blob: 4a506dd592ddcc34d97996bb511338bf597f073a [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh0fd61352014-02-07 02:29:45 +000012** The code in this file implements the function that runs the
13** bytecode of a prepared statement.
drh75897232000-05-29 14:26:00 +000014**
drhac82fcf2002-09-08 17:23:41 +000015** Various scripts scan this source file in order to generate HTML
16** documentation, headers files, or other derived files. The formatting
17** of the code in this file is, therefore, important. See other comments
18** in this file for details. If in doubt, do not deviate from existing
19** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000020*/
21#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000022#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000023
24/*
drh2b4ded92010-09-27 21:09:31 +000025** Invoke this macro on memory cells just prior to changing the
26** value of the cell. This macro verifies that shallow copies are
drh0fd61352014-02-07 02:29:45 +000027** not misused. A shallow copy of a string or blob just copies a
28** pointer to the string or blob, not the content. If the original
29** is changed while the copy is still in use, the string or blob might
30** be changed out from under the copy. This macro verifies that nothing
drhb6e8fd12014-03-06 01:56:33 +000031** like that ever happens.
drh2b4ded92010-09-27 21:09:31 +000032*/
33#ifdef SQLITE_DEBUG
drhe4c88c02012-01-04 12:57:45 +000034# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
drh2b4ded92010-09-27 21:09:31 +000035#else
36# define memAboutToChange(P,M)
37#endif
38
39/*
drh487ab3c2001-11-08 00:45:21 +000040** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000041** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000042** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000043** working correctly. This variable has no function other than to
44** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000045*/
drh0f7eb612006-08-08 13:51:43 +000046#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000047int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000048#endif
drh487ab3c2001-11-08 00:45:21 +000049
drhf6038712004-02-08 18:07:34 +000050/*
51** When this global variable is positive, it gets decremented once before
drhe4c88c02012-01-04 12:57:45 +000052** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53** field of the sqlite3 structure is set in order to simulate an interrupt.
drhf6038712004-02-08 18:07:34 +000054**
55** This facility is used for testing purposes only. It does not function
56** in an ordinary build.
57*/
drh0f7eb612006-08-08 13:51:43 +000058#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000059int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000060#endif
drh1350b032002-02-27 19:00:20 +000061
danielk19777e18c252004-05-25 11:47:24 +000062/*
drh6bf89572004-11-03 16:27:01 +000063** The next global variable is incremented each type the OP_Sort opcode
64** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000065** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000066** has no function other than to help verify the correct operation of the
67** library.
68*/
drh0f7eb612006-08-08 13:51:43 +000069#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000070int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000071#endif
drh6bf89572004-11-03 16:27:01 +000072
73/*
drhae7e1512007-05-02 16:51:59 +000074** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000075** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000076** use this information to make sure that the zero-blob functionality
77** is working correctly. This variable has no function other than to
78** help verify the correct operation of the library.
79*/
80#ifdef SQLITE_TEST
81int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +000082static void updateMaxBlobsize(Mem *p){
83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84 sqlite3_max_blobsize = p->n;
85 }
86}
drhae7e1512007-05-02 16:51:59 +000087#endif
88
89/*
drh9b1c62d2011-03-30 21:04:43 +000090** This macro evaluates to true if either the update hook or the preupdate
91** hook are enabled for database connect DB.
92*/
93#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
drh74c33022016-03-30 12:56:55 +000094# define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
drh9b1c62d2011-03-30 21:04:43 +000095#else
drh74c33022016-03-30 12:56:55 +000096# define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
drh9b1c62d2011-03-30 21:04:43 +000097#endif
98
99/*
drh0fd61352014-02-07 02:29:45 +0000100** The next global variable is incremented each time the OP_Found opcode
dan0ff297e2009-09-25 17:03:14 +0000101** is executed. This is used to test whether or not the foreign key
102** operation implemented using OP_FkIsZero is working. This variable
103** has no function other than to help verify the correct operation of the
104** library.
105*/
106#ifdef SQLITE_TEST
107int sqlite3_found_count = 0;
108#endif
109
110/*
drhb7654112008-01-12 12:48:07 +0000111** Test a register to see if it exceeds the current maximum blob size.
112** If it does, record the new maximum blob size.
113*/
drhd12602a2016-12-07 15:49:02 +0000114#if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
drhca48c902008-01-18 14:08:24 +0000115# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000116#else
117# define UPDATE_MAX_BLOBSIZE(P)
118#endif
119
120/*
drh5655c542014-02-19 19:14:34 +0000121** Invoke the VDBE coverage callback, if that callback is defined. This
122** feature is used for test suite validation only and does not appear an
123** production builds.
124**
125** M is an integer, 2 or 3, that indices how many different ways the
126** branch can go. It is usually 2. "I" is the direction the branch
127** goes. 0 means falls through. 1 means branch is taken. 2 means the
128** second alternative branch is taken.
drh4336b0e2014-08-05 00:53:51 +0000129**
130** iSrcLine is the source code line (from the __LINE__ macro) that
131** generated the VDBE instruction. This instrumentation assumes that all
132** source code is in a single file (the amalgamation). Special values 1
133** and 2 for the iSrcLine parameter mean that this particular branch is
134** always taken or never taken, respectively.
drh688852a2014-02-17 22:40:43 +0000135*/
136#if !defined(SQLITE_VDBE_COVERAGE)
137# define VdbeBranchTaken(I,M)
138#else
drh5655c542014-02-19 19:14:34 +0000139# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
140 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
141 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
142 M = iSrcLine;
143 /* Assert the truth of VdbeCoverageAlwaysTaken() and
144 ** VdbeCoverageNeverTaken() */
145 assert( (M & I)==I );
146 }else{
147 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
148 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
149 iSrcLine,I,M);
150 }
151 }
drh688852a2014-02-17 22:40:43 +0000152#endif
153
154/*
drh9cbf3422008-01-17 16:22:13 +0000155** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000156** already. Return non-zero if a malloc() fails.
157*/
drhb21c8cd2007-08-21 19:33:56 +0000158#define Stringify(P, enc) \
drhbd9507c2014-08-23 17:21:37 +0000159 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
drhf4479502004-05-27 03:12:53 +0000160 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000161
162/*
danielk1977bd7e4602004-05-24 07:34:48 +0000163** An ephemeral string value (signified by the MEM_Ephem flag) contains
164** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000165** is responsible for deallocating that string. Because the register
166** does not control the string, it might be deleted without the register
167** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000168**
169** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000170** string that the register itself controls. In other words, it
drhc91b2fd2014-03-01 18:13:23 +0000171** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
danielk1977bd7e4602004-05-24 07:34:48 +0000172*/
drhb21c8cd2007-08-21 19:33:56 +0000173#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000174 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000175 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000176
dan689ab892011-08-12 15:02:00 +0000177/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
drhc960dcb2015-11-20 19:22:01 +0000178#define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
danielk19778a6b5412004-05-24 07:04:25 +0000179
180/*
drhdfe88ec2008-11-03 20:55:06 +0000181** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000182** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000183*/
drhdfe88ec2008-11-03 20:55:06 +0000184static VdbeCursor *allocateCursor(
185 Vdbe *p, /* The virtual machine */
186 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000187 int nField, /* Number of fields in the table or index */
drhe4c88c02012-01-04 12:57:45 +0000188 int iDb, /* Database the cursor belongs to, or -1 */
drhc960dcb2015-11-20 19:22:01 +0000189 u8 eCurType /* Type of the new cursor */
danielk1977cd3e8f72008-03-25 09:47:35 +0000190){
191 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000192 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000193 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000194 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000195 **
196 ** * Sometimes cursor numbers are used for a couple of different
197 ** purposes in a vdbe program. The different uses might require
198 ** different sized allocations. Memory cells provide growable
199 ** allocations.
200 **
201 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
202 ** be freed lazily via the sqlite3_release_memory() API. This
203 ** minimizes the number of malloc calls made by the system.
204 **
drh3cdce922016-03-21 00:30:40 +0000205 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
drh9f6168b2016-03-19 23:32:58 +0000206 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
207 ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
danielk1977cd3e8f72008-03-25 09:47:35 +0000208 */
drh9f6168b2016-03-19 23:32:58 +0000209 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
danielk1977cd3e8f72008-03-25 09:47:35 +0000210
danielk19775f096132008-03-28 15:44:09 +0000211 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000212 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000213 nByte =
drh5cc10232013-11-21 01:04:02 +0000214 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
drhc960dcb2015-11-20 19:22:01 +0000215 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
danielk1977cd3e8f72008-03-25 09:47:35 +0000216
drh9f6168b2016-03-19 23:32:58 +0000217 assert( iCur>=0 && iCur<p->nCursor );
drha3fa1402016-04-29 02:55:05 +0000218 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
danielk1977be718892006-06-23 08:05:19 +0000219 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000220 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000221 }
drh322f2852014-09-19 00:43:39 +0000222 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
drhdfe88ec2008-11-03 20:55:06 +0000223 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhfbd8cbd2016-12-10 12:58:15 +0000224 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
drhc960dcb2015-11-20 19:22:01 +0000225 pCx->eCurType = eCurType;
danielk197794eb6a12005-12-15 15:22:08 +0000226 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000227 pCx->nField = nField;
drhb53a5a92014-10-12 22:37:22 +0000228 pCx->aOffset = &pCx->aType[nField];
drhc960dcb2015-11-20 19:22:01 +0000229 if( eCurType==CURTYPE_BTREE ){
230 pCx->uc.pCursor = (BtCursor*)
drh5cc10232013-11-21 01:04:02 +0000231 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
drhc960dcb2015-11-20 19:22:01 +0000232 sqlite3BtreeCursorZero(pCx->uc.pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000233 }
danielk197794eb6a12005-12-15 15:22:08 +0000234 }
drh4774b132004-06-12 20:12:51 +0000235 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000236}
237
danielk19773d1bfea2004-05-14 11:00:53 +0000238/*
drh29d72102006-02-09 22:13:41 +0000239** Try to convert a value into a numeric representation if we can
240** do so without loss of information. In other words, if the string
241** looks like a number, convert it into a number. If it does not
242** look like a number, leave it alone.
drhbd9507c2014-08-23 17:21:37 +0000243**
244** If the bTryForInt flag is true, then extra effort is made to give
245** an integer representation. Strings that look like floating point
246** values but which have no fractional component (example: '48.00')
247** will have a MEM_Int representation when bTryForInt is true.
248**
249** If bTryForInt is false, then if the input string contains a decimal
250** point or exponential notation, the result is only MEM_Real, even
251** if there is an exact integer representation of the quantity.
drh29d72102006-02-09 22:13:41 +0000252*/
drhbd9507c2014-08-23 17:21:37 +0000253static void applyNumericAffinity(Mem *pRec, int bTryForInt){
drh975b4c62014-07-26 16:47:23 +0000254 double rValue;
255 i64 iValue;
256 u8 enc = pRec->enc;
drh11a6eee2014-09-19 22:01:54 +0000257 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
drh975b4c62014-07-26 16:47:23 +0000258 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
259 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
260 pRec->u.i = iValue;
261 pRec->flags |= MEM_Int;
262 }else{
drh74eaba42014-09-18 17:52:15 +0000263 pRec->u.r = rValue;
drh975b4c62014-07-26 16:47:23 +0000264 pRec->flags |= MEM_Real;
drhbd9507c2014-08-23 17:21:37 +0000265 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000266 }
drh06b3bd52018-02-01 01:13:33 +0000267 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the
268 ** string representation after computing a numeric equivalent, because the
269 ** string representation might not be the canonical representation for the
270 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */
271 pRec->flags &= ~MEM_Str;
drh29d72102006-02-09 22:13:41 +0000272}
273
274/*
drh8a512562005-11-14 22:29:05 +0000275** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000276**
drh8a512562005-11-14 22:29:05 +0000277** SQLITE_AFF_INTEGER:
278** SQLITE_AFF_REAL:
279** SQLITE_AFF_NUMERIC:
280** Try to convert pRec to an integer representation or a
281** floating-point representation if an integer representation
282** is not possible. Note that the integer representation is
283** always preferred, even if the affinity is REAL, because
284** an integer representation is more space efficient on disk.
285**
286** SQLITE_AFF_TEXT:
287** Convert pRec to a text representation.
288**
drh05883a32015-06-02 15:32:08 +0000289** SQLITE_AFF_BLOB:
drh8a512562005-11-14 22:29:05 +0000290** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000291*/
drh17435752007-08-16 04:30:38 +0000292static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000293 Mem *pRec, /* The value to apply affinity to */
294 char affinity, /* The affinity to be applied */
295 u8 enc /* Use this text encoding */
296){
drh7ea31cc2014-09-18 14:36:00 +0000297 if( affinity>=SQLITE_AFF_NUMERIC ){
drh8a512562005-11-14 22:29:05 +0000298 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
299 || affinity==SQLITE_AFF_NUMERIC );
drha3fa1402016-04-29 02:55:05 +0000300 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
drhbd9507c2014-08-23 17:21:37 +0000301 if( (pRec->flags & MEM_Real)==0 ){
drh11a6eee2014-09-19 22:01:54 +0000302 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
drhbd9507c2014-08-23 17:21:37 +0000303 }else{
304 sqlite3VdbeIntegerAffinity(pRec);
305 }
drh17c40292004-07-21 02:53:29 +0000306 }
drh7ea31cc2014-09-18 14:36:00 +0000307 }else if( affinity==SQLITE_AFF_TEXT ){
danielk19773d1bfea2004-05-14 11:00:53 +0000308 /* Only attempt the conversion to TEXT if there is an integer or real
drhf4479502004-05-27 03:12:53 +0000309 ** representation (blob and NULL do not get converted) but no string
drha3fa1402016-04-29 02:55:05 +0000310 ** representation. It would be harmless to repeat the conversion if
311 ** there is already a string rep, but it is pointless to waste those
312 ** CPU cycles. */
313 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
314 if( (pRec->flags&(MEM_Real|MEM_Int)) ){
315 sqlite3VdbeMemStringify(pRec, enc, 1);
316 }
danielk19773d1bfea2004-05-14 11:00:53 +0000317 }
dandde548c2015-05-19 19:44:25 +0000318 pRec->flags &= ~(MEM_Real|MEM_Int);
danielk19773d1bfea2004-05-14 11:00:53 +0000319 }
320}
321
danielk1977aee18ef2005-03-09 12:26:50 +0000322/*
drh29d72102006-02-09 22:13:41 +0000323** Try to convert the type of a function argument or a result column
324** into a numeric representation. Use either INTEGER or REAL whichever
325** is appropriate. But only do the conversion if it is possible without
326** loss of information and return the revised type of the argument.
drh29d72102006-02-09 22:13:41 +0000327*/
328int sqlite3_value_numeric_type(sqlite3_value *pVal){
drh1b27b8c2014-02-10 03:21:57 +0000329 int eType = sqlite3_value_type(pVal);
330 if( eType==SQLITE_TEXT ){
331 Mem *pMem = (Mem*)pVal;
drhbd9507c2014-08-23 17:21:37 +0000332 applyNumericAffinity(pMem, 0);
drh1b27b8c2014-02-10 03:21:57 +0000333 eType = sqlite3_value_type(pVal);
drhe5a8a1d2010-11-18 12:31:24 +0000334 }
drh1b27b8c2014-02-10 03:21:57 +0000335 return eType;
drh29d72102006-02-09 22:13:41 +0000336}
337
338/*
danielk1977aee18ef2005-03-09 12:26:50 +0000339** Exported version of applyAffinity(). This one works on sqlite3_value*,
340** not the internal Mem* type.
341*/
danielk19771e536952007-08-16 10:09:01 +0000342void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000343 sqlite3_value *pVal,
344 u8 affinity,
345 u8 enc
346){
drhb21c8cd2007-08-21 19:33:56 +0000347 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000348}
349
drh3d1d90a2014-03-24 15:00:15 +0000350/*
drhf1a89ed2014-08-23 17:41:15 +0000351** pMem currently only holds a string type (or maybe a BLOB that we can
352** interpret as a string if we want to). Compute its corresponding
drh74eaba42014-09-18 17:52:15 +0000353** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
drhf1a89ed2014-08-23 17:41:15 +0000354** accordingly.
355*/
356static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
357 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
358 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
drh74eaba42014-09-18 17:52:15 +0000359 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
drhf1a89ed2014-08-23 17:41:15 +0000360 return 0;
361 }
drh84d4f1a2017-09-20 10:47:10 +0000362 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==0 ){
drhf1a89ed2014-08-23 17:41:15 +0000363 return MEM_Int;
364 }
365 return MEM_Real;
366}
367
368/*
drh3d1d90a2014-03-24 15:00:15 +0000369** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
370** none.
371**
372** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
drh74eaba42014-09-18 17:52:15 +0000373** But it does set pMem->u.r and pMem->u.i appropriately.
drh3d1d90a2014-03-24 15:00:15 +0000374*/
375static u16 numericType(Mem *pMem){
376 if( pMem->flags & (MEM_Int|MEM_Real) ){
377 return pMem->flags & (MEM_Int|MEM_Real);
378 }
379 if( pMem->flags & (MEM_Str|MEM_Blob) ){
drhf1a89ed2014-08-23 17:41:15 +0000380 return computeNumericType(pMem);
drh3d1d90a2014-03-24 15:00:15 +0000381 }
382 return 0;
383}
384
danielk1977b5402fb2005-01-12 07:15:04 +0000385#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000386/*
danielk1977ca6b2912004-05-21 10:49:47 +0000387** Write a nice string representation of the contents of cell pMem
388** into buffer zBuf, length nBuf.
389*/
drh74161702006-02-24 02:53:49 +0000390void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000391 char *zCsr = zBuf;
392 int f = pMem->flags;
393
drh57196282004-10-06 15:41:16 +0000394 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000395
danielk1977ca6b2912004-05-21 10:49:47 +0000396 if( f&MEM_Blob ){
397 int i;
398 char c;
399 if( f & MEM_Dyn ){
400 c = 'z';
401 assert( (f & (MEM_Static|MEM_Ephem))==0 );
402 }else if( f & MEM_Static ){
403 c = 't';
404 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
405 }else if( f & MEM_Ephem ){
406 c = 'e';
407 assert( (f & (MEM_Static|MEM_Dyn))==0 );
408 }else{
409 c = 's';
410 }
drh85c2dc02017-03-16 13:30:58 +0000411 *(zCsr++) = c;
drh5bb3eb92007-05-04 13:15:55 +0000412 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000413 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000414 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000415 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000416 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000417 }
418 for(i=0; i<16 && i<pMem->n; i++){
419 char z = pMem->z[i];
420 if( z<32 || z>126 ) *zCsr++ = '.';
421 else *zCsr++ = z;
422 }
drh85c2dc02017-03-16 13:30:58 +0000423 *(zCsr++) = ']';
drhfdf972a2007-05-02 13:30:27 +0000424 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000425 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000426 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000427 }
danielk1977b1bc9532004-05-22 03:05:33 +0000428 *zCsr = '\0';
429 }else if( f & MEM_Str ){
430 int j, k;
431 zBuf[0] = ' ';
432 if( f & MEM_Dyn ){
433 zBuf[1] = 'z';
434 assert( (f & (MEM_Static|MEM_Ephem))==0 );
435 }else if( f & MEM_Static ){
436 zBuf[1] = 't';
437 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
438 }else if( f & MEM_Ephem ){
439 zBuf[1] = 'e';
440 assert( (f & (MEM_Static|MEM_Dyn))==0 );
441 }else{
442 zBuf[1] = 's';
443 }
444 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000445 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000446 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000447 zBuf[k++] = '[';
448 for(j=0; j<15 && j<pMem->n; j++){
449 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000450 if( c>=0x20 && c<0x7f ){
451 zBuf[k++] = c;
452 }else{
453 zBuf[k++] = '.';
454 }
455 }
456 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000457 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000458 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000459 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000460 }
danielk1977ca6b2912004-05-21 10:49:47 +0000461}
462#endif
463
drh5b6afba2008-01-05 16:29:28 +0000464#ifdef SQLITE_DEBUG
465/*
466** Print the value of a register for tracing purposes:
467*/
drh84e55a82013-11-13 17:58:23 +0000468static void memTracePrint(Mem *p){
drha5750cf2014-02-07 13:20:31 +0000469 if( p->flags & MEM_Undefined ){
drh84e55a82013-11-13 17:58:23 +0000470 printf(" undefined");
drh953f7612012-12-07 22:18:54 +0000471 }else if( p->flags & MEM_Null ){
drhce2fbd12018-01-12 21:00:14 +0000472 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
drh5b6afba2008-01-05 16:29:28 +0000473 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
drh84e55a82013-11-13 17:58:23 +0000474 printf(" si:%lld", p->u.i);
drh5b6afba2008-01-05 16:29:28 +0000475 }else if( p->flags & MEM_Int ){
drh84e55a82013-11-13 17:58:23 +0000476 printf(" i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000477#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000478 }else if( p->flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +0000479 printf(" r:%g", p->u.r);
drh0b3bf922009-06-15 20:45:34 +0000480#endif
drh733bf1b2009-04-22 00:47:00 +0000481 }else if( p->flags & MEM_RowSet ){
drh84e55a82013-11-13 17:58:23 +0000482 printf(" (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000483 }else{
484 char zBuf[200];
485 sqlite3VdbeMemPrettyPrint(p, zBuf);
drh84e55a82013-11-13 17:58:23 +0000486 printf(" %s", zBuf);
drh5b6afba2008-01-05 16:29:28 +0000487 }
dan5b6c8e42016-01-30 15:46:03 +0000488 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
drh5b6afba2008-01-05 16:29:28 +0000489}
drh84e55a82013-11-13 17:58:23 +0000490static void registerTrace(int iReg, Mem *p){
491 printf("REG[%d] = ", iReg);
492 memTracePrint(p);
493 printf("\n");
drhe2bc6552017-04-17 20:50:34 +0000494 sqlite3VdbeCheckMemInvariants(p);
drh5b6afba2008-01-05 16:29:28 +0000495}
496#endif
497
498#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000499# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
drh5b6afba2008-01-05 16:29:28 +0000500#else
501# define REGISTER_TRACE(R,M)
502#endif
503
danielk197784ac9d02004-05-18 09:58:06 +0000504
drh7b396862003-01-01 23:06:20 +0000505#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000506
507/*
508** hwtime.h contains inline assembler code for implementing
509** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000510*/
shane9bcbdad2008-05-29 20:22:37 +0000511#include "hwtime.h"
512
drh7b396862003-01-01 23:06:20 +0000513#endif
514
danielk1977fd7f0452008-12-17 17:30:26 +0000515#ifndef NDEBUG
516/*
517** This function is only called from within an assert() expression. It
518** checks that the sqlite3.nTransaction variable is correctly set to
519** the number of non-transaction savepoints currently in the
520** linked list starting at sqlite3.pSavepoint.
521**
522** Usage:
523**
524** assert( checkSavepointCount(db) );
525*/
526static int checkSavepointCount(sqlite3 *db){
527 int n = 0;
528 Savepoint *p;
529 for(p=db->pSavepoint; p; p=p->pNext) n++;
530 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
531 return 1;
532}
533#endif
534
drh27a348c2015-04-13 19:14:06 +0000535/*
536** Return the register of pOp->p2 after first preparing it to be
537** overwritten with an integer value.
drh9eef8c62015-10-15 17:31:41 +0000538*/
539static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
540 sqlite3VdbeMemSetNull(pOut);
541 pOut->flags = MEM_Int;
542 return pOut;
543}
drh27a348c2015-04-13 19:14:06 +0000544static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
545 Mem *pOut;
546 assert( pOp->p2>0 );
drh9f6168b2016-03-19 23:32:58 +0000547 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
drh27a348c2015-04-13 19:14:06 +0000548 pOut = &p->aMem[pOp->p2];
549 memAboutToChange(p, pOut);
drha3fa1402016-04-29 02:55:05 +0000550 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
drh9eef8c62015-10-15 17:31:41 +0000551 return out2PrereleaseWithClear(pOut);
552 }else{
553 pOut->flags = MEM_Int;
554 return pOut;
555 }
drh27a348c2015-04-13 19:14:06 +0000556}
557
drhb9755982010-07-24 16:34:37 +0000558
559/*
drh0fd61352014-02-07 02:29:45 +0000560** Execute as much of a VDBE program as we can.
561** This is the core of sqlite3_step().
drhb86ccfb2003-01-28 23:13:10 +0000562*/
danielk19774adee202004-05-08 08:23:19 +0000563int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000564 Vdbe *p /* The VDBE */
565){
drhbbe879d2009-11-14 18:04:35 +0000566 Op *aOp = p->aOp; /* Copy of p->aOp */
mistachkin5f7b95f2017-02-01 23:03:54 +0000567 Op *pOp = aOp; /* Current operation */
drh6dc41482015-04-16 17:31:02 +0000568#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
569 Op *pOrigOp; /* Value of pOp at the top of the loop */
570#endif
drhb89aeb62016-01-27 15:49:32 +0000571#ifdef SQLITE_DEBUG
drhdef19e32016-01-27 16:26:25 +0000572 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */
drhb89aeb62016-01-27 15:49:32 +0000573#endif
drhb86ccfb2003-01-28 23:13:10 +0000574 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000575 sqlite3 *db = p->db; /* The database */
drhcdf011d2011-04-04 21:25:28 +0000576 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
drh8079a0d2006-01-12 17:20:50 +0000577 u8 encoding = ENC(db); /* The database encoding */
drh0f825a72016-08-13 14:17:02 +0000578 int iCompare = 0; /* Result of last comparison */
drhbf159fa2013-06-25 22:01:22 +0000579 unsigned nVmStep = 0; /* Number of virtual machine steps */
drh49afe3a2013-07-10 03:05:14 +0000580#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
drh2ab792e2017-05-30 18:34:07 +0000581 unsigned nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */
drh49afe3a2013-07-10 03:05:14 +0000582#endif
drha6c2ed92009-11-14 23:22:23 +0000583 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000584 Mem *pIn1 = 0; /* 1st input operand */
585 Mem *pIn2 = 0; /* 2nd input operand */
586 Mem *pIn3 = 0; /* 3rd input operand */
587 Mem *pOut = 0; /* Output operand */
drhb86ccfb2003-01-28 23:13:10 +0000588#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000589 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000590#endif
drh856c1032009-06-02 15:21:42 +0000591 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000592
drhca48c902008-01-18 14:08:24 +0000593 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
drhbdaec522011-04-04 00:14:43 +0000594 sqlite3VdbeEnter(p);
danielk19772e588c72005-12-09 14:25:08 +0000595 if( p->rc==SQLITE_NOMEM ){
596 /* This happens if a malloc() inside a call to sqlite3_column_text() or
597 ** sqlite3_column_text16() failed. */
598 goto no_mem;
599 }
drhcbd8db32015-08-20 17:18:32 +0000600 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
drh1713afb2013-06-28 01:24:57 +0000601 assert( p->bIsReader || p->readOnly!=0 );
drh95a7b3e2013-09-16 12:57:19 +0000602 p->iCurrentTime = 0;
drhb86ccfb2003-01-28 23:13:10 +0000603 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000604 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000605 db->busyHandler.nBusy = 0;
drh0fd61352014-02-07 02:29:45 +0000606 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh602c2372007-03-01 00:29:13 +0000607 sqlite3VdbeIOTraceSql(p);
drh0d1961e2013-07-25 16:27:51 +0000608#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
609 if( db->xProgress ){
drh6cbbdb02015-06-24 14:36:27 +0000610 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
drh0d1961e2013-07-25 16:27:51 +0000611 assert( 0 < db->nProgressOps );
drh6cbbdb02015-06-24 14:36:27 +0000612 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
drh2ab792e2017-05-30 18:34:07 +0000613 }else{
614 nProgressLimit = 0xffffffff;
drh0d1961e2013-07-25 16:27:51 +0000615 }
616#endif
drh3c23a882007-01-09 14:01:13 +0000617#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000618 sqlite3BeginBenignMalloc();
drh84e55a82013-11-13 17:58:23 +0000619 if( p->pc==0
620 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
621 ){
drh3c23a882007-01-09 14:01:13 +0000622 int i;
drh84e55a82013-11-13 17:58:23 +0000623 int once = 1;
drh3c23a882007-01-09 14:01:13 +0000624 sqlite3VdbePrintSql(p);
drh84e55a82013-11-13 17:58:23 +0000625 if( p->db->flags & SQLITE_VdbeListing ){
626 printf("VDBE Program Listing:\n");
627 for(i=0; i<p->nOp; i++){
628 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
629 }
drh3c23a882007-01-09 14:01:13 +0000630 }
drh84e55a82013-11-13 17:58:23 +0000631 if( p->db->flags & SQLITE_VdbeEQP ){
632 for(i=0; i<p->nOp; i++){
633 if( aOp[i].opcode==OP_Explain ){
634 if( once ) printf("VDBE Query Plan:\n");
635 printf("%s\n", aOp[i].p4.z);
636 once = 0;
637 }
638 }
639 }
640 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
drh3c23a882007-01-09 14:01:13 +0000641 }
danielk19772d1d86f2008-06-20 14:59:51 +0000642 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000643#endif
drh9467abf2016-02-17 18:44:11 +0000644 for(pOp=&aOp[p->pc]; 1; pOp++){
645 /* Errors are detected by individual opcodes, with an immediate
646 ** jumps to abort_due_to_error. */
647 assert( rc==SQLITE_OK );
648
drhf56fa462015-04-13 21:39:54 +0000649 assert( pOp>=aOp && pOp<&aOp[p->nOp]);
drh7b396862003-01-01 23:06:20 +0000650#ifdef VDBE_PROFILE
drh35043cc2018-02-12 20:27:34 +0000651 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000652#endif
drhbf159fa2013-06-25 22:01:22 +0000653 nVmStep++;
dan6f9702e2014-11-01 20:38:06 +0000654#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
drhf56fa462015-04-13 21:39:54 +0000655 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
dan6f9702e2014-11-01 20:38:06 +0000656#endif
drh6e142f52000-06-08 13:36:40 +0000657
danielk19778b60e0f2005-01-12 09:10:39 +0000658 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000659 */
danielk19778b60e0f2005-01-12 09:10:39 +0000660#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000661 if( db->flags & SQLITE_VdbeTrace ){
drhf56fa462015-04-13 21:39:54 +0000662 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
drh75897232000-05-29 14:26:00 +0000663 }
drh3f7d4e42004-07-24 14:35:58 +0000664#endif
665
drh6e142f52000-06-08 13:36:40 +0000666
drhf6038712004-02-08 18:07:34 +0000667 /* Check to see if we need to simulate an interrupt. This only happens
668 ** if we have a special test build.
669 */
670#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000671 if( sqlite3_interrupt_count>0 ){
672 sqlite3_interrupt_count--;
673 if( sqlite3_interrupt_count==0 ){
674 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000675 }
676 }
677#endif
678
drh3c657212009-11-17 23:59:58 +0000679 /* Sanity checking on other operands */
680#ifdef SQLITE_DEBUG
drh7cc84c22016-04-11 13:36:42 +0000681 {
682 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
683 if( (opProperty & OPFLG_IN1)!=0 ){
684 assert( pOp->p1>0 );
685 assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
686 assert( memIsValid(&aMem[pOp->p1]) );
687 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
688 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
689 }
690 if( (opProperty & OPFLG_IN2)!=0 ){
691 assert( pOp->p2>0 );
692 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
693 assert( memIsValid(&aMem[pOp->p2]) );
694 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
695 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
696 }
697 if( (opProperty & OPFLG_IN3)!=0 ){
698 assert( pOp->p3>0 );
699 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
700 assert( memIsValid(&aMem[pOp->p3]) );
701 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
702 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
703 }
704 if( (opProperty & OPFLG_OUT2)!=0 ){
705 assert( pOp->p2>0 );
706 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
707 memAboutToChange(p, &aMem[pOp->p2]);
708 }
709 if( (opProperty & OPFLG_OUT3)!=0 ){
710 assert( pOp->p3>0 );
711 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
712 memAboutToChange(p, &aMem[pOp->p3]);
713 }
drh3c657212009-11-17 23:59:58 +0000714 }
715#endif
drh6dc41482015-04-16 17:31:02 +0000716#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
717 pOrigOp = pOp;
718#endif
drh93952eb2009-11-13 19:43:43 +0000719
drh75897232000-05-29 14:26:00 +0000720 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000721
drh5e00f6c2001-09-13 13:46:56 +0000722/*****************************************************************************
723** What follows is a massive switch statement where each case implements a
724** separate instruction in the virtual machine. If we follow the usual
725** indentation conventions, each case should be indented by 6 spaces. But
726** that is a lot of wasted space on the left margin. So the code within
727** the switch statement will break with convention and be flush-left. Another
728** big comment (similar to this one) will mark the point in the code where
729** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000730**
731** The formatting of each case is important. The makefile for SQLite
732** generates two C files "opcodes.h" and "opcodes.c" by scanning this
733** file looking for lines that begin with "case OP_". The opcodes.h files
734** will be filled with #defines that give unique integer values to each
735** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000736** each string is the symbolic name for the corresponding opcode. If the
737** case statement is followed by a comment of the form "/# same as ... #/"
738** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000739**
drh9cbf3422008-01-17 16:22:13 +0000740** Other keywords in the comment that follows each case are used to
741** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
drh27a348c2015-04-13 19:14:06 +0000742** Keywords include: in1, in2, in3, out2, out3. See
drh9cbf3422008-01-17 16:22:13 +0000743** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000744**
drhac82fcf2002-09-08 17:23:41 +0000745** Documentation about VDBE opcodes is generated by scanning this file
746** for lines of that contain "Opcode:". That line and all subsequent
747** comment lines are used in the generation of the opcode.html documentation
748** file.
749**
750** SUMMARY:
751**
752** Formatting is important to scripts that scan this file.
753** Do not deviate from the formatting style currently in use.
754**
drh5e00f6c2001-09-13 13:46:56 +0000755*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000756
drh9cbf3422008-01-17 16:22:13 +0000757/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000758**
759** An unconditional jump to address P2.
760** The next instruction executed will be
761** the one at index P2 from the beginning of
762** the program.
drhfe705102014-03-06 13:38:37 +0000763**
764** The P1 parameter is not actually used by this opcode. However, it
765** is sometimes set to 1 instead of 0 as a hint to the command-line shell
766** that this Goto is the bottom of a loop and that the lines from P2 down
767** to the current line should be indented for EXPLAIN output.
drh5e00f6c2001-09-13 13:46:56 +0000768*/
drh9cbf3422008-01-17 16:22:13 +0000769case OP_Goto: { /* jump */
drhf56fa462015-04-13 21:39:54 +0000770jump_to_p2_and_check_for_interrupt:
771 pOp = &aOp[pOp->p2 - 1];
drh49afe3a2013-07-10 03:05:14 +0000772
773 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
drhbb6783b2017-04-29 18:02:49 +0000774 ** OP_VNext, or OP_SorterNext) all jump here upon
drh49afe3a2013-07-10 03:05:14 +0000775 ** completion. Check to see if sqlite3_interrupt() has been called
776 ** or if the progress callback needs to be invoked.
777 **
778 ** This code uses unstructured "goto" statements and does not look clean.
779 ** But that is not due to sloppy coding habits. The code is written this
780 ** way for performance, to avoid having to run the interrupt and progress
781 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
782 ** faster according to "valgrind --tool=cachegrind" */
783check_for_interrupt:
drh0fd61352014-02-07 02:29:45 +0000784 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh49afe3a2013-07-10 03:05:14 +0000785#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
786 /* Call the progress callback if it is configured and the required number
787 ** of VDBE ops have been executed (either since this invocation of
788 ** sqlite3VdbeExec() or since last time the progress callback was called).
789 ** If the progress callback returns non-zero, exit the virtual machine with
790 ** a return code SQLITE_ABORT.
791 */
drh2ab792e2017-05-30 18:34:07 +0000792 if( nVmStep>=nProgressLimit && db->xProgress!=0 ){
drh400fcba2013-11-14 00:09:48 +0000793 assert( db->nProgressOps!=0 );
794 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
795 if( db->xProgress(db->pProgressArg) ){
drh49afe3a2013-07-10 03:05:14 +0000796 rc = SQLITE_INTERRUPT;
drh9467abf2016-02-17 18:44:11 +0000797 goto abort_due_to_error;
drh49afe3a2013-07-10 03:05:14 +0000798 }
drh49afe3a2013-07-10 03:05:14 +0000799 }
800#endif
801
drh5e00f6c2001-09-13 13:46:56 +0000802 break;
803}
drh75897232000-05-29 14:26:00 +0000804
drh2eb95372008-06-06 15:04:36 +0000805/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000806**
drh2eb95372008-06-06 15:04:36 +0000807** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000808** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000809*/
drhb8475df2011-12-09 16:21:19 +0000810case OP_Gosub: { /* jump */
drh9f6168b2016-03-19 23:32:58 +0000811 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drh3c657212009-11-17 23:59:58 +0000812 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000813 assert( VdbeMemDynamic(pIn1)==0 );
drh2b4ded92010-09-27 21:09:31 +0000814 memAboutToChange(p, pIn1);
drh2eb95372008-06-06 15:04:36 +0000815 pIn1->flags = MEM_Int;
drhf56fa462015-04-13 21:39:54 +0000816 pIn1->u.i = (int)(pOp-aOp);
drh2eb95372008-06-06 15:04:36 +0000817 REGISTER_TRACE(pOp->p1, pIn1);
drhf56fa462015-04-13 21:39:54 +0000818
819 /* Most jump operations do a goto to this spot in order to update
820 ** the pOp pointer. */
821jump_to_p2:
822 pOp = &aOp[pOp->p2 - 1];
drh8c74a8c2002-08-25 19:20:40 +0000823 break;
824}
825
drh2eb95372008-06-06 15:04:36 +0000826/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000827**
drh81cf13e2014-02-07 18:27:53 +0000828** Jump to the next instruction after the address in register P1. After
829** the jump, register P1 becomes undefined.
drh8c74a8c2002-08-25 19:20:40 +0000830*/
drh2eb95372008-06-06 15:04:36 +0000831case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000832 pIn1 = &aMem[pOp->p1];
drh81cf13e2014-02-07 18:27:53 +0000833 assert( pIn1->flags==MEM_Int );
drhf56fa462015-04-13 21:39:54 +0000834 pOp = &aOp[pIn1->u.i];
drh81cf13e2014-02-07 18:27:53 +0000835 pIn1->flags = MEM_Undefined;
drh8c74a8c2002-08-25 19:20:40 +0000836 break;
837}
838
drhed71a832014-02-07 19:18:10 +0000839/* Opcode: InitCoroutine P1 P2 P3 * *
drh81cf13e2014-02-07 18:27:53 +0000840**
drh5dad9a32014-07-25 18:37:42 +0000841** Set up register P1 so that it will Yield to the coroutine
drhed71a832014-02-07 19:18:10 +0000842** located at address P3.
843**
drh5dad9a32014-07-25 18:37:42 +0000844** If P2!=0 then the coroutine implementation immediately follows
845** this opcode. So jump over the coroutine implementation to
drhed71a832014-02-07 19:18:10 +0000846** address P2.
drh5dad9a32014-07-25 18:37:42 +0000847**
848** See also: EndCoroutine
drh81cf13e2014-02-07 18:27:53 +0000849*/
850case OP_InitCoroutine: { /* jump */
drh9f6168b2016-03-19 23:32:58 +0000851 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drhed71a832014-02-07 19:18:10 +0000852 assert( pOp->p2>=0 && pOp->p2<p->nOp );
853 assert( pOp->p3>=0 && pOp->p3<p->nOp );
drh81cf13e2014-02-07 18:27:53 +0000854 pOut = &aMem[pOp->p1];
drhed71a832014-02-07 19:18:10 +0000855 assert( !VdbeMemDynamic(pOut) );
856 pOut->u.i = pOp->p3 - 1;
drh81cf13e2014-02-07 18:27:53 +0000857 pOut->flags = MEM_Int;
drhf56fa462015-04-13 21:39:54 +0000858 if( pOp->p2 ) goto jump_to_p2;
drh81cf13e2014-02-07 18:27:53 +0000859 break;
860}
861
862/* Opcode: EndCoroutine P1 * * * *
863**
drhbc5cf382014-08-06 01:08:07 +0000864** The instruction at the address in register P1 is a Yield.
drh5dad9a32014-07-25 18:37:42 +0000865** Jump to the P2 parameter of that Yield.
drh81cf13e2014-02-07 18:27:53 +0000866** After the jump, register P1 becomes undefined.
drh5dad9a32014-07-25 18:37:42 +0000867**
868** See also: InitCoroutine
drh81cf13e2014-02-07 18:27:53 +0000869*/
870case OP_EndCoroutine: { /* in1 */
871 VdbeOp *pCaller;
872 pIn1 = &aMem[pOp->p1];
873 assert( pIn1->flags==MEM_Int );
874 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
875 pCaller = &aOp[pIn1->u.i];
876 assert( pCaller->opcode==OP_Yield );
877 assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
drhf56fa462015-04-13 21:39:54 +0000878 pOp = &aOp[pCaller->p2 - 1];
drh81cf13e2014-02-07 18:27:53 +0000879 pIn1->flags = MEM_Undefined;
880 break;
881}
882
883/* Opcode: Yield P1 P2 * * *
drhe00ee6e2008-06-20 15:24:01 +0000884**
drh5dad9a32014-07-25 18:37:42 +0000885** Swap the program counter with the value in register P1. This
886** has the effect of yielding to a coroutine.
drh81cf13e2014-02-07 18:27:53 +0000887**
drh5dad9a32014-07-25 18:37:42 +0000888** If the coroutine that is launched by this instruction ends with
889** Yield or Return then continue to the next instruction. But if
890** the coroutine launched by this instruction ends with
891** EndCoroutine, then jump to P2 rather than continuing with the
892** next instruction.
893**
894** See also: InitCoroutine
drhe00ee6e2008-06-20 15:24:01 +0000895*/
drh81cf13e2014-02-07 18:27:53 +0000896case OP_Yield: { /* in1, jump */
drhe00ee6e2008-06-20 15:24:01 +0000897 int pcDest;
drh3c657212009-11-17 23:59:58 +0000898 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000899 assert( VdbeMemDynamic(pIn1)==0 );
drhe00ee6e2008-06-20 15:24:01 +0000900 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000901 pcDest = (int)pIn1->u.i;
drhf56fa462015-04-13 21:39:54 +0000902 pIn1->u.i = (int)(pOp - aOp);
drhe00ee6e2008-06-20 15:24:01 +0000903 REGISTER_TRACE(pOp->p1, pIn1);
drhf56fa462015-04-13 21:39:54 +0000904 pOp = &aOp[pcDest];
drhe00ee6e2008-06-20 15:24:01 +0000905 break;
906}
907
drhf9c8ce32013-11-05 13:33:55 +0000908/* Opcode: HaltIfNull P1 P2 P3 P4 P5
drh72e26de2016-08-24 21:24:04 +0000909** Synopsis: if r[P3]=null halt
drh5053a792009-02-20 03:02:23 +0000910**
drhef8662b2011-06-20 21:47:58 +0000911** Check the value in register P3. If it is NULL then Halt using
drh5053a792009-02-20 03:02:23 +0000912** parameter P1, P2, and P4 as if this were a Halt instruction. If the
913** value in register P3 is not NULL, then this routine is a no-op.
drhf9c8ce32013-11-05 13:33:55 +0000914** The P5 parameter should be 1.
drh5053a792009-02-20 03:02:23 +0000915*/
916case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000917 pIn3 = &aMem[pOp->p3];
drh5053a792009-02-20 03:02:23 +0000918 if( (pIn3->flags & MEM_Null)==0 ) break;
919 /* Fall through into OP_Halt */
920}
drhe00ee6e2008-06-20 15:24:01 +0000921
drhf9c8ce32013-11-05 13:33:55 +0000922/* Opcode: Halt P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +0000923**
drh3d4501e2008-12-04 20:40:10 +0000924** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000925** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000926**
drh92f02c32004-09-02 14:57:08 +0000927** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
928** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
929** For errors, it can be some other value. If P1!=0 then P2 will determine
930** whether or not to rollback the current transaction. Do not rollback
931** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
932** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000933** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000934**
drh66a51672008-01-03 00:01:23 +0000935** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000936**
drhf9c8ce32013-11-05 13:33:55 +0000937** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
938**
939** 0: (no change)
940** 1: NOT NULL contraint failed: P4
941** 2: UNIQUE constraint failed: P4
942** 3: CHECK constraint failed: P4
943** 4: FOREIGN KEY constraint failed: P4
944**
945** If P5 is not zero and P4 is NULL, then everything after the ":" is
946** omitted.
