blob: c3f84dd2efd07e6ba38d9629240804176c7748c7 [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drhcd285082010-06-23 22:00:35 +000034** The WAL header is 32 bytes in size and consists of the following eight
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan10f5a502010-06-23 15:55:43 +000043** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
dan97a31352010-04-16 13:59:31 +000045**
drh23ea97b2010-05-20 16:45:58 +000046** Immediately following the wal-header are zero or more frames. Each
47** frame consists of a 24-byte frame-header followed by a <page-size> bytes
drhcd285082010-06-23 22:00:35 +000048** of page data. The frame-header is six big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000049** integer values, as follows:
50**
dan3de777f2010-04-17 12:31:37 +000051** 0: Page number.
52** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000053** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000054** 8: Salt-1 (copied from the header)
55** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000056** 16: Checksum-1.
57** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000058**
drh7e263722010-05-20 21:21:09 +000059** A frame is considered valid if and only if the following conditions are
60** true:
61**
62** (1) The salt-1 and salt-2 values in the frame-header match
63** salt values in the wal-header
64**
65** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000066** exactly match the checksum computed consecutively on the
67** WAL header and the first 8 bytes and the content of all frames
68** up to and including the current frame.
69**
70** The checksum is computed using 32-bit big-endian integers if the
71** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000073** The checksum values are always stored in the frame header in a
74** big-endian format regardless of which byte order is used to compute
75** the checksum. The checksum is computed by interpreting the input as
76** an even number of unsigned 32-bit integers: x[0] through x[N]. The
drhffca4302010-06-15 11:21:54 +000077** algorithm used for the checksum is as follows:
drh51b21b12010-05-25 15:53:31 +000078**
79** for i from 0 to n-1 step 2:
80** s0 += x[i] + s1;
81** s1 += x[i+1] + s0;
82** endfor
drh7e263722010-05-20 21:21:09 +000083**
drhcd285082010-06-23 22:00:35 +000084** Note that s0 and s1 are both weighted checksums using fibonacci weights
85** in reverse order (the largest fibonacci weight occurs on the first element
86** of the sequence being summed.) The s1 value spans all 32-bit
87** terms of the sequence whereas s0 omits the final term.
88**
drh7e263722010-05-20 21:21:09 +000089** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90** WAL is transferred into the database, then the database is VFS.xSync-ed.
drhffca4302010-06-15 11:21:54 +000091** The VFS.xSync operations serve as write barriers - all writes launched
drh7e263722010-05-20 21:21:09 +000092** before the xSync must complete before any write that launches after the
93** xSync begins.
94**
95** After each checkpoint, the salt-1 value is incremented and the salt-2
96** value is randomized. This prevents old and new frames in the WAL from
97** being considered valid at the same time and being checkpointing together
98** following a crash.
99**
drh29d4dbe2010-05-18 23:29:52 +0000100** READER ALGORITHM
101**
102** To read a page from the database (call it page number P), a reader
103** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +0000104** last valid instance of page P that is a followed by a commit frame
105** or is a commit frame itself becomes the value read. If the WAL
106** contains no copies of page P that are valid and which are a commit
107** frame or are followed by a commit frame, then page P is read from
108** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000109**
drh73b64e42010-05-30 19:55:15 +0000110** To start a read transaction, the reader records the index of the last
111** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112** for all subsequent read operations. New transactions can be appended
113** to the WAL, but as long as the reader uses its original mxFrame value
114** and ignores the newly appended content, it will see a consistent snapshot
115** of the database from a single point in time. This technique allows
116** multiple concurrent readers to view different versions of the database
117** content simultaneously.
118**
119** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000120** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000121** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000122** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000123** and read performance suffers. To overcome this problem, a separate
124** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000125** search for frames of a particular page.
126**
127** WAL-INDEX FORMAT
128**
129** Conceptually, the wal-index is shared memory, though VFS implementations
130** might choose to implement the wal-index using a mmapped file. Because
131** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132** on a network filesystem. All users of the database must be able to
133** share memory.
134**
drh07dae082017-10-30 20:44:36 +0000135** In the default unix and windows implementation, the wal-index is a mmapped
136** file whose name is the database name with a "-shm" suffix added. For that
137** reason, the wal-index is sometimes called the "shm" file.
138**
drh29d4dbe2010-05-18 23:29:52 +0000139** The wal-index is transient. After a crash, the wal-index can (and should
140** be) reconstructed from the original WAL file. In fact, the VFS is required
141** to either truncate or zero the header of the wal-index when the last
142** connection to it closes. Because the wal-index is transient, it can
143** use an architecture-specific format; it does not have to be cross-platform.
144** Hence, unlike the database and WAL file formats which store all values
145** as big endian, the wal-index can store multi-byte values in the native
146** byte order of the host computer.
147**
148** The purpose of the wal-index is to answer this question quickly: Given
drh610b8d82012-07-17 02:56:05 +0000149** a page number P and a maximum frame index M, return the index of the
150** last frame in the wal before frame M for page P in the WAL, or return
151** NULL if there are no frames for page P in the WAL prior to M.
drh29d4dbe2010-05-18 23:29:52 +0000152**
153** The wal-index consists of a header region, followed by an one or
154** more index blocks.
155**
drh027a1282010-05-19 01:53:53 +0000156** The wal-index header contains the total number of frames within the WAL
mistachkind5578432012-08-25 10:01:29 +0000157** in the mxFrame field.
danad3cadd2010-06-14 11:49:26 +0000158**
159** Each index block except for the first contains information on
160** HASHTABLE_NPAGE frames. The first index block contains information on
161** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162** HASHTABLE_NPAGE are selected so that together the wal-index header and
163** first index block are the same size as all other index blocks in the
164** wal-index.
165**
166** Each index block contains two sections, a page-mapping that contains the
167** database page number associated with each wal frame, and a hash-table
drhffca4302010-06-15 11:21:54 +0000168** that allows readers to query an index block for a specific page number.
danad3cadd2010-06-14 11:49:26 +0000169** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
170** for the first index block) 32-bit page numbers. The first entry in the
171** first index-block contains the database page number corresponding to the
172** first frame in the WAL file. The first entry in the second index block
173** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
174** the log, and so on.
175**
176** The last index block in a wal-index usually contains less than the full
177** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
178** depending on the contents of the WAL file. This does not change the
179** allocated size of the page-mapping array - the page-mapping array merely
180** contains unused entries.
drh027a1282010-05-19 01:53:53 +0000181**
182** Even without using the hash table, the last frame for page P
danad3cadd2010-06-14 11:49:26 +0000183** can be found by scanning the page-mapping sections of each index block
drh027a1282010-05-19 01:53:53 +0000184** starting with the last index block and moving toward the first, and
185** within each index block, starting at the end and moving toward the
186** beginning. The first entry that equals P corresponds to the frame
187** holding the content for that page.
188**
189** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
190** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
191** hash table for each page number in the mapping section, so the hash
192** table is never more than half full. The expected number of collisions
193** prior to finding a match is 1. Each entry of the hash table is an
194** 1-based index of an entry in the mapping section of the same
195** index block. Let K be the 1-based index of the largest entry in
196** the mapping section. (For index blocks other than the last, K will
197** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
198** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000199** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000200**
201** To look for page P in the hash table, first compute a hash iKey on
202** P as follows:
203**
204** iKey = (P * 383) % HASHTABLE_NSLOT
205**
206** Then start scanning entries of the hash table, starting with iKey
207** (wrapping around to the beginning when the end of the hash table is
208** reached) until an unused hash slot is found. Let the first unused slot
209** be at index iUnused. (iUnused might be less than iKey if there was
210** wrap-around.) Because the hash table is never more than half full,
211** the search is guaranteed to eventually hit an unused entry. Let
212** iMax be the value between iKey and iUnused, closest to iUnused,
213** where aHash[iMax]==P. If there is no iMax entry (if there exists
214** no hash slot such that aHash[i]==p) then page P is not in the
215** current index block. Otherwise the iMax-th mapping entry of the
216** current index block corresponds to the last entry that references
217** page P.
218**
219** A hash search begins with the last index block and moves toward the
220** first index block, looking for entries corresponding to page P. On
221** average, only two or three slots in each index block need to be
222** examined in order to either find the last entry for page P, or to
223** establish that no such entry exists in the block. Each index block
224** holds over 4000 entries. So two or three index blocks are sufficient
225** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
226** comparisons (on average) suffice to either locate a frame in the
227** WAL or to establish that the frame does not exist in the WAL. This
228** is much faster than scanning the entire 10MB WAL.
229**
230** Note that entries are added in order of increasing K. Hence, one
231** reader might be using some value K0 and a second reader that started
232** at a later time (after additional transactions were added to the WAL
233** and to the wal-index) might be using a different value K1, where K1>K0.
234** Both readers can use the same hash table and mapping section to get
235** the correct result. There may be entries in the hash table with
236** K>K0 but to the first reader, those entries will appear to be unused
237** slots in the hash table and so the first reader will get an answer as
238** if no values greater than K0 had ever been inserted into the hash table
239** in the first place - which is what reader one wants. Meanwhile, the
240** second reader using K1 will see additional values that were inserted
241** later, which is exactly what reader two wants.
242**
dan6f150142010-05-21 15:31:56 +0000243** When a rollback occurs, the value of K is decreased. Hash table entries
244** that correspond to frames greater than the new K value are removed
245** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000246*/
drh29d4dbe2010-05-18 23:29:52 +0000247#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000248
drh29d4dbe2010-05-18 23:29:52 +0000249#include "wal.h"
250
drh73b64e42010-05-30 19:55:15 +0000251/*
drhc74c3332010-05-31 12:15:19 +0000252** Trace output macros
253*/
drhc74c3332010-05-31 12:15:19 +0000254#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000255int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000256# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
257#else
258# define WALTRACE(X)
259#endif
260
dan10f5a502010-06-23 15:55:43 +0000261/*
262** The maximum (and only) versions of the wal and wal-index formats
263** that may be interpreted by this version of SQLite.
264**
265** If a client begins recovering a WAL file and finds that (a) the checksum
266** values in the wal-header are correct and (b) the version field is not
267** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
268**
269** Similarly, if a client successfully reads a wal-index header (i.e. the
270** checksum test is successful) and finds that the version field is not
271** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
272** returns SQLITE_CANTOPEN.
273*/
274#define WAL_MAX_VERSION 3007000
275#define WALINDEX_MAX_VERSION 3007000
drhc74c3332010-05-31 12:15:19 +0000276
277/*
drh07dae082017-10-30 20:44:36 +0000278** Index numbers for various locking bytes. WAL_NREADER is the number
drh998147e2015-12-10 02:15:03 +0000279** of available reader locks and should be at least 3. The default
280** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5.
drh07dae082017-10-30 20:44:36 +0000281**
282** Technically, the various VFSes are free to implement these locks however
283** they see fit. However, compatibility is encouraged so that VFSes can
284** interoperate. The standard implemention used on both unix and windows
285** is for the index number to indicate a byte offset into the
286** WalCkptInfo.aLock[] array in the wal-index header. In other words, all
287** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which
288** should be 120) is the location in the shm file for the first locking
289** byte.
drh73b64e42010-05-30 19:55:15 +0000290*/
291#define WAL_WRITE_LOCK 0
292#define WAL_ALL_BUT_WRITE 1
293#define WAL_CKPT_LOCK 1
294#define WAL_RECOVER_LOCK 2
295#define WAL_READ_LOCK(I) (3+(I))
296#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
297
dan97a31352010-04-16 13:59:31 +0000298
drh7ed91f22010-04-29 22:34:07 +0000299/* Object declarations */
300typedef struct WalIndexHdr WalIndexHdr;
301typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000302typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000303
304
305/*
drh286a2882010-05-20 23:51:06 +0000306** The following object holds a copy of the wal-index header content.
307**
308** The actual header in the wal-index consists of two copies of this
drh998147e2015-12-10 02:15:03 +0000309** object followed by one instance of the WalCkptInfo object.
310** For all versions of SQLite through 3.10.0 and probably beyond,
311** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
312** the total header size is 136 bytes.
drh9b78f792010-08-14 21:21:24 +0000313**
314** The szPage value can be any power of 2 between 512 and 32768, inclusive.
315** Or it can be 1 to represent a 65536-byte page. The latter case was
316** added in 3.7.1 when support for 64K pages was added.
dan7c246102010-04-12 19:00:29 +0000317*/
drh7ed91f22010-04-29 22:34:07 +0000318struct WalIndexHdr {
dan10f5a502010-06-23 15:55:43 +0000319 u32 iVersion; /* Wal-index version */
320 u32 unused; /* Unused (padding) field */
dan71d89912010-05-24 13:57:42 +0000321 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000322 u8 isInit; /* 1 when initialized */
323 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
drh9b78f792010-08-14 21:21:24 +0000324 u16 szPage; /* Database page size in bytes. 1==64K */
dand0aa3422010-05-31 16:41:53 +0000325 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000326 u32 nPage; /* Size of database in pages */
327 u32 aFrameCksum[2]; /* Checksum of last frame in log */
328 u32 aSalt[2]; /* Two salt values copied from WAL header */
329 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000330};
331
drh73b64e42010-05-30 19:55:15 +0000332/*
333** A copy of the following object occurs in the wal-index immediately
334** following the second copy of the WalIndexHdr. This object stores
335** information used by checkpoint.
336**
337** nBackfill is the number of frames in the WAL that have been written
338** back into the database. (We call the act of moving content from WAL to
339** database "backfilling".) The nBackfill number is never greater than
340** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
341** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
342** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
343** mxFrame back to zero when the WAL is reset.
344**
drh998147e2015-12-10 02:15:03 +0000345** nBackfillAttempted is the largest value of nBackfill that a checkpoint
346** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however
347** the nBackfillAttempted is set before any backfilling is done and the
mistachkinc9fb38e2015-12-10 03:16:47 +0000348** nBackfill is only set after all backfilling completes. So if a checkpoint
drh998147e2015-12-10 02:15:03 +0000349** crashes, nBackfillAttempted might be larger than nBackfill. The
350** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
351**
352** The aLock[] field is a set of bytes used for locking. These bytes should
353** never be read or written.
354**
drh73b64e42010-05-30 19:55:15 +0000355** There is one entry in aReadMark[] for each reader lock. If a reader
356** holds read-lock K, then the value in aReadMark[K] is no greater than
drhdb7f6472010-06-09 14:45:12 +0000357** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
358** for any aReadMark[] means that entry is unused. aReadMark[0] is
359** a special case; its value is never used and it exists as a place-holder
360** to avoid having to offset aReadMark[] indexs by one. Readers holding
361** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
362** directly from the database.
drh73b64e42010-05-30 19:55:15 +0000363**
364** The value of aReadMark[K] may only be changed by a thread that
365** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
366** aReadMark[K] cannot changed while there is a reader is using that mark
367** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
368**
369** The checkpointer may only transfer frames from WAL to database where
370** the frame numbers are less than or equal to every aReadMark[] that is
371** in use (that is, every aReadMark[j] for which there is a corresponding
372** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
373** largest value and will increase an unused aReadMark[] to mxFrame if there
374** is not already an aReadMark[] equal to mxFrame. The exception to the
375** previous sentence is when nBackfill equals mxFrame (meaning that everything
376** in the WAL has been backfilled into the database) then new readers
377** will choose aReadMark[0] which has value 0 and hence such reader will
378** get all their all content directly from the database file and ignore
379** the WAL.
380**
381** Writers normally append new frames to the end of the WAL. However,
382** if nBackfill equals mxFrame (meaning that all WAL content has been
383** written back into the database) and if no readers are using the WAL
384** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
385** the writer will first "reset" the WAL back to the beginning and start
386** writing new content beginning at frame 1.
387**
388** We assume that 32-bit loads are atomic and so no locks are needed in
389** order to read from any aReadMark[] entries.
390*/
391struct WalCkptInfo {
392 u32 nBackfill; /* Number of WAL frames backfilled into DB */
393 u32 aReadMark[WAL_NREADER]; /* Reader marks */
drh998147e2015-12-10 02:15:03 +0000394 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */
395 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */
396 u32 notUsed0; /* Available for future enhancements */
drh73b64e42010-05-30 19:55:15 +0000397};
drhdb7f6472010-06-09 14:45:12 +0000398#define READMARK_NOT_USED 0xffffffff
drh73b64e42010-05-30 19:55:15 +0000399
400
drh7e263722010-05-20 21:21:09 +0000401/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
402** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
403** only support mandatory file-locks, we do not read or write data
404** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000405*/
drh998147e2015-12-10 02:15:03 +0000406#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
407#define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
dan7c246102010-04-12 19:00:29 +0000408
drh7ed91f22010-04-29 22:34:07 +0000409/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000410#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000411
dan10f5a502010-06-23 15:55:43 +0000412/* Size of write ahead log header, including checksum. */
dan10f5a502010-06-23 15:55:43 +0000413#define WAL_HDRSIZE 32
dan97a31352010-04-16 13:59:31 +0000414
danb8fd6c22010-05-24 10:39:36 +0000415/* WAL magic value. Either this value, or the same value with the least
416** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
417** big-endian format in the first 4 bytes of a WAL file.
418**
419** If the LSB is set, then the checksums for each frame within the WAL
420** file are calculated by treating all data as an array of 32-bit
421** big-endian words. Otherwise, they are calculated by interpreting
422** all data as 32-bit little-endian words.
423*/
424#define WAL_MAGIC 0x377f0682
425
dan97a31352010-04-16 13:59:31 +0000426/*
drh7ed91f22010-04-29 22:34:07 +0000427** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000428** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000429** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000430*/
drh6e810962010-05-19 17:49:50 +0000431#define walFrameOffset(iFrame, szPage) ( \
danbd0e9072010-07-07 09:48:44 +0000432 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000433)
dan7c246102010-04-12 19:00:29 +0000434
435/*
drh7ed91f22010-04-29 22:34:07 +0000436** An open write-ahead log file is represented by an instance of the
437** following object.
dance4f05f2010-04-22 19:14:13 +0000438*/
drh7ed91f22010-04-29 22:34:07 +0000439struct Wal {
drh73b64e42010-05-30 19:55:15 +0000440 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000441 sqlite3_file *pDbFd; /* File handle for the database file */
442 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000443 u32 iCallback; /* Value to pass to log callback (or 0) */
drh85a83752011-05-16 21:00:27 +0000444 i64 mxWalSize; /* Truncate WAL to this size upon reset */
dan13a3cb82010-06-11 19:04:21 +0000445 int nWiData; /* Size of array apWiData */
drh88f975a2011-12-16 19:34:36 +0000446 int szFirstBlock; /* Size of first block written to WAL file */
dan13a3cb82010-06-11 19:04:21 +0000447 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
drhb2eced52010-08-12 02:41:12 +0000448 u32 szPage; /* Database page size */
drh73b64e42010-05-30 19:55:15 +0000449 i16 readLock; /* Which read lock is being held. -1 for none */
drh4eb02a42011-12-16 21:26:26 +0000450 u8 syncFlags; /* Flags to use to sync header writes */
dan55437592010-05-11 12:19:26 +0000451 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000452 u8 writeLock; /* True if in a write transaction */
453 u8 ckptLock; /* True if holding a checkpoint lock */
drh66dfec8b2011-06-01 20:01:49 +0000454 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
danf60b7f32011-12-16 13:24:27 +0000455 u8 truncateOnCommit; /* True to truncate WAL file on commit */
drhd992b152011-12-20 20:13:25 +0000456 u8 syncHeader; /* Fsync the WAL header if true */
drh374f4a02011-12-17 20:02:11 +0000457 u8 padToSectorBoundary; /* Pad transactions out to the next sector */
drh85bc6df2017-11-10 20:00:50 +0000458 u8 bShmUnreliable; /* SHM content is read-only and unreliable */
drh73b64e42010-05-30 19:55:15 +0000459 WalIndexHdr hdr; /* Wal-index header for current transaction */
danb8c7cfb2015-08-13 20:23:46 +0000460 u32 minFrame; /* Ignore wal frames before this one */
danc9a90222016-01-09 18:57:35 +0000461 u32 iReCksum; /* On commit, recalculate checksums from here */
dan3e875ef2010-07-05 19:03:35 +0000462 const char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000463 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000464#ifdef SQLITE_DEBUG
465 u8 lockError; /* True if a locking error has occurred */
466#endif
danfc1acf32015-12-05 20:51:54 +0000467#ifdef SQLITE_ENABLE_SNAPSHOT
drh998147e2015-12-10 02:15:03 +0000468 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */
dan861fb1e2020-05-06 19:14:41 +0000469#endif
470#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
471 sqlite3 *db;
danfc1acf32015-12-05 20:51:54 +0000472#endif
dan7c246102010-04-12 19:00:29 +0000473};
474
drh73b64e42010-05-30 19:55:15 +0000475/*
dan8c408002010-11-01 17:38:24 +0000476** Candidate values for Wal.exclusiveMode.
477*/
478#define WAL_NORMAL_MODE 0
479#define WAL_EXCLUSIVE_MODE 1
480#define WAL_HEAPMEMORY_MODE 2
481
482/*
drh66dfec8b2011-06-01 20:01:49 +0000483** Possible values for WAL.readOnly
484*/
485#define WAL_RDWR 0 /* Normal read/write connection */
486#define WAL_RDONLY 1 /* The WAL file is readonly */
487#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
488
489/*
dan067f3162010-06-14 10:30:12 +0000490** Each page of the wal-index mapping contains a hash-table made up of
491** an array of HASHTABLE_NSLOT elements of the following type.
492*/
493typedef u16 ht_slot;
494
495/*
danad3cadd2010-06-14 11:49:26 +0000496** This structure is used to implement an iterator that loops through
497** all frames in the WAL in database page order. Where two or more frames
498** correspond to the same database page, the iterator visits only the
499** frame most recently written to the WAL (in other words, the frame with
500** the largest index).
501**
502** The internals of this structure are only accessed by:
503**
504** walIteratorInit() - Create a new iterator,
505** walIteratorNext() - Step an iterator,
506** walIteratorFree() - Free an iterator.
507**
508** This functionality is used by the checkpoint code (see walCheckpoint()).
509*/
510struct WalIterator {
drh8deae5a2020-07-29 12:23:20 +0000511 u32 iPrior; /* Last result returned from the iterator */
drhd9c9b782010-12-15 21:02:06 +0000512 int nSegment; /* Number of entries in aSegment[] */
danad3cadd2010-06-14 11:49:26 +0000513 struct WalSegment {
514 int iNext; /* Next slot in aIndex[] not yet returned */
515 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
516 u32 *aPgno; /* Array of page numbers. */
drhd9c9b782010-12-15 21:02:06 +0000517 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
danad3cadd2010-06-14 11:49:26 +0000518 int iZero; /* Frame number associated with aPgno[0] */
drhd9c9b782010-12-15 21:02:06 +0000519 } aSegment[1]; /* One for every 32KB page in the wal-index */
danad3cadd2010-06-14 11:49:26 +0000520};
521
522/*
dan13a3cb82010-06-11 19:04:21 +0000523** Define the parameters of the hash tables in the wal-index file. There
524** is a hash-table following every HASHTABLE_NPAGE page numbers in the
525** wal-index.
526**
527** Changing any of these constants will alter the wal-index format and
528** create incompatibilities.
529*/
dan067f3162010-06-14 10:30:12 +0000530#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000531#define HASHTABLE_HASH_1 383 /* Should be prime */
532#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000533
danad3cadd2010-06-14 11:49:26 +0000534/*
535** The block of page numbers associated with the first hash-table in a
dan13a3cb82010-06-11 19:04:21 +0000536** wal-index is smaller than usual. This is so that there is a complete
537** hash-table on each aligned 32KB page of the wal-index.
538*/
dan067f3162010-06-14 10:30:12 +0000539#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
dan13a3cb82010-06-11 19:04:21 +0000540
dan067f3162010-06-14 10:30:12 +0000541/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
542#define WALINDEX_PGSZ ( \
543 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
544)
dan13a3cb82010-06-11 19:04:21 +0000545
546/*
547** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
dan067f3162010-06-14 10:30:12 +0000548** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
dan13a3cb82010-06-11 19:04:21 +0000549** numbered from zero.
550**
drhc05a0632017-11-11 20:11:01 +0000551** If the wal-index is currently smaller the iPage pages then the size
552** of the wal-index might be increased, but only if it is safe to do
553** so. It is safe to enlarge the wal-index if pWal->writeLock is true
554** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
555**
dan13a3cb82010-06-11 19:04:21 +0000556** If this call is successful, *ppPage is set to point to the wal-index
557** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
558** then an SQLite error code is returned and *ppPage is set to 0.
