader might be using.
1705**
1706** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1707** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1708** checkpoints are always run by a background thread or background
1709** process, foreground threads will never block on a lengthy fsync call.
1710**
1711** Fsync is called on the WAL before writing content out of the WAL and
1712** into the database. This ensures that if the new content is persistent
1713** in the WAL and can be recovered following a power-loss or hard reset.
1714**
1715** Fsync is also called on the database file if (and only if) the entire
1716** WAL content is copied into the database file. This second fsync makes
1717** it safe to delete the WAL since the new content will persist in the
1718** database file.
1719**
1720** This routine uses and updates the nBackfill field of the wal-index header.
peter.d.reid60ec9142014-09-06 16:39:46 +00001721** This is the only routine that will increase the value of nBackfill.
drh73b64e42010-05-30 19:55:15 +00001722** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1723** its value.)
1724**
1725** The caller must be holding sufficient locks to ensure that no other
1726** checkpoint is running (in any other thread or process) at the same
1727** time.
dan7c246102010-04-12 19:00:29 +00001728*/
drh7ed91f22010-04-29 22:34:07 +00001729static int walCheckpoint(
1730 Wal *pWal, /* Wal connection */
dancdc1f042010-11-18 12:11:05 +00001731 int eMode, /* One of PASSIVE, FULL or RESTART */
drhdd90d7e2014-12-03 19:25:41 +00001732 int (*xBusy)(void*), /* Function to call when busy */
dana58f26f2010-11-16 18:56:51 +00001733 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00001734 int sync_flags, /* Flags for OsSync() (or 0) */
dan9c5e3682011-02-07 15:12:12 +00001735 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00001736){
dan976b0032015-01-29 19:12:12 +00001737 int rc = SQLITE_OK; /* Return code */
drhb2eced52010-08-12 02:41:12 +00001738 int szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001739 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001740 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001741 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001742 u32 mxSafeFrame; /* Max frame that can be backfilled */
dan502019c2010-07-28 14:26:17 +00001743 u32 mxPage; /* Max database page to write */
drh73b64e42010-05-30 19:55:15 +00001744 int i; /* Loop counter */
drh73b64e42010-05-30 19:55:15 +00001745 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
dan7c246102010-04-12 19:00:29 +00001746
danf2b8dd52010-11-18 19:28:01 +00001747 szPage = walPagesize(pWal);
drh9b78f792010-08-14 21:21:24 +00001748 testcase( szPage<=32768 );
1749 testcase( szPage>=65536 );
drh7d208442010-12-16 02:06:29 +00001750 pInfo = walCkptInfo(pWal);
dan976b0032015-01-29 19:12:12 +00001751 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
danf544b4c2010-06-25 11:35:52 +00001752
dan976b0032015-01-29 19:12:12 +00001753 /* Allocate the iterator */
1754 rc = walIteratorInit(pWal, &pIter);
1755 if( rc!=SQLITE_OK ){
1756 return rc;
drh73b64e42010-05-30 19:55:15 +00001757 }
dan976b0032015-01-29 19:12:12 +00001758 assert( pIter );
dan7c246102010-04-12 19:00:29 +00001759
dan976b0032015-01-29 19:12:12 +00001760 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1761 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1762 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
drh73b64e42010-05-30 19:55:15 +00001763
dan976b0032015-01-29 19:12:12 +00001764 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1765 ** safe to write into the database. Frames beyond mxSafeFrame might
1766 ** overwrite database pages that are in use by active readers and thus
1767 ** cannot be backfilled from the WAL.
dan502019c2010-07-28 14:26:17 +00001768 */
dan976b0032015-01-29 19:12:12 +00001769 mxSafeFrame = pWal->hdr.mxFrame;
1770 mxPage = pWal->hdr.nPage;
1771 for(i=1; i<WAL_NREADER; i++){
dan1fe0af22015-04-13 17:43:43 +00001772 /* Thread-sanitizer reports that the following is an unsafe read,
1773 ** as some other thread may be in the process of updating the value
1774 ** of the aReadMark[] slot. The assumption here is that if that is
1775 ** happening, the other client may only be increasing the value,
1776 ** not decreasing it. So assuming either that either the "old" or
1777 ** "new" version of the value is read, and not some arbitrary value
1778 ** that would never be written by a real client, things are still
1779 ** safe. */
dan976b0032015-01-29 19:12:12 +00001780 u32 y = pInfo->aReadMark[i];
1781 if( mxSafeFrame>y ){
1782 assert( y<=pWal->hdr.mxFrame );
1783 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1784 if( rc==SQLITE_OK ){
1785 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1786 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1787 }else if( rc==SQLITE_BUSY ){
1788 mxSafeFrame = y;
1789 xBusy = 0;
1790 }else{
1791 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001792 }
1793 }
1794 }
1795
dan976b0032015-01-29 19:12:12 +00001796 if( pInfo->nBackfill<mxSafeFrame
1797 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
1798 ){
1799 i64 nSize; /* Current size of database file */
1800 u32 nBackfill = pInfo->nBackfill;
dana58f26f2010-11-16 18:56:51 +00001801
dan3bf83cc2015-12-10 15:45:15 +00001802 pInfo->nBackfillAttempted = mxSafeFrame;
1803
dan976b0032015-01-29 19:12:12 +00001804 /* Sync the WAL to disk */
1805 if( sync_flags ){
1806 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1807 }
1808
1809 /* If the database may grow as a result of this checkpoint, hint
1810 ** about the eventual size of the db file to the VFS layer.
1811 */
1812 if( rc==SQLITE_OK ){
1813 i64 nReq = ((i64)mxPage * szPage);
1814 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1815 if( rc==SQLITE_OK && nSize<nReq ){
1816 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1817 }
1818 }
1819
1820
1821 /* Iterate through the contents of the WAL, copying data to the db file */
1822 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1823 i64 iOffset;
1824 assert( walFramePgno(pWal, iFrame)==iDbpage );
1825 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1826 continue;
1827 }
1828 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1829 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1830 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1831 if( rc!=SQLITE_OK ) break;
1832 iOffset = (iDbpage-1)*(i64)szPage;
1833 testcase( IS_BIG_INT(iOffset) );
1834 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1835 if( rc!=SQLITE_OK ) break;
1836 }
1837
1838 /* If work was actually accomplished... */
1839 if( rc==SQLITE_OK ){
1840 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1841 i64 szDb = pWal->hdr.nPage*(i64)szPage;
1842 testcase( IS_BIG_INT(szDb) );
1843 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1844 if( rc==SQLITE_OK && sync_flags ){
1845 rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1846 }
1847 }
1848 if( rc==SQLITE_OK ){
1849 pInfo->nBackfill = mxSafeFrame;
1850 }
1851 }
1852
1853 /* Release the reader lock held while backfilling */
1854 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1855 }
1856
1857 if( rc==SQLITE_BUSY ){
1858 /* Reset the return code so as not to report a checkpoint failure
1859 ** just because there are active readers. */
1860 rc = SQLITE_OK;
1861 }
dan7c246102010-04-12 19:00:29 +00001862 }
1863
danf26a1542014-12-02 19:04:54 +00001864 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
1865 ** entire wal file has been copied into the database file, then block
1866 ** until all readers have finished using the wal file. This ensures that
1867 ** the next process to write to the database restarts the wal file.
danf2b8dd52010-11-18 19:28:01 +00001868 */
1869 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dancdc1f042010-11-18 12:11:05 +00001870 assert( pWal->writeLock );
danf2b8dd52010-11-18 19:28:01 +00001871 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1872 rc = SQLITE_BUSY;
danf26a1542014-12-02 19:04:54 +00001873 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
dan0fe8c1b2014-12-02 19:35:09 +00001874 u32 salt1;
1875 sqlite3_randomness(4, &salt1);
dan976b0032015-01-29 19:12:12 +00001876 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
danf2b8dd52010-11-18 19:28:01 +00001877 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1878 if( rc==SQLITE_OK ){
danf26a1542014-12-02 19:04:54 +00001879 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
drha25165f2014-12-04 04:50:59 +00001880 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
1881 ** SQLITE_CHECKPOINT_RESTART with the addition that it also
1882 ** truncates the log file to zero bytes just prior to a
1883 ** successful return.
danf26a1542014-12-02 19:04:54 +00001884 **
1885 ** In theory, it might be safe to do this without updating the
1886 ** wal-index header in shared memory, as all subsequent reader or
1887 ** writer clients should see that the entire log file has been
1888 ** checkpointed and behave accordingly. This seems unsafe though,
1889 ** as it would leave the system in a state where the contents of
1890 ** the wal-index header do not match the contents of the
1891 ** file-system. To avoid this, update the wal-index header to
1892 ** indicate that the log file contains zero valid frames. */
dan0fe8c1b2014-12-02 19:35:09 +00001893 walRestartHdr(pWal, salt1);
danf26a1542014-12-02 19:04:54 +00001894 rc = sqlite3OsTruncate(pWal->pWalFd, 0);
1895 }
danf2b8dd52010-11-18 19:28:01 +00001896 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1897 }
dancdc1f042010-11-18 12:11:05 +00001898 }
1899 }
1900
dan83f42d12010-06-04 10:37:05 +00001901 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00001902 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00001903 return rc;
1904}
1905
1906/*
danf60b7f32011-12-16 13:24:27 +00001907** If the WAL file is currently larger than nMax bytes in size, truncate
1908** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
drh8dd4afa2011-12-08 19:50:32 +00001909*/
danf60b7f32011-12-16 13:24:27 +00001910static void walLimitSize(Wal *pWal, i64 nMax){
1911 i64 sz;
1912 int rx;
1913 sqlite3BeginBenignMalloc();
1914 rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1915 if( rx==SQLITE_OK && (sz > nMax ) ){
1916 rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1917 }
1918 sqlite3EndBenignMalloc();
1919 if( rx ){
1920 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
drh8dd4afa2011-12-08 19:50:32 +00001921 }
1922}
1923
1924/*
dan7c246102010-04-12 19:00:29 +00001925** Close a connection to a log file.
1926*/
drhc438efd2010-04-26 00:19:45 +00001927int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00001928 Wal *pWal, /* Wal to close */
danc5118782010-04-17 17:34:41 +00001929 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001930 int nBuf,
1931 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00001932){
1933 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00001934 if( pWal ){
dan30c86292010-04-30 16:24:46 +00001935 int isDelete = 0; /* True to unlink wal and wal-index files */
1936
1937 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1938 ** ordinary, rollback-mode locking methods, this guarantees that the
1939 ** connection associated with this log file is the only connection to
1940 ** the database. In this case checkpoint the database and unlink both
1941 ** the wal and wal-index files.
1942 **
1943 ** The EXCLUSIVE lock is not released before returning.
