blob: 6c825e4e9a0cbbb0a923b018c9cf22ead36dfb88 [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh9a324642003-09-06 20:12:01 +000012** The code in this file implements execution method of the
13** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
14** handles housekeeping details such as creating and deleting
15** VDBE instances. This file is solely interested in executing
16** the VDBE program.
17**
danielk1977fc57d7b2004-05-26 02:04:57 +000018** In the external interface, an "sqlite3_stmt*" is an opaque pointer
drh9a324642003-09-06 20:12:01 +000019** to a VDBE.
drh75897232000-05-29 14:26:00 +000020**
21** The SQL parser generates a program which is then executed by
22** the VDBE to do the work of the SQL statement. VDBE programs are
23** similar in form to assembly language. The program consists of
24** a linear sequence of operations. Each operation has an opcode
drh9cbf3422008-01-17 16:22:13 +000025** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
26** is a null-terminated string. Operand P5 is an unsigned character.
27** Few opcodes use all 5 operands.
drh75897232000-05-29 14:26:00 +000028**
drh9cbf3422008-01-17 16:22:13 +000029** Computation results are stored on a set of registers numbered beginning
30** with 1 and going up to Vdbe.nMem. Each register can store
31** either an integer, a null-terminated string, a floating point
shane21e7feb2008-05-30 15:59:49 +000032** number, or the SQL "NULL" value. An implicit conversion from one
drhb19a2bc2001-09-16 00:13:26 +000033** type to the other occurs as necessary.
drh75897232000-05-29 14:26:00 +000034**
danielk19774adee202004-05-08 08:23:19 +000035** Most of the code in this file is taken up by the sqlite3VdbeExec()
drh75897232000-05-29 14:26:00 +000036** function which does the work of interpreting a VDBE program.
37** But other routines are also provided to help in building up
38** a program instruction by instruction.
39**
drhac82fcf2002-09-08 17:23:41 +000040** Various scripts scan this source file in order to generate HTML
41** documentation, headers files, or other derived files. The formatting
42** of the code in this file is, therefore, important. See other comments
43** in this file for details. If in doubt, do not deviate from existing
44** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000045*/
46#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000047#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000048
49/*
drh2b4ded92010-09-27 21:09:31 +000050** Invoke this macro on memory cells just prior to changing the
51** value of the cell. This macro verifies that shallow copies are
52** not misused.
53*/
54#ifdef SQLITE_DEBUG
drhe4c88c02012-01-04 12:57:45 +000055# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
drh2b4ded92010-09-27 21:09:31 +000056#else
57# define memAboutToChange(P,M)
58#endif
59
60/*
drh487ab3c2001-11-08 00:45:21 +000061** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000062** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000063** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000064** working correctly. This variable has no function other than to
65** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000066*/
drh0f7eb612006-08-08 13:51:43 +000067#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000068int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000069#endif
drh487ab3c2001-11-08 00:45:21 +000070
drhf6038712004-02-08 18:07:34 +000071/*
72** When this global variable is positive, it gets decremented once before
drhe4c88c02012-01-04 12:57:45 +000073** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
74** field of the sqlite3 structure is set in order to simulate an interrupt.
drhf6038712004-02-08 18:07:34 +000075**
76** This facility is used for testing purposes only. It does not function
77** in an ordinary build.
78*/
drh0f7eb612006-08-08 13:51:43 +000079#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000080int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000081#endif
drh1350b032002-02-27 19:00:20 +000082
danielk19777e18c252004-05-25 11:47:24 +000083/*
drh6bf89572004-11-03 16:27:01 +000084** The next global variable is incremented each type the OP_Sort opcode
85** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000086** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000087** has no function other than to help verify the correct operation of the
88** library.
89*/
drh0f7eb612006-08-08 13:51:43 +000090#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000091int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000092#endif
drh6bf89572004-11-03 16:27:01 +000093
94/*
drhae7e1512007-05-02 16:51:59 +000095** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000096** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000097** use this information to make sure that the zero-blob functionality
98** is working correctly. This variable has no function other than to
99** help verify the correct operation of the library.
100*/
101#ifdef SQLITE_TEST
102int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +0000103static void updateMaxBlobsize(Mem *p){
104 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
105 sqlite3_max_blobsize = p->n;
106 }
107}
drhae7e1512007-05-02 16:51:59 +0000108#endif
109
110/*
dan0ff297e2009-09-25 17:03:14 +0000111** The next global variable is incremented each type the OP_Found opcode
112** is executed. This is used to test whether or not the foreign key
113** operation implemented using OP_FkIsZero is working. This variable
114** has no function other than to help verify the correct operation of the
115** library.
116*/
117#ifdef SQLITE_TEST
118int sqlite3_found_count = 0;
119#endif
120
121/*
drhb7654112008-01-12 12:48:07 +0000122** Test a register to see if it exceeds the current maximum blob size.
123** If it does, record the new maximum blob size.
124*/
drh678ccce2008-03-31 18:19:54 +0000125#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
drhca48c902008-01-18 14:08:24 +0000126# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000127#else
128# define UPDATE_MAX_BLOBSIZE(P)
129#endif
130
131/*
drh9cbf3422008-01-17 16:22:13 +0000132** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000133** already. Return non-zero if a malloc() fails.
134*/
drhb21c8cd2007-08-21 19:33:56 +0000135#define Stringify(P, enc) \
136 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
drhf4479502004-05-27 03:12:53 +0000137 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000138
139/*
danielk1977bd7e4602004-05-24 07:34:48 +0000140** An ephemeral string value (signified by the MEM_Ephem flag) contains
141** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000142** is responsible for deallocating that string. Because the register
143** does not control the string, it might be deleted without the register
144** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000145**
146** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000147** string that the register itself controls. In other words, it
danielk1977bd7e4602004-05-24 07:34:48 +0000148** converts an MEM_Ephem string into an MEM_Dyn string.
149*/
drhb21c8cd2007-08-21 19:33:56 +0000150#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000151 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000152 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000153
dan689ab892011-08-12 15:02:00 +0000154/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
dan689ab892011-08-12 15:02:00 +0000155# define isSorter(x) ((x)->pSorter!=0)
dan689ab892011-08-12 15:02:00 +0000156
danielk19771cc5ed82007-05-16 17:28:43 +0000157/*
shane21e7feb2008-05-30 15:59:49 +0000158** Argument pMem points at a register that will be passed to a
danielk1977c572ef72004-05-27 09:28:41 +0000159** user-defined function or returned to the user as the result of a query.
dan937d0de2009-10-15 18:35:38 +0000160** This routine sets the pMem->type variable used by the sqlite3_value_*()
161** routines.
danielk1977c572ef72004-05-27 09:28:41 +0000162*/
dan937d0de2009-10-15 18:35:38 +0000163void sqlite3VdbeMemStoreType(Mem *pMem){
danielk1977c572ef72004-05-27 09:28:41 +0000164 int flags = pMem->flags;
165 if( flags & MEM_Null ){
drh9c054832004-05-31 18:51:57 +0000166 pMem->type = SQLITE_NULL;
danielk1977c572ef72004-05-27 09:28:41 +0000167 }
168 else if( flags & MEM_Int ){
drh9c054832004-05-31 18:51:57 +0000169 pMem->type = SQLITE_INTEGER;
danielk1977c572ef72004-05-27 09:28:41 +0000170 }
171 else if( flags & MEM_Real ){
drh9c054832004-05-31 18:51:57 +0000172 pMem->type = SQLITE_FLOAT;
danielk1977c572ef72004-05-27 09:28:41 +0000173 }
174 else if( flags & MEM_Str ){
drh9c054832004-05-31 18:51:57 +0000175 pMem->type = SQLITE_TEXT;
danielk1977c572ef72004-05-27 09:28:41 +0000176 }else{
drh9c054832004-05-31 18:51:57 +0000177 pMem->type = SQLITE_BLOB;
danielk1977c572ef72004-05-27 09:28:41 +0000178 }
179}
danielk19778a6b5412004-05-24 07:04:25 +0000180
181/*
drhdfe88ec2008-11-03 20:55:06 +0000182** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000183** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000184*/
drhdfe88ec2008-11-03 20:55:06 +0000185static VdbeCursor *allocateCursor(
186 Vdbe *p, /* The virtual machine */
187 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000188 int nField, /* Number of fields in the table or index */
drhe4c88c02012-01-04 12:57:45 +0000189 int iDb, /* Database the cursor belongs to, or -1 */
drh3e9ca092009-09-08 01:14:48 +0000190 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
danielk1977cd3e8f72008-03-25 09:47:35 +0000191){
192 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000193 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000194 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000195 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000196 **
197 ** * Sometimes cursor numbers are used for a couple of different
198 ** purposes in a vdbe program. The different uses might require
199 ** different sized allocations. Memory cells provide growable
200 ** allocations.
201 **
202 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
203 ** be freed lazily via the sqlite3_release_memory() API. This
204 ** minimizes the number of malloc calls made by the system.
205 **
206 ** Memory cells for cursors are allocated at the top of the address
207 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
208 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
209 */
210 Mem *pMem = &p->aMem[p->nMem-iCur];
211
danielk19775f096132008-03-28 15:44:09 +0000212 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000213 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000214 nByte =
drhc54055b2009-11-13 17:05:53 +0000215 ROUND8(sizeof(VdbeCursor)) +
danielk1977cd3e8f72008-03-25 09:47:35 +0000216 (isBtreeCursor?sqlite3BtreeCursorSize():0) +
217 2*nField*sizeof(u32);
218
drh290c1942004-08-21 17:54:45 +0000219 assert( iCur<p->nCursor );
220 if( p->apCsr[iCur] ){
danielk1977be718892006-06-23 08:05:19 +0000221 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000222 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000223 }
danielk1977cd3e8f72008-03-25 09:47:35 +0000224 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
drhdfe88ec2008-11-03 20:55:06 +0000225 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhf25a5072009-11-18 23:01:25 +0000226 memset(pCx, 0, sizeof(VdbeCursor));
danielk197794eb6a12005-12-15 15:22:08 +0000227 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000228 pCx->nField = nField;
229 if( nField ){
drhc54055b2009-11-13 17:05:53 +0000230 pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
danielk1977cd3e8f72008-03-25 09:47:35 +0000231 }
232 if( isBtreeCursor ){
drhdfe88ec2008-11-03 20:55:06 +0000233 pCx->pCursor = (BtCursor*)
drhc54055b2009-11-13 17:05:53 +0000234 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
drhf25a5072009-11-18 23:01:25 +0000235 sqlite3BtreeCursorZero(pCx->pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000236 }
danielk197794eb6a12005-12-15 15:22:08 +0000237 }
drh4774b132004-06-12 20:12:51 +0000238 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000239}
240
danielk19773d1bfea2004-05-14 11:00:53 +0000241/*
drh29d72102006-02-09 22:13:41 +0000242** Try to convert a value into a numeric representation if we can
243** do so without loss of information. In other words, if the string
244** looks like a number, convert it into a number. If it does not
245** look like a number, leave it alone.
246*/
drhb21c8cd2007-08-21 19:33:56 +0000247static void applyNumericAffinity(Mem *pRec){
drh29d72102006-02-09 22:13:41 +0000248 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
drh9339da12010-09-30 00:50:49 +0000249 double rValue;
250 i64 iValue;
danb7dca7d2010-03-05 16:32:12 +0000251 u8 enc = pRec->enc;
drh9339da12010-09-30 00:50:49 +0000252 if( (pRec->flags&MEM_Str)==0 ) return;
253 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
shaneh5f1d6b62010-09-30 16:51:25 +0000254 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
drh9339da12010-09-30 00:50:49 +0000255 pRec->u.i = iValue;
256 pRec->flags |= MEM_Int;
257 }else{
258 pRec->r = rValue;
259 pRec->flags |= MEM_Real;
drh29d72102006-02-09 22:13:41 +0000260 }
261 }
262}
263
264/*
drh8a512562005-11-14 22:29:05 +0000265** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000266**
drh8a512562005-11-14 22:29:05 +0000267** SQLITE_AFF_INTEGER:
268** SQLITE_AFF_REAL:
269** SQLITE_AFF_NUMERIC:
270** Try to convert pRec to an integer representation or a
271** floating-point representation if an integer representation
272** is not possible. Note that the integer representation is
273** always preferred, even if the affinity is REAL, because
274** an integer representation is more space efficient on disk.
275**
276** SQLITE_AFF_TEXT:
277** Convert pRec to a text representation.
278**
279** SQLITE_AFF_NONE:
280** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000281*/
drh17435752007-08-16 04:30:38 +0000282static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000283 Mem *pRec, /* The value to apply affinity to */
284 char affinity, /* The affinity to be applied */
285 u8 enc /* Use this text encoding */
286){
drh8a512562005-11-14 22:29:05 +0000287 if( affinity==SQLITE_AFF_TEXT ){
drh17c40292004-07-21 02:53:29 +0000288 /* Only attempt the conversion to TEXT if there is an integer or real
289 ** representation (blob and NULL do not get converted) but no string
290 ** representation.
291 */
292 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
drhb21c8cd2007-08-21 19:33:56 +0000293 sqlite3VdbeMemStringify(pRec, enc);
drh17c40292004-07-21 02:53:29 +0000294 }
295 pRec->flags &= ~(MEM_Real|MEM_Int);
drh8a512562005-11-14 22:29:05 +0000296 }else if( affinity!=SQLITE_AFF_NONE ){
297 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
298 || affinity==SQLITE_AFF_NUMERIC );
drhb21c8cd2007-08-21 19:33:56 +0000299 applyNumericAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000300 if( pRec->flags & MEM_Real ){
drh8df447f2005-11-01 15:48:24 +0000301 sqlite3VdbeIntegerAffinity(pRec);
drh17c40292004-07-21 02:53:29 +0000302 }
danielk19773d1bfea2004-05-14 11:00:53 +0000303 }
304}
305
danielk1977aee18ef2005-03-09 12:26:50 +0000306/*
drh29d72102006-02-09 22:13:41 +0000307** Try to convert the type of a function argument or a result column
308** into a numeric representation. Use either INTEGER or REAL whichever
309** is appropriate. But only do the conversion if it is possible without
310** loss of information and return the revised type of the argument.
drh29d72102006-02-09 22:13:41 +0000311*/
312int sqlite3_value_numeric_type(sqlite3_value *pVal){
313 Mem *pMem = (Mem*)pVal;
drhe5a8a1d2010-11-18 12:31:24 +0000314 if( pMem->type==SQLITE_TEXT ){
315 applyNumericAffinity(pMem);
316 sqlite3VdbeMemStoreType(pMem);
317 }
drh29d72102006-02-09 22:13:41 +0000318 return pMem->type;
319}
320
321/*
danielk1977aee18ef2005-03-09 12:26:50 +0000322** Exported version of applyAffinity(). This one works on sqlite3_value*,
323** not the internal Mem* type.
324*/
danielk19771e536952007-08-16 10:09:01 +0000325void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000326 sqlite3_value *pVal,
327 u8 affinity,
328 u8 enc
329){
drhb21c8cd2007-08-21 19:33:56 +0000330 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000331}
332
danielk1977b5402fb2005-01-12 07:15:04 +0000333#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000334/*
danielk1977ca6b2912004-05-21 10:49:47 +0000335** Write a nice string representation of the contents of cell pMem
336** into buffer zBuf, length nBuf.
337*/
drh74161702006-02-24 02:53:49 +0000338void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000339 char *zCsr = zBuf;
340 int f = pMem->flags;
341
drh57196282004-10-06 15:41:16 +0000342 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000343
danielk1977ca6b2912004-05-21 10:49:47 +0000344 if( f&MEM_Blob ){
345 int i;
346 char c;
347 if( f & MEM_Dyn ){
348 c = 'z';
349 assert( (f & (MEM_Static|MEM_Ephem))==0 );
350 }else if( f & MEM_Static ){
351 c = 't';
352 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
353 }else if( f & MEM_Ephem ){
354 c = 'e';
355 assert( (f & (MEM_Static|MEM_Dyn))==0 );
356 }else{
357 c = 's';
358 }
359
drh5bb3eb92007-05-04 13:15:55 +0000360 sqlite3_snprintf(100, zCsr, "%c", c);
drhea678832008-12-10 19:26:22 +0000361 zCsr += sqlite3Strlen30(zCsr);
drh5bb3eb92007-05-04 13:15:55 +0000362 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000363 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000364 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000365 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000366 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000367 }
368 for(i=0; i<16 && i<pMem->n; i++){
369 char z = pMem->z[i];
370 if( z<32 || z>126 ) *zCsr++ = '.';
371 else *zCsr++ = z;
372 }
373
drhe718efe2007-05-10 21:14:03 +0000374 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000375 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000376 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000377 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000378 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000379 }
danielk1977b1bc9532004-05-22 03:05:33 +0000380 *zCsr = '\0';
381 }else if( f & MEM_Str ){
382 int j, k;
383 zBuf[0] = ' ';
384 if( f & MEM_Dyn ){
385 zBuf[1] = 'z';
386 assert( (f & (MEM_Static|MEM_Ephem))==0 );
387 }else if( f & MEM_Static ){
388 zBuf[1] = 't';
389 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
390 }else if( f & MEM_Ephem ){
391 zBuf[1] = 'e';
392 assert( (f & (MEM_Static|MEM_Dyn))==0 );
393 }else{
394 zBuf[1] = 's';
395 }
396 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000397 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000398 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000399 zBuf[k++] = '[';
400 for(j=0; j<15 && j<pMem->n; j++){
401 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000402 if( c>=0x20 && c<0x7f ){
403 zBuf[k++] = c;
404 }else{
405 zBuf[k++] = '.';
406 }
407 }
408 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000409 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000410 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000411 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000412 }
danielk1977ca6b2912004-05-21 10:49:47 +0000413}
414#endif
415
drh5b6afba2008-01-05 16:29:28 +0000416#ifdef SQLITE_DEBUG
417/*
418** Print the value of a register for tracing purposes:
419*/
420static void memTracePrint(FILE *out, Mem *p){
drh953f7612012-12-07 22:18:54 +0000421 if( p->flags & MEM_Invalid ){
422 fprintf(out, " undefined");
423 }else if( p->flags & MEM_Null ){
drh5b6afba2008-01-05 16:29:28 +0000424 fprintf(out, " NULL");
425 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
426 fprintf(out, " si:%lld", p->u.i);
427 }else if( p->flags & MEM_Int ){
428 fprintf(out, " i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000429#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000430 }else if( p->flags & MEM_Real ){
431 fprintf(out, " r:%g", p->r);
drh0b3bf922009-06-15 20:45:34 +0000432#endif
drh733bf1b2009-04-22 00:47:00 +0000433 }else if( p->flags & MEM_RowSet ){
434 fprintf(out, " (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000435 }else{
436 char zBuf[200];
437 sqlite3VdbeMemPrettyPrint(p, zBuf);
438 fprintf(out, " ");
439 fprintf(out, "%s", zBuf);
440 }
441}
442static void registerTrace(FILE *out, int iReg, Mem *p){
443 fprintf(out, "REG[%d] = ", iReg);
444 memTracePrint(out, p);
445 fprintf(out, "\n");
446}
447#endif
448
449#ifdef SQLITE_DEBUG
drhb21e7c72008-06-22 12:37:57 +0000450# define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
drh5b6afba2008-01-05 16:29:28 +0000451#else
452# define REGISTER_TRACE(R,M)
453#endif
454
danielk197784ac9d02004-05-18 09:58:06 +0000455
drh7b396862003-01-01 23:06:20 +0000456#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000457
458/*
459** hwtime.h contains inline assembler code for implementing
460** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000461*/
shane9bcbdad2008-05-29 20:22:37 +0000462#include "hwtime.h"
463
drh7b396862003-01-01 23:06:20 +0000464#endif
465
drh8c74a8c2002-08-25 19:20:40 +0000466/*
drhcaec2f12003-01-07 02:47:47 +0000467** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
danielk19776f8a5032004-05-10 10:34:51 +0000468** sqlite3_interrupt() routine has been called. If it has been, then
drhcaec2f12003-01-07 02:47:47 +0000469** processing of the VDBE program is interrupted.
470**
471** This macro added to every instruction that does a jump in order to
472** implement a loop. This test used to be on every single instruction,
drhe4c88c02012-01-04 12:57:45 +0000473** but that meant we more testing than we needed. By only testing the
drhcaec2f12003-01-07 02:47:47 +0000474** flag on jump instructions, we get a (small) speed improvement.
475*/
476#define CHECK_FOR_INTERRUPT \
drh881feaa2006-07-26 01:39:30 +0000477 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drhcaec2f12003-01-07 02:47:47 +0000478
479
danielk1977fd7f0452008-12-17 17:30:26 +0000480#ifndef NDEBUG
481/*
482** This function is only called from within an assert() expression. It
483** checks that the sqlite3.nTransaction variable is correctly set to
484** the number of non-transaction savepoints currently in the
485** linked list starting at sqlite3.pSavepoint.
486**
487** Usage:
488**
489** assert( checkSavepointCount(db) );
490*/
491static int checkSavepointCount(sqlite3 *db){
492 int n = 0;
493 Savepoint *p;
494 for(p=db->pSavepoint; p; p=p->pNext) n++;
495 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
496 return 1;
497}
498#endif
499
drhb9755982010-07-24 16:34:37 +0000500
501/*
drhb86ccfb2003-01-28 23:13:10 +0000502** Execute as much of a VDBE program as we can then return.
503**
danielk19774adee202004-05-08 08:23:19 +0000504** sqlite3VdbeMakeReady() must be called before this routine in order to
drhb86ccfb2003-01-28 23:13:10 +0000505** close the program with a final OP_Halt and to set up the callbacks
506** and the error message pointer.
507**
508** Whenever a row or result data is available, this routine will either
509** invoke the result callback (if there is one) or return with
drh326dce72003-01-29 14:06:07 +0000510** SQLITE_ROW.
drhb86ccfb2003-01-28 23:13:10 +0000511**
512** If an attempt is made to open a locked database, then this routine
513** will either invoke the busy callback (if there is one) or it will
514** return SQLITE_BUSY.
515**
516** If an error occurs, an error message is written to memory obtained
drh17435752007-08-16 04:30:38 +0000517** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
drhb86ccfb2003-01-28 23:13:10 +0000518** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
519**
520** If the callback ever returns non-zero, then the program exits
521** immediately. There will be no error message but the p->rc field is
522** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
523**
drh9468c7f2003-03-07 19:50:07 +0000524** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
525** routine to return SQLITE_ERROR.
drhb86ccfb2003-01-28 23:13:10 +0000526**
527** Other fatal errors return SQLITE_ERROR.
528**
danielk19774adee202004-05-08 08:23:19 +0000529** After this routine has finished, sqlite3VdbeFinalize() should be
drhb86ccfb2003-01-28 23:13:10 +0000530** used to clean up the mess that was left behind.
531*/
danielk19774adee202004-05-08 08:23:19 +0000532int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000533 Vdbe *p /* The VDBE */
534){
shaneh84f4b2f2010-02-26 01:46:54 +0000535 int pc=0; /* The program counter */
drhbbe879d2009-11-14 18:04:35 +0000536 Op *aOp = p->aOp; /* Copy of p->aOp */
drhb86ccfb2003-01-28 23:13:10 +0000537 Op *pOp; /* Current operation */
538 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000539 sqlite3 *db = p->db; /* The database */
drhcdf011d2011-04-04 21:25:28 +0000540 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
drh8079a0d2006-01-12 17:20:50 +0000541 u8 encoding = ENC(db); /* The database encoding */
drhbf159fa2013-06-25 22:01:22 +0000542 int iCompare = 0; /* Result of last OP_Compare operation */
543 unsigned nVmStep = 0; /* Number of virtual machine steps */
drh49afe3a2013-07-10 03:05:14 +0000544#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
drh323df792013-08-05 19:11:29 +0000545 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
drh49afe3a2013-07-10 03:05:14 +0000546#endif
drha6c2ed92009-11-14 23:22:23 +0000547 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000548 Mem *pIn1 = 0; /* 1st input operand */
549 Mem *pIn2 = 0; /* 2nd input operand */
550 Mem *pIn3 = 0; /* 3rd input operand */
551 Mem *pOut = 0; /* Output operand */
shanebe217792009-03-05 04:20:31 +0000552 int *aPermute = 0; /* Permutation of columns for OP_Compare */
drh99a66922011-05-13 18:51:42 +0000553 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
drhb86ccfb2003-01-28 23:13:10 +0000554#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000555 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000556 int origPc; /* Program counter at start of opcode */
557#endif
drh856c1032009-06-02 15:21:42 +0000558 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000559
drhca48c902008-01-18 14:08:24 +0000560 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
drhbdaec522011-04-04 00:14:43 +0000561 sqlite3VdbeEnter(p);
danielk19772e588c72005-12-09 14:25:08 +0000562 if( p->rc==SQLITE_NOMEM ){
563 /* This happens if a malloc() inside a call to sqlite3_column_text() or
564 ** sqlite3_column_text16() failed. */
565 goto no_mem;
566 }
drh3a840692003-01-29 22:58:26 +0000567 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
drh1713afb2013-06-28 01:24:57 +0000568 assert( p->bIsReader || p->readOnly!=0 );
drh3a840692003-01-29 22:58:26 +0000569 p->rc = SQLITE_OK;
drhb86ccfb2003-01-28 23:13:10 +0000570 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000571 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000572 db->busyHandler.nBusy = 0;
drh93581642004-02-12 13:02:55 +0000573 CHECK_FOR_INTERRUPT;
drh602c2372007-03-01 00:29:13 +0000574 sqlite3VdbeIOTraceSql(p);
drh0d1961e2013-07-25 16:27:51 +0000575#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
576 if( db->xProgress ){
577 assert( 0 < db->nProgressOps );
drh9b47ee32013-08-20 03:13:51 +0000578 nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
drh0d1961e2013-07-25 16:27:51 +0000579 if( nProgressLimit==0 ){
580 nProgressLimit = db->nProgressOps;
581 }else{
582 nProgressLimit %= (unsigned)db->nProgressOps;
583 }
584 }
585#endif
drh3c23a882007-01-09 14:01:13 +0000586#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000587 sqlite3BeginBenignMalloc();
drh42224412010-05-31 14:28:25 +0000588 if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){
drh3c23a882007-01-09 14:01:13 +0000589 int i;
590 printf("VDBE Program Listing:\n");
591 sqlite3VdbePrintSql(p);
592 for(i=0; i<p->nOp; i++){
drhbbe879d2009-11-14 18:04:35 +0000593 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
drh3c23a882007-01-09 14:01:13 +0000594 }
595 }
danielk19772d1d86f2008-06-20 14:59:51 +0000596 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000597#endif
drhb86ccfb2003-01-28 23:13:10 +0000598 for(pc=p->pc; rc==SQLITE_OK; pc++){
drhcaec2f12003-01-07 02:47:47 +0000599 assert( pc>=0 && pc<p->nOp );
drh17435752007-08-16 04:30:38 +0000600 if( db->mallocFailed ) goto no_mem;
drh7b396862003-01-01 23:06:20 +0000601#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +0000602 origPc = pc;
shane9bcbdad2008-05-29 20:22:37 +0000603 start = sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000604#endif
drhbf159fa2013-06-25 22:01:22 +0000605 nVmStep++;
drhbbe879d2009-11-14 18:04:35 +0000606 pOp = &aOp[pc];
drh6e142f52000-06-08 13:36:40 +0000607
danielk19778b60e0f2005-01-12 09:10:39 +0000608 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000609 */
danielk19778b60e0f2005-01-12 09:10:39 +0000610#ifdef SQLITE_DEBUG
drh75897232000-05-29 14:26:00 +0000611 if( p->trace ){
drh3f7d4e42004-07-24 14:35:58 +0000612 if( pc==0 ){
613 printf("VDBE Execution Trace:\n");
614 sqlite3VdbePrintSql(p);
615 }
danielk19774adee202004-05-08 08:23:19 +0000616 sqlite3VdbePrintOp(p->trace, pc, pOp);
drh75897232000-05-29 14:26:00 +0000617 }
drh3f7d4e42004-07-24 14:35:58 +0000618#endif
619
drh6e142f52000-06-08 13:36:40 +0000620
drhf6038712004-02-08 18:07:34 +0000621 /* Check to see if we need to simulate an interrupt. This only happens
622 ** if we have a special test build.
623 */
624#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000625 if( sqlite3_interrupt_count>0 ){
626 sqlite3_interrupt_count--;
627 if( sqlite3_interrupt_count==0 ){
628 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000629 }
630 }
631#endif
632
drhb5b407e2012-08-29 10:28:43 +0000633 /* On any opcode with the "out2-prerelease" tag, free any
drh3c657212009-11-17 23:59:58 +0000634 ** external allocations out of mem[p2] and set mem[p2] to be
635 ** an undefined integer. Opcodes will either fill in the integer
636 ** value or convert mem[p2] to a different type.
drh4c583122008-01-04 22:01:03 +0000637 */
drha6c2ed92009-11-14 23:22:23 +0000638 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
drh3c657212009-11-17 23:59:58 +0000639 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
640 assert( pOp->p2>0 );
641 assert( pOp->p2<=p->nMem );
642 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +0000643 memAboutToChange(p, pOut);
drhe4c88c02012-01-04 12:57:45 +0000644 VdbeMemRelease(pOut);
drh3c657212009-11-17 23:59:58 +0000645 pOut->flags = MEM_Int;
drh4c583122008-01-04 22:01:03 +0000646 }
drh3c657212009-11-17 23:59:58 +0000647
648 /* Sanity checking on other operands */
649#ifdef SQLITE_DEBUG
650 if( (pOp->opflags & OPFLG_IN1)!=0 ){
651 assert( pOp->p1>0 );
652 assert( pOp->p1<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000653 assert( memIsValid(&aMem[pOp->p1]) );
drh3c657212009-11-17 23:59:58 +0000654 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
655 }
656 if( (pOp->opflags & OPFLG_IN2)!=0 ){
657 assert( pOp->p2>0 );
658 assert( pOp->p2<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000659 assert( memIsValid(&aMem[pOp->p2]) );
drh3c657212009-11-17 23:59:58 +0000660 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
661 }
662 if( (pOp->opflags & OPFLG_IN3)!=0 ){
663 assert( pOp->p3>0 );
664 assert( pOp->p3<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000665 assert( memIsValid(&aMem[pOp->p3]) );
drh3c657212009-11-17 23:59:58 +0000666 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
667 }
668 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
669 assert( pOp->p2>0 );
670 assert( pOp->p2<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000671 memAboutToChange(p, &aMem[pOp->p2]);
drh3c657212009-11-17 23:59:58 +0000672 }
673 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
674 assert( pOp->p3>0 );
675 assert( pOp->p3<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000676 memAboutToChange(p, &aMem[pOp->p3]);
drh3c657212009-11-17 23:59:58 +0000677 }
678#endif
drh93952eb2009-11-13 19:43:43 +0000679
drh75897232000-05-29 14:26:00 +0000680 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000681
drh5e00f6c2001-09-13 13:46:56 +0000682/*****************************************************************************
683** What follows is a massive switch statement where each case implements a
684** separate instruction in the virtual machine. If we follow the usual
685** indentation conventions, each case should be indented by 6 spaces. But
686** that is a lot of wasted space on the left margin. So the code within
687** the switch statement will break with convention and be flush-left. Another
688** big comment (similar to this one) will mark the point in the code where
689** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000690**
691** The formatting of each case is important. The makefile for SQLite
692** generates two C files "opcodes.h" and "opcodes.c" by scanning this
693** file looking for lines that begin with "case OP_". The opcodes.h files
694** will be filled with #defines that give unique integer values to each
695** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000696** each string is the symbolic name for the corresponding opcode. If the
697** case statement is followed by a comment of the form "/# same as ... #/"
698** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000699**
drh9cbf3422008-01-17 16:22:13 +0000700** Other keywords in the comment that follows each case are used to
701** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
702** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
703** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000704**
drhac82fcf2002-09-08 17:23:41 +0000705** Documentation about VDBE opcodes is generated by scanning this file
706** for lines of that contain "Opcode:". That line and all subsequent
707** comment lines are used in the generation of the opcode.html documentation
708** file.
709**
710** SUMMARY:
711**
712** Formatting is important to scripts that scan this file.
713** Do not deviate from the formatting style currently in use.
714**
drh5e00f6c2001-09-13 13:46:56 +0000715*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000716
drh9cbf3422008-01-17 16:22:13 +0000717/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000718**
719** An unconditional jump to address P2.
720** The next instruction executed will be
721** the one at index P2 from the beginning of
722** the program.
723*/
drh9cbf3422008-01-17 16:22:13 +0000724case OP_Goto: { /* jump */
drh5e00f6c2001-09-13 13:46:56 +0000725 pc = pOp->p2 - 1;
drh49afe3a2013-07-10 03:05:14 +0000726
727 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
728 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
729 ** completion. Check to see if sqlite3_interrupt() has been called
730 ** or if the progress callback needs to be invoked.
731 **
732 ** This code uses unstructured "goto" statements and does not look clean.
733 ** But that is not due to sloppy coding habits. The code is written this
734 ** way for performance, to avoid having to run the interrupt and progress
735 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
736 ** faster according to "valgrind --tool=cachegrind" */
737check_for_interrupt:
738 CHECK_FOR_INTERRUPT;
739#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
740 /* Call the progress callback if it is configured and the required number
741 ** of VDBE ops have been executed (either since this invocation of
742 ** sqlite3VdbeExec() or since last time the progress callback was called).
743 ** If the progress callback returns non-zero, exit the virtual machine with
744 ** a return code SQLITE_ABORT.
745 */
drh0d1961e2013-07-25 16:27:51 +0000746 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
drh49afe3a2013-07-10 03:05:14 +0000747 int prc;
748 prc = db->xProgress(db->pProgressArg);
749 if( prc!=0 ){
750 rc = SQLITE_INTERRUPT;
751 goto vdbe_error_halt;
752 }
drh0d1961e2013-07-25 16:27:51 +0000753 if( db->xProgress!=0 ){
754 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
755 }
drh49afe3a2013-07-10 03:05:14 +0000756 }
757#endif
758
drh5e00f6c2001-09-13 13:46:56 +0000759 break;
760}
drh75897232000-05-29 14:26:00 +0000761
drh2eb95372008-06-06 15:04:36 +0000762/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000763**
drh2eb95372008-06-06 15:04:36 +0000764** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000765** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000766*/
drhb8475df2011-12-09 16:21:19 +0000767case OP_Gosub: { /* jump */
768 assert( pOp->p1>0 && pOp->p1<=p->nMem );
drh3c657212009-11-17 23:59:58 +0000769 pIn1 = &aMem[pOp->p1];
drh2eb95372008-06-06 15:04:36 +0000770 assert( (pIn1->flags & MEM_Dyn)==0 );
drh2b4ded92010-09-27 21:09:31 +0000771 memAboutToChange(p, pIn1);
drh2eb95372008-06-06 15:04:36 +0000772 pIn1->flags = MEM_Int;
773 pIn1->u.i = pc;
774 REGISTER_TRACE(pOp->p1, pIn1);
drh8c74a8c2002-08-25 19:20:40 +0000775 pc = pOp->p2 - 1;
776 break;
777}
778
drh2eb95372008-06-06 15:04:36 +0000779/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000780**
drh2eb95372008-06-06 15:04:36 +0000781** Jump to the next instruction after the address in register P1.
drh8c74a8c2002-08-25 19:20:40 +0000782*/
drh2eb95372008-06-06 15:04:36 +0000783case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000784 pIn1 = &aMem[pOp->p1];
drh2eb95372008-06-06 15:04:36 +0000785 assert( pIn1->flags & MEM_Int );
drh9c1905f2008-12-10 22:32:56 +0000786 pc = (int)pIn1->u.i;
drh8c74a8c2002-08-25 19:20:40 +0000787 break;
788}
789
drhe00ee6e2008-06-20 15:24:01 +0000790/* Opcode: Yield P1 * * * *
791**
792** Swap the program counter with the value in register P1.
793*/
danielk1977f73ab8b2008-12-29 10:39:53 +0000794case OP_Yield: { /* in1 */
drhe00ee6e2008-06-20 15:24:01 +0000795 int pcDest;
drh3c657212009-11-17 23:59:58 +0000796 pIn1 = &aMem[pOp->p1];
drhe00ee6e2008-06-20 15:24:01 +0000797 assert( (pIn1->flags & MEM_Dyn)==0 );
798 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000799 pcDest = (int)pIn1->u.i;
drhe00ee6e2008-06-20 15:24:01 +0000800 pIn1->u.i = pc;
801 REGISTER_TRACE(pOp->p1, pIn1);
802 pc = pcDest;
803 break;
804}
805
drh5053a792009-02-20 03:02:23 +0000806/* Opcode: HaltIfNull P1 P2 P3 P4 *
807**
drhef8662b2011-06-20 21:47:58 +0000808** Check the value in register P3. If it is NULL then Halt using
drh5053a792009-02-20 03:02:23 +0000809** parameter P1, P2, and P4 as if this were a Halt instruction. If the
810** value in register P3 is not NULL, then this routine is a no-op.