559*/
drh2e178d72018-02-20 22:20:57 +0000560static SQLITE_NOINLINE int walIndexPageRealloc(
561 Wal *pWal, /* The WAL context */
562 int iPage, /* The page we seek */
563 volatile u32 **ppPage /* Write the page pointer here */
564){
dan13a3cb82010-06-11 19:04:21 +0000565 int rc = SQLITE_OK;
566
567 /* Enlarge the pWal->apWiData[] array if required */
568 if( pWal->nWiData<=iPage ){
drhf6ad2012019-04-13 14:07:57 +0000569 sqlite3_int64 nByte = sizeof(u32*)*(iPage+1);
dan13a3cb82010-06-11 19:04:21 +0000570 volatile u32 **apNew;
drhd924e7b2020-05-17 00:26:44 +0000571 apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte);
dan13a3cb82010-06-11 19:04:21 +0000572 if( !apNew ){
573 *ppPage = 0;
mistachkinfad30392016-02-13 23:43:46 +0000574 return SQLITE_NOMEM_BKPT;
dan13a3cb82010-06-11 19:04:21 +0000575 }
drh519426a2010-07-09 03:19:07 +0000576 memset((void*)&apNew[pWal->nWiData], 0,
577 sizeof(u32*)*(iPage+1-pWal->nWiData));
dan13a3cb82010-06-11 19:04:21 +0000578 pWal->apWiData = apNew;
579 pWal->nWiData = iPage+1;
580 }
581
582 /* Request a pointer to the required page from the VFS */
drhc0ec2f72018-02-21 01:48:22 +0000583 assert( pWal->apWiData[iPage]==0 );
584 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
585 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
586 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
587 }else{
588 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
589 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
590 );
591 assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
592 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
drhe7f3edc2020-07-28 17:17:36 +0000593 if( rc==SQLITE_OK ){
594 if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM;
595 }else if( (rc&0xff)==SQLITE_READONLY ){
drhc0ec2f72018-02-21 01:48:22 +0000596 pWal->readOnly |= WAL_SHM_RDONLY;
597 if( rc==SQLITE_READONLY ){
598 rc = SQLITE_OK;
dan4edc6bf2011-05-10 17:31:29 +0000599 }
dan8c408002010-11-01 17:38:24 +0000600 }
dan13a3cb82010-06-11 19:04:21 +0000601 }
danb6d2f9c2011-05-11 14:57:33 +0000602
drh66dfec8b2011-06-01 20:01:49 +0000603 *ppPage = pWal->apWiData[iPage];
dan13a3cb82010-06-11 19:04:21 +0000604 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
605 return rc;
606}
drh2e178d72018-02-20 22:20:57 +0000607static int walIndexPage(
608 Wal *pWal, /* The WAL context */
609 int iPage, /* The page we seek */
610 volatile u32 **ppPage /* Write the page pointer here */
611){
612 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
613 return walIndexPageRealloc(pWal, iPage, ppPage);
614 }
615 return SQLITE_OK;
616}
dan13a3cb82010-06-11 19:04:21 +0000617
618/*
drh73b64e42010-05-30 19:55:15 +0000619** Return a pointer to the WalCkptInfo structure in the wal-index.
620*/
621static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000622 assert( pWal->nWiData>0 && pWal->apWiData[0] );
623 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
624}
625
626/*
627** Return a pointer to the WalIndexHdr structure in the wal-index.
628*/
629static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
630 assert( pWal->nWiData>0 && pWal->apWiData[0] );
631 return (volatile WalIndexHdr*)pWal->apWiData[0];
drh73b64e42010-05-30 19:55:15 +0000632}
633
dan7c246102010-04-12 19:00:29 +0000634/*
danb8fd6c22010-05-24 10:39:36 +0000635** The argument to this macro must be of type u32. On a little-endian
636** architecture, it returns the u32 value that results from interpreting
637** the 4 bytes as a big-endian value. On a big-endian architecture, it
peter.d.reid60ec9142014-09-06 16:39:46 +0000638** returns the value that would be produced by interpreting the 4 bytes
danb8fd6c22010-05-24 10:39:36 +0000639** of the input value as a little-endian integer.
640*/
641#define BYTESWAP32(x) ( \
642 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
643 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
644)
dan64d039e2010-04-13 19:27:31 +0000645
dan7c246102010-04-12 19:00:29 +0000646/*
drh7e263722010-05-20 21:21:09 +0000647** Generate or extend an 8 byte checksum based on the data in
648** array aByte[] and the initial values of aIn[0] and aIn[1] (or
649** initial values of 0 and 0 if aIn==NULL).
650**
651** The checksum is written back into aOut[] before returning.
652**
653** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000654*/
drh7e263722010-05-20 21:21:09 +0000655static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000656 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000657 u8 *a, /* Content to be checksummed */
658 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
659 const u32 *aIn, /* Initial checksum value input */
660 u32 *aOut /* OUT: Final checksum value output */
661){
662 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000663 u32 *aData = (u32 *)a;
664 u32 *aEnd = (u32 *)&a[nByte];
665
drh7e263722010-05-20 21:21:09 +0000666 if( aIn ){
667 s1 = aIn[0];
668 s2 = aIn[1];
669 }else{
670 s1 = s2 = 0;
671 }
dan7c246102010-04-12 19:00:29 +0000672
drh584c7542010-05-19 18:08:10 +0000673 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000674 assert( (nByte&0x00000007)==0 );
drhf6ad2012019-04-13 14:07:57 +0000675 assert( nByte<=65536 );
dan7c246102010-04-12 19:00:29 +0000676
danb8fd6c22010-05-24 10:39:36 +0000677 if( nativeCksum ){
678 do {
679 s1 += *aData++ + s2;
680 s2 += *aData++ + s1;
681 }while( aData<aEnd );
682 }else{
683 do {
684 s1 += BYTESWAP32(aData[0]) + s2;
685 s2 += BYTESWAP32(aData[1]) + s1;
686 aData += 2;
687 }while( aData<aEnd );
688 }
689
drh7e263722010-05-20 21:21:09 +0000690 aOut[0] = s1;
691 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000692}
693
drhf16cf652020-05-19 12:27:29 +0000694/*
695** If there is the possibility of concurrent access to the SHM file
696** from multiple threads and/or processes, then do a memory barrier.
697*/
dan8c408002010-11-01 17:38:24 +0000698static void walShmBarrier(Wal *pWal){
699 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
700 sqlite3OsShmBarrier(pWal->pDbFd);
701 }
702}
703
dan7c246102010-04-12 19:00:29 +0000704/*
drh5a8cd2e2020-05-19 15:51:10 +0000705** Add the SQLITE_NO_TSAN as part of the return-type of a function
706** definition as a hint that the function contains constructs that
707** might give false-positive TSAN warnings.
708**
709** See tag-20200519-1.
710*/
711#if defined(__clang__) && !defined(SQLITE_NO_TSAN)
712# define SQLITE_NO_TSAN __attribute__((no_sanitize_thread))
713#else
714# define SQLITE_NO_TSAN
715#endif
716
717/*
drh7e263722010-05-20 21:21:09 +0000718** Write the header information in pWal->hdr into the wal-index.
719**
720** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000721*/
drh5a8cd2e2020-05-19 15:51:10 +0000722static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000723 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
724 const int nCksum = offsetof(WalIndexHdr, aCksum);
drh73b64e42010-05-30 19:55:15 +0000725
726 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000727 pWal->hdr.isInit = 1;
dan10f5a502010-06-23 15:55:43 +0000728 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
dan4280eb32010-06-12 12:02:35 +0000729 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
drhf16cf652020-05-19 12:27:29 +0000730 /* Possible TSAN false-positive. See tag-20200519-1 */
drhf6bff3f2015-07-17 01:16:10 +0000731 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
dan8c408002010-11-01 17:38:24 +0000732 walShmBarrier(pWal);
drhf6bff3f2015-07-17 01:16:10 +0000733 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000734}
735
736/*
737** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000738** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000739** 4-byte big-endian integers, as follows:
740**
drh23ea97b2010-05-20 16:45:58 +0000741** 0: Page number.
742** 4: For commit records, the size of the database image in pages
743** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000744** 8: Salt-1 (copied from the wal-header)
745** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000746** 16: Checksum-1.
747** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000748*/
drh7ed91f22010-04-29 22:34:07 +0000749static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000750 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000751 u32 iPage, /* Database page number for frame */
752 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000753 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000754 u8 *aFrame /* OUT: Write encoded frame here */
755){
danb8fd6c22010-05-24 10:39:36 +0000756 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000757 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000758 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000759 sqlite3Put4byte(&aFrame[0], iPage);
760 sqlite3Put4byte(&aFrame[4], nTruncate);
danc9a90222016-01-09 18:57:35 +0000761 if( pWal->iReCksum==0 ){
762 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000763
danc9a90222016-01-09 18:57:35 +0000764 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
765 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
766 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000767
danc9a90222016-01-09 18:57:35 +0000768 sqlite3Put4byte(&aFrame[16], aCksum[0]);
769 sqlite3Put4byte(&aFrame[20], aCksum[1]);
drh869aaf02016-01-12 02:28:19 +0000770 }else{
771 memset(&aFrame[8], 0, 16);
danc9a90222016-01-09 18:57:35 +0000772 }
dan7c246102010-04-12 19:00:29 +0000773}
774
775/*
drh7e263722010-05-20 21:21:09 +0000776** Check to see if the frame with header in aFrame[] and content
777** in aData[] is valid. If it is a valid frame, fill *piPage and
778** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000779*/
drh7ed91f22010-04-29 22:34:07 +0000780static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000781 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000782 u32 *piPage, /* OUT: Database page number for frame */
783 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000784 u8 *aData, /* Pointer to page data (for checksum) */
785 u8 *aFrame /* Frame data */
786){
danb8fd6c22010-05-24 10:39:36 +0000787 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000788 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000789 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000790 assert( WAL_FRAME_HDRSIZE==24 );
791
drh7e263722010-05-20 21:21:09 +0000792 /* A frame is only valid if the salt values in the frame-header
793 ** match the salt values in the wal-header.
794 */
795 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000796 return 0;
797 }
dan4a4b01d2010-04-16 11:30:18 +0000798
drhc8179152010-05-24 13:28:36 +0000799 /* A frame is only valid if the page number is creater than zero.
800 */
801 pgno = sqlite3Get4byte(&aFrame[0]);
802 if( pgno==0 ){
803 return 0;
804 }
805
drh519426a2010-07-09 03:19:07 +0000806 /* A frame is only valid if a checksum of the WAL header,
807 ** all prior frams, the first 16 bytes of this frame-header,
808 ** and the frame-data matches the checksum in the last 8
809 ** bytes of this frame-header.
drh7e263722010-05-20 21:21:09 +0000810 */
danb8fd6c22010-05-24 10:39:36 +0000811 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000812 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000813 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000814 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
815 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000816 ){
817 /* Checksum failed. */
818 return 0;
819 }
820
drh7e263722010-05-20 21:21:09 +0000821 /* If we reach this point, the frame is valid. Return the page number
822 ** and the new database size.
823 */
drhc8179152010-05-24 13:28:36 +0000824 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000825 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000826 return 1;
827}
828
dan7c246102010-04-12 19:00:29 +0000829
drhc74c3332010-05-31 12:15:19 +0000830#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
831/*
drh181e0912010-06-01 01:08:08 +0000832** Names of locks. This routine is used to provide debugging output and is not
833** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000834*/
835static const char *walLockName(int lockIdx){
836 if( lockIdx==WAL_WRITE_LOCK ){
837 return "WRITE-LOCK";
838 }else if( lockIdx==WAL_CKPT_LOCK ){
839 return "CKPT-LOCK";
840 }else if( lockIdx==WAL_RECOVER_LOCK ){
841 return "RECOVER-LOCK";
842 }else{
843 static char zName[15];
844 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
845 lockIdx-WAL_READ_LOCK(0));
846 return zName;
847 }
848}
849#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
850
851
dan7c246102010-04-12 19:00:29 +0000852/*
drh181e0912010-06-01 01:08:08 +0000853** Set or release locks on the WAL. Locks are either shared or exclusive.
854** A lock cannot be moved directly between shared and exclusive - it must go
855** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000856**
857** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
858*/
859static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000860 int rc;
drh73b64e42010-05-30 19:55:15 +0000861 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000862 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
863 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
864 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
865 walLockName(lockIdx), rc ? "failed" : "ok"));
dan7bb8b8a2020-05-06 20:27:18 +0000866 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000867 return rc;
drh73b64e42010-05-30 19:55:15 +0000868}
869static void walUnlockShared(Wal *pWal, int lockIdx){
870 if( pWal->exclusiveMode ) return;
871 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
872 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000873 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000874}
drhab372772015-12-02 16:10:16 +0000875static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000876 int rc;
drh73b64e42010-05-30 19:55:15 +0000877 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000878 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
879 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
880 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
881 walLockName(lockIdx), n, rc ? "failed" : "ok"));
dan7bb8b8a2020-05-06 20:27:18 +0000882 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000883 return rc;
drh73b64e42010-05-30 19:55:15 +0000884}
885static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
886 if( pWal->exclusiveMode ) return;
887 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
888 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000889 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
890 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000891}
892
893/*
drh29d4dbe2010-05-18 23:29:52 +0000894** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000895** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
896** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000897*/
898static int walHash(u32 iPage){
899 assert( iPage>0 );
900 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
901 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
902}
903static int walNextHash(int iPriorHash){
904 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000905}
906
drh4ece2f22018-06-09 16:49:00 +0000907/*
908** An instance of the WalHashLoc object is used to describe the location
909** of a page hash table in the wal-index. This becomes the return value
910** from walHashGet().
911*/
912typedef struct WalHashLoc WalHashLoc;
913struct WalHashLoc {
914 volatile ht_slot *aHash; /* Start of the wal-index hash table */
915 volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */
916 u32 iZero; /* One less than the frame number of first indexed*/
917};
918
dan4280eb32010-06-12 12:02:35 +0000919/*
920** Return pointers to the hash table and page number array stored on
921** page iHash of the wal-index. The wal-index is broken into 32KB pages
922** numbered starting from 0.
923**
drh4ece2f22018-06-09 16:49:00 +0000924** Set output variable pLoc->aHash to point to the start of the hash table
925** in the wal-index file. Set pLoc->iZero to one less than the frame
dan4280eb32010-06-12 12:02:35 +0000926** number of the first frame indexed by this hash table. If a
927** slot in the hash table is set to N, it refers to frame number
drh4ece2f22018-06-09 16:49:00 +0000928** (pLoc->iZero+N) in the log.
dan4280eb32010-06-12 12:02:35 +0000929**
drh4ece2f22018-06-09 16:49:00 +0000930** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the
931** first frame indexed by the hash table, frame (pLoc->iZero+1).
dan4280eb32010-06-12 12:02:35 +0000932*/
933static int walHashGet(
dan13a3cb82010-06-11 19:04:21 +0000934 Wal *pWal, /* WAL handle */
935 int iHash, /* Find the iHash'th table */
drh4ece2f22018-06-09 16:49:00 +0000936 WalHashLoc *pLoc /* OUT: Hash table location */
dan13a3cb82010-06-11 19:04:21 +0000937){
dan4280eb32010-06-12 12:02:35 +0000938 int rc; /* Return code */
dan13a3cb82010-06-11 19:04:21 +0000939
drh4ece2f22018-06-09 16:49:00 +0000940 rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
dan4280eb32010-06-12 12:02:35 +0000941 assert( rc==SQLITE_OK || iHash>0 );
dan13a3cb82010-06-11 19:04:21 +0000942
dan4280eb32010-06-12 12:02:35 +0000943 if( rc==SQLITE_OK ){
drh4ece2f22018-06-09 16:49:00 +0000944 pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
dan4280eb32010-06-12 12:02:35 +0000945 if( iHash==0 ){
drh4ece2f22018-06-09 16:49:00 +0000946 pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
947 pLoc->iZero = 0;
dan4280eb32010-06-12 12:02:35 +0000948 }else{
drh4ece2f22018-06-09 16:49:00 +0000949 pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
dan4280eb32010-06-12 12:02:35 +0000950 }
drh4ece2f22018-06-09 16:49:00 +0000951 pLoc->aPgno = &pLoc->aPgno[-1];
dan13a3cb82010-06-11 19:04:21 +0000952 }
dan4280eb32010-06-12 12:02:35 +0000953 return rc;
dan13a3cb82010-06-11 19:04:21 +0000954}
955
dan4280eb32010-06-12 12:02:35 +0000956/*
957** Return the number of the wal-index page that contains the hash-table
958** and page-number array that contain entries corresponding to WAL frame
959** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
960** are numbered starting from 0.
961*/
dan13a3cb82010-06-11 19:04:21 +0000962static int walFramePage(u32 iFrame){
963 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
964 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
965 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
966 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
967 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
968 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
969 );
drh8deae5a2020-07-29 12:23:20 +0000970 assert( iHash>=0 );
dan13a3cb82010-06-11 19:04:21 +0000971 return iHash;
972}
973
974/*
975** Return the page number associated with frame iFrame in this WAL.
976*/
977static u32 walFramePgno(Wal *pWal, u32 iFrame){
978 int iHash = walFramePage(iFrame);
979 if( iHash==0 ){
980 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
981 }
982 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
983}
danbb23aff2010-05-10 14:46:09 +0000984
danca6b5ba2010-05-25 10:50:56 +0000985/*
986** Remove entries from the hash table that point to WAL slots greater
987** than pWal->hdr.mxFrame.
988**
989** This function is called whenever pWal->hdr.mxFrame is decreased due
990** to a rollback or savepoint.
991**
drh181e0912010-06-01 01:08:08 +0000992** At most only the hash table containing pWal->hdr.mxFrame needs to be
993** updated. Any later hash tables will be automatically cleared when
994** pWal->hdr.mxFrame advances to the point where those hash tables are
995** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000996*/
997static void walCleanupHash(Wal *pWal){
drh4ece2f22018-06-09 16:49:00 +0000998 WalHashLoc sLoc; /* Hash table location */
dan067f3162010-06-14 10:30:12 +0000999 int iLimit = 0; /* Zero values greater than this */
1000 int nByte; /* Number of bytes to zero in aPgno[] */
1001 int i; /* Used to iterate through aHash[] */
danca6b5ba2010-05-25 10:50:56 +00001002
drh73b64e42010-05-30 19:55:15 +00001003 assert( pWal->writeLock );
drhffca4302010-06-15 11:21:54 +00001004 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
1005 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
1006 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
drh9c156472010-06-01 12:58:41 +00001007
dan4280eb32010-06-12 12:02:35 +00001008 if( pWal->hdr.mxFrame==0 ) return;
1009
1010 /* Obtain pointers to the hash-table and page-number array containing
1011 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
drhb92d7d22019-04-03 17:48:10 +00001012 ** that the page said hash-table and array reside on is already mapped.(1)
dan4280eb32010-06-12 12:02:35 +00001013 */
1014 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
1015 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
drh0449f652021-04-30 12:30:35 +00001016 i = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
1017 if( NEVER(i) ) return; /* Defense-in-depth, in case (1) above is wrong */
dan4280eb32010-06-12 12:02:35 +00001018
1019 /* Zero all hash-table entries that correspond to frame numbers greater
1020 ** than pWal->hdr.mxFrame.
1021 */
drh4ece2f22018-06-09 16:49:00 +00001022 iLimit = pWal->hdr.mxFrame - sLoc.iZero;
dan4280eb32010-06-12 12:02:35 +00001023 assert( iLimit>0 );
1024 for(i=0; i<HASHTABLE_NSLOT; i++){
drh4ece2f22018-06-09 16:49:00 +00001025 if( sLoc.aHash[i]>iLimit ){
1026 sLoc.aHash[i] = 0;
danca6b5ba2010-05-25 10:50:56 +00001027 }
danca6b5ba2010-05-25 10:50:56 +00001028 }
dan4280eb32010-06-12 12:02:35 +00001029
1030 /* Zero the entries in the aPgno array that correspond to frames with
1031 ** frame numbers greater than pWal->hdr.mxFrame.
1032 */
drh4ece2f22018-06-09 16:49:00 +00001033 nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]);
1034 memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +00001035
1036#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1037 /* Verify that the every entry in the mapping region is still reachable
1038 ** via the hash table even after the cleanup.
1039 */
drhf77bbd92010-06-01 13:17:44 +00001040 if( iLimit ){
mistachkin6b67a8a2015-07-21 19:22:35 +00001041 int j; /* Loop counter */
danca6b5ba2010-05-25 10:50:56 +00001042 int iKey; /* Hash key */
mistachkin6b67a8a2015-07-21 19:22:35 +00001043 for(j=1; j<=iLimit; j++){
drh4ece2f22018-06-09 16:49:00 +00001044 for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
1045 if( sLoc.aHash[iKey]==j ) break;
danca6b5ba2010-05-25 10:50:56 +00001046 }
drh4ece2f22018-06-09 16:49:00 +00001047 assert( sLoc.aHash[iKey]==j );
danca6b5ba2010-05-25 10:50:56 +00001048 }
1049 }
1050#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1051}
1052
danbb23aff2010-05-10 14:46:09 +00001053
drh7ed91f22010-04-29 22:34:07 +00001054/*
drh29d4dbe2010-05-18 23:29:52 +00001055** Set an entry in the wal-index that will map database page number
1056** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +00001057*/
drh7ed91f22010-04-29 22:34:07 +00001058static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
dan4280eb32010-06-12 12:02:35 +00001059 int rc; /* Return code */
drh4ece2f22018-06-09 16:49:00 +00001060 WalHashLoc sLoc; /* Wal-index hash table location */
dance4f05f2010-04-22 19:14:13 +00001061
drh4ece2f22018-06-09 16:49:00 +00001062 rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);
dan4280eb32010-06-12 12:02:35 +00001063
1064 /* Assuming the wal-index file was successfully mapped, populate the
1065 ** page number array and hash table entry.
dan7c246102010-04-12 19:00:29 +00001066 */
drhe7f3edc2020-07-28 17:17:36 +00001067 if( rc==SQLITE_OK ){
danbb23aff2010-05-10 14:46:09 +00001068 int iKey; /* Hash table key */
dan4280eb32010-06-12 12:02:35 +00001069 int idx; /* Value to write to hash-table slot */
drh519426a2010-07-09 03:19:07 +00001070 int nCollide; /* Number of hash collisions */
dan7c246102010-04-12 19:00:29 +00001071
drh4ece2f22018-06-09 16:49:00 +00001072 idx = iFrame - sLoc.iZero;
dan4280eb32010-06-12 12:02:35 +00001073 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1074
1075 /* If this is the first entry to be added to this hash-table, zero the
peter.d.reid60ec9142014-09-06 16:39:46 +00001076 ** entire hash table and aPgno[] array before proceeding.
dan4280eb32010-06-12 12:02:35 +00001077 */
danca6b5ba2010-05-25 10:50:56 +00001078 if( idx==1 ){
drh4ece2f22018-06-09 16:49:00 +00001079 int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT]
1080 - (u8 *)&sLoc.aPgno[1]);
1081 memset((void*)&sLoc.aPgno[1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +00001082 }
danca6b5ba2010-05-25 10:50:56 +00001083
dan4280eb32010-06-12 12:02:35 +00001084 /* If the entry in aPgno[] is already set, then the previous writer
1085 ** must have exited unexpectedly in the middle of a transaction (after
1086 ** writing one or more dirty pages to the WAL to free up memory).
1087 ** Remove the remnants of that writers uncommitted transaction from
1088 ** the hash-table before writing any new entries.
1089 */
drh4ece2f22018-06-09 16:49:00 +00001090 if( sLoc.aPgno[idx] ){
danca6b5ba2010-05-25 10:50:56 +00001091 walCleanupHash(pWal);
drh4ece2f22018-06-09 16:49:00 +00001092 assert( !sLoc.aPgno[idx] );
danca6b5ba2010-05-25 10:50:56 +00001093 }
dan4280eb32010-06-12 12:02:35 +00001094
1095 /* Write the aPgno[] array entry and the hash-table slot. */
drh519426a2010-07-09 03:19:07 +00001096 nCollide = idx;
drh4ece2f22018-06-09 16:49:00 +00001097 for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
drh519426a2010-07-09 03:19:07 +00001098 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
drh29d4dbe2010-05-18 23:29:52 +00001099 }
drh4ece2f22018-06-09 16:49:00 +00001100 sLoc.aPgno[idx] = iPage;
danec206a72020-06-04 16:07:51 +00001101 AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx);
drh4fa95bf2010-05-22 00:55:39 +00001102
1103#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1104 /* Verify that the number of entries in the hash table exactly equals
1105 ** the number of entries in the mapping region.