1944 */
drhd9e5c4f2010-05-12 18:01:39 +00001945 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
dan30c86292010-04-30 16:24:46 +00001946 if( rc==SQLITE_OK ){
dan8c408002010-11-01 17:38:24 +00001947 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1948 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1949 }
dancdc1f042010-11-18 12:11:05 +00001950 rc = sqlite3WalCheckpoint(
1951 pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1952 );
drheed42502011-12-16 15:38:52 +00001953 if( rc==SQLITE_OK ){
1954 int bPersist = -1;
drhc02372c2012-01-10 17:59:59 +00001955 sqlite3OsFileControlHint(
dan6f2f19a2012-01-10 16:56:39 +00001956 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
1957 );
drheed42502011-12-16 15:38:52 +00001958 if( bPersist!=1 ){
1959 /* Try to delete the WAL file if the checkpoint completed and
1960 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
1961 ** mode (!bPersist) */
1962 isDelete = 1;
1963 }else if( pWal->mxWalSize>=0 ){
1964 /* Try to truncate the WAL file to zero bytes if the checkpoint
1965 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
1966 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
1967 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
1968 ** to zero bytes as truncating to the journal_size_limit might
1969 ** leave a corrupt WAL file on disk. */
1970 walLimitSize(pWal, 0);
1971 }
dan30c86292010-04-30 16:24:46 +00001972 }
dan30c86292010-04-30 16:24:46 +00001973 }
1974
dan1018e902010-05-05 15:33:05 +00001975 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00001976 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00001977 if( isDelete ){
drh92c45cf2012-01-10 00:24:59 +00001978 sqlite3BeginBenignMalloc();
drhd9e5c4f2010-05-12 18:01:39 +00001979 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
drh92c45cf2012-01-10 00:24:59 +00001980 sqlite3EndBenignMalloc();
dan30c86292010-04-30 16:24:46 +00001981 }
drhc74c3332010-05-31 12:15:19 +00001982 WALTRACE(("WAL%p: closed\n", pWal));
shaneh8a300f82010-07-02 18:15:31 +00001983 sqlite3_free((void *)pWal->apWiData);
drh7ed91f22010-04-29 22:34:07 +00001984 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00001985 }
1986 return rc;
1987}
1988
1989/*
drha2a42012010-05-18 18:01:08 +00001990** Try to read the wal-index header. Return 0 on success and 1 if
1991** there is a problem.
1992**
1993** The wal-index is in shared memory. Another thread or process might
1994** be writing the header at the same time this procedure is trying to
1995** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00001996** by verifying that both copies of the header are the same and also by
1997** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00001998**
1999** If and only if the read is consistent and the header is different from
2000** pWal->hdr, then pWal->hdr is updated to the content of the new header
2001** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00002002**
dan84670502010-05-07 05:46:23 +00002003** If the checksum cannot be verified return non-zero. If the header
2004** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00002005*/
drh7750ab42010-06-26 22:16:02 +00002006static int walIndexTryHdr(Wal *pWal, int *pChanged){
dan4280eb32010-06-12 12:02:35 +00002007 u32 aCksum[2]; /* Checksum on the header content */
2008 WalIndexHdr h1, h2; /* Two copies of the header content */
2009 WalIndexHdr volatile *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00002010
dan4280eb32010-06-12 12:02:35 +00002011 /* The first page of the wal-index must be mapped at this point. */
2012 assert( pWal->nWiData>0 && pWal->apWiData[0] );
drh79e6c782010-04-30 02:13:26 +00002013
drh6cef0cf2010-08-16 16:31:43 +00002014 /* Read the header. This might happen concurrently with a write to the
drh73b64e42010-05-30 19:55:15 +00002015 ** same area of shared memory on a different CPU in a SMP,
2016 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00002017 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00002018 **
2019 ** There are two copies of the header at the beginning of the wal-index.
2020 ** When reading, read [0] first then [1]. Writes are in the reverse order.
2021 ** Memory barriers are used to prevent the compiler or the hardware from
2022 ** reordering the reads and writes.
danb9bf16b2010-04-14 11:23:30 +00002023 */
dan4280eb32010-06-12 12:02:35 +00002024 aHdr = walIndexHdr(pWal);
adamaec336a2011-10-10 22:11:44 +00002025 if( aHdr==NULL ){
2026 return 1; /* Shouldn't be getting NULL from walIndexHdr, but we are */
2027 }
dan4280eb32010-06-12 12:02:35 +00002028 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
dan8c408002010-11-01 17:38:24 +00002029 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +00002030 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00002031
drhf0b20f82010-05-21 13:16:18 +00002032 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2033 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00002034 }
drh4b82c382010-05-31 18:24:19 +00002035 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00002036 return 1; /* Malformed header - probably all zeros */
2037 }
danb8fd6c22010-05-24 10:39:36 +00002038 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00002039 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2040 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00002041 }
2042
drhf0b20f82010-05-21 13:16:18 +00002043 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00002044 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00002045 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh9b78f792010-08-14 21:21:24 +00002046 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2047 testcase( pWal->szPage<=32768 );
2048 testcase( pWal->szPage>=65536 );
danb9bf16b2010-04-14 11:23:30 +00002049 }
dan84670502010-05-07 05:46:23 +00002050
2051 /* The header was successfully read. Return zero. */
2052 return 0;
danb9bf16b2010-04-14 11:23:30 +00002053}
2054
2055/*
drha2a42012010-05-18 18:01:08 +00002056** Read the wal-index header from the wal-index and into pWal->hdr.
drha927e942010-06-24 02:46:48 +00002057** If the wal-header appears to be corrupt, try to reconstruct the
2058** wal-index from the WAL before returning.
drha2a42012010-05-18 18:01:08 +00002059**
2060** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
peter.d.reid60ec9142014-09-06 16:39:46 +00002061** changed by this operation. If pWal->hdr is unchanged, set *pChanged
drha2a42012010-05-18 18:01:08 +00002062** to 0.
2063**
drh7ed91f22010-04-29 22:34:07 +00002064** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00002065** Otherwise an SQLite error code.
2066*/
drh7ed91f22010-04-29 22:34:07 +00002067static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00002068 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00002069 int badHdr; /* True if a header read failed */
drha927e942010-06-24 02:46:48 +00002070 volatile u32 *page0; /* Chunk of wal-index containing header */
danb9bf16b2010-04-14 11:23:30 +00002071
dan4280eb32010-06-12 12:02:35 +00002072 /* Ensure that page 0 of the wal-index (the page that contains the
2073 ** wal-index header) is mapped. Return early if an error occurs here.
2074 */
dana8614692010-05-06 14:42:34 +00002075 assert( pChanged );
dan4280eb32010-06-12 12:02:35 +00002076 rc = walIndexPage(pWal, 0, &page0);
danc7991bd2010-05-05 19:04:59 +00002077 if( rc!=SQLITE_OK ){
2078 return rc;
dan4280eb32010-06-12 12:02:35 +00002079 };
2080 assert( page0 || pWal->writeLock==0 );
drh7ed91f22010-04-29 22:34:07 +00002081
dan4280eb32010-06-12 12:02:35 +00002082 /* If the first page of the wal-index has been mapped, try to read the
2083 ** wal-index header immediately, without holding any lock. This usually
2084 ** works, but may fail if the wal-index header is corrupt or currently
drha927e942010-06-24 02:46:48 +00002085 ** being modified by another thread or process.
danb9bf16b2010-04-14 11:23:30 +00002086 */
dan4280eb32010-06-12 12:02:35 +00002087 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
drhbab7b912010-05-26 17:31:58 +00002088
drh73b64e42010-05-30 19:55:15 +00002089 /* If the first attempt failed, it might have been due to a race
drh66dfec8b2011-06-01 20:01:49 +00002090 ** with a writer. So get a WRITE lock and try again.
drh73b64e42010-05-30 19:55:15 +00002091 */
dand54ff602010-05-31 11:16:30 +00002092 assert( badHdr==0 || pWal->writeLock==0 );
dan4edc6bf2011-05-10 17:31:29 +00002093 if( badHdr ){
drh66dfec8b2011-06-01 20:01:49 +00002094 if( pWal->readOnly & WAL_SHM_RDONLY ){
dan4edc6bf2011-05-10 17:31:29 +00002095 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2096 walUnlockShared(pWal, WAL_WRITE_LOCK);
2097 rc = SQLITE_READONLY_RECOVERY;
drhbab7b912010-05-26 17:31:58 +00002098 }
drhab372772015-12-02 16:10:16 +00002099 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
dan4edc6bf2011-05-10 17:31:29 +00002100 pWal->writeLock = 1;
2101 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2102 badHdr = walIndexTryHdr(pWal, pChanged);
2103 if( badHdr ){
2104 /* If the wal-index header is still malformed even while holding
2105 ** a WRITE lock, it can only mean that the header is corrupted and
2106 ** needs to be reconstructed. So run recovery to do exactly that.
2107 */
2108 rc = walIndexRecover(pWal);
2109 *pChanged = 1;
2110 }
2111 }
2112 pWal->writeLock = 0;
2113 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhbab7b912010-05-26 17:31:58 +00002114 }
danb9bf16b2010-04-14 11:23:30 +00002115 }
2116
drha927e942010-06-24 02:46:48 +00002117 /* If the header is read successfully, check the version number to make
2118 ** sure the wal-index was not constructed with some future format that
2119 ** this version of SQLite cannot understand.
2120 */
2121 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2122 rc = SQLITE_CANTOPEN_BKPT;
2123 }
2124
danb9bf16b2010-04-14 11:23:30 +00002125 return rc;
2126}
2127
2128/*
drh73b64e42010-05-30 19:55:15 +00002129** This is the value that walTryBeginRead returns when it needs to
2130** be retried.
dan7c246102010-04-12 19:00:29 +00002131*/
drh73b64e42010-05-30 19:55:15 +00002132#define WAL_RETRY (-1)
dan64d039e2010-04-13 19:27:31 +00002133
drh73b64e42010-05-30 19:55:15 +00002134/*
2135** Attempt to start a read transaction. This might fail due to a race or
2136** other transient condition. When that happens, it returns WAL_RETRY to
2137** indicate to the caller that it is safe to retry immediately.
2138**
drha927e942010-06-24 02:46:48 +00002139** On success return SQLITE_OK. On a permanent failure (such an
drh73b64e42010-05-30 19:55:15 +00002140** I/O error or an SQLITE_BUSY because another process is running
2141** recovery) return a positive error code.
2142**
drha927e942010-06-24 02:46:48 +00002143** The useWal parameter is true to force the use of the WAL and disable
2144** the case where the WAL is bypassed because it has been completely
2145** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
2146** to make a copy of the wal-index header into pWal->hdr. If the
2147** wal-index header has changed, *pChanged is set to 1 (as an indication
2148** to the caller that the local paget cache is obsolete and needs to be
2149** flushed.) When useWal==1, the wal-index header is assumed to already
2150** be loaded and the pChanged parameter is unused.
2151**
2152** The caller must set the cnt parameter to the number of prior calls to
2153** this routine during the current read attempt that returned WAL_RETRY.
2154** This routine will start taking more aggressive measures to clear the
2155** race conditions after multiple WAL_RETRY returns, and after an excessive
2156** number of errors will ultimately return SQLITE_PROTOCOL. The
2157** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2158** and is not honoring the locking protocol. There is a vanishingly small
2159** chance that SQLITE_PROTOCOL could be returned because of a run of really
2160** bad luck when there is lots of contention for the wal-index, but that
2161** possibility is so small that it can be safely neglected, we believe.