947**
drh9cfcf5d2002-01-29 18:41:24 +0000948** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000949** every program. So a jump past the last instruction of the program
950** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000951*/
drh9cbf3422008-01-17 16:22:13 +0000952case OP_Halt: {
drhf56fa462015-04-13 21:39:54 +0000953 VdbeFrame *pFrame;
954 int pcx;
drhf9c8ce32013-11-05 13:33:55 +0000955
drhf56fa462015-04-13 21:39:54 +0000956 pcx = (int)(pOp - aOp);
dan165921a2009-08-28 18:53:45 +0000957 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000958 /* Halt the sub-program. Return control to the parent frame. */
drhf56fa462015-04-13 21:39:54 +0000959 pFrame = p->pFrame;
dan165921a2009-08-28 18:53:45 +0000960 p->pFrame = pFrame->pParent;
961 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000962 sqlite3VdbeSetChanges(db, p->nChange);
drhf56fa462015-04-13 21:39:54 +0000963 pcx = sqlite3VdbeFrameRestore(pFrame);
dan165921a2009-08-28 18:53:45 +0000964 if( pOp->p2==OE_Ignore ){
drhf56fa462015-04-13 21:39:54 +0000965 /* Instruction pcx is the OP_Program that invoked the sub-program
dan2832ad42009-08-31 15:27:27 +0000966 ** currently being halted. If the p2 instruction of this OP_Halt
967 ** instruction is set to OE_Ignore, then the sub-program is throwing
968 ** an IGNORE exception. In this case jump to the address specified
969 ** as the p2 of the calling OP_Program. */
drhf56fa462015-04-13 21:39:54 +0000970 pcx = p->aOp[pcx].p2-1;
dan165921a2009-08-28 18:53:45 +0000971 }
drhbbe879d2009-11-14 18:04:35 +0000972 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000973 aMem = p->aMem;
drhf56fa462015-04-13 21:39:54 +0000974 pOp = &aOp[pcx];
dan165921a2009-08-28 18:53:45 +0000975 break;
976 }
drh92f02c32004-09-02 14:57:08 +0000977 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000978 p->errorAction = (u8)pOp->p2;
drhf56fa462015-04-13 21:39:54 +0000979 p->pc = pcx;
drhfb4e3a32016-12-30 00:09:14 +0000980 assert( pOp->p5<=4 );
drhf9c8ce32013-11-05 13:33:55 +0000981 if( p->rc ){
drhd9b7ec92013-11-06 14:05:21 +0000982 if( pOp->p5 ){
983 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
984 "FOREIGN KEY" };
drhd9b7ec92013-11-06 14:05:21 +0000985 testcase( pOp->p5==1 );
986 testcase( pOp->p5==2 );
987 testcase( pOp->p5==3 );
988 testcase( pOp->p5==4 );
drh99f5de72016-04-30 02:59:15 +0000989 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
990 if( pOp->p4.z ){
991 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
992 }
drhd9b7ec92013-11-06 14:05:21 +0000993 }else{
drh22c17b82015-05-15 04:13:15 +0000994 sqlite3VdbeError(p, "%s", pOp->p4.z);
drhf9c8ce32013-11-05 13:33:55 +0000995 }
drh99f5de72016-04-30 02:59:15 +0000996 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
drh9cfcf5d2002-01-29 18:41:24 +0000997 }
drh92f02c32004-09-02 14:57:08 +0000998 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +0000999 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +00001000 if( rc==SQLITE_BUSY ){
drh99f5de72016-04-30 02:59:15 +00001001 p->rc = SQLITE_BUSY;
drh900b31e2007-08-28 02:27:51 +00001002 }else{
drhd91c1a12013-02-09 13:58:25 +00001003 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
dancb3e4b72013-07-03 19:53:05 +00001004 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
drh900b31e2007-08-28 02:27:51 +00001005 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +00001006 }
drh900b31e2007-08-28 02:27:51 +00001007 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +00001008}
drhc61053b2000-06-04 12:58:36 +00001009
drh4c583122008-01-04 22:01:03 +00001010/* Opcode: Integer P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001011** Synopsis: r[P2]=P1
drh5e00f6c2001-09-13 13:46:56 +00001012**
drh9cbf3422008-01-17 16:22:13 +00001013** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +00001014*/
drh27a348c2015-04-13 19:14:06 +00001015case OP_Integer: { /* out2 */
1016 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001017 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +00001018 break;
1019}
1020
drh4c583122008-01-04 22:01:03 +00001021/* Opcode: Int64 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001022** Synopsis: r[P2]=P4
drh29dda4a2005-07-21 18:23:20 +00001023**
drh66a51672008-01-03 00:01:23 +00001024** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +00001025** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +00001026*/
drh27a348c2015-04-13 19:14:06 +00001027case OP_Int64: { /* out2 */
1028 pOut = out2Prerelease(p, pOp);
danielk19772dca4ac2008-01-03 11:50:29 +00001029 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +00001030 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +00001031 break;
1032}
drh4f26d6c2004-05-26 23:25:30 +00001033
drh13573c72010-01-12 17:04:07 +00001034#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +00001035/* Opcode: Real * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001036** Synopsis: r[P2]=P4
drhf4479502004-05-27 03:12:53 +00001037**
drh4c583122008-01-04 22:01:03 +00001038** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +00001039** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +00001040*/
drh27a348c2015-04-13 19:14:06 +00001041case OP_Real: { /* same as TK_FLOAT, out2 */
1042 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001043 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +00001044 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh74eaba42014-09-18 17:52:15 +00001045 pOut->u.r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +00001046 break;
1047}
drh13573c72010-01-12 17:04:07 +00001048#endif
danielk1977cbb18d22004-05-28 11:37:27 +00001049
drh3c84ddf2008-01-09 02:15:38 +00001050/* Opcode: String8 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001051** Synopsis: r[P2]='P4'
danielk1977cbb18d22004-05-28 11:37:27 +00001052**
drh66a51672008-01-03 00:01:23 +00001053** P4 points to a nul terminated UTF-8 string. This opcode is transformed
drhf07cf6e2015-03-06 16:45:16 +00001054** into a String opcode before it is executed for the first time. During
drh0fd61352014-02-07 02:29:45 +00001055** this transformation, the length of string P4 is computed and stored
1056** as the P1 parameter.
danielk1977cbb18d22004-05-28 11:37:27 +00001057*/
drh27a348c2015-04-13 19:14:06 +00001058case OP_String8: { /* same as TK_STRING, out2 */
danielk19772dca4ac2008-01-03 11:50:29 +00001059 assert( pOp->p4.z!=0 );
drh27a348c2015-04-13 19:14:06 +00001060 pOut = out2Prerelease(p, pOp);
drhed2df7f2005-11-16 04:34:32 +00001061 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +00001062 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +00001063
1064#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +00001065 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +00001066 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
drh2f555112016-04-30 18:10:34 +00001067 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
drh4c583122008-01-04 22:01:03 +00001068 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh17bcb102014-09-18 21:25:33 +00001069 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
drhc91b2fd2014-03-01 18:13:23 +00001070 assert( VdbeMemDynamic(pOut)==0 );
drh17bcb102014-09-18 21:25:33 +00001071 pOut->szMalloc = 0;
drh4c583122008-01-04 22:01:03 +00001072 pOut->flags |= MEM_Static;
drh66a51672008-01-03 00:01:23 +00001073 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +00001074 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +00001075 }
drh66a51672008-01-03 00:01:23 +00001076 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +00001077 pOp->p4.z = pOut->z;
1078 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +00001079 }
drh2f555112016-04-30 18:10:34 +00001080 testcase( rc==SQLITE_TOOBIG );
danielk197793758c82005-01-21 08:13:14 +00001081#endif
drhbb4957f2008-03-20 14:03:29 +00001082 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +00001083 goto too_big;
1084 }
drh2f555112016-04-30 18:10:34 +00001085 assert( rc==SQLITE_OK );
drhcbd2da92007-12-17 16:20:06 +00001086 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +00001087}
drhf4479502004-05-27 03:12:53 +00001088
drhf07cf6e2015-03-06 16:45:16 +00001089/* Opcode: String P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00001090** Synopsis: r[P2]='P4' (len=P1)
drhf4479502004-05-27 03:12:53 +00001091**
drh9cbf3422008-01-17 16:22:13 +00001092** The string value P4 of length P1 (bytes) is stored in register P2.
drhf07cf6e2015-03-06 16:45:16 +00001093**
drh44aebff2016-05-02 10:25:42 +00001094** If P3 is not zero and the content of register P3 is equal to P5, then
drha9c18a92015-03-06 20:49:52 +00001095** the datatype of the register P2 is converted to BLOB. The content is
1096** the same sequence of bytes, it is merely interpreted as a BLOB instead
drh44aebff2016-05-02 10:25:42 +00001097** of a string, as if it had been CAST. In other words:
1098**
1099** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
drhf4479502004-05-27 03:12:53 +00001100*/
drh27a348c2015-04-13 19:14:06 +00001101case OP_String: { /* out2 */
danielk19772dca4ac2008-01-03 11:50:29 +00001102 assert( pOp->p4.z!=0 );
drh27a348c2015-04-13 19:14:06 +00001103 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001104 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1105 pOut->z = pOp->p4.z;
1106 pOut->n = pOp->p1;
1107 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001108 UPDATE_MAX_BLOBSIZE(pOut);
drh41d2e662015-12-01 21:23:07 +00001109#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
drh44aebff2016-05-02 10:25:42 +00001110 if( pOp->p3>0 ){
drh9f6168b2016-03-19 23:32:58 +00001111 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drhf07cf6e2015-03-06 16:45:16 +00001112 pIn3 = &aMem[pOp->p3];
1113 assert( pIn3->flags & MEM_Int );
drh44aebff2016-05-02 10:25:42 +00001114 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
drhf07cf6e2015-03-06 16:45:16 +00001115 }
drh41d2e662015-12-01 21:23:07 +00001116#endif
danielk1977c572ef72004-05-27 09:28:41 +00001117 break;
1118}
1119
drh053a1282012-09-19 21:15:46 +00001120/* Opcode: Null P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001121** Synopsis: r[P2..P3]=NULL
drhf0863fe2005-06-12 21:35:51 +00001122**
drhb8475df2011-12-09 16:21:19 +00001123** Write a NULL into registers P2. If P3 greater than P2, then also write
drh053a1282012-09-19 21:15:46 +00001124** NULL into register P3 and every register in between P2 and P3. If P3
drhb8475df2011-12-09 16:21:19 +00001125** is less than P2 (typically P3 is zero) then only register P2 is
drh053a1282012-09-19 21:15:46 +00001126** set to NULL.
1127**
1128** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1129** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1130** OP_Ne or OP_Eq.
drhf0863fe2005-06-12 21:35:51 +00001131*/
drh27a348c2015-04-13 19:14:06 +00001132case OP_Null: { /* out2 */
drhb8475df2011-12-09 16:21:19 +00001133 int cnt;
drh053a1282012-09-19 21:15:46 +00001134 u16 nullFlag;
drh27a348c2015-04-13 19:14:06 +00001135 pOut = out2Prerelease(p, pOp);
drhb8475df2011-12-09 16:21:19 +00001136 cnt = pOp->p3-pOp->p2;
drh9f6168b2016-03-19 23:32:58 +00001137 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drh053a1282012-09-19 21:15:46 +00001138 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
drh2a1df932016-09-30 17:46:44 +00001139 pOut->n = 0;
drhb8475df2011-12-09 16:21:19 +00001140 while( cnt>0 ){
1141 pOut++;
1142 memAboutToChange(p, pOut);
drh0725cab2014-09-17 14:52:46 +00001143 sqlite3VdbeMemSetNull(pOut);
drh053a1282012-09-19 21:15:46 +00001144 pOut->flags = nullFlag;
drh2a1df932016-09-30 17:46:44 +00001145 pOut->n = 0;
drhb8475df2011-12-09 16:21:19 +00001146 cnt--;
1147 }
drhf0863fe2005-06-12 21:35:51 +00001148 break;
1149}
1150
drh05a86c52014-02-16 01:55:49 +00001151/* Opcode: SoftNull P1 * * * *
drh72e26de2016-08-24 21:24:04 +00001152** Synopsis: r[P1]=NULL
drh05a86c52014-02-16 01:55:49 +00001153**
1154** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1155** instruction, but do not free any string or blob memory associated with
1156** the register, so that if the value was a string or blob that was
1157** previously copied using OP_SCopy, the copies will continue to be valid.
1158*/
1159case OP_SoftNull: {
drh9f6168b2016-03-19 23:32:58 +00001160 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drh05a86c52014-02-16 01:55:49 +00001161 pOut = &aMem[pOp->p1];
drhe2bc6552017-04-17 20:50:34 +00001162 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
drh05a86c52014-02-16 01:55:49 +00001163 break;
1164}
drhf0863fe2005-06-12 21:35:51 +00001165
drha5750cf2014-02-07 13:20:31 +00001166/* Opcode: Blob P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001167** Synopsis: r[P2]=P4 (len=P1)
danielk1977c572ef72004-05-27 09:28:41 +00001168**
drh9de221d2008-01-05 06:51:30 +00001169** P4 points to a blob of data P1 bytes long. Store this
drh710c4842010-08-30 01:17:20 +00001170** blob in register P2.
danielk1977c572ef72004-05-27 09:28:41 +00001171*/
drh27a348c2015-04-13 19:14:06 +00001172case OP_Blob: { /* out2 */
drhcbd2da92007-12-17 16:20:06 +00001173 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh27a348c2015-04-13 19:14:06 +00001174 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001175 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +00001176 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001177 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +00001178 break;
1179}
1180
drheaf52d82010-05-12 13:50:23 +00001181/* Opcode: Variable P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001182** Synopsis: r[P2]=parameter(P1,P4)
drh50457892003-09-06 01:10:47 +00001183**
drheaf52d82010-05-12 13:50:23 +00001184** Transfer the values of bound parameter P1 into register P2
drh08de1492009-02-20 03:55:05 +00001185**
drh0fd61352014-02-07 02:29:45 +00001186** If the parameter is named, then its name appears in P4.
drh08de1492009-02-20 03:55:05 +00001187** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +00001188*/
drh27a348c2015-04-13 19:14:06 +00001189case OP_Variable: { /* out2 */
drh856c1032009-06-02 15:21:42 +00001190 Mem *pVar; /* Value being transferred */
1191
drheaf52d82010-05-12 13:50:23 +00001192 assert( pOp->p1>0 && pOp->p1<=p->nVar );
drh9bf755c2016-12-23 03:59:31 +00001193 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
drheaf52d82010-05-12 13:50:23 +00001194 pVar = &p->aVar[pOp->p1 - 1];
1195 if( sqlite3VdbeMemTooBig(pVar) ){
1196 goto too_big;
drh023ae032007-05-08 12:12:16 +00001197 }
drh7441df72017-01-09 19:27:04 +00001198 pOut = &aMem[pOp->p2];
drheaf52d82010-05-12 13:50:23 +00001199 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1200 UPDATE_MAX_BLOBSIZE(pOut);
danielk197793d46752004-05-23 13:30:58 +00001201 break;
1202}
danielk1977295ba552004-05-19 10:34:51 +00001203
drhb21e7c72008-06-22 12:37:57 +00001204/* Opcode: Move P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001205** Synopsis: r[P2@P3]=r[P1@P3]
drh5e00f6c2001-09-13 13:46:56 +00001206**
drh079a3072014-03-19 14:10:55 +00001207** Move the P3 values in register P1..P1+P3-1 over into
1208** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
drhb21e7c72008-06-22 12:37:57 +00001209** left holding a NULL. It is an error for register ranges
drh079a3072014-03-19 14:10:55 +00001210** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1211** for P3 to be less than 1.
drh5e00f6c2001-09-13 13:46:56 +00001212*/
drhe1349cb2008-04-01 00:36:10 +00001213case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001214 int n; /* Number of registers left to copy */
1215 int p1; /* Register to copy from */
1216 int p2; /* Register to copy to */
1217
drhe09f43f2013-11-21 04:18:31 +00001218 n = pOp->p3;
drh856c1032009-06-02 15:21:42 +00001219 p1 = pOp->p1;
1220 p2 = pOp->p2;
drh079a3072014-03-19 14:10:55 +00001221 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001222 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001223
drha6c2ed92009-11-14 23:22:23 +00001224 pIn1 = &aMem[p1];
1225 pOut = &aMem[p2];
drhe09f43f2013-11-21 04:18:31 +00001226 do{
drh9f6168b2016-03-19 23:32:58 +00001227 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1228 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00001229 assert( memIsValid(pIn1) );
1230 memAboutToChange(p, pOut);
drh17bcb102014-09-18 21:25:33 +00001231 sqlite3VdbeMemMove(pOut, pIn1);
drh52043d72011-08-03 16:40:15 +00001232#ifdef SQLITE_DEBUG
drhbd6789e2015-04-28 14:00:02 +00001233 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
drh5fb71252015-04-28 12:44:55 +00001234 pOut->pScopyFrom += pOp->p2 - p1;
drh52043d72011-08-03 16:40:15 +00001235 }
1236#endif
drhbd6789e2015-04-28 14:00:02 +00001237 Deephemeralize(pOut);
drhb21e7c72008-06-22 12:37:57 +00001238 REGISTER_TRACE(p2++, pOut);
1239 pIn1++;
1240 pOut++;
drh079a3072014-03-19 14:10:55 +00001241 }while( --n );
drhe1349cb2008-04-01 00:36:10 +00001242 break;
1243}
1244
drhe8e4af72012-09-21 00:04:28 +00001245/* Opcode: Copy P1 P2 P3 * *
drh4eded602013-12-20 15:59:20 +00001246** Synopsis: r[P2@P3+1]=r[P1@P3+1]
drhb1fdb2a2008-01-05 04:06:03 +00001247**
drhe8e4af72012-09-21 00:04:28 +00001248** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
drhb1fdb2a2008-01-05 04:06:03 +00001249**
1250** This instruction makes a deep copy of the value. A duplicate
1251** is made of any string or blob constant. See also OP_SCopy.
1252*/
drhe8e4af72012-09-21 00:04:28 +00001253case OP_Copy: {
1254 int n;
1255
1256 n = pOp->p3;
drh3c657212009-11-17 23:59:58 +00001257 pIn1 = &aMem[pOp->p1];
1258 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001259 assert( pOut!=pIn1 );
drhe8e4af72012-09-21 00:04:28 +00001260 while( 1 ){
1261 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1262 Deephemeralize(pOut);
drh953f7612012-12-07 22:18:54 +00001263#ifdef SQLITE_DEBUG
1264 pOut->pScopyFrom = 0;
1265#endif
drhe8e4af72012-09-21 00:04:28 +00001266 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1267 if( (n--)==0 ) break;
1268 pOut++;
1269 pIn1++;
1270 }
drhe1349cb2008-04-01 00:36:10 +00001271 break;
1272}
1273
drhb1fdb2a2008-01-05 04:06:03 +00001274/* Opcode: SCopy P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001275** Synopsis: r[P2]=r[P1]
drhb1fdb2a2008-01-05 04:06:03 +00001276**
drh9cbf3422008-01-17 16:22:13 +00001277** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001278**
1279** This instruction makes a shallow copy of the value. If the value
1280** is a string or blob, then the copy is only a pointer to the
1281** original and hence if the original changes so will the copy.
1282** Worse, if the original is deallocated, the copy becomes invalid.
1283** Thus the program must guarantee that the original will not change
1284** during the lifetime of the copy. Use OP_Copy to make a complete
1285** copy.
1286*/
drh26198bb2013-10-31 11:15:09 +00001287case OP_SCopy: { /* out2 */
drh3c657212009-11-17 23:59:58 +00001288 pIn1 = &aMem[pOp->p1];
1289 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001290 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001291 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh2b4ded92010-09-27 21:09:31 +00001292#ifdef SQLITE_DEBUG
1293 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1294#endif
drh5e00f6c2001-09-13 13:46:56 +00001295 break;
1296}
drh75897232000-05-29 14:26:00 +00001297
drhfed7ac62015-10-15 18:04:59 +00001298/* Opcode: IntCopy P1 P2 * * *
1299** Synopsis: r[P2]=r[P1]
1300**
1301** Transfer the integer value held in register P1 into register P2.
1302**
1303** This is an optimized version of SCopy that works only for integer
1304** values.
1305*/
1306case OP_IntCopy: { /* out2 */
1307 pIn1 = &aMem[pOp->p1];
1308 assert( (pIn1->flags & MEM_Int)!=0 );
1309 pOut = &aMem[pOp->p2];
1310 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1311 break;
1312}
1313
drh9cbf3422008-01-17 16:22:13 +00001314/* Opcode: ResultRow P1 P2 * * *
drh72e26de2016-08-24 21:24:04 +00001315** Synopsis: output=r[P1@P2]
drhd4e70eb2008-01-02 00:34:36 +00001316**
shane21e7feb2008-05-30 15:59:49 +00001317** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001318** results. This opcode causes the sqlite3_step() call to terminate
1319** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
drh4d87aae2014-02-20 19:42:00 +00001320** structure to provide access to the r(P1)..r(P1+P2-1) values as
drh0fd61352014-02-07 02:29:45 +00001321** the result row.
drhd4e70eb2008-01-02 00:34:36 +00001322*/
drh9cbf3422008-01-17 16:22:13 +00001323case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001324 Mem *pMem;
1325 int i;
1326 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001327 assert( pOp->p1>0 );
drh9f6168b2016-03-19 23:32:58 +00001328 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
drhd4e70eb2008-01-02 00:34:36 +00001329
drhe6400b92013-11-13 23:48:46 +00001330#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1331 /* Run the progress counter just before returning.
1332 */
1333 if( db->xProgress!=0
drh2ab792e2017-05-30 18:34:07 +00001334 && nVmStep>=nProgressLimit
drhe6400b92013-11-13 23:48:46 +00001335 && db->xProgress(db->pProgressArg)!=0
1336 ){
1337 rc = SQLITE_INTERRUPT;
drh9467abf2016-02-17 18:44:11 +00001338 goto abort_due_to_error;
drhe6400b92013-11-13 23:48:46 +00001339 }
1340#endif
1341
dan32b09f22009-09-23 17:29:59 +00001342 /* If this statement has violated immediate foreign key constraints, do
1343 ** not return the number of rows modified. And do not RELEASE the statement
1344 ** transaction. It needs to be rolled back. */
1345 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1346 assert( db->flags&SQLITE_CountRows );
1347 assert( p->usesStmtJournal );
drh9467abf2016-02-17 18:44:11 +00001348 goto abort_due_to_error;
dan32b09f22009-09-23 17:29:59 +00001349 }
1350
danielk1977bd434552009-03-18 10:33:00 +00001351 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1352 ** DML statements invoke this opcode to return the number of rows
1353 ** modified to the user. This is the only way that a VM that
1354 ** opens a statement transaction may invoke this opcode.
1355 **
1356 ** In case this is such a statement, close any statement transaction
1357 ** opened by this VM before returning control to the user. This is to
1358 ** ensure that statement-transactions are always nested, not overlapping.
1359 ** If the open statement-transaction is not closed here, then the user
1360 ** may step another VM that opens its own statement transaction. This
1361 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001362 **
1363 ** The statement transaction is never a top-level transaction. Hence
1364 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001365 */
1366 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001367 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
drh9467abf2016-02-17 18:44:11 +00001368 assert( rc==SQLITE_OK );
danielk1977bd434552009-03-18 10:33:00 +00001369
drhd4e70eb2008-01-02 00:34:36 +00001370 /* Invalidate all ephemeral cursor row caches */
1371 p->cacheCtr = (p->cacheCtr + 2)|1;
1372
1373 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001374 ** and have an assigned type. The results are de-ephemeralized as
drhb8a45bb2011-12-31 21:51:55 +00001375 ** a side effect.
drhd4e70eb2008-01-02 00:34:36 +00001376 */
drha6c2ed92009-11-14 23:22:23 +00001377 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001378 for(i=0; i<pOp->p2; i++){
drh2b4ded92010-09-27 21:09:31 +00001379 assert( memIsValid(&pMem[i]) );
drhebc16712010-09-28 00:25:58 +00001380 Deephemeralize(&pMem[i]);
drh746fd9c2010-09-28 06:00:47 +00001381 assert( (pMem[i].flags & MEM_Ephem)==0
1382 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
drhd4e70eb2008-01-02 00:34:36 +00001383 sqlite3VdbeMemNulTerminate(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001384 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001385 }
drh28039692008-03-17 16:54:01 +00001386 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001387
drh3d2a5292016-07-13 22:55:01 +00001388 if( db->mTrace & SQLITE_TRACE_ROW ){
1389 db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1390 }
1391
drhd4e70eb2008-01-02 00:34:36 +00001392 /* Return SQLITE_ROW
1393 */
drhf56fa462015-04-13 21:39:54 +00001394 p->pc = (int)(pOp - aOp) + 1;
drhd4e70eb2008-01-02 00:34:36 +00001395 rc = SQLITE_ROW;
1396 goto vdbe_return;
1397}
1398
drh5b6afba2008-01-05 16:29:28 +00001399/* Opcode: Concat P1 P2 P3 * *
drh313619f2013-10-31 20:34:06 +00001400** Synopsis: r[P3]=r[P2]+r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001401**
drh5b6afba2008-01-05 16:29:28 +00001402** Add the text in register P1 onto the end of the text in
1403** register P2 and store the result in register P3.
1404** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001405**
1406** P3 = P2 || P1
1407**
1408** It is illegal for P1 and P3 to be the same register. Sometimes,
1409** if P3 is the same register as P2, the implementation is able
1410** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001411*/
drh5b6afba2008-01-05 16:29:28 +00001412case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001413 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001414
drh3c657212009-11-17 23:59:58 +00001415 pIn1 = &aMem[pOp->p1];
1416 pIn2 = &aMem[pOp->p2];
1417 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001418 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001419 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001420 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001421 break;
drh5e00f6c2001-09-13 13:46:56 +00001422 }
drha0c06522009-06-17 22:50:41 +00001423 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001424 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001425 Stringify(pIn2, encoding);
1426 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001427 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001428 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001429 }
drh9c1905f2008-12-10 22:32:56 +00001430 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001431 goto no_mem;
1432 }
drhc91b2fd2014-03-01 18:13:23 +00001433 MemSetTypeFlag(pOut, MEM_Str);
danielk1977a7a8e142008-02-13 18:25:27 +00001434 if( pOut!=pIn2 ){
1435 memcpy(pOut->z, pIn2->z, pIn2->n);
1436 }
1437 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
drh81316f82013-10-29 20:40:47 +00001438 pOut->z[nByte]=0;
danielk1977a7a8e142008-02-13 18:25:27 +00001439 pOut->z[nByte+1] = 0;
1440 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001441 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001442 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001443 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001444 break;
1445}
drh75897232000-05-29 14:26:00 +00001446
drh3c84ddf2008-01-09 02:15:38 +00001447/* Opcode: Add P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001448** Synopsis: r[P3]=r[P1]+r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001449**
drh60a713c2008-01-21 16:22:45 +00001450** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001451** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001452** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001453*/
drh3c84ddf2008-01-09 02:15:38 +00001454/* Opcode: Multiply P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001455** Synopsis: r[P3]=r[P1]*r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001456**
drh3c84ddf2008-01-09 02:15:38 +00001457**
shane21e7feb2008-05-30 15:59:49 +00001458** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001459** and store the result in register P3.
1460** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001461*/
drh3c84ddf2008-01-09 02:15:38 +00001462/* Opcode: Subtract P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001463** Synopsis: r[P3]=r[P2]-r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001464**
drh60a713c2008-01-21 16:22:45 +00001465** Subtract the value in register P1 from the value in register P2
1466** and store the result in register P3.
1467** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001468*/
drh9cbf3422008-01-17 16:22:13 +00001469/* Opcode: Divide P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001470** Synopsis: r[P3]=r[P2]/r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001471**
drh60a713c2008-01-21 16:22:45 +00001472** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001473** and store the result in register P3 (P3=P2/P1). If the value in
1474** register P1 is zero, then the result is NULL. If either input is
1475** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001476*/
drh9cbf3422008-01-17 16:22:13 +00001477/* Opcode: Remainder P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001478** Synopsis: r[P3]=r[P2]%r[P1]
drhbf4133c2001-10-13 02:59:08 +00001479**
drh40864a12013-11-15 18:58:37 +00001480** Compute the remainder after integer register P2 is divided by
1481** register P1 and store the result in register P3.
1482** If the value in register P1 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001483** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001484*/
drh5b6afba2008-01-05 16:29:28 +00001485case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1486case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1487case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1488case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1489case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drhbe707b32012-12-10 22:19:14 +00001490 char bIntint; /* Started out as two integer operands */
drh3d1d90a2014-03-24 15:00:15 +00001491 u16 flags; /* Combined MEM_* flags from both inputs */
1492 u16 type1; /* Numeric type of left operand */
1493 u16 type2; /* Numeric type of right operand */
drh856c1032009-06-02 15:21:42 +00001494 i64 iA; /* Integer value of left operand */
1495 i64 iB; /* Integer value of right operand */
1496 double rA; /* Real value of left operand */
1497 double rB; /* Real value of right operand */
1498
drh3c657212009-11-17 23:59:58 +00001499 pIn1 = &aMem[pOp->p1];
drh3d1d90a2014-03-24 15:00:15 +00001500 type1 = numericType(pIn1);
drh3c657212009-11-17 23:59:58 +00001501 pIn2 = &aMem[pOp->p2];
drh3d1d90a2014-03-24 15:00:15 +00001502 type2 = numericType(pIn2);
drh3c657212009-11-17 23:59:58 +00001503 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001504 flags = pIn1->flags | pIn2->flags;
drh3d1d90a2014-03-24 15:00:15 +00001505 if( (type1 & type2 & MEM_Int)!=0 ){
drh856c1032009-06-02 15:21:42 +00001506 iA = pIn1->u.i;
1507 iB = pIn2->u.i;
drhbe707b32012-12-10 22:19:14 +00001508 bIntint = 1;
drh5e00f6c2001-09-13 13:46:56 +00001509 switch( pOp->opcode ){
drh158b9cb2011-03-05 20:59:46 +00001510 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1511 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1512 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
drhbf4133c2001-10-13 02:59:08 +00001513 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001514 if( iA==0 ) goto arithmetic_result_is_null;
drh158b9cb2011-03-05 20:59:46 +00001515 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
drh856c1032009-06-02 15:21:42 +00001516 iB /= iA;
drh75897232000-05-29 14:26:00 +00001517 break;
1518 }
drhbf4133c2001-10-13 02:59:08 +00001519 default: {
drh856c1032009-06-02 15:21:42 +00001520 if( iA==0 ) goto arithmetic_result_is_null;
1521 if( iA==-1 ) iA = 1;
1522 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001523 break;
1524 }
drh75897232000-05-29 14:26:00 +00001525 }
drh856c1032009-06-02 15:21:42 +00001526 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001527 MemSetTypeFlag(pOut, MEM_Int);
drhcfcca022017-04-17 23:23:17 +00001528 }else if( (flags & MEM_Null)!=0 ){
1529 goto arithmetic_result_is_null;
drh5e00f6c2001-09-13 13:46:56 +00001530 }else{
drhbe707b32012-12-10 22:19:14 +00001531 bIntint = 0;
drh158b9cb2011-03-05 20:59:46 +00001532fp_math:
drh856c1032009-06-02 15:21:42 +00001533 rA = sqlite3VdbeRealValue(pIn1);
1534 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001535 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001536 case OP_Add: rB += rA; break;
1537 case OP_Subtract: rB -= rA; break;
1538 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001539 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001540 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001541 if( rA==(double)0 ) goto arithmetic_result_is_null;
1542 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001543 break;
1544 }
drhbf4133c2001-10-13 02:59:08 +00001545 default: {
shane75ac1de2009-06-09 18:58:52 +00001546 iA = (i64)rA;
1547 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001548 if( iA==0 ) goto arithmetic_result_is_null;
1549 if( iA==-1 ) iA = 1;
1550 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001551 break;
1552 }
drh5e00f6c2001-09-13 13:46:56 +00001553 }
drhc5a7b512010-01-13 16:25:42 +00001554#ifdef SQLITE_OMIT_FLOATING_POINT
1555 pOut->u.i = rB;
1556 MemSetTypeFlag(pOut, MEM_Int);
1557#else
drh856c1032009-06-02 15:21:42 +00001558 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001559 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001560 }
drh74eaba42014-09-18 17:52:15 +00001561 pOut->u.r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001562 MemSetTypeFlag(pOut, MEM_Real);
drh3d1d90a2014-03-24 15:00:15 +00001563 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
drh5b6afba2008-01-05 16:29:28 +00001564 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001565 }
drhc5a7b512010-01-13 16:25:42 +00001566#endif
drh5e00f6c2001-09-13 13:46:56 +00001567 }
1568 break;
1569
drha05a7222008-01-19 03:35:58 +00001570arithmetic_result_is_null:
1571 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001572 break;
1573}
1574
drh7a957892012-02-02 17:35:43 +00001575/* Opcode: CollSeq P1 * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001576**
drhbb6783b2017-04-29 18:02:49 +00001577** P4 is a pointer to a CollSeq object. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001578** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1579** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001580** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001581**
drh7a957892012-02-02 17:35:43 +00001582** If P1 is not zero, then it is a register that a subsequent min() or
1583** max() aggregate will set to 1 if the current row is not the minimum or
1584** maximum. The P1 register is initialized to 0 by this instruction.
1585**
danielk1977dc1bdc42004-06-11 10:51:27 +00001586** The interface used by the implementation of the aforementioned functions
1587** to retrieve the collation sequence set by this opcode is not available
drh0a0d0562015-03-12 05:08:34 +00001588** publicly. Only built-in functions have access to this feature.
danielk1977dc1bdc42004-06-11 10:51:27 +00001589*/
drh9cbf3422008-01-17 16:22:13 +00001590case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001591 assert( pOp->p4type==P4_COLLSEQ );
drh7a957892012-02-02 17:35:43 +00001592 if( pOp->p1 ){
1593 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1594 }
danielk1977dc1bdc42004-06-11 10:51:27 +00001595 break;
1596}
1597
drh98757152008-01-09 23:04:12 +00001598/* Opcode: BitAnd P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001599** Synopsis: r[P3]=r[P1]&r[P2]
drhbf4133c2001-10-13 02:59:08 +00001600**
drh98757152008-01-09 23:04:12 +00001601** Take the bit-wise AND of the values in register P1 and P2 and
1602** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001603** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001604*/
drh98757152008-01-09 23:04:12 +00001605/* Opcode: BitOr P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001606** Synopsis: r[P3]=r[P1]|r[P2]
drhbf4133c2001-10-13 02:59:08 +00001607**
drh98757152008-01-09 23:04:12 +00001608** Take the bit-wise OR of the values in register P1 and P2 and
1609** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001610** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001611*/
drh98757152008-01-09 23:04:12 +00001612/* Opcode: ShiftLeft P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001613** Synopsis: r[P3]=r[P2]<<r[P1]
drhbf4133c2001-10-13 02:59:08 +00001614**
drh98757152008-01-09 23:04:12 +00001615** Shift the integer value in register P2 to the left by the
drh710c4842010-08-30 01:17:20 +00001616** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001617** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001618** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001619*/
drh98757152008-01-09 23:04:12 +00001620/* Opcode: ShiftRight P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001621** Synopsis: r[P3]=r[P2]>>r[P1]
drhbf4133c2001-10-13 02:59:08 +00001622**
drh98757152008-01-09 23:04:12 +00001623** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001624** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001625** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001626** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001627*/
drh5b6afba2008-01-05 16:29:28 +00001628case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1629case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1630case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1631case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh158b9cb2011-03-05 20:59:46 +00001632 i64 iA;
1633 u64 uA;
1634 i64 iB;
1635 u8 op;
drh6810ce62004-01-31 19:22:56 +00001636
drh3c657212009-11-17 23:59:58 +00001637 pIn1 = &aMem[pOp->p1];
1638 pIn2 = &aMem[pOp->p2];
1639 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001640 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001641 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001642 break;
1643 }
drh158b9cb2011-03-05 20:59:46 +00001644 iA = sqlite3VdbeIntValue(pIn2);
1645 iB = sqlite3VdbeIntValue(pIn1);
1646 op = pOp->opcode;
1647 if( op==OP_BitAnd ){
1648 iA &= iB;
1649 }else if( op==OP_BitOr ){
1650 iA |= iB;
1651 }else if( iB!=0 ){
1652 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1653
1654 /* If shifting by a negative amount, shift in the other direction */
1655 if( iB<0 ){
1656 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1657 op = 2*OP_ShiftLeft + 1 - op;
1658 iB = iB>(-64) ? -iB : 64;
1659 }
1660
1661 if( iB>=64 ){
1662 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1663 }else{
1664 memcpy(&uA, &iA, sizeof(uA));
1665 if( op==OP_ShiftLeft ){
1666 uA <<= iB;
1667 }else{
1668 uA >>= iB;
1669 /* Sign-extend on a right shift of a negative number */
1670 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1671 }
1672 memcpy(&iA, &uA, sizeof(iA));
1673 }
drhbf4133c2001-10-13 02:59:08 +00001674 }
drh158b9cb2011-03-05 20:59:46 +00001675 pOut->u.i = iA;
danielk1977a7a8e142008-02-13 18:25:27 +00001676 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001677 break;
1678}
1679
drh8558cde2008-01-05 05:20:10 +00001680/* Opcode: AddImm P1 P2 * * *
drh72e26de2016-08-24 21:24:04 +00001681** Synopsis: r[P1]=r[P1]+P2
drh5e00f6c2001-09-13 13:46:56 +00001682**
danielk19770cdc0222008-06-26 18:04:03 +00001683** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001684** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001685**
drh8558cde2008-01-05 05:20:10 +00001686** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001687*/
drh9cbf3422008-01-17 16:22:13 +00001688case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001689 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001690 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001691 sqlite3VdbeMemIntegerify(pIn1);
1692 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001693 break;
1694}
1695
drh9cbf3422008-01-17 16:22:13 +00001696/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001697**
drh9cbf3422008-01-17 16:22:13 +00001698** Force the value in register P1 to be an integer. If the value
1699** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001700** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001701** raise an SQLITE_MISMATCH exception.
1702*/
drh9cbf3422008-01-17 16:22:13 +00001703case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001704 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001705 if( (pIn1->flags & MEM_Int)==0 ){
drh83b301b2013-11-20 00:59:02 +00001706 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
drh688852a2014-02-17 22:40:43 +00001707 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
drh83b301b2013-11-20 00:59:02 +00001708 if( (pIn1->flags & MEM_Int)==0 ){
1709 if( pOp->p2==0 ){
1710 rc = SQLITE_MISMATCH;
1711 goto abort_due_to_error;
1712 }else{
drhf56fa462015-04-13 21:39:54 +00001713 goto jump_to_p2;
drh83b301b2013-11-20 00:59:02 +00001714 }
drh8aff1012001-12-22 14:49:24 +00001715 }
drh8aff1012001-12-22 14:49:24 +00001716 }
drh83b301b2013-11-20 00:59:02 +00001717 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001718 break;
1719}
1720
drh13573c72010-01-12 17:04:07 +00001721#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001722/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001723**
drh2133d822008-01-03 18:44:59 +00001724** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001725**
drh8a512562005-11-14 22:29:05 +00001726** This opcode is used when extracting information from a column that
1727** has REAL affinity. Such column values may still be stored as
1728** integers, for space efficiency, but after extraction we want them
1729** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001730*/
drh9cbf3422008-01-17 16:22:13 +00001731case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001732 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001733 if( pIn1->flags & MEM_Int ){
1734 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001735 }
drh487e2622005-06-25 18:42:14 +00001736 break;
1737}
drh13573c72010-01-12 17:04:07 +00001738#endif
drh487e2622005-06-25 18:42:14 +00001739
drh8df447f2005-11-01 15:48:24 +00001740#ifndef SQLITE_OMIT_CAST
drh4169e432014-08-25 20:11:52 +00001741/* Opcode: Cast P1 P2 * * *
mistachkina1dc42a2014-08-27 17:53:40 +00001742** Synopsis: affinity(r[P1])
drh487e2622005-06-25 18:42:14 +00001743**
drh4169e432014-08-25 20:11:52 +00001744** Force the value in register P1 to be the type defined by P2.
1745**
1746** <ul>
drhbb6783b2017-04-29 18:02:49 +00001747** <li> P2=='A' &rarr; BLOB
1748** <li> P2=='B' &rarr; TEXT
1749** <li> P2=='C' &rarr; NUMERIC
1750** <li> P2=='D' &rarr; INTEGER
1751** <li> P2=='E' &rarr; REAL
drh4169e432014-08-25 20:11:52 +00001752** </ul>
drh487e2622005-06-25 18:42:14 +00001753**
1754** A NULL value is not changed by this routine. It remains NULL.
1755*/
drh4169e432014-08-25 20:11:52 +00001756case OP_Cast: { /* in1 */
drh05883a32015-06-02 15:32:08 +00001757 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
drh05bbb2e2014-08-25 22:37:19 +00001758 testcase( pOp->p2==SQLITE_AFF_TEXT );
drh05883a32015-06-02 15:32:08 +00001759 testcase( pOp->p2==SQLITE_AFF_BLOB );
drh05bbb2e2014-08-25 22:37:19 +00001760 testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1761 testcase( pOp->p2==SQLITE_AFF_INTEGER );
1762 testcase( pOp->p2==SQLITE_AFF_REAL );
drh3c657212009-11-17 23:59:58 +00001763 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001764 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001765 rc = ExpandBlob(pIn1);
drh4169e432014-08-25 20:11:52 +00001766 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
drhb7654112008-01-12 12:48:07 +00001767 UPDATE_MAX_BLOBSIZE(pIn1);
drh9467abf2016-02-17 18:44:11 +00001768 if( rc ) goto abort_due_to_error;
drh487e2622005-06-25 18:42:14 +00001769 break;
1770}
drh8a512562005-11-14 22:29:05 +00001771#endif /* SQLITE_OMIT_CAST */
1772
drh79752b62016-08-13 10:02:17 +00001773/* Opcode: Eq P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001774** Synopsis: IF r[P3]==r[P1]
drh79752b62016-08-13 10:02:17 +00001775**
1776** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then
1777** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5, then
1778** store the result of comparison in register P2.
1779**
1780** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1781** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1782** to coerce both inputs according to this affinity before the
1783** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1784** affinity is used. Note that the affinity conversions are stored
1785** back into the input registers P1 and P3. So this opcode can cause
1786** persistent changes to registers P1 and P3.
1787**
1788** Once any conversions have taken place, and neither value is NULL,
1789** the values are compared. If both values are blobs then memcmp() is
1790** used to determine the results of the comparison. If both values
1791** are text, then the appropriate collating function specified in
1792** P4 is used to do the comparison. If P4 is not specified then
1793** memcmp() is used to compare text string. If both values are
1794** numeric, then a numeric comparison is used. If the two values
1795** are of different types, then numbers are considered less than
1796** strings and strings are considered less than blobs.
1797**
1798** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1799** true or false and is never NULL. If both operands are NULL then the result
1800** of comparison is true. If either operand is NULL then the result is false.
1801** If neither operand is NULL the result is the same as it would be if
1802** the SQLITE_NULLEQ flag were omitted from P5.
1803**
1804** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
drh3fffbf92016-09-05 15:02:41 +00001805** content of r[P2] is only changed if the new value is NULL or 0 (false).
1806** In other words, a prior r[P2] value will not be overwritten by 1 (true).
drh79752b62016-08-13 10:02:17 +00001807*/
1808/* Opcode: Ne P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001809** Synopsis: IF r[P3]!=r[P1]
drh79752b62016-08-13 10:02:17 +00001810**
1811** This works just like the Eq opcode except that the jump is taken if
1812** the operands in registers P1 and P3 are not equal. See the Eq opcode for
1813** additional information.
1814**
1815** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
drh3fffbf92016-09-05 15:02:41 +00001816** content of r[P2] is only changed if the new value is NULL or 1 (true).
1817** In other words, a prior r[P2] value will not be overwritten by 0 (false).
drh79752b62016-08-13 10:02:17 +00001818*/
drh35573352008-01-08 23:54:25 +00001819/* Opcode: Lt P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001820** Synopsis: IF r[P3]<r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001821**
drh35573352008-01-08 23:54:25 +00001822** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
drh79752b62016-08-13 10:02:17 +00001823** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5 store
1824** the result of comparison (0 or 1 or NULL) into register P2.
drhf5905aa2002-05-26 20:54:33 +00001825**
drh35573352008-01-08 23:54:25 +00001826** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
drh79752b62016-08-13 10:02:17 +00001827** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL
drh710c4842010-08-30 01:17:20 +00001828** bit is clear then fall through if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001829**
drh35573352008-01-08 23:54:25 +00001830** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001831** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001832** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001833** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001834** affinity is used. Note that the affinity conversions are stored
1835** back into the input registers P1 and P3. So this opcode can cause
1836** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001837**
1838** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001839** the values are compared. If both values are blobs then memcmp() is
1840** used to determine the results of the comparison. If both values
1841** are text, then the appropriate collating function specified in
1842** P4 is used to do the comparison. If P4 is not specified then
1843** memcmp() is used to compare text string. If both values are
1844** numeric, then a numeric comparison is used. If the two values
1845** are of different types, then numbers are considered less than
1846** strings and strings are considered less than blobs.
drh5e00f6c2001-09-13 13:46:56 +00001847*/
drh9cbf3422008-01-17 16:22:13 +00001848/* Opcode: Le P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001849** Synopsis: IF r[P3]<=r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001850**
drh35573352008-01-08 23:54:25 +00001851** This works just like the Lt opcode except that the jump is taken if
1852** the content of register P3 is less than or equal to the content of
1853** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001854*/
drh9cbf3422008-01-17 16:22:13 +00001855/* Opcode: Gt P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001856** Synopsis: IF r[P3]>r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001857**
drh35573352008-01-08 23:54:25 +00001858** This works just like the Lt opcode except that the jump is taken if
1859** the content of register P3 is greater than the content of
1860** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001861*/
drh9cbf3422008-01-17 16:22:13 +00001862/* Opcode: Ge P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001863** Synopsis: IF r[P3]>=r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001864**
drh35573352008-01-08 23:54:25 +00001865** This works just like the Lt opcode except that the jump is taken if
1866** the content of register P3 is greater than or equal to the content of
1867** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001868*/
drh9cbf3422008-01-17 16:22:13 +00001869case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1870case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1871case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1872case OP_Le: /* same as TK_LE, jump, in1, in3 */
1873case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1874case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh4910a762016-09-03 01:46:15 +00001875 int res, res2; /* Result of the comparison of pIn1 against pIn3 */
drh6a2fe092009-09-23 02:29:36 +00001876 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00001877 u16 flags1; /* Copy of initial value of pIn1->flags */
1878 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00001879
drh3c657212009-11-17 23:59:58 +00001880 pIn1 = &aMem[pOp->p1];
1881 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00001882 flags1 = pIn1->flags;
1883 flags3 = pIn3->flags;
drhc3f1d5f2011-05-30 23:42:16 +00001884 if( (flags1 | flags3)&MEM_Null ){
drh6a2fe092009-09-23 02:29:36 +00001885 /* One or both operands are NULL */
1886 if( pOp->p5 & SQLITE_NULLEQ ){
1887 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1888 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1889 ** or not both operands are null.
1890 */
1891 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
drh053a1282012-09-19 21:15:46 +00001892 assert( (flags1 & MEM_Cleared)==0 );
drh3d77dee2014-02-19 14:20:49 +00001893 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
drhc3191d22016-10-18 16:36:15 +00001894 if( (flags1&flags3&MEM_Null)!=0
drh053a1282012-09-19 21:15:46 +00001895 && (flags3&MEM_Cleared)==0
1896 ){
drh4910a762016-09-03 01:46:15 +00001897 res = 0; /* Operands are equal */
drh053a1282012-09-19 21:15:46 +00001898 }else{
drh4910a762016-09-03 01:46:15 +00001899 res = 1; /* Operands are not equal */
drh053a1282012-09-19 21:15:46 +00001900 }
drh6a2fe092009-09-23 02:29:36 +00001901 }else{
1902 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1903 ** then the result is always NULL.