811*/
812case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000813 pIn3 = &aMem[pOp->p3];
drh5053a792009-02-20 03:02:23 +0000814 if( (pIn3->flags & MEM_Null)==0 ) break;
815 /* Fall through into OP_Halt */
816}
drhe00ee6e2008-06-20 15:24:01 +0000817
drh9cbf3422008-01-17 16:22:13 +0000818/* Opcode: Halt P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +0000819**
drh3d4501e2008-12-04 20:40:10 +0000820** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000821** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000822**
drh92f02c32004-09-02 14:57:08 +0000823** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
824** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
825** For errors, it can be some other value. If P1!=0 then P2 will determine
826** whether or not to rollback the current transaction. Do not rollback
827** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
828** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000829** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000830**
drh66a51672008-01-03 00:01:23 +0000831** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000832**
drh9cfcf5d2002-01-29 18:41:24 +0000833** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000834** every program. So a jump past the last instruction of the program
835** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000836*/
drh9cbf3422008-01-17 16:22:13 +0000837case OP_Halt: {
dan165921a2009-08-28 18:53:45 +0000838 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000839 /* Halt the sub-program. Return control to the parent frame. */
dan165921a2009-08-28 18:53:45 +0000840 VdbeFrame *pFrame = p->pFrame;
841 p->pFrame = pFrame->pParent;
842 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000843 sqlite3VdbeSetChanges(db, p->nChange);
dan165921a2009-08-28 18:53:45 +0000844 pc = sqlite3VdbeFrameRestore(pFrame);
drh99a66922011-05-13 18:51:42 +0000845 lastRowid = db->lastRowid;
dan165921a2009-08-28 18:53:45 +0000846 if( pOp->p2==OE_Ignore ){
dan2832ad42009-08-31 15:27:27 +0000847 /* Instruction pc is the OP_Program that invoked the sub-program
848 ** currently being halted. If the p2 instruction of this OP_Halt
849 ** instruction is set to OE_Ignore, then the sub-program is throwing
850 ** an IGNORE exception. In this case jump to the address specified
851 ** as the p2 of the calling OP_Program. */
dan76d462e2009-08-30 11:42:51 +0000852 pc = p->aOp[pc].p2-1;
dan165921a2009-08-28 18:53:45 +0000853 }
drhbbe879d2009-11-14 18:04:35 +0000854 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000855 aMem = p->aMem;
dan165921a2009-08-28 18:53:45 +0000856 break;
857 }
dan2832ad42009-08-31 15:27:27 +0000858
drh92f02c32004-09-02 14:57:08 +0000859 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000860 p->errorAction = (u8)pOp->p2;
dan165921a2009-08-28 18:53:45 +0000861 p->pc = pc;
danielk19772dca4ac2008-01-03 11:50:29 +0000862 if( pOp->p4.z ){
drh413c3d32010-02-23 20:11:56 +0000863 assert( p->rc!=SQLITE_OK );
drhf089aa42008-07-08 19:34:06 +0000864 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
drhaf46dc12010-02-24 21:44:07 +0000865 testcase( sqlite3GlobalConfig.xLog!=0 );
drh413c3d32010-02-23 20:11:56 +0000866 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z);
drhcda455b2010-02-24 19:23:56 +0000867 }else if( p->rc ){
drhaf46dc12010-02-24 21:44:07 +0000868 testcase( sqlite3GlobalConfig.xLog!=0 );
drhcda455b2010-02-24 19:23:56 +0000869 sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
drh9cfcf5d2002-01-29 18:41:24 +0000870 }
drh92f02c32004-09-02 14:57:08 +0000871 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +0000872 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +0000873 if( rc==SQLITE_BUSY ){
drh900b31e2007-08-28 02:27:51 +0000874 p->rc = rc = SQLITE_BUSY;
875 }else{
drhd91c1a12013-02-09 13:58:25 +0000876 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
drh648e2642013-07-11 15:03:32 +0000877 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
drh900b31e2007-08-28 02:27:51 +0000878 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +0000879 }
drh900b31e2007-08-28 02:27:51 +0000880 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +0000881}
drhc61053b2000-06-04 12:58:36 +0000882
drh4c583122008-01-04 22:01:03 +0000883/* Opcode: Integer P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000884**
drh9cbf3422008-01-17 16:22:13 +0000885** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +0000886*/
drh4c583122008-01-04 22:01:03 +0000887case OP_Integer: { /* out2-prerelease */
drh4c583122008-01-04 22:01:03 +0000888 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +0000889 break;
890}
891
drh4c583122008-01-04 22:01:03 +0000892/* Opcode: Int64 * P2 * P4 *
drh29dda4a2005-07-21 18:23:20 +0000893**
drh66a51672008-01-03 00:01:23 +0000894** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +0000895** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +0000896*/
drh4c583122008-01-04 22:01:03 +0000897case OP_Int64: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000898 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +0000899 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +0000900 break;
901}
drh4f26d6c2004-05-26 23:25:30 +0000902
drh13573c72010-01-12 17:04:07 +0000903#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +0000904/* Opcode: Real * P2 * P4 *
drhf4479502004-05-27 03:12:53 +0000905**
drh4c583122008-01-04 22:01:03 +0000906** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +0000907** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +0000908*/
drh4c583122008-01-04 22:01:03 +0000909case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
910 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +0000911 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh4c583122008-01-04 22:01:03 +0000912 pOut->r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +0000913 break;
914}
drh13573c72010-01-12 17:04:07 +0000915#endif
danielk1977cbb18d22004-05-28 11:37:27 +0000916
drh3c84ddf2008-01-09 02:15:38 +0000917/* Opcode: String8 * P2 * P4 *
danielk1977cbb18d22004-05-28 11:37:27 +0000918**
drh66a51672008-01-03 00:01:23 +0000919** P4 points to a nul terminated UTF-8 string. This opcode is transformed
danielk19770f69c1e2004-05-29 11:24:50 +0000920** into an OP_String before it is executed for the first time.
danielk1977cbb18d22004-05-28 11:37:27 +0000921*/
drh4c583122008-01-04 22:01:03 +0000922case OP_String8: { /* same as TK_STRING, out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000923 assert( pOp->p4.z!=0 );
drhed2df7f2005-11-16 04:34:32 +0000924 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +0000925 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +0000926
927#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +0000928 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +0000929 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
930 if( rc==SQLITE_TOOBIG ) goto too_big;
drh4c583122008-01-04 22:01:03 +0000931 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh3a9cf172009-06-17 21:42:33 +0000932 assert( pOut->zMalloc==pOut->z );
933 assert( pOut->flags & MEM_Dyn );
danielk19775f096132008-03-28 15:44:09 +0000934 pOut->zMalloc = 0;
drh4c583122008-01-04 22:01:03 +0000935 pOut->flags |= MEM_Static;
drh191b54c2008-04-15 12:14:21 +0000936 pOut->flags &= ~MEM_Dyn;
drh66a51672008-01-03 00:01:23 +0000937 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000938 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +0000939 }
drh66a51672008-01-03 00:01:23 +0000940 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +0000941 pOp->p4.z = pOut->z;
942 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +0000943 }
danielk197793758c82005-01-21 08:13:14 +0000944#endif
drhbb4957f2008-03-20 14:03:29 +0000945 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +0000946 goto too_big;
947 }
948 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +0000949}
drhf4479502004-05-27 03:12:53 +0000950
drh4c583122008-01-04 22:01:03 +0000951/* Opcode: String P1 P2 * P4 *
drhf4479502004-05-27 03:12:53 +0000952**
drh9cbf3422008-01-17 16:22:13 +0000953** The string value P4 of length P1 (bytes) is stored in register P2.
drhf4479502004-05-27 03:12:53 +0000954*/
drh4c583122008-01-04 22:01:03 +0000955case OP_String: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000956 assert( pOp->p4.z!=0 );
drh4c583122008-01-04 22:01:03 +0000957 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
958 pOut->z = pOp->p4.z;
959 pOut->n = pOp->p1;
960 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +0000961 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977c572ef72004-05-27 09:28:41 +0000962 break;
963}
964
drh053a1282012-09-19 21:15:46 +0000965/* Opcode: Null P1 P2 P3 * *
drhf0863fe2005-06-12 21:35:51 +0000966**
drhb8475df2011-12-09 16:21:19 +0000967** Write a NULL into registers P2. If P3 greater than P2, then also write
drh053a1282012-09-19 21:15:46 +0000968** NULL into register P3 and every register in between P2 and P3. If P3
drhb8475df2011-12-09 16:21:19 +0000969** is less than P2 (typically P3 is zero) then only register P2 is
drh053a1282012-09-19 21:15:46 +0000970** set to NULL.
971**
972** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
973** NULL values will not compare equal even if SQLITE_NULLEQ is set on
974** OP_Ne or OP_Eq.
drhf0863fe2005-06-12 21:35:51 +0000975*/
drh4c583122008-01-04 22:01:03 +0000976case OP_Null: { /* out2-prerelease */
drhb8475df2011-12-09 16:21:19 +0000977 int cnt;
drh053a1282012-09-19 21:15:46 +0000978 u16 nullFlag;
drhb8475df2011-12-09 16:21:19 +0000979 cnt = pOp->p3-pOp->p2;
980 assert( pOp->p3<=p->nMem );
drh053a1282012-09-19 21:15:46 +0000981 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
drhb8475df2011-12-09 16:21:19 +0000982 while( cnt>0 ){
983 pOut++;
984 memAboutToChange(p, pOut);
drhe4c88c02012-01-04 12:57:45 +0000985 VdbeMemRelease(pOut);
drh053a1282012-09-19 21:15:46 +0000986 pOut->flags = nullFlag;
drhb8475df2011-12-09 16:21:19 +0000987 cnt--;
988 }
drhf0863fe2005-06-12 21:35:51 +0000989 break;
990}
991
992
drh9de221d2008-01-05 06:51:30 +0000993/* Opcode: Blob P1 P2 * P4
danielk1977c572ef72004-05-27 09:28:41 +0000994**
drh9de221d2008-01-05 06:51:30 +0000995** P4 points to a blob of data P1 bytes long. Store this
drh710c4842010-08-30 01:17:20 +0000996** blob in register P2.
danielk1977c572ef72004-05-27 09:28:41 +0000997*/
drh4c583122008-01-04 22:01:03 +0000998case OP_Blob: { /* out2-prerelease */
drhcbd2da92007-12-17 16:20:06 +0000999 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh4c583122008-01-04 22:01:03 +00001000 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +00001001 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001002 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +00001003 break;
1004}
1005
drheaf52d82010-05-12 13:50:23 +00001006/* Opcode: Variable P1 P2 * P4 *
drh50457892003-09-06 01:10:47 +00001007**
drheaf52d82010-05-12 13:50:23 +00001008** Transfer the values of bound parameter P1 into register P2
drh08de1492009-02-20 03:55:05 +00001009**
1010** If the parameter is named, then its name appears in P4 and P3==1.
1011** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +00001012*/
drheaf52d82010-05-12 13:50:23 +00001013case OP_Variable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00001014 Mem *pVar; /* Value being transferred */
1015
drheaf52d82010-05-12 13:50:23 +00001016 assert( pOp->p1>0 && pOp->p1<=p->nVar );
drh04e9eea2011-06-01 19:16:06 +00001017 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
drheaf52d82010-05-12 13:50:23 +00001018 pVar = &p->aVar[pOp->p1 - 1];
1019 if( sqlite3VdbeMemTooBig(pVar) ){
1020 goto too_big;
drh023ae032007-05-08 12:12:16 +00001021 }
drheaf52d82010-05-12 13:50:23 +00001022 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1023 UPDATE_MAX_BLOBSIZE(pOut);
danielk197793d46752004-05-23 13:30:58 +00001024 break;
1025}
danielk1977295ba552004-05-19 10:34:51 +00001026
drhb21e7c72008-06-22 12:37:57 +00001027/* Opcode: Move P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001028**
drhe8e4af72012-09-21 00:04:28 +00001029** Move the values in register P1..P1+P3 over into
1030** registers P2..P2+P3. Registers P1..P1+P3 are
drhb21e7c72008-06-22 12:37:57 +00001031** left holding a NULL. It is an error for register ranges
drhe8e4af72012-09-21 00:04:28 +00001032** P1..P1+P3 and P2..P2+P3 to overlap.
drh5e00f6c2001-09-13 13:46:56 +00001033*/
drhe1349cb2008-04-01 00:36:10 +00001034case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001035 char *zMalloc; /* Holding variable for allocated memory */
1036 int n; /* Number of registers left to copy */
1037 int p1; /* Register to copy from */
1038 int p2; /* Register to copy to */
1039
drhe8e4af72012-09-21 00:04:28 +00001040 n = pOp->p3 + 1;
drh856c1032009-06-02 15:21:42 +00001041 p1 = pOp->p1;
1042 p2 = pOp->p2;
danielk19776ab3a2e2009-02-19 14:39:25 +00001043 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001044 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001045
drha6c2ed92009-11-14 23:22:23 +00001046 pIn1 = &aMem[p1];
1047 pOut = &aMem[p2];
drhb21e7c72008-06-22 12:37:57 +00001048 while( n-- ){
drha6c2ed92009-11-14 23:22:23 +00001049 assert( pOut<=&aMem[p->nMem] );
1050 assert( pIn1<=&aMem[p->nMem] );
drh2b4ded92010-09-27 21:09:31 +00001051 assert( memIsValid(pIn1) );
1052 memAboutToChange(p, pOut);
drhb21e7c72008-06-22 12:37:57 +00001053 zMalloc = pOut->zMalloc;
1054 pOut->zMalloc = 0;
1055 sqlite3VdbeMemMove(pOut, pIn1);
drh52043d72011-08-03 16:40:15 +00001056#ifdef SQLITE_DEBUG
1057 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
1058 pOut->pScopyFrom += p1 - pOp->p2;
1059 }
1060#endif
drhb21e7c72008-06-22 12:37:57 +00001061 pIn1->zMalloc = zMalloc;
1062 REGISTER_TRACE(p2++, pOut);
1063 pIn1++;
1064 pOut++;
1065 }
drhe1349cb2008-04-01 00:36:10 +00001066 break;
1067}
1068
drhe8e4af72012-09-21 00:04:28 +00001069/* Opcode: Copy P1 P2 P3 * *
drhb1fdb2a2008-01-05 04:06:03 +00001070**
drhe8e4af72012-09-21 00:04:28 +00001071** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
drhb1fdb2a2008-01-05 04:06:03 +00001072**
1073** This instruction makes a deep copy of the value. A duplicate
1074** is made of any string or blob constant. See also OP_SCopy.
1075*/
drhe8e4af72012-09-21 00:04:28 +00001076case OP_Copy: {
1077 int n;
1078
1079 n = pOp->p3;
drh3c657212009-11-17 23:59:58 +00001080 pIn1 = &aMem[pOp->p1];
1081 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001082 assert( pOut!=pIn1 );
drhe8e4af72012-09-21 00:04:28 +00001083 while( 1 ){
1084 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1085 Deephemeralize(pOut);
drh953f7612012-12-07 22:18:54 +00001086#ifdef SQLITE_DEBUG
1087 pOut->pScopyFrom = 0;
1088#endif
drhe8e4af72012-09-21 00:04:28 +00001089 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1090 if( (n--)==0 ) break;
1091 pOut++;
1092 pIn1++;
1093 }
drhe1349cb2008-04-01 00:36:10 +00001094 break;
1095}
1096
drhb1fdb2a2008-01-05 04:06:03 +00001097/* Opcode: SCopy P1 P2 * * *
1098**
drh9cbf3422008-01-17 16:22:13 +00001099** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001100**
1101** This instruction makes a shallow copy of the value. If the value
1102** is a string or blob, then the copy is only a pointer to the
1103** original and hence if the original changes so will the copy.
1104** Worse, if the original is deallocated, the copy becomes invalid.
1105** Thus the program must guarantee that the original will not change
1106** during the lifetime of the copy. Use OP_Copy to make a complete
1107** copy.
1108*/
drh93952eb2009-11-13 19:43:43 +00001109case OP_SCopy: { /* in1, out2 */
drh3c657212009-11-17 23:59:58 +00001110 pIn1 = &aMem[pOp->p1];
1111 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001112 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001113 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh2b4ded92010-09-27 21:09:31 +00001114#ifdef SQLITE_DEBUG
1115 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1116#endif
drh5b6afba2008-01-05 16:29:28 +00001117 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00001118 break;
1119}
drh75897232000-05-29 14:26:00 +00001120
drh9cbf3422008-01-17 16:22:13 +00001121/* Opcode: ResultRow P1 P2 * * *
drhd4e70eb2008-01-02 00:34:36 +00001122**
shane21e7feb2008-05-30 15:59:49 +00001123** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001124** results. This opcode causes the sqlite3_step() call to terminate
1125** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1126** structure to provide access to the top P1 values as the result
drh9cbf3422008-01-17 16:22:13 +00001127** row.
drhd4e70eb2008-01-02 00:34:36 +00001128*/
drh9cbf3422008-01-17 16:22:13 +00001129case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001130 Mem *pMem;
1131 int i;
1132 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001133 assert( pOp->p1>0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001134 assert( pOp->p1+pOp->p2<=p->nMem+1 );
drhd4e70eb2008-01-02 00:34:36 +00001135
dan32b09f22009-09-23 17:29:59 +00001136 /* If this statement has violated immediate foreign key constraints, do
1137 ** not return the number of rows modified. And do not RELEASE the statement
1138 ** transaction. It needs to be rolled back. */
1139 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1140 assert( db->flags&SQLITE_CountRows );
1141 assert( p->usesStmtJournal );
1142 break;
1143 }
1144
danielk1977bd434552009-03-18 10:33:00 +00001145 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1146 ** DML statements invoke this opcode to return the number of rows
1147 ** modified to the user. This is the only way that a VM that
1148 ** opens a statement transaction may invoke this opcode.
1149 **
1150 ** In case this is such a statement, close any statement transaction
1151 ** opened by this VM before returning control to the user. This is to
1152 ** ensure that statement-transactions are always nested, not overlapping.
1153 ** If the open statement-transaction is not closed here, then the user
1154 ** may step another VM that opens its own statement transaction. This
1155 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001156 **
1157 ** The statement transaction is never a top-level transaction. Hence
1158 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001159 */
1160 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001161 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1162 if( NEVER(rc!=SQLITE_OK) ){
danielk1977bd434552009-03-18 10:33:00 +00001163 break;
1164 }
1165
drhd4e70eb2008-01-02 00:34:36 +00001166 /* Invalidate all ephemeral cursor row caches */
1167 p->cacheCtr = (p->cacheCtr + 2)|1;
1168
1169 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001170 ** and have an assigned type. The results are de-ephemeralized as
drhb8a45bb2011-12-31 21:51:55 +00001171 ** a side effect.
drhd4e70eb2008-01-02 00:34:36 +00001172 */
drha6c2ed92009-11-14 23:22:23 +00001173 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001174 for(i=0; i<pOp->p2; i++){
drh2b4ded92010-09-27 21:09:31 +00001175 assert( memIsValid(&pMem[i]) );
drhebc16712010-09-28 00:25:58 +00001176 Deephemeralize(&pMem[i]);
drh746fd9c2010-09-28 06:00:47 +00001177 assert( (pMem[i].flags & MEM_Ephem)==0
1178 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
drhd4e70eb2008-01-02 00:34:36 +00001179 sqlite3VdbeMemNulTerminate(&pMem[i]);
dan937d0de2009-10-15 18:35:38 +00001180 sqlite3VdbeMemStoreType(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001181 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001182 }
drh28039692008-03-17 16:54:01 +00001183 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001184
1185 /* Return SQLITE_ROW
1186 */
drhd4e70eb2008-01-02 00:34:36 +00001187 p->pc = pc + 1;
drhd4e70eb2008-01-02 00:34:36 +00001188 rc = SQLITE_ROW;
1189 goto vdbe_return;
1190}
1191
drh5b6afba2008-01-05 16:29:28 +00001192/* Opcode: Concat P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001193**
drh5b6afba2008-01-05 16:29:28 +00001194** Add the text in register P1 onto the end of the text in
1195** register P2 and store the result in register P3.
1196** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001197**
1198** P3 = P2 || P1
1199**
1200** It is illegal for P1 and P3 to be the same register. Sometimes,
1201** if P3 is the same register as P2, the implementation is able
1202** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001203*/
drh5b6afba2008-01-05 16:29:28 +00001204case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001205 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001206
drh3c657212009-11-17 23:59:58 +00001207 pIn1 = &aMem[pOp->p1];
1208 pIn2 = &aMem[pOp->p2];
1209 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001210 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001211 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001212 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001213 break;
drh5e00f6c2001-09-13 13:46:56 +00001214 }
drha0c06522009-06-17 22:50:41 +00001215 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001216 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001217 Stringify(pIn2, encoding);
1218 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001219 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001220 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001221 }
danielk1977a7a8e142008-02-13 18:25:27 +00001222 MemSetTypeFlag(pOut, MEM_Str);
drh9c1905f2008-12-10 22:32:56 +00001223 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001224 goto no_mem;
1225 }
danielk1977a7a8e142008-02-13 18:25:27 +00001226 if( pOut!=pIn2 ){
1227 memcpy(pOut->z, pIn2->z, pIn2->n);
1228 }
1229 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1230 pOut->z[nByte] = 0;
1231 pOut->z[nByte+1] = 0;
1232 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001233 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001234 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001235 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001236 break;
1237}
drh75897232000-05-29 14:26:00 +00001238
drh3c84ddf2008-01-09 02:15:38 +00001239/* Opcode: Add P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001240**
drh60a713c2008-01-21 16:22:45 +00001241** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001242** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001243** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001244*/
drh3c84ddf2008-01-09 02:15:38 +00001245/* Opcode: Multiply P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001246**
drh3c84ddf2008-01-09 02:15:38 +00001247**
shane21e7feb2008-05-30 15:59:49 +00001248** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001249** and store the result in register P3.
1250** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001251*/
drh3c84ddf2008-01-09 02:15:38 +00001252/* Opcode: Subtract P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001253**
drh60a713c2008-01-21 16:22:45 +00001254** Subtract the value in register P1 from the value in register P2
1255** and store the result in register P3.
1256** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001257*/
drh9cbf3422008-01-17 16:22:13 +00001258/* Opcode: Divide P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001259**
drh60a713c2008-01-21 16:22:45 +00001260** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001261** and store the result in register P3 (P3=P2/P1). If the value in
1262** register P1 is zero, then the result is NULL. If either input is
1263** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001264*/
drh9cbf3422008-01-17 16:22:13 +00001265/* Opcode: Remainder P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001266**
drh3c84ddf2008-01-09 02:15:38 +00001267** Compute the remainder after integer division of the value in
1268** register P1 by the value in register P2 and store the result in P3.
1269** If the value in register P2 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001270** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001271*/
drh5b6afba2008-01-05 16:29:28 +00001272case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1273case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1274case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1275case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1276case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drhbe707b32012-12-10 22:19:14 +00001277 char bIntint; /* Started out as two integer operands */
drh856c1032009-06-02 15:21:42 +00001278 int flags; /* Combined MEM_* flags from both inputs */
1279 i64 iA; /* Integer value of left operand */
1280 i64 iB; /* Integer value of right operand */
1281 double rA; /* Real value of left operand */
1282 double rB; /* Real value of right operand */
1283
drh3c657212009-11-17 23:59:58 +00001284 pIn1 = &aMem[pOp->p1];
drh61669b32008-07-30 13:27:10 +00001285 applyNumericAffinity(pIn1);
drh3c657212009-11-17 23:59:58 +00001286 pIn2 = &aMem[pOp->p2];
drh61669b32008-07-30 13:27:10 +00001287 applyNumericAffinity(pIn2);
drh3c657212009-11-17 23:59:58 +00001288 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001289 flags = pIn1->flags | pIn2->flags;
drha05a7222008-01-19 03:35:58 +00001290 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1291 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
drh856c1032009-06-02 15:21:42 +00001292 iA = pIn1->u.i;
1293 iB = pIn2->u.i;
drhbe707b32012-12-10 22:19:14 +00001294 bIntint = 1;
drh5e00f6c2001-09-13 13:46:56 +00001295 switch( pOp->opcode ){
drh158b9cb2011-03-05 20:59:46 +00001296 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1297 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1298 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
drhbf4133c2001-10-13 02:59:08 +00001299 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001300 if( iA==0 ) goto arithmetic_result_is_null;
drh158b9cb2011-03-05 20:59:46 +00001301 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
drh856c1032009-06-02 15:21:42 +00001302 iB /= iA;
drh75897232000-05-29 14:26:00 +00001303 break;
1304 }
drhbf4133c2001-10-13 02:59:08 +00001305 default: {
drh856c1032009-06-02 15:21:42 +00001306 if( iA==0 ) goto arithmetic_result_is_null;
1307 if( iA==-1 ) iA = 1;
1308 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001309 break;
1310 }
drh75897232000-05-29 14:26:00 +00001311 }
drh856c1032009-06-02 15:21:42 +00001312 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001313 MemSetTypeFlag(pOut, MEM_Int);
drh5e00f6c2001-09-13 13:46:56 +00001314 }else{
drhbe707b32012-12-10 22:19:14 +00001315 bIntint = 0;
drh158b9cb2011-03-05 20:59:46 +00001316fp_math:
drh856c1032009-06-02 15:21:42 +00001317 rA = sqlite3VdbeRealValue(pIn1);
1318 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001319 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001320 case OP_Add: rB += rA; break;
1321 case OP_Subtract: rB -= rA; break;
1322 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001323 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001324 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001325 if( rA==(double)0 ) goto arithmetic_result_is_null;
1326 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001327 break;
1328 }
drhbf4133c2001-10-13 02:59:08 +00001329 default: {
shane75ac1de2009-06-09 18:58:52 +00001330 iA = (i64)rA;
1331 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001332 if( iA==0 ) goto arithmetic_result_is_null;
1333 if( iA==-1 ) iA = 1;
1334 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001335 break;
1336 }
drh5e00f6c2001-09-13 13:46:56 +00001337 }
drhc5a7b512010-01-13 16:25:42 +00001338#ifdef SQLITE_OMIT_FLOATING_POINT
1339 pOut->u.i = rB;
1340 MemSetTypeFlag(pOut, MEM_Int);
1341#else
drh856c1032009-06-02 15:21:42 +00001342 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001343 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001344 }
drh856c1032009-06-02 15:21:42 +00001345 pOut->r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001346 MemSetTypeFlag(pOut, MEM_Real);
drhbe707b32012-12-10 22:19:14 +00001347 if( (flags & MEM_Real)==0 && !bIntint ){
drh5b6afba2008-01-05 16:29:28 +00001348 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001349 }
drhc5a7b512010-01-13 16:25:42 +00001350#endif
drh5e00f6c2001-09-13 13:46:56 +00001351 }
1352 break;
1353
drha05a7222008-01-19 03:35:58 +00001354arithmetic_result_is_null:
1355 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001356 break;
1357}
1358
drh7a957892012-02-02 17:35:43 +00001359/* Opcode: CollSeq P1 * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001360**
drh66a51672008-01-03 00:01:23 +00001361** P4 is a pointer to a CollSeq struct. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001362** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1363** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001364** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001365**
drh7a957892012-02-02 17:35:43 +00001366** If P1 is not zero, then it is a register that a subsequent min() or
1367** max() aggregate will set to 1 if the current row is not the minimum or
1368** maximum. The P1 register is initialized to 0 by this instruction.
1369**
danielk1977dc1bdc42004-06-11 10:51:27 +00001370** The interface used by the implementation of the aforementioned functions
1371** to retrieve the collation sequence set by this opcode is not available
1372** publicly, only to user functions defined in func.c.
1373*/
drh9cbf3422008-01-17 16:22:13 +00001374case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001375 assert( pOp->p4type==P4_COLLSEQ );
drh7a957892012-02-02 17:35:43 +00001376 if( pOp->p1 ){
1377 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1378 }
danielk1977dc1bdc42004-06-11 10:51:27 +00001379 break;
1380}
1381
drh98757152008-01-09 23:04:12 +00001382/* Opcode: Function P1 P2 P3 P4 P5
drh8e0a2f92002-02-23 23:45:45 +00001383**
drh66a51672008-01-03 00:01:23 +00001384** Invoke a user function (P4 is a pointer to a Function structure that
drh98757152008-01-09 23:04:12 +00001385** defines the function) with P5 arguments taken from register P2 and
drh9cbf3422008-01-17 16:22:13 +00001386** successors. The result of the function is stored in register P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001387** Register P3 must not be one of the function inputs.
danielk1977682f68b2004-06-05 10:22:17 +00001388**
drh13449892005-09-07 21:22:45 +00001389** P1 is a 32-bit bitmask indicating whether or not each argument to the
danielk1977682f68b2004-06-05 10:22:17 +00001390** function was determined to be constant at compile time. If the first
drh13449892005-09-07 21:22:45 +00001391** argument was constant then bit 0 of P1 is set. This is used to determine
danielk1977682f68b2004-06-05 10:22:17 +00001392** whether meta data associated with a user function argument using the
1393** sqlite3_set_auxdata() API may be safely retained until the next
1394** invocation of this opcode.
drh1350b032002-02-27 19:00:20 +00001395**
drh13449892005-09-07 21:22:45 +00001396** See also: AggStep and AggFinal
drh8e0a2f92002-02-23 23:45:45 +00001397*/
drh0bce8352002-02-28 00:41:10 +00001398case OP_Function: {
danielk197751ad0ec2004-05-24 12:39:02 +00001399 int i;
drh6810ce62004-01-31 19:22:56 +00001400 Mem *pArg;
danielk197722322fd2004-05-25 23:35:17 +00001401 sqlite3_context ctx;
danielk197751ad0ec2004-05-24 12:39:02 +00001402 sqlite3_value **apVal;
drh856c1032009-06-02 15:21:42 +00001403 int n;
drh1350b032002-02-27 19:00:20 +00001404
drh856c1032009-06-02 15:21:42 +00001405 n = pOp->p5;
danielk19776ddcca52004-05-24 23:48:25 +00001406 apVal = p->apArg;
danielk197751ad0ec2004-05-24 12:39:02 +00001407 assert( apVal || n==0 );
drhebc16712010-09-28 00:25:58 +00001408 assert( pOp->p3>0 && pOp->p3<=p->nMem );
1409 pOut = &aMem[pOp->p3];
1410 memAboutToChange(p, pOut);
danielk197751ad0ec2004-05-24 12:39:02 +00001411
danielk19776ab3a2e2009-02-19 14:39:25 +00001412 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
danielk1977a7a8e142008-02-13 18:25:27 +00001413 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drha6c2ed92009-11-14 23:22:23 +00001414 pArg = &aMem[pOp->p2];
drh6810ce62004-01-31 19:22:56 +00001415 for(i=0; i<n; i++, pArg++){
drh2b4ded92010-09-27 21:09:31 +00001416 assert( memIsValid(pArg) );
danielk197751ad0ec2004-05-24 12:39:02 +00001417 apVal[i] = pArg;
drhebc16712010-09-28 00:25:58 +00001418 Deephemeralize(pArg);
dan937d0de2009-10-15 18:35:38 +00001419 sqlite3VdbeMemStoreType(pArg);
drhab5cd702010-04-07 14:32:11 +00001420 REGISTER_TRACE(pOp->p2+i, pArg);
drh8e0a2f92002-02-23 23:45:45 +00001421 }
danielk197751ad0ec2004-05-24 12:39:02 +00001422
dan0c547792013-07-18 17:12:08 +00001423 assert( pOp->p4type==P4_FUNCDEF );
1424 ctx.pFunc = pOp->p4.pFunc;
drh00706be2004-01-30 14:49:16 +00001425 ctx.s.flags = MEM_Null;
drhfa4a4b92008-03-19 21:45:51 +00001426 ctx.s.db = db;
danielk19775f096132008-03-28 15:44:09 +00001427 ctx.s.xDel = 0;
1428 ctx.s.zMalloc = 0;
dan0c547792013-07-18 17:12:08 +00001429 ctx.iOp = pc;
1430 ctx.pVdbe = p;
danielk1977a7a8e142008-02-13 18:25:27 +00001431
1432 /* The output cell may already have a buffer allocated. Move
1433 ** the pointer to ctx.s so in case the user-function can use
1434 ** the already allocated buffer instead of allocating a new one.
1435 */
1436 sqlite3VdbeMemMove(&ctx.s, pOut);
1437 MemSetTypeFlag(&ctx.s, MEM_Null);
1438
drh9b47ee32013-08-20 03:13:51 +00001439 ctx.fErrorOrAux = 0;
drhe82f5d02008-10-07 19:53:14 +00001440 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
drhbbe879d2009-11-14 18:04:35 +00001441 assert( pOp>aOp );
drh66a51672008-01-03 00:01:23 +00001442 assert( pOp[-1].p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00001443 assert( pOp[-1].opcode==OP_CollSeq );
danielk19772dca4ac2008-01-03 11:50:29 +00001444 ctx.pColl = pOp[-1].p4.pColl;
danielk1977dc1bdc42004-06-11 10:51:27 +00001445 }
drh99a66922011-05-13 18:51:42 +00001446 db->lastRowid = lastRowid;
drhee9ff672010-09-03 18:50:48 +00001447 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh99a66922011-05-13 18:51:42 +00001448 lastRowid = db->lastRowid;
danielk19777e18c252004-05-25 11:47:24 +00001449
dan5f84e142011-06-14 14:18:45 +00001450 if( db->mallocFailed ){
1451 /* Even though a malloc() has failed, the implementation of the
1452 ** user function may have called an sqlite3_result_XXX() function
1453 ** to return a value. The following call releases any resources
1454 ** associated with such a value.
1455 */
1456 sqlite3VdbeMemRelease(&ctx.s);
1457 goto no_mem;
1458 }
1459
drh90669c12006-01-20 15:45:36 +00001460 /* If the function returned an error, throw an exception */
drh9b47ee32013-08-20 03:13:51 +00001461 if( ctx.fErrorOrAux ){
1462 if( ctx.isError ){
1463 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
1464 rc = ctx.isError;
1465 }
1466 sqlite3VdbeDeleteAuxData(p, pc, pOp->p1);
drh90669c12006-01-20 15:45:36 +00001467 }
1468
drh9cbf3422008-01-17 16:22:13 +00001469 /* Copy the result of the function into register P3 */
drhb21c8cd2007-08-21 19:33:56 +00001470 sqlite3VdbeChangeEncoding(&ctx.s, encoding);
drh98757152008-01-09 23:04:12 +00001471 sqlite3VdbeMemMove(pOut, &ctx.s);
1472 if( sqlite3VdbeMemTooBig(pOut) ){
drh023ae032007-05-08 12:12:16 +00001473 goto too_big;
1474 }
drh7b94e7f2011-04-04 12:29:20 +00001475
1476#if 0
1477 /* The app-defined function has done something that as caused this
1478 ** statement to expire. (Perhaps the function called sqlite3_exec()
1479 ** with a CREATE TABLE statement.)
1480 */
1481 if( p->expired ) rc = SQLITE_ABORT;
1482#endif
1483
drh2dcef112008-01-12 19:03:48 +00001484 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00001485 UPDATE_MAX_BLOBSIZE(pOut);
drh8e0a2f92002-02-23 23:45:45 +00001486 break;
1487}
1488
drh98757152008-01-09 23:04:12 +00001489/* Opcode: BitAnd P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001490**
drh98757152008-01-09 23:04:12 +00001491** Take the bit-wise AND of the values in register P1 and P2 and
1492** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001493** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001494*/
drh98757152008-01-09 23:04:12 +00001495/* Opcode: BitOr P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001496**
drh98757152008-01-09 23:04:12 +00001497** Take the bit-wise OR of the values in register P1 and P2 and
1498** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001499** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001500*/
drh98757152008-01-09 23:04:12 +00001501/* Opcode: ShiftLeft P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001502**
drh98757152008-01-09 23:04:12 +00001503** Shift the integer value in register P2 to the left by the
drh710c4842010-08-30 01:17:20 +00001504** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001505** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001506** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001507*/
drh98757152008-01-09 23:04:12 +00001508/* Opcode: ShiftRight P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001509**
drh98757152008-01-09 23:04:12 +00001510** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001511** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001512** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001513** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001514*/
drh5b6afba2008-01-05 16:29:28 +00001515case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1516case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1517case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1518case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh158b9cb2011-03-05 20:59:46 +00001519 i64 iA;
1520 u64 uA;
1521 i64 iB;
1522 u8 op;
drh6810ce62004-01-31 19:22:56 +00001523
drh3c657212009-11-17 23:59:58 +00001524 pIn1 = &aMem[pOp->p1];
1525 pIn2 = &aMem[pOp->p2];
1526 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001527 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001528 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001529 break;
1530 }
drh158b9cb2011-03-05 20:59:46 +00001531 iA = sqlite3VdbeIntValue(pIn2);
1532 iB = sqlite3VdbeIntValue(pIn1);
1533 op = pOp->opcode;
1534 if( op==OP_BitAnd ){
1535 iA &= iB;
1536 }else if( op==OP_BitOr ){
1537 iA |= iB;
1538 }else if( iB!=0 ){
1539 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1540
1541 /* If shifting by a negative amount, shift in the other direction */
1542 if( iB<0 ){
1543 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1544 op = 2*OP_ShiftLeft + 1 - op;
1545 iB = iB>(-64) ? -iB : 64;
1546 }
1547
1548 if( iB>=64 ){
1549 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1550 }else{
1551 memcpy(&uA, &iA, sizeof(uA));
1552 if( op==OP_ShiftLeft ){
1553 uA <<= iB;
1554 }else{
1555 uA >>= iB;
1556 /* Sign-extend on a right shift of a negative number */
1557 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1558 }
1559 memcpy(&iA, &uA, sizeof(iA));
1560 }
drhbf4133c2001-10-13 02:59:08 +00001561 }
drh158b9cb2011-03-05 20:59:46 +00001562 pOut->u.i = iA;
danielk1977a7a8e142008-02-13 18:25:27 +00001563 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001564 break;
1565}
1566
drh8558cde2008-01-05 05:20:10 +00001567/* Opcode: AddImm P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00001568**
danielk19770cdc0222008-06-26 18:04:03 +00001569** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001570** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001571**
drh8558cde2008-01-05 05:20:10 +00001572** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001573*/
drh9cbf3422008-01-17 16:22:13 +00001574case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001575 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001576 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001577 sqlite3VdbeMemIntegerify(pIn1);
1578 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001579 break;
1580}
1581
drh9cbf3422008-01-17 16:22:13 +00001582/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001583**
drh9cbf3422008-01-17 16:22:13 +00001584** Force the value in register P1 to be an integer. If the value
1585** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001586** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001587** raise an SQLITE_MISMATCH exception.
1588*/
drh9cbf3422008-01-17 16:22:13 +00001589case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001590 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001591 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1592 if( (pIn1->flags & MEM_Int)==0 ){
drh17c40292004-07-21 02:53:29 +00001593 if( pOp->p2==0 ){
1594 rc = SQLITE_MISMATCH;
1595 goto abort_due_to_error;
drh3c84ddf2008-01-09 02:15:38 +00001596 }else{
drh17c40292004-07-21 02:53:29 +00001597 pc = pOp->p2 - 1;
drh8aff1012001-12-22 14:49:24 +00001598 }
drh8aff1012001-12-22 14:49:24 +00001599 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00001600 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001601 }
1602 break;
1603}
1604
drh13573c72010-01-12 17:04:07 +00001605#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001606/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001607**
drh2133d822008-01-03 18:44:59 +00001608** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001609**
drh8a512562005-11-14 22:29:05 +00001610** This opcode is used when extracting information from a column that
1611** has REAL affinity. Such column values may still be stored as
1612** integers, for space efficiency, but after extraction we want them
1613** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001614*/
drh9cbf3422008-01-17 16:22:13 +00001615case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001616 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001617 if( pIn1->flags & MEM_Int ){
1618 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001619 }
drh487e2622005-06-25 18:42:14 +00001620 break;
1621}
drh13573c72010-01-12 17:04:07 +00001622#endif
drh487e2622005-06-25 18:42:14 +00001623
drh8df447f2005-11-01 15:48:24 +00001624#ifndef SQLITE_OMIT_CAST
drh8558cde2008-01-05 05:20:10 +00001625/* Opcode: ToText P1 * * * *
drh487e2622005-06-25 18:42:14 +00001626**
drh8558cde2008-01-05 05:20:10 +00001627** Force the value in register P1 to be text.
drh31beae92005-11-24 14:34:36 +00001628** If the value is numeric, convert it to a string using the
drh487e2622005-06-25 18:42:14 +00001629** equivalent of printf(). Blob values are unchanged and
1630** are afterwards simply interpreted as text.
