blob: c73bf596390db9e3d8c8ad78d9c509c62e954a31 [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh9a324642003-09-06 20:12:01 +000012** The code in this file implements execution method of the
13** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
14** handles housekeeping details such as creating and deleting
15** VDBE instances. This file is solely interested in executing
16** the VDBE program.
17**
danielk1977fc57d7b2004-05-26 02:04:57 +000018** In the external interface, an "sqlite3_stmt*" is an opaque pointer
drh9a324642003-09-06 20:12:01 +000019** to a VDBE.
drh75897232000-05-29 14:26:00 +000020**
21** The SQL parser generates a program which is then executed by
22** the VDBE to do the work of the SQL statement. VDBE programs are
23** similar in form to assembly language. The program consists of
24** a linear sequence of operations. Each operation has an opcode
drh9cbf3422008-01-17 16:22:13 +000025** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
26** is a null-terminated string. Operand P5 is an unsigned character.
27** Few opcodes use all 5 operands.
drh75897232000-05-29 14:26:00 +000028**
drh9cbf3422008-01-17 16:22:13 +000029** Computation results are stored on a set of registers numbered beginning
30** with 1 and going up to Vdbe.nMem. Each register can store
31** either an integer, a null-terminated string, a floating point
shane21e7feb2008-05-30 15:59:49 +000032** number, or the SQL "NULL" value. An implicit conversion from one
drhb19a2bc2001-09-16 00:13:26 +000033** type to the other occurs as necessary.
drh75897232000-05-29 14:26:00 +000034**
danielk19774adee202004-05-08 08:23:19 +000035** Most of the code in this file is taken up by the sqlite3VdbeExec()
drh75897232000-05-29 14:26:00 +000036** function which does the work of interpreting a VDBE program.
37** But other routines are also provided to help in building up
38** a program instruction by instruction.
39**
drhac82fcf2002-09-08 17:23:41 +000040** Various scripts scan this source file in order to generate HTML
41** documentation, headers files, or other derived files. The formatting
42** of the code in this file is, therefore, important. See other comments
43** in this file for details. If in doubt, do not deviate from existing
44** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000045*/
46#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000047#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000048
49/*
drh2b4ded92010-09-27 21:09:31 +000050** Invoke this macro on memory cells just prior to changing the
51** value of the cell. This macro verifies that shallow copies are
52** not misused.
53*/
54#ifdef SQLITE_DEBUG
drhe4c88c02012-01-04 12:57:45 +000055# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
drh2b4ded92010-09-27 21:09:31 +000056#else
57# define memAboutToChange(P,M)
58#endif
59
60/*
drh487ab3c2001-11-08 00:45:21 +000061** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000062** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000063** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000064** working correctly. This variable has no function other than to
65** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000066*/
drh0f7eb612006-08-08 13:51:43 +000067#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000068int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000069#endif
drh487ab3c2001-11-08 00:45:21 +000070
drhf6038712004-02-08 18:07:34 +000071/*
72** When this global variable is positive, it gets decremented once before
drhe4c88c02012-01-04 12:57:45 +000073** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
74** field of the sqlite3 structure is set in order to simulate an interrupt.
drhf6038712004-02-08 18:07:34 +000075**
76** This facility is used for testing purposes only. It does not function
77** in an ordinary build.
78*/
drh0f7eb612006-08-08 13:51:43 +000079#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000080int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000081#endif
drh1350b032002-02-27 19:00:20 +000082
danielk19777e18c252004-05-25 11:47:24 +000083/*
drh6bf89572004-11-03 16:27:01 +000084** The next global variable is incremented each type the OP_Sort opcode
85** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000086** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000087** has no function other than to help verify the correct operation of the
88** library.
89*/
drh0f7eb612006-08-08 13:51:43 +000090#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000091int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000092#endif
drh6bf89572004-11-03 16:27:01 +000093
94/*
drhae7e1512007-05-02 16:51:59 +000095** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000096** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000097** use this information to make sure that the zero-blob functionality
98** is working correctly. This variable has no function other than to
99** help verify the correct operation of the library.
100*/
101#ifdef SQLITE_TEST
102int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +0000103static void updateMaxBlobsize(Mem *p){
104 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
105 sqlite3_max_blobsize = p->n;
106 }
107}
drhae7e1512007-05-02 16:51:59 +0000108#endif
109
110/*
dan0ff297e2009-09-25 17:03:14 +0000111** The next global variable is incremented each type the OP_Found opcode
112** is executed. This is used to test whether or not the foreign key
113** operation implemented using OP_FkIsZero is working. This variable
114** has no function other than to help verify the correct operation of the
115** library.
116*/
117#ifdef SQLITE_TEST
118int sqlite3_found_count = 0;
119#endif
120
121/*
drhb7654112008-01-12 12:48:07 +0000122** Test a register to see if it exceeds the current maximum blob size.
123** If it does, record the new maximum blob size.
124*/
drh678ccce2008-03-31 18:19:54 +0000125#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
drhca48c902008-01-18 14:08:24 +0000126# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000127#else
128# define UPDATE_MAX_BLOBSIZE(P)
129#endif
130
131/*
drh9cbf3422008-01-17 16:22:13 +0000132** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000133** already. Return non-zero if a malloc() fails.
134*/
drhb21c8cd2007-08-21 19:33:56 +0000135#define Stringify(P, enc) \
136 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
drhf4479502004-05-27 03:12:53 +0000137 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000138
139/*
danielk1977bd7e4602004-05-24 07:34:48 +0000140** An ephemeral string value (signified by the MEM_Ephem flag) contains
141** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000142** is responsible for deallocating that string. Because the register
143** does not control the string, it might be deleted without the register
144** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000145**
146** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000147** string that the register itself controls. In other words, it
danielk1977bd7e4602004-05-24 07:34:48 +0000148** converts an MEM_Ephem string into an MEM_Dyn string.
149*/
drhb21c8cd2007-08-21 19:33:56 +0000150#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000151 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000152 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000153
dan689ab892011-08-12 15:02:00 +0000154/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
dan689ab892011-08-12 15:02:00 +0000155# define isSorter(x) ((x)->pSorter!=0)
dan689ab892011-08-12 15:02:00 +0000156
danielk19771cc5ed82007-05-16 17:28:43 +0000157/*
shane21e7feb2008-05-30 15:59:49 +0000158** Argument pMem points at a register that will be passed to a
danielk1977c572ef72004-05-27 09:28:41 +0000159** user-defined function or returned to the user as the result of a query.
dan937d0de2009-10-15 18:35:38 +0000160** This routine sets the pMem->type variable used by the sqlite3_value_*()
161** routines.
danielk1977c572ef72004-05-27 09:28:41 +0000162*/
dan937d0de2009-10-15 18:35:38 +0000163void sqlite3VdbeMemStoreType(Mem *pMem){
danielk1977c572ef72004-05-27 09:28:41 +0000164 int flags = pMem->flags;
165 if( flags & MEM_Null ){
drh9c054832004-05-31 18:51:57 +0000166 pMem->type = SQLITE_NULL;
danielk1977c572ef72004-05-27 09:28:41 +0000167 }
168 else if( flags & MEM_Int ){
drh9c054832004-05-31 18:51:57 +0000169 pMem->type = SQLITE_INTEGER;
danielk1977c572ef72004-05-27 09:28:41 +0000170 }
171 else if( flags & MEM_Real ){
drh9c054832004-05-31 18:51:57 +0000172 pMem->type = SQLITE_FLOAT;
danielk1977c572ef72004-05-27 09:28:41 +0000173 }
174 else if( flags & MEM_Str ){
drh9c054832004-05-31 18:51:57 +0000175 pMem->type = SQLITE_TEXT;
danielk1977c572ef72004-05-27 09:28:41 +0000176 }else{
drh9c054832004-05-31 18:51:57 +0000177 pMem->type = SQLITE_BLOB;
danielk1977c572ef72004-05-27 09:28:41 +0000178 }
179}
danielk19778a6b5412004-05-24 07:04:25 +0000180
181/*
drhdfe88ec2008-11-03 20:55:06 +0000182** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000183** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000184*/
drhdfe88ec2008-11-03 20:55:06 +0000185static VdbeCursor *allocateCursor(
186 Vdbe *p, /* The virtual machine */
187 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000188 int nField, /* Number of fields in the table or index */
drhe4c88c02012-01-04 12:57:45 +0000189 int iDb, /* Database the cursor belongs to, or -1 */
drh3e9ca092009-09-08 01:14:48 +0000190 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
danielk1977cd3e8f72008-03-25 09:47:35 +0000191){
192 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000193 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000194 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000195 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000196 **
197 ** * Sometimes cursor numbers are used for a couple of different
198 ** purposes in a vdbe program. The different uses might require
199 ** different sized allocations. Memory cells provide growable
200 ** allocations.
201 **
202 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
203 ** be freed lazily via the sqlite3_release_memory() API. This
204 ** minimizes the number of malloc calls made by the system.
205 **
206 ** Memory cells for cursors are allocated at the top of the address
207 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
208 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
209 */
210 Mem *pMem = &p->aMem[p->nMem-iCur];
211
danielk19775f096132008-03-28 15:44:09 +0000212 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000213 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000214 nByte =
drhc54055b2009-11-13 17:05:53 +0000215 ROUND8(sizeof(VdbeCursor)) +
danielk1977cd3e8f72008-03-25 09:47:35 +0000216 (isBtreeCursor?sqlite3BtreeCursorSize():0) +
217 2*nField*sizeof(u32);
218
drh290c1942004-08-21 17:54:45 +0000219 assert( iCur<p->nCursor );
220 if( p->apCsr[iCur] ){
danielk1977be718892006-06-23 08:05:19 +0000221 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000222 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000223 }
danielk1977cd3e8f72008-03-25 09:47:35 +0000224 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
drhdfe88ec2008-11-03 20:55:06 +0000225 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhf25a5072009-11-18 23:01:25 +0000226 memset(pCx, 0, sizeof(VdbeCursor));
danielk197794eb6a12005-12-15 15:22:08 +0000227 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000228 pCx->nField = nField;
229 if( nField ){
drhc54055b2009-11-13 17:05:53 +0000230 pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
danielk1977cd3e8f72008-03-25 09:47:35 +0000231 }
232 if( isBtreeCursor ){
drhdfe88ec2008-11-03 20:55:06 +0000233 pCx->pCursor = (BtCursor*)
drhc54055b2009-11-13 17:05:53 +0000234 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
drhf25a5072009-11-18 23:01:25 +0000235 sqlite3BtreeCursorZero(pCx->pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000236 }
danielk197794eb6a12005-12-15 15:22:08 +0000237 }
drh4774b132004-06-12 20:12:51 +0000238 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000239}
240
danielk19773d1bfea2004-05-14 11:00:53 +0000241/*
drh29d72102006-02-09 22:13:41 +0000242** Try to convert a value into a numeric representation if we can
243** do so without loss of information. In other words, if the string
244** looks like a number, convert it into a number. If it does not
245** look like a number, leave it alone.
246*/
drhb21c8cd2007-08-21 19:33:56 +0000247static void applyNumericAffinity(Mem *pRec){
drh29d72102006-02-09 22:13:41 +0000248 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
drh9339da12010-09-30 00:50:49 +0000249 double rValue;
250 i64 iValue;
danb7dca7d2010-03-05 16:32:12 +0000251 u8 enc = pRec->enc;
drh9339da12010-09-30 00:50:49 +0000252 if( (pRec->flags&MEM_Str)==0 ) return;
253 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
shaneh5f1d6b62010-09-30 16:51:25 +0000254 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
drh9339da12010-09-30 00:50:49 +0000255 pRec->u.i = iValue;
256 pRec->flags |= MEM_Int;
257 }else{
258 pRec->r = rValue;
259 pRec->flags |= MEM_Real;
drh29d72102006-02-09 22:13:41 +0000260 }
261 }
262}
263
264/*
drh8a512562005-11-14 22:29:05 +0000265** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000266**
drh8a512562005-11-14 22:29:05 +0000267** SQLITE_AFF_INTEGER:
268** SQLITE_AFF_REAL:
269** SQLITE_AFF_NUMERIC:
270** Try to convert pRec to an integer representation or a
271** floating-point representation if an integer representation
272** is not possible. Note that the integer representation is
273** always preferred, even if the affinity is REAL, because
274** an integer representation is more space efficient on disk.
275**
276** SQLITE_AFF_TEXT:
277** Convert pRec to a text representation.
278**
279** SQLITE_AFF_NONE:
280** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000281*/
drh17435752007-08-16 04:30:38 +0000282static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000283 Mem *pRec, /* The value to apply affinity to */
284 char affinity, /* The affinity to be applied */
285 u8 enc /* Use this text encoding */
286){
drh8a512562005-11-14 22:29:05 +0000287 if( affinity==SQLITE_AFF_TEXT ){
drh17c40292004-07-21 02:53:29 +0000288 /* Only attempt the conversion to TEXT if there is an integer or real
289 ** representation (blob and NULL do not get converted) but no string
290 ** representation.
291 */
292 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
drhb21c8cd2007-08-21 19:33:56 +0000293 sqlite3VdbeMemStringify(pRec, enc);
drh17c40292004-07-21 02:53:29 +0000294 }
295 pRec->flags &= ~(MEM_Real|MEM_Int);
drh8a512562005-11-14 22:29:05 +0000296 }else if( affinity!=SQLITE_AFF_NONE ){
297 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
298 || affinity==SQLITE_AFF_NUMERIC );
drhb21c8cd2007-08-21 19:33:56 +0000299 applyNumericAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000300 if( pRec->flags & MEM_Real ){
drh8df447f2005-11-01 15:48:24 +0000301 sqlite3VdbeIntegerAffinity(pRec);
drh17c40292004-07-21 02:53:29 +0000302 }
danielk19773d1bfea2004-05-14 11:00:53 +0000303 }
304}
305
danielk1977aee18ef2005-03-09 12:26:50 +0000306/*
drh29d72102006-02-09 22:13:41 +0000307** Try to convert the type of a function argument or a result column
308** into a numeric representation. Use either INTEGER or REAL whichever
309** is appropriate. But only do the conversion if it is possible without
310** loss of information and return the revised type of the argument.
drh29d72102006-02-09 22:13:41 +0000311*/
312int sqlite3_value_numeric_type(sqlite3_value *pVal){
313 Mem *pMem = (Mem*)pVal;
drhe5a8a1d2010-11-18 12:31:24 +0000314 if( pMem->type==SQLITE_TEXT ){
315 applyNumericAffinity(pMem);
316 sqlite3VdbeMemStoreType(pMem);
317 }
drh29d72102006-02-09 22:13:41 +0000318 return pMem->type;
319}
320
321/*
danielk1977aee18ef2005-03-09 12:26:50 +0000322** Exported version of applyAffinity(). This one works on sqlite3_value*,
323** not the internal Mem* type.
324*/
danielk19771e536952007-08-16 10:09:01 +0000325void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000326 sqlite3_value *pVal,
327 u8 affinity,
328 u8 enc
329){
drhb21c8cd2007-08-21 19:33:56 +0000330 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000331}
332
danielk1977b5402fb2005-01-12 07:15:04 +0000333#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000334/*
danielk1977ca6b2912004-05-21 10:49:47 +0000335** Write a nice string representation of the contents of cell pMem
336** into buffer zBuf, length nBuf.
337*/
drh74161702006-02-24 02:53:49 +0000338void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000339 char *zCsr = zBuf;
340 int f = pMem->flags;
341
drh57196282004-10-06 15:41:16 +0000342 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000343
danielk1977ca6b2912004-05-21 10:49:47 +0000344 if( f&MEM_Blob ){
345 int i;
346 char c;
347 if( f & MEM_Dyn ){
348 c = 'z';
349 assert( (f & (MEM_Static|MEM_Ephem))==0 );
350 }else if( f & MEM_Static ){
351 c = 't';
352 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
353 }else if( f & MEM_Ephem ){
354 c = 'e';
355 assert( (f & (MEM_Static|MEM_Dyn))==0 );
356 }else{
357 c = 's';
358 }
359
drh5bb3eb92007-05-04 13:15:55 +0000360 sqlite3_snprintf(100, zCsr, "%c", c);
drhea678832008-12-10 19:26:22 +0000361 zCsr += sqlite3Strlen30(zCsr);
drh5bb3eb92007-05-04 13:15:55 +0000362 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000363 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000364 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000365 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000366 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000367 }
368 for(i=0; i<16 && i<pMem->n; i++){
369 char z = pMem->z[i];
370 if( z<32 || z>126 ) *zCsr++ = '.';
371 else *zCsr++ = z;
372 }
373
drhe718efe2007-05-10 21:14:03 +0000374 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000375 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000376 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000377 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000378 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000379 }
danielk1977b1bc9532004-05-22 03:05:33 +0000380 *zCsr = '\0';
381 }else if( f & MEM_Str ){
382 int j, k;
383 zBuf[0] = ' ';
384 if( f & MEM_Dyn ){
385 zBuf[1] = 'z';
386 assert( (f & (MEM_Static|MEM_Ephem))==0 );
387 }else if( f & MEM_Static ){
388 zBuf[1] = 't';
389 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
390 }else if( f & MEM_Ephem ){
391 zBuf[1] = 'e';
392 assert( (f & (MEM_Static|MEM_Dyn))==0 );
393 }else{
394 zBuf[1] = 's';
395 }
396 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000397 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000398 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000399 zBuf[k++] = '[';
400 for(j=0; j<15 && j<pMem->n; j++){
401 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000402 if( c>=0x20 && c<0x7f ){
403 zBuf[k++] = c;
404 }else{
405 zBuf[k++] = '.';
406 }
407 }
408 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000409 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000410 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000411 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000412 }
danielk1977ca6b2912004-05-21 10:49:47 +0000413}
414#endif
415
drh5b6afba2008-01-05 16:29:28 +0000416#ifdef SQLITE_DEBUG
417/*
418** Print the value of a register for tracing purposes:
419*/
drh84e55a82013-11-13 17:58:23 +0000420static void memTracePrint(Mem *p){
drh953f7612012-12-07 22:18:54 +0000421 if( p->flags & MEM_Invalid ){
drh84e55a82013-11-13 17:58:23 +0000422 printf(" undefined");
drh953f7612012-12-07 22:18:54 +0000423 }else if( p->flags & MEM_Null ){
drh84e55a82013-11-13 17:58:23 +0000424 printf(" NULL");
drh5b6afba2008-01-05 16:29:28 +0000425 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
drh84e55a82013-11-13 17:58:23 +0000426 printf(" si:%lld", p->u.i);
drh5b6afba2008-01-05 16:29:28 +0000427 }else if( p->flags & MEM_Int ){
drh84e55a82013-11-13 17:58:23 +0000428 printf(" i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000429#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000430 }else if( p->flags & MEM_Real ){
drh84e55a82013-11-13 17:58:23 +0000431 printf(" r:%g", p->r);
drh0b3bf922009-06-15 20:45:34 +0000432#endif
drh733bf1b2009-04-22 00:47:00 +0000433 }else if( p->flags & MEM_RowSet ){
drh84e55a82013-11-13 17:58:23 +0000434 printf(" (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000435 }else{
436 char zBuf[200];
437 sqlite3VdbeMemPrettyPrint(p, zBuf);
drh84e55a82013-11-13 17:58:23 +0000438 printf(" %s", zBuf);
drh5b6afba2008-01-05 16:29:28 +0000439 }
440}
drh84e55a82013-11-13 17:58:23 +0000441static void registerTrace(int iReg, Mem *p){
442 printf("REG[%d] = ", iReg);
443 memTracePrint(p);
444 printf("\n");
drh5b6afba2008-01-05 16:29:28 +0000445}
446#endif
447
448#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000449# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
drh5b6afba2008-01-05 16:29:28 +0000450#else
451# define REGISTER_TRACE(R,M)
452#endif
453
danielk197784ac9d02004-05-18 09:58:06 +0000454
drh7b396862003-01-01 23:06:20 +0000455#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000456
457/*
458** hwtime.h contains inline assembler code for implementing
459** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000460*/
shane9bcbdad2008-05-29 20:22:37 +0000461#include "hwtime.h"
462
drh7b396862003-01-01 23:06:20 +0000463#endif
464
drh8c74a8c2002-08-25 19:20:40 +0000465/*
drhcaec2f12003-01-07 02:47:47 +0000466** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
danielk19776f8a5032004-05-10 10:34:51 +0000467** sqlite3_interrupt() routine has been called. If it has been, then
drhcaec2f12003-01-07 02:47:47 +0000468** processing of the VDBE program is interrupted.
469**
470** This macro added to every instruction that does a jump in order to
471** implement a loop. This test used to be on every single instruction,
drhe4c88c02012-01-04 12:57:45 +0000472** but that meant we more testing than we needed. By only testing the
drhcaec2f12003-01-07 02:47:47 +0000473** flag on jump instructions, we get a (small) speed improvement.
474*/
475#define CHECK_FOR_INTERRUPT \
drh881feaa2006-07-26 01:39:30 +0000476 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drhcaec2f12003-01-07 02:47:47 +0000477
478
danielk1977fd7f0452008-12-17 17:30:26 +0000479#ifndef NDEBUG
480/*
481** This function is only called from within an assert() expression. It
482** checks that the sqlite3.nTransaction variable is correctly set to
483** the number of non-transaction savepoints currently in the
484** linked list starting at sqlite3.pSavepoint.
485**
486** Usage:
487**
488** assert( checkSavepointCount(db) );
489*/
490static int checkSavepointCount(sqlite3 *db){
491 int n = 0;
492 Savepoint *p;
493 for(p=db->pSavepoint; p; p=p->pNext) n++;
494 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
495 return 1;
496}
497#endif
498
drhb9755982010-07-24 16:34:37 +0000499
500/*
drhb86ccfb2003-01-28 23:13:10 +0000501** Execute as much of a VDBE program as we can then return.
502**
danielk19774adee202004-05-08 08:23:19 +0000503** sqlite3VdbeMakeReady() must be called before this routine in order to
drhb86ccfb2003-01-28 23:13:10 +0000504** close the program with a final OP_Halt and to set up the callbacks
505** and the error message pointer.
506**
507** Whenever a row or result data is available, this routine will either
508** invoke the result callback (if there is one) or return with
drh326dce72003-01-29 14:06:07 +0000509** SQLITE_ROW.
drhb86ccfb2003-01-28 23:13:10 +0000510**
511** If an attempt is made to open a locked database, then this routine
512** will either invoke the busy callback (if there is one) or it will
513** return SQLITE_BUSY.
514**
515** If an error occurs, an error message is written to memory obtained
drh17435752007-08-16 04:30:38 +0000516** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
drhb86ccfb2003-01-28 23:13:10 +0000517** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
518**
519** If the callback ever returns non-zero, then the program exits
520** immediately. There will be no error message but the p->rc field is
521** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
522**
drh9468c7f2003-03-07 19:50:07 +0000523** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
524** routine to return SQLITE_ERROR.
drhb86ccfb2003-01-28 23:13:10 +0000525**
526** Other fatal errors return SQLITE_ERROR.
527**
danielk19774adee202004-05-08 08:23:19 +0000528** After this routine has finished, sqlite3VdbeFinalize() should be
drhb86ccfb2003-01-28 23:13:10 +0000529** used to clean up the mess that was left behind.
530*/
danielk19774adee202004-05-08 08:23:19 +0000531int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000532 Vdbe *p /* The VDBE */
533){
shaneh84f4b2f2010-02-26 01:46:54 +0000534 int pc=0; /* The program counter */
drhbbe879d2009-11-14 18:04:35 +0000535 Op *aOp = p->aOp; /* Copy of p->aOp */
drhb86ccfb2003-01-28 23:13:10 +0000536 Op *pOp; /* Current operation */
537 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000538 sqlite3 *db = p->db; /* The database */
drhcdf011d2011-04-04 21:25:28 +0000539 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
drh8079a0d2006-01-12 17:20:50 +0000540 u8 encoding = ENC(db); /* The database encoding */
drhbf159fa2013-06-25 22:01:22 +0000541 int iCompare = 0; /* Result of last OP_Compare operation */
542 unsigned nVmStep = 0; /* Number of virtual machine steps */
drh49afe3a2013-07-10 03:05:14 +0000543#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
drh323df792013-08-05 19:11:29 +0000544 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
drh49afe3a2013-07-10 03:05:14 +0000545#endif
drha6c2ed92009-11-14 23:22:23 +0000546 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000547 Mem *pIn1 = 0; /* 1st input operand */
548 Mem *pIn2 = 0; /* 2nd input operand */
549 Mem *pIn3 = 0; /* 3rd input operand */
550 Mem *pOut = 0; /* Output operand */
shanebe217792009-03-05 04:20:31 +0000551 int *aPermute = 0; /* Permutation of columns for OP_Compare */
drh99a66922011-05-13 18:51:42 +0000552 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
drhb86ccfb2003-01-28 23:13:10 +0000553#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000554 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000555 int origPc; /* Program counter at start of opcode */
556#endif
drh856c1032009-06-02 15:21:42 +0000557 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000558
drhca48c902008-01-18 14:08:24 +0000559 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
drhbdaec522011-04-04 00:14:43 +0000560 sqlite3VdbeEnter(p);
danielk19772e588c72005-12-09 14:25:08 +0000561 if( p->rc==SQLITE_NOMEM ){
562 /* This happens if a malloc() inside a call to sqlite3_column_text() or
563 ** sqlite3_column_text16() failed. */
564 goto no_mem;
565 }
drh3a840692003-01-29 22:58:26 +0000566 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
drh1713afb2013-06-28 01:24:57 +0000567 assert( p->bIsReader || p->readOnly!=0 );
drh3a840692003-01-29 22:58:26 +0000568 p->rc = SQLITE_OK;
drh95a7b3e2013-09-16 12:57:19 +0000569 p->iCurrentTime = 0;
drhb86ccfb2003-01-28 23:13:10 +0000570 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000571 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000572 db->busyHandler.nBusy = 0;
drh93581642004-02-12 13:02:55 +0000573 CHECK_FOR_INTERRUPT;
drh602c2372007-03-01 00:29:13 +0000574 sqlite3VdbeIOTraceSql(p);
drh0d1961e2013-07-25 16:27:51 +0000575#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
576 if( db->xProgress ){
577 assert( 0 < db->nProgressOps );
drh9b47ee32013-08-20 03:13:51 +0000578 nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
drh0d1961e2013-07-25 16:27:51 +0000579 if( nProgressLimit==0 ){
580 nProgressLimit = db->nProgressOps;
581 }else{
582 nProgressLimit %= (unsigned)db->nProgressOps;
583 }
584 }
585#endif
drh3c23a882007-01-09 14:01:13 +0000586#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000587 sqlite3BeginBenignMalloc();
drh84e55a82013-11-13 17:58:23 +0000588 if( p->pc==0
589 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
590 ){
drh3c23a882007-01-09 14:01:13 +0000591 int i;
drh84e55a82013-11-13 17:58:23 +0000592 int once = 1;
drh3c23a882007-01-09 14:01:13 +0000593 sqlite3VdbePrintSql(p);
drh84e55a82013-11-13 17:58:23 +0000594 if( p->db->flags & SQLITE_VdbeListing ){
595 printf("VDBE Program Listing:\n");
596 for(i=0; i<p->nOp; i++){
597 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
598 }
drh3c23a882007-01-09 14:01:13 +0000599 }
drh84e55a82013-11-13 17:58:23 +0000600 if( p->db->flags & SQLITE_VdbeEQP ){
601 for(i=0; i<p->nOp; i++){
602 if( aOp[i].opcode==OP_Explain ){
603 if( once ) printf("VDBE Query Plan:\n");
604 printf("%s\n", aOp[i].p4.z);
605 once = 0;
606 }
607 }
608 }
609 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
drh3c23a882007-01-09 14:01:13 +0000610 }
danielk19772d1d86f2008-06-20 14:59:51 +0000611 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000612#endif
drhb86ccfb2003-01-28 23:13:10 +0000613 for(pc=p->pc; rc==SQLITE_OK; pc++){
drhcaec2f12003-01-07 02:47:47 +0000614 assert( pc>=0 && pc<p->nOp );
drh17435752007-08-16 04:30:38 +0000615 if( db->mallocFailed ) goto no_mem;
drh7b396862003-01-01 23:06:20 +0000616#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +0000617 origPc = pc;
shane9bcbdad2008-05-29 20:22:37 +0000618 start = sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000619#endif
drhbf159fa2013-06-25 22:01:22 +0000620 nVmStep++;
drhbbe879d2009-11-14 18:04:35 +0000621 pOp = &aOp[pc];
drh6e142f52000-06-08 13:36:40 +0000622
danielk19778b60e0f2005-01-12 09:10:39 +0000623 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000624 */
danielk19778b60e0f2005-01-12 09:10:39 +0000625#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000626 if( db->flags & SQLITE_VdbeTrace ){
627 sqlite3VdbePrintOp(stdout, pc, pOp);
drh75897232000-05-29 14:26:00 +0000628 }
drh3f7d4e42004-07-24 14:35:58 +0000629#endif
630
drh6e142f52000-06-08 13:36:40 +0000631
drhf6038712004-02-08 18:07:34 +0000632 /* Check to see if we need to simulate an interrupt. This only happens
633 ** if we have a special test build.
634 */
635#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000636 if( sqlite3_interrupt_count>0 ){
637 sqlite3_interrupt_count--;
638 if( sqlite3_interrupt_count==0 ){
639 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000640 }
641 }
642#endif
643
drhb5b407e2012-08-29 10:28:43 +0000644 /* On any opcode with the "out2-prerelease" tag, free any
drh3c657212009-11-17 23:59:58 +0000645 ** external allocations out of mem[p2] and set mem[p2] to be
646 ** an undefined integer. Opcodes will either fill in the integer
647 ** value or convert mem[p2] to a different type.
drh4c583122008-01-04 22:01:03 +0000648 */
drha6c2ed92009-11-14 23:22:23 +0000649 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
drh3c657212009-11-17 23:59:58 +0000650 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
651 assert( pOp->p2>0 );
dan3bc9f742013-08-15 16:18:39 +0000652 assert( pOp->p2<=(p->nMem-p->nCursor) );
drh3c657212009-11-17 23:59:58 +0000653 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +0000654 memAboutToChange(p, pOut);
drhe4c88c02012-01-04 12:57:45 +0000655 VdbeMemRelease(pOut);
drh3c657212009-11-17 23:59:58 +0000656 pOut->flags = MEM_Int;
drh4c583122008-01-04 22:01:03 +0000657 }
drh3c657212009-11-17 23:59:58 +0000658
659 /* Sanity checking on other operands */
660#ifdef SQLITE_DEBUG
661 if( (pOp->opflags & OPFLG_IN1)!=0 ){
662 assert( pOp->p1>0 );
dan3bc9f742013-08-15 16:18:39 +0000663 assert( pOp->p1<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000664 assert( memIsValid(&aMem[pOp->p1]) );
drh3c657212009-11-17 23:59:58 +0000665 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
666 }
667 if( (pOp->opflags & OPFLG_IN2)!=0 ){
668 assert( pOp->p2>0 );
dan3bc9f742013-08-15 16:18:39 +0000669 assert( pOp->p2<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000670 assert( memIsValid(&aMem[pOp->p2]) );
drh3c657212009-11-17 23:59:58 +0000671 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
672 }
673 if( (pOp->opflags & OPFLG_IN3)!=0 ){
674 assert( pOp->p3>0 );
dan3bc9f742013-08-15 16:18:39 +0000675 assert( pOp->p3<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000676 assert( memIsValid(&aMem[pOp->p3]) );
drh3c657212009-11-17 23:59:58 +0000677 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
678 }
679 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
680 assert( pOp->p2>0 );
dan3bc9f742013-08-15 16:18:39 +0000681 assert( pOp->p2<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000682 memAboutToChange(p, &aMem[pOp->p2]);
drh3c657212009-11-17 23:59:58 +0000683 }
684 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
685 assert( pOp->p3>0 );
dan3bc9f742013-08-15 16:18:39 +0000686 assert( pOp->p3<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000687 memAboutToChange(p, &aMem[pOp->p3]);
drh3c657212009-11-17 23:59:58 +0000688 }
689#endif
drh93952eb2009-11-13 19:43:43 +0000690
drh75897232000-05-29 14:26:00 +0000691 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000692
drh5e00f6c2001-09-13 13:46:56 +0000693/*****************************************************************************
694** What follows is a massive switch statement where each case implements a
695** separate instruction in the virtual machine. If we follow the usual
696** indentation conventions, each case should be indented by 6 spaces. But
697** that is a lot of wasted space on the left margin. So the code within
698** the switch statement will break with convention and be flush-left. Another
699** big comment (similar to this one) will mark the point in the code where
700** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000701**
702** The formatting of each case is important. The makefile for SQLite
703** generates two C files "opcodes.h" and "opcodes.c" by scanning this
704** file looking for lines that begin with "case OP_". The opcodes.h files
705** will be filled with #defines that give unique integer values to each
706** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000707** each string is the symbolic name for the corresponding opcode. If the
708** case statement is followed by a comment of the form "/# same as ... #/"
709** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000710**
drh9cbf3422008-01-17 16:22:13 +0000711** Other keywords in the comment that follows each case are used to
712** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
713** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
714** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000715**
drhac82fcf2002-09-08 17:23:41 +0000716** Documentation about VDBE opcodes is generated by scanning this file
717** for lines of that contain "Opcode:". That line and all subsequent
718** comment lines are used in the generation of the opcode.html documentation
719** file.
720**
721** SUMMARY:
722**
723** Formatting is important to scripts that scan this file.
724** Do not deviate from the formatting style currently in use.
725**
drh5e00f6c2001-09-13 13:46:56 +0000726*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000727
drh9cbf3422008-01-17 16:22:13 +0000728/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000729**
730** An unconditional jump to address P2.
731** The next instruction executed will be
732** the one at index P2 from the beginning of
733** the program.
734*/
drh9cbf3422008-01-17 16:22:13 +0000735case OP_Goto: { /* jump */
drh5e00f6c2001-09-13 13:46:56 +0000736 pc = pOp->p2 - 1;
drh49afe3a2013-07-10 03:05:14 +0000737
738 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
739 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
740 ** completion. Check to see if sqlite3_interrupt() has been called
741 ** or if the progress callback needs to be invoked.
742 **
743 ** This code uses unstructured "goto" statements and does not look clean.
744 ** But that is not due to sloppy coding habits. The code is written this
745 ** way for performance, to avoid having to run the interrupt and progress
746 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
747 ** faster according to "valgrind --tool=cachegrind" */
748check_for_interrupt:
749 CHECK_FOR_INTERRUPT;
750#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
751 /* Call the progress callback if it is configured and the required number
752 ** of VDBE ops have been executed (either since this invocation of
753 ** sqlite3VdbeExec() or since last time the progress callback was called).
754 ** If the progress callback returns non-zero, exit the virtual machine with
755 ** a return code SQLITE_ABORT.
756 */
drh0d1961e2013-07-25 16:27:51 +0000757 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
drh49afe3a2013-07-10 03:05:14 +0000758 int prc;
759 prc = db->xProgress(db->pProgressArg);
760 if( prc!=0 ){
761 rc = SQLITE_INTERRUPT;
762 goto vdbe_error_halt;
763 }
drh0d1961e2013-07-25 16:27:51 +0000764 if( db->xProgress!=0 ){
765 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
766 }
drh49afe3a2013-07-10 03:05:14 +0000767 }
768#endif
769
drh5e00f6c2001-09-13 13:46:56 +0000770 break;
771}
drh75897232000-05-29 14:26:00 +0000772
drh2eb95372008-06-06 15:04:36 +0000773/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000774**
drh2eb95372008-06-06 15:04:36 +0000775** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000776** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000777*/
drhb8475df2011-12-09 16:21:19 +0000778case OP_Gosub: { /* jump */
dan3bc9f742013-08-15 16:18:39 +0000779 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
drh3c657212009-11-17 23:59:58 +0000780 pIn1 = &aMem[pOp->p1];
drh2eb95372008-06-06 15:04:36 +0000781 assert( (pIn1->flags & MEM_Dyn)==0 );
drh2b4ded92010-09-27 21:09:31 +0000782 memAboutToChange(p, pIn1);
drh2eb95372008-06-06 15:04:36 +0000783 pIn1->flags = MEM_Int;
784 pIn1->u.i = pc;
785 REGISTER_TRACE(pOp->p1, pIn1);
drh8c74a8c2002-08-25 19:20:40 +0000786 pc = pOp->p2 - 1;
787 break;
788}
789
drh2eb95372008-06-06 15:04:36 +0000790/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000791**
drh2eb95372008-06-06 15:04:36 +0000792** Jump to the next instruction after the address in register P1.
drh8c74a8c2002-08-25 19:20:40 +0000793*/
drh2eb95372008-06-06 15:04:36 +0000794case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000795 pIn1 = &aMem[pOp->p1];
drh2eb95372008-06-06 15:04:36 +0000796 assert( pIn1->flags & MEM_Int );
drh9c1905f2008-12-10 22:32:56 +0000797 pc = (int)pIn1->u.i;
drh8c74a8c2002-08-25 19:20:40 +0000798 break;
799}
800
drhe00ee6e2008-06-20 15:24:01 +0000801/* Opcode: Yield P1 * * * *
802**
803** Swap the program counter with the value in register P1.
804*/
danielk1977f73ab8b2008-12-29 10:39:53 +0000805case OP_Yield: { /* in1 */
drhe00ee6e2008-06-20 15:24:01 +0000806 int pcDest;
drh3c657212009-11-17 23:59:58 +0000807 pIn1 = &aMem[pOp->p1];
drhe00ee6e2008-06-20 15:24:01 +0000808 assert( (pIn1->flags & MEM_Dyn)==0 );
809 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000810 pcDest = (int)pIn1->u.i;
drhe00ee6e2008-06-20 15:24:01 +0000811 pIn1->u.i = pc;
812 REGISTER_TRACE(pOp->p1, pIn1);
813 pc = pcDest;
814 break;
815}
816
drhf9c8ce32013-11-05 13:33:55 +0000817/* Opcode: HaltIfNull P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +0000818** Synopsis: if r[P3] null then halt
drh5053a792009-02-20 03:02:23 +0000819**
drhef8662b2011-06-20 21:47:58 +0000820** Check the value in register P3. If it is NULL then Halt using
drh5053a792009-02-20 03:02:23 +0000821** parameter P1, P2, and P4 as if this were a Halt instruction. If the
822** value in register P3 is not NULL, then this routine is a no-op.
drhf9c8ce32013-11-05 13:33:55 +0000823** The P5 parameter should be 1.
drh5053a792009-02-20 03:02:23 +0000824*/
825case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000826 pIn3 = &aMem[pOp->p3];
drh5053a792009-02-20 03:02:23 +0000827 if( (pIn3->flags & MEM_Null)==0 ) break;
828 /* Fall through into OP_Halt */
829}
drhe00ee6e2008-06-20 15:24:01 +0000830
drhf9c8ce32013-11-05 13:33:55 +0000831/* Opcode: Halt P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +0000832**
drh3d4501e2008-12-04 20:40:10 +0000833** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000834** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000835**
drh92f02c32004-09-02 14:57:08 +0000836** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
837** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
838** For errors, it can be some other value. If P1!=0 then P2 will determine
839** whether or not to rollback the current transaction. Do not rollback
840** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
841** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000842** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000843**
drh66a51672008-01-03 00:01:23 +0000844** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000845**
drhf9c8ce32013-11-05 13:33:55 +0000846** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
847**
848** 0: (no change)
849** 1: NOT NULL contraint failed: P4
850** 2: UNIQUE constraint failed: P4
851** 3: CHECK constraint failed: P4
852** 4: FOREIGN KEY constraint failed: P4
853**
854** If P5 is not zero and P4 is NULL, then everything after the ":" is
855** omitted.