1904 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1905 */
drh688852a2014-02-17 22:40:43 +00001906 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001907 pOut = &aMem[pOp->p2];
drh4910a762016-09-03 01:46:15 +00001908 iCompare = 1; /* Operands are not equal */
danb1d6b532015-12-14 19:42:19 +00001909 memAboutToChange(p, pOut);
drh6a2fe092009-09-23 02:29:36 +00001910 MemSetTypeFlag(pOut, MEM_Null);
1911 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00001912 }else{
drhf4345e42014-02-18 11:31:59 +00001913 VdbeBranchTaken(2,3);
drh688852a2014-02-17 22:40:43 +00001914 if( pOp->p5 & SQLITE_JUMPIFNULL ){
drhf56fa462015-04-13 21:39:54 +00001915 goto jump_to_p2;
drh688852a2014-02-17 22:40:43 +00001916 }
drh6a2fe092009-09-23 02:29:36 +00001917 }
1918 break;
danielk1977a37cdde2004-05-16 11:15:36 +00001919 }
drh6a2fe092009-09-23 02:29:36 +00001920 }else{
1921 /* Neither operand is NULL. Do a comparison. */
1922 affinity = pOp->p5 & SQLITE_AFF_MASK;
drh24a09622014-09-18 16:28:59 +00001923 if( affinity>=SQLITE_AFF_NUMERIC ){
drh5fd0c122016-04-04 13:46:24 +00001924 if( (flags1 | flags3)&MEM_Str ){
1925 if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
1926 applyNumericAffinity(pIn1,0);
drh64caee42016-09-09 19:33:00 +00001927 testcase( flags3!=pIn3->flags ); /* Possible if pIn1==pIn3 */
drh4b37cd42016-06-25 11:43:47 +00001928 flags3 = pIn3->flags;
drh5fd0c122016-04-04 13:46:24 +00001929 }
1930 if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
1931 applyNumericAffinity(pIn3,0);
1932 }
drh24a09622014-09-18 16:28:59 +00001933 }
drh64caee42016-09-09 19:33:00 +00001934 /* Handle the common case of integer comparison here, as an
1935 ** optimization, to avoid a call to sqlite3MemCompare() */
1936 if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){
1937 if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; }
1938 if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; }
1939 res = 0;
1940 goto compare_op;
1941 }
drh24a09622014-09-18 16:28:59 +00001942 }else if( affinity==SQLITE_AFF_TEXT ){
drhe5520e22015-12-31 04:34:26 +00001943 if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00001944 testcase( pIn1->flags & MEM_Int );
1945 testcase( pIn1->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00001946 sqlite3VdbeMemStringify(pIn1, encoding, 1);
drhbc8a6b32015-03-31 11:42:23 +00001947 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
1948 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
drh21e19b42016-09-15 14:54:51 +00001949 assert( pIn1!=pIn3 );
drh24a09622014-09-18 16:28:59 +00001950 }
drhe5520e22015-12-31 04:34:26 +00001951 if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00001952 testcase( pIn3->flags & MEM_Int );
1953 testcase( pIn3->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00001954 sqlite3VdbeMemStringify(pIn3, encoding, 1);
drhbc8a6b32015-03-31 11:42:23 +00001955 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
1956 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
drh24a09622014-09-18 16:28:59 +00001957 }
drh6a2fe092009-09-23 02:29:36 +00001958 }
drh6a2fe092009-09-23 02:29:36 +00001959 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
drh4910a762016-09-03 01:46:15 +00001960 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00001961 }
drh64caee42016-09-09 19:33:00 +00001962compare_op:
drh58596362017-08-03 00:29:23 +00001963 /* At this point, res is negative, zero, or positive if reg[P1] is
1964 ** less than, equal to, or greater than reg[P3], respectively. Compute
1965 ** the answer to this operator in res2, depending on what the comparison
1966 ** operator actually is. The next block of code depends on the fact
1967 ** that the 6 comparison operators are consecutive integers in this
1968 ** order: NE, EQ, GT, LE, LT, GE */
1969 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
1970 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
1971 if( res<0 ){ /* ne, eq, gt, le, lt, ge */
1972 static const unsigned char aLTb[] = { 1, 0, 0, 1, 1, 0 };
1973 res2 = aLTb[pOp->opcode - OP_Ne];
1974 }else if( res==0 ){
1975 static const unsigned char aEQb[] = { 0, 1, 0, 1, 0, 1 };
1976 res2 = aEQb[pOp->opcode - OP_Ne];
1977 }else{
1978 static const unsigned char aGTb[] = { 1, 0, 1, 0, 0, 1 };
1979 res2 = aGTb[pOp->opcode - OP_Ne];
danielk1977a37cdde2004-05-16 11:15:36 +00001980 }
1981
drhf56fa462015-04-13 21:39:54 +00001982 /* Undo any changes made by applyAffinity() to the input registers. */
1983 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1984 pIn1->flags = flags1;
1985 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
1986 pIn3->flags = flags3;
1987
drh35573352008-01-08 23:54:25 +00001988 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001989 pOut = &aMem[pOp->p2];
drh4910a762016-09-03 01:46:15 +00001990 iCompare = res;
drh3fffbf92016-09-05 15:02:41 +00001991 if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){
drh79752b62016-08-13 10:02:17 +00001992 /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1
drh3fffbf92016-09-05 15:02:41 +00001993 ** and prevents OP_Ne from overwriting NULL with 0. This flag
1994 ** is only used in contexts where either:
1995 ** (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0)
1996 ** (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1)
1997 ** Therefore it is not necessary to check the content of r[P2] for
1998 ** NULL. */
drh79752b62016-08-13 10:02:17 +00001999 assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq );
drh4910a762016-09-03 01:46:15 +00002000 assert( res2==0 || res2==1 );
drh3fffbf92016-09-05 15:02:41 +00002001 testcase( res2==0 && pOp->opcode==OP_Eq );
2002 testcase( res2==1 && pOp->opcode==OP_Eq );
2003 testcase( res2==0 && pOp->opcode==OP_Ne );
2004 testcase( res2==1 && pOp->opcode==OP_Ne );
drh4910a762016-09-03 01:46:15 +00002005 if( (pOp->opcode==OP_Eq)==res2 ) break;
drh79752b62016-08-13 10:02:17 +00002006 }
drh2b4ded92010-09-27 21:09:31 +00002007 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00002008 MemSetTypeFlag(pOut, MEM_Int);
drh4910a762016-09-03 01:46:15 +00002009 pOut->u.i = res2;
drh35573352008-01-08 23:54:25 +00002010 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00002011 }else{
drhf4345e42014-02-18 11:31:59 +00002012 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
drh4910a762016-09-03 01:46:15 +00002013 if( res2 ){
drhf56fa462015-04-13 21:39:54 +00002014 goto jump_to_p2;
drh688852a2014-02-17 22:40:43 +00002015 }
danielk1977a37cdde2004-05-16 11:15:36 +00002016 }
2017 break;
2018}
drhc9b84a12002-06-20 11:36:48 +00002019
drh79752b62016-08-13 10:02:17 +00002020/* Opcode: ElseNotEq * P2 * * *
2021**
drhfd7459e2016-09-17 17:39:01 +00002022** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator.
2023** If result of an OP_Eq comparison on the same two operands
2024** would have be NULL or false (0), then then jump to P2.
2025** If the result of an OP_Eq comparison on the two previous operands
2026** would have been true (1), then fall through.
drh79752b62016-08-13 10:02:17 +00002027*/
2028case OP_ElseNotEq: { /* same as TK_ESCAPE, jump */
2029 assert( pOp>aOp );
2030 assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt );
drh4910a762016-09-03 01:46:15 +00002031 assert( pOp[-1].p5 & SQLITE_STOREP2 );
drh0f825a72016-08-13 14:17:02 +00002032 VdbeBranchTaken(iCompare!=0, 2);
2033 if( iCompare!=0 ) goto jump_to_p2;
drh79752b62016-08-13 10:02:17 +00002034 break;
2035}
2036
2037
drh0acb7e42008-06-25 00:12:41 +00002038/* Opcode: Permutation * * * P4 *
2039**
drhb7dab702017-01-26 18:00:00 +00002040** Set the permutation used by the OP_Compare operator in the next
2041** instruction. The permutation is stored in the P4 operand.
drh0acb7e42008-06-25 00:12:41 +00002042**
drh953f7612012-12-07 22:18:54 +00002043** The permutation is only valid until the next OP_Compare that has
2044** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2045** occur immediately prior to the OP_Compare.
drhb1702022016-01-30 00:45:18 +00002046**
2047** The first integer in the P4 integer array is the length of the array
2048** and does not become part of the permutation.
drh0acb7e42008-06-25 00:12:41 +00002049*/
2050case OP_Permutation: {
2051 assert( pOp->p4type==P4_INTARRAY );
2052 assert( pOp->p4.ai );
drhb7dab702017-01-26 18:00:00 +00002053 assert( pOp[1].opcode==OP_Compare );
2054 assert( pOp[1].p5 & OPFLAG_PERMUTE );
drh0acb7e42008-06-25 00:12:41 +00002055 break;
2056}
2057
drh953f7612012-12-07 22:18:54 +00002058/* Opcode: Compare P1 P2 P3 P4 P5
drh079a3072014-03-19 14:10:55 +00002059** Synopsis: r[P1@P3] <-> r[P2@P3]
drh16ee60f2008-06-20 18:13:25 +00002060**
drh710c4842010-08-30 01:17:20 +00002061** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2062** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
drh16ee60f2008-06-20 18:13:25 +00002063** the comparison for use by the next OP_Jump instruct.
2064**
drh0ca10df2012-12-08 13:26:23 +00002065** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2066** determined by the most recent OP_Permutation operator. If the
2067** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2068** order.
2069**
drh0acb7e42008-06-25 00:12:41 +00002070** P4 is a KeyInfo structure that defines collating sequences and sort
2071** orders for the comparison. The permutation applies to registers
2072** only. The KeyInfo elements are used sequentially.
2073**
2074** The comparison is a sort comparison, so NULLs compare equal,
2075** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00002076** and strings are less than blobs.
2077*/
2078case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00002079 int n;
2080 int i;
2081 int p1;
2082 int p2;
2083 const KeyInfo *pKeyInfo;
2084 int idx;
2085 CollSeq *pColl; /* Collating sequence to use on this term */
2086 int bRev; /* True for DESCENDING sort order */
drhb7dab702017-01-26 18:00:00 +00002087 int *aPermute; /* The permutation */
drh856c1032009-06-02 15:21:42 +00002088
drhb7dab702017-01-26 18:00:00 +00002089 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2090 aPermute = 0;
2091 }else{
2092 assert( pOp>aOp );
2093 assert( pOp[-1].opcode==OP_Permutation );
2094 assert( pOp[-1].p4type==P4_INTARRAY );
2095 aPermute = pOp[-1].p4.ai + 1;
2096 assert( aPermute!=0 );
2097 }
drh856c1032009-06-02 15:21:42 +00002098 n = pOp->p3;
2099 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00002100 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00002101 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00002102 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00002103 p2 = pOp->p2;
drhd879e3e2017-02-13 13:35:55 +00002104#ifdef SQLITE_DEBUG
drh6a2fe092009-09-23 02:29:36 +00002105 if( aPermute ){
2106 int k, mx = 0;
2107 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
drh9f6168b2016-03-19 23:32:58 +00002108 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2109 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002110 }else{
drh9f6168b2016-03-19 23:32:58 +00002111 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2112 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002113 }
2114#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00002115 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00002116 idx = aPermute ? aPermute[i] : i;
drh2b4ded92010-09-27 21:09:31 +00002117 assert( memIsValid(&aMem[p1+idx]) );
2118 assert( memIsValid(&aMem[p2+idx]) );
drha6c2ed92009-11-14 23:22:23 +00002119 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2120 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drha485ad12017-08-02 22:43:14 +00002121 assert( i<pKeyInfo->nKeyField );
drh93a960a2008-07-10 00:32:42 +00002122 pColl = pKeyInfo->aColl[i];
2123 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00002124 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00002125 if( iCompare ){
2126 if( bRev ) iCompare = -iCompare;
2127 break;
2128 }
drh16ee60f2008-06-20 18:13:25 +00002129 }
2130 break;
2131}
2132
2133/* Opcode: Jump P1 P2 P3 * *
2134**
2135** Jump to the instruction at address P1, P2, or P3 depending on whether
2136** in the most recent OP_Compare instruction the P1 vector was less than
2137** equal to, or greater than the P2 vector, respectively.
2138*/
drh0acb7e42008-06-25 00:12:41 +00002139case OP_Jump: { /* jump */
2140 if( iCompare<0 ){
drhf56fa462015-04-13 21:39:54 +00002141 VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
drh0acb7e42008-06-25 00:12:41 +00002142 }else if( iCompare==0 ){
drhf56fa462015-04-13 21:39:54 +00002143 VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
drh16ee60f2008-06-20 18:13:25 +00002144 }else{
drhf56fa462015-04-13 21:39:54 +00002145 VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
drh16ee60f2008-06-20 18:13:25 +00002146 }
2147 break;
2148}
2149
drh5b6afba2008-01-05 16:29:28 +00002150/* Opcode: And P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002151** Synopsis: r[P3]=(r[P1] && r[P2])
drh5e00f6c2001-09-13 13:46:56 +00002152**
drh5b6afba2008-01-05 16:29:28 +00002153** Take the logical AND of the values in registers P1 and P2 and
2154** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00002155**
drh5b6afba2008-01-05 16:29:28 +00002156** If either P1 or P2 is 0 (false) then the result is 0 even if
2157** the other input is NULL. A NULL and true or two NULLs give
2158** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00002159*/
drh5b6afba2008-01-05 16:29:28 +00002160/* Opcode: Or P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002161** Synopsis: r[P3]=(r[P1] || r[P2])
drh5b6afba2008-01-05 16:29:28 +00002162**
2163** Take the logical OR of the values in register P1 and P2 and
2164** store the answer in register P3.
2165**
2166** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2167** even if the other input is NULL. A NULL and false or two NULLs
2168** give a NULL output.
2169*/
2170case OP_And: /* same as TK_AND, in1, in2, out3 */
2171case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00002172 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2173 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00002174
drh1fcfa722018-02-26 15:27:31 +00002175 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
2176 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
drhbb113512002-05-27 01:04:51 +00002177 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00002178 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00002179 v1 = and_logic[v1*3+v2];
2180 }else{
drh5b6afba2008-01-05 16:29:28 +00002181 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00002182 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00002183 }
drh3c657212009-11-17 23:59:58 +00002184 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00002185 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00002186 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00002187 }else{
drh5b6afba2008-01-05 16:29:28 +00002188 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00002189 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00002190 }
drh5e00f6c2001-09-13 13:46:56 +00002191 break;
2192}
2193
drh8abed7b2018-02-26 18:49:05 +00002194/* Opcode: IsTrue P1 P2 P3 P4 *
2195** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2196**
2197** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2198** IS NOT FALSE operators.
2199**
drh96acafb2018-02-27 14:49:25 +00002200** Interpret the value in register P1 as a boolean value. Store that
drh8abed7b2018-02-26 18:49:05 +00002201** boolean (a 0 or 1) in register P2. Or if the value in register P1 is
2202** NULL, then the P3 is stored in register P2. Invert the answer if P4
2203** is 1.
2204**
2205** The logic is summarized like this:
2206**
2207** <ul>
drh96acafb2018-02-27 14:49:25 +00002208** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE
2209** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE
2210** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE
2211** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE
drh8abed7b2018-02-26 18:49:05 +00002212** </ul>
2213*/
2214case OP_IsTrue: { /* in1, out2 */
2215 assert( pOp->p4type==P4_INT32 );
2216 assert( pOp->p4.i==0 || pOp->p4.i==1 );
drh96acafb2018-02-27 14:49:25 +00002217 assert( pOp->p3==0 || pOp->p3==1 );
drh8abed7b2018-02-26 18:49:05 +00002218 sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
2219 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
2220 break;
2221}
2222
drhe99fa2a2008-12-15 15:27:51 +00002223/* Opcode: Not P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002224** Synopsis: r[P2]= !r[P1]
drh5e00f6c2001-09-13 13:46:56 +00002225**
drhe99fa2a2008-12-15 15:27:51 +00002226** Interpret the value in register P1 as a boolean value. Store the
2227** boolean complement in register P2. If the value in register P1 is
2228** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00002229*/
drh93952eb2009-11-13 19:43:43 +00002230case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002231 pIn1 = &aMem[pOp->p1];
2232 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002233 if( (pIn1->flags & MEM_Null)==0 ){
drhbc8f68a2018-02-26 15:31:39 +00002234 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
drh007c8432018-02-26 03:20:18 +00002235 }else{
2236 sqlite3VdbeMemSetNull(pOut);
drhe99fa2a2008-12-15 15:27:51 +00002237 }
drh5e00f6c2001-09-13 13:46:56 +00002238 break;
2239}
2240
drhe99fa2a2008-12-15 15:27:51 +00002241/* Opcode: BitNot P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002242** Synopsis: r[P1]= ~r[P1]
drhbf4133c2001-10-13 02:59:08 +00002243**
drhe99fa2a2008-12-15 15:27:51 +00002244** Interpret the content of register P1 as an integer. Store the
2245** ones-complement of the P1 value into register P2. If P1 holds
2246** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00002247*/
drh93952eb2009-11-13 19:43:43 +00002248case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002249 pIn1 = &aMem[pOp->p1];
2250 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002251 sqlite3VdbeMemSetNull(pOut);
2252 if( (pIn1->flags & MEM_Null)==0 ){
2253 pOut->flags = MEM_Int;
2254 pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002255 }
drhbf4133c2001-10-13 02:59:08 +00002256 break;
2257}
2258
drh48f2d3b2011-09-16 01:34:43 +00002259/* Opcode: Once P1 P2 * * *
2260**
drhab087d42017-03-24 17:59:56 +00002261** Fall through to the next instruction the first time this opcode is
2262** encountered on each invocation of the byte-code program. Jump to P2
2263** on the second and all subsequent encounters during the same invocation.
2264**
2265** Top-level programs determine first invocation by comparing the P1
2266** operand against the P1 operand on the OP_Init opcode at the beginning
2267** of the program. If the P1 values differ, then fall through and make
2268** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are
2269** the same then take the jump.
2270**
2271** For subprograms, there is a bitmask in the VdbeFrame that determines
2272** whether or not the jump should be taken. The bitmask is necessary
2273** because the self-altering code trick does not work for recursive
2274** triggers.
drh48f2d3b2011-09-16 01:34:43 +00002275*/
dan1d8cb212011-12-09 13:24:16 +00002276case OP_Once: { /* jump */
drhab087d42017-03-24 17:59:56 +00002277 u32 iAddr; /* Address of this instruction */
drh9e5eb9c2016-09-18 16:08:10 +00002278 assert( p->aOp[0].opcode==OP_Init );
drhab087d42017-03-24 17:59:56 +00002279 if( p->pFrame ){
2280 iAddr = (int)(pOp - p->aOp);
2281 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2282 VdbeBranchTaken(1, 2);
drhab087d42017-03-24 17:59:56 +00002283 goto jump_to_p2;
2284 }
drh18333ef2017-03-24 18:38:41 +00002285 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
dan1d8cb212011-12-09 13:24:16 +00002286 }else{
drhab087d42017-03-24 17:59:56 +00002287 if( p->aOp[0].p1==pOp->p1 ){
2288 VdbeBranchTaken(1, 2);
2289 goto jump_to_p2;
2290 }
dan1d8cb212011-12-09 13:24:16 +00002291 }
drhab087d42017-03-24 17:59:56 +00002292 VdbeBranchTaken(0, 2);
2293 pOp->p1 = p->aOp[0].p1;
dan1d8cb212011-12-09 13:24:16 +00002294 break;
2295}
2296
drh3c84ddf2008-01-09 02:15:38 +00002297/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00002298**
drhef8662b2011-06-20 21:47:58 +00002299** Jump to P2 if the value in register P1 is true. The value
drh3c84ddf2008-01-09 02:15:38 +00002300** is considered true if it is numeric and non-zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002301** in P1 is NULL then take the jump if and only if P3 is non-zero.
drh5e00f6c2001-09-13 13:46:56 +00002302*/
drh1fcfa722018-02-26 15:27:31 +00002303case OP_If: { /* jump, in1 */
2304 int c;
2305 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
2306 VdbeBranchTaken(c!=0, 2);
2307 if( c ) goto jump_to_p2;
2308 break;
2309}
2310
drh3c84ddf2008-01-09 02:15:38 +00002311/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00002312**
drhef8662b2011-06-20 21:47:58 +00002313** Jump to P2 if the value in register P1 is False. The value
drhb8475df2011-12-09 16:21:19 +00002314** is considered false if it has a numeric value of zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002315** in P1 is NULL then take the jump if and only if P3 is non-zero.
drhf5905aa2002-05-26 20:54:33 +00002316*/
drh9cbf3422008-01-17 16:22:13 +00002317case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00002318 int c;
drh1fcfa722018-02-26 15:27:31 +00002319 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
drh688852a2014-02-17 22:40:43 +00002320 VdbeBranchTaken(c!=0, 2);
drh1fcfa722018-02-26 15:27:31 +00002321 if( c ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00002322 break;
2323}
2324
drh830ecf92009-06-18 00:41:55 +00002325/* Opcode: IsNull P1 P2 * * *
drh72e26de2016-08-24 21:24:04 +00002326** Synopsis: if r[P1]==NULL goto P2
drh477df4b2008-01-05 18:48:24 +00002327**
drh830ecf92009-06-18 00:41:55 +00002328** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002329*/
drh9cbf3422008-01-17 16:22:13 +00002330case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002331 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002332 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
drh830ecf92009-06-18 00:41:55 +00002333 if( (pIn1->flags & MEM_Null)!=0 ){
drhf56fa462015-04-13 21:39:54 +00002334 goto jump_to_p2;
drh830ecf92009-06-18 00:41:55 +00002335 }
drh477df4b2008-01-05 18:48:24 +00002336 break;
2337}
2338
drh98757152008-01-09 23:04:12 +00002339/* Opcode: NotNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002340** Synopsis: if r[P1]!=NULL goto P2
drh5e00f6c2001-09-13 13:46:56 +00002341**
drh6a288a32008-01-07 19:20:24 +00002342** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002343*/
drh9cbf3422008-01-17 16:22:13 +00002344case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002345 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002346 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
drh6a288a32008-01-07 19:20:24 +00002347 if( (pIn1->flags & MEM_Null)==0 ){
drhf56fa462015-04-13 21:39:54 +00002348 goto jump_to_p2;
drh6a288a32008-01-07 19:20:24 +00002349 }
drh5e00f6c2001-09-13 13:46:56 +00002350 break;
2351}
2352
drh31d6fd52017-04-14 19:03:10 +00002353/* Opcode: IfNullRow P1 P2 P3 * *
2354** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2355**
2356** Check the cursor P1 to see if it is currently pointing at a NULL row.
2357** If it is, then set register P3 to NULL and jump immediately to P2.
2358** If P1 is not on a NULL row, then fall through without making any
2359** changes.
2360*/
2361case OP_IfNullRow: { /* jump */
2362 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh3f1e9e02017-05-23 01:21:07 +00002363 assert( p->apCsr[pOp->p1]!=0 );
drh31d6fd52017-04-14 19:03:10 +00002364 if( p->apCsr[pOp->p1]->nullRow ){
2365 sqlite3VdbeMemSetNull(aMem + pOp->p3);
2366 goto jump_to_p2;
2367 }
2368 break;
2369}
2370
drh092457b2017-12-29 15:04:49 +00002371#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2372/* Opcode: Offset P1 P2 P3 * *
2373** Synopsis: r[P3] = sqlite_offset(P1)
drh2fc865c2017-12-16 20:20:37 +00002374**
drh092457b2017-12-29 15:04:49 +00002375** Store in register r[P3] the byte offset into the database file that is the
drh2fc865c2017-12-16 20:20:37 +00002376** start of the payload for the record at which that cursor P1 is currently
2377** pointing.
drhfe6d20e2017-12-29 14:33:54 +00002378**
drh092457b2017-12-29 15:04:49 +00002379** P2 is the column number for the argument to the sqlite_offset() function.
drhfe6d20e2017-12-29 14:33:54 +00002380** This opcode does not use P2 itself, but the P2 value is used by the
2381** code generator. The P1, P2, and P3 operands to this opcode are the
mistachkin5e9825e2018-03-01 18:09:02 +00002382** same as for OP_Column.
drh092457b2017-12-29 15:04:49 +00002383**
2384** This opcode is only available if SQLite is compiled with the
2385** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
drh2fc865c2017-12-16 20:20:37 +00002386*/
drh092457b2017-12-29 15:04:49 +00002387case OP_Offset: { /* out3 */
drh2fc865c2017-12-16 20:20:37 +00002388 VdbeCursor *pC; /* The VDBE cursor */
2389 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2390 pC = p->apCsr[pOp->p1];
drhfe6d20e2017-12-29 14:33:54 +00002391 pOut = &p->aMem[pOp->p3];
drhc64487b2017-12-29 17:21:21 +00002392 if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){
drhfe6d20e2017-12-29 14:33:54 +00002393 sqlite3VdbeMemSetNull(pOut);
drh2fc865c2017-12-16 20:20:37 +00002394 }else{
drh092457b2017-12-29 15:04:49 +00002395 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
drh2fc865c2017-12-16 20:20:37 +00002396 }
2397 break;
2398}
drh092457b2017-12-29 15:04:49 +00002399#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
drh2fc865c2017-12-16 20:20:37 +00002400
drh3e9ca092009-09-08 01:14:48 +00002401/* Opcode: Column P1 P2 P3 P4 P5
drh72e26de2016-08-24 21:24:04 +00002402** Synopsis: r[P3]=PX
danielk1977192ac1d2004-05-10 07:17:30 +00002403**
danielk1977cfcdaef2004-05-12 07:33:33 +00002404** Interpret the data that cursor P1 points to as a structure built using
2405** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002406** information about the format of the data.) Extract the P2-th column
2407** from this record. If there are less that (P2+1)
2408** values in the record, extract a NULL.
2409**
drh9cbf3422008-01-17 16:22:13 +00002410** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002411**
drh1cc3a362017-04-03 13:17:31 +00002412** If the record contains fewer than P2 fields, then extract a NULL. Or,
danielk19771f4aa332008-01-03 09:51:55 +00002413** if the P4 argument is a P4_MEM use the value of the P4 argument as
2414** the result.
drh3e9ca092009-09-08 01:14:48 +00002415**
2416** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2417** then the cache of the cursor is reset prior to extracting the column.
2418** The first OP_Column against a pseudo-table after the value of the content
2419** register has changed should have this bit set.
drha748fdc2012-03-28 01:34:47 +00002420**
drh1cc3a362017-04-03 13:17:31 +00002421** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
drhdda5c082012-03-28 13:41:10 +00002422** the result is guaranteed to only be used as the argument of a length()
2423** or typeof() function, respectively. The loading of large blobs can be
2424** skipped for length() and all content loading can be skipped for typeof().
danielk1977192ac1d2004-05-10 07:17:30 +00002425*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002426case OP_Column: {
drh856c1032009-06-02 15:21:42 +00002427 int p2; /* column number to retrieve */
2428 VdbeCursor *pC; /* The VDBE cursor */
drhd3194f52004-05-27 19:59:32 +00002429 BtCursor *pCrsr; /* The BTree cursor */
drhd3194f52004-05-27 19:59:32 +00002430 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk1977cfcdaef2004-05-12 07:33:33 +00002431 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002432 int i; /* Loop counter */
drhd4e70eb2008-01-02 00:34:36 +00002433 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002434 Mem sMem; /* For storing the record being decoded */
drh399af1d2013-11-20 17:25:55 +00002435 const u8 *zData; /* Part of the record being decoded */
2436 const u8 *zHdr; /* Next unparsed byte of the header */
2437 const u8 *zEndHdr; /* Pointer to first byte after the header */
drhc6ce38832015-10-15 21:30:24 +00002438 u64 offset64; /* 64-bit offset */
drh5a077b72011-08-29 02:16:18 +00002439 u32 t; /* A type code from the record header */
drh3e9ca092009-09-08 01:14:48 +00002440 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002441
dande892d92016-01-29 19:29:45 +00002442 pC = p->apCsr[pOp->p1];
drh856c1032009-06-02 15:21:42 +00002443 p2 = pOp->p2;
dande892d92016-01-29 19:29:45 +00002444
drh170ad682017-06-02 15:44:22 +00002445 /* If the cursor cache is stale (meaning it is not currently point at
2446 ** the correct row) then bring it up-to-date by doing the necessary
2447 ** B-Tree seek. */
dande892d92016-01-29 19:29:45 +00002448 rc = sqlite3VdbeCursorMoveto(&pC, &p2);
drh4ca239f2016-05-19 11:12:43 +00002449 if( rc ) goto abort_due_to_error;
dande892d92016-01-29 19:29:45 +00002450
drh9f6168b2016-03-19 23:32:58 +00002451 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00002452 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00002453 memAboutToChange(p, pDest);
drhc8606e42013-11-20 19:28:03 +00002454 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
danielk19776c924092007-11-12 08:09:34 +00002455 assert( pC!=0 );
drhc8606e42013-11-20 19:28:03 +00002456 assert( p2<pC->nField );
drhb53a5a92014-10-12 22:37:22 +00002457 aOffset = pC->aOffset;
drh62aaa6c2015-11-21 17:27:42 +00002458 assert( pC->eCurType!=CURTYPE_VTAB );
drhc960dcb2015-11-20 19:22:01 +00002459 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2460 assert( pC->eCurType!=CURTYPE_SORTER );
drh399af1d2013-11-20 17:25:55 +00002461
drha43a02e2016-05-19 17:51:19 +00002462 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/
danielk1977192ac1d2004-05-10 07:17:30 +00002463 if( pC->nullRow ){
drhc960dcb2015-11-20 19:22:01 +00002464 if( pC->eCurType==CURTYPE_PSEUDO ){
drhfe0cf7a2017-08-16 19:20:20 +00002465 /* For the special case of as pseudo-cursor, the seekResult field
2466 ** identifies the register that holds the record */
2467 assert( pC->seekResult>0 );
2468 pReg = &aMem[pC->seekResult];
drhc8606e42013-11-20 19:28:03 +00002469 assert( pReg->flags & MEM_Blob );
2470 assert( memIsValid(pReg) );
drh6cd8c8c2017-08-15 14:14:36 +00002471 pC->payloadSize = pC->szRow = pReg->n;
drhc8606e42013-11-20 19:28:03 +00002472 pC->aRow = (u8*)pReg->z;
2473 }else{
drh6b5631e2014-11-05 15:57:39 +00002474 sqlite3VdbeMemSetNull(pDest);
drh399af1d2013-11-20 17:25:55 +00002475 goto op_column_out;
2476 }
danielk1977192ac1d2004-05-10 07:17:30 +00002477 }else{
drh06a09a82016-11-25 17:03:03 +00002478 pCrsr = pC->uc.pCursor;
drhc960dcb2015-11-20 19:22:01 +00002479 assert( pC->eCurType==CURTYPE_BTREE );
drhc8606e42013-11-20 19:28:03 +00002480 assert( pCrsr );
drha7c90c42016-06-04 20:37:10 +00002481 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2482 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
drh6cd8c8c2017-08-15 14:14:36 +00002483 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
2484 assert( pC->szRow<=pC->payloadSize );
2485 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */
2486 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5f7dacb2015-11-20 13:33:56 +00002487 goto too_big;
drh399af1d2013-11-20 17:25:55 +00002488 }
danielk1977192ac1d2004-05-10 07:17:30 +00002489 }
drhb73857f2006-03-17 00:25:59 +00002490 pC->cacheStatus = p->cacheCtr;
drh1f613c42017-08-16 14:16:19 +00002491 pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]);
drh399af1d2013-11-20 17:25:55 +00002492 pC->nHdrParsed = 0;
drh35cd6432009-06-05 14:17:21 +00002493
drhc81aa2e2014-10-11 23:31:52 +00002494
drh1f613c42017-08-16 14:16:19 +00002495 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/
drhc81aa2e2014-10-11 23:31:52 +00002496 /* pC->aRow does not have to hold the entire row, but it does at least
2497 ** need to cover the header of the record. If pC->aRow does not contain
2498 ** the complete header, then set it to zero, forcing the header to be
2499 ** dynamically allocated. */
2500 pC->aRow = 0;
2501 pC->szRow = 0;
drh848a3322015-10-16 12:53:47 +00002502
2503 /* Make sure a corrupt database has not given us an oversize header.
2504 ** Do this now to avoid an oversize memory allocation.
2505 **
2506 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2507 ** types use so much data space that there can only be 4096 and 32 of
2508 ** them, respectively. So the maximum header length results from a
2509 ** 3-byte type for each of the maximum of 32768 columns plus three
2510 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2511 */
drh1f613c42017-08-16 14:16:19 +00002512 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
drh74588ce2017-09-13 00:13:05 +00002513 goto op_column_corrupt;
drh848a3322015-10-16 12:53:47 +00002514 }
drh95b225a2017-08-16 11:04:22 +00002515 }else{
2516 /* This is an optimization. By skipping over the first few tests
2517 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2518 ** measurable performance gain.
2519 **
drh1f613c42017-08-16 14:16:19 +00002520 ** This branch is taken even if aOffset[0]==0. Such a record is never
drh95b225a2017-08-16 11:04:22 +00002521 ** generated by SQLite, and could be considered corruption, but we
drh1f613c42017-08-16 14:16:19 +00002522 ** accept it for historical reasons. When aOffset[0]==0, the code this
drh95b225a2017-08-16 11:04:22 +00002523 ** branch jumps to reads past the end of the record, but never more
2524 ** than a few bytes. Even if the record occurs at the end of the page
2525 ** content area, the "page header" comes after the page content and so
2526 ** this overread is harmless. Similar overreads can occur for a corrupt
2527 ** database file.
drh0eda6cd2016-05-19 16:58:42 +00002528 */
2529 zData = pC->aRow;
2530 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
drh1f613c42017-08-16 14:16:19 +00002531 testcase( aOffset[0]==0 );
drh0eda6cd2016-05-19 16:58:42 +00002532 goto op_column_read_header;
drhc81aa2e2014-10-11 23:31:52 +00002533 }
drh399af1d2013-11-20 17:25:55 +00002534 }
drh35cd6432009-06-05 14:17:21 +00002535
drh399af1d2013-11-20 17:25:55 +00002536 /* Make sure at least the first p2+1 entries of the header have been
drh0c8f7602014-09-19 16:56:45 +00002537 ** parsed and valid information is in aOffset[] and pC->aType[].
drh399af1d2013-11-20 17:25:55 +00002538 */
drhc8606e42013-11-20 19:28:03 +00002539 if( pC->nHdrParsed<=p2 ){
drh380d6852013-11-20 20:58:00 +00002540 /* If there is more header available for parsing in the record, try
2541 ** to extract additional fields up through the p2+1-th field
drh35cd6432009-06-05 14:17:21 +00002542 */
drhc8606e42013-11-20 19:28:03 +00002543 if( pC->iHdrOffset<aOffset[0] ){
2544 /* Make sure zData points to enough of the record to cover the header. */
2545 if( pC->aRow==0 ){
2546 memset(&sMem, 0, sizeof(sMem));
drhcb3cabd2016-11-25 19:18:28 +00002547 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem);
drh9467abf2016-02-17 18:44:11 +00002548 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhc8606e42013-11-20 19:28:03 +00002549 zData = (u8*)sMem.z;
2550 }else{
2551 zData = pC->aRow;
drh9188b382004-05-14 21:12:22 +00002552 }
drhc8606e42013-11-20 19:28:03 +00002553
drh0c8f7602014-09-19 16:56:45 +00002554 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
drh0eda6cd2016-05-19 16:58:42 +00002555 op_column_read_header:
drhc8606e42013-11-20 19:28:03 +00002556 i = pC->nHdrParsed;
drhc6ce38832015-10-15 21:30:24 +00002557 offset64 = aOffset[i];
drhc8606e42013-11-20 19:28:03 +00002558 zHdr = zData + pC->iHdrOffset;
2559 zEndHdr = zData + aOffset[0];
drh95b225a2017-08-16 11:04:22 +00002560 testcase( zHdr>=zEndHdr );
drhc8606e42013-11-20 19:28:03 +00002561 do{
drh95fa6062015-10-16 13:50:08 +00002562 if( (t = zHdr[0])<0x80 ){
drhc8606e42013-11-20 19:28:03 +00002563 zHdr++;
drhfaf37272015-10-16 14:23:42 +00002564 offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
drh5a077b72011-08-29 02:16:18 +00002565 }else{
drhc8606e42013-11-20 19:28:03 +00002566 zHdr += sqlite3GetVarint32(zHdr, &t);
drhfaf37272015-10-16 14:23:42 +00002567 offset64 += sqlite3VdbeSerialTypeLen(t);
drh5a077b72011-08-29 02:16:18 +00002568 }
drhfaf37272015-10-16 14:23:42 +00002569 pC->aType[i++] = t;
drhc6ce38832015-10-15 21:30:24 +00002570 aOffset[i] = (u32)(offset64 & 0xffffffff);
drhc8606e42013-11-20 19:28:03 +00002571 }while( i<=p2 && zHdr<zEndHdr );
drh170c2762016-05-20 21:40:11 +00002572
drh8dd83622014-10-13 23:39:02 +00002573 /* The record is corrupt if any of the following are true:
2574 ** (1) the bytes of the header extend past the declared header size
drh8dd83622014-10-13 23:39:02 +00002575 ** (2) the entire header was used but not all data was used
drh8dd83622014-10-13 23:39:02 +00002576 ** (3) the end of the data extends beyond the end of the record.
drhc8606e42013-11-20 19:28:03 +00002577 */
drhc6ce38832015-10-15 21:30:24 +00002578 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2579 || (offset64 > pC->payloadSize)
drhc8606e42013-11-20 19:28:03 +00002580 ){
drh95b225a2017-08-16 11:04:22 +00002581 if( aOffset[0]==0 ){
2582 i = 0;
2583 zHdr = zEndHdr;
2584 }else{
2585 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
drh74588ce2017-09-13 00:13:05 +00002586 goto op_column_corrupt;
drh95b225a2017-08-16 11:04:22 +00002587 }
danielk1977dedf45b2006-01-13 17:12:01 +00002588 }
drhddb2b4a2016-03-25 12:10:32 +00002589
drh170c2762016-05-20 21:40:11 +00002590 pC->nHdrParsed = i;
2591 pC->iHdrOffset = (u32)(zHdr - zData);
2592 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
mistachkin8c7cd6a2015-12-16 21:09:53 +00002593 }else{
drh9fbc8852016-01-04 03:48:46 +00002594 t = 0;
drh9188b382004-05-14 21:12:22 +00002595 }
drhd3194f52004-05-27 19:59:32 +00002596
drhf2db3382015-04-30 20:33:25 +00002597 /* If after trying to extract new entries from the header, nHdrParsed is
drh380d6852013-11-20 20:58:00 +00002598 ** still not up to p2, that means that the record has fewer than p2
2599 ** columns. So the result will be either the default value or a NULL.
drhd3194f52004-05-27 19:59:32 +00002600 */
drhc8606e42013-11-20 19:28:03 +00002601 if( pC->nHdrParsed<=p2 ){
2602 if( pOp->p4type==P4_MEM ){
2603 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2604 }else{
drh22e8d832014-10-29 00:58:38 +00002605 sqlite3VdbeMemSetNull(pDest);
drhc8606e42013-11-20 19:28:03 +00002606 }
danielk19773c9cc8d2005-01-17 03:40:08 +00002607 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002608 }
drh95fa6062015-10-16 13:50:08 +00002609 }else{
2610 t = pC->aType[p2];
danielk1977cfcdaef2004-05-12 07:33:33 +00002611 }
danielk1977192ac1d2004-05-10 07:17:30 +00002612
drh380d6852013-11-20 20:58:00 +00002613 /* Extract the content for the p2+1-th column. Control can only
drh0c8f7602014-09-19 16:56:45 +00002614 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
drh380d6852013-11-20 20:58:00 +00002615 ** all valid.
drh9188b382004-05-14 21:12:22 +00002616 */
drhc8606e42013-11-20 19:28:03 +00002617 assert( p2<pC->nHdrParsed );
2618 assert( rc==SQLITE_OK );
drh75fd0542014-03-01 16:24:44 +00002619 assert( sqlite3VdbeCheckMemInvariants(pDest) );
drha1851ef2016-05-20 19:51:28 +00002620 if( VdbeMemDynamic(pDest) ){
2621 sqlite3VdbeMemSetNull(pDest);
2622 }
drh95fa6062015-10-16 13:50:08 +00002623 assert( t==pC->aType[p2] );
drhc8606e42013-11-20 19:28:03 +00002624 if( pC->szRow>=aOffset[p2+1] ){
drh380d6852013-11-20 20:58:00 +00002625 /* This is the common case where the desired content fits on the original
2626 ** page - where the content is not on an overflow page */
drh69f6e252016-01-11 18:05:00 +00002627 zData = pC->aRow + aOffset[p2];
2628 if( t<12 ){
2629 sqlite3VdbeSerialGet(zData, t, pDest);
2630 }else{
2631 /* If the column value is a string, we need a persistent value, not
2632 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
2633 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2634 */
2635 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2636 pDest->n = len = (t-12)/2;
drha1851ef2016-05-20 19:51:28 +00002637 pDest->enc = encoding;
drh69f6e252016-01-11 18:05:00 +00002638 if( pDest->szMalloc < len+2 ){
2639 pDest->flags = MEM_Null;
2640 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2641 }else{
2642 pDest->z = pDest->zMalloc;
2643 }
2644 memcpy(pDest->z, zData, len);
2645 pDest->z[len] = 0;
2646 pDest->z[len+1] = 0;
2647 pDest->flags = aFlag[t&1];
2648 }
danielk197736963fd2005-02-19 08:18:05 +00002649 }else{
drha1851ef2016-05-20 19:51:28 +00002650 pDest->enc = encoding;
drh58c96082013-12-23 11:33:32 +00002651 /* This branch happens only when content is on overflow pages */
drh380d6852013-11-20 20:58:00 +00002652 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2653 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2654 || (len = sqlite3VdbeSerialTypeLen(t))==0
drhc8606e42013-11-20 19:28:03 +00002655 ){
drh2a2a6962014-09-16 18:22:44 +00002656 /* Content is irrelevant for
2657 ** 1. the typeof() function,
2658 ** 2. the length(X) function if X is a blob, and
2659 ** 3. if the content length is zero.
2660 ** So we might as well use bogus content rather than reading
dan1f9144e2017-03-17 13:59:06 +00002661 ** content from disk.
2662 **
2663 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
2664 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
2665 ** read up to 16. So 16 bytes of bogus content is supplied.
2666 */
2667 static u8 aZero[16]; /* This is the bogus content */
drh69f6e252016-01-11 18:05:00 +00002668 sqlite3VdbeSerialGet(aZero, t, pDest);
danielk1977aee18ef2005-03-09 12:26:50 +00002669 }else{
drhcb3cabd2016-11-25 19:18:28 +00002670 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
drh9467abf2016-02-17 18:44:11 +00002671 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2672 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2673 pDest->flags &= ~MEM_Ephem;
danielk1977aee18ef2005-03-09 12:26:50 +00002674 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002675 }
drhd3194f52004-05-27 19:59:32 +00002676
danielk19773c9cc8d2005-01-17 03:40:08 +00002677op_column_out:
drhb7654112008-01-12 12:48:07 +00002678 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002679 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002680 break;
drh74588ce2017-09-13 00:13:05 +00002681
2682op_column_corrupt:
2683 if( aOp[0].p3>0 ){
2684 pOp = &aOp[aOp[0].p3-1];
2685 break;
2686 }else{
2687 rc = SQLITE_CORRUPT_BKPT;
2688 goto abort_due_to_error;
2689 }
danielk1977192ac1d2004-05-10 07:17:30 +00002690}
2691
danielk1977751de562008-04-18 09:01:15 +00002692/* Opcode: Affinity P1 P2 * P4 *
drhf63552b2013-10-30 00:25:03 +00002693** Synopsis: affinity(r[P1@P2])
danielk1977751de562008-04-18 09:01:15 +00002694**
2695** Apply affinities to a range of P2 registers starting with P1.
2696**
drhbb6783b2017-04-29 18:02:49 +00002697** P4 is a string that is P2 characters long. The N-th character of the
2698** string indicates the column affinity that should be used for the N-th
danielk1977751de562008-04-18 09:01:15 +00002699** memory cell in the range.
2700*/
2701case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002702 const char *zAffinity; /* The affinity to be applied */
danielk1977751de562008-04-18 09:01:15 +00002703
drh856c1032009-06-02 15:21:42 +00002704 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002705 assert( zAffinity!=0 );
drh662c50e2017-04-01 20:14:01 +00002706 assert( pOp->p2>0 );
drh039fc322009-11-17 18:31:47 +00002707 assert( zAffinity[pOp->p2]==0 );
2708 pIn1 = &aMem[pOp->p1];
drh662c50e2017-04-01 20:14:01 +00002709 do{
drh9f6168b2016-03-19 23:32:58 +00002710 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00002711 assert( memIsValid(pIn1) );
drh662c50e2017-04-01 20:14:01 +00002712 applyAffinity(pIn1, *(zAffinity++), encoding);
drh039fc322009-11-17 18:31:47 +00002713 pIn1++;
drh662c50e2017-04-01 20:14:01 +00002714 }while( zAffinity[0] );
danielk1977751de562008-04-18 09:01:15 +00002715 break;
2716}
2717
drh1db639c2008-01-17 02:36:28 +00002718/* Opcode: MakeRecord P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00002719** Synopsis: r[P3]=mkrec(r[P1@P2])
drh7a224de2004-06-02 01:22:02 +00002720**
drh710c4842010-08-30 01:17:20 +00002721** Convert P2 registers beginning with P1 into the [record format]
2722** use as a data record in a database table or as a key
2723** in an index. The OP_Column opcode can decode the record later.
drh7a224de2004-06-02 01:22:02 +00002724**
drhbb6783b2017-04-29 18:02:49 +00002725** P4 may be a string that is P2 characters long. The N-th character of the
2726** string indicates the column affinity that should be used for the N-th
drh9cbf3422008-01-17 16:22:13 +00002727** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002728**
drh8a512562005-11-14 22:29:05 +00002729** The mapping from character to affinity is given by the SQLITE_AFF_
2730** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002731**
drh05883a32015-06-02 15:32:08 +00002732** If P4 is NULL then all index fields have the affinity BLOB.
drh7f057c92005-06-24 03:53:06 +00002733*/
drh1db639c2008-01-17 02:36:28 +00002734case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002735 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2736 Mem *pRec; /* The new record */
2737 u64 nData; /* Number of bytes of data space */
2738 int nHdr; /* Number of bytes of header space */
2739 i64 nByte; /* Data space required for this record */
drh4a335072015-04-11 02:08:48 +00002740 i64 nZero; /* Number of zero bytes at the end of the record */
drh856c1032009-06-02 15:21:42 +00002741 int nVarint; /* Number of bytes in a varint */
2742 u32 serial_type; /* Type field */
2743 Mem *pData0; /* First field to be combined into the record */
2744 Mem *pLast; /* Last field of the record */
2745 int nField; /* Number of fields in the record */
2746 char *zAffinity; /* The affinity string for the record */
2747 int file_format; /* File format to use for encoding */
drh59bf00c2013-12-08 23:33:28 +00002748 int i; /* Space used in zNewRecord[] header */
2749 int j; /* Space used in zNewRecord[] content */
drhbe37c122015-10-16 14:54:17 +00002750 u32 len; /* Length of a field */
drh856c1032009-06-02 15:21:42 +00002751
drhf3218fe2004-05-28 08:21:02 +00002752 /* Assuming the record contains N fields, the record format looks
2753 ** like this:
2754 **
drh7a224de2004-06-02 01:22:02 +00002755 ** ------------------------------------------------------------------------
2756 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2757 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002758 **
drh9cbf3422008-01-17 16:22:13 +00002759 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
peter.d.reid60ec9142014-09-06 16:39:46 +00002760 ** and so forth.
drhf3218fe2004-05-28 08:21:02 +00002761 **
2762 ** Each type field is a varint representing the serial type of the
2763 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002764 ** hdr-size field is also a varint which is the offset from the beginning
2765 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002766 */
drh856c1032009-06-02 15:21:42 +00002767 nData = 0; /* Number of bytes of data space */
2768 nHdr = 0; /* Number of bytes of header space */
drh856c1032009-06-02 15:21:42 +00002769 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002770 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002771 zAffinity = pOp->p4.z;
drh9f6168b2016-03-19 23:32:58 +00002772 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
drha6c2ed92009-11-14 23:22:23 +00002773 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002774 nField = pOp->p2;
2775 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002776 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002777
drh2b4ded92010-09-27 21:09:31 +00002778 /* Identify the output register */
2779 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2780 pOut = &aMem[pOp->p3];
2781 memAboutToChange(p, pOut);
2782
drh3e6c0602013-12-10 20:53:01 +00002783 /* Apply the requested affinity to all inputs
2784 */
2785 assert( pData0<=pLast );
2786 if( zAffinity ){
2787 pRec = pData0;
2788 do{
drh57bf4a82014-02-17 14:59:22 +00002789 applyAffinity(pRec++, *(zAffinity++), encoding);
2790 assert( zAffinity[0]==0 || pRec<=pLast );
2791 }while( zAffinity[0] );
drh3e6c0602013-12-10 20:53:01 +00002792 }
2793
drhd447dce2017-01-25 20:55:11 +00002794#ifdef SQLITE_ENABLE_NULL_TRIM
drh585ce192017-01-25 14:58:27 +00002795 /* NULLs can be safely trimmed from the end of the record, as long as
2796 ** as the schema format is 2 or more and none of the omitted columns
2797 ** have a non-NULL default value. Also, the record must be left with
2798 ** at least one field. If P5>0 then it will be one more than the
2799 ** index of the right-most column with a non-NULL default value */
2800 if( pOp->p5 ){
2801 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
2802 pLast--;
2803 nField--;
2804 }
2805 }
drhd447dce2017-01-25 20:55:11 +00002806#endif
drh585ce192017-01-25 14:58:27 +00002807
drhf3218fe2004-05-28 08:21:02 +00002808 /* Loop through the elements that will make up the record to figure
2809 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002810 */
drh038b7bc2013-12-09 23:17:22 +00002811 pRec = pLast;
drh59bf00c2013-12-08 23:33:28 +00002812 do{
drh2b4ded92010-09-27 21:09:31 +00002813 assert( memIsValid(pRec) );
drh41fb3672018-01-12 23:18:38 +00002814 serial_type = sqlite3VdbeSerialType(pRec, file_format, &len);
drhfdf972a2007-05-02 13:30:27 +00002815 if( pRec->flags & MEM_Zero ){
drhce2fbd12018-01-12 21:00:14 +00002816 if( serial_type==0 ){
drh41fb3672018-01-12 23:18:38 +00002817 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
2818 ** table methods that never invoke sqlite3_result_xxxxx() while
2819 ** computing an unchanging column value in an UPDATE statement.
