blob: 43c08f8af7608253fa55a37fccb36a5f26dca776 [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drhcd285082010-06-23 22:00:35 +000034** The WAL header is 32 bytes in size and consists of the following eight
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan10f5a502010-06-23 15:55:43 +000043** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
dan97a31352010-04-16 13:59:31 +000045**
drh23ea97b2010-05-20 16:45:58 +000046** Immediately following the wal-header are zero or more frames. Each
47** frame consists of a 24-byte frame-header followed by a <page-size> bytes
drhcd285082010-06-23 22:00:35 +000048** of page data. The frame-header is six big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000049** integer values, as follows:
50**
dan3de777f2010-04-17 12:31:37 +000051** 0: Page number.
52** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000053** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000054** 8: Salt-1 (copied from the header)
55** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000056** 16: Checksum-1.
57** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000058**
drh7e263722010-05-20 21:21:09 +000059** A frame is considered valid if and only if the following conditions are
60** true:
61**
62** (1) The salt-1 and salt-2 values in the frame-header match
63** salt values in the wal-header
64**
65** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000066** exactly match the checksum computed consecutively on the
67** WAL header and the first 8 bytes and the content of all frames
68** up to and including the current frame.
69**
70** The checksum is computed using 32-bit big-endian integers if the
71** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000073** The checksum values are always stored in the frame header in a
74** big-endian format regardless of which byte order is used to compute
75** the checksum. The checksum is computed by interpreting the input as
76** an even number of unsigned 32-bit integers: x[0] through x[N]. The
drhffca4302010-06-15 11:21:54 +000077** algorithm used for the checksum is as follows:
drh51b21b12010-05-25 15:53:31 +000078**
79** for i from 0 to n-1 step 2:
80** s0 += x[i] + s1;
81** s1 += x[i+1] + s0;
82** endfor
drh7e263722010-05-20 21:21:09 +000083**
drhcd285082010-06-23 22:00:35 +000084** Note that s0 and s1 are both weighted checksums using fibonacci weights
85** in reverse order (the largest fibonacci weight occurs on the first element
86** of the sequence being summed.) The s1 value spans all 32-bit
87** terms of the sequence whereas s0 omits the final term.
88**
drh7e263722010-05-20 21:21:09 +000089** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90** WAL is transferred into the database, then the database is VFS.xSync-ed.
drhffca4302010-06-15 11:21:54 +000091** The VFS.xSync operations serve as write barriers - all writes launched
drh7e263722010-05-20 21:21:09 +000092** before the xSync must complete before any write that launches after the
93** xSync begins.
94**
95** After each checkpoint, the salt-1 value is incremented and the salt-2
96** value is randomized. This prevents old and new frames in the WAL from
97** being considered valid at the same time and being checkpointing together
98** following a crash.
99**
drh29d4dbe2010-05-18 23:29:52 +0000100** READER ALGORITHM
101**
102** To read a page from the database (call it page number P), a reader
103** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +0000104** last valid instance of page P that is a followed by a commit frame
105** or is a commit frame itself becomes the value read. If the WAL
106** contains no copies of page P that are valid and which are a commit
107** frame or are followed by a commit frame, then page P is read from
108** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000109**
drh73b64e42010-05-30 19:55:15 +0000110** To start a read transaction, the reader records the index of the last
111** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112** for all subsequent read operations. New transactions can be appended
113** to the WAL, but as long as the reader uses its original mxFrame value
114** and ignores the newly appended content, it will see a consistent snapshot
115** of the database from a single point in time. This technique allows
116** multiple concurrent readers to view different versions of the database
117** content simultaneously.
118**
119** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000120** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000121** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000122** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000123** and read performance suffers. To overcome this problem, a separate
124** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000125** search for frames of a particular page.
126**
127** WAL-INDEX FORMAT
128**
129** Conceptually, the wal-index is shared memory, though VFS implementations
130** might choose to implement the wal-index using a mmapped file. Because
131** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132** on a network filesystem. All users of the database must be able to
133** share memory.
134**
drh07dae082017-10-30 20:44:36 +0000135** In the default unix and windows implementation, the wal-index is a mmapped
136** file whose name is the database name with a "-shm" suffix added. For that
137** reason, the wal-index is sometimes called the "shm" file.
138**
drh29d4dbe2010-05-18 23:29:52 +0000139** The wal-index is transient. After a crash, the wal-index can (and should
140** be) reconstructed from the original WAL file. In fact, the VFS is required
141** to either truncate or zero the header of the wal-index when the last
142** connection to it closes. Because the wal-index is transient, it can
143** use an architecture-specific format; it does not have to be cross-platform.
144** Hence, unlike the database and WAL file formats which store all values
145** as big endian, the wal-index can store multi-byte values in the native
146** byte order of the host computer.
147**
148** The purpose of the wal-index is to answer this question quickly: Given
drh610b8d82012-07-17 02:56:05 +0000149** a page number P and a maximum frame index M, return the index of the
150** last frame in the wal before frame M for page P in the WAL, or return
151** NULL if there are no frames for page P in the WAL prior to M.
drh29d4dbe2010-05-18 23:29:52 +0000152**
153** The wal-index consists of a header region, followed by an one or
154** more index blocks.
155**
drh027a1282010-05-19 01:53:53 +0000156** The wal-index header contains the total number of frames within the WAL
mistachkind5578432012-08-25 10:01:29 +0000157** in the mxFrame field.
danad3cadd2010-06-14 11:49:26 +0000158**
159** Each index block except for the first contains information on
160** HASHTABLE_NPAGE frames. The first index block contains information on
161** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162** HASHTABLE_NPAGE are selected so that together the wal-index header and
163** first index block are the same size as all other index blocks in the
164** wal-index.
165**
166** Each index block contains two sections, a page-mapping that contains the
167** database page number associated with each wal frame, and a hash-table
drhffca4302010-06-15 11:21:54 +0000168** that allows readers to query an index block for a specific page number.
danad3cadd2010-06-14 11:49:26 +0000169** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
170** for the first index block) 32-bit page numbers. The first entry in the
171** first index-block contains the database page number corresponding to the
172** first frame in the WAL file. The first entry in the second index block
173** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
174** the log, and so on.
175**
176** The last index block in a wal-index usually contains less than the full
177** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
178** depending on the contents of the WAL file. This does not change the
179** allocated size of the page-mapping array - the page-mapping array merely
180** contains unused entries.
drh027a1282010-05-19 01:53:53 +0000181**
182** Even without using the hash table, the last frame for page P
danad3cadd2010-06-14 11:49:26 +0000183** can be found by scanning the page-mapping sections of each index block
drh027a1282010-05-19 01:53:53 +0000184** starting with the last index block and moving toward the first, and
185** within each index block, starting at the end and moving toward the
186** beginning. The first entry that equals P corresponds to the frame
187** holding the content for that page.
188**
189** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
190** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
191** hash table for each page number in the mapping section, so the hash
192** table is never more than half full. The expected number of collisions
193** prior to finding a match is 1. Each entry of the hash table is an
194** 1-based index of an entry in the mapping section of the same
195** index block. Let K be the 1-based index of the largest entry in
196** the mapping section. (For index blocks other than the last, K will
197** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
198** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000199** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000200**
201** To look for page P in the hash table, first compute a hash iKey on
202** P as follows:
203**
204** iKey = (P * 383) % HASHTABLE_NSLOT
205**
206** Then start scanning entries of the hash table, starting with iKey
207** (wrapping around to the beginning when the end of the hash table is
208** reached) until an unused hash slot is found. Let the first unused slot
209** be at index iUnused. (iUnused might be less than iKey if there was
210** wrap-around.) Because the hash table is never more than half full,
211** the search is guaranteed to eventually hit an unused entry. Let
212** iMax be the value between iKey and iUnused, closest to iUnused,
213** where aHash[iMax]==P. If there is no iMax entry (if there exists
214** no hash slot such that aHash[i]==p) then page P is not in the
215** current index block. Otherwise the iMax-th mapping entry of the
216** current index block corresponds to the last entry that references
217** page P.
218**
219** A hash search begins with the last index block and moves toward the
220** first index block, looking for entries corresponding to page P. On
221** average, only two or three slots in each index block need to be
222** examined in order to either find the last entry for page P, or to
223** establish that no such entry exists in the block. Each index block
224** holds over 4000 entries. So two or three index blocks are sufficient
225** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
226** comparisons (on average) suffice to either locate a frame in the
227** WAL or to establish that the frame does not exist in the WAL. This
228** is much faster than scanning the entire 10MB WAL.
229**
230** Note that entries are added in order of increasing K. Hence, one
231** reader might be using some value K0 and a second reader that started
232** at a later time (after additional transactions were added to the WAL
233** and to the wal-index) might be using a different value K1, where K1>K0.
234** Both readers can use the same hash table and mapping section to get
235** the correct result. There may be entries in the hash table with
236** K>K0 but to the first reader, those entries will appear to be unused
237** slots in the hash table and so the first reader will get an answer as
238** if no values greater than K0 had ever been inserted into the hash table
239** in the first place - which is what reader one wants. Meanwhile, the
240** second reader using K1 will see additional values that were inserted
241** later, which is exactly what reader two wants.
242**
dan6f150142010-05-21 15:31:56 +0000243** When a rollback occurs, the value of K is decreased. Hash table entries
244** that correspond to frames greater than the new K value are removed
245** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000246*/
drh29d4dbe2010-05-18 23:29:52 +0000247#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000248
drh29d4dbe2010-05-18 23:29:52 +0000249#include "wal.h"
250
drh73b64e42010-05-30 19:55:15 +0000251/*
drhc74c3332010-05-31 12:15:19 +0000252** Trace output macros
253*/
drhc74c3332010-05-31 12:15:19 +0000254#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000255int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000256# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
257#else
258# define WALTRACE(X)
259#endif
260
dan10f5a502010-06-23 15:55:43 +0000261/*
262** The maximum (and only) versions of the wal and wal-index formats
263** that may be interpreted by this version of SQLite.
264**
265** If a client begins recovering a WAL file and finds that (a) the checksum
266** values in the wal-header are correct and (b) the version field is not
267** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
268**
269** Similarly, if a client successfully reads a wal-index header (i.e. the
270** checksum test is successful) and finds that the version field is not
271** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
272** returns SQLITE_CANTOPEN.
273*/
274#define WAL_MAX_VERSION 3007000
275#define WALINDEX_MAX_VERSION 3007000
drhc74c3332010-05-31 12:15:19 +0000276
277/*
drh07dae082017-10-30 20:44:36 +0000278** Index numbers for various locking bytes. WAL_NREADER is the number
drh998147e2015-12-10 02:15:03 +0000279** of available reader locks and should be at least 3. The default
280** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5.
drh07dae082017-10-30 20:44:36 +0000281**
282** Technically, the various VFSes are free to implement these locks however
283** they see fit. However, compatibility is encouraged so that VFSes can
284** interoperate. The standard implemention used on both unix and windows
285** is for the index number to indicate a byte offset into the
286** WalCkptInfo.aLock[] array in the wal-index header. In other words, all
287** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which
288** should be 120) is the location in the shm file for the first locking
289** byte.
drh73b64e42010-05-30 19:55:15 +0000290*/
291#define WAL_WRITE_LOCK 0
292#define WAL_ALL_BUT_WRITE 1
293#define WAL_CKPT_LOCK 1
294#define WAL_RECOVER_LOCK 2
295#define WAL_READ_LOCK(I) (3+(I))
296#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
297
dan97a31352010-04-16 13:59:31 +0000298
drh7ed91f22010-04-29 22:34:07 +0000299/* Object declarations */
300typedef struct WalIndexHdr WalIndexHdr;
301typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000302typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000303
304
305/*
drh286a2882010-05-20 23:51:06 +0000306** The following object holds a copy of the wal-index header content.
307**
308** The actual header in the wal-index consists of two copies of this
drh998147e2015-12-10 02:15:03 +0000309** object followed by one instance of the WalCkptInfo object.
310** For all versions of SQLite through 3.10.0 and probably beyond,
311** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
312** the total header size is 136 bytes.
drh9b78f792010-08-14 21:21:24 +0000313**
314** The szPage value can be any power of 2 between 512 and 32768, inclusive.
315** Or it can be 1 to represent a 65536-byte page. The latter case was
316** added in 3.7.1 when support for 64K pages was added.
dan7c246102010-04-12 19:00:29 +0000317*/
drh7ed91f22010-04-29 22:34:07 +0000318struct WalIndexHdr {
dan10f5a502010-06-23 15:55:43 +0000319 u32 iVersion; /* Wal-index version */
320 u32 unused; /* Unused (padding) field */
dan71d89912010-05-24 13:57:42 +0000321 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000322 u8 isInit; /* 1 when initialized */
323 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
drh9b78f792010-08-14 21:21:24 +0000324 u16 szPage; /* Database page size in bytes. 1==64K */
dand0aa3422010-05-31 16:41:53 +0000325 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000326 u32 nPage; /* Size of database in pages */
327 u32 aFrameCksum[2]; /* Checksum of last frame in log */
328 u32 aSalt[2]; /* Two salt values copied from WAL header */
329 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000330};
331
drh73b64e42010-05-30 19:55:15 +0000332/*
333** A copy of the following object occurs in the wal-index immediately
334** following the second copy of the WalIndexHdr. This object stores
335** information used by checkpoint.
336**
337** nBackfill is the number of frames in the WAL that have been written
338** back into the database. (We call the act of moving content from WAL to
339** database "backfilling".) The nBackfill number is never greater than
340** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
341** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
342** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
343** mxFrame back to zero when the WAL is reset.
344**
drh998147e2015-12-10 02:15:03 +0000345** nBackfillAttempted is the largest value of nBackfill that a checkpoint
346** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however
347** the nBackfillAttempted is set before any backfilling is done and the
mistachkinc9fb38e2015-12-10 03:16:47 +0000348** nBackfill is only set after all backfilling completes. So if a checkpoint
drh998147e2015-12-10 02:15:03 +0000349** crashes, nBackfillAttempted might be larger than nBackfill. The
350** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
351**
352** The aLock[] field is a set of bytes used for locking. These bytes should
353** never be read or written.
354**
drh73b64e42010-05-30 19:55:15 +0000355** There is one entry in aReadMark[] for each reader lock. If a reader
356** holds read-lock K, then the value in aReadMark[K] is no greater than
drhdb7f6472010-06-09 14:45:12 +0000357** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
358** for any aReadMark[] means that entry is unused. aReadMark[0] is
359** a special case; its value is never used and it exists as a place-holder
360** to avoid having to offset aReadMark[] indexs by one. Readers holding
361** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
362** directly from the database.
drh73b64e42010-05-30 19:55:15 +0000363**
364** The value of aReadMark[K] may only be changed by a thread that
365** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
366** aReadMark[K] cannot changed while there is a reader is using that mark
367** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
368**
369** The checkpointer may only transfer frames from WAL to database where
370** the frame numbers are less than or equal to every aReadMark[] that is
371** in use (that is, every aReadMark[j] for which there is a corresponding
372** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
373** largest value and will increase an unused aReadMark[] to mxFrame if there
374** is not already an aReadMark[] equal to mxFrame. The exception to the
375** previous sentence is when nBackfill equals mxFrame (meaning that everything
376** in the WAL has been backfilled into the database) then new readers
377** will choose aReadMark[0] which has value 0 and hence such reader will
378** get all their all content directly from the database file and ignore
379** the WAL.
380**
381** Writers normally append new frames to the end of the WAL. However,
382** if nBackfill equals mxFrame (meaning that all WAL content has been
383** written back into the database) and if no readers are using the WAL
384** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
385** the writer will first "reset" the WAL back to the beginning and start
386** writing new content beginning at frame 1.
387**
388** We assume that 32-bit loads are atomic and so no locks are needed in
389** order to read from any aReadMark[] entries.
390*/
391struct WalCkptInfo {
392 u32 nBackfill; /* Number of WAL frames backfilled into DB */
393 u32 aReadMark[WAL_NREADER]; /* Reader marks */
drh998147e2015-12-10 02:15:03 +0000394 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */
395 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */
396 u32 notUsed0; /* Available for future enhancements */
drh73b64e42010-05-30 19:55:15 +0000397};
drhdb7f6472010-06-09 14:45:12 +0000398#define READMARK_NOT_USED 0xffffffff
drh73b64e42010-05-30 19:55:15 +0000399
400
drh7e263722010-05-20 21:21:09 +0000401/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
402** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
403** only support mandatory file-locks, we do not read or write data
404** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000405*/
drh998147e2015-12-10 02:15:03 +0000406#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
407#define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
dan7c246102010-04-12 19:00:29 +0000408
drh7ed91f22010-04-29 22:34:07 +0000409/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000410#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000411
dan10f5a502010-06-23 15:55:43 +0000412/* Size of write ahead log header, including checksum. */
dan10f5a502010-06-23 15:55:43 +0000413#define WAL_HDRSIZE 32
dan97a31352010-04-16 13:59:31 +0000414
danb8fd6c22010-05-24 10:39:36 +0000415/* WAL magic value. Either this value, or the same value with the least
416** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
417** big-endian format in the first 4 bytes of a WAL file.
418**
419** If the LSB is set, then the checksums for each frame within the WAL
420** file are calculated by treating all data as an array of 32-bit
421** big-endian words. Otherwise, they are calculated by interpreting
422** all data as 32-bit little-endian words.
423*/
424#define WAL_MAGIC 0x377f0682
425
dan97a31352010-04-16 13:59:31 +0000426/*
drh7ed91f22010-04-29 22:34:07 +0000427** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000428** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000429** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000430*/
drh6e810962010-05-19 17:49:50 +0000431#define walFrameOffset(iFrame, szPage) ( \
danbd0e9072010-07-07 09:48:44 +0000432 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000433)
dan7c246102010-04-12 19:00:29 +0000434
435/*
drh7ed91f22010-04-29 22:34:07 +0000436** An open write-ahead log file is represented by an instance of the
437** following object.
dance4f05f2010-04-22 19:14:13 +0000438*/
drh7ed91f22010-04-29 22:34:07 +0000439struct Wal {
drh73b64e42010-05-30 19:55:15 +0000440 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000441 sqlite3_file *pDbFd; /* File handle for the database file */
442 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000443 u32 iCallback; /* Value to pass to log callback (or 0) */
drh85a83752011-05-16 21:00:27 +0000444 i64 mxWalSize; /* Truncate WAL to this size upon reset */
dan13a3cb82010-06-11 19:04:21 +0000445 int nWiData; /* Size of array apWiData */
drh88f975a2011-12-16 19:34:36 +0000446 int szFirstBlock; /* Size of first block written to WAL file */
dan13a3cb82010-06-11 19:04:21 +0000447 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
drhb2eced52010-08-12 02:41:12 +0000448 u32 szPage; /* Database page size */
drh73b64e42010-05-30 19:55:15 +0000449 i16 readLock; /* Which read lock is being held. -1 for none */
drh4eb02a42011-12-16 21:26:26 +0000450 u8 syncFlags; /* Flags to use to sync header writes */
dan55437592010-05-11 12:19:26 +0000451 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000452 u8 writeLock; /* True if in a write transaction */
453 u8 ckptLock; /* True if holding a checkpoint lock */
drh66dfec8b2011-06-01 20:01:49 +0000454 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
danf60b7f32011-12-16 13:24:27 +0000455 u8 truncateOnCommit; /* True to truncate WAL file on commit */
drhd992b152011-12-20 20:13:25 +0000456 u8 syncHeader; /* Fsync the WAL header if true */
drh374f4a02011-12-17 20:02:11 +0000457 u8 padToSectorBoundary; /* Pad transactions out to the next sector */
drh85bc6df2017-11-10 20:00:50 +0000458 u8 bShmUnreliable; /* SHM content is read-only and unreliable */
drh73b64e42010-05-30 19:55:15 +0000459 WalIndexHdr hdr; /* Wal-index header for current transaction */
danb8c7cfb2015-08-13 20:23:46 +0000460 u32 minFrame; /* Ignore wal frames before this one */
danc9a90222016-01-09 18:57:35 +0000461 u32 iReCksum; /* On commit, recalculate checksums from here */
danaa595052017-05-23 19:23:45 +0000462 u32 nPriorFrame; /* For sqlite3WalInfo() */
dan3e875ef2010-07-05 19:03:35 +0000463 const char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000464 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
dan9b5c67f2018-11-30 16:26:39 +0000465 FastPrng sPrng; /* Random number generator */
drhaab4c022010-06-02 14:45:51 +0000466#ifdef SQLITE_DEBUG
467 u8 lockError; /* True if a locking error has occurred */
468#endif
danfc1acf32015-12-05 20:51:54 +0000469#ifdef SQLITE_ENABLE_SNAPSHOT
drh998147e2015-12-10 02:15:03 +0000470 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */
danfc1acf32015-12-05 20:51:54 +0000471#endif
dan861fb1e2020-05-06 19:14:41 +0000472#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
473 sqlite3 *db;
drh23ea97b2010-05-20 16:45:58 +0000474#endif
dan7c246102010-04-12 19:00:29 +0000475};
476
drh73b64e42010-05-30 19:55:15 +0000477/*
dan8c408002010-11-01 17:38:24 +0000478** Candidate values for Wal.exclusiveMode.
479*/
480#define WAL_NORMAL_MODE 0
481#define WAL_EXCLUSIVE_MODE 1
482#define WAL_HEAPMEMORY_MODE 2
483
484/*
drh66dfec8b2011-06-01 20:01:49 +0000485** Possible values for WAL.readOnly
486*/
487#define WAL_RDWR 0 /* Normal read/write connection */
488#define WAL_RDONLY 1 /* The WAL file is readonly */
489#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
490
491/*
dan067f3162010-06-14 10:30:12 +0000492** Each page of the wal-index mapping contains a hash-table made up of
493** an array of HASHTABLE_NSLOT elements of the following type.
494*/
495typedef u16 ht_slot;
496
497/*
danad3cadd2010-06-14 11:49:26 +0000498** This structure is used to implement an iterator that loops through
499** all frames in the WAL in database page order. Where two or more frames
500** correspond to the same database page, the iterator visits only the
501** frame most recently written to the WAL (in other words, the frame with
502** the largest index).
503**
504** The internals of this structure are only accessed by:
505**
506** walIteratorInit() - Create a new iterator,
507** walIteratorNext() - Step an iterator,
508** walIteratorFree() - Free an iterator.
509**
510** This functionality is used by the checkpoint code (see walCheckpoint()).
511*/
512struct WalIterator {
drh8deae5a2020-07-29 12:23:20 +0000513 u32 iPrior; /* Last result returned from the iterator */
drhd9c9b782010-12-15 21:02:06 +0000514 int nSegment; /* Number of entries in aSegment[] */
danad3cadd2010-06-14 11:49:26 +0000515 struct WalSegment {
516 int iNext; /* Next slot in aIndex[] not yet returned */
517 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
518 u32 *aPgno; /* Array of page numbers. */
drhd9c9b782010-12-15 21:02:06 +0000519 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
danad3cadd2010-06-14 11:49:26 +0000520 int iZero; /* Frame number associated with aPgno[0] */
drhd9c9b782010-12-15 21:02:06 +0000521 } aSegment[1]; /* One for every 32KB page in the wal-index */
danad3cadd2010-06-14 11:49:26 +0000522};
523
524/*
dan13a3cb82010-06-11 19:04:21 +0000525** Define the parameters of the hash tables in the wal-index file. There
526** is a hash-table following every HASHTABLE_NPAGE page numbers in the
527** wal-index.
528**
529** Changing any of these constants will alter the wal-index format and
530** create incompatibilities.
531*/
dan067f3162010-06-14 10:30:12 +0000532#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000533#define HASHTABLE_HASH_1 383 /* Should be prime */
534#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000535
danad3cadd2010-06-14 11:49:26 +0000536/*
537** The block of page numbers associated with the first hash-table in a
dan13a3cb82010-06-11 19:04:21 +0000538** wal-index is smaller than usual. This is so that there is a complete
539** hash-table on each aligned 32KB page of the wal-index.
540*/
dan067f3162010-06-14 10:30:12 +0000541#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
dan13a3cb82010-06-11 19:04:21 +0000542
dan067f3162010-06-14 10:30:12 +0000543/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
544#define WALINDEX_PGSZ ( \
545 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
546)
dan13a3cb82010-06-11 19:04:21 +0000547
548/*
549** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
dan067f3162010-06-14 10:30:12 +0000550** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
dan13a3cb82010-06-11 19:04:21 +0000551** numbered from zero.
552**
drhc05a0632017-11-11 20:11:01 +0000553** If the wal-index is currently smaller the iPage pages then the size
554** of the wal-index might be increased, but only if it is safe to do
555** so. It is safe to enlarge the wal-index if pWal->writeLock is true
556** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
557**
dan13a3cb82010-06-11 19:04:21 +0000558** If this call is successful, *ppPage is set to point to the wal-index
559** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
560** then an SQLite error code is returned and *ppPage is set to 0.