856**
drh9cfcf5d2002-01-29 18:41:24 +0000857** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000858** every program. So a jump past the last instruction of the program
859** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000860*/
drh9cbf3422008-01-17 16:22:13 +0000861case OP_Halt: {
drhf9c8ce32013-11-05 13:33:55 +0000862 const char *zType;
863 const char *zLogFmt;
864
dan165921a2009-08-28 18:53:45 +0000865 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000866 /* Halt the sub-program. Return control to the parent frame. */
dan165921a2009-08-28 18:53:45 +0000867 VdbeFrame *pFrame = p->pFrame;
868 p->pFrame = pFrame->pParent;
869 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000870 sqlite3VdbeSetChanges(db, p->nChange);
dan165921a2009-08-28 18:53:45 +0000871 pc = sqlite3VdbeFrameRestore(pFrame);
drh99a66922011-05-13 18:51:42 +0000872 lastRowid = db->lastRowid;
dan165921a2009-08-28 18:53:45 +0000873 if( pOp->p2==OE_Ignore ){
dan2832ad42009-08-31 15:27:27 +0000874 /* Instruction pc is the OP_Program that invoked the sub-program
875 ** currently being halted. If the p2 instruction of this OP_Halt
876 ** instruction is set to OE_Ignore, then the sub-program is throwing
877 ** an IGNORE exception. In this case jump to the address specified
878 ** as the p2 of the calling OP_Program. */
dan76d462e2009-08-30 11:42:51 +0000879 pc = p->aOp[pc].p2-1;
dan165921a2009-08-28 18:53:45 +0000880 }
drhbbe879d2009-11-14 18:04:35 +0000881 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000882 aMem = p->aMem;
dan165921a2009-08-28 18:53:45 +0000883 break;
884 }
drh92f02c32004-09-02 14:57:08 +0000885 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000886 p->errorAction = (u8)pOp->p2;
dan165921a2009-08-28 18:53:45 +0000887 p->pc = pc;
drhf9c8ce32013-11-05 13:33:55 +0000888 if( p->rc ){
drhd9b7ec92013-11-06 14:05:21 +0000889 if( pOp->p5 ){
890 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
891 "FOREIGN KEY" };
892 assert( pOp->p5>=1 && pOp->p5<=4 );
893 testcase( pOp->p5==1 );
894 testcase( pOp->p5==2 );
895 testcase( pOp->p5==3 );
896 testcase( pOp->p5==4 );
897 zType = azType[pOp->p5-1];
898 }else{
899 zType = 0;
900 }
drh4308e342013-11-11 16:55:52 +0000901 assert( zType!=0 || pOp->p4.z!=0 );
drhf9c8ce32013-11-05 13:33:55 +0000902 zLogFmt = "abort at %d in [%s]: %s";
903 if( zType && pOp->p4.z ){
904 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed: %s",
905 zType, pOp->p4.z);
906 }else if( pOp->p4.z ){
907 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
drhf9c8ce32013-11-05 13:33:55 +0000908 }else{
drh4308e342013-11-11 16:55:52 +0000909 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed", zType);
drhf9c8ce32013-11-05 13:33:55 +0000910 }
911 sqlite3_log(pOp->p1, zLogFmt, pc, p->zSql, p->zErrMsg);
drh9cfcf5d2002-01-29 18:41:24 +0000912 }
drh92f02c32004-09-02 14:57:08 +0000913 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +0000914 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +0000915 if( rc==SQLITE_BUSY ){
drh900b31e2007-08-28 02:27:51 +0000916 p->rc = rc = SQLITE_BUSY;
917 }else{
drhd91c1a12013-02-09 13:58:25 +0000918 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
drh648e2642013-07-11 15:03:32 +0000919 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
drh900b31e2007-08-28 02:27:51 +0000920 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +0000921 }
drh900b31e2007-08-28 02:27:51 +0000922 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +0000923}
drhc61053b2000-06-04 12:58:36 +0000924
drh4c583122008-01-04 22:01:03 +0000925/* Opcode: Integer P1 P2 * * *
drh81316f82013-10-29 20:40:47 +0000926** Synopsis: r[P2]=P1
drh5e00f6c2001-09-13 13:46:56 +0000927**
drh9cbf3422008-01-17 16:22:13 +0000928** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +0000929*/
drh4c583122008-01-04 22:01:03 +0000930case OP_Integer: { /* out2-prerelease */
drh4c583122008-01-04 22:01:03 +0000931 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +0000932 break;
933}
934
drh4c583122008-01-04 22:01:03 +0000935/* Opcode: Int64 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +0000936** Synopsis: r[P2]=P4
drh29dda4a2005-07-21 18:23:20 +0000937**
drh66a51672008-01-03 00:01:23 +0000938** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +0000939** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +0000940*/
drh4c583122008-01-04 22:01:03 +0000941case OP_Int64: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000942 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +0000943 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +0000944 break;
945}
drh4f26d6c2004-05-26 23:25:30 +0000946
drh13573c72010-01-12 17:04:07 +0000947#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +0000948/* Opcode: Real * P2 * P4 *
drh81316f82013-10-29 20:40:47 +0000949** Synopsis: r[P2]=P4
drhf4479502004-05-27 03:12:53 +0000950**
drh4c583122008-01-04 22:01:03 +0000951** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +0000952** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +0000953*/
drh4c583122008-01-04 22:01:03 +0000954case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
955 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +0000956 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh4c583122008-01-04 22:01:03 +0000957 pOut->r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +0000958 break;
959}
drh13573c72010-01-12 17:04:07 +0000960#endif
danielk1977cbb18d22004-05-28 11:37:27 +0000961
drh3c84ddf2008-01-09 02:15:38 +0000962/* Opcode: String8 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +0000963** Synopsis: r[P2]='P4'
danielk1977cbb18d22004-05-28 11:37:27 +0000964**
drh66a51672008-01-03 00:01:23 +0000965** P4 points to a nul terminated UTF-8 string. This opcode is transformed
danielk19770f69c1e2004-05-29 11:24:50 +0000966** into an OP_String before it is executed for the first time.
danielk1977cbb18d22004-05-28 11:37:27 +0000967*/
drh4c583122008-01-04 22:01:03 +0000968case OP_String8: { /* same as TK_STRING, out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000969 assert( pOp->p4.z!=0 );
drhed2df7f2005-11-16 04:34:32 +0000970 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +0000971 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +0000972
973#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +0000974 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +0000975 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
976 if( rc==SQLITE_TOOBIG ) goto too_big;
drh4c583122008-01-04 22:01:03 +0000977 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh3a9cf172009-06-17 21:42:33 +0000978 assert( pOut->zMalloc==pOut->z );
979 assert( pOut->flags & MEM_Dyn );
danielk19775f096132008-03-28 15:44:09 +0000980 pOut->zMalloc = 0;
drh4c583122008-01-04 22:01:03 +0000981 pOut->flags |= MEM_Static;
drh191b54c2008-04-15 12:14:21 +0000982 pOut->flags &= ~MEM_Dyn;
drh66a51672008-01-03 00:01:23 +0000983 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000984 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +0000985 }
drh66a51672008-01-03 00:01:23 +0000986 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +0000987 pOp->p4.z = pOut->z;
988 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +0000989 }
danielk197793758c82005-01-21 08:13:14 +0000990#endif
drhbb4957f2008-03-20 14:03:29 +0000991 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +0000992 goto too_big;
993 }
994 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +0000995}
drhf4479502004-05-27 03:12:53 +0000996
drh4c583122008-01-04 22:01:03 +0000997/* Opcode: String P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +0000998** Synopsis: r[P2]='P4' (len=P1)
drhf4479502004-05-27 03:12:53 +0000999**
drh9cbf3422008-01-17 16:22:13 +00001000** The string value P4 of length P1 (bytes) is stored in register P2.
drhf4479502004-05-27 03:12:53 +00001001*/
drh4c583122008-01-04 22:01:03 +00001002case OP_String: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +00001003 assert( pOp->p4.z!=0 );
drh4c583122008-01-04 22:01:03 +00001004 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1005 pOut->z = pOp->p4.z;
1006 pOut->n = pOp->p1;
1007 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001008 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977c572ef72004-05-27 09:28:41 +00001009 break;
1010}
1011
drh053a1282012-09-19 21:15:46 +00001012/* Opcode: Null P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001013** Synopsis: r[P2..P3]=NULL
drhf0863fe2005-06-12 21:35:51 +00001014**
drhb8475df2011-12-09 16:21:19 +00001015** Write a NULL into registers P2. If P3 greater than P2, then also write
drh053a1282012-09-19 21:15:46 +00001016** NULL into register P3 and every register in between P2 and P3. If P3
drhb8475df2011-12-09 16:21:19 +00001017** is less than P2 (typically P3 is zero) then only register P2 is
drh053a1282012-09-19 21:15:46 +00001018** set to NULL.
1019**
1020** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1021** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1022** OP_Ne or OP_Eq.
drhf0863fe2005-06-12 21:35:51 +00001023*/
drh4c583122008-01-04 22:01:03 +00001024case OP_Null: { /* out2-prerelease */
drhb8475df2011-12-09 16:21:19 +00001025 int cnt;
drh053a1282012-09-19 21:15:46 +00001026 u16 nullFlag;
drhb8475df2011-12-09 16:21:19 +00001027 cnt = pOp->p3-pOp->p2;
dan3bc9f742013-08-15 16:18:39 +00001028 assert( pOp->p3<=(p->nMem-p->nCursor) );
drh053a1282012-09-19 21:15:46 +00001029 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
drhb8475df2011-12-09 16:21:19 +00001030 while( cnt>0 ){
1031 pOut++;
1032 memAboutToChange(p, pOut);
drhe4c88c02012-01-04 12:57:45 +00001033 VdbeMemRelease(pOut);
drh053a1282012-09-19 21:15:46 +00001034 pOut->flags = nullFlag;
drhb8475df2011-12-09 16:21:19 +00001035 cnt--;
1036 }
drhf0863fe2005-06-12 21:35:51 +00001037 break;
1038}
1039
1040
drh9de221d2008-01-05 06:51:30 +00001041/* Opcode: Blob P1 P2 * P4
drh81316f82013-10-29 20:40:47 +00001042** Synopsis: r[P2]=P4 (len=P1)
danielk1977c572ef72004-05-27 09:28:41 +00001043**
drh9de221d2008-01-05 06:51:30 +00001044** P4 points to a blob of data P1 bytes long. Store this
drh710c4842010-08-30 01:17:20 +00001045** blob in register P2.
danielk1977c572ef72004-05-27 09:28:41 +00001046*/
drh4c583122008-01-04 22:01:03 +00001047case OP_Blob: { /* out2-prerelease */
drhcbd2da92007-12-17 16:20:06 +00001048 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh4c583122008-01-04 22:01:03 +00001049 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +00001050 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001051 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +00001052 break;
1053}
1054
drheaf52d82010-05-12 13:50:23 +00001055/* Opcode: Variable P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001056** Synopsis: r[P2]=parameter(P1,P4)
drh50457892003-09-06 01:10:47 +00001057**
drheaf52d82010-05-12 13:50:23 +00001058** Transfer the values of bound parameter P1 into register P2
drh08de1492009-02-20 03:55:05 +00001059**
1060** If the parameter is named, then its name appears in P4 and P3==1.
1061** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +00001062*/
drheaf52d82010-05-12 13:50:23 +00001063case OP_Variable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00001064 Mem *pVar; /* Value being transferred */
1065
drheaf52d82010-05-12 13:50:23 +00001066 assert( pOp->p1>0 && pOp->p1<=p->nVar );
drh04e9eea2011-06-01 19:16:06 +00001067 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
drheaf52d82010-05-12 13:50:23 +00001068 pVar = &p->aVar[pOp->p1 - 1];
1069 if( sqlite3VdbeMemTooBig(pVar) ){
1070 goto too_big;
drh023ae032007-05-08 12:12:16 +00001071 }
drheaf52d82010-05-12 13:50:23 +00001072 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1073 UPDATE_MAX_BLOBSIZE(pOut);
danielk197793d46752004-05-23 13:30:58 +00001074 break;
1075}
danielk1977295ba552004-05-19 10:34:51 +00001076
drhb21e7c72008-06-22 12:37:57 +00001077/* Opcode: Move P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00001078** Synopsis: r[P2@P3]=r[P1@P3]
drh5e00f6c2001-09-13 13:46:56 +00001079**
drhe8e4af72012-09-21 00:04:28 +00001080** Move the values in register P1..P1+P3 over into
1081** registers P2..P2+P3. Registers P1..P1+P3 are
drhb21e7c72008-06-22 12:37:57 +00001082** left holding a NULL. It is an error for register ranges
drhe8e4af72012-09-21 00:04:28 +00001083** P1..P1+P3 and P2..P2+P3 to overlap.
drh5e00f6c2001-09-13 13:46:56 +00001084*/
drhe1349cb2008-04-01 00:36:10 +00001085case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001086 char *zMalloc; /* Holding variable for allocated memory */
1087 int n; /* Number of registers left to copy */
1088 int p1; /* Register to copy from */
1089 int p2; /* Register to copy to */
1090
drhe8e4af72012-09-21 00:04:28 +00001091 n = pOp->p3 + 1;
drh856c1032009-06-02 15:21:42 +00001092 p1 = pOp->p1;
1093 p2 = pOp->p2;
danielk19776ab3a2e2009-02-19 14:39:25 +00001094 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001095 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001096
drha6c2ed92009-11-14 23:22:23 +00001097 pIn1 = &aMem[p1];
1098 pOut = &aMem[p2];
drhb21e7c72008-06-22 12:37:57 +00001099 while( n-- ){
dan3bc9f742013-08-15 16:18:39 +00001100 assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
1101 assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00001102 assert( memIsValid(pIn1) );
1103 memAboutToChange(p, pOut);
drhb21e7c72008-06-22 12:37:57 +00001104 zMalloc = pOut->zMalloc;
1105 pOut->zMalloc = 0;
1106 sqlite3VdbeMemMove(pOut, pIn1);
drh52043d72011-08-03 16:40:15 +00001107#ifdef SQLITE_DEBUG
1108 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
1109 pOut->pScopyFrom += p1 - pOp->p2;
1110 }
1111#endif
drhb21e7c72008-06-22 12:37:57 +00001112 pIn1->zMalloc = zMalloc;
1113 REGISTER_TRACE(p2++, pOut);
1114 pIn1++;
1115 pOut++;
1116 }
drhe1349cb2008-04-01 00:36:10 +00001117 break;
1118}
1119
drhe8e4af72012-09-21 00:04:28 +00001120/* Opcode: Copy P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00001121** Synopsis: r[P2@P3]=r[P1@P3]
drhb1fdb2a2008-01-05 04:06:03 +00001122**
drhe8e4af72012-09-21 00:04:28 +00001123** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
drhb1fdb2a2008-01-05 04:06:03 +00001124**
1125** This instruction makes a deep copy of the value. A duplicate
1126** is made of any string or blob constant. See also OP_SCopy.
1127*/
drhe8e4af72012-09-21 00:04:28 +00001128case OP_Copy: {
1129 int n;
1130
1131 n = pOp->p3;
drh3c657212009-11-17 23:59:58 +00001132 pIn1 = &aMem[pOp->p1];
1133 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001134 assert( pOut!=pIn1 );
drhe8e4af72012-09-21 00:04:28 +00001135 while( 1 ){
1136 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1137 Deephemeralize(pOut);
drh953f7612012-12-07 22:18:54 +00001138#ifdef SQLITE_DEBUG
1139 pOut->pScopyFrom = 0;
1140#endif
drhe8e4af72012-09-21 00:04:28 +00001141 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1142 if( (n--)==0 ) break;
1143 pOut++;
1144 pIn1++;
1145 }
drhe1349cb2008-04-01 00:36:10 +00001146 break;
1147}
1148
drhb1fdb2a2008-01-05 04:06:03 +00001149/* Opcode: SCopy P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001150** Synopsis: r[P2]=r[P1]
drhb1fdb2a2008-01-05 04:06:03 +00001151**
drh9cbf3422008-01-17 16:22:13 +00001152** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001153**
1154** This instruction makes a shallow copy of the value. If the value
1155** is a string or blob, then the copy is only a pointer to the
1156** original and hence if the original changes so will the copy.
1157** Worse, if the original is deallocated, the copy becomes invalid.
1158** Thus the program must guarantee that the original will not change
1159** during the lifetime of the copy. Use OP_Copy to make a complete
1160** copy.
1161*/
drh26198bb2013-10-31 11:15:09 +00001162case OP_SCopy: { /* out2 */
drh3c657212009-11-17 23:59:58 +00001163 pIn1 = &aMem[pOp->p1];
1164 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001165 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001166 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh2b4ded92010-09-27 21:09:31 +00001167#ifdef SQLITE_DEBUG
1168 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1169#endif
drh5e00f6c2001-09-13 13:46:56 +00001170 break;
1171}
drh75897232000-05-29 14:26:00 +00001172
drh9cbf3422008-01-17 16:22:13 +00001173/* Opcode: ResultRow P1 P2 * * *
drh4af5bee2013-10-30 02:37:50 +00001174** Synopsis: output=r[P1@P2]
drhd4e70eb2008-01-02 00:34:36 +00001175**
shane21e7feb2008-05-30 15:59:49 +00001176** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001177** results. This opcode causes the sqlite3_step() call to terminate
1178** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1179** structure to provide access to the top P1 values as the result
drh9cbf3422008-01-17 16:22:13 +00001180** row.
drhd4e70eb2008-01-02 00:34:36 +00001181*/
drh9cbf3422008-01-17 16:22:13 +00001182case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001183 Mem *pMem;
1184 int i;
1185 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001186 assert( pOp->p1>0 );
dan3bc9f742013-08-15 16:18:39 +00001187 assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 );
drhd4e70eb2008-01-02 00:34:36 +00001188
dan32b09f22009-09-23 17:29:59 +00001189 /* If this statement has violated immediate foreign key constraints, do
1190 ** not return the number of rows modified. And do not RELEASE the statement
1191 ** transaction. It needs to be rolled back. */
1192 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1193 assert( db->flags&SQLITE_CountRows );
1194 assert( p->usesStmtJournal );
1195 break;
1196 }
1197
danielk1977bd434552009-03-18 10:33:00 +00001198 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1199 ** DML statements invoke this opcode to return the number of rows
1200 ** modified to the user. This is the only way that a VM that
1201 ** opens a statement transaction may invoke this opcode.
1202 **
1203 ** In case this is such a statement, close any statement transaction
1204 ** opened by this VM before returning control to the user. This is to
1205 ** ensure that statement-transactions are always nested, not overlapping.
1206 ** If the open statement-transaction is not closed here, then the user
1207 ** may step another VM that opens its own statement transaction. This
1208 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001209 **
1210 ** The statement transaction is never a top-level transaction. Hence
1211 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001212 */
1213 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001214 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1215 if( NEVER(rc!=SQLITE_OK) ){
danielk1977bd434552009-03-18 10:33:00 +00001216 break;
1217 }
1218
drhd4e70eb2008-01-02 00:34:36 +00001219 /* Invalidate all ephemeral cursor row caches */
1220 p->cacheCtr = (p->cacheCtr + 2)|1;
1221
1222 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001223 ** and have an assigned type. The results are de-ephemeralized as
drhb8a45bb2011-12-31 21:51:55 +00001224 ** a side effect.
drhd4e70eb2008-01-02 00:34:36 +00001225 */
drha6c2ed92009-11-14 23:22:23 +00001226 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001227 for(i=0; i<pOp->p2; i++){
drh2b4ded92010-09-27 21:09:31 +00001228 assert( memIsValid(&pMem[i]) );
drhebc16712010-09-28 00:25:58 +00001229 Deephemeralize(&pMem[i]);
drh746fd9c2010-09-28 06:00:47 +00001230 assert( (pMem[i].flags & MEM_Ephem)==0
1231 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
drhd4e70eb2008-01-02 00:34:36 +00001232 sqlite3VdbeMemNulTerminate(&pMem[i]);
dan937d0de2009-10-15 18:35:38 +00001233 sqlite3VdbeMemStoreType(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001234 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001235 }
drh28039692008-03-17 16:54:01 +00001236 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001237
1238 /* Return SQLITE_ROW
1239 */
drhd4e70eb2008-01-02 00:34:36 +00001240 p->pc = pc + 1;
drhd4e70eb2008-01-02 00:34:36 +00001241 rc = SQLITE_ROW;
1242 goto vdbe_return;
1243}
1244
drh5b6afba2008-01-05 16:29:28 +00001245/* Opcode: Concat P1 P2 P3 * *
drh313619f2013-10-31 20:34:06 +00001246** Synopsis: r[P3]=r[P2]+r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001247**
drh5b6afba2008-01-05 16:29:28 +00001248** Add the text in register P1 onto the end of the text in
1249** register P2 and store the result in register P3.
1250** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001251**
1252** P3 = P2 || P1
1253**
1254** It is illegal for P1 and P3 to be the same register. Sometimes,
1255** if P3 is the same register as P2, the implementation is able
1256** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001257*/
drh5b6afba2008-01-05 16:29:28 +00001258case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001259 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001260
drh3c657212009-11-17 23:59:58 +00001261 pIn1 = &aMem[pOp->p1];
1262 pIn2 = &aMem[pOp->p2];
1263 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001264 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001265 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001266 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001267 break;
drh5e00f6c2001-09-13 13:46:56 +00001268 }
drha0c06522009-06-17 22:50:41 +00001269 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001270 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001271 Stringify(pIn2, encoding);
1272 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001273 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001274 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001275 }
danielk1977a7a8e142008-02-13 18:25:27 +00001276 MemSetTypeFlag(pOut, MEM_Str);
drh9c1905f2008-12-10 22:32:56 +00001277 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001278 goto no_mem;
1279 }
danielk1977a7a8e142008-02-13 18:25:27 +00001280 if( pOut!=pIn2 ){
1281 memcpy(pOut->z, pIn2->z, pIn2->n);
1282 }
1283 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
drh81316f82013-10-29 20:40:47 +00001284 pOut->z[nByte]=0;
danielk1977a7a8e142008-02-13 18:25:27 +00001285 pOut->z[nByte+1] = 0;
1286 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001287 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001288 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001289 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001290 break;
1291}
drh75897232000-05-29 14:26:00 +00001292
drh3c84ddf2008-01-09 02:15:38 +00001293/* Opcode: Add P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001294** Synopsis: r[P3]=r[P1]+r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001295**
drh60a713c2008-01-21 16:22:45 +00001296** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001297** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001298** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001299*/
drh3c84ddf2008-01-09 02:15:38 +00001300/* Opcode: Multiply P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001301** Synopsis: r[P3]=r[P1]*r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001302**
drh3c84ddf2008-01-09 02:15:38 +00001303**
shane21e7feb2008-05-30 15:59:49 +00001304** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001305** and store the result in register P3.
1306** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001307*/
drh3c84ddf2008-01-09 02:15:38 +00001308/* Opcode: Subtract P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001309** Synopsis: r[P3]=r[P2]-r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001310**
drh60a713c2008-01-21 16:22:45 +00001311** Subtract the value in register P1 from the value in register P2
1312** and store the result in register P3.
1313** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001314*/
drh9cbf3422008-01-17 16:22:13 +00001315/* Opcode: Divide P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001316** Synopsis: r[P3]=r[P1]/r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001317**
drh60a713c2008-01-21 16:22:45 +00001318** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001319** and store the result in register P3 (P3=P2/P1). If the value in
1320** register P1 is zero, then the result is NULL. If either input is
1321** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001322*/
drh9cbf3422008-01-17 16:22:13 +00001323/* Opcode: Remainder P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001324** Synopsis: r[P3]=r[P1]%r[P2]
drhbf4133c2001-10-13 02:59:08 +00001325**
drh3c84ddf2008-01-09 02:15:38 +00001326** Compute the remainder after integer division of the value in
1327** register P1 by the value in register P2 and store the result in P3.
1328** If the value in register P2 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001329** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001330*/
drh5b6afba2008-01-05 16:29:28 +00001331case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1332case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1333case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1334case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1335case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drhbe707b32012-12-10 22:19:14 +00001336 char bIntint; /* Started out as two integer operands */
drh856c1032009-06-02 15:21:42 +00001337 int flags; /* Combined MEM_* flags from both inputs */
1338 i64 iA; /* Integer value of left operand */
1339 i64 iB; /* Integer value of right operand */
1340 double rA; /* Real value of left operand */
1341 double rB; /* Real value of right operand */
1342
drh3c657212009-11-17 23:59:58 +00001343 pIn1 = &aMem[pOp->p1];
drh61669b32008-07-30 13:27:10 +00001344 applyNumericAffinity(pIn1);
drh3c657212009-11-17 23:59:58 +00001345 pIn2 = &aMem[pOp->p2];
drh61669b32008-07-30 13:27:10 +00001346 applyNumericAffinity(pIn2);
drh3c657212009-11-17 23:59:58 +00001347 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001348 flags = pIn1->flags | pIn2->flags;
drha05a7222008-01-19 03:35:58 +00001349 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1350 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
drh856c1032009-06-02 15:21:42 +00001351 iA = pIn1->u.i;
1352 iB = pIn2->u.i;
drhbe707b32012-12-10 22:19:14 +00001353 bIntint = 1;
drh5e00f6c2001-09-13 13:46:56 +00001354 switch( pOp->opcode ){
drh158b9cb2011-03-05 20:59:46 +00001355 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1356 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1357 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
drhbf4133c2001-10-13 02:59:08 +00001358 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001359 if( iA==0 ) goto arithmetic_result_is_null;
drh158b9cb2011-03-05 20:59:46 +00001360 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
drh856c1032009-06-02 15:21:42 +00001361 iB /= iA;
drh75897232000-05-29 14:26:00 +00001362 break;
1363 }
drhbf4133c2001-10-13 02:59:08 +00001364 default: {
drh856c1032009-06-02 15:21:42 +00001365 if( iA==0 ) goto arithmetic_result_is_null;
1366 if( iA==-1 ) iA = 1;
1367 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001368 break;
1369 }
drh75897232000-05-29 14:26:00 +00001370 }
drh856c1032009-06-02 15:21:42 +00001371 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001372 MemSetTypeFlag(pOut, MEM_Int);
drh5e00f6c2001-09-13 13:46:56 +00001373 }else{
drhbe707b32012-12-10 22:19:14 +00001374 bIntint = 0;
drh158b9cb2011-03-05 20:59:46 +00001375fp_math:
drh856c1032009-06-02 15:21:42 +00001376 rA = sqlite3VdbeRealValue(pIn1);
1377 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001378 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001379 case OP_Add: rB += rA; break;
1380 case OP_Subtract: rB -= rA; break;
1381 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001382 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001383 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001384 if( rA==(double)0 ) goto arithmetic_result_is_null;
1385 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001386 break;
1387 }
drhbf4133c2001-10-13 02:59:08 +00001388 default: {
shane75ac1de2009-06-09 18:58:52 +00001389 iA = (i64)rA;
1390 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001391 if( iA==0 ) goto arithmetic_result_is_null;
1392 if( iA==-1 ) iA = 1;
1393 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001394 break;
1395 }
drh5e00f6c2001-09-13 13:46:56 +00001396 }
drhc5a7b512010-01-13 16:25:42 +00001397#ifdef SQLITE_OMIT_FLOATING_POINT
1398 pOut->u.i = rB;
1399 MemSetTypeFlag(pOut, MEM_Int);
1400#else
drh856c1032009-06-02 15:21:42 +00001401 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001402 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001403 }
drh856c1032009-06-02 15:21:42 +00001404 pOut->r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001405 MemSetTypeFlag(pOut, MEM_Real);
drhbe707b32012-12-10 22:19:14 +00001406 if( (flags & MEM_Real)==0 && !bIntint ){
drh5b6afba2008-01-05 16:29:28 +00001407 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001408 }
drhc5a7b512010-01-13 16:25:42 +00001409#endif
drh5e00f6c2001-09-13 13:46:56 +00001410 }
1411 break;
1412
drha05a7222008-01-19 03:35:58 +00001413arithmetic_result_is_null:
1414 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001415 break;
1416}
1417
drh7a957892012-02-02 17:35:43 +00001418/* Opcode: CollSeq P1 * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001419**
drh66a51672008-01-03 00:01:23 +00001420** P4 is a pointer to a CollSeq struct. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001421** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1422** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001423** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001424**
drh7a957892012-02-02 17:35:43 +00001425** If P1 is not zero, then it is a register that a subsequent min() or
1426** max() aggregate will set to 1 if the current row is not the minimum or
1427** maximum. The P1 register is initialized to 0 by this instruction.
1428**
danielk1977dc1bdc42004-06-11 10:51:27 +00001429** The interface used by the implementation of the aforementioned functions
1430** to retrieve the collation sequence set by this opcode is not available
1431** publicly, only to user functions defined in func.c.
1432*/
drh9cbf3422008-01-17 16:22:13 +00001433case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001434 assert( pOp->p4type==P4_COLLSEQ );
drh7a957892012-02-02 17:35:43 +00001435 if( pOp->p1 ){
1436 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1437 }
danielk1977dc1bdc42004-06-11 10:51:27 +00001438 break;
1439}
1440
drh98757152008-01-09 23:04:12 +00001441/* Opcode: Function P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00001442** Synopsis: r[P3]=func(r[P2@P5])
drh8e0a2f92002-02-23 23:45:45 +00001443**
drh66a51672008-01-03 00:01:23 +00001444** Invoke a user function (P4 is a pointer to a Function structure that
drh98757152008-01-09 23:04:12 +00001445** defines the function) with P5 arguments taken from register P2 and
drh9cbf3422008-01-17 16:22:13 +00001446** successors. The result of the function is stored in register P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001447** Register P3 must not be one of the function inputs.
danielk1977682f68b2004-06-05 10:22:17 +00001448**
drh13449892005-09-07 21:22:45 +00001449** P1 is a 32-bit bitmask indicating whether or not each argument to the
danielk1977682f68b2004-06-05 10:22:17 +00001450** function was determined to be constant at compile time. If the first
drh13449892005-09-07 21:22:45 +00001451** argument was constant then bit 0 of P1 is set. This is used to determine
danielk1977682f68b2004-06-05 10:22:17 +00001452** whether meta data associated with a user function argument using the
1453** sqlite3_set_auxdata() API may be safely retained until the next
1454** invocation of this opcode.
drh1350b032002-02-27 19:00:20 +00001455**
drh13449892005-09-07 21:22:45 +00001456** See also: AggStep and AggFinal
drh8e0a2f92002-02-23 23:45:45 +00001457*/
drh0bce8352002-02-28 00:41:10 +00001458case OP_Function: {
danielk197751ad0ec2004-05-24 12:39:02 +00001459 int i;
drh6810ce62004-01-31 19:22:56 +00001460 Mem *pArg;
danielk197722322fd2004-05-25 23:35:17 +00001461 sqlite3_context ctx;
danielk197751ad0ec2004-05-24 12:39:02 +00001462 sqlite3_value **apVal;
drh856c1032009-06-02 15:21:42 +00001463 int n;
drh1350b032002-02-27 19:00:20 +00001464
drh856c1032009-06-02 15:21:42 +00001465 n = pOp->p5;
danielk19776ddcca52004-05-24 23:48:25 +00001466 apVal = p->apArg;
danielk197751ad0ec2004-05-24 12:39:02 +00001467 assert( apVal || n==0 );
dan3bc9f742013-08-15 16:18:39 +00001468 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drhebc16712010-09-28 00:25:58 +00001469 pOut = &aMem[pOp->p3];
1470 memAboutToChange(p, pOut);
danielk197751ad0ec2004-05-24 12:39:02 +00001471
dan3bc9f742013-08-15 16:18:39 +00001472 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
danielk1977a7a8e142008-02-13 18:25:27 +00001473 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drha6c2ed92009-11-14 23:22:23 +00001474 pArg = &aMem[pOp->p2];
drh6810ce62004-01-31 19:22:56 +00001475 for(i=0; i<n; i++, pArg++){
drh2b4ded92010-09-27 21:09:31 +00001476 assert( memIsValid(pArg) );
danielk197751ad0ec2004-05-24 12:39:02 +00001477 apVal[i] = pArg;
drhebc16712010-09-28 00:25:58 +00001478 Deephemeralize(pArg);
dan937d0de2009-10-15 18:35:38 +00001479 sqlite3VdbeMemStoreType(pArg);
drhab5cd702010-04-07 14:32:11 +00001480 REGISTER_TRACE(pOp->p2+i, pArg);
drh8e0a2f92002-02-23 23:45:45 +00001481 }
danielk197751ad0ec2004-05-24 12:39:02 +00001482
dan0c547792013-07-18 17:12:08 +00001483 assert( pOp->p4type==P4_FUNCDEF );
1484 ctx.pFunc = pOp->p4.pFunc;
drh00706be2004-01-30 14:49:16 +00001485 ctx.s.flags = MEM_Null;
drhfa4a4b92008-03-19 21:45:51 +00001486 ctx.s.db = db;
danielk19775f096132008-03-28 15:44:09 +00001487 ctx.s.xDel = 0;
1488 ctx.s.zMalloc = 0;
dan0c547792013-07-18 17:12:08 +00001489 ctx.iOp = pc;
1490 ctx.pVdbe = p;
danielk1977a7a8e142008-02-13 18:25:27 +00001491
1492 /* The output cell may already have a buffer allocated. Move
1493 ** the pointer to ctx.s so in case the user-function can use
1494 ** the already allocated buffer instead of allocating a new one.
1495 */
1496 sqlite3VdbeMemMove(&ctx.s, pOut);
1497 MemSetTypeFlag(&ctx.s, MEM_Null);
1498
drh9b47ee32013-08-20 03:13:51 +00001499 ctx.fErrorOrAux = 0;
drhd36e1042013-09-06 13:10:12 +00001500 if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
drhbbe879d2009-11-14 18:04:35 +00001501 assert( pOp>aOp );
drh66a51672008-01-03 00:01:23 +00001502 assert( pOp[-1].p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00001503 assert( pOp[-1].opcode==OP_CollSeq );
danielk19772dca4ac2008-01-03 11:50:29 +00001504 ctx.pColl = pOp[-1].p4.pColl;
danielk1977dc1bdc42004-06-11 10:51:27 +00001505 }
drh99a66922011-05-13 18:51:42 +00001506 db->lastRowid = lastRowid;
drhee9ff672010-09-03 18:50:48 +00001507 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh99a66922011-05-13 18:51:42 +00001508 lastRowid = db->lastRowid;
danielk19777e18c252004-05-25 11:47:24 +00001509
dan5f84e142011-06-14 14:18:45 +00001510 if( db->mallocFailed ){
1511 /* Even though a malloc() has failed, the implementation of the
1512 ** user function may have called an sqlite3_result_XXX() function
1513 ** to return a value. The following call releases any resources
1514 ** associated with such a value.
1515 */
1516 sqlite3VdbeMemRelease(&ctx.s);
1517 goto no_mem;
1518 }
1519
drh90669c12006-01-20 15:45:36 +00001520 /* If the function returned an error, throw an exception */
drh9b47ee32013-08-20 03:13:51 +00001521 if( ctx.fErrorOrAux ){
1522 if( ctx.isError ){
1523 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
1524 rc = ctx.isError;
1525 }
1526 sqlite3VdbeDeleteAuxData(p, pc, pOp->p1);
drh90669c12006-01-20 15:45:36 +00001527 }
1528
drh9cbf3422008-01-17 16:22:13 +00001529 /* Copy the result of the function into register P3 */
drhb21c8cd2007-08-21 19:33:56 +00001530 sqlite3VdbeChangeEncoding(&ctx.s, encoding);
drh98757152008-01-09 23:04:12 +00001531 sqlite3VdbeMemMove(pOut, &ctx.s);
1532 if( sqlite3VdbeMemTooBig(pOut) ){
drh023ae032007-05-08 12:12:16 +00001533 goto too_big;
1534 }
drh7b94e7f2011-04-04 12:29:20 +00001535
1536#if 0
1537 /* The app-defined function has done something that as caused this
1538 ** statement to expire. (Perhaps the function called sqlite3_exec()
1539 ** with a CREATE TABLE statement.)
1540 */
1541 if( p->expired ) rc = SQLITE_ABORT;
1542#endif
1543
drh2dcef112008-01-12 19:03:48 +00001544 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00001545 UPDATE_MAX_BLOBSIZE(pOut);
drh8e0a2f92002-02-23 23:45:45 +00001546 break;
1547}
1548
drh98757152008-01-09 23:04:12 +00001549/* Opcode: BitAnd P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001550** Synopsis: r[P3]=r[P1]&r[P2]
drhbf4133c2001-10-13 02:59:08 +00001551**
drh98757152008-01-09 23:04:12 +00001552** Take the bit-wise AND of the values in register P1 and P2 and
1553** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001554** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001555*/
drh98757152008-01-09 23:04:12 +00001556/* Opcode: BitOr P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001557** Synopsis: r[P3]=r[P1]|r[P2]
drhbf4133c2001-10-13 02:59:08 +00001558**
drh98757152008-01-09 23:04:12 +00001559** Take the bit-wise OR of the values in register P1 and P2 and
1560** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001561** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001562*/
drh98757152008-01-09 23:04:12 +00001563/* Opcode: ShiftLeft P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001564** Synopsis: r[P3]=r[P2]<<r[P1]
drhbf4133c2001-10-13 02:59:08 +00001565**
drh98757152008-01-09 23:04:12 +00001566** Shift the integer value in register P2 to the left by the
drh710c4842010-08-30 01:17:20 +00001567** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001568** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001569** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001570*/
drh98757152008-01-09 23:04:12 +00001571/* Opcode: ShiftRight P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001572** Synopsis: r[P3]=r[P2]>>r[P1]
drhbf4133c2001-10-13 02:59:08 +00001573**
drh98757152008-01-09 23:04:12 +00001574** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001575** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001576** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001577** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001578*/
drh5b6afba2008-01-05 16:29:28 +00001579case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1580case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1581case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1582case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh158b9cb2011-03-05 20:59:46 +00001583 i64 iA;
1584 u64 uA;
1585 i64 iB;
1586 u8 op;
drh6810ce62004-01-31 19:22:56 +00001587
drh3c657212009-11-17 23:59:58 +00001588 pIn1 = &aMem[pOp->p1];
1589 pIn2 = &aMem[pOp->p2];
1590 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001591 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001592 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001593 break;
1594 }
drh158b9cb2011-03-05 20:59:46 +00001595 iA = sqlite3VdbeIntValue(pIn2);
1596 iB = sqlite3VdbeIntValue(pIn1);
1597 op = pOp->opcode;
1598 if( op==OP_BitAnd ){
1599 iA &= iB;
1600 }else if( op==OP_BitOr ){
1601 iA |= iB;
1602 }else if( iB!=0 ){
1603 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1604
1605 /* If shifting by a negative amount, shift in the other direction */
1606 if( iB<0 ){
1607 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1608 op = 2*OP_ShiftLeft + 1 - op;
1609 iB = iB>(-64) ? -iB : 64;
1610 }
1611
1612 if( iB>=64 ){
1613 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1614 }else{
1615 memcpy(&uA, &iA, sizeof(uA));
1616 if( op==OP_ShiftLeft ){
1617 uA <<= iB;
1618 }else{
1619 uA >>= iB;
1620 /* Sign-extend on a right shift of a negative number */
1621 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1622 }
1623 memcpy(&iA, &uA, sizeof(iA));
1624 }
drhbf4133c2001-10-13 02:59:08 +00001625 }
drh158b9cb2011-03-05 20:59:46 +00001626 pOut->u.i = iA;
danielk1977a7a8e142008-02-13 18:25:27 +00001627 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001628 break;
1629}
1630
drh8558cde2008-01-05 05:20:10 +00001631/* Opcode: AddImm P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001632** Synopsis: r[P1]=r[P1]+P2
drh5e00f6c2001-09-13 13:46:56 +00001633**
danielk19770cdc0222008-06-26 18:04:03 +00001634** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001635** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001636**
drh8558cde2008-01-05 05:20:10 +00001637** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001638*/
drh9cbf3422008-01-17 16:22:13 +00001639case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001640 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001641 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001642 sqlite3VdbeMemIntegerify(pIn1);
1643 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001644 break;
1645}
1646
drh9cbf3422008-01-17 16:22:13 +00001647/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001648**
drh9cbf3422008-01-17 16:22:13 +00001649** Force the value in register P1 to be an integer. If the value
1650** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001651** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001652** raise an SQLITE_MISMATCH exception.