2820 ** Give such values a special internal-use-only serial-type of 10
2821 ** so that they can be passed through to xUpdate and have
2822 ** a true sqlite3_value_nochange(). */
2823 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
2824 serial_type = 10;
drhce2fbd12018-01-12 21:00:14 +00002825 }else if( nData ){
drh53e66c32015-07-24 15:49:23 +00002826 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
drh038b7bc2013-12-09 23:17:22 +00002827 }else{
2828 nZero += pRec->u.nZero;
2829 len -= pRec->u.nZero;
2830 }
drhfdf972a2007-05-02 13:30:27 +00002831 }
drh8079a0d2006-01-12 17:20:50 +00002832 nData += len;
drh59bf00c2013-12-08 23:33:28 +00002833 testcase( serial_type==127 );
2834 testcase( serial_type==128 );
drh2a242872013-12-08 22:59:29 +00002835 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
drh41fb3672018-01-12 23:18:38 +00002836 pRec->uTemp = serial_type;
drh45c3c662016-04-07 14:16:16 +00002837 if( pRec==pData0 ) break;
2838 pRec--;
2839 }while(1);
danielk19773d1bfea2004-05-14 11:00:53 +00002840
drh654858d2014-11-20 02:18:14 +00002841 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2842 ** which determines the total number of bytes in the header. The varint
2843 ** value is the size of the header in bytes including the size varint
2844 ** itself. */
drh59bf00c2013-12-08 23:33:28 +00002845 testcase( nHdr==126 );
2846 testcase( nHdr==127 );
drh2a242872013-12-08 22:59:29 +00002847 if( nHdr<=126 ){
2848 /* The common case */
2849 nHdr += 1;
2850 }else{
2851 /* Rare case of a really large header */
2852 nVarint = sqlite3VarintLen(nHdr);
2853 nHdr += nVarint;
2854 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
drhcb9882a2005-03-17 03:15:40 +00002855 }
drh038b7bc2013-12-09 23:17:22 +00002856 nByte = nHdr+nData;
drh4a335072015-04-11 02:08:48 +00002857 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002858 goto too_big;
2859 }
drhf3218fe2004-05-28 08:21:02 +00002860
danielk1977a7a8e142008-02-13 18:25:27 +00002861 /* Make sure the output register has a buffer large enough to store
2862 ** the new record. The output register (pOp->p3) is not allowed to
2863 ** be one of the input registers (because the following call to
drh322f2852014-09-19 00:43:39 +00002864 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
danielk1977a7a8e142008-02-13 18:25:27 +00002865 */
drh322f2852014-09-19 00:43:39 +00002866 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002867 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002868 }
danielk1977a7a8e142008-02-13 18:25:27 +00002869 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002870
2871 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002872 i = putVarint32(zNewRecord, nHdr);
drh59bf00c2013-12-08 23:33:28 +00002873 j = nHdr;
2874 assert( pData0<=pLast );
2875 pRec = pData0;
2876 do{
drhfacf47a2014-10-13 20:12:47 +00002877 serial_type = pRec->uTemp;
drh654858d2014-11-20 02:18:14 +00002878 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2879 ** additional varints, one per column. */
drh038b7bc2013-12-09 23:17:22 +00002880 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
drh654858d2014-11-20 02:18:14 +00002881 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2882 ** immediately follow the header. */
drha9ab4812013-12-11 11:00:44 +00002883 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
drh59bf00c2013-12-08 23:33:28 +00002884 }while( (++pRec)<=pLast );
2885 assert( i==nHdr );
2886 assert( j==nByte );
drhf3218fe2004-05-28 08:21:02 +00002887
drh9f6168b2016-03-19 23:32:58 +00002888 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drh9c1905f2008-12-10 22:32:56 +00002889 pOut->n = (int)nByte;
drhc91b2fd2014-03-01 18:13:23 +00002890 pOut->flags = MEM_Blob;
drhfdf972a2007-05-02 13:30:27 +00002891 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002892 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002893 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002894 }
drh1013c932008-01-06 00:25:21 +00002895 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002896 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002897 break;
2898}
2899
danielk1977a5533162009-02-24 10:01:51 +00002900/* Opcode: Count P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002901** Synopsis: r[P2]=count()
danielk1977a5533162009-02-24 10:01:51 +00002902**
2903** Store the number of entries (an integer value) in the table or index
2904** opened by cursor P1 in register P2
2905*/
2906#ifndef SQLITE_OMIT_BTREECOUNT
drh27a348c2015-04-13 19:14:06 +00002907case OP_Count: { /* out2 */
danielk1977a5533162009-02-24 10:01:51 +00002908 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002909 BtCursor *pCrsr;
2910
drhc960dcb2015-11-20 19:22:01 +00002911 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
2912 pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
drh3da046d2013-11-11 03:24:11 +00002913 assert( pCrsr );
drh2dc06482013-12-11 00:59:10 +00002914 nEntry = 0; /* Not needed. Only used to silence a warning. */
drh3da046d2013-11-11 03:24:11 +00002915 rc = sqlite3BtreeCount(pCrsr, &nEntry);
drh9467abf2016-02-17 18:44:11 +00002916 if( rc ) goto abort_due_to_error;
drh27a348c2015-04-13 19:14:06 +00002917 pOut = out2Prerelease(p, pOp);
danielk1977a5533162009-02-24 10:01:51 +00002918 pOut->u.i = nEntry;
2919 break;
2920}
2921#endif
2922
danielk1977fd7f0452008-12-17 17:30:26 +00002923/* Opcode: Savepoint P1 * * P4 *
2924**
2925** Open, release or rollback the savepoint named by parameter P4, depending
2926** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2927** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2928*/
2929case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002930 int p1; /* Value of P1 operand */
2931 char *zName; /* Name of savepoint */
2932 int nName;
2933 Savepoint *pNew;
2934 Savepoint *pSavepoint;
2935 Savepoint *pTmp;
2936 int iSavepoint;
2937 int ii;
2938
2939 p1 = pOp->p1;
2940 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002941
2942 /* Assert that the p1 parameter is valid. Also that if there is no open
2943 ** transaction, then there cannot be any savepoints.
2944 */
2945 assert( db->pSavepoint==0 || db->autoCommit==0 );
2946 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2947 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2948 assert( checkSavepointCount(db) );
danc0537fe2013-06-28 19:41:43 +00002949 assert( p->bIsReader );
danielk1977fd7f0452008-12-17 17:30:26 +00002950
2951 if( p1==SAVEPOINT_BEGIN ){
drh4f7d3a52013-06-27 23:54:02 +00002952 if( db->nVdbeWrite>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002953 /* A new savepoint cannot be created if there are active write
2954 ** statements (i.e. open read/write incremental blob handles).
2955 */
drh22c17b82015-05-15 04:13:15 +00002956 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
danielk1977fd7f0452008-12-17 17:30:26 +00002957 rc = SQLITE_BUSY;
2958 }else{
drh856c1032009-06-02 15:21:42 +00002959 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002960
drhbe07ec52011-06-03 12:15:26 +00002961#ifndef SQLITE_OMIT_VIRTUALTABLE
dand9495cd2011-04-27 12:08:04 +00002962 /* This call is Ok even if this savepoint is actually a transaction
2963 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2964 ** If this is a transaction savepoint being opened, it is guaranteed
2965 ** that the db->aVTrans[] array is empty. */
2966 assert( db->autoCommit==0 || db->nVTrans==0 );
drha24bc9c2011-05-24 00:35:56 +00002967 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2968 db->nStatement+db->nSavepoint);
dand9495cd2011-04-27 12:08:04 +00002969 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh305ebab2011-05-26 14:19:14 +00002970#endif
dand9495cd2011-04-27 12:08:04 +00002971
danielk1977fd7f0452008-12-17 17:30:26 +00002972 /* Create a new savepoint structure. */
drh575fad62016-02-05 13:38:36 +00002973 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
danielk1977fd7f0452008-12-17 17:30:26 +00002974 if( pNew ){
2975 pNew->zName = (char *)&pNew[1];
2976 memcpy(pNew->zName, zName, nName+1);
2977
2978 /* If there is no open transaction, then mark this as a special
2979 ** "transaction savepoint". */
2980 if( db->autoCommit ){
2981 db->autoCommit = 0;
2982 db->isTransactionSavepoint = 1;
2983 }else{
2984 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002985 }
dan21e8d012011-03-03 20:05:59 +00002986
danielk1977fd7f0452008-12-17 17:30:26 +00002987 /* Link the new savepoint into the database handle's list. */
2988 pNew->pNext = db->pSavepoint;
2989 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002990 pNew->nDeferredCons = db->nDeferredCons;
dancb3e4b72013-07-03 19:53:05 +00002991 pNew->nDeferredImmCons = db->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002992 }
2993 }
2994 }else{
drh856c1032009-06-02 15:21:42 +00002995 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00002996
2997 /* Find the named savepoint. If there is no such savepoint, then an
2998 ** an error is returned to the user. */
2999 for(
drh856c1032009-06-02 15:21:42 +00003000 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00003001 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00003002 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00003003 ){
3004 iSavepoint++;
3005 }
3006 if( !pSavepoint ){
drh22c17b82015-05-15 04:13:15 +00003007 sqlite3VdbeError(p, "no such savepoint: %s", zName);
danielk1977fd7f0452008-12-17 17:30:26 +00003008 rc = SQLITE_ERROR;
drh4f7d3a52013-06-27 23:54:02 +00003009 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
danielk1977fd7f0452008-12-17 17:30:26 +00003010 /* It is not possible to release (commit) a savepoint if there are
drh0f198a72012-02-13 16:43:16 +00003011 ** active write statements.
danielk1977fd7f0452008-12-17 17:30:26 +00003012 */
drh22c17b82015-05-15 04:13:15 +00003013 sqlite3VdbeError(p, "cannot release savepoint - "
3014 "SQL statements in progress");
danielk1977fd7f0452008-12-17 17:30:26 +00003015 rc = SQLITE_BUSY;
3016 }else{
3017
3018 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00003019 ** and this is a RELEASE command, then the current transaction
3020 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00003021 */
3022 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
3023 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00003024 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00003025 goto vdbe_return;
3026 }
danielk1977fd7f0452008-12-17 17:30:26 +00003027 db->autoCommit = 1;
3028 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
drhf56fa462015-04-13 21:39:54 +00003029 p->pc = (int)(pOp - aOp);
danielk1977fd7f0452008-12-17 17:30:26 +00003030 db->autoCommit = 0;
3031 p->rc = rc = SQLITE_BUSY;
3032 goto vdbe_return;
3033 }
danielk197734cf35d2008-12-18 18:31:38 +00003034 db->isTransactionSavepoint = 0;
3035 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00003036 }else{
drh47b7fc72014-11-11 01:33:57 +00003037 int isSchemaChange;
danielk1977fd7f0452008-12-17 17:30:26 +00003038 iSavepoint = db->nSavepoint - iSavepoint - 1;
drh31f10052012-03-31 17:17:26 +00003039 if( p1==SAVEPOINT_ROLLBACK ){
drh8257aa82017-07-26 19:59:13 +00003040 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
drh31f10052012-03-31 17:17:26 +00003041 for(ii=0; ii<db->nDb; ii++){
drh77b1dee2014-11-17 17:13:06 +00003042 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3043 SQLITE_ABORT_ROLLBACK,
drh47b7fc72014-11-11 01:33:57 +00003044 isSchemaChange==0);
dan80231042014-11-12 14:56:02 +00003045 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh31f10052012-03-31 17:17:26 +00003046 }
drh47b7fc72014-11-11 01:33:57 +00003047 }else{
3048 isSchemaChange = 0;
drh0f198a72012-02-13 16:43:16 +00003049 }
3050 for(ii=0; ii<db->nDb; ii++){
danielk1977fd7f0452008-12-17 17:30:26 +00003051 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3052 if( rc!=SQLITE_OK ){
3053 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00003054 }
danielk1977fd7f0452008-12-17 17:30:26 +00003055 }
drh47b7fc72014-11-11 01:33:57 +00003056 if( isSchemaChange ){
danielk1977fd7f0452008-12-17 17:30:26 +00003057 sqlite3ExpirePreparedStatements(db);
drh81028a42012-05-15 18:28:27 +00003058 sqlite3ResetAllSchemasOfConnection(db);
drh8257aa82017-07-26 19:59:13 +00003059 db->mDbFlags |= DBFLAG_SchemaChange;
danielk1977fd7f0452008-12-17 17:30:26 +00003060 }
3061 }
3062
3063 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3064 ** savepoints nested inside of the savepoint being operated on. */
3065 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00003066 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00003067 db->pSavepoint = pTmp->pNext;
3068 sqlite3DbFree(db, pTmp);
3069 db->nSavepoint--;
3070 }
3071
dan1da40a32009-09-19 17:00:31 +00003072 /* If it is a RELEASE, then destroy the savepoint being operated on
3073 ** too. If it is a ROLLBACK TO, then set the number of deferred
3074 ** constraint violations present in the database to the value stored
3075 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00003076 if( p1==SAVEPOINT_RELEASE ){
3077 assert( pSavepoint==db->pSavepoint );
3078 db->pSavepoint = pSavepoint->pNext;
3079 sqlite3DbFree(db, pSavepoint);
3080 if( !isTransaction ){
3081 db->nSavepoint--;
3082 }
dan1da40a32009-09-19 17:00:31 +00003083 }else{
3084 db->nDeferredCons = pSavepoint->nDeferredCons;
dancb3e4b72013-07-03 19:53:05 +00003085 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00003086 }
dand9495cd2011-04-27 12:08:04 +00003087
danea8562e2015-04-18 16:25:54 +00003088 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
dand9495cd2011-04-27 12:08:04 +00003089 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3090 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3091 }
danielk1977fd7f0452008-12-17 17:30:26 +00003092 }
3093 }
drh9467abf2016-02-17 18:44:11 +00003094 if( rc ) goto abort_due_to_error;
danielk1977fd7f0452008-12-17 17:30:26 +00003095
3096 break;
3097}
3098
drh98757152008-01-09 23:04:12 +00003099/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00003100**
3101** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00003102** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00003103** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
3104** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00003105**
3106** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00003107*/
drh9cbf3422008-01-17 16:22:13 +00003108case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00003109 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00003110 int iRollback;
danielk19771d850a72004-05-31 08:26:49 +00003111
drh856c1032009-06-02 15:21:42 +00003112 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00003113 iRollback = pOp->p2;
drhad4a4b82008-11-05 16:37:34 +00003114 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00003115 assert( desiredAutoCommit==1 || iRollback==0 );
drh4f7d3a52013-06-27 23:54:02 +00003116 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
danc0537fe2013-06-28 19:41:43 +00003117 assert( p->bIsReader );
danielk197746c43ed2004-06-30 06:30:25 +00003118
drhb0c88652016-02-01 13:21:13 +00003119 if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00003120 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00003121 assert( desiredAutoCommit==1 );
drh21021a52012-02-13 17:01:51 +00003122 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977f3f06bb2005-12-16 15:24:28 +00003123 db->autoCommit = 1;
drhb0c88652016-02-01 13:21:13 +00003124 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3125 /* If this instruction implements a COMMIT and other VMs are writing
3126 ** return an error indicating that the other VMs must complete first.
3127 */
3128 sqlite3VdbeError(p, "cannot commit transaction - "
3129 "SQL statements in progress");
3130 rc = SQLITE_BUSY;
drh9467abf2016-02-17 18:44:11 +00003131 goto abort_due_to_error;
dan32b09f22009-09-23 17:29:59 +00003132 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00003133 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00003134 }else{
shane7d3846a2008-12-11 02:58:26 +00003135 db->autoCommit = (u8)desiredAutoCommit;
drh8ff25872015-07-31 18:59:56 +00003136 }
3137 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3138 p->pc = (int)(pOp - aOp);
3139 db->autoCommit = (u8)(1-desiredAutoCommit);
3140 p->rc = rc = SQLITE_BUSY;
3141 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00003142 }
danielk1977bd434552009-03-18 10:33:00 +00003143 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00003144 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00003145 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00003146 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00003147 }else{
drh900b31e2007-08-28 02:27:51 +00003148 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00003149 }
drh900b31e2007-08-28 02:27:51 +00003150 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00003151 }else{
drh22c17b82015-05-15 04:13:15 +00003152 sqlite3VdbeError(p,
drhad4a4b82008-11-05 16:37:34 +00003153 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00003154 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00003155 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00003156
3157 rc = SQLITE_ERROR;
drh9467abf2016-02-17 18:44:11 +00003158 goto abort_due_to_error;
drh663fc632002-02-02 18:49:19 +00003159 }
3160 break;
3161}
3162
drhb22f7c82014-02-06 23:56:27 +00003163/* Opcode: Transaction P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003164**
drh05a86c52014-02-16 01:55:49 +00003165** Begin a transaction on database P1 if a transaction is not already
3166** active.
3167** If P2 is non-zero, then a write-transaction is started, or if a
3168** read-transaction is already active, it is upgraded to a write-transaction.
3169** If P2 is zero, then a read-transaction is started.
drh5e00f6c2001-09-13 13:46:56 +00003170**
drh001bbcb2003-03-19 03:14:00 +00003171** P1 is the index of the database file on which the transaction is
3172** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00003173** file used for temporary tables. Indices of 2 or more are used for
3174** attached databases.
drhcabb0812002-09-14 13:47:32 +00003175**
dane0af83a2009-09-08 19:15:01 +00003176** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3177** true (this flag is set if the Vdbe may modify more than one row and may
3178** throw an ABORT exception), a statement transaction may also be opened.
3179** More specifically, a statement transaction is opened iff the database
3180** connection is currently not in autocommit mode, or if there are other
drha4510172012-02-02 15:50:17 +00003181** active statements. A statement transaction allows the changes made by this
dane0af83a2009-09-08 19:15:01 +00003182** VDBE to be rolled back after an error without having to roll back the
3183** entire transaction. If no error is encountered, the statement transaction
3184** will automatically commit when the VDBE halts.
3185**
drhb22f7c82014-02-06 23:56:27 +00003186** If P5!=0 then this opcode also checks the schema cookie against P3
3187** and the schema generation counter against P4.
3188** The cookie changes its value whenever the database schema changes.
3189** This operation is used to detect when that the cookie has changed
drh05a86c52014-02-16 01:55:49 +00003190** and that the current process needs to reread the schema. If the schema
3191** cookie in P3 differs from the schema cookie in the database header or
3192** if the schema generation counter in P4 differs from the current
3193** generation counter, then an SQLITE_SCHEMA error is raised and execution
3194** halts. The sqlite3_step() wrapper function might then reprepare the
3195** statement and rerun it from the beginning.
drh5e00f6c2001-09-13 13:46:56 +00003196*/
drh9cbf3422008-01-17 16:22:13 +00003197case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00003198 Btree *pBt;
drhb22f7c82014-02-06 23:56:27 +00003199 int iMeta;
3200 int iGen;
danielk19771d850a72004-05-31 08:26:49 +00003201
drh1713afb2013-06-28 01:24:57 +00003202 assert( p->bIsReader );
drh9e92a472013-06-27 17:40:30 +00003203 assert( p->readOnly==0 || pOp->p2==0 );
drh653b82a2009-06-22 11:10:47 +00003204 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003205 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh13447bf2013-07-10 13:33:49 +00003206 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3207 rc = SQLITE_READONLY;
3208 goto abort_due_to_error;
3209 }
drh653b82a2009-06-22 11:10:47 +00003210 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00003211
danielk197724162fe2004-06-04 06:22:00 +00003212 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00003213 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
drhcbd8db32015-08-20 17:18:32 +00003214 testcase( rc==SQLITE_BUSY_SNAPSHOT );
3215 testcase( rc==SQLITE_BUSY_RECOVERY );
drh9e9f1bd2009-10-13 15:36:51 +00003216 if( rc!=SQLITE_OK ){
drhfadd2b12016-09-19 23:39:34 +00003217 if( (rc&0xff)==SQLITE_BUSY ){
3218 p->pc = (int)(pOp - aOp);
3219 p->rc = rc;
3220 goto vdbe_return;
3221 }
danielk197724162fe2004-06-04 06:22:00 +00003222 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00003223 }
dane0af83a2009-09-08 19:15:01 +00003224
3225 if( pOp->p2 && p->usesStmtJournal
danc0537fe2013-06-28 19:41:43 +00003226 && (db->autoCommit==0 || db->nVdbeRead>1)
dane0af83a2009-09-08 19:15:01 +00003227 ){
3228 assert( sqlite3BtreeIsInTrans(pBt) );
3229 if( p->iStatement==0 ){
3230 assert( db->nStatement>=0 && db->nSavepoint>=0 );
3231 db->nStatement++;
3232 p->iStatement = db->nSavepoint + db->nStatement;
3233 }
dana311b802011-04-26 19:21:34 +00003234
drh346506f2011-05-25 01:16:42 +00003235 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
dana311b802011-04-26 19:21:34 +00003236 if( rc==SQLITE_OK ){
3237 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3238 }
dan1da40a32009-09-19 17:00:31 +00003239
3240 /* Store the current value of the database handles deferred constraint
3241 ** counter. If the statement transaction needs to be rolled back,
3242 ** the value of this counter needs to be restored too. */
3243 p->nStmtDefCons = db->nDeferredCons;
dancb3e4b72013-07-03 19:53:05 +00003244 p->nStmtDefImmCons = db->nDeferredImmCons;
dane0af83a2009-09-08 19:15:01 +00003245 }
drhb22f7c82014-02-06 23:56:27 +00003246
drh51a74d42015-02-28 01:04:27 +00003247 /* Gather the schema version number for checking:
drh96fdcb42016-09-27 00:09:33 +00003248 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3249 ** version is checked to ensure that the schema has not changed since the
3250 ** SQL statement was prepared.
drh51a74d42015-02-28 01:04:27 +00003251 */
drhb22f7c82014-02-06 23:56:27 +00003252 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3253 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3254 }else{
3255 iGen = iMeta = 0;
3256 }
3257 assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3258 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3259 sqlite3DbFree(db, p->zErrMsg);
3260 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3261 /* If the schema-cookie from the database file matches the cookie
3262 ** stored with the in-memory representation of the schema, do
3263 ** not reload the schema from the database file.
3264 **
3265 ** If virtual-tables are in use, this is not just an optimization.
3266 ** Often, v-tables store their data in other SQLite tables, which
3267 ** are queried from within xNext() and other v-table methods using
3268 ** prepared queries. If such a query is out-of-date, we do not want to
3269 ** discard the database schema, as the user code implementing the
3270 ** v-table would have to be ready for the sqlite3_vtab structure itself
3271 ** to be invalidated whenever sqlite3_step() is called from within
3272 ** a v-table method.
3273 */
3274 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3275 sqlite3ResetOneSchema(db, pOp->p1);
3276 }
3277 p->expired = 1;
3278 rc = SQLITE_SCHEMA;
drhb86ccfb2003-01-28 23:13:10 +00003279 }
drh9467abf2016-02-17 18:44:11 +00003280 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00003281 break;
3282}
3283
drhb1fdb2a2008-01-05 04:06:03 +00003284/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003285**
drh9cbf3422008-01-17 16:22:13 +00003286** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00003287** P3==1 is the schema version. P3==2 is the database format.
3288** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00003289** the main database file and P1==1 is the database file used to store
3290** temporary tables.
drh4a324312001-12-21 14:30:42 +00003291**
drh50e5dad2001-09-15 00:57:28 +00003292** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00003293** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00003294** executing this instruction.
3295*/
drh27a348c2015-04-13 19:14:06 +00003296case OP_ReadCookie: { /* out2 */
drhf328bc82004-05-10 23:29:49 +00003297 int iMeta;
drh856c1032009-06-02 15:21:42 +00003298 int iDb;
3299 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00003300
drh1713afb2013-06-28 01:24:57 +00003301 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00003302 iDb = pOp->p1;
3303 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00003304 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00003305 assert( iDb>=0 && iDb<db->nDb );
3306 assert( db->aDb[iDb].pBt!=0 );
drha7ab6d82014-07-21 15:44:39 +00003307 assert( DbMaskTest(p->btreeMask, iDb) );
danielk19770d19f7a2009-06-03 11:25:07 +00003308
danielk1977602b4662009-07-02 07:47:33 +00003309 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh27a348c2015-04-13 19:14:06 +00003310 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00003311 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00003312 break;
3313}
3314
drh98757152008-01-09 23:04:12 +00003315/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003316**
drh1861afc2016-02-01 21:48:34 +00003317** Write the integer value P3 into cookie number P2 of database P1.
3318** P2==1 is the schema version. P2==2 is the database format.
3319** P2==3 is the recommended pager cache
danielk19770d19f7a2009-06-03 11:25:07 +00003320** size, and so forth. P1==0 is the main database file and P1==1 is the
3321** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00003322**
3323** A transaction must be started before executing this opcode.
3324*/
drh1861afc2016-02-01 21:48:34 +00003325case OP_SetCookie: {
drh3f7d4e42004-07-24 14:35:58 +00003326 Db *pDb;
drh4a324312001-12-21 14:30:42 +00003327 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00003328 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003329 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00003330 assert( p->readOnly==0 );
drh3f7d4e42004-07-24 14:35:58 +00003331 pDb = &db->aDb[pOp->p1];
3332 assert( pDb->pBt!=0 );
drh21206082011-04-04 18:22:02 +00003333 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drha3b321d2004-05-11 09:31:31 +00003334 /* See note about index shifting on OP_ReadCookie */
drh1861afc2016-02-01 21:48:34 +00003335 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
danielk19770d19f7a2009-06-03 11:25:07 +00003336 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00003337 /* When the schema cookie changes, record the new cookie internally */
drh1861afc2016-02-01 21:48:34 +00003338 pDb->pSchema->schema_cookie = pOp->p3;
drh8257aa82017-07-26 19:59:13 +00003339 db->mDbFlags |= DBFLAG_SchemaChange;
danielk19770d19f7a2009-06-03 11:25:07 +00003340 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00003341 /* Record changes in the file format */
drh1861afc2016-02-01 21:48:34 +00003342 pDb->pSchema->file_format = pOp->p3;
drh3f7d4e42004-07-24 14:35:58 +00003343 }
drhfd426c62006-01-30 15:34:22 +00003344 if( pOp->p1==1 ){
3345 /* Invalidate all prepared statements whenever the TEMP database
3346 ** schema is changed. Ticket #1644 */
3347 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00003348 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00003349 }
drh9467abf2016-02-17 18:44:11 +00003350 if( rc ) goto abort_due_to_error;
drh50e5dad2001-09-15 00:57:28 +00003351 break;
3352}
3353
drh98757152008-01-09 23:04:12 +00003354/* Opcode: OpenRead P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003355** Synopsis: root=P2 iDb=P3
drh5e00f6c2001-09-13 13:46:56 +00003356**
drhecdc7532001-09-23 02:35:53 +00003357** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00003358** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00003359** P3==0 means the main database, P3==1 means the database used for
3360** temporary tables, and P3>1 means used the corresponding attached
3361** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00003362** values need not be contiguous but all P1 values should be small integers.
3363** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00003364**
drh98757152008-01-09 23:04:12 +00003365** If P5!=0 then use the content of register P2 as the root page, not
3366** the value of P2 itself.
drh5edc3122001-09-13 21:53:09 +00003367**
drhb19a2bc2001-09-16 00:13:26 +00003368** There will be a read lock on the database whenever there is an
3369** open cursor. If the database was unlocked prior to this instruction
3370** then a read lock is acquired as part of this instruction. A read
3371** lock allows other processes to read the database but prohibits
3372** any other process from modifying the database. The read lock is
3373** released when all cursors are closed. If this instruction attempts
3374** to get a read lock but fails, the script terminates with an
3375** SQLITE_BUSY error code.
3376**
danielk1977d336e222009-02-20 10:58:41 +00003377** The P4 value may be either an integer (P4_INT32) or a pointer to
3378** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3379** structure, then said structure defines the content and collating
3380** sequence of the index being opened. Otherwise, if P4 is an integer
3381** value, it is set to the number of columns in the table.
drhf57b3392001-10-08 13:22:32 +00003382**
drh35263192014-07-22 20:02:19 +00003383** See also: OpenWrite, ReopenIdx
3384*/
3385/* Opcode: ReopenIdx P1 P2 P3 P4 P5
3386** Synopsis: root=P2 iDb=P3
3387**
3388** The ReopenIdx opcode works exactly like ReadOpen except that it first
3389** checks to see if the cursor on P1 is already open with a root page
3390** number of P2 and if it is this opcode becomes a no-op. In other words,
3391** if the cursor is already open, do not reopen it.
3392**
3393** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3394** a P4_KEYINFO object. Furthermore, the P3 value must be the same as
3395** every other ReopenIdx or OpenRead for the same cursor number.
3396**
3397** See the OpenRead opcode documentation for additional information.
drh5e00f6c2001-09-13 13:46:56 +00003398*/
drh98757152008-01-09 23:04:12 +00003399/* Opcode: OpenWrite P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003400** Synopsis: root=P2 iDb=P3
drhecdc7532001-09-23 02:35:53 +00003401**
3402** Open a read/write cursor named P1 on the table or index whose root
drh98757152008-01-09 23:04:12 +00003403** page is P2. Or if P5!=0 use the content of register P2 to find the
3404** root page.
drhecdc7532001-09-23 02:35:53 +00003405**
danielk1977d336e222009-02-20 10:58:41 +00003406** The P4 value may be either an integer (P4_INT32) or a pointer to
3407** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3408** structure, then said structure defines the content and collating
3409** sequence of the index being opened. Otherwise, if P4 is an integer
drh35cd6432009-06-05 14:17:21 +00003410** value, it is set to the number of columns in the table, or to the
3411** largest index of any column of the table that is actually used.
jplyon5a564222003-06-02 06:15:58 +00003412**
drh001bbcb2003-03-19 03:14:00 +00003413** This instruction works just like OpenRead except that it opens the cursor
drhecdc7532001-09-23 02:35:53 +00003414** in read/write mode. For a given table, there can be one or more read-only
3415** cursors or a single read/write cursor but not both.
drhf57b3392001-10-08 13:22:32 +00003416**
drh001bbcb2003-03-19 03:14:00 +00003417** See also OpenRead.
drhecdc7532001-09-23 02:35:53 +00003418*/
drh35263192014-07-22 20:02:19 +00003419case OP_ReopenIdx: {
drh856c1032009-06-02 15:21:42 +00003420 int nField;
3421 KeyInfo *pKeyInfo;
drh856c1032009-06-02 15:21:42 +00003422 int p2;
3423 int iDb;
drhf57b3392001-10-08 13:22:32 +00003424 int wrFlag;
3425 Btree *pX;
drhdfe88ec2008-11-03 20:55:06 +00003426 VdbeCursor *pCur;
drhd946db02005-12-29 19:23:06 +00003427 Db *pDb;
drh856c1032009-06-02 15:21:42 +00003428
drhe0997b32015-03-20 14:57:50 +00003429 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
drh35263192014-07-22 20:02:19 +00003430 assert( pOp->p4type==P4_KEYINFO );
3431 pCur = p->apCsr[pOp->p1];
drhe8f2c9d2014-08-06 17:49:13 +00003432 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
drh35263192014-07-22 20:02:19 +00003433 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
drhe0997b32015-03-20 14:57:50 +00003434 goto open_cursor_set_hints;
drh35263192014-07-22 20:02:19 +00003435 }
3436 /* If the cursor is not currently open or is open on a different
3437 ** index, then fall through into OP_OpenRead to force a reopen */
drh5e00f6c2001-09-13 13:46:56 +00003438case OP_OpenRead:
drh1fa509a2015-03-20 16:34:49 +00003439case OP_OpenWrite:
drh856c1032009-06-02 15:21:42 +00003440
drhe0997b32015-03-20 14:57:50 +00003441 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
drh1713afb2013-06-28 01:24:57 +00003442 assert( p->bIsReader );
drh35263192014-07-22 20:02:19 +00003443 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3444 || p->readOnly==0 );
dan428c2182012-08-06 18:50:11 +00003445
danfa401de2009-10-16 14:55:03 +00003446 if( p->expired ){
drh47b7fc72014-11-11 01:33:57 +00003447 rc = SQLITE_ABORT_ROLLBACK;
drh9467abf2016-02-17 18:44:11 +00003448 goto abort_due_to_error;
danfa401de2009-10-16 14:55:03 +00003449 }
3450
drh856c1032009-06-02 15:21:42 +00003451 nField = 0;
3452 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00003453 p2 = pOp->p2;
3454 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00003455 assert( iDb>=0 && iDb<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003456 assert( DbMaskTest(p->btreeMask, iDb) );
drhd946db02005-12-29 19:23:06 +00003457 pDb = &db->aDb[iDb];
3458 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00003459 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00003460 if( pOp->opcode==OP_OpenWrite ){
danfd261ec2015-10-22 20:54:33 +00003461 assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3462 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
drh21206082011-04-04 18:22:02 +00003463 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
danielk1977da184232006-01-05 11:34:32 +00003464 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3465 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00003466 }
3467 }else{
3468 wrFlag = 0;
3469 }
dan428c2182012-08-06 18:50:11 +00003470 if( pOp->p5 & OPFLAG_P2ISREG ){
drh9cbf3422008-01-17 16:22:13 +00003471 assert( p2>0 );
drh9f6168b2016-03-19 23:32:58 +00003472 assert( p2<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00003473 pIn2 = &aMem[p2];
drh2b4ded92010-09-27 21:09:31 +00003474 assert( memIsValid(pIn2) );
3475 assert( (pIn2->flags & MEM_Int)!=0 );
drh9cbf3422008-01-17 16:22:13 +00003476 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003477 p2 = (int)pIn2->u.i;
drh0f3f7662017-08-18 14:34:28 +00003478 /* The p2 value always comes from a prior OP_CreateBtree opcode and
drh9a65f2c2009-06-22 19:05:40 +00003479 ** that opcode will always set the p2 value to 2 or more or else fail.
3480 ** If there were a failure, the prepared statement would have halted
3481 ** before reaching this instruction. */
drh9467abf2016-02-17 18:44:11 +00003482 assert( p2>=2 );
drh5edc3122001-09-13 21:53:09 +00003483 }
danielk1977d336e222009-02-20 10:58:41 +00003484 if( pOp->p4type==P4_KEYINFO ){
3485 pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003486 assert( pKeyInfo->enc==ENC(db) );
3487 assert( pKeyInfo->db==db );
drha485ad12017-08-02 22:43:14 +00003488 nField = pKeyInfo->nAllField;
danielk1977d336e222009-02-20 10:58:41 +00003489 }else if( pOp->p4type==P4_INT32 ){
3490 nField = pOp->p4.i;
3491 }
drh653b82a2009-06-22 11:10:47 +00003492 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003493 assert( nField>=0 );
3494 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
drhc960dcb2015-11-20 19:22:01 +00003495 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
drh4774b132004-06-12 20:12:51 +00003496 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003497 pCur->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003498 pCur->isOrdered = 1;
drh35263192014-07-22 20:02:19 +00003499 pCur->pgnoRoot = p2;
drhb89aeb62016-01-27 15:49:32 +00003500#ifdef SQLITE_DEBUG
3501 pCur->wrFlag = wrFlag;
3502#endif
drhc960dcb2015-11-20 19:22:01 +00003503 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
danielk1977d336e222009-02-20 10:58:41 +00003504 pCur->pKeyInfo = pKeyInfo;
drh14da87f2013-11-20 21:51:33 +00003505 /* Set the VdbeCursor.isTable variable. Previous versions of
danielk1977172114a2009-07-07 15:47:12 +00003506 ** SQLite used to check if the root-page flags were sane at this point
3507 ** and report database corruption if they were not, but this check has
3508 ** since moved into the btree layer. */
3509 pCur->isTable = pOp->p4type!=P4_KEYINFO;
drhe0997b32015-03-20 14:57:50 +00003510
3511open_cursor_set_hints:
3512 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3513 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
drh0403cb32015-08-14 23:57:04 +00003514 testcase( pOp->p5 & OPFLAG_BULKCSR );
drh9abe8412016-01-02 05:00:31 +00003515#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh0403cb32015-08-14 23:57:04 +00003516 testcase( pOp->p2 & OPFLAG_SEEKEQ );
3517#endif
drhc960dcb2015-11-20 19:22:01 +00003518 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
drhf7854c72015-10-27 13:24:37 +00003519 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
drh9467abf2016-02-17 18:44:11 +00003520 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00003521 break;
3522}
3523
drhe08e8d62017-05-01 15:15:41 +00003524/* Opcode: OpenDup P1 P2 * * *
3525**
3526** Open a new cursor P1 that points to the same ephemeral table as
3527** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral
3528** opcode. Only ephemeral cursors may be duplicated.
3529**
3530** Duplicate ephemeral cursors are used for self-joins of materialized views.
3531*/
3532case OP_OpenDup: {
3533 VdbeCursor *pOrig; /* The original cursor to be duplicated */
3534 VdbeCursor *pCx; /* The new cursor */
3535
3536 pOrig = p->apCsr[pOp->p2];
3537 assert( pOrig->pBtx!=0 ); /* Only ephemeral cursors can be duplicated */
3538
3539 pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE);
3540 if( pCx==0 ) goto no_mem;
3541 pCx->nullRow = 1;
3542 pCx->isEphemeral = 1;
3543 pCx->pKeyInfo = pOrig->pKeyInfo;
3544 pCx->isTable = pOrig->isTable;
3545 rc = sqlite3BtreeCursor(pOrig->pBtx, MASTER_ROOT, BTREE_WRCSR,
3546 pCx->pKeyInfo, pCx->uc.pCursor);
drh3f4df4c2017-05-02 17:54:19 +00003547 /* The sqlite3BtreeCursor() routine can only fail for the first cursor
3548 ** opened for a database. Since there is already an open cursor when this
3549 ** opcode is run, the sqlite3BtreeCursor() cannot fail */
3550 assert( rc==SQLITE_OK );
drhe08e8d62017-05-01 15:15:41 +00003551 break;
3552}
3553
3554
drh2a5d9902011-08-26 00:34:45 +00003555/* Opcode: OpenEphemeral P1 P2 * P4 P5
drh81316f82013-10-29 20:40:47 +00003556** Synopsis: nColumn=P2
drh5e00f6c2001-09-13 13:46:56 +00003557**
drhb9bb7c12006-06-11 23:41:55 +00003558** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003559** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003560** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003561** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003562**
drh25d3adb2010-04-05 15:11:08 +00003563** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003564** The cursor points to a BTree table if P4==0 and to a BTree index
3565** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003566** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003567**
drh2a5d9902011-08-26 00:34:45 +00003568** The P5 parameter can be a mask of the BTREE_* flags defined
3569** in btree.h. These flags control aspects of the operation of
3570** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3571** added automatically.
drh5e00f6c2001-09-13 13:46:56 +00003572*/
drha21a64d2010-04-06 22:33:55 +00003573/* Opcode: OpenAutoindex P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00003574** Synopsis: nColumn=P2
drha21a64d2010-04-06 22:33:55 +00003575**
3576** This opcode works the same as OP_OpenEphemeral. It has a
3577** different name to distinguish its use. Tables created using
3578** by this opcode will be used for automatically created transient
3579** indices in joins.
3580*/
3581case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003582case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003583 VdbeCursor *pCx;
drh41e13e12013-11-07 14:09:39 +00003584 KeyInfo *pKeyInfo;
3585
drhd4187c72010-08-30 22:15:45 +00003586 static const int vfsFlags =
drh33f4e022007-09-03 15:19:34 +00003587 SQLITE_OPEN_READWRITE |
3588 SQLITE_OPEN_CREATE |
3589 SQLITE_OPEN_EXCLUSIVE |
3590 SQLITE_OPEN_DELETEONCLOSE |
3591 SQLITE_OPEN_TRANSIENT_DB;
drh653b82a2009-06-22 11:10:47 +00003592 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003593 assert( pOp->p2>=0 );
drhc960dcb2015-11-20 19:22:01 +00003594 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
drh4774b132004-06-12 20:12:51 +00003595 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003596 pCx->nullRow = 1;
drh079a3072014-03-19 14:10:55 +00003597 pCx->isEphemeral = 1;
drhfbd8cbd2016-12-10 12:58:15 +00003598 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx,
drhd4187c72010-08-30 22:15:45 +00003599 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
drh5e00f6c2001-09-13 13:46:56 +00003600 if( rc==SQLITE_OK ){
drhfbd8cbd2016-12-10 12:58:15 +00003601 rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1);
drh5e00f6c2001-09-13 13:46:56 +00003602 }
3603 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003604 /* If a transient index is required, create it by calling
drhd4187c72010-08-30 22:15:45 +00003605 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
danielk19774adee202004-05-08 08:23:19 +00003606 ** opening it. If a transient table is required, just use the
drhd4187c72010-08-30 22:15:45 +00003607 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003608 */
drhfbd8cbd2016-12-10 12:58:15 +00003609 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
drhc6b52df2002-01-04 03:09:29 +00003610 int pgno;
drh66a51672008-01-03 00:01:23 +00003611 assert( pOp->p4type==P4_KEYINFO );
drhfbd8cbd2016-12-10 12:58:15 +00003612 rc = sqlite3BtreeCreateTable(pCx->pBtx, &pgno, BTREE_BLOBKEY | pOp->p5);
drhc6b52df2002-01-04 03:09:29 +00003613 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003614 assert( pgno==MASTER_ROOT+1 );
drh41e13e12013-11-07 14:09:39 +00003615 assert( pKeyInfo->db==db );
3616 assert( pKeyInfo->enc==ENC(db) );
drhfbd8cbd2016-12-10 12:58:15 +00003617 rc = sqlite3BtreeCursor(pCx->pBtx, pgno, BTREE_WRCSR,
drh62aaa6c2015-11-21 17:27:42 +00003618 pKeyInfo, pCx->uc.pCursor);
drhc6b52df2002-01-04 03:09:29 +00003619 }
drhf0863fe2005-06-12 21:35:51 +00003620 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003621 }else{
drhfbd8cbd2016-12-10 12:58:15 +00003622 rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR,
drh62aaa6c2015-11-21 17:27:42 +00003623 0, pCx->uc.pCursor);
drhf0863fe2005-06-12 21:35:51 +00003624 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003625 }
drh5e00f6c2001-09-13 13:46:56 +00003626 }
drh9467abf2016-02-17 18:44:11 +00003627 if( rc ) goto abort_due_to_error;
drhd4187c72010-08-30 22:15:45 +00003628 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
dan5134d132011-09-02 10:31:11 +00003629 break;
3630}
3631
danfad9f9a2014-04-01 18:41:51 +00003632/* Opcode: SorterOpen P1 P2 P3 P4 *
dan5134d132011-09-02 10:31:11 +00003633**
3634** This opcode works like OP_OpenEphemeral except that it opens
3635** a transient index that is specifically designed to sort large
3636** tables using an external merge-sort algorithm.
danfad9f9a2014-04-01 18:41:51 +00003637**
3638** If argument P3 is non-zero, then it indicates that the sorter may
3639** assume that a stable sort considering the first P3 fields of each
3640** key is sufficient to produce the required results.
dan5134d132011-09-02 10:31:11 +00003641*/
drhca892a72011-09-03 00:17:51 +00003642case OP_SorterOpen: {
dan5134d132011-09-02 10:31:11 +00003643 VdbeCursor *pCx;
drh3a949872012-09-18 13:20:13 +00003644
drh399af1d2013-11-20 17:25:55 +00003645 assert( pOp->p1>=0 );
3646 assert( pOp->p2>=0 );
drhc960dcb2015-11-20 19:22:01 +00003647 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
dan5134d132011-09-02 10:31:11 +00003648 if( pCx==0 ) goto no_mem;
3649 pCx->pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003650 assert( pCx->pKeyInfo->db==db );
3651 assert( pCx->pKeyInfo->enc==ENC(db) );
danfad9f9a2014-04-01 18:41:51 +00003652 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
drh9467abf2016-02-17 18:44:11 +00003653 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00003654 break;
3655}
3656
dan78d58432014-03-25 15:04:07 +00003657/* Opcode: SequenceTest P1 P2 * * *
3658** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3659**
3660** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3661** to P2. Regardless of whether or not the jump is taken, increment the
3662** the sequence value.
3663*/
3664case OP_SequenceTest: {
3665 VdbeCursor *pC;
3666 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3667 pC = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00003668 assert( isSorter(pC) );
dan78d58432014-03-25 15:04:07 +00003669 if( (pC->seqCount++)==0 ){
drhf56fa462015-04-13 21:39:54 +00003670 goto jump_to_p2;
dan78d58432014-03-25 15:04:07 +00003671 }
drh5e00f6c2001-09-13 13:46:56 +00003672 break;
3673}
3674
drh5f612292014-02-08 23:20:32 +00003675/* Opcode: OpenPseudo P1 P2 P3 * *
drh60830e32014-02-10 15:56:34 +00003676** Synopsis: P3 columns in r[P2]
drh70ce3f02003-04-15 19:22:22 +00003677**
3678** Open a new cursor that points to a fake table that contains a single
drh5f612292014-02-08 23:20:32 +00003679** row of data. The content of that one row is the content of memory
3680** register P2. In other words, cursor P1 becomes an alias for the
3681** MEM_Blob content contained in register P2.
drh70ce3f02003-04-15 19:22:22 +00003682**
drh2d8d7ce2010-02-15 15:17:05 +00003683** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00003684** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003685** individual columns using the OP_Column opcode. The OP_Column opcode
3686** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003687**
3688** P3 is the number of fields in the records that will be stored by
3689** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003690*/
drh9cbf3422008-01-17 16:22:13 +00003691case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003692 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003693
drh653b82a2009-06-22 11:10:47 +00003694 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003695 assert( pOp->p3>=0 );
drhc960dcb2015-11-20 19:22:01 +00003696 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
drh4774b132004-06-12 20:12:51 +00003697 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003698 pCx->nullRow = 1;
drhfe0cf7a2017-08-16 19:20:20 +00003699 pCx->seekResult = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003700 pCx->isTable = 1;
drhfe0cf7a2017-08-16 19:20:20 +00003701 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
3702 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test
3703 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
3704 ** which is a performance optimization */
3705 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
drh5f612292014-02-08 23:20:32 +00003706 assert( pOp->p5==0 );
drh70ce3f02003-04-15 19:22:22 +00003707 break;
3708}
3709
drh98757152008-01-09 23:04:12 +00003710/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003711**
3712** Close a cursor previously opened as P1. If P1 is not
3713** currently open, this instruction is a no-op.