561*/
drh2e178d72018-02-20 22:20:57 +0000562static SQLITE_NOINLINE int walIndexPageRealloc(
563 Wal *pWal, /* The WAL context */
564 int iPage, /* The page we seek */
565 volatile u32 **ppPage /* Write the page pointer here */
566){
dan13a3cb82010-06-11 19:04:21 +0000567 int rc = SQLITE_OK;
568
569 /* Enlarge the pWal->apWiData[] array if required */
570 if( pWal->nWiData<=iPage ){
drhf6ad2012019-04-13 14:07:57 +0000571 sqlite3_int64 nByte = sizeof(u32*)*(iPage+1);
dan13a3cb82010-06-11 19:04:21 +0000572 volatile u32 **apNew;
drhd924e7b2020-05-17 00:26:44 +0000573 apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte);
dan13a3cb82010-06-11 19:04:21 +0000574 if( !apNew ){
575 *ppPage = 0;
mistachkinfad30392016-02-13 23:43:46 +0000576 return SQLITE_NOMEM_BKPT;
dan13a3cb82010-06-11 19:04:21 +0000577 }
drh519426a2010-07-09 03:19:07 +0000578 memset((void*)&apNew[pWal->nWiData], 0,
579 sizeof(u32*)*(iPage+1-pWal->nWiData));
dan13a3cb82010-06-11 19:04:21 +0000580 pWal->apWiData = apNew;
581 pWal->nWiData = iPage+1;
582 }
583
584 /* Request a pointer to the required page from the VFS */
drhc0ec2f72018-02-21 01:48:22 +0000585 assert( pWal->apWiData[iPage]==0 );
586 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
587 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
588 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
589 }else{
590 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
591 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
592 );
593 assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
594 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
drhe7f3edc2020-07-28 17:17:36 +0000595 if( rc==SQLITE_OK ){
596 if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM;
597 }else if( (rc&0xff)==SQLITE_READONLY ){
drhc0ec2f72018-02-21 01:48:22 +0000598 pWal->readOnly |= WAL_SHM_RDONLY;
drh66dfec8b2011-06-01 20:01:49 +0000599 if( rc==SQLITE_READONLY ){
drh66dfec8b2011-06-01 20:01:49 +0000600 rc = SQLITE_OK;
dan4edc6bf2011-05-10 17:31:29 +0000601 }
dan8c408002010-11-01 17:38:24 +0000602 }
dan13a3cb82010-06-11 19:04:21 +0000603 }
danb6d2f9c2011-05-11 14:57:33 +0000604
drh66dfec8b2011-06-01 20:01:49 +0000605 *ppPage = pWal->apWiData[iPage];
dan13a3cb82010-06-11 19:04:21 +0000606 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
607 return rc;
608}
drh2e178d72018-02-20 22:20:57 +0000609static int walIndexPage(
610 Wal *pWal, /* The WAL context */
611 int iPage, /* The page we seek */
612 volatile u32 **ppPage /* Write the page pointer here */
613){
614 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
615 return walIndexPageRealloc(pWal, iPage, ppPage);
616 }
617 return SQLITE_OK;
618}
dan13a3cb82010-06-11 19:04:21 +0000619
620/*
drh73b64e42010-05-30 19:55:15 +0000621** Return a pointer to the WalCkptInfo structure in the wal-index.
622*/
623static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000624 assert( pWal->nWiData>0 && pWal->apWiData[0] );
625 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
626}
627
628/*
629** Return a pointer to the WalIndexHdr structure in the wal-index.
630*/
631static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
632 assert( pWal->nWiData>0 && pWal->apWiData[0] );
633 return (volatile WalIndexHdr*)pWal->apWiData[0];
drh73b64e42010-05-30 19:55:15 +0000634}
635
dan7c246102010-04-12 19:00:29 +0000636/*
danb8fd6c22010-05-24 10:39:36 +0000637** The argument to this macro must be of type u32. On a little-endian
638** architecture, it returns the u32 value that results from interpreting
639** the 4 bytes as a big-endian value. On a big-endian architecture, it
peter.d.reid60ec9142014-09-06 16:39:46 +0000640** returns the value that would be produced by interpreting the 4 bytes
danb8fd6c22010-05-24 10:39:36 +0000641** of the input value as a little-endian integer.
642*/
643#define BYTESWAP32(x) ( \
644 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
645 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
646)
dan64d039e2010-04-13 19:27:31 +0000647
dan7c246102010-04-12 19:00:29 +0000648/*
drh7e263722010-05-20 21:21:09 +0000649** Generate or extend an 8 byte checksum based on the data in
650** array aByte[] and the initial values of aIn[0] and aIn[1] (or
651** initial values of 0 and 0 if aIn==NULL).
652**
653** The checksum is written back into aOut[] before returning.
654**
655** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000656*/
drh7e263722010-05-20 21:21:09 +0000657static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000658 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000659 u8 *a, /* Content to be checksummed */
660 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
661 const u32 *aIn, /* Initial checksum value input */
662 u32 *aOut /* OUT: Final checksum value output */
663){
664 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000665 u32 *aData = (u32 *)a;
666 u32 *aEnd = (u32 *)&a[nByte];
667
drh7e263722010-05-20 21:21:09 +0000668 if( aIn ){
669 s1 = aIn[0];
670 s2 = aIn[1];
671 }else{
672 s1 = s2 = 0;
673 }
dan7c246102010-04-12 19:00:29 +0000674
drh584c7542010-05-19 18:08:10 +0000675 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000676 assert( (nByte&0x00000007)==0 );
drhf6ad2012019-04-13 14:07:57 +0000677 assert( nByte<=65536 );
dan7c246102010-04-12 19:00:29 +0000678
danb8fd6c22010-05-24 10:39:36 +0000679 if( nativeCksum ){
680 do {
681 s1 += *aData++ + s2;
682 s2 += *aData++ + s1;
683 }while( aData<aEnd );
684 }else{
685 do {
686 s1 += BYTESWAP32(aData[0]) + s2;
687 s2 += BYTESWAP32(aData[1]) + s1;
688 aData += 2;
689 }while( aData<aEnd );
690 }
691
drh7e263722010-05-20 21:21:09 +0000692 aOut[0] = s1;
693 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000694}
695
drhf16cf652020-05-19 12:27:29 +0000696/*
697** If there is the possibility of concurrent access to the SHM file
698** from multiple threads and/or processes, then do a memory barrier.
699*/
dan8c408002010-11-01 17:38:24 +0000700static void walShmBarrier(Wal *pWal){
701 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
702 sqlite3OsShmBarrier(pWal->pDbFd);
703 }
704}
705
dan7c246102010-04-12 19:00:29 +0000706/*
drh5a8cd2e2020-05-19 15:51:10 +0000707** Add the SQLITE_NO_TSAN as part of the return-type of a function
708** definition as a hint that the function contains constructs that
709** might give false-positive TSAN warnings.
710**
711** See tag-20200519-1.
712*/
713#if defined(__clang__) && !defined(SQLITE_NO_TSAN)
714# define SQLITE_NO_TSAN __attribute__((no_sanitize_thread))
715#else
716# define SQLITE_NO_TSAN
717#endif
718
719/*
drh7e263722010-05-20 21:21:09 +0000720** Write the header information in pWal->hdr into the wal-index.
721**
722** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000723*/
drh5a8cd2e2020-05-19 15:51:10 +0000724static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000725 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
726 const int nCksum = offsetof(WalIndexHdr, aCksum);
drh73b64e42010-05-30 19:55:15 +0000727
728 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000729 pWal->hdr.isInit = 1;
dan10f5a502010-06-23 15:55:43 +0000730 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
dan4280eb32010-06-12 12:02:35 +0000731 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
drhf16cf652020-05-19 12:27:29 +0000732 /* Possible TSAN false-positive. See tag-20200519-1 */
drhf6bff3f2015-07-17 01:16:10 +0000733 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
dan8c408002010-11-01 17:38:24 +0000734 walShmBarrier(pWal);
drhf6bff3f2015-07-17 01:16:10 +0000735 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000736}
737
738/*
739** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000740** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000741** 4-byte big-endian integers, as follows:
742**
drh23ea97b2010-05-20 16:45:58 +0000743** 0: Page number.
744** 4: For commit records, the size of the database image in pages
745** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000746** 8: Salt-1 (copied from the wal-header)
747** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000748** 16: Checksum-1.
749** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000750*/
drh7ed91f22010-04-29 22:34:07 +0000751static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000752 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000753 u32 iPage, /* Database page number for frame */
754 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000755 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000756 u8 *aFrame /* OUT: Write encoded frame here */
757){
danb8fd6c22010-05-24 10:39:36 +0000758 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000759 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000760 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000761 sqlite3Put4byte(&aFrame[0], iPage);
762 sqlite3Put4byte(&aFrame[4], nTruncate);
danc9a90222016-01-09 18:57:35 +0000763 if( pWal->iReCksum==0 ){
764 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000765
danc9a90222016-01-09 18:57:35 +0000766 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
767 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
768 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000769
danc9a90222016-01-09 18:57:35 +0000770 sqlite3Put4byte(&aFrame[16], aCksum[0]);
771 sqlite3Put4byte(&aFrame[20], aCksum[1]);
drh869aaf02016-01-12 02:28:19 +0000772 }else{
773 memset(&aFrame[8], 0, 16);
danc9a90222016-01-09 18:57:35 +0000774 }
dan7c246102010-04-12 19:00:29 +0000775}
776
777/*
drh7e263722010-05-20 21:21:09 +0000778** Check to see if the frame with header in aFrame[] and content
779** in aData[] is valid. If it is a valid frame, fill *piPage and
780** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000781*/
drh7ed91f22010-04-29 22:34:07 +0000782static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000783 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000784 u32 *piPage, /* OUT: Database page number for frame */
785 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000786 u8 *aData, /* Pointer to page data (for checksum) */
787 u8 *aFrame /* Frame data */
788){
danb8fd6c22010-05-24 10:39:36 +0000789 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000790 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000791 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000792 assert( WAL_FRAME_HDRSIZE==24 );
793
drh7e263722010-05-20 21:21:09 +0000794 /* A frame is only valid if the salt values in the frame-header
795 ** match the salt values in the wal-header.
796 */
797 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000798 return 0;
799 }
dan4a4b01d2010-04-16 11:30:18 +0000800
drhc8179152010-05-24 13:28:36 +0000801 /* A frame is only valid if the page number is creater than zero.
802 */
803 pgno = sqlite3Get4byte(&aFrame[0]);
804 if( pgno==0 ){
805 return 0;
806 }
807
drh519426a2010-07-09 03:19:07 +0000808 /* A frame is only valid if a checksum of the WAL header,
809 ** all prior frams, the first 16 bytes of this frame-header,
810 ** and the frame-data matches the checksum in the last 8
811 ** bytes of this frame-header.
drh7e263722010-05-20 21:21:09 +0000812 */
danb8fd6c22010-05-24 10:39:36 +0000813 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000814 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000815 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000816 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
817 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000818 ){
819 /* Checksum failed. */
820 return 0;
821 }
822
drh7e263722010-05-20 21:21:09 +0000823 /* If we reach this point, the frame is valid. Return the page number
824 ** and the new database size.
825 */
drhc8179152010-05-24 13:28:36 +0000826 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000827 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000828 return 1;
829}
830
dan7c246102010-04-12 19:00:29 +0000831
drhc74c3332010-05-31 12:15:19 +0000832#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
833/*
drh181e0912010-06-01 01:08:08 +0000834** Names of locks. This routine is used to provide debugging output and is not
835** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000836*/
837static const char *walLockName(int lockIdx){
838 if( lockIdx==WAL_WRITE_LOCK ){
839 return "WRITE-LOCK";
840 }else if( lockIdx==WAL_CKPT_LOCK ){
841 return "CKPT-LOCK";
842 }else if( lockIdx==WAL_RECOVER_LOCK ){
843 return "RECOVER-LOCK";
844 }else{
845 static char zName[15];
846 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
847 lockIdx-WAL_READ_LOCK(0));
848 return zName;
849 }
850}
851#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
852
853
dan7c246102010-04-12 19:00:29 +0000854/*
drh181e0912010-06-01 01:08:08 +0000855** Set or release locks on the WAL. Locks are either shared or exclusive.
856** A lock cannot be moved directly between shared and exclusive - it must go
danbf3cf572015-08-24 19:56:04 +0000857** through the concurrent state first.
drh73b64e42010-05-30 19:55:15 +0000858**
859** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
860*/
861static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000862 int rc;
drh73b64e42010-05-30 19:55:15 +0000863 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000864 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
865 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
866 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
867 walLockName(lockIdx), rc ? "failed" : "ok"));
dan7bb8b8a2020-05-06 20:27:18 +0000868 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000869 return rc;
drh73b64e42010-05-30 19:55:15 +0000870}
871static void walUnlockShared(Wal *pWal, int lockIdx){
872 if( pWal->exclusiveMode ) return;
873 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
874 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000875 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000876}
drhab372772015-12-02 16:10:16 +0000877static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000878 int rc;
drh73b64e42010-05-30 19:55:15 +0000879 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000880 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
881 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
882 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
883 walLockName(lockIdx), n, rc ? "failed" : "ok"));
dan7bb8b8a2020-05-06 20:27:18 +0000884 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000885 return rc;
drh73b64e42010-05-30 19:55:15 +0000886}
887static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
888 if( pWal->exclusiveMode ) return;
889 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
890 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000891 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
892 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000893}
894
895/*
drh29d4dbe2010-05-18 23:29:52 +0000896** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000897** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
898** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000899*/
900static int walHash(u32 iPage){
901 assert( iPage>0 );
902 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
903 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
904}
905static int walNextHash(int iPriorHash){
906 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000907}
908
drh4ece2f22018-06-09 16:49:00 +0000909/*
910** An instance of the WalHashLoc object is used to describe the location
911** of a page hash table in the wal-index. This becomes the return value
912** from walHashGet().
913*/
914typedef struct WalHashLoc WalHashLoc;
915struct WalHashLoc {
916 volatile ht_slot *aHash; /* Start of the wal-index hash table */
917 volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */
918 u32 iZero; /* One less than the frame number of first indexed*/
919};
920
dan4280eb32010-06-12 12:02:35 +0000921/*
922** Return pointers to the hash table and page number array stored on
923** page iHash of the wal-index. The wal-index is broken into 32KB pages
924** numbered starting from 0.
925**
drh4ece2f22018-06-09 16:49:00 +0000926** Set output variable pLoc->aHash to point to the start of the hash table
927** in the wal-index file. Set pLoc->iZero to one less than the frame
dan4280eb32010-06-12 12:02:35 +0000928** number of the first frame indexed by this hash table. If a
929** slot in the hash table is set to N, it refers to frame number
drh4ece2f22018-06-09 16:49:00 +0000930** (pLoc->iZero+N) in the log.
dan4280eb32010-06-12 12:02:35 +0000931**
drh4ece2f22018-06-09 16:49:00 +0000932** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the
933** first frame indexed by the hash table, frame (pLoc->iZero+1).
dan4280eb32010-06-12 12:02:35 +0000934*/
935static int walHashGet(
dan13a3cb82010-06-11 19:04:21 +0000936 Wal *pWal, /* WAL handle */
937 int iHash, /* Find the iHash'th table */
drh4ece2f22018-06-09 16:49:00 +0000938 WalHashLoc *pLoc /* OUT: Hash table location */
dan13a3cb82010-06-11 19:04:21 +0000939){
dan4280eb32010-06-12 12:02:35 +0000940 int rc; /* Return code */
dan13a3cb82010-06-11 19:04:21 +0000941
drh4ece2f22018-06-09 16:49:00 +0000942 rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
dan4280eb32010-06-12 12:02:35 +0000943 assert( rc==SQLITE_OK || iHash>0 );
dan13a3cb82010-06-11 19:04:21 +0000944
dan4280eb32010-06-12 12:02:35 +0000945 if( rc==SQLITE_OK ){
drh4ece2f22018-06-09 16:49:00 +0000946 pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
dan4280eb32010-06-12 12:02:35 +0000947 if( iHash==0 ){
drh4ece2f22018-06-09 16:49:00 +0000948 pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
949 pLoc->iZero = 0;
dan4280eb32010-06-12 12:02:35 +0000950 }else{
drh4ece2f22018-06-09 16:49:00 +0000951 pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
dan4280eb32010-06-12 12:02:35 +0000952 }
drh4ece2f22018-06-09 16:49:00 +0000953 pLoc->aPgno = &pLoc->aPgno[-1];
dan13a3cb82010-06-11 19:04:21 +0000954 }
dan4280eb32010-06-12 12:02:35 +0000955 return rc;
dan13a3cb82010-06-11 19:04:21 +0000956}
957
dan4280eb32010-06-12 12:02:35 +0000958/*
959** Return the number of the wal-index page that contains the hash-table
960** and page-number array that contain entries corresponding to WAL frame
961** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
962** are numbered starting from 0.
963*/
dan13a3cb82010-06-11 19:04:21 +0000964static int walFramePage(u32 iFrame){
965 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
966 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
967 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
968 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
969 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
970 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
971 );
drh8deae5a2020-07-29 12:23:20 +0000972 assert( iHash>=0 );
dan13a3cb82010-06-11 19:04:21 +0000973 return iHash;
974}
975
976/*
977** Return the page number associated with frame iFrame in this WAL.
978*/
979static u32 walFramePgno(Wal *pWal, u32 iFrame){
980 int iHash = walFramePage(iFrame);
981 if( iHash==0 ){
982 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
983 }
984 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
985}
danbb23aff2010-05-10 14:46:09 +0000986
danca6b5ba2010-05-25 10:50:56 +0000987/*
988** Remove entries from the hash table that point to WAL slots greater
989** than pWal->hdr.mxFrame.
990**
991** This function is called whenever pWal->hdr.mxFrame is decreased due
992** to a rollback or savepoint.
993**
drh181e0912010-06-01 01:08:08 +0000994** At most only the hash table containing pWal->hdr.mxFrame needs to be
995** updated. Any later hash tables will be automatically cleared when
996** pWal->hdr.mxFrame advances to the point where those hash tables are
997** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000998*/
999static void walCleanupHash(Wal *pWal){
drh4ece2f22018-06-09 16:49:00 +00001000 WalHashLoc sLoc; /* Hash table location */
dan067f3162010-06-14 10:30:12 +00001001 int iLimit = 0; /* Zero values greater than this */
1002 int nByte; /* Number of bytes to zero in aPgno[] */
1003 int i; /* Used to iterate through aHash[] */
drhb92d7d22019-04-03 17:48:10 +00001004 int rc; /* Return code form walHashGet() */
danca6b5ba2010-05-25 10:50:56 +00001005
drh73b64e42010-05-30 19:55:15 +00001006 assert( pWal->writeLock );
drhffca4302010-06-15 11:21:54 +00001007 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
1008 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
1009 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
drh9c156472010-06-01 12:58:41 +00001010
dan4280eb32010-06-12 12:02:35 +00001011 if( pWal->hdr.mxFrame==0 ) return;
1012
1013 /* Obtain pointers to the hash-table and page-number array containing
1014 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
drhb92d7d22019-04-03 17:48:10 +00001015 ** that the page said hash-table and array reside on is already mapped.(1)
dan4280eb32010-06-12 12:02:35 +00001016 */
1017 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
1018 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
drhb92d7d22019-04-03 17:48:10 +00001019 rc = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
1020 if( NEVER(rc) ) return; /* Defense-in-depth, in case (1) above is wrong */
dan4280eb32010-06-12 12:02:35 +00001021
1022 /* Zero all hash-table entries that correspond to frame numbers greater
1023 ** than pWal->hdr.mxFrame.
1024 */
drh4ece2f22018-06-09 16:49:00 +00001025 iLimit = pWal->hdr.mxFrame - sLoc.iZero;
dan4280eb32010-06-12 12:02:35 +00001026 assert( iLimit>0 );
1027 for(i=0; i<HASHTABLE_NSLOT; i++){
drh4ece2f22018-06-09 16:49:00 +00001028 if( sLoc.aHash[i]>iLimit ){
1029 sLoc.aHash[i] = 0;
danca6b5ba2010-05-25 10:50:56 +00001030 }
danca6b5ba2010-05-25 10:50:56 +00001031 }
dan4280eb32010-06-12 12:02:35 +00001032
1033 /* Zero the entries in the aPgno array that correspond to frames with
1034 ** frame numbers greater than pWal->hdr.mxFrame.
1035 */
drh4ece2f22018-06-09 16:49:00 +00001036 nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]);
1037 memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +00001038
1039#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1040 /* Verify that the every entry in the mapping region is still reachable
1041 ** via the hash table even after the cleanup.
1042 */
drhf77bbd92010-06-01 13:17:44 +00001043 if( iLimit ){
mistachkin6b67a8a2015-07-21 19:22:35 +00001044 int j; /* Loop counter */
danca6b5ba2010-05-25 10:50:56 +00001045 int iKey; /* Hash key */
mistachkin6b67a8a2015-07-21 19:22:35 +00001046 for(j=1; j<=iLimit; j++){
drh4ece2f22018-06-09 16:49:00 +00001047 for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
1048 if( sLoc.aHash[iKey]==j ) break;
danca6b5ba2010-05-25 10:50:56 +00001049 }
drh4ece2f22018-06-09 16:49:00 +00001050 assert( sLoc.aHash[iKey]==j );
danca6b5ba2010-05-25 10:50:56 +00001051 }
1052 }
1053#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1054}
1055
danbb23aff2010-05-10 14:46:09 +00001056
drh7ed91f22010-04-29 22:34:07 +00001057/*
drh29d4dbe2010-05-18 23:29:52 +00001058** Set an entry in the wal-index that will map database page number
1059** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +00001060*/
drh7ed91f22010-04-29 22:34:07 +00001061static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
dan4280eb32010-06-12 12:02:35 +00001062 int rc; /* Return code */
drh4ece2f22018-06-09 16:49:00 +00001063 WalHashLoc sLoc; /* Wal-index hash table location */
dance4f05f2010-04-22 19:14:13 +00001064
drh4ece2f22018-06-09 16:49:00 +00001065 rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);
dan4280eb32010-06-12 12:02:35 +00001066
1067 /* Assuming the wal-index file was successfully mapped, populate the
1068 ** page number array and hash table entry.
dan7c246102010-04-12 19:00:29 +00001069 */
danbb23aff2010-05-10 14:46:09 +00001070 if( rc==SQLITE_OK ){
1071 int iKey; /* Hash table key */
dan4280eb32010-06-12 12:02:35 +00001072 int idx; /* Value to write to hash-table slot */
drh519426a2010-07-09 03:19:07 +00001073 int nCollide; /* Number of hash collisions */
dan7c246102010-04-12 19:00:29 +00001074
drh4ece2f22018-06-09 16:49:00 +00001075 idx = iFrame - sLoc.iZero;
dan4280eb32010-06-12 12:02:35 +00001076 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1077
1078 /* If this is the first entry to be added to this hash-table, zero the
peter.d.reid60ec9142014-09-06 16:39:46 +00001079 ** entire hash table and aPgno[] array before proceeding.
dan4280eb32010-06-12 12:02:35 +00001080 */
danca6b5ba2010-05-25 10:50:56 +00001081 if( idx==1 ){
drh4ece2f22018-06-09 16:49:00 +00001082 int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT]
1083 - (u8 *)&sLoc.aPgno[1]);
1084 memset((void*)&sLoc.aPgno[1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +00001085 }
danca6b5ba2010-05-25 10:50:56 +00001086
dan4280eb32010-06-12 12:02:35 +00001087 /* If the entry in aPgno[] is already set, then the previous writer
1088 ** must have exited unexpectedly in the middle of a transaction (after
1089 ** writing one or more dirty pages to the WAL to free up memory).
1090 ** Remove the remnants of that writers uncommitted transaction from
1091 ** the hash-table before writing any new entries.
1092 */
drh4ece2f22018-06-09 16:49:00 +00001093 if( sLoc.aPgno[idx] ){
danca6b5ba2010-05-25 10:50:56 +00001094 walCleanupHash(pWal);
drh4ece2f22018-06-09 16:49:00 +00001095 assert( !sLoc.aPgno[idx] );
danca6b5ba2010-05-25 10:50:56 +00001096 }
dan4280eb32010-06-12 12:02:35 +00001097
1098 /* Write the aPgno[] array entry and the hash-table slot. */
drh519426a2010-07-09 03:19:07 +00001099 nCollide = idx;
drh4ece2f22018-06-09 16:49:00 +00001100 for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
drh519426a2010-07-09 03:19:07 +00001101 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
drh29d4dbe2010-05-18 23:29:52 +00001102 }
drh4ece2f22018-06-09 16:49:00 +00001103 sLoc.aPgno[idx] = iPage;
danec206a72020-06-04 16:07:51 +00001104 AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx);
drh4fa95bf2010-05-22 00:55:39 +00001105
1106#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1107 /* Verify that the number of entries in the hash table exactly equals
1108 ** the number of entries in the mapping region.
1109 */
1110 {
1111 int i; /* Loop counter */
1112 int nEntry = 0; /* Number of entries in the hash table */
drh4ece2f22018-06-09 16:49:00 +00001113 for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
drh4fa95bf2010-05-22 00:55:39 +00001114 assert( nEntry==idx );
1115 }
1116
1117 /* Verify that the every entry in the mapping region is reachable
1118 ** via the hash table. This turns out to be a really, really expensive
1119 ** thing to check, so only do this occasionally - not on every
1120 ** iteration.
1121 */
1122 if( (idx&0x3ff)==0 ){
1123 int i; /* Loop counter */
1124 for(i=1; i<=idx; i++){
drh4ece2f22018-06-09 16:49:00 +00001125 for(iKey=walHash(sLoc.aPgno[i]);
1126 sLoc.aHash[iKey];
1127 iKey=walNextHash(iKey)){
1128 if( sLoc.aHash[iKey]==i ) break;
drh4fa95bf2010-05-22 00:55:39 +00001129 }
drh4ece2f22018-06-09 16:49:00 +00001130 assert( sLoc.aHash[iKey]==i );
drh4fa95bf2010-05-22 00:55:39 +00001131 }
1132 }
1133#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +00001134 }
dan31f98fc2010-04-27 05:42:32 +00001135
drh4fa95bf2010-05-22 00:55:39 +00001136
danbb23aff2010-05-10 14:46:09 +00001137 return rc;
dan7c246102010-04-12 19:00:29 +00001138}
1139
1140
1141/*
drh7ed91f22010-04-29 22:34:07 +00001142** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +00001143**
1144** This routine first tries to establish an exclusive lock on the
1145** wal-index to prevent other threads/processes from doing anything
1146** with the WAL or wal-index while recovery is running. The
1147** WAL_RECOVER_LOCK is also held so that other threads will know
1148** that this thread is running recovery. If unable to establish
1149** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +00001150*/
drh7ed91f22010-04-29 22:34:07 +00001151static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +00001152 int rc; /* Return Code */
1153 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +00001154 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +00001155 int iLock; /* Lock offset to lock for checkpoint */
dan7c246102010-04-12 19:00:29 +00001156
dand0aa3422010-05-31 16:41:53 +00001157 /* Obtain an exclusive lock on all byte in the locking range not already
1158 ** locked by the caller. The caller is guaranteed to have locked the
1159 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
danbf3cf572015-08-24 19:56:04 +00001160 ** If successful, the same bytes that are locked here are concurrent before
dand0aa3422010-05-31 16:41:53 +00001161 ** this function returns.