2162**
drh73b64e42010-05-30 19:55:15 +00002163** On success, this routine obtains a read lock on
2164** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
2165** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
2166** that means the Wal does not hold any read lock. The reader must not
2167** access any database page that is modified by a WAL frame up to and
2168** including frame number aReadMark[pWal->readLock]. The reader will
2169** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2170** Or if pWal->readLock==0, then the reader will ignore the WAL
2171** completely and get all content directly from the database file.
drha927e942010-06-24 02:46:48 +00002172** If the useWal parameter is 1 then the WAL will never be ignored and
2173** this routine will always set pWal->readLock>0 on success.
drh73b64e42010-05-30 19:55:15 +00002174** When the read transaction is completed, the caller must release the
2175** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2176**
2177** This routine uses the nBackfill and aReadMark[] fields of the header
2178** to select a particular WAL_READ_LOCK() that strives to let the
2179** checkpoint process do as much work as possible. This routine might
2180** update values of the aReadMark[] array in the header, but if it does
2181** so it takes care to hold an exclusive lock on the corresponding
2182** WAL_READ_LOCK() while changing values.
2183*/
drhaab4c022010-06-02 14:45:51 +00002184static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00002185 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
2186 u32 mxReadMark; /* Largest aReadMark[] value */
2187 int mxI; /* Index of largest aReadMark[] value */
2188 int i; /* Loop counter */
dan13a3cb82010-06-11 19:04:21 +00002189 int rc = SQLITE_OK; /* Return code */
drhc49e9602015-12-11 03:16:54 +00002190 u32 mxFrame; /* Wal frame to lock to */
dan64d039e2010-04-13 19:27:31 +00002191
drh61e4ace2010-05-31 20:28:37 +00002192 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00002193
drh658d76c2011-02-19 15:22:14 +00002194 /* Take steps to avoid spinning forever if there is a protocol error.
2195 **
2196 ** Circumstances that cause a RETRY should only last for the briefest
2197 ** instances of time. No I/O or other system calls are done while the
2198 ** locks are held, so the locks should not be held for very long. But
2199 ** if we are unlucky, another process that is holding a lock might get
2200 ** paged out or take a page-fault that is time-consuming to resolve,
2201 ** during the few nanoseconds that it is holding the lock. In that case,
2202 ** it might take longer than normal for the lock to free.
2203 **
2204 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2205 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2206 ** is more of a scheduler yield than an actual delay. But on the 10th
2207 ** an subsequent retries, the delays start becoming longer and longer,
drh5b6e3b92014-06-12 17:10:18 +00002208 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2209 ** The total delay time before giving up is less than 10 seconds.
drh658d76c2011-02-19 15:22:14 +00002210 */
drhaab4c022010-06-02 14:45:51 +00002211 if( cnt>5 ){
drh658d76c2011-02-19 15:22:14 +00002212 int nDelay = 1; /* Pause time in microseconds */
drh03c69672011-02-19 23:18:12 +00002213 if( cnt>100 ){
2214 VVA_ONLY( pWal->lockError = 1; )
2215 return SQLITE_PROTOCOL;
2216 }
drh5b6e3b92014-06-12 17:10:18 +00002217 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
drh658d76c2011-02-19 15:22:14 +00002218 sqlite3OsSleep(pWal->pVfs, nDelay);
drhaab4c022010-06-02 14:45:51 +00002219 }
2220
drh73b64e42010-05-30 19:55:15 +00002221 if( !useWal ){
drh7ed91f22010-04-29 22:34:07 +00002222 rc = walIndexReadHdr(pWal, pChanged);
drh73b64e42010-05-30 19:55:15 +00002223 if( rc==SQLITE_BUSY ){
2224 /* If there is not a recovery running in another thread or process
2225 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2226 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2227 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2228 ** would be technically correct. But the race is benign since with
2229 ** WAL_RETRY this routine will be called again and will probably be
2230 ** right on the second iteration.
2231 */
dan7d4514a2010-07-15 17:54:14 +00002232 if( pWal->apWiData[0]==0 ){
2233 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2234 ** We assume this is a transient condition, so return WAL_RETRY. The
2235 ** xShmMap() implementation used by the default unix and win32 VFS
2236 ** modules may return SQLITE_BUSY due to a race condition in the
2237 ** code that determines whether or not the shared-memory region
2238 ** must be zeroed before the requested page is returned.
2239 */
2240 rc = WAL_RETRY;
2241 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
drh73b64e42010-05-30 19:55:15 +00002242 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2243 rc = WAL_RETRY;
2244 }else if( rc==SQLITE_BUSY ){
2245 rc = SQLITE_BUSY_RECOVERY;
2246 }
2247 }
drha927e942010-06-24 02:46:48 +00002248 if( rc!=SQLITE_OK ){
2249 return rc;
2250 }
drh73b64e42010-05-30 19:55:15 +00002251 }
2252
dan13a3cb82010-06-11 19:04:21 +00002253 pInfo = walCkptInfo(pWal);
danfc1acf32015-12-05 20:51:54 +00002254 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame
2255#ifdef SQLITE_ENABLE_SNAPSHOT
2256 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0
2257 || 0==memcmp(&pWal->hdr, pWal->pSnapshot, sizeof(WalIndexHdr)))
2258#endif
2259 ){
drh73b64e42010-05-30 19:55:15 +00002260 /* The WAL has been completely backfilled (or it is empty).
2261 ** and can be safely ignored.
2262 */
2263 rc = walLockShared(pWal, WAL_READ_LOCK(0));
dan8c408002010-11-01 17:38:24 +00002264 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002265 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00002266 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00002267 /* It is not safe to allow the reader to continue here if frames
2268 ** may have been appended to the log before READ_LOCK(0) was obtained.
2269 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2270 ** which implies that the database file contains a trustworthy
peter.d.reid60ec9142014-09-06 16:39:46 +00002271 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
dan493cc592010-06-05 18:12:23 +00002272 ** happening, this is usually correct.
2273 **
2274 ** However, if frames have been appended to the log (or if the log
2275 ** is wrapped and written for that matter) before the READ_LOCK(0)
2276 ** is obtained, that is not necessarily true. A checkpointer may
2277 ** have started to backfill the appended frames but crashed before
2278 ** it finished. Leaving a corrupt image in the database file.
2279 */
drh73b64e42010-05-30 19:55:15 +00002280 walUnlockShared(pWal, WAL_READ_LOCK(0));
2281 return WAL_RETRY;
2282 }
2283 pWal->readLock = 0;
2284 return SQLITE_OK;
2285 }else if( rc!=SQLITE_BUSY ){
2286 return rc;
dan64d039e2010-04-13 19:27:31 +00002287 }
dan7c246102010-04-12 19:00:29 +00002288 }
danba515902010-04-30 09:32:06 +00002289
drh73b64e42010-05-30 19:55:15 +00002290 /* If we get this far, it means that the reader will want to use
2291 ** the WAL to get at content from recent commits. The job now is
2292 ** to select one of the aReadMark[] entries that is closest to
2293 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2294 */
2295 mxReadMark = 0;
2296 mxI = 0;
danfc1acf32015-12-05 20:51:54 +00002297 mxFrame = pWal->hdr.mxFrame;
2298#ifdef SQLITE_ENABLE_SNAPSHOT
dan818b11a2015-12-07 14:33:07 +00002299 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2300 mxFrame = pWal->pSnapshot->mxFrame;
2301 }
danfc1acf32015-12-05 20:51:54 +00002302#endif
drh73b64e42010-05-30 19:55:15 +00002303 for(i=1; i<WAL_NREADER; i++){
2304 u32 thisMark = pInfo->aReadMark[i];
danfc1acf32015-12-05 20:51:54 +00002305 if( mxReadMark<=thisMark && thisMark<=mxFrame ){
drhdb7f6472010-06-09 14:45:12 +00002306 assert( thisMark!=READMARK_NOT_USED );
drh73b64e42010-05-30 19:55:15 +00002307 mxReadMark = thisMark;
2308 mxI = i;
2309 }
2310 }
drh998147e2015-12-10 02:15:03 +00002311 if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2312 && (mxReadMark<mxFrame || mxI==0)
drh998147e2015-12-10 02:15:03 +00002313 ){
2314 for(i=1; i<WAL_NREADER; i++){
2315 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2316 if( rc==SQLITE_OK ){
2317 mxReadMark = pInfo->aReadMark[i] = mxFrame;
2318 mxI = i;
2319 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2320 break;
2321 }else if( rc!=SQLITE_BUSY ){
2322 return rc;
drh73b64e42010-05-30 19:55:15 +00002323 }
2324 }
drh998147e2015-12-10 02:15:03 +00002325 }
2326 if( mxI==0 ){
drh998147e2015-12-10 02:15:03 +00002327 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2328 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
2329 }
drh73b64e42010-05-30 19:55:15 +00002330
drh998147e2015-12-10 02:15:03 +00002331 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2332 if( rc ){
2333 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2334 }
2335 /* Now that the read-lock has been obtained, check that neither the
2336 ** value in the aReadMark[] array or the contents of the wal-index
2337 ** header have changed.
2338 **
2339 ** It is necessary to check that the wal-index header did not change
2340 ** between the time it was read and when the shared-lock was obtained
2341 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2342 ** that the log file may have been wrapped by a writer, or that frames
2343 ** that occur later in the log than pWal->hdr.mxFrame may have been
2344 ** copied into the database by a checkpointer. If either of these things
2345 ** happened, then reading the database with the current value of
2346 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2347 ** instead.
2348 **
2349 ** Before checking that the live wal-index header has not changed
2350 ** since it was read, set Wal.minFrame to the first frame in the wal
2351 ** file that has not yet been checkpointed. This client will not need
2352 ** to read any frames earlier than minFrame from the wal file - they
2353 ** can be safely read directly from the database file.
2354 **
2355 ** Because a ShmBarrier() call is made between taking the copy of
2356 ** nBackfill and checking that the wal-header in shared-memory still
2357 ** matches the one cached in pWal->hdr, it is guaranteed that the
2358 ** checkpointer that set nBackfill was not working with a wal-index
2359 ** header newer than that cached in pWal->hdr. If it were, that could
2360 ** cause a problem. The checkpointer could omit to checkpoint
2361 ** a version of page X that lies before pWal->minFrame (call that version
2362 ** A) on the basis that there is a newer version (version B) of the same
2363 ** page later in the wal file. But if version B happens to like past
2364 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2365 ** that it can read version A from the database file. However, since
2366 ** we can guarantee that the checkpointer that set nBackfill could not
2367 ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2368 */
2369 pWal->minFrame = pInfo->nBackfill+1;
2370 walShmBarrier(pWal);
2371 if( pInfo->aReadMark[mxI]!=mxReadMark
2372 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2373 ){
2374 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2375 return WAL_RETRY;
2376 }else{
2377 assert( mxReadMark<=pWal->hdr.mxFrame );
2378 pWal->readLock = (i16)mxI;
drh73b64e42010-05-30 19:55:15 +00002379 }
2380 return rc;
2381}
2382
2383/*
2384** Begin a read transaction on the database.
2385**
2386** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2387** it takes a snapshot of the state of the WAL and wal-index for the current
2388** instant in time. The current thread will continue to use this snapshot.