1653*/
drh9cbf3422008-01-17 16:22:13 +00001654case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001655 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001656 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1657 if( (pIn1->flags & MEM_Int)==0 ){
drh17c40292004-07-21 02:53:29 +00001658 if( pOp->p2==0 ){
1659 rc = SQLITE_MISMATCH;
1660 goto abort_due_to_error;
drh3c84ddf2008-01-09 02:15:38 +00001661 }else{
drh17c40292004-07-21 02:53:29 +00001662 pc = pOp->p2 - 1;
drh8aff1012001-12-22 14:49:24 +00001663 }
drh8aff1012001-12-22 14:49:24 +00001664 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00001665 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001666 }
1667 break;
1668}
1669
drh13573c72010-01-12 17:04:07 +00001670#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001671/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001672**
drh2133d822008-01-03 18:44:59 +00001673** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001674**
drh8a512562005-11-14 22:29:05 +00001675** This opcode is used when extracting information from a column that
1676** has REAL affinity. Such column values may still be stored as
1677** integers, for space efficiency, but after extraction we want them
1678** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001679*/
drh9cbf3422008-01-17 16:22:13 +00001680case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001681 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001682 if( pIn1->flags & MEM_Int ){
1683 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001684 }
drh487e2622005-06-25 18:42:14 +00001685 break;
1686}
drh13573c72010-01-12 17:04:07 +00001687#endif
drh487e2622005-06-25 18:42:14 +00001688
drh8df447f2005-11-01 15:48:24 +00001689#ifndef SQLITE_OMIT_CAST
drh8558cde2008-01-05 05:20:10 +00001690/* Opcode: ToText P1 * * * *
drh487e2622005-06-25 18:42:14 +00001691**
drh8558cde2008-01-05 05:20:10 +00001692** Force the value in register P1 to be text.
drh31beae92005-11-24 14:34:36 +00001693** If the value is numeric, convert it to a string using the
drh487e2622005-06-25 18:42:14 +00001694** equivalent of printf(). Blob values are unchanged and
1695** are afterwards simply interpreted as text.
1696**
1697** A NULL value is not changed by this routine. It remains NULL.
1698*/
drh9cbf3422008-01-17 16:22:13 +00001699case OP_ToText: { /* same as TK_TO_TEXT, in1 */
drh3c657212009-11-17 23:59:58 +00001700 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001701 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001702 if( pIn1->flags & MEM_Null ) break;
drh487e2622005-06-25 18:42:14 +00001703 assert( MEM_Str==(MEM_Blob>>3) );
drh8558cde2008-01-05 05:20:10 +00001704 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
1705 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1706 rc = ExpandBlob(pIn1);
danielk1977a7a8e142008-02-13 18:25:27 +00001707 assert( pIn1->flags & MEM_Str || db->mallocFailed );
drh68ac65e2009-01-05 18:02:27 +00001708 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
drhb7654112008-01-12 12:48:07 +00001709 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001710 break;
1711}
1712
drh8558cde2008-01-05 05:20:10 +00001713/* Opcode: ToBlob P1 * * * *
drh487e2622005-06-25 18:42:14 +00001714**
drh8558cde2008-01-05 05:20:10 +00001715** Force the value in register P1 to be a BLOB.
drh487e2622005-06-25 18:42:14 +00001716** If the value is numeric, convert it to a string first.
1717** Strings are simply reinterpreted as blobs with no change
1718** to the underlying data.
1719**
1720** A NULL value is not changed by this routine. It remains NULL.
1721*/
drh9cbf3422008-01-17 16:22:13 +00001722case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
drh3c657212009-11-17 23:59:58 +00001723 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001724 if( pIn1->flags & MEM_Null ) break;
1725 if( (pIn1->flags & MEM_Blob)==0 ){
1726 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
danielk1977a7a8e142008-02-13 18:25:27 +00001727 assert( pIn1->flags & MEM_Str || db->mallocFailed );
drhde58ddb2009-01-05 22:30:38 +00001728 MemSetTypeFlag(pIn1, MEM_Blob);
1729 }else{
1730 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
drh487e2622005-06-25 18:42:14 +00001731 }
drhb7654112008-01-12 12:48:07 +00001732 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001733 break;
1734}
drh8a512562005-11-14 22:29:05 +00001735
drh8558cde2008-01-05 05:20:10 +00001736/* Opcode: ToNumeric P1 * * * *
drh8a512562005-11-14 22:29:05 +00001737**
drh8558cde2008-01-05 05:20:10 +00001738** Force the value in register P1 to be numeric (either an
drh8a512562005-11-14 22:29:05 +00001739** integer or a floating-point number.)
1740** If the value is text or blob, try to convert it to an using the
1741** equivalent of atoi() or atof() and store 0 if no such conversion
1742** is possible.
1743**
1744** A NULL value is not changed by this routine. It remains NULL.
1745*/
drh9cbf3422008-01-17 16:22:13 +00001746case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
drh3c657212009-11-17 23:59:58 +00001747 pIn1 = &aMem[pOp->p1];
drh93518622010-09-30 14:48:06 +00001748 sqlite3VdbeMemNumerify(pIn1);
drh8a512562005-11-14 22:29:05 +00001749 break;
1750}
1751#endif /* SQLITE_OMIT_CAST */
1752
drh8558cde2008-01-05 05:20:10 +00001753/* Opcode: ToInt P1 * * * *
drh8a512562005-11-14 22:29:05 +00001754**
drh710c4842010-08-30 01:17:20 +00001755** Force the value in register P1 to be an integer. If
drh8a512562005-11-14 22:29:05 +00001756** The value is currently a real number, drop its fractional part.
1757** If the value is text or blob, try to convert it to an integer using the
1758** equivalent of atoi() and store 0 if no such conversion is possible.
1759**
1760** A NULL value is not changed by this routine. It remains NULL.
1761*/
drh9cbf3422008-01-17 16:22:13 +00001762case OP_ToInt: { /* same as TK_TO_INT, in1 */
drh3c657212009-11-17 23:59:58 +00001763 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001764 if( (pIn1->flags & MEM_Null)==0 ){
1765 sqlite3VdbeMemIntegerify(pIn1);
drh8a512562005-11-14 22:29:05 +00001766 }
1767 break;
1768}
1769
drh13573c72010-01-12 17:04:07 +00001770#if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
drh8558cde2008-01-05 05:20:10 +00001771/* Opcode: ToReal P1 * * * *
drh8a512562005-11-14 22:29:05 +00001772**
drh8558cde2008-01-05 05:20:10 +00001773** Force the value in register P1 to be a floating point number.
drh8a512562005-11-14 22:29:05 +00001774** If The value is currently an integer, convert it.
1775** If the value is text or blob, try to convert it to an integer using the
drh60a713c2008-01-21 16:22:45 +00001776** equivalent of atoi() and store 0.0 if no such conversion is possible.
drh8a512562005-11-14 22:29:05 +00001777**
1778** A NULL value is not changed by this routine. It remains NULL.
1779*/
drh9cbf3422008-01-17 16:22:13 +00001780case OP_ToReal: { /* same as TK_TO_REAL, in1 */
drh3c657212009-11-17 23:59:58 +00001781 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001782 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001783 if( (pIn1->flags & MEM_Null)==0 ){
1784 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001785 }
1786 break;
1787}
drh13573c72010-01-12 17:04:07 +00001788#endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
drh487e2622005-06-25 18:42:14 +00001789
drh35573352008-01-08 23:54:25 +00001790/* Opcode: Lt P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001791** Synopsis: if r[P1]<r[P3] goto P3
drh5e00f6c2001-09-13 13:46:56 +00001792**
drh35573352008-01-08 23:54:25 +00001793** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1794** jump to address P2.
drhf5905aa2002-05-26 20:54:33 +00001795**
drh35573352008-01-08 23:54:25 +00001796** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1797** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
drh710c4842010-08-30 01:17:20 +00001798** bit is clear then fall through if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001799**
drh35573352008-01-08 23:54:25 +00001800** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001801** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001802** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001803** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001804** affinity is used. Note that the affinity conversions are stored
1805** back into the input registers P1 and P3. So this opcode can cause
1806** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001807**
1808** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001809** the values are compared. If both values are blobs then memcmp() is
1810** used to determine the results of the comparison. If both values
1811** are text, then the appropriate collating function specified in
1812** P4 is used to do the comparison. If P4 is not specified then
1813** memcmp() is used to compare text string. If both values are
1814** numeric, then a numeric comparison is used. If the two values
1815** are of different types, then numbers are considered less than
1816** strings and strings are considered less than blobs.
drhc9b84a12002-06-20 11:36:48 +00001817**
drh35573352008-01-08 23:54:25 +00001818** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1819** store a boolean result (either 0, or 1, or NULL) in register P2.
drh053a1282012-09-19 21:15:46 +00001820**
1821** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1822** equal to one another, provided that they do not have their MEM_Cleared
1823** bit set.
drh5e00f6c2001-09-13 13:46:56 +00001824*/
drh9cbf3422008-01-17 16:22:13 +00001825/* Opcode: Ne P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001826** Synopsis: if r[P1]!=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001827**
drh35573352008-01-08 23:54:25 +00001828** This works just like the Lt opcode except that the jump is taken if
1829** the operands in registers P1 and P3 are not equal. See the Lt opcode for
drh53db1452004-05-20 13:54:53 +00001830** additional information.
drh6a2fe092009-09-23 02:29:36 +00001831**
1832** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1833** true or false and is never NULL. If both operands are NULL then the result
1834** of comparison is false. If either operand is NULL then the result is true.
drhef8662b2011-06-20 21:47:58 +00001835** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001836** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001837*/
drh9cbf3422008-01-17 16:22:13 +00001838/* Opcode: Eq P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001839** Synopsis: if r[P1]==r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001840**
drh35573352008-01-08 23:54:25 +00001841** This works just like the Lt opcode except that the jump is taken if
1842** the operands in registers P1 and P3 are equal.
1843** See the Lt opcode for additional information.
drh6a2fe092009-09-23 02:29:36 +00001844**
1845** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1846** true or false and is never NULL. If both operands are NULL then the result
1847** of comparison is true. If either operand is NULL then the result is false.
drhef8662b2011-06-20 21:47:58 +00001848** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001849** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001850*/
drh9cbf3422008-01-17 16:22:13 +00001851/* Opcode: Le P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001852** Synopsis: if r[P1]<=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001853**
drh35573352008-01-08 23:54:25 +00001854** This works just like the Lt opcode except that the jump is taken if
1855** the content of register P3 is less than or equal to the content of
1856** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001857*/
drh9cbf3422008-01-17 16:22:13 +00001858/* Opcode: Gt P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001859** Synopsis: if r[P1]>r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001860**
drh35573352008-01-08 23:54:25 +00001861** This works just like the Lt opcode except that the jump is taken if
1862** the content of register P3 is greater than the content of
1863** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001864*/
drh9cbf3422008-01-17 16:22:13 +00001865/* Opcode: Ge P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001866** Synopsis: if r[P1]>=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001867**
drh35573352008-01-08 23:54:25 +00001868** This works just like the Lt opcode except that the jump is taken if
1869** the content of register P3 is greater than or equal to the content of
1870** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001871*/
drh9cbf3422008-01-17 16:22:13 +00001872case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1873case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1874case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1875case OP_Le: /* same as TK_LE, jump, in1, in3 */
1876case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1877case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh6a2fe092009-09-23 02:29:36 +00001878 int res; /* Result of the comparison of pIn1 against pIn3 */
1879 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00001880 u16 flags1; /* Copy of initial value of pIn1->flags */
1881 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00001882
drh3c657212009-11-17 23:59:58 +00001883 pIn1 = &aMem[pOp->p1];
1884 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00001885 flags1 = pIn1->flags;
1886 flags3 = pIn3->flags;
drhc3f1d5f2011-05-30 23:42:16 +00001887 if( (flags1 | flags3)&MEM_Null ){
drh6a2fe092009-09-23 02:29:36 +00001888 /* One or both operands are NULL */
1889 if( pOp->p5 & SQLITE_NULLEQ ){
1890 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1891 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1892 ** or not both operands are null.
1893 */
1894 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
drh053a1282012-09-19 21:15:46 +00001895 assert( (flags1 & MEM_Cleared)==0 );
1896 if( (flags1&MEM_Null)!=0
1897 && (flags3&MEM_Null)!=0
1898 && (flags3&MEM_Cleared)==0
1899 ){
1900 res = 0; /* Results are equal */
1901 }else{
1902 res = 1; /* Results are not equal */
1903 }
drh6a2fe092009-09-23 02:29:36 +00001904 }else{
1905 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1906 ** then the result is always NULL.
1907 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1908 */
drh9b47ee32013-08-20 03:13:51 +00001909 if( pOp->p5 & SQLITE_JUMPIFNULL ){
1910 pc = pOp->p2-1;
1911 }else if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001912 pOut = &aMem[pOp->p2];
drh6a2fe092009-09-23 02:29:36 +00001913 MemSetTypeFlag(pOut, MEM_Null);
1914 REGISTER_TRACE(pOp->p2, pOut);
drh6a2fe092009-09-23 02:29:36 +00001915 }
1916 break;
danielk1977a37cdde2004-05-16 11:15:36 +00001917 }
drh6a2fe092009-09-23 02:29:36 +00001918 }else{
1919 /* Neither operand is NULL. Do a comparison. */
1920 affinity = pOp->p5 & SQLITE_AFF_MASK;
1921 if( affinity ){
1922 applyAffinity(pIn1, affinity, encoding);
1923 applyAffinity(pIn3, affinity, encoding);
1924 if( db->mallocFailed ) goto no_mem;
1925 }
danielk1977a37cdde2004-05-16 11:15:36 +00001926
drh6a2fe092009-09-23 02:29:36 +00001927 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1928 ExpandBlob(pIn1);
1929 ExpandBlob(pIn3);
1930 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00001931 }
danielk1977a37cdde2004-05-16 11:15:36 +00001932 switch( pOp->opcode ){
1933 case OP_Eq: res = res==0; break;
1934 case OP_Ne: res = res!=0; break;
1935 case OP_Lt: res = res<0; break;
1936 case OP_Le: res = res<=0; break;
1937 case OP_Gt: res = res>0; break;
1938 default: res = res>=0; break;
1939 }
1940
drh35573352008-01-08 23:54:25 +00001941 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001942 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00001943 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00001944 MemSetTypeFlag(pOut, MEM_Int);
drh35573352008-01-08 23:54:25 +00001945 pOut->u.i = res;
1946 REGISTER_TRACE(pOp->p2, pOut);
1947 }else if( res ){
1948 pc = pOp->p2-1;
danielk1977a37cdde2004-05-16 11:15:36 +00001949 }
danb7dca7d2010-03-05 16:32:12 +00001950
1951 /* Undo any changes made by applyAffinity() to the input registers. */
1952 pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
1953 pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
danielk1977a37cdde2004-05-16 11:15:36 +00001954 break;
1955}
drhc9b84a12002-06-20 11:36:48 +00001956
drh0acb7e42008-06-25 00:12:41 +00001957/* Opcode: Permutation * * * P4 *
1958**
shanebe217792009-03-05 04:20:31 +00001959** Set the permutation used by the OP_Compare operator to be the array
drh0acb7e42008-06-25 00:12:41 +00001960** of integers in P4.
1961**
drh953f7612012-12-07 22:18:54 +00001962** The permutation is only valid until the next OP_Compare that has
1963** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
1964** occur immediately prior to the OP_Compare.
drh0acb7e42008-06-25 00:12:41 +00001965*/
1966case OP_Permutation: {
1967 assert( pOp->p4type==P4_INTARRAY );
1968 assert( pOp->p4.ai );
1969 aPermute = pOp->p4.ai;
1970 break;
1971}
1972
drh953f7612012-12-07 22:18:54 +00001973/* Opcode: Compare P1 P2 P3 P4 P5
drh16ee60f2008-06-20 18:13:25 +00001974**
drh710c4842010-08-30 01:17:20 +00001975** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
1976** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
drh16ee60f2008-06-20 18:13:25 +00001977** the comparison for use by the next OP_Jump instruct.
1978**
drh0ca10df2012-12-08 13:26:23 +00001979** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
1980** determined by the most recent OP_Permutation operator. If the
1981** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
1982** order.
1983**
drh0acb7e42008-06-25 00:12:41 +00001984** P4 is a KeyInfo structure that defines collating sequences and sort
1985** orders for the comparison. The permutation applies to registers
1986** only. The KeyInfo elements are used sequentially.
1987**
1988** The comparison is a sort comparison, so NULLs compare equal,
1989** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00001990** and strings are less than blobs.
1991*/
1992case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00001993 int n;
1994 int i;
1995 int p1;
1996 int p2;
1997 const KeyInfo *pKeyInfo;
1998 int idx;
1999 CollSeq *pColl; /* Collating sequence to use on this term */
2000 int bRev; /* True for DESCENDING sort order */
2001
drh953f7612012-12-07 22:18:54 +00002002 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
drh856c1032009-06-02 15:21:42 +00002003 n = pOp->p3;
2004 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00002005 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00002006 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00002007 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00002008 p2 = pOp->p2;
drh6a2fe092009-09-23 02:29:36 +00002009#if SQLITE_DEBUG
2010 if( aPermute ){
2011 int k, mx = 0;
2012 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
dan3bc9f742013-08-15 16:18:39 +00002013 assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 );
2014 assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002015 }else{
dan3bc9f742013-08-15 16:18:39 +00002016 assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 );
2017 assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002018 }
2019#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00002020 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00002021 idx = aPermute ? aPermute[i] : i;
drh2b4ded92010-09-27 21:09:31 +00002022 assert( memIsValid(&aMem[p1+idx]) );
2023 assert( memIsValid(&aMem[p2+idx]) );
drha6c2ed92009-11-14 23:22:23 +00002024 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2025 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drh93a960a2008-07-10 00:32:42 +00002026 assert( i<pKeyInfo->nField );
2027 pColl = pKeyInfo->aColl[i];
2028 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00002029 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00002030 if( iCompare ){
2031 if( bRev ) iCompare = -iCompare;
2032 break;
2033 }
drh16ee60f2008-06-20 18:13:25 +00002034 }
drh0acb7e42008-06-25 00:12:41 +00002035 aPermute = 0;
drh16ee60f2008-06-20 18:13:25 +00002036 break;
2037}
2038
2039/* Opcode: Jump P1 P2 P3 * *
2040**
2041** Jump to the instruction at address P1, P2, or P3 depending on whether
2042** in the most recent OP_Compare instruction the P1 vector was less than
2043** equal to, or greater than the P2 vector, respectively.
2044*/
drh0acb7e42008-06-25 00:12:41 +00002045case OP_Jump: { /* jump */
2046 if( iCompare<0 ){
drh16ee60f2008-06-20 18:13:25 +00002047 pc = pOp->p1 - 1;
drh0acb7e42008-06-25 00:12:41 +00002048 }else if( iCompare==0 ){
drh16ee60f2008-06-20 18:13:25 +00002049 pc = pOp->p2 - 1;
2050 }else{
2051 pc = pOp->p3 - 1;
2052 }
2053 break;
2054}
2055
drh5b6afba2008-01-05 16:29:28 +00002056/* Opcode: And P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002057** Synopsis: r[P3]=(r[P1] && r[P2])
drh5e00f6c2001-09-13 13:46:56 +00002058**
drh5b6afba2008-01-05 16:29:28 +00002059** Take the logical AND of the values in registers P1 and P2 and
2060** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00002061**
drh5b6afba2008-01-05 16:29:28 +00002062** If either P1 or P2 is 0 (false) then the result is 0 even if
2063** the other input is NULL. A NULL and true or two NULLs give
2064** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00002065*/
drh5b6afba2008-01-05 16:29:28 +00002066/* Opcode: Or P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002067** Synopsis: r[P3]=(r[P1] || r[P2])
drh5b6afba2008-01-05 16:29:28 +00002068**
2069** Take the logical OR of the values in register P1 and P2 and
2070** store the answer in register P3.
2071**
2072** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2073** even if the other input is NULL. A NULL and false or two NULLs
2074** give a NULL output.
2075*/
2076case OP_And: /* same as TK_AND, in1, in2, out3 */
2077case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00002078 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2079 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00002080
drh3c657212009-11-17 23:59:58 +00002081 pIn1 = &aMem[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00002082 if( pIn1->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002083 v1 = 2;
drh5e00f6c2001-09-13 13:46:56 +00002084 }else{
drh5b6afba2008-01-05 16:29:28 +00002085 v1 = sqlite3VdbeIntValue(pIn1)!=0;
drhbb113512002-05-27 01:04:51 +00002086 }
drh3c657212009-11-17 23:59:58 +00002087 pIn2 = &aMem[pOp->p2];
drh5b6afba2008-01-05 16:29:28 +00002088 if( pIn2->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002089 v2 = 2;
2090 }else{
drh5b6afba2008-01-05 16:29:28 +00002091 v2 = sqlite3VdbeIntValue(pIn2)!=0;
drhbb113512002-05-27 01:04:51 +00002092 }
2093 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00002094 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00002095 v1 = and_logic[v1*3+v2];
2096 }else{
drh5b6afba2008-01-05 16:29:28 +00002097 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00002098 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00002099 }
drh3c657212009-11-17 23:59:58 +00002100 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00002101 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00002102 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00002103 }else{
drh5b6afba2008-01-05 16:29:28 +00002104 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00002105 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00002106 }
drh5e00f6c2001-09-13 13:46:56 +00002107 break;
2108}
2109
drhe99fa2a2008-12-15 15:27:51 +00002110/* Opcode: Not P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002111** Synopsis: r[P2]= !r[P1]
drh5e00f6c2001-09-13 13:46:56 +00002112**
drhe99fa2a2008-12-15 15:27:51 +00002113** Interpret the value in register P1 as a boolean value. Store the
2114** boolean complement in register P2. If the value in register P1 is
2115** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00002116*/
drh93952eb2009-11-13 19:43:43 +00002117case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002118 pIn1 = &aMem[pOp->p1];
2119 pOut = &aMem[pOp->p2];
drhe99fa2a2008-12-15 15:27:51 +00002120 if( pIn1->flags & MEM_Null ){
2121 sqlite3VdbeMemSetNull(pOut);
2122 }else{
2123 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
2124 }
drh5e00f6c2001-09-13 13:46:56 +00002125 break;
2126}
2127
drhe99fa2a2008-12-15 15:27:51 +00002128/* Opcode: BitNot P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002129** Synopsis: r[P1]= ~r[P1]
drhbf4133c2001-10-13 02:59:08 +00002130**
drhe99fa2a2008-12-15 15:27:51 +00002131** Interpret the content of register P1 as an integer. Store the
2132** ones-complement of the P1 value into register P2. If P1 holds
2133** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00002134*/
drh93952eb2009-11-13 19:43:43 +00002135case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002136 pIn1 = &aMem[pOp->p1];
2137 pOut = &aMem[pOp->p2];
drhe99fa2a2008-12-15 15:27:51 +00002138 if( pIn1->flags & MEM_Null ){
2139 sqlite3VdbeMemSetNull(pOut);
2140 }else{
2141 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
2142 }
drhbf4133c2001-10-13 02:59:08 +00002143 break;
2144}
2145
drh48f2d3b2011-09-16 01:34:43 +00002146/* Opcode: Once P1 P2 * * *
2147**
dan1d8cb212011-12-09 13:24:16 +00002148** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise,
2149** set the flag and fall through to the next instruction.
drh48f2d3b2011-09-16 01:34:43 +00002150*/
dan1d8cb212011-12-09 13:24:16 +00002151case OP_Once: { /* jump */
2152 assert( pOp->p1<p->nOnceFlag );
2153 if( p->aOnceFlag[pOp->p1] ){
2154 pc = pOp->p2-1;
2155 }else{
2156 p->aOnceFlag[pOp->p1] = 1;
2157 }
2158 break;
2159}
2160
drh3c84ddf2008-01-09 02:15:38 +00002161/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00002162**
drhef8662b2011-06-20 21:47:58 +00002163** Jump to P2 if the value in register P1 is true. The value
drh3c84ddf2008-01-09 02:15:38 +00002164** is considered true if it is numeric and non-zero. If the value
drhb8475df2011-12-09 16:21:19 +00002165** in P1 is NULL then take the jump if P3 is non-zero.
drh5e00f6c2001-09-13 13:46:56 +00002166*/
drh3c84ddf2008-01-09 02:15:38 +00002167/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00002168**
drhef8662b2011-06-20 21:47:58 +00002169** Jump to P2 if the value in register P1 is False. The value
drhb8475df2011-12-09 16:21:19 +00002170** is considered false if it has a numeric value of zero. If the value
2171** in P1 is NULL then take the jump if P3 is zero.
drhf5905aa2002-05-26 20:54:33 +00002172*/
drh9cbf3422008-01-17 16:22:13 +00002173case OP_If: /* jump, in1 */
2174case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00002175 int c;
drh3c657212009-11-17 23:59:58 +00002176 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00002177 if( pIn1->flags & MEM_Null ){
2178 c = pOp->p3;
drhf5905aa2002-05-26 20:54:33 +00002179 }else{
drhba0232a2005-06-06 17:27:19 +00002180#ifdef SQLITE_OMIT_FLOATING_POINT
shanefbd60f82009-02-04 03:59:25 +00002181 c = sqlite3VdbeIntValue(pIn1)!=0;
drhba0232a2005-06-06 17:27:19 +00002182#else
drh3c84ddf2008-01-09 02:15:38 +00002183 c = sqlite3VdbeRealValue(pIn1)!=0.0;
drhba0232a2005-06-06 17:27:19 +00002184#endif
drhf5905aa2002-05-26 20:54:33 +00002185 if( pOp->opcode==OP_IfNot ) c = !c;
2186 }
drh3c84ddf2008-01-09 02:15:38 +00002187 if( c ){
2188 pc = pOp->p2-1;
2189 }
drh5e00f6c2001-09-13 13:46:56 +00002190 break;
2191}
2192
drh830ecf92009-06-18 00:41:55 +00002193/* Opcode: IsNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002194** Synopsis: if r[P1]==NULL goto P2
drh477df4b2008-01-05 18:48:24 +00002195**
drh830ecf92009-06-18 00:41:55 +00002196** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002197*/
drh9cbf3422008-01-17 16:22:13 +00002198case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002199 pIn1 = &aMem[pOp->p1];
drh830ecf92009-06-18 00:41:55 +00002200 if( (pIn1->flags & MEM_Null)!=0 ){
2201 pc = pOp->p2 - 1;
2202 }
drh477df4b2008-01-05 18:48:24 +00002203 break;
2204}
2205
drh98757152008-01-09 23:04:12 +00002206/* Opcode: NotNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002207** Synopsis: if r[P1]!=NULL goto P2
drh5e00f6c2001-09-13 13:46:56 +00002208**
drh6a288a32008-01-07 19:20:24 +00002209** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002210*/
drh9cbf3422008-01-17 16:22:13 +00002211case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002212 pIn1 = &aMem[pOp->p1];
drh6a288a32008-01-07 19:20:24 +00002213 if( (pIn1->flags & MEM_Null)==0 ){
2214 pc = pOp->p2 - 1;
2215 }
drh5e00f6c2001-09-13 13:46:56 +00002216 break;
2217}
2218
drh3e9ca092009-09-08 01:14:48 +00002219/* Opcode: Column P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00002220** Synopsis: r[P3]=PX
danielk1977192ac1d2004-05-10 07:17:30 +00002221**
danielk1977cfcdaef2004-05-12 07:33:33 +00002222** Interpret the data that cursor P1 points to as a structure built using
2223** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002224** information about the format of the data.) Extract the P2-th column
2225** from this record. If there are less that (P2+1)
2226** values in the record, extract a NULL.
2227**
drh9cbf3422008-01-17 16:22:13 +00002228** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002229**
danielk19771f4aa332008-01-03 09:51:55 +00002230** If the column contains fewer than P2 fields, then extract a NULL. Or,
2231** if the P4 argument is a P4_MEM use the value of the P4 argument as
2232** the result.
drh3e9ca092009-09-08 01:14:48 +00002233**
2234** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2235** then the cache of the cursor is reset prior to extracting the column.
2236** The first OP_Column against a pseudo-table after the value of the content
2237** register has changed should have this bit set.
drha748fdc2012-03-28 01:34:47 +00002238**
drhdda5c082012-03-28 13:41:10 +00002239** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2240** the result is guaranteed to only be used as the argument of a length()
2241** or typeof() function, respectively. The loading of large blobs can be
2242** skipped for length() and all content loading can be skipped for typeof().
danielk1977192ac1d2004-05-10 07:17:30 +00002243*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002244case OP_Column: {
drh35cd6432009-06-05 14:17:21 +00002245 u32 payloadSize; /* Number of bytes in the record */
drh856c1032009-06-02 15:21:42 +00002246 i64 payloadSize64; /* Number of bytes in the record */
2247 int p1; /* P1 value of the opcode */
2248 int p2; /* column number to retrieve */
2249 VdbeCursor *pC; /* The VDBE cursor */
drhe61cffc2004-06-12 18:12:15 +00002250 char *zRec; /* Pointer to complete record-data */
drhd3194f52004-05-27 19:59:32 +00002251 BtCursor *pCrsr; /* The BTree cursor */
2252 u32 *aType; /* aType[i] holds the numeric type of the i-th column */
2253 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk197764202cf2008-11-17 15:31:47 +00002254 int nField; /* number of fields in the record */
danielk1977cfcdaef2004-05-12 07:33:33 +00002255 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002256 int i; /* Loop counter */
2257 char *zData; /* Part of the record being decoded */
drhd4e70eb2008-01-02 00:34:36 +00002258 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002259 Mem sMem; /* For storing the record being decoded */
drh35cd6432009-06-05 14:17:21 +00002260 u8 *zIdx; /* Index into header */
2261 u8 *zEndHdr; /* Pointer to first byte after the header */
2262 u32 offset; /* Offset into the data */
drh6658cd92010-02-05 14:12:53 +00002263 u32 szField; /* Number of bytes in the content of a field */
drh35cd6432009-06-05 14:17:21 +00002264 int szHdr; /* Size of the header size field at start of record */
2265 int avail; /* Number of bytes of available data */
drh5a077b72011-08-29 02:16:18 +00002266 u32 t; /* A type code from the record header */
drh3e9ca092009-09-08 01:14:48 +00002267 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002268
drh856c1032009-06-02 15:21:42 +00002269
2270 p1 = pOp->p1;
2271 p2 = pOp->p2;
2272 pC = 0;
drhb27b7f52008-12-10 18:03:45 +00002273 memset(&sMem, 0, sizeof(sMem));
drhd3194f52004-05-27 19:59:32 +00002274 assert( p1<p->nCursor );
dan3bc9f742013-08-15 16:18:39 +00002275 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00002276 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00002277 memAboutToChange(p, pDest);
shane36840fd2009-06-26 16:32:13 +00002278 zRec = 0;
danielk1977cfcdaef2004-05-12 07:33:33 +00002279
drhe61cffc2004-06-12 18:12:15 +00002280 /* This block sets the variable payloadSize to be the total number of
2281 ** bytes in the record.
2282 **
2283 ** zRec is set to be the complete text of the record if it is available.
drhb73857f2006-03-17 00:25:59 +00002284 ** The complete record text is always available for pseudo-tables
2285 ** If the record is stored in a cursor, the complete record text
2286 ** might be available in the pC->aRow cache. Or it might not be.
2287 ** If the data is unavailable, zRec is set to NULL.
drhd3194f52004-05-27 19:59:32 +00002288 **
2289 ** We also compute the number of columns in the record. For cursors,
drhdfe88ec2008-11-03 20:55:06 +00002290 ** the number of columns is stored in the VdbeCursor.nField element.
danielk1977cfcdaef2004-05-12 07:33:33 +00002291 */
drhb73857f2006-03-17 00:25:59 +00002292 pC = p->apCsr[p1];
drha5759672012-10-30 14:39:12 +00002293 assert( pC!=0 );
danielk19770817d0d2007-02-14 09:19:36 +00002294#ifndef SQLITE_OMIT_VIRTUALTABLE
2295 assert( pC->pVtabCursor==0 );
2296#endif
shane36840fd2009-06-26 16:32:13 +00002297 pCrsr = pC->pCursor;
2298 if( pCrsr!=0 ){
drhe61cffc2004-06-12 18:12:15 +00002299 /* The record is stored in a B-Tree */
drh536065a2005-01-26 21:55:31 +00002300 rc = sqlite3VdbeCursorMoveto(pC);
drh52f159e2005-01-27 00:33:21 +00002301 if( rc ) goto abort_due_to_error;
danielk1977192ac1d2004-05-10 07:17:30 +00002302 if( pC->nullRow ){
2303 payloadSize = 0;
drh76873ab2006-01-07 18:48:26 +00002304 }else if( pC->cacheStatus==p->cacheCtr ){
drh9188b382004-05-14 21:12:22 +00002305 payloadSize = pC->payloadSize;
drh2646da72005-12-09 20:02:05 +00002306 zRec = (char*)pC->aRow;
drhf0863fe2005-06-12 21:35:51 +00002307 }else if( pC->isIndex ){
drhea8ffdf2009-07-22 00:35:23 +00002308 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drhb07028f2011-10-14 21:49:18 +00002309 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
drhc27ae612009-07-14 18:35:44 +00002310 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhaa736092009-06-22 00:55:30 +00002311 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2312 ** payload size, so it is impossible for payloadSize64 to be
2313 ** larger than 32 bits. */
2314 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
drh35cd6432009-06-05 14:17:21 +00002315 payloadSize = (u32)payloadSize64;
danielk1977192ac1d2004-05-10 07:17:30 +00002316 }else{
drhea8ffdf2009-07-22 00:35:23 +00002317 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drhb07028f2011-10-14 21:49:18 +00002318 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &payloadSize);
drhea8ffdf2009-07-22 00:35:23 +00002319 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
danielk1977192ac1d2004-05-10 07:17:30 +00002320 }
drh3da046d2013-11-11 03:24:11 +00002321 }else{
2322 assert( pC->pseudoTableReg>0 );
drha6c2ed92009-11-14 23:22:23 +00002323 pReg = &aMem[pC->pseudoTableReg];
drh21172c42012-10-30 00:29:07 +00002324 if( pC->multiPseudo ){
2325 sqlite3VdbeMemShallowCopy(pDest, pReg+p2, MEM_Ephem);
2326 Deephemeralize(pDest);
2327 goto op_column_out;
2328 }
drh3e9ca092009-09-08 01:14:48 +00002329 assert( pReg->flags & MEM_Blob );
drh2b4ded92010-09-27 21:09:31 +00002330 assert( memIsValid(pReg) );
drh3e9ca092009-09-08 01:14:48 +00002331 payloadSize = pReg->n;
2332 zRec = pReg->z;
2333 pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
danielk1977192ac1d2004-05-10 07:17:30 +00002334 assert( payloadSize==0 || zRec!=0 );
danielk1977192ac1d2004-05-10 07:17:30 +00002335 }
2336
drhe6f43fc2011-08-28 02:15:34 +00002337 /* If payloadSize is 0, then just store a NULL. This can happen because of
2338 ** nullRow or because of a corrupt database. */
danielk1977192ac1d2004-05-10 07:17:30 +00002339 if( payloadSize==0 ){
drhe6f43fc2011-08-28 02:15:34 +00002340 MemSetTypeFlag(pDest, MEM_Null);
drhd4e70eb2008-01-02 00:34:36 +00002341 goto op_column_out;
danielk1977192ac1d2004-05-10 07:17:30 +00002342 }
drh35cd6432009-06-05 14:17:21 +00002343 assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
2344 if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002345 goto too_big;
2346 }
danielk1977192ac1d2004-05-10 07:17:30 +00002347
shane36840fd2009-06-26 16:32:13 +00002348 nField = pC->nField;
drhd3194f52004-05-27 19:59:32 +00002349 assert( p2<nField );
danielk1977b4964b72004-05-18 01:23:38 +00002350
drh9188b382004-05-14 21:12:22 +00002351 /* Read and parse the table header. Store the results of the parse
2352 ** into the record header cache fields of the cursor.
danielk1977192ac1d2004-05-10 07:17:30 +00002353 */
danielk1977cd3e8f72008-03-25 09:47:35 +00002354 aType = pC->aType;
drha05a7222008-01-19 03:35:58 +00002355 if( pC->cacheStatus==p->cacheCtr ){
drhd3194f52004-05-27 19:59:32 +00002356 aOffset = pC->aOffset;
2357 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00002358 assert(aType);
drh856c1032009-06-02 15:21:42 +00002359 avail = 0;
drhb73857f2006-03-17 00:25:59 +00002360 pC->aOffset = aOffset = &aType[nField];
2361 pC->payloadSize = payloadSize;
2362 pC->cacheStatus = p->cacheCtr;
danielk1977192ac1d2004-05-10 07:17:30 +00002363
drhd3194f52004-05-27 19:59:32 +00002364 /* Figure out how many bytes are in the header */
danielk197784ac9d02004-05-18 09:58:06 +00002365 if( zRec ){
2366 zData = zRec;
2367 }else{
drhf0863fe2005-06-12 21:35:51 +00002368 if( pC->isIndex ){
drhe51c44f2004-05-30 20:46:09 +00002369 zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
drhd3194f52004-05-27 19:59:32 +00002370 }else{
drhe51c44f2004-05-30 20:46:09 +00002371 zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
drh9188b382004-05-14 21:12:22 +00002372 }
drhe61cffc2004-06-12 18:12:15 +00002373 /* If KeyFetch()/DataFetch() managed to get the entire payload,
2374 ** save the payload in the pC->aRow cache. That will save us from
2375 ** having to make additional calls to fetch the content portion of
2376 ** the record.
2377 */
drh35cd6432009-06-05 14:17:21 +00002378 assert( avail>=0 );
2379 if( payloadSize <= (u32)avail ){
drh2646da72005-12-09 20:02:05 +00002380 zRec = zData;
2381 pC->aRow = (u8*)zData;
drhe61cffc2004-06-12 18:12:15 +00002382 }else{
2383 pC->aRow = 0;
2384 }
drhd3194f52004-05-27 19:59:32 +00002385 }
drhdda5c082012-03-28 13:41:10 +00002386 /* The following assert is true in all cases except when
drh588f5bc2007-01-02 18:41:54 +00002387 ** the database file has been corrupted externally.
2388 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
drh35cd6432009-06-05 14:17:21 +00002389 szHdr = getVarint32((u8*)zData, offset);
2390
2391 /* Make sure a corrupt database has not given us an oversize header.
2392 ** Do this now to avoid an oversize memory allocation.
2393 **
2394 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2395 ** types use so much data space that there can only be 4096 and 32 of
2396 ** them, respectively. So the maximum header length results from a
2397 ** 3-byte type for each of the maximum of 32768 columns plus three
2398 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2399 */
2400 if( offset > 98307 ){
2401 rc = SQLITE_CORRUPT_BKPT;
2402 goto op_column_out;
2403 }
2404
2405 /* Compute in len the number of bytes of data we need to read in order
2406 ** to get nField type values. offset is an upper bound on this. But
2407 ** nField might be significantly less than the true number of columns
2408 ** in the table, and in that case, 5*nField+3 might be smaller than offset.