3714*/
drh9cbf3422008-01-17 16:22:13 +00003715case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003716 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3717 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3718 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003719 break;
3720}
3721
drh97bae792015-06-05 15:59:57 +00003722#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3723/* Opcode: ColumnsUsed P1 * * P4 *
3724**
3725** This opcode (which only exists if SQLite was compiled with
3726** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3727** table or index for cursor P1 are used. P4 is a 64-bit integer
3728** (P4_INT64) in which the first 63 bits are one for each of the
3729** first 63 columns of the table or index that are actually used
3730** by the cursor. The high-order bit is set if any column after
3731** the 64th is used.
3732*/
3733case OP_ColumnsUsed: {
3734 VdbeCursor *pC;
3735 pC = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00003736 assert( pC->eCurType==CURTYPE_BTREE );
drh97bae792015-06-05 15:59:57 +00003737 pC->maskUsed = *(u64*)pOp->p4.pI64;
3738 break;
3739}
3740#endif
3741
drh8af3f772014-07-25 18:01:06 +00003742/* Opcode: SeekGE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003743** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003744**
danielk1977b790c6c2008-04-18 10:25:24 +00003745** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003746** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003747** to an SQL index, then P3 is the first in an array of P4 registers
3748** that are used as an unpacked index key.
3749**
3750** Reposition cursor P1 so that it points to the smallest entry that
3751** is greater than or equal to the key value. If there are no records
3752** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003753**
drhb1d607d2015-11-05 22:30:54 +00003754** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3755** opcode will always land on a record that equally equals the key, or
3756** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
3757** opcode must be followed by an IdxLE opcode with the same arguments.
3758** The IdxLE opcode will be skipped if this opcode succeeds, but the
3759** IdxLE opcode will be used on subsequent loop iterations.
3760**
drh8af3f772014-07-25 18:01:06 +00003761** This opcode leaves the cursor configured to move in forward order,
drhbc5cf382014-08-06 01:08:07 +00003762** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003763** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003764**
drh935850e2014-05-24 17:15:15 +00003765** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003766*/
drh8af3f772014-07-25 18:01:06 +00003767/* Opcode: SeekGT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003768** Synopsis: key=r[P3@P4]
drh7cf6e4d2004-05-19 14:56:55 +00003769**
danielk1977b790c6c2008-04-18 10:25:24 +00003770** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003771** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003772** to an SQL index, then P3 is the first in an array of P4 registers
3773** that are used as an unpacked index key.
3774**
3775** Reposition cursor P1 so that it points to the smallest entry that
3776** is greater than the key value. If there are no records greater than
3777** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003778**
drh8af3f772014-07-25 18:01:06 +00003779** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00003780** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003781** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003782**
drh935850e2014-05-24 17:15:15 +00003783** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003784*/
drh8af3f772014-07-25 18:01:06 +00003785/* Opcode: SeekLT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003786** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00003787**
danielk1977b790c6c2008-04-18 10:25:24 +00003788** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003789** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003790** to an SQL index, then P3 is the first in an array of P4 registers
3791** that are used as an unpacked index key.
3792**
3793** Reposition cursor P1 so that it points to the largest entry that
3794** is less than the key value. If there are no records less than
3795** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003796**
drh8af3f772014-07-25 18:01:06 +00003797** This opcode leaves the cursor configured to move in reverse order,
3798** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003799** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003800**
drh935850e2014-05-24 17:15:15 +00003801** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003802*/
drh8af3f772014-07-25 18:01:06 +00003803/* Opcode: SeekLE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003804** Synopsis: key=r[P3@P4]
danielk19773d1bfea2004-05-14 11:00:53 +00003805**
danielk1977b790c6c2008-04-18 10:25:24 +00003806** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003807** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003808** to an SQL index, then P3 is the first in an array of P4 registers
3809** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003810**
danielk1977b790c6c2008-04-18 10:25:24 +00003811** Reposition cursor P1 so that it points to the largest entry that
3812** is less than or equal to the key value. If there are no records
3813** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003814**
drh8af3f772014-07-25 18:01:06 +00003815** This opcode leaves the cursor configured to move in reverse order,
3816** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003817** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003818**
drhb1d607d2015-11-05 22:30:54 +00003819** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3820** opcode will always land on a record that equally equals the key, or
3821** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
3822** opcode must be followed by an IdxGE opcode with the same arguments.
3823** The IdxGE opcode will be skipped if this opcode succeeds, but the
3824** IdxGE opcode will be used on subsequent loop iterations.
3825**
drh935850e2014-05-24 17:15:15 +00003826** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003827*/
drh4a1d3652014-02-14 15:13:36 +00003828case OP_SeekLT: /* jump, in3 */
3829case OP_SeekLE: /* jump, in3 */
3830case OP_SeekGE: /* jump, in3 */
3831case OP_SeekGT: { /* jump, in3 */
drhb1d607d2015-11-05 22:30:54 +00003832 int res; /* Comparison result */
3833 int oc; /* Opcode */
3834 VdbeCursor *pC; /* The cursor to seek */
3835 UnpackedRecord r; /* The key to seek for */
3836 int nField; /* Number of columns or fields in the key */
3837 i64 iKey; /* The rowid we are to seek to */
drhd6b79462015-11-07 01:19:00 +00003838 int eqOnly; /* Only interested in == results */
drh80ff32f2001-11-04 18:32:46 +00003839
drh653b82a2009-06-22 11:10:47 +00003840 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003841 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003842 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003843 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00003844 assert( pC->eCurType==CURTYPE_BTREE );
drh4a1d3652014-02-14 15:13:36 +00003845 assert( OP_SeekLE == OP_SeekLT+1 );
3846 assert( OP_SeekGE == OP_SeekLT+2 );
3847 assert( OP_SeekGT == OP_SeekLT+3 );
drhd4187c72010-08-30 22:15:45 +00003848 assert( pC->isOrdered );
drhc960dcb2015-11-20 19:22:01 +00003849 assert( pC->uc.pCursor!=0 );
drh3da046d2013-11-11 03:24:11 +00003850 oc = pOp->opcode;
drhd6b79462015-11-07 01:19:00 +00003851 eqOnly = 0;
drh3da046d2013-11-11 03:24:11 +00003852 pC->nullRow = 0;
drh8af3f772014-07-25 18:01:06 +00003853#ifdef SQLITE_DEBUG
3854 pC->seekOp = pOp->opcode;
3855#endif
drhe0997b32015-03-20 14:57:50 +00003856
drh3da046d2013-11-11 03:24:11 +00003857 if( pC->isTable ){
drhd6b79462015-11-07 01:19:00 +00003858 /* The BTREE_SEEK_EQ flag is only set on index cursors */
drh218c66e2016-12-27 12:35:36 +00003859 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
3860 || CORRUPT_DB );
drhd6b79462015-11-07 01:19:00 +00003861
drh3da046d2013-11-11 03:24:11 +00003862 /* The input value in P3 might be of any type: integer, real, string,
3863 ** blob, or NULL. But it needs to be an integer before we can do
peter.d.reid60ec9142014-09-06 16:39:46 +00003864 ** the seek, so convert it. */
drh3da046d2013-11-11 03:24:11 +00003865 pIn3 = &aMem[pOp->p3];
drh11a6eee2014-09-19 22:01:54 +00003866 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drhbd9507c2014-08-23 17:21:37 +00003867 applyNumericAffinity(pIn3, 0);
3868 }
drh3da046d2013-11-11 03:24:11 +00003869 iKey = sqlite3VdbeIntValue(pIn3);
drh959403f2008-12-12 17:56:16 +00003870
drh3da046d2013-11-11 03:24:11 +00003871 /* If the P3 value could not be converted into an integer without
3872 ** loss of information, then special processing is required... */
3873 if( (pIn3->flags & MEM_Int)==0 ){
3874 if( (pIn3->flags & MEM_Real)==0 ){
3875 /* If the P3 value cannot be converted into any kind of a number,
3876 ** then the seek is not possible, so jump to P2 */
drhf56fa462015-04-13 21:39:54 +00003877 VdbeBranchTaken(1,2); goto jump_to_p2;
drh3da046d2013-11-11 03:24:11 +00003878 break;
3879 }
drh959403f2008-12-12 17:56:16 +00003880
danaa1776f2013-11-26 18:22:59 +00003881 /* If the approximation iKey is larger than the actual real search
3882 ** term, substitute >= for > and < for <=. e.g. if the search term
3883 ** is 4.9 and the integer approximation 5:
3884 **
3885 ** (x > 4.9) -> (x >= 5)
3886 ** (x <= 4.9) -> (x < 5)
3887 */
drh74eaba42014-09-18 17:52:15 +00003888 if( pIn3->u.r<(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003889 assert( OP_SeekGE==(OP_SeekGT-1) );
3890 assert( OP_SeekLT==(OP_SeekLE-1) );
3891 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3892 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
danaa1776f2013-11-26 18:22:59 +00003893 }
3894
3895 /* If the approximation iKey is smaller than the actual real search
3896 ** term, substitute <= for < and > for >=. */
drh74eaba42014-09-18 17:52:15 +00003897 else if( pIn3->u.r>(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003898 assert( OP_SeekLE==(OP_SeekLT+1) );
3899 assert( OP_SeekGT==(OP_SeekGE+1) );
3900 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3901 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
drh8721ce42001-11-07 14:22:00 +00003902 }
drh3da046d2013-11-11 03:24:11 +00003903 }
drhc960dcb2015-11-20 19:22:01 +00003904 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
drhb53a5a92014-10-12 22:37:22 +00003905 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00003906 if( rc!=SQLITE_OK ){
3907 goto abort_due_to_error;
drh1af3fdb2004-07-18 21:33:01 +00003908 }
drhaa736092009-06-22 00:55:30 +00003909 }else{
drhd6b79462015-11-07 01:19:00 +00003910 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3911 ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3912 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3913 */
drhc960dcb2015-11-20 19:22:01 +00003914 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
drhd6b79462015-11-07 01:19:00 +00003915 eqOnly = 1;
3916 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3917 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3918 assert( pOp[1].p1==pOp[0].p1 );
3919 assert( pOp[1].p2==pOp[0].p2 );
3920 assert( pOp[1].p3==pOp[0].p3 );
3921 assert( pOp[1].p4.i==pOp[0].p4.i );
3922 }
3923
drh3da046d2013-11-11 03:24:11 +00003924 nField = pOp->p4.i;
3925 assert( pOp->p4type==P4_INT32 );
3926 assert( nField>0 );
3927 r.pKeyInfo = pC->pKeyInfo;
3928 r.nField = (u16)nField;
3929
3930 /* The next line of code computes as follows, only faster:
drh4a1d3652014-02-14 15:13:36 +00003931 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
dan1fed5da2014-02-25 21:01:25 +00003932 ** r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00003933 ** }else{
dan1fed5da2014-02-25 21:01:25 +00003934 ** r.default_rc = +1;
drh3da046d2013-11-11 03:24:11 +00003935 ** }
danielk1977f7b9d662008-06-23 18:49:43 +00003936 */
dan1fed5da2014-02-25 21:01:25 +00003937 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3938 assert( oc!=OP_SeekGT || r.default_rc==-1 );
3939 assert( oc!=OP_SeekLE || r.default_rc==-1 );
3940 assert( oc!=OP_SeekGE || r.default_rc==+1 );
3941 assert( oc!=OP_SeekLT || r.default_rc==+1 );
drh3da046d2013-11-11 03:24:11 +00003942
3943 r.aMem = &aMem[pOp->p3];
3944#ifdef SQLITE_DEBUG
3945 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3946#endif
drh70528d72015-11-05 20:25:09 +00003947 r.eqSeen = 0;
drhc960dcb2015-11-20 19:22:01 +00003948 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
drh3da046d2013-11-11 03:24:11 +00003949 if( rc!=SQLITE_OK ){
3950 goto abort_due_to_error;
3951 }
drhb1d607d2015-11-05 22:30:54 +00003952 if( eqOnly && r.eqSeen==0 ){
3953 assert( res!=0 );
3954 goto seek_not_found;
drh70528d72015-11-05 20:25:09 +00003955 }
drh3da046d2013-11-11 03:24:11 +00003956 }
3957 pC->deferredMoveto = 0;
3958 pC->cacheStatus = CACHE_STALE;
3959#ifdef SQLITE_TEST
3960 sqlite3_search_count++;
3961#endif
drh4a1d3652014-02-14 15:13:36 +00003962 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
3963 if( res<0 || (res==0 && oc==OP_SeekGT) ){
drhe39a7322014-02-03 14:04:11 +00003964 res = 0;
drh2ab792e2017-05-30 18:34:07 +00003965 rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
3966 if( rc!=SQLITE_OK ){
3967 if( rc==SQLITE_DONE ){
3968 rc = SQLITE_OK;
3969 res = 1;
3970 }else{
3971 goto abort_due_to_error;
3972 }
3973 }
drh3da046d2013-11-11 03:24:11 +00003974 }else{
3975 res = 0;
3976 }
3977 }else{
drh4a1d3652014-02-14 15:13:36 +00003978 assert( oc==OP_SeekLT || oc==OP_SeekLE );
3979 if( res>0 || (res==0 && oc==OP_SeekLT) ){
drhe39a7322014-02-03 14:04:11 +00003980 res = 0;
drh2ab792e2017-05-30 18:34:07 +00003981 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
3982 if( rc!=SQLITE_OK ){
3983 if( rc==SQLITE_DONE ){
3984 rc = SQLITE_OK;
3985 res = 1;
3986 }else{
3987 goto abort_due_to_error;
3988 }
3989 }
drh3da046d2013-11-11 03:24:11 +00003990 }else{
3991 /* res might be negative because the table is empty. Check to
3992 ** see if this is the case.
3993 */
drhc960dcb2015-11-20 19:22:01 +00003994 res = sqlite3BtreeEof(pC->uc.pCursor);
drh3da046d2013-11-11 03:24:11 +00003995 }
3996 }
drhb1d607d2015-11-05 22:30:54 +00003997seek_not_found:
drh3da046d2013-11-11 03:24:11 +00003998 assert( pOp->p2>0 );
drh688852a2014-02-17 22:40:43 +00003999 VdbeBranchTaken(res!=0,2);
drh3da046d2013-11-11 03:24:11 +00004000 if( res ){
drhf56fa462015-04-13 21:39:54 +00004001 goto jump_to_p2;
drhb1d607d2015-11-05 22:30:54 +00004002 }else if( eqOnly ){
4003 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4004 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
drh5e00f6c2001-09-13 13:46:56 +00004005 }
drh5e00f6c2001-09-13 13:46:56 +00004006 break;
4007}
dan71c57db2016-07-09 20:23:55 +00004008
drh8cff69d2009-11-12 19:59:44 +00004009/* Opcode: Found P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00004010** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00004011**
drh8cff69d2009-11-12 19:59:44 +00004012** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
4013** P4>0 then register P3 is the first of P4 registers that form an unpacked
4014** record.
4015**
4016** Cursor P1 is on an index btree. If the record identified by P3 and P4
4017** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00004018** P1 is left pointing at the matching entry.
drh6f225d02013-10-26 13:36:51 +00004019**
drhcefc87f2014-08-01 01:40:33 +00004020** This operation leaves the cursor in a state where it can be
4021** advanced in the forward direction. The Next instruction will work,
4022** but not the Prev instruction.
drh8af3f772014-07-25 18:01:06 +00004023**
drh6f225d02013-10-26 13:36:51 +00004024** See also: NotFound, NoConflict, NotExists. SeekGe
drh5e00f6c2001-09-13 13:46:56 +00004025*/
drh8cff69d2009-11-12 19:59:44 +00004026/* Opcode: NotFound P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00004027** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00004028**
drh8cff69d2009-11-12 19:59:44 +00004029** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
4030** P4>0 then register P3 is the first of P4 registers that form an unpacked
4031** record.
4032**
4033** Cursor P1 is on an index btree. If the record identified by P3 and P4
4034** is not the prefix of any entry in P1 then a jump is made to P2. If P1
4035** does contain an entry whose prefix matches the P3/P4 record then control
4036** falls through to the next instruction and P1 is left pointing at the
4037** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00004038**
drh8af3f772014-07-25 18:01:06 +00004039** This operation leaves the cursor in a state where it cannot be
4040** advanced in either direction. In other words, the Next and Prev
4041** opcodes do not work after this operation.
4042**
drh6f225d02013-10-26 13:36:51 +00004043** See also: Found, NotExists, NoConflict
drh5e00f6c2001-09-13 13:46:56 +00004044*/
drh6f225d02013-10-26 13:36:51 +00004045/* Opcode: NoConflict P1 P2 P3 P4 *
drh4af5bee2013-10-30 02:37:50 +00004046** Synopsis: key=r[P3@P4]
drh6f225d02013-10-26 13:36:51 +00004047**
4048** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
4049** P4>0 then register P3 is the first of P4 registers that form an unpacked
4050** record.
4051**
4052** Cursor P1 is on an index btree. If the record identified by P3 and P4
4053** contains any NULL value, jump immediately to P2. If all terms of the
4054** record are not-NULL then a check is done to determine if any row in the
4055** P1 index btree has a matching key prefix. If there are no matches, jump
4056** immediately to P2. If there is a match, fall through and leave the P1
4057** cursor pointing to the matching row.
4058**
4059** This opcode is similar to OP_NotFound with the exceptions that the
4060** branch is always taken if any part of the search key input is NULL.
4061**
drh8af3f772014-07-25 18:01:06 +00004062** This operation leaves the cursor in a state where it cannot be
4063** advanced in either direction. In other words, the Next and Prev
4064** opcodes do not work after this operation.
4065**
drh6f225d02013-10-26 13:36:51 +00004066** See also: NotFound, Found, NotExists
4067*/
4068case OP_NoConflict: /* jump, in3 */
drh9cbf3422008-01-17 16:22:13 +00004069case OP_NotFound: /* jump, in3 */
4070case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00004071 int alreadyExists;
drhf56fa462015-04-13 21:39:54 +00004072 int takeJump;
drh6f225d02013-10-26 13:36:51 +00004073 int ii;
drhdfe88ec2008-11-03 20:55:06 +00004074 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004075 int res;
drha582b012016-12-21 19:45:54 +00004076 UnpackedRecord *pFree;
drh856c1032009-06-02 15:21:42 +00004077 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00004078 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00004079
dan0ff297e2009-09-25 17:03:14 +00004080#ifdef SQLITE_TEST
drh6f225d02013-10-26 13:36:51 +00004081 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
dan0ff297e2009-09-25 17:03:14 +00004082#endif
4083
drhaa736092009-06-22 00:55:30 +00004084 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00004085 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00004086 pC = p->apCsr[pOp->p1];
4087 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00004088#ifdef SQLITE_DEBUG
drhcefc87f2014-08-01 01:40:33 +00004089 pC->seekOp = pOp->opcode;
drh8af3f772014-07-25 18:01:06 +00004090#endif
drh3c657212009-11-17 23:59:58 +00004091 pIn3 = &aMem[pOp->p3];
drhc960dcb2015-11-20 19:22:01 +00004092 assert( pC->eCurType==CURTYPE_BTREE );
4093 assert( pC->uc.pCursor!=0 );
drh3da046d2013-11-11 03:24:11 +00004094 assert( pC->isTable==0 );
4095 if( pOp->p4.i>0 ){
4096 r.pKeyInfo = pC->pKeyInfo;
4097 r.nField = (u16)pOp->p4.i;
4098 r.aMem = pIn3;
drh8aaf7bc2016-09-20 01:19:18 +00004099#ifdef SQLITE_DEBUG
drh826af372014-02-08 19:12:21 +00004100 for(ii=0; ii<r.nField; ii++){
4101 assert( memIsValid(&r.aMem[ii]) );
drh8aaf7bc2016-09-20 01:19:18 +00004102 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
drh826af372014-02-08 19:12:21 +00004103 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
drh826af372014-02-08 19:12:21 +00004104 }
drh8aaf7bc2016-09-20 01:19:18 +00004105#endif
drh3da046d2013-11-11 03:24:11 +00004106 pIdxKey = &r;
drha582b012016-12-21 19:45:54 +00004107 pFree = 0;
drh3da046d2013-11-11 03:24:11 +00004108 }else{
drhe46515b2017-05-19 22:51:00 +00004109 assert( pIn3->flags & MEM_Blob );
4110 rc = ExpandBlob(pIn3);
4111 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
4112 if( rc ) goto no_mem;
drha582b012016-12-21 19:45:54 +00004113 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
drh3da046d2013-11-11 03:24:11 +00004114 if( pIdxKey==0 ) goto no_mem;
drh3da046d2013-11-11 03:24:11 +00004115 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
drh5e00f6c2001-09-13 13:46:56 +00004116 }
dan1fed5da2014-02-25 21:01:25 +00004117 pIdxKey->default_rc = 0;
drhf56fa462015-04-13 21:39:54 +00004118 takeJump = 0;
drh3da046d2013-11-11 03:24:11 +00004119 if( pOp->opcode==OP_NoConflict ){
4120 /* For the OP_NoConflict opcode, take the jump if any of the
4121 ** input fields are NULL, since any key with a NULL will not
4122 ** conflict */
mistachkin7bb6e8e2015-01-12 18:52:41 +00004123 for(ii=0; ii<pIdxKey->nField; ii++){
4124 if( pIdxKey->aMem[ii].flags & MEM_Null ){
drhf56fa462015-04-13 21:39:54 +00004125 takeJump = 1;
drh3da046d2013-11-11 03:24:11 +00004126 break;
drh6f225d02013-10-26 13:36:51 +00004127 }
4128 }
drh5e00f6c2001-09-13 13:46:56 +00004129 }
drhc960dcb2015-11-20 19:22:01 +00004130 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
drhdbd6a7d2017-04-05 12:39:49 +00004131 if( pFree ) sqlite3DbFreeNN(db, pFree);
drh3da046d2013-11-11 03:24:11 +00004132 if( rc!=SQLITE_OK ){
drh9467abf2016-02-17 18:44:11 +00004133 goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00004134 }
4135 pC->seekResult = res;
4136 alreadyExists = (res==0);
4137 pC->nullRow = 1-alreadyExists;
4138 pC->deferredMoveto = 0;
4139 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004140 if( pOp->opcode==OP_Found ){
drh688852a2014-02-17 22:40:43 +00004141 VdbeBranchTaken(alreadyExists!=0,2);
drhf56fa462015-04-13 21:39:54 +00004142 if( alreadyExists ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00004143 }else{
drhf56fa462015-04-13 21:39:54 +00004144 VdbeBranchTaken(takeJump||alreadyExists==0,2);
4145 if( takeJump || !alreadyExists ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00004146 }
drh5e00f6c2001-09-13 13:46:56 +00004147 break;
4148}
4149
drheeb95652016-05-26 20:56:38 +00004150/* Opcode: SeekRowid P1 P2 P3 * *
4151** Synopsis: intkey=r[P3]
4152**
4153** P1 is the index of a cursor open on an SQL table btree (with integer
4154** keys). If register P3 does not contain an integer or if P1 does not
4155** contain a record with rowid P3 then jump immediately to P2.
4156** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
4157** a record with rowid P3 then
4158** leave the cursor pointing at that record and fall through to the next
4159** instruction.
4160**
4161** The OP_NotExists opcode performs the same operation, but with OP_NotExists
4162** the P3 register must be guaranteed to contain an integer value. With this
4163** opcode, register P3 might not contain an integer.
4164**
4165** The OP_NotFound opcode performs the same operation on index btrees
4166** (with arbitrary multi-value keys).
4167**
4168** This opcode leaves the cursor in a state where it cannot be advanced
4169** in either direction. In other words, the Next and Prev opcodes will
4170** not work following this opcode.
4171**
4172** See also: Found, NotFound, NoConflict, SeekRowid
4173*/
drh9cbf3422008-01-17 16:22:13 +00004174/* Opcode: NotExists P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004175** Synopsis: intkey=r[P3]
drh6b125452002-01-28 15:53:03 +00004176**
drh261c02d2013-10-25 14:46:15 +00004177** P1 is the index of a cursor open on an SQL table btree (with integer
4178** keys). P3 is an integer rowid. If P1 does not contain a record with
danc6157e12015-09-14 09:23:47 +00004179** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
4180** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4181** leave the cursor pointing at that record and fall through to the next
4182** instruction.
drh6b125452002-01-28 15:53:03 +00004183**
drheeb95652016-05-26 20:56:38 +00004184** The OP_SeekRowid opcode performs the same operation but also allows the
4185** P3 register to contain a non-integer value, in which case the jump is
4186** always taken. This opcode requires that P3 always contain an integer.
4187**
drh261c02d2013-10-25 14:46:15 +00004188** The OP_NotFound opcode performs the same operation on index btrees
4189** (with arbitrary multi-value keys).
drh6b125452002-01-28 15:53:03 +00004190**
drh8af3f772014-07-25 18:01:06 +00004191** This opcode leaves the cursor in a state where it cannot be advanced
4192** in either direction. In other words, the Next and Prev opcodes will
4193** not work following this opcode.
4194**
drheeb95652016-05-26 20:56:38 +00004195** See also: Found, NotFound, NoConflict, SeekRowid
drh6b125452002-01-28 15:53:03 +00004196*/
drheeb95652016-05-26 20:56:38 +00004197case OP_SeekRowid: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00004198 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00004199 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004200 int res;
4201 u64 iKey;
4202
drh3c657212009-11-17 23:59:58 +00004203 pIn3 = &aMem[pOp->p3];
drheeb95652016-05-26 20:56:38 +00004204 if( (pIn3->flags & MEM_Int)==0 ){
4205 applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding);
4206 if( (pIn3->flags & MEM_Int)==0 ) goto jump_to_p2;
4207 }
4208 /* Fall through into OP_NotExists */
4209case OP_NotExists: /* jump, in3 */
4210 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00004211 assert( pIn3->flags & MEM_Int );
4212 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4213 pC = p->apCsr[pOp->p1];
4214 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00004215#ifdef SQLITE_DEBUG
4216 pC->seekOp = 0;
4217#endif
drhaa736092009-06-22 00:55:30 +00004218 assert( pC->isTable );
drhc960dcb2015-11-20 19:22:01 +00004219 assert( pC->eCurType==CURTYPE_BTREE );
4220 pCrsr = pC->uc.pCursor;
drh3da046d2013-11-11 03:24:11 +00004221 assert( pCrsr!=0 );
4222 res = 0;
4223 iKey = pIn3->u.i;
4224 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drhb79d5522015-09-14 19:26:37 +00004225 assert( rc==SQLITE_OK || res==0 );
drhb53a5a92014-10-12 22:37:22 +00004226 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00004227 pC->nullRow = 0;
4228 pC->cacheStatus = CACHE_STALE;
4229 pC->deferredMoveto = 0;
drh688852a2014-02-17 22:40:43 +00004230 VdbeBranchTaken(res!=0,2);
drh3da046d2013-11-11 03:24:11 +00004231 pC->seekResult = res;
danc6157e12015-09-14 09:23:47 +00004232 if( res!=0 ){
drhb79d5522015-09-14 19:26:37 +00004233 assert( rc==SQLITE_OK );
4234 if( pOp->p2==0 ){
4235 rc = SQLITE_CORRUPT_BKPT;
4236 }else{
4237 goto jump_to_p2;
4238 }
danc6157e12015-09-14 09:23:47 +00004239 }
drh9467abf2016-02-17 18:44:11 +00004240 if( rc ) goto abort_due_to_error;
drh6b125452002-01-28 15:53:03 +00004241 break;
4242}
4243
drh4c583122008-01-04 22:01:03 +00004244/* Opcode: Sequence P1 P2 * * *
drh079a3072014-03-19 14:10:55 +00004245** Synopsis: r[P2]=cursor[P1].ctr++
drh4db38a72005-09-01 12:16:28 +00004246**
drh4c583122008-01-04 22:01:03 +00004247** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00004248** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00004249** The sequence number on the cursor is incremented after this
4250** instruction.
drh4db38a72005-09-01 12:16:28 +00004251*/
drh27a348c2015-04-13 19:14:06 +00004252case OP_Sequence: { /* out2 */
drh653b82a2009-06-22 11:10:47 +00004253 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4254 assert( p->apCsr[pOp->p1]!=0 );
drhc960dcb2015-11-20 19:22:01 +00004255 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
drh27a348c2015-04-13 19:14:06 +00004256 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00004257 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00004258 break;
4259}
4260
4261
drh98757152008-01-09 23:04:12 +00004262/* Opcode: NewRowid P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004263** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00004264**
drhf0863fe2005-06-12 21:35:51 +00004265** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00004266** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00004267** table that cursor P1 points to. The new record number is written
4268** written to register P2.
drh205f48e2004-11-05 00:43:11 +00004269**
dan76d462e2009-08-30 11:42:51 +00004270** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4271** the largest previously generated record number. No new record numbers are
4272** allowed to be less than this value. When this value reaches its maximum,
drhef8662b2011-06-20 21:47:58 +00004273** an SQLITE_FULL error is generated. The P3 register is updated with the '
dan76d462e2009-08-30 11:42:51 +00004274** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00004275** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00004276*/
drh27a348c2015-04-13 19:14:06 +00004277case OP_NewRowid: { /* out2 */
drhaa736092009-06-22 00:55:30 +00004278 i64 v; /* The new rowid */
4279 VdbeCursor *pC; /* Cursor of table to get the new rowid */
4280 int res; /* Result of an sqlite3BtreeLast() */
4281 int cnt; /* Counter to limit the number of searches */
4282 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00004283 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00004284
drh856c1032009-06-02 15:21:42 +00004285 v = 0;
4286 res = 0;
drh27a348c2015-04-13 19:14:06 +00004287 pOut = out2Prerelease(p, pOp);
drhaa736092009-06-22 00:55:30 +00004288 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4289 pC = p->apCsr[pOp->p1];
4290 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004291 assert( pC->eCurType==CURTYPE_BTREE );
4292 assert( pC->uc.pCursor!=0 );
drh98ef0f62015-06-30 01:25:52 +00004293 {
drh5cf8e8c2002-02-19 22:42:05 +00004294 /* The next rowid or record number (different terms for the same
4295 ** thing) is obtained in a two-step algorithm.
4296 **
4297 ** First we attempt to find the largest existing rowid and add one
4298 ** to that. But if the largest existing rowid is already the maximum
4299 ** positive integer, we have to fall through to the second
4300 ** probabilistic algorithm
4301 **
4302 ** The second algorithm is to select a rowid at random and see if
4303 ** it already exists in the table. If it does not exist, we have
4304 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00004305 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00004306 */
drhaa736092009-06-22 00:55:30 +00004307 assert( pC->isTable );
drhfe2093d2005-01-20 22:48:47 +00004308
drh75f86a42005-02-17 00:03:06 +00004309#ifdef SQLITE_32BIT_ROWID
4310# define MAX_ROWID 0x7fffffff
4311#else
drhfe2093d2005-01-20 22:48:47 +00004312 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4313 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
4314 ** to provide the constant while making all compilers happy.
4315 */
danielk197764202cf2008-11-17 15:31:47 +00004316# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00004317#endif
drhfe2093d2005-01-20 22:48:47 +00004318
drh5cf8e8c2002-02-19 22:42:05 +00004319 if( !pC->useRandomRowid ){
drhc960dcb2015-11-20 19:22:01 +00004320 rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
drhe0670b62014-02-12 21:31:12 +00004321 if( rc!=SQLITE_OK ){
4322 goto abort_due_to_error;
4323 }
4324 if( res ){
4325 v = 1; /* IMP: R-61914-48074 */
4326 }else{
drhc960dcb2015-11-20 19:22:01 +00004327 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
drha7c90c42016-06-04 20:37:10 +00004328 v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
drhe0670b62014-02-12 21:31:12 +00004329 if( v>=MAX_ROWID ){
4330 pC->useRandomRowid = 1;
drh5cf8e8c2002-02-19 22:42:05 +00004331 }else{
drhe0670b62014-02-12 21:31:12 +00004332 v++; /* IMP: R-29538-34987 */
drh5cf8e8c2002-02-19 22:42:05 +00004333 }
drh3fc190c2001-09-14 03:24:23 +00004334 }
drhe0670b62014-02-12 21:31:12 +00004335 }
drh205f48e2004-11-05 00:43:11 +00004336
4337#ifndef SQLITE_OMIT_AUTOINCREMENT
drhe0670b62014-02-12 21:31:12 +00004338 if( pOp->p3 ){
4339 /* Assert that P3 is a valid memory cell. */
4340 assert( pOp->p3>0 );
4341 if( p->pFrame ){
4342 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00004343 /* Assert that P3 is a valid memory cell. */
drhe0670b62014-02-12 21:31:12 +00004344 assert( pOp->p3<=pFrame->nMem );
4345 pMem = &pFrame->aMem[pOp->p3];
4346 }else{
4347 /* Assert that P3 is a valid memory cell. */
drh9f6168b2016-03-19 23:32:58 +00004348 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drhe0670b62014-02-12 21:31:12 +00004349 pMem = &aMem[pOp->p3];
4350 memAboutToChange(p, pMem);
drh205f48e2004-11-05 00:43:11 +00004351 }
drhe0670b62014-02-12 21:31:12 +00004352 assert( memIsValid(pMem) );
drh205f48e2004-11-05 00:43:11 +00004353
drhe0670b62014-02-12 21:31:12 +00004354 REGISTER_TRACE(pOp->p3, pMem);
4355 sqlite3VdbeMemIntegerify(pMem);
4356 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
4357 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
drhe77caa12016-11-02 13:18:46 +00004358 rc = SQLITE_FULL; /* IMP: R-17817-00630 */
drhe0670b62014-02-12 21:31:12 +00004359 goto abort_due_to_error;
4360 }
4361 if( v<pMem->u.i+1 ){
4362 v = pMem->u.i + 1;
4363 }
4364 pMem->u.i = v;
drh5cf8e8c2002-02-19 22:42:05 +00004365 }
drhe0670b62014-02-12 21:31:12 +00004366#endif
drh5cf8e8c2002-02-19 22:42:05 +00004367 if( pC->useRandomRowid ){
drh748a52c2010-09-01 11:50:08 +00004368 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
drhc79c7612010-01-01 18:57:48 +00004369 ** largest possible integer (9223372036854775807) then the database
drh748a52c2010-09-01 11:50:08 +00004370 ** engine starts picking positive candidate ROWIDs at random until
4371 ** it finds one that is not previously used. */
drhaa736092009-06-22 00:55:30 +00004372 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
4373 ** an AUTOINCREMENT table. */
drh5cf8e8c2002-02-19 22:42:05 +00004374 cnt = 0;
drh2c4dc632014-09-25 12:31:28 +00004375 do{
4376 sqlite3_randomness(sizeof(v), &v);
drhd8633462014-09-25 17:42:41 +00004377 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
drhc960dcb2015-11-20 19:22:01 +00004378 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
drh748a52c2010-09-01 11:50:08 +00004379 0, &res))==SQLITE_OK)
shanehc4d340a2010-09-01 02:37:56 +00004380 && (res==0)
drh2c4dc632014-09-25 12:31:28 +00004381 && (++cnt<100));
drh9467abf2016-02-17 18:44:11 +00004382 if( rc ) goto abort_due_to_error;
4383 if( res==0 ){
drhc79c7612010-01-01 18:57:48 +00004384 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00004385 goto abort_due_to_error;
4386 }
drh748a52c2010-09-01 11:50:08 +00004387 assert( v>0 ); /* EV: R-40812-03570 */
drh1eaa2692001-09-18 02:02:23 +00004388 }
drha11846b2004-01-07 18:52:56 +00004389 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004390 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004391 }
drh4c583122008-01-04 22:01:03 +00004392 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004393 break;
4394}
4395
danielk19771f4aa332008-01-03 09:51:55 +00004396/* Opcode: Insert P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004397** Synopsis: intkey=r[P3] data=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004398**
jplyon5a564222003-06-02 06:15:58 +00004399** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00004400** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00004401** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00004402** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00004403** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00004404**
danielk19771f4aa332008-01-03 09:51:55 +00004405** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4406** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00004407** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00004408** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00004409**
drheaf6ae22016-11-09 20:14:34 +00004410** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
4411** run faster by avoiding an unnecessary seek on cursor P1. However,
4412** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
4413** seeks on the cursor or if the most recent seek used a key equal to P3.
drh3e9ca092009-09-08 01:14:48 +00004414**
4415** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4416** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4417** is part of an INSERT operation. The difference is only important to
4418** the update hook.
4419**
dan319eeb72011-03-19 08:38:50 +00004420** Parameter P4 may point to a Table structure, or may be NULL. If it is
4421** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
4422** following a successful insert.
danielk19771f6eec52006-06-16 06:17:47 +00004423**
drh93aed5a2008-01-16 17:46:38 +00004424** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4425** allocated, then ownership of P2 is transferred to the pseudo-cursor
4426** and register P2 becomes ephemeral. If the cursor is changed, the
4427** value of register P2 will then change. Make sure this does not
4428** cause any problems.)
4429**
drhf0863fe2005-06-12 21:35:51 +00004430** This instruction only works on tables. The equivalent instruction
4431** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00004432*/
drhe05c9292009-10-29 13:48:10 +00004433/* Opcode: InsertInt P1 P2 P3 P4 P5
drh72e26de2016-08-24 21:24:04 +00004434** Synopsis: intkey=P3 data=r[P2]
drhe05c9292009-10-29 13:48:10 +00004435**
4436** This works exactly like OP_Insert except that the key is the
4437** integer value P3, not the value of the integer stored in register P3.
4438*/
4439case OP_Insert:
4440case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00004441 Mem *pData; /* MEM cell holding data for the record to be inserted */
4442 Mem *pKey; /* MEM cell holding key for the record */
drh3e9ca092009-09-08 01:14:48 +00004443 VdbeCursor *pC; /* Cursor to table into which insert is written */
drh3e9ca092009-09-08 01:14:48 +00004444 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4445 const char *zDb; /* database name - used by the update hook */
dan319eeb72011-03-19 08:38:50 +00004446 Table *pTab; /* Table structure - used by update and pre-update hooks */
drh8eeb4462016-05-21 20:03:42 +00004447 BtreePayload x; /* Payload to be inserted */
drh856c1032009-06-02 15:21:42 +00004448
drha6c2ed92009-11-14 23:22:23 +00004449 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00004450 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh2b4ded92010-09-27 21:09:31 +00004451 assert( memIsValid(pData) );
drh653b82a2009-06-22 11:10:47 +00004452 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00004453 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004454 assert( pC->eCurType==CURTYPE_BTREE );
4455 assert( pC->uc.pCursor!=0 );
dancb9a3642017-01-30 19:44:53 +00004456 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
drhcbf1b8e2013-11-11 22:55:26 +00004457 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
drh5b6afba2008-01-05 16:29:28 +00004458 REGISTER_TRACE(pOp->p2, pData);
danielk19775f8d8a82004-05-11 00:28:42 +00004459
drhe05c9292009-10-29 13:48:10 +00004460 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00004461 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00004462 assert( pKey->flags & MEM_Int );
drh2b4ded92010-09-27 21:09:31 +00004463 assert( memIsValid(pKey) );
drhe05c9292009-10-29 13:48:10 +00004464 REGISTER_TRACE(pOp->p3, pKey);
drh8eeb4462016-05-21 20:03:42 +00004465 x.nKey = pKey->u.i;
drhe05c9292009-10-29 13:48:10 +00004466 }else{
4467 assert( pOp->opcode==OP_InsertInt );
drh8eeb4462016-05-21 20:03:42 +00004468 x.nKey = pOp->p3;
drhe05c9292009-10-29 13:48:10 +00004469 }
4470
drh9b1c62d2011-03-30 21:04:43 +00004471 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
dan46c47d42011-03-01 18:42:07 +00004472 assert( pC->iDb>=0 );
drh69c33822016-08-18 14:33:11 +00004473 zDb = db->aDb[pC->iDb].zDbSName;
dan319eeb72011-03-19 08:38:50 +00004474 pTab = pOp->p4.pTab;
dancb9a3642017-01-30 19:44:53 +00004475 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
drh74c33022016-03-30 12:56:55 +00004476 }else{
drh4ec6f3a2018-01-12 19:33:18 +00004477 pTab = 0;
drh74c33022016-03-30 12:56:55 +00004478 zDb = 0; /* Not needed. Silence a compiler warning. */
dan46c47d42011-03-01 18:42:07 +00004479 }
4480
drh9b1c62d2011-03-30 21:04:43 +00004481#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
dan46c47d42011-03-01 18:42:07 +00004482 /* Invoke the pre-update hook, if any */
drh4ec6f3a2018-01-12 19:33:18 +00004483 if( pTab ){
drh84ebe2b2018-01-12 18:46:52 +00004484 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
4485 sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey,pOp->p2);
4486 }
drh4ec6f3a2018-01-12 19:33:18 +00004487 if( db->xUpdateCallback==0 || pTab->aCol==0 ){
4488 /* Prevent post-update hook from running in cases when it should not */
4489 pTab = 0;
drh84ebe2b2018-01-12 18:46:52 +00004490 }
dan46c47d42011-03-01 18:42:07 +00004491 }
dancb9a3642017-01-30 19:44:53 +00004492 if( pOp->p5 & OPFLAG_ISNOOP ) break;
drh9b1c62d2011-03-30 21:04:43 +00004493#endif
dan46c47d42011-03-01 18:42:07 +00004494
drha05a7222008-01-19 03:35:58 +00004495 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drhfae58d52017-01-26 17:26:44 +00004496 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
dan21cd29a2017-10-23 16:03:54 +00004497 assert( pData->flags & (MEM_Blob|MEM_Str) );
4498 x.pData = pData->z;
4499 x.nData = pData->n;
drh3e9ca092009-09-08 01:14:48 +00004500 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4501 if( pData->flags & MEM_Zero ){
drh8eeb4462016-05-21 20:03:42 +00004502 x.nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00004503 }else{
drh8eeb4462016-05-21 20:03:42 +00004504 x.nZero = 0;
drha05a7222008-01-19 03:35:58 +00004505 }
drh8eeb4462016-05-21 20:03:42 +00004506 x.pKey = 0;
4507 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
danf91c1312017-01-10 20:04:38 +00004508 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult
drh3e9ca092009-09-08 01:14:48 +00004509 );
drha05a7222008-01-19 03:35:58 +00004510 pC->deferredMoveto = 0;
4511 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004512
drha05a7222008-01-19 03:35:58 +00004513 /* Invoke the update-hook if required. */
drh9467abf2016-02-17 18:44:11 +00004514 if( rc ) goto abort_due_to_error;
drh4ec6f3a2018-01-12 19:33:18 +00004515 if( pTab ){
4516 assert( db->xUpdateCallback!=0 );
4517 assert( pTab->aCol!=0 );
4518 db->xUpdateCallback(db->pUpdateArg,
4519 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
4520 zDb, pTab->zName, x.nKey);
drha05a7222008-01-19 03:35:58 +00004521 }
drh5e00f6c2001-09-13 13:46:56 +00004522 break;
4523}
4524
dan438b8812015-09-15 15:55:15 +00004525/* Opcode: Delete P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004526**
drh5edc3122001-09-13 21:53:09 +00004527** Delete the record at which the P1 cursor is currently pointing.
4528**
drhe807bdb2016-01-21 17:06:33 +00004529** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
4530** the cursor will be left pointing at either the next or the previous
4531** record in the table. If it is left pointing at the next record, then
4532** the next Next instruction will be a no-op. As a result, in this case
4533** it is ok to delete a record from within a Next loop. If
4534** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
4535** left in an undefined state.
drhc8d30ac2002-04-12 10:08:59 +00004536**
drhdef19e32016-01-27 16:26:25 +00004537** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
4538** delete one of several associated with deleting a table row and all its
4539** associated index entries. Exactly one of those deletes is the "primary"
4540** delete. The others are all on OPFLAG_FORDELETE cursors or else are
4541** marked with the AUXDELETE flag.
drhe807bdb2016-01-21 17:06:33 +00004542**
4543** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
4544** change count is incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00004545**
drh91fd4d42008-01-19 20:11:25 +00004546** P1 must not be pseudo-table. It has to be a real table with
4547** multiple rows.
4548**
drh5e769a52016-09-28 16:05:53 +00004549** If P4 is not NULL then it points to a Table object. In this case either
dan319eeb72011-03-19 08:38:50 +00004550** the update or pre-update hook, or both, may be invoked. The P1 cursor must
4551** have been positioned using OP_NotFound prior to invoking this opcode in
4552** this case. Specifically, if one is configured, the pre-update hook is
4553** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
4554** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
dan46c47d42011-03-01 18:42:07 +00004555**
4556** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
4557** of the memory cell that contains the value that the rowid of the row will
4558** be set to by the update.
drh5e00f6c2001-09-13 13:46:56 +00004559*/
drh9cbf3422008-01-17 16:22:13 +00004560case OP_Delete: {
drhdfe88ec2008-11-03 20:55:06 +00004561 VdbeCursor *pC;
dan46c47d42011-03-01 18:42:07 +00004562 const char *zDb;
dan319eeb72011-03-19 08:38:50 +00004563 Table *pTab;
dan46c47d42011-03-01 18:42:07 +00004564 int opflags;
drh91fd4d42008-01-19 20:11:25 +00004565
dan46c47d42011-03-01 18:42:07 +00004566 opflags = pOp->p2;
drh653b82a2009-06-22 11:10:47 +00004567 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4568 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004569 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004570 assert( pC->eCurType==CURTYPE_BTREE );
4571 assert( pC->uc.pCursor!=0 );
drh9a65f2c2009-06-22 19:05:40 +00004572 assert( pC->deferredMoveto==0 );
drh9a65f2c2009-06-22 19:05:40 +00004573
drhb53a5a92014-10-12 22:37:22 +00004574#ifdef SQLITE_DEBUG
dan438b8812015-09-15 15:55:15 +00004575 if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){
4576 /* If p5 is zero, the seek operation that positioned the cursor prior to
4577 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
4578 ** the row that is being deleted */
drha7c90c42016-06-04 20:37:10 +00004579 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
drh92fe38e2014-10-14 13:41:32 +00004580 assert( pC->movetoTarget==iKey );
drhb53a5a92014-10-12 22:37:22 +00004581 }
4582#endif
drh91fd4d42008-01-19 20:11:25 +00004583
dan438b8812015-09-15 15:55:15 +00004584 /* If the update-hook or pre-update-hook will be invoked, set zDb to
4585 ** the name of the db to pass as to it. Also set local pTab to a copy
4586 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
4587 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
4588 ** VdbeCursor.movetoTarget to the current rowid. */
drhc556f3c2016-03-30 15:30:07 +00004589 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
dan46c47d42011-03-01 18:42:07 +00004590 assert( pC->iDb>=0 );
drhc556f3c2016-03-30 15:30:07 +00004591 assert( pOp->p4.pTab!=0 );
drh69c33822016-08-18 14:33:11 +00004592 zDb = db->aDb[pC->iDb].zDbSName;
dan319eeb72011-03-19 08:38:50 +00004593 pTab = pOp->p4.pTab;
drhc556f3c2016-03-30 15:30:07 +00004594 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
drha7c90c42016-06-04 20:37:10 +00004595 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
dan438b8812015-09-15 15:55:15 +00004596 }
drh74c33022016-03-30 12:56:55 +00004597 }else{
4598 zDb = 0; /* Not needed. Silence a compiler warning. */
4599 pTab = 0; /* Not needed. Silence a compiler warning. */
drh92fe38e2014-10-14 13:41:32 +00004600 }
dan46c47d42011-03-01 18:42:07 +00004601
drh9b1c62d2011-03-30 21:04:43 +00004602#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
dan46c47d42011-03-01 18:42:07 +00004603 /* Invoke the pre-update-hook if required. */
dancb9a3642017-01-30 19:44:53 +00004604 if( db->xPreUpdateCallback && pOp->p4.pTab ){
4605 assert( !(opflags & OPFLAG_ISUPDATE)
4606 || HasRowid(pTab)==0
4607 || (aMem[pOp->p3].flags & MEM_Int)
4608 );
dan46c47d42011-03-01 18:42:07 +00004609 sqlite3VdbePreUpdateHook(p, pC,
4610 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
drh92fe38e2014-10-14 13:41:32 +00004611 zDb, pTab, pC->movetoTarget,
dan37db03b2011-03-16 19:59:18 +00004612 pOp->p3
dan46c47d42011-03-01 18:42:07 +00004613 );
4614 }
dan46c47d42011-03-01 18:42:07 +00004615 if( opflags & OPFLAG_ISNOOP ) break;
drhc556f3c2016-03-30 15:30:07 +00004616#endif
drhb53a5a92014-10-12 22:37:22 +00004617
drhdef19e32016-01-27 16:26:25 +00004618 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
4619 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
drhe807bdb2016-01-21 17:06:33 +00004620 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
drhdef19e32016-01-27 16:26:25 +00004621 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
drhb89aeb62016-01-27 15:49:32 +00004622
4623#ifdef SQLITE_DEBUG
dane61bbf42016-01-28 17:06:17 +00004624 if( p->pFrame==0 ){
4625 if( pC->isEphemeral==0
4626 && (pOp->p5 & OPFLAG_AUXDELETE)==0
4627 && (pC->wrFlag & OPFLAG_FORDELETE)==0
4628 ){
4629 nExtraDelete++;
4630 }
4631 if( pOp->p2 & OPFLAG_NCHANGE ){
4632 nExtraDelete--;
4633 }
drhb89aeb62016-01-27 15:49:32 +00004634 }
4635#endif
4636
drhc960dcb2015-11-20 19:22:01 +00004637 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
drh91fd4d42008-01-19 20:11:25 +00004638 pC->cacheStatus = CACHE_STALE;
dan3b908d42016-11-08 19:22:32 +00004639 pC->seekResult = 0;
drhd3e1af42016-02-25 18:54:30 +00004640 if( rc ) goto abort_due_to_error;
danielk197794eb6a12005-12-15 15:22:08 +00004641
drh91fd4d42008-01-19 20:11:25 +00004642 /* Invoke the update-hook if required. */
dan46c47d42011-03-01 18:42:07 +00004643 if( opflags & OPFLAG_NCHANGE ){
4644 p->nChange++;
drhc556f3c2016-03-30 15:30:07 +00004645 if( db->xUpdateCallback && HasRowid(pTab) ){
drh92fe38e2014-10-14 13:41:32 +00004646 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
dan438b8812015-09-15 15:55:15 +00004647 pC->movetoTarget);
4648 assert( pC->iDb>=0 );
dan46c47d42011-03-01 18:42:07 +00004649 }
drh5e00f6c2001-09-13 13:46:56 +00004650 }
dan438b8812015-09-15 15:55:15 +00004651
rdcb0c374f2004-02-20 22:53:38 +00004652 break;
4653}
drhb7f1d9a2009-09-08 02:27:58 +00004654/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00004655**
drhb7f1d9a2009-09-08 02:27:58 +00004656** The value of the change counter is copied to the database handle
4657** change counter (returned by subsequent calls to sqlite3_changes()).