1631**
1632** A NULL value is not changed by this routine. It remains NULL.
1633*/
drh9cbf3422008-01-17 16:22:13 +00001634case OP_ToText: { /* same as TK_TO_TEXT, in1 */
drh3c657212009-11-17 23:59:58 +00001635 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001636 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001637 if( pIn1->flags & MEM_Null ) break;
drh487e2622005-06-25 18:42:14 +00001638 assert( MEM_Str==(MEM_Blob>>3) );
drh8558cde2008-01-05 05:20:10 +00001639 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
1640 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1641 rc = ExpandBlob(pIn1);
danielk1977a7a8e142008-02-13 18:25:27 +00001642 assert( pIn1->flags & MEM_Str || db->mallocFailed );
drh68ac65e2009-01-05 18:02:27 +00001643 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
drhb7654112008-01-12 12:48:07 +00001644 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001645 break;
1646}
1647
drh8558cde2008-01-05 05:20:10 +00001648/* Opcode: ToBlob P1 * * * *
drh487e2622005-06-25 18:42:14 +00001649**
drh8558cde2008-01-05 05:20:10 +00001650** Force the value in register P1 to be a BLOB.
drh487e2622005-06-25 18:42:14 +00001651** If the value is numeric, convert it to a string first.
1652** Strings are simply reinterpreted as blobs with no change
1653** to the underlying data.
1654**
1655** A NULL value is not changed by this routine. It remains NULL.
1656*/
drh9cbf3422008-01-17 16:22:13 +00001657case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
drh3c657212009-11-17 23:59:58 +00001658 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001659 if( pIn1->flags & MEM_Null ) break;
1660 if( (pIn1->flags & MEM_Blob)==0 ){
1661 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
danielk1977a7a8e142008-02-13 18:25:27 +00001662 assert( pIn1->flags & MEM_Str || db->mallocFailed );
drhde58ddb2009-01-05 22:30:38 +00001663 MemSetTypeFlag(pIn1, MEM_Blob);
1664 }else{
1665 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
drh487e2622005-06-25 18:42:14 +00001666 }
drhb7654112008-01-12 12:48:07 +00001667 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001668 break;
1669}
drh8a512562005-11-14 22:29:05 +00001670
drh8558cde2008-01-05 05:20:10 +00001671/* Opcode: ToNumeric P1 * * * *
drh8a512562005-11-14 22:29:05 +00001672**
drh8558cde2008-01-05 05:20:10 +00001673** Force the value in register P1 to be numeric (either an
drh8a512562005-11-14 22:29:05 +00001674** integer or a floating-point number.)
1675** If the value is text or blob, try to convert it to an using the
1676** equivalent of atoi() or atof() and store 0 if no such conversion
1677** is possible.
1678**
1679** A NULL value is not changed by this routine. It remains NULL.
1680*/
drh9cbf3422008-01-17 16:22:13 +00001681case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
drh3c657212009-11-17 23:59:58 +00001682 pIn1 = &aMem[pOp->p1];
drh93518622010-09-30 14:48:06 +00001683 sqlite3VdbeMemNumerify(pIn1);
drh8a512562005-11-14 22:29:05 +00001684 break;
1685}
1686#endif /* SQLITE_OMIT_CAST */
1687
drh8558cde2008-01-05 05:20:10 +00001688/* Opcode: ToInt P1 * * * *
drh8a512562005-11-14 22:29:05 +00001689**
drh710c4842010-08-30 01:17:20 +00001690** Force the value in register P1 to be an integer. If
drh8a512562005-11-14 22:29:05 +00001691** The value is currently a real number, drop its fractional part.
1692** If the value is text or blob, try to convert it to an integer using the
1693** equivalent of atoi() and store 0 if no such conversion is possible.
1694**
1695** A NULL value is not changed by this routine. It remains NULL.
1696*/
drh9cbf3422008-01-17 16:22:13 +00001697case OP_ToInt: { /* same as TK_TO_INT, in1 */
drh3c657212009-11-17 23:59:58 +00001698 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001699 if( (pIn1->flags & MEM_Null)==0 ){
1700 sqlite3VdbeMemIntegerify(pIn1);
drh8a512562005-11-14 22:29:05 +00001701 }
1702 break;
1703}
1704
drh13573c72010-01-12 17:04:07 +00001705#if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
drh8558cde2008-01-05 05:20:10 +00001706/* Opcode: ToReal P1 * * * *
drh8a512562005-11-14 22:29:05 +00001707**
drh8558cde2008-01-05 05:20:10 +00001708** Force the value in register P1 to be a floating point number.
drh8a512562005-11-14 22:29:05 +00001709** If The value is currently an integer, convert it.
1710** If the value is text or blob, try to convert it to an integer using the
drh60a713c2008-01-21 16:22:45 +00001711** equivalent of atoi() and store 0.0 if no such conversion is possible.
drh8a512562005-11-14 22:29:05 +00001712**
1713** A NULL value is not changed by this routine. It remains NULL.
1714*/
drh9cbf3422008-01-17 16:22:13 +00001715case OP_ToReal: { /* same as TK_TO_REAL, in1 */
drh3c657212009-11-17 23:59:58 +00001716 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001717 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001718 if( (pIn1->flags & MEM_Null)==0 ){
1719 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001720 }
1721 break;
1722}
drh13573c72010-01-12 17:04:07 +00001723#endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
drh487e2622005-06-25 18:42:14 +00001724
drh35573352008-01-08 23:54:25 +00001725/* Opcode: Lt P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001726**
drh35573352008-01-08 23:54:25 +00001727** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1728** jump to address P2.
drhf5905aa2002-05-26 20:54:33 +00001729**
drh35573352008-01-08 23:54:25 +00001730** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1731** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
drh710c4842010-08-30 01:17:20 +00001732** bit is clear then fall through if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001733**
drh35573352008-01-08 23:54:25 +00001734** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001735** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001736** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001737** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001738** affinity is used. Note that the affinity conversions are stored
1739** back into the input registers P1 and P3. So this opcode can cause
1740** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001741**
1742** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001743** the values are compared. If both values are blobs then memcmp() is
1744** used to determine the results of the comparison. If both values
1745** are text, then the appropriate collating function specified in
1746** P4 is used to do the comparison. If P4 is not specified then
1747** memcmp() is used to compare text string. If both values are
1748** numeric, then a numeric comparison is used. If the two values
1749** are of different types, then numbers are considered less than
1750** strings and strings are considered less than blobs.
drhc9b84a12002-06-20 11:36:48 +00001751**
drh35573352008-01-08 23:54:25 +00001752** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1753** store a boolean result (either 0, or 1, or NULL) in register P2.
drh053a1282012-09-19 21:15:46 +00001754**
1755** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1756** equal to one another, provided that they do not have their MEM_Cleared
1757** bit set.
drh5e00f6c2001-09-13 13:46:56 +00001758*/
drh9cbf3422008-01-17 16:22:13 +00001759/* Opcode: Ne P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001760**
drh35573352008-01-08 23:54:25 +00001761** This works just like the Lt opcode except that the jump is taken if
1762** the operands in registers P1 and P3 are not equal. See the Lt opcode for
drh53db1452004-05-20 13:54:53 +00001763** additional information.
drh6a2fe092009-09-23 02:29:36 +00001764**
1765** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1766** true or false and is never NULL. If both operands are NULL then the result
1767** of comparison is false. If either operand is NULL then the result is true.
drhef8662b2011-06-20 21:47:58 +00001768** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001769** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001770*/
drh9cbf3422008-01-17 16:22:13 +00001771/* Opcode: Eq P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001772**
drh35573352008-01-08 23:54:25 +00001773** This works just like the Lt opcode except that the jump is taken if
1774** the operands in registers P1 and P3 are equal.
1775** See the Lt opcode for additional information.
drh6a2fe092009-09-23 02:29:36 +00001776**
1777** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1778** true or false and is never NULL. If both operands are NULL then the result
1779** of comparison is true. If either operand is NULL then the result is false.
drhef8662b2011-06-20 21:47:58 +00001780** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001781** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001782*/
drh9cbf3422008-01-17 16:22:13 +00001783/* Opcode: Le P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001784**
drh35573352008-01-08 23:54:25 +00001785** This works just like the Lt opcode except that the jump is taken if
1786** the content of register P3 is less than or equal to the content of
1787** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001788*/
drh9cbf3422008-01-17 16:22:13 +00001789/* Opcode: Gt P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001790**
drh35573352008-01-08 23:54:25 +00001791** This works just like the Lt opcode except that the jump is taken if
1792** the content of register P3 is greater than the content of
1793** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001794*/
drh9cbf3422008-01-17 16:22:13 +00001795/* Opcode: Ge P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001796**
drh35573352008-01-08 23:54:25 +00001797** This works just like the Lt opcode except that the jump is taken if
1798** the content of register P3 is greater than or equal to the content of
1799** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001800*/
drh9cbf3422008-01-17 16:22:13 +00001801case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1802case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1803case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1804case OP_Le: /* same as TK_LE, jump, in1, in3 */
1805case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1806case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh6a2fe092009-09-23 02:29:36 +00001807 int res; /* Result of the comparison of pIn1 against pIn3 */
1808 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00001809 u16 flags1; /* Copy of initial value of pIn1->flags */
1810 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00001811
drh3c657212009-11-17 23:59:58 +00001812 pIn1 = &aMem[pOp->p1];
1813 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00001814 flags1 = pIn1->flags;
1815 flags3 = pIn3->flags;
drhc3f1d5f2011-05-30 23:42:16 +00001816 if( (flags1 | flags3)&MEM_Null ){
drh6a2fe092009-09-23 02:29:36 +00001817 /* One or both operands are NULL */
1818 if( pOp->p5 & SQLITE_NULLEQ ){
1819 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1820 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1821 ** or not both operands are null.
1822 */
1823 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
drh053a1282012-09-19 21:15:46 +00001824 assert( (flags1 & MEM_Cleared)==0 );
1825 if( (flags1&MEM_Null)!=0
1826 && (flags3&MEM_Null)!=0
1827 && (flags3&MEM_Cleared)==0
1828 ){
1829 res = 0; /* Results are equal */
1830 }else{
1831 res = 1; /* Results are not equal */
1832 }
drh6a2fe092009-09-23 02:29:36 +00001833 }else{
1834 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1835 ** then the result is always NULL.
1836 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1837 */
drh9b47ee32013-08-20 03:13:51 +00001838 if( pOp->p5 & SQLITE_JUMPIFNULL ){
1839 pc = pOp->p2-1;
1840 }else if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001841 pOut = &aMem[pOp->p2];
drh6a2fe092009-09-23 02:29:36 +00001842 MemSetTypeFlag(pOut, MEM_Null);
1843 REGISTER_TRACE(pOp->p2, pOut);
drh6a2fe092009-09-23 02:29:36 +00001844 }
1845 break;
danielk1977a37cdde2004-05-16 11:15:36 +00001846 }
drh6a2fe092009-09-23 02:29:36 +00001847 }else{
1848 /* Neither operand is NULL. Do a comparison. */
1849 affinity = pOp->p5 & SQLITE_AFF_MASK;
1850 if( affinity ){
1851 applyAffinity(pIn1, affinity, encoding);
1852 applyAffinity(pIn3, affinity, encoding);
1853 if( db->mallocFailed ) goto no_mem;
1854 }
danielk1977a37cdde2004-05-16 11:15:36 +00001855
drh6a2fe092009-09-23 02:29:36 +00001856 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1857 ExpandBlob(pIn1);
1858 ExpandBlob(pIn3);
1859 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00001860 }
danielk1977a37cdde2004-05-16 11:15:36 +00001861 switch( pOp->opcode ){
1862 case OP_Eq: res = res==0; break;
1863 case OP_Ne: res = res!=0; break;
1864 case OP_Lt: res = res<0; break;
1865 case OP_Le: res = res<=0; break;
1866 case OP_Gt: res = res>0; break;
1867 default: res = res>=0; break;
1868 }
1869
drh35573352008-01-08 23:54:25 +00001870 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001871 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00001872 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00001873 MemSetTypeFlag(pOut, MEM_Int);
drh35573352008-01-08 23:54:25 +00001874 pOut->u.i = res;
1875 REGISTER_TRACE(pOp->p2, pOut);
1876 }else if( res ){
1877 pc = pOp->p2-1;
danielk1977a37cdde2004-05-16 11:15:36 +00001878 }
danb7dca7d2010-03-05 16:32:12 +00001879
1880 /* Undo any changes made by applyAffinity() to the input registers. */
1881 pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
1882 pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
danielk1977a37cdde2004-05-16 11:15:36 +00001883 break;
1884}
drhc9b84a12002-06-20 11:36:48 +00001885
drh0acb7e42008-06-25 00:12:41 +00001886/* Opcode: Permutation * * * P4 *
1887**
shanebe217792009-03-05 04:20:31 +00001888** Set the permutation used by the OP_Compare operator to be the array
drh0acb7e42008-06-25 00:12:41 +00001889** of integers in P4.
1890**
drh953f7612012-12-07 22:18:54 +00001891** The permutation is only valid until the next OP_Compare that has
1892** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
1893** occur immediately prior to the OP_Compare.
drh0acb7e42008-06-25 00:12:41 +00001894*/
1895case OP_Permutation: {
1896 assert( pOp->p4type==P4_INTARRAY );
1897 assert( pOp->p4.ai );
1898 aPermute = pOp->p4.ai;
1899 break;
1900}
1901
drh953f7612012-12-07 22:18:54 +00001902/* Opcode: Compare P1 P2 P3 P4 P5
drh16ee60f2008-06-20 18:13:25 +00001903**
drh710c4842010-08-30 01:17:20 +00001904** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
1905** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
drh16ee60f2008-06-20 18:13:25 +00001906** the comparison for use by the next OP_Jump instruct.
1907**
drh0ca10df2012-12-08 13:26:23 +00001908** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
1909** determined by the most recent OP_Permutation operator. If the
1910** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
1911** order.
1912**
drh0acb7e42008-06-25 00:12:41 +00001913** P4 is a KeyInfo structure that defines collating sequences and sort
1914** orders for the comparison. The permutation applies to registers
1915** only. The KeyInfo elements are used sequentially.
1916**
1917** The comparison is a sort comparison, so NULLs compare equal,
1918** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00001919** and strings are less than blobs.
1920*/
1921case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00001922 int n;
1923 int i;
1924 int p1;
1925 int p2;
1926 const KeyInfo *pKeyInfo;
1927 int idx;
1928 CollSeq *pColl; /* Collating sequence to use on this term */
1929 int bRev; /* True for DESCENDING sort order */
1930
drh953f7612012-12-07 22:18:54 +00001931 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
drh856c1032009-06-02 15:21:42 +00001932 n = pOp->p3;
1933 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00001934 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00001935 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00001936 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00001937 p2 = pOp->p2;
drh6a2fe092009-09-23 02:29:36 +00001938#if SQLITE_DEBUG
1939 if( aPermute ){
1940 int k, mx = 0;
1941 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
1942 assert( p1>0 && p1+mx<=p->nMem+1 );
1943 assert( p2>0 && p2+mx<=p->nMem+1 );
1944 }else{
1945 assert( p1>0 && p1+n<=p->nMem+1 );
1946 assert( p2>0 && p2+n<=p->nMem+1 );
1947 }
1948#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00001949 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00001950 idx = aPermute ? aPermute[i] : i;
drh2b4ded92010-09-27 21:09:31 +00001951 assert( memIsValid(&aMem[p1+idx]) );
1952 assert( memIsValid(&aMem[p2+idx]) );
drha6c2ed92009-11-14 23:22:23 +00001953 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
1954 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drh93a960a2008-07-10 00:32:42 +00001955 assert( i<pKeyInfo->nField );
1956 pColl = pKeyInfo->aColl[i];
1957 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00001958 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00001959 if( iCompare ){
1960 if( bRev ) iCompare = -iCompare;
1961 break;
1962 }
drh16ee60f2008-06-20 18:13:25 +00001963 }
drh0acb7e42008-06-25 00:12:41 +00001964 aPermute = 0;
drh16ee60f2008-06-20 18:13:25 +00001965 break;
1966}
1967
1968/* Opcode: Jump P1 P2 P3 * *
1969**
1970** Jump to the instruction at address P1, P2, or P3 depending on whether
1971** in the most recent OP_Compare instruction the P1 vector was less than
1972** equal to, or greater than the P2 vector, respectively.
1973*/
drh0acb7e42008-06-25 00:12:41 +00001974case OP_Jump: { /* jump */
1975 if( iCompare<0 ){
drh16ee60f2008-06-20 18:13:25 +00001976 pc = pOp->p1 - 1;
drh0acb7e42008-06-25 00:12:41 +00001977 }else if( iCompare==0 ){
drh16ee60f2008-06-20 18:13:25 +00001978 pc = pOp->p2 - 1;
1979 }else{
1980 pc = pOp->p3 - 1;
1981 }
1982 break;
1983}
1984
drh5b6afba2008-01-05 16:29:28 +00001985/* Opcode: And P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001986**
drh5b6afba2008-01-05 16:29:28 +00001987** Take the logical AND of the values in registers P1 and P2 and
1988** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00001989**
drh5b6afba2008-01-05 16:29:28 +00001990** If either P1 or P2 is 0 (false) then the result is 0 even if
1991** the other input is NULL. A NULL and true or two NULLs give
1992** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00001993*/
drh5b6afba2008-01-05 16:29:28 +00001994/* Opcode: Or P1 P2 P3 * *
1995**
1996** Take the logical OR of the values in register P1 and P2 and
1997** store the answer in register P3.
1998**
1999** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2000** even if the other input is NULL. A NULL and false or two NULLs
2001** give a NULL output.
2002*/
2003case OP_And: /* same as TK_AND, in1, in2, out3 */
2004case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00002005 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2006 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00002007
drh3c657212009-11-17 23:59:58 +00002008 pIn1 = &aMem[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00002009 if( pIn1->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002010 v1 = 2;
drh5e00f6c2001-09-13 13:46:56 +00002011 }else{
drh5b6afba2008-01-05 16:29:28 +00002012 v1 = sqlite3VdbeIntValue(pIn1)!=0;
drhbb113512002-05-27 01:04:51 +00002013 }
drh3c657212009-11-17 23:59:58 +00002014 pIn2 = &aMem[pOp->p2];
drh5b6afba2008-01-05 16:29:28 +00002015 if( pIn2->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002016 v2 = 2;
2017 }else{
drh5b6afba2008-01-05 16:29:28 +00002018 v2 = sqlite3VdbeIntValue(pIn2)!=0;
drhbb113512002-05-27 01:04:51 +00002019 }
2020 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00002021 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00002022 v1 = and_logic[v1*3+v2];
2023 }else{
drh5b6afba2008-01-05 16:29:28 +00002024 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00002025 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00002026 }
drh3c657212009-11-17 23:59:58 +00002027 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00002028 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00002029 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00002030 }else{
drh5b6afba2008-01-05 16:29:28 +00002031 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00002032 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00002033 }
drh5e00f6c2001-09-13 13:46:56 +00002034 break;
2035}
2036
drhe99fa2a2008-12-15 15:27:51 +00002037/* Opcode: Not P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002038**
drhe99fa2a2008-12-15 15:27:51 +00002039** Interpret the value in register P1 as a boolean value. Store the
2040** boolean complement in register P2. If the value in register P1 is
2041** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00002042*/
drh93952eb2009-11-13 19:43:43 +00002043case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002044 pIn1 = &aMem[pOp->p1];
2045 pOut = &aMem[pOp->p2];
drhe99fa2a2008-12-15 15:27:51 +00002046 if( pIn1->flags & MEM_Null ){
2047 sqlite3VdbeMemSetNull(pOut);
2048 }else{
2049 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
2050 }
drh5e00f6c2001-09-13 13:46:56 +00002051 break;
2052}
2053
drhe99fa2a2008-12-15 15:27:51 +00002054/* Opcode: BitNot P1 P2 * * *
drhbf4133c2001-10-13 02:59:08 +00002055**
drhe99fa2a2008-12-15 15:27:51 +00002056** Interpret the content of register P1 as an integer. Store the
2057** ones-complement of the P1 value into register P2. If P1 holds
2058** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00002059*/
drh93952eb2009-11-13 19:43:43 +00002060case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002061 pIn1 = &aMem[pOp->p1];
2062 pOut = &aMem[pOp->p2];
drhe99fa2a2008-12-15 15:27:51 +00002063 if( pIn1->flags & MEM_Null ){
2064 sqlite3VdbeMemSetNull(pOut);
2065 }else{
2066 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
2067 }
drhbf4133c2001-10-13 02:59:08 +00002068 break;
2069}
2070
drh48f2d3b2011-09-16 01:34:43 +00002071/* Opcode: Once P1 P2 * * *
2072**
dan1d8cb212011-12-09 13:24:16 +00002073** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise,
2074** set the flag and fall through to the next instruction.
drh48f2d3b2011-09-16 01:34:43 +00002075*/
dan1d8cb212011-12-09 13:24:16 +00002076case OP_Once: { /* jump */
2077 assert( pOp->p1<p->nOnceFlag );
2078 if( p->aOnceFlag[pOp->p1] ){
2079 pc = pOp->p2-1;
2080 }else{
2081 p->aOnceFlag[pOp->p1] = 1;
2082 }
2083 break;
2084}
2085
drh3c84ddf2008-01-09 02:15:38 +00002086/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00002087**
drhef8662b2011-06-20 21:47:58 +00002088** Jump to P2 if the value in register P1 is true. The value
drh3c84ddf2008-01-09 02:15:38 +00002089** is considered true if it is numeric and non-zero. If the value
drhb8475df2011-12-09 16:21:19 +00002090** in P1 is NULL then take the jump if P3 is non-zero.
drh5e00f6c2001-09-13 13:46:56 +00002091*/
drh3c84ddf2008-01-09 02:15:38 +00002092/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00002093**
drhef8662b2011-06-20 21:47:58 +00002094** Jump to P2 if the value in register P1 is False. The value
drhb8475df2011-12-09 16:21:19 +00002095** is considered false if it has a numeric value of zero. If the value
2096** in P1 is NULL then take the jump if P3 is zero.
drhf5905aa2002-05-26 20:54:33 +00002097*/
drh9cbf3422008-01-17 16:22:13 +00002098case OP_If: /* jump, in1 */
2099case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00002100 int c;
drh3c657212009-11-17 23:59:58 +00002101 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00002102 if( pIn1->flags & MEM_Null ){
2103 c = pOp->p3;
drhf5905aa2002-05-26 20:54:33 +00002104 }else{
drhba0232a2005-06-06 17:27:19 +00002105#ifdef SQLITE_OMIT_FLOATING_POINT
shanefbd60f82009-02-04 03:59:25 +00002106 c = sqlite3VdbeIntValue(pIn1)!=0;
drhba0232a2005-06-06 17:27:19 +00002107#else
drh3c84ddf2008-01-09 02:15:38 +00002108 c = sqlite3VdbeRealValue(pIn1)!=0.0;
drhba0232a2005-06-06 17:27:19 +00002109#endif
drhf5905aa2002-05-26 20:54:33 +00002110 if( pOp->opcode==OP_IfNot ) c = !c;
2111 }
drh3c84ddf2008-01-09 02:15:38 +00002112 if( c ){
2113 pc = pOp->p2-1;
2114 }
drh5e00f6c2001-09-13 13:46:56 +00002115 break;
2116}
2117
drh830ecf92009-06-18 00:41:55 +00002118/* Opcode: IsNull P1 P2 * * *
drh477df4b2008-01-05 18:48:24 +00002119**
drh830ecf92009-06-18 00:41:55 +00002120** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002121*/
drh9cbf3422008-01-17 16:22:13 +00002122case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002123 pIn1 = &aMem[pOp->p1];
drh830ecf92009-06-18 00:41:55 +00002124 if( (pIn1->flags & MEM_Null)!=0 ){
2125 pc = pOp->p2 - 1;
2126 }
drh477df4b2008-01-05 18:48:24 +00002127 break;
2128}
2129
drh98757152008-01-09 23:04:12 +00002130/* Opcode: NotNull P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002131**
drh6a288a32008-01-07 19:20:24 +00002132** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002133*/
drh9cbf3422008-01-17 16:22:13 +00002134case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002135 pIn1 = &aMem[pOp->p1];
drh6a288a32008-01-07 19:20:24 +00002136 if( (pIn1->flags & MEM_Null)==0 ){
2137 pc = pOp->p2 - 1;
2138 }
drh5e00f6c2001-09-13 13:46:56 +00002139 break;
2140}
2141
drh3e9ca092009-09-08 01:14:48 +00002142/* Opcode: Column P1 P2 P3 P4 P5
danielk1977192ac1d2004-05-10 07:17:30 +00002143**
danielk1977cfcdaef2004-05-12 07:33:33 +00002144** Interpret the data that cursor P1 points to as a structure built using
2145** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002146** information about the format of the data.) Extract the P2-th column
2147** from this record. If there are less that (P2+1)
2148** values in the record, extract a NULL.
2149**
drh9cbf3422008-01-17 16:22:13 +00002150** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002151**
danielk19771f4aa332008-01-03 09:51:55 +00002152** If the column contains fewer than P2 fields, then extract a NULL. Or,
2153** if the P4 argument is a P4_MEM use the value of the P4 argument as
2154** the result.
drh3e9ca092009-09-08 01:14:48 +00002155**
2156** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2157** then the cache of the cursor is reset prior to extracting the column.
2158** The first OP_Column against a pseudo-table after the value of the content
2159** register has changed should have this bit set.
drha748fdc2012-03-28 01:34:47 +00002160**
drhdda5c082012-03-28 13:41:10 +00002161** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2162** the result is guaranteed to only be used as the argument of a length()
2163** or typeof() function, respectively. The loading of large blobs can be
2164** skipped for length() and all content loading can be skipped for typeof().
danielk1977192ac1d2004-05-10 07:17:30 +00002165*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002166case OP_Column: {
drh35cd6432009-06-05 14:17:21 +00002167 u32 payloadSize; /* Number of bytes in the record */
drh856c1032009-06-02 15:21:42 +00002168 i64 payloadSize64; /* Number of bytes in the record */
2169 int p1; /* P1 value of the opcode */
2170 int p2; /* column number to retrieve */
2171 VdbeCursor *pC; /* The VDBE cursor */
drhe61cffc2004-06-12 18:12:15 +00002172 char *zRec; /* Pointer to complete record-data */
drhd3194f52004-05-27 19:59:32 +00002173 BtCursor *pCrsr; /* The BTree cursor */
2174 u32 *aType; /* aType[i] holds the numeric type of the i-th column */
2175 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk197764202cf2008-11-17 15:31:47 +00002176 int nField; /* number of fields in the record */
danielk1977cfcdaef2004-05-12 07:33:33 +00002177 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002178 int i; /* Loop counter */
2179 char *zData; /* Part of the record being decoded */
drhd4e70eb2008-01-02 00:34:36 +00002180 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002181 Mem sMem; /* For storing the record being decoded */
drh35cd6432009-06-05 14:17:21 +00002182 u8 *zIdx; /* Index into header */
2183 u8 *zEndHdr; /* Pointer to first byte after the header */
2184 u32 offset; /* Offset into the data */
drh6658cd92010-02-05 14:12:53 +00002185 u32 szField; /* Number of bytes in the content of a field */
drh35cd6432009-06-05 14:17:21 +00002186 int szHdr; /* Size of the header size field at start of record */
2187 int avail; /* Number of bytes of available data */
drh5a077b72011-08-29 02:16:18 +00002188 u32 t; /* A type code from the record header */
drh3e9ca092009-09-08 01:14:48 +00002189 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002190
drh856c1032009-06-02 15:21:42 +00002191
2192 p1 = pOp->p1;
2193 p2 = pOp->p2;
2194 pC = 0;
drhb27b7f52008-12-10 18:03:45 +00002195 memset(&sMem, 0, sizeof(sMem));
drhd3194f52004-05-27 19:59:32 +00002196 assert( p1<p->nCursor );
drh9cbf3422008-01-17 16:22:13 +00002197 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00002198 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00002199 memAboutToChange(p, pDest);
shane36840fd2009-06-26 16:32:13 +00002200 zRec = 0;
danielk1977cfcdaef2004-05-12 07:33:33 +00002201
drhe61cffc2004-06-12 18:12:15 +00002202 /* This block sets the variable payloadSize to be the total number of
2203 ** bytes in the record.
2204 **
2205 ** zRec is set to be the complete text of the record if it is available.
drhb73857f2006-03-17 00:25:59 +00002206 ** The complete record text is always available for pseudo-tables
2207 ** If the record is stored in a cursor, the complete record text
2208 ** might be available in the pC->aRow cache. Or it might not be.
2209 ** If the data is unavailable, zRec is set to NULL.
drhd3194f52004-05-27 19:59:32 +00002210 **
2211 ** We also compute the number of columns in the record. For cursors,
drhdfe88ec2008-11-03 20:55:06 +00002212 ** the number of columns is stored in the VdbeCursor.nField element.
danielk1977cfcdaef2004-05-12 07:33:33 +00002213 */
drhb73857f2006-03-17 00:25:59 +00002214 pC = p->apCsr[p1];
drha5759672012-10-30 14:39:12 +00002215 assert( pC!=0 );
danielk19770817d0d2007-02-14 09:19:36 +00002216#ifndef SQLITE_OMIT_VIRTUALTABLE
2217 assert( pC->pVtabCursor==0 );
2218#endif
shane36840fd2009-06-26 16:32:13 +00002219 pCrsr = pC->pCursor;
2220 if( pCrsr!=0 ){
drhe61cffc2004-06-12 18:12:15 +00002221 /* The record is stored in a B-Tree */
drh536065a2005-01-26 21:55:31 +00002222 rc = sqlite3VdbeCursorMoveto(pC);
drh52f159e2005-01-27 00:33:21 +00002223 if( rc ) goto abort_due_to_error;
danielk1977192ac1d2004-05-10 07:17:30 +00002224 if( pC->nullRow ){
2225 payloadSize = 0;
drh76873ab2006-01-07 18:48:26 +00002226 }else if( pC->cacheStatus==p->cacheCtr ){
drh9188b382004-05-14 21:12:22 +00002227 payloadSize = pC->payloadSize;
drh2646da72005-12-09 20:02:05 +00002228 zRec = (char*)pC->aRow;
drhf0863fe2005-06-12 21:35:51 +00002229 }else if( pC->isIndex ){
drhea8ffdf2009-07-22 00:35:23 +00002230 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drhb07028f2011-10-14 21:49:18 +00002231 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
drhc27ae612009-07-14 18:35:44 +00002232 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhaa736092009-06-22 00:55:30 +00002233 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2234 ** payload size, so it is impossible for payloadSize64 to be
2235 ** larger than 32 bits. */
2236 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
drh35cd6432009-06-05 14:17:21 +00002237 payloadSize = (u32)payloadSize64;
danielk1977192ac1d2004-05-10 07:17:30 +00002238 }else{
drhea8ffdf2009-07-22 00:35:23 +00002239 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drhb07028f2011-10-14 21:49:18 +00002240 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &payloadSize);
drhea8ffdf2009-07-22 00:35:23 +00002241 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
danielk1977192ac1d2004-05-10 07:17:30 +00002242 }
drh4a6f3aa2011-08-28 00:19:26 +00002243 }else if( ALWAYS(pC->pseudoTableReg>0) ){
drha6c2ed92009-11-14 23:22:23 +00002244 pReg = &aMem[pC->pseudoTableReg];
drh21172c42012-10-30 00:29:07 +00002245 if( pC->multiPseudo ){
2246 sqlite3VdbeMemShallowCopy(pDest, pReg+p2, MEM_Ephem);
2247 Deephemeralize(pDest);
2248 goto op_column_out;
2249 }
drh3e9ca092009-09-08 01:14:48 +00002250 assert( pReg->flags & MEM_Blob );
drh2b4ded92010-09-27 21:09:31 +00002251 assert( memIsValid(pReg) );
drh3e9ca092009-09-08 01:14:48 +00002252 payloadSize = pReg->n;
2253 zRec = pReg->z;
2254 pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
danielk1977192ac1d2004-05-10 07:17:30 +00002255 assert( payloadSize==0 || zRec!=0 );
drh9a65f2c2009-06-22 19:05:40 +00002256 }else{
2257 /* Consider the row to be NULL */
2258 payloadSize = 0;
danielk1977192ac1d2004-05-10 07:17:30 +00002259 }
2260
drhe6f43fc2011-08-28 02:15:34 +00002261 /* If payloadSize is 0, then just store a NULL. This can happen because of
2262 ** nullRow or because of a corrupt database. */
danielk1977192ac1d2004-05-10 07:17:30 +00002263 if( payloadSize==0 ){
drhe6f43fc2011-08-28 02:15:34 +00002264 MemSetTypeFlag(pDest, MEM_Null);
drhd4e70eb2008-01-02 00:34:36 +00002265 goto op_column_out;
danielk1977192ac1d2004-05-10 07:17:30 +00002266 }
drh35cd6432009-06-05 14:17:21 +00002267 assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
2268 if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002269 goto too_big;
2270 }
danielk1977192ac1d2004-05-10 07:17:30 +00002271
shane36840fd2009-06-26 16:32:13 +00002272 nField = pC->nField;
drhd3194f52004-05-27 19:59:32 +00002273 assert( p2<nField );
danielk1977b4964b72004-05-18 01:23:38 +00002274
drh9188b382004-05-14 21:12:22 +00002275 /* Read and parse the table header. Store the results of the parse
2276 ** into the record header cache fields of the cursor.
danielk1977192ac1d2004-05-10 07:17:30 +00002277 */
danielk1977cd3e8f72008-03-25 09:47:35 +00002278 aType = pC->aType;
drha05a7222008-01-19 03:35:58 +00002279 if( pC->cacheStatus==p->cacheCtr ){
drhd3194f52004-05-27 19:59:32 +00002280 aOffset = pC->aOffset;
2281 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00002282 assert(aType);
drh856c1032009-06-02 15:21:42 +00002283 avail = 0;
drhb73857f2006-03-17 00:25:59 +00002284 pC->aOffset = aOffset = &aType[nField];
2285 pC->payloadSize = payloadSize;
2286 pC->cacheStatus = p->cacheCtr;
danielk1977192ac1d2004-05-10 07:17:30 +00002287
drhd3194f52004-05-27 19:59:32 +00002288 /* Figure out how many bytes are in the header */
danielk197784ac9d02004-05-18 09:58:06 +00002289 if( zRec ){
2290 zData = zRec;
2291 }else{
drhf0863fe2005-06-12 21:35:51 +00002292 if( pC->isIndex ){
drhe51c44f2004-05-30 20:46:09 +00002293 zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
drhd3194f52004-05-27 19:59:32 +00002294 }else{
drhe51c44f2004-05-30 20:46:09 +00002295 zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
drh9188b382004-05-14 21:12:22 +00002296 }
drhe61cffc2004-06-12 18:12:15 +00002297 /* If KeyFetch()/DataFetch() managed to get the entire payload,
2298 ** save the payload in the pC->aRow cache. That will save us from
2299 ** having to make additional calls to fetch the content portion of
2300 ** the record.
2301 */
drh35cd6432009-06-05 14:17:21 +00002302 assert( avail>=0 );
2303 if( payloadSize <= (u32)avail ){
drh2646da72005-12-09 20:02:05 +00002304 zRec = zData;
2305 pC->aRow = (u8*)zData;
drhe61cffc2004-06-12 18:12:15 +00002306 }else{
2307 pC->aRow = 0;
2308 }
drhd3194f52004-05-27 19:59:32 +00002309 }
drhdda5c082012-03-28 13:41:10 +00002310 /* The following assert is true in all cases except when
drh588f5bc2007-01-02 18:41:54 +00002311 ** the database file has been corrupted externally.
2312 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
drh35cd6432009-06-05 14:17:21 +00002313 szHdr = getVarint32((u8*)zData, offset);
2314
2315 /* Make sure a corrupt database has not given us an oversize header.
2316 ** Do this now to avoid an oversize memory allocation.
2317 **
2318 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2319 ** types use so much data space that there can only be 4096 and 32 of
2320 ** them, respectively. So the maximum header length results from a
2321 ** 3-byte type for each of the maximum of 32768 columns plus three
2322 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2323 */
2324 if( offset > 98307 ){
2325 rc = SQLITE_CORRUPT_BKPT;
2326 goto op_column_out;
2327 }
2328
2329 /* Compute in len the number of bytes of data we need to read in order
2330 ** to get nField type values. offset is an upper bound on this. But
2331 ** nField might be significantly less than the true number of columns
2332 ** in the table, and in that case, 5*nField+3 might be smaller than offset.
2333 ** We want to minimize len in order to limit the size of the memory
2334 ** allocation, especially if a corrupt database file has caused offset
2335 ** to be oversized. Offset is limited to 98307 above. But 98307 might
2336 ** still exceed Robson memory allocation limits on some configurations.
2337 ** On systems that cannot tolerate large memory allocations, nField*5+3
2338 ** will likely be much smaller since nField will likely be less than
2339 ** 20 or so. This insures that Robson memory allocation limits are
2340 ** not exceeded even for corrupt database files.
2341 */
2342 len = nField*5 + 3;
shane75ac1de2009-06-09 18:58:52 +00002343 if( len > (int)offset ) len = (int)offset;
drhe61cffc2004-06-12 18:12:15 +00002344
2345 /* The KeyFetch() or DataFetch() above are fast and will get the entire
2346 ** record header in most cases. But they will fail to get the complete
2347 ** record header if the record header does not fit on a single page
2348 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
2349 ** acquire the complete header text.