1162 */
1163 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1164 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1165 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1166 assert( pWal->writeLock );
1167 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
dandea5ce32017-11-02 11:12:03 +00001168 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
drh73b64e42010-05-30 19:55:15 +00001169 if( rc ){
1170 return rc;
1171 }
dandea5ce32017-11-02 11:12:03 +00001172
drhc74c3332010-05-31 12:15:19 +00001173 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +00001174
dan71d89912010-05-24 13:57:42 +00001175 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +00001176
drhd9e5c4f2010-05-12 18:01:39 +00001177 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +00001178 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001179 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001180 }
1181
danb8fd6c22010-05-24 10:39:36 +00001182 if( nSize>WAL_HDRSIZE ){
1183 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dand3e38b72020-07-25 20:16:27 +00001184 u32 *aPrivate = 0; /* Heap copy of *-shm hash being populated */
dan7c246102010-04-12 19:00:29 +00001185 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001186 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001187 u8 *aData; /* Pointer to data part of aFrame buffer */
drh6e810962010-05-19 17:49:50 +00001188 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001189 u32 magic; /* Magic value read from WAL header */
dan10f5a502010-06-23 15:55:43 +00001190 u32 version; /* Magic value read from WAL header */
drhfe6163d2011-12-17 13:45:28 +00001191 int isValid; /* True if this frame is valid */
drh8deae5a2020-07-29 12:23:20 +00001192 u32 iPg; /* Current 32KB wal-index page */
1193 u32 iLastFrame; /* Last frame in wal, based on nSize alone */
dan7c246102010-04-12 19:00:29 +00001194
danb8fd6c22010-05-24 10:39:36 +00001195 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001196 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001197 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001198 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001199 }
1200
1201 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001202 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1203 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1204 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001205 */
danb8fd6c22010-05-24 10:39:36 +00001206 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001207 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001208 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1209 || szPage&(szPage-1)
1210 || szPage>SQLITE_MAX_PAGE_SIZE
1211 || szPage<512
1212 ){
dan7c246102010-04-12 19:00:29 +00001213 goto finished;
1214 }
shaneh5eba1f62010-07-02 17:05:03 +00001215 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
drhb2eced52010-08-12 02:41:12 +00001216 pWal->szPage = szPage;
drh23ea97b2010-05-20 16:45:58 +00001217 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001218 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
drhcd285082010-06-23 22:00:35 +00001219
1220 /* Verify that the WAL header checksum is correct */
dan71d89912010-05-24 13:57:42 +00001221 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
dan10f5a502010-06-23 15:55:43 +00001222 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
dan71d89912010-05-24 13:57:42 +00001223 );
dan10f5a502010-06-23 15:55:43 +00001224 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1225 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1226 ){
1227 goto finished;
1228 }
1229
drhcd285082010-06-23 22:00:35 +00001230 /* Verify that the version number on the WAL format is one that
1231 ** are able to understand */
dan10f5a502010-06-23 15:55:43 +00001232 version = sqlite3Get4byte(&aBuf[4]);
1233 if( version!=WAL_MAX_VERSION ){
1234 rc = SQLITE_CANTOPEN_BKPT;
1235 goto finished;
1236 }
1237
dan7c246102010-04-12 19:00:29 +00001238 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001239 szFrame = szPage + WAL_FRAME_HDRSIZE;
dand3e38b72020-07-25 20:16:27 +00001240 aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ);
dan7c246102010-04-12 19:00:29 +00001241 if( !aFrame ){
mistachkinfad30392016-02-13 23:43:46 +00001242 rc = SQLITE_NOMEM_BKPT;
drh73b64e42010-05-30 19:55:15 +00001243 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001244 }
drh7ed91f22010-04-29 22:34:07 +00001245 aData = &aFrame[WAL_FRAME_HDRSIZE];
dand3e38b72020-07-25 20:16:27 +00001246 aPrivate = (u32*)&aData[szPage];
dan7c246102010-04-12 19:00:29 +00001247
1248 /* Read all frames from the log file. */
dand3e38b72020-07-25 20:16:27 +00001249 iLastFrame = (nSize - WAL_HDRSIZE) / szFrame;
drh8deae5a2020-07-29 12:23:20 +00001250 for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){
dand3e38b72020-07-25 20:16:27 +00001251 u32 *aShare;
drh8deae5a2020-07-29 12:23:20 +00001252 u32 iFrame; /* Index of last frame read */
1253 u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE);
1254 u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE);
1255 u32 nHdr, nHdr32;
dand3e38b72020-07-25 20:16:27 +00001256 rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare);
1257 if( rc ) break;
1258 pWal->apWiData[iPg] = aPrivate;
1259
1260 for(iFrame=iFirst; iFrame<=iLast; iFrame++){
1261 i64 iOffset = walFrameOffset(iFrame, szPage);
1262 u32 pgno; /* Database page number for frame */
1263 u32 nTruncate; /* dbsize field from frame header */
dan7c246102010-04-12 19:00:29 +00001264
dand3e38b72020-07-25 20:16:27 +00001265 /* Read and decode the next log frame. */
1266 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1267 if( rc!=SQLITE_OK ) break;
1268 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1269 if( !isValid ) break;
1270 rc = walIndexAppend(pWal, iFrame, pgno);
drhf31230a2020-07-27 20:16:37 +00001271 if( NEVER(rc!=SQLITE_OK) ) break;
dan7c246102010-04-12 19:00:29 +00001272
dand3e38b72020-07-25 20:16:27 +00001273 /* If nTruncate is non-zero, this is a commit record. */
1274 if( nTruncate ){
1275 pWal->hdr.mxFrame = iFrame;
1276 pWal->hdr.nPage = nTruncate;
1277 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1278 testcase( szPage<=32768 );
1279 testcase( szPage>=65536 );
1280 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1281 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1282 }
dan7c246102010-04-12 19:00:29 +00001283 }
dand3e38b72020-07-25 20:16:27 +00001284 pWal->apWiData[iPg] = aShare;
drhf31230a2020-07-27 20:16:37 +00001285 nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0);
1286 nHdr32 = nHdr / sizeof(u32);
drhe592c182020-07-30 22:33:36 +00001287#ifndef SQLITE_SAFER_WALINDEX_RECOVERY
1288 /* Memcpy() should work fine here, on all reasonable implementations.
1289 ** Technically, memcpy() might change the destination to some
1290 ** intermediate value before setting to the final value, and that might
1291 ** cause a concurrent reader to malfunction. Memcpy() is allowed to
1292 ** do that, according to the spec, but no memcpy() implementation that
1293 ** we know of actually does that, which is why we say that memcpy()
1294 ** is safe for this. Memcpy() is certainly a lot faster.
1295 */
drhf31230a2020-07-27 20:16:37 +00001296 memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr);
drhe592c182020-07-30 22:33:36 +00001297#else
1298 /* In the event that some platform is found for which memcpy()
1299 ** changes the destination to some intermediate value before
1300 ** setting the final value, this alternative copy routine is
1301 ** provided.
1302 */
1303 {
1304 int i;
1305 for(i=nHdr32; i<WALINDEX_PGSZ/sizeof(u32); i++){
1306 if( aShare[i]!=aPrivate[i] ){
1307 /* Atomic memory operations are not required here because if
1308 ** the value needs to be changed, that means it is not being
1309 ** accessed concurrently. */
1310 aShare[i] = aPrivate[i];
1311 }
1312 }
1313 }
1314#endif
dand3e38b72020-07-25 20:16:27 +00001315 if( iFrame<=iLast ) break;
dan7c246102010-04-12 19:00:29 +00001316 }
1317
1318 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001319 }
1320
1321finished:
dan576bc322010-05-06 18:04:50 +00001322 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001323 volatile WalCkptInfo *pInfo;
1324 int i;
dan71d89912010-05-24 13:57:42 +00001325 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1326 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001327 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001328
drhdb7f6472010-06-09 14:45:12 +00001329 /* Reset the checkpoint-header. This is safe because this thread is
dand3e38b72020-07-25 20:16:27 +00001330 ** currently holding locks that exclude all other writers and
1331 ** checkpointers. Then set the values of read-mark slots 1 through N.
dan3dee6da2010-05-31 16:17:54 +00001332 */
drhdb7f6472010-06-09 14:45:12 +00001333 pInfo = walCkptInfo(pWal);
1334 pInfo->nBackfill = 0;
dan3bf83cc2015-12-10 15:45:15 +00001335 pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
drhdb7f6472010-06-09 14:45:12 +00001336 pInfo->aReadMark[0] = 0;
dand3e38b72020-07-25 20:16:27 +00001337 for(i=1; i<WAL_NREADER; i++){
1338 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1339 if( rc==SQLITE_OK ){
1340 if( i==1 && pWal->hdr.mxFrame ){
1341 pInfo->aReadMark[i] = pWal->hdr.mxFrame;
1342 }else{
1343 pInfo->aReadMark[i] = READMARK_NOT_USED;
1344 }
1345 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
drh8caebb22020-07-27 15:01:10 +00001346 }else if( rc!=SQLITE_BUSY ){
1347 goto recovery_error;
dand3e38b72020-07-25 20:16:27 +00001348 }
1349 }
daneb8763d2010-08-17 14:52:22 +00001350
1351 /* If more than one frame was recovered from the log file, report an
1352 ** event via sqlite3_log(). This is to help with identifying performance
1353 ** problems caused by applications routinely shutting down without
1354 ** checkpointing the log file.
1355 */
1356 if( pWal->hdr.nPage ){
drhd040e762013-04-10 23:48:37 +00001357 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1358 "recovered %d frames from WAL file %s",
dan0943f0b2013-04-01 14:35:01 +00001359 pWal->hdr.mxFrame, pWal->zWalName
daneb8763d2010-08-17 14:52:22 +00001360 );
1361 }
dan576bc322010-05-06 18:04:50 +00001362 }
drh73b64e42010-05-30 19:55:15 +00001363
1364recovery_error:
drhc74c3332010-05-31 12:15:19 +00001365 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dandea5ce32017-11-02 11:12:03 +00001366 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
dan7c246102010-04-12 19:00:29 +00001367 return rc;
1368}
1369
drha8e654e2010-05-04 17:38:42 +00001370/*
dan1018e902010-05-05 15:33:05 +00001371** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001372*/
dan1018e902010-05-05 15:33:05 +00001373static void walIndexClose(Wal *pWal, int isDelete){
drh85bc6df2017-11-10 20:00:50 +00001374 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
dan8c408002010-11-01 17:38:24 +00001375 int i;
1376 for(i=0; i<pWal->nWiData; i++){
1377 sqlite3_free((void *)pWal->apWiData[i]);
1378 pWal->apWiData[i] = 0;
1379 }
dan11caf4f2017-11-04 18:10:03 +00001380 }
1381 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
dan8c408002010-11-01 17:38:24 +00001382 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1383 }
drha8e654e2010-05-04 17:38:42 +00001384}
1385
dan7c246102010-04-12 19:00:29 +00001386/*
dan3e875ef2010-07-05 19:03:35 +00001387** Open a connection to the WAL file zWalName. The database file must
1388** already be opened on connection pDbFd. The buffer that zWalName points
1389** to must remain valid for the lifetime of the returned Wal* handle.
dan3de777f2010-04-17 12:31:37 +00001390**
1391** A SHARED lock should be held on the database file when this function
1392** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001393** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001394** were to do this just after this client opened one of these files, the
1395** system would be badly broken.
danef378022010-05-04 11:06:03 +00001396**
1397** If the log file is successfully opened, SQLITE_OK is returned and
1398** *ppWal is set to point to a new WAL handle. If an error occurs,
1399** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001400*/
drhc438efd2010-04-26 00:19:45 +00001401int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001402 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001403 sqlite3_file *pDbFd, /* The open database file */
dan3e875ef2010-07-05 19:03:35 +00001404 const char *zWalName, /* Name of the WAL file */
dan8c408002010-11-01 17:38:24 +00001405 int bNoShm, /* True to run in heap-memory mode */
drh85a83752011-05-16 21:00:27 +00001406 i64 mxWalSize, /* Truncate WAL to this size on reset */
drh7ed91f22010-04-29 22:34:07 +00001407 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001408){
danef378022010-05-04 11:06:03 +00001409 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001410 Wal *pRet; /* Object to allocate and return */
dan7c246102010-04-12 19:00:29 +00001411 int flags; /* Flags passed to OsOpen() */
dan7c246102010-04-12 19:00:29 +00001412
dan3e875ef2010-07-05 19:03:35 +00001413 assert( zWalName && zWalName[0] );
drhd9e5c4f2010-05-12 18:01:39 +00001414 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001415
drh1b78eaf2010-05-25 13:40:03 +00001416 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1417 ** this source file. Verify that the #defines of the locking byte offsets
1418 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
drh998147e2015-12-10 02:15:03 +00001419 ** For that matter, if the lock offset ever changes from its initial design
1420 ** value of 120, we need to know that so there is an assert() to check it.
drh1b78eaf2010-05-25 13:40:03 +00001421 */
drh998147e2015-12-10 02:15:03 +00001422 assert( 120==WALINDEX_LOCK_OFFSET );
1423 assert( 136==WALINDEX_HDR_SIZE );
drh1b78eaf2010-05-25 13:40:03 +00001424#ifdef WIN_SHM_BASE
1425 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1426#endif
1427#ifdef UNIX_SHM_BASE
1428 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1429#endif
1430
1431
drh7ed91f22010-04-29 22:34:07 +00001432 /* Allocate an instance of struct Wal to return. */
1433 *ppWal = 0;
dan3e875ef2010-07-05 19:03:35 +00001434 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
dan76ed3bc2010-05-03 17:18:24 +00001435 if( !pRet ){
mistachkinfad30392016-02-13 23:43:46 +00001436 return SQLITE_NOMEM_BKPT;
dan76ed3bc2010-05-03 17:18:24 +00001437 }
1438
dan7c246102010-04-12 19:00:29 +00001439 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001440 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1441 pRet->pDbFd = pDbFd;
drh73b64e42010-05-30 19:55:15 +00001442 pRet->readLock = -1;
drh85a83752011-05-16 21:00:27 +00001443 pRet->mxWalSize = mxWalSize;
dan3e875ef2010-07-05 19:03:35 +00001444 pRet->zWalName = zWalName;
drhd992b152011-12-20 20:13:25 +00001445 pRet->syncHeader = 1;
drh374f4a02011-12-17 20:02:11 +00001446 pRet->padToSectorBoundary = 1;
dan8c408002010-11-01 17:38:24 +00001447 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
dan9b5c67f2018-11-30 16:26:39 +00001448 sqlite3FastPrngInit(&pRet->sPrng);
dan7c246102010-04-12 19:00:29 +00001449
drh7ed91f22010-04-29 22:34:07 +00001450 /* Open file handle on the write-ahead log file. */
danddb0ac42010-07-14 14:48:58 +00001451 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
danda9fe0c2010-07-13 18:44:03 +00001452 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
dan50833e32010-07-14 16:37:17 +00001453 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
drh66dfec8b2011-06-01 20:01:49 +00001454 pRet->readOnly = WAL_RDONLY;
dan50833e32010-07-14 16:37:17 +00001455 }
dan7c246102010-04-12 19:00:29 +00001456
dan7c246102010-04-12 19:00:29 +00001457 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001458 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001459 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001460 sqlite3_free(pRet);
1461 }else{
dandd973542014-02-13 19:27:08 +00001462 int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
drhd992b152011-12-20 20:13:25 +00001463 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
drhcb15f352011-12-23 01:04:17 +00001464 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1465 pRet->padToSectorBoundary = 0;
1466 }
danef378022010-05-04 11:06:03 +00001467 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001468 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001469 }
dan7c246102010-04-12 19:00:29 +00001470 return rc;
1471}
1472
drha2a42012010-05-18 18:01:08 +00001473/*
drh85a83752011-05-16 21:00:27 +00001474** Change the size to which the WAL file is trucated on each reset.
1475*/
1476void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1477 if( pWal ) pWal->mxWalSize = iLimit;
1478}
1479
1480/*
drha2a42012010-05-18 18:01:08 +00001481** Find the smallest page number out of all pages held in the WAL that
1482** has not been returned by any prior invocation of this method on the
1483** same WalIterator object. Write into *piFrame the frame index where
1484** that page was last written into the WAL. Write into *piPage the page
1485** number.
1486**
1487** Return 0 on success. If there are no pages in the WAL with a page
1488** number larger than *piPage, then return 1.
1489*/
drh7ed91f22010-04-29 22:34:07 +00001490static int walIteratorNext(
1491 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001492 u32 *piPage, /* OUT: The page number of the next page */
1493 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001494){
drha2a42012010-05-18 18:01:08 +00001495 u32 iMin; /* Result pgno must be greater than iMin */
1496 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1497 int i; /* For looping through segments */
dan7c246102010-04-12 19:00:29 +00001498
drha2a42012010-05-18 18:01:08 +00001499 iMin = p->iPrior;
1500 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001501 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001502 struct WalSegment *pSegment = &p->aSegment[i];
dan13a3cb82010-06-11 19:04:21 +00001503 while( pSegment->iNext<pSegment->nEntry ){
drha2a42012010-05-18 18:01:08 +00001504 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001505 if( iPg>iMin ){
1506 if( iPg<iRet ){
1507 iRet = iPg;
dan13a3cb82010-06-11 19:04:21 +00001508 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
dan7c246102010-04-12 19:00:29 +00001509 }
1510 break;
1511 }
1512 pSegment->iNext++;
1513 }
dan7c246102010-04-12 19:00:29 +00001514 }
1515
drha2a42012010-05-18 18:01:08 +00001516 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001517 return (iRet==0xFFFFFFFF);
1518}
1519
danf544b4c2010-06-25 11:35:52 +00001520/*
1521** This function merges two sorted lists into a single sorted list.
drhd9c9b782010-12-15 21:02:06 +00001522**
1523** aLeft[] and aRight[] are arrays of indices. The sort key is
1524** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1525** is guaranteed for all J<K:
1526**
1527** aContent[aLeft[J]] < aContent[aLeft[K]]
1528** aContent[aRight[J]] < aContent[aRight[K]]
1529**
1530** This routine overwrites aRight[] with a new (probably longer) sequence
1531** of indices such that the aRight[] contains every index that appears in
1532** either aLeft[] or the old aRight[] and such that the second condition
1533** above is still met.
1534**
1535** The aContent[aLeft[X]] values will be unique for all X. And the
1536** aContent[aRight[X]] values will be unique too. But there might be
1537** one or more combinations of X and Y such that
1538**
1539** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1540**
1541** When that happens, omit the aLeft[X] and use the aRight[Y] index.
danf544b4c2010-06-25 11:35:52 +00001542*/
1543static void walMerge(
drhd9c9b782010-12-15 21:02:06 +00001544 const u32 *aContent, /* Pages in wal - keys for the sort */
danf544b4c2010-06-25 11:35:52 +00001545 ht_slot *aLeft, /* IN: Left hand input list */
1546 int nLeft, /* IN: Elements in array *paLeft */
1547 ht_slot **paRight, /* IN/OUT: Right hand input list */
1548 int *pnRight, /* IN/OUT: Elements in *paRight */
1549 ht_slot *aTmp /* Temporary buffer */
1550){
1551 int iLeft = 0; /* Current index in aLeft */
1552 int iRight = 0; /* Current index in aRight */
1553 int iOut = 0; /* Current index in output buffer */
1554 int nRight = *pnRight;
1555 ht_slot *aRight = *paRight;
dan7c246102010-04-12 19:00:29 +00001556
danf544b4c2010-06-25 11:35:52 +00001557 assert( nLeft>0 && nRight>0 );
1558 while( iRight<nRight || iLeft<nLeft ){
1559 ht_slot logpage;
1560 Pgno dbpage;
1561
1562 if( (iLeft<nLeft)
1563 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1564 ){
1565 logpage = aLeft[iLeft++];
1566 }else{
1567 logpage = aRight[iRight++];
1568 }
1569 dbpage = aContent[logpage];
1570
1571 aTmp[iOut++] = logpage;
1572 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1573
1574 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1575 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1576 }
1577
1578 *paRight = aLeft;
1579 *pnRight = iOut;
1580 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1581}
1582
1583/*
drhd9c9b782010-12-15 21:02:06 +00001584** Sort the elements in list aList using aContent[] as the sort key.
1585** Remove elements with duplicate keys, preferring to keep the
1586** larger aList[] values.
1587**
1588** The aList[] entries are indices into aContent[]. The values in
1589** aList[] are to be sorted so that for all J<K:
1590**
1591** aContent[aList[J]] < aContent[aList[K]]
1592**
1593** For any X and Y such that
1594**
1595** aContent[aList[X]] == aContent[aList[Y]]
1596**
1597** Keep the larger of the two values aList[X] and aList[Y] and discard
1598** the smaller.
danf544b4c2010-06-25 11:35:52 +00001599*/
dan13a3cb82010-06-11 19:04:21 +00001600static void walMergesort(
drhd9c9b782010-12-15 21:02:06 +00001601 const u32 *aContent, /* Pages in wal */
dan067f3162010-06-14 10:30:12 +00001602 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1603 ht_slot *aList, /* IN/OUT: List to sort */
drha2a42012010-05-18 18:01:08 +00001604 int *pnList /* IN/OUT: Number of elements in aList[] */
1605){
danf544b4c2010-06-25 11:35:52 +00001606 struct Sublist {
1607 int nList; /* Number of elements in aList */
1608 ht_slot *aList; /* Pointer to sub-list content */
1609 };
drha2a42012010-05-18 18:01:08 +00001610
danf544b4c2010-06-25 11:35:52 +00001611 const int nList = *pnList; /* Size of input list */
drhff828942010-06-26 21:34:06 +00001612 int nMerge = 0; /* Number of elements in list aMerge */
1613 ht_slot *aMerge = 0; /* List to be merged */
danf544b4c2010-06-25 11:35:52 +00001614 int iList; /* Index into input list */
drhf4fa0b82015-07-15 18:35:54 +00001615 u32 iSub = 0; /* Index into aSub array */
danf544b4c2010-06-25 11:35:52 +00001616 struct Sublist aSub[13]; /* Array of sub-lists */
drha2a42012010-05-18 18:01:08 +00001617
danf544b4c2010-06-25 11:35:52 +00001618 memset(aSub, 0, sizeof(aSub));
1619 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1620 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
drha2a42012010-05-18 18:01:08 +00001621
danf544b4c2010-06-25 11:35:52 +00001622 for(iList=0; iList<nList; iList++){
1623 nMerge = 1;
1624 aMerge = &aList[iList];
1625 for(iSub=0; iList & (1<<iSub); iSub++){
drhf4fa0b82015-07-15 18:35:54 +00001626 struct Sublist *p;
1627 assert( iSub<ArraySize(aSub) );
1628 p = &aSub[iSub];
danf544b4c2010-06-25 11:35:52 +00001629 assert( p->aList && p->nList<=(1<<iSub) );
danbdf1e242010-06-25 15:16:25 +00001630 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001631 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
drha2a42012010-05-18 18:01:08 +00001632 }
danf544b4c2010-06-25 11:35:52 +00001633 aSub[iSub].aList = aMerge;
1634 aSub[iSub].nList = nMerge;
drha2a42012010-05-18 18:01:08 +00001635 }
1636
danf544b4c2010-06-25 11:35:52 +00001637 for(iSub++; iSub<ArraySize(aSub); iSub++){
1638 if( nList & (1<<iSub) ){
drhf4fa0b82015-07-15 18:35:54 +00001639 struct Sublist *p;
1640 assert( iSub<ArraySize(aSub) );
1641 p = &aSub[iSub];
danbdf1e242010-06-25 15:16:25 +00001642 assert( p->nList<=(1<<iSub) );
1643 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001644 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1645 }
1646 }
1647 assert( aMerge==aList );
1648 *pnList = nMerge;
1649
drha2a42012010-05-18 18:01:08 +00001650#ifdef SQLITE_DEBUG
1651 {
1652 int i;
1653 for(i=1; i<*pnList; i++){
1654 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1655 }
1656 }
1657#endif
1658}
1659
dan5d656852010-06-14 07:53:26 +00001660/*
1661** Free an iterator allocated by walIteratorInit().
1662*/
1663static void walIteratorFree(WalIterator *p){
drhcbd55b02014-11-04 14:22:27 +00001664 sqlite3_free(p);
dan5d656852010-06-14 07:53:26 +00001665}
1666
drha2a42012010-05-18 18:01:08 +00001667/*
danbdf1e242010-06-25 15:16:25 +00001668** Construct a WalInterator object that can be used to loop over all
dan302ce472018-03-02 15:42:20 +00001669** pages in the WAL following frame nBackfill in ascending order. Frames
1670** nBackfill or earlier may be included - excluding them is an optimization
1671** only. The caller must hold the checkpoint lock.
drha2a42012010-05-18 18:01:08 +00001672**
1673** On success, make *pp point to the newly allocated WalInterator object
danbdf1e242010-06-25 15:16:25 +00001674** return SQLITE_OK. Otherwise, return an error code. If this routine
1675** returns an error, the value of *pp is undefined.
drha2a42012010-05-18 18:01:08 +00001676**
1677** The calling routine should invoke walIteratorFree() to destroy the
danbdf1e242010-06-25 15:16:25 +00001678** WalIterator object when it has finished with it.
drha2a42012010-05-18 18:01:08 +00001679*/
dan302ce472018-03-02 15:42:20 +00001680static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
dan067f3162010-06-14 10:30:12 +00001681 WalIterator *p; /* Return value */
1682 int nSegment; /* Number of segments to merge */
1683 u32 iLast; /* Last frame in log */
drhf6ad2012019-04-13 14:07:57 +00001684 sqlite3_int64 nByte; /* Number of bytes to allocate */
dan067f3162010-06-14 10:30:12 +00001685 int i; /* Iterator variable */
1686 ht_slot *aTmp; /* Temp space used by merge-sort */
danbdf1e242010-06-25 15:16:25 +00001687 int rc = SQLITE_OK; /* Return Code */
drha2a42012010-05-18 18:01:08 +00001688
danbdf1e242010-06-25 15:16:25 +00001689 /* This routine only runs while holding the checkpoint lock. And
1690 ** it only runs if there is actually content in the log (mxFrame>0).
drha2a42012010-05-18 18:01:08 +00001691 */
danbdf1e242010-06-25 15:16:25 +00001692 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
dan13a3cb82010-06-11 19:04:21 +00001693 iLast = pWal->hdr.mxFrame;
drha2a42012010-05-18 18:01:08 +00001694
danbdf1e242010-06-25 15:16:25 +00001695 /* Allocate space for the WalIterator object. */
dan13a3cb82010-06-11 19:04:21 +00001696 nSegment = walFramePage(iLast) + 1;
1697 nByte = sizeof(WalIterator)
dan52d6fc02010-06-25 16:34:32 +00001698 + (nSegment-1)*sizeof(struct WalSegment)
1699 + iLast*sizeof(ht_slot);
drhf3cdcdc2015-04-29 16:50:28 +00001700 p = (WalIterator *)sqlite3_malloc64(nByte);
dan8f6097c2010-05-06 07:43:58 +00001701 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00001702 return SQLITE_NOMEM_BKPT;
drha2a42012010-05-18 18:01:08 +00001703 }
1704 memset(p, 0, nByte);
drha2a42012010-05-18 18:01:08 +00001705 p->nSegment = nSegment;
danbdf1e242010-06-25 15:16:25 +00001706
1707 /* Allocate temporary space used by the merge-sort routine. This block
1708 ** of memory will be freed before this function returns.