1106 */
1107 {
1108 int i; /* Loop counter */
1109 int nEntry = 0; /* Number of entries in the hash table */
drh4ece2f22018-06-09 16:49:00 +00001110 for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
drh4fa95bf2010-05-22 00:55:39 +00001111 assert( nEntry==idx );
1112 }
1113
1114 /* Verify that the every entry in the mapping region is reachable
1115 ** via the hash table. This turns out to be a really, really expensive
1116 ** thing to check, so only do this occasionally - not on every
1117 ** iteration.
1118 */
1119 if( (idx&0x3ff)==0 ){
1120 int i; /* Loop counter */
1121 for(i=1; i<=idx; i++){
drh4ece2f22018-06-09 16:49:00 +00001122 for(iKey=walHash(sLoc.aPgno[i]);
1123 sLoc.aHash[iKey];
1124 iKey=walNextHash(iKey)){
1125 if( sLoc.aHash[iKey]==i ) break;
drh4fa95bf2010-05-22 00:55:39 +00001126 }
drh4ece2f22018-06-09 16:49:00 +00001127 assert( sLoc.aHash[iKey]==i );
drh4fa95bf2010-05-22 00:55:39 +00001128 }
1129 }
1130#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +00001131 }
dan31f98fc2010-04-27 05:42:32 +00001132
drh4fa95bf2010-05-22 00:55:39 +00001133
danbb23aff2010-05-10 14:46:09 +00001134 return rc;
dan7c246102010-04-12 19:00:29 +00001135}
1136
1137
1138/*
drh7ed91f22010-04-29 22:34:07 +00001139** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +00001140**
1141** This routine first tries to establish an exclusive lock on the
1142** wal-index to prevent other threads/processes from doing anything
1143** with the WAL or wal-index while recovery is running. The
1144** WAL_RECOVER_LOCK is also held so that other threads will know
1145** that this thread is running recovery. If unable to establish
1146** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +00001147*/
drh7ed91f22010-04-29 22:34:07 +00001148static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +00001149 int rc; /* Return Code */
1150 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +00001151 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +00001152 int iLock; /* Lock offset to lock for checkpoint */
dan7c246102010-04-12 19:00:29 +00001153
dand0aa3422010-05-31 16:41:53 +00001154 /* Obtain an exclusive lock on all byte in the locking range not already
1155 ** locked by the caller. The caller is guaranteed to have locked the
1156 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1157 ** If successful, the same bytes that are locked here are unlocked before
1158 ** this function returns.
1159 */
1160 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1161 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1162 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1163 assert( pWal->writeLock );
1164 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
dandea5ce32017-11-02 11:12:03 +00001165 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
drh73b64e42010-05-30 19:55:15 +00001166 if( rc ){
1167 return rc;
1168 }
dandea5ce32017-11-02 11:12:03 +00001169
drhc74c3332010-05-31 12:15:19 +00001170 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +00001171
dan71d89912010-05-24 13:57:42 +00001172 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +00001173
drhd9e5c4f2010-05-12 18:01:39 +00001174 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +00001175 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001176 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001177 }
1178
danb8fd6c22010-05-24 10:39:36 +00001179 if( nSize>WAL_HDRSIZE ){
1180 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dand3e38b72020-07-25 20:16:27 +00001181 u32 *aPrivate = 0; /* Heap copy of *-shm hash being populated */
dan7c246102010-04-12 19:00:29 +00001182 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001183 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001184 u8 *aData; /* Pointer to data part of aFrame buffer */
drh6e810962010-05-19 17:49:50 +00001185 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001186 u32 magic; /* Magic value read from WAL header */
dan10f5a502010-06-23 15:55:43 +00001187 u32 version; /* Magic value read from WAL header */
drhfe6163d2011-12-17 13:45:28 +00001188 int isValid; /* True if this frame is valid */
drh8deae5a2020-07-29 12:23:20 +00001189 u32 iPg; /* Current 32KB wal-index page */
1190 u32 iLastFrame; /* Last frame in wal, based on nSize alone */
dan7c246102010-04-12 19:00:29 +00001191
danb8fd6c22010-05-24 10:39:36 +00001192 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001193 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001194 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001195 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001196 }
1197
1198 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001199 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1200 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1201 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001202 */
danb8fd6c22010-05-24 10:39:36 +00001203 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001204 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001205 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1206 || szPage&(szPage-1)
1207 || szPage>SQLITE_MAX_PAGE_SIZE
1208 || szPage<512
1209 ){
dan7c246102010-04-12 19:00:29 +00001210 goto finished;
1211 }
shaneh5eba1f62010-07-02 17:05:03 +00001212 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
drhb2eced52010-08-12 02:41:12 +00001213 pWal->szPage = szPage;
drh23ea97b2010-05-20 16:45:58 +00001214 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001215 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
drhcd285082010-06-23 22:00:35 +00001216
1217 /* Verify that the WAL header checksum is correct */
dan71d89912010-05-24 13:57:42 +00001218 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
dan10f5a502010-06-23 15:55:43 +00001219 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
dan71d89912010-05-24 13:57:42 +00001220 );
dan10f5a502010-06-23 15:55:43 +00001221 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1222 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1223 ){
1224 goto finished;
1225 }
1226
drhcd285082010-06-23 22:00:35 +00001227 /* Verify that the version number on the WAL format is one that
1228 ** are able to understand */
dan10f5a502010-06-23 15:55:43 +00001229 version = sqlite3Get4byte(&aBuf[4]);
1230 if( version!=WAL_MAX_VERSION ){
1231 rc = SQLITE_CANTOPEN_BKPT;
1232 goto finished;
1233 }
1234
dan7c246102010-04-12 19:00:29 +00001235 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001236 szFrame = szPage + WAL_FRAME_HDRSIZE;
dand3e38b72020-07-25 20:16:27 +00001237 aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ);
dan7c246102010-04-12 19:00:29 +00001238 if( !aFrame ){
mistachkinfad30392016-02-13 23:43:46 +00001239 rc = SQLITE_NOMEM_BKPT;
drh73b64e42010-05-30 19:55:15 +00001240 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001241 }
drh7ed91f22010-04-29 22:34:07 +00001242 aData = &aFrame[WAL_FRAME_HDRSIZE];
dand3e38b72020-07-25 20:16:27 +00001243 aPrivate = (u32*)&aData[szPage];
dan7c246102010-04-12 19:00:29 +00001244
1245 /* Read all frames from the log file. */
dand3e38b72020-07-25 20:16:27 +00001246 iLastFrame = (nSize - WAL_HDRSIZE) / szFrame;
drh8deae5a2020-07-29 12:23:20 +00001247 for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){
dand3e38b72020-07-25 20:16:27 +00001248 u32 *aShare;
drh8deae5a2020-07-29 12:23:20 +00001249 u32 iFrame; /* Index of last frame read */
1250 u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE);
1251 u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE);
1252 u32 nHdr, nHdr32;
dand3e38b72020-07-25 20:16:27 +00001253 rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare);
1254 if( rc ) break;
1255 pWal->apWiData[iPg] = aPrivate;
1256
1257 for(iFrame=iFirst; iFrame<=iLast; iFrame++){
1258 i64 iOffset = walFrameOffset(iFrame, szPage);
1259 u32 pgno; /* Database page number for frame */
1260 u32 nTruncate; /* dbsize field from frame header */
dan7c246102010-04-12 19:00:29 +00001261
dand3e38b72020-07-25 20:16:27 +00001262 /* Read and decode the next log frame. */
1263 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1264 if( rc!=SQLITE_OK ) break;
1265 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1266 if( !isValid ) break;
1267 rc = walIndexAppend(pWal, iFrame, pgno);
drhf31230a2020-07-27 20:16:37 +00001268 if( NEVER(rc!=SQLITE_OK) ) break;
dan7c246102010-04-12 19:00:29 +00001269
dand3e38b72020-07-25 20:16:27 +00001270 /* If nTruncate is non-zero, this is a commit record. */
1271 if( nTruncate ){
1272 pWal->hdr.mxFrame = iFrame;
1273 pWal->hdr.nPage = nTruncate;
1274 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1275 testcase( szPage<=32768 );
1276 testcase( szPage>=65536 );
1277 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1278 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1279 }
dan7c246102010-04-12 19:00:29 +00001280 }
dand3e38b72020-07-25 20:16:27 +00001281 pWal->apWiData[iPg] = aShare;
drhf31230a2020-07-27 20:16:37 +00001282 nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0);
1283 nHdr32 = nHdr / sizeof(u32);
drhe592c182020-07-30 22:33:36 +00001284#ifndef SQLITE_SAFER_WALINDEX_RECOVERY
1285 /* Memcpy() should work fine here, on all reasonable implementations.
1286 ** Technically, memcpy() might change the destination to some
1287 ** intermediate value before setting to the final value, and that might
1288 ** cause a concurrent reader to malfunction. Memcpy() is allowed to
1289 ** do that, according to the spec, but no memcpy() implementation that
1290 ** we know of actually does that, which is why we say that memcpy()
1291 ** is safe for this. Memcpy() is certainly a lot faster.
1292 */
drhf31230a2020-07-27 20:16:37 +00001293 memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr);
drhe592c182020-07-30 22:33:36 +00001294#else
1295 /* In the event that some platform is found for which memcpy()
1296 ** changes the destination to some intermediate value before
1297 ** setting the final value, this alternative copy routine is
1298 ** provided.
1299 */
1300 {
1301 int i;
1302 for(i=nHdr32; i<WALINDEX_PGSZ/sizeof(u32); i++){
1303 if( aShare[i]!=aPrivate[i] ){
1304 /* Atomic memory operations are not required here because if
1305 ** the value needs to be changed, that means it is not being
1306 ** accessed concurrently. */
1307 aShare[i] = aPrivate[i];
1308 }
1309 }
1310 }
1311#endif
dand3e38b72020-07-25 20:16:27 +00001312 if( iFrame<=iLast ) break;
dan7c246102010-04-12 19:00:29 +00001313 }
1314
1315 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001316 }
1317
1318finished:
dan576bc322010-05-06 18:04:50 +00001319 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001320 volatile WalCkptInfo *pInfo;
1321 int i;
dan71d89912010-05-24 13:57:42 +00001322 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1323 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001324 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001325
drhdb7f6472010-06-09 14:45:12 +00001326 /* Reset the checkpoint-header. This is safe because this thread is
dand3e38b72020-07-25 20:16:27 +00001327 ** currently holding locks that exclude all other writers and
1328 ** checkpointers. Then set the values of read-mark slots 1 through N.
dan3dee6da2010-05-31 16:17:54 +00001329 */
drhdb7f6472010-06-09 14:45:12 +00001330 pInfo = walCkptInfo(pWal);
1331 pInfo->nBackfill = 0;
dan3bf83cc2015-12-10 15:45:15 +00001332 pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
drhdb7f6472010-06-09 14:45:12 +00001333 pInfo->aReadMark[0] = 0;
dand3e38b72020-07-25 20:16:27 +00001334 for(i=1; i<WAL_NREADER; i++){
1335 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1336 if( rc==SQLITE_OK ){
1337 if( i==1 && pWal->hdr.mxFrame ){
1338 pInfo->aReadMark[i] = pWal->hdr.mxFrame;
1339 }else{
1340 pInfo->aReadMark[i] = READMARK_NOT_USED;
1341 }
1342 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
drh8caebb22020-07-27 15:01:10 +00001343 }else if( rc!=SQLITE_BUSY ){
1344 goto recovery_error;
dand3e38b72020-07-25 20:16:27 +00001345 }
1346 }
daneb8763d2010-08-17 14:52:22 +00001347
1348 /* If more than one frame was recovered from the log file, report an
1349 ** event via sqlite3_log(). This is to help with identifying performance
1350 ** problems caused by applications routinely shutting down without
1351 ** checkpointing the log file.
1352 */
1353 if( pWal->hdr.nPage ){
drhd040e762013-04-10 23:48:37 +00001354 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1355 "recovered %d frames from WAL file %s",
dan0943f0b2013-04-01 14:35:01 +00001356 pWal->hdr.mxFrame, pWal->zWalName
daneb8763d2010-08-17 14:52:22 +00001357 );
1358 }
dan576bc322010-05-06 18:04:50 +00001359 }
drh73b64e42010-05-30 19:55:15 +00001360
1361recovery_error:
drhc74c3332010-05-31 12:15:19 +00001362 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dandea5ce32017-11-02 11:12:03 +00001363 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
dan7c246102010-04-12 19:00:29 +00001364 return rc;
1365}
1366
drha8e654e2010-05-04 17:38:42 +00001367/*
dan1018e902010-05-05 15:33:05 +00001368** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001369*/
dan1018e902010-05-05 15:33:05 +00001370static void walIndexClose(Wal *pWal, int isDelete){
drh85bc6df2017-11-10 20:00:50 +00001371 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
dan8c408002010-11-01 17:38:24 +00001372 int i;
1373 for(i=0; i<pWal->nWiData; i++){
1374 sqlite3_free((void *)pWal->apWiData[i]);
1375 pWal->apWiData[i] = 0;
1376 }
dan11caf4f2017-11-04 18:10:03 +00001377 }
1378 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
dan8c408002010-11-01 17:38:24 +00001379 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1380 }
drha8e654e2010-05-04 17:38:42 +00001381}
1382
dan7c246102010-04-12 19:00:29 +00001383/*
dan3e875ef2010-07-05 19:03:35 +00001384** Open a connection to the WAL file zWalName. The database file must
1385** already be opened on connection pDbFd. The buffer that zWalName points
1386** to must remain valid for the lifetime of the returned Wal* handle.
dan3de777f2010-04-17 12:31:37 +00001387**
1388** A SHARED lock should be held on the database file when this function
1389** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001390** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001391** were to do this just after this client opened one of these files, the
1392** system would be badly broken.
danef378022010-05-04 11:06:03 +00001393**
1394** If the log file is successfully opened, SQLITE_OK is returned and
1395** *ppWal is set to point to a new WAL handle. If an error occurs,
1396** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001397*/
drhc438efd2010-04-26 00:19:45 +00001398int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001399 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001400 sqlite3_file *pDbFd, /* The open database file */
dan3e875ef2010-07-05 19:03:35 +00001401 const char *zWalName, /* Name of the WAL file */
dan8c408002010-11-01 17:38:24 +00001402 int bNoShm, /* True to run in heap-memory mode */
drh85a83752011-05-16 21:00:27 +00001403 i64 mxWalSize, /* Truncate WAL to this size on reset */
drh7ed91f22010-04-29 22:34:07 +00001404 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001405){
danef378022010-05-04 11:06:03 +00001406 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001407 Wal *pRet; /* Object to allocate and return */
dan7c246102010-04-12 19:00:29 +00001408 int flags; /* Flags passed to OsOpen() */
dan7c246102010-04-12 19:00:29 +00001409
dan3e875ef2010-07-05 19:03:35 +00001410 assert( zWalName && zWalName[0] );
drhd9e5c4f2010-05-12 18:01:39 +00001411 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001412
drh1b78eaf2010-05-25 13:40:03 +00001413 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1414 ** this source file. Verify that the #defines of the locking byte offsets
1415 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
drh998147e2015-12-10 02:15:03 +00001416 ** For that matter, if the lock offset ever changes from its initial design
1417 ** value of 120, we need to know that so there is an assert() to check it.
drh1b78eaf2010-05-25 13:40:03 +00001418 */
drh998147e2015-12-10 02:15:03 +00001419 assert( 120==WALINDEX_LOCK_OFFSET );
1420 assert( 136==WALINDEX_HDR_SIZE );
drh1b78eaf2010-05-25 13:40:03 +00001421#ifdef WIN_SHM_BASE
1422 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1423#endif
1424#ifdef UNIX_SHM_BASE
1425 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1426#endif
1427
1428
drh7ed91f22010-04-29 22:34:07 +00001429 /* Allocate an instance of struct Wal to return. */
1430 *ppWal = 0;
dan3e875ef2010-07-05 19:03:35 +00001431 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
dan76ed3bc2010-05-03 17:18:24 +00001432 if( !pRet ){
mistachkinfad30392016-02-13 23:43:46 +00001433 return SQLITE_NOMEM_BKPT;
dan76ed3bc2010-05-03 17:18:24 +00001434 }
1435
dan7c246102010-04-12 19:00:29 +00001436 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001437 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1438 pRet->pDbFd = pDbFd;
drh73b64e42010-05-30 19:55:15 +00001439 pRet->readLock = -1;
drh85a83752011-05-16 21:00:27 +00001440 pRet->mxWalSize = mxWalSize;
dan3e875ef2010-07-05 19:03:35 +00001441 pRet->zWalName = zWalName;
drhd992b152011-12-20 20:13:25 +00001442 pRet->syncHeader = 1;
drh374f4a02011-12-17 20:02:11 +00001443 pRet->padToSectorBoundary = 1;
dan8c408002010-11-01 17:38:24 +00001444 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
dan7c246102010-04-12 19:00:29 +00001445
drh7ed91f22010-04-29 22:34:07 +00001446 /* Open file handle on the write-ahead log file. */
danddb0ac42010-07-14 14:48:58 +00001447 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
danda9fe0c2010-07-13 18:44:03 +00001448 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
dan50833e32010-07-14 16:37:17 +00001449 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
drh66dfec8b2011-06-01 20:01:49 +00001450 pRet->readOnly = WAL_RDONLY;
dan50833e32010-07-14 16:37:17 +00001451 }
dan7c246102010-04-12 19:00:29 +00001452
dan7c246102010-04-12 19:00:29 +00001453 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001454 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001455 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001456 sqlite3_free(pRet);
1457 }else{
dandd973542014-02-13 19:27:08 +00001458 int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
drhd992b152011-12-20 20:13:25 +00001459 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
drhcb15f352011-12-23 01:04:17 +00001460 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1461 pRet->padToSectorBoundary = 0;
1462 }
danef378022010-05-04 11:06:03 +00001463 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001464 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001465 }
dan7c246102010-04-12 19:00:29 +00001466 return rc;
1467}
1468
drha2a42012010-05-18 18:01:08 +00001469/*
drh85a83752011-05-16 21:00:27 +00001470** Change the size to which the WAL file is trucated on each reset.
1471*/
1472void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1473 if( pWal ) pWal->mxWalSize = iLimit;
1474}
1475
1476/*
drha2a42012010-05-18 18:01:08 +00001477** Find the smallest page number out of all pages held in the WAL that
1478** has not been returned by any prior invocation of this method on the
1479** same WalIterator object. Write into *piFrame the frame index where
1480** that page was last written into the WAL. Write into *piPage the page
1481** number.
1482**
1483** Return 0 on success. If there are no pages in the WAL with a page
1484** number larger than *piPage, then return 1.
1485*/
drh7ed91f22010-04-29 22:34:07 +00001486static int walIteratorNext(
1487 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001488 u32 *piPage, /* OUT: The page number of the next page */
1489 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001490){
drha2a42012010-05-18 18:01:08 +00001491 u32 iMin; /* Result pgno must be greater than iMin */
1492 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1493 int i; /* For looping through segments */
dan7c246102010-04-12 19:00:29 +00001494
drha2a42012010-05-18 18:01:08 +00001495 iMin = p->iPrior;
1496 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001497 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001498 struct WalSegment *pSegment = &p->aSegment[i];
dan13a3cb82010-06-11 19:04:21 +00001499 while( pSegment->iNext<pSegment->nEntry ){
drha2a42012010-05-18 18:01:08 +00001500 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001501 if( iPg>iMin ){
1502 if( iPg<iRet ){
1503 iRet = iPg;
dan13a3cb82010-06-11 19:04:21 +00001504 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
dan7c246102010-04-12 19:00:29 +00001505 }
1506 break;
1507 }
1508 pSegment->iNext++;
1509 }
dan7c246102010-04-12 19:00:29 +00001510 }
1511
drha2a42012010-05-18 18:01:08 +00001512 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001513 return (iRet==0xFFFFFFFF);
1514}
1515
danf544b4c2010-06-25 11:35:52 +00001516/*
1517** This function merges two sorted lists into a single sorted list.
drhd9c9b782010-12-15 21:02:06 +00001518**
1519** aLeft[] and aRight[] are arrays of indices. The sort key is
1520** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1521** is guaranteed for all J<K:
1522**
1523** aContent[aLeft[J]] < aContent[aLeft[K]]
1524** aContent[aRight[J]] < aContent[aRight[K]]
1525**
1526** This routine overwrites aRight[] with a new (probably longer) sequence
1527** of indices such that the aRight[] contains every index that appears in
1528** either aLeft[] or the old aRight[] and such that the second condition
1529** above is still met.
1530**
1531** The aContent[aLeft[X]] values will be unique for all X. And the
1532** aContent[aRight[X]] values will be unique too. But there might be
1533** one or more combinations of X and Y such that
1534**
1535** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1536**
1537** When that happens, omit the aLeft[X] and use the aRight[Y] index.
danf544b4c2010-06-25 11:35:52 +00001538*/
1539static void walMerge(
drhd9c9b782010-12-15 21:02:06 +00001540 const u32 *aContent, /* Pages in wal - keys for the sort */
danf544b4c2010-06-25 11:35:52 +00001541 ht_slot *aLeft, /* IN: Left hand input list */
1542 int nLeft, /* IN: Elements in array *paLeft */
1543 ht_slot **paRight, /* IN/OUT: Right hand input list */
1544 int *pnRight, /* IN/OUT: Elements in *paRight */
1545 ht_slot *aTmp /* Temporary buffer */
1546){
1547 int iLeft = 0; /* Current index in aLeft */
1548 int iRight = 0; /* Current index in aRight */
1549 int iOut = 0; /* Current index in output buffer */
1550 int nRight = *pnRight;
1551 ht_slot *aRight = *paRight;
dan7c246102010-04-12 19:00:29 +00001552
danf544b4c2010-06-25 11:35:52 +00001553 assert( nLeft>0 && nRight>0 );
1554 while( iRight<nRight || iLeft<nLeft ){
1555 ht_slot logpage;
1556 Pgno dbpage;
1557
1558 if( (iLeft<nLeft)
1559 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1560 ){
1561 logpage = aLeft[iLeft++];
1562 }else{
1563 logpage = aRight[iRight++];
1564 }
1565 dbpage = aContent[logpage];
1566
1567 aTmp[iOut++] = logpage;
1568 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1569
1570 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1571 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1572 }
1573
1574 *paRight = aLeft;
1575 *pnRight = iOut;
1576 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1577}
1578
1579/*
drhd9c9b782010-12-15 21:02:06 +00001580** Sort the elements in list aList using aContent[] as the sort key.
1581** Remove elements with duplicate keys, preferring to keep the
1582** larger aList[] values.