2350 */
drh35cd6432009-06-05 14:17:21 +00002351 if( !zRec && avail<len ){
danielk1977a7a8e142008-02-13 18:25:27 +00002352 sMem.flags = 0;
2353 sMem.db = 0;
drh35cd6432009-06-05 14:17:21 +00002354 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
danielk197784ac9d02004-05-18 09:58:06 +00002355 if( rc!=SQLITE_OK ){
danielk19773c9cc8d2005-01-17 03:40:08 +00002356 goto op_column_out;
drh9188b382004-05-14 21:12:22 +00002357 }
drhb6f54522004-05-20 02:42:16 +00002358 zData = sMem.z;
drh9188b382004-05-14 21:12:22 +00002359 }
drh35cd6432009-06-05 14:17:21 +00002360 zEndHdr = (u8 *)&zData[len];
2361 zIdx = (u8 *)&zData[szHdr];
drh9188b382004-05-14 21:12:22 +00002362
drhd3194f52004-05-27 19:59:32 +00002363 /* Scan the header and use it to fill in the aType[] and aOffset[]
2364 ** arrays. aType[i] will contain the type integer for the i-th
2365 ** column and aOffset[i] will contain the offset from the beginning
2366 ** of the record to the start of the data for the i-th column
drh9188b382004-05-14 21:12:22 +00002367 */
danielk1977dedf45b2006-01-13 17:12:01 +00002368 for(i=0; i<nField; i++){
2369 if( zIdx<zEndHdr ){
drh6658cd92010-02-05 14:12:53 +00002370 aOffset[i] = offset;
drh5a077b72011-08-29 02:16:18 +00002371 if( zIdx[0]<0x80 ){
2372 t = zIdx[0];
2373 zIdx++;
2374 }else{
2375 zIdx += sqlite3GetVarint32(zIdx, &t);
2376 }
2377 aType[i] = t;
2378 szField = sqlite3VdbeSerialTypeLen(t);
drh6658cd92010-02-05 14:12:53 +00002379 offset += szField;
2380 if( offset<szField ){ /* True if offset overflows */
2381 zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
2382 break;
2383 }
danielk1977dedf45b2006-01-13 17:12:01 +00002384 }else{
drhdda5c082012-03-28 13:41:10 +00002385 /* If i is less that nField, then there are fewer fields in this
danielk1977dedf45b2006-01-13 17:12:01 +00002386 ** record than SetNumColumns indicated there are columns in the
2387 ** table. Set the offset for any extra columns not present in
drhdda5c082012-03-28 13:41:10 +00002388 ** the record to 0. This tells code below to store the default value
2389 ** for the column instead of deserializing a value from the record.
danielk1977dedf45b2006-01-13 17:12:01 +00002390 */
2391 aOffset[i] = 0;
2392 }
drh9188b382004-05-14 21:12:22 +00002393 }
danielk19775f096132008-03-28 15:44:09 +00002394 sqlite3VdbeMemRelease(&sMem);
drhd3194f52004-05-27 19:59:32 +00002395 sMem.flags = MEM_Null;
2396
danielk19779792eef2006-01-13 15:58:43 +00002397 /* If we have read more header data than was contained in the header,
2398 ** or if the end of the last field appears to be past the end of the
shane2ca8bc02008-05-07 18:59:28 +00002399 ** record, or if the end of the last field appears to be before the end
2400 ** of the record (when all fields present), then we must be dealing
2401 ** with a corrupt database.
drhd3194f52004-05-27 19:59:32 +00002402 */
drh6658cd92010-02-05 14:12:53 +00002403 if( (zIdx > zEndHdr) || (offset > payloadSize)
2404 || (zIdx==zEndHdr && offset!=payloadSize) ){
drh49285702005-09-17 15:20:26 +00002405 rc = SQLITE_CORRUPT_BKPT;
danielk19773c9cc8d2005-01-17 03:40:08 +00002406 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002407 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002408 }
danielk1977192ac1d2004-05-10 07:17:30 +00002409
danielk197736963fd2005-02-19 08:18:05 +00002410 /* Get the column information. If aOffset[p2] is non-zero, then
2411 ** deserialize the value from the record. If aOffset[p2] is zero,
2412 ** then there are not enough fields in the record to satisfy the
drh66a51672008-01-03 00:01:23 +00002413 ** request. In this case, set the value NULL or to P4 if P4 is
drh29dda4a2005-07-21 18:23:20 +00002414 ** a pointer to a Mem object.
drh9188b382004-05-14 21:12:22 +00002415 */
danielk197736963fd2005-02-19 08:18:05 +00002416 if( aOffset[p2] ){
2417 assert( rc==SQLITE_OK );
2418 if( zRec ){
drhac5e7492012-03-28 16:14:50 +00002419 /* This is the common case where the whole row fits on a single page */
drhe4c88c02012-01-04 12:57:45 +00002420 VdbeMemRelease(pDest);
danielk1977808ec7c2008-07-29 10:18:57 +00002421 sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
danielk197736963fd2005-02-19 08:18:05 +00002422 }else{
drhac5e7492012-03-28 16:14:50 +00002423 /* This branch happens only when the row overflows onto multiple pages */
drhdda5c082012-03-28 13:41:10 +00002424 t = aType[p2];
drha748fdc2012-03-28 01:34:47 +00002425 if( (pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
drhdda5c082012-03-28 13:41:10 +00002426 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)
drha748fdc2012-03-28 01:34:47 +00002427 ){
2428 /* Content is irrelevant for the typeof() function and for
drhdda5c082012-03-28 13:41:10 +00002429 ** the length(X) function if X is a blob. So we might as well use
drha748fdc2012-03-28 01:34:47 +00002430 ** bogus content rather than reading content from disk. NULL works
2431 ** for text and blob and whatever is in the payloadSize64 variable
2432 ** will work for everything else. */
2433 zData = t<12 ? (char*)&payloadSize64 : 0;
2434 }else{
drhac5e7492012-03-28 16:14:50 +00002435 len = sqlite3VdbeSerialTypeLen(t);
drha748fdc2012-03-28 01:34:47 +00002436 sqlite3VdbeMemMove(&sMem, pDest);
2437 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex,
2438 &sMem);
2439 if( rc!=SQLITE_OK ){
2440 goto op_column_out;
2441 }
2442 zData = sMem.z;
danielk197736963fd2005-02-19 08:18:05 +00002443 }
drhdda5c082012-03-28 13:41:10 +00002444 sqlite3VdbeSerialGet((u8*)zData, t, pDest);
danielk19777701e812005-01-10 12:59:51 +00002445 }
drhd4e70eb2008-01-02 00:34:36 +00002446 pDest->enc = encoding;
danielk197736963fd2005-02-19 08:18:05 +00002447 }else{
danielk197760585dd2008-01-03 08:08:40 +00002448 if( pOp->p4type==P4_MEM ){
danielk19772dca4ac2008-01-03 11:50:29 +00002449 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
danielk1977aee18ef2005-03-09 12:26:50 +00002450 }else{
drhe6f43fc2011-08-28 02:15:34 +00002451 MemSetTypeFlag(pDest, MEM_Null);
danielk1977aee18ef2005-03-09 12:26:50 +00002452 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002453 }
drhfebe1062004-08-28 18:17:48 +00002454
2455 /* If we dynamically allocated space to hold the data (in the
2456 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
drhd4e70eb2008-01-02 00:34:36 +00002457 ** dynamically allocated space over to the pDest structure.
drhfebe1062004-08-28 18:17:48 +00002458 ** This prevents a memory copy.
2459 */
danielk19775f096132008-03-28 15:44:09 +00002460 if( sMem.zMalloc ){
2461 assert( sMem.z==sMem.zMalloc );
danielk1977a7a8e142008-02-13 18:25:27 +00002462 assert( !(pDest->flags & MEM_Dyn) );
2463 assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
2464 pDest->flags &= ~(MEM_Ephem|MEM_Static);
danielk19775f096132008-03-28 15:44:09 +00002465 pDest->flags |= MEM_Term;
danielk1977a7a8e142008-02-13 18:25:27 +00002466 pDest->z = sMem.z;
danielk19775f096132008-03-28 15:44:09 +00002467 pDest->zMalloc = sMem.zMalloc;
danielk1977b1bc9532004-05-22 03:05:33 +00002468 }
drhfebe1062004-08-28 18:17:48 +00002469
drhd4e70eb2008-01-02 00:34:36 +00002470 rc = sqlite3VdbeMemMakeWriteable(pDest);
drhd3194f52004-05-27 19:59:32 +00002471
danielk19773c9cc8d2005-01-17 03:40:08 +00002472op_column_out:
drhb7654112008-01-12 12:48:07 +00002473 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002474 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002475 break;
2476}
2477
danielk1977751de562008-04-18 09:01:15 +00002478/* Opcode: Affinity P1 P2 * P4 *
2479**
2480** Apply affinities to a range of P2 registers starting with P1.
2481**
2482** P4 is a string that is P2 characters long. The nth character of the
2483** string indicates the column affinity that should be used for the nth
2484** memory cell in the range.
2485*/
2486case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002487 const char *zAffinity; /* The affinity to be applied */
2488 char cAff; /* A single character of affinity */
danielk1977751de562008-04-18 09:01:15 +00002489
drh856c1032009-06-02 15:21:42 +00002490 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002491 assert( zAffinity!=0 );
2492 assert( zAffinity[pOp->p2]==0 );
2493 pIn1 = &aMem[pOp->p1];
2494 while( (cAff = *(zAffinity++))!=0 ){
2495 assert( pIn1 <= &p->aMem[p->nMem] );
drh2b4ded92010-09-27 21:09:31 +00002496 assert( memIsValid(pIn1) );
drh039fc322009-11-17 18:31:47 +00002497 ExpandBlob(pIn1);
2498 applyAffinity(pIn1, cAff, encoding);
2499 pIn1++;
danielk1977751de562008-04-18 09:01:15 +00002500 }
2501 break;
2502}
2503
drh1db639c2008-01-17 02:36:28 +00002504/* Opcode: MakeRecord P1 P2 P3 P4 *
drh7a224de2004-06-02 01:22:02 +00002505**
drh710c4842010-08-30 01:17:20 +00002506** Convert P2 registers beginning with P1 into the [record format]
2507** use as a data record in a database table or as a key
2508** in an index. The OP_Column opcode can decode the record later.
drh7a224de2004-06-02 01:22:02 +00002509**
danielk1977751de562008-04-18 09:01:15 +00002510** P4 may be a string that is P2 characters long. The nth character of the
drh7a224de2004-06-02 01:22:02 +00002511** string indicates the column affinity that should be used for the nth
drh9cbf3422008-01-17 16:22:13 +00002512** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002513**
drh8a512562005-11-14 22:29:05 +00002514** The mapping from character to affinity is given by the SQLITE_AFF_
2515** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002516**
drh66a51672008-01-03 00:01:23 +00002517** If P4 is NULL then all index fields have the affinity NONE.
drh7f057c92005-06-24 03:53:06 +00002518*/
drh1db639c2008-01-17 02:36:28 +00002519case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002520 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2521 Mem *pRec; /* The new record */
2522 u64 nData; /* Number of bytes of data space */
2523 int nHdr; /* Number of bytes of header space */
2524 i64 nByte; /* Data space required for this record */
2525 int nZero; /* Number of zero bytes at the end of the record */
2526 int nVarint; /* Number of bytes in a varint */
2527 u32 serial_type; /* Type field */
2528 Mem *pData0; /* First field to be combined into the record */
2529 Mem *pLast; /* Last field of the record */
2530 int nField; /* Number of fields in the record */
2531 char *zAffinity; /* The affinity string for the record */
2532 int file_format; /* File format to use for encoding */
2533 int i; /* Space used in zNewRecord[] */
2534 int len; /* Length of a field */
2535
drhf3218fe2004-05-28 08:21:02 +00002536 /* Assuming the record contains N fields, the record format looks
2537 ** like this:
2538 **
drh7a224de2004-06-02 01:22:02 +00002539 ** ------------------------------------------------------------------------
2540 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2541 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002542 **
drh9cbf3422008-01-17 16:22:13 +00002543 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2544 ** and so froth.
drhf3218fe2004-05-28 08:21:02 +00002545 **
2546 ** Each type field is a varint representing the serial type of the
2547 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002548 ** hdr-size field is also a varint which is the offset from the beginning
2549 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002550 */
drh856c1032009-06-02 15:21:42 +00002551 nData = 0; /* Number of bytes of data space */
2552 nHdr = 0; /* Number of bytes of header space */
drh856c1032009-06-02 15:21:42 +00002553 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002554 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002555 zAffinity = pOp->p4.z;
danielk19776ab3a2e2009-02-19 14:39:25 +00002556 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
drha6c2ed92009-11-14 23:22:23 +00002557 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002558 nField = pOp->p2;
2559 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002560 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002561
drh2b4ded92010-09-27 21:09:31 +00002562 /* Identify the output register */
2563 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2564 pOut = &aMem[pOp->p3];
2565 memAboutToChange(p, pOut);
2566
drhf3218fe2004-05-28 08:21:02 +00002567 /* Loop through the elements that will make up the record to figure
2568 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002569 */
drha2a49dc2008-01-02 14:28:13 +00002570 for(pRec=pData0; pRec<=pLast; pRec++){
drh2b4ded92010-09-27 21:09:31 +00002571 assert( memIsValid(pRec) );
drhd3d39e92004-05-20 22:16:29 +00002572 if( zAffinity ){
drhb21c8cd2007-08-21 19:33:56 +00002573 applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
drhd3d39e92004-05-20 22:16:29 +00002574 }
danielk1977d908f5a2007-05-11 07:08:28 +00002575 if( pRec->flags&MEM_Zero && pRec->n>0 ){
drha05a7222008-01-19 03:35:58 +00002576 sqlite3VdbeMemExpandBlob(pRec);
danielk1977d908f5a2007-05-11 07:08:28 +00002577 }
drhd946db02005-12-29 19:23:06 +00002578 serial_type = sqlite3VdbeSerialType(pRec, file_format);
drhae7e1512007-05-02 16:51:59 +00002579 len = sqlite3VdbeSerialTypeLen(serial_type);
2580 nData += len;
drhf3218fe2004-05-28 08:21:02 +00002581 nHdr += sqlite3VarintLen(serial_type);
drhfdf972a2007-05-02 13:30:27 +00002582 if( pRec->flags & MEM_Zero ){
2583 /* Only pure zero-filled BLOBs can be input to this Opcode.
2584 ** We do not allow blobs with a prefix and a zero-filled tail. */
drh8df32842008-12-09 02:51:23 +00002585 nZero += pRec->u.nZero;
drhae7e1512007-05-02 16:51:59 +00002586 }else if( len ){
drhfdf972a2007-05-02 13:30:27 +00002587 nZero = 0;
2588 }
danielk19778d059842004-05-12 11:24:02 +00002589 }
danielk19773d1bfea2004-05-14 11:00:53 +00002590
drhf3218fe2004-05-28 08:21:02 +00002591 /* Add the initial header varint and total the size */
drhcb9882a2005-03-17 03:15:40 +00002592 nHdr += nVarint = sqlite3VarintLen(nHdr);
2593 if( nVarint<sqlite3VarintLen(nHdr) ){
2594 nHdr++;
2595 }
drhfdf972a2007-05-02 13:30:27 +00002596 nByte = nHdr+nData-nZero;
drhbb4957f2008-03-20 14:03:29 +00002597 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002598 goto too_big;
2599 }
drhf3218fe2004-05-28 08:21:02 +00002600
danielk1977a7a8e142008-02-13 18:25:27 +00002601 /* Make sure the output register has a buffer large enough to store
2602 ** the new record. The output register (pOp->p3) is not allowed to
2603 ** be one of the input registers (because the following call to
2604 ** sqlite3VdbeMemGrow() could clobber the value before it is used).
2605 */
drh9c1905f2008-12-10 22:32:56 +00002606 if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002607 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002608 }
danielk1977a7a8e142008-02-13 18:25:27 +00002609 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002610
2611 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002612 i = putVarint32(zNewRecord, nHdr);
drha2a49dc2008-01-02 14:28:13 +00002613 for(pRec=pData0; pRec<=pLast; pRec++){
drhd946db02005-12-29 19:23:06 +00002614 serial_type = sqlite3VdbeSerialType(pRec, file_format);
shane3f8d5cf2008-04-24 19:15:09 +00002615 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
danielk19778d059842004-05-12 11:24:02 +00002616 }
drha2a49dc2008-01-02 14:28:13 +00002617 for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
drh9c1905f2008-12-10 22:32:56 +00002618 i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
drhf3218fe2004-05-28 08:21:02 +00002619 }
drhfdf972a2007-05-02 13:30:27 +00002620 assert( i==nByte );
drhf3218fe2004-05-28 08:21:02 +00002621
drh9cbf3422008-01-17 16:22:13 +00002622 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drh9c1905f2008-12-10 22:32:56 +00002623 pOut->n = (int)nByte;
danielk1977a7a8e142008-02-13 18:25:27 +00002624 pOut->flags = MEM_Blob | MEM_Dyn;
2625 pOut->xDel = 0;
drhfdf972a2007-05-02 13:30:27 +00002626 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002627 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002628 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002629 }
drh477df4b2008-01-05 18:48:24 +00002630 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
drh1013c932008-01-06 00:25:21 +00002631 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002632 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002633 break;
2634}
2635
danielk1977a5533162009-02-24 10:01:51 +00002636/* Opcode: Count P1 P2 * * *
2637**
2638** Store the number of entries (an integer value) in the table or index
2639** opened by cursor P1 in register P2
2640*/
2641#ifndef SQLITE_OMIT_BTREECOUNT
2642case OP_Count: { /* out2-prerelease */
2643 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002644 BtCursor *pCrsr;
2645
2646 pCrsr = p->apCsr[pOp->p1]->pCursor;
dana205a482011-08-27 18:48:57 +00002647 if( ALWAYS(pCrsr) ){
drh818e39a2009-04-02 20:27:28 +00002648 rc = sqlite3BtreeCount(pCrsr, &nEntry);
2649 }else{
2650 nEntry = 0;
2651 }
danielk1977a5533162009-02-24 10:01:51 +00002652 pOut->u.i = nEntry;
2653 break;
2654}
2655#endif
2656
danielk1977fd7f0452008-12-17 17:30:26 +00002657/* Opcode: Savepoint P1 * * P4 *
2658**
2659** Open, release or rollback the savepoint named by parameter P4, depending
2660** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2661** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2662*/
2663case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002664 int p1; /* Value of P1 operand */
2665 char *zName; /* Name of savepoint */
2666 int nName;
2667 Savepoint *pNew;
2668 Savepoint *pSavepoint;
2669 Savepoint *pTmp;
2670 int iSavepoint;
2671 int ii;
2672
2673 p1 = pOp->p1;
2674 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002675
2676 /* Assert that the p1 parameter is valid. Also that if there is no open
2677 ** transaction, then there cannot be any savepoints.
2678 */
2679 assert( db->pSavepoint==0 || db->autoCommit==0 );
2680 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2681 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2682 assert( checkSavepointCount(db) );
danc0537fe2013-06-28 19:41:43 +00002683 assert( p->bIsReader );
danielk1977fd7f0452008-12-17 17:30:26 +00002684
2685 if( p1==SAVEPOINT_BEGIN ){
drh4f7d3a52013-06-27 23:54:02 +00002686 if( db->nVdbeWrite>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002687 /* A new savepoint cannot be created if there are active write
2688 ** statements (i.e. open read/write incremental blob handles).
2689 */
2690 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
2691 "SQL statements in progress");
2692 rc = SQLITE_BUSY;
2693 }else{
drh856c1032009-06-02 15:21:42 +00002694 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002695
drhbe07ec52011-06-03 12:15:26 +00002696#ifndef SQLITE_OMIT_VIRTUALTABLE
dand9495cd2011-04-27 12:08:04 +00002697 /* This call is Ok even if this savepoint is actually a transaction
2698 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2699 ** If this is a transaction savepoint being opened, it is guaranteed
2700 ** that the db->aVTrans[] array is empty. */
2701 assert( db->autoCommit==0 || db->nVTrans==0 );
drha24bc9c2011-05-24 00:35:56 +00002702 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2703 db->nStatement+db->nSavepoint);
dand9495cd2011-04-27 12:08:04 +00002704 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh305ebab2011-05-26 14:19:14 +00002705#endif
dand9495cd2011-04-27 12:08:04 +00002706
danielk1977fd7f0452008-12-17 17:30:26 +00002707 /* Create a new savepoint structure. */
2708 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2709 if( pNew ){
2710 pNew->zName = (char *)&pNew[1];
2711 memcpy(pNew->zName, zName, nName+1);
2712
2713 /* If there is no open transaction, then mark this as a special
2714 ** "transaction savepoint". */
2715 if( db->autoCommit ){
2716 db->autoCommit = 0;
2717 db->isTransactionSavepoint = 1;
2718 }else{
2719 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002720 }
danielk1977fd7f0452008-12-17 17:30:26 +00002721
2722 /* Link the new savepoint into the database handle's list. */
2723 pNew->pNext = db->pSavepoint;
2724 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002725 pNew->nDeferredCons = db->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00002726 pNew->nDeferredImmCons = db->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002727 }
2728 }
2729 }else{
drh856c1032009-06-02 15:21:42 +00002730 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00002731
2732 /* Find the named savepoint. If there is no such savepoint, then an
2733 ** an error is returned to the user. */
2734 for(
drh856c1032009-06-02 15:21:42 +00002735 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002736 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00002737 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00002738 ){
2739 iSavepoint++;
2740 }
2741 if( !pSavepoint ){
2742 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
2743 rc = SQLITE_ERROR;
drh4f7d3a52013-06-27 23:54:02 +00002744 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
danielk1977fd7f0452008-12-17 17:30:26 +00002745 /* It is not possible to release (commit) a savepoint if there are
drh0f198a72012-02-13 16:43:16 +00002746 ** active write statements.
danielk1977fd7f0452008-12-17 17:30:26 +00002747 */
2748 sqlite3SetString(&p->zErrMsg, db,
drh0f198a72012-02-13 16:43:16 +00002749 "cannot release savepoint - SQL statements in progress"
danielk1977fd7f0452008-12-17 17:30:26 +00002750 );
2751 rc = SQLITE_BUSY;
2752 }else{
2753
2754 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00002755 ** and this is a RELEASE command, then the current transaction
2756 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00002757 */
2758 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2759 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00002760 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002761 goto vdbe_return;
2762 }
danielk1977fd7f0452008-12-17 17:30:26 +00002763 db->autoCommit = 1;
2764 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2765 p->pc = pc;
2766 db->autoCommit = 0;
2767 p->rc = rc = SQLITE_BUSY;
2768 goto vdbe_return;
2769 }
danielk197734cf35d2008-12-18 18:31:38 +00002770 db->isTransactionSavepoint = 0;
2771 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00002772 }else{
danielk1977fd7f0452008-12-17 17:30:26 +00002773 iSavepoint = db->nSavepoint - iSavepoint - 1;
drh31f10052012-03-31 17:17:26 +00002774 if( p1==SAVEPOINT_ROLLBACK ){
2775 for(ii=0; ii<db->nDb; ii++){
2776 sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT);
2777 }
drh0f198a72012-02-13 16:43:16 +00002778 }
2779 for(ii=0; ii<db->nDb; ii++){
danielk1977fd7f0452008-12-17 17:30:26 +00002780 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2781 if( rc!=SQLITE_OK ){
2782 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00002783 }
danielk1977fd7f0452008-12-17 17:30:26 +00002784 }
drh9f0bbf92009-01-02 21:08:09 +00002785 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002786 sqlite3ExpirePreparedStatements(db);
drh81028a42012-05-15 18:28:27 +00002787 sqlite3ResetAllSchemasOfConnection(db);
danc311fee2010-08-31 16:25:19 +00002788 db->flags = (db->flags | SQLITE_InternChanges);
danielk1977fd7f0452008-12-17 17:30:26 +00002789 }
2790 }
2791
2792 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2793 ** savepoints nested inside of the savepoint being operated on. */
2794 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00002795 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002796 db->pSavepoint = pTmp->pNext;
2797 sqlite3DbFree(db, pTmp);
2798 db->nSavepoint--;
2799 }
2800
dan1da40a32009-09-19 17:00:31 +00002801 /* If it is a RELEASE, then destroy the savepoint being operated on
2802 ** too. If it is a ROLLBACK TO, then set the number of deferred
2803 ** constraint violations present in the database to the value stored
2804 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00002805 if( p1==SAVEPOINT_RELEASE ){
2806 assert( pSavepoint==db->pSavepoint );
2807 db->pSavepoint = pSavepoint->pNext;
2808 sqlite3DbFree(db, pSavepoint);
2809 if( !isTransaction ){
2810 db->nSavepoint--;
2811 }
dan1da40a32009-09-19 17:00:31 +00002812 }else{
2813 db->nDeferredCons = pSavepoint->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00002814 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002815 }
dand9495cd2011-04-27 12:08:04 +00002816
2817 if( !isTransaction ){
2818 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2819 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2820 }
danielk1977fd7f0452008-12-17 17:30:26 +00002821 }
2822 }
2823
2824 break;
2825}
2826
drh98757152008-01-09 23:04:12 +00002827/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00002828**
2829** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00002830** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00002831** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2832** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00002833**
2834** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00002835*/
drh9cbf3422008-01-17 16:22:13 +00002836case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00002837 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00002838 int iRollback;
drh856c1032009-06-02 15:21:42 +00002839 int turnOnAC;
danielk19771d850a72004-05-31 08:26:49 +00002840
drh856c1032009-06-02 15:21:42 +00002841 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00002842 iRollback = pOp->p2;
drh856c1032009-06-02 15:21:42 +00002843 turnOnAC = desiredAutoCommit && !db->autoCommit;
drhad4a4b82008-11-05 16:37:34 +00002844 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00002845 assert( desiredAutoCommit==1 || iRollback==0 );
drh4f7d3a52013-06-27 23:54:02 +00002846 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
danc0537fe2013-06-28 19:41:43 +00002847 assert( p->bIsReader );
danielk197746c43ed2004-06-30 06:30:25 +00002848
drh0f198a72012-02-13 16:43:16 +00002849#if 0
drh4f7d3a52013-06-27 23:54:02 +00002850 if( turnOnAC && iRollback && db->nVdbeActive>1 ){
drhad4a4b82008-11-05 16:37:34 +00002851 /* If this instruction implements a ROLLBACK and other VMs are
danielk197746c43ed2004-06-30 06:30:25 +00002852 ** still running, and a transaction is active, return an error indicating
2853 ** that the other VMs must complete first.
2854 */
drhad4a4b82008-11-05 16:37:34 +00002855 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2856 "SQL statements in progress");
drh99dfe5e2008-10-30 15:03:15 +00002857 rc = SQLITE_BUSY;
drh0f198a72012-02-13 16:43:16 +00002858 }else
2859#endif
drh4f7d3a52013-06-27 23:54:02 +00002860 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){
drhad4a4b82008-11-05 16:37:34 +00002861 /* If this instruction implements a COMMIT and other VMs are writing
2862 ** return an error indicating that the other VMs must complete first.
2863 */
2864 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
2865 "SQL statements in progress");
2866 rc = SQLITE_BUSY;
2867 }else if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00002868 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00002869 assert( desiredAutoCommit==1 );
drh21021a52012-02-13 17:01:51 +00002870 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977f3f06bb2005-12-16 15:24:28 +00002871 db->autoCommit = 1;
dan32b09f22009-09-23 17:29:59 +00002872 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002873 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002874 }else{
shane7d3846a2008-12-11 02:58:26 +00002875 db->autoCommit = (u8)desiredAutoCommit;
danielk1977f3f06bb2005-12-16 15:24:28 +00002876 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
danielk1977f3f06bb2005-12-16 15:24:28 +00002877 p->pc = pc;
drh9c1905f2008-12-10 22:32:56 +00002878 db->autoCommit = (u8)(1-desiredAutoCommit);
drh900b31e2007-08-28 02:27:51 +00002879 p->rc = rc = SQLITE_BUSY;
2880 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002881 }
danielk19771d850a72004-05-31 08:26:49 +00002882 }
danielk1977bd434552009-03-18 10:33:00 +00002883 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00002884 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00002885 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00002886 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00002887 }else{
drh900b31e2007-08-28 02:27:51 +00002888 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00002889 }
drh900b31e2007-08-28 02:27:51 +00002890 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00002891 }else{
drhf089aa42008-07-08 19:34:06 +00002892 sqlite3SetString(&p->zErrMsg, db,
drhad4a4b82008-11-05 16:37:34 +00002893 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00002894 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00002895 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00002896
2897 rc = SQLITE_ERROR;
drh663fc632002-02-02 18:49:19 +00002898 }
2899 break;
2900}
2901
drh98757152008-01-09 23:04:12 +00002902/* Opcode: Transaction P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002903**
2904** Begin a transaction. The transaction ends when a Commit or Rollback
drh663fc632002-02-02 18:49:19 +00002905** opcode is encountered. Depending on the ON CONFLICT setting, the
2906** transaction might also be rolled back if an error is encountered.
drh5e00f6c2001-09-13 13:46:56 +00002907**
drh001bbcb2003-03-19 03:14:00 +00002908** P1 is the index of the database file on which the transaction is
2909** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00002910** file used for temporary tables. Indices of 2 or more are used for
2911** attached databases.
drhcabb0812002-09-14 13:47:32 +00002912**
drh80242052004-06-09 00:48:12 +00002913** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
danielk1977ee5741e2004-05-31 10:01:34 +00002914** obtained on the database file when a write-transaction is started. No
drh80242052004-06-09 00:48:12 +00002915** other process can start another write transaction while this transaction is
2916** underway. Starting a write transaction also creates a rollback journal. A
2917** write transaction must be started before any changes can be made to the
drhf7b54962013-05-28 12:11:54 +00002918** database. If P2 is greater than or equal to 2 then an EXCLUSIVE lock is
2919** also obtained on the file.
danielk1977ee5741e2004-05-31 10:01:34 +00002920**
dane0af83a2009-09-08 19:15:01 +00002921** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2922** true (this flag is set if the Vdbe may modify more than one row and may
2923** throw an ABORT exception), a statement transaction may also be opened.
2924** More specifically, a statement transaction is opened iff the database
2925** connection is currently not in autocommit mode, or if there are other
drha4510172012-02-02 15:50:17 +00002926** active statements. A statement transaction allows the changes made by this
dane0af83a2009-09-08 19:15:01 +00002927** VDBE to be rolled back after an error without having to roll back the
2928** entire transaction. If no error is encountered, the statement transaction
2929** will automatically commit when the VDBE halts.
2930**
danielk1977ee5741e2004-05-31 10:01:34 +00002931** If P2 is zero, then a read-lock is obtained on the database file.
drh5e00f6c2001-09-13 13:46:56 +00002932*/
drh9cbf3422008-01-17 16:22:13 +00002933case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00002934 Btree *pBt;
2935
drh1713afb2013-06-28 01:24:57 +00002936 assert( p->bIsReader );
drh9e92a472013-06-27 17:40:30 +00002937 assert( p->readOnly==0 || pOp->p2==0 );
drh653b82a2009-06-22 11:10:47 +00002938 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00002939 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh13447bf2013-07-10 13:33:49 +00002940 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
2941 rc = SQLITE_READONLY;
2942 goto abort_due_to_error;
2943 }
drh653b82a2009-06-22 11:10:47 +00002944 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00002945
danielk197724162fe2004-06-04 06:22:00 +00002946 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00002947 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
danielk197724162fe2004-06-04 06:22:00 +00002948 if( rc==SQLITE_BUSY ){
danielk19772a764eb2004-06-12 01:43:26 +00002949 p->pc = pc;
drh900b31e2007-08-28 02:27:51 +00002950 p->rc = rc = SQLITE_BUSY;
drh900b31e2007-08-28 02:27:51 +00002951 goto vdbe_return;
danielk197724162fe2004-06-04 06:22:00 +00002952 }
drh9e9f1bd2009-10-13 15:36:51 +00002953 if( rc!=SQLITE_OK ){
danielk197724162fe2004-06-04 06:22:00 +00002954 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00002955 }
dane0af83a2009-09-08 19:15:01 +00002956
2957 if( pOp->p2 && p->usesStmtJournal
danc0537fe2013-06-28 19:41:43 +00002958 && (db->autoCommit==0 || db->nVdbeRead>1)
dane0af83a2009-09-08 19:15:01 +00002959 ){
2960 assert( sqlite3BtreeIsInTrans(pBt) );
2961 if( p->iStatement==0 ){
2962 assert( db->nStatement>=0 && db->nSavepoint>=0 );
2963 db->nStatement++;
2964 p->iStatement = db->nSavepoint + db->nStatement;
2965 }
dana311b802011-04-26 19:21:34 +00002966
drh346506f2011-05-25 01:16:42 +00002967 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
dana311b802011-04-26 19:21:34 +00002968 if( rc==SQLITE_OK ){
2969 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
2970 }
dan1da40a32009-09-19 17:00:31 +00002971
2972 /* Store the current value of the database handles deferred constraint
2973 ** counter. If the statement transaction needs to be rolled back,
2974 ** the value of this counter needs to be restored too. */
2975 p->nStmtDefCons = db->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00002976 p->nStmtDefImmCons = db->nDeferredImmCons;
dane0af83a2009-09-08 19:15:01 +00002977 }
drhb86ccfb2003-01-28 23:13:10 +00002978 }
drh5e00f6c2001-09-13 13:46:56 +00002979 break;
2980}
2981
drhb1fdb2a2008-01-05 04:06:03 +00002982/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00002983**
drh9cbf3422008-01-17 16:22:13 +00002984** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00002985** P3==1 is the schema version. P3==2 is the database format.
2986** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00002987** the main database file and P1==1 is the database file used to store
2988** temporary tables.
drh4a324312001-12-21 14:30:42 +00002989**
drh50e5dad2001-09-15 00:57:28 +00002990** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00002991** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00002992** executing this instruction.
2993*/
drh4c583122008-01-04 22:01:03 +00002994case OP_ReadCookie: { /* out2-prerelease */
drhf328bc82004-05-10 23:29:49 +00002995 int iMeta;
drh856c1032009-06-02 15:21:42 +00002996 int iDb;
2997 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00002998
drh1713afb2013-06-28 01:24:57 +00002999 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00003000 iDb = pOp->p1;
3001 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00003002 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00003003 assert( iDb>=0 && iDb<db->nDb );
3004 assert( db->aDb[iDb].pBt!=0 );
drhdddd7792011-04-03 18:19:25 +00003005 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
danielk19770d19f7a2009-06-03 11:25:07 +00003006
danielk1977602b4662009-07-02 07:47:33 +00003007 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh4c583122008-01-04 22:01:03 +00003008 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00003009 break;
3010}
3011
drh98757152008-01-09 23:04:12 +00003012/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003013**
drh98757152008-01-09 23:04:12 +00003014** Write the content of register P3 (interpreted as an integer)
danielk19770d19f7a2009-06-03 11:25:07 +00003015** into cookie number P2 of database P1. P2==1 is the schema version.
3016** P2==2 is the database format. P2==3 is the recommended pager cache
3017** size, and so forth. P1==0 is the main database file and P1==1 is the
3018** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00003019**
3020** A transaction must be started before executing this opcode.
3021*/
drh9cbf3422008-01-17 16:22:13 +00003022case OP_SetCookie: { /* in3 */
drh3f7d4e42004-07-24 14:35:58 +00003023 Db *pDb;
drh4a324312001-12-21 14:30:42 +00003024 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00003025 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00003026 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh9e92a472013-06-27 17:40:30 +00003027 assert( p->readOnly==0 );
drh3f7d4e42004-07-24 14:35:58 +00003028 pDb = &db->aDb[pOp->p1];
3029 assert( pDb->pBt!=0 );
drh21206082011-04-04 18:22:02 +00003030 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drh3c657212009-11-17 23:59:58 +00003031 pIn3 = &aMem[pOp->p3];
drh98757152008-01-09 23:04:12 +00003032 sqlite3VdbeMemIntegerify(pIn3);
drha3b321d2004-05-11 09:31:31 +00003033 /* See note about index shifting on OP_ReadCookie */
danielk19770d19f7a2009-06-03 11:25:07 +00003034 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
3035 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00003036 /* When the schema cookie changes, record the new cookie internally */
drh9c1905f2008-12-10 22:32:56 +00003037 pDb->pSchema->schema_cookie = (int)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00003038 db->flags |= SQLITE_InternChanges;
danielk19770d19f7a2009-06-03 11:25:07 +00003039 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00003040 /* Record changes in the file format */
drh9c1905f2008-12-10 22:32:56 +00003041 pDb->pSchema->file_format = (u8)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00003042 }
drhfd426c62006-01-30 15:34:22 +00003043 if( pOp->p1==1 ){
3044 /* Invalidate all prepared statements whenever the TEMP database
3045 ** schema is changed. Ticket #1644 */
3046 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00003047 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00003048 }
drh50e5dad2001-09-15 00:57:28 +00003049 break;
3050}
3051
drhc2a75552011-03-18 21:55:46 +00003052/* Opcode: VerifyCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003053**
drh001bbcb2003-03-19 03:14:00 +00003054** Check the value of global database parameter number 0 (the
drhc2a75552011-03-18 21:55:46 +00003055** schema version) and make sure it is equal to P2 and that the
3056** generation counter on the local schema parse equals P3.
3057**
drh001bbcb2003-03-19 03:14:00 +00003058** P1 is the database number which is 0 for the main database file
3059** and 1 for the file holding temporary tables and some higher number
3060** for auxiliary databases.
drh50e5dad2001-09-15 00:57:28 +00003061**
3062** The cookie changes its value whenever the database schema changes.
drhb19a2bc2001-09-16 00:13:26 +00003063** This operation is used to detect when that the cookie has changed
drh50e5dad2001-09-15 00:57:28 +00003064** and that the current process needs to reread the schema.
3065**
3066** Either a transaction needs to have been started or an OP_Open needs
3067** to be executed (to establish a read lock) before this opcode is
3068** invoked.