1709 */
drhf3cdcdc2015-04-29 16:50:28 +00001710 aTmp = (ht_slot *)sqlite3_malloc64(
dan52d6fc02010-06-25 16:34:32 +00001711 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1712 );
danbdf1e242010-06-25 15:16:25 +00001713 if( !aTmp ){
mistachkinfad30392016-02-13 23:43:46 +00001714 rc = SQLITE_NOMEM_BKPT;
danbdf1e242010-06-25 15:16:25 +00001715 }
1716
dan302ce472018-03-02 15:42:20 +00001717 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
drh4ece2f22018-06-09 16:49:00 +00001718 WalHashLoc sLoc;
dan13a3cb82010-06-11 19:04:21 +00001719
drh4ece2f22018-06-09 16:49:00 +00001720 rc = walHashGet(pWal, i, &sLoc);
danbdf1e242010-06-25 15:16:25 +00001721 if( rc==SQLITE_OK ){
dan52d6fc02010-06-25 16:34:32 +00001722 int j; /* Counter variable */
1723 int nEntry; /* Number of entries in this segment */
1724 ht_slot *aIndex; /* Sorted index for this segment */
1725
drh4ece2f22018-06-09 16:49:00 +00001726 sLoc.aPgno++;
drh519426a2010-07-09 03:19:07 +00001727 if( (i+1)==nSegment ){
drh4ece2f22018-06-09 16:49:00 +00001728 nEntry = (int)(iLast - sLoc.iZero);
drh519426a2010-07-09 03:19:07 +00001729 }else{
drh4ece2f22018-06-09 16:49:00 +00001730 nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
drh519426a2010-07-09 03:19:07 +00001731 }
drh4ece2f22018-06-09 16:49:00 +00001732 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
1733 sLoc.iZero++;
danbdf1e242010-06-25 15:16:25 +00001734
danbdf1e242010-06-25 15:16:25 +00001735 for(j=0; j<nEntry; j++){
shaneh5eba1f62010-07-02 17:05:03 +00001736 aIndex[j] = (ht_slot)j;
danbdf1e242010-06-25 15:16:25 +00001737 }
drh4ece2f22018-06-09 16:49:00 +00001738 walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
1739 p->aSegment[i].iZero = sLoc.iZero;
danbdf1e242010-06-25 15:16:25 +00001740 p->aSegment[i].nEntry = nEntry;
1741 p->aSegment[i].aIndex = aIndex;
drh4ece2f22018-06-09 16:49:00 +00001742 p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
dan13a3cb82010-06-11 19:04:21 +00001743 }
dan7c246102010-04-12 19:00:29 +00001744 }
drhcbd55b02014-11-04 14:22:27 +00001745 sqlite3_free(aTmp);
dan7c246102010-04-12 19:00:29 +00001746
danbdf1e242010-06-25 15:16:25 +00001747 if( rc!=SQLITE_OK ){
1748 walIteratorFree(p);
drh49cc2f32018-03-05 23:23:28 +00001749 p = 0;
danbdf1e242010-06-25 15:16:25 +00001750 }
dan8f6097c2010-05-06 07:43:58 +00001751 *pp = p;
danbdf1e242010-06-25 15:16:25 +00001752 return rc;
dan7c246102010-04-12 19:00:29 +00001753}
1754
dan7bb8b8a2020-05-06 20:27:18 +00001755#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1756/*
1757** Attempt to enable blocking locks. Blocking locks are enabled only if (a)
1758** they are supported by the VFS, and (b) the database handle is configured
1759** with a busy-timeout. Return 1 if blocking locks are successfully enabled,
1760** or 0 otherwise.
1761*/
1762static int walEnableBlocking(Wal *pWal){
1763 int res = 0;
1764 if( pWal->db ){
1765 int tmout = pWal->db->busyTimeout;
1766 if( tmout ){
1767 int rc;
1768 rc = sqlite3OsFileControl(
1769 pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout
1770 );
1771 res = (rc==SQLITE_OK);
1772 }
1773 }
1774 return res;
1775}
1776
1777/*
1778** Disable blocking locks.
1779*/
1780static void walDisableBlocking(Wal *pWal){
1781 int tmout = 0;
1782 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout);
1783}
1784
1785/*
1786** If parameter bLock is true, attempt to enable blocking locks, take
1787** the WRITER lock, and then disable blocking locks. If blocking locks
1788** cannot be enabled, no attempt to obtain the WRITER lock is made. Return
1789** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not
1790** an error if blocking locks can not be enabled.
1791**
1792** If the bLock parameter is false and the WRITER lock is held, release it.
1793*/
1794int sqlite3WalWriteLock(Wal *pWal, int bLock){
1795 int rc = SQLITE_OK;
1796 assert( pWal->readLock<0 || bLock==0 );
1797 if( bLock ){
1798 assert( pWal->db );
1799 if( walEnableBlocking(pWal) ){
1800 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1801 if( rc==SQLITE_OK ){
1802 pWal->writeLock = 1;
1803 }
1804 walDisableBlocking(pWal);
1805 }
1806 }else if( pWal->writeLock ){
1807 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
1808 pWal->writeLock = 0;
1809 }
1810 return rc;
1811}
1812
1813/*
1814** Set the database handle used to determine if blocking locks are required.
1815*/
1816void sqlite3WalDb(Wal *pWal, sqlite3 *db){
1817 pWal->db = db;
1818}
1819
1820/*
1821** Take an exclusive WRITE lock. Blocking if so configured.
1822*/
1823static int walLockWriter(Wal *pWal){
1824 int rc;
1825 walEnableBlocking(pWal);
1826 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1827 walDisableBlocking(pWal);
1828 return rc;
1829}
1830#else
1831# define walEnableBlocking(x) 0
1832# define walDisableBlocking(x)
1833# define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1)
1834# define sqlite3WalDb(pWal, db)
1835#endif /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */
1836
1837
dan7c246102010-04-12 19:00:29 +00001838/*
dana58f26f2010-11-16 18:56:51 +00001839** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1840** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1841** busy-handler function. Invoke it and retry the lock until either the
1842** lock is successfully obtained or the busy-handler returns 0.
1843*/
1844static int walBusyLock(
1845 Wal *pWal, /* WAL connection */
1846 int (*xBusy)(void*), /* Function to call when busy */
1847 void *pBusyArg, /* Context argument for xBusyHandler */
1848 int lockIdx, /* Offset of first byte to lock */
1849 int n /* Number of bytes to lock */
1850){
1851 int rc;
1852 do {
drhab372772015-12-02 16:10:16 +00001853 rc = walLockExclusive(pWal, lockIdx, n);
dana58f26f2010-11-16 18:56:51 +00001854 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
dan7bb8b8a2020-05-06 20:27:18 +00001855#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1856 if( rc==SQLITE_BUSY_TIMEOUT ){
1857 walDisableBlocking(pWal);
1858 rc = SQLITE_BUSY;
1859 }
1860#endif
dana58f26f2010-11-16 18:56:51 +00001861 return rc;
1862}
1863
1864/*
danf2b8dd52010-11-18 19:28:01 +00001865** The cache of the wal-index header must be valid to call this function.
1866** Return the page-size in bytes used by the database.
1867*/
1868static int walPagesize(Wal *pWal){
1869 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1870}
1871
1872/*
danf26a1542014-12-02 19:04:54 +00001873** The following is guaranteed when this function is called:
1874**
1875** a) the WRITER lock is held,
1876** b) the entire log file has been checkpointed, and
1877** c) any existing readers are reading exclusively from the database
1878** file - there are no readers that may attempt to read a frame from
1879** the log file.
1880**
1881** This function updates the shared-memory structures so that the next
1882** client to write to the database (which may be this one) does so by
1883** writing frames into the start of the log file.
dan0fe8c1b2014-12-02 19:35:09 +00001884**
1885** The value of parameter salt1 is used as the aSalt[1] value in the
1886** new wal-index header. It should be passed a pseudo-random value (i.e.
1887** one obtained from sqlite3_randomness()).
danf26a1542014-12-02 19:04:54 +00001888*/
dan0fe8c1b2014-12-02 19:35:09 +00001889static void walRestartHdr(Wal *pWal, u32 salt1){
danf26a1542014-12-02 19:04:54 +00001890 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1891 int i; /* Loop counter */
1892 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
1893 pWal->nCkpt++;
1894 pWal->hdr.mxFrame = 0;
1895 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
dan0fe8c1b2014-12-02 19:35:09 +00001896 memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
danf26a1542014-12-02 19:04:54 +00001897 walIndexWriteHdr(pWal);
dan8b4f2312020-05-13 13:33:30 +00001898 AtomicStore(&pInfo->nBackfill, 0);
drh998147e2015-12-10 02:15:03 +00001899 pInfo->nBackfillAttempted = 0;
danf26a1542014-12-02 19:04:54 +00001900 pInfo->aReadMark[1] = 0;
1901 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1902 assert( pInfo->aReadMark[0]==0 );
1903}
1904
1905/*
drh73b64e42010-05-30 19:55:15 +00001906** Copy as much content as we can from the WAL back into the database file
1907** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1908**
1909** The amount of information copies from WAL to database might be limited
1910** by active readers. This routine will never overwrite a database page
1911** that a concurrent reader might be using.
1912**
1913** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1914** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1915** checkpoints are always run by a background thread or background
1916** process, foreground threads will never block on a lengthy fsync call.
1917**
1918** Fsync is called on the WAL before writing content out of the WAL and
1919** into the database. This ensures that if the new content is persistent
1920** in the WAL and can be recovered following a power-loss or hard reset.
1921**
1922** Fsync is also called on the database file if (and only if) the entire
1923** WAL content is copied into the database file. This second fsync makes
1924** it safe to delete the WAL since the new content will persist in the
1925** database file.
1926**
1927** This routine uses and updates the nBackfill field of the wal-index header.
peter.d.reid60ec9142014-09-06 16:39:46 +00001928** This is the only routine that will increase the value of nBackfill.
drh73b64e42010-05-30 19:55:15 +00001929** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1930** its value.)
1931**
1932** The caller must be holding sufficient locks to ensure that no other
1933** checkpoint is running (in any other thread or process) at the same
1934** time.
dan7c246102010-04-12 19:00:29 +00001935*/
drh7ed91f22010-04-29 22:34:07 +00001936static int walCheckpoint(
1937 Wal *pWal, /* Wal connection */
dan7fb89902016-08-12 16:21:15 +00001938 sqlite3 *db, /* Check for interrupts on this handle */
dancdc1f042010-11-18 12:11:05 +00001939 int eMode, /* One of PASSIVE, FULL or RESTART */
drhdd90d7e2014-12-03 19:25:41 +00001940 int (*xBusy)(void*), /* Function to call when busy */
dana58f26f2010-11-16 18:56:51 +00001941 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00001942 int sync_flags, /* Flags for OsSync() (or 0) */
dan9c5e3682011-02-07 15:12:12 +00001943 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00001944){
dan976b0032015-01-29 19:12:12 +00001945 int rc = SQLITE_OK; /* Return code */
drhb2eced52010-08-12 02:41:12 +00001946 int szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001947 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001948 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001949 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001950 u32 mxSafeFrame; /* Max frame that can be backfilled */
dan502019c2010-07-28 14:26:17 +00001951 u32 mxPage; /* Max database page to write */
drh73b64e42010-05-30 19:55:15 +00001952 int i; /* Loop counter */
drh73b64e42010-05-30 19:55:15 +00001953 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
dan7c246102010-04-12 19:00:29 +00001954
danf2b8dd52010-11-18 19:28:01 +00001955 szPage = walPagesize(pWal);
drh9b78f792010-08-14 21:21:24 +00001956 testcase( szPage<=32768 );
1957 testcase( szPage>=65536 );
drh7d208442010-12-16 02:06:29 +00001958 pInfo = walCkptInfo(pWal);
dan976b0032015-01-29 19:12:12 +00001959 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
danf544b4c2010-06-25 11:35:52 +00001960
dan976b0032015-01-29 19:12:12 +00001961 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1962 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1963 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
drh73b64e42010-05-30 19:55:15 +00001964
dan976b0032015-01-29 19:12:12 +00001965 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1966 ** safe to write into the database. Frames beyond mxSafeFrame might
1967 ** overwrite database pages that are in use by active readers and thus
1968 ** cannot be backfilled from the WAL.
danf23da962013-03-23 21:00:41 +00001969 */
dan976b0032015-01-29 19:12:12 +00001970 mxSafeFrame = pWal->hdr.mxFrame;
1971 mxPage = pWal->hdr.nPage;
1972 for(i=1; i<WAL_NREADER; i++){
drhf16cf652020-05-19 12:27:29 +00001973 u32 y = AtomicLoad(pInfo->aReadMark+i);
dan976b0032015-01-29 19:12:12 +00001974 if( mxSafeFrame>y ){
1975 assert( y<=pWal->hdr.mxFrame );
1976 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1977 if( rc==SQLITE_OK ){
drhf16cf652020-05-19 12:27:29 +00001978 u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1979 AtomicStore(pInfo->aReadMark+i, iMark);
dan976b0032015-01-29 19:12:12 +00001980 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1981 }else if( rc==SQLITE_BUSY ){
1982 mxSafeFrame = y;
1983 xBusy = 0;
1984 }else{
1985 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001986 }
1987 }
1988 }
1989
danf0cb61d2018-03-02 16:52:47 +00001990 /* Allocate the iterator */
1991 if( pInfo->nBackfill<mxSafeFrame ){
1992 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
1993 assert( rc==SQLITE_OK || pIter==0 );
1994 }
1995
1996 if( pIter
drhf16cf652020-05-19 12:27:29 +00001997 && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK
dan976b0032015-01-29 19:12:12 +00001998 ){
dan976b0032015-01-29 19:12:12 +00001999 u32 nBackfill = pInfo->nBackfill;
dana58f26f2010-11-16 18:56:51 +00002000
dan3bf83cc2015-12-10 15:45:15 +00002001 pInfo->nBackfillAttempted = mxSafeFrame;
2002
dan976b0032015-01-29 19:12:12 +00002003 /* Sync the WAL to disk */
drhdaaae7b2017-08-25 01:14:43 +00002004 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
dan976b0032015-01-29 19:12:12 +00002005
2006 /* If the database may grow as a result of this checkpoint, hint
2007 ** about the eventual size of the db file to the VFS layer.
2008 */
2009 if( rc==SQLITE_OK ){
2010 i64 nReq = ((i64)mxPage * szPage);
mistachkin6389a7b2018-08-08 20:46:35 +00002011 i64 nSize; /* Current size of database file */
drhfcf31b22020-05-01 18:37:34 +00002012 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0);
dan976b0032015-01-29 19:12:12 +00002013 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
2014 if( rc==SQLITE_OK && nSize<nReq ){
drh799443b2020-08-07 19:52:01 +00002015 if( (nSize+(i64)pWal->hdr.mxFrame*szPage)<nReq ){
2016 /* If the size of the final database is larger than the current
2017 ** database plus the amount of data in the wal file, then there
2018 ** must be corruption somewhere. */
2019 rc = SQLITE_CORRUPT_BKPT;
2020 }else{
2021 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq);
2022 }
dan976b0032015-01-29 19:12:12 +00002023 }
dan976b0032015-01-29 19:12:12 +00002024
dan88819d52020-08-07 16:28:02 +00002025 }
dan976b0032015-01-29 19:12:12 +00002026
2027 /* Iterate through the contents of the WAL, copying data to the db file */
2028 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
2029 i64 iOffset;
2030 assert( walFramePgno(pWal, iFrame)==iDbpage );
dan892edb62020-03-30 13:35:05 +00002031 if( AtomicLoad(&db->u1.isInterrupted) ){
dan7fb89902016-08-12 16:21:15 +00002032 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
2033 break;
2034 }
dan976b0032015-01-29 19:12:12 +00002035 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
2036 continue;
2037 }
2038 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
2039 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
2040 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
2041 if( rc!=SQLITE_OK ) break;
2042 iOffset = (iDbpage-1)*(i64)szPage;
2043 testcase( IS_BIG_INT(iOffset) );
2044 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
2045 if( rc!=SQLITE_OK ) break;
2046 }
drhfcf31b22020-05-01 18:37:34 +00002047 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0);
dan976b0032015-01-29 19:12:12 +00002048
2049 /* If work was actually accomplished... */
2050 if( rc==SQLITE_OK ){
2051 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
2052 i64 szDb = pWal->hdr.nPage*(i64)szPage;
2053 testcase( IS_BIG_INT(szDb) );
2054 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
drhdaaae7b2017-08-25 01:14:43 +00002055 if( rc==SQLITE_OK ){
2056 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
dan976b0032015-01-29 19:12:12 +00002057 }
2058 }
2059 if( rc==SQLITE_OK ){
dan8b4f2312020-05-13 13:33:30 +00002060 AtomicStore(&pInfo->nBackfill, mxSafeFrame);
dan976b0032015-01-29 19:12:12 +00002061 }
2062 }
2063
2064 /* Release the reader lock held while backfilling */
2065 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
2066 }
2067
2068 if( rc==SQLITE_BUSY ){
2069 /* Reset the return code so as not to report a checkpoint failure
2070 ** just because there are active readers. */
2071 rc = SQLITE_OK;
2072 }
dan7c246102010-04-12 19:00:29 +00002073 }
2074
danf26a1542014-12-02 19:04:54 +00002075 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
2076 ** entire wal file has been copied into the database file, then block
2077 ** until all readers have finished using the wal file. This ensures that
2078 ** the next process to write to the database restarts the wal file.
danf2b8dd52010-11-18 19:28:01 +00002079 */
2080 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dancdc1f042010-11-18 12:11:05 +00002081 assert( pWal->writeLock );
danf2b8dd52010-11-18 19:28:01 +00002082 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
2083 rc = SQLITE_BUSY;
danf26a1542014-12-02 19:04:54 +00002084 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
dan0fe8c1b2014-12-02 19:35:09 +00002085 u32 salt1;
dan9b5c67f2018-11-30 16:26:39 +00002086 sqlite3FastRandomness(&pWal->sPrng, 4, &salt1);
dan976b0032015-01-29 19:12:12 +00002087 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
danf2b8dd52010-11-18 19:28:01 +00002088 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
2089 if( rc==SQLITE_OK ){
danf26a1542014-12-02 19:04:54 +00002090 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
drha25165f2014-12-04 04:50:59 +00002091 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
2092 ** SQLITE_CHECKPOINT_RESTART with the addition that it also
2093 ** truncates the log file to zero bytes just prior to a
2094 ** successful return.
danf26a1542014-12-02 19:04:54 +00002095 **
2096 ** In theory, it might be safe to do this without updating the
2097 ** wal-index header in shared memory, as all subsequent reader or
2098 ** writer clients should see that the entire log file has been
2099 ** checkpointed and behave accordingly. This seems unsafe though,
2100 ** as it would leave the system in a state where the contents of
2101 ** the wal-index header do not match the contents of the
2102 ** file-system. To avoid this, update the wal-index header to
2103 ** indicate that the log file contains zero valid frames. */
dan0fe8c1b2014-12-02 19:35:09 +00002104 walRestartHdr(pWal, salt1);
danf26a1542014-12-02 19:04:54 +00002105 rc = sqlite3OsTruncate(pWal->pWalFd, 0);
2106 }
danf2b8dd52010-11-18 19:28:01 +00002107 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2108 }
dancdc1f042010-11-18 12:11:05 +00002109 }
2110 }
2111
dan83f42d12010-06-04 10:37:05 +00002112 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00002113 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00002114 return rc;
2115}
2116
2117/*
danf60b7f32011-12-16 13:24:27 +00002118** If the WAL file is currently larger than nMax bytes in size, truncate
2119** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
drh8dd4afa2011-12-08 19:50:32 +00002120*/
danf60b7f32011-12-16 13:24:27 +00002121static void walLimitSize(Wal *pWal, i64 nMax){
2122 i64 sz;
2123 int rx;
2124 sqlite3BeginBenignMalloc();
2125 rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
2126 if( rx==SQLITE_OK && (sz > nMax ) ){
2127 rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
2128 }
2129 sqlite3EndBenignMalloc();
2130 if( rx ){
2131 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
drh8dd4afa2011-12-08 19:50:32 +00002132 }
2133}
2134
2135/*
dan7c246102010-04-12 19:00:29 +00002136** Close a connection to a log file.
2137*/
drhc438efd2010-04-26 00:19:45 +00002138int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00002139 Wal *pWal, /* Wal to close */
dan7fb89902016-08-12 16:21:15 +00002140 sqlite3 *db, /* For interrupt flag */
danc5118782010-04-17 17:34:41 +00002141 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00002142 int nBuf,
2143 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00002144){
2145 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00002146 if( pWal ){
dan30c86292010-04-30 16:24:46 +00002147 int isDelete = 0; /* True to unlink wal and wal-index files */
2148
2149 /* If an EXCLUSIVE lock can be obtained on the database file (using the
2150 ** ordinary, rollback-mode locking methods, this guarantees that the
2151 ** connection associated with this log file is the only connection to
2152 ** the database. In this case checkpoint the database and unlink both
2153 ** the wal and wal-index files.
2154 **
2155 ** The EXCLUSIVE lock is not released before returning.
2156 */
dan4a5bad52016-11-11 17:08:51 +00002157 if( zBuf!=0
dan298af022016-10-31 16:16:49 +00002158 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
2159 ){
dan8c408002010-11-01 17:38:24 +00002160 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
2161 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
2162 }
dan7fb89902016-08-12 16:21:15 +00002163 rc = sqlite3WalCheckpoint(pWal, db,
2164 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
dancdc1f042010-11-18 12:11:05 +00002165 );
drheed42502011-12-16 15:38:52 +00002166 if( rc==SQLITE_OK ){
2167 int bPersist = -1;
drhc02372c2012-01-10 17:59:59 +00002168 sqlite3OsFileControlHint(
dan6f2f19a2012-01-10 16:56:39 +00002169 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
2170 );
drheed42502011-12-16 15:38:52 +00002171 if( bPersist!=1 ){
2172 /* Try to delete the WAL file if the checkpoint completed and
2173 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
2174 ** mode (!bPersist) */
2175 isDelete = 1;
2176 }else if( pWal->mxWalSize>=0 ){
2177 /* Try to truncate the WAL file to zero bytes if the checkpoint
2178 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
2179 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
2180 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
2181 ** to zero bytes as truncating to the journal_size_limit might
2182 ** leave a corrupt WAL file on disk. */
2183 walLimitSize(pWal, 0);
2184 }
dan30c86292010-04-30 16:24:46 +00002185 }
dan30c86292010-04-30 16:24:46 +00002186 }
2187
dan1018e902010-05-05 15:33:05 +00002188 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00002189 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00002190 if( isDelete ){
drh92c45cf2012-01-10 00:24:59 +00002191 sqlite3BeginBenignMalloc();
drhd9e5c4f2010-05-12 18:01:39 +00002192 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
drh92c45cf2012-01-10 00:24:59 +00002193 sqlite3EndBenignMalloc();
dan30c86292010-04-30 16:24:46 +00002194 }
drhc74c3332010-05-31 12:15:19 +00002195 WALTRACE(("WAL%p: closed\n", pWal));
shaneh8a300f82010-07-02 18:15:31 +00002196 sqlite3_free((void *)pWal->apWiData);
drh7ed91f22010-04-29 22:34:07 +00002197 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00002198 }
2199 return rc;
2200}
2201
2202/*
danf5e89db2015-08-24 19:08:10 +00002203** Try to copy the wal-index header from shared-memory into (*pHdr). Return
2204** zero if successful or non-zero otherwise. If the header is corrupted
2205** (either because the two copies are inconsistent or because the checksum
2206** values are incorrect), the read fails and non-zero is returned.
2207*/
2208static int walIndexLoadHdr(Wal *pWal, WalIndexHdr *pHdr){
2209 u32 aCksum[2]; /* Checksum on the header content */
2210 WalIndexHdr h2; /* Second copy of the header content */
2211 WalIndexHdr volatile *aHdr; /* Header in shared memory */
2212
2213 /* The first page of the wal-index must be mapped at this point. */
2214 assert( pWal->nWiData>0 && pWal->apWiData[0] );
2215
2216 /* Read the header. This might happen concurrently with a write to the
2217 ** same area of shared memory on a different CPU in a SMP,
2218 ** meaning it is possible that an inconsistent snapshot is read
2219 ** from the file. If this happens, return non-zero.
2220 **
2221 ** There are two copies of the header at the beginning of the wal-index.
2222 ** When reading, read [0] first then [1]. Writes are in the reverse order.
2223 ** Memory barriers are used to prevent the compiler or the hardware from
2224 ** reordering the reads and writes.
2225 */
2226 aHdr = walIndexHdr(pWal);
2227 memcpy(pHdr, (void *)&aHdr[0], sizeof(h2));
2228 walShmBarrier(pWal);
2229 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
2230
2231 if( memcmp(&h2, pHdr, sizeof(h2))!=0 ){
2232 return 1; /* Dirty read */
2233 }
2234 if( h2.isInit==0 ){
2235 return 1; /* Malformed header - probably all zeros */
2236 }
2237 walChecksumBytes(1, (u8*)&h2, sizeof(h2)-sizeof(h2.aCksum), 0, aCksum);
2238 if( aCksum[0]!=h2.aCksum[0] || aCksum[1]!=h2.aCksum[1] ){
2239 return 1; /* Checksum does not match */
2240 }
2241
2242 return 0;
2243}
2244
2245/*
drha2a42012010-05-18 18:01:08 +00002246** Try to read the wal-index header. Return 0 on success and 1 if
2247** there is a problem.