2409 ** We want to minimize len in order to limit the size of the memory
2410 ** allocation, especially if a corrupt database file has caused offset
2411 ** to be oversized. Offset is limited to 98307 above. But 98307 might
2412 ** still exceed Robson memory allocation limits on some configurations.
2413 ** On systems that cannot tolerate large memory allocations, nField*5+3
2414 ** will likely be much smaller since nField will likely be less than
2415 ** 20 or so. This insures that Robson memory allocation limits are
2416 ** not exceeded even for corrupt database files.
2417 */
2418 len = nField*5 + 3;
shane75ac1de2009-06-09 18:58:52 +00002419 if( len > (int)offset ) len = (int)offset;
drhe61cffc2004-06-12 18:12:15 +00002420
2421 /* The KeyFetch() or DataFetch() above are fast and will get the entire
2422 ** record header in most cases. But they will fail to get the complete
2423 ** record header if the record header does not fit on a single page
2424 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
2425 ** acquire the complete header text.
2426 */
drh35cd6432009-06-05 14:17:21 +00002427 if( !zRec && avail<len ){
danielk1977a7a8e142008-02-13 18:25:27 +00002428 sMem.flags = 0;
2429 sMem.db = 0;
drh35cd6432009-06-05 14:17:21 +00002430 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
danielk197784ac9d02004-05-18 09:58:06 +00002431 if( rc!=SQLITE_OK ){
danielk19773c9cc8d2005-01-17 03:40:08 +00002432 goto op_column_out;
drh9188b382004-05-14 21:12:22 +00002433 }
drhb6f54522004-05-20 02:42:16 +00002434 zData = sMem.z;
drh9188b382004-05-14 21:12:22 +00002435 }
drh35cd6432009-06-05 14:17:21 +00002436 zEndHdr = (u8 *)&zData[len];
2437 zIdx = (u8 *)&zData[szHdr];
drh9188b382004-05-14 21:12:22 +00002438
drhd3194f52004-05-27 19:59:32 +00002439 /* Scan the header and use it to fill in the aType[] and aOffset[]
2440 ** arrays. aType[i] will contain the type integer for the i-th
2441 ** column and aOffset[i] will contain the offset from the beginning
2442 ** of the record to the start of the data for the i-th column
drh9188b382004-05-14 21:12:22 +00002443 */
danielk1977dedf45b2006-01-13 17:12:01 +00002444 for(i=0; i<nField; i++){
2445 if( zIdx<zEndHdr ){
drh6658cd92010-02-05 14:12:53 +00002446 aOffset[i] = offset;
drh5a077b72011-08-29 02:16:18 +00002447 if( zIdx[0]<0x80 ){
2448 t = zIdx[0];
2449 zIdx++;
2450 }else{
2451 zIdx += sqlite3GetVarint32(zIdx, &t);
2452 }
2453 aType[i] = t;
2454 szField = sqlite3VdbeSerialTypeLen(t);
drh6658cd92010-02-05 14:12:53 +00002455 offset += szField;
2456 if( offset<szField ){ /* True if offset overflows */
2457 zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
2458 break;
2459 }
danielk1977dedf45b2006-01-13 17:12:01 +00002460 }else{
drhdda5c082012-03-28 13:41:10 +00002461 /* If i is less that nField, then there are fewer fields in this
danielk1977dedf45b2006-01-13 17:12:01 +00002462 ** record than SetNumColumns indicated there are columns in the
2463 ** table. Set the offset for any extra columns not present in
drhdda5c082012-03-28 13:41:10 +00002464 ** the record to 0. This tells code below to store the default value
2465 ** for the column instead of deserializing a value from the record.
danielk1977dedf45b2006-01-13 17:12:01 +00002466 */
2467 aOffset[i] = 0;
2468 }
drh9188b382004-05-14 21:12:22 +00002469 }
danielk19775f096132008-03-28 15:44:09 +00002470 sqlite3VdbeMemRelease(&sMem);
drhd3194f52004-05-27 19:59:32 +00002471 sMem.flags = MEM_Null;
2472
danielk19779792eef2006-01-13 15:58:43 +00002473 /* If we have read more header data than was contained in the header,
2474 ** or if the end of the last field appears to be past the end of the
shane2ca8bc02008-05-07 18:59:28 +00002475 ** record, or if the end of the last field appears to be before the end
2476 ** of the record (when all fields present), then we must be dealing
2477 ** with a corrupt database.
drhd3194f52004-05-27 19:59:32 +00002478 */
drh6658cd92010-02-05 14:12:53 +00002479 if( (zIdx > zEndHdr) || (offset > payloadSize)
2480 || (zIdx==zEndHdr && offset!=payloadSize) ){
drh49285702005-09-17 15:20:26 +00002481 rc = SQLITE_CORRUPT_BKPT;
danielk19773c9cc8d2005-01-17 03:40:08 +00002482 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002483 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002484 }
danielk1977192ac1d2004-05-10 07:17:30 +00002485
danielk197736963fd2005-02-19 08:18:05 +00002486 /* Get the column information. If aOffset[p2] is non-zero, then
2487 ** deserialize the value from the record. If aOffset[p2] is zero,
2488 ** then there are not enough fields in the record to satisfy the
drh66a51672008-01-03 00:01:23 +00002489 ** request. In this case, set the value NULL or to P4 if P4 is
drh29dda4a2005-07-21 18:23:20 +00002490 ** a pointer to a Mem object.
drh9188b382004-05-14 21:12:22 +00002491 */
danielk197736963fd2005-02-19 08:18:05 +00002492 if( aOffset[p2] ){
2493 assert( rc==SQLITE_OK );
2494 if( zRec ){
drhac5e7492012-03-28 16:14:50 +00002495 /* This is the common case where the whole row fits on a single page */
drhe4c88c02012-01-04 12:57:45 +00002496 VdbeMemRelease(pDest);
danielk1977808ec7c2008-07-29 10:18:57 +00002497 sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
danielk197736963fd2005-02-19 08:18:05 +00002498 }else{
drhac5e7492012-03-28 16:14:50 +00002499 /* This branch happens only when the row overflows onto multiple pages */
drhdda5c082012-03-28 13:41:10 +00002500 t = aType[p2];
drha748fdc2012-03-28 01:34:47 +00002501 if( (pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
drhdda5c082012-03-28 13:41:10 +00002502 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)
drha748fdc2012-03-28 01:34:47 +00002503 ){
2504 /* Content is irrelevant for the typeof() function and for
drhdda5c082012-03-28 13:41:10 +00002505 ** the length(X) function if X is a blob. So we might as well use
drha748fdc2012-03-28 01:34:47 +00002506 ** bogus content rather than reading content from disk. NULL works
2507 ** for text and blob and whatever is in the payloadSize64 variable
2508 ** will work for everything else. */
2509 zData = t<12 ? (char*)&payloadSize64 : 0;
2510 }else{
drhac5e7492012-03-28 16:14:50 +00002511 len = sqlite3VdbeSerialTypeLen(t);
drha748fdc2012-03-28 01:34:47 +00002512 sqlite3VdbeMemMove(&sMem, pDest);
2513 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex,
2514 &sMem);
2515 if( rc!=SQLITE_OK ){
2516 goto op_column_out;
2517 }
2518 zData = sMem.z;
danielk197736963fd2005-02-19 08:18:05 +00002519 }
drhdda5c082012-03-28 13:41:10 +00002520 sqlite3VdbeSerialGet((u8*)zData, t, pDest);
danielk19777701e812005-01-10 12:59:51 +00002521 }
drhd4e70eb2008-01-02 00:34:36 +00002522 pDest->enc = encoding;
danielk197736963fd2005-02-19 08:18:05 +00002523 }else{
danielk197760585dd2008-01-03 08:08:40 +00002524 if( pOp->p4type==P4_MEM ){
danielk19772dca4ac2008-01-03 11:50:29 +00002525 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
danielk1977aee18ef2005-03-09 12:26:50 +00002526 }else{
drhe6f43fc2011-08-28 02:15:34 +00002527 MemSetTypeFlag(pDest, MEM_Null);
danielk1977aee18ef2005-03-09 12:26:50 +00002528 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002529 }
drhfebe1062004-08-28 18:17:48 +00002530
2531 /* If we dynamically allocated space to hold the data (in the
2532 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
drhd4e70eb2008-01-02 00:34:36 +00002533 ** dynamically allocated space over to the pDest structure.
drhfebe1062004-08-28 18:17:48 +00002534 ** This prevents a memory copy.
2535 */
danielk19775f096132008-03-28 15:44:09 +00002536 if( sMem.zMalloc ){
2537 assert( sMem.z==sMem.zMalloc );
danielk1977a7a8e142008-02-13 18:25:27 +00002538 assert( !(pDest->flags & MEM_Dyn) );
2539 assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
2540 pDest->flags &= ~(MEM_Ephem|MEM_Static);
danielk19775f096132008-03-28 15:44:09 +00002541 pDest->flags |= MEM_Term;
danielk1977a7a8e142008-02-13 18:25:27 +00002542 pDest->z = sMem.z;
danielk19775f096132008-03-28 15:44:09 +00002543 pDest->zMalloc = sMem.zMalloc;
danielk1977b1bc9532004-05-22 03:05:33 +00002544 }
drhfebe1062004-08-28 18:17:48 +00002545
drhd4e70eb2008-01-02 00:34:36 +00002546 rc = sqlite3VdbeMemMakeWriteable(pDest);
drhd3194f52004-05-27 19:59:32 +00002547
danielk19773c9cc8d2005-01-17 03:40:08 +00002548op_column_out:
drhb7654112008-01-12 12:48:07 +00002549 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002550 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002551 break;
2552}
2553
danielk1977751de562008-04-18 09:01:15 +00002554/* Opcode: Affinity P1 P2 * P4 *
drhf63552b2013-10-30 00:25:03 +00002555** Synopsis: affinity(r[P1@P2])
danielk1977751de562008-04-18 09:01:15 +00002556**
2557** Apply affinities to a range of P2 registers starting with P1.
2558**
2559** P4 is a string that is P2 characters long. The nth character of the
2560** string indicates the column affinity that should be used for the nth
2561** memory cell in the range.
2562*/
2563case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002564 const char *zAffinity; /* The affinity to be applied */
2565 char cAff; /* A single character of affinity */
danielk1977751de562008-04-18 09:01:15 +00002566
drh856c1032009-06-02 15:21:42 +00002567 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002568 assert( zAffinity!=0 );
2569 assert( zAffinity[pOp->p2]==0 );
2570 pIn1 = &aMem[pOp->p1];
2571 while( (cAff = *(zAffinity++))!=0 ){
dan3bc9f742013-08-15 16:18:39 +00002572 assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00002573 assert( memIsValid(pIn1) );
drh039fc322009-11-17 18:31:47 +00002574 ExpandBlob(pIn1);
2575 applyAffinity(pIn1, cAff, encoding);
2576 pIn1++;
danielk1977751de562008-04-18 09:01:15 +00002577 }
2578 break;
2579}
2580
drh1db639c2008-01-17 02:36:28 +00002581/* Opcode: MakeRecord P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00002582** Synopsis: r[P3]=mkrec(r[P1@P2])
drh7a224de2004-06-02 01:22:02 +00002583**
drh710c4842010-08-30 01:17:20 +00002584** Convert P2 registers beginning with P1 into the [record format]
2585** use as a data record in a database table or as a key
2586** in an index. The OP_Column opcode can decode the record later.
drh7a224de2004-06-02 01:22:02 +00002587**
danielk1977751de562008-04-18 09:01:15 +00002588** P4 may be a string that is P2 characters long. The nth character of the
drh7a224de2004-06-02 01:22:02 +00002589** string indicates the column affinity that should be used for the nth
drh9cbf3422008-01-17 16:22:13 +00002590** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002591**
drh8a512562005-11-14 22:29:05 +00002592** The mapping from character to affinity is given by the SQLITE_AFF_
2593** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002594**
drh66a51672008-01-03 00:01:23 +00002595** If P4 is NULL then all index fields have the affinity NONE.
drh7f057c92005-06-24 03:53:06 +00002596*/
drh1db639c2008-01-17 02:36:28 +00002597case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002598 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2599 Mem *pRec; /* The new record */
2600 u64 nData; /* Number of bytes of data space */
2601 int nHdr; /* Number of bytes of header space */
2602 i64 nByte; /* Data space required for this record */
2603 int nZero; /* Number of zero bytes at the end of the record */
2604 int nVarint; /* Number of bytes in a varint */
2605 u32 serial_type; /* Type field */
2606 Mem *pData0; /* First field to be combined into the record */
2607 Mem *pLast; /* Last field of the record */
2608 int nField; /* Number of fields in the record */
2609 char *zAffinity; /* The affinity string for the record */
2610 int file_format; /* File format to use for encoding */
2611 int i; /* Space used in zNewRecord[] */
2612 int len; /* Length of a field */
2613
drhf3218fe2004-05-28 08:21:02 +00002614 /* Assuming the record contains N fields, the record format looks
2615 ** like this:
2616 **
drh7a224de2004-06-02 01:22:02 +00002617 ** ------------------------------------------------------------------------
2618 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2619 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002620 **
drh9cbf3422008-01-17 16:22:13 +00002621 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2622 ** and so froth.
drhf3218fe2004-05-28 08:21:02 +00002623 **
2624 ** Each type field is a varint representing the serial type of the
2625 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002626 ** hdr-size field is also a varint which is the offset from the beginning
2627 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002628 */
drh856c1032009-06-02 15:21:42 +00002629 nData = 0; /* Number of bytes of data space */
2630 nHdr = 0; /* Number of bytes of header space */
drh856c1032009-06-02 15:21:42 +00002631 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002632 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002633 zAffinity = pOp->p4.z;
dan3bc9f742013-08-15 16:18:39 +00002634 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 );
drha6c2ed92009-11-14 23:22:23 +00002635 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002636 nField = pOp->p2;
2637 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002638 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002639
drh2b4ded92010-09-27 21:09:31 +00002640 /* Identify the output register */
2641 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2642 pOut = &aMem[pOp->p3];
2643 memAboutToChange(p, pOut);
2644
drhf3218fe2004-05-28 08:21:02 +00002645 /* Loop through the elements that will make up the record to figure
2646 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002647 */
drha2a49dc2008-01-02 14:28:13 +00002648 for(pRec=pData0; pRec<=pLast; pRec++){
drh2b4ded92010-09-27 21:09:31 +00002649 assert( memIsValid(pRec) );
drhd3d39e92004-05-20 22:16:29 +00002650 if( zAffinity ){
drhb21c8cd2007-08-21 19:33:56 +00002651 applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
drhd3d39e92004-05-20 22:16:29 +00002652 }
danielk1977d908f5a2007-05-11 07:08:28 +00002653 if( pRec->flags&MEM_Zero && pRec->n>0 ){
drha05a7222008-01-19 03:35:58 +00002654 sqlite3VdbeMemExpandBlob(pRec);
danielk1977d908f5a2007-05-11 07:08:28 +00002655 }
drhd946db02005-12-29 19:23:06 +00002656 serial_type = sqlite3VdbeSerialType(pRec, file_format);
drhae7e1512007-05-02 16:51:59 +00002657 len = sqlite3VdbeSerialTypeLen(serial_type);
2658 nData += len;
drhf3218fe2004-05-28 08:21:02 +00002659 nHdr += sqlite3VarintLen(serial_type);
drhfdf972a2007-05-02 13:30:27 +00002660 if( pRec->flags & MEM_Zero ){
2661 /* Only pure zero-filled BLOBs can be input to this Opcode.
2662 ** We do not allow blobs with a prefix and a zero-filled tail. */
drh8df32842008-12-09 02:51:23 +00002663 nZero += pRec->u.nZero;
drhae7e1512007-05-02 16:51:59 +00002664 }else if( len ){
drhfdf972a2007-05-02 13:30:27 +00002665 nZero = 0;
2666 }
danielk19778d059842004-05-12 11:24:02 +00002667 }
danielk19773d1bfea2004-05-14 11:00:53 +00002668
drhf3218fe2004-05-28 08:21:02 +00002669 /* Add the initial header varint and total the size */
drhcb9882a2005-03-17 03:15:40 +00002670 nHdr += nVarint = sqlite3VarintLen(nHdr);
2671 if( nVarint<sqlite3VarintLen(nHdr) ){
2672 nHdr++;
2673 }
drhfdf972a2007-05-02 13:30:27 +00002674 nByte = nHdr+nData-nZero;
drhbb4957f2008-03-20 14:03:29 +00002675 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002676 goto too_big;
2677 }
drhf3218fe2004-05-28 08:21:02 +00002678
danielk1977a7a8e142008-02-13 18:25:27 +00002679 /* Make sure the output register has a buffer large enough to store
2680 ** the new record. The output register (pOp->p3) is not allowed to
2681 ** be one of the input registers (because the following call to
2682 ** sqlite3VdbeMemGrow() could clobber the value before it is used).
2683 */
drh9c1905f2008-12-10 22:32:56 +00002684 if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002685 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002686 }
danielk1977a7a8e142008-02-13 18:25:27 +00002687 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002688
2689 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002690 i = putVarint32(zNewRecord, nHdr);
drha2a49dc2008-01-02 14:28:13 +00002691 for(pRec=pData0; pRec<=pLast; pRec++){
drhd946db02005-12-29 19:23:06 +00002692 serial_type = sqlite3VdbeSerialType(pRec, file_format);
shane3f8d5cf2008-04-24 19:15:09 +00002693 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
danielk19778d059842004-05-12 11:24:02 +00002694 }
drha2a49dc2008-01-02 14:28:13 +00002695 for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
drh9c1905f2008-12-10 22:32:56 +00002696 i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
drhf3218fe2004-05-28 08:21:02 +00002697 }
drhfdf972a2007-05-02 13:30:27 +00002698 assert( i==nByte );
drhf3218fe2004-05-28 08:21:02 +00002699
dan3bc9f742013-08-15 16:18:39 +00002700 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drh9c1905f2008-12-10 22:32:56 +00002701 pOut->n = (int)nByte;
danielk1977a7a8e142008-02-13 18:25:27 +00002702 pOut->flags = MEM_Blob | MEM_Dyn;
2703 pOut->xDel = 0;
drhfdf972a2007-05-02 13:30:27 +00002704 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002705 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002706 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002707 }
drh477df4b2008-01-05 18:48:24 +00002708 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
drh1013c932008-01-06 00:25:21 +00002709 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002710 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002711 break;
2712}
2713
danielk1977a5533162009-02-24 10:01:51 +00002714/* Opcode: Count P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002715** Synopsis: r[P2]=count()
danielk1977a5533162009-02-24 10:01:51 +00002716**
2717** Store the number of entries (an integer value) in the table or index
2718** opened by cursor P1 in register P2
2719*/
2720#ifndef SQLITE_OMIT_BTREECOUNT
2721case OP_Count: { /* out2-prerelease */
2722 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002723 BtCursor *pCrsr;
2724
2725 pCrsr = p->apCsr[pOp->p1]->pCursor;
drh3da046d2013-11-11 03:24:11 +00002726 assert( pCrsr );
2727 rc = sqlite3BtreeCount(pCrsr, &nEntry);
danielk1977a5533162009-02-24 10:01:51 +00002728 pOut->u.i = nEntry;
2729 break;
2730}
2731#endif
2732
danielk1977fd7f0452008-12-17 17:30:26 +00002733/* Opcode: Savepoint P1 * * P4 *
2734**
2735** Open, release or rollback the savepoint named by parameter P4, depending
2736** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2737** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2738*/
2739case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002740 int p1; /* Value of P1 operand */
2741 char *zName; /* Name of savepoint */
2742 int nName;
2743 Savepoint *pNew;
2744 Savepoint *pSavepoint;
2745 Savepoint *pTmp;
2746 int iSavepoint;
2747 int ii;
2748
2749 p1 = pOp->p1;
2750 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002751
2752 /* Assert that the p1 parameter is valid. Also that if there is no open
2753 ** transaction, then there cannot be any savepoints.
2754 */
2755 assert( db->pSavepoint==0 || db->autoCommit==0 );
2756 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2757 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2758 assert( checkSavepointCount(db) );
danc0537fe2013-06-28 19:41:43 +00002759 assert( p->bIsReader );
danielk1977fd7f0452008-12-17 17:30:26 +00002760
2761 if( p1==SAVEPOINT_BEGIN ){
drh4f7d3a52013-06-27 23:54:02 +00002762 if( db->nVdbeWrite>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002763 /* A new savepoint cannot be created if there are active write
2764 ** statements (i.e. open read/write incremental blob handles).
2765 */
2766 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
2767 "SQL statements in progress");
2768 rc = SQLITE_BUSY;
2769 }else{
drh856c1032009-06-02 15:21:42 +00002770 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002771
drhbe07ec52011-06-03 12:15:26 +00002772#ifndef SQLITE_OMIT_VIRTUALTABLE
dand9495cd2011-04-27 12:08:04 +00002773 /* This call is Ok even if this savepoint is actually a transaction
2774 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2775 ** If this is a transaction savepoint being opened, it is guaranteed
2776 ** that the db->aVTrans[] array is empty. */
2777 assert( db->autoCommit==0 || db->nVTrans==0 );
drha24bc9c2011-05-24 00:35:56 +00002778 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2779 db->nStatement+db->nSavepoint);
dand9495cd2011-04-27 12:08:04 +00002780 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh305ebab2011-05-26 14:19:14 +00002781#endif
dand9495cd2011-04-27 12:08:04 +00002782
danielk1977fd7f0452008-12-17 17:30:26 +00002783 /* Create a new savepoint structure. */
2784 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2785 if( pNew ){
2786 pNew->zName = (char *)&pNew[1];
2787 memcpy(pNew->zName, zName, nName+1);
2788
2789 /* If there is no open transaction, then mark this as a special
2790 ** "transaction savepoint". */
2791 if( db->autoCommit ){
2792 db->autoCommit = 0;
2793 db->isTransactionSavepoint = 1;
2794 }else{
2795 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002796 }
danielk1977fd7f0452008-12-17 17:30:26 +00002797
2798 /* Link the new savepoint into the database handle's list. */
2799 pNew->pNext = db->pSavepoint;
2800 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002801 pNew->nDeferredCons = db->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00002802 pNew->nDeferredImmCons = db->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002803 }
2804 }
2805 }else{
drh856c1032009-06-02 15:21:42 +00002806 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00002807
2808 /* Find the named savepoint. If there is no such savepoint, then an
2809 ** an error is returned to the user. */
2810 for(
drh856c1032009-06-02 15:21:42 +00002811 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002812 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00002813 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00002814 ){
2815 iSavepoint++;
2816 }
2817 if( !pSavepoint ){
2818 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
2819 rc = SQLITE_ERROR;
drh4f7d3a52013-06-27 23:54:02 +00002820 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
danielk1977fd7f0452008-12-17 17:30:26 +00002821 /* It is not possible to release (commit) a savepoint if there are
drh0f198a72012-02-13 16:43:16 +00002822 ** active write statements.
danielk1977fd7f0452008-12-17 17:30:26 +00002823 */
2824 sqlite3SetString(&p->zErrMsg, db,
drh0f198a72012-02-13 16:43:16 +00002825 "cannot release savepoint - SQL statements in progress"
danielk1977fd7f0452008-12-17 17:30:26 +00002826 );
2827 rc = SQLITE_BUSY;
2828 }else{
2829
2830 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00002831 ** and this is a RELEASE command, then the current transaction
2832 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00002833 */
2834 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2835 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00002836 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002837 goto vdbe_return;
2838 }
danielk1977fd7f0452008-12-17 17:30:26 +00002839 db->autoCommit = 1;
2840 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2841 p->pc = pc;
2842 db->autoCommit = 0;
2843 p->rc = rc = SQLITE_BUSY;
2844 goto vdbe_return;
2845 }
danielk197734cf35d2008-12-18 18:31:38 +00002846 db->isTransactionSavepoint = 0;
2847 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00002848 }else{
danielk1977fd7f0452008-12-17 17:30:26 +00002849 iSavepoint = db->nSavepoint - iSavepoint - 1;
drh31f10052012-03-31 17:17:26 +00002850 if( p1==SAVEPOINT_ROLLBACK ){
2851 for(ii=0; ii<db->nDb; ii++){
2852 sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT);
2853 }
drh0f198a72012-02-13 16:43:16 +00002854 }
2855 for(ii=0; ii<db->nDb; ii++){
danielk1977fd7f0452008-12-17 17:30:26 +00002856 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2857 if( rc!=SQLITE_OK ){
2858 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00002859 }
danielk1977fd7f0452008-12-17 17:30:26 +00002860 }
drh9f0bbf92009-01-02 21:08:09 +00002861 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002862 sqlite3ExpirePreparedStatements(db);
drh81028a42012-05-15 18:28:27 +00002863 sqlite3ResetAllSchemasOfConnection(db);
danc311fee2010-08-31 16:25:19 +00002864 db->flags = (db->flags | SQLITE_InternChanges);
danielk1977fd7f0452008-12-17 17:30:26 +00002865 }
2866 }
2867
2868 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2869 ** savepoints nested inside of the savepoint being operated on. */
2870 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00002871 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002872 db->pSavepoint = pTmp->pNext;
2873 sqlite3DbFree(db, pTmp);
2874 db->nSavepoint--;
2875 }
2876
dan1da40a32009-09-19 17:00:31 +00002877 /* If it is a RELEASE, then destroy the savepoint being operated on
2878 ** too. If it is a ROLLBACK TO, then set the number of deferred
2879 ** constraint violations present in the database to the value stored
2880 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00002881 if( p1==SAVEPOINT_RELEASE ){
2882 assert( pSavepoint==db->pSavepoint );
2883 db->pSavepoint = pSavepoint->pNext;
2884 sqlite3DbFree(db, pSavepoint);
2885 if( !isTransaction ){
2886 db->nSavepoint--;
2887 }
dan1da40a32009-09-19 17:00:31 +00002888 }else{
2889 db->nDeferredCons = pSavepoint->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00002890 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002891 }
dand9495cd2011-04-27 12:08:04 +00002892
2893 if( !isTransaction ){
2894 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2895 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2896 }
danielk1977fd7f0452008-12-17 17:30:26 +00002897 }
2898 }
2899
2900 break;
2901}
2902
drh98757152008-01-09 23:04:12 +00002903/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00002904**
2905** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00002906** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00002907** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2908** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00002909**
2910** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00002911*/
drh9cbf3422008-01-17 16:22:13 +00002912case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00002913 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00002914 int iRollback;
drh856c1032009-06-02 15:21:42 +00002915 int turnOnAC;
danielk19771d850a72004-05-31 08:26:49 +00002916
drh856c1032009-06-02 15:21:42 +00002917 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00002918 iRollback = pOp->p2;
drh856c1032009-06-02 15:21:42 +00002919 turnOnAC = desiredAutoCommit && !db->autoCommit;
drhad4a4b82008-11-05 16:37:34 +00002920 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00002921 assert( desiredAutoCommit==1 || iRollback==0 );
drh4f7d3a52013-06-27 23:54:02 +00002922 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
danc0537fe2013-06-28 19:41:43 +00002923 assert( p->bIsReader );
danielk197746c43ed2004-06-30 06:30:25 +00002924
drh0f198a72012-02-13 16:43:16 +00002925#if 0
drh4f7d3a52013-06-27 23:54:02 +00002926 if( turnOnAC && iRollback && db->nVdbeActive>1 ){
drhad4a4b82008-11-05 16:37:34 +00002927 /* If this instruction implements a ROLLBACK and other VMs are
danielk197746c43ed2004-06-30 06:30:25 +00002928 ** still running, and a transaction is active, return an error indicating
2929 ** that the other VMs must complete first.
2930 */
drhad4a4b82008-11-05 16:37:34 +00002931 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2932 "SQL statements in progress");
drh99dfe5e2008-10-30 15:03:15 +00002933 rc = SQLITE_BUSY;
drh0f198a72012-02-13 16:43:16 +00002934 }else
2935#endif
drh4f7d3a52013-06-27 23:54:02 +00002936 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){
drhad4a4b82008-11-05 16:37:34 +00002937 /* If this instruction implements a COMMIT and other VMs are writing
2938 ** return an error indicating that the other VMs must complete first.
2939 */
2940 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
2941 "SQL statements in progress");
2942 rc = SQLITE_BUSY;
2943 }else if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00002944 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00002945 assert( desiredAutoCommit==1 );
drh21021a52012-02-13 17:01:51 +00002946 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977f3f06bb2005-12-16 15:24:28 +00002947 db->autoCommit = 1;
dan32b09f22009-09-23 17:29:59 +00002948 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002949 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002950 }else{
shane7d3846a2008-12-11 02:58:26 +00002951 db->autoCommit = (u8)desiredAutoCommit;
danielk1977f3f06bb2005-12-16 15:24:28 +00002952 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
danielk1977f3f06bb2005-12-16 15:24:28 +00002953 p->pc = pc;
drh9c1905f2008-12-10 22:32:56 +00002954 db->autoCommit = (u8)(1-desiredAutoCommit);
drh900b31e2007-08-28 02:27:51 +00002955 p->rc = rc = SQLITE_BUSY;
2956 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002957 }
danielk19771d850a72004-05-31 08:26:49 +00002958 }
danielk1977bd434552009-03-18 10:33:00 +00002959 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00002960 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00002961 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00002962 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00002963 }else{
drh900b31e2007-08-28 02:27:51 +00002964 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00002965 }
drh900b31e2007-08-28 02:27:51 +00002966 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00002967 }else{
drhf089aa42008-07-08 19:34:06 +00002968 sqlite3SetString(&p->zErrMsg, db,
drhad4a4b82008-11-05 16:37:34 +00002969 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00002970 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00002971 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00002972
2973 rc = SQLITE_ERROR;
drh663fc632002-02-02 18:49:19 +00002974 }
2975 break;
2976}
2977
drh98757152008-01-09 23:04:12 +00002978/* Opcode: Transaction P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002979**
2980** Begin a transaction. The transaction ends when a Commit or Rollback
drh663fc632002-02-02 18:49:19 +00002981** opcode is encountered. Depending on the ON CONFLICT setting, the
2982** transaction might also be rolled back if an error is encountered.
drh5e00f6c2001-09-13 13:46:56 +00002983**
drh001bbcb2003-03-19 03:14:00 +00002984** P1 is the index of the database file on which the transaction is
2985** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00002986** file used for temporary tables. Indices of 2 or more are used for
2987** attached databases.
drhcabb0812002-09-14 13:47:32 +00002988**
drh80242052004-06-09 00:48:12 +00002989** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
danielk1977ee5741e2004-05-31 10:01:34 +00002990** obtained on the database file when a write-transaction is started. No
drh80242052004-06-09 00:48:12 +00002991** other process can start another write transaction while this transaction is
2992** underway. Starting a write transaction also creates a rollback journal. A
2993** write transaction must be started before any changes can be made to the
drhf7b54962013-05-28 12:11:54 +00002994** database. If P2 is greater than or equal to 2 then an EXCLUSIVE lock is
2995** also obtained on the file.
danielk1977ee5741e2004-05-31 10:01:34 +00002996**
dane0af83a2009-09-08 19:15:01 +00002997** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2998** true (this flag is set if the Vdbe may modify more than one row and may
2999** throw an ABORT exception), a statement transaction may also be opened.
3000** More specifically, a statement transaction is opened iff the database
3001** connection is currently not in autocommit mode, or if there are other
drha4510172012-02-02 15:50:17 +00003002** active statements. A statement transaction allows the changes made by this
dane0af83a2009-09-08 19:15:01 +00003003** VDBE to be rolled back after an error without having to roll back the
3004** entire transaction. If no error is encountered, the statement transaction
3005** will automatically commit when the VDBE halts.
3006**
danielk1977ee5741e2004-05-31 10:01:34 +00003007** If P2 is zero, then a read-lock is obtained on the database file.
drh5e00f6c2001-09-13 13:46:56 +00003008*/
drh9cbf3422008-01-17 16:22:13 +00003009case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00003010 Btree *pBt;
3011
drh1713afb2013-06-28 01:24:57 +00003012 assert( p->bIsReader );
drh9e92a472013-06-27 17:40:30 +00003013 assert( p->readOnly==0 || pOp->p2==0 );
drh653b82a2009-06-22 11:10:47 +00003014 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00003015 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh13447bf2013-07-10 13:33:49 +00003016 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3017 rc = SQLITE_READONLY;
3018 goto abort_due_to_error;
3019 }
drh653b82a2009-06-22 11:10:47 +00003020 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00003021
danielk197724162fe2004-06-04 06:22:00 +00003022 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00003023 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
danielk197724162fe2004-06-04 06:22:00 +00003024 if( rc==SQLITE_BUSY ){
danielk19772a764eb2004-06-12 01:43:26 +00003025 p->pc = pc;
drh900b31e2007-08-28 02:27:51 +00003026 p->rc = rc = SQLITE_BUSY;
drh900b31e2007-08-28 02:27:51 +00003027 goto vdbe_return;
danielk197724162fe2004-06-04 06:22:00 +00003028 }
drh9e9f1bd2009-10-13 15:36:51 +00003029 if( rc!=SQLITE_OK ){
danielk197724162fe2004-06-04 06:22:00 +00003030 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00003031 }
dane0af83a2009-09-08 19:15:01 +00003032
3033 if( pOp->p2 && p->usesStmtJournal
danc0537fe2013-06-28 19:41:43 +00003034 && (db->autoCommit==0 || db->nVdbeRead>1)
dane0af83a2009-09-08 19:15:01 +00003035 ){
3036 assert( sqlite3BtreeIsInTrans(pBt) );
3037 if( p->iStatement==0 ){
3038 assert( db->nStatement>=0 && db->nSavepoint>=0 );
3039 db->nStatement++;
3040 p->iStatement = db->nSavepoint + db->nStatement;
3041 }
dana311b802011-04-26 19:21:34 +00003042
drh346506f2011-05-25 01:16:42 +00003043 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
dana311b802011-04-26 19:21:34 +00003044 if( rc==SQLITE_OK ){
3045 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3046 }
dan1da40a32009-09-19 17:00:31 +00003047
3048 /* Store the current value of the database handles deferred constraint
3049 ** counter. If the statement transaction needs to be rolled back,
3050 ** the value of this counter needs to be restored too. */
3051 p->nStmtDefCons = db->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00003052 p->nStmtDefImmCons = db->nDeferredImmCons;
dane0af83a2009-09-08 19:15:01 +00003053 }
drhb86ccfb2003-01-28 23:13:10 +00003054 }
drh5e00f6c2001-09-13 13:46:56 +00003055 break;
3056}
3057
drhb1fdb2a2008-01-05 04:06:03 +00003058/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003059**
drh9cbf3422008-01-17 16:22:13 +00003060** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00003061** P3==1 is the schema version. P3==2 is the database format.
3062** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00003063** the main database file and P1==1 is the database file used to store
3064** temporary tables.
drh4a324312001-12-21 14:30:42 +00003065**
drh50e5dad2001-09-15 00:57:28 +00003066** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00003067** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00003068** executing this instruction.
3069*/
drh4c583122008-01-04 22:01:03 +00003070case OP_ReadCookie: { /* out2-prerelease */
drhf328bc82004-05-10 23:29:49 +00003071 int iMeta;
drh856c1032009-06-02 15:21:42 +00003072 int iDb;
3073 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00003074
drh1713afb2013-06-28 01:24:57 +00003075 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00003076 iDb = pOp->p1;
3077 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00003078 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00003079 assert( iDb>=0 && iDb<db->nDb );
3080 assert( db->aDb[iDb].pBt!=0 );
drhdddd7792011-04-03 18:19:25 +00003081 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
danielk19770d19f7a2009-06-03 11:25:07 +00003082
danielk1977602b4662009-07-02 07:47:33 +00003083 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh4c583122008-01-04 22:01:03 +00003084 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00003085 break;
3086}
3087
drh98757152008-01-09 23:04:12 +00003088/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003089**
drh98757152008-01-09 23:04:12 +00003090** Write the content of register P3 (interpreted as an integer)
danielk19770d19f7a2009-06-03 11:25:07 +00003091** into cookie number P2 of database P1. P2==1 is the schema version.
3092** P2==2 is the database format. P2==3 is the recommended pager cache
3093** size, and so forth. P1==0 is the main database file and P1==1 is the
3094** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00003095**
3096** A transaction must be started before executing this opcode.
3097*/
drh9cbf3422008-01-17 16:22:13 +00003098case OP_SetCookie: { /* in3 */
drh3f7d4e42004-07-24 14:35:58 +00003099 Db *pDb;
drh4a324312001-12-21 14:30:42 +00003100 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00003101 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00003102 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh9e92a472013-06-27 17:40:30 +00003103 assert( p->readOnly==0 );
drh3f7d4e42004-07-24 14:35:58 +00003104 pDb = &db->aDb[pOp->p1];
3105 assert( pDb->pBt!=0 );
drh21206082011-04-04 18:22:02 +00003106 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drh3c657212009-11-17 23:59:58 +00003107 pIn3 = &aMem[pOp->p3];
drh98757152008-01-09 23:04:12 +00003108 sqlite3VdbeMemIntegerify(pIn3);
drha3b321d2004-05-11 09:31:31 +00003109 /* See note about index shifting on OP_ReadCookie */
danielk19770d19f7a2009-06-03 11:25:07 +00003110 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
3111 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00003112 /* When the schema cookie changes, record the new cookie internally */
drh9c1905f2008-12-10 22:32:56 +00003113 pDb->pSchema->schema_cookie = (int)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00003114 db->flags |= SQLITE_InternChanges;
danielk19770d19f7a2009-06-03 11:25:07 +00003115 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00003116 /* Record changes in the file format */
drh9c1905f2008-12-10 22:32:56 +00003117 pDb->pSchema->file_format = (u8)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00003118 }
drhfd426c62006-01-30 15:34:22 +00003119 if( pOp->p1==1 ){
3120 /* Invalidate all prepared statements whenever the TEMP database
3121 ** schema is changed. Ticket #1644 */
3122 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00003123 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00003124 }
drh50e5dad2001-09-15 00:57:28 +00003125 break;
3126}
3127
drhc2a75552011-03-18 21:55:46 +00003128/* Opcode: VerifyCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003129**
drh001bbcb2003-03-19 03:14:00 +00003130** Check the value of global database parameter number 0 (the
drhc2a75552011-03-18 21:55:46 +00003131** schema version) and make sure it is equal to P2 and that the
3132** generation counter on the local schema parse equals P3.
3133**
drh001bbcb2003-03-19 03:14:00 +00003134** P1 is the database number which is 0 for the main database file
3135** and 1 for the file holding temporary tables and some higher number
3136** for auxiliary databases.
drh50e5dad2001-09-15 00:57:28 +00003137**
3138** The cookie changes its value whenever the database schema changes.
drhb19a2bc2001-09-16 00:13:26 +00003139** This operation is used to detect when that the cookie has changed
drh50e5dad2001-09-15 00:57:28 +00003140** and that the current process needs to reread the schema.
3141**
3142** Either a transaction needs to have been started or an OP_Open needs
3143** to be executed (to establish a read lock) before this opcode is
3144** invoked.
3145*/
drh9cbf3422008-01-17 16:22:13 +00003146case OP_VerifyCookie: {
drhf328bc82004-05-10 23:29:49 +00003147 int iMeta;
drhc2a75552011-03-18 21:55:46 +00003148 int iGen;
drhc275b4e2004-07-19 17:25:24 +00003149 Btree *pBt;
drhc2a75552011-03-18 21:55:46 +00003150
drh001bbcb2003-03-19 03:14:00 +00003151 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00003152 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh21206082011-04-04 18:22:02 +00003153 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drh1713afb2013-06-28 01:24:57 +00003154 assert( p->bIsReader );
drhc275b4e2004-07-19 17:25:24 +00003155 pBt = db->aDb[pOp->p1].pBt;
3156 if( pBt ){
danielk1977602b4662009-07-02 07:47:33 +00003157 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
drhc2a75552011-03-18 21:55:46 +00003158 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
drhc275b4e2004-07-19 17:25:24 +00003159 }else{
drhfcd71b62011-04-05 22:08:24 +00003160 iGen = iMeta = 0;
drhc275b4e2004-07-19 17:25:24 +00003161 }
drhc2a75552011-03-18 21:55:46 +00003162 if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){
drh633e6d52008-07-28 19:34:53 +00003163 sqlite3DbFree(db, p->zErrMsg);
danielk1977a1644fd2007-08-29 12:31:25 +00003164 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
danielk1977896e7922007-04-17 08:32:33 +00003165 /* If the schema-cookie from the database file matches the cookie
3166 ** stored with the in-memory representation of the schema, do
3167 ** not reload the schema from the database file.