2389** Other threads might append new content to the WAL and wal-index but
2390** that extra content is ignored by the current thread.
2391**
2392** If the database contents have changes since the previous read
2393** transaction, then *pChanged is set to 1 before returning. The
2394** Pager layer will use this to know that is cache is stale and
2395** needs to be flushed.
2396*/
drh66dfec8b2011-06-01 20:01:49 +00002397int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
drh73b64e42010-05-30 19:55:15 +00002398 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00002399 int cnt = 0; /* Number of TryBeginRead attempts */
drh73b64e42010-05-30 19:55:15 +00002400
danfc1acf32015-12-05 20:51:54 +00002401#ifdef SQLITE_ENABLE_SNAPSHOT
2402 int bChanged = 0;
2403 WalIndexHdr *pSnapshot = pWal->pSnapshot;
drh998147e2015-12-10 02:15:03 +00002404 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
danfc1acf32015-12-05 20:51:54 +00002405 bChanged = 1;
2406 }
2407#endif
2408
drh73b64e42010-05-30 19:55:15 +00002409 do{
drhaab4c022010-06-02 14:45:51 +00002410 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00002411 }while( rc==WAL_RETRY );
drhab1cc742011-02-19 16:51:45 +00002412 testcase( (rc&0xff)==SQLITE_BUSY );
2413 testcase( (rc&0xff)==SQLITE_IOERR );
2414 testcase( rc==SQLITE_PROTOCOL );
2415 testcase( rc==SQLITE_OK );
danfc1acf32015-12-05 20:51:54 +00002416
2417#ifdef SQLITE_ENABLE_SNAPSHOT
2418 if( rc==SQLITE_OK ){
drh998147e2015-12-10 02:15:03 +00002419 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
dan65127cd2015-12-09 20:05:27 +00002420 /* At this point the client has a lock on an aReadMark[] slot holding
dan3bf83cc2015-12-10 15:45:15 +00002421 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2422 ** is populated with the wal-index header corresponding to the head
2423 ** of the wal file. Verify that pSnapshot is still valid before
2424 ** continuing. Reasons why pSnapshot might no longer be valid:
dan65127cd2015-12-09 20:05:27 +00002425 **
drh998147e2015-12-10 02:15:03 +00002426 ** (1) The WAL file has been reset since the snapshot was taken.
2427 ** In this case, the salt will have changed.
dan65127cd2015-12-09 20:05:27 +00002428 **
drh998147e2015-12-10 02:15:03 +00002429 ** (2) A checkpoint as been attempted that wrote frames past
2430 ** pSnapshot->mxFrame into the database file. Note that the
2431 ** checkpoint need not have completed for this to cause problems.
dan65127cd2015-12-09 20:05:27 +00002432 */
danfc1acf32015-12-05 20:51:54 +00002433 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
dan65127cd2015-12-09 20:05:27 +00002434
drh71b62fa2015-12-11 01:22:22 +00002435 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
dan65127cd2015-12-09 20:05:27 +00002436 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2437
dan3bf83cc2015-12-10 15:45:15 +00002438 /* It is possible that there is a checkpointer thread running
2439 ** concurrent with this code. If this is the case, it may be that the
2440 ** checkpointer has already determined that it will checkpoint
2441 ** snapshot X, where X is later in the wal file than pSnapshot, but
2442 ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2443 ** its intent. To avoid the race condition this leads to, ensure that
2444 ** there is no checkpointer process by taking a shared CKPT lock
2445 ** before checking pInfo->nBackfillAttempted. */
2446 rc = walLockShared(pWal, WAL_CKPT_LOCK);
2447
dana7aeb392015-12-10 19:11:34 +00002448 if( rc==SQLITE_OK ){
2449 /* Check that the wal file has not been wrapped. Assuming that it has
2450 ** not, also check that no checkpointer has attempted to checkpoint any
2451 ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2452 ** true, return SQLITE_BUSY_SNAPSHOT. Otherwise, overwrite pWal->hdr
2453 ** with *pSnapshot and set *pChanged as appropriate for opening the
2454 ** snapshot. */
2455 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2456 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2457 ){
dan0f308f52015-12-11 14:59:49 +00002458 assert( pWal->readLock>0 );
dana7aeb392015-12-10 19:11:34 +00002459 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2460 *pChanged = bChanged;
2461 }else{
2462 rc = SQLITE_BUSY_SNAPSHOT;
2463 }
2464
2465 /* Release the shared CKPT lock obtained above. */
2466 walUnlockShared(pWal, WAL_CKPT_LOCK);
danfc1acf32015-12-05 20:51:54 +00002467 }
dan65127cd2015-12-09 20:05:27 +00002468
dan3bf83cc2015-12-10 15:45:15 +00002469
danfc1acf32015-12-05 20:51:54 +00002470 if( rc!=SQLITE_OK ){
2471 sqlite3WalEndReadTransaction(pWal);
2472 }
2473 }
2474 }
2475#endif
dan7c246102010-04-12 19:00:29 +00002476 return rc;
2477}
2478
2479/*
drh73b64e42010-05-30 19:55:15 +00002480** Finish with a read transaction. All this does is release the
2481** read-lock.
dan7c246102010-04-12 19:00:29 +00002482*/
drh73b64e42010-05-30 19:55:15 +00002483void sqlite3WalEndReadTransaction(Wal *pWal){
dan73d66fd2010-08-07 16:17:48 +00002484 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00002485 if( pWal->readLock>=0 ){
2486 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2487 pWal->readLock = -1;
2488 }
dan7c246102010-04-12 19:00:29 +00002489}
2490
dan5e0ce872010-04-28 17:48:44 +00002491/*
dan99bd1092013-03-22 18:20:14 +00002492** Search the wal file for page pgno. If found, set *piRead to the frame that
2493** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2494** to zero.
drh73b64e42010-05-30 19:55:15 +00002495**
dan99bd1092013-03-22 18:20:14 +00002496** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2497** error does occur, the final value of *piRead is undefined.
dan7c246102010-04-12 19:00:29 +00002498*/
dan99bd1092013-03-22 18:20:14 +00002499int sqlite3WalFindFrame(
danbb23aff2010-05-10 14:46:09 +00002500 Wal *pWal, /* WAL handle */
2501 Pgno pgno, /* Database page number to read data for */
dan99bd1092013-03-22 18:20:14 +00002502 u32 *piRead /* OUT: Frame number (or zero) */
danb6e099a2010-05-04 14:47:39 +00002503){
danbb23aff2010-05-10 14:46:09 +00002504 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00002505 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00002506 int iHash; /* Used to loop through N hash tables */
dan6df003c2015-08-12 19:42:08 +00002507 int iMinHash;
dan7c246102010-04-12 19:00:29 +00002508
drhaab4c022010-06-02 14:45:51 +00002509 /* This routine is only be called from within a read transaction. */
2510 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00002511
danbb23aff2010-05-10 14:46:09 +00002512 /* If the "last page" field of the wal-index header snapshot is 0, then
2513 ** no data will be read from the wal under any circumstances. Return early
drha927e942010-06-24 02:46:48 +00002514 ** in this case as an optimization. Likewise, if pWal->readLock==0,
2515 ** then the WAL is ignored by the reader so return early, as if the
2516 ** WAL were empty.
danbb23aff2010-05-10 14:46:09 +00002517 */
drh73b64e42010-05-30 19:55:15 +00002518 if( iLast==0 || pWal->readLock==0 ){
dan99bd1092013-03-22 18:20:14 +00002519 *piRead = 0;
danbb23aff2010-05-10 14:46:09 +00002520 return SQLITE_OK;
2521 }
2522
danbb23aff2010-05-10 14:46:09 +00002523 /* Search the hash table or tables for an entry matching page number
2524 ** pgno. Each iteration of the following for() loop searches one
2525 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2526 **
drha927e942010-06-24 02:46:48 +00002527 ** This code might run concurrently to the code in walIndexAppend()
danbb23aff2010-05-10 14:46:09 +00002528 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00002529 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00002530 ** slot (aHash[iKey]) may have been added before or after the
2531 ** current read transaction was opened. Values added after the
2532 ** read transaction was opened may have been written incorrectly -
2533 ** i.e. these slots may contain garbage data. However, we assume
2534 ** that any slots written before the current read transaction was
2535 ** opened remain unmodified.
2536 **
2537 ** For the reasons above, the if(...) condition featured in the inner
2538 ** loop of the following block is more stringent that would be required
2539 ** if we had exclusive access to the hash-table:
2540 **
2541 ** (aPgno[iFrame]==pgno):
2542 ** This condition filters out normal hash-table collisions.
2543 **
2544 ** (iFrame<=iLast):
2545 ** This condition filters out entries that were added to the hash
2546 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00002547 */
danb8c7cfb2015-08-13 20:23:46 +00002548 iMinHash = walFramePage(pWal->minFrame);
dan6df003c2015-08-12 19:42:08 +00002549 for(iHash=walFramePage(iLast); iHash>=iMinHash && iRead==0; iHash--){
dan067f3162010-06-14 10:30:12 +00002550 volatile ht_slot *aHash; /* Pointer to hash table */
2551 volatile u32 *aPgno; /* Pointer to array of page numbers */
danbb23aff2010-05-10 14:46:09 +00002552 u32 iZero; /* Frame number corresponding to aPgno[0] */
2553 int iKey; /* Hash slot index */
drh519426a2010-07-09 03:19:07 +00002554 int nCollide; /* Number of hash collisions remaining */
2555 int rc; /* Error code */
danbb23aff2010-05-10 14:46:09 +00002556
dan4280eb32010-06-12 12:02:35 +00002557 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2558 if( rc!=SQLITE_OK ){
2559 return rc;
2560 }
drh519426a2010-07-09 03:19:07 +00002561 nCollide = HASHTABLE_NSLOT;
dan6f150142010-05-21 15:31:56 +00002562 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
danbb23aff2010-05-10 14:46:09 +00002563 u32 iFrame = aHash[iKey] + iZero;
danb8c7cfb2015-08-13 20:23:46 +00002564 if( iFrame<=iLast && iFrame>=pWal->minFrame && aPgno[aHash[iKey]]==pgno ){
drh622a53d2014-12-29 11:50:39 +00002565 assert( iFrame>iRead || CORRUPT_DB );
danbb23aff2010-05-10 14:46:09 +00002566 iRead = iFrame;
2567 }
drh519426a2010-07-09 03:19:07 +00002568 if( (nCollide--)==0 ){
2569 return SQLITE_CORRUPT_BKPT;
2570 }
dan7c246102010-04-12 19:00:29 +00002571 }
2572 }
dan7c246102010-04-12 19:00:29 +00002573
danbb23aff2010-05-10 14:46:09 +00002574#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2575 /* If expensive assert() statements are available, do a linear search
2576 ** of the wal-index file content. Make sure the results agree with the
2577 ** result obtained using the hash indexes above. */
2578 {
2579 u32 iRead2 = 0;
2580 u32 iTest;
dan5c472d02015-09-09 19:44:33 +00002581 assert( pWal->minFrame>0 );
2582 for(iTest=iLast; iTest>=pWal->minFrame; iTest--){
dan13a3cb82010-06-11 19:04:21 +00002583 if( walFramePgno(pWal, iTest)==pgno ){
danbb23aff2010-05-10 14:46:09 +00002584 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00002585 break;
2586 }
dan7c246102010-04-12 19:00:29 +00002587 }
danbb23aff2010-05-10 14:46:09 +00002588 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00002589 }
danbb23aff2010-05-10 14:46:09 +00002590#endif
dancd11fb22010-04-26 10:40:52 +00002591
dan99bd1092013-03-22 18:20:14 +00002592 *piRead = iRead;
dan7c246102010-04-12 19:00:29 +00002593 return SQLITE_OK;
2594}
2595
dan99bd1092013-03-22 18:20:14 +00002596/*
2597** Read the contents of frame iRead from the wal file into buffer pOut
2598** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2599** error code otherwise.