2248**
2249** The wal-index is in shared memory. Another thread or process might
2250** be writing the header at the same time this procedure is trying to
2251** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00002252** by verifying that both copies of the header are the same and also by
2253** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00002254**
2255** If and only if the read is consistent and the header is different from
2256** pWal->hdr, then pWal->hdr is updated to the content of the new header
2257** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00002258**
dan84670502010-05-07 05:46:23 +00002259** If the checksum cannot be verified return non-zero. If the header
2260** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00002261*/
drh5a8cd2e2020-05-19 15:51:10 +00002262static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){
danf5e89db2015-08-24 19:08:10 +00002263 WalIndexHdr h1; /* Copy of the header content */
danb9bf16b2010-04-14 11:23:30 +00002264
danf5e89db2015-08-24 19:08:10 +00002265 if( walIndexLoadHdr(pWal, &h1) ){
2266 return 1;
danb9bf16b2010-04-14 11:23:30 +00002267 }
2268
drhf0b20f82010-05-21 13:16:18 +00002269 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00002270 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00002271 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh9b78f792010-08-14 21:21:24 +00002272 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2273 testcase( pWal->szPage<=32768 );
2274 testcase( pWal->szPage>=65536 );
danb9bf16b2010-04-14 11:23:30 +00002275 }
dan84670502010-05-07 05:46:23 +00002276
2277 /* The header was successfully read. Return zero. */
2278 return 0;
danb9bf16b2010-04-14 11:23:30 +00002279}
2280
2281/*
dan08ecefc2017-11-07 21:15:07 +00002282** This is the value that walTryBeginRead returns when it needs to
2283** be retried.
2284*/
2285#define WAL_RETRY (-1)
2286
2287/*
drha2a42012010-05-18 18:01:08 +00002288** Read the wal-index header from the wal-index and into pWal->hdr.
drha927e942010-06-24 02:46:48 +00002289** If the wal-header appears to be corrupt, try to reconstruct the
2290** wal-index from the WAL before returning.
drha2a42012010-05-18 18:01:08 +00002291**
2292** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
peter.d.reid60ec9142014-09-06 16:39:46 +00002293** changed by this operation. If pWal->hdr is unchanged, set *pChanged
drha2a42012010-05-18 18:01:08 +00002294** to 0.
2295**
drh7ed91f22010-04-29 22:34:07 +00002296** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00002297** Otherwise an SQLite error code.
2298*/
drh7ed91f22010-04-29 22:34:07 +00002299static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00002300 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00002301 int badHdr; /* True if a header read failed */
drha927e942010-06-24 02:46:48 +00002302 volatile u32 *page0; /* Chunk of wal-index containing header */
danb9bf16b2010-04-14 11:23:30 +00002303
dan4280eb32010-06-12 12:02:35 +00002304 /* Ensure that page 0 of the wal-index (the page that contains the
2305 ** wal-index header) is mapped. Return early if an error occurs here.
2306 */
dana8614692010-05-06 14:42:34 +00002307 assert( pChanged );
dan4280eb32010-06-12 12:02:35 +00002308 rc = walIndexPage(pWal, 0, &page0);
danc7991bd2010-05-05 19:04:59 +00002309 if( rc!=SQLITE_OK ){
drh85bc6df2017-11-10 20:00:50 +00002310 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2311 if( rc==SQLITE_READONLY_CANTINIT ){
2312 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2313 ** was openable but is not writable, and this thread is unable to
2314 ** confirm that another write-capable connection has the shared-memory
2315 ** open, and hence the content of the shared-memory is unreliable,
2316 ** since the shared-memory might be inconsistent with the WAL file
2317 ** and there is no writer on hand to fix it. */
drhc05a0632017-11-11 20:11:01 +00002318 assert( page0==0 );
2319 assert( pWal->writeLock==0 );
2320 assert( pWal->readOnly & WAL_SHM_RDONLY );
drh85bc6df2017-11-10 20:00:50 +00002321 pWal->bShmUnreliable = 1;
2322 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2323 *pChanged = 1;
2324 }else{
2325 return rc; /* Any other non-OK return is just an error */
2326 }
drhc05a0632017-11-11 20:11:01 +00002327 }else{
2328 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2329 ** is zero, which prevents the SHM from growing */
2330 testcase( page0!=0 );
2331 }
2332 assert( page0!=0 || pWal->writeLock==0 );
drh7ed91f22010-04-29 22:34:07 +00002333
dan4280eb32010-06-12 12:02:35 +00002334 /* If the first page of the wal-index has been mapped, try to read the
2335 ** wal-index header immediately, without holding any lock. This usually
2336 ** works, but may fail if the wal-index header is corrupt or currently
drha927e942010-06-24 02:46:48 +00002337 ** being modified by another thread or process.
danb9bf16b2010-04-14 11:23:30 +00002338 */
dan4280eb32010-06-12 12:02:35 +00002339 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
drhbab7b912010-05-26 17:31:58 +00002340
drh73b64e42010-05-30 19:55:15 +00002341 /* If the first attempt failed, it might have been due to a race
drh66dfec8b2011-06-01 20:01:49 +00002342 ** with a writer. So get a WRITE lock and try again.
drh73b64e42010-05-30 19:55:15 +00002343 */
dan4edc6bf2011-05-10 17:31:29 +00002344 if( badHdr ){
drh85bc6df2017-11-10 20:00:50 +00002345 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
dan4edc6bf2011-05-10 17:31:29 +00002346 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2347 walUnlockShared(pWal, WAL_WRITE_LOCK);
2348 rc = SQLITE_READONLY_RECOVERY;
drhbab7b912010-05-26 17:31:58 +00002349 }
dand0e6d132020-05-06 17:18:57 +00002350 }else{
2351 int bWriteLock = pWal->writeLock;
dan861fb1e2020-05-06 19:14:41 +00002352 if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){
dand0e6d132020-05-06 17:18:57 +00002353 pWal->writeLock = 1;
2354 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2355 badHdr = walIndexTryHdr(pWal, pChanged);
2356 if( badHdr ){
2357 /* If the wal-index header is still malformed even while holding
2358 ** a WRITE lock, it can only mean that the header is corrupted and
2359 ** needs to be reconstructed. So run recovery to do exactly that.
2360 */
2361 rc = walIndexRecover(pWal);
2362 *pChanged = 1;
2363 }
2364 }
2365 if( bWriteLock==0 ){
2366 pWal->writeLock = 0;
2367 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
dan4edc6bf2011-05-10 17:31:29 +00002368 }
2369 }
drhbab7b912010-05-26 17:31:58 +00002370 }
danb9bf16b2010-04-14 11:23:30 +00002371 }
2372
drha927e942010-06-24 02:46:48 +00002373 /* If the header is read successfully, check the version number to make
2374 ** sure the wal-index was not constructed with some future format that
2375 ** this version of SQLite cannot understand.
2376 */
2377 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2378 rc = SQLITE_CANTOPEN_BKPT;
2379 }
drh85bc6df2017-11-10 20:00:50 +00002380 if( pWal->bShmUnreliable ){
dan11caf4f2017-11-04 18:10:03 +00002381 if( rc!=SQLITE_OK ){
2382 walIndexClose(pWal, 0);
drh85bc6df2017-11-10 20:00:50 +00002383 pWal->bShmUnreliable = 0;
dan08ecefc2017-11-07 21:15:07 +00002384 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
drh8b17ac12017-11-14 03:42:52 +00002385 /* walIndexRecover() might have returned SHORT_READ if a concurrent
2386 ** writer truncated the WAL out from under it. If that happens, it
2387 ** indicates that a writer has fixed the SHM file for us, so retry */
dan08ecefc2017-11-07 21:15:07 +00002388 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
dan11caf4f2017-11-04 18:10:03 +00002389 }
2390 pWal->exclusiveMode = WAL_NORMAL_MODE;
2391 }
drha927e942010-06-24 02:46:48 +00002392
danb9bf16b2010-04-14 11:23:30 +00002393 return rc;
2394}
2395
2396/*
drh85bc6df2017-11-10 20:00:50 +00002397** Open a transaction in a connection where the shared-memory is read-only
2398** and where we cannot verify that there is a separate write-capable connection
2399** on hand to keep the shared-memory up-to-date with the WAL file.
2400**
2401** This can happen, for example, when the shared-memory is implemented by
2402** memory-mapping a *-shm file, where a prior writer has shut down and
2403** left the *-shm file on disk, and now the present connection is trying
2404** to use that database but lacks write permission on the *-shm file.
2405** Other scenarios are also possible, depending on the VFS implementation.
2406**
2407** Precondition:
2408**
2409** The *-wal file has been read and an appropriate wal-index has been
2410** constructed in pWal->apWiData[] using heap memory instead of shared
2411** memory.
dan11caf4f2017-11-04 18:10:03 +00002412**
2413** If this function returns SQLITE_OK, then the read transaction has
2414** been successfully opened. In this case output variable (*pChanged)
2415** is set to true before returning if the caller should discard the
2416** contents of the page cache before proceeding. Or, if it returns
2417** WAL_RETRY, then the heap memory wal-index has been discarded and
2418** the caller should retry opening the read transaction from the
2419** beginning (including attempting to map the *-shm file).
2420**
2421** If an error occurs, an SQLite error code is returned.
dan7c246102010-04-12 19:00:29 +00002422*/
drh85bc6df2017-11-10 20:00:50 +00002423static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
dan11caf4f2017-11-04 18:10:03 +00002424 i64 szWal; /* Size of wal file on disk in bytes */
2425 i64 iOffset; /* Current offset when reading wal file */
2426 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
2427 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
2428 int szFrame; /* Number of bytes in buffer aFrame[] */
2429 u8 *aData; /* Pointer to data part of aFrame buffer */
2430 volatile void *pDummy; /* Dummy argument for xShmMap */
2431 int rc; /* Return code */
2432 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */
2433
drh85bc6df2017-11-10 20:00:50 +00002434 assert( pWal->bShmUnreliable );
dan11caf4f2017-11-04 18:10:03 +00002435 assert( pWal->readOnly & WAL_SHM_RDONLY );
2436 assert( pWal->nWiData>0 && pWal->apWiData[0] );
2437
2438 /* Take WAL_READ_LOCK(0). This has the effect of preventing any
drh85bc6df2017-11-10 20:00:50 +00002439 ** writers from running a checkpoint, but does not stop them
dan11caf4f2017-11-04 18:10:03 +00002440 ** from running recovery. */
2441 rc = walLockShared(pWal, WAL_READ_LOCK(0));
2442 if( rc!=SQLITE_OK ){
danab548382017-11-06 19:49:34 +00002443 if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
drh85bc6df2017-11-10 20:00:50 +00002444 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002445 }
2446 pWal->readLock = 0;
2447
drh85bc6df2017-11-10 20:00:50 +00002448 /* Check to see if a separate writer has attached to the shared-memory area,
2449 ** thus making the shared-memory "reliable" again. Do this by invoking
2450 ** the xShmMap() routine of the VFS and looking to see if the return
2451 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
drh9214c1e2017-11-08 19:26:27 +00002452 **
drh85bc6df2017-11-10 20:00:50 +00002453 ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2454 ** cause the heap-memory WAL-index to be discarded and the actual
2455 ** shared memory to be used in its place.
drh870655b2017-11-11 13:30:44 +00002456 **
2457 ** This step is important because, even though this connection is holding
2458 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2459 ** have already checkpointed the WAL file and, while the current
2460 ** is active, wrap the WAL and start overwriting frames that this
2461 ** process wants to use.
2462 **
2463 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2464 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2465 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2466 ** even if some external agent does a "chmod" to make the shared-memory
2467 ** writable by us, until sqlite3OsShmUnmap() has been called.
2468 ** This is a requirement on the VFS implementation.
2469 */
dan11caf4f2017-11-04 18:10:03 +00002470 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
drh9214c1e2017-11-08 19:26:27 +00002471 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
drh7e45e3a2017-11-08 17:32:12 +00002472 if( rc!=SQLITE_READONLY_CANTINIT ){
dan11caf4f2017-11-04 18:10:03 +00002473 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
drh85bc6df2017-11-10 20:00:50 +00002474 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002475 }
2476
drh870655b2017-11-11 13:30:44 +00002477 /* We reach this point only if the real shared-memory is still unreliable.
drh85bc6df2017-11-10 20:00:50 +00002478 ** Assume the in-memory WAL-index substitute is correct and load it
2479 ** into pWal->hdr.
2480 */
dan11caf4f2017-11-04 18:10:03 +00002481 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
drh85bc6df2017-11-10 20:00:50 +00002482
drh870655b2017-11-11 13:30:44 +00002483 /* Make sure some writer hasn't come in and changed the WAL file out
2484 ** from under us, then disconnected, while we were not looking.
drh85bc6df2017-11-10 20:00:50 +00002485 */
dan11caf4f2017-11-04 18:10:03 +00002486 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
danab548382017-11-06 19:49:34 +00002487 if( rc!=SQLITE_OK ){
drh85bc6df2017-11-10 20:00:50 +00002488 goto begin_unreliable_shm_out;
danab548382017-11-06 19:49:34 +00002489 }
2490 if( szWal<WAL_HDRSIZE ){
dan11caf4f2017-11-04 18:10:03 +00002491 /* If the wal file is too small to contain a wal-header and the
2492 ** wal-index header has mxFrame==0, then it must be safe to proceed
2493 ** reading the database file only. However, the page cache cannot
2494 ** be trusted, as a read/write connection may have connected, written
2495 ** the db, run a checkpoint, truncated the wal file and disconnected
2496 ** since this client's last read transaction. */
2497 *pChanged = 1;
danab548382017-11-06 19:49:34 +00002498 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
drh85bc6df2017-11-10 20:00:50 +00002499 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002500 }
2501
2502 /* Check the salt keys at the start of the wal file still match. */
2503 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2504 if( rc!=SQLITE_OK ){
drh85bc6df2017-11-10 20:00:50 +00002505 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002506 }
2507 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
drh870655b2017-11-11 13:30:44 +00002508 /* Some writer has wrapped the WAL file while we were not looking.
2509 ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2510 ** rebuilt. */
dan11caf4f2017-11-04 18:10:03 +00002511 rc = WAL_RETRY;
drh85bc6df2017-11-10 20:00:50 +00002512 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002513 }
2514
2515 /* Allocate a buffer to read frames into */
2516 szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2517 aFrame = (u8 *)sqlite3_malloc64(szFrame);
2518 if( aFrame==0 ){
2519 rc = SQLITE_NOMEM_BKPT;
drh85bc6df2017-11-10 20:00:50 +00002520 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002521 }
2522 aData = &aFrame[WAL_FRAME_HDRSIZE];
2523
dancbd33212017-11-04 21:06:35 +00002524 /* Check to see if a complete transaction has been appended to the
2525 ** wal file since the heap-memory wal-index was created. If so, the
2526 ** heap-memory wal-index is discarded and WAL_RETRY returned to
2527 ** the caller. */
dan11caf4f2017-11-04 18:10:03 +00002528 aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2529 aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2530 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2531 iOffset+szFrame<=szWal;
2532 iOffset+=szFrame
2533 ){
2534 u32 pgno; /* Database page number for frame */
2535 u32 nTruncate; /* dbsize field from frame header */
2536
2537 /* Read and decode the next log frame. */
2538 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
danab548382017-11-06 19:49:34 +00002539 if( rc!=SQLITE_OK ) break;
dan11caf4f2017-11-04 18:10:03 +00002540 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2541
dancbd33212017-11-04 21:06:35 +00002542 /* If nTruncate is non-zero, then a complete transaction has been
2543 ** appended to this wal file. Set rc to WAL_RETRY and break out of
2544 ** the loop. */
dan11caf4f2017-11-04 18:10:03 +00002545 if( nTruncate ){
2546 rc = WAL_RETRY;
2547 break;
2548 }
2549 }
2550 pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2551 pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2552
drh85bc6df2017-11-10 20:00:50 +00002553 begin_unreliable_shm_out:
dan11caf4f2017-11-04 18:10:03 +00002554 sqlite3_free(aFrame);
2555 if( rc!=SQLITE_OK ){
2556 int i;
2557 for(i=0; i<pWal->nWiData; i++){
2558 sqlite3_free((void*)pWal->apWiData[i]);
2559 pWal->apWiData[i] = 0;
2560 }
drh85bc6df2017-11-10 20:00:50 +00002561 pWal->bShmUnreliable = 0;
dan11caf4f2017-11-04 18:10:03 +00002562 sqlite3WalEndReadTransaction(pWal);
2563 *pChanged = 1;
2564 }
2565 return rc;
2566}
dan64d039e2010-04-13 19:27:31 +00002567
drh73b64e42010-05-30 19:55:15 +00002568/*
2569** Attempt to start a read transaction. This might fail due to a race or
2570** other transient condition. When that happens, it returns WAL_RETRY to
2571** indicate to the caller that it is safe to retry immediately.
2572**
drha927e942010-06-24 02:46:48 +00002573** On success return SQLITE_OK. On a permanent failure (such an
drh73b64e42010-05-30 19:55:15 +00002574** I/O error or an SQLITE_BUSY because another process is running
2575** recovery) return a positive error code.
2576**
drha927e942010-06-24 02:46:48 +00002577** The useWal parameter is true to force the use of the WAL and disable
2578** the case where the WAL is bypassed because it has been completely
2579** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
2580** to make a copy of the wal-index header into pWal->hdr. If the
2581** wal-index header has changed, *pChanged is set to 1 (as an indication
drh183f0aa2017-10-31 12:06:29 +00002582** to the caller that the local page cache is obsolete and needs to be
drha927e942010-06-24 02:46:48 +00002583** flushed.) When useWal==1, the wal-index header is assumed to already
2584** be loaded and the pChanged parameter is unused.
2585**
2586** The caller must set the cnt parameter to the number of prior calls to
2587** this routine during the current read attempt that returned WAL_RETRY.
2588** This routine will start taking more aggressive measures to clear the
2589** race conditions after multiple WAL_RETRY returns, and after an excessive
2590** number of errors will ultimately return SQLITE_PROTOCOL. The
2591** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2592** and is not honoring the locking protocol. There is a vanishingly small
2593** chance that SQLITE_PROTOCOL could be returned because of a run of really
2594** bad luck when there is lots of contention for the wal-index, but that
2595** possibility is so small that it can be safely neglected, we believe.
2596**
drh73b64e42010-05-30 19:55:15 +00002597** On success, this routine obtains a read lock on
2598** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
2599** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
2600** that means the Wal does not hold any read lock. The reader must not
2601** access any database page that is modified by a WAL frame up to and
2602** including frame number aReadMark[pWal->readLock]. The reader will
2603** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2604** Or if pWal->readLock==0, then the reader will ignore the WAL
2605** completely and get all content directly from the database file.
drha927e942010-06-24 02:46:48 +00002606** If the useWal parameter is 1 then the WAL will never be ignored and
2607** this routine will always set pWal->readLock>0 on success.
drh73b64e42010-05-30 19:55:15 +00002608** When the read transaction is completed, the caller must release the
2609** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2610**
2611** This routine uses the nBackfill and aReadMark[] fields of the header
2612** to select a particular WAL_READ_LOCK() that strives to let the
2613** checkpoint process do as much work as possible. This routine might
2614** update values of the aReadMark[] array in the header, but if it does
2615** so it takes care to hold an exclusive lock on the corresponding
2616** WAL_READ_LOCK() while changing values.
2617*/
drhaab4c022010-06-02 14:45:51 +00002618static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00002619 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
2620 u32 mxReadMark; /* Largest aReadMark[] value */
2621 int mxI; /* Index of largest aReadMark[] value */
2622 int i; /* Loop counter */
dan13a3cb82010-06-11 19:04:21 +00002623 int rc = SQLITE_OK; /* Return code */
drhc49e9602015-12-11 03:16:54 +00002624 u32 mxFrame; /* Wal frame to lock to */
dan64d039e2010-04-13 19:27:31 +00002625
drh61e4ace2010-05-31 20:28:37 +00002626 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00002627
drh2e9b0922017-11-13 05:51:37 +00002628 /* useWal may only be set for read/write connections */
2629 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2630
drh658d76c2011-02-19 15:22:14 +00002631 /* Take steps to avoid spinning forever if there is a protocol error.
2632 **
2633 ** Circumstances that cause a RETRY should only last for the briefest
2634 ** instances of time. No I/O or other system calls are done while the
2635 ** locks are held, so the locks should not be held for very long. But
2636 ** if we are unlucky, another process that is holding a lock might get
2637 ** paged out or take a page-fault that is time-consuming to resolve,
2638 ** during the few nanoseconds that it is holding the lock. In that case,
2639 ** it might take longer than normal for the lock to free.
2640 **
2641 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2642 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2643 ** is more of a scheduler yield than an actual delay. But on the 10th
2644 ** an subsequent retries, the delays start becoming longer and longer,
drh5b6e3b92014-06-12 17:10:18 +00002645 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2646 ** The total delay time before giving up is less than 10 seconds.
drh658d76c2011-02-19 15:22:14 +00002647 */
drhaab4c022010-06-02 14:45:51 +00002648 if( cnt>5 ){
drh658d76c2011-02-19 15:22:14 +00002649 int nDelay = 1; /* Pause time in microseconds */
drh03c69672011-02-19 23:18:12 +00002650 if( cnt>100 ){
2651 VVA_ONLY( pWal->lockError = 1; )
2652 return SQLITE_PROTOCOL;
2653 }
drh5b6e3b92014-06-12 17:10:18 +00002654 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
drh658d76c2011-02-19 15:22:14 +00002655 sqlite3OsSleep(pWal->pVfs, nDelay);
drhaab4c022010-06-02 14:45:51 +00002656 }
2657
drh73b64e42010-05-30 19:55:15 +00002658 if( !useWal ){
dan11caf4f2017-11-04 18:10:03 +00002659 assert( rc==SQLITE_OK );
drh85bc6df2017-11-10 20:00:50 +00002660 if( pWal->bShmUnreliable==0 ){
dan11caf4f2017-11-04 18:10:03 +00002661 rc = walIndexReadHdr(pWal, pChanged);
2662 }
drh73b64e42010-05-30 19:55:15 +00002663 if( rc==SQLITE_BUSY ){
2664 /* If there is not a recovery running in another thread or process
2665 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2666 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2667 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2668 ** would be technically correct. But the race is benign since with
2669 ** WAL_RETRY this routine will be called again and will probably be
2670 ** right on the second iteration.
2671 */
dan7d4514a2010-07-15 17:54:14 +00002672 if( pWal->apWiData[0]==0 ){
2673 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2674 ** We assume this is a transient condition, so return WAL_RETRY. The
2675 ** xShmMap() implementation used by the default unix and win32 VFS
2676 ** modules may return SQLITE_BUSY due to a race condition in the
2677 ** code that determines whether or not the shared-memory region
2678 ** must be zeroed before the requested page is returned.
2679 */
2680 rc = WAL_RETRY;
2681 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
drh73b64e42010-05-30 19:55:15 +00002682 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2683 rc = WAL_RETRY;
2684 }else if( rc==SQLITE_BUSY ){
2685 rc = SQLITE_BUSY_RECOVERY;
2686 }
2687 }
drha927e942010-06-24 02:46:48 +00002688 if( rc!=SQLITE_OK ){
2689 return rc;
2690 }
drh85bc6df2017-11-10 20:00:50 +00002691 else if( pWal->bShmUnreliable ){
2692 return walBeginShmUnreliable(pWal, pChanged);
dan11caf4f2017-11-04 18:10:03 +00002693 }
drh73b64e42010-05-30 19:55:15 +00002694 }
2695
dan92c02da2017-11-01 20:59:28 +00002696 assert( pWal->nWiData>0 );
drh2e9b0922017-11-13 05:51:37 +00002697 assert( pWal->apWiData[0]!=0 );
dan13a3cb82010-06-11 19:04:21 +00002698 pInfo = walCkptInfo(pWal);
dan8b4f2312020-05-13 13:33:30 +00002699 if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame
danfc1acf32015-12-05 20:51:54 +00002700#ifdef SQLITE_ENABLE_SNAPSHOT
dan21f2baf2017-09-23 07:46:54 +00002701 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
danfc1acf32015-12-05 20:51:54 +00002702#endif
2703 ){
drh73b64e42010-05-30 19:55:15 +00002704 /* The WAL has been completely backfilled (or it is empty).
2705 ** and can be safely ignored.
2706 */
2707 rc = walLockShared(pWal, WAL_READ_LOCK(0));
dan8c408002010-11-01 17:38:24 +00002708 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002709 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00002710 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00002711 /* It is not safe to allow the reader to continue here if frames
2712 ** may have been appended to the log before READ_LOCK(0) was obtained.
2713 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2714 ** which implies that the database file contains a trustworthy
peter.d.reid60ec9142014-09-06 16:39:46 +00002715 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
dan493cc592010-06-05 18:12:23 +00002716 ** happening, this is usually correct.
2717 **
2718 ** However, if frames have been appended to the log (or if the log
2719 ** is wrapped and written for that matter) before the READ_LOCK(0)
2720 ** is obtained, that is not necessarily true. A checkpointer may
2721 ** have started to backfill the appended frames but crashed before
2722 ** it finished. Leaving a corrupt image in the database file.
2723 */
drh73b64e42010-05-30 19:55:15 +00002724 walUnlockShared(pWal, WAL_READ_LOCK(0));
2725 return WAL_RETRY;
2726 }
2727 pWal->readLock = 0;
2728 return SQLITE_OK;
2729 }else if( rc!=SQLITE_BUSY ){
2730 return rc;
dan64d039e2010-04-13 19:27:31 +00002731 }
dan7c246102010-04-12 19:00:29 +00002732 }
danba515902010-04-30 09:32:06 +00002733
drh73b64e42010-05-30 19:55:15 +00002734 /* If we get this far, it means that the reader will want to use
2735 ** the WAL to get at content from recent commits. The job now is
2736 ** to select one of the aReadMark[] entries that is closest to
2737 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2738 */
2739 mxReadMark = 0;
2740 mxI = 0;
danfc1acf32015-12-05 20:51:54 +00002741 mxFrame = pWal->hdr.mxFrame;
2742#ifdef SQLITE_ENABLE_SNAPSHOT
dan818b11a2015-12-07 14:33:07 +00002743 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2744 mxFrame = pWal->pSnapshot->mxFrame;
2745 }
danfc1acf32015-12-05 20:51:54 +00002746#endif
drh73b64e42010-05-30 19:55:15 +00002747 for(i=1; i<WAL_NREADER; i++){
drh876c7ea2018-08-30 20:28:18 +00002748 u32 thisMark = AtomicLoad(pInfo->aReadMark+i);
danfc1acf32015-12-05 20:51:54 +00002749 if( mxReadMark<=thisMark && thisMark<=mxFrame ){
drhdb7f6472010-06-09 14:45:12 +00002750 assert( thisMark!=READMARK_NOT_USED );
drh73b64e42010-05-30 19:55:15 +00002751 mxReadMark = thisMark;
2752 mxI = i;
2753 }
2754 }
drh998147e2015-12-10 02:15:03 +00002755 if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2756 && (mxReadMark<mxFrame || mxI==0)
drh998147e2015-12-10 02:15:03 +00002757 ){
2758 for(i=1; i<WAL_NREADER; i++){
2759 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2760 if( rc==SQLITE_OK ){
dan3e42b992020-03-30 11:17:37 +00002761 AtomicStore(pInfo->aReadMark+i,mxFrame);
2762 mxReadMark = mxFrame;
drh998147e2015-12-10 02:15:03 +00002763 mxI = i;
2764 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2765 break;
2766 }else if( rc!=SQLITE_BUSY ){
2767 return rc;
drh73b64e42010-05-30 19:55:15 +00002768 }
2769 }
drh998147e2015-12-10 02:15:03 +00002770 }
2771 if( mxI==0 ){
drh998147e2015-12-10 02:15:03 +00002772 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
drh7e45e3a2017-11-08 17:32:12 +00002773 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
drh998147e2015-12-10 02:15:03 +00002774 }
drh73b64e42010-05-30 19:55:15 +00002775
drh998147e2015-12-10 02:15:03 +00002776 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2777 if( rc ){
2778 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2779 }
2780 /* Now that the read-lock has been obtained, check that neither the
2781 ** value in the aReadMark[] array or the contents of the wal-index
2782 ** header have changed.