1583**
1584** The aList[] entries are indices into aContent[]. The values in
1585** aList[] are to be sorted so that for all J<K:
1586**
1587** aContent[aList[J]] < aContent[aList[K]]
1588**
1589** For any X and Y such that
1590**
1591** aContent[aList[X]] == aContent[aList[Y]]
1592**
1593** Keep the larger of the two values aList[X] and aList[Y] and discard
1594** the smaller.
danf544b4c2010-06-25 11:35:52 +00001595*/
dan13a3cb82010-06-11 19:04:21 +00001596static void walMergesort(
drhd9c9b782010-12-15 21:02:06 +00001597 const u32 *aContent, /* Pages in wal */
dan067f3162010-06-14 10:30:12 +00001598 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1599 ht_slot *aList, /* IN/OUT: List to sort */
drha2a42012010-05-18 18:01:08 +00001600 int *pnList /* IN/OUT: Number of elements in aList[] */
1601){
danf544b4c2010-06-25 11:35:52 +00001602 struct Sublist {
1603 int nList; /* Number of elements in aList */
1604 ht_slot *aList; /* Pointer to sub-list content */
1605 };
drha2a42012010-05-18 18:01:08 +00001606
danf544b4c2010-06-25 11:35:52 +00001607 const int nList = *pnList; /* Size of input list */
drhff828942010-06-26 21:34:06 +00001608 int nMerge = 0; /* Number of elements in list aMerge */
1609 ht_slot *aMerge = 0; /* List to be merged */
danf544b4c2010-06-25 11:35:52 +00001610 int iList; /* Index into input list */
drhf4fa0b82015-07-15 18:35:54 +00001611 u32 iSub = 0; /* Index into aSub array */
danf544b4c2010-06-25 11:35:52 +00001612 struct Sublist aSub[13]; /* Array of sub-lists */
drha2a42012010-05-18 18:01:08 +00001613
danf544b4c2010-06-25 11:35:52 +00001614 memset(aSub, 0, sizeof(aSub));
1615 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1616 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
drha2a42012010-05-18 18:01:08 +00001617
danf544b4c2010-06-25 11:35:52 +00001618 for(iList=0; iList<nList; iList++){
1619 nMerge = 1;
1620 aMerge = &aList[iList];
1621 for(iSub=0; iList & (1<<iSub); iSub++){
drhf4fa0b82015-07-15 18:35:54 +00001622 struct Sublist *p;
1623 assert( iSub<ArraySize(aSub) );
1624 p = &aSub[iSub];
danf544b4c2010-06-25 11:35:52 +00001625 assert( p->aList && p->nList<=(1<<iSub) );
danbdf1e242010-06-25 15:16:25 +00001626 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001627 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
drha2a42012010-05-18 18:01:08 +00001628 }
danf544b4c2010-06-25 11:35:52 +00001629 aSub[iSub].aList = aMerge;
1630 aSub[iSub].nList = nMerge;
drha2a42012010-05-18 18:01:08 +00001631 }
1632
danf544b4c2010-06-25 11:35:52 +00001633 for(iSub++; iSub<ArraySize(aSub); iSub++){
1634 if( nList & (1<<iSub) ){
drhf4fa0b82015-07-15 18:35:54 +00001635 struct Sublist *p;
1636 assert( iSub<ArraySize(aSub) );
1637 p = &aSub[iSub];
danbdf1e242010-06-25 15:16:25 +00001638 assert( p->nList<=(1<<iSub) );
1639 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001640 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1641 }
1642 }
1643 assert( aMerge==aList );
1644 *pnList = nMerge;
1645
drha2a42012010-05-18 18:01:08 +00001646#ifdef SQLITE_DEBUG
1647 {
1648 int i;
1649 for(i=1; i<*pnList; i++){
1650 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1651 }
1652 }
1653#endif
1654}
1655
dan5d656852010-06-14 07:53:26 +00001656/*
1657** Free an iterator allocated by walIteratorInit().
1658*/
1659static void walIteratorFree(WalIterator *p){
drhcbd55b02014-11-04 14:22:27 +00001660 sqlite3_free(p);
dan5d656852010-06-14 07:53:26 +00001661}
1662
drha2a42012010-05-18 18:01:08 +00001663/*
danbdf1e242010-06-25 15:16:25 +00001664** Construct a WalInterator object that can be used to loop over all
dan302ce472018-03-02 15:42:20 +00001665** pages in the WAL following frame nBackfill in ascending order. Frames
1666** nBackfill or earlier may be included - excluding them is an optimization
1667** only. The caller must hold the checkpoint lock.
drha2a42012010-05-18 18:01:08 +00001668**
1669** On success, make *pp point to the newly allocated WalInterator object
danbdf1e242010-06-25 15:16:25 +00001670** return SQLITE_OK. Otherwise, return an error code. If this routine
1671** returns an error, the value of *pp is undefined.
drha2a42012010-05-18 18:01:08 +00001672**
1673** The calling routine should invoke walIteratorFree() to destroy the
danbdf1e242010-06-25 15:16:25 +00001674** WalIterator object when it has finished with it.
drha2a42012010-05-18 18:01:08 +00001675*/
dan302ce472018-03-02 15:42:20 +00001676static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
dan067f3162010-06-14 10:30:12 +00001677 WalIterator *p; /* Return value */
1678 int nSegment; /* Number of segments to merge */
1679 u32 iLast; /* Last frame in log */
drhf6ad2012019-04-13 14:07:57 +00001680 sqlite3_int64 nByte; /* Number of bytes to allocate */
dan067f3162010-06-14 10:30:12 +00001681 int i; /* Iterator variable */
1682 ht_slot *aTmp; /* Temp space used by merge-sort */
danbdf1e242010-06-25 15:16:25 +00001683 int rc = SQLITE_OK; /* Return Code */
drha2a42012010-05-18 18:01:08 +00001684
danbdf1e242010-06-25 15:16:25 +00001685 /* This routine only runs while holding the checkpoint lock. And
1686 ** it only runs if there is actually content in the log (mxFrame>0).
drha2a42012010-05-18 18:01:08 +00001687 */
danbdf1e242010-06-25 15:16:25 +00001688 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
dan13a3cb82010-06-11 19:04:21 +00001689 iLast = pWal->hdr.mxFrame;
drha2a42012010-05-18 18:01:08 +00001690
danbdf1e242010-06-25 15:16:25 +00001691 /* Allocate space for the WalIterator object. */
dan13a3cb82010-06-11 19:04:21 +00001692 nSegment = walFramePage(iLast) + 1;
1693 nByte = sizeof(WalIterator)
dan52d6fc02010-06-25 16:34:32 +00001694 + (nSegment-1)*sizeof(struct WalSegment)
1695 + iLast*sizeof(ht_slot);
drhf3cdcdc2015-04-29 16:50:28 +00001696 p = (WalIterator *)sqlite3_malloc64(nByte);
dan8f6097c2010-05-06 07:43:58 +00001697 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00001698 return SQLITE_NOMEM_BKPT;
drha2a42012010-05-18 18:01:08 +00001699 }
1700 memset(p, 0, nByte);
drha2a42012010-05-18 18:01:08 +00001701 p->nSegment = nSegment;
danbdf1e242010-06-25 15:16:25 +00001702
1703 /* Allocate temporary space used by the merge-sort routine. This block
1704 ** of memory will be freed before this function returns.
1705 */
drhf3cdcdc2015-04-29 16:50:28 +00001706 aTmp = (ht_slot *)sqlite3_malloc64(
dan52d6fc02010-06-25 16:34:32 +00001707 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1708 );
danbdf1e242010-06-25 15:16:25 +00001709 if( !aTmp ){
mistachkinfad30392016-02-13 23:43:46 +00001710 rc = SQLITE_NOMEM_BKPT;
danbdf1e242010-06-25 15:16:25 +00001711 }
1712
dan302ce472018-03-02 15:42:20 +00001713 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
drh4ece2f22018-06-09 16:49:00 +00001714 WalHashLoc sLoc;
dan13a3cb82010-06-11 19:04:21 +00001715
drh4ece2f22018-06-09 16:49:00 +00001716 rc = walHashGet(pWal, i, &sLoc);
danbdf1e242010-06-25 15:16:25 +00001717 if( rc==SQLITE_OK ){
dan52d6fc02010-06-25 16:34:32 +00001718 int j; /* Counter variable */
1719 int nEntry; /* Number of entries in this segment */
1720 ht_slot *aIndex; /* Sorted index for this segment */
1721
drh4ece2f22018-06-09 16:49:00 +00001722 sLoc.aPgno++;
drh519426a2010-07-09 03:19:07 +00001723 if( (i+1)==nSegment ){
drh4ece2f22018-06-09 16:49:00 +00001724 nEntry = (int)(iLast - sLoc.iZero);
drh519426a2010-07-09 03:19:07 +00001725 }else{
drh4ece2f22018-06-09 16:49:00 +00001726 nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
drh519426a2010-07-09 03:19:07 +00001727 }
drh4ece2f22018-06-09 16:49:00 +00001728 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
1729 sLoc.iZero++;
danbdf1e242010-06-25 15:16:25 +00001730
danbdf1e242010-06-25 15:16:25 +00001731 for(j=0; j<nEntry; j++){
shaneh5eba1f62010-07-02 17:05:03 +00001732 aIndex[j] = (ht_slot)j;
danbdf1e242010-06-25 15:16:25 +00001733 }
drh4ece2f22018-06-09 16:49:00 +00001734 walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
1735 p->aSegment[i].iZero = sLoc.iZero;
danbdf1e242010-06-25 15:16:25 +00001736 p->aSegment[i].nEntry = nEntry;
1737 p->aSegment[i].aIndex = aIndex;
drh4ece2f22018-06-09 16:49:00 +00001738 p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
dan13a3cb82010-06-11 19:04:21 +00001739 }
dan7c246102010-04-12 19:00:29 +00001740 }
drhcbd55b02014-11-04 14:22:27 +00001741 sqlite3_free(aTmp);
dan7c246102010-04-12 19:00:29 +00001742
danbdf1e242010-06-25 15:16:25 +00001743 if( rc!=SQLITE_OK ){
1744 walIteratorFree(p);
drh49cc2f32018-03-05 23:23:28 +00001745 p = 0;
danbdf1e242010-06-25 15:16:25 +00001746 }
dan8f6097c2010-05-06 07:43:58 +00001747 *pp = p;
danbdf1e242010-06-25 15:16:25 +00001748 return rc;
dan7c246102010-04-12 19:00:29 +00001749}
1750
dan7bb8b8a2020-05-06 20:27:18 +00001751#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1752/*
1753** Attempt to enable blocking locks. Blocking locks are enabled only if (a)
1754** they are supported by the VFS, and (b) the database handle is configured
1755** with a busy-timeout. Return 1 if blocking locks are successfully enabled,
1756** or 0 otherwise.
1757*/
1758static int walEnableBlocking(Wal *pWal){
1759 int res = 0;
1760 if( pWal->db ){
1761 int tmout = pWal->db->busyTimeout;
1762 if( tmout ){
1763 int rc;
1764 rc = sqlite3OsFileControl(
1765 pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout
1766 );
1767 res = (rc==SQLITE_OK);
1768 }
1769 }
1770 return res;
1771}
1772
1773/*
1774** Disable blocking locks.
1775*/
1776static void walDisableBlocking(Wal *pWal){
1777 int tmout = 0;
1778 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout);
1779}
1780
1781/*
1782** If parameter bLock is true, attempt to enable blocking locks, take
1783** the WRITER lock, and then disable blocking locks. If blocking locks
1784** cannot be enabled, no attempt to obtain the WRITER lock is made. Return
1785** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not
1786** an error if blocking locks can not be enabled.
1787**
1788** If the bLock parameter is false and the WRITER lock is held, release it.
1789*/
1790int sqlite3WalWriteLock(Wal *pWal, int bLock){
1791 int rc = SQLITE_OK;
1792 assert( pWal->readLock<0 || bLock==0 );
1793 if( bLock ){
1794 assert( pWal->db );
1795 if( walEnableBlocking(pWal) ){
1796 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1797 if( rc==SQLITE_OK ){
1798 pWal->writeLock = 1;
1799 }
1800 walDisableBlocking(pWal);
1801 }
1802 }else if( pWal->writeLock ){
1803 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
1804 pWal->writeLock = 0;
1805 }
1806 return rc;
1807}
1808
1809/*
1810** Set the database handle used to determine if blocking locks are required.
1811*/
1812void sqlite3WalDb(Wal *pWal, sqlite3 *db){
1813 pWal->db = db;
1814}
1815
1816/*
1817** Take an exclusive WRITE lock. Blocking if so configured.
1818*/
1819static int walLockWriter(Wal *pWal){
1820 int rc;
1821 walEnableBlocking(pWal);
1822 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1823 walDisableBlocking(pWal);
1824 return rc;
1825}
1826#else
1827# define walEnableBlocking(x) 0
1828# define walDisableBlocking(x)
1829# define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1)
1830# define sqlite3WalDb(pWal, db)
1831#endif /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */
1832
1833
dan7c246102010-04-12 19:00:29 +00001834/*
dana58f26f2010-11-16 18:56:51 +00001835** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1836** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1837** busy-handler function. Invoke it and retry the lock until either the
1838** lock is successfully obtained or the busy-handler returns 0.
1839*/
1840static int walBusyLock(
1841 Wal *pWal, /* WAL connection */
1842 int (*xBusy)(void*), /* Function to call when busy */
1843 void *pBusyArg, /* Context argument for xBusyHandler */
1844 int lockIdx, /* Offset of first byte to lock */
1845 int n /* Number of bytes to lock */
1846){
1847 int rc;
1848 do {
drhab372772015-12-02 16:10:16 +00001849 rc = walLockExclusive(pWal, lockIdx, n);
dana58f26f2010-11-16 18:56:51 +00001850 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
dan7bb8b8a2020-05-06 20:27:18 +00001851#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1852 if( rc==SQLITE_BUSY_TIMEOUT ){
1853 walDisableBlocking(pWal);
1854 rc = SQLITE_BUSY;
1855 }
1856#endif
dana58f26f2010-11-16 18:56:51 +00001857 return rc;
1858}
1859
1860/*
danf2b8dd52010-11-18 19:28:01 +00001861** The cache of the wal-index header must be valid to call this function.
1862** Return the page-size in bytes used by the database.
1863*/
1864static int walPagesize(Wal *pWal){
1865 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1866}
1867
1868/*
danf26a1542014-12-02 19:04:54 +00001869** The following is guaranteed when this function is called:
1870**
1871** a) the WRITER lock is held,
1872** b) the entire log file has been checkpointed, and
1873** c) any existing readers are reading exclusively from the database
1874** file - there are no readers that may attempt to read a frame from
1875** the log file.
1876**
1877** This function updates the shared-memory structures so that the next
1878** client to write to the database (which may be this one) does so by
1879** writing frames into the start of the log file.
dan0fe8c1b2014-12-02 19:35:09 +00001880**
1881** The value of parameter salt1 is used as the aSalt[1] value in the
1882** new wal-index header. It should be passed a pseudo-random value (i.e.
1883** one obtained from sqlite3_randomness()).
danf26a1542014-12-02 19:04:54 +00001884*/
dan0fe8c1b2014-12-02 19:35:09 +00001885static void walRestartHdr(Wal *pWal, u32 salt1){
danf26a1542014-12-02 19:04:54 +00001886 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1887 int i; /* Loop counter */
1888 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
1889 pWal->nCkpt++;
1890 pWal->hdr.mxFrame = 0;
1891 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
dan0fe8c1b2014-12-02 19:35:09 +00001892 memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
danf26a1542014-12-02 19:04:54 +00001893 walIndexWriteHdr(pWal);
dan8b4f2312020-05-13 13:33:30 +00001894 AtomicStore(&pInfo->nBackfill, 0);
drh998147e2015-12-10 02:15:03 +00001895 pInfo->nBackfillAttempted = 0;
danf26a1542014-12-02 19:04:54 +00001896 pInfo->aReadMark[1] = 0;
1897 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1898 assert( pInfo->aReadMark[0]==0 );
1899}
1900
1901/*
drh73b64e42010-05-30 19:55:15 +00001902** Copy as much content as we can from the WAL back into the database file
1903** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1904**
1905** The amount of information copies from WAL to database might be limited
1906** by active readers. This routine will never overwrite a database page
1907** that a concurrent reader might be using.
1908**
1909** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1910** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1911** checkpoints are always run by a background thread or background
1912** process, foreground threads will never block on a lengthy fsync call.
1913**
1914** Fsync is called on the WAL before writing content out of the WAL and
1915** into the database. This ensures that if the new content is persistent
1916** in the WAL and can be recovered following a power-loss or hard reset.
1917**
1918** Fsync is also called on the database file if (and only if) the entire
1919** WAL content is copied into the database file. This second fsync makes
1920** it safe to delete the WAL since the new content will persist in the
1921** database file.
1922**
1923** This routine uses and updates the nBackfill field of the wal-index header.
peter.d.reid60ec9142014-09-06 16:39:46 +00001924** This is the only routine that will increase the value of nBackfill.
drh73b64e42010-05-30 19:55:15 +00001925** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1926** its value.)
1927**
1928** The caller must be holding sufficient locks to ensure that no other
1929** checkpoint is running (in any other thread or process) at the same
1930** time.
dan7c246102010-04-12 19:00:29 +00001931*/
drh7ed91f22010-04-29 22:34:07 +00001932static int walCheckpoint(
1933 Wal *pWal, /* Wal connection */
dan7fb89902016-08-12 16:21:15 +00001934 sqlite3 *db, /* Check for interrupts on this handle */
dancdc1f042010-11-18 12:11:05 +00001935 int eMode, /* One of PASSIVE, FULL or RESTART */
drhdd90d7e2014-12-03 19:25:41 +00001936 int (*xBusy)(void*), /* Function to call when busy */
dana58f26f2010-11-16 18:56:51 +00001937 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00001938 int sync_flags, /* Flags for OsSync() (or 0) */
dan9c5e3682011-02-07 15:12:12 +00001939 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00001940){
dan976b0032015-01-29 19:12:12 +00001941 int rc = SQLITE_OK; /* Return code */
drhb2eced52010-08-12 02:41:12 +00001942 int szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001943 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001944 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001945 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001946 u32 mxSafeFrame; /* Max frame that can be backfilled */
dan502019c2010-07-28 14:26:17 +00001947 u32 mxPage; /* Max database page to write */
drh73b64e42010-05-30 19:55:15 +00001948 int i; /* Loop counter */
drh73b64e42010-05-30 19:55:15 +00001949 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
dan7c246102010-04-12 19:00:29 +00001950
danf2b8dd52010-11-18 19:28:01 +00001951 szPage = walPagesize(pWal);
drh9b78f792010-08-14 21:21:24 +00001952 testcase( szPage<=32768 );
1953 testcase( szPage>=65536 );
drh7d208442010-12-16 02:06:29 +00001954 pInfo = walCkptInfo(pWal);
dan976b0032015-01-29 19:12:12 +00001955 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
danf544b4c2010-06-25 11:35:52 +00001956
dan976b0032015-01-29 19:12:12 +00001957 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1958 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1959 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
drh73b64e42010-05-30 19:55:15 +00001960
dan976b0032015-01-29 19:12:12 +00001961 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1962 ** safe to write into the database. Frames beyond mxSafeFrame might
1963 ** overwrite database pages that are in use by active readers and thus
1964 ** cannot be backfilled from the WAL.
danf23da962013-03-23 21:00:41 +00001965 */
dan976b0032015-01-29 19:12:12 +00001966 mxSafeFrame = pWal->hdr.mxFrame;
1967 mxPage = pWal->hdr.nPage;
1968 for(i=1; i<WAL_NREADER; i++){
drhf16cf652020-05-19 12:27:29 +00001969 u32 y = AtomicLoad(pInfo->aReadMark+i);
dan976b0032015-01-29 19:12:12 +00001970 if( mxSafeFrame>y ){
1971 assert( y<=pWal->hdr.mxFrame );
1972 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1973 if( rc==SQLITE_OK ){
drhf16cf652020-05-19 12:27:29 +00001974 u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1975 AtomicStore(pInfo->aReadMark+i, iMark);
dan976b0032015-01-29 19:12:12 +00001976 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1977 }else if( rc==SQLITE_BUSY ){
1978 mxSafeFrame = y;
1979 xBusy = 0;
1980 }else{
1981 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001982 }
1983 }
1984 }
1985
danf0cb61d2018-03-02 16:52:47 +00001986 /* Allocate the iterator */
1987 if( pInfo->nBackfill<mxSafeFrame ){
1988 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
1989 assert( rc==SQLITE_OK || pIter==0 );
1990 }
1991
1992 if( pIter
drhf16cf652020-05-19 12:27:29 +00001993 && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK
dan976b0032015-01-29 19:12:12 +00001994 ){
dan976b0032015-01-29 19:12:12 +00001995 u32 nBackfill = pInfo->nBackfill;
dana58f26f2010-11-16 18:56:51 +00001996
dan3bf83cc2015-12-10 15:45:15 +00001997 pInfo->nBackfillAttempted = mxSafeFrame;
1998
dan976b0032015-01-29 19:12:12 +00001999 /* Sync the WAL to disk */
drhdaaae7b2017-08-25 01:14:43 +00002000 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
dan976b0032015-01-29 19:12:12 +00002001
2002 /* If the database may grow as a result of this checkpoint, hint
2003 ** about the eventual size of the db file to the VFS layer.
2004 */
2005 if( rc==SQLITE_OK ){
2006 i64 nReq = ((i64)mxPage * szPage);
mistachkin6389a7b2018-08-08 20:46:35 +00002007 i64 nSize; /* Current size of database file */
drhfcf31b22020-05-01 18:37:34 +00002008 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0);
dan976b0032015-01-29 19:12:12 +00002009 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
2010 if( rc==SQLITE_OK && nSize<nReq ){
dan91faeec2020-08-11 18:00:10 +00002011 if( (nSize+65536+(i64)pWal->hdr.mxFrame*szPage)<nReq ){
drh799443b2020-08-07 19:52:01 +00002012 /* If the size of the final database is larger than the current
dan91faeec2020-08-11 18:00:10 +00002013 ** database plus the amount of data in the wal file, plus the
2014 ** maximum size of the pending-byte page (65536 bytes), then
drh799443b2020-08-07 19:52:01 +00002015 ** must be corruption somewhere. */
2016 rc = SQLITE_CORRUPT_BKPT;
2017 }else{
2018 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq);
2019 }
dan976b0032015-01-29 19:12:12 +00002020 }
dan976b0032015-01-29 19:12:12 +00002021
dan88819d52020-08-07 16:28:02 +00002022 }
dan976b0032015-01-29 19:12:12 +00002023
2024 /* Iterate through the contents of the WAL, copying data to the db file */
2025 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
2026 i64 iOffset;
2027 assert( walFramePgno(pWal, iFrame)==iDbpage );
dan892edb62020-03-30 13:35:05 +00002028 if( AtomicLoad(&db->u1.isInterrupted) ){
dan7fb89902016-08-12 16:21:15 +00002029 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
2030 break;
2031 }
dan976b0032015-01-29 19:12:12 +00002032 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
2033 continue;
2034 }
2035 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
2036 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
2037 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
2038 if( rc!=SQLITE_OK ) break;
2039 iOffset = (iDbpage-1)*(i64)szPage;
2040 testcase( IS_BIG_INT(iOffset) );
2041 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
2042 if( rc!=SQLITE_OK ) break;
2043 }
drhfcf31b22020-05-01 18:37:34 +00002044 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0);
dan976b0032015-01-29 19:12:12 +00002045
2046 /* If work was actually accomplished... */
2047 if( rc==SQLITE_OK ){
2048 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
2049 i64 szDb = pWal->hdr.nPage*(i64)szPage;
2050 testcase( IS_BIG_INT(szDb) );
2051 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
drhdaaae7b2017-08-25 01:14:43 +00002052 if( rc==SQLITE_OK ){
2053 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
dan976b0032015-01-29 19:12:12 +00002054 }
2055 }
2056 if( rc==SQLITE_OK ){
dan8b4f2312020-05-13 13:33:30 +00002057 AtomicStore(&pInfo->nBackfill, mxSafeFrame);
dan976b0032015-01-29 19:12:12 +00002058 }
2059 }
2060
2061 /* Release the reader lock held while backfilling */
2062 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
2063 }
2064
2065 if( rc==SQLITE_BUSY ){
2066 /* Reset the return code so as not to report a checkpoint failure
2067 ** just because there are active readers. */
2068 rc = SQLITE_OK;
2069 }
dan7c246102010-04-12 19:00:29 +00002070 }
2071
danf26a1542014-12-02 19:04:54 +00002072 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
2073 ** entire wal file has been copied into the database file, then block
2074 ** until all readers have finished using the wal file. This ensures that
2075 ** the next process to write to the database restarts the wal file.
danf2b8dd52010-11-18 19:28:01 +00002076 */
2077 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dancdc1f042010-11-18 12:11:05 +00002078 assert( pWal->writeLock );
danf2b8dd52010-11-18 19:28:01 +00002079 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
2080 rc = SQLITE_BUSY;
danf26a1542014-12-02 19:04:54 +00002081 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
dan0fe8c1b2014-12-02 19:35:09 +00002082 u32 salt1;
2083 sqlite3_randomness(4, &salt1);
dan976b0032015-01-29 19:12:12 +00002084 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
danf2b8dd52010-11-18 19:28:01 +00002085 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
2086 if( rc==SQLITE_OK ){
danf26a1542014-12-02 19:04:54 +00002087 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
drha25165f2014-12-04 04:50:59 +00002088 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
2089 ** SQLITE_CHECKPOINT_RESTART with the addition that it also
2090 ** truncates the log file to zero bytes just prior to a
2091 ** successful return.
danf26a1542014-12-02 19:04:54 +00002092 **
2093 ** In theory, it might be safe to do this without updating the
2094 ** wal-index header in shared memory, as all subsequent reader or
2095 ** writer clients should see that the entire log file has been
2096 ** checkpointed and behave accordingly. This seems unsafe though,
2097 ** as it would leave the system in a state where the contents of
2098 ** the wal-index header do not match the contents of the
2099 ** file-system. To avoid this, update the wal-index header to
2100 ** indicate that the log file contains zero valid frames. */
dan0fe8c1b2014-12-02 19:35:09 +00002101 walRestartHdr(pWal, salt1);
danf26a1542014-12-02 19:04:54 +00002102 rc = sqlite3OsTruncate(pWal->pWalFd, 0);
2103 }
danf2b8dd52010-11-18 19:28:01 +00002104 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2105 }
dancdc1f042010-11-18 12:11:05 +00002106 }
2107 }
2108
dan83f42d12010-06-04 10:37:05 +00002109 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00002110 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00002111 return rc;
2112}
2113
2114/*
danf60b7f32011-12-16 13:24:27 +00002115** If the WAL file is currently larger than nMax bytes in size, truncate
2116** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
drh8dd4afa2011-12-08 19:50:32 +00002117*/
danf60b7f32011-12-16 13:24:27 +00002118static void walLimitSize(Wal *pWal, i64 nMax){
2119 i64 sz;
2120 int rx;
2121 sqlite3BeginBenignMalloc();
2122 rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
2123 if( rx==SQLITE_OK && (sz > nMax ) ){
2124 rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
2125 }
2126 sqlite3EndBenignMalloc();
2127 if( rx ){
2128 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
drh8dd4afa2011-12-08 19:50:32 +00002129 }
2130}
2131
2132/*
dan7c246102010-04-12 19:00:29 +00002133** Close a connection to a log file.