3069*/
drh9cbf3422008-01-17 16:22:13 +00003070case OP_VerifyCookie: {
drhf328bc82004-05-10 23:29:49 +00003071 int iMeta;
drhc2a75552011-03-18 21:55:46 +00003072 int iGen;
drhc275b4e2004-07-19 17:25:24 +00003073 Btree *pBt;
drhc2a75552011-03-18 21:55:46 +00003074
drh001bbcb2003-03-19 03:14:00 +00003075 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00003076 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh21206082011-04-04 18:22:02 +00003077 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drh1713afb2013-06-28 01:24:57 +00003078 assert( p->bIsReader );
drhc275b4e2004-07-19 17:25:24 +00003079 pBt = db->aDb[pOp->p1].pBt;
3080 if( pBt ){
danielk1977602b4662009-07-02 07:47:33 +00003081 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
drhc2a75552011-03-18 21:55:46 +00003082 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
drhc275b4e2004-07-19 17:25:24 +00003083 }else{
drhfcd71b62011-04-05 22:08:24 +00003084 iGen = iMeta = 0;
drhc275b4e2004-07-19 17:25:24 +00003085 }
drhc2a75552011-03-18 21:55:46 +00003086 if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){
drh633e6d52008-07-28 19:34:53 +00003087 sqlite3DbFree(db, p->zErrMsg);
danielk1977a1644fd2007-08-29 12:31:25 +00003088 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
danielk1977896e7922007-04-17 08:32:33 +00003089 /* If the schema-cookie from the database file matches the cookie
3090 ** stored with the in-memory representation of the schema, do
3091 ** not reload the schema from the database file.
3092 **
shane21e7feb2008-05-30 15:59:49 +00003093 ** If virtual-tables are in use, this is not just an optimization.
danielk1977896e7922007-04-17 08:32:33 +00003094 ** Often, v-tables store their data in other SQLite tables, which
3095 ** are queried from within xNext() and other v-table methods using
3096 ** prepared queries. If such a query is out-of-date, we do not want to
3097 ** discard the database schema, as the user code implementing the
3098 ** v-table would have to be ready for the sqlite3_vtab structure itself
3099 ** to be invalidated whenever sqlite3_step() is called from within
3100 ** a v-table method.
3101 */
3102 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
drh81028a42012-05-15 18:28:27 +00003103 sqlite3ResetOneSchema(db, pOp->p1);
danielk1977896e7922007-04-17 08:32:33 +00003104 }
3105
drh5b6c5452011-02-22 03:34:56 +00003106 p->expired = 1;
drh50e5dad2001-09-15 00:57:28 +00003107 rc = SQLITE_SCHEMA;
3108 }
3109 break;
3110}
3111
drh98757152008-01-09 23:04:12 +00003112/* Opcode: OpenRead P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003113**
drhecdc7532001-09-23 02:35:53 +00003114** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00003115** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00003116** P3==0 means the main database, P3==1 means the database used for
3117** temporary tables, and P3>1 means used the corresponding attached
3118** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00003119** values need not be contiguous but all P1 values should be small integers.
3120** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00003121**
drh98757152008-01-09 23:04:12 +00003122** If P5!=0 then use the content of register P2 as the root page, not
3123** the value of P2 itself.
drh5edc3122001-09-13 21:53:09 +00003124**
drhb19a2bc2001-09-16 00:13:26 +00003125** There will be a read lock on the database whenever there is an
3126** open cursor. If the database was unlocked prior to this instruction
3127** then a read lock is acquired as part of this instruction. A read
3128** lock allows other processes to read the database but prohibits
3129** any other process from modifying the database. The read lock is
3130** released when all cursors are closed. If this instruction attempts
3131** to get a read lock but fails, the script terminates with an
3132** SQLITE_BUSY error code.
3133**
danielk1977d336e222009-02-20 10:58:41 +00003134** The P4 value may be either an integer (P4_INT32) or a pointer to
3135** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3136** structure, then said structure defines the content and collating
3137** sequence of the index being opened. Otherwise, if P4 is an integer
3138** value, it is set to the number of columns in the table.
drhf57b3392001-10-08 13:22:32 +00003139**
drh001bbcb2003-03-19 03:14:00 +00003140** See also OpenWrite.
drh5e00f6c2001-09-13 13:46:56 +00003141*/
drh98757152008-01-09 23:04:12 +00003142/* Opcode: OpenWrite P1 P2 P3 P4 P5
drhecdc7532001-09-23 02:35:53 +00003143**
3144** Open a read/write cursor named P1 on the table or index whose root
drh98757152008-01-09 23:04:12 +00003145** page is P2. Or if P5!=0 use the content of register P2 to find the
3146** root page.
drhecdc7532001-09-23 02:35:53 +00003147**
danielk1977d336e222009-02-20 10:58:41 +00003148** The P4 value may be either an integer (P4_INT32) or a pointer to
3149** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3150** structure, then said structure defines the content and collating
3151** sequence of the index being opened. Otherwise, if P4 is an integer
drh35cd6432009-06-05 14:17:21 +00003152** value, it is set to the number of columns in the table, or to the
3153** largest index of any column of the table that is actually used.
jplyon5a564222003-06-02 06:15:58 +00003154**
drh001bbcb2003-03-19 03:14:00 +00003155** This instruction works just like OpenRead except that it opens the cursor
drhecdc7532001-09-23 02:35:53 +00003156** in read/write mode. For a given table, there can be one or more read-only
3157** cursors or a single read/write cursor but not both.
drhf57b3392001-10-08 13:22:32 +00003158**
drh001bbcb2003-03-19 03:14:00 +00003159** See also OpenRead.
drhecdc7532001-09-23 02:35:53 +00003160*/
drh9cbf3422008-01-17 16:22:13 +00003161case OP_OpenRead:
3162case OP_OpenWrite: {
drh856c1032009-06-02 15:21:42 +00003163 int nField;
3164 KeyInfo *pKeyInfo;
drh856c1032009-06-02 15:21:42 +00003165 int p2;
3166 int iDb;
drhf57b3392001-10-08 13:22:32 +00003167 int wrFlag;
3168 Btree *pX;
drhdfe88ec2008-11-03 20:55:06 +00003169 VdbeCursor *pCur;
drhd946db02005-12-29 19:23:06 +00003170 Db *pDb;
drh856c1032009-06-02 15:21:42 +00003171
dan428c2182012-08-06 18:50:11 +00003172 assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
3173 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
drh1713afb2013-06-28 01:24:57 +00003174 assert( p->bIsReader );
drh9e92a472013-06-27 17:40:30 +00003175 assert( pOp->opcode==OP_OpenRead || p->readOnly==0 );
dan428c2182012-08-06 18:50:11 +00003176
danfa401de2009-10-16 14:55:03 +00003177 if( p->expired ){
3178 rc = SQLITE_ABORT;
3179 break;
3180 }
3181
drh856c1032009-06-02 15:21:42 +00003182 nField = 0;
3183 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00003184 p2 = pOp->p2;
3185 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00003186 assert( iDb>=0 && iDb<db->nDb );
drhdddd7792011-04-03 18:19:25 +00003187 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
drhd946db02005-12-29 19:23:06 +00003188 pDb = &db->aDb[iDb];
3189 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00003190 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00003191 if( pOp->opcode==OP_OpenWrite ){
3192 wrFlag = 1;
drh21206082011-04-04 18:22:02 +00003193 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
danielk1977da184232006-01-05 11:34:32 +00003194 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3195 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00003196 }
3197 }else{
3198 wrFlag = 0;
3199 }
dan428c2182012-08-06 18:50:11 +00003200 if( pOp->p5 & OPFLAG_P2ISREG ){
drh9cbf3422008-01-17 16:22:13 +00003201 assert( p2>0 );
3202 assert( p2<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00003203 pIn2 = &aMem[p2];
drh2b4ded92010-09-27 21:09:31 +00003204 assert( memIsValid(pIn2) );
3205 assert( (pIn2->flags & MEM_Int)!=0 );
drh9cbf3422008-01-17 16:22:13 +00003206 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003207 p2 = (int)pIn2->u.i;
drh9a65f2c2009-06-22 19:05:40 +00003208 /* The p2 value always comes from a prior OP_CreateTable opcode and
3209 ** that opcode will always set the p2 value to 2 or more or else fail.
3210 ** If there were a failure, the prepared statement would have halted
3211 ** before reaching this instruction. */
drh27731d72009-06-22 12:05:10 +00003212 if( NEVER(p2<2) ) {
shanedcc50b72008-11-13 18:29:50 +00003213 rc = SQLITE_CORRUPT_BKPT;
3214 goto abort_due_to_error;
3215 }
drh5edc3122001-09-13 21:53:09 +00003216 }
danielk1977d336e222009-02-20 10:58:41 +00003217 if( pOp->p4type==P4_KEYINFO ){
3218 pKeyInfo = pOp->p4.pKeyInfo;
3219 pKeyInfo->enc = ENC(p->db);
3220 nField = pKeyInfo->nField+1;
3221 }else if( pOp->p4type==P4_INT32 ){
3222 nField = pOp->p4.i;
3223 }
drh653b82a2009-06-22 11:10:47 +00003224 assert( pOp->p1>=0 );
3225 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
drh4774b132004-06-12 20:12:51 +00003226 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003227 pCur->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003228 pCur->isOrdered = 1;
danielk1977d336e222009-02-20 10:58:41 +00003229 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3230 pCur->pKeyInfo = pKeyInfo;
dan428c2182012-08-06 18:50:11 +00003231 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3232 sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));
danielk1977d336e222009-02-20 10:58:41 +00003233
dana205a482011-08-27 18:48:57 +00003234 /* Since it performs no memory allocation or IO, the only value that
3235 ** sqlite3BtreeCursor() may return is SQLITE_OK. */
3236 assert( rc==SQLITE_OK );
danielk1977172114a2009-07-07 15:47:12 +00003237
3238 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
3239 ** SQLite used to check if the root-page flags were sane at this point
3240 ** and report database corruption if they were not, but this check has
3241 ** since moved into the btree layer. */
3242 pCur->isTable = pOp->p4type!=P4_KEYINFO;
3243 pCur->isIndex = !pCur->isTable;
drh5e00f6c2001-09-13 13:46:56 +00003244 break;
3245}
3246
drh2a5d9902011-08-26 00:34:45 +00003247/* Opcode: OpenEphemeral P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003248**
drhb9bb7c12006-06-11 23:41:55 +00003249** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003250** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003251** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003252** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003253**
drh25d3adb2010-04-05 15:11:08 +00003254** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003255** The cursor points to a BTree table if P4==0 and to a BTree index
3256** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003257** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003258**
3259** This opcode was once called OpenTemp. But that created
3260** confusion because the term "temp table", might refer either
3261** to a TEMP table at the SQL level, or to a table opened by
3262** this opcode. Then this opcode was call OpenVirtual. But
3263** that created confusion with the whole virtual-table idea.
drh2a5d9902011-08-26 00:34:45 +00003264**
3265** The P5 parameter can be a mask of the BTREE_* flags defined
3266** in btree.h. These flags control aspects of the operation of
3267** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3268** added automatically.
drh5e00f6c2001-09-13 13:46:56 +00003269*/
drha21a64d2010-04-06 22:33:55 +00003270/* Opcode: OpenAutoindex P1 P2 * P4 *
3271**
3272** This opcode works the same as OP_OpenEphemeral. It has a
3273** different name to distinguish its use. Tables created using
3274** by this opcode will be used for automatically created transient
3275** indices in joins.
3276*/
3277case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003278case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003279 VdbeCursor *pCx;
drhd4187c72010-08-30 22:15:45 +00003280 static const int vfsFlags =
drh33f4e022007-09-03 15:19:34 +00003281 SQLITE_OPEN_READWRITE |
3282 SQLITE_OPEN_CREATE |
3283 SQLITE_OPEN_EXCLUSIVE |
3284 SQLITE_OPEN_DELETEONCLOSE |
3285 SQLITE_OPEN_TRANSIENT_DB;
3286
drh653b82a2009-06-22 11:10:47 +00003287 assert( pOp->p1>=0 );
3288 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
drh4774b132004-06-12 20:12:51 +00003289 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003290 pCx->nullRow = 1;
dan689ab892011-08-12 15:02:00 +00003291 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3292 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
drh5e00f6c2001-09-13 13:46:56 +00003293 if( rc==SQLITE_OK ){
danielk197740b38dc2004-06-26 08:38:24 +00003294 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
drh5e00f6c2001-09-13 13:46:56 +00003295 }
3296 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003297 /* If a transient index is required, create it by calling
drhd4187c72010-08-30 22:15:45 +00003298 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
danielk19774adee202004-05-08 08:23:19 +00003299 ** opening it. If a transient table is required, just use the
drhd4187c72010-08-30 22:15:45 +00003300 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003301 */
danielk19772dca4ac2008-01-03 11:50:29 +00003302 if( pOp->p4.pKeyInfo ){
drhc6b52df2002-01-04 03:09:29 +00003303 int pgno;
drh66a51672008-01-03 00:01:23 +00003304 assert( pOp->p4type==P4_KEYINFO );
drhe1b4f0f2011-06-29 17:11:39 +00003305 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
drhc6b52df2002-01-04 03:09:29 +00003306 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003307 assert( pgno==MASTER_ROOT+1 );
drh1e968a02008-03-25 00:22:21 +00003308 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
danielk1977cd3e8f72008-03-25 09:47:35 +00003309 (KeyInfo*)pOp->p4.z, pCx->pCursor);
danielk19772dca4ac2008-01-03 11:50:29 +00003310 pCx->pKeyInfo = pOp->p4.pKeyInfo;
dan689ab892011-08-12 15:02:00 +00003311 pCx->pKeyInfo->enc = ENC(p->db);
drhc6b52df2002-01-04 03:09:29 +00003312 }
drhf0863fe2005-06-12 21:35:51 +00003313 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003314 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00003315 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
drhf0863fe2005-06-12 21:35:51 +00003316 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003317 }
drh5e00f6c2001-09-13 13:46:56 +00003318 }
drhd4187c72010-08-30 22:15:45 +00003319 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
drhf0863fe2005-06-12 21:35:51 +00003320 pCx->isIndex = !pCx->isTable;
dan5134d132011-09-02 10:31:11 +00003321 break;
3322}
3323
drhfc5e5462012-12-03 17:04:40 +00003324/* Opcode: SorterOpen P1 P2 * P4 *
dan5134d132011-09-02 10:31:11 +00003325**
3326** This opcode works like OP_OpenEphemeral except that it opens
3327** a transient index that is specifically designed to sort large
3328** tables using an external merge-sort algorithm.
3329*/
drhca892a72011-09-03 00:17:51 +00003330case OP_SorterOpen: {
dan5134d132011-09-02 10:31:11 +00003331 VdbeCursor *pCx;
drh3a949872012-09-18 13:20:13 +00003332
dan5134d132011-09-02 10:31:11 +00003333 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3334 if( pCx==0 ) goto no_mem;
3335 pCx->pKeyInfo = pOp->p4.pKeyInfo;
3336 pCx->pKeyInfo->enc = ENC(p->db);
3337 pCx->isSorter = 1;
3338 rc = sqlite3VdbeSorterInit(db, pCx);
drh5e00f6c2001-09-13 13:46:56 +00003339 break;
3340}
3341
drh980db4b2012-10-30 14:44:14 +00003342/* Opcode: OpenPseudo P1 P2 P3 * P5
drh70ce3f02003-04-15 19:22:22 +00003343**
3344** Open a new cursor that points to a fake table that contains a single
drh3e9ca092009-09-08 01:14:48 +00003345** row of data. The content of that one row in the content of memory
drh21172c42012-10-30 00:29:07 +00003346** register P2 when P5==0. In other words, cursor P1 becomes an alias for the
3347** MEM_Blob content contained in register P2. When P5==1, then the
3348** row is represented by P3 consecutive registers beginning with P2.
drh70ce3f02003-04-15 19:22:22 +00003349**
drh2d8d7ce2010-02-15 15:17:05 +00003350** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00003351** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003352** individual columns using the OP_Column opcode. The OP_Column opcode
3353** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003354**
3355** P3 is the number of fields in the records that will be stored by
3356** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003357*/
drh9cbf3422008-01-17 16:22:13 +00003358case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003359 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003360
drh653b82a2009-06-22 11:10:47 +00003361 assert( pOp->p1>=0 );
3362 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
drh4774b132004-06-12 20:12:51 +00003363 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003364 pCx->nullRow = 1;
drh3e9ca092009-09-08 01:14:48 +00003365 pCx->pseudoTableReg = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003366 pCx->isTable = 1;
3367 pCx->isIndex = 0;
drh21172c42012-10-30 00:29:07 +00003368 pCx->multiPseudo = pOp->p5;
drh70ce3f02003-04-15 19:22:22 +00003369 break;
3370}
3371
drh98757152008-01-09 23:04:12 +00003372/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003373**
3374** Close a cursor previously opened as P1. If P1 is not
3375** currently open, this instruction is a no-op.
3376*/
drh9cbf3422008-01-17 16:22:13 +00003377case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003378 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3379 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3380 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003381 break;
3382}
3383
drh959403f2008-12-12 17:56:16 +00003384/* Opcode: SeekGe P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003385**
danielk1977b790c6c2008-04-18 10:25:24 +00003386** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003387** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003388** to an SQL index, then P3 is the first in an array of P4 registers
3389** that are used as an unpacked index key.
3390**
3391** Reposition cursor P1 so that it points to the smallest entry that
3392** is greater than or equal to the key value. If there are no records
3393** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003394**
drh959403f2008-12-12 17:56:16 +00003395** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003396*/
drh959403f2008-12-12 17:56:16 +00003397/* Opcode: SeekGt P1 P2 P3 P4 *
drh7cf6e4d2004-05-19 14:56:55 +00003398**
danielk1977b790c6c2008-04-18 10:25:24 +00003399** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003400** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003401** to an SQL index, then P3 is the first in an array of P4 registers
3402** that are used as an unpacked index key.
3403**
3404** Reposition cursor P1 so that it points to the smallest entry that
3405** is greater than the key value. If there are no records greater than
3406** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003407**
drh959403f2008-12-12 17:56:16 +00003408** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003409*/
drh959403f2008-12-12 17:56:16 +00003410/* Opcode: SeekLt P1 P2 P3 P4 *
drhc045ec52002-12-04 20:01:06 +00003411**
danielk1977b790c6c2008-04-18 10:25:24 +00003412** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003413** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003414** to an SQL index, then P3 is the first in an array of P4 registers
3415** that are used as an unpacked index key.
3416**
3417** Reposition cursor P1 so that it points to the largest entry that
3418** is less than the key value. If there are no records less than
3419** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003420**
drh959403f2008-12-12 17:56:16 +00003421** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003422*/
drh959403f2008-12-12 17:56:16 +00003423/* Opcode: SeekLe P1 P2 P3 P4 *
danielk19773d1bfea2004-05-14 11:00:53 +00003424**
danielk1977b790c6c2008-04-18 10:25:24 +00003425** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003426** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003427** to an SQL index, then P3 is the first in an array of P4 registers
3428** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003429**
danielk1977b790c6c2008-04-18 10:25:24 +00003430** Reposition cursor P1 so that it points to the largest entry that
3431** is less than or equal to the key value. If there are no records
3432** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003433**
drh959403f2008-12-12 17:56:16 +00003434** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003435*/
drh959403f2008-12-12 17:56:16 +00003436case OP_SeekLt: /* jump, in3 */
3437case OP_SeekLe: /* jump, in3 */
3438case OP_SeekGe: /* jump, in3 */
3439case OP_SeekGt: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003440 int res;
3441 int oc;
drhdfe88ec2008-11-03 20:55:06 +00003442 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003443 UnpackedRecord r;
3444 int nField;
3445 i64 iKey; /* The rowid we are to seek to */
drh80ff32f2001-11-04 18:32:46 +00003446
drh653b82a2009-06-22 11:10:47 +00003447 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003448 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003449 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003450 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003451 assert( pC->pseudoTableReg==0 );
drh1f350122009-11-13 20:52:43 +00003452 assert( OP_SeekLe == OP_SeekLt+1 );
3453 assert( OP_SeekGe == OP_SeekLt+2 );
3454 assert( OP_SeekGt == OP_SeekLt+3 );
drhd4187c72010-08-30 22:15:45 +00003455 assert( pC->isOrdered );
dana205a482011-08-27 18:48:57 +00003456 if( ALWAYS(pC->pCursor!=0) ){
drh7cf6e4d2004-05-19 14:56:55 +00003457 oc = pOp->opcode;
drha11846b2004-01-07 18:52:56 +00003458 pC->nullRow = 0;
drhf0863fe2005-06-12 21:35:51 +00003459 if( pC->isTable ){
drh959403f2008-12-12 17:56:16 +00003460 /* The input value in P3 might be of any type: integer, real, string,
3461 ** blob, or NULL. But it needs to be an integer before we can do
3462 ** the seek, so covert it. */
drh3c657212009-11-17 23:59:58 +00003463 pIn3 = &aMem[pOp->p3];
drh959403f2008-12-12 17:56:16 +00003464 applyNumericAffinity(pIn3);
3465 iKey = sqlite3VdbeIntValue(pIn3);
3466 pC->rowidIsValid = 0;
3467
3468 /* If the P3 value could not be converted into an integer without
3469 ** loss of information, then special processing is required... */
3470 if( (pIn3->flags & MEM_Int)==0 ){
3471 if( (pIn3->flags & MEM_Real)==0 ){
3472 /* If the P3 value cannot be converted into any kind of a number,
3473 ** then the seek is not possible, so jump to P2 */
3474 pc = pOp->p2 - 1;
3475 break;
3476 }
3477 /* If we reach this point, then the P3 value must be a floating
3478 ** point number. */
3479 assert( (pIn3->flags & MEM_Real)!=0 );
3480
3481 if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
drhaa736092009-06-22 00:55:30 +00003482 /* The P3 value is too large in magnitude to be expressed as an
drh959403f2008-12-12 17:56:16 +00003483 ** integer. */
3484 res = 1;
3485 if( pIn3->r<0 ){
drh1f350122009-11-13 20:52:43 +00003486 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
drh959403f2008-12-12 17:56:16 +00003487 rc = sqlite3BtreeFirst(pC->pCursor, &res);
3488 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3489 }
3490 }else{
drh1f350122009-11-13 20:52:43 +00003491 if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe );
drh959403f2008-12-12 17:56:16 +00003492 rc = sqlite3BtreeLast(pC->pCursor, &res);
3493 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3494 }
3495 }
3496 if( res ){
3497 pc = pOp->p2 - 1;
3498 }
3499 break;
3500 }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
3501 /* Use the ceiling() function to convert real->int */
3502 if( pIn3->r > (double)iKey ) iKey++;
3503 }else{
3504 /* Use the floor() function to convert real->int */
3505 assert( oc==OP_SeekLe || oc==OP_SeekGt );
3506 if( pIn3->r < (double)iKey ) iKey--;
3507 }
3508 }
drhe63d9992008-08-13 19:11:48 +00003509 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
danielk197728129562005-01-11 10:25:06 +00003510 if( rc!=SQLITE_OK ){
3511 goto abort_due_to_error;
3512 }
drh959403f2008-12-12 17:56:16 +00003513 if( res==0 ){
3514 pC->rowidIsValid = 1;
3515 pC->lastRowid = iKey;
3516 }
drh5e00f6c2001-09-13 13:46:56 +00003517 }else{
drh856c1032009-06-02 15:21:42 +00003518 nField = pOp->p4.i;
danielk1977b790c6c2008-04-18 10:25:24 +00003519 assert( pOp->p4type==P4_INT32 );
3520 assert( nField>0 );
3521 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00003522 r.nField = (u16)nField;
drh1f350122009-11-13 20:52:43 +00003523
3524 /* The next line of code computes as follows, only faster:
3525 ** if( oc==OP_SeekGt || oc==OP_SeekLe ){
3526 ** r.flags = UNPACKED_INCRKEY;
3527 ** }else{
3528 ** r.flags = 0;
3529 ** }
3530 */
danfbfe3882013-04-08 10:38:57 +00003531 r.flags = (u8)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
drh1f350122009-11-13 20:52:43 +00003532 assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
3533 assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
3534 assert( oc!=OP_SeekGe || r.flags==0 );
3535 assert( oc!=OP_SeekLt || r.flags==0 );
3536
drha6c2ed92009-11-14 23:22:23 +00003537 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00003538#ifdef SQLITE_DEBUG
3539 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3540#endif
drh039fc322009-11-17 18:31:47 +00003541 ExpandBlob(r.aMem);
drhe63d9992008-08-13 19:11:48 +00003542 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
danielk197728129562005-01-11 10:25:06 +00003543 if( rc!=SQLITE_OK ){
3544 goto abort_due_to_error;
3545 }
drhf0863fe2005-06-12 21:35:51 +00003546 pC->rowidIsValid = 0;
drh5e00f6c2001-09-13 13:46:56 +00003547 }
drha11846b2004-01-07 18:52:56 +00003548 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003549 pC->cacheStatus = CACHE_STALE;
drh0f7eb612006-08-08 13:51:43 +00003550#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +00003551 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00003552#endif
drh1f350122009-11-13 20:52:43 +00003553 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
drh959403f2008-12-12 17:56:16 +00003554 if( res<0 || (res==0 && oc==OP_SeekGt) ){
danielk197728129562005-01-11 10:25:06 +00003555 rc = sqlite3BtreeNext(pC->pCursor, &res);
danielk197701427a62005-01-11 13:02:33 +00003556 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhf0863fe2005-06-12 21:35:51 +00003557 pC->rowidIsValid = 0;
drh1af3fdb2004-07-18 21:33:01 +00003558 }else{
3559 res = 0;
drh8721ce42001-11-07 14:22:00 +00003560 }
drh7cf6e4d2004-05-19 14:56:55 +00003561 }else{
drh959403f2008-12-12 17:56:16 +00003562 assert( oc==OP_SeekLt || oc==OP_SeekLe );
3563 if( res>0 || (res==0 && oc==OP_SeekLt) ){
danielk197701427a62005-01-11 13:02:33 +00003564 rc = sqlite3BtreePrevious(pC->pCursor, &res);
3565 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhf0863fe2005-06-12 21:35:51 +00003566 pC->rowidIsValid = 0;
drh1a844c32002-12-04 22:29:28 +00003567 }else{
3568 /* res might be negative because the table is empty. Check to
3569 ** see if this is the case.
3570 */
drhf328bc82004-05-10 23:29:49 +00003571 res = sqlite3BtreeEof(pC->pCursor);
drh1a844c32002-12-04 22:29:28 +00003572 }
drh1af3fdb2004-07-18 21:33:01 +00003573 }
drh91fd4d42008-01-19 20:11:25 +00003574 assert( pOp->p2>0 );
drh1af3fdb2004-07-18 21:33:01 +00003575 if( res ){
drh91fd4d42008-01-19 20:11:25 +00003576 pc = pOp->p2 - 1;
drh8721ce42001-11-07 14:22:00 +00003577 }
drhaa736092009-06-22 00:55:30 +00003578 }else{
danielk1977f7b9d662008-06-23 18:49:43 +00003579 /* This happens when attempting to open the sqlite3_master table
3580 ** for read access returns SQLITE_EMPTY. In this case always
3581 ** take the jump (since there are no records in the table).
3582 */
3583 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00003584 }
drh5e00f6c2001-09-13 13:46:56 +00003585 break;
3586}
3587
drh959403f2008-12-12 17:56:16 +00003588/* Opcode: Seek P1 P2 * * *
3589**
3590** P1 is an open table cursor and P2 is a rowid integer. Arrange
3591** for P1 to move so that it points to the rowid given by P2.
3592**
3593** This is actually a deferred seek. Nothing actually happens until
3594** the cursor is used to read a record. That way, if no reads
3595** occur, no unnecessary I/O happens.
3596*/
3597case OP_Seek: { /* in2 */
drh959403f2008-12-12 17:56:16 +00003598 VdbeCursor *pC;
3599
drh653b82a2009-06-22 11:10:47 +00003600 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3601 pC = p->apCsr[pOp->p1];
drh959403f2008-12-12 17:56:16 +00003602 assert( pC!=0 );
drhaa736092009-06-22 00:55:30 +00003603 if( ALWAYS(pC->pCursor!=0) ){
drh959403f2008-12-12 17:56:16 +00003604 assert( pC->isTable );
3605 pC->nullRow = 0;
drh3c657212009-11-17 23:59:58 +00003606 pIn2 = &aMem[pOp->p2];
drh959403f2008-12-12 17:56:16 +00003607 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3608 pC->rowidIsValid = 0;
3609 pC->deferredMoveto = 1;
3610 }
3611 break;
3612}
3613
3614
drh8cff69d2009-11-12 19:59:44 +00003615/* Opcode: Found P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003616**
drh8cff69d2009-11-12 19:59:44 +00003617** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3618** P4>0 then register P3 is the first of P4 registers that form an unpacked
3619** record.
3620**
3621** Cursor P1 is on an index btree. If the record identified by P3 and P4
3622** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00003623** P1 is left pointing at the matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003624*/
drh8cff69d2009-11-12 19:59:44 +00003625/* Opcode: NotFound P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003626**
drh8cff69d2009-11-12 19:59:44 +00003627** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3628** P4>0 then register P3 is the first of P4 registers that form an unpacked
3629** record.
3630**
3631** Cursor P1 is on an index btree. If the record identified by P3 and P4
3632** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3633** does contain an entry whose prefix matches the P3/P4 record then control
3634** falls through to the next instruction and P1 is left pointing at the
3635** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003636**
drhcb6d50e2008-08-21 19:28:30 +00003637** See also: Found, NotExists, IsUnique
drh5e00f6c2001-09-13 13:46:56 +00003638*/
drh9cbf3422008-01-17 16:22:13 +00003639case OP_NotFound: /* jump, in3 */
3640case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003641 int alreadyExists;
drhdfe88ec2008-11-03 20:55:06 +00003642 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003643 int res;
dan03e9cfc2011-09-05 14:20:27 +00003644 char *pFree;
drh856c1032009-06-02 15:21:42 +00003645 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00003646 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00003647 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
3648
dan0ff297e2009-09-25 17:03:14 +00003649#ifdef SQLITE_TEST
3650 sqlite3_found_count++;
3651#endif
3652
drh856c1032009-06-02 15:21:42 +00003653 alreadyExists = 0;
drhaa736092009-06-22 00:55:30 +00003654 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00003655 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00003656 pC = p->apCsr[pOp->p1];
3657 assert( pC!=0 );
drh3c657212009-11-17 23:59:58 +00003658 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003659 if( ALWAYS(pC->pCursor!=0) ){
drhe63d9992008-08-13 19:11:48 +00003660
drhf0863fe2005-06-12 21:35:51 +00003661 assert( pC->isTable==0 );
drh8cff69d2009-11-12 19:59:44 +00003662 if( pOp->p4.i>0 ){
3663 r.pKeyInfo = pC->pKeyInfo;
shaneh5e17e8b2009-12-03 04:40:47 +00003664 r.nField = (u16)pOp->p4.i;
drh8cff69d2009-11-12 19:59:44 +00003665 r.aMem = pIn3;
drh2b4ded92010-09-27 21:09:31 +00003666#ifdef SQLITE_DEBUG
3667 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3668#endif
drh8cff69d2009-11-12 19:59:44 +00003669 r.flags = UNPACKED_PREFIX_MATCH;
3670 pIdxKey = &r;
3671 }else{
dan03e9cfc2011-09-05 14:20:27 +00003672 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3673 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
3674 );
3675 if( pIdxKey==0 ) goto no_mem;
drh8cff69d2009-11-12 19:59:44 +00003676 assert( pIn3->flags & MEM_Blob );
drhd81a1422010-09-28 07:11:24 +00003677 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
dan03e9cfc2011-09-05 14:20:27 +00003678 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
drh8cff69d2009-11-12 19:59:44 +00003679 pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
danielk19779a96b662007-11-29 17:05:18 +00003680 }
drhe63d9992008-08-13 19:11:48 +00003681 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
drh8cff69d2009-11-12 19:59:44 +00003682 if( pOp->p4.i==0 ){
dan03e9cfc2011-09-05 14:20:27 +00003683 sqlite3DbFree(db, pFree);
drh8cff69d2009-11-12 19:59:44 +00003684 }
danielk197777519402007-08-30 11:48:31 +00003685 if( rc!=SQLITE_OK ){
3686 break;
3687 }
3688 alreadyExists = (res==0);
drha11846b2004-01-07 18:52:56 +00003689 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003690 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003691 }
3692 if( pOp->opcode==OP_Found ){
3693 if( alreadyExists ) pc = pOp->p2 - 1;
3694 }else{
3695 if( !alreadyExists ) pc = pOp->p2 - 1;
3696 }
drh5e00f6c2001-09-13 13:46:56 +00003697 break;
3698}
3699
drh98757152008-01-09 23:04:12 +00003700/* Opcode: IsUnique P1 P2 P3 P4 *
drh9cfcf5d2002-01-29 18:41:24 +00003701**
drh8cff69d2009-11-12 19:59:44 +00003702** Cursor P1 is open on an index b-tree - that is to say, a btree which
3703** no data and where the key are records generated by OP_MakeRecord with
3704** the list field being the integer ROWID of the entry that the index
3705** entry refers to.
danielk1977de630352009-05-04 11:42:29 +00003706**
3707** The P3 register contains an integer record number. Call this record
3708** number R. Register P4 is the first in a set of N contiguous registers
3709** that make up an unpacked index key that can be used with cursor P1.
3710** The value of N can be inferred from the cursor. N includes the rowid
3711** value appended to the end of the index record. This rowid value may
3712** or may not be the same as R.
3713**
3714** If any of the N registers beginning with register P4 contains a NULL
3715** value, jump immediately to P2.
3716**
3717** Otherwise, this instruction checks if cursor P1 contains an entry
3718** where the first (N-1) fields match but the rowid value at the end
3719** of the index entry is not R. If there is no such entry, control jumps
3720** to instruction P2. Otherwise, the rowid of the conflicting index
3721** entry is copied to register P3 and control falls through to the next
3722** instruction.
drh9cfcf5d2002-01-29 18:41:24 +00003723**
drh9cbf3422008-01-17 16:22:13 +00003724** See also: NotFound, NotExists, Found
drh9cfcf5d2002-01-29 18:41:24 +00003725*/
drh9cbf3422008-01-17 16:22:13 +00003726case OP_IsUnique: { /* jump, in3 */
shane60a4b532009-05-06 18:57:09 +00003727 u16 ii;
drhdfe88ec2008-11-03 20:55:06 +00003728 VdbeCursor *pCx;
drh9cfcf5d2002-01-29 18:41:24 +00003729 BtCursor *pCrsr;
shane60a4b532009-05-06 18:57:09 +00003730 u16 nField;
drha6c2ed92009-11-14 23:22:23 +00003731 Mem *aMx;
drh856c1032009-06-02 15:21:42 +00003732 UnpackedRecord r; /* B-Tree index search key */
3733 i64 R; /* Rowid stored in register P3 */
drh9cfcf5d2002-01-29 18:41:24 +00003734
drh3c657212009-11-17 23:59:58 +00003735 pIn3 = &aMem[pOp->p3];
drha6c2ed92009-11-14 23:22:23 +00003736 aMx = &aMem[pOp->p4.i];
danielk1977de630352009-05-04 11:42:29 +00003737 /* Assert that the values of parameters P1 and P4 are in range. */
drh98757152008-01-09 23:04:12 +00003738 assert( pOp->p4type==P4_INT32 );
drh9cbf3422008-01-17 16:22:13 +00003739 assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
danielk1977de630352009-05-04 11:42:29 +00003740 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3741
3742 /* Find the index cursor. */
3743 pCx = p->apCsr[pOp->p1];
3744 assert( pCx->deferredMoveto==0 );
3745 pCx->seekResult = 0;
3746 pCx->cacheStatus = CACHE_STALE;
drhf328bc82004-05-10 23:29:49 +00003747 pCrsr = pCx->pCursor;
danielk1977de630352009-05-04 11:42:29 +00003748
3749 /* If any of the values are NULL, take the jump. */
3750 nField = pCx->pKeyInfo->nField;
3751 for(ii=0; ii<nField; ii++){
drha6c2ed92009-11-14 23:22:23 +00003752 if( aMx[ii].flags & MEM_Null ){
danielk1977de630352009-05-04 11:42:29 +00003753 pc = pOp->p2 - 1;
3754 pCrsr = 0;
3755 break;
3756 }
3757 }
drha6c2ed92009-11-14 23:22:23 +00003758 assert( (aMx[nField].flags & MEM_Null)==0 );
danielk1977de630352009-05-04 11:42:29 +00003759
drhf328bc82004-05-10 23:29:49 +00003760 if( pCrsr!=0 ){
danielk1977de630352009-05-04 11:42:29 +00003761 /* Populate the index search key. */
3762 r.pKeyInfo = pCx->pKeyInfo;
3763 r.nField = nField + 1;
3764 r.flags = UNPACKED_PREFIX_SEARCH;
drha6c2ed92009-11-14 23:22:23 +00003765 r.aMem = aMx;
drh2b4ded92010-09-27 21:09:31 +00003766#ifdef SQLITE_DEBUG
3767 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3768#endif
danielk1977452c9892004-05-13 05:16:15 +00003769
danielk1977de630352009-05-04 11:42:29 +00003770 /* Extract the value of R from register P3. */
3771 sqlite3VdbeMemIntegerify(pIn3);
3772 R = pIn3->u.i;
3773
3774 /* Search the B-Tree index. If no conflicting record is found, jump
3775 ** to P2. Otherwise, copy the rowid of the conflicting record to
3776 ** register P3 and fall through to the next instruction. */
3777 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
3778 if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
drh9cfcf5d2002-01-29 18:41:24 +00003779 pc = pOp->p2 - 1;
danielk1977de630352009-05-04 11:42:29 +00003780 }else{
3781 pIn3->u.i = r.rowid;
drh9cfcf5d2002-01-29 18:41:24 +00003782 }
drh9cfcf5d2002-01-29 18:41:24 +00003783 }
3784 break;
3785}
3786
drh9cbf3422008-01-17 16:22:13 +00003787/* Opcode: NotExists P1 P2 P3 * *
drh6b125452002-01-28 15:53:03 +00003788**
drhef8662b2011-06-20 21:47:58 +00003789** Use the content of register P3 as an integer key. If a record
danielk197796cb76f2008-01-04 13:24:28 +00003790** with that key does not exist in table of P1, then jump to P2.
drh710c4842010-08-30 01:17:20 +00003791** If the record does exist, then fall through. The cursor is left
drh9cbf3422008-01-17 16:22:13 +00003792** pointing to the record if it exists.
drh6b125452002-01-28 15:53:03 +00003793**
3794** The difference between this operation and NotFound is that this
drhf0863fe2005-06-12 21:35:51 +00003795** operation assumes the key is an integer and that P1 is a table whereas
3796** NotFound assumes key is a blob constructed from MakeRecord and
3797** P1 is an index.
drh6b125452002-01-28 15:53:03 +00003798**
drhcb6d50e2008-08-21 19:28:30 +00003799** See also: Found, NotFound, IsUnique
drh6b125452002-01-28 15:53:03 +00003800*/
drh9cbf3422008-01-17 16:22:13 +00003801case OP_NotExists: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00003802 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00003803 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00003804 int res;
3805 u64 iKey;
3806
drh3c657212009-11-17 23:59:58 +00003807 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003808 assert( pIn3->flags & MEM_Int );
3809 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3810 pC = p->apCsr[pOp->p1];
3811 assert( pC!=0 );
3812 assert( pC->isTable );
drh3e9ca092009-09-08 01:14:48 +00003813 assert( pC->pseudoTableReg==0 );
drhaa736092009-06-22 00:55:30 +00003814 pCrsr = pC->pCursor;
dana205a482011-08-27 18:48:57 +00003815 if( ALWAYS(pCrsr!=0) ){
drh856c1032009-06-02 15:21:42 +00003816 res = 0;
drhaa736092009-06-22 00:55:30 +00003817 iKey = pIn3->u.i;
danielk1977de630352009-05-04 11:42:29 +00003818 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drh98757152008-01-09 23:04:12 +00003819 pC->lastRowid = pIn3->u.i;
drh9c1905f2008-12-10 22:32:56 +00003820 pC->rowidIsValid = res==0 ?1:0;
drh9188b382004-05-14 21:12:22 +00003821 pC->nullRow = 0;
drh76873ab2006-01-07 18:48:26 +00003822 pC->cacheStatus = CACHE_STALE;
danielk19771d461462009-04-21 09:02:45 +00003823 pC->deferredMoveto = 0;
danielk197728129562005-01-11 10:25:06 +00003824 if( res!=0 ){
drh17f71932002-02-21 12:01:27 +00003825 pc = pOp->p2 - 1;
drh91fd4d42008-01-19 20:11:25 +00003826 assert( pC->rowidIsValid==0 );
drh6b125452002-01-28 15:53:03 +00003827 }
danielk1977de630352009-05-04 11:42:29 +00003828 pC->seekResult = res;
drhaa736092009-06-22 00:55:30 +00003829 }else{
danielk1977f7b9d662008-06-23 18:49:43 +00003830 /* This happens when an attempt to open a read cursor on the
3831 ** sqlite_master table returns SQLITE_EMPTY.