4658** Then the VMs internal change counter resets to 0.
4659** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00004660*/
drh9cbf3422008-01-17 16:22:13 +00004661case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00004662 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00004663 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00004664 break;
4665}
4666
drh1153c7b2013-11-01 22:02:56 +00004667/* Opcode: SorterCompare P1 P2 P3 P4
drh72e26de2016-08-24 21:24:04 +00004668** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
dan5134d132011-09-02 10:31:11 +00004669**
drh1153c7b2013-11-01 22:02:56 +00004670** P1 is a sorter cursor. This instruction compares a prefix of the
drhbc5cf382014-08-06 01:08:07 +00004671** record blob in register P3 against a prefix of the entry that
drhac502322014-07-30 13:56:48 +00004672** the sorter cursor currently points to. Only the first P4 fields
4673** of r[P3] and the sorter record are compared.
drh1153c7b2013-11-01 22:02:56 +00004674**
4675** If either P3 or the sorter contains a NULL in one of their significant
4676** fields (not counting the P4 fields at the end which are ignored) then
4677** the comparison is assumed to be equal.
4678**
4679** Fall through to next instruction if the two records compare equal to
4680** each other. Jump to P2 if they are different.
dan5134d132011-09-02 10:31:11 +00004681*/
4682case OP_SorterCompare: {
4683 VdbeCursor *pC;
4684 int res;
drhac502322014-07-30 13:56:48 +00004685 int nKeyCol;
dan5134d132011-09-02 10:31:11 +00004686
4687 pC = p->apCsr[pOp->p1];
4688 assert( isSorter(pC) );
drh1153c7b2013-11-01 22:02:56 +00004689 assert( pOp->p4type==P4_INT32 );
dan5134d132011-09-02 10:31:11 +00004690 pIn3 = &aMem[pOp->p3];
drhac502322014-07-30 13:56:48 +00004691 nKeyCol = pOp->p4.i;
drh958d2612014-04-18 13:40:07 +00004692 res = 0;
drhac502322014-07-30 13:56:48 +00004693 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
drh688852a2014-02-17 22:40:43 +00004694 VdbeBranchTaken(res!=0,2);
drh9467abf2016-02-17 18:44:11 +00004695 if( rc ) goto abort_due_to_error;
drhf56fa462015-04-13 21:39:54 +00004696 if( res ) goto jump_to_p2;
dan5134d132011-09-02 10:31:11 +00004697 break;
4698};
4699
drh6cf4a7d2014-10-13 13:00:58 +00004700/* Opcode: SorterData P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004701** Synopsis: r[P2]=data
dan5134d132011-09-02 10:31:11 +00004702**
4703** Write into register P2 the current sorter data for sorter cursor P1.
drh6cf4a7d2014-10-13 13:00:58 +00004704** Then clear the column header cache on cursor P3.
4705**
4706** This opcode is normally use to move a record out of the sorter and into
4707** a register that is the source for a pseudo-table cursor created using
4708** OpenPseudo. That pseudo-table cursor is the one that is identified by
4709** parameter P3. Clearing the P3 column cache as part of this opcode saves
4710** us from having to issue a separate NullRow instruction to clear that cache.
dan5134d132011-09-02 10:31:11 +00004711*/
4712case OP_SorterData: {
4713 VdbeCursor *pC;
drh3a949872012-09-18 13:20:13 +00004714
dan5134d132011-09-02 10:31:11 +00004715 pOut = &aMem[pOp->p2];
4716 pC = p->apCsr[pOp->p1];
drh14da87f2013-11-20 21:51:33 +00004717 assert( isSorter(pC) );
dan5134d132011-09-02 10:31:11 +00004718 rc = sqlite3VdbeSorterRowkey(pC, pOut);
dan38524132014-05-01 20:26:48 +00004719 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
drh6cf4a7d2014-10-13 13:00:58 +00004720 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh9467abf2016-02-17 18:44:11 +00004721 if( rc ) goto abort_due_to_error;
drh6cf4a7d2014-10-13 13:00:58 +00004722 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
dan5134d132011-09-02 10:31:11 +00004723 break;
4724}
4725
drhe7b554d2017-01-09 15:44:25 +00004726/* Opcode: RowData P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004727** Synopsis: r[P2]=data
drh70ce3f02003-04-15 19:22:22 +00004728**
drh9057fc72016-11-25 19:32:32 +00004729** Write into register P2 the complete row content for the row at
4730** which cursor P1 is currently pointing.
drh98757152008-01-09 23:04:12 +00004731** There is no interpretation of the data.
4732** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004733** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00004734**
drh9057fc72016-11-25 19:32:32 +00004735** If cursor P1 is an index, then the content is the key of the row.
4736** If cursor P2 is a table, then the content extracted is the data.
drh143f3c42004-01-07 20:37:52 +00004737**
drhde4fcfd2008-01-19 23:50:26 +00004738** If the P1 cursor must be pointing to a valid row (not a NULL row)
4739** of a real table, not a pseudo-table.
drhe7b554d2017-01-09 15:44:25 +00004740**
4741** If P3!=0 then this opcode is allowed to make an ephermeral pointer
4742** into the database page. That means that the content of the output
4743** register will be invalidated as soon as the cursor moves - including
4744** moves caused by other cursors that "save" the the current cursors
4745** position in order that they can write to the same table. If P3==0
4746** then a copy of the data is made into memory. P3!=0 is faster, but
4747** P3==0 is safer.
4748**
4749** If P3!=0 then the content of the P2 register is unsuitable for use
4750** in OP_Result and any OP_Result will invalidate the P2 register content.
mistachkinab61cf72017-01-09 18:22:54 +00004751** The P2 register content is invalidated by opcodes like OP_Function or
drhe7b554d2017-01-09 15:44:25 +00004752** by any use of another cursor pointing to the same table.
drh143f3c42004-01-07 20:37:52 +00004753*/
danielk1977a7a8e142008-02-13 18:25:27 +00004754case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00004755 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00004756 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00004757 u32 n;
drh70ce3f02003-04-15 19:22:22 +00004758
drhe7b554d2017-01-09 15:44:25 +00004759 pOut = out2Prerelease(p, pOp);
danielk1977a7a8e142008-02-13 18:25:27 +00004760
drh653b82a2009-06-22 11:10:47 +00004761 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4762 pC = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00004763 assert( pC!=0 );
4764 assert( pC->eCurType==CURTYPE_BTREE );
drh14da87f2013-11-20 21:51:33 +00004765 assert( isSorter(pC)==0 );
drhde4fcfd2008-01-19 23:50:26 +00004766 assert( pC->nullRow==0 );
drhc960dcb2015-11-20 19:22:01 +00004767 assert( pC->uc.pCursor!=0 );
4768 pCrsr = pC->uc.pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004769
drh9057fc72016-11-25 19:32:32 +00004770 /* The OP_RowData opcodes always follow OP_NotExists or
drheeb95652016-05-26 20:56:38 +00004771 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
4772 ** that might invalidate the cursor.
4773 ** If this where not the case, on of the following assert()s
drhc22284f2014-10-13 16:02:20 +00004774 ** would fail. Should this ever change (because of changes in the code
4775 ** generator) then the fix would be to insert a call to
4776 ** sqlite3VdbeCursorMoveto().
drh9a65f2c2009-06-22 19:05:40 +00004777 */
4778 assert( pC->deferredMoveto==0 );
drhc22284f2014-10-13 16:02:20 +00004779 assert( sqlite3BtreeCursorIsValid(pCrsr) );
4780#if 0 /* Not required due to the previous to assert() statements */
drhde4fcfd2008-01-19 23:50:26 +00004781 rc = sqlite3VdbeCursorMoveto(pC);
drhc22284f2014-10-13 16:02:20 +00004782 if( rc!=SQLITE_OK ) goto abort_due_to_error;
4783#endif
drh9a65f2c2009-06-22 19:05:40 +00004784
drha7c90c42016-06-04 20:37:10 +00004785 n = sqlite3BtreePayloadSize(pCrsr);
drhd66c4f82016-06-04 20:58:35 +00004786 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drha7c90c42016-06-04 20:37:10 +00004787 goto too_big;
drhde4fcfd2008-01-19 23:50:26 +00004788 }
drh722246e2014-10-07 23:02:24 +00004789 testcase( n==0 );
drhe7b554d2017-01-09 15:44:25 +00004790 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, n, pOut);
drh9467abf2016-02-17 18:44:11 +00004791 if( rc ) goto abort_due_to_error;
drhe7b554d2017-01-09 15:44:25 +00004792 if( !pOp->p3 ) Deephemeralize(pOut);
drhb7654112008-01-12 12:48:07 +00004793 UPDATE_MAX_BLOBSIZE(pOut);
drhee0ec8e2013-10-31 17:38:01 +00004794 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00004795 break;
4796}
4797
drh2133d822008-01-03 18:44:59 +00004798/* Opcode: Rowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004799** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00004800**
drh2133d822008-01-03 18:44:59 +00004801** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004802** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004803**
4804** P1 can be either an ordinary table or a virtual table. There used to
4805** be a separate OP_VRowid opcode for use with virtual tables, but this
4806** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004807*/
drh27a348c2015-04-13 19:14:06 +00004808case OP_Rowid: { /* out2 */
drhdfe88ec2008-11-03 20:55:06 +00004809 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004810 i64 v;
drh856c1032009-06-02 15:21:42 +00004811 sqlite3_vtab *pVtab;
4812 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004813
drh27a348c2015-04-13 19:14:06 +00004814 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00004815 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4816 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004817 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004818 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
drh044925b2009-04-22 17:15:02 +00004819 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004820 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004821 break;
4822 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004823 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004824#ifndef SQLITE_OMIT_VIRTUALTABLE
drhc960dcb2015-11-20 19:22:01 +00004825 }else if( pC->eCurType==CURTYPE_VTAB ){
4826 assert( pC->uc.pVCur!=0 );
4827 pVtab = pC->uc.pVCur->pVtab;
drh044925b2009-04-22 17:15:02 +00004828 pModule = pVtab->pModule;
4829 assert( pModule->xRowid );
drhc960dcb2015-11-20 19:22:01 +00004830 rc = pModule->xRowid(pC->uc.pVCur, &v);
dan016f7812013-08-21 17:35:48 +00004831 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00004832 if( rc ) goto abort_due_to_error;
drh044925b2009-04-22 17:15:02 +00004833#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004834 }else{
drhc960dcb2015-11-20 19:22:01 +00004835 assert( pC->eCurType==CURTYPE_BTREE );
4836 assert( pC->uc.pCursor!=0 );
drhc22284f2014-10-13 16:02:20 +00004837 rc = sqlite3VdbeCursorRestore(pC);
drh61495262009-04-22 15:32:59 +00004838 if( rc ) goto abort_due_to_error;
dan2b8669a2014-11-17 19:42:48 +00004839 if( pC->nullRow ){
4840 pOut->flags = MEM_Null;
4841 break;
4842 }
drha7c90c42016-06-04 20:37:10 +00004843 v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
drh5e00f6c2001-09-13 13:46:56 +00004844 }
drh4c583122008-01-04 22:01:03 +00004845 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004846 break;
4847}
4848
drh9cbf3422008-01-17 16:22:13 +00004849/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004850**
4851** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004852** that occur while the cursor is on the null row will always
4853** write a NULL.
drh17f71932002-02-21 12:01:27 +00004854*/
drh9cbf3422008-01-17 16:22:13 +00004855case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004856 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004857
drh653b82a2009-06-22 11:10:47 +00004858 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4859 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004860 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004861 pC->nullRow = 1;
drh399af1d2013-11-20 17:25:55 +00004862 pC->cacheStatus = CACHE_STALE;
drhc960dcb2015-11-20 19:22:01 +00004863 if( pC->eCurType==CURTYPE_BTREE ){
4864 assert( pC->uc.pCursor!=0 );
4865 sqlite3BtreeClearCursor(pC->uc.pCursor);
danielk1977be51a652008-10-08 17:58:48 +00004866 }
drh17f71932002-02-21 12:01:27 +00004867 break;
4868}
4869
drh86b40df2017-08-01 19:53:43 +00004870/* Opcode: SeekEnd P1 * * * *
4871**
4872** Position cursor P1 at the end of the btree for the purpose of
4873** appending a new entry onto the btree.
4874**
4875** It is assumed that the cursor is used only for appending and so
4876** if the cursor is valid, then the cursor must already be pointing
4877** at the end of the btree and so no changes are made to
4878** the cursor.
4879*/
4880/* Opcode: Last P1 P2 * * *
drh9562b552002-02-19 15:00:07 +00004881**
drh8af3f772014-07-25 18:01:06 +00004882** The next use of the Rowid or Column or Prev instruction for P1
drh9562b552002-02-19 15:00:07 +00004883** will refer to the last entry in the database table or index.
4884** If the table or index is empty and P2>0, then jump immediately to P2.
4885** If P2 is 0 or if the table or index is not empty, fall through
4886** to the following instruction.
drh8af3f772014-07-25 18:01:06 +00004887**
4888** This opcode leaves the cursor configured to move in reverse order,
4889** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004890** configured to use Prev, not Next.
drh9562b552002-02-19 15:00:07 +00004891*/
drh86b40df2017-08-01 19:53:43 +00004892case OP_SeekEnd:
drh9cbf3422008-01-17 16:22:13 +00004893case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004894 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004895 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004896 int res;
drh9562b552002-02-19 15:00:07 +00004897
drh653b82a2009-06-22 11:10:47 +00004898 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4899 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004900 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004901 assert( pC->eCurType==CURTYPE_BTREE );
4902 pCrsr = pC->uc.pCursor;
drh7abc5402011-10-22 21:00:46 +00004903 res = 0;
drh3da046d2013-11-11 03:24:11 +00004904 assert( pCrsr!=0 );
drh8af3f772014-07-25 18:01:06 +00004905#ifdef SQLITE_DEBUG
drh86b40df2017-08-01 19:53:43 +00004906 pC->seekOp = pOp->opcode;
drh8af3f772014-07-25 18:01:06 +00004907#endif
drh86b40df2017-08-01 19:53:43 +00004908 if( pOp->opcode==OP_SeekEnd ){
drhd6ef5af2016-11-15 04:00:24 +00004909 assert( pOp->p2==0 );
drh86b40df2017-08-01 19:53:43 +00004910 pC->seekResult = -1;
4911 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
4912 break;
4913 }
4914 }
4915 rc = sqlite3BtreeLast(pCrsr, &res);
4916 pC->nullRow = (u8)res;
4917 pC->deferredMoveto = 0;
4918 pC->cacheStatus = CACHE_STALE;
4919 if( rc ) goto abort_due_to_error;
4920 if( pOp->p2>0 ){
4921 VdbeBranchTaken(res!=0,2);
4922 if( res ) goto jump_to_p2;
drh9562b552002-02-19 15:00:07 +00004923 }
4924 break;
4925}
4926
drh5e98e832017-02-17 19:24:06 +00004927/* Opcode: IfSmaller P1 P2 P3 * *
4928**
4929** Estimate the number of rows in the table P1. Jump to P2 if that
4930** estimate is less than approximately 2**(0.1*P3).
4931*/
4932case OP_IfSmaller: { /* jump */
4933 VdbeCursor *pC;
4934 BtCursor *pCrsr;
4935 int res;
4936 i64 sz;
4937
4938 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4939 pC = p->apCsr[pOp->p1];
4940 assert( pC!=0 );
4941 pCrsr = pC->uc.pCursor;
4942 assert( pCrsr );
4943 rc = sqlite3BtreeFirst(pCrsr, &res);
4944 if( rc ) goto abort_due_to_error;
4945 if( res==0 ){
4946 sz = sqlite3BtreeRowCountEst(pCrsr);
4947 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
4948 }
4949 VdbeBranchTaken(res!=0,2);
4950 if( res ) goto jump_to_p2;
4951 break;
4952}
4953
drh0342b1f2005-09-01 03:07:44 +00004954
drh6bd4dc62016-12-23 16:05:22 +00004955/* Opcode: SorterSort P1 P2 * * *
4956**
4957** After all records have been inserted into the Sorter object
4958** identified by P1, invoke this opcode to actually do the sorting.
4959** Jump to P2 if there are no records to be sorted.
4960**
4961** This opcode is an alias for OP_Sort and OP_Rewind that is used
4962** for Sorter objects.
4963*/
drh9cbf3422008-01-17 16:22:13 +00004964/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004965**
4966** This opcode does exactly the same thing as OP_Rewind except that
4967** it increments an undocumented global variable used for testing.
4968**
4969** Sorting is accomplished by writing records into a sorting index,
4970** then rewinding that index and playing it back from beginning to
4971** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4972** rewinding so that the global variable will be incremented and
4973** regression tests can determine whether or not the optimizer is
4974** correctly optimizing out sorts.
4975*/
drhc6aff302011-09-01 15:32:47 +00004976case OP_SorterSort: /* jump */
drh9cbf3422008-01-17 16:22:13 +00004977case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00004978#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00004979 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00004980 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00004981#endif
drh9b47ee32013-08-20 03:13:51 +00004982 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
drh0342b1f2005-09-01 03:07:44 +00004983 /* Fall through into OP_Rewind */
4984}
drh9cbf3422008-01-17 16:22:13 +00004985/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004986**
drhf0863fe2005-06-12 21:35:51 +00004987** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00004988** will refer to the first entry in the database table or index.
dan04489b62014-10-31 20:11:32 +00004989** If the table or index is empty, jump immediately to P2.
4990** If the table or index is not empty, fall through to the following
4991** instruction.
drh8af3f772014-07-25 18:01:06 +00004992**
4993** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00004994** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004995** configured to use Next, not Prev.
drh5e00f6c2001-09-13 13:46:56 +00004996*/
drh9cbf3422008-01-17 16:22:13 +00004997case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004998 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004999 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00005000 int res;
drh5e00f6c2001-09-13 13:46:56 +00005001
drh653b82a2009-06-22 11:10:47 +00005002 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5003 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00005004 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00005005 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
dan2411dea2010-07-03 05:56:09 +00005006 res = 1;
drh8af3f772014-07-25 18:01:06 +00005007#ifdef SQLITE_DEBUG
5008 pC->seekOp = OP_Rewind;
5009#endif
dan689ab892011-08-12 15:02:00 +00005010 if( isSorter(pC) ){
drh958d2612014-04-18 13:40:07 +00005011 rc = sqlite3VdbeSorterRewind(pC, &res);
dana205a482011-08-27 18:48:57 +00005012 }else{
drhc960dcb2015-11-20 19:22:01 +00005013 assert( pC->eCurType==CURTYPE_BTREE );
5014 pCrsr = pC->uc.pCursor;
dana205a482011-08-27 18:48:57 +00005015 assert( pCrsr );
danielk19774adee202004-05-08 08:23:19 +00005016 rc = sqlite3BtreeFirst(pCrsr, &res);
drha11846b2004-01-07 18:52:56 +00005017 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00005018 pC->cacheStatus = CACHE_STALE;
drhf4dada72004-05-11 09:57:35 +00005019 }
drh9467abf2016-02-17 18:44:11 +00005020 if( rc ) goto abort_due_to_error;
drh9c1905f2008-12-10 22:32:56 +00005021 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00005022 assert( pOp->p2>0 && pOp->p2<p->nOp );
drh688852a2014-02-17 22:40:43 +00005023 VdbeBranchTaken(res!=0,2);
drhf56fa462015-04-13 21:39:54 +00005024 if( res ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00005025 break;
5026}
5027
drh0fd61352014-02-07 02:29:45 +00005028/* Opcode: Next P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00005029**
5030** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00005031** table or index. If there are no more key/value pairs then fall through
5032** to the following instruction. But if the cursor advance was successful,
5033** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00005034**
drh5dad9a32014-07-25 18:37:42 +00005035** The Next opcode is only valid following an SeekGT, SeekGE, or
5036** OP_Rewind opcode used to position the cursor. Next is not allowed
5037** to follow SeekLT, SeekLE, or OP_Last.
drh8af3f772014-07-25 18:01:06 +00005038**
drhf93cd942013-11-21 03:12:25 +00005039** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
5040** been opened prior to this opcode or the program will segfault.
drh60a713c2008-01-21 16:22:45 +00005041**
drhe39a7322014-02-03 14:04:11 +00005042** The P3 value is a hint to the btree implementation. If P3==1, that
5043** means P1 is an SQL index and that this instruction could have been
5044** omitted if that index had been unique. P3 is usually 0. P3 is
5045** always either 0 or 1.
5046**
dana205a482011-08-27 18:48:57 +00005047** P4 is always of type P4_ADVANCE. The function pointer points to
5048** sqlite3BtreeNext().
5049**
drhafc266a2010-03-31 17:47:44 +00005050** If P5 is positive and the jump is taken, then event counter
5051** number P5-1 in the prepared statement is incremented.
5052**
drhf93cd942013-11-21 03:12:25 +00005053** See also: Prev, NextIfOpen
5054*/
drh0fd61352014-02-07 02:29:45 +00005055/* Opcode: NextIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00005056**
drh5dad9a32014-07-25 18:37:42 +00005057** This opcode works just like Next except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00005058** open it behaves a no-op.
drh8721ce42001-11-07 14:22:00 +00005059*/
drh0fd61352014-02-07 02:29:45 +00005060/* Opcode: Prev P1 P2 P3 P4 P5
drhc045ec52002-12-04 20:01:06 +00005061**
5062** Back up cursor P1 so that it points to the previous key/data pair in its
5063** table or index. If there is no previous key/value pairs then fall through
5064** to the following instruction. But if the cursor backup was successful,
5065** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00005066**
drh8af3f772014-07-25 18:01:06 +00005067**
drh5dad9a32014-07-25 18:37:42 +00005068** The Prev opcode is only valid following an SeekLT, SeekLE, or
5069** OP_Last opcode used to position the cursor. Prev is not allowed
5070** to follow SeekGT, SeekGE, or OP_Rewind.
drh8af3f772014-07-25 18:01:06 +00005071**
drhf93cd942013-11-21 03:12:25 +00005072** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
5073** not open then the behavior is undefined.
drhafc266a2010-03-31 17:47:44 +00005074**
drhe39a7322014-02-03 14:04:11 +00005075** The P3 value is a hint to the btree implementation. If P3==1, that
5076** means P1 is an SQL index and that this instruction could have been
5077** omitted if that index had been unique. P3 is usually 0. P3 is
5078** always either 0 or 1.
5079**
dana205a482011-08-27 18:48:57 +00005080** P4 is always of type P4_ADVANCE. The function pointer points to
5081** sqlite3BtreePrevious().
5082**
drhafc266a2010-03-31 17:47:44 +00005083** If P5 is positive and the jump is taken, then event counter
5084** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00005085*/
drh0fd61352014-02-07 02:29:45 +00005086/* Opcode: PrevIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00005087**
drh5dad9a32014-07-25 18:37:42 +00005088** This opcode works just like Prev except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00005089** open it behaves a no-op.
5090*/
drh6bd4dc62016-12-23 16:05:22 +00005091/* Opcode: SorterNext P1 P2 * * P5
5092**
5093** This opcode works just like OP_Next except that P1 must be a
5094** sorter object for which the OP_SorterSort opcode has been
5095** invoked. This opcode advances the cursor to the next sorted
5096** record, or jumps to P2 if there are no more sorted records.
5097*/
drhf93cd942013-11-21 03:12:25 +00005098case OP_SorterNext: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00005099 VdbeCursor *pC;
drh8721ce42001-11-07 14:22:00 +00005100
drhf93cd942013-11-21 03:12:25 +00005101 pC = p->apCsr[pOp->p1];
5102 assert( isSorter(pC) );
drh2ab792e2017-05-30 18:34:07 +00005103 rc = sqlite3VdbeSorterNext(db, pC);
drhf93cd942013-11-21 03:12:25 +00005104 goto next_tail;
5105case OP_PrevIfOpen: /* jump */
5106case OP_NextIfOpen: /* jump */
5107 if( p->apCsr[pOp->p1]==0 ) break;
5108 /* Fall through */
5109case OP_Prev: /* jump */
5110case OP_Next: /* jump */
drh70ce3f02003-04-15 19:22:22 +00005111 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh9b47ee32013-08-20 03:13:51 +00005112 assert( pOp->p5<ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00005113 pC = p->apCsr[pOp->p1];
drhf93cd942013-11-21 03:12:25 +00005114 assert( pC!=0 );
5115 assert( pC->deferredMoveto==0 );
drhc960dcb2015-11-20 19:22:01 +00005116 assert( pC->eCurType==CURTYPE_BTREE );
drhf93cd942013-11-21 03:12:25 +00005117 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
5118 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
5119 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
5120 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
drh8af3f772014-07-25 18:01:06 +00005121
5122 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
5123 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
5124 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
5125 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
drhcefc87f2014-08-01 01:40:33 +00005126 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
drh8af3f772014-07-25 18:01:06 +00005127 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
5128 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
5129 || pC->seekOp==OP_Last );
5130
drh2ab792e2017-05-30 18:34:07 +00005131 rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3);
drhf93cd942013-11-21 03:12:25 +00005132next_tail:
drha3460582008-07-11 21:02:53 +00005133 pC->cacheStatus = CACHE_STALE;
drh2ab792e2017-05-30 18:34:07 +00005134 VdbeBranchTaken(rc==SQLITE_OK,2);
5135 if( rc==SQLITE_OK ){
drhf93cd942013-11-21 03:12:25 +00005136 pC->nullRow = 0;
drh9b47ee32013-08-20 03:13:51 +00005137 p->aCounter[pOp->p5]++;
drh0f7eb612006-08-08 13:51:43 +00005138#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00005139 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00005140#endif
drhf56fa462015-04-13 21:39:54 +00005141 goto jump_to_p2_and_check_for_interrupt;
drh8721ce42001-11-07 14:22:00 +00005142 }
drh2ab792e2017-05-30 18:34:07 +00005143 if( rc!=SQLITE_DONE ) goto abort_due_to_error;
5144 rc = SQLITE_OK;
5145 pC->nullRow = 1;
drh49afe3a2013-07-10 03:05:14 +00005146 goto check_for_interrupt;
drh8721ce42001-11-07 14:22:00 +00005147}
5148
drh9b4eaeb2016-11-09 00:10:33 +00005149/* Opcode: IdxInsert P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00005150** Synopsis: key=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00005151**
drhef8662b2011-06-20 21:47:58 +00005152** Register P2 holds an SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00005153** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00005154** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00005155**
drhfb8c56f2016-11-09 01:19:25 +00005156** If P4 is not zero, then it is the number of values in the unpacked
drh9b4eaeb2016-11-09 00:10:33 +00005157** key of reg(P2). In that case, P3 is the index of the first register
5158** for the unpacked key. The availability of the unpacked key can sometimes
5159** be an optimization.
5160**
5161** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
5162** that this insert is likely to be an append.
drhe4d90812007-03-29 05:51:49 +00005163**
mistachkin21a919f2014-02-07 03:28:02 +00005164** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
5165** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
5166** then the change counter is unchanged.
drh0fd61352014-02-07 02:29:45 +00005167**
drheaf6ae22016-11-09 20:14:34 +00005168** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5169** run faster by avoiding an unnecessary seek on cursor P1. However,
5170** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5171** seeks on the cursor or if the most recent seek used a key equivalent
5172** to P2.
drh0fd61352014-02-07 02:29:45 +00005173**
drhf0863fe2005-06-12 21:35:51 +00005174** This instruction only works for indices. The equivalent instruction
5175** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00005176*/
drhf013e202016-10-15 18:37:05 +00005177/* Opcode: SorterInsert P1 P2 * * *
5178** Synopsis: key=r[P2]
5179**
5180** Register P2 holds an SQL index key made using the
5181** MakeRecord instructions. This opcode writes that key
5182** into the sorter P1. Data for the entry is nil.
5183*/
drhca892a72011-09-03 00:17:51 +00005184case OP_SorterInsert: /* in2 */
drh9cbf3422008-01-17 16:22:13 +00005185case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00005186 VdbeCursor *pC;
drh8eeb4462016-05-21 20:03:42 +00005187 BtreePayload x;
drh856c1032009-06-02 15:21:42 +00005188
drh653b82a2009-06-22 11:10:47 +00005189 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5190 pC = p->apCsr[pOp->p1];
5191 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00005192 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
drh3c657212009-11-17 23:59:58 +00005193 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00005194 assert( pIn2->flags & MEM_Blob );
drh6546af12013-11-04 15:23:25 +00005195 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drhc960dcb2015-11-20 19:22:01 +00005196 assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
drh3da046d2013-11-11 03:24:11 +00005197 assert( pC->isTable==0 );
5198 rc = ExpandBlob(pIn2);
drh9467abf2016-02-17 18:44:11 +00005199 if( rc ) goto abort_due_to_error;
5200 if( pOp->opcode==OP_SorterInsert ){
5201 rc = sqlite3VdbeSorterWrite(pC, pIn2);
5202 }else{
drh8eeb4462016-05-21 20:03:42 +00005203 x.nKey = pIn2->n;
5204 x.pKey = pIn2->z;
drh9b4eaeb2016-11-09 00:10:33 +00005205 x.aMem = aMem + pOp->p3;
5206 x.nMem = (u16)pOp->p4.i;
5207 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
danf91c1312017-01-10 20:04:38 +00005208 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)),
drh9467abf2016-02-17 18:44:11 +00005209 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
5210 );
5211 assert( pC->deferredMoveto==0 );
5212 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00005213 }
drh9467abf2016-02-17 18:44:11 +00005214 if( rc) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00005215 break;
5216}
5217
drhd1d38482008-10-07 23:46:38 +00005218/* Opcode: IdxDelete P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00005219** Synopsis: key=r[P2@P3]
drh5e00f6c2001-09-13 13:46:56 +00005220**
drhe14006d2008-03-25 17:23:32 +00005221** The content of P3 registers starting at register P2 form
5222** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00005223** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00005224*/
drhe14006d2008-03-25 17:23:32 +00005225case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00005226 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00005227 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00005228 int res;
5229 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00005230
drhe14006d2008-03-25 17:23:32 +00005231 assert( pOp->p3>0 );
drh9f6168b2016-03-19 23:32:58 +00005232 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
drh653b82a2009-06-22 11:10:47 +00005233 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5234 pC = p->apCsr[pOp->p1];
5235 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00005236 assert( pC->eCurType==CURTYPE_BTREE );
5237 pCrsr = pC->uc.pCursor;
drh3da046d2013-11-11 03:24:11 +00005238 assert( pCrsr!=0 );
drh4308e342013-11-11 16:55:52 +00005239 assert( pOp->p5==0 );
drh3da046d2013-11-11 03:24:11 +00005240 r.pKeyInfo = pC->pKeyInfo;
5241 r.nField = (u16)pOp->p3;
dan1fed5da2014-02-25 21:01:25 +00005242 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00005243 r.aMem = &aMem[pOp->p2];
drh3da046d2013-11-11 03:24:11 +00005244 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
drh9467abf2016-02-17 18:44:11 +00005245 if( rc ) goto abort_due_to_error;
5246 if( res==0 ){
dane61bbf42016-01-28 17:06:17 +00005247 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
drh9467abf2016-02-17 18:44:11 +00005248 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00005249 }
drh3da046d2013-11-11 03:24:11 +00005250 assert( pC->deferredMoveto==0 );
5251 pC->cacheStatus = CACHE_STALE;
dan3b908d42016-11-08 19:22:32 +00005252 pC->seekResult = 0;
drh5e00f6c2001-09-13 13:46:56 +00005253 break;
5254}
5255
drh170ad682017-06-02 15:44:22 +00005256/* Opcode: DeferredSeek P1 * P3 P4 *
5257** Synopsis: Move P3 to P1.rowid if needed
drh784c1b92016-01-30 16:59:56 +00005258**
5259** P1 is an open index cursor and P3 is a cursor on the corresponding
5260** table. This opcode does a deferred seek of the P3 table cursor
5261** to the row that corresponds to the current row of P1.
5262**
5263** This is a deferred seek. Nothing actually happens until
5264** the cursor is used to read a record. That way, if no reads
5265** occur, no unnecessary I/O happens.
5266**
5267** P4 may be an array of integers (type P4_INTARRAY) containing
drh19d720d2016-02-03 19:52:06 +00005268** one entry for each column in the P3 table. If array entry a(i)
5269** is non-zero, then reading column a(i)-1 from cursor P3 is
drh784c1b92016-01-30 16:59:56 +00005270** equivalent to performing the deferred seek and then reading column i
5271** from P1. This information is stored in P3 and used to redirect
5272** reads against P3 over to P1, thus possibly avoiding the need to
5273** seek and read cursor P3.
5274*/
drh2133d822008-01-03 18:44:59 +00005275/* Opcode: IdxRowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005276** Synopsis: r[P2]=rowid
drh8721ce42001-11-07 14:22:00 +00005277**
drh2133d822008-01-03 18:44:59 +00005278** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00005279** the end of the index key pointed to by cursor P1. This integer should be
5280** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00005281**
drh9437bd22009-02-01 00:29:56 +00005282** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00005283*/
drh170ad682017-06-02 15:44:22 +00005284case OP_DeferredSeek:
5285case OP_IdxRowid: { /* out2 */
5286 VdbeCursor *pC; /* The P1 index cursor */
5287 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */
5288 i64 rowid; /* Rowid that P1 current points to */
drh8721ce42001-11-07 14:22:00 +00005289
drh653b82a2009-06-22 11:10:47 +00005290 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5291 pC = p->apCsr[pOp->p1];
5292 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00005293 assert( pC->eCurType==CURTYPE_BTREE );
drh784c1b92016-01-30 16:59:56 +00005294 assert( pC->uc.pCursor!=0 );
drh3da046d2013-11-11 03:24:11 +00005295 assert( pC->isTable==0 );
drhc22284f2014-10-13 16:02:20 +00005296 assert( pC->deferredMoveto==0 );
drh784c1b92016-01-30 16:59:56 +00005297 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
5298
5299 /* The IdxRowid and Seek opcodes are combined because of the commonality
5300 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
5301 rc = sqlite3VdbeCursorRestore(pC);
drhc22284f2014-10-13 16:02:20 +00005302
5303 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
drh784c1b92016-01-30 16:59:56 +00005304 ** out from under the cursor. That will never happens for an IdxRowid
5305 ** or Seek opcode */
drhc22284f2014-10-13 16:02:20 +00005306 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
5307
drh3da046d2013-11-11 03:24:11 +00005308 if( !pC->nullRow ){
drh2dc06482013-12-11 00:59:10 +00005309 rowid = 0; /* Not needed. Only used to silence a warning. */
drh784c1b92016-01-30 16:59:56 +00005310 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
drh3da046d2013-11-11 03:24:11 +00005311 if( rc!=SQLITE_OK ){
5312 goto abort_due_to_error;
danielk19773d1bfea2004-05-14 11:00:53 +00005313 }
drh170ad682017-06-02 15:44:22 +00005314 if( pOp->opcode==OP_DeferredSeek ){
drh784c1b92016-01-30 16:59:56 +00005315 assert( pOp->p3>=0 && pOp->p3<p->nCursor );
5316 pTabCur = p->apCsr[pOp->p3];
5317 assert( pTabCur!=0 );
5318 assert( pTabCur->eCurType==CURTYPE_BTREE );
5319 assert( pTabCur->uc.pCursor!=0 );
5320 assert( pTabCur->isTable );
5321 pTabCur->nullRow = 0;
5322 pTabCur->movetoTarget = rowid;
5323 pTabCur->deferredMoveto = 1;
5324 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
5325 pTabCur->aAltMap = pOp->p4.ai;
5326 pTabCur->pAltCursor = pC;
5327 }else{
5328 pOut = out2Prerelease(p, pOp);
5329 pOut->u.i = rowid;
drh784c1b92016-01-30 16:59:56 +00005330 }
5331 }else{
5332 assert( pOp->opcode==OP_IdxRowid );
5333 sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
drh8721ce42001-11-07 14:22:00 +00005334 }
5335 break;
5336}
5337
danielk197761dd5832008-04-18 11:31:12 +00005338/* Opcode: IdxGE P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005339** Synopsis: key=r[P3@P4]
drh8721ce42001-11-07 14:22:00 +00005340**
danielk197761dd5832008-04-18 11:31:12 +00005341** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00005342** key that omits the PRIMARY KEY. Compare this key value against the index
5343** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5344** fields at the end.
drhf3218fe2004-05-28 08:21:02 +00005345**
danielk197761dd5832008-04-18 11:31:12 +00005346** If the P1 index entry is greater than or equal to the key value
5347** then jump to P2. Otherwise fall through to the next instruction.
drh4a1d3652014-02-14 15:13:36 +00005348*/
5349/* Opcode: IdxGT P1 P2 P3 P4 P5
5350** Synopsis: key=r[P3@P4]
drh772ae622004-05-19 13:13:08 +00005351**
drh4a1d3652014-02-14 15:13:36 +00005352** The P4 register values beginning with P3 form an unpacked index
5353** key that omits the PRIMARY KEY. Compare this key value against the index
5354** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5355** fields at the end.
5356**
5357** If the P1 index entry is greater than the key value
5358** then jump to P2. Otherwise fall through to the next instruction.
drh8721ce42001-11-07 14:22:00 +00005359*/
drh3bb9b932010-08-06 02:10:00 +00005360/* Opcode: IdxLT P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005361** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00005362**
danielk197761dd5832008-04-18 11:31:12 +00005363** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00005364** key that omits the PRIMARY KEY or ROWID. Compare this key value against
5365** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5366** ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00005367**
danielk197761dd5832008-04-18 11:31:12 +00005368** If the P1 index entry is less than the key value then jump to P2.
5369** Otherwise fall through to the next instruction.
drhc045ec52002-12-04 20:01:06 +00005370*/
drh4a1d3652014-02-14 15:13:36 +00005371/* Opcode: IdxLE P1 P2 P3 P4 P5
5372** Synopsis: key=r[P3@P4]
5373**
5374** The P4 register values beginning with P3 form an unpacked index
5375** key that omits the PRIMARY KEY or ROWID. Compare this key value against
5376** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5377** ROWID on the P1 index.
5378**
5379** If the P1 index entry is less than or equal to the key value then jump
5380** to P2. Otherwise fall through to the next instruction.
5381*/
5382case OP_IdxLE: /* jump */
5383case OP_IdxGT: /* jump */
drh93952eb2009-11-13 19:43:43 +00005384case OP_IdxLT: /* jump */
drh4a1d3652014-02-14 15:13:36 +00005385case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00005386 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00005387 int res;
5388 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00005389
drh653b82a2009-06-22 11:10:47 +00005390 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5391 pC = p->apCsr[pOp->p1];
5392 assert( pC!=0 );
drhd4187c72010-08-30 22:15:45 +00005393 assert( pC->isOrdered );
drhc960dcb2015-11-20 19:22:01 +00005394 assert( pC->eCurType==CURTYPE_BTREE );
5395 assert( pC->uc.pCursor!=0);
drh3da046d2013-11-11 03:24:11 +00005396 assert( pC->deferredMoveto==0 );
5397 assert( pOp->p5==0 || pOp->p5==1 );
5398 assert( pOp->p4type==P4_INT32 );
5399 r.pKeyInfo = pC->pKeyInfo;
5400 r.nField = (u16)pOp->p4.i;
drh4a1d3652014-02-14 15:13:36 +00005401 if( pOp->opcode<OP_IdxLT ){
5402 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
dan1fed5da2014-02-25 21:01:25 +00005403 r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00005404 }else{
drh4a1d3652014-02-14 15:13:36 +00005405 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
dan1fed5da2014-02-25 21:01:25 +00005406 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00005407 }
5408 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00005409#ifdef SQLITE_DEBUG
drh3da046d2013-11-11 03:24:11 +00005410 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
drh2b4ded92010-09-27 21:09:31 +00005411#endif
drh2dc06482013-12-11 00:59:10 +00005412 res = 0; /* Not needed. Only used to silence a warning. */
drhd3b74202014-09-17 16:41:15 +00005413 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
drh4a1d3652014-02-14 15:13:36 +00005414 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5415 if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5416 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
drh3da046d2013-11-11 03:24:11 +00005417 res = -res;
5418 }else{
drh4a1d3652014-02-14 15:13:36 +00005419 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
drh3da046d2013-11-11 03:24:11 +00005420 res++;
5421 }
drh688852a2014-02-17 22:40:43 +00005422 VdbeBranchTaken(res>0,2);
drh9467abf2016-02-17 18:44:11 +00005423 if( rc ) goto abort_due_to_error;
drhf56fa462015-04-13 21:39:54 +00005424 if( res>0 ) goto jump_to_p2;
drh8721ce42001-11-07 14:22:00 +00005425 break;
5426}
5427
drh98757152008-01-09 23:04:12 +00005428/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00005429**
5430** Delete an entire database table or index whose root page in the database
5431** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00005432**
drh98757152008-01-09 23:04:12 +00005433** The table being destroyed is in the main database file if P3==0. If
5434** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00005435** that is used to store tables create using CREATE TEMPORARY TABLE.
5436**
drh205f48e2004-11-05 00:43:11 +00005437** If AUTOVACUUM is enabled then it is possible that another root page
5438** might be moved into the newly deleted root page in order to keep all
5439** root pages contiguous at the beginning of the database. The former
5440** value of the root page that moved - its value before the move occurred -
dana34adaf2017-04-08 14:11:47 +00005441** is stored in register P2. If no page movement was required (because the
5442** table being dropped was already the last one in the database) then a
5443** zero is stored in register P2. If AUTOVACUUM is disabled then a zero
5444** is stored in register P2.
5445**
5446** This opcode throws an error if there are any active reader VMs when
5447** it is invoked. This is done to avoid the difficulty associated with
5448** updating existing cursors when a root page is moved in an AUTOVACUUM
5449** database. This error is thrown even if the database is not an AUTOVACUUM
5450** db in order to avoid introducing an incompatibility between autovacuum
5451** and non-autovacuum modes.
drh205f48e2004-11-05 00:43:11 +00005452**
drhb19a2bc2001-09-16 00:13:26 +00005453** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00005454*/
drh27a348c2015-04-13 19:14:06 +00005455case OP_Destroy: { /* out2 */
danielk1977a0bf2652004-11-04 14:30:04 +00005456 int iMoved;
drh856c1032009-06-02 15:21:42 +00005457 int iDb;
drh3a949872012-09-18 13:20:13 +00005458
drh9e92a472013-06-27 17:40:30 +00005459 assert( p->readOnly==0 );
drh055f2982016-01-15 15:06:41 +00005460 assert( pOp->p1>1 );
drh27a348c2015-04-13 19:14:06 +00005461 pOut = out2Prerelease(p, pOp);
drh3c657212009-11-17 23:59:58 +00005462 pOut->flags = MEM_Null;
drh086723a2015-03-24 12:51:52 +00005463 if( db->nVdbeRead > db->nVDestroy+1 ){
danielk1977e6efa742004-11-10 11:55:10 +00005464 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00005465 p->errorAction = OE_Abort;
drh9467abf2016-02-17 18:44:11 +00005466 goto abort_due_to_error;
danielk1977e6efa742004-11-10 11:55:10 +00005467 }else{
drh856c1032009-06-02 15:21:42 +00005468 iDb = pOp->p3;
drha7ab6d82014-07-21 15:44:39 +00005469 assert( DbMaskTest(p->btreeMask, iDb) );
drh2dc06482013-12-11 00:59:10 +00005470 iMoved = 0; /* Not needed. Only to silence a warning. */
drh98757152008-01-09 23:04:12 +00005471 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00005472 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00005473 pOut->u.i = iMoved;
drh9467abf2016-02-17 18:44:11 +00005474 if( rc ) goto abort_due_to_error;
drh3765df42006-06-28 18:18:09 +00005475#ifndef SQLITE_OMIT_AUTOVACUUM
drh9467abf2016-02-17 18:44:11 +00005476 if( iMoved!=0 ){
drhcdf011d2011-04-04 21:25:28 +00005477 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5478 /* All OP_Destroy operations occur on the same btree */
5479 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5480 resetSchemaOnFault = iDb+1;
danielk1977e6efa742004-11-10 11:55:10 +00005481 }
drh3765df42006-06-28 18:18:09 +00005482#endif
danielk1977a0bf2652004-11-04 14:30:04 +00005483 }
drh5e00f6c2001-09-13 13:46:56 +00005484 break;
5485}
5486
danielk1977c7af4842008-10-27 13:59:33 +00005487/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00005488**
5489** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00005490** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00005491** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00005492**
drhf57b3392001-10-08 13:22:32 +00005493** The table being clear is in the main database file if P2==0. If
5494** P2==1 then the table to be clear is in the auxiliary database file
5495** that is used to store tables create using CREATE TEMPORARY TABLE.