2600*/
2601int sqlite3WalReadFrame(
2602 Wal *pWal, /* WAL handle */
2603 u32 iRead, /* Frame to read */
2604 int nOut, /* Size of buffer pOut in bytes */
2605 u8 *pOut /* Buffer to write page data to */
2606){
2607 int sz;
2608 i64 iOffset;
2609 sz = pWal->hdr.szPage;
2610 sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2611 testcase( sz<=32768 );
2612 testcase( sz>=65536 );
2613 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2614 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2615 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2616}
dan7c246102010-04-12 19:00:29 +00002617
2618/*
dan763afe62010-08-03 06:42:39 +00002619** Return the size of the database in pages (or zero, if unknown).
dan7c246102010-04-12 19:00:29 +00002620*/
dan763afe62010-08-03 06:42:39 +00002621Pgno sqlite3WalDbsize(Wal *pWal){
drh7e9e70b2010-08-16 14:17:59 +00002622 if( pWal && ALWAYS(pWal->readLock>=0) ){
dan763afe62010-08-03 06:42:39 +00002623 return pWal->hdr.nPage;
2624 }
2625 return 0;
dan7c246102010-04-12 19:00:29 +00002626}
2627
adam02d24932012-05-09 22:36:25 +00002628/*
drh73b64e42010-05-30 19:55:15 +00002629** This function starts a write transaction on the WAL.
2630**
2631** A read transaction must have already been started by a prior call
2632** to sqlite3WalBeginReadTransaction().
2633**
2634** If another thread or process has written into the database since
2635** the read transaction was started, then it is not possible for this
2636** thread to write as doing so would cause a fork. So this routine
2637** returns SQLITE_BUSY in that case and no write transaction is started.
2638**
2639** There can only be a single writer active at a time.
2640*/
2641int sqlite3WalBeginWriteTransaction(Wal *pWal){
2642 int rc;
drh73b64e42010-05-30 19:55:15 +00002643
2644 /* Cannot start a write transaction without first holding a read
2645 ** transaction. */
2646 assert( pWal->readLock>=0 );
danc9a90222016-01-09 18:57:35 +00002647 assert( pWal->writeLock==0 && pWal->iReCksum==0 );
drh73b64e42010-05-30 19:55:15 +00002648
dan1e5de5a2010-07-15 18:20:53 +00002649 if( pWal->readOnly ){
2650 return SQLITE_READONLY;
2651 }
2652
drh73b64e42010-05-30 19:55:15 +00002653 /* Only one writer allowed at a time. Get the write lock. Return
2654 ** SQLITE_BUSY if unable.
2655 */
drhab372772015-12-02 16:10:16 +00002656 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
drh73b64e42010-05-30 19:55:15 +00002657 if( rc ){
2658 return rc;
2659 }
drhc99597c2010-05-31 01:41:15 +00002660 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00002661
2662 /* If another connection has written to the database file since the
2663 ** time the read transaction on this connection was started, then
2664 ** the write is disallowed.
2665 */
dan4280eb32010-06-12 12:02:35 +00002666 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
drh73b64e42010-05-30 19:55:15 +00002667 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00002668 pWal->writeLock = 0;
danf73819a2013-06-27 11:46:27 +00002669 rc = SQLITE_BUSY_SNAPSHOT;
drh73b64e42010-05-30 19:55:15 +00002670 }
2671
drh7ed91f22010-04-29 22:34:07 +00002672 return rc;
dan7c246102010-04-12 19:00:29 +00002673}
2674
dan74d6cd82010-04-24 18:44:05 +00002675/*
drh73b64e42010-05-30 19:55:15 +00002676** End a write transaction. The commit has already been done. This
2677** routine merely releases the lock.
2678*/
2679int sqlite3WalEndWriteTransaction(Wal *pWal){
danda9fe0c2010-07-13 18:44:03 +00002680 if( pWal->writeLock ){
2681 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2682 pWal->writeLock = 0;
danc9a90222016-01-09 18:57:35 +00002683 pWal->iReCksum = 0;
danf60b7f32011-12-16 13:24:27 +00002684 pWal->truncateOnCommit = 0;
danda9fe0c2010-07-13 18:44:03 +00002685 }
drh73b64e42010-05-30 19:55:15 +00002686 return SQLITE_OK;
2687}
2688
2689/*
dan74d6cd82010-04-24 18:44:05 +00002690** If any data has been written (but not committed) to the log file, this
2691** function moves the write-pointer back to the start of the transaction.
2692**
2693** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00002694** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00002695** other than SQLITE_OK, it is not invoked again and the error code is
2696** returned to the caller.
2697**
2698** Otherwise, if the callback function does not return an error, this
2699** function returns SQLITE_OK.
2700*/
drh7ed91f22010-04-29 22:34:07 +00002701int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00002702 int rc = SQLITE_OK;
drh7e9e70b2010-08-16 14:17:59 +00002703 if( ALWAYS(pWal->writeLock) ){
drh027a1282010-05-19 01:53:53 +00002704 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00002705 Pgno iFrame;
2706
dan5d656852010-06-14 07:53:26 +00002707 /* Restore the clients cache of the wal-index header to the state it
2708 ** was in before the client began writing to the database.
2709 */
dan067f3162010-06-14 10:30:12 +00002710 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
dan5d656852010-06-14 07:53:26 +00002711
2712 for(iFrame=pWal->hdr.mxFrame+1;
drh664f85d2014-11-19 14:05:41 +00002713 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
dan5d656852010-06-14 07:53:26 +00002714 iFrame++
2715 ){
2716 /* This call cannot fail. Unless the page for which the page number
2717 ** is passed as the second argument is (a) in the cache and
2718 ** (b) has an outstanding reference, then xUndo is either a no-op
2719 ** (if (a) is false) or simply expels the page from the cache (if (b)
2720 ** is false).
2721 **
2722 ** If the upper layer is doing a rollback, it is guaranteed that there
2723 ** are no outstanding references to any page other than page 1. And
2724 ** page 1 is never written to the log until the transaction is
2725 ** committed. As a result, the call to xUndo may not fail.
2726 */
dan5d656852010-06-14 07:53:26 +00002727 assert( walFramePgno(pWal, iFrame)!=1 );
2728 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
dan6f150142010-05-21 15:31:56 +00002729 }
dan7eb05752012-10-15 11:28:24 +00002730 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
dan74d6cd82010-04-24 18:44:05 +00002731 }
2732 return rc;
2733}
2734
dan71d89912010-05-24 13:57:42 +00002735/*
2736** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2737** values. This function populates the array with values required to
2738** "rollback" the write position of the WAL handle back to the current
2739** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00002740*/
dan71d89912010-05-24 13:57:42 +00002741void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00002742 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00002743 aWalData[0] = pWal->hdr.mxFrame;
2744 aWalData[1] = pWal->hdr.aFrameCksum[0];
2745 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00002746 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00002747}
2748
dan71d89912010-05-24 13:57:42 +00002749/*
2750** Move the write position of the WAL back to the point identified by
2751** the values in the aWalData[] array. aWalData must point to an array
2752** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2753** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00002754*/
dan71d89912010-05-24 13:57:42 +00002755int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00002756 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00002757
dan6e6bd562010-06-02 18:59:03 +00002758 assert( pWal->writeLock );
2759 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2760
2761 if( aWalData[3]!=pWal->nCkpt ){
2762 /* This savepoint was opened immediately after the write-transaction
2763 ** was started. Right after that, the writer decided to wrap around
2764 ** to the start of the log. Update the savepoint values to match.
2765 */
2766 aWalData[0] = 0;
2767 aWalData[3] = pWal->nCkpt;
2768 }
2769
dan71d89912010-05-24 13:57:42 +00002770 if( aWalData[0]<pWal->hdr.mxFrame ){
dan71d89912010-05-24 13:57:42 +00002771 pWal->hdr.mxFrame = aWalData[0];
2772 pWal->hdr.aFrameCksum[0] = aWalData[1];
2773 pWal->hdr.aFrameCksum[1] = aWalData[2];
dan5d656852010-06-14 07:53:26 +00002774 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00002775 }
dan6e6bd562010-06-02 18:59:03 +00002776
dan4cd78b42010-04-26 16:57:10 +00002777 return rc;
2778}
2779
dan9971e712010-06-01 15:44:57 +00002780/*
2781** This function is called just before writing a set of frames to the log
2782** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2783** to the current log file, it is possible to overwrite the start of the
2784** existing log file with the new frames (i.e. "reset" the log). If so,
2785** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2786** unchanged.
2787**
2788** SQLITE_OK is returned if no error is encountered (regardless of whether
2789** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
drh4533cd02010-10-05 15:41:05 +00002790** if an error occurs.
dan9971e712010-06-01 15:44:57 +00002791*/
2792static int walRestartLog(Wal *pWal){
2793 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00002794 int cnt;
2795
dan13a3cb82010-06-11 19:04:21 +00002796 if( pWal->readLock==0 ){
dan9971e712010-06-01 15:44:57 +00002797 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2798 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2799 if( pInfo->nBackfill>0 ){
drh658d76c2011-02-19 15:22:14 +00002800 u32 salt1;
2801 sqlite3_randomness(4, &salt1);
drhab372772015-12-02 16:10:16 +00002802 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
dan9971e712010-06-01 15:44:57 +00002803 if( rc==SQLITE_OK ){
2804 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2805 ** readers are currently using the WAL), then the transactions
2806 ** frames will overwrite the start of the existing log. Update the
2807 ** wal-index header to reflect this.
2808 **
2809 ** In theory it would be Ok to update the cache of the header only
2810 ** at this point. But updating the actual wal-index header is also
2811 ** safe and means there is no special case for sqlite3WalUndo()
danf26a1542014-12-02 19:04:54 +00002812 ** to handle if this transaction is rolled back. */
dan0fe8c1b2014-12-02 19:35:09 +00002813 walRestartHdr(pWal, salt1);
dan9971e712010-06-01 15:44:57 +00002814 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
drh4533cd02010-10-05 15:41:05 +00002815 }else if( rc!=SQLITE_BUSY ){
2816 return rc;
dan9971e712010-06-01 15:44:57 +00002817 }
2818 }
2819 walUnlockShared(pWal, WAL_READ_LOCK(0));
2820 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00002821 cnt = 0;
dan9971e712010-06-01 15:44:57 +00002822 do{
2823 int notUsed;
drhaab4c022010-06-02 14:45:51 +00002824 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00002825 }while( rc==WAL_RETRY );
drhc90e0812011-02-19 17:02:44 +00002826 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
drhab1cc742011-02-19 16:51:45 +00002827 testcase( (rc&0xff)==SQLITE_IOERR );
2828 testcase( rc==SQLITE_PROTOCOL );
2829 testcase( rc==SQLITE_OK );
dan9971e712010-06-01 15:44:57 +00002830 }
2831 return rc;
2832}
2833
drh88f975a2011-12-16 19:34:36 +00002834/*
drhd992b152011-12-20 20:13:25 +00002835** Information about the current state of the WAL file and where
2836** the next fsync should occur - passed from sqlite3WalFrames() into
2837** walWriteToLog().