3168 **
shane21e7feb2008-05-30 15:59:49 +00003169 ** If virtual-tables are in use, this is not just an optimization.
danielk1977896e7922007-04-17 08:32:33 +00003170 ** Often, v-tables store their data in other SQLite tables, which
3171 ** are queried from within xNext() and other v-table methods using
3172 ** prepared queries. If such a query is out-of-date, we do not want to
3173 ** discard the database schema, as the user code implementing the
3174 ** v-table would have to be ready for the sqlite3_vtab structure itself
3175 ** to be invalidated whenever sqlite3_step() is called from within
3176 ** a v-table method.
3177 */
3178 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
drh81028a42012-05-15 18:28:27 +00003179 sqlite3ResetOneSchema(db, pOp->p1);
danielk1977896e7922007-04-17 08:32:33 +00003180 }
3181
drh5b6c5452011-02-22 03:34:56 +00003182 p->expired = 1;
drh50e5dad2001-09-15 00:57:28 +00003183 rc = SQLITE_SCHEMA;
3184 }
3185 break;
3186}
3187
drh98757152008-01-09 23:04:12 +00003188/* Opcode: OpenRead P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003189** Synopsis: root=P2 iDb=P3
drh5e00f6c2001-09-13 13:46:56 +00003190**
drhecdc7532001-09-23 02:35:53 +00003191** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00003192** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00003193** P3==0 means the main database, P3==1 means the database used for
3194** temporary tables, and P3>1 means used the corresponding attached
3195** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00003196** values need not be contiguous but all P1 values should be small integers.
3197** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00003198**
drh98757152008-01-09 23:04:12 +00003199** If P5!=0 then use the content of register P2 as the root page, not
3200** the value of P2 itself.
drh5edc3122001-09-13 21:53:09 +00003201**
drhb19a2bc2001-09-16 00:13:26 +00003202** There will be a read lock on the database whenever there is an
3203** open cursor. If the database was unlocked prior to this instruction
3204** then a read lock is acquired as part of this instruction. A read
3205** lock allows other processes to read the database but prohibits
3206** any other process from modifying the database. The read lock is
3207** released when all cursors are closed. If this instruction attempts
3208** to get a read lock but fails, the script terminates with an
3209** SQLITE_BUSY error code.
3210**
danielk1977d336e222009-02-20 10:58:41 +00003211** The P4 value may be either an integer (P4_INT32) or a pointer to
3212** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3213** structure, then said structure defines the content and collating
3214** sequence of the index being opened. Otherwise, if P4 is an integer
3215** value, it is set to the number of columns in the table.
drhf57b3392001-10-08 13:22:32 +00003216**
drh001bbcb2003-03-19 03:14:00 +00003217** See also OpenWrite.
drh5e00f6c2001-09-13 13:46:56 +00003218*/
drh98757152008-01-09 23:04:12 +00003219/* Opcode: OpenWrite P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003220** Synopsis: root=P2 iDb=P3
drhecdc7532001-09-23 02:35:53 +00003221**
3222** Open a read/write cursor named P1 on the table or index whose root
drh98757152008-01-09 23:04:12 +00003223** page is P2. Or if P5!=0 use the content of register P2 to find the
3224** root page.
drhecdc7532001-09-23 02:35:53 +00003225**
danielk1977d336e222009-02-20 10:58:41 +00003226** The P4 value may be either an integer (P4_INT32) or a pointer to
3227** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3228** structure, then said structure defines the content and collating
3229** sequence of the index being opened. Otherwise, if P4 is an integer
drh35cd6432009-06-05 14:17:21 +00003230** value, it is set to the number of columns in the table, or to the
3231** largest index of any column of the table that is actually used.
jplyon5a564222003-06-02 06:15:58 +00003232**
drh001bbcb2003-03-19 03:14:00 +00003233** This instruction works just like OpenRead except that it opens the cursor
drhecdc7532001-09-23 02:35:53 +00003234** in read/write mode. For a given table, there can be one or more read-only
3235** cursors or a single read/write cursor but not both.
drhf57b3392001-10-08 13:22:32 +00003236**
drh001bbcb2003-03-19 03:14:00 +00003237** See also OpenRead.
drhecdc7532001-09-23 02:35:53 +00003238*/
drh9cbf3422008-01-17 16:22:13 +00003239case OP_OpenRead:
3240case OP_OpenWrite: {
drh856c1032009-06-02 15:21:42 +00003241 int nField;
3242 KeyInfo *pKeyInfo;
drh856c1032009-06-02 15:21:42 +00003243 int p2;
3244 int iDb;
drhf57b3392001-10-08 13:22:32 +00003245 int wrFlag;
3246 Btree *pX;
drhdfe88ec2008-11-03 20:55:06 +00003247 VdbeCursor *pCur;
drhd946db02005-12-29 19:23:06 +00003248 Db *pDb;
drh856c1032009-06-02 15:21:42 +00003249
dan428c2182012-08-06 18:50:11 +00003250 assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
3251 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
drh1713afb2013-06-28 01:24:57 +00003252 assert( p->bIsReader );
drh9e92a472013-06-27 17:40:30 +00003253 assert( pOp->opcode==OP_OpenRead || p->readOnly==0 );
dan428c2182012-08-06 18:50:11 +00003254
danfa401de2009-10-16 14:55:03 +00003255 if( p->expired ){
3256 rc = SQLITE_ABORT;
3257 break;
3258 }
3259
drh856c1032009-06-02 15:21:42 +00003260 nField = 0;
3261 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00003262 p2 = pOp->p2;
3263 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00003264 assert( iDb>=0 && iDb<db->nDb );
drhdddd7792011-04-03 18:19:25 +00003265 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
drhd946db02005-12-29 19:23:06 +00003266 pDb = &db->aDb[iDb];
3267 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00003268 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00003269 if( pOp->opcode==OP_OpenWrite ){
3270 wrFlag = 1;
drh21206082011-04-04 18:22:02 +00003271 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
danielk1977da184232006-01-05 11:34:32 +00003272 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3273 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00003274 }
3275 }else{
3276 wrFlag = 0;
3277 }
dan428c2182012-08-06 18:50:11 +00003278 if( pOp->p5 & OPFLAG_P2ISREG ){
drh9cbf3422008-01-17 16:22:13 +00003279 assert( p2>0 );
dan3bc9f742013-08-15 16:18:39 +00003280 assert( p2<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00003281 pIn2 = &aMem[p2];
drh2b4ded92010-09-27 21:09:31 +00003282 assert( memIsValid(pIn2) );
3283 assert( (pIn2->flags & MEM_Int)!=0 );
drh9cbf3422008-01-17 16:22:13 +00003284 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003285 p2 = (int)pIn2->u.i;
drh9a65f2c2009-06-22 19:05:40 +00003286 /* The p2 value always comes from a prior OP_CreateTable opcode and
3287 ** that opcode will always set the p2 value to 2 or more or else fail.
3288 ** If there were a failure, the prepared statement would have halted
3289 ** before reaching this instruction. */
drh27731d72009-06-22 12:05:10 +00003290 if( NEVER(p2<2) ) {
shanedcc50b72008-11-13 18:29:50 +00003291 rc = SQLITE_CORRUPT_BKPT;
3292 goto abort_due_to_error;
3293 }
drh5edc3122001-09-13 21:53:09 +00003294 }
danielk1977d336e222009-02-20 10:58:41 +00003295 if( pOp->p4type==P4_KEYINFO ){
3296 pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003297 assert( pKeyInfo->enc==ENC(db) );
3298 assert( pKeyInfo->db==db );
drhad124322013-10-23 13:30:58 +00003299 nField = pKeyInfo->nField+pKeyInfo->nXField;
danielk1977d336e222009-02-20 10:58:41 +00003300 }else if( pOp->p4type==P4_INT32 ){
3301 nField = pOp->p4.i;
3302 }
drh653b82a2009-06-22 11:10:47 +00003303 assert( pOp->p1>=0 );
3304 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
drh4774b132004-06-12 20:12:51 +00003305 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003306 pCur->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003307 pCur->isOrdered = 1;
danielk1977d336e222009-02-20 10:58:41 +00003308 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3309 pCur->pKeyInfo = pKeyInfo;
dan428c2182012-08-06 18:50:11 +00003310 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3311 sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));
danielk1977d336e222009-02-20 10:58:41 +00003312
dana205a482011-08-27 18:48:57 +00003313 /* Since it performs no memory allocation or IO, the only value that
3314 ** sqlite3BtreeCursor() may return is SQLITE_OK. */
3315 assert( rc==SQLITE_OK );
danielk1977172114a2009-07-07 15:47:12 +00003316
3317 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
3318 ** SQLite used to check if the root-page flags were sane at this point
3319 ** and report database corruption if they were not, but this check has
3320 ** since moved into the btree layer. */
3321 pCur->isTable = pOp->p4type!=P4_KEYINFO;
3322 pCur->isIndex = !pCur->isTable;
drh5e00f6c2001-09-13 13:46:56 +00003323 break;
3324}
3325
drh2a5d9902011-08-26 00:34:45 +00003326/* Opcode: OpenEphemeral P1 P2 * P4 P5
drh81316f82013-10-29 20:40:47 +00003327** Synopsis: nColumn=P2
drh5e00f6c2001-09-13 13:46:56 +00003328**
drhb9bb7c12006-06-11 23:41:55 +00003329** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003330** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003331** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003332** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003333**
drh25d3adb2010-04-05 15:11:08 +00003334** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003335** The cursor points to a BTree table if P4==0 and to a BTree index
3336** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003337** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003338**
drh2a5d9902011-08-26 00:34:45 +00003339** The P5 parameter can be a mask of the BTREE_* flags defined
3340** in btree.h. These flags control aspects of the operation of
3341** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3342** added automatically.
drh5e00f6c2001-09-13 13:46:56 +00003343*/
drha21a64d2010-04-06 22:33:55 +00003344/* Opcode: OpenAutoindex P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00003345** Synopsis: nColumn=P2
drha21a64d2010-04-06 22:33:55 +00003346**
3347** This opcode works the same as OP_OpenEphemeral. It has a
3348** different name to distinguish its use. Tables created using
3349** by this opcode will be used for automatically created transient
3350** indices in joins.
3351*/
3352case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003353case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003354 VdbeCursor *pCx;
drh41e13e12013-11-07 14:09:39 +00003355 KeyInfo *pKeyInfo;
3356
drhd4187c72010-08-30 22:15:45 +00003357 static const int vfsFlags =
drh33f4e022007-09-03 15:19:34 +00003358 SQLITE_OPEN_READWRITE |
3359 SQLITE_OPEN_CREATE |
3360 SQLITE_OPEN_EXCLUSIVE |
3361 SQLITE_OPEN_DELETEONCLOSE |
3362 SQLITE_OPEN_TRANSIENT_DB;
drh653b82a2009-06-22 11:10:47 +00003363 assert( pOp->p1>=0 );
3364 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
drh4774b132004-06-12 20:12:51 +00003365 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003366 pCx->nullRow = 1;
dan689ab892011-08-12 15:02:00 +00003367 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3368 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
drh5e00f6c2001-09-13 13:46:56 +00003369 if( rc==SQLITE_OK ){
danielk197740b38dc2004-06-26 08:38:24 +00003370 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
drh5e00f6c2001-09-13 13:46:56 +00003371 }
3372 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003373 /* If a transient index is required, create it by calling
drhd4187c72010-08-30 22:15:45 +00003374 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
danielk19774adee202004-05-08 08:23:19 +00003375 ** opening it. If a transient table is required, just use the
drhd4187c72010-08-30 22:15:45 +00003376 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003377 */
drh41e13e12013-11-07 14:09:39 +00003378 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
drhc6b52df2002-01-04 03:09:29 +00003379 int pgno;
drh66a51672008-01-03 00:01:23 +00003380 assert( pOp->p4type==P4_KEYINFO );
drhe1b4f0f2011-06-29 17:11:39 +00003381 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
drhc6b52df2002-01-04 03:09:29 +00003382 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003383 assert( pgno==MASTER_ROOT+1 );
drh41e13e12013-11-07 14:09:39 +00003384 assert( pKeyInfo->db==db );
3385 assert( pKeyInfo->enc==ENC(db) );
3386 pCx->pKeyInfo = pKeyInfo;
3387 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor);
drhc6b52df2002-01-04 03:09:29 +00003388 }
drhf0863fe2005-06-12 21:35:51 +00003389 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003390 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00003391 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
drhf0863fe2005-06-12 21:35:51 +00003392 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003393 }
drh5e00f6c2001-09-13 13:46:56 +00003394 }
drhd4187c72010-08-30 22:15:45 +00003395 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
drhf0863fe2005-06-12 21:35:51 +00003396 pCx->isIndex = !pCx->isTable;
dan5134d132011-09-02 10:31:11 +00003397 break;
3398}
3399
drh1153c7b2013-11-01 22:02:56 +00003400/* Opcode: SorterOpen P1 * * P4 *
dan5134d132011-09-02 10:31:11 +00003401**
3402** This opcode works like OP_OpenEphemeral except that it opens
3403** a transient index that is specifically designed to sort large
3404** tables using an external merge-sort algorithm.
3405*/
drhca892a72011-09-03 00:17:51 +00003406case OP_SorterOpen: {
dan5134d132011-09-02 10:31:11 +00003407 VdbeCursor *pCx;
drh3a949872012-09-18 13:20:13 +00003408
dan5134d132011-09-02 10:31:11 +00003409 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3410 if( pCx==0 ) goto no_mem;
3411 pCx->pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003412 assert( pCx->pKeyInfo->db==db );
3413 assert( pCx->pKeyInfo->enc==ENC(db) );
dan5134d132011-09-02 10:31:11 +00003414 pCx->isSorter = 1;
3415 rc = sqlite3VdbeSorterInit(db, pCx);
drh5e00f6c2001-09-13 13:46:56 +00003416 break;
3417}
3418
drh980db4b2012-10-30 14:44:14 +00003419/* Opcode: OpenPseudo P1 P2 P3 * P5
drhf63552b2013-10-30 00:25:03 +00003420** Synopsis: content in r[P2@P3]
drh70ce3f02003-04-15 19:22:22 +00003421**
3422** Open a new cursor that points to a fake table that contains a single
drh3e9ca092009-09-08 01:14:48 +00003423** row of data. The content of that one row in the content of memory
drh21172c42012-10-30 00:29:07 +00003424** register P2 when P5==0. In other words, cursor P1 becomes an alias for the
3425** MEM_Blob content contained in register P2. When P5==1, then the
3426** row is represented by P3 consecutive registers beginning with P2.
drh70ce3f02003-04-15 19:22:22 +00003427**
drh2d8d7ce2010-02-15 15:17:05 +00003428** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00003429** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003430** individual columns using the OP_Column opcode. The OP_Column opcode
3431** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003432**
3433** P3 is the number of fields in the records that will be stored by
3434** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003435*/
drh9cbf3422008-01-17 16:22:13 +00003436case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003437 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003438
drh653b82a2009-06-22 11:10:47 +00003439 assert( pOp->p1>=0 );
3440 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
drh4774b132004-06-12 20:12:51 +00003441 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003442 pCx->nullRow = 1;
drh3e9ca092009-09-08 01:14:48 +00003443 pCx->pseudoTableReg = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003444 pCx->isTable = 1;
3445 pCx->isIndex = 0;
drh21172c42012-10-30 00:29:07 +00003446 pCx->multiPseudo = pOp->p5;
drh70ce3f02003-04-15 19:22:22 +00003447 break;
3448}
3449
drh98757152008-01-09 23:04:12 +00003450/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003451**
3452** Close a cursor previously opened as P1. If P1 is not
3453** currently open, this instruction is a no-op.
3454*/
drh9cbf3422008-01-17 16:22:13 +00003455case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003456 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3457 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3458 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003459 break;
3460}
3461
drh959403f2008-12-12 17:56:16 +00003462/* Opcode: SeekGe P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003463** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003464**
danielk1977b790c6c2008-04-18 10:25:24 +00003465** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003466** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003467** to an SQL index, then P3 is the first in an array of P4 registers
3468** that are used as an unpacked index key.
3469**
3470** Reposition cursor P1 so that it points to the smallest entry that
3471** is greater than or equal to the key value. If there are no records
3472** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003473**
drh959403f2008-12-12 17:56:16 +00003474** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003475*/
drh959403f2008-12-12 17:56:16 +00003476/* Opcode: SeekGt P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003477** Synopsis: key=r[P3@P4]
drh7cf6e4d2004-05-19 14:56:55 +00003478**
danielk1977b790c6c2008-04-18 10:25:24 +00003479** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003480** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003481** to an SQL index, then P3 is the first in an array of P4 registers
3482** that are used as an unpacked index key.
3483**
3484** Reposition cursor P1 so that it points to the smallest entry that
3485** is greater than the key value. If there are no records greater than
3486** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003487**
drh959403f2008-12-12 17:56:16 +00003488** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003489*/
drh959403f2008-12-12 17:56:16 +00003490/* Opcode: SeekLt P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003491** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00003492**
danielk1977b790c6c2008-04-18 10:25:24 +00003493** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003494** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003495** to an SQL index, then P3 is the first in an array of P4 registers
3496** that are used as an unpacked index key.
3497**
3498** Reposition cursor P1 so that it points to the largest entry that
3499** is less than the key value. If there are no records less than
3500** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003501**
drh959403f2008-12-12 17:56:16 +00003502** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003503*/
drh959403f2008-12-12 17:56:16 +00003504/* Opcode: SeekLe P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003505** Synopsis: key=r[P3@P4]
danielk19773d1bfea2004-05-14 11:00:53 +00003506**
danielk1977b790c6c2008-04-18 10:25:24 +00003507** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003508** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003509** to an SQL index, then P3 is the first in an array of P4 registers
3510** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003511**
danielk1977b790c6c2008-04-18 10:25:24 +00003512** Reposition cursor P1 so that it points to the largest entry that
3513** is less than or equal to the key value. If there are no records
3514** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003515**
drh959403f2008-12-12 17:56:16 +00003516** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003517*/
drh959403f2008-12-12 17:56:16 +00003518case OP_SeekLt: /* jump, in3 */
3519case OP_SeekLe: /* jump, in3 */
3520case OP_SeekGe: /* jump, in3 */
3521case OP_SeekGt: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003522 int res;
3523 int oc;
drhdfe88ec2008-11-03 20:55:06 +00003524 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003525 UnpackedRecord r;
3526 int nField;
3527 i64 iKey; /* The rowid we are to seek to */
drh80ff32f2001-11-04 18:32:46 +00003528
drh653b82a2009-06-22 11:10:47 +00003529 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003530 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003531 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003532 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003533 assert( pC->pseudoTableReg==0 );
drh1f350122009-11-13 20:52:43 +00003534 assert( OP_SeekLe == OP_SeekLt+1 );
3535 assert( OP_SeekGe == OP_SeekLt+2 );
3536 assert( OP_SeekGt == OP_SeekLt+3 );
drhd4187c72010-08-30 22:15:45 +00003537 assert( pC->isOrdered );
drh3da046d2013-11-11 03:24:11 +00003538 assert( pC->pCursor!=0 );
3539 oc = pOp->opcode;
3540 pC->nullRow = 0;
3541 if( pC->isTable ){
3542 /* The input value in P3 might be of any type: integer, real, string,
3543 ** blob, or NULL. But it needs to be an integer before we can do
3544 ** the seek, so covert it. */
3545 pIn3 = &aMem[pOp->p3];
3546 applyNumericAffinity(pIn3);
3547 iKey = sqlite3VdbeIntValue(pIn3);
3548 pC->rowidIsValid = 0;
drh959403f2008-12-12 17:56:16 +00003549
drh3da046d2013-11-11 03:24:11 +00003550 /* If the P3 value could not be converted into an integer without
3551 ** loss of information, then special processing is required... */
3552 if( (pIn3->flags & MEM_Int)==0 ){
3553 if( (pIn3->flags & MEM_Real)==0 ){
3554 /* If the P3 value cannot be converted into any kind of a number,
3555 ** then the seek is not possible, so jump to P2 */
3556 pc = pOp->p2 - 1;
3557 break;
3558 }
3559 /* If we reach this point, then the P3 value must be a floating
3560 ** point number. */
3561 assert( (pIn3->flags & MEM_Real)!=0 );
drh959403f2008-12-12 17:56:16 +00003562
drh3da046d2013-11-11 03:24:11 +00003563 if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
3564 /* The P3 value is too large in magnitude to be expressed as an
3565 ** integer. */
3566 res = 1;
3567 if( pIn3->r<0 ){
3568 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
3569 rc = sqlite3BtreeFirst(pC->pCursor, &res);
3570 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh959403f2008-12-12 17:56:16 +00003571 }
drh959403f2008-12-12 17:56:16 +00003572 }else{
drh3da046d2013-11-11 03:24:11 +00003573 if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe );
3574 rc = sqlite3BtreeLast(pC->pCursor, &res);
3575 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3576 }
drh959403f2008-12-12 17:56:16 +00003577 }
drh3da046d2013-11-11 03:24:11 +00003578 if( res ){
3579 pc = pOp->p2 - 1;
3580 }
3581 break;
3582 }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
3583 /* Use the ceiling() function to convert real->int */
3584 if( pIn3->r > (double)iKey ) iKey++;
drh1af3fdb2004-07-18 21:33:01 +00003585 }else{
drh3da046d2013-11-11 03:24:11 +00003586 /* Use the floor() function to convert real->int */
3587 assert( oc==OP_SeekLe || oc==OP_SeekGt );
3588 if( pIn3->r < (double)iKey ) iKey--;
drh8721ce42001-11-07 14:22:00 +00003589 }
drh3da046d2013-11-11 03:24:11 +00003590 }
3591 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
3592 if( rc!=SQLITE_OK ){
3593 goto abort_due_to_error;
drh1af3fdb2004-07-18 21:33:01 +00003594 }
drh3da046d2013-11-11 03:24:11 +00003595 if( res==0 ){
3596 pC->rowidIsValid = 1;
3597 pC->lastRowid = iKey;
drh8721ce42001-11-07 14:22:00 +00003598 }
drhaa736092009-06-22 00:55:30 +00003599 }else{
drh3da046d2013-11-11 03:24:11 +00003600 nField = pOp->p4.i;
3601 assert( pOp->p4type==P4_INT32 );
3602 assert( nField>0 );
3603 r.pKeyInfo = pC->pKeyInfo;
3604 r.nField = (u16)nField;
3605
3606 /* The next line of code computes as follows, only faster:
3607 ** if( oc==OP_SeekGt || oc==OP_SeekLe ){
3608 ** r.flags = UNPACKED_INCRKEY;
3609 ** }else{
3610 ** r.flags = 0;
3611 ** }
danielk1977f7b9d662008-06-23 18:49:43 +00003612 */
drh3da046d2013-11-11 03:24:11 +00003613 r.flags = (u8)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
3614 assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
3615 assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
3616 assert( oc!=OP_SeekGe || r.flags==0 );
3617 assert( oc!=OP_SeekLt || r.flags==0 );
3618
3619 r.aMem = &aMem[pOp->p3];
3620#ifdef SQLITE_DEBUG
3621 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3622#endif
3623 ExpandBlob(r.aMem);
3624 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
3625 if( rc!=SQLITE_OK ){
3626 goto abort_due_to_error;
3627 }
3628 pC->rowidIsValid = 0;
3629 }
3630 pC->deferredMoveto = 0;
3631 pC->cacheStatus = CACHE_STALE;
3632#ifdef SQLITE_TEST
3633 sqlite3_search_count++;
3634#endif
3635 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
3636 if( res<0 || (res==0 && oc==OP_SeekGt) ){
3637 rc = sqlite3BtreeNext(pC->pCursor, &res);
3638 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3639 pC->rowidIsValid = 0;
3640 }else{
3641 res = 0;
3642 }
3643 }else{
3644 assert( oc==OP_SeekLt || oc==OP_SeekLe );
3645 if( res>0 || (res==0 && oc==OP_SeekLt) ){
3646 rc = sqlite3BtreePrevious(pC->pCursor, &res);
3647 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3648 pC->rowidIsValid = 0;
3649 }else{
3650 /* res might be negative because the table is empty. Check to
3651 ** see if this is the case.
3652 */
3653 res = sqlite3BtreeEof(pC->pCursor);
3654 }
3655 }
3656 assert( pOp->p2>0 );
3657 if( res ){
danielk1977f7b9d662008-06-23 18:49:43 +00003658 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00003659 }
drh5e00f6c2001-09-13 13:46:56 +00003660 break;
3661}
3662
drh959403f2008-12-12 17:56:16 +00003663/* Opcode: Seek P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00003664** Synopsis: intkey=r[P2]
drh959403f2008-12-12 17:56:16 +00003665**
3666** P1 is an open table cursor and P2 is a rowid integer. Arrange
3667** for P1 to move so that it points to the rowid given by P2.
3668**
3669** This is actually a deferred seek. Nothing actually happens until
3670** the cursor is used to read a record. That way, if no reads
3671** occur, no unnecessary I/O happens.
3672*/
3673case OP_Seek: { /* in2 */
drh959403f2008-12-12 17:56:16 +00003674 VdbeCursor *pC;
3675
drh653b82a2009-06-22 11:10:47 +00003676 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3677 pC = p->apCsr[pOp->p1];
drh959403f2008-12-12 17:56:16 +00003678 assert( pC!=0 );
drh3da046d2013-11-11 03:24:11 +00003679 assert( pC->pCursor!=0 );
3680 assert( pC->isTable );
3681 pC->nullRow = 0;
3682 pIn2 = &aMem[pOp->p2];
3683 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3684 pC->rowidIsValid = 0;
3685 pC->deferredMoveto = 1;
drh959403f2008-12-12 17:56:16 +00003686 break;
3687}
3688
3689
drh8cff69d2009-11-12 19:59:44 +00003690/* Opcode: Found P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003691** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003692**
drh8cff69d2009-11-12 19:59:44 +00003693** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3694** P4>0 then register P3 is the first of P4 registers that form an unpacked
3695** record.
3696**
3697** Cursor P1 is on an index btree. If the record identified by P3 and P4
3698** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00003699** P1 is left pointing at the matching entry.
drh6f225d02013-10-26 13:36:51 +00003700**
3701** See also: NotFound, NoConflict, NotExists. SeekGe
drh5e00f6c2001-09-13 13:46:56 +00003702*/
drh8cff69d2009-11-12 19:59:44 +00003703/* Opcode: NotFound P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003704** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003705**
drh8cff69d2009-11-12 19:59:44 +00003706** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3707** P4>0 then register P3 is the first of P4 registers that form an unpacked
3708** record.
3709**
3710** Cursor P1 is on an index btree. If the record identified by P3 and P4
3711** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3712** does contain an entry whose prefix matches the P3/P4 record then control
3713** falls through to the next instruction and P1 is left pointing at the
3714** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003715**
drh6f225d02013-10-26 13:36:51 +00003716** See also: Found, NotExists, NoConflict
drh5e00f6c2001-09-13 13:46:56 +00003717*/
drh6f225d02013-10-26 13:36:51 +00003718/* Opcode: NoConflict P1 P2 P3 P4 *
drh4af5bee2013-10-30 02:37:50 +00003719** Synopsis: key=r[P3@P4]
drh6f225d02013-10-26 13:36:51 +00003720**
3721** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3722** P4>0 then register P3 is the first of P4 registers that form an unpacked
3723** record.
3724**
3725** Cursor P1 is on an index btree. If the record identified by P3 and P4
3726** contains any NULL value, jump immediately to P2. If all terms of the
3727** record are not-NULL then a check is done to determine if any row in the
3728** P1 index btree has a matching key prefix. If there are no matches, jump
3729** immediately to P2. If there is a match, fall through and leave the P1
3730** cursor pointing to the matching row.
3731**
3732** This opcode is similar to OP_NotFound with the exceptions that the
3733** branch is always taken if any part of the search key input is NULL.
3734**
3735** See also: NotFound, Found, NotExists
3736*/
3737case OP_NoConflict: /* jump, in3 */
drh9cbf3422008-01-17 16:22:13 +00003738case OP_NotFound: /* jump, in3 */
3739case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003740 int alreadyExists;
drh6f225d02013-10-26 13:36:51 +00003741 int ii;
drhdfe88ec2008-11-03 20:55:06 +00003742 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003743 int res;
dan03e9cfc2011-09-05 14:20:27 +00003744 char *pFree;
drh856c1032009-06-02 15:21:42 +00003745 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00003746 UnpackedRecord r;
drhb4139222013-11-06 14:36:08 +00003747 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
drh856c1032009-06-02 15:21:42 +00003748
dan0ff297e2009-09-25 17:03:14 +00003749#ifdef SQLITE_TEST
drh6f225d02013-10-26 13:36:51 +00003750 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
dan0ff297e2009-09-25 17:03:14 +00003751#endif
3752
drh856c1032009-06-02 15:21:42 +00003753 alreadyExists = 0;
drhaa736092009-06-22 00:55:30 +00003754 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00003755 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00003756 pC = p->apCsr[pOp->p1];
3757 assert( pC!=0 );
drh3c657212009-11-17 23:59:58 +00003758 pIn3 = &aMem[pOp->p3];
drh3da046d2013-11-11 03:24:11 +00003759 assert( pC->pCursor!=0 );
3760 assert( pC->isTable==0 );
3761 if( pOp->p4.i>0 ){
3762 r.pKeyInfo = pC->pKeyInfo;
3763 r.nField = (u16)pOp->p4.i;
3764 r.aMem = pIn3;
drh2b4ded92010-09-27 21:09:31 +00003765#ifdef SQLITE_DEBUG
drh3da046d2013-11-11 03:24:11 +00003766 {
3767 int i;
3768 for(i=0; i<r.nField; i++){
3769 assert( memIsValid(&r.aMem[i]) );
3770 if( i ) REGISTER_TRACE(pOp->p3+i, &r.aMem[i]);
drh6fbe41a2013-10-30 20:22:55 +00003771 }
drh3da046d2013-11-11 03:24:11 +00003772 }
drh2b4ded92010-09-27 21:09:31 +00003773#endif
drh3da046d2013-11-11 03:24:11 +00003774 r.flags = UNPACKED_PREFIX_MATCH;
3775 pIdxKey = &r;
3776 }else{
3777 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3778 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
3779 );
3780 if( pIdxKey==0 ) goto no_mem;
3781 assert( pIn3->flags & MEM_Blob );
3782 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
3783 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
3784 pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
3785 }
3786 if( pOp->opcode==OP_NoConflict ){
3787 /* For the OP_NoConflict opcode, take the jump if any of the
3788 ** input fields are NULL, since any key with a NULL will not
3789 ** conflict */
3790 for(ii=0; ii<r.nField; ii++){
3791 if( r.aMem[ii].flags & MEM_Null ){
3792 pc = pOp->p2 - 1;
3793 break;
drh6f225d02013-10-26 13:36:51 +00003794 }
3795 }
drh5e00f6c2001-09-13 13:46:56 +00003796 }
drh3da046d2013-11-11 03:24:11 +00003797 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
3798 if( pOp->p4.i==0 ){
3799 sqlite3DbFree(db, pFree);
3800 }
3801 if( rc!=SQLITE_OK ){
3802 break;
3803 }
3804 pC->seekResult = res;
3805 alreadyExists = (res==0);
3806 pC->nullRow = 1-alreadyExists;
3807 pC->deferredMoveto = 0;
3808 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003809 if( pOp->opcode==OP_Found ){
3810 if( alreadyExists ) pc = pOp->p2 - 1;
3811 }else{
3812 if( !alreadyExists ) pc = pOp->p2 - 1;
3813 }
drh5e00f6c2001-09-13 13:46:56 +00003814 break;
3815}
3816
drh9cbf3422008-01-17 16:22:13 +00003817/* Opcode: NotExists P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00003818** Synopsis: intkey=r[P3]
drh6b125452002-01-28 15:53:03 +00003819**
drh261c02d2013-10-25 14:46:15 +00003820** P1 is the index of a cursor open on an SQL table btree (with integer
3821** keys). P3 is an integer rowid. If P1 does not contain a record with
3822** rowid P3 then jump immediately to P2. If P1 does contain a record
3823** with rowid P3 then leave the cursor pointing at that record and fall
3824** through to the next instruction.
drh6b125452002-01-28 15:53:03 +00003825**
drh261c02d2013-10-25 14:46:15 +00003826** The OP_NotFound opcode performs the same operation on index btrees
3827** (with arbitrary multi-value keys).
drh6b125452002-01-28 15:53:03 +00003828**
drh11e85272013-10-26 15:40:48 +00003829** See also: Found, NotFound, NoConflict
drh6b125452002-01-28 15:53:03 +00003830*/
drh9cbf3422008-01-17 16:22:13 +00003831case OP_NotExists: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00003832 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00003833 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00003834 int res;
3835 u64 iKey;
3836
drh3c657212009-11-17 23:59:58 +00003837 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003838 assert( pIn3->flags & MEM_Int );
3839 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3840 pC = p->apCsr[pOp->p1];
3841 assert( pC!=0 );
3842 assert( pC->isTable );
drh3e9ca092009-09-08 01:14:48 +00003843 assert( pC->pseudoTableReg==0 );
drhaa736092009-06-22 00:55:30 +00003844 pCrsr = pC->pCursor;
drh3da046d2013-11-11 03:24:11 +00003845 assert( pCrsr!=0 );
3846 res = 0;
3847 iKey = pIn3->u.i;
3848 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
3849 pC->lastRowid = pIn3->u.i;
3850 pC->rowidIsValid = res==0 ?1:0;
3851 pC->nullRow = 0;
3852 pC->cacheStatus = CACHE_STALE;
3853 pC->deferredMoveto = 0;
3854 if( res!=0 ){
danielk1977f7b9d662008-06-23 18:49:43 +00003855 pc = pOp->p2 - 1;
3856 assert( pC->rowidIsValid==0 );
drh6b125452002-01-28 15:53:03 +00003857 }
drh3da046d2013-11-11 03:24:11 +00003858 pC->seekResult = res;
drh6b125452002-01-28 15:53:03 +00003859 break;
3860}
3861
drh4c583122008-01-04 22:01:03 +00003862/* Opcode: Sequence P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00003863** Synopsis: r[P2]=rowid
drh4db38a72005-09-01 12:16:28 +00003864**
drh4c583122008-01-04 22:01:03 +00003865** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00003866** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00003867** The sequence number on the cursor is incremented after this
3868** instruction.
drh4db38a72005-09-01 12:16:28 +00003869*/
drh4c583122008-01-04 22:01:03 +00003870case OP_Sequence: { /* out2-prerelease */
drh653b82a2009-06-22 11:10:47 +00003871 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3872 assert( p->apCsr[pOp->p1]!=0 );
3873 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00003874 break;
3875}
3876
3877
drh98757152008-01-09 23:04:12 +00003878/* Opcode: NewRowid P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00003879** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00003880**
drhf0863fe2005-06-12 21:35:51 +00003881** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00003882** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00003883** table that cursor P1 points to. The new record number is written
3884** written to register P2.
drh205f48e2004-11-05 00:43:11 +00003885**
dan76d462e2009-08-30 11:42:51 +00003886** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3887** the largest previously generated record number. No new record numbers are
3888** allowed to be less than this value. When this value reaches its maximum,
drhef8662b2011-06-20 21:47:58 +00003889** an SQLITE_FULL error is generated. The P3 register is updated with the '
dan76d462e2009-08-30 11:42:51 +00003890** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00003891** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00003892*/
drh4c583122008-01-04 22:01:03 +00003893case OP_NewRowid: { /* out2-prerelease */
drhaa736092009-06-22 00:55:30 +00003894 i64 v; /* The new rowid */
3895 VdbeCursor *pC; /* Cursor of table to get the new rowid */
3896 int res; /* Result of an sqlite3BtreeLast() */
3897 int cnt; /* Counter to limit the number of searches */
3898 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00003899 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00003900
drh856c1032009-06-02 15:21:42 +00003901 v = 0;
3902 res = 0;
drhaa736092009-06-22 00:55:30 +00003903 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3904 pC = p->apCsr[pOp->p1];
3905 assert( pC!=0 );
3906 if( NEVER(pC->pCursor==0) ){
drhf328bc82004-05-10 23:29:49 +00003907 /* The zero initialization above is all that is needed */
drh5e00f6c2001-09-13 13:46:56 +00003908 }else{
drh5cf8e8c2002-02-19 22:42:05 +00003909 /* The next rowid or record number (different terms for the same
3910 ** thing) is obtained in a two-step algorithm.
3911 **
3912 ** First we attempt to find the largest existing rowid and add one
3913 ** to that. But if the largest existing rowid is already the maximum
3914 ** positive integer, we have to fall through to the second
3915 ** probabilistic algorithm
3916 **
3917 ** The second algorithm is to select a rowid at random and see if
3918 ** it already exists in the table. If it does not exist, we have
3919 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00003920 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00003921 */
drhaa736092009-06-22 00:55:30 +00003922 assert( pC->isTable );
drhfe2093d2005-01-20 22:48:47 +00003923
drh75f86a42005-02-17 00:03:06 +00003924#ifdef SQLITE_32BIT_ROWID
3925# define MAX_ROWID 0x7fffffff
3926#else
drhfe2093d2005-01-20 22:48:47 +00003927 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3928 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3929 ** to provide the constant while making all compilers happy.