2134*/
drhc438efd2010-04-26 00:19:45 +00002135int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00002136 Wal *pWal, /* Wal to close */
dan7fb89902016-08-12 16:21:15 +00002137 sqlite3 *db, /* For interrupt flag */
danc5118782010-04-17 17:34:41 +00002138 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00002139 int nBuf,
2140 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00002141){
2142 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00002143 if( pWal ){
dan30c86292010-04-30 16:24:46 +00002144 int isDelete = 0; /* True to unlink wal and wal-index files */
2145
2146 /* If an EXCLUSIVE lock can be obtained on the database file (using the
2147 ** ordinary, rollback-mode locking methods, this guarantees that the
2148 ** connection associated with this log file is the only connection to
2149 ** the database. In this case checkpoint the database and unlink both
2150 ** the wal and wal-index files.
2151 **
2152 ** The EXCLUSIVE lock is not released before returning.
2153 */
dan4a5bad52016-11-11 17:08:51 +00002154 if( zBuf!=0
dan298af022016-10-31 16:16:49 +00002155 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
2156 ){
dan8c408002010-11-01 17:38:24 +00002157 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
2158 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
2159 }
dan7fb89902016-08-12 16:21:15 +00002160 rc = sqlite3WalCheckpoint(pWal, db,
2161 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
dancdc1f042010-11-18 12:11:05 +00002162 );
drheed42502011-12-16 15:38:52 +00002163 if( rc==SQLITE_OK ){
2164 int bPersist = -1;
drhc02372c2012-01-10 17:59:59 +00002165 sqlite3OsFileControlHint(
dan6f2f19a2012-01-10 16:56:39 +00002166 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
2167 );
drheed42502011-12-16 15:38:52 +00002168 if( bPersist!=1 ){
2169 /* Try to delete the WAL file if the checkpoint completed and
2170 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
2171 ** mode (!bPersist) */
2172 isDelete = 1;
2173 }else if( pWal->mxWalSize>=0 ){
2174 /* Try to truncate the WAL file to zero bytes if the checkpoint
2175 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
2176 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
2177 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
2178 ** to zero bytes as truncating to the journal_size_limit might
2179 ** leave a corrupt WAL file on disk. */
2180 walLimitSize(pWal, 0);
2181 }
dan30c86292010-04-30 16:24:46 +00002182 }
dan30c86292010-04-30 16:24:46 +00002183 }
2184
dan1018e902010-05-05 15:33:05 +00002185 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00002186 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00002187 if( isDelete ){
drh92c45cf2012-01-10 00:24:59 +00002188 sqlite3BeginBenignMalloc();
drhd9e5c4f2010-05-12 18:01:39 +00002189 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
drh92c45cf2012-01-10 00:24:59 +00002190 sqlite3EndBenignMalloc();
dan30c86292010-04-30 16:24:46 +00002191 }
drhc74c3332010-05-31 12:15:19 +00002192 WALTRACE(("WAL%p: closed\n", pWal));
shaneh8a300f82010-07-02 18:15:31 +00002193 sqlite3_free((void *)pWal->apWiData);
drh7ed91f22010-04-29 22:34:07 +00002194 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00002195 }
2196 return rc;
2197}
2198
2199/*
drha2a42012010-05-18 18:01:08 +00002200** Try to read the wal-index header. Return 0 on success and 1 if
2201** there is a problem.
2202**
2203** The wal-index is in shared memory. Another thread or process might
2204** be writing the header at the same time this procedure is trying to
2205** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00002206** by verifying that both copies of the header are the same and also by
2207** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00002208**
2209** If and only if the read is consistent and the header is different from
2210** pWal->hdr, then pWal->hdr is updated to the content of the new header
2211** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00002212**
dan84670502010-05-07 05:46:23 +00002213** If the checksum cannot be verified return non-zero. If the header
2214** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00002215*/
drh5a8cd2e2020-05-19 15:51:10 +00002216static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){
dan4280eb32010-06-12 12:02:35 +00002217 u32 aCksum[2]; /* Checksum on the header content */
2218 WalIndexHdr h1, h2; /* Two copies of the header content */
2219 WalIndexHdr volatile *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00002220
dan4280eb32010-06-12 12:02:35 +00002221 /* The first page of the wal-index must be mapped at this point. */
2222 assert( pWal->nWiData>0 && pWal->apWiData[0] );
drh79e6c782010-04-30 02:13:26 +00002223
drh6cef0cf2010-08-16 16:31:43 +00002224 /* Read the header. This might happen concurrently with a write to the
drh73b64e42010-05-30 19:55:15 +00002225 ** same area of shared memory on a different CPU in a SMP,
2226 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00002227 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00002228 **
drhf16cf652020-05-19 12:27:29 +00002229 ** tag-20200519-1:
drhf0b20f82010-05-21 13:16:18 +00002230 ** There are two copies of the header at the beginning of the wal-index.
2231 ** When reading, read [0] first then [1]. Writes are in the reverse order.
2232 ** Memory barriers are used to prevent the compiler or the hardware from
drhf16cf652020-05-19 12:27:29 +00002233 ** reordering the reads and writes. TSAN and similar tools can sometimes
2234 ** give false-positive warnings about these accesses because the tools do not
2235 ** account for the double-read and the memory barrier. The use of mutexes
2236 ** here would be problematic as the memory being accessed is potentially
2237 ** shared among multiple processes and not all mutex implementions work
2238 ** reliably in that environment.
danb9bf16b2010-04-14 11:23:30 +00002239 */
dan4280eb32010-06-12 12:02:35 +00002240 aHdr = walIndexHdr(pWal);
drhf16cf652020-05-19 12:27:29 +00002241 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */
dan8c408002010-11-01 17:38:24 +00002242 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +00002243 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00002244
drhf0b20f82010-05-21 13:16:18 +00002245 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2246 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00002247 }
drh4b82c382010-05-31 18:24:19 +00002248 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00002249 return 1; /* Malformed header - probably all zeros */
2250 }
danb8fd6c22010-05-24 10:39:36 +00002251 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00002252 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2253 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00002254 }
2255
drhf0b20f82010-05-21 13:16:18 +00002256 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00002257 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00002258 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh9b78f792010-08-14 21:21:24 +00002259 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2260 testcase( pWal->szPage<=32768 );
2261 testcase( pWal->szPage>=65536 );
danb9bf16b2010-04-14 11:23:30 +00002262 }
dan84670502010-05-07 05:46:23 +00002263
2264 /* The header was successfully read. Return zero. */
2265 return 0;
danb9bf16b2010-04-14 11:23:30 +00002266}
2267
2268/*
dan08ecefc2017-11-07 21:15:07 +00002269** This is the value that walTryBeginRead returns when it needs to
2270** be retried.
2271*/
2272#define WAL_RETRY (-1)
2273
2274/*
drha2a42012010-05-18 18:01:08 +00002275** Read the wal-index header from the wal-index and into pWal->hdr.
drha927e942010-06-24 02:46:48 +00002276** If the wal-header appears to be corrupt, try to reconstruct the
2277** wal-index from the WAL before returning.
drha2a42012010-05-18 18:01:08 +00002278**
2279** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
peter.d.reid60ec9142014-09-06 16:39:46 +00002280** changed by this operation. If pWal->hdr is unchanged, set *pChanged
drha2a42012010-05-18 18:01:08 +00002281** to 0.
2282**
drh7ed91f22010-04-29 22:34:07 +00002283** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00002284** Otherwise an SQLite error code.
2285*/
drh7ed91f22010-04-29 22:34:07 +00002286static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00002287 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00002288 int badHdr; /* True if a header read failed */
drha927e942010-06-24 02:46:48 +00002289 volatile u32 *page0; /* Chunk of wal-index containing header */
danb9bf16b2010-04-14 11:23:30 +00002290
dan4280eb32010-06-12 12:02:35 +00002291 /* Ensure that page 0 of the wal-index (the page that contains the
2292 ** wal-index header) is mapped. Return early if an error occurs here.
2293 */
dana8614692010-05-06 14:42:34 +00002294 assert( pChanged );
dan4280eb32010-06-12 12:02:35 +00002295 rc = walIndexPage(pWal, 0, &page0);
danc7991bd2010-05-05 19:04:59 +00002296 if( rc!=SQLITE_OK ){
drh85bc6df2017-11-10 20:00:50 +00002297 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2298 if( rc==SQLITE_READONLY_CANTINIT ){
2299 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2300 ** was openable but is not writable, and this thread is unable to
2301 ** confirm that another write-capable connection has the shared-memory
2302 ** open, and hence the content of the shared-memory is unreliable,
2303 ** since the shared-memory might be inconsistent with the WAL file
2304 ** and there is no writer on hand to fix it. */
drhc05a0632017-11-11 20:11:01 +00002305 assert( page0==0 );
2306 assert( pWal->writeLock==0 );
2307 assert( pWal->readOnly & WAL_SHM_RDONLY );
drh85bc6df2017-11-10 20:00:50 +00002308 pWal->bShmUnreliable = 1;
2309 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2310 *pChanged = 1;
2311 }else{
2312 return rc; /* Any other non-OK return is just an error */
2313 }
drhc05a0632017-11-11 20:11:01 +00002314 }else{
2315 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2316 ** is zero, which prevents the SHM from growing */
2317 testcase( page0!=0 );
2318 }
2319 assert( page0!=0 || pWal->writeLock==0 );
drh7ed91f22010-04-29 22:34:07 +00002320
dan4280eb32010-06-12 12:02:35 +00002321 /* If the first page of the wal-index has been mapped, try to read the
2322 ** wal-index header immediately, without holding any lock. This usually
2323 ** works, but may fail if the wal-index header is corrupt or currently
drha927e942010-06-24 02:46:48 +00002324 ** being modified by another thread or process.
danb9bf16b2010-04-14 11:23:30 +00002325 */
dan4280eb32010-06-12 12:02:35 +00002326 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
drhbab7b912010-05-26 17:31:58 +00002327
drh73b64e42010-05-30 19:55:15 +00002328 /* If the first attempt failed, it might have been due to a race
drh66dfec8b2011-06-01 20:01:49 +00002329 ** with a writer. So get a WRITE lock and try again.
drh73b64e42010-05-30 19:55:15 +00002330 */
dan4edc6bf2011-05-10 17:31:29 +00002331 if( badHdr ){
drh85bc6df2017-11-10 20:00:50 +00002332 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
dan4edc6bf2011-05-10 17:31:29 +00002333 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2334 walUnlockShared(pWal, WAL_WRITE_LOCK);
2335 rc = SQLITE_READONLY_RECOVERY;
drhbab7b912010-05-26 17:31:58 +00002336 }
dand0e6d132020-05-06 17:18:57 +00002337 }else{
2338 int bWriteLock = pWal->writeLock;
dan861fb1e2020-05-06 19:14:41 +00002339 if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){
dand0e6d132020-05-06 17:18:57 +00002340 pWal->writeLock = 1;
2341 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2342 badHdr = walIndexTryHdr(pWal, pChanged);
2343 if( badHdr ){
2344 /* If the wal-index header is still malformed even while holding
2345 ** a WRITE lock, it can only mean that the header is corrupted and
2346 ** needs to be reconstructed. So run recovery to do exactly that.
2347 */
2348 rc = walIndexRecover(pWal);
2349 *pChanged = 1;
2350 }
2351 }
2352 if( bWriteLock==0 ){
2353 pWal->writeLock = 0;
2354 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
dan4edc6bf2011-05-10 17:31:29 +00002355 }
2356 }
drhbab7b912010-05-26 17:31:58 +00002357 }
danb9bf16b2010-04-14 11:23:30 +00002358 }
2359
drha927e942010-06-24 02:46:48 +00002360 /* If the header is read successfully, check the version number to make
2361 ** sure the wal-index was not constructed with some future format that
2362 ** this version of SQLite cannot understand.
2363 */
2364 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2365 rc = SQLITE_CANTOPEN_BKPT;
2366 }
drh85bc6df2017-11-10 20:00:50 +00002367 if( pWal->bShmUnreliable ){
dan11caf4f2017-11-04 18:10:03 +00002368 if( rc!=SQLITE_OK ){
2369 walIndexClose(pWal, 0);
drh85bc6df2017-11-10 20:00:50 +00002370 pWal->bShmUnreliable = 0;
dan08ecefc2017-11-07 21:15:07 +00002371 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
drh8b17ac12017-11-14 03:42:52 +00002372 /* walIndexRecover() might have returned SHORT_READ if a concurrent
2373 ** writer truncated the WAL out from under it. If that happens, it
2374 ** indicates that a writer has fixed the SHM file for us, so retry */
dan08ecefc2017-11-07 21:15:07 +00002375 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
dan11caf4f2017-11-04 18:10:03 +00002376 }
2377 pWal->exclusiveMode = WAL_NORMAL_MODE;
2378 }
drha927e942010-06-24 02:46:48 +00002379
danb9bf16b2010-04-14 11:23:30 +00002380 return rc;
2381}
2382
2383/*
drh85bc6df2017-11-10 20:00:50 +00002384** Open a transaction in a connection where the shared-memory is read-only
2385** and where we cannot verify that there is a separate write-capable connection
2386** on hand to keep the shared-memory up-to-date with the WAL file.
2387**
2388** This can happen, for example, when the shared-memory is implemented by
2389** memory-mapping a *-shm file, where a prior writer has shut down and
2390** left the *-shm file on disk, and now the present connection is trying
2391** to use that database but lacks write permission on the *-shm file.
2392** Other scenarios are also possible, depending on the VFS implementation.
2393**
2394** Precondition:
2395**
2396** The *-wal file has been read and an appropriate wal-index has been
2397** constructed in pWal->apWiData[] using heap memory instead of shared
2398** memory.
dan11caf4f2017-11-04 18:10:03 +00002399**
2400** If this function returns SQLITE_OK, then the read transaction has
2401** been successfully opened. In this case output variable (*pChanged)
2402** is set to true before returning if the caller should discard the
2403** contents of the page cache before proceeding. Or, if it returns
2404** WAL_RETRY, then the heap memory wal-index has been discarded and
2405** the caller should retry opening the read transaction from the
2406** beginning (including attempting to map the *-shm file).
2407**
2408** If an error occurs, an SQLite error code is returned.
2409*/
drh85bc6df2017-11-10 20:00:50 +00002410static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
dan11caf4f2017-11-04 18:10:03 +00002411 i64 szWal; /* Size of wal file on disk in bytes */
2412 i64 iOffset; /* Current offset when reading wal file */
2413 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
2414 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
2415 int szFrame; /* Number of bytes in buffer aFrame[] */
2416 u8 *aData; /* Pointer to data part of aFrame buffer */
2417 volatile void *pDummy; /* Dummy argument for xShmMap */
2418 int rc; /* Return code */
2419 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */
2420
drh85bc6df2017-11-10 20:00:50 +00002421 assert( pWal->bShmUnreliable );
dan11caf4f2017-11-04 18:10:03 +00002422 assert( pWal->readOnly & WAL_SHM_RDONLY );
2423 assert( pWal->nWiData>0 && pWal->apWiData[0] );
2424
2425 /* Take WAL_READ_LOCK(0). This has the effect of preventing any
drh85bc6df2017-11-10 20:00:50 +00002426 ** writers from running a checkpoint, but does not stop them
dan11caf4f2017-11-04 18:10:03 +00002427 ** from running recovery. */
2428 rc = walLockShared(pWal, WAL_READ_LOCK(0));
2429 if( rc!=SQLITE_OK ){
danab548382017-11-06 19:49:34 +00002430 if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
drh85bc6df2017-11-10 20:00:50 +00002431 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002432 }
2433 pWal->readLock = 0;
2434
drh85bc6df2017-11-10 20:00:50 +00002435 /* Check to see if a separate writer has attached to the shared-memory area,
2436 ** thus making the shared-memory "reliable" again. Do this by invoking
2437 ** the xShmMap() routine of the VFS and looking to see if the return
2438 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
drh9214c1e2017-11-08 19:26:27 +00002439 **
drh85bc6df2017-11-10 20:00:50 +00002440 ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2441 ** cause the heap-memory WAL-index to be discarded and the actual
2442 ** shared memory to be used in its place.
drh870655b2017-11-11 13:30:44 +00002443 **
2444 ** This step is important because, even though this connection is holding
2445 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2446 ** have already checkpointed the WAL file and, while the current
2447 ** is active, wrap the WAL and start overwriting frames that this
2448 ** process wants to use.
2449 **
2450 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2451 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2452 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2453 ** even if some external agent does a "chmod" to make the shared-memory
2454 ** writable by us, until sqlite3OsShmUnmap() has been called.
2455 ** This is a requirement on the VFS implementation.
2456 */
dan11caf4f2017-11-04 18:10:03 +00002457 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
drh9214c1e2017-11-08 19:26:27 +00002458 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
drh7e45e3a2017-11-08 17:32:12 +00002459 if( rc!=SQLITE_READONLY_CANTINIT ){
dan11caf4f2017-11-04 18:10:03 +00002460 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
drh85bc6df2017-11-10 20:00:50 +00002461 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002462 }
2463
drh870655b2017-11-11 13:30:44 +00002464 /* We reach this point only if the real shared-memory is still unreliable.
drh85bc6df2017-11-10 20:00:50 +00002465 ** Assume the in-memory WAL-index substitute is correct and load it
2466 ** into pWal->hdr.
2467 */
dan11caf4f2017-11-04 18:10:03 +00002468 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
drh85bc6df2017-11-10 20:00:50 +00002469
drh870655b2017-11-11 13:30:44 +00002470 /* Make sure some writer hasn't come in and changed the WAL file out
2471 ** from under us, then disconnected, while we were not looking.
drh85bc6df2017-11-10 20:00:50 +00002472 */
dan11caf4f2017-11-04 18:10:03 +00002473 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
danab548382017-11-06 19:49:34 +00002474 if( rc!=SQLITE_OK ){
drh85bc6df2017-11-10 20:00:50 +00002475 goto begin_unreliable_shm_out;
danab548382017-11-06 19:49:34 +00002476 }
2477 if( szWal<WAL_HDRSIZE ){
dan11caf4f2017-11-04 18:10:03 +00002478 /* If the wal file is too small to contain a wal-header and the
2479 ** wal-index header has mxFrame==0, then it must be safe to proceed
2480 ** reading the database file only. However, the page cache cannot
2481 ** be trusted, as a read/write connection may have connected, written
2482 ** the db, run a checkpoint, truncated the wal file and disconnected
2483 ** since this client's last read transaction. */
2484 *pChanged = 1;
danab548382017-11-06 19:49:34 +00002485 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
drh85bc6df2017-11-10 20:00:50 +00002486 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002487 }
2488
2489 /* Check the salt keys at the start of the wal file still match. */
2490 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2491 if( rc!=SQLITE_OK ){
drh85bc6df2017-11-10 20:00:50 +00002492 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002493 }
2494 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
drh870655b2017-11-11 13:30:44 +00002495 /* Some writer has wrapped the WAL file while we were not looking.
2496 ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2497 ** rebuilt. */
dan11caf4f2017-11-04 18:10:03 +00002498 rc = WAL_RETRY;
drh85bc6df2017-11-10 20:00:50 +00002499 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002500 }
2501
2502 /* Allocate a buffer to read frames into */
2503 szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2504 aFrame = (u8 *)sqlite3_malloc64(szFrame);
2505 if( aFrame==0 ){
2506 rc = SQLITE_NOMEM_BKPT;
drh85bc6df2017-11-10 20:00:50 +00002507 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002508 }
2509 aData = &aFrame[WAL_FRAME_HDRSIZE];
2510
dancbd33212017-11-04 21:06:35 +00002511 /* Check to see if a complete transaction has been appended to the
2512 ** wal file since the heap-memory wal-index was created. If so, the
2513 ** heap-memory wal-index is discarded and WAL_RETRY returned to
2514 ** the caller. */
dan11caf4f2017-11-04 18:10:03 +00002515 aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2516 aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2517 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2518 iOffset+szFrame<=szWal;
2519 iOffset+=szFrame
2520 ){
2521 u32 pgno; /* Database page number for frame */
2522 u32 nTruncate; /* dbsize field from frame header */
2523
2524 /* Read and decode the next log frame. */
2525 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
danab548382017-11-06 19:49:34 +00002526 if( rc!=SQLITE_OK ) break;
dan11caf4f2017-11-04 18:10:03 +00002527 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2528
dancbd33212017-11-04 21:06:35 +00002529 /* If nTruncate is non-zero, then a complete transaction has been
2530 ** appended to this wal file. Set rc to WAL_RETRY and break out of
2531 ** the loop. */
dan11caf4f2017-11-04 18:10:03 +00002532 if( nTruncate ){
2533 rc = WAL_RETRY;
2534 break;
2535 }
2536 }
2537 pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2538 pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2539
drh85bc6df2017-11-10 20:00:50 +00002540 begin_unreliable_shm_out:
dan11caf4f2017-11-04 18:10:03 +00002541 sqlite3_free(aFrame);
2542 if( rc!=SQLITE_OK ){
2543 int i;
2544 for(i=0; i<pWal->nWiData; i++){
2545 sqlite3_free((void*)pWal->apWiData[i]);
2546 pWal->apWiData[i] = 0;
2547 }
drh85bc6df2017-11-10 20:00:50 +00002548 pWal->bShmUnreliable = 0;
dan11caf4f2017-11-04 18:10:03 +00002549 sqlite3WalEndReadTransaction(pWal);
2550 *pChanged = 1;
2551 }
2552 return rc;
2553}
2554
2555/*
drh73b64e42010-05-30 19:55:15 +00002556** Attempt to start a read transaction. This might fail due to a race or
2557** other transient condition. When that happens, it returns WAL_RETRY to
2558** indicate to the caller that it is safe to retry immediately.
2559**
drha927e942010-06-24 02:46:48 +00002560** On success return SQLITE_OK. On a permanent failure (such an
drh73b64e42010-05-30 19:55:15 +00002561** I/O error or an SQLITE_BUSY because another process is running
2562** recovery) return a positive error code.
2563**
drha927e942010-06-24 02:46:48 +00002564** The useWal parameter is true to force the use of the WAL and disable
2565** the case where the WAL is bypassed because it has been completely
2566** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
2567** to make a copy of the wal-index header into pWal->hdr. If the
2568** wal-index header has changed, *pChanged is set to 1 (as an indication
drh183f0aa2017-10-31 12:06:29 +00002569** to the caller that the local page cache is obsolete and needs to be
drha927e942010-06-24 02:46:48 +00002570** flushed.) When useWal==1, the wal-index header is assumed to already
2571** be loaded and the pChanged parameter is unused.
2572**
2573** The caller must set the cnt parameter to the number of prior calls to
2574** this routine during the current read attempt that returned WAL_RETRY.
2575** This routine will start taking more aggressive measures to clear the
2576** race conditions after multiple WAL_RETRY returns, and after an excessive
2577** number of errors will ultimately return SQLITE_PROTOCOL. The
2578** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2579** and is not honoring the locking protocol. There is a vanishingly small
2580** chance that SQLITE_PROTOCOL could be returned because of a run of really
2581** bad luck when there is lots of contention for the wal-index, but that
2582** possibility is so small that it can be safely neglected, we believe.