3832 */
danielk1977f7b9d662008-06-23 18:49:43 +00003833 pc = pOp->p2 - 1;
3834 assert( pC->rowidIsValid==0 );
danielk1977de630352009-05-04 11:42:29 +00003835 pC->seekResult = 0;
drh6b125452002-01-28 15:53:03 +00003836 }
drh6b125452002-01-28 15:53:03 +00003837 break;
3838}
3839
drh4c583122008-01-04 22:01:03 +00003840/* Opcode: Sequence P1 P2 * * *
drh4db38a72005-09-01 12:16:28 +00003841**
drh4c583122008-01-04 22:01:03 +00003842** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00003843** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00003844** The sequence number on the cursor is incremented after this
3845** instruction.
drh4db38a72005-09-01 12:16:28 +00003846*/
drh4c583122008-01-04 22:01:03 +00003847case OP_Sequence: { /* out2-prerelease */
drh653b82a2009-06-22 11:10:47 +00003848 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3849 assert( p->apCsr[pOp->p1]!=0 );
3850 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00003851 break;
3852}
3853
3854
drh98757152008-01-09 23:04:12 +00003855/* Opcode: NewRowid P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00003856**
drhf0863fe2005-06-12 21:35:51 +00003857** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00003858** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00003859** table that cursor P1 points to. The new record number is written
3860** written to register P2.
drh205f48e2004-11-05 00:43:11 +00003861**
dan76d462e2009-08-30 11:42:51 +00003862** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3863** the largest previously generated record number. No new record numbers are
3864** allowed to be less than this value. When this value reaches its maximum,
drhef8662b2011-06-20 21:47:58 +00003865** an SQLITE_FULL error is generated. The P3 register is updated with the '
dan76d462e2009-08-30 11:42:51 +00003866** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00003867** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00003868*/
drh4c583122008-01-04 22:01:03 +00003869case OP_NewRowid: { /* out2-prerelease */
drhaa736092009-06-22 00:55:30 +00003870 i64 v; /* The new rowid */
3871 VdbeCursor *pC; /* Cursor of table to get the new rowid */
3872 int res; /* Result of an sqlite3BtreeLast() */
3873 int cnt; /* Counter to limit the number of searches */
3874 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00003875 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00003876
drh856c1032009-06-02 15:21:42 +00003877 v = 0;
3878 res = 0;
drhaa736092009-06-22 00:55:30 +00003879 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3880 pC = p->apCsr[pOp->p1];
3881 assert( pC!=0 );
3882 if( NEVER(pC->pCursor==0) ){
drhf328bc82004-05-10 23:29:49 +00003883 /* The zero initialization above is all that is needed */
drh5e00f6c2001-09-13 13:46:56 +00003884 }else{
drh5cf8e8c2002-02-19 22:42:05 +00003885 /* The next rowid or record number (different terms for the same
3886 ** thing) is obtained in a two-step algorithm.
3887 **
3888 ** First we attempt to find the largest existing rowid and add one
3889 ** to that. But if the largest existing rowid is already the maximum
3890 ** positive integer, we have to fall through to the second
3891 ** probabilistic algorithm
3892 **
3893 ** The second algorithm is to select a rowid at random and see if
3894 ** it already exists in the table. If it does not exist, we have
3895 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00003896 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00003897 */
drhaa736092009-06-22 00:55:30 +00003898 assert( pC->isTable );
drhfe2093d2005-01-20 22:48:47 +00003899
drh75f86a42005-02-17 00:03:06 +00003900#ifdef SQLITE_32BIT_ROWID
3901# define MAX_ROWID 0x7fffffff
3902#else
drhfe2093d2005-01-20 22:48:47 +00003903 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3904 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3905 ** to provide the constant while making all compilers happy.
3906 */
danielk197764202cf2008-11-17 15:31:47 +00003907# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00003908#endif
drhfe2093d2005-01-20 22:48:47 +00003909
drh5cf8e8c2002-02-19 22:42:05 +00003910 if( !pC->useRandomRowid ){
drh7f751222009-03-17 22:33:00 +00003911 v = sqlite3BtreeGetCachedRowid(pC->pCursor);
3912 if( v==0 ){
danielk1977261919c2005-12-06 12:52:59 +00003913 rc = sqlite3BtreeLast(pC->pCursor, &res);
3914 if( rc!=SQLITE_OK ){
3915 goto abort_due_to_error;
3916 }
drh32fbe342002-10-19 20:16:37 +00003917 if( res ){
drhc79c7612010-01-01 18:57:48 +00003918 v = 1; /* IMP: R-61914-48074 */
drh5cf8e8c2002-02-19 22:42:05 +00003919 }else{
drhea8ffdf2009-07-22 00:35:23 +00003920 assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
drhc27ae612009-07-14 18:35:44 +00003921 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
3922 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
drha40eb7c2012-02-24 00:02:28 +00003923 if( v>=MAX_ROWID ){
drh32fbe342002-10-19 20:16:37 +00003924 pC->useRandomRowid = 1;
3925 }else{
drhc79c7612010-01-01 18:57:48 +00003926 v++; /* IMP: R-29538-34987 */
drh32fbe342002-10-19 20:16:37 +00003927 }
drh5cf8e8c2002-02-19 22:42:05 +00003928 }
drh3fc190c2001-09-14 03:24:23 +00003929 }
drh205f48e2004-11-05 00:43:11 +00003930
3931#ifndef SQLITE_OMIT_AUTOINCREMENT
drh4c583122008-01-04 22:01:03 +00003932 if( pOp->p3 ){
shaneabc6b892009-09-10 19:09:03 +00003933 /* Assert that P3 is a valid memory cell. */
3934 assert( pOp->p3>0 );
dan76d462e2009-08-30 11:42:51 +00003935 if( p->pFrame ){
3936 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00003937 /* Assert that P3 is a valid memory cell. */
3938 assert( pOp->p3<=pFrame->nMem );
dan76d462e2009-08-30 11:42:51 +00003939 pMem = &pFrame->aMem[pOp->p3];
3940 }else{
shaneabc6b892009-09-10 19:09:03 +00003941 /* Assert that P3 is a valid memory cell. */
3942 assert( pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00003943 pMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00003944 memAboutToChange(p, pMem);
dan76d462e2009-08-30 11:42:51 +00003945 }
drh2b4ded92010-09-27 21:09:31 +00003946 assert( memIsValid(pMem) );
dan76d462e2009-08-30 11:42:51 +00003947
3948 REGISTER_TRACE(pOp->p3, pMem);
drh8a512562005-11-14 22:29:05 +00003949 sqlite3VdbeMemIntegerify(pMem);
drh4c583122008-01-04 22:01:03 +00003950 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
drh3c024d62007-03-30 11:23:45 +00003951 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
drhc79c7612010-01-01 18:57:48 +00003952 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
drh205f48e2004-11-05 00:43:11 +00003953 goto abort_due_to_error;
3954 }
drh3c024d62007-03-30 11:23:45 +00003955 if( v<pMem->u.i+1 ){
3956 v = pMem->u.i + 1;
drh205f48e2004-11-05 00:43:11 +00003957 }
drh3c024d62007-03-30 11:23:45 +00003958 pMem->u.i = v;
drh205f48e2004-11-05 00:43:11 +00003959 }
3960#endif
3961
drh7f751222009-03-17 22:33:00 +00003962 sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
drh5cf8e8c2002-02-19 22:42:05 +00003963 }
3964 if( pC->useRandomRowid ){
drh748a52c2010-09-01 11:50:08 +00003965 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
drhc79c7612010-01-01 18:57:48 +00003966 ** largest possible integer (9223372036854775807) then the database
drh748a52c2010-09-01 11:50:08 +00003967 ** engine starts picking positive candidate ROWIDs at random until
3968 ** it finds one that is not previously used. */
drhaa736092009-06-22 00:55:30 +00003969 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
3970 ** an AUTOINCREMENT table. */
shanehc4d340a2010-09-01 02:37:56 +00003971 /* on the first attempt, simply do one more than previous */
drh99a66922011-05-13 18:51:42 +00003972 v = lastRowid;
shanehc4d340a2010-09-01 02:37:56 +00003973 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
3974 v++; /* ensure non-zero */
drh5cf8e8c2002-02-19 22:42:05 +00003975 cnt = 0;
drh748a52c2010-09-01 11:50:08 +00003976 while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
3977 0, &res))==SQLITE_OK)
shanehc4d340a2010-09-01 02:37:56 +00003978 && (res==0)
3979 && (++cnt<100)){
3980 /* collision - try another random rowid */
3981 sqlite3_randomness(sizeof(v), &v);
3982 if( cnt<5 ){
3983 /* try "small" random rowids for the initial attempts */
3984 v &= 0xffffff;
drh91fd4d42008-01-19 20:11:25 +00003985 }else{
shanehc4d340a2010-09-01 02:37:56 +00003986 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
drh5cf8e8c2002-02-19 22:42:05 +00003987 }
shanehc4d340a2010-09-01 02:37:56 +00003988 v++; /* ensure non-zero */
3989 }
drhaa736092009-06-22 00:55:30 +00003990 if( rc==SQLITE_OK && res==0 ){
drhc79c7612010-01-01 18:57:48 +00003991 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00003992 goto abort_due_to_error;
3993 }
drh748a52c2010-09-01 11:50:08 +00003994 assert( v>0 ); /* EV: R-40812-03570 */
drh1eaa2692001-09-18 02:02:23 +00003995 }
drhf0863fe2005-06-12 21:35:51 +00003996 pC->rowidIsValid = 0;
drha11846b2004-01-07 18:52:56 +00003997 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003998 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003999 }
drh4c583122008-01-04 22:01:03 +00004000 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004001 break;
4002}
4003
danielk19771f4aa332008-01-03 09:51:55 +00004004/* Opcode: Insert P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004005**
jplyon5a564222003-06-02 06:15:58 +00004006** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00004007** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00004008** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00004009** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00004010** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00004011**
danielk19771f4aa332008-01-03 09:51:55 +00004012** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4013** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00004014** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00004015** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00004016**
drh3e9ca092009-09-08 01:14:48 +00004017** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4018** the last seek operation (OP_NotExists) was a success, then this
4019** operation will not attempt to find the appropriate row before doing
4020** the insert but will instead overwrite the row that the cursor is
4021** currently pointing to. Presumably, the prior OP_NotExists opcode
4022** has already positioned the cursor correctly. This is an optimization
4023** that boosts performance by avoiding redundant seeks.
4024**
4025** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4026** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4027** is part of an INSERT operation. The difference is only important to
4028** the update hook.
4029**
drh66a51672008-01-03 00:01:23 +00004030** Parameter P4 may point to a string containing the table-name, or
danielk19771f6eec52006-06-16 06:17:47 +00004031** may be NULL. If it is not NULL, then the update-hook
4032** (sqlite3.xUpdateCallback) is invoked following a successful insert.
4033**
drh93aed5a2008-01-16 17:46:38 +00004034** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4035** allocated, then ownership of P2 is transferred to the pseudo-cursor
4036** and register P2 becomes ephemeral. If the cursor is changed, the
4037** value of register P2 will then change. Make sure this does not
4038** cause any problems.)
4039**
drhf0863fe2005-06-12 21:35:51 +00004040** This instruction only works on tables. The equivalent instruction
4041** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00004042*/
drhe05c9292009-10-29 13:48:10 +00004043/* Opcode: InsertInt P1 P2 P3 P4 P5
4044**
4045** This works exactly like OP_Insert except that the key is the
4046** integer value P3, not the value of the integer stored in register P3.
4047*/
4048case OP_Insert:
4049case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00004050 Mem *pData; /* MEM cell holding data for the record to be inserted */
4051 Mem *pKey; /* MEM cell holding key for the record */
4052 i64 iKey; /* The integer ROWID or key for the record to be inserted */
4053 VdbeCursor *pC; /* Cursor to table into which insert is written */
4054 int nZero; /* Number of zero-bytes to append */
4055 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4056 const char *zDb; /* database name - used by the update hook */
4057 const char *zTbl; /* Table name - used by the opdate hook */
4058 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
drh856c1032009-06-02 15:21:42 +00004059
drha6c2ed92009-11-14 23:22:23 +00004060 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00004061 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh2b4ded92010-09-27 21:09:31 +00004062 assert( memIsValid(pData) );
drh653b82a2009-06-22 11:10:47 +00004063 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00004064 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00004065 assert( pC->pCursor!=0 );
4066 assert( pC->pseudoTableReg==0 );
drha05a7222008-01-19 03:35:58 +00004067 assert( pC->isTable );
drh5b6afba2008-01-05 16:29:28 +00004068 REGISTER_TRACE(pOp->p2, pData);
danielk19775f8d8a82004-05-11 00:28:42 +00004069
drhe05c9292009-10-29 13:48:10 +00004070 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00004071 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00004072 assert( pKey->flags & MEM_Int );
drh2b4ded92010-09-27 21:09:31 +00004073 assert( memIsValid(pKey) );
drhe05c9292009-10-29 13:48:10 +00004074 REGISTER_TRACE(pOp->p3, pKey);
4075 iKey = pKey->u.i;
4076 }else{
4077 assert( pOp->opcode==OP_InsertInt );
4078 iKey = pOp->p3;
4079 }
4080
drha05a7222008-01-19 03:35:58 +00004081 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh99a66922011-05-13 18:51:42 +00004082 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
drha05a7222008-01-19 03:35:58 +00004083 if( pData->flags & MEM_Null ){
4084 pData->z = 0;
4085 pData->n = 0;
4086 }else{
4087 assert( pData->flags & (MEM_Blob|MEM_Str) );
4088 }
drh3e9ca092009-09-08 01:14:48 +00004089 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4090 if( pData->flags & MEM_Zero ){
4091 nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00004092 }else{
drh3e9ca092009-09-08 01:14:48 +00004093 nZero = 0;
drha05a7222008-01-19 03:35:58 +00004094 }
drh3e9ca092009-09-08 01:14:48 +00004095 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
4096 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
4097 pData->z, pData->n, nZero,
4098 pOp->p5 & OPFLAG_APPEND, seekResult
4099 );
drha05a7222008-01-19 03:35:58 +00004100 pC->rowidIsValid = 0;
4101 pC->deferredMoveto = 0;
4102 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004103
drha05a7222008-01-19 03:35:58 +00004104 /* Invoke the update-hook if required. */
4105 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
drh856c1032009-06-02 15:21:42 +00004106 zDb = db->aDb[pC->iDb].zName;
4107 zTbl = pOp->p4.z;
4108 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
drha05a7222008-01-19 03:35:58 +00004109 assert( pC->isTable );
4110 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4111 assert( pC->iDb>=0 );
4112 }
drh5e00f6c2001-09-13 13:46:56 +00004113 break;
4114}
4115
drh98757152008-01-09 23:04:12 +00004116/* Opcode: Delete P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00004117**
drh5edc3122001-09-13 21:53:09 +00004118** Delete the record at which the P1 cursor is currently pointing.
4119**
4120** The cursor will be left pointing at either the next or the previous
4121** record in the table. If it is left pointing at the next record, then
drhb19a2bc2001-09-16 00:13:26 +00004122** the next Next instruction will be a no-op. Hence it is OK to delete
4123** a record from within an Next loop.
drhc8d30ac2002-04-12 10:08:59 +00004124**
rdcb0c374f2004-02-20 22:53:38 +00004125** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
danielk1977b28af712004-06-21 06:50:26 +00004126** incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00004127**
drh91fd4d42008-01-19 20:11:25 +00004128** P1 must not be pseudo-table. It has to be a real table with
4129** multiple rows.
4130**
4131** If P4 is not NULL, then it is the name of the table that P1 is
4132** pointing to. The update hook will be invoked, if it exists.
4133** If P4 is not NULL then the P1 cursor must have been positioned
4134** using OP_NotFound prior to invoking this opcode.
drh5e00f6c2001-09-13 13:46:56 +00004135*/
drh9cbf3422008-01-17 16:22:13 +00004136case OP_Delete: {
drh856c1032009-06-02 15:21:42 +00004137 i64 iKey;
drhdfe88ec2008-11-03 20:55:06 +00004138 VdbeCursor *pC;
drh91fd4d42008-01-19 20:11:25 +00004139
drh856c1032009-06-02 15:21:42 +00004140 iKey = 0;
drh653b82a2009-06-22 11:10:47 +00004141 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4142 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004143 assert( pC!=0 );
drh91fd4d42008-01-19 20:11:25 +00004144 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
danielk197794eb6a12005-12-15 15:22:08 +00004145
drh91fd4d42008-01-19 20:11:25 +00004146 /* If the update-hook will be invoked, set iKey to the rowid of the
4147 ** row being deleted.
4148 */
4149 if( db->xUpdateCallback && pOp->p4.z ){
4150 assert( pC->isTable );
4151 assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
4152 iKey = pC->lastRowid;
4153 }
danielk197794eb6a12005-12-15 15:22:08 +00004154
drh9a65f2c2009-06-22 19:05:40 +00004155 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
4156 ** OP_Column on the same table without any intervening operations that
4157 ** might move or invalidate the cursor. Hence cursor pC is always pointing
4158 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
4159 ** below is always a no-op and cannot fail. We will run it anyhow, though,
4160 ** to guard against future changes to the code generator.
4161 **/
4162 assert( pC->deferredMoveto==0 );
drh91fd4d42008-01-19 20:11:25 +00004163 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004164 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4165
drh7f751222009-03-17 22:33:00 +00004166 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
drh91fd4d42008-01-19 20:11:25 +00004167 rc = sqlite3BtreeDelete(pC->pCursor);
drh91fd4d42008-01-19 20:11:25 +00004168 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004169
drh91fd4d42008-01-19 20:11:25 +00004170 /* Invoke the update-hook if required. */
4171 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4172 const char *zDb = db->aDb[pC->iDb].zName;
4173 const char *zTbl = pOp->p4.z;
4174 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
4175 assert( pC->iDb>=0 );
drh5e00f6c2001-09-13 13:46:56 +00004176 }
danielk1977b28af712004-06-21 06:50:26 +00004177 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
rdcb0c374f2004-02-20 22:53:38 +00004178 break;
4179}
drhb7f1d9a2009-09-08 02:27:58 +00004180/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00004181**
drhb7f1d9a2009-09-08 02:27:58 +00004182** The value of the change counter is copied to the database handle
4183** change counter (returned by subsequent calls to sqlite3_changes()).
4184** Then the VMs internal change counter resets to 0.
4185** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00004186*/
drh9cbf3422008-01-17 16:22:13 +00004187case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00004188 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00004189 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00004190 break;
4191}
4192
dan5134d132011-09-02 10:31:11 +00004193/* Opcode: SorterCompare P1 P2 P3
4194**
4195** P1 is a sorter cursor. This instruction compares the record blob in
4196** register P3 with the entry that the sorter cursor currently points to.
4197** If, excluding the rowid fields at the end, the two records are a match,
4198** fall through to the next instruction. Otherwise, jump to instruction P2.
4199*/
4200case OP_SorterCompare: {
4201 VdbeCursor *pC;
4202 int res;
4203
4204 pC = p->apCsr[pOp->p1];
4205 assert( isSorter(pC) );
4206 pIn3 = &aMem[pOp->p3];
4207 rc = sqlite3VdbeSorterCompare(pC, pIn3, &res);
4208 if( res ){
4209 pc = pOp->p2-1;
4210 }
4211 break;
4212};
4213
4214/* Opcode: SorterData P1 P2 * * *
4215**
4216** Write into register P2 the current sorter data for sorter cursor P1.
4217*/
4218case OP_SorterData: {
4219 VdbeCursor *pC;
drh3a949872012-09-18 13:20:13 +00004220
dan5134d132011-09-02 10:31:11 +00004221 pOut = &aMem[pOp->p2];
4222 pC = p->apCsr[pOp->p1];
4223 assert( pC->isSorter );
4224 rc = sqlite3VdbeSorterRowkey(pC, pOut);
4225 break;
4226}
4227
drh98757152008-01-09 23:04:12 +00004228/* Opcode: RowData P1 P2 * * *
drh70ce3f02003-04-15 19:22:22 +00004229**
drh98757152008-01-09 23:04:12 +00004230** Write into register P2 the complete row data for cursor P1.
4231** There is no interpretation of the data.
4232** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004233** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00004234**
drhde4fcfd2008-01-19 23:50:26 +00004235** If the P1 cursor must be pointing to a valid row (not a NULL row)
4236** of a real table, not a pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00004237*/
drh98757152008-01-09 23:04:12 +00004238/* Opcode: RowKey P1 P2 * * *
drh143f3c42004-01-07 20:37:52 +00004239**
drh98757152008-01-09 23:04:12 +00004240** Write into register P2 the complete row key for cursor P1.
4241** There is no interpretation of the data.
drh9cbf3422008-01-17 16:22:13 +00004242** The key is copied onto the P3 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004243** it is found in the database file.
drh143f3c42004-01-07 20:37:52 +00004244**
drhde4fcfd2008-01-19 23:50:26 +00004245** If the P1 cursor must be pointing to a valid row (not a NULL row)
4246** of a real table, not a pseudo-table.
drh143f3c42004-01-07 20:37:52 +00004247*/
danielk1977a7a8e142008-02-13 18:25:27 +00004248case OP_RowKey:
4249case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00004250 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00004251 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00004252 u32 n;
drh856c1032009-06-02 15:21:42 +00004253 i64 n64;
drh70ce3f02003-04-15 19:22:22 +00004254
drha6c2ed92009-11-14 23:22:23 +00004255 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004256 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00004257
drhf0863fe2005-06-12 21:35:51 +00004258 /* Note that RowKey and RowData are really exactly the same instruction */
drh653b82a2009-06-22 11:10:47 +00004259 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4260 pC = p->apCsr[pOp->p1];
dan5134d132011-09-02 10:31:11 +00004261 assert( pC->isSorter==0 );
drhc6aff302011-09-01 15:32:47 +00004262 assert( pC->isTable || pOp->opcode!=OP_RowData );
drhf0863fe2005-06-12 21:35:51 +00004263 assert( pC->isIndex || pOp->opcode==OP_RowData );
drh4774b132004-06-12 20:12:51 +00004264 assert( pC!=0 );
drhde4fcfd2008-01-19 23:50:26 +00004265 assert( pC->nullRow==0 );
drh3e9ca092009-09-08 01:14:48 +00004266 assert( pC->pseudoTableReg==0 );
drhde4fcfd2008-01-19 23:50:26 +00004267 assert( pC->pCursor!=0 );
4268 pCrsr = pC->pCursor;
drhea8ffdf2009-07-22 00:35:23 +00004269 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drh9a65f2c2009-06-22 19:05:40 +00004270
4271 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4272 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4273 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always
4274 ** a no-op and can never fail. But we leave it in place as a safety.
4275 */
4276 assert( pC->deferredMoveto==0 );
drhde4fcfd2008-01-19 23:50:26 +00004277 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004278 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4279
drhde4fcfd2008-01-19 23:50:26 +00004280 if( pC->isIndex ){
drhde4fcfd2008-01-19 23:50:26 +00004281 assert( !pC->isTable );
drhb07028f2011-10-14 21:49:18 +00004282 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
drhc27ae612009-07-14 18:35:44 +00004283 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhbb4957f2008-03-20 14:03:29 +00004284 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhde4fcfd2008-01-19 23:50:26 +00004285 goto too_big;
drh70ce3f02003-04-15 19:22:22 +00004286 }
drhbfb19dc2009-06-05 16:46:53 +00004287 n = (u32)n64;
drhde4fcfd2008-01-19 23:50:26 +00004288 }else{
drhb07028f2011-10-14 21:49:18 +00004289 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
drhea8ffdf2009-07-22 00:35:23 +00004290 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
shane75ac1de2009-06-09 18:58:52 +00004291 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00004292 goto too_big;
4293 }
drhde4fcfd2008-01-19 23:50:26 +00004294 }
danielk1977a7a8e142008-02-13 18:25:27 +00004295 if( sqlite3VdbeMemGrow(pOut, n, 0) ){
4296 goto no_mem;
drhde4fcfd2008-01-19 23:50:26 +00004297 }
danielk1977a7a8e142008-02-13 18:25:27 +00004298 pOut->n = n;
4299 MemSetTypeFlag(pOut, MEM_Blob);
drhde4fcfd2008-01-19 23:50:26 +00004300 if( pC->isIndex ){
4301 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4302 }else{
4303 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
drh5e00f6c2001-09-13 13:46:56 +00004304 }
danielk197796cb76f2008-01-04 13:24:28 +00004305 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
drhb7654112008-01-12 12:48:07 +00004306 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00004307 break;
4308}
4309
drh2133d822008-01-03 18:44:59 +00004310/* Opcode: Rowid P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004311**
drh2133d822008-01-03 18:44:59 +00004312** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004313** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004314**
4315** P1 can be either an ordinary table or a virtual table. There used to
4316** be a separate OP_VRowid opcode for use with virtual tables, but this
4317** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004318*/
drh4c583122008-01-04 22:01:03 +00004319case OP_Rowid: { /* out2-prerelease */
drhdfe88ec2008-11-03 20:55:06 +00004320 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004321 i64 v;
drh856c1032009-06-02 15:21:42 +00004322 sqlite3_vtab *pVtab;
4323 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004324
drh653b82a2009-06-22 11:10:47 +00004325 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4326 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004327 assert( pC!=0 );
drh21172c42012-10-30 00:29:07 +00004328 assert( pC->pseudoTableReg==0 || pC->nullRow );
drh044925b2009-04-22 17:15:02 +00004329 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004330 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004331 break;
4332 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004333 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004334#ifndef SQLITE_OMIT_VIRTUALTABLE
4335 }else if( pC->pVtabCursor ){
drh044925b2009-04-22 17:15:02 +00004336 pVtab = pC->pVtabCursor->pVtab;
4337 pModule = pVtab->pModule;
4338 assert( pModule->xRowid );
drh044925b2009-04-22 17:15:02 +00004339 rc = pModule->xRowid(pC->pVtabCursor, &v);
dan016f7812013-08-21 17:35:48 +00004340 sqlite3VtabImportErrmsg(p, pVtab);
drh044925b2009-04-22 17:15:02 +00004341#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004342 }else{
drh6be240e2009-07-14 02:33:02 +00004343 assert( pC->pCursor!=0 );
drh61495262009-04-22 15:32:59 +00004344 rc = sqlite3VdbeCursorMoveto(pC);
4345 if( rc ) goto abort_due_to_error;
4346 if( pC->rowidIsValid ){
4347 v = pC->lastRowid;
drh61495262009-04-22 15:32:59 +00004348 }else{
drhc27ae612009-07-14 18:35:44 +00004349 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4350 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */
drh61495262009-04-22 15:32:59 +00004351 }
drh5e00f6c2001-09-13 13:46:56 +00004352 }
drh4c583122008-01-04 22:01:03 +00004353 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004354 break;
4355}
4356
drh9cbf3422008-01-17 16:22:13 +00004357/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004358**
4359** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004360** that occur while the cursor is on the null row will always
4361** write a NULL.
drh17f71932002-02-21 12:01:27 +00004362*/
drh9cbf3422008-01-17 16:22:13 +00004363case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004364 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004365
drh653b82a2009-06-22 11:10:47 +00004366 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4367 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004368 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004369 pC->nullRow = 1;
drhf0863fe2005-06-12 21:35:51 +00004370 pC->rowidIsValid = 0;
dana205a482011-08-27 18:48:57 +00004371 assert( pC->pCursor || pC->pVtabCursor );
danielk1977be51a652008-10-08 17:58:48 +00004372 if( pC->pCursor ){
4373 sqlite3BtreeClearCursor(pC->pCursor);
4374 }
drh17f71932002-02-21 12:01:27 +00004375 break;
4376}
4377
drh9cbf3422008-01-17 16:22:13 +00004378/* Opcode: Last P1 P2 * * *
drh9562b552002-02-19 15:00:07 +00004379**
drhf0863fe2005-06-12 21:35:51 +00004380** The next use of the Rowid or Column or Next instruction for P1
drh9562b552002-02-19 15:00:07 +00004381** will refer to the last entry in the database table or index.
4382** If the table or index is empty and P2>0, then jump immediately to P2.
4383** If P2 is 0 or if the table or index is not empty, fall through
4384** to the following instruction.
4385*/
drh9cbf3422008-01-17 16:22:13 +00004386case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004387 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004388 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004389 int res;
drh9562b552002-02-19 15:00:07 +00004390
drh653b82a2009-06-22 11:10:47 +00004391 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4392 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004393 assert( pC!=0 );
drha05a7222008-01-19 03:35:58 +00004394 pCrsr = pC->pCursor;
drh7abc5402011-10-22 21:00:46 +00004395 res = 0;
4396 if( ALWAYS(pCrsr!=0) ){
drh9a65f2c2009-06-22 19:05:40 +00004397 rc = sqlite3BtreeLast(pCrsr, &res);
4398 }
drh9c1905f2008-12-10 22:32:56 +00004399 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004400 pC->deferredMoveto = 0;
drha7e77062009-01-14 00:55:09 +00004401 pC->rowidIsValid = 0;
drha05a7222008-01-19 03:35:58 +00004402 pC->cacheStatus = CACHE_STALE;
drh9a65f2c2009-06-22 19:05:40 +00004403 if( pOp->p2>0 && res ){
drha05a7222008-01-19 03:35:58 +00004404 pc = pOp->p2 - 1;
drh9562b552002-02-19 15:00:07 +00004405 }
4406 break;
4407}
4408
drh0342b1f2005-09-01 03:07:44 +00004409
drh9cbf3422008-01-17 16:22:13 +00004410/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004411**
4412** This opcode does exactly the same thing as OP_Rewind except that
4413** it increments an undocumented global variable used for testing.
4414**
4415** Sorting is accomplished by writing records into a sorting index,
4416** then rewinding that index and playing it back from beginning to
4417** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4418** rewinding so that the global variable will be incremented and
4419** regression tests can determine whether or not the optimizer is
4420** correctly optimizing out sorts.
4421*/
drhc6aff302011-09-01 15:32:47 +00004422case OP_SorterSort: /* jump */
drh9cbf3422008-01-17 16:22:13 +00004423case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00004424#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00004425 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00004426 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00004427#endif
drh9b47ee32013-08-20 03:13:51 +00004428 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
drh0342b1f2005-09-01 03:07:44 +00004429 /* Fall through into OP_Rewind */
4430}
drh9cbf3422008-01-17 16:22:13 +00004431/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004432**
drhf0863fe2005-06-12 21:35:51 +00004433** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00004434** will refer to the first entry in the database table or index.
4435** If the table or index is empty and P2>0, then jump immediately to P2.
4436** If P2 is 0 or if the table or index is not empty, fall through
4437** to the following instruction.
drh5e00f6c2001-09-13 13:46:56 +00004438*/
drh9cbf3422008-01-17 16:22:13 +00004439case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004440 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004441 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00004442 int res;
drh5e00f6c2001-09-13 13:46:56 +00004443
drh653b82a2009-06-22 11:10:47 +00004444 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4445 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004446 assert( pC!=0 );
drhc6aff302011-09-01 15:32:47 +00004447 assert( pC->isSorter==(pOp->opcode==OP_SorterSort) );
dan2411dea2010-07-03 05:56:09 +00004448 res = 1;
dan689ab892011-08-12 15:02:00 +00004449 if( isSorter(pC) ){
dana20fde62011-07-12 14:28:05 +00004450 rc = sqlite3VdbeSorterRewind(db, pC, &res);
dana205a482011-08-27 18:48:57 +00004451 }else{
4452 pCrsr = pC->pCursor;
4453 assert( pCrsr );
danielk19774adee202004-05-08 08:23:19 +00004454 rc = sqlite3BtreeFirst(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004455 pC->atFirst = res==0 ?1:0;
drha11846b2004-01-07 18:52:56 +00004456 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004457 pC->cacheStatus = CACHE_STALE;
drha7e77062009-01-14 00:55:09 +00004458 pC->rowidIsValid = 0;
drhf4dada72004-05-11 09:57:35 +00004459 }
drh9c1905f2008-12-10 22:32:56 +00004460 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004461 assert( pOp->p2>0 && pOp->p2<p->nOp );
4462 if( res ){
drhf4dada72004-05-11 09:57:35 +00004463 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00004464 }
4465 break;
4466}
4467
dana205a482011-08-27 18:48:57 +00004468/* Opcode: Next P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004469**
4470** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00004471** table or index. If there are no more key/value pairs then fall through
4472** to the following instruction. But if the cursor advance was successful,
4473** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00004474**
drh60a713c2008-01-21 16:22:45 +00004475** The P1 cursor must be for a real table, not a pseudo-table.
4476**
dana205a482011-08-27 18:48:57 +00004477** P4 is always of type P4_ADVANCE. The function pointer points to
4478** sqlite3BtreeNext().
4479**
drhafc266a2010-03-31 17:47:44 +00004480** If P5 is positive and the jump is taken, then event counter
4481** number P5-1 in the prepared statement is incremented.
4482**
drhc045ec52002-12-04 20:01:06 +00004483** See also: Prev
drh8721ce42001-11-07 14:22:00 +00004484*/
drhafc266a2010-03-31 17:47:44 +00004485/* Opcode: Prev P1 P2 * * P5
drhc045ec52002-12-04 20:01:06 +00004486**
4487** Back up cursor P1 so that it points to the previous key/data pair in its
4488** table or index. If there is no previous key/value pairs then fall through
4489** to the following instruction. But if the cursor backup was successful,
4490** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00004491**
4492** The P1 cursor must be for a real table, not a pseudo-table.
drhafc266a2010-03-31 17:47:44 +00004493**
dana205a482011-08-27 18:48:57 +00004494** P4 is always of type P4_ADVANCE. The function pointer points to
4495** sqlite3BtreePrevious().
4496**
drhafc266a2010-03-31 17:47:44 +00004497** If P5 is positive and the jump is taken, then event counter
4498** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00004499*/
drhc6aff302011-09-01 15:32:47 +00004500case OP_SorterNext: /* jump */
drh9cbf3422008-01-17 16:22:13 +00004501case OP_Prev: /* jump */
4502case OP_Next: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004503 VdbeCursor *pC;
drha3460582008-07-11 21:02:53 +00004504 int res;
drh8721ce42001-11-07 14:22:00 +00004505
drh70ce3f02003-04-15 19:22:22 +00004506 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh9b47ee32013-08-20 03:13:51 +00004507 assert( pOp->p5<ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00004508 pC = p->apCsr[pOp->p1];
drh72e8fa42007-03-28 14:30:06 +00004509 if( pC==0 ){
4510 break; /* See ticket #2273 */
4511 }
drhc6aff302011-09-01 15:32:47 +00004512 assert( pC->isSorter==(pOp->opcode==OP_SorterNext) );
dan689ab892011-08-12 15:02:00 +00004513 if( isSorter(pC) ){
dan5134d132011-09-02 10:31:11 +00004514 assert( pOp->opcode==OP_SorterNext );
dana20fde62011-07-12 14:28:05 +00004515 rc = sqlite3VdbeSorterNext(db, pC, &res);
4516 }else{
drh9b47ee32013-08-20 03:13:51 +00004517 /* res = 1; // Always initialized by the xAdvance() call */
dana20fde62011-07-12 14:28:05 +00004518 assert( pC->deferredMoveto==0 );
dana205a482011-08-27 18:48:57 +00004519 assert( pC->pCursor );
4520 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4521 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4522 rc = pOp->p4.xAdvance(pC->pCursor, &res);
drh9a65f2c2009-06-22 19:05:40 +00004523 }
drh9c1905f2008-12-10 22:32:56 +00004524 pC->nullRow = (u8)res;
drha3460582008-07-11 21:02:53 +00004525 pC->cacheStatus = CACHE_STALE;
4526 if( res==0 ){
4527 pc = pOp->p2 - 1;
drh9b47ee32013-08-20 03:13:51 +00004528 p->aCounter[pOp->p5]++;
drh0f7eb612006-08-08 13:51:43 +00004529#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00004530 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00004531#endif
drh8721ce42001-11-07 14:22:00 +00004532 }
drhf0863fe2005-06-12 21:35:51 +00004533 pC->rowidIsValid = 0;
drh49afe3a2013-07-10 03:05:14 +00004534 goto check_for_interrupt;
drh8721ce42001-11-07 14:22:00 +00004535}
4536
danielk1977de630352009-05-04 11:42:29 +00004537/* Opcode: IdxInsert P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00004538**
drhef8662b2011-06-20 21:47:58 +00004539** Register P2 holds an SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00004540** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00004541** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00004542**
drhaa9b8962008-01-08 02:57:55 +00004543** P3 is a flag that provides a hint to the b-tree layer that this
drhe4d90812007-03-29 05:51:49 +00004544** insert is likely to be an append.