5496**
shanebe217792009-03-05 04:20:31 +00005497** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00005498** intkey table (an SQL table, not an index). In this case the row change
5499** count is incremented by the number of rows in the table being cleared.
5500** If P3 is greater than zero, then the value stored in register P3 is
5501** also incremented by the number of rows in the table being cleared.
5502**
drhb19a2bc2001-09-16 00:13:26 +00005503** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00005504*/
drh9cbf3422008-01-17 16:22:13 +00005505case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00005506 int nChange;
5507
5508 nChange = 0;
drh9e92a472013-06-27 17:40:30 +00005509 assert( p->readOnly==0 );
drha7ab6d82014-07-21 15:44:39 +00005510 assert( DbMaskTest(p->btreeMask, pOp->p2) );
danielk1977c7af4842008-10-27 13:59:33 +00005511 rc = sqlite3BtreeClearTable(
5512 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5513 );
5514 if( pOp->p3 ){
5515 p->nChange += nChange;
5516 if( pOp->p3>0 ){
drh2b4ded92010-09-27 21:09:31 +00005517 assert( memIsValid(&aMem[pOp->p3]) );
5518 memAboutToChange(p, &aMem[pOp->p3]);
drha6c2ed92009-11-14 23:22:23 +00005519 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00005520 }
5521 }
drh9467abf2016-02-17 18:44:11 +00005522 if( rc ) goto abort_due_to_error;
drh5edc3122001-09-13 21:53:09 +00005523 break;
5524}
5525
drh65ea12c2014-03-19 17:41:36 +00005526/* Opcode: ResetSorter P1 * * * *
drh079a3072014-03-19 14:10:55 +00005527**
drh65ea12c2014-03-19 17:41:36 +00005528** Delete all contents from the ephemeral table or sorter
5529** that is open on cursor P1.
drh079a3072014-03-19 14:10:55 +00005530**
drh65ea12c2014-03-19 17:41:36 +00005531** This opcode only works for cursors used for sorting and
5532** opened with OP_OpenEphemeral or OP_SorterOpen.
drh079a3072014-03-19 14:10:55 +00005533*/
drh65ea12c2014-03-19 17:41:36 +00005534case OP_ResetSorter: {
drh079a3072014-03-19 14:10:55 +00005535 VdbeCursor *pC;
5536
5537 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5538 pC = p->apCsr[pOp->p1];
5539 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00005540 if( isSorter(pC) ){
5541 sqlite3VdbeSorterReset(db, pC->uc.pSorter);
drh65ea12c2014-03-19 17:41:36 +00005542 }else{
drhc960dcb2015-11-20 19:22:01 +00005543 assert( pC->eCurType==CURTYPE_BTREE );
drh65ea12c2014-03-19 17:41:36 +00005544 assert( pC->isEphemeral );
drhc960dcb2015-11-20 19:22:01 +00005545 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
drh9467abf2016-02-17 18:44:11 +00005546 if( rc ) goto abort_due_to_error;
drh65ea12c2014-03-19 17:41:36 +00005547 }
drh079a3072014-03-19 14:10:55 +00005548 break;
5549}
5550
drh0f3f7662017-08-18 14:34:28 +00005551/* Opcode: CreateBtree P1 P2 P3 * *
5552** Synopsis: r[P2]=root iDb=P1 flags=P3
drh5b2fd562001-09-13 15:21:31 +00005553**
drh0f3f7662017-08-18 14:34:28 +00005554** Allocate a new b-tree in the main database file if P1==0 or in the
5555** TEMP database file if P1==1 or in an attached database if
5556** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
5557** it must be 2 (BTREE_BLOBKEY) for a index or WITHOUT ROWID table.
5558** The root page number of the new b-tree is stored in register P2.
drh5b2fd562001-09-13 15:21:31 +00005559*/
drh0f3f7662017-08-18 14:34:28 +00005560case OP_CreateBtree: { /* out2 */
drh856c1032009-06-02 15:21:42 +00005561 int pgno;
drh234c39d2004-07-24 03:30:47 +00005562 Db *pDb;
drh856c1032009-06-02 15:21:42 +00005563
drh27a348c2015-04-13 19:14:06 +00005564 pOut = out2Prerelease(p, pOp);
drh856c1032009-06-02 15:21:42 +00005565 pgno = 0;
drh0f3f7662017-08-18 14:34:28 +00005566 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
drh234c39d2004-07-24 03:30:47 +00005567 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005568 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00005569 assert( p->readOnly==0 );
drh234c39d2004-07-24 03:30:47 +00005570 pDb = &db->aDb[pOp->p1];
5571 assert( pDb->pBt!=0 );
drh0f3f7662017-08-18 14:34:28 +00005572 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
drh9467abf2016-02-17 18:44:11 +00005573 if( rc ) goto abort_due_to_error;
drh88a003e2008-12-11 16:17:03 +00005574 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00005575 break;
5576}
5577
drh4a54bb52017-02-18 15:58:52 +00005578/* Opcode: SqlExec * * * P4 *
5579**
5580** Run the SQL statement or statements specified in the P4 string.
5581*/
5582case OP_SqlExec: {
drhbce04142017-02-23 00:58:36 +00005583 db->nSqlExec++;
drh4a54bb52017-02-18 15:58:52 +00005584 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
drhbce04142017-02-23 00:58:36 +00005585 db->nSqlExec--;
drh4a54bb52017-02-18 15:58:52 +00005586 if( rc ) goto abort_due_to_error;
5587 break;
5588}
5589
drh22645842011-03-24 01:34:03 +00005590/* Opcode: ParseSchema P1 * * P4 *
drh234c39d2004-07-24 03:30:47 +00005591**
5592** Read and parse all entries from the SQLITE_MASTER table of database P1
drh22645842011-03-24 01:34:03 +00005593** that match the WHERE clause P4.
drh234c39d2004-07-24 03:30:47 +00005594**
5595** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00005596** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00005597*/
drh9cbf3422008-01-17 16:22:13 +00005598case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00005599 int iDb;
5600 const char *zMaster;
5601 char *zSql;
5602 InitData initData;
5603
drhbdaec522011-04-04 00:14:43 +00005604 /* Any prepared statement that invokes this opcode will hold mutexes
5605 ** on every btree. This is a prerequisite for invoking
5606 ** sqlite3InitCallback().
5607 */
5608#ifdef SQLITE_DEBUG
5609 for(iDb=0; iDb<db->nDb; iDb++){
5610 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5611 }
5612#endif
drhbdaec522011-04-04 00:14:43 +00005613
drh856c1032009-06-02 15:21:42 +00005614 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00005615 assert( iDb>=0 && iDb<db->nDb );
dan6c154872011-04-02 09:44:43 +00005616 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
drhbdaec522011-04-04 00:14:43 +00005617 /* Used to be a conditional */ {
drhe0a04a32016-12-16 01:00:21 +00005618 zMaster = MASTER_NAME;
danielk1977a8bbef82009-03-23 17:11:26 +00005619 initData.db = db;
5620 initData.iDb = pOp->p1;
5621 initData.pzErrMsg = &p->zErrMsg;
5622 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00005623 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
drh69c33822016-08-18 14:33:11 +00005624 db->aDb[iDb].zDbSName, zMaster, pOp->p4.z);
danielk1977a8bbef82009-03-23 17:11:26 +00005625 if( zSql==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005626 rc = SQLITE_NOMEM_BKPT;
danielk1977a8bbef82009-03-23 17:11:26 +00005627 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00005628 assert( db->init.busy==0 );
5629 db->init.busy = 1;
5630 initData.rc = SQLITE_OK;
5631 assert( !db->mallocFailed );
5632 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5633 if( rc==SQLITE_OK ) rc = initData.rc;
drhdbd6a7d2017-04-05 12:39:49 +00005634 sqlite3DbFreeNN(db, zSql);
danielk1977a8bbef82009-03-23 17:11:26 +00005635 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00005636 }
drh3c23a882007-01-09 14:01:13 +00005637 }
drh9467abf2016-02-17 18:44:11 +00005638 if( rc ){
5639 sqlite3ResetAllSchemasOfConnection(db);
5640 if( rc==SQLITE_NOMEM ){
5641 goto no_mem;
5642 }
5643 goto abort_due_to_error;
danielk1977261919c2005-12-06 12:52:59 +00005644 }
drh234c39d2004-07-24 03:30:47 +00005645 break;
5646}
5647
drh8bfdf722009-06-19 14:06:03 +00005648#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00005649/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00005650**
5651** Read the sqlite_stat1 table for database P1 and load the content
5652** of that table into the internal index hash table. This will cause
5653** the analysis to be used when preparing all subsequent queries.
5654*/
drh9cbf3422008-01-17 16:22:13 +00005655case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00005656 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5657 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh9467abf2016-02-17 18:44:11 +00005658 if( rc ) goto abort_due_to_error;
drh497e4462005-07-23 03:18:40 +00005659 break;
5660}
drh8bfdf722009-06-19 14:06:03 +00005661#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00005662
drh98757152008-01-09 23:04:12 +00005663/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005664**
5665** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005666** the table named P4 in database P1. This is called after a table
drh5dad9a32014-07-25 18:37:42 +00005667** is dropped from disk (using the Destroy opcode) in order to keep
5668** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005669** schema consistent with what is on disk.
5670*/
drh9cbf3422008-01-17 16:22:13 +00005671case OP_DropTable: {
danielk19772dca4ac2008-01-03 11:50:29 +00005672 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005673 break;
5674}
5675
drh98757152008-01-09 23:04:12 +00005676/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005677**
5678** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005679** the index named P4 in database P1. This is called after an index
drh5dad9a32014-07-25 18:37:42 +00005680** is dropped from disk (using the Destroy opcode)
5681** in order to keep the internal representation of the
drh956bc922004-07-24 17:38:29 +00005682** schema consistent with what is on disk.
5683*/
drh9cbf3422008-01-17 16:22:13 +00005684case OP_DropIndex: {
danielk19772dca4ac2008-01-03 11:50:29 +00005685 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005686 break;
5687}
5688
drh98757152008-01-09 23:04:12 +00005689/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005690**
5691** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005692** the trigger named P4 in database P1. This is called after a trigger
drh5dad9a32014-07-25 18:37:42 +00005693** is dropped from disk (using the Destroy opcode) in order to keep
5694** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005695** schema consistent with what is on disk.
5696*/
drh9cbf3422008-01-17 16:22:13 +00005697case OP_DropTrigger: {
danielk19772dca4ac2008-01-03 11:50:29 +00005698 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005699 break;
5700}
5701
drh234c39d2004-07-24 03:30:47 +00005702
drhb7f91642004-10-31 02:22:47 +00005703#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98968b22016-03-15 22:00:39 +00005704/* Opcode: IntegrityCk P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00005705**
drh98757152008-01-09 23:04:12 +00005706** Do an analysis of the currently open database. Store in
5707** register P1 the text of an error message describing any problems.
5708** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00005709**
drh66accfc2017-02-22 18:04:42 +00005710** The register P3 contains one less than the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00005711** At most reg(P3) errors will be reported.
5712** In other words, the analysis stops as soon as reg(P1) errors are
5713** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00005714**
drh98968b22016-03-15 22:00:39 +00005715** The root page numbers of all tables in the database are integers
5716** stored in P4_INTARRAY argument.
drh21504322002-06-25 13:16:02 +00005717**
drh98757152008-01-09 23:04:12 +00005718** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00005719** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00005720**
drh1dcdbc02007-01-27 02:24:54 +00005721** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00005722*/
drhaaab5722002-02-19 13:39:21 +00005723case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00005724 int nRoot; /* Number of tables to check. (Number of root pages.) */
5725 int *aRoot; /* Array of rootpage numbers for tables to be checked */
drh98757152008-01-09 23:04:12 +00005726 int nErr; /* Number of errors reported */
5727 char *z; /* Text of the error report */
5728 Mem *pnErr; /* Register keeping track of errors remaining */
drh9e92a472013-06-27 17:40:30 +00005729
drh1713afb2013-06-28 01:24:57 +00005730 assert( p->bIsReader );
drh98757152008-01-09 23:04:12 +00005731 nRoot = pOp->p2;
drh98968b22016-03-15 22:00:39 +00005732 aRoot = pOp->p4.ai;
drh79069752004-05-22 21:30:40 +00005733 assert( nRoot>0 );
drhb5c10632017-09-21 00:49:15 +00005734 assert( aRoot[0]==nRoot );
drh9f6168b2016-03-19 23:32:58 +00005735 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005736 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00005737 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00005738 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00005739 pIn1 = &aMem[pOp->p1];
drh98757152008-01-09 23:04:12 +00005740 assert( pOp->p5<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005741 assert( DbMaskTest(p->btreeMask, pOp->p5) );
drhb5c10632017-09-21 00:49:15 +00005742 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
drh66accfc2017-02-22 18:04:42 +00005743 (int)pnErr->u.i+1, &nErr);
drha05a7222008-01-19 03:35:58 +00005744 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00005745 if( nErr==0 ){
5746 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00005747 }else if( z==0 ){
5748 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00005749 }else{
drh66accfc2017-02-22 18:04:42 +00005750 pnErr->u.i -= nErr-1;
danielk1977a7a8e142008-02-13 18:25:27 +00005751 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00005752 }
drhb7654112008-01-12 12:48:07 +00005753 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00005754 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00005755 break;
5756}
drhb7f91642004-10-31 02:22:47 +00005757#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00005758
drh3d4501e2008-12-04 20:40:10 +00005759/* Opcode: RowSetAdd P1 P2 * * *
drh72e26de2016-08-24 21:24:04 +00005760** Synopsis: rowset(P1)=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00005761**
drhbb6783b2017-04-29 18:02:49 +00005762** Insert the integer value held by register P2 into a RowSet object
drh3d4501e2008-12-04 20:40:10 +00005763** held in register P1.
5764**
5765** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00005766*/
drh93952eb2009-11-13 19:43:43 +00005767case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00005768 pIn1 = &aMem[pOp->p1];
5769 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00005770 assert( (pIn2->flags & MEM_Int)!=0 );
5771 if( (pIn1->flags & MEM_RowSet)==0 ){
5772 sqlite3VdbeMemSetRowSet(pIn1);
5773 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00005774 }
drh93952eb2009-11-13 19:43:43 +00005775 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00005776 break;
5777}
5778
5779/* Opcode: RowSetRead P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00005780** Synopsis: r[P3]=rowset(P1)
drh3d4501e2008-12-04 20:40:10 +00005781**
drhbb6783b2017-04-29 18:02:49 +00005782** Extract the smallest value from the RowSet object in P1
5783** and put that value into register P3.
5784** Or, if RowSet object P1 is initially empty, leave P3
drh3d4501e2008-12-04 20:40:10 +00005785** unchanged and jump to instruction P2.
5786*/
drh93952eb2009-11-13 19:43:43 +00005787case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00005788 i64 val;
drh49afe3a2013-07-10 03:05:14 +00005789
drh3c657212009-11-17 23:59:58 +00005790 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00005791 if( (pIn1->flags & MEM_RowSet)==0
5792 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00005793 ){
5794 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00005795 sqlite3VdbeMemSetNull(pIn1);
drh688852a2014-02-17 22:40:43 +00005796 VdbeBranchTaken(1,2);
drhf56fa462015-04-13 21:39:54 +00005797 goto jump_to_p2_and_check_for_interrupt;
drh3d4501e2008-12-04 20:40:10 +00005798 }else{
5799 /* A value was pulled from the index */
drh688852a2014-02-17 22:40:43 +00005800 VdbeBranchTaken(0,2);
drhf56fa462015-04-13 21:39:54 +00005801 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh17435752007-08-16 04:30:38 +00005802 }
drh49afe3a2013-07-10 03:05:14 +00005803 goto check_for_interrupt;
drh5e00f6c2001-09-13 13:46:56 +00005804}
5805
drh1b26c7c2009-04-22 02:15:47 +00005806/* Opcode: RowSetTest P1 P2 P3 P4
drh81316f82013-10-29 20:40:47 +00005807** Synopsis: if r[P3] in rowset(P1) goto P2
danielk19771d461462009-04-21 09:02:45 +00005808**
drhade97602009-04-21 15:05:18 +00005809** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00005810** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00005811** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00005812** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00005813** next opcode.
danielk19771d461462009-04-21 09:02:45 +00005814**
drhbb6783b2017-04-29 18:02:49 +00005815** The RowSet object is optimized for the case where sets of integers
5816** are inserted in distinct phases, which each set contains no duplicates.
5817** Each set is identified by a unique P4 value. The first set
5818** must have P4==0, the final set must have P4==-1, and for all other sets
5819** must have P4>0.
danielk19771d461462009-04-21 09:02:45 +00005820**
5821** This allows optimizations: (a) when P4==0 there is no need to test
drhbb6783b2017-04-29 18:02:49 +00005822** the RowSet object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00005823** (b) when P4==-1 there is no need to insert the value, as it will
5824** never be tested for, and (c) when a value that is part of set X is
5825** inserted, there is no need to search to see if the same value was
5826** previously inserted as part of set X (only if it was previously
5827** inserted as part of some other set).
5828*/
drh1b26c7c2009-04-22 02:15:47 +00005829case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00005830 int iSet;
5831 int exists;
5832
drh3c657212009-11-17 23:59:58 +00005833 pIn1 = &aMem[pOp->p1];
5834 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005835 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00005836 assert( pIn3->flags&MEM_Int );
5837
drh1b26c7c2009-04-22 02:15:47 +00005838 /* If there is anything other than a rowset object in memory cell P1,
5839 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00005840 */
drh733bf1b2009-04-22 00:47:00 +00005841 if( (pIn1->flags & MEM_RowSet)==0 ){
5842 sqlite3VdbeMemSetRowSet(pIn1);
5843 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00005844 }
5845
5846 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00005847 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00005848 if( iSet ){
drhd83cad22014-04-10 02:24:48 +00005849 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
drh688852a2014-02-17 22:40:43 +00005850 VdbeBranchTaken(exists!=0,2);
drhf56fa462015-04-13 21:39:54 +00005851 if( exists ) goto jump_to_p2;
danielk19771d461462009-04-21 09:02:45 +00005852 }
5853 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00005854 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005855 }
5856 break;
5857}
5858
drh5e00f6c2001-09-13 13:46:56 +00005859
danielk197793758c82005-01-21 08:13:14 +00005860#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00005861
drh0fd61352014-02-07 02:29:45 +00005862/* Opcode: Program P1 P2 P3 P4 P5
dan165921a2009-08-28 18:53:45 +00005863**
dan76d462e2009-08-30 11:42:51 +00005864** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00005865**
dan76d462e2009-08-30 11:42:51 +00005866** P1 contains the address of the memory cell that contains the first memory
5867** cell in an array of values used as arguments to the sub-program. P2
5868** contains the address to jump to if the sub-program throws an IGNORE
5869** exception using the RAISE() function. Register P3 contains the address
5870** of a memory cell in this (the parent) VM that is used to allocate the
5871** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00005872**
5873** P4 is a pointer to the VM containing the trigger program.
drh0fd61352014-02-07 02:29:45 +00005874**
5875** If P5 is non-zero, then recursive program invocation is enabled.
dan165921a2009-08-28 18:53:45 +00005876*/
dan76d462e2009-08-30 11:42:51 +00005877case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00005878 int nMem; /* Number of memory registers for sub-program */
5879 int nByte; /* Bytes of runtime space required for sub-program */
5880 Mem *pRt; /* Register to allocate runtime space */
5881 Mem *pMem; /* Used to iterate through memory cells */
5882 Mem *pEnd; /* Last memory cell in new array */
5883 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5884 SubProgram *pProgram; /* Sub-program to execute */
5885 void *t; /* Token identifying trigger */
5886
5887 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00005888 pRt = &aMem[pOp->p3];
dan165921a2009-08-28 18:53:45 +00005889 assert( pProgram->nOp>0 );
5890
dan1da40a32009-09-19 17:00:31 +00005891 /* If the p5 flag is clear, then recursive invocation of triggers is
5892 ** disabled for backwards compatibility (p5 is set if this sub-program
5893 ** is really a trigger, not a foreign key action, and the flag set
5894 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00005895 **
5896 ** It is recursive invocation of triggers, at the SQL level, that is
5897 ** disabled. In some cases a single trigger may generate more than one
5898 ** SubProgram (if the trigger may be executed with more than one different
5899 ** ON CONFLICT algorithm). SubProgram structures associated with a
5900 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00005901 ** variable. */
5902 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00005903 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00005904 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5905 if( pFrame ) break;
5906 }
5907
danf5894502009-10-07 18:41:19 +00005908 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00005909 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00005910 sqlite3VdbeError(p, "too many levels of trigger recursion");
drh9467abf2016-02-17 18:44:11 +00005911 goto abort_due_to_error;
dan165921a2009-08-28 18:53:45 +00005912 }
5913
5914 /* Register pRt is used to store the memory required to save the state
5915 ** of the current program, and the memory required at runtime to execute
5916 ** the trigger program. If this trigger has been fired before, then pRt
5917 ** is already allocated. Otherwise, it must be initialized. */
5918 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00005919 /* SubProgram.nMem is set to the number of memory cells used by the
5920 ** program stored in SubProgram.aOp. As well as these, one memory
5921 ** cell is required for each cursor used by the program. Set local
5922 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5923 */
dan65a7cd12009-09-01 12:16:01 +00005924 nMem = pProgram->nMem + pProgram->nCsr;
drh3cdce922016-03-21 00:30:40 +00005925 assert( nMem>0 );
5926 if( pProgram->nCsr==0 ) nMem++;
dan65a7cd12009-09-01 12:16:01 +00005927 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00005928 + nMem * sizeof(Mem)
drhab087d42017-03-24 17:59:56 +00005929 + pProgram->nCsr * sizeof(VdbeCursor*)
5930 + (pProgram->nOp + 7)/8;
dan165921a2009-08-28 18:53:45 +00005931 pFrame = sqlite3DbMallocZero(db, nByte);
5932 if( !pFrame ){
5933 goto no_mem;
5934 }
5935 sqlite3VdbeMemRelease(pRt);
5936 pRt->flags = MEM_Frame;
5937 pRt->u.pFrame = pFrame;
5938
5939 pFrame->v = p;
5940 pFrame->nChildMem = nMem;
5941 pFrame->nChildCsr = pProgram->nCsr;
drhf56fa462015-04-13 21:39:54 +00005942 pFrame->pc = (int)(pOp - aOp);
dan165921a2009-08-28 18:53:45 +00005943 pFrame->aMem = p->aMem;
5944 pFrame->nMem = p->nMem;
5945 pFrame->apCsr = p->apCsr;
5946 pFrame->nCursor = p->nCursor;
5947 pFrame->aOp = p->aOp;
5948 pFrame->nOp = p->nOp;
5949 pFrame->token = pProgram->token;
dane2f771b2014-11-03 15:33:17 +00005950#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00005951 pFrame->anExec = p->anExec;
dane2f771b2014-11-03 15:33:17 +00005952#endif
dan165921a2009-08-28 18:53:45 +00005953
5954 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5955 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
drha5750cf2014-02-07 13:20:31 +00005956 pMem->flags = MEM_Undefined;
dan165921a2009-08-28 18:53:45 +00005957 pMem->db = db;
5958 }
5959 }else{
5960 pFrame = pRt->u.pFrame;
drh9f6168b2016-03-19 23:32:58 +00005961 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
5962 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
dan165921a2009-08-28 18:53:45 +00005963 assert( pProgram->nCsr==pFrame->nChildCsr );
drhf56fa462015-04-13 21:39:54 +00005964 assert( (int)(pOp - aOp)==pFrame->pc );
dan165921a2009-08-28 18:53:45 +00005965 }
5966
5967 p->nFrame++;
5968 pFrame->pParent = p->pFrame;
drhfae58d52017-01-26 17:26:44 +00005969 pFrame->lastRowid = db->lastRowid;
dan76d462e2009-08-30 11:42:51 +00005970 pFrame->nChange = p->nChange;
danc3da6672014-10-28 18:24:16 +00005971 pFrame->nDbChange = p->db->nChange;
dan32001322016-02-19 18:54:29 +00005972 assert( pFrame->pAuxData==0 );
5973 pFrame->pAuxData = p->pAuxData;
5974 p->pAuxData = 0;
dan2832ad42009-08-31 15:27:27 +00005975 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00005976 p->pFrame = pFrame;
drh9f6168b2016-03-19 23:32:58 +00005977 p->aMem = aMem = VdbeFrameMem(pFrame);
dan165921a2009-08-28 18:53:45 +00005978 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00005979 p->nCursor = (u16)pFrame->nChildCsr;
drh9f6168b2016-03-19 23:32:58 +00005980 p->apCsr = (VdbeCursor **)&aMem[p->nMem];
drhab087d42017-03-24 17:59:56 +00005981 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
drh18333ef2017-03-24 18:38:41 +00005982 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
drhbbe879d2009-11-14 18:04:35 +00005983 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00005984 p->nOp = pProgram->nOp;
dane2f771b2014-11-03 15:33:17 +00005985#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00005986 p->anExec = 0;
dane2f771b2014-11-03 15:33:17 +00005987#endif
drhf56fa462015-04-13 21:39:54 +00005988 pOp = &aOp[-1];
dan165921a2009-08-28 18:53:45 +00005989
5990 break;
5991}
5992
dan76d462e2009-08-30 11:42:51 +00005993/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00005994**
dan76d462e2009-08-30 11:42:51 +00005995** This opcode is only ever present in sub-programs called via the
5996** OP_Program instruction. Copy a value currently stored in a memory
5997** cell of the calling (parent) frame to cell P2 in the current frames
5998** address space. This is used by trigger programs to access the new.*
5999** and old.* values.
dan165921a2009-08-28 18:53:45 +00006000**
dan76d462e2009-08-30 11:42:51 +00006001** The address of the cell in the parent frame is determined by adding
6002** the value of the P1 argument to the value of the P1 argument to the
6003** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00006004*/
drh27a348c2015-04-13 19:14:06 +00006005case OP_Param: { /* out2 */
dan65a7cd12009-09-01 12:16:01 +00006006 VdbeFrame *pFrame;
6007 Mem *pIn;
drh27a348c2015-04-13 19:14:06 +00006008 pOut = out2Prerelease(p, pOp);
dan65a7cd12009-09-01 12:16:01 +00006009 pFrame = p->pFrame;
6010 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00006011 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
6012 break;
6013}
6014
danielk197793758c82005-01-21 08:13:14 +00006015#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00006016
dan1da40a32009-09-19 17:00:31 +00006017#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00006018/* Opcode: FkCounter P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00006019** Synopsis: fkctr[P1]+=P2
dan1da40a32009-09-19 17:00:31 +00006020**
dan0ff297e2009-09-25 17:03:14 +00006021** Increment a "constraint counter" by P2 (P2 may be negative or positive).
6022** If P1 is non-zero, the database constraint counter is incremented
6023** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00006024** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00006025*/
dan32b09f22009-09-23 17:29:59 +00006026case OP_FkCounter: {
drh963c74d2013-07-11 12:19:12 +00006027 if( db->flags & SQLITE_DeferFKs ){
dancb3e4b72013-07-03 19:53:05 +00006028 db->nDeferredImmCons += pOp->p2;
6029 }else if( pOp->p1 ){
dan0ff297e2009-09-25 17:03:14 +00006030 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00006031 }else{
dan0ff297e2009-09-25 17:03:14 +00006032 p->nFkConstraint += pOp->p2;
6033 }
6034 break;
6035}
6036
6037/* Opcode: FkIfZero P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00006038** Synopsis: if fkctr[P1]==0 goto P2
dan0ff297e2009-09-25 17:03:14 +00006039**
6040** This opcode tests if a foreign key constraint-counter is currently zero.
6041** If so, jump to instruction P2. Otherwise, fall through to the next
6042** instruction.
6043**
6044** If P1 is non-zero, then the jump is taken if the database constraint-counter
6045** is zero (the one that counts deferred constraint violations). If P1 is
6046** zero, the jump is taken if the statement constraint-counter is zero
6047** (immediate foreign key constraint violations).
6048*/
6049case OP_FkIfZero: { /* jump */
6050 if( pOp->p1 ){
drh688852a2014-02-17 22:40:43 +00006051 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
drhf56fa462015-04-13 21:39:54 +00006052 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
dan0ff297e2009-09-25 17:03:14 +00006053 }else{
drh688852a2014-02-17 22:40:43 +00006054 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
drhf56fa462015-04-13 21:39:54 +00006055 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
dan32b09f22009-09-23 17:29:59 +00006056 }
dan1da40a32009-09-19 17:00:31 +00006057 break;
6058}
6059#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
6060
drh205f48e2004-11-05 00:43:11 +00006061#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00006062/* Opcode: MemMax P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00006063** Synopsis: r[P1]=max(r[P1],r[P2])
drh205f48e2004-11-05 00:43:11 +00006064**
dan76d462e2009-08-30 11:42:51 +00006065** P1 is a register in the root frame of this VM (the root frame is
6066** different from the current frame if this instruction is being executed
6067** within a sub-program). Set the value of register P1 to the maximum of
6068** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00006069**
6070** This instruction throws an error if the memory cell is not initially
6071** an integer.
6072*/
dan76d462e2009-08-30 11:42:51 +00006073case OP_MemMax: { /* in2 */
dan76d462e2009-08-30 11:42:51 +00006074 VdbeFrame *pFrame;
6075 if( p->pFrame ){
6076 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
6077 pIn1 = &pFrame->aMem[pOp->p1];
6078 }else{
drha6c2ed92009-11-14 23:22:23 +00006079 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00006080 }
drh2b4ded92010-09-27 21:09:31 +00006081 assert( memIsValid(pIn1) );
drh98757152008-01-09 23:04:12 +00006082 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00006083 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00006084 sqlite3VdbeMemIntegerify(pIn2);
6085 if( pIn1->u.i<pIn2->u.i){
6086 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00006087 }
6088 break;
6089}
6090#endif /* SQLITE_OMIT_AUTOINCREMENT */
6091
drh8b0cf382015-10-06 21:07:06 +00006092/* Opcode: IfPos P1 P2 P3 * *
6093** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
danielk1977a2dc3b12005-02-05 12:48:48 +00006094**
drh16897072015-03-07 00:57:37 +00006095** Register P1 must contain an integer.
mistachkin91a3ecb2015-10-06 21:49:55 +00006096** If the value of register P1 is 1 or greater, subtract P3 from the
drh8b0cf382015-10-06 21:07:06 +00006097** value in P1 and jump to P2.
drh6f58f702006-01-08 05:26:41 +00006098**
drh16897072015-03-07 00:57:37 +00006099** If the initial value of register P1 is less than 1, then the
6100** value is unchanged and control passes through to the next instruction.
danielk1977a2dc3b12005-02-05 12:48:48 +00006101*/
drh9cbf3422008-01-17 16:22:13 +00006102case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00006103 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00006104 assert( pIn1->flags&MEM_Int );
drh688852a2014-02-17 22:40:43 +00006105 VdbeBranchTaken( pIn1->u.i>0, 2);
drh8b0cf382015-10-06 21:07:06 +00006106 if( pIn1->u.i>0 ){
6107 pIn1->u.i -= pOp->p3;
6108 goto jump_to_p2;
6109 }
drhec7429a2005-10-06 16:53:14 +00006110 break;
6111}
6112
drhcc2fa4c2016-01-25 15:57:29 +00006113/* Opcode: OffsetLimit P1 P2 P3 * *
6114** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
drh15007a92006-01-08 18:10:17 +00006115**
drhcc2fa4c2016-01-25 15:57:29 +00006116** This opcode performs a commonly used computation associated with
6117** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3]
6118** holds the offset counter. The opcode computes the combined value
6119** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
6120** value computed is the total number of rows that will need to be
6121** visited in order to complete the query.
6122**
6123** If r[P3] is zero or negative, that means there is no OFFSET
6124** and r[P2] is set to be the value of the LIMIT, r[P1].
6125**
6126** if r[P1] is zero or negative, that means there is no LIMIT
6127** and r[P2] is set to -1.
6128**
6129** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
drh15007a92006-01-08 18:10:17 +00006130*/
drhcc2fa4c2016-01-25 15:57:29 +00006131case OP_OffsetLimit: { /* in1, out2, in3 */
drh719da302016-12-10 04:06:49 +00006132 i64 x;
drh3c657212009-11-17 23:59:58 +00006133 pIn1 = &aMem[pOp->p1];
drhcc2fa4c2016-01-25 15:57:29 +00006134 pIn3 = &aMem[pOp->p3];
6135 pOut = out2Prerelease(p, pOp);
6136 assert( pIn1->flags & MEM_Int );
6137 assert( pIn3->flags & MEM_Int );
drh719da302016-12-10 04:06:49 +00006138 x = pIn1->u.i;
6139 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
6140 /* If the LIMIT is less than or equal to zero, loop forever. This
6141 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then
6142 ** also loop forever. This is undocumented. In fact, one could argue
6143 ** that the loop should terminate. But assuming 1 billion iterations
6144 ** per second (far exceeding the capabilities of any current hardware)
6145 ** it would take nearly 300 years to actually reach the limit. So
6146 ** looping forever is a reasonable approximation. */
6147 pOut->u.i = -1;
6148 }else{
6149 pOut->u.i = x;
6150 }
drh15007a92006-01-08 18:10:17 +00006151 break;
6152}
6153
drhf99dd352016-12-18 17:42:00 +00006154/* Opcode: IfNotZero P1 P2 * * *
6155** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
drhec7429a2005-10-06 16:53:14 +00006156**
drh16897072015-03-07 00:57:37 +00006157** Register P1 must contain an integer. If the content of register P1 is
drhf99dd352016-12-18 17:42:00 +00006158** initially greater than zero, then decrement the value in register P1.
6159** If it is non-zero (negative or positive) and then also jump to P2.
6160** If register P1 is initially zero, leave it unchanged and fall through.
drhec7429a2005-10-06 16:53:14 +00006161*/
drh16897072015-03-07 00:57:37 +00006162case OP_IfNotZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00006163 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00006164 assert( pIn1->flags&MEM_Int );
drh16897072015-03-07 00:57:37 +00006165 VdbeBranchTaken(pIn1->u.i<0, 2);
6166 if( pIn1->u.i ){
drhf99dd352016-12-18 17:42:00 +00006167 if( pIn1->u.i>0 ) pIn1->u.i--;
drhf56fa462015-04-13 21:39:54 +00006168 goto jump_to_p2;
drh16897072015-03-07 00:57:37 +00006169 }
6170 break;
6171}
6172
6173/* Opcode: DecrJumpZero P1 P2 * * *
6174** Synopsis: if (--r[P1])==0 goto P2
6175**
drhab5be2e2016-11-30 05:08:59 +00006176** Register P1 must hold an integer. Decrement the value in P1
6177** and jump to P2 if the new value is exactly zero.
drh16897072015-03-07 00:57:37 +00006178*/
6179case OP_DecrJumpZero: { /* jump, in1 */
6180 pIn1 = &aMem[pOp->p1];
6181 assert( pIn1->flags&MEM_Int );
drhab5be2e2016-11-30 05:08:59 +00006182 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
6183 VdbeBranchTaken(pIn1->u.i==0, 2);
6184 if( pIn1->u.i==0 ) goto jump_to_p2;
drha2a49dc2008-01-02 14:28:13 +00006185 break;
6186}
6187
drh16897072015-03-07 00:57:37 +00006188
drhe2d9e7c2015-06-26 18:47:53 +00006189/* Opcode: AggStep0 * P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00006190** Synopsis: accum=r[P3] step(r[P2@P5])
drhe5095352002-02-24 03:25:14 +00006191**
drh0bce8352002-02-28 00:41:10 +00006192** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00006193** function has P5 arguments. P4 is a pointer to the FuncDef
drhe2d9e7c2015-06-26 18:47:53 +00006194** structure that specifies the function. Register P3 is the
6195** accumulator.
drhe5095352002-02-24 03:25:14 +00006196**
drh98757152008-01-09 23:04:12 +00006197** The P5 arguments are taken from register P2 and its
6198** successors.
drhe5095352002-02-24 03:25:14 +00006199*/
drhe2d9e7c2015-06-26 18:47:53 +00006200/* Opcode: AggStep * P2 P3 P4 P5
6201** Synopsis: accum=r[P3] step(r[P2@P5])
6202**
6203** Execute the step function for an aggregate. The
6204** function has P5 arguments. P4 is a pointer to an sqlite3_context
6205** object that is used to run the function. Register P3 is
6206** as the accumulator.
6207**
6208** The P5 arguments are taken from register P2 and its
6209** successors.
6210**
6211** This opcode is initially coded as OP_AggStep0. On first evaluation,
6212** the FuncDef stored in P4 is converted into an sqlite3_context and
6213** the opcode is changed. In this way, the initialization of the
6214** sqlite3_context only happens once, instead of on each call to the
6215** step function.
6216*/
drh9c7c9132015-06-26 18:16:52 +00006217case OP_AggStep0: {
drh856c1032009-06-02 15:21:42 +00006218 int n;
drh9c7c9132015-06-26 18:16:52 +00006219 sqlite3_context *pCtx;
drhe5095352002-02-24 03:25:14 +00006220
drh9c7c9132015-06-26 18:16:52 +00006221 assert( pOp->p4type==P4_FUNCDEF );
drh856c1032009-06-02 15:21:42 +00006222 n = pOp->p5;
drh9f6168b2016-03-19 23:32:58 +00006223 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6224 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
drh9c7c9132015-06-26 18:16:52 +00006225 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drhf09ac0b2018-01-23 03:44:06 +00006226 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
6227 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
drh9c7c9132015-06-26 18:16:52 +00006228 if( pCtx==0 ) goto no_mem;
6229 pCtx->pMem = 0;
drhf09ac0b2018-01-23 03:44:06 +00006230 pCtx->pOut = (Mem*)&(pCtx->argv[n]);
6231 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
drh9c7c9132015-06-26 18:16:52 +00006232 pCtx->pFunc = pOp->p4.pFunc;
6233 pCtx->iOp = (int)(pOp - aOp);
6234 pCtx->pVdbe = p;
drhf09ac0b2018-01-23 03:44:06 +00006235 pCtx->skipFlag = 0;
6236 pCtx->isError = 0;
drh9c7c9132015-06-26 18:16:52 +00006237 pCtx->argc = n;
6238 pOp->p4type = P4_FUNCCTX;
6239 pOp->p4.pCtx = pCtx;
6240 pOp->opcode = OP_AggStep;
6241 /* Fall through into OP_AggStep */
6242}
6243case OP_AggStep: {
6244 int i;
6245 sqlite3_context *pCtx;
6246 Mem *pMem;
drh9c7c9132015-06-26 18:16:52 +00006247
6248 assert( pOp->p4type==P4_FUNCCTX );
6249 pCtx = pOp->p4.pCtx;
6250 pMem = &aMem[pOp->p3];
6251
6252 /* If this function is inside of a trigger, the register array in aMem[]
6253 ** might change from one evaluation to the next. The next block of code
6254 ** checks to see if the register array has changed, and if so it
6255 ** reinitializes the relavant parts of the sqlite3_context object */
6256 if( pCtx->pMem != pMem ){
6257 pCtx->pMem = pMem;
6258 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
6259 }
6260
6261#ifdef SQLITE_DEBUG
6262 for(i=0; i<pCtx->argc; i++){
6263 assert( memIsValid(pCtx->argv[i]) );
6264 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
6265 }
6266#endif
6267
drhabfcea22005-09-06 20:36:48 +00006268 pMem->n++;
drhf09ac0b2018-01-23 03:44:06 +00006269 assert( pCtx->pOut->flags==MEM_Null );
6270 assert( pCtx->isError==0 );
6271 assert( pCtx->skipFlag==0 );
drh2d801512016-01-14 22:19:58 +00006272 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
drhf09ac0b2018-01-23 03:44:06 +00006273 if( pCtx->isError ){
6274 if( pCtx->isError>0 ){
6275 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
drh9c7c9132015-06-26 18:16:52 +00006276 rc = pCtx->isError;
6277 }
drhf09ac0b2018-01-23 03:44:06 +00006278 if( pCtx->skipFlag ){
6279 assert( pOp[-1].opcode==OP_CollSeq );
6280 i = pOp[-1].p1;
6281 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
6282 pCtx->skipFlag = 0;
6283 }
6284 sqlite3VdbeMemRelease(pCtx->pOut);
6285 pCtx->pOut->flags = MEM_Null;
6286 pCtx->isError = 0;
drh9467abf2016-02-17 18:44:11 +00006287 if( rc ) goto abort_due_to_error;
drh1350b032002-02-27 19:00:20 +00006288 }
drhf09ac0b2018-01-23 03:44:06 +00006289 assert( pCtx->pOut->flags==MEM_Null );
6290 assert( pCtx->skipFlag==0 );
drh5e00f6c2001-09-13 13:46:56 +00006291 break;
6292}
6293
drh98757152008-01-09 23:04:12 +00006294/* Opcode: AggFinal P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00006295** Synopsis: accum=r[P1] N=P2
drh5e00f6c2001-09-13 13:46:56 +00006296**
drh13449892005-09-07 21:22:45 +00006297** Execute the finalizer function for an aggregate. P1 is
6298** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00006299**
6300** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00006301** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00006302** argument is not used by this opcode. It is only there to disambiguate
6303** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00006304** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00006305** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00006306*/
drh9cbf3422008-01-17 16:22:13 +00006307case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00006308 Mem *pMem;
drh9f6168b2016-03-19 23:32:58 +00006309 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00006310 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00006311 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00006312 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00006313 if( rc ){
drh22c17b82015-05-15 04:13:15 +00006314 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
drh9467abf2016-02-17 18:44:11 +00006315 goto abort_due_to_error;
drh90669c12006-01-20 15:45:36 +00006316 }
drh2dca8682008-03-21 17:13:13 +00006317 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00006318 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00006319 if( sqlite3VdbeMemTooBig(pMem) ){
6320 goto too_big;
6321 }
drh5e00f6c2001-09-13 13:46:56 +00006322 break;
6323}
6324
dan5cf53532010-05-01 16:40:20 +00006325#ifndef SQLITE_OMIT_WAL
dancdc1f042010-11-18 12:11:05 +00006326/* Opcode: Checkpoint P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00006327**
6328** Checkpoint database P1. This is a no-op if P1 is not currently in
drha25165f2014-12-04 04:50:59 +00006329** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
6330** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
drh30aa3b92011-02-07 23:56:01 +00006331** SQLITE_BUSY or not, respectively. Write the number of pages in the
6332** WAL after the checkpoint into mem[P3+1] and the number of pages
6333** in the WAL that have been checkpointed after the checkpoint
6334** completes into mem[P3+2]. However on an error, mem[P3+1] and
6335** mem[P3+2] are initialized to -1.
dan7c246102010-04-12 19:00:29 +00006336*/
6337case OP_Checkpoint: {
drh30aa3b92011-02-07 23:56:01 +00006338 int i; /* Loop counter */
6339 int aRes[3]; /* Results */
6340 Mem *pMem; /* Write results here */
6341
drh9e92a472013-06-27 17:40:30 +00006342 assert( p->readOnly==0 );
drh30aa3b92011-02-07 23:56:01 +00006343 aRes[0] = 0;
6344 aRes[1] = aRes[2] = -1;
dancdc1f042010-11-18 12:11:05 +00006345 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
6346 || pOp->p2==SQLITE_CHECKPOINT_FULL
6347 || pOp->p2==SQLITE_CHECKPOINT_RESTART
danf26a1542014-12-02 19:04:54 +00006348 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
dancdc1f042010-11-18 12:11:05 +00006349 );
drh30aa3b92011-02-07 23:56:01 +00006350 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
drh9467abf2016-02-17 18:44:11 +00006351 if( rc ){
6352 if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
dancdc1f042010-11-18 12:11:05 +00006353 rc = SQLITE_OK;
drh30aa3b92011-02-07 23:56:01 +00006354 aRes[0] = 1;
dancdc1f042010-11-18 12:11:05 +00006355 }
drh30aa3b92011-02-07 23:56:01 +00006356 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
6357 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
6358 }
dan7c246102010-04-12 19:00:29 +00006359 break;
6360};
dan5cf53532010-05-01 16:40:20 +00006361#endif
drh5e00f6c2001-09-13 13:46:56 +00006362
drhcac29a62010-07-02 19:36:52 +00006363#ifndef SQLITE_OMIT_PRAGMA
drh0fd61352014-02-07 02:29:45 +00006364/* Opcode: JournalMode P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00006365**
6366** Change the journal mode of database P1 to P3. P3 must be one of the
6367** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
6368** modes (delete, truncate, persist, off and memory), this is a simple
6369** operation. No IO is required.
6370**
6371** If changing into or out of WAL mode the procedure is more complicated.
6372**
6373** Write a string containing the final journal-mode to register P2.
6374*/
drh27a348c2015-04-13 19:14:06 +00006375case OP_JournalMode: { /* out2 */
dane04dc882010-04-20 18:53:15 +00006376 Btree *pBt; /* Btree to change journal mode of */
6377 Pager *pPager; /* Pager associated with pBt */
drhd80b2332010-05-01 00:59:37 +00006378 int eNew; /* New journal mode */
6379 int eOld; /* The old journal mode */
mistachkin59ee77c2012-09-13 15:26:44 +00006380#ifndef SQLITE_OMIT_WAL
drhd80b2332010-05-01 00:59:37 +00006381 const char *zFilename; /* Name of database file for pPager */
mistachkin59ee77c2012-09-13 15:26:44 +00006382#endif
dane04dc882010-04-20 18:53:15 +00006383
drh27a348c2015-04-13 19:14:06 +00006384 pOut = out2Prerelease(p, pOp);
drhd80b2332010-05-01 00:59:37 +00006385 eNew = pOp->p3;
dane04dc882010-04-20 18:53:15 +00006386 assert( eNew==PAGER_JOURNALMODE_DELETE
6387 || eNew==PAGER_JOURNALMODE_TRUNCATE
6388 || eNew==PAGER_JOURNALMODE_PERSIST
6389 || eNew==PAGER_JOURNALMODE_OFF
6390 || eNew==PAGER_JOURNALMODE_MEMORY
6391 || eNew==PAGER_JOURNALMODE_WAL
6392 || eNew==PAGER_JOURNALMODE_QUERY
6393 );
6394 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drh9e92a472013-06-27 17:40:30 +00006395 assert( p->readOnly==0 );
drh3ebaee92010-05-06 21:37:22 +00006396
dane04dc882010-04-20 18:53:15 +00006397 pBt = db->aDb[pOp->p1].pBt;
6398 pPager = sqlite3BtreePager(pBt);
drh0b9b4302010-06-11 17:01:24 +00006399 eOld = sqlite3PagerGetJournalMode(pPager);
6400 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
6401 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
dan5cf53532010-05-01 16:40:20 +00006402
6403#ifndef SQLITE_OMIT_WAL
drhd4e0bb02012-05-27 01:19:04 +00006404 zFilename = sqlite3PagerFilename(pPager, 1);
dane04dc882010-04-20 18:53:15 +00006405
drhd80b2332010-05-01 00:59:37 +00006406 /* Do not allow a transition to journal_mode=WAL for a database
drh6e1f4822010-07-13 23:41:40 +00006407 ** in temporary storage or if the VFS does not support shared memory
drhd80b2332010-05-01 00:59:37 +00006408 */
6409 if( eNew==PAGER_JOURNALMODE_WAL
drh057fc812011-10-17 23:15:31 +00006410 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
drh6e1f4822010-07-13 23:41:40 +00006411 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
dane180c292010-04-26 17:42:56 +00006412 ){
drh0b9b4302010-06-11 17:01:24 +00006413 eNew = eOld;
dane180c292010-04-26 17:42:56 +00006414 }
6415
drh0b9b4302010-06-11 17:01:24 +00006416 if( (eNew!=eOld)
6417 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
6418 ){
danc0537fe2013-06-28 19:41:43 +00006419 if( !db->autoCommit || db->nVdbeRead>1 ){
drh0b9b4302010-06-11 17:01:24 +00006420 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00006421 sqlite3VdbeError(p,
drh0b9b4302010-06-11 17:01:24 +00006422 "cannot change %s wal mode from within a transaction",
6423 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
6424 );
drh9467abf2016-02-17 18:44:11 +00006425 goto abort_due_to_error;
drh0b9b4302010-06-11 17:01:24 +00006426 }else{
6427
6428 if( eOld==PAGER_JOURNALMODE_WAL ){
6429 /* If leaving WAL mode, close the log file. If successful, the call
6430 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
6431 ** file. An EXCLUSIVE lock may still be held on the database file
6432 ** after a successful return.
dane04dc882010-04-20 18:53:15 +00006433 */
dan7fb89902016-08-12 16:21:15 +00006434 rc = sqlite3PagerCloseWal(pPager, db);
drhab9b7442010-05-10 11:20:05 +00006435 if( rc==SQLITE_OK ){
drh0b9b4302010-06-11 17:01:24 +00006436 sqlite3PagerSetJournalMode(pPager, eNew);
drh89c3f2f2010-05-15 01:09:38 +00006437 }
drh242c4f72010-06-22 14:49:39 +00006438 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
6439 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
6440 ** as an intermediate */
6441 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
drh0b9b4302010-06-11 17:01:24 +00006442 }
6443
6444 /* Open a transaction on the database file. Regardless of the journal
6445 ** mode, this transaction always uses a rollback journal.