2583**
drh73b64e42010-05-30 19:55:15 +00002584** On success, this routine obtains a read lock on
2585** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
2586** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
2587** that means the Wal does not hold any read lock. The reader must not
2588** access any database page that is modified by a WAL frame up to and
2589** including frame number aReadMark[pWal->readLock]. The reader will
2590** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2591** Or if pWal->readLock==0, then the reader will ignore the WAL
2592** completely and get all content directly from the database file.
drha927e942010-06-24 02:46:48 +00002593** If the useWal parameter is 1 then the WAL will never be ignored and
2594** this routine will always set pWal->readLock>0 on success.
drh73b64e42010-05-30 19:55:15 +00002595** When the read transaction is completed, the caller must release the
2596** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2597**
2598** This routine uses the nBackfill and aReadMark[] fields of the header
2599** to select a particular WAL_READ_LOCK() that strives to let the
2600** checkpoint process do as much work as possible. This routine might
2601** update values of the aReadMark[] array in the header, but if it does
2602** so it takes care to hold an exclusive lock on the corresponding
2603** WAL_READ_LOCK() while changing values.
2604*/
drhaab4c022010-06-02 14:45:51 +00002605static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00002606 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
2607 u32 mxReadMark; /* Largest aReadMark[] value */
2608 int mxI; /* Index of largest aReadMark[] value */
2609 int i; /* Loop counter */
dan13a3cb82010-06-11 19:04:21 +00002610 int rc = SQLITE_OK; /* Return code */
drhc49e9602015-12-11 03:16:54 +00002611 u32 mxFrame; /* Wal frame to lock to */
dan64d039e2010-04-13 19:27:31 +00002612
drh61e4ace2010-05-31 20:28:37 +00002613 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00002614
drh2e9b0922017-11-13 05:51:37 +00002615 /* useWal may only be set for read/write connections */
2616 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2617
drh658d76c2011-02-19 15:22:14 +00002618 /* Take steps to avoid spinning forever if there is a protocol error.
2619 **
2620 ** Circumstances that cause a RETRY should only last for the briefest
2621 ** instances of time. No I/O or other system calls are done while the
2622 ** locks are held, so the locks should not be held for very long. But
2623 ** if we are unlucky, another process that is holding a lock might get
2624 ** paged out or take a page-fault that is time-consuming to resolve,
2625 ** during the few nanoseconds that it is holding the lock. In that case,
2626 ** it might take longer than normal for the lock to free.
2627 **
2628 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2629 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2630 ** is more of a scheduler yield than an actual delay. But on the 10th
2631 ** an subsequent retries, the delays start becoming longer and longer,
drh5b6e3b92014-06-12 17:10:18 +00002632 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2633 ** The total delay time before giving up is less than 10 seconds.
drh658d76c2011-02-19 15:22:14 +00002634 */
drhaab4c022010-06-02 14:45:51 +00002635 if( cnt>5 ){
drh658d76c2011-02-19 15:22:14 +00002636 int nDelay = 1; /* Pause time in microseconds */
drh03c69672011-02-19 23:18:12 +00002637 if( cnt>100 ){
2638 VVA_ONLY( pWal->lockError = 1; )
2639 return SQLITE_PROTOCOL;
2640 }
drh5b6e3b92014-06-12 17:10:18 +00002641 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
drh658d76c2011-02-19 15:22:14 +00002642 sqlite3OsSleep(pWal->pVfs, nDelay);
drhaab4c022010-06-02 14:45:51 +00002643 }
2644
drh73b64e42010-05-30 19:55:15 +00002645 if( !useWal ){
dan11caf4f2017-11-04 18:10:03 +00002646 assert( rc==SQLITE_OK );
drh85bc6df2017-11-10 20:00:50 +00002647 if( pWal->bShmUnreliable==0 ){
dan11caf4f2017-11-04 18:10:03 +00002648 rc = walIndexReadHdr(pWal, pChanged);
2649 }
drh73b64e42010-05-30 19:55:15 +00002650 if( rc==SQLITE_BUSY ){
2651 /* If there is not a recovery running in another thread or process
2652 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2653 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2654 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2655 ** would be technically correct. But the race is benign since with
2656 ** WAL_RETRY this routine will be called again and will probably be
2657 ** right on the second iteration.
2658 */
dan7d4514a2010-07-15 17:54:14 +00002659 if( pWal->apWiData[0]==0 ){
2660 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2661 ** We assume this is a transient condition, so return WAL_RETRY. The
2662 ** xShmMap() implementation used by the default unix and win32 VFS
2663 ** modules may return SQLITE_BUSY due to a race condition in the
2664 ** code that determines whether or not the shared-memory region
2665 ** must be zeroed before the requested page is returned.
2666 */
2667 rc = WAL_RETRY;
2668 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
drh73b64e42010-05-30 19:55:15 +00002669 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2670 rc = WAL_RETRY;
2671 }else if( rc==SQLITE_BUSY ){
2672 rc = SQLITE_BUSY_RECOVERY;
2673 }
2674 }
drha927e942010-06-24 02:46:48 +00002675 if( rc!=SQLITE_OK ){
2676 return rc;
2677 }
drh85bc6df2017-11-10 20:00:50 +00002678 else if( pWal->bShmUnreliable ){
2679 return walBeginShmUnreliable(pWal, pChanged);
dan11caf4f2017-11-04 18:10:03 +00002680 }
drh73b64e42010-05-30 19:55:15 +00002681 }
2682
dan92c02da2017-11-01 20:59:28 +00002683 assert( pWal->nWiData>0 );
drh2e9b0922017-11-13 05:51:37 +00002684 assert( pWal->apWiData[0]!=0 );
2685 pInfo = walCkptInfo(pWal);
dan8b4f2312020-05-13 13:33:30 +00002686 if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame
danfc1acf32015-12-05 20:51:54 +00002687#ifdef SQLITE_ENABLE_SNAPSHOT
dan21f2baf2017-09-23 07:46:54 +00002688 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
danfc1acf32015-12-05 20:51:54 +00002689#endif
2690 ){
drh73b64e42010-05-30 19:55:15 +00002691 /* The WAL has been completely backfilled (or it is empty).
2692 ** and can be safely ignored.
2693 */
2694 rc = walLockShared(pWal, WAL_READ_LOCK(0));
dan8c408002010-11-01 17:38:24 +00002695 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002696 if( rc==SQLITE_OK ){
drh2e9b0922017-11-13 05:51:37 +00002697 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00002698 /* It is not safe to allow the reader to continue here if frames
2699 ** may have been appended to the log before READ_LOCK(0) was obtained.
2700 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2701 ** which implies that the database file contains a trustworthy
peter.d.reid60ec9142014-09-06 16:39:46 +00002702 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
dan493cc592010-06-05 18:12:23 +00002703 ** happening, this is usually correct.
2704 **
2705 ** However, if frames have been appended to the log (or if the log
2706 ** is wrapped and written for that matter) before the READ_LOCK(0)
2707 ** is obtained, that is not necessarily true. A checkpointer may
2708 ** have started to backfill the appended frames but crashed before
2709 ** it finished. Leaving a corrupt image in the database file.
2710 */
drh73b64e42010-05-30 19:55:15 +00002711 walUnlockShared(pWal, WAL_READ_LOCK(0));
2712 return WAL_RETRY;
2713 }
2714 pWal->readLock = 0;
2715 return SQLITE_OK;
2716 }else if( rc!=SQLITE_BUSY ){
2717 return rc;
dan64d039e2010-04-13 19:27:31 +00002718 }
dan7c246102010-04-12 19:00:29 +00002719 }
danba515902010-04-30 09:32:06 +00002720
drh73b64e42010-05-30 19:55:15 +00002721 /* If we get this far, it means that the reader will want to use
2722 ** the WAL to get at content from recent commits. The job now is
2723 ** to select one of the aReadMark[] entries that is closest to
2724 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2725 */
2726 mxReadMark = 0;
2727 mxI = 0;
danfc1acf32015-12-05 20:51:54 +00002728 mxFrame = pWal->hdr.mxFrame;
2729#ifdef SQLITE_ENABLE_SNAPSHOT
dan818b11a2015-12-07 14:33:07 +00002730 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2731 mxFrame = pWal->pSnapshot->mxFrame;
2732 }
danfc1acf32015-12-05 20:51:54 +00002733#endif
drh73b64e42010-05-30 19:55:15 +00002734 for(i=1; i<WAL_NREADER; i++){
drh876c7ea2018-08-30 20:28:18 +00002735 u32 thisMark = AtomicLoad(pInfo->aReadMark+i);
danfc1acf32015-12-05 20:51:54 +00002736 if( mxReadMark<=thisMark && thisMark<=mxFrame ){
drhdb7f6472010-06-09 14:45:12 +00002737 assert( thisMark!=READMARK_NOT_USED );
drh73b64e42010-05-30 19:55:15 +00002738 mxReadMark = thisMark;
2739 mxI = i;
2740 }
2741 }
drh998147e2015-12-10 02:15:03 +00002742 if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2743 && (mxReadMark<mxFrame || mxI==0)
drh998147e2015-12-10 02:15:03 +00002744 ){
2745 for(i=1; i<WAL_NREADER; i++){
2746 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2747 if( rc==SQLITE_OK ){
dan3e42b992020-03-30 11:17:37 +00002748 AtomicStore(pInfo->aReadMark+i,mxFrame);
2749 mxReadMark = mxFrame;
drh998147e2015-12-10 02:15:03 +00002750 mxI = i;
2751 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2752 break;
2753 }else if( rc!=SQLITE_BUSY ){
2754 return rc;
drh73b64e42010-05-30 19:55:15 +00002755 }
2756 }
drh998147e2015-12-10 02:15:03 +00002757 }
2758 if( mxI==0 ){
drh998147e2015-12-10 02:15:03 +00002759 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
drh7e45e3a2017-11-08 17:32:12 +00002760 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
drh998147e2015-12-10 02:15:03 +00002761 }
drh73b64e42010-05-30 19:55:15 +00002762
drh998147e2015-12-10 02:15:03 +00002763 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2764 if( rc ){
2765 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2766 }
2767 /* Now that the read-lock has been obtained, check that neither the
2768 ** value in the aReadMark[] array or the contents of the wal-index
2769 ** header have changed.
2770 **
2771 ** It is necessary to check that the wal-index header did not change
2772 ** between the time it was read and when the shared-lock was obtained
2773 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2774 ** that the log file may have been wrapped by a writer, or that frames
2775 ** that occur later in the log than pWal->hdr.mxFrame may have been
2776 ** copied into the database by a checkpointer. If either of these things
2777 ** happened, then reading the database with the current value of
2778 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2779 ** instead.
2780 **
2781 ** Before checking that the live wal-index header has not changed
2782 ** since it was read, set Wal.minFrame to the first frame in the wal
2783 ** file that has not yet been checkpointed. This client will not need
2784 ** to read any frames earlier than minFrame from the wal file - they
2785 ** can be safely read directly from the database file.
2786 **
2787 ** Because a ShmBarrier() call is made between taking the copy of
2788 ** nBackfill and checking that the wal-header in shared-memory still
2789 ** matches the one cached in pWal->hdr, it is guaranteed that the
2790 ** checkpointer that set nBackfill was not working with a wal-index
2791 ** header newer than that cached in pWal->hdr. If it were, that could
2792 ** cause a problem. The checkpointer could omit to checkpoint
2793 ** a version of page X that lies before pWal->minFrame (call that version
2794 ** A) on the basis that there is a newer version (version B) of the same
2795 ** page later in the wal file. But if version B happens to like past
2796 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2797 ** that it can read version A from the database file. However, since
2798 ** we can guarantee that the checkpointer that set nBackfill could not
2799 ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2800 */
drh876c7ea2018-08-30 20:28:18 +00002801 pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1;
drh998147e2015-12-10 02:15:03 +00002802 walShmBarrier(pWal);
drh876c7ea2018-08-30 20:28:18 +00002803 if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
drh998147e2015-12-10 02:15:03 +00002804 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2805 ){
2806 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2807 return WAL_RETRY;
2808 }else{
2809 assert( mxReadMark<=pWal->hdr.mxFrame );
2810 pWal->readLock = (i16)mxI;
drh73b64e42010-05-30 19:55:15 +00002811 }
2812 return rc;
2813}
2814
drhbc887112016-11-22 21:11:59 +00002815#ifdef SQLITE_ENABLE_SNAPSHOT
drh73b64e42010-05-30 19:55:15 +00002816/*
dan93f51132016-11-19 18:31:37 +00002817** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2818** variable so that older snapshots can be accessed. To do this, loop
2819** through all wal frames from nBackfillAttempted to (nBackfill+1),
2820** comparing their content to the corresponding page with the database
2821** file, if any. Set nBackfillAttempted to the frame number of the
2822** first frame for which the wal file content matches the db file.
2823**
2824** This is only really safe if the file-system is such that any page
2825** writes made by earlier checkpointers were atomic operations, which
2826** is not always true. It is also possible that nBackfillAttempted
2827** may be left set to a value larger than expected, if a wal frame
2828** contains content that duplicate of an earlier version of the same
2829** page.
2830**
2831** SQLITE_OK is returned if successful, or an SQLite error code if an
2832** error occurs. It is not an error if nBackfillAttempted cannot be
2833** decreased at all.
dan11584982016-11-18 20:49:43 +00002834*/
2835int sqlite3WalSnapshotRecover(Wal *pWal){
dan11584982016-11-18 20:49:43 +00002836 int rc;
2837
dan93f51132016-11-19 18:31:37 +00002838 assert( pWal->readLock>=0 );
2839 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
dan11584982016-11-18 20:49:43 +00002840 if( rc==SQLITE_OK ){
dan93f51132016-11-19 18:31:37 +00002841 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2842 int szPage = (int)pWal->szPage;
2843 i64 szDb; /* Size of db file in bytes */
2844
2845 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
dan11584982016-11-18 20:49:43 +00002846 if( rc==SQLITE_OK ){
dan93f51132016-11-19 18:31:37 +00002847 void *pBuf1 = sqlite3_malloc(szPage);
2848 void *pBuf2 = sqlite3_malloc(szPage);
2849 if( pBuf1==0 || pBuf2==0 ){
2850 rc = SQLITE_NOMEM;
2851 }else{
2852 u32 i = pInfo->nBackfillAttempted;
dan8b4f2312020-05-13 13:33:30 +00002853 for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){
drh4ece2f22018-06-09 16:49:00 +00002854 WalHashLoc sLoc; /* Hash table location */
dan93f51132016-11-19 18:31:37 +00002855 u32 pgno; /* Page number in db file */
2856 i64 iDbOff; /* Offset of db file entry */
2857 i64 iWalOff; /* Offset of wal file entry */
dan11584982016-11-18 20:49:43 +00002858
drh4ece2f22018-06-09 16:49:00 +00002859 rc = walHashGet(pWal, walFramePage(i), &sLoc);
dan93f51132016-11-19 18:31:37 +00002860 if( rc!=SQLITE_OK ) break;
drh4ece2f22018-06-09 16:49:00 +00002861 pgno = sLoc.aPgno[i-sLoc.iZero];
dan93f51132016-11-19 18:31:37 +00002862 iDbOff = (i64)(pgno-1) * szPage;
dan11584982016-11-18 20:49:43 +00002863
dan93f51132016-11-19 18:31:37 +00002864 if( iDbOff+szPage<=szDb ){
2865 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2866 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
dan11584982016-11-18 20:49:43 +00002867
dan93f51132016-11-19 18:31:37 +00002868 if( rc==SQLITE_OK ){
2869 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
dan6a9e7f12016-11-19 16:35:53 +00002870 }
2871
dan93f51132016-11-19 18:31:37 +00002872 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2873 break;
2874 }
dan6a9e7f12016-11-19 16:35:53 +00002875 }
dan93f51132016-11-19 18:31:37 +00002876
2877 pInfo->nBackfillAttempted = i-1;
dan11584982016-11-18 20:49:43 +00002878 }
dan6a9e7f12016-11-19 16:35:53 +00002879 }
dan11584982016-11-18 20:49:43 +00002880
dan93f51132016-11-19 18:31:37 +00002881 sqlite3_free(pBuf1);
2882 sqlite3_free(pBuf2);
2883 }
2884 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dan11584982016-11-18 20:49:43 +00002885 }
2886
2887 return rc;
2888}
drhbc887112016-11-22 21:11:59 +00002889#endif /* SQLITE_ENABLE_SNAPSHOT */
dan11584982016-11-18 20:49:43 +00002890
2891/*
drh73b64e42010-05-30 19:55:15 +00002892** Begin a read transaction on the database.
2893**
2894** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2895** it takes a snapshot of the state of the WAL and wal-index for the current
2896** instant in time. The current thread will continue to use this snapshot.
2897** Other threads might append new content to the WAL and wal-index but
2898** that extra content is ignored by the current thread.
2899**
2900** If the database contents have changes since the previous read
2901** transaction, then *pChanged is set to 1 before returning. The
drh8741d0d2018-09-12 00:21:11 +00002902** Pager layer will use this to know that its cache is stale and
drh73b64e42010-05-30 19:55:15 +00002903** needs to be flushed.
2904*/
drh66dfec8b2011-06-01 20:01:49 +00002905int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
drh73b64e42010-05-30 19:55:15 +00002906 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00002907 int cnt = 0; /* Number of TryBeginRead attempts */
drh91960aa2020-05-25 12:02:12 +00002908#ifdef SQLITE_ENABLE_SNAPSHOT
2909 int bChanged = 0;
2910 WalIndexHdr *pSnapshot = pWal->pSnapshot;
2911#endif
dan8714de92020-05-04 19:42:35 +00002912
dand0e6d132020-05-06 17:18:57 +00002913 assert( pWal->ckptLock==0 );
drh73b64e42010-05-30 19:55:15 +00002914
danfc1acf32015-12-05 20:51:54 +00002915#ifdef SQLITE_ENABLE_SNAPSHOT
dan8714de92020-05-04 19:42:35 +00002916 if( pSnapshot ){
dan8714de92020-05-04 19:42:35 +00002917 if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2918 bChanged = 1;
2919 }
2920
2921 /* It is possible that there is a checkpointer thread running
2922 ** concurrent with this code. If this is the case, it may be that the
2923 ** checkpointer has already determined that it will checkpoint
2924 ** snapshot X, where X is later in the wal file than pSnapshot, but
2925 ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2926 ** its intent. To avoid the race condition this leads to, ensure that
2927 ** there is no checkpointer process by taking a shared CKPT lock
2928 ** before checking pInfo->nBackfillAttempted. */
danfc87ab82020-05-06 19:22:59 +00002929 (void)walEnableBlocking(pWal);
dan8714de92020-05-04 19:42:35 +00002930 rc = walLockShared(pWal, WAL_CKPT_LOCK);
dan58021b22020-05-05 20:30:07 +00002931 walDisableBlocking(pWal);
dan8714de92020-05-04 19:42:35 +00002932
2933 if( rc!=SQLITE_OK ){
2934 return rc;
2935 }
dand0e6d132020-05-06 17:18:57 +00002936 pWal->ckptLock = 1;
dan8714de92020-05-04 19:42:35 +00002937 }
dan97ccc1b2020-03-27 17:23:17 +00002938#endif
2939
drh73b64e42010-05-30 19:55:15 +00002940 do{
drhaab4c022010-06-02 14:45:51 +00002941 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00002942 }while( rc==WAL_RETRY );
drhab1cc742011-02-19 16:51:45 +00002943 testcase( (rc&0xff)==SQLITE_BUSY );
2944 testcase( (rc&0xff)==SQLITE_IOERR );
2945 testcase( rc==SQLITE_PROTOCOL );
2946 testcase( rc==SQLITE_OK );
danfc1acf32015-12-05 20:51:54 +00002947
2948#ifdef SQLITE_ENABLE_SNAPSHOT
2949 if( rc==SQLITE_OK ){
drh998147e2015-12-10 02:15:03 +00002950 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
dan65127cd2015-12-09 20:05:27 +00002951 /* At this point the client has a lock on an aReadMark[] slot holding
dan3bf83cc2015-12-10 15:45:15 +00002952 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2953 ** is populated with the wal-index header corresponding to the head
2954 ** of the wal file. Verify that pSnapshot is still valid before
2955 ** continuing. Reasons why pSnapshot might no longer be valid:
dan65127cd2015-12-09 20:05:27 +00002956 **
drh998147e2015-12-10 02:15:03 +00002957 ** (1) The WAL file has been reset since the snapshot was taken.
2958 ** In this case, the salt will have changed.
dan65127cd2015-12-09 20:05:27 +00002959 **
drh998147e2015-12-10 02:15:03 +00002960 ** (2) A checkpoint as been attempted that wrote frames past
2961 ** pSnapshot->mxFrame into the database file. Note that the
2962 ** checkpoint need not have completed for this to cause problems.
dan65127cd2015-12-09 20:05:27 +00002963 */
danfc1acf32015-12-05 20:51:54 +00002964 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
dan65127cd2015-12-09 20:05:27 +00002965
drh71b62fa2015-12-11 01:22:22 +00002966 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
dan65127cd2015-12-09 20:05:27 +00002967 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2968
dan8714de92020-05-04 19:42:35 +00002969 /* Check that the wal file has not been wrapped. Assuming that it has
2970 ** not, also check that no checkpointer has attempted to checkpoint any
2971 ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2972 ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
2973 ** with *pSnapshot and set *pChanged as appropriate for opening the
2974 ** snapshot. */
2975 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2976 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2977 ){
2978 assert( pWal->readLock>0 );
2979 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2980 *pChanged = bChanged;
2981 }else{
2982 rc = SQLITE_ERROR_SNAPSHOT;
danfc1acf32015-12-05 20:51:54 +00002983 }
dan65127cd2015-12-09 20:05:27 +00002984
dan8714de92020-05-04 19:42:35 +00002985 /* A client using a non-current snapshot may not ignore any frames
2986 ** from the start of the wal file. This is because, for a system
2987 ** where (minFrame < iSnapshot < maxFrame), a checkpointer may
2988 ** have omitted to checkpoint a frame earlier than minFrame in
2989 ** the file because there exists a frame after iSnapshot that
2990 ** is the same database page. */
2991 pWal->minFrame = 1;
dan3bf83cc2015-12-10 15:45:15 +00002992
danfc1acf32015-12-05 20:51:54 +00002993 if( rc!=SQLITE_OK ){
2994 sqlite3WalEndReadTransaction(pWal);
2995 }
2996 }
2997 }
dan8714de92020-05-04 19:42:35 +00002998
2999 /* Release the shared CKPT lock obtained above. */
dand0e6d132020-05-06 17:18:57 +00003000 if( pWal->ckptLock ){
3001 assert( pSnapshot );
dan8714de92020-05-04 19:42:35 +00003002 walUnlockShared(pWal, WAL_CKPT_LOCK);
dand0e6d132020-05-06 17:18:57 +00003003 pWal->ckptLock = 0;
dan8714de92020-05-04 19:42:35 +00003004 }
danfc1acf32015-12-05 20:51:54 +00003005#endif
dan7c246102010-04-12 19:00:29 +00003006 return rc;
3007}
3008
3009/*
drh73b64e42010-05-30 19:55:15 +00003010** Finish with a read transaction. All this does is release the
3011** read-lock.
dan7c246102010-04-12 19:00:29 +00003012*/
drh73b64e42010-05-30 19:55:15 +00003013void sqlite3WalEndReadTransaction(Wal *pWal){
danbc9fc182020-05-06 21:24:29 +00003014 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00003015 if( pWal->readLock>=0 ){
3016 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3017 pWal->readLock = -1;
3018 }
dan7c246102010-04-12 19:00:29 +00003019}
3020
dan5e0ce872010-04-28 17:48:44 +00003021/*
dan99bd1092013-03-22 18:20:14 +00003022** Search the wal file for page pgno. If found, set *piRead to the frame that
3023** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
3024** to zero.
drh73b64e42010-05-30 19:55:15 +00003025**
dan99bd1092013-03-22 18:20:14 +00003026** Return SQLITE_OK if successful, or an error code if an error occurs. If an
3027** error does occur, the final value of *piRead is undefined.
dan7c246102010-04-12 19:00:29 +00003028*/
dan99bd1092013-03-22 18:20:14 +00003029int sqlite3WalFindFrame(
danbb23aff2010-05-10 14:46:09 +00003030 Wal *pWal, /* WAL handle */
3031 Pgno pgno, /* Database page number to read data for */
dan99bd1092013-03-22 18:20:14 +00003032 u32 *piRead /* OUT: Frame number (or zero) */
danb6e099a2010-05-04 14:47:39 +00003033){
danbb23aff2010-05-10 14:46:09 +00003034 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00003035 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00003036 int iHash; /* Used to loop through N hash tables */
dan6df003c2015-08-12 19:42:08 +00003037 int iMinHash;
dan7c246102010-04-12 19:00:29 +00003038
drhaab4c022010-06-02 14:45:51 +00003039 /* This routine is only be called from within a read transaction. */
3040 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00003041
danbb23aff2010-05-10 14:46:09 +00003042 /* If the "last page" field of the wal-index header snapshot is 0, then
3043 ** no data will be read from the wal under any circumstances. Return early
drha927e942010-06-24 02:46:48 +00003044 ** in this case as an optimization. Likewise, if pWal->readLock==0,
3045 ** then the WAL is ignored by the reader so return early, as if the
3046 ** WAL were empty.
danbb23aff2010-05-10 14:46:09 +00003047 */
drh85bc6df2017-11-10 20:00:50 +00003048 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
dan99bd1092013-03-22 18:20:14 +00003049 *piRead = 0;
danbb23aff2010-05-10 14:46:09 +00003050 return SQLITE_OK;
3051 }
3052
danbb23aff2010-05-10 14:46:09 +00003053 /* Search the hash table or tables for an entry matching page number
3054 ** pgno. Each iteration of the following for() loop searches one
3055 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
3056 **
drha927e942010-06-24 02:46:48 +00003057 ** This code might run concurrently to the code in walIndexAppend()
danbb23aff2010-05-10 14:46:09 +00003058 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00003059 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00003060 ** slot (aHash[iKey]) may have been added before or after the
3061 ** current read transaction was opened. Values added after the
3062 ** read transaction was opened may have been written incorrectly -
3063 ** i.e. these slots may contain garbage data. However, we assume
3064 ** that any slots written before the current read transaction was
3065 ** opened remain unmodified.