4545**
drhf0863fe2005-06-12 21:35:51 +00004546** This instruction only works for indices. The equivalent instruction
4547** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00004548*/
drhca892a72011-09-03 00:17:51 +00004549case OP_SorterInsert: /* in2 */
drh9cbf3422008-01-17 16:22:13 +00004550case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00004551 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004552 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004553 int nKey;
4554 const char *zKey;
4555
drh653b82a2009-06-22 11:10:47 +00004556 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4557 pC = p->apCsr[pOp->p1];
4558 assert( pC!=0 );
drhc6aff302011-09-01 15:32:47 +00004559 assert( pC->isSorter==(pOp->opcode==OP_SorterInsert) );
drh3c657212009-11-17 23:59:58 +00004560 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00004561 assert( pIn2->flags & MEM_Blob );
drh653b82a2009-06-22 11:10:47 +00004562 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004563 if( ALWAYS(pCrsr!=0) ){
drhf0863fe2005-06-12 21:35:51 +00004564 assert( pC->isTable==0 );
drhaa9b8962008-01-08 02:57:55 +00004565 rc = ExpandBlob(pIn2);
danielk1977d908f5a2007-05-11 07:08:28 +00004566 if( rc==SQLITE_OK ){
dan5134d132011-09-02 10:31:11 +00004567 if( isSorter(pC) ){
4568 rc = sqlite3VdbeSorterWrite(db, pC, pIn2);
4569 }else{
4570 nKey = pIn2->n;
4571 zKey = pIn2->z;
dan1e74e602011-08-06 12:01:58 +00004572 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4573 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
dan5134d132011-09-02 10:31:11 +00004574 );
dan1e74e602011-08-06 12:01:58 +00004575 assert( pC->deferredMoveto==0 );
dan5134d132011-09-02 10:31:11 +00004576 pC->cacheStatus = CACHE_STALE;
dan1e74e602011-08-06 12:01:58 +00004577 }
danielk1977d908f5a2007-05-11 07:08:28 +00004578 }
drh5e00f6c2001-09-13 13:46:56 +00004579 }
drh5e00f6c2001-09-13 13:46:56 +00004580 break;
4581}
4582
drhd1d38482008-10-07 23:46:38 +00004583/* Opcode: IdxDelete P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004584**
drhe14006d2008-03-25 17:23:32 +00004585** The content of P3 registers starting at register P2 form
4586** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00004587** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00004588*/
drhe14006d2008-03-25 17:23:32 +00004589case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00004590 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004591 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00004592 int res;
4593 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00004594
drhe14006d2008-03-25 17:23:32 +00004595 assert( pOp->p3>0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00004596 assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
drh653b82a2009-06-22 11:10:47 +00004597 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4598 pC = p->apCsr[pOp->p1];
4599 assert( pC!=0 );
4600 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004601 if( ALWAYS(pCrsr!=0) ){
drhe14006d2008-03-25 17:23:32 +00004602 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00004603 r.nField = (u16)pOp->p3;
drhe63d9992008-08-13 19:11:48 +00004604 r.flags = 0;
drha6c2ed92009-11-14 23:22:23 +00004605 r.aMem = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004606#ifdef SQLITE_DEBUG
4607 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4608#endif
drhe63d9992008-08-13 19:11:48 +00004609 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
danielk197775bab7d2006-01-23 13:09:45 +00004610 if( rc==SQLITE_OK && res==0 ){
danielk19774adee202004-05-08 08:23:19 +00004611 rc = sqlite3BtreeDelete(pCrsr);
drh5e00f6c2001-09-13 13:46:56 +00004612 }
drh9188b382004-05-14 21:12:22 +00004613 assert( pC->deferredMoveto==0 );
drh76873ab2006-01-07 18:48:26 +00004614 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004615 }
drh5e00f6c2001-09-13 13:46:56 +00004616 break;
4617}
4618
drh2133d822008-01-03 18:44:59 +00004619/* Opcode: IdxRowid P1 P2 * * *
drh8721ce42001-11-07 14:22:00 +00004620**
drh2133d822008-01-03 18:44:59 +00004621** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00004622** the end of the index key pointed to by cursor P1. This integer should be
4623** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00004624**
drh9437bd22009-02-01 00:29:56 +00004625** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00004626*/
drh4c583122008-01-04 22:01:03 +00004627case OP_IdxRowid: { /* out2-prerelease */
drh8721ce42001-11-07 14:22:00 +00004628 BtCursor *pCrsr;
drhdfe88ec2008-11-03 20:55:06 +00004629 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004630 i64 rowid;
drh8721ce42001-11-07 14:22:00 +00004631
drh653b82a2009-06-22 11:10:47 +00004632 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4633 pC = p->apCsr[pOp->p1];
4634 assert( pC!=0 );
4635 pCrsr = pC->pCursor;
drh3c657212009-11-17 23:59:58 +00004636 pOut->flags = MEM_Null;
drh9a65f2c2009-06-22 19:05:40 +00004637 if( ALWAYS(pCrsr!=0) ){
danielk1977c4d201c2009-04-07 09:16:56 +00004638 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004639 if( NEVER(rc) ) goto abort_due_to_error;
drhd7556d22004-05-14 21:59:40 +00004640 assert( pC->deferredMoveto==0 );
drhf0863fe2005-06-12 21:35:51 +00004641 assert( pC->isTable==0 );
drh4c583122008-01-04 22:01:03 +00004642 if( !pC->nullRow ){
drh35f6b932009-06-23 14:15:04 +00004643 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
danielk19771d850a72004-05-31 08:26:49 +00004644 if( rc!=SQLITE_OK ){
4645 goto abort_due_to_error;
4646 }
drh4c583122008-01-04 22:01:03 +00004647 pOut->u.i = rowid;
drh3c657212009-11-17 23:59:58 +00004648 pOut->flags = MEM_Int;
danielk19773d1bfea2004-05-14 11:00:53 +00004649 }
drh8721ce42001-11-07 14:22:00 +00004650 }
4651 break;
4652}
4653
danielk197761dd5832008-04-18 11:31:12 +00004654/* Opcode: IdxGE P1 P2 P3 P4 P5
drh8721ce42001-11-07 14:22:00 +00004655**
danielk197761dd5832008-04-18 11:31:12 +00004656** The P4 register values beginning with P3 form an unpacked index
4657** key that omits the ROWID. Compare this key value against the index
4658** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004659**
danielk197761dd5832008-04-18 11:31:12 +00004660** If the P1 index entry is greater than or equal to the key value
4661** then jump to P2. Otherwise fall through to the next instruction.
drh772ae622004-05-19 13:13:08 +00004662**
danielk197761dd5832008-04-18 11:31:12 +00004663** If P5 is non-zero then the key value is increased by an epsilon
4664** prior to the comparison. This make the opcode work like IdxGT except
4665** that if the key from register P3 is a prefix of the key in the cursor,
4666** the result is false whereas it would be true with IdxGT.
drh8721ce42001-11-07 14:22:00 +00004667*/
drh3bb9b932010-08-06 02:10:00 +00004668/* Opcode: IdxLT P1 P2 P3 P4 P5
drhc045ec52002-12-04 20:01:06 +00004669**
danielk197761dd5832008-04-18 11:31:12 +00004670** The P4 register values beginning with P3 form an unpacked index
4671** key that omits the ROWID. Compare this key value against the index
4672** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004673**
danielk197761dd5832008-04-18 11:31:12 +00004674** If the P1 index entry is less than the key value then jump to P2.
4675** Otherwise fall through to the next instruction.
drh772ae622004-05-19 13:13:08 +00004676**
danielk197761dd5832008-04-18 11:31:12 +00004677** If P5 is non-zero then the key value is increased by an epsilon prior
4678** to the comparison. This makes the opcode work like IdxLE.
drhc045ec52002-12-04 20:01:06 +00004679*/
drh93952eb2009-11-13 19:43:43 +00004680case OP_IdxLT: /* jump */
4681case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004682 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004683 int res;
4684 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00004685
drh653b82a2009-06-22 11:10:47 +00004686 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4687 pC = p->apCsr[pOp->p1];
4688 assert( pC!=0 );
drhd4187c72010-08-30 22:15:45 +00004689 assert( pC->isOrdered );
drh9a65f2c2009-06-22 19:05:40 +00004690 if( ALWAYS(pC->pCursor!=0) ){
drhd7556d22004-05-14 21:59:40 +00004691 assert( pC->deferredMoveto==0 );
drha05a7222008-01-19 03:35:58 +00004692 assert( pOp->p5==0 || pOp->p5==1 );
danielk197761dd5832008-04-18 11:31:12 +00004693 assert( pOp->p4type==P4_INT32 );
4694 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00004695 r.nField = (u16)pOp->p4.i;
drhe63d9992008-08-13 19:11:48 +00004696 if( pOp->p5 ){
dan0c733f62011-11-16 15:27:09 +00004697 r.flags = UNPACKED_INCRKEY | UNPACKED_PREFIX_MATCH;
drhe63d9992008-08-13 19:11:48 +00004698 }else{
dan0c733f62011-11-16 15:27:09 +00004699 r.flags = UNPACKED_PREFIX_MATCH;
drhe63d9992008-08-13 19:11:48 +00004700 }
drha6c2ed92009-11-14 23:22:23 +00004701 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00004702#ifdef SQLITE_DEBUG
4703 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4704#endif
drhe63d9992008-08-13 19:11:48 +00004705 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
drhc045ec52002-12-04 20:01:06 +00004706 if( pOp->opcode==OP_IdxLT ){
4707 res = -res;
drha05a7222008-01-19 03:35:58 +00004708 }else{
4709 assert( pOp->opcode==OP_IdxGE );
drh8721ce42001-11-07 14:22:00 +00004710 res++;
4711 }
4712 if( res>0 ){
4713 pc = pOp->p2 - 1 ;
4714 }
4715 }
4716 break;
4717}
4718
drh98757152008-01-09 23:04:12 +00004719/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004720**
4721** Delete an entire database table or index whose root page in the database
4722** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00004723**
drh98757152008-01-09 23:04:12 +00004724** The table being destroyed is in the main database file if P3==0. If
4725** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00004726** that is used to store tables create using CREATE TEMPORARY TABLE.
4727**
drh205f48e2004-11-05 00:43:11 +00004728** If AUTOVACUUM is enabled then it is possible that another root page
4729** might be moved into the newly deleted root page in order to keep all
4730** root pages contiguous at the beginning of the database. The former
4731** value of the root page that moved - its value before the move occurred -
drh9cbf3422008-01-17 16:22:13 +00004732** is stored in register P2. If no page
drh98757152008-01-09 23:04:12 +00004733** movement was required (because the table being dropped was already
4734** the last one in the database) then a zero is stored in register P2.
4735** If AUTOVACUUM is disabled then a zero is stored in register P2.
drh205f48e2004-11-05 00:43:11 +00004736**
drhb19a2bc2001-09-16 00:13:26 +00004737** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00004738*/
drh98757152008-01-09 23:04:12 +00004739case OP_Destroy: { /* out2-prerelease */
danielk1977a0bf2652004-11-04 14:30:04 +00004740 int iMoved;
drh3765df42006-06-28 18:18:09 +00004741 int iCnt;
drh5a91a532007-01-05 16:39:43 +00004742 Vdbe *pVdbe;
drh856c1032009-06-02 15:21:42 +00004743 int iDb;
drh3a949872012-09-18 13:20:13 +00004744
drh9e92a472013-06-27 17:40:30 +00004745 assert( p->readOnly==0 );
drh856c1032009-06-02 15:21:42 +00004746#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk1977212b2182006-06-23 14:32:08 +00004747 iCnt = 0;
drh856c1032009-06-02 15:21:42 +00004748 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
danc0537fe2013-06-28 19:41:43 +00004749 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader
4750 && pVdbe->inVtabMethod<2 && pVdbe->pc>=0
4751 ){
danielk1977212b2182006-06-23 14:32:08 +00004752 iCnt++;
4753 }
4754 }
drh3765df42006-06-28 18:18:09 +00004755#else
danc0537fe2013-06-28 19:41:43 +00004756 iCnt = db->nVdbeRead;
danielk1977212b2182006-06-23 14:32:08 +00004757#endif
drh3c657212009-11-17 23:59:58 +00004758 pOut->flags = MEM_Null;
danielk1977212b2182006-06-23 14:32:08 +00004759 if( iCnt>1 ){
danielk1977e6efa742004-11-10 11:55:10 +00004760 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00004761 p->errorAction = OE_Abort;
danielk1977e6efa742004-11-10 11:55:10 +00004762 }else{
drh856c1032009-06-02 15:21:42 +00004763 iDb = pOp->p3;
danielk1977212b2182006-06-23 14:32:08 +00004764 assert( iCnt==1 );
drhdddd7792011-04-03 18:19:25 +00004765 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
drh98757152008-01-09 23:04:12 +00004766 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00004767 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00004768 pOut->u.i = iMoved;
drh3765df42006-06-28 18:18:09 +00004769#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977e6efa742004-11-10 11:55:10 +00004770 if( rc==SQLITE_OK && iMoved!=0 ){
drhcdf011d2011-04-04 21:25:28 +00004771 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
4772 /* All OP_Destroy operations occur on the same btree */
4773 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
4774 resetSchemaOnFault = iDb+1;
danielk1977e6efa742004-11-10 11:55:10 +00004775 }
drh3765df42006-06-28 18:18:09 +00004776#endif
danielk1977a0bf2652004-11-04 14:30:04 +00004777 }
drh5e00f6c2001-09-13 13:46:56 +00004778 break;
4779}
4780
danielk1977c7af4842008-10-27 13:59:33 +00004781/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00004782**
4783** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00004784** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00004785** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00004786**
drhf57b3392001-10-08 13:22:32 +00004787** The table being clear is in the main database file if P2==0. If
4788** P2==1 then the table to be clear is in the auxiliary database file
4789** that is used to store tables create using CREATE TEMPORARY TABLE.
4790**
shanebe217792009-03-05 04:20:31 +00004791** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00004792** intkey table (an SQL table, not an index). In this case the row change
4793** count is incremented by the number of rows in the table being cleared.
4794** If P3 is greater than zero, then the value stored in register P3 is
4795** also incremented by the number of rows in the table being cleared.
4796**
drhb19a2bc2001-09-16 00:13:26 +00004797** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00004798*/
drh9cbf3422008-01-17 16:22:13 +00004799case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00004800 int nChange;
4801
4802 nChange = 0;
drh9e92a472013-06-27 17:40:30 +00004803 assert( p->readOnly==0 );
drhdddd7792011-04-03 18:19:25 +00004804 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
danielk1977c7af4842008-10-27 13:59:33 +00004805 rc = sqlite3BtreeClearTable(
4806 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
4807 );
4808 if( pOp->p3 ){
4809 p->nChange += nChange;
4810 if( pOp->p3>0 ){
drh2b4ded92010-09-27 21:09:31 +00004811 assert( memIsValid(&aMem[pOp->p3]) );
4812 memAboutToChange(p, &aMem[pOp->p3]);
drha6c2ed92009-11-14 23:22:23 +00004813 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00004814 }
4815 }
drh5edc3122001-09-13 21:53:09 +00004816 break;
4817}
4818
drh4c583122008-01-04 22:01:03 +00004819/* Opcode: CreateTable P1 P2 * * *
drh5b2fd562001-09-13 15:21:31 +00004820**
drh4c583122008-01-04 22:01:03 +00004821** Allocate a new table in the main database file if P1==0 or in the
4822** auxiliary database file if P1==1 or in an attached database if
4823** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00004824** register P2
drh5b2fd562001-09-13 15:21:31 +00004825**
drhc6b52df2002-01-04 03:09:29 +00004826** The difference between a table and an index is this: A table must
4827** have a 4-byte integer key and can have arbitrary data. An index
4828** has an arbitrary key but no data.
4829**
drhb19a2bc2001-09-16 00:13:26 +00004830** See also: CreateIndex
drh5b2fd562001-09-13 15:21:31 +00004831*/
drh4c583122008-01-04 22:01:03 +00004832/* Opcode: CreateIndex P1 P2 * * *
drhf57b3392001-10-08 13:22:32 +00004833**
drh4c583122008-01-04 22:01:03 +00004834** Allocate a new index in the main database file if P1==0 or in the
4835** auxiliary database file if P1==1 or in an attached database if
4836** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00004837** register P2.
drhf57b3392001-10-08 13:22:32 +00004838**
drhc6b52df2002-01-04 03:09:29 +00004839** See documentation on OP_CreateTable for additional information.
drhf57b3392001-10-08 13:22:32 +00004840*/
drh4c583122008-01-04 22:01:03 +00004841case OP_CreateIndex: /* out2-prerelease */
4842case OP_CreateTable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00004843 int pgno;
drhf328bc82004-05-10 23:29:49 +00004844 int flags;
drh234c39d2004-07-24 03:30:47 +00004845 Db *pDb;
drh856c1032009-06-02 15:21:42 +00004846
4847 pgno = 0;
drh234c39d2004-07-24 03:30:47 +00004848 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00004849 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh9e92a472013-06-27 17:40:30 +00004850 assert( p->readOnly==0 );
drh234c39d2004-07-24 03:30:47 +00004851 pDb = &db->aDb[pOp->p1];
4852 assert( pDb->pBt!=0 );
drhc6b52df2002-01-04 03:09:29 +00004853 if( pOp->opcode==OP_CreateTable ){
danielk197794076252004-05-14 12:16:11 +00004854 /* flags = BTREE_INTKEY; */
drhd4187c72010-08-30 22:15:45 +00004855 flags = BTREE_INTKEY;
drhc6b52df2002-01-04 03:09:29 +00004856 }else{
drhd4187c72010-08-30 22:15:45 +00004857 flags = BTREE_BLOBKEY;
drhc6b52df2002-01-04 03:09:29 +00004858 }
drh234c39d2004-07-24 03:30:47 +00004859 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
drh88a003e2008-12-11 16:17:03 +00004860 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00004861 break;
4862}
4863
drh22645842011-03-24 01:34:03 +00004864/* Opcode: ParseSchema P1 * * P4 *
drh234c39d2004-07-24 03:30:47 +00004865**
4866** Read and parse all entries from the SQLITE_MASTER table of database P1
drh22645842011-03-24 01:34:03 +00004867** that match the WHERE clause P4.
drh234c39d2004-07-24 03:30:47 +00004868**
4869** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00004870** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00004871*/
drh9cbf3422008-01-17 16:22:13 +00004872case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00004873 int iDb;
4874 const char *zMaster;
4875 char *zSql;
4876 InitData initData;
4877
drhbdaec522011-04-04 00:14:43 +00004878 /* Any prepared statement that invokes this opcode will hold mutexes
4879 ** on every btree. This is a prerequisite for invoking
4880 ** sqlite3InitCallback().
4881 */
4882#ifdef SQLITE_DEBUG
4883 for(iDb=0; iDb<db->nDb; iDb++){
4884 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
4885 }
4886#endif
drhbdaec522011-04-04 00:14:43 +00004887
drh856c1032009-06-02 15:21:42 +00004888 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00004889 assert( iDb>=0 && iDb<db->nDb );
dan6c154872011-04-02 09:44:43 +00004890 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
drhbdaec522011-04-04 00:14:43 +00004891 /* Used to be a conditional */ {
drh856c1032009-06-02 15:21:42 +00004892 zMaster = SCHEMA_TABLE(iDb);
danielk1977a8bbef82009-03-23 17:11:26 +00004893 initData.db = db;
4894 initData.iDb = pOp->p1;
4895 initData.pzErrMsg = &p->zErrMsg;
4896 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00004897 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
danielk1977a8bbef82009-03-23 17:11:26 +00004898 db->aDb[iDb].zName, zMaster, pOp->p4.z);
4899 if( zSql==0 ){
4900 rc = SQLITE_NOMEM;
4901 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00004902 assert( db->init.busy==0 );
4903 db->init.busy = 1;
4904 initData.rc = SQLITE_OK;
4905 assert( !db->mallocFailed );
4906 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
4907 if( rc==SQLITE_OK ) rc = initData.rc;
4908 sqlite3DbFree(db, zSql);
4909 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00004910 }
drh3c23a882007-01-09 14:01:13 +00004911 }
drh81028a42012-05-15 18:28:27 +00004912 if( rc ) sqlite3ResetAllSchemasOfConnection(db);
danielk1977261919c2005-12-06 12:52:59 +00004913 if( rc==SQLITE_NOMEM ){
danielk1977261919c2005-12-06 12:52:59 +00004914 goto no_mem;
4915 }
drh234c39d2004-07-24 03:30:47 +00004916 break;
4917}
4918
drh8bfdf722009-06-19 14:06:03 +00004919#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00004920/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00004921**
4922** Read the sqlite_stat1 table for database P1 and load the content
4923** of that table into the internal index hash table. This will cause
4924** the analysis to be used when preparing all subsequent queries.
4925*/
drh9cbf3422008-01-17 16:22:13 +00004926case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00004927 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4928 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh497e4462005-07-23 03:18:40 +00004929 break;
4930}
drh8bfdf722009-06-19 14:06:03 +00004931#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00004932
drh98757152008-01-09 23:04:12 +00004933/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004934**
4935** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004936** the table named P4 in database P1. This is called after a table
drh956bc922004-07-24 17:38:29 +00004937** is dropped in order to keep the internal representation of the
4938** schema consistent with what is on disk.
4939*/
drh9cbf3422008-01-17 16:22:13 +00004940case OP_DropTable: {
danielk19772dca4ac2008-01-03 11:50:29 +00004941 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004942 break;
4943}
4944
drh98757152008-01-09 23:04:12 +00004945/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004946**
4947** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004948** the index named P4 in database P1. This is called after an index
drh956bc922004-07-24 17:38:29 +00004949** is dropped in order to keep the internal representation of the
4950** schema consistent with what is on disk.
4951*/
drh9cbf3422008-01-17 16:22:13 +00004952case OP_DropIndex: {
danielk19772dca4ac2008-01-03 11:50:29 +00004953 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004954 break;
4955}
4956
drh98757152008-01-09 23:04:12 +00004957/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004958**
4959** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004960** the trigger named P4 in database P1. This is called after a trigger
drh956bc922004-07-24 17:38:29 +00004961** is dropped in order to keep the internal representation of the
4962** schema consistent with what is on disk.
4963*/
drh9cbf3422008-01-17 16:22:13 +00004964case OP_DropTrigger: {
danielk19772dca4ac2008-01-03 11:50:29 +00004965 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004966 break;
4967}
4968
drh234c39d2004-07-24 03:30:47 +00004969
drhb7f91642004-10-31 02:22:47 +00004970#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98757152008-01-09 23:04:12 +00004971/* Opcode: IntegrityCk P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00004972**
drh98757152008-01-09 23:04:12 +00004973** Do an analysis of the currently open database. Store in
4974** register P1 the text of an error message describing any problems.
4975** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00004976**
drh98757152008-01-09 23:04:12 +00004977** The register P3 contains the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00004978** At most reg(P3) errors will be reported.
4979** In other words, the analysis stops as soon as reg(P1) errors are
4980** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00004981**
drh79069752004-05-22 21:30:40 +00004982** The root page numbers of all tables in the database are integer
drh60a713c2008-01-21 16:22:45 +00004983** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
drh98757152008-01-09 23:04:12 +00004984** total.
drh21504322002-06-25 13:16:02 +00004985**
drh98757152008-01-09 23:04:12 +00004986** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00004987** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00004988**
drh1dcdbc02007-01-27 02:24:54 +00004989** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00004990*/
drhaaab5722002-02-19 13:39:21 +00004991case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00004992 int nRoot; /* Number of tables to check. (Number of root pages.) */
4993 int *aRoot; /* Array of rootpage numbers for tables to be checked */
4994 int j; /* Loop counter */
4995 int nErr; /* Number of errors reported */
4996 char *z; /* Text of the error report */
4997 Mem *pnErr; /* Register keeping track of errors remaining */
drh9e92a472013-06-27 17:40:30 +00004998
drh1713afb2013-06-28 01:24:57 +00004999 assert( p->bIsReader );
drh98757152008-01-09 23:04:12 +00005000 nRoot = pOp->p2;
drh79069752004-05-22 21:30:40 +00005001 assert( nRoot>0 );
drh633e6d52008-07-28 19:34:53 +00005002 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
drhcaec2f12003-01-07 02:47:47 +00005003 if( aRoot==0 ) goto no_mem;
drh98757152008-01-09 23:04:12 +00005004 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005005 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00005006 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00005007 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00005008 pIn1 = &aMem[pOp->p1];
drh79069752004-05-22 21:30:40 +00005009 for(j=0; j<nRoot; j++){
drh9c1905f2008-12-10 22:32:56 +00005010 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
drh1dd397f2002-02-03 03:34:07 +00005011 }
5012 aRoot[j] = 0;
drh98757152008-01-09 23:04:12 +00005013 assert( pOp->p5<db->nDb );
drhdddd7792011-04-03 18:19:25 +00005014 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
drh98757152008-01-09 23:04:12 +00005015 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
drh9c1905f2008-12-10 22:32:56 +00005016 (int)pnErr->u.i, &nErr);
drhc890fec2008-08-01 20:10:08 +00005017 sqlite3DbFree(db, aRoot);
drh3c024d62007-03-30 11:23:45 +00005018 pnErr->u.i -= nErr;
drha05a7222008-01-19 03:35:58 +00005019 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00005020 if( nErr==0 ){
5021 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00005022 }else if( z==0 ){
5023 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00005024 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00005025 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00005026 }
drhb7654112008-01-12 12:48:07 +00005027 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00005028 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00005029 break;
5030}
drhb7f91642004-10-31 02:22:47 +00005031#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00005032
drh3d4501e2008-12-04 20:40:10 +00005033/* Opcode: RowSetAdd P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00005034**
drh3d4501e2008-12-04 20:40:10 +00005035** Insert the integer value held by register P2 into a boolean index
5036** held in register P1.
5037**
5038** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00005039*/
drh93952eb2009-11-13 19:43:43 +00005040case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00005041 pIn1 = &aMem[pOp->p1];
5042 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00005043 assert( (pIn2->flags & MEM_Int)!=0 );
5044 if( (pIn1->flags & MEM_RowSet)==0 ){
5045 sqlite3VdbeMemSetRowSet(pIn1);
5046 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00005047 }
drh93952eb2009-11-13 19:43:43 +00005048 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00005049 break;
5050}
5051
5052/* Opcode: RowSetRead P1 P2 P3 * *
5053**
5054** Extract the smallest value from boolean index P1 and put that value into
5055** register P3. Or, if boolean index P1 is initially empty, leave P3
5056** unchanged and jump to instruction P2.
5057*/
drh93952eb2009-11-13 19:43:43 +00005058case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00005059 i64 val;
drh49afe3a2013-07-10 03:05:14 +00005060
drh3c657212009-11-17 23:59:58 +00005061 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00005062 if( (pIn1->flags & MEM_RowSet)==0
5063 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00005064 ){
5065 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00005066 sqlite3VdbeMemSetNull(pIn1);
drh3d4501e2008-12-04 20:40:10 +00005067 pc = pOp->p2 - 1;
5068 }else{
5069 /* A value was pulled from the index */
drh3c657212009-11-17 23:59:58 +00005070 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh17435752007-08-16 04:30:38 +00005071 }
drh49afe3a2013-07-10 03:05:14 +00005072 goto check_for_interrupt;
drh5e00f6c2001-09-13 13:46:56 +00005073}
5074
drh1b26c7c2009-04-22 02:15:47 +00005075/* Opcode: RowSetTest P1 P2 P3 P4
danielk19771d461462009-04-21 09:02:45 +00005076**
drhade97602009-04-21 15:05:18 +00005077** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00005078** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00005079** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00005080** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00005081** next opcode.
danielk19771d461462009-04-21 09:02:45 +00005082**
drh1b26c7c2009-04-22 02:15:47 +00005083** The RowSet object is optimized for the case where successive sets
danielk19771d461462009-04-21 09:02:45 +00005084** of integers, where each set contains no duplicates. Each set
5085** of values is identified by a unique P4 value. The first set
drh1b26c7c2009-04-22 02:15:47 +00005086** must have P4==0, the final set P4=-1. P4 must be either -1 or
5087** non-negative. For non-negative values of P4 only the lower 4
5088** bits are significant.
danielk19771d461462009-04-21 09:02:45 +00005089**
5090** This allows optimizations: (a) when P4==0 there is no need to test
drh1b26c7c2009-04-22 02:15:47 +00005091** the rowset object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00005092** (b) when P4==-1 there is no need to insert the value, as it will
5093** never be tested for, and (c) when a value that is part of set X is
5094** inserted, there is no need to search to see if the same value was
5095** previously inserted as part of set X (only if it was previously
5096** inserted as part of some other set).
5097*/
drh1b26c7c2009-04-22 02:15:47 +00005098case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00005099 int iSet;
5100 int exists;
5101
drh3c657212009-11-17 23:59:58 +00005102 pIn1 = &aMem[pOp->p1];
5103 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005104 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00005105 assert( pIn3->flags&MEM_Int );
5106
drh1b26c7c2009-04-22 02:15:47 +00005107 /* If there is anything other than a rowset object in memory cell P1,
5108 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00005109 */
drh733bf1b2009-04-22 00:47:00 +00005110 if( (pIn1->flags & MEM_RowSet)==0 ){
5111 sqlite3VdbeMemSetRowSet(pIn1);
5112 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00005113 }
5114
5115 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00005116 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00005117 if( iSet ){
shane60a4b532009-05-06 18:57:09 +00005118 exists = sqlite3RowSetTest(pIn1->u.pRowSet,
5119 (u8)(iSet>=0 ? iSet & 0xf : 0xff),
drh733bf1b2009-04-22 00:47:00 +00005120 pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005121 if( exists ){
5122 pc = pOp->p2 - 1;
5123 break;
5124 }
5125 }
5126 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00005127 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005128 }
5129 break;
5130}
5131
drh5e00f6c2001-09-13 13:46:56 +00005132
danielk197793758c82005-01-21 08:13:14 +00005133#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00005134
5135/* Opcode: Program P1 P2 P3 P4 *
5136**
dan76d462e2009-08-30 11:42:51 +00005137** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00005138**
dan76d462e2009-08-30 11:42:51 +00005139** P1 contains the address of the memory cell that contains the first memory
5140** cell in an array of values used as arguments to the sub-program. P2
5141** contains the address to jump to if the sub-program throws an IGNORE
5142** exception using the RAISE() function. Register P3 contains the address
5143** of a memory cell in this (the parent) VM that is used to allocate the
5144** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00005145**
5146** P4 is a pointer to the VM containing the trigger program.
5147*/
dan76d462e2009-08-30 11:42:51 +00005148case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00005149 int nMem; /* Number of memory registers for sub-program */
5150 int nByte; /* Bytes of runtime space required for sub-program */
5151 Mem *pRt; /* Register to allocate runtime space */
5152 Mem *pMem; /* Used to iterate through memory cells */
5153 Mem *pEnd; /* Last memory cell in new array */
5154 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5155 SubProgram *pProgram; /* Sub-program to execute */
5156 void *t; /* Token identifying trigger */
5157
5158 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00005159 pRt = &aMem[pOp->p3];
dan165921a2009-08-28 18:53:45 +00005160 assert( pProgram->nOp>0 );
5161
dan1da40a32009-09-19 17:00:31 +00005162 /* If the p5 flag is clear, then recursive invocation of triggers is
5163 ** disabled for backwards compatibility (p5 is set if this sub-program
5164 ** is really a trigger, not a foreign key action, and the flag set
5165 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00005166 **
5167 ** It is recursive invocation of triggers, at the SQL level, that is
5168 ** disabled. In some cases a single trigger may generate more than one
5169 ** SubProgram (if the trigger may be executed with more than one different
5170 ** ON CONFLICT algorithm). SubProgram structures associated with a
5171 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00005172 ** variable. */
5173 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00005174 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00005175 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5176 if( pFrame ) break;
5177 }
5178
danf5894502009-10-07 18:41:19 +00005179 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00005180 rc = SQLITE_ERROR;
5181 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
5182 break;
5183 }
5184
5185 /* Register pRt is used to store the memory required to save the state
5186 ** of the current program, and the memory required at runtime to execute
5187 ** the trigger program. If this trigger has been fired before, then pRt
5188 ** is already allocated. Otherwise, it must be initialized. */
5189 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00005190 /* SubProgram.nMem is set to the number of memory cells used by the
5191 ** program stored in SubProgram.aOp. As well as these, one memory
5192 ** cell is required for each cursor used by the program. Set local
5193 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5194 */
dan65a7cd12009-09-01 12:16:01 +00005195 nMem = pProgram->nMem + pProgram->nCsr;
5196 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00005197 + nMem * sizeof(Mem)
dan1d8cb212011-12-09 13:24:16 +00005198 + pProgram->nCsr * sizeof(VdbeCursor *)
5199 + pProgram->nOnce * sizeof(u8);
dan165921a2009-08-28 18:53:45 +00005200 pFrame = sqlite3DbMallocZero(db, nByte);
5201 if( !pFrame ){
5202 goto no_mem;
5203 }
5204 sqlite3VdbeMemRelease(pRt);
5205 pRt->flags = MEM_Frame;
5206 pRt->u.pFrame = pFrame;
5207
5208 pFrame->v = p;
5209 pFrame->nChildMem = nMem;
5210 pFrame->nChildCsr = pProgram->nCsr;
5211 pFrame->pc = pc;
5212 pFrame->aMem = p->aMem;
5213 pFrame->nMem = p->nMem;
5214 pFrame->apCsr = p->apCsr;
5215 pFrame->nCursor = p->nCursor;
5216 pFrame->aOp = p->aOp;
5217 pFrame->nOp = p->nOp;
5218 pFrame->token = pProgram->token;
dan1d8cb212011-12-09 13:24:16 +00005219 pFrame->aOnceFlag = p->aOnceFlag;
5220 pFrame->nOnceFlag = p->nOnceFlag;
dan165921a2009-08-28 18:53:45 +00005221
5222 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5223 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
drhec86c722011-12-09 17:27:51 +00005224 pMem->flags = MEM_Invalid;
dan165921a2009-08-28 18:53:45 +00005225 pMem->db = db;
5226 }
5227 }else{
5228 pFrame = pRt->u.pFrame;
5229 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5230 assert( pProgram->nCsr==pFrame->nChildCsr );
5231 assert( pc==pFrame->pc );
5232 }
5233
5234 p->nFrame++;
5235 pFrame->pParent = p->pFrame;
drh99a66922011-05-13 18:51:42 +00005236 pFrame->lastRowid = lastRowid;
dan76d462e2009-08-30 11:42:51 +00005237 pFrame->nChange = p->nChange;
dan2832ad42009-08-31 15:27:27 +00005238 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00005239 p->pFrame = pFrame;
drha6c2ed92009-11-14 23:22:23 +00005240 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
dan165921a2009-08-28 18:53:45 +00005241 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00005242 p->nCursor = (u16)pFrame->nChildCsr;
drha6c2ed92009-11-14 23:22:23 +00005243 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
drhbbe879d2009-11-14 18:04:35 +00005244 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00005245 p->nOp = pProgram->nOp;
dan1d8cb212011-12-09 13:24:16 +00005246 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5247 p->nOnceFlag = pProgram->nOnce;
dan165921a2009-08-28 18:53:45 +00005248 pc = -1;
dan1d8cb212011-12-09 13:24:16 +00005249 memset(p->aOnceFlag, 0, p->nOnceFlag);
dan165921a2009-08-28 18:53:45 +00005250
5251 break;
5252}
5253
dan76d462e2009-08-30 11:42:51 +00005254/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00005255**
dan76d462e2009-08-30 11:42:51 +00005256** This opcode is only ever present in sub-programs called via the
5257** OP_Program instruction. Copy a value currently stored in a memory
5258** cell of the calling (parent) frame to cell P2 in the current frames
5259** address space. This is used by trigger programs to access the new.*
5260** and old.* values.
dan165921a2009-08-28 18:53:45 +00005261**
dan76d462e2009-08-30 11:42:51 +00005262** The address of the cell in the parent frame is determined by adding
5263** the value of the P1 argument to the value of the P1 argument to the
5264** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00005265*/
dan76d462e2009-08-30 11:42:51 +00005266case OP_Param: { /* out2-prerelease */
dan65a7cd12009-09-01 12:16:01 +00005267 VdbeFrame *pFrame;
5268 Mem *pIn;
5269 pFrame = p->pFrame;
5270 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00005271 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5272 break;
5273}
5274
danielk197793758c82005-01-21 08:13:14 +00005275#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00005276
dan1da40a32009-09-19 17:00:31 +00005277#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00005278/* Opcode: FkCounter P1 P2 * * *
dan1da40a32009-09-19 17:00:31 +00005279**
dan0ff297e2009-09-25 17:03:14 +00005280** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5281** If P1 is non-zero, the database constraint counter is incremented
5282** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00005283** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00005284*/
dan32b09f22009-09-23 17:29:59 +00005285case OP_FkCounter: {
drh648e2642013-07-11 15:03:32 +00005286 if( db->flags & SQLITE_DeferFKs ){
5287 db->nDeferredImmCons += pOp->p2;
5288 }else if( pOp->p1 ){
dan0ff297e2009-09-25 17:03:14 +00005289 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00005290 }else{
dan0ff297e2009-09-25 17:03:14 +00005291 p->nFkConstraint += pOp->p2;
5292 }
5293 break;
5294}
5295
5296/* Opcode: FkIfZero P1 P2 * * *
5297**
5298** This opcode tests if a foreign key constraint-counter is currently zero.