3930 */
danielk197764202cf2008-11-17 15:31:47 +00003931# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00003932#endif
drhfe2093d2005-01-20 22:48:47 +00003933
drh5cf8e8c2002-02-19 22:42:05 +00003934 if( !pC->useRandomRowid ){
drh7f751222009-03-17 22:33:00 +00003935 v = sqlite3BtreeGetCachedRowid(pC->pCursor);
3936 if( v==0 ){
danielk1977261919c2005-12-06 12:52:59 +00003937 rc = sqlite3BtreeLast(pC->pCursor, &res);
3938 if( rc!=SQLITE_OK ){
3939 goto abort_due_to_error;
3940 }
drh32fbe342002-10-19 20:16:37 +00003941 if( res ){
drhc79c7612010-01-01 18:57:48 +00003942 v = 1; /* IMP: R-61914-48074 */
drh5cf8e8c2002-02-19 22:42:05 +00003943 }else{
drhea8ffdf2009-07-22 00:35:23 +00003944 assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
drhc27ae612009-07-14 18:35:44 +00003945 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
3946 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
drha40eb7c2012-02-24 00:02:28 +00003947 if( v>=MAX_ROWID ){
drh32fbe342002-10-19 20:16:37 +00003948 pC->useRandomRowid = 1;
3949 }else{
drhc79c7612010-01-01 18:57:48 +00003950 v++; /* IMP: R-29538-34987 */
drh32fbe342002-10-19 20:16:37 +00003951 }
drh5cf8e8c2002-02-19 22:42:05 +00003952 }
drh3fc190c2001-09-14 03:24:23 +00003953 }
drh205f48e2004-11-05 00:43:11 +00003954
3955#ifndef SQLITE_OMIT_AUTOINCREMENT
drh4c583122008-01-04 22:01:03 +00003956 if( pOp->p3 ){
shaneabc6b892009-09-10 19:09:03 +00003957 /* Assert that P3 is a valid memory cell. */
3958 assert( pOp->p3>0 );
dan76d462e2009-08-30 11:42:51 +00003959 if( p->pFrame ){
3960 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00003961 /* Assert that P3 is a valid memory cell. */
3962 assert( pOp->p3<=pFrame->nMem );
dan76d462e2009-08-30 11:42:51 +00003963 pMem = &pFrame->aMem[pOp->p3];
3964 }else{
shaneabc6b892009-09-10 19:09:03 +00003965 /* Assert that P3 is a valid memory cell. */
dan3bc9f742013-08-15 16:18:39 +00003966 assert( pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00003967 pMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00003968 memAboutToChange(p, pMem);
dan76d462e2009-08-30 11:42:51 +00003969 }
drh2b4ded92010-09-27 21:09:31 +00003970 assert( memIsValid(pMem) );
dan76d462e2009-08-30 11:42:51 +00003971
3972 REGISTER_TRACE(pOp->p3, pMem);
drh8a512562005-11-14 22:29:05 +00003973 sqlite3VdbeMemIntegerify(pMem);
drh4c583122008-01-04 22:01:03 +00003974 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
drh3c024d62007-03-30 11:23:45 +00003975 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
drhc79c7612010-01-01 18:57:48 +00003976 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
drh205f48e2004-11-05 00:43:11 +00003977 goto abort_due_to_error;
3978 }
drh3c024d62007-03-30 11:23:45 +00003979 if( v<pMem->u.i+1 ){
3980 v = pMem->u.i + 1;
drh205f48e2004-11-05 00:43:11 +00003981 }
drh3c024d62007-03-30 11:23:45 +00003982 pMem->u.i = v;
drh205f48e2004-11-05 00:43:11 +00003983 }
3984#endif
3985
drh7f751222009-03-17 22:33:00 +00003986 sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
drh5cf8e8c2002-02-19 22:42:05 +00003987 }
3988 if( pC->useRandomRowid ){
drh748a52c2010-09-01 11:50:08 +00003989 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
drhc79c7612010-01-01 18:57:48 +00003990 ** largest possible integer (9223372036854775807) then the database
drh748a52c2010-09-01 11:50:08 +00003991 ** engine starts picking positive candidate ROWIDs at random until
3992 ** it finds one that is not previously used. */
drhaa736092009-06-22 00:55:30 +00003993 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
3994 ** an AUTOINCREMENT table. */
shanehc4d340a2010-09-01 02:37:56 +00003995 /* on the first attempt, simply do one more than previous */
drh99a66922011-05-13 18:51:42 +00003996 v = lastRowid;
shanehc4d340a2010-09-01 02:37:56 +00003997 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
3998 v++; /* ensure non-zero */
drh5cf8e8c2002-02-19 22:42:05 +00003999 cnt = 0;
drh748a52c2010-09-01 11:50:08 +00004000 while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
4001 0, &res))==SQLITE_OK)
shanehc4d340a2010-09-01 02:37:56 +00004002 && (res==0)
4003 && (++cnt<100)){
4004 /* collision - try another random rowid */
4005 sqlite3_randomness(sizeof(v), &v);
4006 if( cnt<5 ){
4007 /* try "small" random rowids for the initial attempts */
4008 v &= 0xffffff;
drh91fd4d42008-01-19 20:11:25 +00004009 }else{
shanehc4d340a2010-09-01 02:37:56 +00004010 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
drh5cf8e8c2002-02-19 22:42:05 +00004011 }
shanehc4d340a2010-09-01 02:37:56 +00004012 v++; /* ensure non-zero */
4013 }
drhaa736092009-06-22 00:55:30 +00004014 if( rc==SQLITE_OK && res==0 ){
drhc79c7612010-01-01 18:57:48 +00004015 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00004016 goto abort_due_to_error;
4017 }
drh748a52c2010-09-01 11:50:08 +00004018 assert( v>0 ); /* EV: R-40812-03570 */
drh1eaa2692001-09-18 02:02:23 +00004019 }
drhf0863fe2005-06-12 21:35:51 +00004020 pC->rowidIsValid = 0;
drha11846b2004-01-07 18:52:56 +00004021 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004022 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004023 }
drh4c583122008-01-04 22:01:03 +00004024 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004025 break;
4026}
4027
danielk19771f4aa332008-01-03 09:51:55 +00004028/* Opcode: Insert P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004029** Synopsis: intkey=r[P3] data=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004030**
jplyon5a564222003-06-02 06:15:58 +00004031** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00004032** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00004033** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00004034** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00004035** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00004036**
danielk19771f4aa332008-01-03 09:51:55 +00004037** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4038** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00004039** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00004040** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00004041**
drh3e9ca092009-09-08 01:14:48 +00004042** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4043** the last seek operation (OP_NotExists) was a success, then this
4044** operation will not attempt to find the appropriate row before doing
4045** the insert but will instead overwrite the row that the cursor is
4046** currently pointing to. Presumably, the prior OP_NotExists opcode
4047** has already positioned the cursor correctly. This is an optimization
4048** that boosts performance by avoiding redundant seeks.
4049**
4050** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4051** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4052** is part of an INSERT operation. The difference is only important to
4053** the update hook.
4054**
drh66a51672008-01-03 00:01:23 +00004055** Parameter P4 may point to a string containing the table-name, or
danielk19771f6eec52006-06-16 06:17:47 +00004056** may be NULL. If it is not NULL, then the update-hook
4057** (sqlite3.xUpdateCallback) is invoked following a successful insert.
4058**
drh93aed5a2008-01-16 17:46:38 +00004059** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4060** allocated, then ownership of P2 is transferred to the pseudo-cursor
4061** and register P2 becomes ephemeral. If the cursor is changed, the
4062** value of register P2 will then change. Make sure this does not
4063** cause any problems.)
4064**
drhf0863fe2005-06-12 21:35:51 +00004065** This instruction only works on tables. The equivalent instruction
4066** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00004067*/
drhe05c9292009-10-29 13:48:10 +00004068/* Opcode: InsertInt P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004069** Synopsis: intkey=P3 data=r[P2]
drhe05c9292009-10-29 13:48:10 +00004070**
4071** This works exactly like OP_Insert except that the key is the
4072** integer value P3, not the value of the integer stored in register P3.
4073*/
4074case OP_Insert:
4075case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00004076 Mem *pData; /* MEM cell holding data for the record to be inserted */
4077 Mem *pKey; /* MEM cell holding key for the record */
4078 i64 iKey; /* The integer ROWID or key for the record to be inserted */
4079 VdbeCursor *pC; /* Cursor to table into which insert is written */
4080 int nZero; /* Number of zero-bytes to append */
4081 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4082 const char *zDb; /* database name - used by the update hook */
4083 const char *zTbl; /* Table name - used by the opdate hook */
4084 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
drh856c1032009-06-02 15:21:42 +00004085
drha6c2ed92009-11-14 23:22:23 +00004086 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00004087 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh2b4ded92010-09-27 21:09:31 +00004088 assert( memIsValid(pData) );
drh653b82a2009-06-22 11:10:47 +00004089 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00004090 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00004091 assert( pC->pCursor!=0 );
4092 assert( pC->pseudoTableReg==0 );
drha05a7222008-01-19 03:35:58 +00004093 assert( pC->isTable );
drh5b6afba2008-01-05 16:29:28 +00004094 REGISTER_TRACE(pOp->p2, pData);
danielk19775f8d8a82004-05-11 00:28:42 +00004095
drhe05c9292009-10-29 13:48:10 +00004096 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00004097 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00004098 assert( pKey->flags & MEM_Int );
drh2b4ded92010-09-27 21:09:31 +00004099 assert( memIsValid(pKey) );
drhe05c9292009-10-29 13:48:10 +00004100 REGISTER_TRACE(pOp->p3, pKey);
4101 iKey = pKey->u.i;
4102 }else{
4103 assert( pOp->opcode==OP_InsertInt );
4104 iKey = pOp->p3;
4105 }
4106
drha05a7222008-01-19 03:35:58 +00004107 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh99a66922011-05-13 18:51:42 +00004108 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
drha05a7222008-01-19 03:35:58 +00004109 if( pData->flags & MEM_Null ){
4110 pData->z = 0;
4111 pData->n = 0;
4112 }else{
4113 assert( pData->flags & (MEM_Blob|MEM_Str) );
4114 }
drh3e9ca092009-09-08 01:14:48 +00004115 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4116 if( pData->flags & MEM_Zero ){
4117 nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00004118 }else{
drh3e9ca092009-09-08 01:14:48 +00004119 nZero = 0;
drha05a7222008-01-19 03:35:58 +00004120 }
drh3e9ca092009-09-08 01:14:48 +00004121 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
4122 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
4123 pData->z, pData->n, nZero,
4124 pOp->p5 & OPFLAG_APPEND, seekResult
4125 );
drha05a7222008-01-19 03:35:58 +00004126 pC->rowidIsValid = 0;
4127 pC->deferredMoveto = 0;
4128 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004129
drha05a7222008-01-19 03:35:58 +00004130 /* Invoke the update-hook if required. */
4131 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
drh856c1032009-06-02 15:21:42 +00004132 zDb = db->aDb[pC->iDb].zName;
4133 zTbl = pOp->p4.z;
4134 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
drha05a7222008-01-19 03:35:58 +00004135 assert( pC->isTable );
4136 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4137 assert( pC->iDb>=0 );
4138 }
drh5e00f6c2001-09-13 13:46:56 +00004139 break;
4140}
4141
drh98757152008-01-09 23:04:12 +00004142/* Opcode: Delete P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00004143**
drh5edc3122001-09-13 21:53:09 +00004144** Delete the record at which the P1 cursor is currently pointing.
4145**
4146** The cursor will be left pointing at either the next or the previous
4147** record in the table. If it is left pointing at the next record, then
drhb19a2bc2001-09-16 00:13:26 +00004148** the next Next instruction will be a no-op. Hence it is OK to delete
4149** a record from within an Next loop.
drhc8d30ac2002-04-12 10:08:59 +00004150**
rdcb0c374f2004-02-20 22:53:38 +00004151** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
danielk1977b28af712004-06-21 06:50:26 +00004152** incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00004153**
drh91fd4d42008-01-19 20:11:25 +00004154** P1 must not be pseudo-table. It has to be a real table with
4155** multiple rows.
4156**
4157** If P4 is not NULL, then it is the name of the table that P1 is
4158** pointing to. The update hook will be invoked, if it exists.
4159** If P4 is not NULL then the P1 cursor must have been positioned
4160** using OP_NotFound prior to invoking this opcode.
drh5e00f6c2001-09-13 13:46:56 +00004161*/
drh9cbf3422008-01-17 16:22:13 +00004162case OP_Delete: {
drh856c1032009-06-02 15:21:42 +00004163 i64 iKey;
drhdfe88ec2008-11-03 20:55:06 +00004164 VdbeCursor *pC;
drh91fd4d42008-01-19 20:11:25 +00004165
drh856c1032009-06-02 15:21:42 +00004166 iKey = 0;
drh653b82a2009-06-22 11:10:47 +00004167 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4168 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004169 assert( pC!=0 );
drh91fd4d42008-01-19 20:11:25 +00004170 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
danielk197794eb6a12005-12-15 15:22:08 +00004171
drh91fd4d42008-01-19 20:11:25 +00004172 /* If the update-hook will be invoked, set iKey to the rowid of the
4173 ** row being deleted.
4174 */
4175 if( db->xUpdateCallback && pOp->p4.z ){
4176 assert( pC->isTable );
4177 assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
4178 iKey = pC->lastRowid;
4179 }
danielk197794eb6a12005-12-15 15:22:08 +00004180
drh9a65f2c2009-06-22 19:05:40 +00004181 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
4182 ** OP_Column on the same table without any intervening operations that
4183 ** might move or invalidate the cursor. Hence cursor pC is always pointing
4184 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
4185 ** below is always a no-op and cannot fail. We will run it anyhow, though,
4186 ** to guard against future changes to the code generator.
4187 **/
4188 assert( pC->deferredMoveto==0 );
drh91fd4d42008-01-19 20:11:25 +00004189 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004190 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4191
drh7f751222009-03-17 22:33:00 +00004192 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
drh91fd4d42008-01-19 20:11:25 +00004193 rc = sqlite3BtreeDelete(pC->pCursor);
drh91fd4d42008-01-19 20:11:25 +00004194 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004195
drh91fd4d42008-01-19 20:11:25 +00004196 /* Invoke the update-hook if required. */
4197 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4198 const char *zDb = db->aDb[pC->iDb].zName;
4199 const char *zTbl = pOp->p4.z;
4200 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
4201 assert( pC->iDb>=0 );
drh5e00f6c2001-09-13 13:46:56 +00004202 }
danielk1977b28af712004-06-21 06:50:26 +00004203 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
rdcb0c374f2004-02-20 22:53:38 +00004204 break;
4205}
drhb7f1d9a2009-09-08 02:27:58 +00004206/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00004207**
drhb7f1d9a2009-09-08 02:27:58 +00004208** The value of the change counter is copied to the database handle
4209** change counter (returned by subsequent calls to sqlite3_changes()).
4210** Then the VMs internal change counter resets to 0.
4211** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00004212*/
drh9cbf3422008-01-17 16:22:13 +00004213case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00004214 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00004215 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00004216 break;
4217}
4218
drh1153c7b2013-11-01 22:02:56 +00004219/* Opcode: SorterCompare P1 P2 P3 P4
4220** Synopsis: if key(P1)!=rtrim(r[P3],P4) goto P2
dan5134d132011-09-02 10:31:11 +00004221**
drh1153c7b2013-11-01 22:02:56 +00004222** P1 is a sorter cursor. This instruction compares a prefix of the
4223** the record blob in register P3 against a prefix of the entry that
4224** the sorter cursor currently points to. The final P4 fields of both
4225** the P3 and sorter record are ignored.
4226**
4227** If either P3 or the sorter contains a NULL in one of their significant
4228** fields (not counting the P4 fields at the end which are ignored) then
4229** the comparison is assumed to be equal.
4230**
4231** Fall through to next instruction if the two records compare equal to
4232** each other. Jump to P2 if they are different.
dan5134d132011-09-02 10:31:11 +00004233*/
4234case OP_SorterCompare: {
4235 VdbeCursor *pC;
4236 int res;
drh1153c7b2013-11-01 22:02:56 +00004237 int nIgnore;
dan5134d132011-09-02 10:31:11 +00004238
4239 pC = p->apCsr[pOp->p1];
4240 assert( isSorter(pC) );
drh1153c7b2013-11-01 22:02:56 +00004241 assert( pOp->p4type==P4_INT32 );
dan5134d132011-09-02 10:31:11 +00004242 pIn3 = &aMem[pOp->p3];
drh1153c7b2013-11-01 22:02:56 +00004243 nIgnore = pOp->p4.i;
4244 rc = sqlite3VdbeSorterCompare(pC, pIn3, nIgnore, &res);
dan5134d132011-09-02 10:31:11 +00004245 if( res ){
4246 pc = pOp->p2-1;
4247 }
4248 break;
4249};
4250
4251/* Opcode: SorterData P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004252** Synopsis: r[P2]=data
dan5134d132011-09-02 10:31:11 +00004253**
4254** Write into register P2 the current sorter data for sorter cursor P1.
4255*/
4256case OP_SorterData: {
4257 VdbeCursor *pC;
drh3a949872012-09-18 13:20:13 +00004258
dan5134d132011-09-02 10:31:11 +00004259 pOut = &aMem[pOp->p2];
4260 pC = p->apCsr[pOp->p1];
4261 assert( pC->isSorter );
4262 rc = sqlite3VdbeSorterRowkey(pC, pOut);
4263 break;
4264}
4265
drh98757152008-01-09 23:04:12 +00004266/* Opcode: RowData P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004267** Synopsis: r[P2]=data
drh70ce3f02003-04-15 19:22:22 +00004268**
drh98757152008-01-09 23:04:12 +00004269** Write into register P2 the complete row data for cursor P1.
4270** There is no interpretation of the data.
4271** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004272** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00004273**
drhde4fcfd2008-01-19 23:50:26 +00004274** If the P1 cursor must be pointing to a valid row (not a NULL row)
4275** of a real table, not a pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00004276*/
drh98757152008-01-09 23:04:12 +00004277/* Opcode: RowKey P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004278** Synopsis: r[P2]=key
drh143f3c42004-01-07 20:37:52 +00004279**
drh98757152008-01-09 23:04:12 +00004280** Write into register P2 the complete row key for cursor P1.
4281** There is no interpretation of the data.
drh9cbf3422008-01-17 16:22:13 +00004282** The key is copied onto the P3 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004283** it is found in the database file.
drh143f3c42004-01-07 20:37:52 +00004284**
drhde4fcfd2008-01-19 23:50:26 +00004285** If the P1 cursor must be pointing to a valid row (not a NULL row)
4286** of a real table, not a pseudo-table.
drh143f3c42004-01-07 20:37:52 +00004287*/
danielk1977a7a8e142008-02-13 18:25:27 +00004288case OP_RowKey:
4289case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00004290 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00004291 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00004292 u32 n;
drh856c1032009-06-02 15:21:42 +00004293 i64 n64;
drh70ce3f02003-04-15 19:22:22 +00004294
drha6c2ed92009-11-14 23:22:23 +00004295 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004296 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00004297
drhf0863fe2005-06-12 21:35:51 +00004298 /* Note that RowKey and RowData are really exactly the same instruction */
drh653b82a2009-06-22 11:10:47 +00004299 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4300 pC = p->apCsr[pOp->p1];
dan5134d132011-09-02 10:31:11 +00004301 assert( pC->isSorter==0 );
drhc6aff302011-09-01 15:32:47 +00004302 assert( pC->isTable || pOp->opcode!=OP_RowData );
drhf0863fe2005-06-12 21:35:51 +00004303 assert( pC->isIndex || pOp->opcode==OP_RowData );
drh4774b132004-06-12 20:12:51 +00004304 assert( pC!=0 );
drhde4fcfd2008-01-19 23:50:26 +00004305 assert( pC->nullRow==0 );
drh3e9ca092009-09-08 01:14:48 +00004306 assert( pC->pseudoTableReg==0 );
drhde4fcfd2008-01-19 23:50:26 +00004307 assert( pC->pCursor!=0 );
4308 pCrsr = pC->pCursor;
drhea8ffdf2009-07-22 00:35:23 +00004309 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drh9a65f2c2009-06-22 19:05:40 +00004310
4311 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4312 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4313 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always
4314 ** a no-op and can never fail. But we leave it in place as a safety.
4315 */
4316 assert( pC->deferredMoveto==0 );
drhde4fcfd2008-01-19 23:50:26 +00004317 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004318 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4319
drhde4fcfd2008-01-19 23:50:26 +00004320 if( pC->isIndex ){
drhde4fcfd2008-01-19 23:50:26 +00004321 assert( !pC->isTable );
drhb07028f2011-10-14 21:49:18 +00004322 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
drhc27ae612009-07-14 18:35:44 +00004323 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhbb4957f2008-03-20 14:03:29 +00004324 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhde4fcfd2008-01-19 23:50:26 +00004325 goto too_big;
drh70ce3f02003-04-15 19:22:22 +00004326 }
drhbfb19dc2009-06-05 16:46:53 +00004327 n = (u32)n64;
drhde4fcfd2008-01-19 23:50:26 +00004328 }else{
drhb07028f2011-10-14 21:49:18 +00004329 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
drhea8ffdf2009-07-22 00:35:23 +00004330 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
shane75ac1de2009-06-09 18:58:52 +00004331 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00004332 goto too_big;
4333 }
drhde4fcfd2008-01-19 23:50:26 +00004334 }
danielk1977a7a8e142008-02-13 18:25:27 +00004335 if( sqlite3VdbeMemGrow(pOut, n, 0) ){
4336 goto no_mem;
drhde4fcfd2008-01-19 23:50:26 +00004337 }
danielk1977a7a8e142008-02-13 18:25:27 +00004338 pOut->n = n;
4339 MemSetTypeFlag(pOut, MEM_Blob);
drhde4fcfd2008-01-19 23:50:26 +00004340 if( pC->isIndex ){
4341 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4342 }else{
4343 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
drh5e00f6c2001-09-13 13:46:56 +00004344 }
danielk197796cb76f2008-01-04 13:24:28 +00004345 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
drhb7654112008-01-12 12:48:07 +00004346 UPDATE_MAX_BLOBSIZE(pOut);
drhee0ec8e2013-10-31 17:38:01 +00004347 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00004348 break;
4349}
4350
drh2133d822008-01-03 18:44:59 +00004351/* Opcode: Rowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004352** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00004353**
drh2133d822008-01-03 18:44:59 +00004354** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004355** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004356**
4357** P1 can be either an ordinary table or a virtual table. There used to
4358** be a separate OP_VRowid opcode for use with virtual tables, but this
4359** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004360*/
drh4c583122008-01-04 22:01:03 +00004361case OP_Rowid: { /* out2-prerelease */
drhdfe88ec2008-11-03 20:55:06 +00004362 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004363 i64 v;
drh856c1032009-06-02 15:21:42 +00004364 sqlite3_vtab *pVtab;
4365 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004366
drh653b82a2009-06-22 11:10:47 +00004367 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4368 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004369 assert( pC!=0 );
drh21172c42012-10-30 00:29:07 +00004370 assert( pC->pseudoTableReg==0 || pC->nullRow );
drh044925b2009-04-22 17:15:02 +00004371 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004372 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004373 break;
4374 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004375 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004376#ifndef SQLITE_OMIT_VIRTUALTABLE
4377 }else if( pC->pVtabCursor ){
drh044925b2009-04-22 17:15:02 +00004378 pVtab = pC->pVtabCursor->pVtab;
4379 pModule = pVtab->pModule;
4380 assert( pModule->xRowid );
drh044925b2009-04-22 17:15:02 +00004381 rc = pModule->xRowid(pC->pVtabCursor, &v);
dan016f7812013-08-21 17:35:48 +00004382 sqlite3VtabImportErrmsg(p, pVtab);
drh044925b2009-04-22 17:15:02 +00004383#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004384 }else{
drh6be240e2009-07-14 02:33:02 +00004385 assert( pC->pCursor!=0 );
drh61495262009-04-22 15:32:59 +00004386 rc = sqlite3VdbeCursorMoveto(pC);
4387 if( rc ) goto abort_due_to_error;
4388 if( pC->rowidIsValid ){
4389 v = pC->lastRowid;
drh61495262009-04-22 15:32:59 +00004390 }else{
drhc27ae612009-07-14 18:35:44 +00004391 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4392 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */
drh61495262009-04-22 15:32:59 +00004393 }
drh5e00f6c2001-09-13 13:46:56 +00004394 }
drh4c583122008-01-04 22:01:03 +00004395 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004396 break;
4397}
4398
drh9cbf3422008-01-17 16:22:13 +00004399/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004400**
4401** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004402** that occur while the cursor is on the null row will always
4403** write a NULL.
drh17f71932002-02-21 12:01:27 +00004404*/
drh9cbf3422008-01-17 16:22:13 +00004405case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004406 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004407
drh653b82a2009-06-22 11:10:47 +00004408 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4409 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004410 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004411 pC->nullRow = 1;
drhf0863fe2005-06-12 21:35:51 +00004412 pC->rowidIsValid = 0;
dana205a482011-08-27 18:48:57 +00004413 assert( pC->pCursor || pC->pVtabCursor );
danielk1977be51a652008-10-08 17:58:48 +00004414 if( pC->pCursor ){
4415 sqlite3BtreeClearCursor(pC->pCursor);
4416 }
drh17f71932002-02-21 12:01:27 +00004417 break;
4418}
4419
drh9cbf3422008-01-17 16:22:13 +00004420/* Opcode: Last P1 P2 * * *
drh9562b552002-02-19 15:00:07 +00004421**
drhf0863fe2005-06-12 21:35:51 +00004422** The next use of the Rowid or Column or Next instruction for P1
drh9562b552002-02-19 15:00:07 +00004423** will refer to the last entry in the database table or index.
4424** If the table or index is empty and P2>0, then jump immediately to P2.
4425** If P2 is 0 or if the table or index is not empty, fall through
4426** to the following instruction.
4427*/
drh9cbf3422008-01-17 16:22:13 +00004428case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004429 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004430 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004431 int res;
drh9562b552002-02-19 15:00:07 +00004432
drh653b82a2009-06-22 11:10:47 +00004433 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4434 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004435 assert( pC!=0 );
drha05a7222008-01-19 03:35:58 +00004436 pCrsr = pC->pCursor;
drh7abc5402011-10-22 21:00:46 +00004437 res = 0;
drh3da046d2013-11-11 03:24:11 +00004438 assert( pCrsr!=0 );
4439 rc = sqlite3BtreeLast(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004440 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004441 pC->deferredMoveto = 0;
drha7e77062009-01-14 00:55:09 +00004442 pC->rowidIsValid = 0;
drha05a7222008-01-19 03:35:58 +00004443 pC->cacheStatus = CACHE_STALE;
drh9a65f2c2009-06-22 19:05:40 +00004444 if( pOp->p2>0 && res ){
drha05a7222008-01-19 03:35:58 +00004445 pc = pOp->p2 - 1;
drh9562b552002-02-19 15:00:07 +00004446 }
4447 break;
4448}
4449
drh0342b1f2005-09-01 03:07:44 +00004450
drh9cbf3422008-01-17 16:22:13 +00004451/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004452**
4453** This opcode does exactly the same thing as OP_Rewind except that
4454** it increments an undocumented global variable used for testing.
4455**
4456** Sorting is accomplished by writing records into a sorting index,
4457** then rewinding that index and playing it back from beginning to
4458** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4459** rewinding so that the global variable will be incremented and
4460** regression tests can determine whether or not the optimizer is
4461** correctly optimizing out sorts.
4462*/
drhc6aff302011-09-01 15:32:47 +00004463case OP_SorterSort: /* jump */
drh9cbf3422008-01-17 16:22:13 +00004464case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00004465#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00004466 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00004467 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00004468#endif
drh9b47ee32013-08-20 03:13:51 +00004469 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
drh0342b1f2005-09-01 03:07:44 +00004470 /* Fall through into OP_Rewind */
4471}
drh9cbf3422008-01-17 16:22:13 +00004472/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004473**
drhf0863fe2005-06-12 21:35:51 +00004474** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00004475** will refer to the first entry in the database table or index.
4476** If the table or index is empty and P2>0, then jump immediately to P2.
4477** If P2 is 0 or if the table or index is not empty, fall through
4478** to the following instruction.
drh5e00f6c2001-09-13 13:46:56 +00004479*/
drh9cbf3422008-01-17 16:22:13 +00004480case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004481 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004482 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00004483 int res;
drh5e00f6c2001-09-13 13:46:56 +00004484
drh653b82a2009-06-22 11:10:47 +00004485 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4486 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004487 assert( pC!=0 );
drhc6aff302011-09-01 15:32:47 +00004488 assert( pC->isSorter==(pOp->opcode==OP_SorterSort) );
dan2411dea2010-07-03 05:56:09 +00004489 res = 1;
dan689ab892011-08-12 15:02:00 +00004490 if( isSorter(pC) ){
dana20fde62011-07-12 14:28:05 +00004491 rc = sqlite3VdbeSorterRewind(db, pC, &res);
dana205a482011-08-27 18:48:57 +00004492 }else{
4493 pCrsr = pC->pCursor;
4494 assert( pCrsr );
danielk19774adee202004-05-08 08:23:19 +00004495 rc = sqlite3BtreeFirst(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004496 pC->atFirst = res==0 ?1:0;
drha11846b2004-01-07 18:52:56 +00004497 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004498 pC->cacheStatus = CACHE_STALE;
drha7e77062009-01-14 00:55:09 +00004499 pC->rowidIsValid = 0;
drhf4dada72004-05-11 09:57:35 +00004500 }
drh9c1905f2008-12-10 22:32:56 +00004501 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004502 assert( pOp->p2>0 && pOp->p2<p->nOp );
4503 if( res ){
drhf4dada72004-05-11 09:57:35 +00004504 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00004505 }
4506 break;
4507}
4508
drh81316f82013-10-29 20:40:47 +00004509/* Opcode: Next P1 P2 * * P5
drh5e00f6c2001-09-13 13:46:56 +00004510**
4511** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00004512** table or index. If there are no more key/value pairs then fall through
4513** to the following instruction. But if the cursor advance was successful,
4514** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00004515**
drh60a713c2008-01-21 16:22:45 +00004516** The P1 cursor must be for a real table, not a pseudo-table.
4517**
dana205a482011-08-27 18:48:57 +00004518** P4 is always of type P4_ADVANCE. The function pointer points to
4519** sqlite3BtreeNext().
4520**
drhafc266a2010-03-31 17:47:44 +00004521** If P5 is positive and the jump is taken, then event counter
4522** number P5-1 in the prepared statement is incremented.
4523**
drhc045ec52002-12-04 20:01:06 +00004524** See also: Prev
drh8721ce42001-11-07 14:22:00 +00004525*/
drhafc266a2010-03-31 17:47:44 +00004526/* Opcode: Prev P1 P2 * * P5
drhc045ec52002-12-04 20:01:06 +00004527**
4528** Back up cursor P1 so that it points to the previous key/data pair in its
4529** table or index. If there is no previous key/value pairs then fall through
4530** to the following instruction. But if the cursor backup was successful,
4531** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00004532**
4533** The P1 cursor must be for a real table, not a pseudo-table.
drhafc266a2010-03-31 17:47:44 +00004534**
dana205a482011-08-27 18:48:57 +00004535** P4 is always of type P4_ADVANCE. The function pointer points to
4536** sqlite3BtreePrevious().
4537**
drhafc266a2010-03-31 17:47:44 +00004538** If P5 is positive and the jump is taken, then event counter
4539** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00004540*/
drhc6aff302011-09-01 15:32:47 +00004541case OP_SorterNext: /* jump */
drh9cbf3422008-01-17 16:22:13 +00004542case OP_Prev: /* jump */
4543case OP_Next: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004544 VdbeCursor *pC;
drha3460582008-07-11 21:02:53 +00004545 int res;
drh8721ce42001-11-07 14:22:00 +00004546
drh70ce3f02003-04-15 19:22:22 +00004547 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh9b47ee32013-08-20 03:13:51 +00004548 assert( pOp->p5<ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00004549 pC = p->apCsr[pOp->p1];
drh72e8fa42007-03-28 14:30:06 +00004550 if( pC==0 ){
4551 break; /* See ticket #2273 */
4552 }
drhc6aff302011-09-01 15:32:47 +00004553 assert( pC->isSorter==(pOp->opcode==OP_SorterNext) );
dan689ab892011-08-12 15:02:00 +00004554 if( isSorter(pC) ){
dan5134d132011-09-02 10:31:11 +00004555 assert( pOp->opcode==OP_SorterNext );
dana20fde62011-07-12 14:28:05 +00004556 rc = sqlite3VdbeSorterNext(db, pC, &res);
4557 }else{
drh9b47ee32013-08-20 03:13:51 +00004558 /* res = 1; // Always initialized by the xAdvance() call */
dana20fde62011-07-12 14:28:05 +00004559 assert( pC->deferredMoveto==0 );
dana205a482011-08-27 18:48:57 +00004560 assert( pC->pCursor );
4561 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4562 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4563 rc = pOp->p4.xAdvance(pC->pCursor, &res);
drh9a65f2c2009-06-22 19:05:40 +00004564 }
drh9c1905f2008-12-10 22:32:56 +00004565 pC->nullRow = (u8)res;
drha3460582008-07-11 21:02:53 +00004566 pC->cacheStatus = CACHE_STALE;
4567 if( res==0 ){
4568 pc = pOp->p2 - 1;
drh9b47ee32013-08-20 03:13:51 +00004569 p->aCounter[pOp->p5]++;
drh0f7eb612006-08-08 13:51:43 +00004570#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00004571 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00004572#endif
drh8721ce42001-11-07 14:22:00 +00004573 }
drhf0863fe2005-06-12 21:35:51 +00004574 pC->rowidIsValid = 0;
drh49afe3a2013-07-10 03:05:14 +00004575 goto check_for_interrupt;
drh8721ce42001-11-07 14:22:00 +00004576}
4577
danielk1977de630352009-05-04 11:42:29 +00004578/* Opcode: IdxInsert P1 P2 P3 * P5
drh81316f82013-10-29 20:40:47 +00004579** Synopsis: key=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004580**
drhef8662b2011-06-20 21:47:58 +00004581** Register P2 holds an SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00004582** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00004583** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00004584**
drhaa9b8962008-01-08 02:57:55 +00004585** P3 is a flag that provides a hint to the b-tree layer that this
drhe4d90812007-03-29 05:51:49 +00004586** insert is likely to be an append.
4587**
drhf0863fe2005-06-12 21:35:51 +00004588** This instruction only works for indices. The equivalent instruction
4589** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00004590*/
drhca892a72011-09-03 00:17:51 +00004591case OP_SorterInsert: /* in2 */
drh9cbf3422008-01-17 16:22:13 +00004592case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00004593 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004594 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004595 int nKey;
4596 const char *zKey;
4597
drh653b82a2009-06-22 11:10:47 +00004598 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4599 pC = p->apCsr[pOp->p1];
4600 assert( pC!=0 );
drhc6aff302011-09-01 15:32:47 +00004601 assert( pC->isSorter==(pOp->opcode==OP_SorterInsert) );
drh3c657212009-11-17 23:59:58 +00004602 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00004603 assert( pIn2->flags & MEM_Blob );
drh653b82a2009-06-22 11:10:47 +00004604 pCrsr = pC->pCursor;
drh6546af12013-11-04 15:23:25 +00004605 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh3da046d2013-11-11 03:24:11 +00004606 assert( pCrsr!=0 );
4607 assert( pC->isTable==0 );
4608 rc = ExpandBlob(pIn2);
4609 if( rc==SQLITE_OK ){
4610 if( isSorter(pC) ){
4611 rc = sqlite3VdbeSorterWrite(db, pC, pIn2);
4612 }else{
4613 nKey = pIn2->n;
4614 zKey = pIn2->z;
4615 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4616 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4617 );
4618 assert( pC->deferredMoveto==0 );
4619 pC->cacheStatus = CACHE_STALE;
danielk1977d908f5a2007-05-11 07:08:28 +00004620 }
drh5e00f6c2001-09-13 13:46:56 +00004621 }
drh5e00f6c2001-09-13 13:46:56 +00004622 break;
4623}
4624
drh4308e342013-11-11 16:55:52 +00004625/* Opcode: IdxDelete P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00004626** Synopsis: key=r[P2@P3]
drh5e00f6c2001-09-13 13:46:56 +00004627**
drhe14006d2008-03-25 17:23:32 +00004628** The content of P3 registers starting at register P2 form
4629** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00004630** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00004631*/
drhe14006d2008-03-25 17:23:32 +00004632case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00004633 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004634 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00004635 int res;
4636 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00004637
drhe14006d2008-03-25 17:23:32 +00004638 assert( pOp->p3>0 );
dan3bc9f742013-08-15 16:18:39 +00004639 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
drh653b82a2009-06-22 11:10:47 +00004640 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4641 pC = p->apCsr[pOp->p1];
4642 assert( pC!=0 );
4643 pCrsr = pC->pCursor;
drh3da046d2013-11-11 03:24:11 +00004644 assert( pCrsr!=0 );
drh4308e342013-11-11 16:55:52 +00004645 assert( pOp->p5==0 );
drh3da046d2013-11-11 03:24:11 +00004646 r.pKeyInfo = pC->pKeyInfo;
4647 r.nField = (u16)pOp->p3;
4648 r.flags = UNPACKED_PREFIX_MATCH;
4649 r.aMem = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004650#ifdef SQLITE_DEBUG
drh3da046d2013-11-11 03:24:11 +00004651 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
drh2b4ded92010-09-27 21:09:31 +00004652#endif
drh3da046d2013-11-11 03:24:11 +00004653 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
4654 if( rc==SQLITE_OK && res==0 ){
4655 rc = sqlite3BtreeDelete(pCrsr);
drh5e00f6c2001-09-13 13:46:56 +00004656 }
drh3da046d2013-11-11 03:24:11 +00004657 assert( pC->deferredMoveto==0 );
4658 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004659 break;
4660}
4661
drh2133d822008-01-03 18:44:59 +00004662/* Opcode: IdxRowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004663** Synopsis: r[P2]=rowid
drh8721ce42001-11-07 14:22:00 +00004664**
drh2133d822008-01-03 18:44:59 +00004665** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00004666** the end of the index key pointed to by cursor P1. This integer should be
4667** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00004668**
drh9437bd22009-02-01 00:29:56 +00004669** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00004670*/
drh4c583122008-01-04 22:01:03 +00004671case OP_IdxRowid: { /* out2-prerelease */
drh8721ce42001-11-07 14:22:00 +00004672 BtCursor *pCrsr;
drhdfe88ec2008-11-03 20:55:06 +00004673 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004674 i64 rowid;
drh8721ce42001-11-07 14:22:00 +00004675
drh653b82a2009-06-22 11:10:47 +00004676 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4677 pC = p->apCsr[pOp->p1];
4678 assert( pC!=0 );
4679 pCrsr = pC->pCursor;
drh3da046d2013-11-11 03:24:11 +00004680 assert( pCrsr!=0 );
drh3c657212009-11-17 23:59:58 +00004681 pOut->flags = MEM_Null;
drh3da046d2013-11-11 03:24:11 +00004682 rc = sqlite3VdbeCursorMoveto(pC);
4683 if( NEVER(rc) ) goto abort_due_to_error;
4684 assert( pC->deferredMoveto==0 );
4685 assert( pC->isTable==0 );
4686 if( !pC->nullRow ){
4687 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
4688 if( rc!=SQLITE_OK ){
4689 goto abort_due_to_error;
danielk19773d1bfea2004-05-14 11:00:53 +00004690 }
drh3da046d2013-11-11 03:24:11 +00004691 pOut->u.i = rowid;
4692 pOut->flags = MEM_Int;
drh8721ce42001-11-07 14:22:00 +00004693 }
4694 break;
4695}
4696
danielk197761dd5832008-04-18 11:31:12 +00004697/* Opcode: IdxGE P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00004698** Synopsis: key=r[P3@P4]
drh8721ce42001-11-07 14:22:00 +00004699**
danielk197761dd5832008-04-18 11:31:12 +00004700** The P4 register values beginning with P3 form an unpacked index
4701** key that omits the ROWID. Compare this key value against the index
4702** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004703**
danielk197761dd5832008-04-18 11:31:12 +00004704** If the P1 index entry is greater than or equal to the key value
4705** then jump to P2. Otherwise fall through to the next instruction.
drh772ae622004-05-19 13:13:08 +00004706**
danielk197761dd5832008-04-18 11:31:12 +00004707** If P5 is non-zero then the key value is increased by an epsilon
4708** prior to the comparison. This make the opcode work like IdxGT except
4709** that if the key from register P3 is a prefix of the key in the cursor,
4710** the result is false whereas it would be true with IdxGT.
drh8721ce42001-11-07 14:22:00 +00004711*/
drh3bb9b932010-08-06 02:10:00 +00004712/* Opcode: IdxLT P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00004713** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00004714**
danielk197761dd5832008-04-18 11:31:12 +00004715** The P4 register values beginning with P3 form an unpacked index
4716** key that omits the ROWID. Compare this key value against the index
4717** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004718**
danielk197761dd5832008-04-18 11:31:12 +00004719** If the P1 index entry is less than the key value then jump to P2.