6446 */
6447 assert( sqlite3BtreeIsInTrans(pBt)==0 );
6448 if( rc==SQLITE_OK ){
dan731bf5b2010-06-17 16:44:21 +00006449 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
dane04dc882010-04-20 18:53:15 +00006450 }
6451 }
6452 }
dan5cf53532010-05-01 16:40:20 +00006453#endif /* ifndef SQLITE_OMIT_WAL */
dane04dc882010-04-20 18:53:15 +00006454
drh9467abf2016-02-17 18:44:11 +00006455 if( rc ) eNew = eOld;
drh0b9b4302010-06-11 17:01:24 +00006456 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
dan731bf5b2010-06-17 16:44:21 +00006457
dane04dc882010-04-20 18:53:15 +00006458 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
danb9780022010-04-21 18:37:57 +00006459 pOut->z = (char *)sqlite3JournalModename(eNew);
dane04dc882010-04-20 18:53:15 +00006460 pOut->n = sqlite3Strlen30(pOut->z);
6461 pOut->enc = SQLITE_UTF8;
6462 sqlite3VdbeChangeEncoding(pOut, encoding);
drh9467abf2016-02-17 18:44:11 +00006463 if( rc ) goto abort_due_to_error;
dane04dc882010-04-20 18:53:15 +00006464 break;
drhcac29a62010-07-02 19:36:52 +00006465};
6466#endif /* SQLITE_OMIT_PRAGMA */
dane04dc882010-04-20 18:53:15 +00006467
drhfdbcdee2007-03-27 14:44:50 +00006468#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh9ef5e772016-08-19 14:20:56 +00006469/* Opcode: Vacuum P1 * * * *
drh6f8c91c2003-12-07 00:24:35 +00006470**
drh9ef5e772016-08-19 14:20:56 +00006471** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more
6472** for an attached database. The "temp" database may not be vacuumed.
drh6f8c91c2003-12-07 00:24:35 +00006473*/
drh9cbf3422008-01-17 16:22:13 +00006474case OP_Vacuum: {
drh9e92a472013-06-27 17:40:30 +00006475 assert( p->readOnly==0 );
drh9ef5e772016-08-19 14:20:56 +00006476 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1);
drh9467abf2016-02-17 18:44:11 +00006477 if( rc ) goto abort_due_to_error;
drh6f8c91c2003-12-07 00:24:35 +00006478 break;
6479}
drh154d4b22006-09-21 11:02:16 +00006480#endif
drh6f8c91c2003-12-07 00:24:35 +00006481
danielk1977dddbcdc2007-04-26 14:42:34 +00006482#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00006483/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00006484**
6485** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00006486** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00006487** P2. Otherwise, fall through to the next instruction.
6488*/
drh9cbf3422008-01-17 16:22:13 +00006489case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00006490 Btree *pBt;
6491
6492 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00006493 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00006494 assert( p->readOnly==0 );
drhca5557f2007-05-04 18:30:40 +00006495 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00006496 rc = sqlite3BtreeIncrVacuum(pBt);
drh688852a2014-02-17 22:40:43 +00006497 VdbeBranchTaken(rc==SQLITE_DONE,2);
drh9467abf2016-02-17 18:44:11 +00006498 if( rc ){
6499 if( rc!=SQLITE_DONE ) goto abort_due_to_error;
danielk1977dddbcdc2007-04-26 14:42:34 +00006500 rc = SQLITE_OK;
drhf56fa462015-04-13 21:39:54 +00006501 goto jump_to_p2;
danielk1977dddbcdc2007-04-26 14:42:34 +00006502 }
6503 break;
6504}
6505#endif
6506
drh98757152008-01-09 23:04:12 +00006507/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00006508**
drh25df48d2014-07-22 14:58:12 +00006509** Cause precompiled statements to expire. When an expired statement
6510** is executed using sqlite3_step() it will either automatically
6511** reprepare itself (if it was originally created using sqlite3_prepare_v2())
6512** or it will fail with SQLITE_SCHEMA.
danielk1977a21c6b62005-01-24 10:25:59 +00006513**
6514** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
drh25df48d2014-07-22 14:58:12 +00006515** then only the currently executing statement is expired.
danielk1977a21c6b62005-01-24 10:25:59 +00006516*/
drh9cbf3422008-01-17 16:22:13 +00006517case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00006518 if( !pOp->p1 ){
6519 sqlite3ExpirePreparedStatements(db);
6520 }else{
6521 p->expired = 1;
6522 }
6523 break;
6524}
6525
danielk1977c00da102006-01-07 13:21:04 +00006526#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00006527/* Opcode: TableLock P1 P2 P3 P4 *
drh81316f82013-10-29 20:40:47 +00006528** Synopsis: iDb=P1 root=P2 write=P3
danielk1977c00da102006-01-07 13:21:04 +00006529**
6530** Obtain a lock on a particular table. This instruction is only used when
6531** the shared-cache feature is enabled.
6532**
danielk197796d48e92009-06-29 06:00:37 +00006533** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00006534** on which the lock is acquired. A readlock is obtained if P3==0 or
6535** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00006536**
6537** P2 contains the root-page of the table to lock.
6538**
drh66a51672008-01-03 00:01:23 +00006539** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00006540** used to generate an error message if the lock cannot be obtained.
6541*/
drh9cbf3422008-01-17 16:22:13 +00006542case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00006543 u8 isWriteLock = (u8)pOp->p3;
drh169dd922017-06-26 13:57:49 +00006544 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
danielk1977e0d9e6f2009-07-03 16:25:06 +00006545 int p1 = pOp->p1;
6546 assert( p1>=0 && p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00006547 assert( DbMaskTest(p->btreeMask, p1) );
danielk1977e0d9e6f2009-07-03 16:25:06 +00006548 assert( isWriteLock==0 || isWriteLock==1 );
6549 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
drh9467abf2016-02-17 18:44:11 +00006550 if( rc ){
6551 if( (rc&0xFF)==SQLITE_LOCKED ){
6552 const char *z = pOp->p4.z;
6553 sqlite3VdbeError(p, "database table is locked: %s", z);
6554 }
6555 goto abort_due_to_error;
danielk1977e0d9e6f2009-07-03 16:25:06 +00006556 }
danielk1977c00da102006-01-07 13:21:04 +00006557 }
6558 break;
6559}
drhb9bb7c12006-06-11 23:41:55 +00006560#endif /* SQLITE_OMIT_SHARED_CACHE */
6561
6562#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006563/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00006564**
danielk19773e3a84d2008-08-01 17:37:40 +00006565** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6566** xBegin method for that table.
6567**
6568** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00006569** within a callback to a virtual table xSync() method. If it is, the error
6570** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00006571*/
drh9cbf3422008-01-17 16:22:13 +00006572case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00006573 VTable *pVTab;
6574 pVTab = pOp->p4.pVtab;
6575 rc = sqlite3VtabBegin(db, pVTab);
dan016f7812013-08-21 17:35:48 +00006576 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
drh9467abf2016-02-17 18:44:11 +00006577 if( rc ) goto abort_due_to_error;
danielk1977f9e7dda2006-06-16 16:08:53 +00006578 break;
6579}
6580#endif /* SQLITE_OMIT_VIRTUALTABLE */
6581
6582#ifndef SQLITE_OMIT_VIRTUALTABLE
dan73779452015-03-19 18:56:17 +00006583/* Opcode: VCreate P1 P2 * * *
danielk1977f9e7dda2006-06-16 16:08:53 +00006584**
dan73779452015-03-19 18:56:17 +00006585** P2 is a register that holds the name of a virtual table in database
6586** P1. Call the xCreate method for that table.
danielk1977f9e7dda2006-06-16 16:08:53 +00006587*/
drh9cbf3422008-01-17 16:22:13 +00006588case OP_VCreate: {
dan73779452015-03-19 18:56:17 +00006589 Mem sMem; /* For storing the record being decoded */
drh47464062015-03-21 12:22:16 +00006590 const char *zTab; /* Name of the virtual table */
6591
dan73779452015-03-19 18:56:17 +00006592 memset(&sMem, 0, sizeof(sMem));
6593 sMem.db = db;
drh47464062015-03-21 12:22:16 +00006594 /* Because P2 is always a static string, it is impossible for the
6595 ** sqlite3VdbeMemCopy() to fail */
6596 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6597 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
dan73779452015-03-19 18:56:17 +00006598 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
drh47464062015-03-21 12:22:16 +00006599 assert( rc==SQLITE_OK );
6600 zTab = (const char*)sqlite3_value_text(&sMem);
6601 assert( zTab || db->mallocFailed );
6602 if( zTab ){
6603 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
dan73779452015-03-19 18:56:17 +00006604 }
6605 sqlite3VdbeMemRelease(&sMem);
drh9467abf2016-02-17 18:44:11 +00006606 if( rc ) goto abort_due_to_error;
drhb9bb7c12006-06-11 23:41:55 +00006607 break;
6608}
6609#endif /* SQLITE_OMIT_VIRTUALTABLE */
6610
6611#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006612/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00006613**
drh66a51672008-01-03 00:01:23 +00006614** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00006615** of that table.
drhb9bb7c12006-06-11 23:41:55 +00006616*/
drh9cbf3422008-01-17 16:22:13 +00006617case OP_VDestroy: {
drh086723a2015-03-24 12:51:52 +00006618 db->nVDestroy++;
danielk19772dca4ac2008-01-03 11:50:29 +00006619 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
drh086723a2015-03-24 12:51:52 +00006620 db->nVDestroy--;
drh9467abf2016-02-17 18:44:11 +00006621 if( rc ) goto abort_due_to_error;
drhb9bb7c12006-06-11 23:41:55 +00006622 break;
6623}
6624#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00006625
drh9eff6162006-06-12 21:59:13 +00006626#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006627/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00006628**
drh66a51672008-01-03 00:01:23 +00006629** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00006630** P1 is a cursor number. This opcode opens a cursor to the virtual
6631** table and stores that cursor in P1.
6632*/
drh9cbf3422008-01-17 16:22:13 +00006633case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00006634 VdbeCursor *pCur;
drhc960dcb2015-11-20 19:22:01 +00006635 sqlite3_vtab_cursor *pVCur;
drh856c1032009-06-02 15:21:42 +00006636 sqlite3_vtab *pVtab;
drhf496a7d2015-03-24 14:05:50 +00006637 const sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006638
drh1713afb2013-06-28 01:24:57 +00006639 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00006640 pCur = 0;
drhc960dcb2015-11-20 19:22:01 +00006641 pVCur = 0;
danielk1977595a5232009-07-24 17:58:53 +00006642 pVtab = pOp->p4.pVtab->pVtab;
drhf496a7d2015-03-24 14:05:50 +00006643 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6644 rc = SQLITE_LOCKED;
drh9467abf2016-02-17 18:44:11 +00006645 goto abort_due_to_error;
drhf496a7d2015-03-24 14:05:50 +00006646 }
6647 pModule = pVtab->pModule;
drhc960dcb2015-11-20 19:22:01 +00006648 rc = pModule->xOpen(pVtab, &pVCur);
dan016f7812013-08-21 17:35:48 +00006649 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00006650 if( rc ) goto abort_due_to_error;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006651
drh9467abf2016-02-17 18:44:11 +00006652 /* Initialize sqlite3_vtab_cursor base class */
6653 pVCur->pVtab = pVtab;
6654
6655 /* Initialize vdbe cursor object */
6656 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
6657 if( pCur ){
6658 pCur->uc.pVCur = pVCur;
6659 pVtab->nRef++;
6660 }else{
6661 assert( db->mallocFailed );
6662 pModule->xClose(pVCur);
6663 goto no_mem;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006664 }
drh9eff6162006-06-12 21:59:13 +00006665 break;
6666}
6667#endif /* SQLITE_OMIT_VIRTUALTABLE */
6668
6669#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00006670/* Opcode: VFilter P1 P2 P3 P4 *
drh831116d2014-04-03 14:31:00 +00006671** Synopsis: iplan=r[P3] zplan='P4'
drh9eff6162006-06-12 21:59:13 +00006672**
6673** P1 is a cursor opened using VOpen. P2 is an address to jump to if
6674** the filtered result set is empty.
6675**
drh66a51672008-01-03 00:01:23 +00006676** P4 is either NULL or a string that was generated by the xBestIndex
6677** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00006678** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00006679**
drh9eff6162006-06-12 21:59:13 +00006680** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00006681** by P1. The integer query plan parameter to xFilter is stored in register
6682** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00006683** xFilter method. Registers P3+2..P3+1+argc are the argc
6684** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00006685** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00006686**
danielk19776dbee812008-01-03 18:39:41 +00006687** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00006688*/
drh9cbf3422008-01-17 16:22:13 +00006689case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00006690 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00006691 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006692 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00006693 Mem *pQuery;
6694 Mem *pArgc;
drhc960dcb2015-11-20 19:22:01 +00006695 sqlite3_vtab_cursor *pVCur;
drh4dc754d2008-07-23 18:17:32 +00006696 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00006697 VdbeCursor *pCur;
6698 int res;
6699 int i;
6700 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006701
drha6c2ed92009-11-14 23:22:23 +00006702 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00006703 pArgc = &pQuery[1];
6704 pCur = p->apCsr[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00006705 assert( memIsValid(pQuery) );
drh5b6afba2008-01-05 16:29:28 +00006706 REGISTER_TRACE(pOp->p3, pQuery);
drhc960dcb2015-11-20 19:22:01 +00006707 assert( pCur->eCurType==CURTYPE_VTAB );
6708 pVCur = pCur->uc.pVCur;
6709 pVtab = pVCur->pVtab;
drh4dc754d2008-07-23 18:17:32 +00006710 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006711
drh9cbf3422008-01-17 16:22:13 +00006712 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00006713 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00006714 nArg = (int)pArgc->u.i;
6715 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006716
drh644a5292006-12-20 14:53:38 +00006717 /* Invoke the xFilter method */
drhf56fa462015-04-13 21:39:54 +00006718 res = 0;
6719 apArg = p->apArg;
6720 for(i = 0; i<nArg; i++){
6721 apArg[i] = &pArgc[i+1];
6722 }
drhc960dcb2015-11-20 19:22:01 +00006723 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
drhf56fa462015-04-13 21:39:54 +00006724 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00006725 if( rc ) goto abort_due_to_error;
6726 res = pModule->xEof(pVCur);
drh1d454a32008-01-31 19:34:51 +00006727 pCur->nullRow = 0;
drhf56fa462015-04-13 21:39:54 +00006728 VdbeBranchTaken(res!=0,2);
6729 if( res ) goto jump_to_p2;
drh9eff6162006-06-12 21:59:13 +00006730 break;
6731}
6732#endif /* SQLITE_OMIT_VIRTUALTABLE */
6733
6734#ifndef SQLITE_OMIT_VIRTUALTABLE
drhce2fbd12018-01-12 21:00:14 +00006735/* Opcode: VColumn P1 P2 P3 * P5
drh81316f82013-10-29 20:40:47 +00006736** Synopsis: r[P3]=vcolumn(P2)
drh9eff6162006-06-12 21:59:13 +00006737**
drh6f390be2018-01-11 17:04:26 +00006738** Store in register P3 the value of the P2-th column of
6739** the current row of the virtual-table of cursor P1.
6740**
6741** If the VColumn opcode is being used to fetch the value of
drhce2fbd12018-01-12 21:00:14 +00006742** an unchanging column during an UPDATE operation, then the P5
6743** value is 1. Otherwise, P5 is 0. The P5 value is returned
drh6f390be2018-01-11 17:04:26 +00006744** by sqlite3_vtab_nochange() routine can can be used
6745** by virtual table implementations to return special "no-change"
6746** marks which can be more efficient, depending on the virtual table.
drh9eff6162006-06-12 21:59:13 +00006747*/
6748case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00006749 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006750 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00006751 Mem *pDest;
6752 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006753
drhdfe88ec2008-11-03 20:55:06 +00006754 VdbeCursor *pCur = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00006755 assert( pCur->eCurType==CURTYPE_VTAB );
drh9f6168b2016-03-19 23:32:58 +00006756 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00006757 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00006758 memAboutToChange(p, pDest);
drh2945b4a2008-01-31 15:53:45 +00006759 if( pCur->nullRow ){
6760 sqlite3VdbeMemSetNull(pDest);
6761 break;
6762 }
drhc960dcb2015-11-20 19:22:01 +00006763 pVtab = pCur->uc.pVCur->pVtab;
danielk19773e3a84d2008-08-01 17:37:40 +00006764 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006765 assert( pModule->xColumn );
6766 memset(&sContext, 0, sizeof(sContext));
drh9bd038f2014-08-27 14:14:06 +00006767 sContext.pOut = pDest;
drhce2fbd12018-01-12 21:00:14 +00006768 if( pOp->p5 ){
6769 sqlite3VdbeMemSetNull(pDest);
6770 pDest->flags = MEM_Null|MEM_Zero;
6771 pDest->u.nZero = 0;
6772 }else{
6773 MemSetTypeFlag(pDest, MEM_Null);
6774 }
drhc960dcb2015-11-20 19:22:01 +00006775 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
dan016f7812013-08-21 17:35:48 +00006776 sqlite3VtabImportErrmsg(p, pVtab);
drhf09ac0b2018-01-23 03:44:06 +00006777 if( sContext.isError>0 ){
dan099fa842018-01-30 18:33:23 +00006778 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
drh4c8555f2009-06-25 01:47:11 +00006779 rc = sContext.isError;
6780 }
drh9bd038f2014-08-27 14:14:06 +00006781 sqlite3VdbeChangeEncoding(pDest, encoding);
drh5ff44372009-11-24 16:26:17 +00006782 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00006783 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006784
drhde4fcfd2008-01-19 23:50:26 +00006785 if( sqlite3VdbeMemTooBig(pDest) ){
6786 goto too_big;
6787 }
drh9467abf2016-02-17 18:44:11 +00006788 if( rc ) goto abort_due_to_error;
drh9eff6162006-06-12 21:59:13 +00006789 break;
6790}
6791#endif /* SQLITE_OMIT_VIRTUALTABLE */
6792
6793#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006794/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00006795**
6796** Advance virtual table P1 to the next row in its result set and
6797** jump to instruction P2. Or, if the virtual table has reached
6798** the end of its result set, then fall through to the next instruction.
6799*/
drh9cbf3422008-01-17 16:22:13 +00006800case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00006801 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006802 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00006803 int res;
drh856c1032009-06-02 15:21:42 +00006804 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006805
drhc54a6172009-06-02 16:06:03 +00006806 res = 0;
drh856c1032009-06-02 15:21:42 +00006807 pCur = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00006808 assert( pCur->eCurType==CURTYPE_VTAB );
drh2945b4a2008-01-31 15:53:45 +00006809 if( pCur->nullRow ){
6810 break;
6811 }
drhc960dcb2015-11-20 19:22:01 +00006812 pVtab = pCur->uc.pVCur->pVtab;
danielk19773e3a84d2008-08-01 17:37:40 +00006813 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006814 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00006815
drhde4fcfd2008-01-19 23:50:26 +00006816 /* Invoke the xNext() method of the module. There is no way for the
6817 ** underlying implementation to return an error if one occurs during
6818 ** xNext(). Instead, if an error occurs, true is returned (indicating that
6819 ** data is available) and the error code returned when xColumn or
6820 ** some other method is next invoked on the save virtual table cursor.
6821 */
drhc960dcb2015-11-20 19:22:01 +00006822 rc = pModule->xNext(pCur->uc.pVCur);
dan016f7812013-08-21 17:35:48 +00006823 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00006824 if( rc ) goto abort_due_to_error;
6825 res = pModule->xEof(pCur->uc.pVCur);
drh688852a2014-02-17 22:40:43 +00006826 VdbeBranchTaken(!res,2);
drhde4fcfd2008-01-19 23:50:26 +00006827 if( !res ){
6828 /* If there is data, jump to P2 */
drhf56fa462015-04-13 21:39:54 +00006829 goto jump_to_p2_and_check_for_interrupt;
drhde4fcfd2008-01-19 23:50:26 +00006830 }
drh49afe3a2013-07-10 03:05:14 +00006831 goto check_for_interrupt;
drh9eff6162006-06-12 21:59:13 +00006832}
6833#endif /* SQLITE_OMIT_VIRTUALTABLE */
6834
danielk1977182c4ba2007-06-27 15:53:34 +00006835#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006836/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00006837**
drh66a51672008-01-03 00:01:23 +00006838** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00006839** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00006840** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00006841*/
drh9cbf3422008-01-17 16:22:13 +00006842case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00006843 sqlite3_vtab *pVtab;
6844 Mem *pName;
6845
danielk1977595a5232009-07-24 17:58:53 +00006846 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00006847 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00006848 assert( pVtab->pModule->xRename );
drh2b4ded92010-09-27 21:09:31 +00006849 assert( memIsValid(pName) );
drh9e92a472013-06-27 17:40:30 +00006850 assert( p->readOnly==0 );
drh5b6afba2008-01-05 16:29:28 +00006851 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00006852 assert( pName->flags & MEM_Str );
drh98655a62011-10-18 22:07:47 +00006853 testcase( pName->enc==SQLITE_UTF8 );
6854 testcase( pName->enc==SQLITE_UTF16BE );
6855 testcase( pName->enc==SQLITE_UTF16LE );
6856 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
drh9467abf2016-02-17 18:44:11 +00006857 if( rc ) goto abort_due_to_error;
6858 rc = pVtab->pModule->xRename(pVtab, pName->z);
6859 sqlite3VtabImportErrmsg(p, pVtab);
6860 p->expired = 0;
6861 if( rc ) goto abort_due_to_error;
danielk1977182c4ba2007-06-27 15:53:34 +00006862 break;
6863}
6864#endif
drh4cbdda92006-06-14 19:00:20 +00006865
6866#ifndef SQLITE_OMIT_VIRTUALTABLE
drh0fd61352014-02-07 02:29:45 +00006867/* Opcode: VUpdate P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00006868** Synopsis: data=r[P3@P2]
danielk1977399918f2006-06-14 13:03:23 +00006869**
drh66a51672008-01-03 00:01:23 +00006870** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00006871** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00006872** are contiguous memory cells starting at P3 to pass to the xUpdate
6873** invocation. The value in register (P3+P2-1) corresponds to the
6874** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00006875**
6876** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00006877** The argv[0] element (which corresponds to memory cell P3)
6878** is the rowid of a row to delete. If argv[0] is NULL then no
6879** deletion occurs. The argv[1] element is the rowid of the new
6880** row. This can be NULL to have the virtual table select the new
6881** rowid for itself. The subsequent elements in the array are
6882** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00006883**
6884** If P2==1 then no insert is performed. argv[0] is the rowid of
6885** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00006886**
6887** P1 is a boolean flag. If it is set to true and the xUpdate call
6888** is successful, then the value returned by sqlite3_last_insert_rowid()
6889** is set to the value of the rowid for the row just inserted.
drh0fd61352014-02-07 02:29:45 +00006890**
6891** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6892** apply in the case of a constraint failure on an insert or update.
danielk1977399918f2006-06-14 13:03:23 +00006893*/
drh9cbf3422008-01-17 16:22:13 +00006894case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00006895 sqlite3_vtab *pVtab;
drhf496a7d2015-03-24 14:05:50 +00006896 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00006897 int nArg;
6898 int i;
6899 sqlite_int64 rowid;
6900 Mem **apArg;
6901 Mem *pX;
6902
danb061d052011-04-25 18:49:57 +00006903 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
6904 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6905 );
drh9e92a472013-06-27 17:40:30 +00006906 assert( p->readOnly==0 );
danielk1977595a5232009-07-24 17:58:53 +00006907 pVtab = pOp->p4.pVtab->pVtab;
drhf496a7d2015-03-24 14:05:50 +00006908 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6909 rc = SQLITE_LOCKED;
drh9467abf2016-02-17 18:44:11 +00006910 goto abort_due_to_error;
drhf496a7d2015-03-24 14:05:50 +00006911 }
6912 pModule = pVtab->pModule;
drh856c1032009-06-02 15:21:42 +00006913 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00006914 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00006915 if( ALWAYS(pModule->xUpdate) ){
danb061d052011-04-25 18:49:57 +00006916 u8 vtabOnConflict = db->vtabOnConflict;
drh856c1032009-06-02 15:21:42 +00006917 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00006918 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00006919 for(i=0; i<nArg; i++){
drh2b4ded92010-09-27 21:09:31 +00006920 assert( memIsValid(pX) );
6921 memAboutToChange(p, pX);
drh9c419382006-06-16 21:13:21 +00006922 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00006923 pX++;
danielk1977399918f2006-06-14 13:03:23 +00006924 }
danb061d052011-04-25 18:49:57 +00006925 db->vtabOnConflict = pOp->p5;
danielk19771f6eec52006-06-16 06:17:47 +00006926 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
danb061d052011-04-25 18:49:57 +00006927 db->vtabOnConflict = vtabOnConflict;
dan016f7812013-08-21 17:35:48 +00006928 sqlite3VtabImportErrmsg(p, pVtab);
drh35f6b932009-06-23 14:15:04 +00006929 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00006930 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
drhfae58d52017-01-26 17:26:44 +00006931 db->lastRowid = rowid;
danielk19771f6eec52006-06-16 06:17:47 +00006932 }
drhd91c1a12013-02-09 13:58:25 +00006933 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
danb061d052011-04-25 18:49:57 +00006934 if( pOp->p5==OE_Ignore ){
6935 rc = SQLITE_OK;
6936 }else{
6937 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6938 }
6939 }else{
6940 p->nChange++;
6941 }
drh9467abf2016-02-17 18:44:11 +00006942 if( rc ) goto abort_due_to_error;
danielk1977399918f2006-06-14 13:03:23 +00006943 }
drh4cbdda92006-06-14 19:00:20 +00006944 break;
danielk1977399918f2006-06-14 13:03:23 +00006945}
6946#endif /* SQLITE_OMIT_VIRTUALTABLE */
6947
danielk197759a93792008-05-15 17:48:20 +00006948#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6949/* Opcode: Pagecount P1 P2 * * *
6950**
6951** Write the current number of pages in database P1 to memory cell P2.
6952*/
drh27a348c2015-04-13 19:14:06 +00006953case OP_Pagecount: { /* out2 */
6954 pOut = out2Prerelease(p, pOp);
drhb1299152010-03-30 22:58:33 +00006955 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00006956 break;
6957}
6958#endif
6959
drh60ac3f42010-11-23 18:59:27 +00006960
6961#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6962/* Opcode: MaxPgcnt P1 P2 P3 * *
6963**
6964** Try to set the maximum page count for database P1 to the value in P3.
drhc84e0332010-11-23 20:25:08 +00006965** Do not let the maximum page count fall below the current page count and
6966** do not change the maximum page count value if P3==0.
6967**
drh60ac3f42010-11-23 18:59:27 +00006968** Store the maximum page count after the change in register P2.
6969*/
drh27a348c2015-04-13 19:14:06 +00006970case OP_MaxPgcnt: { /* out2 */
drhc84e0332010-11-23 20:25:08 +00006971 unsigned int newMax;
drh60ac3f42010-11-23 18:59:27 +00006972 Btree *pBt;
6973
drh27a348c2015-04-13 19:14:06 +00006974 pOut = out2Prerelease(p, pOp);
drh60ac3f42010-11-23 18:59:27 +00006975 pBt = db->aDb[pOp->p1].pBt;
drhc84e0332010-11-23 20:25:08 +00006976 newMax = 0;
6977 if( pOp->p3 ){
6978 newMax = sqlite3BtreeLastPage(pBt);
drh6ea28d62010-11-26 16:49:59 +00006979 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
drhc84e0332010-11-23 20:25:08 +00006980 }
6981 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
drh60ac3f42010-11-23 18:59:27 +00006982 break;
6983}
6984#endif
6985
drh3e34eab2017-07-19 19:48:40 +00006986/* Opcode: Function0 P1 P2 P3 P4 P5
6987** Synopsis: r[P3]=func(r[P2@P5])
6988**
6989** Invoke a user function (P4 is a pointer to a FuncDef object that
6990** defines the function) with P5 arguments taken from register P2 and
6991** successors. The result of the function is stored in register P3.
6992** Register P3 must not be one of the function inputs.
6993**
6994** P1 is a 32-bit bitmask indicating whether or not each argument to the
6995** function was determined to be constant at compile time. If the first
6996** argument was constant then bit 0 of P1 is set. This is used to determine
6997** whether meta data associated with a user function argument using the
6998** sqlite3_set_auxdata() API may be safely retained until the next
6999** invocation of this opcode.
7000**
7001** See also: Function, AggStep, AggFinal
7002*/
7003/* Opcode: Function P1 P2 P3 P4 P5
7004** Synopsis: r[P3]=func(r[P2@P5])
7005**
7006** Invoke a user function (P4 is a pointer to an sqlite3_context object that
7007** contains a pointer to the function to be run) with P5 arguments taken
7008** from register P2 and successors. The result of the function is stored
7009** in register P3. Register P3 must not be one of the function inputs.
7010**
7011** P1 is a 32-bit bitmask indicating whether or not each argument to the
7012** function was determined to be constant at compile time. If the first
7013** argument was constant then bit 0 of P1 is set. This is used to determine
7014** whether meta data associated with a user function argument using the
7015** sqlite3_set_auxdata() API may be safely retained until the next
7016** invocation of this opcode.
7017**
7018** SQL functions are initially coded as OP_Function0 with P4 pointing
7019** to a FuncDef object. But on first evaluation, the P4 operand is
7020** automatically converted into an sqlite3_context object and the operation
7021** changed to this OP_Function opcode. In this way, the initialization of
7022** the sqlite3_context object occurs only once, rather than once for each
7023** evaluation of the function.
7024**
7025** See also: Function0, AggStep, AggFinal
7026*/
7027case OP_PureFunc0:
7028case OP_Function0: {
7029 int n;
7030 sqlite3_context *pCtx;
7031
7032 assert( pOp->p4type==P4_FUNCDEF );
7033 n = pOp->p5;
7034 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7035 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
7036 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
7037 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
7038 if( pCtx==0 ) goto no_mem;
7039 pCtx->pOut = 0;
7040 pCtx->pFunc = pOp->p4.pFunc;
7041 pCtx->iOp = (int)(pOp - aOp);
7042 pCtx->pVdbe = p;
drhf09ac0b2018-01-23 03:44:06 +00007043 pCtx->isError = 0;
drh3e34eab2017-07-19 19:48:40 +00007044 pCtx->argc = n;
7045 pOp->p4type = P4_FUNCCTX;
7046 pOp->p4.pCtx = pCtx;
7047 assert( OP_PureFunc == OP_PureFunc0+2 );
7048 assert( OP_Function == OP_Function0+2 );
7049 pOp->opcode += 2;
7050 /* Fall through into OP_Function */
7051}
7052case OP_PureFunc:
7053case OP_Function: {
7054 int i;
7055 sqlite3_context *pCtx;
7056
7057 assert( pOp->p4type==P4_FUNCCTX );
7058 pCtx = pOp->p4.pCtx;
7059
7060 /* If this function is inside of a trigger, the register array in aMem[]
7061 ** might change from one evaluation to the next. The next block of code
7062 ** checks to see if the register array has changed, and if so it
7063 ** reinitializes the relavant parts of the sqlite3_context object */
7064 pOut = &aMem[pOp->p3];
7065 if( pCtx->pOut != pOut ){
7066 pCtx->pOut = pOut;
7067 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
7068 }
7069
7070 memAboutToChange(p, pOut);
7071#ifdef SQLITE_DEBUG
7072 for(i=0; i<pCtx->argc; i++){
7073 assert( memIsValid(pCtx->argv[i]) );
7074 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
7075 }
7076#endif
7077 MemSetTypeFlag(pOut, MEM_Null);
drhf09ac0b2018-01-23 03:44:06 +00007078 assert( pCtx->isError==0 );
drh3e34eab2017-07-19 19:48:40 +00007079 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
7080
7081 /* If the function returned an error, throw an exception */
drhf09ac0b2018-01-23 03:44:06 +00007082 if( pCtx->isError ){
7083 if( pCtx->isError>0 ){
drh3e34eab2017-07-19 19:48:40 +00007084 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
7085 rc = pCtx->isError;
7086 }
7087 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
drhf09ac0b2018-01-23 03:44:06 +00007088 pCtx->isError = 0;
drh3e34eab2017-07-19 19:48:40 +00007089 if( rc ) goto abort_due_to_error;
7090 }
7091
7092 /* Copy the result of the function into register P3 */
7093 if( pOut->flags & (MEM_Str|MEM_Blob) ){
7094 sqlite3VdbeChangeEncoding(pOut, encoding);
7095 if( sqlite3VdbeMemTooBig(pOut) ) goto too_big;
7096 }
7097
7098 REGISTER_TRACE(pOp->p3, pOut);
7099 UPDATE_MAX_BLOBSIZE(pOut);
7100 break;
7101}
7102
drhf259df52017-12-27 20:38:35 +00007103/* Opcode: Trace P1 P2 * P4 *
7104**
7105** Write P4 on the statement trace output if statement tracing is
7106** enabled.
7107**
7108** Operand P1 must be 0x7fffffff and P2 must positive.
7109*/
drh74588ce2017-09-13 00:13:05 +00007110/* Opcode: Init P1 P2 P3 P4 *
drh72e26de2016-08-24 21:24:04 +00007111** Synopsis: Start at P2
drhaceb31b2014-02-08 01:40:27 +00007112**
7113** Programs contain a single instance of this opcode as the very first
7114** opcode.
drh949f9cd2008-01-12 21:35:57 +00007115**
7116** If tracing is enabled (by the sqlite3_trace()) interface, then
7117** the UTF-8 string contained in P4 is emitted on the trace callback.
drhaceb31b2014-02-08 01:40:27 +00007118** Or if P4 is blank, use the string returned by sqlite3_sql().
7119**
7120** If P2 is not zero, jump to instruction P2.
drh9e5eb9c2016-09-18 16:08:10 +00007121**
7122** Increment the value of P1 so that OP_Once opcodes will jump the
7123** first time they are evaluated for this run.
drh74588ce2017-09-13 00:13:05 +00007124**
7125** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
7126** error is encountered.
drh949f9cd2008-01-12 21:35:57 +00007127*/
drhf259df52017-12-27 20:38:35 +00007128case OP_Trace:
drhaceb31b2014-02-08 01:40:27 +00007129case OP_Init: { /* jump */
drh9e5eb9c2016-09-18 16:08:10 +00007130 int i;
drhb9f47992018-01-24 12:14:43 +00007131#ifndef SQLITE_OMIT_TRACE
7132 char *zTrace;
7133#endif
drh5fe63bf2016-07-25 02:42:22 +00007134
7135 /* If the P4 argument is not NULL, then it must be an SQL comment string.
7136 ** The "--" string is broken up to prevent false-positives with srcck1.c.
7137 **
7138 ** This assert() provides evidence for:
7139 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
7140 ** would have been returned by the legacy sqlite3_trace() interface by
7141 ** using the X argument when X begins with "--" and invoking
7142 ** sqlite3_expanded_sql(P) otherwise.
7143 */
7144 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
drhf259df52017-12-27 20:38:35 +00007145
7146 /* OP_Init is always instruction 0 */
7147 assert( pOp==p->aOp || pOp->opcode==OP_Trace );
drh856c1032009-06-02 15:21:42 +00007148
drhaceb31b2014-02-08 01:40:27 +00007149#ifndef SQLITE_OMIT_TRACE
drhfca760c2016-07-14 01:09:08 +00007150 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
drh37f58e92012-09-04 21:34:26 +00007151 && !p->doingRerun
7152 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7153 ){
drh3d2a5292016-07-13 22:55:01 +00007154#ifndef SQLITE_OMIT_DEPRECATED
drhfca760c2016-07-14 01:09:08 +00007155 if( db->mTrace & SQLITE_TRACE_LEGACY ){
7156 void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace;
drh5fe63bf2016-07-25 02:42:22 +00007157 char *z = sqlite3VdbeExpandSql(p, zTrace);
drhfca760c2016-07-14 01:09:08 +00007158 x(db->pTraceArg, z);
drhbd441f72016-07-25 02:31:48 +00007159 sqlite3_free(z);
drhfca760c2016-07-14 01:09:08 +00007160 }else
drh3d2a5292016-07-13 22:55:01 +00007161#endif
drh7adbcff2017-03-20 15:29:28 +00007162 if( db->nVdbeExec>1 ){
7163 char *z = sqlite3MPrintf(db, "-- %s", zTrace);
7164 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
7165 sqlite3DbFree(db, z);
7166 }else{
drhbd441f72016-07-25 02:31:48 +00007167 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
drh3d2a5292016-07-13 22:55:01 +00007168 }
drh949f9cd2008-01-12 21:35:57 +00007169 }
drh8f8b2312013-10-18 20:03:43 +00007170#ifdef SQLITE_USE_FCNTL_TRACE
7171 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
7172 if( zTrace ){
mistachkind8992ce2016-09-20 17:49:01 +00007173 int j;
7174 for(j=0; j<db->nDb; j++){
7175 if( DbMaskTest(p->btreeMask, j)==0 ) continue;
7176 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
drh8f8b2312013-10-18 20:03:43 +00007177 }
7178 }
7179#endif /* SQLITE_USE_FCNTL_TRACE */
drhc3f1d5f2011-05-30 23:42:16 +00007180#ifdef SQLITE_DEBUG
7181 if( (db->flags & SQLITE_SqlTrace)!=0
7182 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7183 ){
7184 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
7185 }
7186#endif /* SQLITE_DEBUG */
drhaceb31b2014-02-08 01:40:27 +00007187#endif /* SQLITE_OMIT_TRACE */
drh4910a762016-09-03 01:46:15 +00007188 assert( pOp->p2>0 );
drh9e5eb9c2016-09-18 16:08:10 +00007189 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
drhf259df52017-12-27 20:38:35 +00007190 if( pOp->opcode==OP_Trace ) break;
drh9e5eb9c2016-09-18 16:08:10 +00007191 for(i=1; i<p->nOp; i++){
7192 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
7193 }
7194 pOp->p1 = 0;
7195 }
7196 pOp->p1++;
drh00d11d42017-06-29 12:49:18 +00007197 p->aCounter[SQLITE_STMTSTATUS_RUN]++;
drh4910a762016-09-03 01:46:15 +00007198 goto jump_to_p2;
drh949f9cd2008-01-12 21:35:57 +00007199}
drh949f9cd2008-01-12 21:35:57 +00007200
drh28935362013-12-07 20:39:19 +00007201#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh0df57012015-08-14 15:05:55 +00007202/* Opcode: CursorHint P1 * * P4 *
drh28935362013-12-07 20:39:19 +00007203**
7204** Provide a hint to cursor P1 that it only needs to return rows that
drh0df57012015-08-14 15:05:55 +00007205** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
7206** to values currently held in registers. TK_COLUMN terms in the P4
7207** expression refer to columns in the b-tree to which cursor P1 is pointing.
drh28935362013-12-07 20:39:19 +00007208*/
7209case OP_CursorHint: {
7210 VdbeCursor *pC;
7211
7212 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7213 assert( pOp->p4type==P4_EXPR );
7214 pC = p->apCsr[pOp->p1];
dan91d3a612014-07-15 11:59:44 +00007215 if( pC ){
drhc960dcb2015-11-20 19:22:01 +00007216 assert( pC->eCurType==CURTYPE_BTREE );
drh62aaa6c2015-11-21 17:27:42 +00007217 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
7218 pOp->p4.pExpr, aMem);
dan91d3a612014-07-15 11:59:44 +00007219 }
drh28935362013-12-07 20:39:19 +00007220 break;
7221}
7222#endif /* SQLITE_ENABLE_CURSOR_HINTS */
drh91fd4d42008-01-19 20:11:25 +00007223
7224/* Opcode: Noop * * * * *
7225**
7226** Do nothing. This instruction is often useful as a jump
7227** destination.
drh5e00f6c2001-09-13 13:46:56 +00007228*/
drh91fd4d42008-01-19 20:11:25 +00007229/*
7230** The magic Explain opcode are only inserted when explain==2 (which
7231** is to say when the EXPLAIN QUERY PLAN syntax is used.)
7232** This opcode records information from the optimizer. It is the
7233** the same as a no-op. This opcodesnever appears in a real VM program.
7234*/
7235default: { /* This is really OP_Noop and OP_Explain */
drh13573c72010-01-12 17:04:07 +00007236 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh5e00f6c2001-09-13 13:46:56 +00007237 break;
7238}
7239
7240/*****************************************************************************
7241** The cases of the switch statement above this line should all be indented
7242** by 6 spaces. But the left-most 6 spaces have been removed to improve the
7243** readability. From this point on down, the normal indentation rules are
7244** restored.
7245*****************************************************************************/
7246 }
drh6e142f52000-06-08 13:36:40 +00007247
drh7b396862003-01-01 23:06:20 +00007248#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00007249 {
drh35043cc2018-02-12 20:27:34 +00007250 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
drh6dc41482015-04-16 17:31:02 +00007251 if( endTime>start ) pOrigOp->cycles += endTime - start;
7252 pOrigOp->cnt++;
drh8178a752003-01-05 21:41:40 +00007253 }
drh7b396862003-01-01 23:06:20 +00007254#endif
7255
drh6e142f52000-06-08 13:36:40 +00007256 /* The following code adds nothing to the actual functionality
7257 ** of the program. It is only here for testing and debugging.
7258 ** On the other hand, it does burn CPU cycles every time through
7259 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
7260 */
7261#ifndef NDEBUG
drh6dc41482015-04-16 17:31:02 +00007262 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
drhae7e1512007-05-02 16:51:59 +00007263
drhcf1023c2007-05-08 20:59:49 +00007264#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +00007265 if( db->flags & SQLITE_VdbeTrace ){
drh7cc84c22016-04-11 13:36:42 +00007266 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
drh84e55a82013-11-13 17:58:23 +00007267 if( rc!=0 ) printf("rc=%d\n",rc);
drh7cc84c22016-04-11 13:36:42 +00007268 if( opProperty & (OPFLG_OUT2) ){
drh6dc41482015-04-16 17:31:02 +00007269 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
drh75897232000-05-29 14:26:00 +00007270 }
drh7cc84c22016-04-11 13:36:42 +00007271 if( opProperty & OPFLG_OUT3 ){
drh6dc41482015-04-16 17:31:02 +00007272 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00007273 }
drh75897232000-05-29 14:26:00 +00007274 }
danielk1977b5402fb2005-01-12 07:15:04 +00007275#endif /* SQLITE_DEBUG */
7276#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00007277 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00007278
drha05a7222008-01-19 03:35:58 +00007279 /* If we reach this point, it means that execution is finished with
7280 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00007281 */
drh9467abf2016-02-17 18:44:11 +00007282abort_due_to_error:
7283 if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT;
drha05a7222008-01-19 03:35:58 +00007284 assert( rc );
drh9467abf2016-02-17 18:44:11 +00007285 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
7286 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7287 }
drha05a7222008-01-19 03:35:58 +00007288 p->rc = rc;
drhf68521c2016-03-21 12:28:02 +00007289 sqlite3SystemError(db, rc);
drha64fa912010-03-04 00:53:32 +00007290 testcase( sqlite3GlobalConfig.xLog!=0 );
7291 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
drhf56fa462015-04-13 21:39:54 +00007292 (int)(pOp - aOp), p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00007293 sqlite3VdbeHalt(p);
drh4a642b62016-02-05 01:55:27 +00007294 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
danielk19777eaabcd2008-07-07 14:56:56 +00007295 rc = SQLITE_ERROR;
drhcdf011d2011-04-04 21:25:28 +00007296 if( resetSchemaOnFault>0 ){
drh81028a42012-05-15 18:28:27 +00007297 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
drhbdaec522011-04-04 00:14:43 +00007298 }
drh900b31e2007-08-28 02:27:51 +00007299
7300 /* This is the only way out of this procedure. We have to
7301 ** release the mutexes on btrees that were acquired at the
7302 ** top. */
7303vdbe_return:
drh77dfd5b2013-08-19 11:15:48 +00007304 testcase( nVmStep>0 );
drh9b47ee32013-08-20 03:13:51 +00007305 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
drhbdaec522011-04-04 00:14:43 +00007306 sqlite3VdbeLeave(p);
dan83f0ab82016-01-29 18:04:31 +00007307 assert( rc!=SQLITE_OK || nExtraDelete==0
7308 || sqlite3_strlike("DELETE%",p->zSql,0)!=0
7309 );
drhb86ccfb2003-01-28 23:13:10 +00007310 return rc;
7311
drh023ae032007-05-08 12:12:16 +00007312 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
7313 ** is encountered.
7314 */
7315too_big:
drh22c17b82015-05-15 04:13:15 +00007316 sqlite3VdbeError(p, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00007317 rc = SQLITE_TOOBIG;
drh9467abf2016-02-17 18:44:11 +00007318 goto abort_due_to_error;
drh023ae032007-05-08 12:12:16 +00007319
drh98640a32007-06-07 19:08:32 +00007320 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00007321 */
7322no_mem:
drh4a642b62016-02-05 01:55:27 +00007323 sqlite3OomFault(db);
drh22c17b82015-05-15 04:13:15 +00007324 sqlite3VdbeError(p, "out of memory");
mistachkinfad30392016-02-13 23:43:46 +00007325 rc = SQLITE_NOMEM_BKPT;
drh9467abf2016-02-17 18:44:11 +00007326 goto abort_due_to_error;
drhb86ccfb2003-01-28 23:13:10 +00007327
danielk19776f8a5032004-05-10 10:34:51 +00007328 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00007329 ** flag.
7330 */
7331abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00007332 assert( db->u1.isInterrupted );
mistachkinfad30392016-02-13 23:43:46 +00007333 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00007334 p->rc = rc;
drh22c17b82015-05-15 04:13:15 +00007335 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
drh9467abf2016-02-17 18:44:11 +00007336 goto abort_due_to_error;
drhb86ccfb2003-01-28 23:13:10 +00007337}