2838*/
2839typedef struct WalWriter {
2840 Wal *pWal; /* The complete WAL information */
2841 sqlite3_file *pFd; /* The WAL file to which we write */
2842 sqlite3_int64 iSyncPoint; /* Fsync at this offset */
2843 int syncFlags; /* Flags for the fsync */
2844 int szPage; /* Size of one page */
adam0cb33b62012-04-02 23:35:45 +00002845#if defined(SQLITE_WRITE_WALFRAME_PREBUFFERED)
2846 void *aFrameBuf; /* Frame buffer */
2847 size_t szFrameBuf; /* Size of frame buffer */
2848#endif
drhd992b152011-12-20 20:13:25 +00002849} WalWriter;
2850
2851/*
drh88f975a2011-12-16 19:34:36 +00002852** Write iAmt bytes of content into the WAL file beginning at iOffset.
drhd992b152011-12-20 20:13:25 +00002853** Do a sync when crossing the p->iSyncPoint boundary.
drh88f975a2011-12-16 19:34:36 +00002854**
drhd992b152011-12-20 20:13:25 +00002855** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
2856** first write the part before iSyncPoint, then sync, then write the
2857** rest.
drh88f975a2011-12-16 19:34:36 +00002858*/
2859static int walWriteToLog(
drhd992b152011-12-20 20:13:25 +00002860 WalWriter *p, /* WAL to write to */
drh88f975a2011-12-16 19:34:36 +00002861 void *pContent, /* Content to be written */
2862 int iAmt, /* Number of bytes to write */
2863 sqlite3_int64 iOffset /* Start writing at this offset */
2864){
2865 int rc;
drhd992b152011-12-20 20:13:25 +00002866 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
2867 int iFirstAmt = (int)(p->iSyncPoint - iOffset);
2868 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
drh88f975a2011-12-16 19:34:36 +00002869 if( rc ) return rc;
drhd992b152011-12-20 20:13:25 +00002870 iOffset += iFirstAmt;
2871 iAmt -= iFirstAmt;
drh88f975a2011-12-16 19:34:36 +00002872 pContent = (void*)(iFirstAmt + (char*)pContent);
drhd992b152011-12-20 20:13:25 +00002873 assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) );
dane5b6ea72014-02-13 18:46:59 +00002874 rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK);
drhcc8d10a2011-12-23 02:07:10 +00002875 if( iAmt==0 || rc ) return rc;
drh88f975a2011-12-16 19:34:36 +00002876 }
drhd992b152011-12-20 20:13:25 +00002877 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
2878 return rc;
2879}
2880
2881/*
2882** Write out a single frame of the WAL
2883*/
2884static int walWriteOneFrame(
2885 WalWriter *p, /* Where to write the frame */
2886 PgHdr *pPage, /* The page of the frame to be written */
2887 int nTruncate, /* The commit flag. Usually 0. >0 for commit */
2888 sqlite3_int64 iOffset /* Byte offset at which to write */
2889){
2890 int rc; /* Result code from subfunctions */
2891 void *pData; /* Data actually written */
adam0cb33b62012-04-02 23:35:45 +00002892#if defined(SQLITE_WRITE_WALFRAME_PREBUFFERED)
drh79911372016-03-08 16:35:17 +00002893 u8 *aFrame = p->aFrameBuf;
adam0cb33b62012-04-02 23:35:45 +00002894#else
drhd992b152011-12-20 20:13:25 +00002895 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
adam0cb33b62012-04-02 23:35:45 +00002896#endif
2897
drhd992b152011-12-20 20:13:25 +00002898#if defined(SQLITE_HAS_CODEC)
mistachkinfad30392016-02-13 23:43:46 +00002899 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT;
drhd992b152011-12-20 20:13:25 +00002900#else
2901 pData = pPage->pData;
2902#endif
adam0cb33b62012-04-02 23:35:45 +00002903
drhd992b152011-12-20 20:13:25 +00002904 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
adam0cb33b62012-04-02 23:35:45 +00002905
2906#if defined(SQLITE_WRITE_WALFRAME_PREBUFFERED)
2907 memcpy(&aFrame[WAL_FRAME_HDRSIZE], pData, p->szPage);
2908 rc = walWriteToLog(p, aFrame, (p->szPage + WAL_FRAME_HDRSIZE), iOffset);
2909#else
drhd992b152011-12-20 20:13:25 +00002910 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
2911 if( rc ) return rc;
2912 /* Write the page data */
2913 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
adam0cb33b62012-04-02 23:35:45 +00002914#endif
drh88f975a2011-12-16 19:34:36 +00002915 return rc;
2916}
2917
dand6f7c972016-01-09 16:39:29 +00002918/*
2919** This function is called as part of committing a transaction within which
2920** one or more frames have been overwritten. It updates the checksums for
danc9a90222016-01-09 18:57:35 +00002921** all frames written to the wal file by the current transaction starting
2922** with the earliest to have been overwritten.
dand6f7c972016-01-09 16:39:29 +00002923**
2924** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
2925*/
danc9a90222016-01-09 18:57:35 +00002926static int walRewriteChecksums(Wal *pWal, u32 iLast){
dand6f7c972016-01-09 16:39:29 +00002927 const int szPage = pWal->szPage;/* Database page size */
2928 int rc = SQLITE_OK; /* Return code */
2929 u8 *aBuf; /* Buffer to load data from wal file into */
2930 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */
2931 u32 iRead; /* Next frame to read from wal file */
danc9a90222016-01-09 18:57:35 +00002932 i64 iCksumOff;
dand6f7c972016-01-09 16:39:29 +00002933
2934 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
mistachkinfad30392016-02-13 23:43:46 +00002935 if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
dand6f7c972016-01-09 16:39:29 +00002936
danc9a90222016-01-09 18:57:35 +00002937 /* Find the checksum values to use as input for the recalculating the
2938 ** first checksum. If the first frame is frame 1 (implying that the current
2939 ** transaction restarted the wal file), these values must be read from the
2940 ** wal-file header. Otherwise, read them from the frame header of the
2941 ** previous frame. */
2942 assert( pWal->iReCksum>0 );
2943 if( pWal->iReCksum==1 ){
2944 iCksumOff = 24;
dand6f7c972016-01-09 16:39:29 +00002945 }else{
danc9a90222016-01-09 18:57:35 +00002946 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
dand6f7c972016-01-09 16:39:29 +00002947 }
danc9a90222016-01-09 18:57:35 +00002948 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
2949 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
2950 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
dand6f7c972016-01-09 16:39:29 +00002951
danc9a90222016-01-09 18:57:35 +00002952 iRead = pWal->iReCksum;
2953 pWal->iReCksum = 0;
2954 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
dand6f7c972016-01-09 16:39:29 +00002955 i64 iOff = walFrameOffset(iRead, szPage);
2956 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
2957 if( rc==SQLITE_OK ){
2958 u32 iPgno, nDbSize;
2959 iPgno = sqlite3Get4byte(aBuf);
2960 nDbSize = sqlite3Get4byte(&aBuf[4]);
2961
2962 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
2963 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
2964 }
2965 }
2966
2967 sqlite3_free(aBuf);
2968 return rc;
2969}
2970
dan7c246102010-04-12 19:00:29 +00002971/*
dan4cd78b42010-04-26 16:57:10 +00002972** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00002973** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00002974*/
drhc438efd2010-04-26 00:19:45 +00002975int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00002976 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00002977 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00002978 PgHdr *pList, /* List of dirty pages to write */
2979 Pgno nTruncate, /* Database size after this commit */
2980 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00002981 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00002982){
dan7c246102010-04-12 19:00:29 +00002983 int rc; /* Used to catch return codes */
2984 u32 iFrame; /* Next frame address */
dan7c246102010-04-12 19:00:29 +00002985 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00002986 PgHdr *pLast = 0; /* Last frame in list */
drhd992b152011-12-20 20:13:25 +00002987 int nExtra = 0; /* Number of extra copies of last page */
2988 int szFrame; /* The size of a single frame */
2989 i64 iOffset; /* Next byte to write in WAL file */
2990 WalWriter w; /* The writer */
dand6f7c972016-01-09 16:39:29 +00002991 u32 iFirst = 0; /* First frame that may be overwritten */
2992 WalIndexHdr *pLive; /* Pointer to shared header */
dan7c246102010-04-12 19:00:29 +00002993
dan7c246102010-04-12 19:00:29 +00002994 assert( pList );
drh73b64e42010-05-30 19:55:15 +00002995 assert( pWal->writeLock );
dan7c246102010-04-12 19:00:29 +00002996
drh41209942011-12-20 13:13:09 +00002997 /* If this frame set completes a transaction, then nTruncate>0. If
2998 ** nTruncate==0 then this frame set does not complete the transaction. */
2999 assert( (isCommit!=0)==(nTruncate!=0) );
3000
drhc74c3332010-05-31 12:15:19 +00003001#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3002 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3003 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3004 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3005 }
3006#endif
3007
dand6f7c972016-01-09 16:39:29 +00003008 pLive = (WalIndexHdr*)walIndexHdr(pWal);
drhb7c2f862016-01-09 23:55:47 +00003009 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
dand6f7c972016-01-09 16:39:29 +00003010 iFirst = pLive->mxFrame+1;
3011 }
3012
dan9971e712010-06-01 15:44:57 +00003013 /* See if it is possible to write these frames into the start of the
3014 ** log file, instead of appending to it at pWal->hdr.mxFrame.