4720** Otherwise fall through to the next instruction.
drh772ae622004-05-19 13:13:08 +00004721**
danielk197761dd5832008-04-18 11:31:12 +00004722** If P5 is non-zero then the key value is increased by an epsilon prior
4723** to the comparison. This makes the opcode work like IdxLE.
drhc045ec52002-12-04 20:01:06 +00004724*/
drh93952eb2009-11-13 19:43:43 +00004725case OP_IdxLT: /* jump */
4726case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004727 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004728 int res;
4729 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00004730
drh653b82a2009-06-22 11:10:47 +00004731 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4732 pC = p->apCsr[pOp->p1];
4733 assert( pC!=0 );
drhd4187c72010-08-30 22:15:45 +00004734 assert( pC->isOrdered );
drh3da046d2013-11-11 03:24:11 +00004735 assert( pC->pCursor!=0);
4736 assert( pC->deferredMoveto==0 );
4737 assert( pOp->p5==0 || pOp->p5==1 );
4738 assert( pOp->p4type==P4_INT32 );
4739 r.pKeyInfo = pC->pKeyInfo;
4740 r.nField = (u16)pOp->p4.i;
4741 if( pOp->p5 ){
4742 r.flags = UNPACKED_INCRKEY | UNPACKED_PREFIX_MATCH;
4743 }else{
4744 r.flags = UNPACKED_PREFIX_MATCH;
4745 }
4746 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00004747#ifdef SQLITE_DEBUG
drh3da046d2013-11-11 03:24:11 +00004748 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
drh2b4ded92010-09-27 21:09:31 +00004749#endif
drh3da046d2013-11-11 03:24:11 +00004750 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
4751 if( pOp->opcode==OP_IdxLT ){
4752 res = -res;
4753 }else{
4754 assert( pOp->opcode==OP_IdxGE );
4755 res++;
4756 }
4757 if( res>0 ){
4758 pc = pOp->p2 - 1 ;
drh8721ce42001-11-07 14:22:00 +00004759 }
4760 break;
4761}
4762
drh98757152008-01-09 23:04:12 +00004763/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004764**
4765** Delete an entire database table or index whose root page in the database
4766** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00004767**
drh98757152008-01-09 23:04:12 +00004768** The table being destroyed is in the main database file if P3==0. If
4769** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00004770** that is used to store tables create using CREATE TEMPORARY TABLE.
4771**
drh205f48e2004-11-05 00:43:11 +00004772** If AUTOVACUUM is enabled then it is possible that another root page
4773** might be moved into the newly deleted root page in order to keep all
4774** root pages contiguous at the beginning of the database. The former
4775** value of the root page that moved - its value before the move occurred -
drh9cbf3422008-01-17 16:22:13 +00004776** is stored in register P2. If no page
drh98757152008-01-09 23:04:12 +00004777** movement was required (because the table being dropped was already
4778** the last one in the database) then a zero is stored in register P2.
4779** If AUTOVACUUM is disabled then a zero is stored in register P2.
drh205f48e2004-11-05 00:43:11 +00004780**
drhb19a2bc2001-09-16 00:13:26 +00004781** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00004782*/
drh98757152008-01-09 23:04:12 +00004783case OP_Destroy: { /* out2-prerelease */
danielk1977a0bf2652004-11-04 14:30:04 +00004784 int iMoved;
drh3765df42006-06-28 18:18:09 +00004785 int iCnt;
drh5a91a532007-01-05 16:39:43 +00004786 Vdbe *pVdbe;
drh856c1032009-06-02 15:21:42 +00004787 int iDb;
drh3a949872012-09-18 13:20:13 +00004788
drh9e92a472013-06-27 17:40:30 +00004789 assert( p->readOnly==0 );
drh856c1032009-06-02 15:21:42 +00004790#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk1977212b2182006-06-23 14:32:08 +00004791 iCnt = 0;
drh856c1032009-06-02 15:21:42 +00004792 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
danc0537fe2013-06-28 19:41:43 +00004793 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader
4794 && pVdbe->inVtabMethod<2 && pVdbe->pc>=0
4795 ){
danielk1977212b2182006-06-23 14:32:08 +00004796 iCnt++;
4797 }
4798 }
drh3765df42006-06-28 18:18:09 +00004799#else
danc0537fe2013-06-28 19:41:43 +00004800 iCnt = db->nVdbeRead;
danielk1977212b2182006-06-23 14:32:08 +00004801#endif
drh3c657212009-11-17 23:59:58 +00004802 pOut->flags = MEM_Null;
danielk1977212b2182006-06-23 14:32:08 +00004803 if( iCnt>1 ){
danielk1977e6efa742004-11-10 11:55:10 +00004804 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00004805 p->errorAction = OE_Abort;
danielk1977e6efa742004-11-10 11:55:10 +00004806 }else{
drh856c1032009-06-02 15:21:42 +00004807 iDb = pOp->p3;
danielk1977212b2182006-06-23 14:32:08 +00004808 assert( iCnt==1 );
drhdddd7792011-04-03 18:19:25 +00004809 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
drh98757152008-01-09 23:04:12 +00004810 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00004811 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00004812 pOut->u.i = iMoved;
drh3765df42006-06-28 18:18:09 +00004813#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977e6efa742004-11-10 11:55:10 +00004814 if( rc==SQLITE_OK && iMoved!=0 ){
drhcdf011d2011-04-04 21:25:28 +00004815 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
4816 /* All OP_Destroy operations occur on the same btree */
4817 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
4818 resetSchemaOnFault = iDb+1;
danielk1977e6efa742004-11-10 11:55:10 +00004819 }
drh3765df42006-06-28 18:18:09 +00004820#endif
danielk1977a0bf2652004-11-04 14:30:04 +00004821 }
drh5e00f6c2001-09-13 13:46:56 +00004822 break;
4823}
4824
danielk1977c7af4842008-10-27 13:59:33 +00004825/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00004826**
4827** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00004828** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00004829** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00004830**
drhf57b3392001-10-08 13:22:32 +00004831** The table being clear is in the main database file if P2==0. If
4832** P2==1 then the table to be clear is in the auxiliary database file
4833** that is used to store tables create using CREATE TEMPORARY TABLE.
4834**
shanebe217792009-03-05 04:20:31 +00004835** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00004836** intkey table (an SQL table, not an index). In this case the row change
4837** count is incremented by the number of rows in the table being cleared.
4838** If P3 is greater than zero, then the value stored in register P3 is
4839** also incremented by the number of rows in the table being cleared.
4840**
drhb19a2bc2001-09-16 00:13:26 +00004841** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00004842*/
drh9cbf3422008-01-17 16:22:13 +00004843case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00004844 int nChange;
4845
4846 nChange = 0;
drh9e92a472013-06-27 17:40:30 +00004847 assert( p->readOnly==0 );
danf52bb8d2013-08-03 20:24:58 +00004848 assert( pOp->p1!=1 );
drhdddd7792011-04-03 18:19:25 +00004849 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
danielk1977c7af4842008-10-27 13:59:33 +00004850 rc = sqlite3BtreeClearTable(
4851 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
4852 );
4853 if( pOp->p3 ){
4854 p->nChange += nChange;
4855 if( pOp->p3>0 ){
drh2b4ded92010-09-27 21:09:31 +00004856 assert( memIsValid(&aMem[pOp->p3]) );
4857 memAboutToChange(p, &aMem[pOp->p3]);
drha6c2ed92009-11-14 23:22:23 +00004858 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00004859 }
4860 }
drh5edc3122001-09-13 21:53:09 +00004861 break;
4862}
4863
drh4c583122008-01-04 22:01:03 +00004864/* Opcode: CreateTable P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004865** Synopsis: r[P2]=root iDb=P1
drh5b2fd562001-09-13 15:21:31 +00004866**
drh4c583122008-01-04 22:01:03 +00004867** Allocate a new table in the main database file if P1==0 or in the
4868** auxiliary database file if P1==1 or in an attached database if
4869** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00004870** register P2
drh5b2fd562001-09-13 15:21:31 +00004871**
drhc6b52df2002-01-04 03:09:29 +00004872** The difference between a table and an index is this: A table must
4873** have a 4-byte integer key and can have arbitrary data. An index
4874** has an arbitrary key but no data.
4875**
drhb19a2bc2001-09-16 00:13:26 +00004876** See also: CreateIndex
drh5b2fd562001-09-13 15:21:31 +00004877*/
drh4c583122008-01-04 22:01:03 +00004878/* Opcode: CreateIndex P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004879** Synopsis: r[P2]=root iDb=P1
drhf57b3392001-10-08 13:22:32 +00004880**
drh4c583122008-01-04 22:01:03 +00004881** Allocate a new index in the main database file if P1==0 or in the
4882** auxiliary database file if P1==1 or in an attached database if
4883** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00004884** register P2.
drhf57b3392001-10-08 13:22:32 +00004885**
drhc6b52df2002-01-04 03:09:29 +00004886** See documentation on OP_CreateTable for additional information.
drhf57b3392001-10-08 13:22:32 +00004887*/
drh4c583122008-01-04 22:01:03 +00004888case OP_CreateIndex: /* out2-prerelease */
4889case OP_CreateTable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00004890 int pgno;
drhf328bc82004-05-10 23:29:49 +00004891 int flags;
drh234c39d2004-07-24 03:30:47 +00004892 Db *pDb;
drh856c1032009-06-02 15:21:42 +00004893
4894 pgno = 0;
drh234c39d2004-07-24 03:30:47 +00004895 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00004896 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh9e92a472013-06-27 17:40:30 +00004897 assert( p->readOnly==0 );
drh234c39d2004-07-24 03:30:47 +00004898 pDb = &db->aDb[pOp->p1];
4899 assert( pDb->pBt!=0 );
drhc6b52df2002-01-04 03:09:29 +00004900 if( pOp->opcode==OP_CreateTable ){
danielk197794076252004-05-14 12:16:11 +00004901 /* flags = BTREE_INTKEY; */
drhd4187c72010-08-30 22:15:45 +00004902 flags = BTREE_INTKEY;
drhc6b52df2002-01-04 03:09:29 +00004903 }else{
drhd4187c72010-08-30 22:15:45 +00004904 flags = BTREE_BLOBKEY;
drhc6b52df2002-01-04 03:09:29 +00004905 }
drh234c39d2004-07-24 03:30:47 +00004906 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
drh88a003e2008-12-11 16:17:03 +00004907 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00004908 break;
4909}
4910
drh22645842011-03-24 01:34:03 +00004911/* Opcode: ParseSchema P1 * * P4 *
drh234c39d2004-07-24 03:30:47 +00004912**
4913** Read and parse all entries from the SQLITE_MASTER table of database P1
drh22645842011-03-24 01:34:03 +00004914** that match the WHERE clause P4.
drh234c39d2004-07-24 03:30:47 +00004915**
4916** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00004917** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00004918*/
drh9cbf3422008-01-17 16:22:13 +00004919case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00004920 int iDb;
4921 const char *zMaster;
4922 char *zSql;
4923 InitData initData;
4924
drhbdaec522011-04-04 00:14:43 +00004925 /* Any prepared statement that invokes this opcode will hold mutexes
4926 ** on every btree. This is a prerequisite for invoking
4927 ** sqlite3InitCallback().
4928 */
4929#ifdef SQLITE_DEBUG
4930 for(iDb=0; iDb<db->nDb; iDb++){
4931 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
4932 }
4933#endif
drhbdaec522011-04-04 00:14:43 +00004934
drh856c1032009-06-02 15:21:42 +00004935 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00004936 assert( iDb>=0 && iDb<db->nDb );
dan6c154872011-04-02 09:44:43 +00004937 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
drhbdaec522011-04-04 00:14:43 +00004938 /* Used to be a conditional */ {
drh856c1032009-06-02 15:21:42 +00004939 zMaster = SCHEMA_TABLE(iDb);
danielk1977a8bbef82009-03-23 17:11:26 +00004940 initData.db = db;
4941 initData.iDb = pOp->p1;
4942 initData.pzErrMsg = &p->zErrMsg;
4943 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00004944 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
danielk1977a8bbef82009-03-23 17:11:26 +00004945 db->aDb[iDb].zName, zMaster, pOp->p4.z);
4946 if( zSql==0 ){
4947 rc = SQLITE_NOMEM;
4948 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00004949 assert( db->init.busy==0 );
4950 db->init.busy = 1;
4951 initData.rc = SQLITE_OK;
4952 assert( !db->mallocFailed );
4953 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
4954 if( rc==SQLITE_OK ) rc = initData.rc;
4955 sqlite3DbFree(db, zSql);
4956 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00004957 }
drh3c23a882007-01-09 14:01:13 +00004958 }
drh81028a42012-05-15 18:28:27 +00004959 if( rc ) sqlite3ResetAllSchemasOfConnection(db);
danielk1977261919c2005-12-06 12:52:59 +00004960 if( rc==SQLITE_NOMEM ){
danielk1977261919c2005-12-06 12:52:59 +00004961 goto no_mem;
4962 }
drh234c39d2004-07-24 03:30:47 +00004963 break;
4964}
4965
drh8bfdf722009-06-19 14:06:03 +00004966#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00004967/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00004968**
4969** Read the sqlite_stat1 table for database P1 and load the content
4970** of that table into the internal index hash table. This will cause
4971** the analysis to be used when preparing all subsequent queries.
4972*/
drh9cbf3422008-01-17 16:22:13 +00004973case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00004974 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4975 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh497e4462005-07-23 03:18:40 +00004976 break;
4977}
drh8bfdf722009-06-19 14:06:03 +00004978#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00004979
drh98757152008-01-09 23:04:12 +00004980/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004981**
4982** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004983** the table named P4 in database P1. This is called after a table
drh956bc922004-07-24 17:38:29 +00004984** is dropped in order to keep the internal representation of the
4985** schema consistent with what is on disk.
4986*/
drh9cbf3422008-01-17 16:22:13 +00004987case OP_DropTable: {
danielk19772dca4ac2008-01-03 11:50:29 +00004988 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004989 break;
4990}
4991
drh98757152008-01-09 23:04:12 +00004992/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004993**
4994** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004995** the index named P4 in database P1. This is called after an index
drh956bc922004-07-24 17:38:29 +00004996** is dropped in order to keep the internal representation of the
4997** schema consistent with what is on disk.
4998*/
drh9cbf3422008-01-17 16:22:13 +00004999case OP_DropIndex: {
danielk19772dca4ac2008-01-03 11:50:29 +00005000 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005001 break;
5002}
5003
drh98757152008-01-09 23:04:12 +00005004/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005005**
5006** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005007** the trigger named P4 in database P1. This is called after a trigger
drh956bc922004-07-24 17:38:29 +00005008** is dropped in order to keep the internal representation of the
5009** schema consistent with what is on disk.
5010*/
drh9cbf3422008-01-17 16:22:13 +00005011case OP_DropTrigger: {
danielk19772dca4ac2008-01-03 11:50:29 +00005012 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005013 break;
5014}
5015
drh234c39d2004-07-24 03:30:47 +00005016
drhb7f91642004-10-31 02:22:47 +00005017#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98757152008-01-09 23:04:12 +00005018/* Opcode: IntegrityCk P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00005019**
drh98757152008-01-09 23:04:12 +00005020** Do an analysis of the currently open database. Store in
5021** register P1 the text of an error message describing any problems.
5022** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00005023**
drh98757152008-01-09 23:04:12 +00005024** The register P3 contains the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00005025** At most reg(P3) errors will be reported.
5026** In other words, the analysis stops as soon as reg(P1) errors are
5027** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00005028**
drh79069752004-05-22 21:30:40 +00005029** The root page numbers of all tables in the database are integer
drh60a713c2008-01-21 16:22:45 +00005030** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
drh98757152008-01-09 23:04:12 +00005031** total.
drh21504322002-06-25 13:16:02 +00005032**
drh98757152008-01-09 23:04:12 +00005033** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00005034** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00005035**
drh1dcdbc02007-01-27 02:24:54 +00005036** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00005037*/
drhaaab5722002-02-19 13:39:21 +00005038case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00005039 int nRoot; /* Number of tables to check. (Number of root pages.) */
5040 int *aRoot; /* Array of rootpage numbers for tables to be checked */
5041 int j; /* Loop counter */
5042 int nErr; /* Number of errors reported */
5043 char *z; /* Text of the error report */
5044 Mem *pnErr; /* Register keeping track of errors remaining */
drh9e92a472013-06-27 17:40:30 +00005045
drh1713afb2013-06-28 01:24:57 +00005046 assert( p->bIsReader );
drh98757152008-01-09 23:04:12 +00005047 nRoot = pOp->p2;
drh79069752004-05-22 21:30:40 +00005048 assert( nRoot>0 );
drh633e6d52008-07-28 19:34:53 +00005049 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
drhcaec2f12003-01-07 02:47:47 +00005050 if( aRoot==0 ) goto no_mem;
dan3bc9f742013-08-15 16:18:39 +00005051 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005052 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00005053 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00005054 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00005055 pIn1 = &aMem[pOp->p1];
drh79069752004-05-22 21:30:40 +00005056 for(j=0; j<nRoot; j++){
drh9c1905f2008-12-10 22:32:56 +00005057 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
drh1dd397f2002-02-03 03:34:07 +00005058 }
5059 aRoot[j] = 0;
drh98757152008-01-09 23:04:12 +00005060 assert( pOp->p5<db->nDb );
drhdddd7792011-04-03 18:19:25 +00005061 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
drh98757152008-01-09 23:04:12 +00005062 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
drh9c1905f2008-12-10 22:32:56 +00005063 (int)pnErr->u.i, &nErr);
drhc890fec2008-08-01 20:10:08 +00005064 sqlite3DbFree(db, aRoot);
drh3c024d62007-03-30 11:23:45 +00005065 pnErr->u.i -= nErr;
drha05a7222008-01-19 03:35:58 +00005066 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00005067 if( nErr==0 ){
5068 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00005069 }else if( z==0 ){
5070 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00005071 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00005072 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00005073 }
drhb7654112008-01-12 12:48:07 +00005074 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00005075 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00005076 break;
5077}
drhb7f91642004-10-31 02:22:47 +00005078#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00005079
drh3d4501e2008-12-04 20:40:10 +00005080/* Opcode: RowSetAdd P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005081** Synopsis: rowset(P1)=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00005082**
drh3d4501e2008-12-04 20:40:10 +00005083** Insert the integer value held by register P2 into a boolean index
5084** held in register P1.
5085**
5086** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00005087*/
drh93952eb2009-11-13 19:43:43 +00005088case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00005089 pIn1 = &aMem[pOp->p1];
5090 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00005091 assert( (pIn2->flags & MEM_Int)!=0 );
5092 if( (pIn1->flags & MEM_RowSet)==0 ){
5093 sqlite3VdbeMemSetRowSet(pIn1);
5094 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00005095 }
drh93952eb2009-11-13 19:43:43 +00005096 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00005097 break;
5098}
5099
5100/* Opcode: RowSetRead P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00005101** Synopsis: r[P3]=rowset(P1)
drh3d4501e2008-12-04 20:40:10 +00005102**
5103** Extract the smallest value from boolean index P1 and put that value into
5104** register P3. Or, if boolean index P1 is initially empty, leave P3
5105** unchanged and jump to instruction P2.
5106*/
drh93952eb2009-11-13 19:43:43 +00005107case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00005108 i64 val;
drh49afe3a2013-07-10 03:05:14 +00005109
drh3c657212009-11-17 23:59:58 +00005110 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00005111 if( (pIn1->flags & MEM_RowSet)==0
5112 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00005113 ){
5114 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00005115 sqlite3VdbeMemSetNull(pIn1);
drh3d4501e2008-12-04 20:40:10 +00005116 pc = pOp->p2 - 1;
5117 }else{
5118 /* A value was pulled from the index */
drh3c657212009-11-17 23:59:58 +00005119 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh17435752007-08-16 04:30:38 +00005120 }
drh49afe3a2013-07-10 03:05:14 +00005121 goto check_for_interrupt;
drh5e00f6c2001-09-13 13:46:56 +00005122}
5123
drh1b26c7c2009-04-22 02:15:47 +00005124/* Opcode: RowSetTest P1 P2 P3 P4
drh81316f82013-10-29 20:40:47 +00005125** Synopsis: if r[P3] in rowset(P1) goto P2
danielk19771d461462009-04-21 09:02:45 +00005126**
drhade97602009-04-21 15:05:18 +00005127** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00005128** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00005129** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00005130** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00005131** next opcode.
danielk19771d461462009-04-21 09:02:45 +00005132**
drh1b26c7c2009-04-22 02:15:47 +00005133** The RowSet object is optimized for the case where successive sets
danielk19771d461462009-04-21 09:02:45 +00005134** of integers, where each set contains no duplicates. Each set
5135** of values is identified by a unique P4 value. The first set
drh1b26c7c2009-04-22 02:15:47 +00005136** must have P4==0, the final set P4=-1. P4 must be either -1 or
5137** non-negative. For non-negative values of P4 only the lower 4
5138** bits are significant.
danielk19771d461462009-04-21 09:02:45 +00005139**
5140** This allows optimizations: (a) when P4==0 there is no need to test
drh1b26c7c2009-04-22 02:15:47 +00005141** the rowset object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00005142** (b) when P4==-1 there is no need to insert the value, as it will
5143** never be tested for, and (c) when a value that is part of set X is
5144** inserted, there is no need to search to see if the same value was
5145** previously inserted as part of set X (only if it was previously
5146** inserted as part of some other set).
5147*/
drh1b26c7c2009-04-22 02:15:47 +00005148case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00005149 int iSet;
5150 int exists;
5151
drh3c657212009-11-17 23:59:58 +00005152 pIn1 = &aMem[pOp->p1];
5153 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005154 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00005155 assert( pIn3->flags&MEM_Int );
5156
drh1b26c7c2009-04-22 02:15:47 +00005157 /* If there is anything other than a rowset object in memory cell P1,
5158 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00005159 */
drh733bf1b2009-04-22 00:47:00 +00005160 if( (pIn1->flags & MEM_RowSet)==0 ){
5161 sqlite3VdbeMemSetRowSet(pIn1);
5162 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00005163 }
5164
5165 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00005166 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00005167 if( iSet ){
shane60a4b532009-05-06 18:57:09 +00005168 exists = sqlite3RowSetTest(pIn1->u.pRowSet,
5169 (u8)(iSet>=0 ? iSet & 0xf : 0xff),
drh733bf1b2009-04-22 00:47:00 +00005170 pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005171 if( exists ){
5172 pc = pOp->p2 - 1;
5173 break;
5174 }
5175 }
5176 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00005177 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005178 }
5179 break;
5180}
5181
drh5e00f6c2001-09-13 13:46:56 +00005182
danielk197793758c82005-01-21 08:13:14 +00005183#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00005184
5185/* Opcode: Program P1 P2 P3 P4 *
5186**
dan76d462e2009-08-30 11:42:51 +00005187** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00005188**
dan76d462e2009-08-30 11:42:51 +00005189** P1 contains the address of the memory cell that contains the first memory
5190** cell in an array of values used as arguments to the sub-program. P2
5191** contains the address to jump to if the sub-program throws an IGNORE
5192** exception using the RAISE() function. Register P3 contains the address
5193** of a memory cell in this (the parent) VM that is used to allocate the
5194** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00005195**
5196** P4 is a pointer to the VM containing the trigger program.
5197*/
dan76d462e2009-08-30 11:42:51 +00005198case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00005199 int nMem; /* Number of memory registers for sub-program */
5200 int nByte; /* Bytes of runtime space required for sub-program */
5201 Mem *pRt; /* Register to allocate runtime space */
5202 Mem *pMem; /* Used to iterate through memory cells */
5203 Mem *pEnd; /* Last memory cell in new array */
5204 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5205 SubProgram *pProgram; /* Sub-program to execute */
5206 void *t; /* Token identifying trigger */
5207
5208 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00005209 pRt = &aMem[pOp->p3];
dan165921a2009-08-28 18:53:45 +00005210 assert( pProgram->nOp>0 );
5211
dan1da40a32009-09-19 17:00:31 +00005212 /* If the p5 flag is clear, then recursive invocation of triggers is
5213 ** disabled for backwards compatibility (p5 is set if this sub-program
5214 ** is really a trigger, not a foreign key action, and the flag set
5215 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00005216 **
5217 ** It is recursive invocation of triggers, at the SQL level, that is
5218 ** disabled. In some cases a single trigger may generate more than one
5219 ** SubProgram (if the trigger may be executed with more than one different
5220 ** ON CONFLICT algorithm). SubProgram structures associated with a
5221 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00005222 ** variable. */
5223 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00005224 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00005225 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5226 if( pFrame ) break;
5227 }
5228
danf5894502009-10-07 18:41:19 +00005229 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00005230 rc = SQLITE_ERROR;
5231 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
5232 break;
5233 }
5234
5235 /* Register pRt is used to store the memory required to save the state
5236 ** of the current program, and the memory required at runtime to execute
5237 ** the trigger program. If this trigger has been fired before, then pRt
5238 ** is already allocated. Otherwise, it must be initialized. */
5239 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00005240 /* SubProgram.nMem is set to the number of memory cells used by the
5241 ** program stored in SubProgram.aOp. As well as these, one memory
5242 ** cell is required for each cursor used by the program. Set local
5243 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5244 */
dan65a7cd12009-09-01 12:16:01 +00005245 nMem = pProgram->nMem + pProgram->nCsr;
5246 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00005247 + nMem * sizeof(Mem)
dan1d8cb212011-12-09 13:24:16 +00005248 + pProgram->nCsr * sizeof(VdbeCursor *)
5249 + pProgram->nOnce * sizeof(u8);
dan165921a2009-08-28 18:53:45 +00005250 pFrame = sqlite3DbMallocZero(db, nByte);
5251 if( !pFrame ){
5252 goto no_mem;
5253 }
5254 sqlite3VdbeMemRelease(pRt);
5255 pRt->flags = MEM_Frame;
5256 pRt->u.pFrame = pFrame;
5257
5258 pFrame->v = p;
5259 pFrame->nChildMem = nMem;
5260 pFrame->nChildCsr = pProgram->nCsr;
5261 pFrame->pc = pc;
5262 pFrame->aMem = p->aMem;
5263 pFrame->nMem = p->nMem;
5264 pFrame->apCsr = p->apCsr;
5265 pFrame->nCursor = p->nCursor;
5266 pFrame->aOp = p->aOp;
5267 pFrame->nOp = p->nOp;
5268 pFrame->token = pProgram->token;
dan1d8cb212011-12-09 13:24:16 +00005269 pFrame->aOnceFlag = p->aOnceFlag;
5270 pFrame->nOnceFlag = p->nOnceFlag;
dan165921a2009-08-28 18:53:45 +00005271
5272 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5273 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
drhec86c722011-12-09 17:27:51 +00005274 pMem->flags = MEM_Invalid;
dan165921a2009-08-28 18:53:45 +00005275 pMem->db = db;
5276 }
5277 }else{
5278 pFrame = pRt->u.pFrame;
5279 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5280 assert( pProgram->nCsr==pFrame->nChildCsr );
5281 assert( pc==pFrame->pc );
5282 }
5283
5284 p->nFrame++;
5285 pFrame->pParent = p->pFrame;
drh99a66922011-05-13 18:51:42 +00005286 pFrame->lastRowid = lastRowid;
dan76d462e2009-08-30 11:42:51 +00005287 pFrame->nChange = p->nChange;
dan2832ad42009-08-31 15:27:27 +00005288 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00005289 p->pFrame = pFrame;
drha6c2ed92009-11-14 23:22:23 +00005290 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
dan165921a2009-08-28 18:53:45 +00005291 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00005292 p->nCursor = (u16)pFrame->nChildCsr;
drha6c2ed92009-11-14 23:22:23 +00005293 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
drhbbe879d2009-11-14 18:04:35 +00005294 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00005295 p->nOp = pProgram->nOp;
dan1d8cb212011-12-09 13:24:16 +00005296 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5297 p->nOnceFlag = pProgram->nOnce;
dan165921a2009-08-28 18:53:45 +00005298 pc = -1;
dan1d8cb212011-12-09 13:24:16 +00005299 memset(p->aOnceFlag, 0, p->nOnceFlag);
dan165921a2009-08-28 18:53:45 +00005300
5301 break;
5302}
5303
dan76d462e2009-08-30 11:42:51 +00005304/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00005305**
dan76d462e2009-08-30 11:42:51 +00005306** This opcode is only ever present in sub-programs called via the
5307** OP_Program instruction. Copy a value currently stored in a memory
5308** cell of the calling (parent) frame to cell P2 in the current frames
5309** address space. This is used by trigger programs to access the new.*
5310** and old.* values.
dan165921a2009-08-28 18:53:45 +00005311**
dan76d462e2009-08-30 11:42:51 +00005312** The address of the cell in the parent frame is determined by adding
5313** the value of the P1 argument to the value of the P1 argument to the
5314** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00005315*/
dan76d462e2009-08-30 11:42:51 +00005316case OP_Param: { /* out2-prerelease */
dan65a7cd12009-09-01 12:16:01 +00005317 VdbeFrame *pFrame;
5318 Mem *pIn;
5319 pFrame = p->pFrame;
5320 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00005321 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5322 break;
5323}
5324
danielk197793758c82005-01-21 08:13:14 +00005325#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00005326
dan1da40a32009-09-19 17:00:31 +00005327#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00005328/* Opcode: FkCounter P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005329** Synopsis: fkctr[P1]+=P2
dan1da40a32009-09-19 17:00:31 +00005330**
dan0ff297e2009-09-25 17:03:14 +00005331** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5332** If P1 is non-zero, the database constraint counter is incremented
5333** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00005334** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00005335*/
dan32b09f22009-09-23 17:29:59 +00005336case OP_FkCounter: {
drh648e2642013-07-11 15:03:32 +00005337 if( db->flags & SQLITE_DeferFKs ){
5338 db->nDeferredImmCons += pOp->p2;
5339 }else if( pOp->p1 ){
dan0ff297e2009-09-25 17:03:14 +00005340 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00005341 }else{
dan0ff297e2009-09-25 17:03:14 +00005342 p->nFkConstraint += pOp->p2;
5343 }
5344 break;
5345}
5346
5347/* Opcode: FkIfZero P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005348** Synopsis: if fkctr[P1]==0 goto P2
dan0ff297e2009-09-25 17:03:14 +00005349**
5350** This opcode tests if a foreign key constraint-counter is currently zero.
5351** If so, jump to instruction P2. Otherwise, fall through to the next
5352** instruction.
5353**
5354** If P1 is non-zero, then the jump is taken if the database constraint-counter
5355** is zero (the one that counts deferred constraint violations). If P1 is
5356** zero, the jump is taken if the statement constraint-counter is zero
5357** (immediate foreign key constraint violations).
5358*/
5359case OP_FkIfZero: { /* jump */
5360 if( pOp->p1 ){
drh648e2642013-07-11 15:03:32 +00005361 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
dan0ff297e2009-09-25 17:03:14 +00005362 }else{
drh648e2642013-07-11 15:03:32 +00005363 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
dan32b09f22009-09-23 17:29:59 +00005364 }
dan1da40a32009-09-19 17:00:31 +00005365 break;
5366}
5367#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5368
drh205f48e2004-11-05 00:43:11 +00005369#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00005370/* Opcode: MemMax P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005371** Synopsis: r[P1]=max(r[P1],r[P2])
drh205f48e2004-11-05 00:43:11 +00005372**
dan76d462e2009-08-30 11:42:51 +00005373** P1 is a register in the root frame of this VM (the root frame is
5374** different from the current frame if this instruction is being executed
5375** within a sub-program). Set the value of register P1 to the maximum of
5376** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00005377**
5378** This instruction throws an error if the memory cell is not initially
5379** an integer.
5380*/
dan76d462e2009-08-30 11:42:51 +00005381case OP_MemMax: { /* in2 */
5382 Mem *pIn1;
5383 VdbeFrame *pFrame;
5384 if( p->pFrame ){
5385 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5386 pIn1 = &pFrame->aMem[pOp->p1];
5387 }else{
drha6c2ed92009-11-14 23:22:23 +00005388 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00005389 }
drhec86c722011-12-09 17:27:51 +00005390 assert( memIsValid(pIn1) );
drh98757152008-01-09 23:04:12 +00005391 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00005392 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00005393 sqlite3VdbeMemIntegerify(pIn2);
5394 if( pIn1->u.i<pIn2->u.i){
5395 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00005396 }
5397 break;
5398}
5399#endif /* SQLITE_OMIT_AUTOINCREMENT */
5400
drh98757152008-01-09 23:04:12 +00005401/* Opcode: IfPos P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005402** Synopsis: if r[P1]>0 goto P2
danielk1977a2dc3b12005-02-05 12:48:48 +00005403**
drh98757152008-01-09 23:04:12 +00005404** If the value of register P1 is 1 or greater, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005405**
drh98757152008-01-09 23:04:12 +00005406** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005407** not contain an integer. An assertion fault will result if you try.
danielk1977a2dc3b12005-02-05 12:48:48 +00005408*/
drh9cbf3422008-01-17 16:22:13 +00005409case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005410 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005411 assert( pIn1->flags&MEM_Int );
drh3c84ddf2008-01-09 02:15:38 +00005412 if( pIn1->u.i>0 ){
drhec7429a2005-10-06 16:53:14 +00005413 pc = pOp->p2 - 1;
5414 }
5415 break;
5416}
5417
drh98757152008-01-09 23:04:12 +00005418/* Opcode: IfNeg P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005419** Synopsis: if r[P1]<0 goto P2
drh15007a92006-01-08 18:10:17 +00005420**
drh98757152008-01-09 23:04:12 +00005421** If the value of register P1 is less than zero, jump to P2.
drh15007a92006-01-08 18:10:17 +00005422**
drh98757152008-01-09 23:04:12 +00005423** It is illegal to use this instruction on a register that does
drh15007a92006-01-08 18:10:17 +00005424** not contain an integer. An assertion fault will result if you try.
5425*/
drh9cbf3422008-01-17 16:22:13 +00005426case OP_IfNeg: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005427 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005428 assert( pIn1->flags&MEM_Int );
drh3c84ddf2008-01-09 02:15:38 +00005429 if( pIn1->u.i<0 ){
drh15007a92006-01-08 18:10:17 +00005430 pc = pOp->p2 - 1;
5431 }
5432 break;
5433}
5434
drh9b918ed2009-11-12 03:13:26 +00005435/* Opcode: IfZero P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00005436** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2
drhec7429a2005-10-06 16:53:14 +00005437**
drh9b918ed2009-11-12 03:13:26 +00005438** The register P1 must contain an integer. Add literal P3 to the
5439** value in register P1. If the result is exactly 0, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005440**
drh98757152008-01-09 23:04:12 +00005441** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005442** not contain an integer. An assertion fault will result if you try.
drhec7429a2005-10-06 16:53:14 +00005443*/
drh9cbf3422008-01-17 16:22:13 +00005444case OP_IfZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005445 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005446 assert( pIn1->flags&MEM_Int );
drh9b918ed2009-11-12 03:13:26 +00005447 pIn1->u.i += pOp->p3;
drh3c84ddf2008-01-09 02:15:38 +00005448 if( pIn1->u.i==0 ){
drha2a49dc2008-01-02 14:28:13 +00005449 pc = pOp->p2 - 1;
5450 }
5451 break;
5452}
5453
drh98757152008-01-09 23:04:12 +00005454/* Opcode: AggStep * P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005455** Synopsis: accum=r[P3] step(r[P2@P5])
drhe5095352002-02-24 03:25:14 +00005456**
drh0bce8352002-02-28 00:41:10 +00005457** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00005458** function has P5 arguments. P4 is a pointer to the FuncDef
5459** structure that specifies the function. Use register
5460** P3 as the accumulator.
drhe5095352002-02-24 03:25:14 +00005461**
drh98757152008-01-09 23:04:12 +00005462** The P5 arguments are taken from register P2 and its
5463** successors.
drhe5095352002-02-24 03:25:14 +00005464*/
drh9cbf3422008-01-17 16:22:13 +00005465case OP_AggStep: {
drh856c1032009-06-02 15:21:42 +00005466 int n;
drhe5095352002-02-24 03:25:14 +00005467 int i;
drhc54a6172009-06-02 16:06:03 +00005468 Mem *pMem;
5469 Mem *pRec;
danielk197722322fd2004-05-25 23:35:17 +00005470 sqlite3_context ctx;
danielk19776ddcca52004-05-24 23:48:25 +00005471 sqlite3_value **apVal;
drhe5095352002-02-24 03:25:14 +00005472
drh856c1032009-06-02 15:21:42 +00005473 n = pOp->p5;
drh6810ce62004-01-31 19:22:56 +00005474 assert( n>=0 );
drha6c2ed92009-11-14 23:22:23 +00005475 pRec = &aMem[pOp->p2];
danielk19776ddcca52004-05-24 23:48:25 +00005476 apVal = p->apArg;
5477 assert( apVal || n==0 );
drh6810ce62004-01-31 19:22:56 +00005478 for(i=0; i<n; i++, pRec++){
drh2b4ded92010-09-27 21:09:31 +00005479 assert( memIsValid(pRec) );
danielk1977c572ef72004-05-27 09:28:41 +00005480 apVal[i] = pRec;
drh2b4ded92010-09-27 21:09:31 +00005481 memAboutToChange(p, pRec);
dan937d0de2009-10-15 18:35:38 +00005482 sqlite3VdbeMemStoreType(pRec);
drhe5095352002-02-24 03:25:14 +00005483 }
danielk19772dca4ac2008-01-03 11:50:29 +00005484 ctx.pFunc = pOp->p4.pFunc;
dan3bc9f742013-08-15 16:18:39 +00005485 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005486 ctx.pMem = pMem = &aMem[pOp->p3];
drhabfcea22005-09-06 20:36:48 +00005487 pMem->n++;
drh90669c12006-01-20 15:45:36 +00005488 ctx.s.flags = MEM_Null;
5489 ctx.s.z = 0;
danielk19775f096132008-03-28 15:44:09 +00005490 ctx.s.zMalloc = 0;
drh90669c12006-01-20 15:45:36 +00005491 ctx.s.xDel = 0;
drhb21c8cd2007-08-21 19:33:56 +00005492 ctx.s.db = db;
drh1350b032002-02-27 19:00:20 +00005493 ctx.isError = 0;
danielk1977dc1bdc42004-06-11 10:51:27 +00005494 ctx.pColl = 0;
drh7a957892012-02-02 17:35:43 +00005495 ctx.skipFlag = 0;
drhd36e1042013-09-06 13:10:12 +00005496 if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
danielk1977dc1bdc42004-06-11 10:51:27 +00005497 assert( pOp>p->aOp );
drh66a51672008-01-03 00:01:23 +00005498 assert( pOp[-1].p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00005499 assert( pOp[-1].opcode==OP_CollSeq );
danielk19772dca4ac2008-01-03 11:50:29 +00005500 ctx.pColl = pOp[-1].p4.pColl;
danielk1977dc1bdc42004-06-11 10:51:27 +00005501 }
drhee9ff672010-09-03 18:50:48 +00005502 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh1350b032002-02-27 19:00:20 +00005503 if( ctx.isError ){
drhf089aa42008-07-08 19:34:06 +00005504 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
drh69544ec2008-02-06 14:11:34 +00005505 rc = ctx.isError;
drh1350b032002-02-27 19:00:20 +00005506 }
drh7a957892012-02-02 17:35:43 +00005507 if( ctx.skipFlag ){
5508 assert( pOp[-1].opcode==OP_CollSeq );
5509 i = pOp[-1].p1;
5510 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5511 }
drhbdaec522011-04-04 00:14:43 +00005512
drh90669c12006-01-20 15:45:36 +00005513 sqlite3VdbeMemRelease(&ctx.s);
drhbdaec522011-04-04 00:14:43 +00005514
drh5e00f6c2001-09-13 13:46:56 +00005515 break;
5516}
5517
drh98757152008-01-09 23:04:12 +00005518/* Opcode: AggFinal P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00005519** Synopsis: accum=r[P1] N=P2
drh5e00f6c2001-09-13 13:46:56 +00005520**
drh13449892005-09-07 21:22:45 +00005521** Execute the finalizer function for an aggregate. P1 is
5522** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00005523**
5524** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00005525** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00005526** argument is not used by this opcode. It is only there to disambiguate
5527** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00005528** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00005529** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00005530*/
drh9cbf3422008-01-17 16:22:13 +00005531case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00005532 Mem *pMem;
dan3bc9f742013-08-15 16:18:39 +00005533 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005534 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00005535 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00005536 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00005537 if( rc ){
drhf089aa42008-07-08 19:34:06 +00005538 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
drh90669c12006-01-20 15:45:36 +00005539 }
drh2dca8682008-03-21 17:13:13 +00005540 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00005541 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00005542 if( sqlite3VdbeMemTooBig(pMem) ){
5543 goto too_big;
5544 }
drh5e00f6c2001-09-13 13:46:56 +00005545 break;
5546}
5547
dan5cf53532010-05-01 16:40:20 +00005548#ifndef SQLITE_OMIT_WAL
dancdc1f042010-11-18 12:11:05 +00005549/* Opcode: Checkpoint P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00005550**
5551** Checkpoint database P1. This is a no-op if P1 is not currently in
dancdc1f042010-11-18 12:11:05 +00005552** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
drh30aa3b92011-02-07 23:56:01 +00005553** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
5554** SQLITE_BUSY or not, respectively. Write the number of pages in the
5555** WAL after the checkpoint into mem[P3+1] and the number of pages
5556** in the WAL that have been checkpointed after the checkpoint
5557** completes into mem[P3+2]. However on an error, mem[P3+1] and
5558** mem[P3+2] are initialized to -1.
dan7c246102010-04-12 19:00:29 +00005559*/
5560case OP_Checkpoint: {
drh30aa3b92011-02-07 23:56:01 +00005561 int i; /* Loop counter */
5562 int aRes[3]; /* Results */
5563 Mem *pMem; /* Write results here */
5564
drh9e92a472013-06-27 17:40:30 +00005565 assert( p->readOnly==0 );
drh30aa3b92011-02-07 23:56:01 +00005566 aRes[0] = 0;
5567 aRes[1] = aRes[2] = -1;
dancdc1f042010-11-18 12:11:05 +00005568 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5569 || pOp->p2==SQLITE_CHECKPOINT_FULL
5570 || pOp->p2==SQLITE_CHECKPOINT_RESTART
5571 );
drh30aa3b92011-02-07 23:56:01 +00005572 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
dancdc1f042010-11-18 12:11:05 +00005573 if( rc==SQLITE_BUSY ){
5574 rc = SQLITE_OK;
drh30aa3b92011-02-07 23:56:01 +00005575 aRes[0] = 1;
dancdc1f042010-11-18 12:11:05 +00005576 }
drh30aa3b92011-02-07 23:56:01 +00005577 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5578 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5579 }
dan7c246102010-04-12 19:00:29 +00005580 break;
5581};
dan5cf53532010-05-01 16:40:20 +00005582#endif
drh5e00f6c2001-09-13 13:46:56 +00005583
drhcac29a62010-07-02 19:36:52 +00005584#ifndef SQLITE_OMIT_PRAGMA
drhab9b7442010-05-10 11:20:05 +00005585/* Opcode: JournalMode P1 P2 P3 * P5
dane04dc882010-04-20 18:53:15 +00005586**
5587** Change the journal mode of database P1 to P3. P3 must be one of the
5588** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5589** modes (delete, truncate, persist, off and memory), this is a simple
5590** operation. No IO is required.