2783 **
2784 ** It is necessary to check that the wal-index header did not change
2785 ** between the time it was read and when the shared-lock was obtained
2786 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2787 ** that the log file may have been wrapped by a writer, or that frames
2788 ** that occur later in the log than pWal->hdr.mxFrame may have been
2789 ** copied into the database by a checkpointer. If either of these things
2790 ** happened, then reading the database with the current value of
2791 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2792 ** instead.
2793 **
2794 ** Before checking that the live wal-index header has not changed
2795 ** since it was read, set Wal.minFrame to the first frame in the wal
2796 ** file that has not yet been checkpointed. This client will not need
2797 ** to read any frames earlier than minFrame from the wal file - they
2798 ** can be safely read directly from the database file.
2799 **
2800 ** Because a ShmBarrier() call is made between taking the copy of
2801 ** nBackfill and checking that the wal-header in shared-memory still
2802 ** matches the one cached in pWal->hdr, it is guaranteed that the
2803 ** checkpointer that set nBackfill was not working with a wal-index
2804 ** header newer than that cached in pWal->hdr. If it were, that could
2805 ** cause a problem. The checkpointer could omit to checkpoint
2806 ** a version of page X that lies before pWal->minFrame (call that version
2807 ** A) on the basis that there is a newer version (version B) of the same
2808 ** page later in the wal file. But if version B happens to like past
2809 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2810 ** that it can read version A from the database file. However, since
2811 ** we can guarantee that the checkpointer that set nBackfill could not
2812 ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2813 */
drh876c7ea2018-08-30 20:28:18 +00002814 pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1;
drh998147e2015-12-10 02:15:03 +00002815 walShmBarrier(pWal);
drh876c7ea2018-08-30 20:28:18 +00002816 if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
drh998147e2015-12-10 02:15:03 +00002817 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2818 ){
2819 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2820 return WAL_RETRY;
2821 }else{
2822 assert( mxReadMark<=pWal->hdr.mxFrame );
2823 pWal->readLock = (i16)mxI;
drh73b64e42010-05-30 19:55:15 +00002824 }
2825 return rc;
2826}
2827
drhbc887112016-11-22 21:11:59 +00002828#ifdef SQLITE_ENABLE_SNAPSHOT
drh73b64e42010-05-30 19:55:15 +00002829/*
dan93f51132016-11-19 18:31:37 +00002830** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2831** variable so that older snapshots can be accessed. To do this, loop
2832** through all wal frames from nBackfillAttempted to (nBackfill+1),
2833** comparing their content to the corresponding page with the database
2834** file, if any. Set nBackfillAttempted to the frame number of the
2835** first frame for which the wal file content matches the db file.
2836**
2837** This is only really safe if the file-system is such that any page
2838** writes made by earlier checkpointers were atomic operations, which
2839** is not always true. It is also possible that nBackfillAttempted
2840** may be left set to a value larger than expected, if a wal frame
2841** contains content that duplicate of an earlier version of the same
2842** page.
2843**
2844** SQLITE_OK is returned if successful, or an SQLite error code if an
2845** error occurs. It is not an error if nBackfillAttempted cannot be
2846** decreased at all.
dan11584982016-11-18 20:49:43 +00002847*/
2848int sqlite3WalSnapshotRecover(Wal *pWal){
dan11584982016-11-18 20:49:43 +00002849 int rc;
2850
dan93f51132016-11-19 18:31:37 +00002851 assert( pWal->readLock>=0 );
2852 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
dan11584982016-11-18 20:49:43 +00002853 if( rc==SQLITE_OK ){
dan93f51132016-11-19 18:31:37 +00002854 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2855 int szPage = (int)pWal->szPage;
2856 i64 szDb; /* Size of db file in bytes */
2857
2858 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
dan11584982016-11-18 20:49:43 +00002859 if( rc==SQLITE_OK ){
dan93f51132016-11-19 18:31:37 +00002860 void *pBuf1 = sqlite3_malloc(szPage);
2861 void *pBuf2 = sqlite3_malloc(szPage);
2862 if( pBuf1==0 || pBuf2==0 ){
2863 rc = SQLITE_NOMEM;
2864 }else{
2865 u32 i = pInfo->nBackfillAttempted;
dan8b4f2312020-05-13 13:33:30 +00002866 for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){
drh4ece2f22018-06-09 16:49:00 +00002867 WalHashLoc sLoc; /* Hash table location */
dan93f51132016-11-19 18:31:37 +00002868 u32 pgno; /* Page number in db file */
2869 i64 iDbOff; /* Offset of db file entry */
2870 i64 iWalOff; /* Offset of wal file entry */
dan11584982016-11-18 20:49:43 +00002871
drh4ece2f22018-06-09 16:49:00 +00002872 rc = walHashGet(pWal, walFramePage(i), &sLoc);
dan93f51132016-11-19 18:31:37 +00002873 if( rc!=SQLITE_OK ) break;
drh4ece2f22018-06-09 16:49:00 +00002874 pgno = sLoc.aPgno[i-sLoc.iZero];
dan93f51132016-11-19 18:31:37 +00002875 iDbOff = (i64)(pgno-1) * szPage;
dan11584982016-11-18 20:49:43 +00002876
dan93f51132016-11-19 18:31:37 +00002877 if( iDbOff+szPage<=szDb ){
2878 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2879 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
dan11584982016-11-18 20:49:43 +00002880
dan93f51132016-11-19 18:31:37 +00002881 if( rc==SQLITE_OK ){
2882 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
dan6a9e7f12016-11-19 16:35:53 +00002883 }
2884
dan93f51132016-11-19 18:31:37 +00002885 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2886 break;
2887 }
dan6a9e7f12016-11-19 16:35:53 +00002888 }
dan93f51132016-11-19 18:31:37 +00002889
2890 pInfo->nBackfillAttempted = i-1;
dan11584982016-11-18 20:49:43 +00002891 }
dan6a9e7f12016-11-19 16:35:53 +00002892 }
dan11584982016-11-18 20:49:43 +00002893
dan93f51132016-11-19 18:31:37 +00002894 sqlite3_free(pBuf1);
2895 sqlite3_free(pBuf2);
2896 }
2897 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dan11584982016-11-18 20:49:43 +00002898 }
2899
2900 return rc;
2901}
drhbc887112016-11-22 21:11:59 +00002902#endif /* SQLITE_ENABLE_SNAPSHOT */
dan11584982016-11-18 20:49:43 +00002903
drh73b64e42010-05-30 19:55:15 +00002904/*
2905** Begin a read transaction on the database.
2906**
2907** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2908** it takes a snapshot of the state of the WAL and wal-index for the current
2909** instant in time. The current thread will continue to use this snapshot.
2910** Other threads might append new content to the WAL and wal-index but
2911** that extra content is ignored by the current thread.
2912**
2913** If the database contents have changes since the previous read
2914** transaction, then *pChanged is set to 1 before returning. The
drh8741d0d2018-09-12 00:21:11 +00002915** Pager layer will use this to know that its cache is stale and
drh73b64e42010-05-30 19:55:15 +00002916** needs to be flushed.
2917*/
drh66dfec8b2011-06-01 20:01:49 +00002918int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
drh73b64e42010-05-30 19:55:15 +00002919 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00002920 int cnt = 0; /* Number of TryBeginRead attempts */
drh91960aa2020-05-25 12:02:12 +00002921#ifdef SQLITE_ENABLE_SNAPSHOT
2922 int bChanged = 0;
2923 WalIndexHdr *pSnapshot = pWal->pSnapshot;
2924#endif
dan8714de92020-05-04 19:42:35 +00002925
dand0e6d132020-05-06 17:18:57 +00002926 assert( pWal->ckptLock==0 );
drh73b64e42010-05-30 19:55:15 +00002927
danfc1acf32015-12-05 20:51:54 +00002928#ifdef SQLITE_ENABLE_SNAPSHOT
dan8714de92020-05-04 19:42:35 +00002929 if( pSnapshot ){
dan8714de92020-05-04 19:42:35 +00002930 if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2931 bChanged = 1;
2932 }
danfc1acf32015-12-05 20:51:54 +00002933
dan8714de92020-05-04 19:42:35 +00002934 /* It is possible that there is a checkpointer thread running
2935 ** concurrent with this code. If this is the case, it may be that the
2936 ** checkpointer has already determined that it will checkpoint
2937 ** snapshot X, where X is later in the wal file than pSnapshot, but
2938 ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2939 ** its intent. To avoid the race condition this leads to, ensure that
2940 ** there is no checkpointer process by taking a shared CKPT lock
2941 ** before checking pInfo->nBackfillAttempted. */
danfc87ab82020-05-06 19:22:59 +00002942 (void)walEnableBlocking(pWal);
dan8714de92020-05-04 19:42:35 +00002943 rc = walLockShared(pWal, WAL_CKPT_LOCK);
dan58021b22020-05-05 20:30:07 +00002944 walDisableBlocking(pWal);
dan8714de92020-05-04 19:42:35 +00002945
2946 if( rc!=SQLITE_OK ){
2947 return rc;
2948 }
dand0e6d132020-05-06 17:18:57 +00002949 pWal->ckptLock = 1;
dan8714de92020-05-04 19:42:35 +00002950 }
dan97ccc1b2020-03-27 17:23:17 +00002951#endif
2952
drh73b64e42010-05-30 19:55:15 +00002953 do{
drhaab4c022010-06-02 14:45:51 +00002954 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00002955 }while( rc==WAL_RETRY );
drhab1cc742011-02-19 16:51:45 +00002956 testcase( (rc&0xff)==SQLITE_BUSY );
2957 testcase( (rc&0xff)==SQLITE_IOERR );
2958 testcase( rc==SQLITE_PROTOCOL );
2959 testcase( rc==SQLITE_OK );
danfc1acf32015-12-05 20:51:54 +00002960
danaa595052017-05-23 19:23:45 +00002961 pWal->nPriorFrame = pWal->hdr.mxFrame;
danfc1acf32015-12-05 20:51:54 +00002962#ifdef SQLITE_ENABLE_SNAPSHOT
2963 if( rc==SQLITE_OK ){
drh998147e2015-12-10 02:15:03 +00002964 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
dan65127cd2015-12-09 20:05:27 +00002965 /* At this point the client has a lock on an aReadMark[] slot holding
dan3bf83cc2015-12-10 15:45:15 +00002966 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2967 ** is populated with the wal-index header corresponding to the head
2968 ** of the wal file. Verify that pSnapshot is still valid before
2969 ** continuing. Reasons why pSnapshot might no longer be valid:
dan65127cd2015-12-09 20:05:27 +00002970 **
drh998147e2015-12-10 02:15:03 +00002971 ** (1) The WAL file has been reset since the snapshot was taken.
2972 ** In this case, the salt will have changed.
dan65127cd2015-12-09 20:05:27 +00002973 **
drh998147e2015-12-10 02:15:03 +00002974 ** (2) A checkpoint as been attempted that wrote frames past
2975 ** pSnapshot->mxFrame into the database file. Note that the
2976 ** checkpoint need not have completed for this to cause problems.
dan65127cd2015-12-09 20:05:27 +00002977 */
danfc1acf32015-12-05 20:51:54 +00002978 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
dan65127cd2015-12-09 20:05:27 +00002979
drh71b62fa2015-12-11 01:22:22 +00002980 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
dan65127cd2015-12-09 20:05:27 +00002981 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2982
dan8714de92020-05-04 19:42:35 +00002983 /* Check that the wal file has not been wrapped. Assuming that it has
2984 ** not, also check that no checkpointer has attempted to checkpoint any
2985 ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2986 ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
2987 ** with *pSnapshot and set *pChanged as appropriate for opening the
2988 ** snapshot. */
2989 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2990 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2991 ){
2992 assert( pWal->readLock>0 );
2993 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2994 *pChanged = bChanged;
2995 }else{
2996 rc = SQLITE_ERROR_SNAPSHOT;
danfc1acf32015-12-05 20:51:54 +00002997 }
dan65127cd2015-12-09 20:05:27 +00002998
dan8714de92020-05-04 19:42:35 +00002999 /* A client using a non-current snapshot may not ignore any frames
3000 ** from the start of the wal file. This is because, for a system
3001 ** where (minFrame < iSnapshot < maxFrame), a checkpointer may
3002 ** have omitted to checkpoint a frame earlier than minFrame in
3003 ** the file because there exists a frame after iSnapshot that
3004 ** is the same database page. */
3005 pWal->minFrame = 1;
dan3bf83cc2015-12-10 15:45:15 +00003006
danfc1acf32015-12-05 20:51:54 +00003007 if( rc!=SQLITE_OK ){
3008 sqlite3WalEndReadTransaction(pWal);
3009 }
3010 }
3011 }
dan8714de92020-05-04 19:42:35 +00003012
3013 /* Release the shared CKPT lock obtained above. */
dand0e6d132020-05-06 17:18:57 +00003014 if( pWal->ckptLock ){
3015 assert( pSnapshot );
dan8714de92020-05-04 19:42:35 +00003016 walUnlockShared(pWal, WAL_CKPT_LOCK);
dand0e6d132020-05-06 17:18:57 +00003017 pWal->ckptLock = 0;
dan8714de92020-05-04 19:42:35 +00003018 }
danfc1acf32015-12-05 20:51:54 +00003019#endif
dan7c246102010-04-12 19:00:29 +00003020 return rc;
3021}
3022
3023/*
drh73b64e42010-05-30 19:55:15 +00003024** Finish with a read transaction. All this does is release the
3025** read-lock.
dan7c246102010-04-12 19:00:29 +00003026*/
drh73b64e42010-05-30 19:55:15 +00003027void sqlite3WalEndReadTransaction(Wal *pWal){
dan73d66fd2010-08-07 16:17:48 +00003028 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00003029 if( pWal->readLock>=0 ){
3030 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3031 pWal->readLock = -1;
3032 }
dan7c246102010-04-12 19:00:29 +00003033}
3034
dan5e0ce872010-04-28 17:48:44 +00003035/*
dan834c48c2018-12-03 20:38:15 +00003036** Search the wal file for page pgno. If found, set *piRead to the frame that
3037** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
3038** to zero.
3039**
3040** Return SQLITE_OK if successful, or an error code if an error occurs. If an
3041** error does occur, the final value of *piRead is undefined.
dan7c246102010-04-12 19:00:29 +00003042*/
dan834c48c2018-12-03 20:38:15 +00003043int sqlite3WalFindFrame(
3044 Wal *pWal, /* WAL handle */
3045 Pgno pgno, /* Database page number to read data for */
3046 u32 *piRead /* OUT: Frame number (or zero) */
danb6e099a2010-05-04 14:47:39 +00003047){
dan834c48c2018-12-03 20:38:15 +00003048 u32 iRead = 0; /* If !=0, WAL frame to return data from */
3049 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00003050 int iHash; /* Used to loop through N hash tables */
dan6df003c2015-08-12 19:42:08 +00003051 int iMinHash;
dan7c246102010-04-12 19:00:29 +00003052
dan834c48c2018-12-03 20:38:15 +00003053 /* This routine is only be called from within a read transaction. */
3054 assert( pWal->readLock>=0 || pWal->lockError );
3055
3056 /* If the "last page" field of the wal-index header snapshot is 0, then
3057 ** no data will be read from the wal under any circumstances. Return early
3058 ** in this case as an optimization. Likewise, if pWal->readLock==0,
3059 ** then the WAL is ignored by the reader so return early, as if the
3060 ** WAL were empty.
3061 */
3062 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
3063 *piRead = 0;
3064 return SQLITE_OK;
3065 }
3066
dan3d394342015-07-27 19:31:45 +00003067 /* Each iteration of the following for() loop searches one
danbb23aff2010-05-10 14:46:09 +00003068 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
3069 **
drha927e942010-06-24 02:46:48 +00003070 ** This code might run concurrently to the code in walIndexAppend()
danbb23aff2010-05-10 14:46:09 +00003071 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00003072 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00003073 ** slot (aHash[iKey]) may have been added before or after the
3074 ** current read transaction was opened. Values added after the
3075 ** read transaction was opened may have been written incorrectly -
3076 ** i.e. these slots may contain garbage data. However, we assume
3077 ** that any slots written before the current read transaction was
3078 ** opened remain unmodified.
3079 **
3080 ** For the reasons above, the if(...) condition featured in the inner
3081 ** loop of the following block is more stringent that would be required
3082 ** if we had exclusive access to the hash-table:
3083 **
3084 ** (aPgno[iFrame]==pgno):
3085 ** This condition filters out normal hash-table collisions.
3086 **
3087 ** (iFrame<=iLast):
3088 ** This condition filters out entries that were added to the hash
3089 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00003090 */
danb8c7cfb2015-08-13 20:23:46 +00003091 iMinHash = walFramePage(pWal->minFrame);
drh8d3e15e2018-02-21 01:05:37 +00003092 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
drh4ece2f22018-06-09 16:49:00 +00003093 WalHashLoc sLoc; /* Hash table location */
danbb23aff2010-05-10 14:46:09 +00003094 int iKey; /* Hash slot index */
drh519426a2010-07-09 03:19:07 +00003095 int nCollide; /* Number of hash collisions remaining */
3096 int rc; /* Error code */
drhf16cf652020-05-19 12:27:29 +00003097 u32 iH;
danbb23aff2010-05-10 14:46:09 +00003098
drh4ece2f22018-06-09 16:49:00 +00003099 rc = walHashGet(pWal, iHash, &sLoc);
dan4280eb32010-06-12 12:02:35 +00003100 if( rc!=SQLITE_OK ){
3101 return rc;
3102 }
drh519426a2010-07-09 03:19:07 +00003103 nCollide = HASHTABLE_NSLOT;
drhf16cf652020-05-19 12:27:29 +00003104 iKey = walHash(pgno);
3105 while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){
drh680f0fe2019-04-17 21:12:05 +00003106 u32 iFrame = iH + sLoc.iZero;
3107 if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){
drh622a53d2014-12-29 11:50:39 +00003108 assert( iFrame>iRead || CORRUPT_DB );
danbb23aff2010-05-10 14:46:09 +00003109 iRead = iFrame;
3110 }
drh519426a2010-07-09 03:19:07 +00003111 if( (nCollide--)==0 ){
3112 return SQLITE_CORRUPT_BKPT;
3113 }
drhf16cf652020-05-19 12:27:29 +00003114 iKey = walNextHash(iKey);
dan7c246102010-04-12 19:00:29 +00003115 }
drh8d3e15e2018-02-21 01:05:37 +00003116 if( iRead ) break;
dan7c246102010-04-12 19:00:29 +00003117 }
dan7c246102010-04-12 19:00:29 +00003118
danbb23aff2010-05-10 14:46:09 +00003119#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
3120 /* If expensive assert() statements are available, do a linear search
3121 ** of the wal-index file content. Make sure the results agree with the
3122 ** result obtained using the hash indexes above. */
dan50232dd2018-12-04 13:51:43 +00003123 {
danbb23aff2010-05-10 14:46:09 +00003124 u32 iRead2 = 0;
3125 u32 iTest;
drh85bc6df2017-11-10 20:00:50 +00003126 assert( pWal->bShmUnreliable || pWal->minFrame>0 );
dan6c9d8f62017-11-07 21:25:15 +00003127 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
dan13a3cb82010-06-11 19:04:21 +00003128 if( walFramePgno(pWal, iTest)==pgno ){
danbb23aff2010-05-10 14:46:09 +00003129 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00003130 break;
3131 }
dan7c246102010-04-12 19:00:29 +00003132 }
danbb23aff2010-05-10 14:46:09 +00003133 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00003134 }
danbb23aff2010-05-10 14:46:09 +00003135#endif
dancd11fb22010-04-26 10:40:52 +00003136
dan99bd1092013-03-22 18:20:14 +00003137 *piRead = iRead;
dan834c48c2018-12-03 20:38:15 +00003138 return SQLITE_OK;
dan7c246102010-04-12 19:00:29 +00003139}
3140
dan99bd1092013-03-22 18:20:14 +00003141/*
3142** Read the contents of frame iRead from the wal file into buffer pOut
3143** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
3144** error code otherwise.
3145*/
3146int sqlite3WalReadFrame(
3147 Wal *pWal, /* WAL handle */
3148 u32 iRead, /* Frame to read */
3149 int nOut, /* Size of buffer pOut in bytes */
3150 u8 *pOut /* Buffer to write page data to */
3151){
3152 int sz;
3153 i64 iOffset;
3154 sz = pWal->hdr.szPage;
3155 sz = (sz&0xfe00) + ((sz&0x0001)<<16);
3156 testcase( sz<=32768 );
3157 testcase( sz>=65536 );
3158 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
3159 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
3160 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
3161}
dan7c246102010-04-12 19:00:29 +00003162
3163/*
dan763afe62010-08-03 06:42:39 +00003164** Return the size of the database in pages (or zero, if unknown).
dan7c246102010-04-12 19:00:29 +00003165*/
dan763afe62010-08-03 06:42:39 +00003166Pgno sqlite3WalDbsize(Wal *pWal){
drh7e9e70b2010-08-16 14:17:59 +00003167 if( pWal && ALWAYS(pWal->readLock>=0) ){
dan763afe62010-08-03 06:42:39 +00003168 return pWal->hdr.nPage;
3169 }
3170 return 0;
dan7c246102010-04-12 19:00:29 +00003171}
3172
dan37d36202015-07-28 16:46:49 +00003173/*
3174** Take the WRITER lock on the WAL file. Return SQLITE_OK if successful,
3175** or an SQLite error code otherwise. This routine does not invoke any
3176** busy-handler callbacks, that is done at a higher level.
3177*/
3178static int walWriteLock(Wal *pWal){
3179 int rc;
3180
3181 /* Cannot start a write transaction without first holding a read lock */
3182 assert( pWal->readLock>=0 );
3183 assert( pWal->writeLock==0 );
danf687ba52016-01-14 15:46:31 +00003184 assert( pWal->iReCksum==0 );
dan37d36202015-07-28 16:46:49 +00003185
3186 /* If this is a read-only connection, obtaining a write-lock is not
3187 ** possible. In this case return SQLITE_READONLY. Otherwise, attempt
3188 ** to grab the WRITER lock. Set Wal.writeLock to true and return
3189 ** SQLITE_OK if successful, or leave Wal.writeLock clear and return
3190 ** an SQLite error code (possibly SQLITE_BUSY) otherwise. */
3191 if( pWal->readOnly ){
3192 rc = SQLITE_READONLY;
3193 }else{
drh1d9497a2015-12-02 20:53:14 +00003194 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
dan37d36202015-07-28 16:46:49 +00003195 if( rc==SQLITE_OK ){
3196 pWal->writeLock = 1;
3197 }
3198 }
3199
3200 return rc;
3201}
dan30c86292010-04-30 16:24:46 +00003202
drh73b64e42010-05-30 19:55:15 +00003203/*
3204** This function starts a write transaction on the WAL.
3205**
3206** A read transaction must have already been started by a prior call
3207** to sqlite3WalBeginReadTransaction().
3208**
3209** If another thread or process has written into the database since
3210** the read transaction was started, then it is not possible for this
3211** thread to write as doing so would cause a fork. So this routine
3212** returns SQLITE_BUSY in that case and no write transaction is started.
3213**
3214** There can only be a single writer active at a time.
3215*/
3216int sqlite3WalBeginWriteTransaction(Wal *pWal){
3217 int rc;
drh73b64e42010-05-30 19:55:15 +00003218
dan58021b22020-05-05 20:30:07 +00003219#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3220 /* If the write-lock is already held, then it was obtained before the
3221 ** read-transaction was even opened, making this call a no-op.
3222 ** Return early. */
3223 if( pWal->writeLock ){
3224 assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) );
3225 return SQLITE_OK;
3226 }
3227#endif
drh27fab1c2020-05-18 16:19:59 +00003228
3229 rc = walWriteLock(pWal);
dan37d36202015-07-28 16:46:49 +00003230 if( rc==SQLITE_OK ){
3231 /* If another connection has written to the database file since the
3232 ** time the read transaction on this connection was started, then
3233 ** the write is disallowed. Release the WRITER lock and return
3234 ** SQLITE_BUSY_SNAPSHOT in this case. */
3235 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
3236 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3237 pWal->writeLock = 0;
3238 rc = SQLITE_BUSY_SNAPSHOT;
3239 }
dan1e5de5a2010-07-15 18:20:53 +00003240 }
drh7ed91f22010-04-29 22:34:07 +00003241 return rc;
dan7c246102010-04-12 19:00:29 +00003242}
3243
dan04085292015-08-24 16:00:08 +00003244/*
3245** This function is called by a writer that has a read-lock on aReadmark[0]
3246** (pWal->readLock==0). This function relinquishes that lock and takes a
3247** lock on a different aReadmark[] slot.
dan3d394342015-07-27 19:31:45 +00003248**
dan04085292015-08-24 16:00:08 +00003249** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3250*/
3251static int walUpgradeReadlock(Wal *pWal){
3252 int cnt;
3253 int rc;
3254 assert( pWal->writeLock && pWal->readLock==0 );
3255 walUnlockShared(pWal, WAL_READ_LOCK(0));
3256 pWal->readLock = -1;
3257 cnt = 0;
3258 do{
3259 int notUsed;
3260 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
3261 }while( rc==WAL_RETRY );
3262 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
3263 testcase( (rc&0xff)==SQLITE_IOERR );
3264 testcase( rc==SQLITE_PROTOCOL );
3265 testcase( rc==SQLITE_OK );
3266 return rc;
3267}
3268
3269
drh01be4632015-09-03 15:17:12 +00003270#ifndef SQLITE_OMIT_CONCURRENT
dan04085292015-08-24 16:00:08 +00003271/*
danbf3cf572015-08-24 19:56:04 +00003272** This function is only ever called when committing a "BEGIN CONCURRENT"
dan3d394342015-07-27 19:31:45 +00003273** transaction. It may be assumed that no frames have been written to
dan04085292015-08-24 16:00:08 +00003274** the wal file. The second parameter is a pointer to the in-memory
3275** representation of page 1 of the database (which may or may not be
3276** dirty). The third is a bitvec with a bit set for each page in the
danbf3cf572015-08-24 19:56:04 +00003277** database file that was read by the current concurrent transaction.
dan04085292015-08-24 16:00:08 +00003278**
3279** This function performs three tasks:
3280**
3281** 1) It obtains the WRITER lock on the wal file,
3282**
3283** 2) It checks that there are no conflicts between the current
3284** transaction and any transactions committed to the wal file since
3285** it was opened, and
3286**
3287** 3) It ejects any non-dirty pages from the page-cache that have been
danbf3cf572015-08-24 19:56:04 +00003288** written by another client since the CONCURRENT transaction was started
dan04085292015-08-24 16:00:08 +00003289** (so as to avoid ending up with an inconsistent cache after the
3290** current transaction is committed).