3015 */
3016 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
dan9971e712010-06-01 15:44:57 +00003017 return rc;
3018 }
dan9971e712010-06-01 15:44:57 +00003019
drha2a42012010-05-18 18:01:08 +00003020 /* If this is the first frame written into the log, write the WAL
3021 ** header to the start of the WAL file. See comments at the top of
3022 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00003023 */
drh027a1282010-05-19 01:53:53 +00003024 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00003025 if( iFrame==0 ){
dan10f5a502010-06-23 15:55:43 +00003026 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
3027 u32 aCksum[2]; /* Checksum for wal-header */
3028
danb8fd6c22010-05-24 10:39:36 +00003029 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
dan10f5a502010-06-23 15:55:43 +00003030 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
drh23ea97b2010-05-20 16:45:58 +00003031 sqlite3Put4byte(&aWalHdr[8], szPage);
3032 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drhd2980312011-12-17 01:31:44 +00003033 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
drh7e263722010-05-20 21:21:09 +00003034 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
dan10f5a502010-06-23 15:55:43 +00003035 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3036 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3037 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3038
drhb2eced52010-08-12 02:41:12 +00003039 pWal->szPage = szPage;
dan10f5a502010-06-23 15:55:43 +00003040 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3041 pWal->hdr.aFrameCksum[0] = aCksum[0];
3042 pWal->hdr.aFrameCksum[1] = aCksum[1];
danf60b7f32011-12-16 13:24:27 +00003043 pWal->truncateOnCommit = 1;
dan10f5a502010-06-23 15:55:43 +00003044
drh23ea97b2010-05-20 16:45:58 +00003045 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00003046 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00003047 if( rc!=SQLITE_OK ){
3048 return rc;
3049 }
drhd992b152011-12-20 20:13:25 +00003050
3051 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3052 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
3053 ** an out-of-order write following a WAL restart could result in
3054 ** database corruption. See the ticket:
3055 **
3056 ** http://localhost:591/sqlite/info/ff5be73dee
3057 */
3058 if( pWal->syncHeader && sync_flags ){
3059 rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK);
3060 if( rc ) return rc;
3061 }
dan97a31352010-04-16 13:59:31 +00003062 }
shanehbd2aaf92010-09-01 02:38:21 +00003063 assert( (int)pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00003064
drhd992b152011-12-20 20:13:25 +00003065 /* Setup information needed to write frames into the WAL */
3066 w.pWal = pWal;
3067 w.pFd = pWal->pWalFd;
3068 w.iSyncPoint = 0;
3069 w.syncFlags = sync_flags;
3070 w.szPage = szPage;
3071 iOffset = walFrameOffset(iFrame+1, szPage);
3072 szFrame = szPage + WAL_FRAME_HDRSIZE;
adam0cb33b62012-04-02 23:35:45 +00003073#if defined(SQLITE_WRITE_WALFRAME_PREBUFFERED)
3074 w.aFrameBuf = (void *)malloc(szFrame);
3075 if( NULL==w.aFrameBuf ){
3076 return SQLITE_NOMEM;
3077 }
3078#endif
3079
dan7c246102010-04-12 19:00:29 +00003080
drhd992b152011-12-20 20:13:25 +00003081 /* Write all frames into the log file exactly once */
dan7c246102010-04-12 19:00:29 +00003082 for(p=pList; p; p=p->pDirty){
drhd992b152011-12-20 20:13:25 +00003083 int nDbSize; /* 0 normally. Positive == commit flag */
dand6f7c972016-01-09 16:39:29 +00003084
3085 /* Check if this page has already been written into the wal file by
3086 ** the current transaction. If so, overwrite the existing frame and
3087 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3088 ** checksums must be recomputed when the transaction is committed. */
3089 if( iFirst && (p->pDirty || isCommit==0) ){
3090 u32 iWrite = 0;
drh89970872016-01-11 00:52:32 +00003091 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3092 assert( rc==SQLITE_OK || iWrite==0 );
dand6f7c972016-01-09 16:39:29 +00003093 if( iWrite>=iFirst ){
3094 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
drh8e0cea12016-02-15 15:06:47 +00003095 void *pData;
danc9a90222016-01-09 18:57:35 +00003096 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3097 pWal->iReCksum = iWrite;
3098 }
drh8e0cea12016-02-15 15:06:47 +00003099#if defined(SQLITE_HAS_CODEC)
3100 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
3101#else
3102 pData = p->pData;
3103#endif
3104 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
dand6f7c972016-01-09 16:39:29 +00003105 if( rc ) return rc;
3106 p->flags &= ~PGHDR_WAL_APPEND;
3107 continue;
3108 }
3109 }
3110
drhd992b152011-12-20 20:13:25 +00003111 iFrame++;
3112 assert( iOffset==walFrameOffset(iFrame, szPage) );
3113 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3114 rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
drh264b78a2016-02-18 01:22:53 +00003115 if( rc ) {
3116#if defined(SQLITE_WRITE_WALFRAME_PREBUFFERED)
3117 free(w.aFrameBuf);
3118#endif
3119 return rc;
3120 }
dan7c246102010-04-12 19:00:29 +00003121 pLast = p;
drhd992b152011-12-20 20:13:25 +00003122 iOffset += szFrame;
dand6f7c972016-01-09 16:39:29 +00003123 p->flags |= PGHDR_WAL_APPEND;
3124 }
3125
3126 /* Recalculate checksums within the wal file if required. */
danc9a90222016-01-09 18:57:35 +00003127 if( isCommit && pWal->iReCksum ){
3128 rc = walRewriteChecksums(pWal, iFrame);
dand6f7c972016-01-09 16:39:29 +00003129 if( rc ) return rc;
dan7c246102010-04-12 19:00:29 +00003130 }
3131
drhd992b152011-12-20 20:13:25 +00003132 /* If this is the end of a transaction, then we might need to pad
3133 ** the transaction and/or sync the WAL file.
3134 **
3135 ** Padding and syncing only occur if this set of frames complete a
3136 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
peter.d.reid60ec9142014-09-06 16:39:46 +00003137 ** or synchronous==OFF, then no padding or syncing are needed.
drhd992b152011-12-20 20:13:25 +00003138 **
drhcb15f352011-12-23 01:04:17 +00003139 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3140 ** needed and only the sync is done. If padding is needed, then the
3141 ** final frame is repeated (with its commit mark) until the next sector
drhd992b152011-12-20 20:13:25 +00003142 ** boundary is crossed. Only the part of the WAL prior to the last
3143 ** sector boundary is synced; the part of the last frame that extends
3144 ** past the sector boundary is written after the sync.
3145 */
drh4eb02a42011-12-16 21:26:26 +00003146 if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){
danfe912512016-05-24 16:20:51 +00003147 int bSync = 1;
drh374f4a02011-12-17 20:02:11 +00003148 if( pWal->padToSectorBoundary ){
danc9a53262012-10-01 06:50:55 +00003149 int sectorSize = sqlite3SectorSize(pWal->pWalFd);
drhd992b152011-12-20 20:13:25 +00003150 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
danfe912512016-05-24 16:20:51 +00003151 bSync = (w.iSyncPoint==iOffset);
3152 testcase( bSync );
drhd992b152011-12-20 20:13:25 +00003153 while( iOffset<w.iSyncPoint ){
3154 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
drh264b78a2016-02-18 01:22:53 +00003155 if( rc ) {
3156#if defined(SQLITE_WRITE_WALFRAME_PREBUFFERED)
3157 free(w.aFrameBuf);
3158#endif
3159 return rc;
3160 }
drhd992b152011-12-20 20:13:25 +00003161 iOffset += szFrame;
3162 nExtra++;
dan7c246102010-04-12 19:00:29 +00003163 }
danfe912512016-05-24 16:20:51 +00003164 }
3165 if( bSync ){
3166 assert( rc==SQLITE_OK );
drh4e5e1082011-12-23 13:32:07 +00003167 rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK);
dan7c246102010-04-12 19:00:29 +00003168 }
dan7c246102010-04-12 19:00:29 +00003169 }
dan7c246102010-04-12 19:00:29 +00003170
adam0cb33b62012-04-02 23:35:45 +00003171#if defined(SQLITE_WRITE_WALFRAME_PREBUFFERED)
3172 free(w.aFrameBuf);
3173#endif
drhd992b152011-12-20 20:13:25 +00003174 /* If this frame set completes the first transaction in the WAL and
3175 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3176 ** journal size limit, if possible.
3177 */
danf60b7f32011-12-16 13:24:27 +00003178 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3179 i64 sz = pWal->mxWalSize;
drhd992b152011-12-20 20:13:25 +00003180 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3181 sz = walFrameOffset(iFrame+nExtra+1, szPage);
danf60b7f32011-12-16 13:24:27 +00003182 }
3183 walLimitSize(pWal, sz);
3184 pWal->truncateOnCommit = 0;
dan7c246102010-04-12 19:00:29 +00003185 }
3186
drhe730fec2010-05-18 12:56:50 +00003187 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00003188 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00003189 ** guarantees that there are no other writers, and no data that may
3190 ** be in use by existing readers is being overwritten.
3191 */
drh027a1282010-05-19 01:53:53 +00003192 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00003193 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dand6f7c972016-01-09 16:39:29 +00003194 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
dan7c246102010-04-12 19:00:29 +00003195 iFrame++;
danc7991bd2010-05-05 19:04:59 +00003196 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00003197 }
drh20e226d2012-01-01 13:58:53 +00003198 while( rc==SQLITE_OK && nExtra>0 ){
dan7c246102010-04-12 19:00:29 +00003199 iFrame++;
drhd992b152011-12-20 20:13:25 +00003200 nExtra--;
danc7991bd2010-05-05 19:04:59 +00003201 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00003202 }
3203
danc7991bd2010-05-05 19:04:59 +00003204 if( rc==SQLITE_OK ){
3205 /* Update the private copy of the header. */
shaneh1df2db72010-08-18 02:28:48 +00003206 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00003207 testcase( szPage<=32768 );
3208 testcase( szPage>=65536 );
drh027a1282010-05-19 01:53:53 +00003209 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00003210 if( isCommit ){
3211 pWal->hdr.iChange++;
3212 pWal->hdr.nPage = nTruncate;
3213 }
danc7991bd2010-05-05 19:04:59 +00003214 /* If this is a commit, update the wal-index header too. */
3215 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00003216 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00003217 pWal->iCallback = iFrame;
3218 }
dan7c246102010-04-12 19:00:29 +00003219 }
danc7991bd2010-05-05 19:04:59 +00003220
drhc74c3332010-05-31 12:15:19 +00003221 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00003222 return rc;
dan7c246102010-04-12 19:00:29 +00003223}
3224
3225/*
drh73b64e42010-05-30 19:55:15 +00003226** This routine is called to implement sqlite3_wal_checkpoint() and
3227** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00003228**
drh73b64e42010-05-30 19:55:15 +00003229** Obtain a CHECKPOINT lock and then backfill as much information as
3230** we can from WAL into the database.
dana58f26f2010-11-16 18:56:51 +00003231**
3232** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3233** callback. In this case this function runs a blocking checkpoint.
dan7c246102010-04-12 19:00:29 +00003234*/
drhc438efd2010-04-26 00:19:45 +00003235int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00003236 Wal *pWal, /* Wal connection */
drhdd90d7e2014-12-03 19:25:41 +00003237 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */
dana58f26f2010-11-16 18:56:51 +00003238 int (*xBusy)(void*), /* Function to call when busy */
3239 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00003240 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00003241 int nBuf, /* Size of temporary buffer */
dancdc1f042010-11-18 12:11:05 +00003242 u8 *zBuf, /* Temporary buffer to use */
3243 int *pnLog, /* OUT: Number of frames in WAL */
3244 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
dan7c246102010-04-12 19:00:29 +00003245){
danb9bf16b2010-04-14 11:23:30 +00003246 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00003247 int isChanged = 0; /* True if a new wal-index header is loaded */
danf2b8dd52010-11-18 19:28:01 +00003248 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
drhdd90d7e2014-12-03 19:25:41 +00003249 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */
dan7c246102010-04-12 19:00:29 +00003250
dand54ff602010-05-31 11:16:30 +00003251 assert( pWal->ckptLock==0 );
dana58f26f2010-11-16 18:56:51 +00003252 assert( pWal->writeLock==0 );
dan39c79f52010-04-15 10:58:51 +00003253
drhdd90d7e2014-12-03 19:25:41 +00003254 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3255 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3256 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3257
drh66dfec8b2011-06-01 20:01:49 +00003258 if( pWal->readOnly ) return SQLITE_READONLY;
drhc74c3332010-05-31 12:15:19 +00003259 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drhdd90d7e2014-12-03 19:25:41 +00003260
3261 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3262 ** "checkpoint" lock on the database file. */
drhab372772015-12-02 16:10:16 +00003263 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
drh73b64e42010-05-30 19:55:15 +00003264 if( rc ){
drhdd90d7e2014-12-03 19:25:41 +00003265 /* EVIDENCE-OF: R-10421-19736 If any other process is running a
3266 ** checkpoint operation at the same time, the lock cannot be obtained and
3267 ** SQLITE_BUSY is returned.