3066 **
3067 ** For the reasons above, the if(...) condition featured in the inner
3068 ** loop of the following block is more stringent that would be required
3069 ** if we had exclusive access to the hash-table:
3070 **
3071 ** (aPgno[iFrame]==pgno):
3072 ** This condition filters out normal hash-table collisions.
3073 **
3074 ** (iFrame<=iLast):
3075 ** This condition filters out entries that were added to the hash
3076 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00003077 */
danb8c7cfb2015-08-13 20:23:46 +00003078 iMinHash = walFramePage(pWal->minFrame);
drh8d3e15e2018-02-21 01:05:37 +00003079 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
drh4ece2f22018-06-09 16:49:00 +00003080 WalHashLoc sLoc; /* Hash table location */
danbb23aff2010-05-10 14:46:09 +00003081 int iKey; /* Hash slot index */
drh519426a2010-07-09 03:19:07 +00003082 int nCollide; /* Number of hash collisions remaining */
3083 int rc; /* Error code */
drhf16cf652020-05-19 12:27:29 +00003084 u32 iH;
danbb23aff2010-05-10 14:46:09 +00003085
drh4ece2f22018-06-09 16:49:00 +00003086 rc = walHashGet(pWal, iHash, &sLoc);
dan4280eb32010-06-12 12:02:35 +00003087 if( rc!=SQLITE_OK ){
3088 return rc;
3089 }
drh519426a2010-07-09 03:19:07 +00003090 nCollide = HASHTABLE_NSLOT;
drhf16cf652020-05-19 12:27:29 +00003091 iKey = walHash(pgno);
3092 while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){
drh680f0fe2019-04-17 21:12:05 +00003093 u32 iFrame = iH + sLoc.iZero;
3094 if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){
drh622a53d2014-12-29 11:50:39 +00003095 assert( iFrame>iRead || CORRUPT_DB );
danbb23aff2010-05-10 14:46:09 +00003096 iRead = iFrame;
3097 }
drh519426a2010-07-09 03:19:07 +00003098 if( (nCollide--)==0 ){
3099 return SQLITE_CORRUPT_BKPT;
3100 }
drhf16cf652020-05-19 12:27:29 +00003101 iKey = walNextHash(iKey);
dan7c246102010-04-12 19:00:29 +00003102 }
drh8d3e15e2018-02-21 01:05:37 +00003103 if( iRead ) break;
dan7c246102010-04-12 19:00:29 +00003104 }
dan7c246102010-04-12 19:00:29 +00003105
danbb23aff2010-05-10 14:46:09 +00003106#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
3107 /* If expensive assert() statements are available, do a linear search
3108 ** of the wal-index file content. Make sure the results agree with the
3109 ** result obtained using the hash indexes above. */
3110 {
3111 u32 iRead2 = 0;
3112 u32 iTest;
drh85bc6df2017-11-10 20:00:50 +00003113 assert( pWal->bShmUnreliable || pWal->minFrame>0 );
dan6c9d8f62017-11-07 21:25:15 +00003114 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
dan13a3cb82010-06-11 19:04:21 +00003115 if( walFramePgno(pWal, iTest)==pgno ){
danbb23aff2010-05-10 14:46:09 +00003116 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00003117 break;
3118 }
dan7c246102010-04-12 19:00:29 +00003119 }
danbb23aff2010-05-10 14:46:09 +00003120 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00003121 }
danbb23aff2010-05-10 14:46:09 +00003122#endif
dancd11fb22010-04-26 10:40:52 +00003123
dan99bd1092013-03-22 18:20:14 +00003124 *piRead = iRead;
dan7c246102010-04-12 19:00:29 +00003125 return SQLITE_OK;
3126}
3127
dan99bd1092013-03-22 18:20:14 +00003128/*
3129** Read the contents of frame iRead from the wal file into buffer pOut
3130** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
3131** error code otherwise.
3132*/
3133int sqlite3WalReadFrame(
3134 Wal *pWal, /* WAL handle */
3135 u32 iRead, /* Frame to read */
3136 int nOut, /* Size of buffer pOut in bytes */
3137 u8 *pOut /* Buffer to write page data to */
3138){
3139 int sz;
3140 i64 iOffset;
3141 sz = pWal->hdr.szPage;
3142 sz = (sz&0xfe00) + ((sz&0x0001)<<16);
3143 testcase( sz<=32768 );
3144 testcase( sz>=65536 );
3145 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
3146 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
3147 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
3148}
dan7c246102010-04-12 19:00:29 +00003149
3150/*
dan763afe62010-08-03 06:42:39 +00003151** Return the size of the database in pages (or zero, if unknown).
dan7c246102010-04-12 19:00:29 +00003152*/
dan763afe62010-08-03 06:42:39 +00003153Pgno sqlite3WalDbsize(Wal *pWal){
drh7e9e70b2010-08-16 14:17:59 +00003154 if( pWal && ALWAYS(pWal->readLock>=0) ){
dan763afe62010-08-03 06:42:39 +00003155 return pWal->hdr.nPage;
3156 }
3157 return 0;
dan7c246102010-04-12 19:00:29 +00003158}
3159
dan30c86292010-04-30 16:24:46 +00003160
drh73b64e42010-05-30 19:55:15 +00003161/*
3162** This function starts a write transaction on the WAL.
3163**
3164** A read transaction must have already been started by a prior call
3165** to sqlite3WalBeginReadTransaction().
3166**
3167** If another thread or process has written into the database since
3168** the read transaction was started, then it is not possible for this
3169** thread to write as doing so would cause a fork. So this routine
3170** returns SQLITE_BUSY in that case and no write transaction is started.
3171**
3172** There can only be a single writer active at a time.
3173*/
3174int sqlite3WalBeginWriteTransaction(Wal *pWal){
3175 int rc;
drh73b64e42010-05-30 19:55:15 +00003176
dan58021b22020-05-05 20:30:07 +00003177#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3178 /* If the write-lock is already held, then it was obtained before the
3179 ** read-transaction was even opened, making this call a no-op.
3180 ** Return early. */
3181 if( pWal->writeLock ){
3182 assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) );
3183 return SQLITE_OK;
3184 }
3185#endif
3186
drh73b64e42010-05-30 19:55:15 +00003187 /* Cannot start a write transaction without first holding a read
3188 ** transaction. */
3189 assert( pWal->readLock>=0 );
danc9a90222016-01-09 18:57:35 +00003190 assert( pWal->writeLock==0 && pWal->iReCksum==0 );
drh73b64e42010-05-30 19:55:15 +00003191
dan1e5de5a2010-07-15 18:20:53 +00003192 if( pWal->readOnly ){
3193 return SQLITE_READONLY;
3194 }
3195
drh73b64e42010-05-30 19:55:15 +00003196 /* Only one writer allowed at a time. Get the write lock. Return
3197 ** SQLITE_BUSY if unable.
3198 */
drhab372772015-12-02 16:10:16 +00003199 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
drh73b64e42010-05-30 19:55:15 +00003200 if( rc ){
3201 return rc;
3202 }
drhc99597c2010-05-31 01:41:15 +00003203 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00003204
3205 /* If another connection has written to the database file since the
3206 ** time the read transaction on this connection was started, then
3207 ** the write is disallowed.
3208 */
dan4280eb32010-06-12 12:02:35 +00003209 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
drh73b64e42010-05-30 19:55:15 +00003210 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00003211 pWal->writeLock = 0;
danf73819a2013-06-27 11:46:27 +00003212 rc = SQLITE_BUSY_SNAPSHOT;
drh73b64e42010-05-30 19:55:15 +00003213 }
3214
drh7ed91f22010-04-29 22:34:07 +00003215 return rc;
dan7c246102010-04-12 19:00:29 +00003216}
3217
dan74d6cd82010-04-24 18:44:05 +00003218/*
drh73b64e42010-05-30 19:55:15 +00003219** End a write transaction. The commit has already been done. This
3220** routine merely releases the lock.
3221*/
3222int sqlite3WalEndWriteTransaction(Wal *pWal){
danda9fe0c2010-07-13 18:44:03 +00003223 if( pWal->writeLock ){
3224 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3225 pWal->writeLock = 0;
danc9a90222016-01-09 18:57:35 +00003226 pWal->iReCksum = 0;
danf60b7f32011-12-16 13:24:27 +00003227 pWal->truncateOnCommit = 0;
danda9fe0c2010-07-13 18:44:03 +00003228 }
drh73b64e42010-05-30 19:55:15 +00003229 return SQLITE_OK;
3230}
3231
3232/*
dan74d6cd82010-04-24 18:44:05 +00003233** If any data has been written (but not committed) to the log file, this
3234** function moves the write-pointer back to the start of the transaction.
3235**
3236** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00003237** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00003238** other than SQLITE_OK, it is not invoked again and the error code is
3239** returned to the caller.
3240**
3241** Otherwise, if the callback function does not return an error, this
3242** function returns SQLITE_OK.
3243*/
drh7ed91f22010-04-29 22:34:07 +00003244int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00003245 int rc = SQLITE_OK;
drh7e9e70b2010-08-16 14:17:59 +00003246 if( ALWAYS(pWal->writeLock) ){
drh027a1282010-05-19 01:53:53 +00003247 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00003248 Pgno iFrame;
3249
dan5d656852010-06-14 07:53:26 +00003250 /* Restore the clients cache of the wal-index header to the state it
3251 ** was in before the client began writing to the database.
3252 */
dan067f3162010-06-14 10:30:12 +00003253 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
dan5d656852010-06-14 07:53:26 +00003254
3255 for(iFrame=pWal->hdr.mxFrame+1;
drh664f85d2014-11-19 14:05:41 +00003256 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
dan5d656852010-06-14 07:53:26 +00003257 iFrame++
3258 ){
3259 /* This call cannot fail. Unless the page for which the page number
3260 ** is passed as the second argument is (a) in the cache and
3261 ** (b) has an outstanding reference, then xUndo is either a no-op
3262 ** (if (a) is false) or simply expels the page from the cache (if (b)
3263 ** is false).
3264 **
3265 ** If the upper layer is doing a rollback, it is guaranteed that there
3266 ** are no outstanding references to any page other than page 1. And
3267 ** page 1 is never written to the log until the transaction is
3268 ** committed. As a result, the call to xUndo may not fail.
3269 */
dan5d656852010-06-14 07:53:26 +00003270 assert( walFramePgno(pWal, iFrame)!=1 );
3271 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
dan6f150142010-05-21 15:31:56 +00003272 }
dan7eb05752012-10-15 11:28:24 +00003273 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
dan74d6cd82010-04-24 18:44:05 +00003274 }
3275 return rc;
3276}
3277
dan71d89912010-05-24 13:57:42 +00003278/*
3279** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3280** values. This function populates the array with values required to
3281** "rollback" the write position of the WAL handle back to the current
3282** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00003283*/
dan71d89912010-05-24 13:57:42 +00003284void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00003285 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00003286 aWalData[0] = pWal->hdr.mxFrame;
3287 aWalData[1] = pWal->hdr.aFrameCksum[0];
3288 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00003289 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00003290}
3291
dan71d89912010-05-24 13:57:42 +00003292/*
3293** Move the write position of the WAL back to the point identified by
3294** the values in the aWalData[] array. aWalData must point to an array
3295** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3296** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00003297*/
dan71d89912010-05-24 13:57:42 +00003298int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00003299 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00003300
dan6e6bd562010-06-02 18:59:03 +00003301 assert( pWal->writeLock );
3302 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3303
3304 if( aWalData[3]!=pWal->nCkpt ){
3305 /* This savepoint was opened immediately after the write-transaction
3306 ** was started. Right after that, the writer decided to wrap around
3307 ** to the start of the log. Update the savepoint values to match.
3308 */
3309 aWalData[0] = 0;
3310 aWalData[3] = pWal->nCkpt;
3311 }
3312
dan71d89912010-05-24 13:57:42 +00003313 if( aWalData[0]<pWal->hdr.mxFrame ){
dan71d89912010-05-24 13:57:42 +00003314 pWal->hdr.mxFrame = aWalData[0];
3315 pWal->hdr.aFrameCksum[0] = aWalData[1];
3316 pWal->hdr.aFrameCksum[1] = aWalData[2];
dan5d656852010-06-14 07:53:26 +00003317 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00003318 }
dan6e6bd562010-06-02 18:59:03 +00003319
dan4cd78b42010-04-26 16:57:10 +00003320 return rc;
3321}
3322
dan9971e712010-06-01 15:44:57 +00003323/*
3324** This function is called just before writing a set of frames to the log
3325** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3326** to the current log file, it is possible to overwrite the start of the
3327** existing log file with the new frames (i.e. "reset" the log). If so,
3328** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3329** unchanged.
3330**
3331** SQLITE_OK is returned if no error is encountered (regardless of whether
3332** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
drh4533cd02010-10-05 15:41:05 +00003333** if an error occurs.
dan9971e712010-06-01 15:44:57 +00003334*/
3335static int walRestartLog(Wal *pWal){
3336 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00003337 int cnt;
3338
dan13a3cb82010-06-11 19:04:21 +00003339 if( pWal->readLock==0 ){
dan9971e712010-06-01 15:44:57 +00003340 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3341 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3342 if( pInfo->nBackfill>0 ){
drh658d76c2011-02-19 15:22:14 +00003343 u32 salt1;
3344 sqlite3_randomness(4, &salt1);
drhab372772015-12-02 16:10:16 +00003345 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
dan9971e712010-06-01 15:44:57 +00003346 if( rc==SQLITE_OK ){
3347 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3348 ** readers are currently using the WAL), then the transactions
3349 ** frames will overwrite the start of the existing log. Update the
3350 ** wal-index header to reflect this.
3351 **
3352 ** In theory it would be Ok to update the cache of the header only
3353 ** at this point. But updating the actual wal-index header is also
3354 ** safe and means there is no special case for sqlite3WalUndo()
danf26a1542014-12-02 19:04:54 +00003355 ** to handle if this transaction is rolled back. */
dan0fe8c1b2014-12-02 19:35:09 +00003356 walRestartHdr(pWal, salt1);
dan9971e712010-06-01 15:44:57 +00003357 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
drh4533cd02010-10-05 15:41:05 +00003358 }else if( rc!=SQLITE_BUSY ){
3359 return rc;
dan9971e712010-06-01 15:44:57 +00003360 }
3361 }
3362 walUnlockShared(pWal, WAL_READ_LOCK(0));
3363 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00003364 cnt = 0;
dan9971e712010-06-01 15:44:57 +00003365 do{
3366 int notUsed;
drhaab4c022010-06-02 14:45:51 +00003367 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00003368 }while( rc==WAL_RETRY );
drhc90e0812011-02-19 17:02:44 +00003369 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
drhab1cc742011-02-19 16:51:45 +00003370 testcase( (rc&0xff)==SQLITE_IOERR );
3371 testcase( rc==SQLITE_PROTOCOL );
3372 testcase( rc==SQLITE_OK );
dan9971e712010-06-01 15:44:57 +00003373 }
3374 return rc;
3375}
3376
drh88f975a2011-12-16 19:34:36 +00003377/*
drhd992b152011-12-20 20:13:25 +00003378** Information about the current state of the WAL file and where
3379** the next fsync should occur - passed from sqlite3WalFrames() into
3380** walWriteToLog().
3381*/
3382typedef struct WalWriter {
3383 Wal *pWal; /* The complete WAL information */
3384 sqlite3_file *pFd; /* The WAL file to which we write */
3385 sqlite3_int64 iSyncPoint; /* Fsync at this offset */
3386 int syncFlags; /* Flags for the fsync */
3387 int szPage; /* Size of one page */
3388} WalWriter;
3389
3390/*
drh88f975a2011-12-16 19:34:36 +00003391** Write iAmt bytes of content into the WAL file beginning at iOffset.
drhd992b152011-12-20 20:13:25 +00003392** Do a sync when crossing the p->iSyncPoint boundary.
drh88f975a2011-12-16 19:34:36 +00003393**
drhd992b152011-12-20 20:13:25 +00003394** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3395** first write the part before iSyncPoint, then sync, then write the
3396** rest.
drh88f975a2011-12-16 19:34:36 +00003397*/
3398static int walWriteToLog(
drhd992b152011-12-20 20:13:25 +00003399 WalWriter *p, /* WAL to write to */
drh88f975a2011-12-16 19:34:36 +00003400 void *pContent, /* Content to be written */
3401 int iAmt, /* Number of bytes to write */
3402 sqlite3_int64 iOffset /* Start writing at this offset */
3403){
3404 int rc;
drhd992b152011-12-20 20:13:25 +00003405 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3406 int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3407 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
drh88f975a2011-12-16 19:34:36 +00003408 if( rc ) return rc;
drhd992b152011-12-20 20:13:25 +00003409 iOffset += iFirstAmt;
3410 iAmt -= iFirstAmt;
drh88f975a2011-12-16 19:34:36 +00003411 pContent = (void*)(iFirstAmt + (char*)pContent);
drhdaaae7b2017-08-25 01:14:43 +00003412 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3413 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
drhcc8d10a2011-12-23 02:07:10 +00003414 if( iAmt==0 || rc ) return rc;
drh88f975a2011-12-16 19:34:36 +00003415 }
drhd992b152011-12-20 20:13:25 +00003416 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3417 return rc;
3418}
3419
3420/*
3421** Write out a single frame of the WAL
3422*/
3423static int walWriteOneFrame(
3424 WalWriter *p, /* Where to write the frame */
3425 PgHdr *pPage, /* The page of the frame to be written */
3426 int nTruncate, /* The commit flag. Usually 0. >0 for commit */
3427 sqlite3_int64 iOffset /* Byte offset at which to write */
3428){
3429 int rc; /* Result code from subfunctions */
3430 void *pData; /* Data actually written */
3431 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
drhd992b152011-12-20 20:13:25 +00003432 pData = pPage->pData;
drhd992b152011-12-20 20:13:25 +00003433 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3434 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3435 if( rc ) return rc;
3436 /* Write the page data */
3437 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
drh88f975a2011-12-16 19:34:36 +00003438 return rc;
3439}
3440
dand6f7c972016-01-09 16:39:29 +00003441/*
3442** This function is called as part of committing a transaction within which
3443** one or more frames have been overwritten. It updates the checksums for
danc9a90222016-01-09 18:57:35 +00003444** all frames written to the wal file by the current transaction starting
3445** with the earliest to have been overwritten.
dand6f7c972016-01-09 16:39:29 +00003446**
3447** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3448*/
danc9a90222016-01-09 18:57:35 +00003449static int walRewriteChecksums(Wal *pWal, u32 iLast){
dand6f7c972016-01-09 16:39:29 +00003450 const int szPage = pWal->szPage;/* Database page size */
3451 int rc = SQLITE_OK; /* Return code */
3452 u8 *aBuf; /* Buffer to load data from wal file into */
3453 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */
3454 u32 iRead; /* Next frame to read from wal file */
danc9a90222016-01-09 18:57:35 +00003455 i64 iCksumOff;
dand6f7c972016-01-09 16:39:29 +00003456
3457 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
mistachkinfad30392016-02-13 23:43:46 +00003458 if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
dand6f7c972016-01-09 16:39:29 +00003459
danc9a90222016-01-09 18:57:35 +00003460 /* Find the checksum values to use as input for the recalculating the
3461 ** first checksum. If the first frame is frame 1 (implying that the current
3462 ** transaction restarted the wal file), these values must be read from the
3463 ** wal-file header. Otherwise, read them from the frame header of the
3464 ** previous frame. */
3465 assert( pWal->iReCksum>0 );
3466 if( pWal->iReCksum==1 ){
3467 iCksumOff = 24;
dand6f7c972016-01-09 16:39:29 +00003468 }else{
danc9a90222016-01-09 18:57:35 +00003469 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
dand6f7c972016-01-09 16:39:29 +00003470 }
danc9a90222016-01-09 18:57:35 +00003471 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3472 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3473 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
dand6f7c972016-01-09 16:39:29 +00003474
danc9a90222016-01-09 18:57:35 +00003475 iRead = pWal->iReCksum;
3476 pWal->iReCksum = 0;
3477 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
dand6f7c972016-01-09 16:39:29 +00003478 i64 iOff = walFrameOffset(iRead, szPage);
3479 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3480 if( rc==SQLITE_OK ){
3481 u32 iPgno, nDbSize;
3482 iPgno = sqlite3Get4byte(aBuf);
3483 nDbSize = sqlite3Get4byte(&aBuf[4]);
3484
3485 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3486 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3487 }
3488 }
3489
3490 sqlite3_free(aBuf);
3491 return rc;
3492}
3493
dan7c246102010-04-12 19:00:29 +00003494/*
dan4cd78b42010-04-26 16:57:10 +00003495** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00003496** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00003497*/
drhc438efd2010-04-26 00:19:45 +00003498int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00003499 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00003500 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00003501 PgHdr *pList, /* List of dirty pages to write */
3502 Pgno nTruncate, /* Database size after this commit */
3503 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00003504 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00003505){
dan7c246102010-04-12 19:00:29 +00003506 int rc; /* Used to catch return codes */
3507 u32 iFrame; /* Next frame address */
dan7c246102010-04-12 19:00:29 +00003508 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00003509 PgHdr *pLast = 0; /* Last frame in list */
drhd992b152011-12-20 20:13:25 +00003510 int nExtra = 0; /* Number of extra copies of last page */
3511 int szFrame; /* The size of a single frame */
3512 i64 iOffset; /* Next byte to write in WAL file */
3513 WalWriter w; /* The writer */
dand6f7c972016-01-09 16:39:29 +00003514 u32 iFirst = 0; /* First frame that may be overwritten */
3515 WalIndexHdr *pLive; /* Pointer to shared header */
dan7c246102010-04-12 19:00:29 +00003516
dan7c246102010-04-12 19:00:29 +00003517 assert( pList );
drh73b64e42010-05-30 19:55:15 +00003518 assert( pWal->writeLock );
dan7c246102010-04-12 19:00:29 +00003519
drh41209942011-12-20 13:13:09 +00003520 /* If this frame set completes a transaction, then nTruncate>0. If
3521 ** nTruncate==0 then this frame set does not complete the transaction. */
3522 assert( (isCommit!=0)==(nTruncate!=0) );
3523
drhc74c3332010-05-31 12:15:19 +00003524#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3525 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3526 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3527 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3528 }
3529#endif
3530
dand6f7c972016-01-09 16:39:29 +00003531 pLive = (WalIndexHdr*)walIndexHdr(pWal);
drhb7c2f862016-01-09 23:55:47 +00003532 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
dand6f7c972016-01-09 16:39:29 +00003533 iFirst = pLive->mxFrame+1;
3534 }
3535
dan9971e712010-06-01 15:44:57 +00003536 /* See if it is possible to write these frames into the start of the
3537 ** log file, instead of appending to it at pWal->hdr.mxFrame.