3291**
3292** If no error occurs and the caller may proceed with committing the
3293** transaction, SQLITE_OK is returned. SQLITE_BUSY is returned if the WRITER
3294** lock cannot be obtained. Or, if the WRITER lock can be obtained but there
3295** are conflicts with a committed transaction, SQLITE_BUSY_SNAPSHOT. Finally,
3296** if an error (i.e. an OOM condition or IO error), an SQLite error code
3297** is returned.
dan3d394342015-07-27 19:31:45 +00003298*/
dan995b2452017-05-29 19:23:56 +00003299int sqlite3WalLockForCommit(
3300 Wal *pWal,
dan3dc85032020-07-16 20:39:59 +00003301 PgHdr *pPg1,
dan995b2452017-05-29 19:23:56 +00003302 Bitvec *pAllRead,
3303 Pgno *piConflict
3304){
dan37d36202015-07-28 16:46:49 +00003305 int rc = walWriteLock(pWal);
dan3d394342015-07-27 19:31:45 +00003306
3307 /* If the database has been modified since this transaction was started,
3308 ** check if it is still possible to commit. The transaction can be
3309 ** committed if:
3310 **
3311 ** a) None of the pages in pList have been modified since the
3312 ** transaction opened, and
3313 **
3314 ** b) The database schema cookie has not been modified since the
3315 ** transaction was started.
3316 */
dan37d36202015-07-28 16:46:49 +00003317 if( rc==SQLITE_OK ){
danf5e89db2015-08-24 19:08:10 +00003318 WalIndexHdr head;
dan7b3d71e2015-08-19 20:27:05 +00003319
danf5e89db2015-08-24 19:08:10 +00003320 if( walIndexLoadHdr(pWal, &head) ){
3321 /* This branch is taken if the wal-index header is corrupted. This
3322 ** occurs if some other writer has crashed while committing a
danbf3cf572015-08-24 19:56:04 +00003323 ** transaction to this database since the current concurrent transaction
danf5e89db2015-08-24 19:08:10 +00003324 ** was opened. */
3325 rc = SQLITE_BUSY_SNAPSHOT;
3326 }else if( memcmp(&pWal->hdr, (void*)&head, sizeof(WalIndexHdr))!=0 ){
dan773d2d62015-07-29 12:14:28 +00003327 int iHash;
dan3dc85032020-07-16 20:39:59 +00003328 int iLast = walFramePage(head.mxFrame);
dan0c52b372015-08-22 20:32:39 +00003329 u32 iFirst = pWal->hdr.mxFrame+1; /* First wal frame to check */
danf5e89db2015-08-24 19:08:10 +00003330 if( memcmp(pWal->hdr.aSalt, (u32*)head.aSalt, sizeof(u32)*2) ){
dan0c52b372015-08-22 20:32:39 +00003331 assert( pWal->readLock==0 );
3332 iFirst = 1;
3333 }
dan3dc85032020-07-16 20:39:59 +00003334 if( pPg1==0 ){
3335 /* If pPg1==0, then the current transaction modified the database
3336 ** schema. This means it conflicts with all other transactions. */
3337 *piConflict = 1;
3338 rc = SQLITE_BUSY_SNAPSHOT;
3339 }
3340 for(iHash=walFramePage(iFirst); rc==SQLITE_OK && iHash<=iLast; iHash++){
daneb307042018-07-10 15:45:54 +00003341 WalHashLoc sLoc;
dan773d2d62015-07-29 12:14:28 +00003342
daneb307042018-07-10 15:45:54 +00003343 rc = walHashGet(pWal, iHash, &sLoc);
dan773d2d62015-07-29 12:14:28 +00003344 if( rc==SQLITE_OK ){
drh0a2afca2017-07-20 19:08:35 +00003345 u32 i, iMin, iMax;
daneb307042018-07-10 15:45:54 +00003346 assert( head.mxFrame>=sLoc.iZero );
3347 iMin = (sLoc.iZero >= iFirst) ? 1 : (iFirst - sLoc.iZero);
drh0a2afca2017-07-20 19:08:35 +00003348 iMax = (iHash==0) ? HASHTABLE_NPAGE_ONE : HASHTABLE_NPAGE;
daneb307042018-07-10 15:45:54 +00003349 if( iMax>(head.mxFrame-sLoc.iZero) ) iMax = (head.mxFrame-sLoc.iZero);
dande36c762015-08-26 18:02:20 +00003350 for(i=iMin; rc==SQLITE_OK && i<=iMax; i++){
dan7b3d71e2015-08-19 20:27:05 +00003351 PgHdr *pPg;
daneb307042018-07-10 15:45:54 +00003352 if( sLoc.aPgno[i]==1 ){
dan7b3d71e2015-08-19 20:27:05 +00003353 /* Check that the schema cookie has not been modified. If
3354 ** it has not, the commit can proceed. */
3355 u8 aNew[4];
dan3dc85032020-07-16 20:39:59 +00003356 u8 *aOld = &((u8*)pPg1->pData)[40];
dan7b3d71e2015-08-19 20:27:05 +00003357 int sz;
3358 i64 iOffset;
3359 sz = pWal->hdr.szPage;
3360 sz = (sz&0xfe00) + ((sz&0x0001)<<16);
daneb307042018-07-10 15:45:54 +00003361 iOffset = walFrameOffset(i+sLoc.iZero, sz) + WAL_FRAME_HDRSIZE+40;
dan7b3d71e2015-08-19 20:27:05 +00003362 rc = sqlite3OsRead(pWal->pWalFd, aNew, sizeof(aNew), iOffset);
3363 if( rc==SQLITE_OK && memcmp(aOld, aNew, sizeof(aNew)) ){
3364 rc = SQLITE_BUSY_SNAPSHOT;
3365 }
daneb307042018-07-10 15:45:54 +00003366 }else if( sqlite3BitvecTestNotNull(pAllRead, sLoc.aPgno[i]) ){
3367 *piConflict = sLoc.aPgno[i];
dan995b2452017-05-29 19:23:56 +00003368 rc = SQLITE_BUSY_SNAPSHOT;
dan3dc85032020-07-16 20:39:59 +00003369 }else if( (pPg = sqlite3PagerLookup(pPg1->pPager, sLoc.aPgno[i])) ){
dan64b310e2015-08-21 14:21:22 +00003370 /* Page aPgno[i], which is present in the pager cache, has been
danbf3cf572015-08-24 19:56:04 +00003371 ** modified since the current CONCURRENT transaction was started.
dan64b310e2015-08-21 14:21:22 +00003372 ** However it was not read by the current transaction, so is not
3373 ** a conflict. There are two possibilities: (a) the page was
3374 ** allocated at the of the file by the current transaction or
3375 ** (b) was present in the cache at the start of the transaction.
3376 **
3377 ** For case (a), do nothing. This page will be moved within the
3378 ** database file by the commit code to avoid the conflict. The
3379 ** call to PagerUnref() is to release the reference grabbed by
3380 ** the sqlite3PagerLookup() above.
3381 **
3382 ** In case (b), drop the page from the cache - otherwise
3383 ** following the snapshot upgrade the cache would be inconsistent
3384 ** with the database as stored on disk. */
3385 if( sqlite3PagerIswriteable(pPg) ){
dan7b3d71e2015-08-19 20:27:05 +00003386 sqlite3PagerUnref(pPg);
dan64b310e2015-08-21 14:21:22 +00003387 }else{
3388 sqlite3PcacheDrop(pPg);
dan7b3d71e2015-08-19 20:27:05 +00003389 }
dan773d2d62015-07-29 12:14:28 +00003390 }
dan37d36202015-07-28 16:46:49 +00003391 }
3392 }
dan3d394342015-07-27 19:31:45 +00003393 }
3394 }
3395 }
3396
danaa595052017-05-23 19:23:45 +00003397 pWal->nPriorFrame = pWal->hdr.mxFrame;
dan3d394342015-07-27 19:31:45 +00003398 return rc;
3399}
3400
drh01be4632015-09-03 15:17:12 +00003401/* !defined(SQLITE_OMIT_CONCURRENT)
3402**
danbf3cf572015-08-24 19:56:04 +00003403** This function is called as part of committing an CONCURRENT transaction.
dan04085292015-08-24 16:00:08 +00003404** It is assumed that sqlite3WalLockForCommit() has already been successfully
3405** called and so (a) the WRITER lock is held and (b) it is known that the
3406** wal-index-header stored in shared memory is not corrupt.
3407**
3408** Before returning, this function upgrades the client so that it is
3409** operating on the database snapshot currently at the head of the wal file
danbf3cf572015-08-24 19:56:04 +00003410** (even if the CONCURRENT transaction ran against an older snapshot).
dan654a9652015-08-24 06:43:25 +00003411**
3412** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3413*/
dan654a9652015-08-24 06:43:25 +00003414int sqlite3WalUpgradeSnapshot(Wal *pWal){
3415 int rc = SQLITE_OK;
dan7b3d71e2015-08-19 20:27:05 +00003416 assert( pWal->writeLock );
3417 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
dan654a9652015-08-24 06:43:25 +00003418
3419 /* If this client has its read-lock on slot aReadmark[0] and the entire
3420 ** wal has not been checkpointed, switch it to a different slot. Otherwise
3421 ** any reads performed between now and committing the transaction will
3422 ** read from the old snapshot - not the one just upgraded to. */
3423 if( pWal->readLock==0 && pWal->hdr.mxFrame!=walCkptInfo(pWal)->nBackfill ){
3424 rc = walUpgradeReadlock(pWal);
3425 }
3426 return rc;
dan7b3d71e2015-08-19 20:27:05 +00003427}
drh01be4632015-09-03 15:17:12 +00003428#endif /* SQLITE_OMIT_CONCURRENT */
dan7b3d71e2015-08-19 20:27:05 +00003429
dan3d394342015-07-27 19:31:45 +00003430/*
drh73b64e42010-05-30 19:55:15 +00003431** End a write transaction. The commit has already been done. This
3432** routine merely releases the lock.
3433*/
3434int sqlite3WalEndWriteTransaction(Wal *pWal){
danda9fe0c2010-07-13 18:44:03 +00003435 if( pWal->writeLock ){
3436 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3437 pWal->writeLock = 0;
danc9a90222016-01-09 18:57:35 +00003438 pWal->iReCksum = 0;
danf60b7f32011-12-16 13:24:27 +00003439 pWal->truncateOnCommit = 0;
danda9fe0c2010-07-13 18:44:03 +00003440 }
drh73b64e42010-05-30 19:55:15 +00003441 return SQLITE_OK;
3442}
3443
3444/*
dan74d6cd82010-04-24 18:44:05 +00003445** If any data has been written (but not committed) to the log file, this
3446** function moves the write-pointer back to the start of the transaction.
3447**
3448** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00003449** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00003450** other than SQLITE_OK, it is not invoked again and the error code is
3451** returned to the caller.
3452**
3453** Otherwise, if the callback function does not return an error, this
3454** function returns SQLITE_OK.
3455*/
drhbfaa3db2019-03-26 13:28:15 +00003456int sqlite3WalUndo(
3457 Wal *pWal,
3458 int (*xUndo)(void *, Pgno),
3459 void *pUndoCtx,
3460 int bConcurrent /* True if this is a CONCURRENT transaction */
3461){
dan55437592010-05-11 12:19:26 +00003462 int rc = SQLITE_OK;
dan3d394342015-07-27 19:31:45 +00003463 if( pWal->writeLock ){
drh027a1282010-05-19 01:53:53 +00003464 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00003465 Pgno iFrame;
3466
dan5d656852010-06-14 07:53:26 +00003467 /* Restore the clients cache of the wal-index header to the state it
3468 ** was in before the client began writing to the database.
3469 */
dan067f3162010-06-14 10:30:12 +00003470 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
drhbfaa3db2019-03-26 13:28:15 +00003471#ifndef SQLITE_OMIT_CONCURRENT
3472 if( bConcurrent ){
3473 pWal->hdr.aCksum[0]++;
3474 }
3475#else
3476 UNUSED_PARAMETER(bConcurrent);
3477#endif
dan5d656852010-06-14 07:53:26 +00003478
3479 for(iFrame=pWal->hdr.mxFrame+1;
drh664f85d2014-11-19 14:05:41 +00003480 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
dan5d656852010-06-14 07:53:26 +00003481 iFrame++
3482 ){
3483 /* This call cannot fail. Unless the page for which the page number
3484 ** is passed as the second argument is (a) in the cache and
3485 ** (b) has an outstanding reference, then xUndo is either a no-op
3486 ** (if (a) is false) or simply expels the page from the cache (if (b)
3487 ** is false).
3488 **
3489 ** If the upper layer is doing a rollback, it is guaranteed that there
3490 ** are no outstanding references to any page other than page 1. And
3491 ** page 1 is never written to the log until the transaction is
3492 ** committed. As a result, the call to xUndo may not fail.
3493 */
dan5d656852010-06-14 07:53:26 +00003494 assert( walFramePgno(pWal, iFrame)!=1 );
3495 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
dan6f150142010-05-21 15:31:56 +00003496 }
dan7eb05752012-10-15 11:28:24 +00003497 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
dan74d6cd82010-04-24 18:44:05 +00003498 }
3499 return rc;
3500}
3501
dan71d89912010-05-24 13:57:42 +00003502/*
3503** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3504** values. This function populates the array with values required to
3505** "rollback" the write position of the WAL handle back to the current
3506** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00003507*/
dan71d89912010-05-24 13:57:42 +00003508void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
dan71d89912010-05-24 13:57:42 +00003509 aWalData[0] = pWal->hdr.mxFrame;
3510 aWalData[1] = pWal->hdr.aFrameCksum[0];
3511 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00003512 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00003513}
3514
dan71d89912010-05-24 13:57:42 +00003515/*
3516** Move the write position of the WAL back to the point identified by
3517** the values in the aWalData[] array. aWalData must point to an array
3518** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3519** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00003520*/
dan71d89912010-05-24 13:57:42 +00003521int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00003522 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00003523
dan3d394342015-07-27 19:31:45 +00003524 assert( pWal->writeLock || aWalData[0]==pWal->hdr.mxFrame );
dan6e6bd562010-06-02 18:59:03 +00003525 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3526
3527 if( aWalData[3]!=pWal->nCkpt ){
3528 /* This savepoint was opened immediately after the write-transaction
3529 ** was started. Right after that, the writer decided to wrap around
3530 ** to the start of the log. Update the savepoint values to match.
3531 */
3532 aWalData[0] = 0;
3533 aWalData[3] = pWal->nCkpt;
3534 }
3535
dan71d89912010-05-24 13:57:42 +00003536 if( aWalData[0]<pWal->hdr.mxFrame ){
dan71d89912010-05-24 13:57:42 +00003537 pWal->hdr.mxFrame = aWalData[0];
3538 pWal->hdr.aFrameCksum[0] = aWalData[1];
3539 pWal->hdr.aFrameCksum[1] = aWalData[2];
dan5d656852010-06-14 07:53:26 +00003540 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00003541 }
dan6e6bd562010-06-02 18:59:03 +00003542
dan4cd78b42010-04-26 16:57:10 +00003543 return rc;
3544}
3545
dan9971e712010-06-01 15:44:57 +00003546/*
3547** This function is called just before writing a set of frames to the log
3548** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3549** to the current log file, it is possible to overwrite the start of the
3550** existing log file with the new frames (i.e. "reset" the log). If so,
3551** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3552** unchanged.
3553**
3554** SQLITE_OK is returned if no error is encountered (regardless of whether
3555** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
drh4533cd02010-10-05 15:41:05 +00003556** if an error occurs.
dan9971e712010-06-01 15:44:57 +00003557*/
3558static int walRestartLog(Wal *pWal){
3559 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00003560
dan13a3cb82010-06-11 19:04:21 +00003561 if( pWal->readLock==0 ){
dan9971e712010-06-01 15:44:57 +00003562 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3563 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3564 if( pInfo->nBackfill>0 ){
drh658d76c2011-02-19 15:22:14 +00003565 u32 salt1;
dan9b5c67f2018-11-30 16:26:39 +00003566 sqlite3FastRandomness(&pWal->sPrng, 4, &salt1);
drhab372772015-12-02 16:10:16 +00003567 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
dan9971e712010-06-01 15:44:57 +00003568 if( rc==SQLITE_OK ){
3569 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3570 ** readers are currently using the WAL), then the transactions
3571 ** frames will overwrite the start of the existing log. Update the
3572 ** wal-index header to reflect this.
3573 **
3574 ** In theory it would be Ok to update the cache of the header only
3575 ** at this point. But updating the actual wal-index header is also
3576 ** safe and means there is no special case for sqlite3WalUndo()
danf26a1542014-12-02 19:04:54 +00003577 ** to handle if this transaction is rolled back. */
dan0fe8c1b2014-12-02 19:35:09 +00003578 walRestartHdr(pWal, salt1);
dan9971e712010-06-01 15:44:57 +00003579 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
danaa595052017-05-23 19:23:45 +00003580 pWal->nPriorFrame = 0;
drh4533cd02010-10-05 15:41:05 +00003581 }else if( rc!=SQLITE_BUSY ){
3582 return rc;
dan9971e712010-06-01 15:44:57 +00003583 }
3584 }
dan654a9652015-08-24 06:43:25 +00003585
3586 /* Regardless of whether or not the wal file was restarted, change the
3587 ** read-lock held by this client to a slot other than aReadmark[0].
3588 ** Clients with a lock on aReadmark[0] read from the database file
3589 ** only - never from the wal file. This means that if a writer holding
3590 ** a lock on aReadmark[0] were to commit a transaction but not close the
3591 ** read-transaction, subsequent read operations would read directly from
3592 ** the database file - ignoring the new pages just appended
3593 ** to the wal file. */
3594 rc = walUpgradeReadlock(pWal);
dan9971e712010-06-01 15:44:57 +00003595 }
3596 return rc;
3597}
3598
drh88f975a2011-12-16 19:34:36 +00003599/*
drhd992b152011-12-20 20:13:25 +00003600** Information about the current state of the WAL file and where
3601** the next fsync should occur - passed from sqlite3WalFrames() into
3602** walWriteToLog().
3603*/
3604typedef struct WalWriter {
3605 Wal *pWal; /* The complete WAL information */
3606 sqlite3_file *pFd; /* The WAL file to which we write */
3607 sqlite3_int64 iSyncPoint; /* Fsync at this offset */
3608 int syncFlags; /* Flags for the fsync */
3609 int szPage; /* Size of one page */
3610} WalWriter;
3611
3612/*
drh88f975a2011-12-16 19:34:36 +00003613** Write iAmt bytes of content into the WAL file beginning at iOffset.
drhd992b152011-12-20 20:13:25 +00003614** Do a sync when crossing the p->iSyncPoint boundary.
drh88f975a2011-12-16 19:34:36 +00003615**
drhd992b152011-12-20 20:13:25 +00003616** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3617** first write the part before iSyncPoint, then sync, then write the
3618** rest.
drh88f975a2011-12-16 19:34:36 +00003619*/
3620static int walWriteToLog(
drhd992b152011-12-20 20:13:25 +00003621 WalWriter *p, /* WAL to write to */
drh88f975a2011-12-16 19:34:36 +00003622 void *pContent, /* Content to be written */
3623 int iAmt, /* Number of bytes to write */
3624 sqlite3_int64 iOffset /* Start writing at this offset */
3625){
3626 int rc;
drhd992b152011-12-20 20:13:25 +00003627 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3628 int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3629 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
drh88f975a2011-12-16 19:34:36 +00003630 if( rc ) return rc;
drhd992b152011-12-20 20:13:25 +00003631 iOffset += iFirstAmt;
3632 iAmt -= iFirstAmt;
drh88f975a2011-12-16 19:34:36 +00003633 pContent = (void*)(iFirstAmt + (char*)pContent);
drhdaaae7b2017-08-25 01:14:43 +00003634 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3635 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
drhcc8d10a2011-12-23 02:07:10 +00003636 if( iAmt==0 || rc ) return rc;
drh88f975a2011-12-16 19:34:36 +00003637 }
drhd992b152011-12-20 20:13:25 +00003638 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3639 return rc;
3640}
3641
3642/*
3643** Write out a single frame of the WAL
3644*/
3645static int walWriteOneFrame(
3646 WalWriter *p, /* Where to write the frame */
3647 PgHdr *pPage, /* The page of the frame to be written */
3648 int nTruncate, /* The commit flag. Usually 0. >0 for commit */
3649 sqlite3_int64 iOffset /* Byte offset at which to write */
3650){
3651 int rc; /* Result code from subfunctions */
3652 void *pData; /* Data actually written */
3653 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
drhd992b152011-12-20 20:13:25 +00003654 pData = pPage->pData;
drhd992b152011-12-20 20:13:25 +00003655 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3656 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3657 if( rc ) return rc;
3658 /* Write the page data */
3659 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
drh88f975a2011-12-16 19:34:36 +00003660 return rc;
3661}
3662
dand6f7c972016-01-09 16:39:29 +00003663/*
3664** This function is called as part of committing a transaction within which
3665** one or more frames have been overwritten. It updates the checksums for
danc9a90222016-01-09 18:57:35 +00003666** all frames written to the wal file by the current transaction starting
3667** with the earliest to have been overwritten.
dand6f7c972016-01-09 16:39:29 +00003668**
3669** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3670*/
danc9a90222016-01-09 18:57:35 +00003671static int walRewriteChecksums(Wal *pWal, u32 iLast){
dand6f7c972016-01-09 16:39:29 +00003672 const int szPage = pWal->szPage;/* Database page size */
3673 int rc = SQLITE_OK; /* Return code */
3674 u8 *aBuf; /* Buffer to load data from wal file into */
3675 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */
3676 u32 iRead; /* Next frame to read from wal file */
danc9a90222016-01-09 18:57:35 +00003677 i64 iCksumOff;
dand6f7c972016-01-09 16:39:29 +00003678
3679 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
mistachkinfad30392016-02-13 23:43:46 +00003680 if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
dand6f7c972016-01-09 16:39:29 +00003681
danc9a90222016-01-09 18:57:35 +00003682 /* Find the checksum values to use as input for the recalculating the
3683 ** first checksum. If the first frame is frame 1 (implying that the current
3684 ** transaction restarted the wal file), these values must be read from the
3685 ** wal-file header. Otherwise, read them from the frame header of the
3686 ** previous frame. */
3687 assert( pWal->iReCksum>0 );
3688 if( pWal->iReCksum==1 ){
3689 iCksumOff = 24;
dand6f7c972016-01-09 16:39:29 +00003690 }else{
danc9a90222016-01-09 18:57:35 +00003691 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
dand6f7c972016-01-09 16:39:29 +00003692 }
danc9a90222016-01-09 18:57:35 +00003693 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3694 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3695 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
dand6f7c972016-01-09 16:39:29 +00003696
danc9a90222016-01-09 18:57:35 +00003697 iRead = pWal->iReCksum;
3698 pWal->iReCksum = 0;
3699 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
dand6f7c972016-01-09 16:39:29 +00003700 i64 iOff = walFrameOffset(iRead, szPage);
3701 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3702 if( rc==SQLITE_OK ){
3703 u32 iPgno, nDbSize;
3704 iPgno = sqlite3Get4byte(aBuf);
3705 nDbSize = sqlite3Get4byte(&aBuf[4]);
3706
3707 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3708 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3709 }
3710 }
3711
3712 sqlite3_free(aBuf);
3713 return rc;
3714}
3715
dan7c246102010-04-12 19:00:29 +00003716/*
dan4cd78b42010-04-26 16:57:10 +00003717** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00003718** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00003719*/
drhc438efd2010-04-26 00:19:45 +00003720int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00003721 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00003722 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00003723 PgHdr *pList, /* List of dirty pages to write */
3724 Pgno nTruncate, /* Database size after this commit */
3725 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00003726 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00003727){
dan7c246102010-04-12 19:00:29 +00003728 int rc; /* Used to catch return codes */
3729 u32 iFrame; /* Next frame address */
dan7c246102010-04-12 19:00:29 +00003730 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00003731 PgHdr *pLast = 0; /* Last frame in list */
drhd992b152011-12-20 20:13:25 +00003732 int nExtra = 0; /* Number of extra copies of last page */
3733 int szFrame; /* The size of a single frame */
3734 i64 iOffset; /* Next byte to write in WAL file */
3735 WalWriter w; /* The writer */
dand6f7c972016-01-09 16:39:29 +00003736 u32 iFirst = 0; /* First frame that may be overwritten */
3737 WalIndexHdr *pLive; /* Pointer to shared header */
dan7c246102010-04-12 19:00:29 +00003738
dan7c246102010-04-12 19:00:29 +00003739 assert( pList );
drh73b64e42010-05-30 19:55:15 +00003740 assert( pWal->writeLock );
dan7c246102010-04-12 19:00:29 +00003741
drh41209942011-12-20 13:13:09 +00003742 /* If this frame set completes a transaction, then nTruncate>0. If
3743 ** nTruncate==0 then this frame set does not complete the transaction. */
3744 assert( (isCommit!=0)==(nTruncate!=0) );
3745
drhc74c3332010-05-31 12:15:19 +00003746#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3747 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3748 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3749 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3750 }
3751#endif
3752
dand6f7c972016-01-09 16:39:29 +00003753 pLive = (WalIndexHdr*)walIndexHdr(pWal);
drhb7c2f862016-01-09 23:55:47 +00003754 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
dand6f7c972016-01-09 16:39:29 +00003755 iFirst = pLive->mxFrame+1;
3756 }
3757
dan9971e712010-06-01 15:44:57 +00003758 /* See if it is possible to write these frames into the start of the
3759 ** log file, instead of appending to it at pWal->hdr.mxFrame.