3268 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3269 ** it will not be invoked in this case.
3270 */
3271 testcase( rc==SQLITE_BUSY );
3272 testcase( xBusy!=0 );
danb9bf16b2010-04-14 11:23:30 +00003273 return rc;
3274 }
dand54ff602010-05-31 11:16:30 +00003275 pWal->ckptLock = 1;
dan64d039e2010-04-13 19:27:31 +00003276
drhdd90d7e2014-12-03 19:25:41 +00003277 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3278 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3279 ** file.
danf2b8dd52010-11-18 19:28:01 +00003280 **
drhdd90d7e2014-12-03 19:25:41 +00003281 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3282 ** immediately, and a busy-handler is configured, it is invoked and the
3283 ** writer lock retried until either the busy-handler returns 0 or the
3284 ** lock is successfully obtained.
dana58f26f2010-11-16 18:56:51 +00003285 */
dancdc1f042010-11-18 12:11:05 +00003286 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dana58f26f2010-11-16 18:56:51 +00003287 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
danf2b8dd52010-11-18 19:28:01 +00003288 if( rc==SQLITE_OK ){
3289 pWal->writeLock = 1;
3290 }else if( rc==SQLITE_BUSY ){
3291 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
drhdd90d7e2014-12-03 19:25:41 +00003292 xBusy2 = 0;
danf2b8dd52010-11-18 19:28:01 +00003293 rc = SQLITE_OK;
3294 }
danb9bf16b2010-04-14 11:23:30 +00003295 }
dana58f26f2010-11-16 18:56:51 +00003296
danf2b8dd52010-11-18 19:28:01 +00003297 /* Read the wal-index header. */
drh7ed91f22010-04-29 22:34:07 +00003298 if( rc==SQLITE_OK ){
dana58f26f2010-11-16 18:56:51 +00003299 rc = walIndexReadHdr(pWal, &isChanged);
danf55a4cf2013-04-01 16:56:41 +00003300 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3301 sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3302 }
dana58f26f2010-11-16 18:56:51 +00003303 }
danf2b8dd52010-11-18 19:28:01 +00003304
3305 /* Copy data from the log to the database file. */
dan9c5e3682011-02-07 15:12:12 +00003306 if( rc==SQLITE_OK ){
dand6f7c972016-01-09 16:39:29 +00003307
dan9c5e3682011-02-07 15:12:12 +00003308 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
danf2b8dd52010-11-18 19:28:01 +00003309 rc = SQLITE_CORRUPT_BKPT;
3310 }else{
drhdd90d7e2014-12-03 19:25:41 +00003311 rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
dan9c5e3682011-02-07 15:12:12 +00003312 }
3313
3314 /* If no error occurred, set the output variables. */
3315 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
danf2b8dd52010-11-18 19:28:01 +00003316 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
dan9c5e3682011-02-07 15:12:12 +00003317 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
danf2b8dd52010-11-18 19:28:01 +00003318 }
danb9bf16b2010-04-14 11:23:30 +00003319 }
danf2b8dd52010-11-18 19:28:01 +00003320
dan31c03902010-04-29 14:51:33 +00003321 if( isChanged ){
3322 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00003323 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00003324 ** out of date. So zero the cached wal-index header to ensure that
3325 ** next time the pager opens a snapshot on this database it knows that
3326 ** the cache needs to be reset.
3327 */
3328 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3329 }
danb9bf16b2010-04-14 11:23:30 +00003330
3331 /* Release the locks. */
dana58f26f2010-11-16 18:56:51 +00003332 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00003333 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00003334 pWal->ckptLock = 0;
drhc74c3332010-05-31 12:15:19 +00003335 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
danf2b8dd52010-11-18 19:28:01 +00003336 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
dan7c246102010-04-12 19:00:29 +00003337}
3338
drh7ed91f22010-04-29 22:34:07 +00003339/* Return the value to pass to a sqlite3_wal_hook callback, the
3340** number of frames in the WAL at the point of the last commit since
3341** sqlite3WalCallback() was called. If no commits have occurred since
3342** the last call, then return 0.
3343*/
3344int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00003345 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00003346 if( pWal ){
3347 ret = pWal->iCallback;
3348 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00003349 }
3350 return (int)ret;
3351}
dan55437592010-05-11 12:19:26 +00003352
3353/*
drh61e4ace2010-05-31 20:28:37 +00003354** This function is called to change the WAL subsystem into or out
3355** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00003356**
drh61e4ace2010-05-31 20:28:37 +00003357** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3358** into locking_mode=NORMAL. This means that we must acquire a lock
3359** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
3360** or if the acquisition of the lock fails, then return 0. If the
3361** transition out of exclusive-mode is successful, return 1. This
3362** operation must occur while the pager is still holding the exclusive
3363** lock on the main database file.
dan55437592010-05-11 12:19:26 +00003364**
drh61e4ace2010-05-31 20:28:37 +00003365** If op is one, then change from locking_mode=NORMAL into
3366** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
3367** be released. Return 1 if the transition is made and 0 if the
3368** WAL is already in exclusive-locking mode - meaning that this
3369** routine is a no-op. The pager must already hold the exclusive lock
3370** on the main database file before invoking this operation.
3371**
3372** If op is negative, then do a dry-run of the op==1 case but do
dan8c408002010-11-01 17:38:24 +00003373** not actually change anything. The pager uses this to see if it
drh61e4ace2010-05-31 20:28:37 +00003374** should acquire the database exclusive lock prior to invoking
3375** the op==1 case.
dan55437592010-05-11 12:19:26 +00003376*/
3377int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00003378 int rc;
drhaab4c022010-06-02 14:45:51 +00003379 assert( pWal->writeLock==0 );
dan8c408002010-11-01 17:38:24 +00003380 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
dan3cac5dc2010-06-04 18:37:59 +00003381
3382 /* pWal->readLock is usually set, but might be -1 if there was a
3383 ** prior error while attempting to acquire are read-lock. This cannot
3384 ** happen if the connection is actually in exclusive mode (as no xShmLock
3385 ** locks are taken in this case). Nor should the pager attempt to
3386 ** upgrade to exclusive-mode following such an error.
3387 */
drhaab4c022010-06-02 14:45:51 +00003388 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00003389 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3390
drh61e4ace2010-05-31 20:28:37 +00003391 if( op==0 ){
3392 if( pWal->exclusiveMode ){
3393 pWal->exclusiveMode = 0;
dan3cac5dc2010-06-04 18:37:59 +00003394 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drh61e4ace2010-05-31 20:28:37 +00003395 pWal->exclusiveMode = 1;
3396 }
3397 rc = pWal->exclusiveMode==0;
3398 }else{
drhaab4c022010-06-02 14:45:51 +00003399 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00003400 rc = 0;
3401 }
3402 }else if( op>0 ){
3403 assert( pWal->exclusiveMode==0 );
drhaab4c022010-06-02 14:45:51 +00003404 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00003405 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3406 pWal->exclusiveMode = 1;
3407 rc = 1;
3408 }else{
3409 rc = pWal->exclusiveMode==0;
dan55437592010-05-11 12:19:26 +00003410 }
drh61e4ace2010-05-31 20:28:37 +00003411 return rc;
dan55437592010-05-11 12:19:26 +00003412}
3413
dan8c408002010-11-01 17:38:24 +00003414/*
3415** Return true if the argument is non-NULL and the WAL module is using
3416** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3417** WAL module is using shared-memory, return false.
3418*/
3419int sqlite3WalHeapMemory(Wal *pWal){
3420 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3421}
3422
danfc1acf32015-12-05 20:51:54 +00003423#ifdef SQLITE_ENABLE_SNAPSHOT
drhe230a892015-12-10 22:48:22 +00003424/* Create a snapshot object. The content of a snapshot is opaque to
3425** every other subsystem, so the WAL module can put whatever it needs
3426** in the object.
3427*/
danfc1acf32015-12-05 20:51:54 +00003428int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3429 int rc = SQLITE_OK;
3430 WalIndexHdr *pRet;
3431
3432 assert( pWal->readLock>=0 && pWal->writeLock==0 );
3433
3434 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3435 if( pRet==0 ){
mistachkinfad30392016-02-13 23:43:46 +00003436 rc = SQLITE_NOMEM_BKPT;
danfc1acf32015-12-05 20:51:54 +00003437 }else{
3438 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3439 *ppSnapshot = (sqlite3_snapshot*)pRet;
3440 }
3441
3442 return rc;
3443}
3444
drhe230a892015-12-10 22:48:22 +00003445/* Try to open on pSnapshot when the next read-transaction starts
3446*/
danfc1acf32015-12-05 20:51:54 +00003447void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){
3448 pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3449}
danad2d5ba2016-04-11 19:59:52 +00003450
3451/*
3452** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
3453** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
3454*/
3455int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
3456 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
3457 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
3458
3459 /* aSalt[0] is a copy of the value stored in the wal file header. It
3460 ** is incremented each time the wal file is restarted. */
3461 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
3462 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
3463 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
3464 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
3465 return 0;
3466}
danfc1acf32015-12-05 20:51:54 +00003467#endif /* SQLITE_ENABLE_SNAPSHOT */
3468
drh70708602012-02-24 14:33:28 +00003469#ifdef SQLITE_ENABLE_ZIPVFS
danb3bdc722012-02-23 15:35:49 +00003470/*
3471** If the argument is not NULL, it points to a Wal object that holds a
3472** read-lock. This function returns the database page-size if it is known,
3473** or zero if it is not (or if pWal is NULL).
3474*/
3475int sqlite3WalFramesize(Wal *pWal){
danb3bdc722012-02-23 15:35:49 +00003476 assert( pWal==0 || pWal->readLock>=0 );
3477 return (pWal ? pWal->szPage : 0);
3478}
drh70708602012-02-24 14:33:28 +00003479#endif
danb3bdc722012-02-23 15:35:49 +00003480
drh21d61852016-01-08 02:27:01 +00003481/* Return the sqlite3_file object for the WAL file
3482*/
3483sqlite3_file *sqlite3WalFile(Wal *pWal){
3484 return pWal->pWalFd;
3485}
3486
dan5cf53532010-05-01 16:40:20 +00003487#endif /* #ifndef SQLITE_OMIT_WAL */