3538 */
3539 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
dan9971e712010-06-01 15:44:57 +00003540 return rc;
3541 }
dan9971e712010-06-01 15:44:57 +00003542
drha2a42012010-05-18 18:01:08 +00003543 /* If this is the first frame written into the log, write the WAL
3544 ** header to the start of the WAL file. See comments at the top of
3545 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00003546 */
drh027a1282010-05-19 01:53:53 +00003547 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00003548 if( iFrame==0 ){
dan10f5a502010-06-23 15:55:43 +00003549 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
3550 u32 aCksum[2]; /* Checksum for wal-header */
3551
danb8fd6c22010-05-24 10:39:36 +00003552 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
dan10f5a502010-06-23 15:55:43 +00003553 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
drh23ea97b2010-05-20 16:45:58 +00003554 sqlite3Put4byte(&aWalHdr[8], szPage);
3555 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drhd2980312011-12-17 01:31:44 +00003556 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
drh7e263722010-05-20 21:21:09 +00003557 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
dan10f5a502010-06-23 15:55:43 +00003558 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3559 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3560 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3561
drhb2eced52010-08-12 02:41:12 +00003562 pWal->szPage = szPage;
dan10f5a502010-06-23 15:55:43 +00003563 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3564 pWal->hdr.aFrameCksum[0] = aCksum[0];
3565 pWal->hdr.aFrameCksum[1] = aCksum[1];
danf60b7f32011-12-16 13:24:27 +00003566 pWal->truncateOnCommit = 1;
dan10f5a502010-06-23 15:55:43 +00003567
drh23ea97b2010-05-20 16:45:58 +00003568 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00003569 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00003570 if( rc!=SQLITE_OK ){
3571 return rc;
3572 }
drhd992b152011-12-20 20:13:25 +00003573
3574 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3575 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
3576 ** an out-of-order write following a WAL restart could result in
3577 ** database corruption. See the ticket:
3578 **
drh9c6e07d2017-08-24 20:54:42 +00003579 ** https://sqlite.org/src/info/ff5be73dee
drhd992b152011-12-20 20:13:25 +00003580 */
drhdaaae7b2017-08-25 01:14:43 +00003581 if( pWal->syncHeader ){
3582 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
drhd992b152011-12-20 20:13:25 +00003583 if( rc ) return rc;
3584 }
dan97a31352010-04-16 13:59:31 +00003585 }
shanehbd2aaf92010-09-01 02:38:21 +00003586 assert( (int)pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00003587
drhd992b152011-12-20 20:13:25 +00003588 /* Setup information needed to write frames into the WAL */
3589 w.pWal = pWal;
3590 w.pFd = pWal->pWalFd;
3591 w.iSyncPoint = 0;
3592 w.syncFlags = sync_flags;
3593 w.szPage = szPage;
3594 iOffset = walFrameOffset(iFrame+1, szPage);
3595 szFrame = szPage + WAL_FRAME_HDRSIZE;
drh88f975a2011-12-16 19:34:36 +00003596
drhd992b152011-12-20 20:13:25 +00003597 /* Write all frames into the log file exactly once */
dan7c246102010-04-12 19:00:29 +00003598 for(p=pList; p; p=p->pDirty){
drhd992b152011-12-20 20:13:25 +00003599 int nDbSize; /* 0 normally. Positive == commit flag */
dand6f7c972016-01-09 16:39:29 +00003600
3601 /* Check if this page has already been written into the wal file by
3602 ** the current transaction. If so, overwrite the existing frame and
3603 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3604 ** checksums must be recomputed when the transaction is committed. */
3605 if( iFirst && (p->pDirty || isCommit==0) ){
3606 u32 iWrite = 0;
drh89970872016-01-11 00:52:32 +00003607 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3608 assert( rc==SQLITE_OK || iWrite==0 );
dand6f7c972016-01-09 16:39:29 +00003609 if( iWrite>=iFirst ){
3610 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
drh8e0cea12016-02-15 15:06:47 +00003611 void *pData;
danc9a90222016-01-09 18:57:35 +00003612 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3613 pWal->iReCksum = iWrite;
3614 }
drh8e0cea12016-02-15 15:06:47 +00003615 pData = p->pData;
drh8e0cea12016-02-15 15:06:47 +00003616 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
dand6f7c972016-01-09 16:39:29 +00003617 if( rc ) return rc;
3618 p->flags &= ~PGHDR_WAL_APPEND;
3619 continue;
3620 }
3621 }
3622
drhd992b152011-12-20 20:13:25 +00003623 iFrame++;
3624 assert( iOffset==walFrameOffset(iFrame, szPage) );
3625 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3626 rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3627 if( rc ) return rc;
dan7c246102010-04-12 19:00:29 +00003628 pLast = p;
drhd992b152011-12-20 20:13:25 +00003629 iOffset += szFrame;
dand6f7c972016-01-09 16:39:29 +00003630 p->flags |= PGHDR_WAL_APPEND;
3631 }
3632
3633 /* Recalculate checksums within the wal file if required. */
danc9a90222016-01-09 18:57:35 +00003634 if( isCommit && pWal->iReCksum ){
3635 rc = walRewriteChecksums(pWal, iFrame);
dand6f7c972016-01-09 16:39:29 +00003636 if( rc ) return rc;
dan7c246102010-04-12 19:00:29 +00003637 }
3638
drhd992b152011-12-20 20:13:25 +00003639 /* If this is the end of a transaction, then we might need to pad
3640 ** the transaction and/or sync the WAL file.
3641 **
3642 ** Padding and syncing only occur if this set of frames complete a
3643 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
peter.d.reid60ec9142014-09-06 16:39:46 +00003644 ** or synchronous==OFF, then no padding or syncing are needed.
drhd992b152011-12-20 20:13:25 +00003645 **
drhcb15f352011-12-23 01:04:17 +00003646 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3647 ** needed and only the sync is done. If padding is needed, then the
3648 ** final frame is repeated (with its commit mark) until the next sector
drhd992b152011-12-20 20:13:25 +00003649 ** boundary is crossed. Only the part of the WAL prior to the last
3650 ** sector boundary is synced; the part of the last frame that extends
3651 ** past the sector boundary is written after the sync.
3652 */
drhdaaae7b2017-08-25 01:14:43 +00003653 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
danfe912512016-05-24 16:20:51 +00003654 int bSync = 1;
drh374f4a02011-12-17 20:02:11 +00003655 if( pWal->padToSectorBoundary ){
danc9a53262012-10-01 06:50:55 +00003656 int sectorSize = sqlite3SectorSize(pWal->pWalFd);
drhd992b152011-12-20 20:13:25 +00003657 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
danfe912512016-05-24 16:20:51 +00003658 bSync = (w.iSyncPoint==iOffset);
3659 testcase( bSync );
drhd992b152011-12-20 20:13:25 +00003660 while( iOffset<w.iSyncPoint ){
3661 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3662 if( rc ) return rc;
3663 iOffset += szFrame;
3664 nExtra++;
drh55f66b32019-07-16 19:44:32 +00003665 assert( pLast!=0 );
dan7c246102010-04-12 19:00:29 +00003666 }
danfe912512016-05-24 16:20:51 +00003667 }
3668 if( bSync ){
3669 assert( rc==SQLITE_OK );
drhdaaae7b2017-08-25 01:14:43 +00003670 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
dan7c246102010-04-12 19:00:29 +00003671 }
dan7c246102010-04-12 19:00:29 +00003672 }
3673
drhd992b152011-12-20 20:13:25 +00003674 /* If this frame set completes the first transaction in the WAL and
3675 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3676 ** journal size limit, if possible.
3677 */
danf60b7f32011-12-16 13:24:27 +00003678 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3679 i64 sz = pWal->mxWalSize;
drhd992b152011-12-20 20:13:25 +00003680 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3681 sz = walFrameOffset(iFrame+nExtra+1, szPage);
danf60b7f32011-12-16 13:24:27 +00003682 }
3683 walLimitSize(pWal, sz);
3684 pWal->truncateOnCommit = 0;
3685 }
3686
drhe730fec2010-05-18 12:56:50 +00003687 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00003688 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00003689 ** guarantees that there are no other writers, and no data that may
3690 ** be in use by existing readers is being overwritten.
3691 */
drh027a1282010-05-19 01:53:53 +00003692 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00003693 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dand6f7c972016-01-09 16:39:29 +00003694 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
dan7c246102010-04-12 19:00:29 +00003695 iFrame++;
danc7991bd2010-05-05 19:04:59 +00003696 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00003697 }
drh55f66b32019-07-16 19:44:32 +00003698 assert( pLast!=0 || nExtra==0 );
drh20e226d2012-01-01 13:58:53 +00003699 while( rc==SQLITE_OK && nExtra>0 ){
dan7c246102010-04-12 19:00:29 +00003700 iFrame++;
drhd992b152011-12-20 20:13:25 +00003701 nExtra--;
danc7991bd2010-05-05 19:04:59 +00003702 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00003703 }
3704
danc7991bd2010-05-05 19:04:59 +00003705 if( rc==SQLITE_OK ){
3706 /* Update the private copy of the header. */
shaneh1df2db72010-08-18 02:28:48 +00003707 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00003708 testcase( szPage<=32768 );
3709 testcase( szPage>=65536 );
drh027a1282010-05-19 01:53:53 +00003710 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00003711 if( isCommit ){
3712 pWal->hdr.iChange++;
3713 pWal->hdr.nPage = nTruncate;
3714 }
danc7991bd2010-05-05 19:04:59 +00003715 /* If this is a commit, update the wal-index header too. */
3716 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00003717 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00003718 pWal->iCallback = iFrame;
3719 }
dan7c246102010-04-12 19:00:29 +00003720 }
danc7991bd2010-05-05 19:04:59 +00003721
drhc74c3332010-05-31 12:15:19 +00003722 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00003723 return rc;
dan7c246102010-04-12 19:00:29 +00003724}
3725
3726/*
drh73b64e42010-05-30 19:55:15 +00003727** This routine is called to implement sqlite3_wal_checkpoint() and
3728** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00003729**
drh73b64e42010-05-30 19:55:15 +00003730** Obtain a CHECKPOINT lock and then backfill as much information as
3731** we can from WAL into the database.
dana58f26f2010-11-16 18:56:51 +00003732**
3733** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3734** callback. In this case this function runs a blocking checkpoint.
dan7c246102010-04-12 19:00:29 +00003735*/
drhc438efd2010-04-26 00:19:45 +00003736int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00003737 Wal *pWal, /* Wal connection */
dan7fb89902016-08-12 16:21:15 +00003738 sqlite3 *db, /* Check this handle's interrupt flag */
drhdd90d7e2014-12-03 19:25:41 +00003739 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */
dana58f26f2010-11-16 18:56:51 +00003740 int (*xBusy)(void*), /* Function to call when busy */
3741 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00003742 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00003743 int nBuf, /* Size of temporary buffer */
dancdc1f042010-11-18 12:11:05 +00003744 u8 *zBuf, /* Temporary buffer to use */
3745 int *pnLog, /* OUT: Number of frames in WAL */
3746 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
dan7c246102010-04-12 19:00:29 +00003747){
danb9bf16b2010-04-14 11:23:30 +00003748 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00003749 int isChanged = 0; /* True if a new wal-index header is loaded */
danf2b8dd52010-11-18 19:28:01 +00003750 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
drhdd90d7e2014-12-03 19:25:41 +00003751 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */
dan7c246102010-04-12 19:00:29 +00003752
dand54ff602010-05-31 11:16:30 +00003753 assert( pWal->ckptLock==0 );
dana58f26f2010-11-16 18:56:51 +00003754 assert( pWal->writeLock==0 );
dan39c79f52010-04-15 10:58:51 +00003755
drhdd90d7e2014-12-03 19:25:41 +00003756 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3757 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3758 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3759
drh66dfec8b2011-06-01 20:01:49 +00003760 if( pWal->readOnly ) return SQLITE_READONLY;
drhc74c3332010-05-31 12:15:19 +00003761 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drhdd90d7e2014-12-03 19:25:41 +00003762
dan58021b22020-05-05 20:30:07 +00003763 /* Enable blocking locks, if possible. If blocking locks are successfully
3764 ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */
dan861fb1e2020-05-06 19:14:41 +00003765 sqlite3WalDb(pWal, db);
drh783e1592020-05-06 20:55:38 +00003766 (void)walEnableBlocking(pWal);
dan8714de92020-05-04 19:42:35 +00003767
3768 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3769 ** "checkpoint" lock on the database file.
3770 ** EVIDENCE-OF: R-10421-19736 If any other process is running a
3771 ** checkpoint operation at the same time, the lock cannot be obtained and
3772 ** SQLITE_BUSY is returned.
3773 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3774 ** it will not be invoked in this case.
3775 */
3776 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3777 testcase( rc==SQLITE_BUSY );
3778 testcase( rc!=SQLITE_OK && xBusy2!=0 );
3779 if( rc==SQLITE_OK ){
3780 pWal->ckptLock = 1;
3781
3782 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3783 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3784 ** file.
3785 **
3786 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3787 ** immediately, and a busy-handler is configured, it is invoked and the
3788 ** writer lock retried until either the busy-handler returns 0 or the
3789 ** lock is successfully obtained.
3790 */
3791 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3792 rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1);
3793 if( rc==SQLITE_OK ){
3794 pWal->writeLock = 1;
3795 }else if( rc==SQLITE_BUSY ){
3796 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3797 xBusy2 = 0;
3798 rc = SQLITE_OK;
3799 }
3800 }
3801 }
3802
dana58f26f2010-11-16 18:56:51 +00003803
danf2b8dd52010-11-18 19:28:01 +00003804 /* Read the wal-index header. */
danb9bf16b2010-04-14 11:23:30 +00003805 if( rc==SQLITE_OK ){
dand0e6d132020-05-06 17:18:57 +00003806 walDisableBlocking(pWal);
dana58f26f2010-11-16 18:56:51 +00003807 rc = walIndexReadHdr(pWal, &isChanged);
danfc87ab82020-05-06 19:22:59 +00003808 (void)walEnableBlocking(pWal);
danf55a4cf2013-04-01 16:56:41 +00003809 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3810 sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3811 }
dana58f26f2010-11-16 18:56:51 +00003812 }
danf2b8dd52010-11-18 19:28:01 +00003813
3814 /* Copy data from the log to the database file. */
dan9c5e3682011-02-07 15:12:12 +00003815 if( rc==SQLITE_OK ){
dand6f7c972016-01-09 16:39:29 +00003816
dan9c5e3682011-02-07 15:12:12 +00003817 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
danf2b8dd52010-11-18 19:28:01 +00003818 rc = SQLITE_CORRUPT_BKPT;
3819 }else{
dan7fb89902016-08-12 16:21:15 +00003820 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
dan9c5e3682011-02-07 15:12:12 +00003821 }
3822
3823 /* If no error occurred, set the output variables. */
3824 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
danf2b8dd52010-11-18 19:28:01 +00003825 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
dan9c5e3682011-02-07 15:12:12 +00003826 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
danf2b8dd52010-11-18 19:28:01 +00003827 }
danb9bf16b2010-04-14 11:23:30 +00003828 }
danf2b8dd52010-11-18 19:28:01 +00003829
dan31c03902010-04-29 14:51:33 +00003830 if( isChanged ){
3831 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00003832 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00003833 ** out of date. So zero the cached wal-index header to ensure that
3834 ** next time the pager opens a snapshot on this database it knows that
3835 ** the cache needs to be reset.
3836 */
drh7ed91f22010-04-29 22:34:07 +00003837 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan31c03902010-04-29 14:51:33 +00003838 }
danb9bf16b2010-04-14 11:23:30 +00003839
dan58021b22020-05-05 20:30:07 +00003840 walDisableBlocking(pWal);
dan861fb1e2020-05-06 19:14:41 +00003841 sqlite3WalDb(pWal, 0);
dan8714de92020-05-04 19:42:35 +00003842
danb9bf16b2010-04-14 11:23:30 +00003843 /* Release the locks. */
dana58f26f2010-11-16 18:56:51 +00003844 sqlite3WalEndWriteTransaction(pWal);
dan8714de92020-05-04 19:42:35 +00003845 if( pWal->ckptLock ){
3846 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3847 pWal->ckptLock = 0;
3848 }
drhc74c3332010-05-31 12:15:19 +00003849 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
dan7bb8b8a2020-05-06 20:27:18 +00003850#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3851 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3852#endif
danf2b8dd52010-11-18 19:28:01 +00003853 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
dan7c246102010-04-12 19:00:29 +00003854}
3855
drh7ed91f22010-04-29 22:34:07 +00003856/* Return the value to pass to a sqlite3_wal_hook callback, the
3857** number of frames in the WAL at the point of the last commit since
3858** sqlite3WalCallback() was called. If no commits have occurred since
3859** the last call, then return 0.
3860*/
3861int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00003862 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00003863 if( pWal ){
3864 ret = pWal->iCallback;
3865 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00003866 }
3867 return (int)ret;
3868}
dan55437592010-05-11 12:19:26 +00003869
3870/*
drh61e4ace2010-05-31 20:28:37 +00003871** This function is called to change the WAL subsystem into or out
3872** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00003873**
drh61e4ace2010-05-31 20:28:37 +00003874** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3875** into locking_mode=NORMAL. This means that we must acquire a lock
3876** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
3877** or if the acquisition of the lock fails, then return 0. If the
3878** transition out of exclusive-mode is successful, return 1. This
3879** operation must occur while the pager is still holding the exclusive
3880** lock on the main database file.
dan55437592010-05-11 12:19:26 +00003881**
drh61e4ace2010-05-31 20:28:37 +00003882** If op is one, then change from locking_mode=NORMAL into
3883** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
3884** be released. Return 1 if the transition is made and 0 if the
3885** WAL is already in exclusive-locking mode - meaning that this
3886** routine is a no-op. The pager must already hold the exclusive lock
3887** on the main database file before invoking this operation.
3888**
3889** If op is negative, then do a dry-run of the op==1 case but do
dan8c408002010-11-01 17:38:24 +00003890** not actually change anything. The pager uses this to see if it
drh61e4ace2010-05-31 20:28:37 +00003891** should acquire the database exclusive lock prior to invoking
3892** the op==1 case.
dan55437592010-05-11 12:19:26 +00003893*/
3894int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00003895 int rc;
drhaab4c022010-06-02 14:45:51 +00003896 assert( pWal->writeLock==0 );
dan8c408002010-11-01 17:38:24 +00003897 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
dan3cac5dc2010-06-04 18:37:59 +00003898
3899 /* pWal->readLock is usually set, but might be -1 if there was a
3900 ** prior error while attempting to acquire are read-lock. This cannot
3901 ** happen if the connection is actually in exclusive mode (as no xShmLock
3902 ** locks are taken in this case). Nor should the pager attempt to
3903 ** upgrade to exclusive-mode following such an error.
3904 */
drhaab4c022010-06-02 14:45:51 +00003905 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00003906 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3907
drh61e4ace2010-05-31 20:28:37 +00003908 if( op==0 ){
drhc05a0632017-11-11 20:11:01 +00003909 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
3910 pWal->exclusiveMode = WAL_NORMAL_MODE;
dan3cac5dc2010-06-04 18:37:59 +00003911 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drhc05a0632017-11-11 20:11:01 +00003912 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
drh61e4ace2010-05-31 20:28:37 +00003913 }
drhc05a0632017-11-11 20:11:01 +00003914 rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
drh61e4ace2010-05-31 20:28:37 +00003915 }else{
drhaab4c022010-06-02 14:45:51 +00003916 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00003917 rc = 0;
3918 }
3919 }else if( op>0 ){
drhc05a0632017-11-11 20:11:01 +00003920 assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
drhaab4c022010-06-02 14:45:51 +00003921 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00003922 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
drhc05a0632017-11-11 20:11:01 +00003923 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
drh61e4ace2010-05-31 20:28:37 +00003924 rc = 1;
3925 }else{
drhc05a0632017-11-11 20:11:01 +00003926 rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
dan55437592010-05-11 12:19:26 +00003927 }
drh61e4ace2010-05-31 20:28:37 +00003928 return rc;
dan55437592010-05-11 12:19:26 +00003929}
3930
dan8c408002010-11-01 17:38:24 +00003931/*
3932** Return true if the argument is non-NULL and the WAL module is using
3933** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3934** WAL module is using shared-memory, return false.
3935*/
3936int sqlite3WalHeapMemory(Wal *pWal){
3937 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3938}
3939
danfc1acf32015-12-05 20:51:54 +00003940#ifdef SQLITE_ENABLE_SNAPSHOT
drhe230a892015-12-10 22:48:22 +00003941/* Create a snapshot object. The content of a snapshot is opaque to
3942** every other subsystem, so the WAL module can put whatever it needs
3943** in the object.
3944*/
danfc1acf32015-12-05 20:51:54 +00003945int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3946 int rc = SQLITE_OK;
3947 WalIndexHdr *pRet;
drhba6eb872016-11-15 17:37:56 +00003948 static const u32 aZero[4] = { 0, 0, 0, 0 };
danfc1acf32015-12-05 20:51:54 +00003949
3950 assert( pWal->readLock>=0 && pWal->writeLock==0 );
3951
drhba6eb872016-11-15 17:37:56 +00003952 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
3953 *ppSnapshot = 0;
3954 return SQLITE_ERROR;
3955 }
danfc1acf32015-12-05 20:51:54 +00003956 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3957 if( pRet==0 ){
mistachkinfad30392016-02-13 23:43:46 +00003958 rc = SQLITE_NOMEM_BKPT;
danfc1acf32015-12-05 20:51:54 +00003959 }else{
3960 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3961 *ppSnapshot = (sqlite3_snapshot*)pRet;
3962 }
3963
3964 return rc;
3965}
3966
drhe230a892015-12-10 22:48:22 +00003967/* Try to open on pSnapshot when the next read-transaction starts
3968*/
dan8714de92020-05-04 19:42:35 +00003969void sqlite3WalSnapshotOpen(
3970 Wal *pWal,
dan8714de92020-05-04 19:42:35 +00003971 sqlite3_snapshot *pSnapshot
3972){
danfc1acf32015-12-05 20:51:54 +00003973 pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3974}
danad2d5ba2016-04-11 19:59:52 +00003975
3976/*
3977** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
3978** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
3979*/
3980int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
3981 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
3982 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
3983
3984 /* aSalt[0] is a copy of the value stored in the wal file header. It
3985 ** is incremented each time the wal file is restarted. */
3986 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
3987 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
3988 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
3989 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
3990 return 0;
3991}
danfa3d4c12018-08-06 17:12:36 +00003992
3993/*
3994** The caller currently has a read transaction open on the database.
3995** This function takes a SHARED lock on the CHECKPOINTER slot and then
3996** checks if the snapshot passed as the second argument is still
3997** available. If so, SQLITE_OK is returned.
3998**
3999** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
4000** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
4001** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
4002** lock is released before returning.
4003*/
4004int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
4005 int rc;
4006 rc = walLockShared(pWal, WAL_CKPT_LOCK);
4007 if( rc==SQLITE_OK ){
4008 WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
4009 if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
4010 || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
4011 ){
dan8d4b7a32018-08-31 19:00:16 +00004012 rc = SQLITE_ERROR_SNAPSHOT;
danfa3d4c12018-08-06 17:12:36 +00004013 walUnlockShared(pWal, WAL_CKPT_LOCK);
4014 }
4015 }
4016 return rc;
4017}
4018
4019/*
4020** Release a lock obtained by an earlier successful call to
4021** sqlite3WalSnapshotCheck().
4022*/
4023void sqlite3WalSnapshotUnlock(Wal *pWal){
4024 assert( pWal );
4025 walUnlockShared(pWal, WAL_CKPT_LOCK);
4026}
4027
4028
danfc1acf32015-12-05 20:51:54 +00004029#endif /* SQLITE_ENABLE_SNAPSHOT */
4030
drh70708602012-02-24 14:33:28 +00004031#ifdef SQLITE_ENABLE_ZIPVFS
danb3bdc722012-02-23 15:35:49 +00004032/*
4033** If the argument is not NULL, it points to a Wal object that holds a
4034** read-lock. This function returns the database page-size if it is known,
4035** or zero if it is not (or if pWal is NULL).
4036*/
4037int sqlite3WalFramesize(Wal *pWal){
danb3bdc722012-02-23 15:35:49 +00004038 assert( pWal==0 || pWal->readLock>=0 );
4039 return (pWal ? pWal->szPage : 0);
4040}
drh70708602012-02-24 14:33:28 +00004041#endif
danb3bdc722012-02-23 15:35:49 +00004042
drh21d61852016-01-08 02:27:01 +00004043/* Return the sqlite3_file object for the WAL file
4044*/
4045sqlite3_file *sqlite3WalFile(Wal *pWal){
4046 return pWal->pWalFd;
4047}
4048
dan5cf53532010-05-01 16:40:20 +00004049#endif /* #ifndef SQLITE_OMIT_WAL */