3760 */
3761 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
dan9971e712010-06-01 15:44:57 +00003762 return rc;
3763 }
dan9971e712010-06-01 15:44:57 +00003764
drha2a42012010-05-18 18:01:08 +00003765 /* If this is the first frame written into the log, write the WAL
3766 ** header to the start of the WAL file. See comments at the top of
3767 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00003768 */
drh027a1282010-05-19 01:53:53 +00003769 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00003770 if( iFrame==0 ){
dan10f5a502010-06-23 15:55:43 +00003771 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
3772 u32 aCksum[2]; /* Checksum for wal-header */
3773
danb8fd6c22010-05-24 10:39:36 +00003774 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
dan10f5a502010-06-23 15:55:43 +00003775 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
drh23ea97b2010-05-20 16:45:58 +00003776 sqlite3Put4byte(&aWalHdr[8], szPage);
3777 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
dan9b5c67f2018-11-30 16:26:39 +00003778 if( pWal->nCkpt==0 ) sqlite3FastRandomness(&pWal->sPrng, 8, pWal->hdr.aSalt);
drh7e263722010-05-20 21:21:09 +00003779 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
dan10f5a502010-06-23 15:55:43 +00003780 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3781 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3782 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3783
drhb2eced52010-08-12 02:41:12 +00003784 pWal->szPage = szPage;
dan10f5a502010-06-23 15:55:43 +00003785 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3786 pWal->hdr.aFrameCksum[0] = aCksum[0];
3787 pWal->hdr.aFrameCksum[1] = aCksum[1];
danf60b7f32011-12-16 13:24:27 +00003788 pWal->truncateOnCommit = 1;
dan10f5a502010-06-23 15:55:43 +00003789
drh23ea97b2010-05-20 16:45:58 +00003790 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00003791 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00003792 if( rc!=SQLITE_OK ){
3793 return rc;
3794 }
drhd992b152011-12-20 20:13:25 +00003795
3796 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3797 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
3798 ** an out-of-order write following a WAL restart could result in
3799 ** database corruption. See the ticket:
3800 **
drh9c6e07d2017-08-24 20:54:42 +00003801 ** https://sqlite.org/src/info/ff5be73dee
drhd992b152011-12-20 20:13:25 +00003802 */
drhdaaae7b2017-08-25 01:14:43 +00003803 if( pWal->syncHeader ){
3804 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
drhd992b152011-12-20 20:13:25 +00003805 if( rc ) return rc;
3806 }
dan97a31352010-04-16 13:59:31 +00003807 }
shanehbd2aaf92010-09-01 02:38:21 +00003808 assert( (int)pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00003809
drhd992b152011-12-20 20:13:25 +00003810 /* Setup information needed to write frames into the WAL */
3811 w.pWal = pWal;
3812 w.pFd = pWal->pWalFd;
3813 w.iSyncPoint = 0;
3814 w.syncFlags = sync_flags;
3815 w.szPage = szPage;
3816 iOffset = walFrameOffset(iFrame+1, szPage);
3817 szFrame = szPage + WAL_FRAME_HDRSIZE;
drh88f975a2011-12-16 19:34:36 +00003818
drhd992b152011-12-20 20:13:25 +00003819 /* Write all frames into the log file exactly once */
dan7c246102010-04-12 19:00:29 +00003820 for(p=pList; p; p=p->pDirty){
drhd992b152011-12-20 20:13:25 +00003821 int nDbSize; /* 0 normally. Positive == commit flag */
dand6f7c972016-01-09 16:39:29 +00003822
3823 /* Check if this page has already been written into the wal file by
3824 ** the current transaction. If so, overwrite the existing frame and
3825 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3826 ** checksums must be recomputed when the transaction is committed. */
3827 if( iFirst && (p->pDirty || isCommit==0) ){
3828 u32 iWrite = 0;
drh89970872016-01-11 00:52:32 +00003829 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3830 assert( rc==SQLITE_OK || iWrite==0 );
dand6f7c972016-01-09 16:39:29 +00003831 if( iWrite>=iFirst ){
3832 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
drh8e0cea12016-02-15 15:06:47 +00003833 void *pData;
danc9a90222016-01-09 18:57:35 +00003834 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3835 pWal->iReCksum = iWrite;
3836 }
drh8e0cea12016-02-15 15:06:47 +00003837 pData = p->pData;
drh8e0cea12016-02-15 15:06:47 +00003838 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
dand6f7c972016-01-09 16:39:29 +00003839 if( rc ) return rc;
3840 p->flags &= ~PGHDR_WAL_APPEND;
3841 continue;
3842 }
3843 }
3844
drhd992b152011-12-20 20:13:25 +00003845 iFrame++;
3846 assert( iOffset==walFrameOffset(iFrame, szPage) );
3847 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3848 rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3849 if( rc ) return rc;
dan7c246102010-04-12 19:00:29 +00003850 pLast = p;
drhd992b152011-12-20 20:13:25 +00003851 iOffset += szFrame;
dand6f7c972016-01-09 16:39:29 +00003852 p->flags |= PGHDR_WAL_APPEND;
3853 }
3854
danf687ba52016-01-14 15:46:31 +00003855
dand6f7c972016-01-09 16:39:29 +00003856 /* Recalculate checksums within the wal file if required. */
danc9a90222016-01-09 18:57:35 +00003857 if( isCommit && pWal->iReCksum ){
3858 rc = walRewriteChecksums(pWal, iFrame);
dand6f7c972016-01-09 16:39:29 +00003859 if( rc ) return rc;
dan7c246102010-04-12 19:00:29 +00003860 }
3861
drhd992b152011-12-20 20:13:25 +00003862 /* If this is the end of a transaction, then we might need to pad
3863 ** the transaction and/or sync the WAL file.
3864 **
3865 ** Padding and syncing only occur if this set of frames complete a
3866 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
peter.d.reid60ec9142014-09-06 16:39:46 +00003867 ** or synchronous==OFF, then no padding or syncing are needed.
drhd992b152011-12-20 20:13:25 +00003868 **
drhcb15f352011-12-23 01:04:17 +00003869 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3870 ** needed and only the sync is done. If padding is needed, then the
3871 ** final frame is repeated (with its commit mark) until the next sector
drhd992b152011-12-20 20:13:25 +00003872 ** boundary is crossed. Only the part of the WAL prior to the last
3873 ** sector boundary is synced; the part of the last frame that extends
3874 ** past the sector boundary is written after the sync.
3875 */
drhdaaae7b2017-08-25 01:14:43 +00003876 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
danfe912512016-05-24 16:20:51 +00003877 int bSync = 1;
drh374f4a02011-12-17 20:02:11 +00003878 if( pWal->padToSectorBoundary ){
danc9a53262012-10-01 06:50:55 +00003879 int sectorSize = sqlite3SectorSize(pWal->pWalFd);
drhd992b152011-12-20 20:13:25 +00003880 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
danfe912512016-05-24 16:20:51 +00003881 bSync = (w.iSyncPoint==iOffset);
3882 testcase( bSync );
drhd992b152011-12-20 20:13:25 +00003883 while( iOffset<w.iSyncPoint ){
3884 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3885 if( rc ) return rc;
3886 iOffset += szFrame;
3887 nExtra++;
drh55f66b32019-07-16 19:44:32 +00003888 assert( pLast!=0 );
dan7c246102010-04-12 19:00:29 +00003889 }
danfe912512016-05-24 16:20:51 +00003890 }
3891 if( bSync ){
3892 assert( rc==SQLITE_OK );
drhdaaae7b2017-08-25 01:14:43 +00003893 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
dan7c246102010-04-12 19:00:29 +00003894 }
dan7c246102010-04-12 19:00:29 +00003895 }
3896
drhd992b152011-12-20 20:13:25 +00003897 /* If this frame set completes the first transaction in the WAL and
3898 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3899 ** journal size limit, if possible.
3900 */
danf60b7f32011-12-16 13:24:27 +00003901 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3902 i64 sz = pWal->mxWalSize;
drhd992b152011-12-20 20:13:25 +00003903 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3904 sz = walFrameOffset(iFrame+nExtra+1, szPage);
danf60b7f32011-12-16 13:24:27 +00003905 }
3906 walLimitSize(pWal, sz);
3907 pWal->truncateOnCommit = 0;
3908 }
3909
drhe730fec2010-05-18 12:56:50 +00003910 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00003911 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00003912 ** guarantees that there are no other writers, and no data that may
3913 ** be in use by existing readers is being overwritten.
3914 */
drh027a1282010-05-19 01:53:53 +00003915 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00003916 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dand6f7c972016-01-09 16:39:29 +00003917 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
dan7c246102010-04-12 19:00:29 +00003918 iFrame++;
danc7991bd2010-05-05 19:04:59 +00003919 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00003920 }
drh55f66b32019-07-16 19:44:32 +00003921 assert( pLast!=0 || nExtra==0 );
drh20e226d2012-01-01 13:58:53 +00003922 while( rc==SQLITE_OK && nExtra>0 ){
dan7c246102010-04-12 19:00:29 +00003923 iFrame++;
drhd992b152011-12-20 20:13:25 +00003924 nExtra--;
danc7991bd2010-05-05 19:04:59 +00003925 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00003926 }
3927
danc7991bd2010-05-05 19:04:59 +00003928 if( rc==SQLITE_OK ){
3929 /* Update the private copy of the header. */
shaneh1df2db72010-08-18 02:28:48 +00003930 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00003931 testcase( szPage<=32768 );
3932 testcase( szPage>=65536 );
drh027a1282010-05-19 01:53:53 +00003933 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00003934 if( isCommit ){
3935 pWal->hdr.iChange++;
3936 pWal->hdr.nPage = nTruncate;
3937 }
danc7991bd2010-05-05 19:04:59 +00003938 /* If this is a commit, update the wal-index header too. */
3939 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00003940 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00003941 pWal->iCallback = iFrame;
3942 }
dan7c246102010-04-12 19:00:29 +00003943 }
danc7991bd2010-05-05 19:04:59 +00003944
drhc74c3332010-05-31 12:15:19 +00003945 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00003946 return rc;
dan7c246102010-04-12 19:00:29 +00003947}
3948
3949/*
drh73b64e42010-05-30 19:55:15 +00003950** This routine is called to implement sqlite3_wal_checkpoint() and
3951** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00003952**
drh73b64e42010-05-30 19:55:15 +00003953** Obtain a CHECKPOINT lock and then backfill as much information as
3954** we can from WAL into the database.
dana58f26f2010-11-16 18:56:51 +00003955**
3956** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3957** callback. In this case this function runs a blocking checkpoint.
dan7c246102010-04-12 19:00:29 +00003958*/
drhc438efd2010-04-26 00:19:45 +00003959int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00003960 Wal *pWal, /* Wal connection */
dan7fb89902016-08-12 16:21:15 +00003961 sqlite3 *db, /* Check this handle's interrupt flag */
drhdd90d7e2014-12-03 19:25:41 +00003962 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */
dana58f26f2010-11-16 18:56:51 +00003963 int (*xBusy)(void*), /* Function to call when busy */
3964 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00003965 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00003966 int nBuf, /* Size of temporary buffer */
dancdc1f042010-11-18 12:11:05 +00003967 u8 *zBuf, /* Temporary buffer to use */
3968 int *pnLog, /* OUT: Number of frames in WAL */
3969 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
dan7c246102010-04-12 19:00:29 +00003970){
danb9bf16b2010-04-14 11:23:30 +00003971 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00003972 int isChanged = 0; /* True if a new wal-index header is loaded */
danf2b8dd52010-11-18 19:28:01 +00003973 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
drhdd90d7e2014-12-03 19:25:41 +00003974 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */
dan7c246102010-04-12 19:00:29 +00003975
dand54ff602010-05-31 11:16:30 +00003976 assert( pWal->ckptLock==0 );
dana58f26f2010-11-16 18:56:51 +00003977 assert( pWal->writeLock==0 );
dan39c79f52010-04-15 10:58:51 +00003978
drhdd90d7e2014-12-03 19:25:41 +00003979 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3980 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3981 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3982
drh66dfec8b2011-06-01 20:01:49 +00003983 if( pWal->readOnly ) return SQLITE_READONLY;
drhc74c3332010-05-31 12:15:19 +00003984 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drhdd90d7e2014-12-03 19:25:41 +00003985
dan58021b22020-05-05 20:30:07 +00003986 /* Enable blocking locks, if possible. If blocking locks are successfully
3987 ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */
dan861fb1e2020-05-06 19:14:41 +00003988 sqlite3WalDb(pWal, db);
drh783e1592020-05-06 20:55:38 +00003989 (void)walEnableBlocking(pWal);
dan64d039e2010-04-13 19:27:31 +00003990
dan8714de92020-05-04 19:42:35 +00003991 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3992 ** "checkpoint" lock on the database file.
3993 ** EVIDENCE-OF: R-10421-19736 If any other process is running a
3994 ** checkpoint operation at the same time, the lock cannot be obtained and
3995 ** SQLITE_BUSY is returned.
3996 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3997 ** it will not be invoked in this case.
dana58f26f2010-11-16 18:56:51 +00003998 */
dan8714de92020-05-04 19:42:35 +00003999 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
4000 testcase( rc==SQLITE_BUSY );
4001 testcase( rc!=SQLITE_OK && xBusy2!=0 );
4002 if( rc==SQLITE_OK ){
4003 pWal->ckptLock = 1;
4004
4005 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
4006 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
4007 ** file.
4008 **
4009 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
4010 ** immediately, and a busy-handler is configured, it is invoked and the
4011 ** writer lock retried until either the busy-handler returns 0 or the
4012 ** lock is successfully obtained.
4013 */
4014 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
4015 rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1);
4016 if( rc==SQLITE_OK ){
4017 pWal->writeLock = 1;
4018 }else if( rc==SQLITE_BUSY ){
4019 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
4020 xBusy2 = 0;
4021 rc = SQLITE_OK;
4022 }
danf2b8dd52010-11-18 19:28:01 +00004023 }
danb9bf16b2010-04-14 11:23:30 +00004024 }
dana58f26f2010-11-16 18:56:51 +00004025
danb9bf16b2010-04-14 11:23:30 +00004026
danf2b8dd52010-11-18 19:28:01 +00004027 /* Read the wal-index header. */
drh7ed91f22010-04-29 22:34:07 +00004028 if( rc==SQLITE_OK ){
dand0e6d132020-05-06 17:18:57 +00004029 walDisableBlocking(pWal);
dana58f26f2010-11-16 18:56:51 +00004030 rc = walIndexReadHdr(pWal, &isChanged);
danfc87ab82020-05-06 19:22:59 +00004031 (void)walEnableBlocking(pWal);
danf55a4cf2013-04-01 16:56:41 +00004032 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
4033 sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
4034 }
dana58f26f2010-11-16 18:56:51 +00004035 }
danf2b8dd52010-11-18 19:28:01 +00004036
4037 /* Copy data from the log to the database file. */
dan9c5e3682011-02-07 15:12:12 +00004038 if( rc==SQLITE_OK ){
4039 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
danf2b8dd52010-11-18 19:28:01 +00004040 rc = SQLITE_CORRUPT_BKPT;
4041 }else{
dan7fb89902016-08-12 16:21:15 +00004042 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
dan9c5e3682011-02-07 15:12:12 +00004043 }
4044
4045 /* If no error occurred, set the output variables. */
4046 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
danf2b8dd52010-11-18 19:28:01 +00004047 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
dan9c5e3682011-02-07 15:12:12 +00004048 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
danf2b8dd52010-11-18 19:28:01 +00004049 }
danb9bf16b2010-04-14 11:23:30 +00004050 }
danf2b8dd52010-11-18 19:28:01 +00004051
danb9bf16b2010-04-14 11:23:30 +00004052 if( isChanged ){
dan64d039e2010-04-13 19:27:31 +00004053 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00004054 ** performed, then the pager-cache associated with pWal is now
dan7c246102010-04-12 19:00:29 +00004055 ** out of date. So zero the cached wal-index header to ensure that
4056 ** next time the pager opens a snapshot on this database it knows that
drhc438efd2010-04-26 00:19:45 +00004057 ** the cache needs to be reset.
dan8d22a172010-04-19 18:03:51 +00004058 */
4059 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
4060 }
4061
dan58021b22020-05-05 20:30:07 +00004062 walDisableBlocking(pWal);
dan861fb1e2020-05-06 19:14:41 +00004063 sqlite3WalDb(pWal, 0);
dan8714de92020-05-04 19:42:35 +00004064
dan7c246102010-04-12 19:00:29 +00004065 /* Release the locks. */
dana58f26f2010-11-16 18:56:51 +00004066 sqlite3WalEndWriteTransaction(pWal);
dan8714de92020-05-04 19:42:35 +00004067 if( pWal->ckptLock ){
4068 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
4069 pWal->ckptLock = 0;
4070 }
drhc74c3332010-05-31 12:15:19 +00004071 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
dan7bb8b8a2020-05-06 20:27:18 +00004072#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
4073 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
4074#endif
danf2b8dd52010-11-18 19:28:01 +00004075 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
dan7c246102010-04-12 19:00:29 +00004076}
4077
drh7ed91f22010-04-29 22:34:07 +00004078/* Return the value to pass to a sqlite3_wal_hook callback, the
4079** number of frames in the WAL at the point of the last commit since
4080** sqlite3WalCallback() was called. If no commits have occurred since
4081** the last call, then return 0.
4082*/
4083int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00004084 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00004085 if( pWal ){
4086 ret = pWal->iCallback;
4087 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00004088 }
4089 return (int)ret;
4090}
dan55437592010-05-11 12:19:26 +00004091
4092/*
drh61e4ace2010-05-31 20:28:37 +00004093** This function is called to change the WAL subsystem into or out
4094** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00004095**
drh61e4ace2010-05-31 20:28:37 +00004096** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
4097** into locking_mode=NORMAL. This means that we must acquire a lock
4098** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
4099** or if the acquisition of the lock fails, then return 0. If the
4100** transition out of exclusive-mode is successful, return 1. This
4101** operation must occur while the pager is still holding the exclusive
4102** lock on the main database file.
dan55437592010-05-11 12:19:26 +00004103**
drh61e4ace2010-05-31 20:28:37 +00004104** If op is one, then change from locking_mode=NORMAL into
4105** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
4106** be released. Return 1 if the transition is made and 0 if the
4107** WAL is already in exclusive-locking mode - meaning that this
4108** routine is a no-op. The pager must already hold the exclusive lock
4109** on the main database file before invoking this operation.
4110**
4111** If op is negative, then do a dry-run of the op==1 case but do
dan8c408002010-11-01 17:38:24 +00004112** not actually change anything. The pager uses this to see if it
drh61e4ace2010-05-31 20:28:37 +00004113** should acquire the database exclusive lock prior to invoking
4114** the op==1 case.
dan55437592010-05-11 12:19:26 +00004115*/
4116int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00004117 int rc;
drhaab4c022010-06-02 14:45:51 +00004118 assert( pWal->writeLock==0 );
dan8c408002010-11-01 17:38:24 +00004119 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
dan3cac5dc2010-06-04 18:37:59 +00004120
4121 /* pWal->readLock is usually set, but might be -1 if there was a
4122 ** prior error while attempting to acquire are read-lock. This cannot
4123 ** happen if the connection is actually in exclusive mode (as no xShmLock
4124 ** locks are taken in this case). Nor should the pager attempt to
4125 ** upgrade to exclusive-mode following such an error.
4126 */
drhaab4c022010-06-02 14:45:51 +00004127 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00004128 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
4129
drh61e4ace2010-05-31 20:28:37 +00004130 if( op==0 ){
drhc05a0632017-11-11 20:11:01 +00004131 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
4132 pWal->exclusiveMode = WAL_NORMAL_MODE;
dan3cac5dc2010-06-04 18:37:59 +00004133 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drhc05a0632017-11-11 20:11:01 +00004134 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
drh61e4ace2010-05-31 20:28:37 +00004135 }
drhc05a0632017-11-11 20:11:01 +00004136 rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
drh61e4ace2010-05-31 20:28:37 +00004137 }else{
drhaab4c022010-06-02 14:45:51 +00004138 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00004139 rc = 0;
4140 }
4141 }else if( op>0 ){
drhc05a0632017-11-11 20:11:01 +00004142 assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
drhaab4c022010-06-02 14:45:51 +00004143 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00004144 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
drhc05a0632017-11-11 20:11:01 +00004145 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
drh61e4ace2010-05-31 20:28:37 +00004146 rc = 1;
4147 }else{
drhc05a0632017-11-11 20:11:01 +00004148 rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
dan55437592010-05-11 12:19:26 +00004149 }
drh61e4ace2010-05-31 20:28:37 +00004150 return rc;
dan55437592010-05-11 12:19:26 +00004151}
4152
dan8c408002010-11-01 17:38:24 +00004153/*
4154** Return true if the argument is non-NULL and the WAL module is using
4155** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
4156** WAL module is using shared-memory, return false.
4157*/
4158int sqlite3WalHeapMemory(Wal *pWal){
4159 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
4160}
4161
danfc1acf32015-12-05 20:51:54 +00004162#ifdef SQLITE_ENABLE_SNAPSHOT
drhe230a892015-12-10 22:48:22 +00004163/* Create a snapshot object. The content of a snapshot is opaque to
4164** every other subsystem, so the WAL module can put whatever it needs
4165** in the object.
4166*/
danfc1acf32015-12-05 20:51:54 +00004167int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
4168 int rc = SQLITE_OK;
4169 WalIndexHdr *pRet;
drhba6eb872016-11-15 17:37:56 +00004170 static const u32 aZero[4] = { 0, 0, 0, 0 };
danfc1acf32015-12-05 20:51:54 +00004171
4172 assert( pWal->readLock>=0 && pWal->writeLock==0 );
4173
drhba6eb872016-11-15 17:37:56 +00004174 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
4175 *ppSnapshot = 0;
4176 return SQLITE_ERROR;
4177 }
danfc1acf32015-12-05 20:51:54 +00004178 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
4179 if( pRet==0 ){
mistachkinfad30392016-02-13 23:43:46 +00004180 rc = SQLITE_NOMEM_BKPT;
danfc1acf32015-12-05 20:51:54 +00004181 }else{
4182 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
4183 *ppSnapshot = (sqlite3_snapshot*)pRet;
4184 }
4185
4186 return rc;
4187}
4188
drhe230a892015-12-10 22:48:22 +00004189/* Try to open on pSnapshot when the next read-transaction starts
4190*/
dan8714de92020-05-04 19:42:35 +00004191void sqlite3WalSnapshotOpen(
4192 Wal *pWal,
dan8714de92020-05-04 19:42:35 +00004193 sqlite3_snapshot *pSnapshot
4194){
danfc1acf32015-12-05 20:51:54 +00004195 pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
4196}
danad2d5ba2016-04-11 19:59:52 +00004197
4198/*
4199** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
4200** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
4201*/
4202int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
4203 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
4204 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
4205
4206 /* aSalt[0] is a copy of the value stored in the wal file header. It
4207 ** is incremented each time the wal file is restarted. */
4208 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
4209 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
4210 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
4211 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
4212 return 0;
4213}
danfa3d4c12018-08-06 17:12:36 +00004214
4215/*
4216** The caller currently has a read transaction open on the database.
4217** This function takes a SHARED lock on the CHECKPOINTER slot and then
4218** checks if the snapshot passed as the second argument is still
4219** available. If so, SQLITE_OK is returned.
4220**
4221** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
4222** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
4223** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
4224** lock is released before returning.
4225*/
4226int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
4227 int rc;
4228 rc = walLockShared(pWal, WAL_CKPT_LOCK);
4229 if( rc==SQLITE_OK ){
4230 WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
4231 if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
4232 || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
4233 ){
dan8d4b7a32018-08-31 19:00:16 +00004234 rc = SQLITE_ERROR_SNAPSHOT;
danfa3d4c12018-08-06 17:12:36 +00004235 walUnlockShared(pWal, WAL_CKPT_LOCK);
4236 }
4237 }
4238 return rc;
4239}
4240
4241/*
4242** Release a lock obtained by an earlier successful call to
4243** sqlite3WalSnapshotCheck().
4244*/
4245void sqlite3WalSnapshotUnlock(Wal *pWal){
4246 assert( pWal );
4247 walUnlockShared(pWal, WAL_CKPT_LOCK);
4248}
4249
4250
danfc1acf32015-12-05 20:51:54 +00004251#endif /* SQLITE_ENABLE_SNAPSHOT */
4252
drh70708602012-02-24 14:33:28 +00004253#ifdef SQLITE_ENABLE_ZIPVFS
danb3bdc722012-02-23 15:35:49 +00004254/*
4255** If the argument is not NULL, it points to a Wal object that holds a
4256** read-lock. This function returns the database page-size if it is known,
4257** or zero if it is not (or if pWal is NULL).
4258*/
4259int sqlite3WalFramesize(Wal *pWal){
danb3bdc722012-02-23 15:35:49 +00004260 assert( pWal==0 || pWal->readLock>=0 );
4261 return (pWal ? pWal->szPage : 0);
4262}
drh70708602012-02-24 14:33:28 +00004263#endif
danb3bdc722012-02-23 15:35:49 +00004264
drh21d61852016-01-08 02:27:01 +00004265/* Return the sqlite3_file object for the WAL file
4266*/
4267sqlite3_file *sqlite3WalFile(Wal *pWal){
4268 return pWal->pWalFd;
4269}
4270
danaa595052017-05-23 19:23:45 +00004271/*
4272** Return the values required by sqlite3_wal_info().
4273*/
4274int sqlite3WalInfo(Wal *pWal, u32 *pnPrior, u32 *pnFrame){
4275 int rc = SQLITE_OK;
4276 if( pWal ){
4277 *pnFrame = pWal->hdr.mxFrame;
4278 *pnPrior = pWal->nPriorFrame;
4279 }
4280 return rc;
4281}
4282
dan5cf53532010-05-01 16:40:20 +00004283#endif /* #ifndef SQLITE_OMIT_WAL */