5591**
5592** If changing into or out of WAL mode the procedure is more complicated.
5593**
5594** Write a string containing the final journal-mode to register P2.
5595*/
drhd80b2332010-05-01 00:59:37 +00005596case OP_JournalMode: { /* out2-prerelease */
dane04dc882010-04-20 18:53:15 +00005597 Btree *pBt; /* Btree to change journal mode of */
5598 Pager *pPager; /* Pager associated with pBt */
drhd80b2332010-05-01 00:59:37 +00005599 int eNew; /* New journal mode */
5600 int eOld; /* The old journal mode */
mistachkin59ee77c2012-09-13 15:26:44 +00005601#ifndef SQLITE_OMIT_WAL
drhd80b2332010-05-01 00:59:37 +00005602 const char *zFilename; /* Name of database file for pPager */
mistachkin59ee77c2012-09-13 15:26:44 +00005603#endif
dane04dc882010-04-20 18:53:15 +00005604
drhd80b2332010-05-01 00:59:37 +00005605 eNew = pOp->p3;
dane04dc882010-04-20 18:53:15 +00005606 assert( eNew==PAGER_JOURNALMODE_DELETE
5607 || eNew==PAGER_JOURNALMODE_TRUNCATE
5608 || eNew==PAGER_JOURNALMODE_PERSIST
5609 || eNew==PAGER_JOURNALMODE_OFF
5610 || eNew==PAGER_JOURNALMODE_MEMORY
5611 || eNew==PAGER_JOURNALMODE_WAL
5612 || eNew==PAGER_JOURNALMODE_QUERY
5613 );
5614 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drh9e92a472013-06-27 17:40:30 +00005615 assert( p->readOnly==0 );
drh3ebaee92010-05-06 21:37:22 +00005616
dane04dc882010-04-20 18:53:15 +00005617 pBt = db->aDb[pOp->p1].pBt;
5618 pPager = sqlite3BtreePager(pBt);
drh0b9b4302010-06-11 17:01:24 +00005619 eOld = sqlite3PagerGetJournalMode(pPager);
5620 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5621 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
dan5cf53532010-05-01 16:40:20 +00005622
5623#ifndef SQLITE_OMIT_WAL
drhd4e0bb02012-05-27 01:19:04 +00005624 zFilename = sqlite3PagerFilename(pPager, 1);
dane04dc882010-04-20 18:53:15 +00005625
drhd80b2332010-05-01 00:59:37 +00005626 /* Do not allow a transition to journal_mode=WAL for a database
drh6e1f4822010-07-13 23:41:40 +00005627 ** in temporary storage or if the VFS does not support shared memory
drhd80b2332010-05-01 00:59:37 +00005628 */
5629 if( eNew==PAGER_JOURNALMODE_WAL
drh057fc812011-10-17 23:15:31 +00005630 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
drh6e1f4822010-07-13 23:41:40 +00005631 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
dane180c292010-04-26 17:42:56 +00005632 ){
drh0b9b4302010-06-11 17:01:24 +00005633 eNew = eOld;
dane180c292010-04-26 17:42:56 +00005634 }
5635
drh0b9b4302010-06-11 17:01:24 +00005636 if( (eNew!=eOld)
5637 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5638 ){
danc0537fe2013-06-28 19:41:43 +00005639 if( !db->autoCommit || db->nVdbeRead>1 ){
drh0b9b4302010-06-11 17:01:24 +00005640 rc = SQLITE_ERROR;
5641 sqlite3SetString(&p->zErrMsg, db,
5642 "cannot change %s wal mode from within a transaction",
5643 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5644 );
5645 break;
5646 }else{
5647
5648 if( eOld==PAGER_JOURNALMODE_WAL ){
5649 /* If leaving WAL mode, close the log file. If successful, the call
5650 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5651 ** file. An EXCLUSIVE lock may still be held on the database file
5652 ** after a successful return.
dane04dc882010-04-20 18:53:15 +00005653 */
drh0b9b4302010-06-11 17:01:24 +00005654 rc = sqlite3PagerCloseWal(pPager);
drhab9b7442010-05-10 11:20:05 +00005655 if( rc==SQLITE_OK ){
drh0b9b4302010-06-11 17:01:24 +00005656 sqlite3PagerSetJournalMode(pPager, eNew);
drh89c3f2f2010-05-15 01:09:38 +00005657 }
drh242c4f72010-06-22 14:49:39 +00005658 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5659 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5660 ** as an intermediate */
5661 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
drh0b9b4302010-06-11 17:01:24 +00005662 }
5663
5664 /* Open a transaction on the database file. Regardless of the journal
5665 ** mode, this transaction always uses a rollback journal.
5666 */
5667 assert( sqlite3BtreeIsInTrans(pBt)==0 );
5668 if( rc==SQLITE_OK ){
dan731bf5b2010-06-17 16:44:21 +00005669 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
dane04dc882010-04-20 18:53:15 +00005670 }
5671 }
5672 }
dan5cf53532010-05-01 16:40:20 +00005673#endif /* ifndef SQLITE_OMIT_WAL */
dane04dc882010-04-20 18:53:15 +00005674
dand956efe2010-06-18 16:13:45 +00005675 if( rc ){
dand956efe2010-06-18 16:13:45 +00005676 eNew = eOld;
5677 }
drh0b9b4302010-06-11 17:01:24 +00005678 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
dan731bf5b2010-06-17 16:44:21 +00005679
dane04dc882010-04-20 18:53:15 +00005680 pOut = &aMem[pOp->p2];
5681 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
danb9780022010-04-21 18:37:57 +00005682 pOut->z = (char *)sqlite3JournalModename(eNew);
dane04dc882010-04-20 18:53:15 +00005683 pOut->n = sqlite3Strlen30(pOut->z);
5684 pOut->enc = SQLITE_UTF8;
5685 sqlite3VdbeChangeEncoding(pOut, encoding);
5686 break;
drhcac29a62010-07-02 19:36:52 +00005687};
5688#endif /* SQLITE_OMIT_PRAGMA */
dane04dc882010-04-20 18:53:15 +00005689
drhfdbcdee2007-03-27 14:44:50 +00005690#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh98757152008-01-09 23:04:12 +00005691/* Opcode: Vacuum * * * * *
drh6f8c91c2003-12-07 00:24:35 +00005692**
5693** Vacuum the entire database. This opcode will cause other virtual
5694** machines to be created and run. It may not be called from within
5695** a transaction.
5696*/
drh9cbf3422008-01-17 16:22:13 +00005697case OP_Vacuum: {
drh9e92a472013-06-27 17:40:30 +00005698 assert( p->readOnly==0 );
danielk19774adee202004-05-08 08:23:19 +00005699 rc = sqlite3RunVacuum(&p->zErrMsg, db);
drh6f8c91c2003-12-07 00:24:35 +00005700 break;
5701}
drh154d4b22006-09-21 11:02:16 +00005702#endif
drh6f8c91c2003-12-07 00:24:35 +00005703
danielk1977dddbcdc2007-04-26 14:42:34 +00005704#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00005705/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00005706**
5707** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00005708** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00005709** P2. Otherwise, fall through to the next instruction.
5710*/
drh9cbf3422008-01-17 16:22:13 +00005711case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00005712 Btree *pBt;
5713
5714 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00005715 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh9e92a472013-06-27 17:40:30 +00005716 assert( p->readOnly==0 );
drhca5557f2007-05-04 18:30:40 +00005717 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00005718 rc = sqlite3BtreeIncrVacuum(pBt);
5719 if( rc==SQLITE_DONE ){
5720 pc = pOp->p2 - 1;
5721 rc = SQLITE_OK;
5722 }
5723 break;
5724}
5725#endif
5726
drh98757152008-01-09 23:04:12 +00005727/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00005728**
5729** Cause precompiled statements to become expired. An expired statement
5730** fails with an error code of SQLITE_SCHEMA if it is ever executed
5731** (via sqlite3_step()).
5732**
5733** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5734** then only the currently executing statement is affected.
5735*/
drh9cbf3422008-01-17 16:22:13 +00005736case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00005737 if( !pOp->p1 ){
5738 sqlite3ExpirePreparedStatements(db);
5739 }else{
5740 p->expired = 1;
5741 }
5742 break;
5743}
5744
danielk1977c00da102006-01-07 13:21:04 +00005745#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00005746/* Opcode: TableLock P1 P2 P3 P4 *
drh81316f82013-10-29 20:40:47 +00005747** Synopsis: iDb=P1 root=P2 write=P3
danielk1977c00da102006-01-07 13:21:04 +00005748**
5749** Obtain a lock on a particular table. This instruction is only used when
5750** the shared-cache feature is enabled.
5751**
danielk197796d48e92009-06-29 06:00:37 +00005752** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00005753** on which the lock is acquired. A readlock is obtained if P3==0 or
5754** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00005755**
5756** P2 contains the root-page of the table to lock.
5757**
drh66a51672008-01-03 00:01:23 +00005758** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00005759** used to generate an error message if the lock cannot be obtained.
5760*/
drh9cbf3422008-01-17 16:22:13 +00005761case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00005762 u8 isWriteLock = (u8)pOp->p3;
5763 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5764 int p1 = pOp->p1;
5765 assert( p1>=0 && p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00005766 assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +00005767 assert( isWriteLock==0 || isWriteLock==1 );
5768 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5769 if( (rc&0xFF)==SQLITE_LOCKED ){
5770 const char *z = pOp->p4.z;
5771 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
5772 }
danielk1977c00da102006-01-07 13:21:04 +00005773 }
5774 break;
5775}
drhb9bb7c12006-06-11 23:41:55 +00005776#endif /* SQLITE_OMIT_SHARED_CACHE */
5777
5778#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005779/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005780**
danielk19773e3a84d2008-08-01 17:37:40 +00005781** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5782** xBegin method for that table.
5783**
5784** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00005785** within a callback to a virtual table xSync() method. If it is, the error
5786** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00005787*/
drh9cbf3422008-01-17 16:22:13 +00005788case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00005789 VTable *pVTab;
5790 pVTab = pOp->p4.pVtab;
5791 rc = sqlite3VtabBegin(db, pVTab);
dan016f7812013-08-21 17:35:48 +00005792 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
danielk1977f9e7dda2006-06-16 16:08:53 +00005793 break;
5794}
5795#endif /* SQLITE_OMIT_VIRTUALTABLE */
5796
5797#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005798/* Opcode: VCreate P1 * * P4 *
danielk1977f9e7dda2006-06-16 16:08:53 +00005799**
drh66a51672008-01-03 00:01:23 +00005800** P4 is the name of a virtual table in database P1. Call the xCreate method
danielk1977f9e7dda2006-06-16 16:08:53 +00005801** for that table.
5802*/
drh9cbf3422008-01-17 16:22:13 +00005803case OP_VCreate: {
danielk19772dca4ac2008-01-03 11:50:29 +00005804 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
drhb9bb7c12006-06-11 23:41:55 +00005805 break;
5806}
5807#endif /* SQLITE_OMIT_VIRTUALTABLE */
5808
5809#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005810/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005811**
drh66a51672008-01-03 00:01:23 +00005812** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00005813** of that table.
drhb9bb7c12006-06-11 23:41:55 +00005814*/
drh9cbf3422008-01-17 16:22:13 +00005815case OP_VDestroy: {
danielk1977212b2182006-06-23 14:32:08 +00005816 p->inVtabMethod = 2;
danielk19772dca4ac2008-01-03 11:50:29 +00005817 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
danielk1977212b2182006-06-23 14:32:08 +00005818 p->inVtabMethod = 0;
drhb9bb7c12006-06-11 23:41:55 +00005819 break;
5820}
5821#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00005822
drh9eff6162006-06-12 21:59:13 +00005823#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005824/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00005825**
drh66a51672008-01-03 00:01:23 +00005826** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00005827** P1 is a cursor number. This opcode opens a cursor to the virtual
5828** table and stores that cursor in P1.
5829*/
drh9cbf3422008-01-17 16:22:13 +00005830case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00005831 VdbeCursor *pCur;
5832 sqlite3_vtab_cursor *pVtabCursor;
5833 sqlite3_vtab *pVtab;
5834 sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005835
drh1713afb2013-06-28 01:24:57 +00005836 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00005837 pCur = 0;
5838 pVtabCursor = 0;
danielk1977595a5232009-07-24 17:58:53 +00005839 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00005840 pModule = (sqlite3_module *)pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005841 assert(pVtab && pModule);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005842 rc = pModule->xOpen(pVtab, &pVtabCursor);
dan016f7812013-08-21 17:35:48 +00005843 sqlite3VtabImportErrmsg(p, pVtab);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005844 if( SQLITE_OK==rc ){
shane21e7feb2008-05-30 15:59:49 +00005845 /* Initialize sqlite3_vtab_cursor base class */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005846 pVtabCursor->pVtab = pVtab;
5847
mistachkin48864df2013-03-21 21:20:32 +00005848 /* Initialize vdbe cursor object */
danielk1977d336e222009-02-20 10:58:41 +00005849 pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
danielk1977be718892006-06-23 08:05:19 +00005850 if( pCur ){
5851 pCur->pVtabCursor = pVtabCursor;
5852 pCur->pModule = pVtabCursor->pVtab->pModule;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005853 }else{
drh17435752007-08-16 04:30:38 +00005854 db->mallocFailed = 1;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005855 pModule->xClose(pVtabCursor);
danielk1977be718892006-06-23 08:05:19 +00005856 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005857 }
drh9eff6162006-06-12 21:59:13 +00005858 break;
5859}
5860#endif /* SQLITE_OMIT_VIRTUALTABLE */
5861
5862#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00005863/* Opcode: VFilter P1 P2 P3 P4 *
drh81316f82013-10-29 20:40:47 +00005864** Synopsis: iPlan=r[P3] zPlan='P4'
drh9eff6162006-06-12 21:59:13 +00005865**
5866** P1 is a cursor opened using VOpen. P2 is an address to jump to if
5867** the filtered result set is empty.
5868**
drh66a51672008-01-03 00:01:23 +00005869** P4 is either NULL or a string that was generated by the xBestIndex
5870** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00005871** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00005872**
drh9eff6162006-06-12 21:59:13 +00005873** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00005874** by P1. The integer query plan parameter to xFilter is stored in register
5875** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00005876** xFilter method. Registers P3+2..P3+1+argc are the argc
5877** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00005878** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00005879**
danielk19776dbee812008-01-03 18:39:41 +00005880** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00005881*/
drh9cbf3422008-01-17 16:22:13 +00005882case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005883 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00005884 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005885 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00005886 Mem *pQuery;
5887 Mem *pArgc;
drh4dc754d2008-07-23 18:17:32 +00005888 sqlite3_vtab_cursor *pVtabCursor;
5889 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00005890 VdbeCursor *pCur;
5891 int res;
5892 int i;
5893 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005894
drha6c2ed92009-11-14 23:22:23 +00005895 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005896 pArgc = &pQuery[1];
5897 pCur = p->apCsr[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00005898 assert( memIsValid(pQuery) );
drh5b6afba2008-01-05 16:29:28 +00005899 REGISTER_TRACE(pOp->p3, pQuery);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005900 assert( pCur->pVtabCursor );
drh4dc754d2008-07-23 18:17:32 +00005901 pVtabCursor = pCur->pVtabCursor;
5902 pVtab = pVtabCursor->pVtab;
5903 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005904
drh9cbf3422008-01-17 16:22:13 +00005905 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00005906 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00005907 nArg = (int)pArgc->u.i;
5908 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005909
drh644a5292006-12-20 14:53:38 +00005910 /* Invoke the xFilter method */
5911 {
drh856c1032009-06-02 15:21:42 +00005912 res = 0;
5913 apArg = p->apArg;
drh4be8b512006-06-13 23:51:34 +00005914 for(i = 0; i<nArg; i++){
danielk19776dbee812008-01-03 18:39:41 +00005915 apArg[i] = &pArgc[i+1];
dan937d0de2009-10-15 18:35:38 +00005916 sqlite3VdbeMemStoreType(apArg[i]);
danielk19775fac9f82006-06-13 14:16:58 +00005917 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005918
danielk1977be718892006-06-23 08:05:19 +00005919 p->inVtabMethod = 1;
drh4dc754d2008-07-23 18:17:32 +00005920 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
danielk1977be718892006-06-23 08:05:19 +00005921 p->inVtabMethod = 0;
dan016f7812013-08-21 17:35:48 +00005922 sqlite3VtabImportErrmsg(p, pVtab);
danielk1977a298e902006-06-22 09:53:48 +00005923 if( rc==SQLITE_OK ){
drh4dc754d2008-07-23 18:17:32 +00005924 res = pModule->xEof(pVtabCursor);
danielk1977a298e902006-06-22 09:53:48 +00005925 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005926
danielk1977a298e902006-06-22 09:53:48 +00005927 if( res ){
danielk1977b7a7b9a2006-06-13 10:24:42 +00005928 pc = pOp->p2 - 1;
5929 }
5930 }
drh1d454a32008-01-31 19:34:51 +00005931 pCur->nullRow = 0;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005932
drh9eff6162006-06-12 21:59:13 +00005933 break;
5934}
5935#endif /* SQLITE_OMIT_VIRTUALTABLE */
5936
5937#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005938/* Opcode: VColumn P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00005939** Synopsis: r[P3]=vcolumn(P2)
drh9eff6162006-06-12 21:59:13 +00005940**
drh2133d822008-01-03 18:44:59 +00005941** Store the value of the P2-th column of
5942** the row of the virtual-table that the
5943** P1 cursor is pointing to into register P3.
drh9eff6162006-06-12 21:59:13 +00005944*/
5945case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00005946 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005947 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00005948 Mem *pDest;
5949 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005950
drhdfe88ec2008-11-03 20:55:06 +00005951 VdbeCursor *pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00005952 assert( pCur->pVtabCursor );
dan3bc9f742013-08-15 16:18:39 +00005953 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005954 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00005955 memAboutToChange(p, pDest);
drh2945b4a2008-01-31 15:53:45 +00005956 if( pCur->nullRow ){
5957 sqlite3VdbeMemSetNull(pDest);
5958 break;
5959 }
danielk19773e3a84d2008-08-01 17:37:40 +00005960 pVtab = pCur->pVtabCursor->pVtab;
5961 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00005962 assert( pModule->xColumn );
5963 memset(&sContext, 0, sizeof(sContext));
danielk1977a7a8e142008-02-13 18:25:27 +00005964
5965 /* The output cell may already have a buffer allocated. Move
5966 ** the current contents to sContext.s so in case the user-function
5967 ** can use the already allocated buffer instead of allocating a
5968 ** new one.
5969 */
5970 sqlite3VdbeMemMove(&sContext.s, pDest);
5971 MemSetTypeFlag(&sContext.s, MEM_Null);
5972
drhde4fcfd2008-01-19 23:50:26 +00005973 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
dan016f7812013-08-21 17:35:48 +00005974 sqlite3VtabImportErrmsg(p, pVtab);
drh4c8555f2009-06-25 01:47:11 +00005975 if( sContext.isError ){
5976 rc = sContext.isError;
5977 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005978
drhde4fcfd2008-01-19 23:50:26 +00005979 /* Copy the result of the function to the P3 register. We
shanebe217792009-03-05 04:20:31 +00005980 ** do this regardless of whether or not an error occurred to ensure any
drhde4fcfd2008-01-19 23:50:26 +00005981 ** dynamic allocation in sContext.s (a Mem struct) is released.
5982 */
5983 sqlite3VdbeChangeEncoding(&sContext.s, encoding);
drhde4fcfd2008-01-19 23:50:26 +00005984 sqlite3VdbeMemMove(pDest, &sContext.s);
drh5ff44372009-11-24 16:26:17 +00005985 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00005986 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005987
drhde4fcfd2008-01-19 23:50:26 +00005988 if( sqlite3VdbeMemTooBig(pDest) ){
5989 goto too_big;
5990 }
drh9eff6162006-06-12 21:59:13 +00005991 break;
5992}
5993#endif /* SQLITE_OMIT_VIRTUALTABLE */
5994
5995#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005996/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00005997**
5998** Advance virtual table P1 to the next row in its result set and
5999** jump to instruction P2. Or, if the virtual table has reached
6000** the end of its result set, then fall through to the next instruction.
6001*/
drh9cbf3422008-01-17 16:22:13 +00006002case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00006003 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006004 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00006005 int res;
drh856c1032009-06-02 15:21:42 +00006006 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006007
drhc54a6172009-06-02 16:06:03 +00006008 res = 0;
drh856c1032009-06-02 15:21:42 +00006009 pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00006010 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00006011 if( pCur->nullRow ){
6012 break;
6013 }
danielk19773e3a84d2008-08-01 17:37:40 +00006014 pVtab = pCur->pVtabCursor->pVtab;
6015 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006016 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00006017
drhde4fcfd2008-01-19 23:50:26 +00006018 /* Invoke the xNext() method of the module. There is no way for the
6019 ** underlying implementation to return an error if one occurs during
6020 ** xNext(). Instead, if an error occurs, true is returned (indicating that
6021 ** data is available) and the error code returned when xColumn or
6022 ** some other method is next invoked on the save virtual table cursor.
6023 */
drhde4fcfd2008-01-19 23:50:26 +00006024 p->inVtabMethod = 1;
6025 rc = pModule->xNext(pCur->pVtabCursor);
6026 p->inVtabMethod = 0;
dan016f7812013-08-21 17:35:48 +00006027 sqlite3VtabImportErrmsg(p, pVtab);
drhde4fcfd2008-01-19 23:50:26 +00006028 if( rc==SQLITE_OK ){
6029 res = pModule->xEof(pCur->pVtabCursor);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006030 }
6031
drhde4fcfd2008-01-19 23:50:26 +00006032 if( !res ){
6033 /* If there is data, jump to P2 */
6034 pc = pOp->p2 - 1;
6035 }
drh49afe3a2013-07-10 03:05:14 +00006036 goto check_for_interrupt;
drh9eff6162006-06-12 21:59:13 +00006037}
6038#endif /* SQLITE_OMIT_VIRTUALTABLE */
6039
danielk1977182c4ba2007-06-27 15:53:34 +00006040#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006041/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00006042**
drh66a51672008-01-03 00:01:23 +00006043** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00006044** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00006045** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00006046*/
drh9cbf3422008-01-17 16:22:13 +00006047case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00006048 sqlite3_vtab *pVtab;
6049 Mem *pName;
6050
danielk1977595a5232009-07-24 17:58:53 +00006051 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00006052 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00006053 assert( pVtab->pModule->xRename );
drh2b4ded92010-09-27 21:09:31 +00006054 assert( memIsValid(pName) );
drh9e92a472013-06-27 17:40:30 +00006055 assert( p->readOnly==0 );
drh5b6afba2008-01-05 16:29:28 +00006056 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00006057 assert( pName->flags & MEM_Str );
drh98655a62011-10-18 22:07:47 +00006058 testcase( pName->enc==SQLITE_UTF8 );
6059 testcase( pName->enc==SQLITE_UTF16BE );
6060 testcase( pName->enc==SQLITE_UTF16LE );
6061 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
6062 if( rc==SQLITE_OK ){
6063 rc = pVtab->pModule->xRename(pVtab, pName->z);
dan016f7812013-08-21 17:35:48 +00006064 sqlite3VtabImportErrmsg(p, pVtab);
drh98655a62011-10-18 22:07:47 +00006065 p->expired = 0;
6066 }
danielk1977182c4ba2007-06-27 15:53:34 +00006067 break;
6068}
6069#endif
drh4cbdda92006-06-14 19:00:20 +00006070
6071#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006072/* Opcode: VUpdate P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00006073** Synopsis: data=r[P3@P2]
danielk1977399918f2006-06-14 13:03:23 +00006074**
drh66a51672008-01-03 00:01:23 +00006075** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00006076** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00006077** are contiguous memory cells starting at P3 to pass to the xUpdate
6078** invocation. The value in register (P3+P2-1) corresponds to the
6079** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00006080**
6081** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00006082** The argv[0] element (which corresponds to memory cell P3)
6083** is the rowid of a row to delete. If argv[0] is NULL then no
6084** deletion occurs. The argv[1] element is the rowid of the new
6085** row. This can be NULL to have the virtual table select the new
6086** rowid for itself. The subsequent elements in the array are
6087** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00006088**
6089** If P2==1 then no insert is performed. argv[0] is the rowid of
6090** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00006091**
6092** P1 is a boolean flag. If it is set to true and the xUpdate call
6093** is successful, then the value returned by sqlite3_last_insert_rowid()
6094** is set to the value of the rowid for the row just inserted.
danielk1977399918f2006-06-14 13:03:23 +00006095*/
drh9cbf3422008-01-17 16:22:13 +00006096case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00006097 sqlite3_vtab *pVtab;
6098 sqlite3_module *pModule;
6099 int nArg;
6100 int i;
6101 sqlite_int64 rowid;
6102 Mem **apArg;
6103 Mem *pX;
6104
danb061d052011-04-25 18:49:57 +00006105 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
6106 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6107 );
drh9e92a472013-06-27 17:40:30 +00006108 assert( p->readOnly==0 );
danielk1977595a5232009-07-24 17:58:53 +00006109 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00006110 pModule = (sqlite3_module *)pVtab->pModule;
6111 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00006112 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00006113 if( ALWAYS(pModule->xUpdate) ){
danb061d052011-04-25 18:49:57 +00006114 u8 vtabOnConflict = db->vtabOnConflict;
drh856c1032009-06-02 15:21:42 +00006115 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00006116 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00006117 for(i=0; i<nArg; i++){
drh2b4ded92010-09-27 21:09:31 +00006118 assert( memIsValid(pX) );
6119 memAboutToChange(p, pX);
dan937d0de2009-10-15 18:35:38 +00006120 sqlite3VdbeMemStoreType(pX);
drh9c419382006-06-16 21:13:21 +00006121 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00006122 pX++;
danielk1977399918f2006-06-14 13:03:23 +00006123 }
danb061d052011-04-25 18:49:57 +00006124 db->vtabOnConflict = pOp->p5;
danielk19771f6eec52006-06-16 06:17:47 +00006125 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
danb061d052011-04-25 18:49:57 +00006126 db->vtabOnConflict = vtabOnConflict;
dan016f7812013-08-21 17:35:48 +00006127 sqlite3VtabImportErrmsg(p, pVtab);
drh35f6b932009-06-23 14:15:04 +00006128 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00006129 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
drh99a66922011-05-13 18:51:42 +00006130 db->lastRowid = lastRowid = rowid;
danielk19771f6eec52006-06-16 06:17:47 +00006131 }
drhd91c1a12013-02-09 13:58:25 +00006132 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
danb061d052011-04-25 18:49:57 +00006133 if( pOp->p5==OE_Ignore ){
6134 rc = SQLITE_OK;
6135 }else{
6136 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6137 }
6138 }else{
6139 p->nChange++;
6140 }
danielk1977399918f2006-06-14 13:03:23 +00006141 }
drh4cbdda92006-06-14 19:00:20 +00006142 break;
danielk1977399918f2006-06-14 13:03:23 +00006143}
6144#endif /* SQLITE_OMIT_VIRTUALTABLE */
6145
danielk197759a93792008-05-15 17:48:20 +00006146#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6147/* Opcode: Pagecount P1 P2 * * *
6148**
6149** Write the current number of pages in database P1 to memory cell P2.
6150*/
6151case OP_Pagecount: { /* out2-prerelease */
drhb1299152010-03-30 22:58:33 +00006152 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00006153 break;
6154}
6155#endif
6156
drh60ac3f42010-11-23 18:59:27 +00006157
6158#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6159/* Opcode: MaxPgcnt P1 P2 P3 * *
6160**
6161** Try to set the maximum page count for database P1 to the value in P3.
drhc84e0332010-11-23 20:25:08 +00006162** Do not let the maximum page count fall below the current page count and
6163** do not change the maximum page count value if P3==0.
6164**
drh60ac3f42010-11-23 18:59:27 +00006165** Store the maximum page count after the change in register P2.
6166*/
6167case OP_MaxPgcnt: { /* out2-prerelease */
drhc84e0332010-11-23 20:25:08 +00006168 unsigned int newMax;
drh60ac3f42010-11-23 18:59:27 +00006169 Btree *pBt;
6170
6171 pBt = db->aDb[pOp->p1].pBt;
drhc84e0332010-11-23 20:25:08 +00006172 newMax = 0;
6173 if( pOp->p3 ){
6174 newMax = sqlite3BtreeLastPage(pBt);
drh6ea28d62010-11-26 16:49:59 +00006175 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
drhc84e0332010-11-23 20:25:08 +00006176 }
6177 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
drh60ac3f42010-11-23 18:59:27 +00006178 break;
6179}
6180#endif
6181
6182
drh949f9cd2008-01-12 21:35:57 +00006183#ifndef SQLITE_OMIT_TRACE
6184/* Opcode: Trace * * * P4 *
6185**
6186** If tracing is enabled (by the sqlite3_trace()) interface, then
6187** the UTF-8 string contained in P4 is emitted on the trace callback.
6188*/
6189case OP_Trace: {
drh856c1032009-06-02 15:21:42 +00006190 char *zTrace;
drhc3f1d5f2011-05-30 23:42:16 +00006191 char *z;
drh856c1032009-06-02 15:21:42 +00006192
drh37f58e92012-09-04 21:34:26 +00006193 if( db->xTrace
6194 && !p->doingRerun
6195 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6196 ){
drhc3f1d5f2011-05-30 23:42:16 +00006197 z = sqlite3VdbeExpandSql(p, zTrace);
6198 db->xTrace(db->pTraceArg, z);
6199 sqlite3DbFree(db, z);
drh949f9cd2008-01-12 21:35:57 +00006200 }
drh8f8b2312013-10-18 20:03:43 +00006201#ifdef SQLITE_USE_FCNTL_TRACE
6202 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
6203 if( zTrace ){
6204 int i;
6205 for(i=0; i<db->nDb; i++){
6206 if( ((1<<i) & p->btreeMask)==0 ) continue;
6207 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
6208 }
6209 }
6210#endif /* SQLITE_USE_FCNTL_TRACE */
drhc3f1d5f2011-05-30 23:42:16 +00006211#ifdef SQLITE_DEBUG
6212 if( (db->flags & SQLITE_SqlTrace)!=0
6213 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6214 ){
6215 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6216 }
6217#endif /* SQLITE_DEBUG */
drh949f9cd2008-01-12 21:35:57 +00006218 break;
6219}
6220#endif
6221
drh91fd4d42008-01-19 20:11:25 +00006222
6223/* Opcode: Noop * * * * *
6224**
6225** Do nothing. This instruction is often useful as a jump
6226** destination.
drh5e00f6c2001-09-13 13:46:56 +00006227*/
drh91fd4d42008-01-19 20:11:25 +00006228/*
6229** The magic Explain opcode are only inserted when explain==2 (which
6230** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6231** This opcode records information from the optimizer. It is the
6232** the same as a no-op. This opcodesnever appears in a real VM program.
6233*/
6234default: { /* This is really OP_Noop and OP_Explain */
drh13573c72010-01-12 17:04:07 +00006235 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh5e00f6c2001-09-13 13:46:56 +00006236 break;
6237}
6238
6239/*****************************************************************************
6240** The cases of the switch statement above this line should all be indented
6241** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6242** readability. From this point on down, the normal indentation rules are
6243** restored.
6244*****************************************************************************/
6245 }
drh6e142f52000-06-08 13:36:40 +00006246
drh7b396862003-01-01 23:06:20 +00006247#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00006248 {
shane9bcbdad2008-05-29 20:22:37 +00006249 u64 elapsed = sqlite3Hwtime() - start;
6250 pOp->cycles += elapsed;
drh8178a752003-01-05 21:41:40 +00006251 pOp->cnt++;
6252#if 0
shane9bcbdad2008-05-29 20:22:37 +00006253 fprintf(stdout, "%10llu ", elapsed);
drhbbe879d2009-11-14 18:04:35 +00006254 sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
drh8178a752003-01-05 21:41:40 +00006255#endif
6256 }
drh7b396862003-01-01 23:06:20 +00006257#endif
6258
drh6e142f52000-06-08 13:36:40 +00006259 /* The following code adds nothing to the actual functionality
6260 ** of the program. It is only here for testing and debugging.
6261 ** On the other hand, it does burn CPU cycles every time through
6262 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6263 */
6264#ifndef NDEBUG
drha6110402005-07-28 20:51:19 +00006265 assert( pc>=-1 && pc<p->nOp );
drhae7e1512007-05-02 16:51:59 +00006266
drhcf1023c2007-05-08 20:59:49 +00006267#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +00006268 if( db->flags & SQLITE_VdbeTrace ){
6269 if( rc!=0 ) printf("rc=%d\n",rc);
drh3c657212009-11-17 23:59:58 +00006270 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
drh84e55a82013-11-13 17:58:23 +00006271 registerTrace(pOp->p2, &aMem[pOp->p2]);
drh75897232000-05-29 14:26:00 +00006272 }
drh3c657212009-11-17 23:59:58 +00006273 if( pOp->opflags & OPFLG_OUT3 ){
drh84e55a82013-11-13 17:58:23 +00006274 registerTrace(pOp->p3, &aMem[pOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00006275 }
drh75897232000-05-29 14:26:00 +00006276 }
danielk1977b5402fb2005-01-12 07:15:04 +00006277#endif /* SQLITE_DEBUG */
6278#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00006279 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00006280
drha05a7222008-01-19 03:35:58 +00006281 /* If we reach this point, it means that execution is finished with
6282 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00006283 */
drha05a7222008-01-19 03:35:58 +00006284vdbe_error_halt:
6285 assert( rc );
6286 p->rc = rc;
drha64fa912010-03-04 00:53:32 +00006287 testcase( sqlite3GlobalConfig.xLog!=0 );
6288 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
6289 pc, p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00006290 sqlite3VdbeHalt(p);
danielk19777eaabcd2008-07-07 14:56:56 +00006291 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6292 rc = SQLITE_ERROR;
drhcdf011d2011-04-04 21:25:28 +00006293 if( resetSchemaOnFault>0 ){
drh81028a42012-05-15 18:28:27 +00006294 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
drhbdaec522011-04-04 00:14:43 +00006295 }
drh900b31e2007-08-28 02:27:51 +00006296
6297 /* This is the only way out of this procedure. We have to
6298 ** release the mutexes on btrees that were acquired at the
6299 ** top. */
6300vdbe_return:
drh99a66922011-05-13 18:51:42 +00006301 db->lastRowid = lastRowid;
drh77dfd5b2013-08-19 11:15:48 +00006302 testcase( nVmStep>0 );
drh9b47ee32013-08-20 03:13:51 +00006303 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
drhbdaec522011-04-04 00:14:43 +00006304 sqlite3VdbeLeave(p);
drhb86ccfb2003-01-28 23:13:10 +00006305 return rc;
6306
drh023ae032007-05-08 12:12:16 +00006307 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6308 ** is encountered.
6309 */
6310too_big:
drhf089aa42008-07-08 19:34:06 +00006311 sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00006312 rc = SQLITE_TOOBIG;
drha05a7222008-01-19 03:35:58 +00006313 goto vdbe_error_halt;
drh023ae032007-05-08 12:12:16 +00006314
drh98640a32007-06-07 19:08:32 +00006315 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00006316 */
6317no_mem:
drh17435752007-08-16 04:30:38 +00006318 db->mallocFailed = 1;
drhf089aa42008-07-08 19:34:06 +00006319 sqlite3SetString(&p->zErrMsg, db, "out of memory");
drhb86ccfb2003-01-28 23:13:10 +00006320 rc = SQLITE_NOMEM;
drha05a7222008-01-19 03:35:58 +00006321 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006322
drhb86ccfb2003-01-28 23:13:10 +00006323 /* Jump to here for any other kind of fatal error. The "rc" variable
6324 ** should hold the error number.
6325 */
6326abort_due_to_error:
drha05a7222008-01-19 03:35:58 +00006327 assert( p->zErrMsg==0 );
6328 if( db->mallocFailed ) rc = SQLITE_NOMEM;
danielk19777eaabcd2008-07-07 14:56:56 +00006329 if( rc!=SQLITE_IOERR_NOMEM ){
drhf089aa42008-07-08 19:34:06 +00006330 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
danielk19777eaabcd2008-07-07 14:56:56 +00006331 }
drha05a7222008-01-19 03:35:58 +00006332 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006333
danielk19776f8a5032004-05-10 10:34:51 +00006334 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00006335 ** flag.
6336 */
6337abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00006338 assert( db->u1.isInterrupted );
drh7e8b8482008-01-23 03:03:05 +00006339 rc = SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00006340 p->rc = rc;
drhf089aa42008-07-08 19:34:06 +00006341 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
drha05a7222008-01-19 03:35:58 +00006342 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006343}