5299** If so, jump to instruction P2. Otherwise, fall through to the next
5300** instruction.
5301**
5302** If P1 is non-zero, then the jump is taken if the database constraint-counter
5303** is zero (the one that counts deferred constraint violations). If P1 is
5304** zero, the jump is taken if the statement constraint-counter is zero
5305** (immediate foreign key constraint violations).
5306*/
5307case OP_FkIfZero: { /* jump */
5308 if( pOp->p1 ){
drh648e2642013-07-11 15:03:32 +00005309 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
dan0ff297e2009-09-25 17:03:14 +00005310 }else{
drh648e2642013-07-11 15:03:32 +00005311 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
dan32b09f22009-09-23 17:29:59 +00005312 }
dan1da40a32009-09-19 17:00:31 +00005313 break;
5314}
5315#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5316
drh205f48e2004-11-05 00:43:11 +00005317#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00005318/* Opcode: MemMax P1 P2 * * *
drh205f48e2004-11-05 00:43:11 +00005319**
dan76d462e2009-08-30 11:42:51 +00005320** P1 is a register in the root frame of this VM (the root frame is
5321** different from the current frame if this instruction is being executed
5322** within a sub-program). Set the value of register P1 to the maximum of
5323** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00005324**
5325** This instruction throws an error if the memory cell is not initially
5326** an integer.
5327*/
dan76d462e2009-08-30 11:42:51 +00005328case OP_MemMax: { /* in2 */
5329 Mem *pIn1;
5330 VdbeFrame *pFrame;
5331 if( p->pFrame ){
5332 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5333 pIn1 = &pFrame->aMem[pOp->p1];
5334 }else{
drha6c2ed92009-11-14 23:22:23 +00005335 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00005336 }
drhec86c722011-12-09 17:27:51 +00005337 assert( memIsValid(pIn1) );
drh98757152008-01-09 23:04:12 +00005338 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00005339 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00005340 sqlite3VdbeMemIntegerify(pIn2);
5341 if( pIn1->u.i<pIn2->u.i){
5342 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00005343 }
5344 break;
5345}
5346#endif /* SQLITE_OMIT_AUTOINCREMENT */
5347
drh98757152008-01-09 23:04:12 +00005348/* Opcode: IfPos P1 P2 * * *
danielk1977a2dc3b12005-02-05 12:48:48 +00005349**
drh98757152008-01-09 23:04:12 +00005350** If the value of register P1 is 1 or greater, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005351**
drh98757152008-01-09 23:04:12 +00005352** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005353** not contain an integer. An assertion fault will result if you try.
danielk1977a2dc3b12005-02-05 12:48:48 +00005354*/
drh9cbf3422008-01-17 16:22:13 +00005355case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005356 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005357 assert( pIn1->flags&MEM_Int );
drh3c84ddf2008-01-09 02:15:38 +00005358 if( pIn1->u.i>0 ){
drhec7429a2005-10-06 16:53:14 +00005359 pc = pOp->p2 - 1;
5360 }
5361 break;
5362}
5363
drh98757152008-01-09 23:04:12 +00005364/* Opcode: IfNeg P1 P2 * * *
drh15007a92006-01-08 18:10:17 +00005365**
drh98757152008-01-09 23:04:12 +00005366** If the value of register P1 is less than zero, jump to P2.
drh15007a92006-01-08 18:10:17 +00005367**
drh98757152008-01-09 23:04:12 +00005368** It is illegal to use this instruction on a register that does
drh15007a92006-01-08 18:10:17 +00005369** not contain an integer. An assertion fault will result if you try.
5370*/
drh9cbf3422008-01-17 16:22:13 +00005371case OP_IfNeg: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005372 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005373 assert( pIn1->flags&MEM_Int );
drh3c84ddf2008-01-09 02:15:38 +00005374 if( pIn1->u.i<0 ){
drh15007a92006-01-08 18:10:17 +00005375 pc = pOp->p2 - 1;
5376 }
5377 break;
5378}
5379
drh9b918ed2009-11-12 03:13:26 +00005380/* Opcode: IfZero P1 P2 P3 * *
drhec7429a2005-10-06 16:53:14 +00005381**
drh9b918ed2009-11-12 03:13:26 +00005382** The register P1 must contain an integer. Add literal P3 to the
5383** value in register P1. If the result is exactly 0, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005384**
drh98757152008-01-09 23:04:12 +00005385** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005386** not contain an integer. An assertion fault will result if you try.
drhec7429a2005-10-06 16:53:14 +00005387*/
drh9cbf3422008-01-17 16:22:13 +00005388case OP_IfZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005389 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005390 assert( pIn1->flags&MEM_Int );
drh9b918ed2009-11-12 03:13:26 +00005391 pIn1->u.i += pOp->p3;
drh3c84ddf2008-01-09 02:15:38 +00005392 if( pIn1->u.i==0 ){
drha2a49dc2008-01-02 14:28:13 +00005393 pc = pOp->p2 - 1;
5394 }
5395 break;
5396}
5397
drh98757152008-01-09 23:04:12 +00005398/* Opcode: AggStep * P2 P3 P4 P5
drhe5095352002-02-24 03:25:14 +00005399**
drh0bce8352002-02-28 00:41:10 +00005400** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00005401** function has P5 arguments. P4 is a pointer to the FuncDef
5402** structure that specifies the function. Use register
5403** P3 as the accumulator.
drhe5095352002-02-24 03:25:14 +00005404**
drh98757152008-01-09 23:04:12 +00005405** The P5 arguments are taken from register P2 and its
5406** successors.
drhe5095352002-02-24 03:25:14 +00005407*/
drh9cbf3422008-01-17 16:22:13 +00005408case OP_AggStep: {
drh856c1032009-06-02 15:21:42 +00005409 int n;
drhe5095352002-02-24 03:25:14 +00005410 int i;
drhc54a6172009-06-02 16:06:03 +00005411 Mem *pMem;
5412 Mem *pRec;
danielk197722322fd2004-05-25 23:35:17 +00005413 sqlite3_context ctx;
danielk19776ddcca52004-05-24 23:48:25 +00005414 sqlite3_value **apVal;
drhe5095352002-02-24 03:25:14 +00005415
drh856c1032009-06-02 15:21:42 +00005416 n = pOp->p5;
drh6810ce62004-01-31 19:22:56 +00005417 assert( n>=0 );
drha6c2ed92009-11-14 23:22:23 +00005418 pRec = &aMem[pOp->p2];
danielk19776ddcca52004-05-24 23:48:25 +00005419 apVal = p->apArg;
5420 assert( apVal || n==0 );
drh6810ce62004-01-31 19:22:56 +00005421 for(i=0; i<n; i++, pRec++){
drh2b4ded92010-09-27 21:09:31 +00005422 assert( memIsValid(pRec) );
danielk1977c572ef72004-05-27 09:28:41 +00005423 apVal[i] = pRec;
drh2b4ded92010-09-27 21:09:31 +00005424 memAboutToChange(p, pRec);
dan937d0de2009-10-15 18:35:38 +00005425 sqlite3VdbeMemStoreType(pRec);
drhe5095352002-02-24 03:25:14 +00005426 }
danielk19772dca4ac2008-01-03 11:50:29 +00005427 ctx.pFunc = pOp->p4.pFunc;
drh98757152008-01-09 23:04:12 +00005428 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005429 ctx.pMem = pMem = &aMem[pOp->p3];
drhabfcea22005-09-06 20:36:48 +00005430 pMem->n++;
drh90669c12006-01-20 15:45:36 +00005431 ctx.s.flags = MEM_Null;
5432 ctx.s.z = 0;
danielk19775f096132008-03-28 15:44:09 +00005433 ctx.s.zMalloc = 0;
drh90669c12006-01-20 15:45:36 +00005434 ctx.s.xDel = 0;
drhb21c8cd2007-08-21 19:33:56 +00005435 ctx.s.db = db;
drh1350b032002-02-27 19:00:20 +00005436 ctx.isError = 0;
danielk1977dc1bdc42004-06-11 10:51:27 +00005437 ctx.pColl = 0;
drh7a957892012-02-02 17:35:43 +00005438 ctx.skipFlag = 0;
drhe82f5d02008-10-07 19:53:14 +00005439 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
danielk1977dc1bdc42004-06-11 10:51:27 +00005440 assert( pOp>p->aOp );
drh66a51672008-01-03 00:01:23 +00005441 assert( pOp[-1].p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00005442 assert( pOp[-1].opcode==OP_CollSeq );
danielk19772dca4ac2008-01-03 11:50:29 +00005443 ctx.pColl = pOp[-1].p4.pColl;
danielk1977dc1bdc42004-06-11 10:51:27 +00005444 }
drhee9ff672010-09-03 18:50:48 +00005445 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh1350b032002-02-27 19:00:20 +00005446 if( ctx.isError ){
drhf089aa42008-07-08 19:34:06 +00005447 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
drh69544ec2008-02-06 14:11:34 +00005448 rc = ctx.isError;
drh1350b032002-02-27 19:00:20 +00005449 }
drh7a957892012-02-02 17:35:43 +00005450 if( ctx.skipFlag ){
5451 assert( pOp[-1].opcode==OP_CollSeq );
5452 i = pOp[-1].p1;
5453 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5454 }
drhbdaec522011-04-04 00:14:43 +00005455
drh90669c12006-01-20 15:45:36 +00005456 sqlite3VdbeMemRelease(&ctx.s);
drhbdaec522011-04-04 00:14:43 +00005457
drh5e00f6c2001-09-13 13:46:56 +00005458 break;
5459}
5460
drh98757152008-01-09 23:04:12 +00005461/* Opcode: AggFinal P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00005462**
drh13449892005-09-07 21:22:45 +00005463** Execute the finalizer function for an aggregate. P1 is
5464** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00005465**
5466** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00005467** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00005468** argument is not used by this opcode. It is only there to disambiguate
5469** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00005470** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00005471** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00005472*/
drh9cbf3422008-01-17 16:22:13 +00005473case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00005474 Mem *pMem;
drh0a07c102008-01-03 18:03:08 +00005475 assert( pOp->p1>0 && pOp->p1<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005476 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00005477 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00005478 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00005479 if( rc ){
drhf089aa42008-07-08 19:34:06 +00005480 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
drh90669c12006-01-20 15:45:36 +00005481 }
drh2dca8682008-03-21 17:13:13 +00005482 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00005483 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00005484 if( sqlite3VdbeMemTooBig(pMem) ){
5485 goto too_big;
5486 }
drh5e00f6c2001-09-13 13:46:56 +00005487 break;
5488}
5489
dan5cf53532010-05-01 16:40:20 +00005490#ifndef SQLITE_OMIT_WAL
dancdc1f042010-11-18 12:11:05 +00005491/* Opcode: Checkpoint P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00005492**
5493** Checkpoint database P1. This is a no-op if P1 is not currently in
dancdc1f042010-11-18 12:11:05 +00005494** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
drh30aa3b92011-02-07 23:56:01 +00005495** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
5496** SQLITE_BUSY or not, respectively. Write the number of pages in the
5497** WAL after the checkpoint into mem[P3+1] and the number of pages
5498** in the WAL that have been checkpointed after the checkpoint
5499** completes into mem[P3+2]. However on an error, mem[P3+1] and
5500** mem[P3+2] are initialized to -1.
dan7c246102010-04-12 19:00:29 +00005501*/
5502case OP_Checkpoint: {
drh30aa3b92011-02-07 23:56:01 +00005503 int i; /* Loop counter */
5504 int aRes[3]; /* Results */
5505 Mem *pMem; /* Write results here */
5506
drh9e92a472013-06-27 17:40:30 +00005507 assert( p->readOnly==0 );
drh30aa3b92011-02-07 23:56:01 +00005508 aRes[0] = 0;
5509 aRes[1] = aRes[2] = -1;
dancdc1f042010-11-18 12:11:05 +00005510 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5511 || pOp->p2==SQLITE_CHECKPOINT_FULL
5512 || pOp->p2==SQLITE_CHECKPOINT_RESTART
5513 );
drh30aa3b92011-02-07 23:56:01 +00005514 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
dancdc1f042010-11-18 12:11:05 +00005515 if( rc==SQLITE_BUSY ){
5516 rc = SQLITE_OK;
drh30aa3b92011-02-07 23:56:01 +00005517 aRes[0] = 1;
dancdc1f042010-11-18 12:11:05 +00005518 }
drh30aa3b92011-02-07 23:56:01 +00005519 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5520 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5521 }
dan7c246102010-04-12 19:00:29 +00005522 break;
5523};
dan5cf53532010-05-01 16:40:20 +00005524#endif
drh5e00f6c2001-09-13 13:46:56 +00005525
drhcac29a62010-07-02 19:36:52 +00005526#ifndef SQLITE_OMIT_PRAGMA
drhab9b7442010-05-10 11:20:05 +00005527/* Opcode: JournalMode P1 P2 P3 * P5
dane04dc882010-04-20 18:53:15 +00005528**
5529** Change the journal mode of database P1 to P3. P3 must be one of the
5530** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5531** modes (delete, truncate, persist, off and memory), this is a simple
5532** operation. No IO is required.
5533**
5534** If changing into or out of WAL mode the procedure is more complicated.
5535**
5536** Write a string containing the final journal-mode to register P2.
5537*/
drhd80b2332010-05-01 00:59:37 +00005538case OP_JournalMode: { /* out2-prerelease */
dane04dc882010-04-20 18:53:15 +00005539 Btree *pBt; /* Btree to change journal mode of */
5540 Pager *pPager; /* Pager associated with pBt */
drhd80b2332010-05-01 00:59:37 +00005541 int eNew; /* New journal mode */
5542 int eOld; /* The old journal mode */
mistachkin59ee77c2012-09-13 15:26:44 +00005543#ifndef SQLITE_OMIT_WAL
drhd80b2332010-05-01 00:59:37 +00005544 const char *zFilename; /* Name of database file for pPager */
mistachkin59ee77c2012-09-13 15:26:44 +00005545#endif
dane04dc882010-04-20 18:53:15 +00005546
drhd80b2332010-05-01 00:59:37 +00005547 eNew = pOp->p3;
dane04dc882010-04-20 18:53:15 +00005548 assert( eNew==PAGER_JOURNALMODE_DELETE
5549 || eNew==PAGER_JOURNALMODE_TRUNCATE
5550 || eNew==PAGER_JOURNALMODE_PERSIST
5551 || eNew==PAGER_JOURNALMODE_OFF
5552 || eNew==PAGER_JOURNALMODE_MEMORY
5553 || eNew==PAGER_JOURNALMODE_WAL
5554 || eNew==PAGER_JOURNALMODE_QUERY
5555 );
5556 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drh9e92a472013-06-27 17:40:30 +00005557 assert( p->readOnly==0 );
drh3ebaee92010-05-06 21:37:22 +00005558
dane04dc882010-04-20 18:53:15 +00005559 pBt = db->aDb[pOp->p1].pBt;
5560 pPager = sqlite3BtreePager(pBt);
drh0b9b4302010-06-11 17:01:24 +00005561 eOld = sqlite3PagerGetJournalMode(pPager);
5562 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5563 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
dan5cf53532010-05-01 16:40:20 +00005564
5565#ifndef SQLITE_OMIT_WAL
drhd4e0bb02012-05-27 01:19:04 +00005566 zFilename = sqlite3PagerFilename(pPager, 1);
dane04dc882010-04-20 18:53:15 +00005567
drhd80b2332010-05-01 00:59:37 +00005568 /* Do not allow a transition to journal_mode=WAL for a database
drh6e1f4822010-07-13 23:41:40 +00005569 ** in temporary storage or if the VFS does not support shared memory
drhd80b2332010-05-01 00:59:37 +00005570 */
5571 if( eNew==PAGER_JOURNALMODE_WAL
drh057fc812011-10-17 23:15:31 +00005572 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
drh6e1f4822010-07-13 23:41:40 +00005573 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
dane180c292010-04-26 17:42:56 +00005574 ){
drh0b9b4302010-06-11 17:01:24 +00005575 eNew = eOld;
dane180c292010-04-26 17:42:56 +00005576 }
5577
drh0b9b4302010-06-11 17:01:24 +00005578 if( (eNew!=eOld)
5579 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5580 ){
danc0537fe2013-06-28 19:41:43 +00005581 if( !db->autoCommit || db->nVdbeRead>1 ){
drh0b9b4302010-06-11 17:01:24 +00005582 rc = SQLITE_ERROR;
5583 sqlite3SetString(&p->zErrMsg, db,
5584 "cannot change %s wal mode from within a transaction",
5585 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5586 );
5587 break;
5588 }else{
5589
5590 if( eOld==PAGER_JOURNALMODE_WAL ){
5591 /* If leaving WAL mode, close the log file. If successful, the call
5592 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5593 ** file. An EXCLUSIVE lock may still be held on the database file
5594 ** after a successful return.
dane04dc882010-04-20 18:53:15 +00005595 */
drh0b9b4302010-06-11 17:01:24 +00005596 rc = sqlite3PagerCloseWal(pPager);
drhab9b7442010-05-10 11:20:05 +00005597 if( rc==SQLITE_OK ){
drh0b9b4302010-06-11 17:01:24 +00005598 sqlite3PagerSetJournalMode(pPager, eNew);
drh89c3f2f2010-05-15 01:09:38 +00005599 }
drh242c4f72010-06-22 14:49:39 +00005600 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5601 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5602 ** as an intermediate */
5603 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
drh0b9b4302010-06-11 17:01:24 +00005604 }
5605
5606 /* Open a transaction on the database file. Regardless of the journal
5607 ** mode, this transaction always uses a rollback journal.
5608 */
5609 assert( sqlite3BtreeIsInTrans(pBt)==0 );
5610 if( rc==SQLITE_OK ){
dan731bf5b2010-06-17 16:44:21 +00005611 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
dane04dc882010-04-20 18:53:15 +00005612 }
5613 }
5614 }
dan5cf53532010-05-01 16:40:20 +00005615#endif /* ifndef SQLITE_OMIT_WAL */
dane04dc882010-04-20 18:53:15 +00005616
dand956efe2010-06-18 16:13:45 +00005617 if( rc ){
dand956efe2010-06-18 16:13:45 +00005618 eNew = eOld;
5619 }
drh0b9b4302010-06-11 17:01:24 +00005620 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
dan731bf5b2010-06-17 16:44:21 +00005621
dane04dc882010-04-20 18:53:15 +00005622 pOut = &aMem[pOp->p2];
5623 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
danb9780022010-04-21 18:37:57 +00005624 pOut->z = (char *)sqlite3JournalModename(eNew);
dane04dc882010-04-20 18:53:15 +00005625 pOut->n = sqlite3Strlen30(pOut->z);
5626 pOut->enc = SQLITE_UTF8;
5627 sqlite3VdbeChangeEncoding(pOut, encoding);
5628 break;
drhcac29a62010-07-02 19:36:52 +00005629};
5630#endif /* SQLITE_OMIT_PRAGMA */
dane04dc882010-04-20 18:53:15 +00005631
drhfdbcdee2007-03-27 14:44:50 +00005632#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh98757152008-01-09 23:04:12 +00005633/* Opcode: Vacuum * * * * *
drh6f8c91c2003-12-07 00:24:35 +00005634**
5635** Vacuum the entire database. This opcode will cause other virtual
5636** machines to be created and run. It may not be called from within
5637** a transaction.
5638*/
drh9cbf3422008-01-17 16:22:13 +00005639case OP_Vacuum: {
drh9e92a472013-06-27 17:40:30 +00005640 assert( p->readOnly==0 );
danielk19774adee202004-05-08 08:23:19 +00005641 rc = sqlite3RunVacuum(&p->zErrMsg, db);
drh6f8c91c2003-12-07 00:24:35 +00005642 break;
5643}
drh154d4b22006-09-21 11:02:16 +00005644#endif
drh6f8c91c2003-12-07 00:24:35 +00005645
danielk1977dddbcdc2007-04-26 14:42:34 +00005646#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00005647/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00005648**
5649** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00005650** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00005651** P2. Otherwise, fall through to the next instruction.
5652*/
drh9cbf3422008-01-17 16:22:13 +00005653case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00005654 Btree *pBt;
5655
5656 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00005657 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh9e92a472013-06-27 17:40:30 +00005658 assert( p->readOnly==0 );
drhca5557f2007-05-04 18:30:40 +00005659 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00005660 rc = sqlite3BtreeIncrVacuum(pBt);
5661 if( rc==SQLITE_DONE ){
5662 pc = pOp->p2 - 1;
5663 rc = SQLITE_OK;
5664 }
5665 break;
5666}
5667#endif
5668
drh98757152008-01-09 23:04:12 +00005669/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00005670**
5671** Cause precompiled statements to become expired. An expired statement
5672** fails with an error code of SQLITE_SCHEMA if it is ever executed
5673** (via sqlite3_step()).
5674**
5675** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5676** then only the currently executing statement is affected.
5677*/
drh9cbf3422008-01-17 16:22:13 +00005678case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00005679 if( !pOp->p1 ){
5680 sqlite3ExpirePreparedStatements(db);
5681 }else{
5682 p->expired = 1;
5683 }
5684 break;
5685}
5686
danielk1977c00da102006-01-07 13:21:04 +00005687#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00005688/* Opcode: TableLock P1 P2 P3 P4 *
danielk1977c00da102006-01-07 13:21:04 +00005689**
5690** Obtain a lock on a particular table. This instruction is only used when
5691** the shared-cache feature is enabled.
5692**
danielk197796d48e92009-06-29 06:00:37 +00005693** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00005694** on which the lock is acquired. A readlock is obtained if P3==0 or
5695** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00005696**
5697** P2 contains the root-page of the table to lock.
5698**
drh66a51672008-01-03 00:01:23 +00005699** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00005700** used to generate an error message if the lock cannot be obtained.
5701*/
drh9cbf3422008-01-17 16:22:13 +00005702case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00005703 u8 isWriteLock = (u8)pOp->p3;
5704 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5705 int p1 = pOp->p1;
5706 assert( p1>=0 && p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00005707 assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +00005708 assert( isWriteLock==0 || isWriteLock==1 );
5709 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5710 if( (rc&0xFF)==SQLITE_LOCKED ){
5711 const char *z = pOp->p4.z;
5712 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
5713 }
danielk1977c00da102006-01-07 13:21:04 +00005714 }
5715 break;
5716}
drhb9bb7c12006-06-11 23:41:55 +00005717#endif /* SQLITE_OMIT_SHARED_CACHE */
5718
5719#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005720/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005721**
danielk19773e3a84d2008-08-01 17:37:40 +00005722** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5723** xBegin method for that table.
5724**
5725** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00005726** within a callback to a virtual table xSync() method. If it is, the error
5727** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00005728*/
drh9cbf3422008-01-17 16:22:13 +00005729case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00005730 VTable *pVTab;
5731 pVTab = pOp->p4.pVtab;
5732 rc = sqlite3VtabBegin(db, pVTab);
dan016f7812013-08-21 17:35:48 +00005733 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
danielk1977f9e7dda2006-06-16 16:08:53 +00005734 break;
5735}
5736#endif /* SQLITE_OMIT_VIRTUALTABLE */
5737
5738#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005739/* Opcode: VCreate P1 * * P4 *
danielk1977f9e7dda2006-06-16 16:08:53 +00005740**
drh66a51672008-01-03 00:01:23 +00005741** P4 is the name of a virtual table in database P1. Call the xCreate method
danielk1977f9e7dda2006-06-16 16:08:53 +00005742** for that table.
5743*/
drh9cbf3422008-01-17 16:22:13 +00005744case OP_VCreate: {
danielk19772dca4ac2008-01-03 11:50:29 +00005745 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
drhb9bb7c12006-06-11 23:41:55 +00005746 break;
5747}
5748#endif /* SQLITE_OMIT_VIRTUALTABLE */
5749
5750#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005751/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005752**
drh66a51672008-01-03 00:01:23 +00005753** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00005754** of that table.
drhb9bb7c12006-06-11 23:41:55 +00005755*/
drh9cbf3422008-01-17 16:22:13 +00005756case OP_VDestroy: {
danielk1977212b2182006-06-23 14:32:08 +00005757 p->inVtabMethod = 2;
danielk19772dca4ac2008-01-03 11:50:29 +00005758 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
danielk1977212b2182006-06-23 14:32:08 +00005759 p->inVtabMethod = 0;
drhb9bb7c12006-06-11 23:41:55 +00005760 break;
5761}
5762#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00005763
drh9eff6162006-06-12 21:59:13 +00005764#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005765/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00005766**
drh66a51672008-01-03 00:01:23 +00005767** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00005768** P1 is a cursor number. This opcode opens a cursor to the virtual
5769** table and stores that cursor in P1.
5770*/
drh9cbf3422008-01-17 16:22:13 +00005771case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00005772 VdbeCursor *pCur;
5773 sqlite3_vtab_cursor *pVtabCursor;
5774 sqlite3_vtab *pVtab;
5775 sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005776
drh1713afb2013-06-28 01:24:57 +00005777 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00005778 pCur = 0;
5779 pVtabCursor = 0;
danielk1977595a5232009-07-24 17:58:53 +00005780 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00005781 pModule = (sqlite3_module *)pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005782 assert(pVtab && pModule);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005783 rc = pModule->xOpen(pVtab, &pVtabCursor);
dan016f7812013-08-21 17:35:48 +00005784 sqlite3VtabImportErrmsg(p, pVtab);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005785 if( SQLITE_OK==rc ){
shane21e7feb2008-05-30 15:59:49 +00005786 /* Initialize sqlite3_vtab_cursor base class */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005787 pVtabCursor->pVtab = pVtab;
5788
mistachkin48864df2013-03-21 21:20:32 +00005789 /* Initialize vdbe cursor object */
danielk1977d336e222009-02-20 10:58:41 +00005790 pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
danielk1977be718892006-06-23 08:05:19 +00005791 if( pCur ){
5792 pCur->pVtabCursor = pVtabCursor;
5793 pCur->pModule = pVtabCursor->pVtab->pModule;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005794 }else{
drh17435752007-08-16 04:30:38 +00005795 db->mallocFailed = 1;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005796 pModule->xClose(pVtabCursor);
danielk1977be718892006-06-23 08:05:19 +00005797 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005798 }
drh9eff6162006-06-12 21:59:13 +00005799 break;
5800}
5801#endif /* SQLITE_OMIT_VIRTUALTABLE */
5802
5803#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00005804/* Opcode: VFilter P1 P2 P3 P4 *
drh9eff6162006-06-12 21:59:13 +00005805**
5806** P1 is a cursor opened using VOpen. P2 is an address to jump to if
5807** the filtered result set is empty.
5808**
drh66a51672008-01-03 00:01:23 +00005809** P4 is either NULL or a string that was generated by the xBestIndex
5810** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00005811** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00005812**
drh9eff6162006-06-12 21:59:13 +00005813** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00005814** by P1. The integer query plan parameter to xFilter is stored in register
5815** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00005816** xFilter method. Registers P3+2..P3+1+argc are the argc
5817** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00005818** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00005819**
danielk19776dbee812008-01-03 18:39:41 +00005820** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00005821*/
drh9cbf3422008-01-17 16:22:13 +00005822case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005823 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00005824 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005825 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00005826 Mem *pQuery;
5827 Mem *pArgc;
drh4dc754d2008-07-23 18:17:32 +00005828 sqlite3_vtab_cursor *pVtabCursor;
5829 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00005830 VdbeCursor *pCur;
5831 int res;
5832 int i;
5833 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005834
drha6c2ed92009-11-14 23:22:23 +00005835 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005836 pArgc = &pQuery[1];
5837 pCur = p->apCsr[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00005838 assert( memIsValid(pQuery) );
drh5b6afba2008-01-05 16:29:28 +00005839 REGISTER_TRACE(pOp->p3, pQuery);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005840 assert( pCur->pVtabCursor );
drh4dc754d2008-07-23 18:17:32 +00005841 pVtabCursor = pCur->pVtabCursor;
5842 pVtab = pVtabCursor->pVtab;
5843 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005844
drh9cbf3422008-01-17 16:22:13 +00005845 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00005846 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00005847 nArg = (int)pArgc->u.i;
5848 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005849
drh644a5292006-12-20 14:53:38 +00005850 /* Invoke the xFilter method */
5851 {
drh856c1032009-06-02 15:21:42 +00005852 res = 0;
5853 apArg = p->apArg;
drh4be8b512006-06-13 23:51:34 +00005854 for(i = 0; i<nArg; i++){
danielk19776dbee812008-01-03 18:39:41 +00005855 apArg[i] = &pArgc[i+1];
dan937d0de2009-10-15 18:35:38 +00005856 sqlite3VdbeMemStoreType(apArg[i]);
danielk19775fac9f82006-06-13 14:16:58 +00005857 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005858
danielk1977be718892006-06-23 08:05:19 +00005859 p->inVtabMethod = 1;
drh4dc754d2008-07-23 18:17:32 +00005860 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
danielk1977be718892006-06-23 08:05:19 +00005861 p->inVtabMethod = 0;
dan016f7812013-08-21 17:35:48 +00005862 sqlite3VtabImportErrmsg(p, pVtab);
danielk1977a298e902006-06-22 09:53:48 +00005863 if( rc==SQLITE_OK ){
drh4dc754d2008-07-23 18:17:32 +00005864 res = pModule->xEof(pVtabCursor);
danielk1977a298e902006-06-22 09:53:48 +00005865 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005866
danielk1977a298e902006-06-22 09:53:48 +00005867 if( res ){
danielk1977b7a7b9a2006-06-13 10:24:42 +00005868 pc = pOp->p2 - 1;
5869 }
5870 }
drh1d454a32008-01-31 19:34:51 +00005871 pCur->nullRow = 0;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005872
drh9eff6162006-06-12 21:59:13 +00005873 break;
5874}
5875#endif /* SQLITE_OMIT_VIRTUALTABLE */
5876
5877#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005878/* Opcode: VColumn P1 P2 P3 * *
drh9eff6162006-06-12 21:59:13 +00005879**
drh2133d822008-01-03 18:44:59 +00005880** Store the value of the P2-th column of
5881** the row of the virtual-table that the
5882** P1 cursor is pointing to into register P3.
drh9eff6162006-06-12 21:59:13 +00005883*/
5884case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00005885 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005886 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00005887 Mem *pDest;
5888 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005889
drhdfe88ec2008-11-03 20:55:06 +00005890 VdbeCursor *pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00005891 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00005892 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005893 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00005894 memAboutToChange(p, pDest);
drh2945b4a2008-01-31 15:53:45 +00005895 if( pCur->nullRow ){
5896 sqlite3VdbeMemSetNull(pDest);
5897 break;
5898 }
danielk19773e3a84d2008-08-01 17:37:40 +00005899 pVtab = pCur->pVtabCursor->pVtab;
5900 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00005901 assert( pModule->xColumn );
5902 memset(&sContext, 0, sizeof(sContext));
danielk1977a7a8e142008-02-13 18:25:27 +00005903
5904 /* The output cell may already have a buffer allocated. Move
5905 ** the current contents to sContext.s so in case the user-function
5906 ** can use the already allocated buffer instead of allocating a
5907 ** new one.
5908 */
5909 sqlite3VdbeMemMove(&sContext.s, pDest);
5910 MemSetTypeFlag(&sContext.s, MEM_Null);
5911
drhde4fcfd2008-01-19 23:50:26 +00005912 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
dan016f7812013-08-21 17:35:48 +00005913 sqlite3VtabImportErrmsg(p, pVtab);
drh4c8555f2009-06-25 01:47:11 +00005914 if( sContext.isError ){
5915 rc = sContext.isError;
5916 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005917
drhde4fcfd2008-01-19 23:50:26 +00005918 /* Copy the result of the function to the P3 register. We
shanebe217792009-03-05 04:20:31 +00005919 ** do this regardless of whether or not an error occurred to ensure any
drhde4fcfd2008-01-19 23:50:26 +00005920 ** dynamic allocation in sContext.s (a Mem struct) is released.
5921 */
5922 sqlite3VdbeChangeEncoding(&sContext.s, encoding);
drhde4fcfd2008-01-19 23:50:26 +00005923 sqlite3VdbeMemMove(pDest, &sContext.s);
drh5ff44372009-11-24 16:26:17 +00005924 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00005925 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005926
drhde4fcfd2008-01-19 23:50:26 +00005927 if( sqlite3VdbeMemTooBig(pDest) ){
5928 goto too_big;
5929 }
drh9eff6162006-06-12 21:59:13 +00005930 break;
5931}
5932#endif /* SQLITE_OMIT_VIRTUALTABLE */
5933
5934#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005935/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00005936**
5937** Advance virtual table P1 to the next row in its result set and
5938** jump to instruction P2. Or, if the virtual table has reached
5939** the end of its result set, then fall through to the next instruction.
5940*/
drh9cbf3422008-01-17 16:22:13 +00005941case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00005942 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005943 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00005944 int res;
drh856c1032009-06-02 15:21:42 +00005945 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005946
drhc54a6172009-06-02 16:06:03 +00005947 res = 0;
drh856c1032009-06-02 15:21:42 +00005948 pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00005949 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00005950 if( pCur->nullRow ){
5951 break;
5952 }
danielk19773e3a84d2008-08-01 17:37:40 +00005953 pVtab = pCur->pVtabCursor->pVtab;
5954 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00005955 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00005956
drhde4fcfd2008-01-19 23:50:26 +00005957 /* Invoke the xNext() method of the module. There is no way for the
5958 ** underlying implementation to return an error if one occurs during
5959 ** xNext(). Instead, if an error occurs, true is returned (indicating that
5960 ** data is available) and the error code returned when xColumn or
5961 ** some other method is next invoked on the save virtual table cursor.
5962 */
drhde4fcfd2008-01-19 23:50:26 +00005963 p->inVtabMethod = 1;
5964 rc = pModule->xNext(pCur->pVtabCursor);
5965 p->inVtabMethod = 0;
dan016f7812013-08-21 17:35:48 +00005966 sqlite3VtabImportErrmsg(p, pVtab);
drhde4fcfd2008-01-19 23:50:26 +00005967 if( rc==SQLITE_OK ){
5968 res = pModule->xEof(pCur->pVtabCursor);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005969 }
5970
drhde4fcfd2008-01-19 23:50:26 +00005971 if( !res ){
5972 /* If there is data, jump to P2 */
5973 pc = pOp->p2 - 1;
5974 }
drh49afe3a2013-07-10 03:05:14 +00005975 goto check_for_interrupt;
drh9eff6162006-06-12 21:59:13 +00005976}
5977#endif /* SQLITE_OMIT_VIRTUALTABLE */
5978
danielk1977182c4ba2007-06-27 15:53:34 +00005979#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005980/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00005981**
drh66a51672008-01-03 00:01:23 +00005982** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00005983** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00005984** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00005985*/
drh9cbf3422008-01-17 16:22:13 +00005986case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00005987 sqlite3_vtab *pVtab;
5988 Mem *pName;
5989
danielk1977595a5232009-07-24 17:58:53 +00005990 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00005991 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00005992 assert( pVtab->pModule->xRename );
drh2b4ded92010-09-27 21:09:31 +00005993 assert( memIsValid(pName) );
drh9e92a472013-06-27 17:40:30 +00005994 assert( p->readOnly==0 );
drh5b6afba2008-01-05 16:29:28 +00005995 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00005996 assert( pName->flags & MEM_Str );
drh98655a62011-10-18 22:07:47 +00005997 testcase( pName->enc==SQLITE_UTF8 );
5998 testcase( pName->enc==SQLITE_UTF16BE );
5999 testcase( pName->enc==SQLITE_UTF16LE );
6000 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
6001 if( rc==SQLITE_OK ){
6002 rc = pVtab->pModule->xRename(pVtab, pName->z);
dan016f7812013-08-21 17:35:48 +00006003 sqlite3VtabImportErrmsg(p, pVtab);
drh98655a62011-10-18 22:07:47 +00006004 p->expired = 0;
6005 }
danielk1977182c4ba2007-06-27 15:53:34 +00006006 break;
6007}
6008#endif
drh4cbdda92006-06-14 19:00:20 +00006009
6010#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006011/* Opcode: VUpdate P1 P2 P3 P4 *
danielk1977399918f2006-06-14 13:03:23 +00006012**
drh66a51672008-01-03 00:01:23 +00006013** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00006014** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00006015** are contiguous memory cells starting at P3 to pass to the xUpdate
6016** invocation. The value in register (P3+P2-1) corresponds to the
6017** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00006018**
6019** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00006020** The argv[0] element (which corresponds to memory cell P3)
6021** is the rowid of a row to delete. If argv[0] is NULL then no
6022** deletion occurs. The argv[1] element is the rowid of the new
6023** row. This can be NULL to have the virtual table select the new
6024** rowid for itself. The subsequent elements in the array are
6025** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00006026**
6027** If P2==1 then no insert is performed. argv[0] is the rowid of
6028** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00006029**
6030** P1 is a boolean flag. If it is set to true and the xUpdate call
6031** is successful, then the value returned by sqlite3_last_insert_rowid()
6032** is set to the value of the rowid for the row just inserted.
danielk1977399918f2006-06-14 13:03:23 +00006033*/
drh9cbf3422008-01-17 16:22:13 +00006034case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00006035 sqlite3_vtab *pVtab;
6036 sqlite3_module *pModule;
6037 int nArg;
6038 int i;
6039 sqlite_int64 rowid;
6040 Mem **apArg;
6041 Mem *pX;
6042
danb061d052011-04-25 18:49:57 +00006043 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
6044 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6045 );
drh9e92a472013-06-27 17:40:30 +00006046 assert( p->readOnly==0 );
danielk1977595a5232009-07-24 17:58:53 +00006047 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00006048 pModule = (sqlite3_module *)pVtab->pModule;
6049 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00006050 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00006051 if( ALWAYS(pModule->xUpdate) ){
danb061d052011-04-25 18:49:57 +00006052 u8 vtabOnConflict = db->vtabOnConflict;
drh856c1032009-06-02 15:21:42 +00006053 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00006054 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00006055 for(i=0; i<nArg; i++){
drh2b4ded92010-09-27 21:09:31 +00006056 assert( memIsValid(pX) );
6057 memAboutToChange(p, pX);
dan937d0de2009-10-15 18:35:38 +00006058 sqlite3VdbeMemStoreType(pX);
drh9c419382006-06-16 21:13:21 +00006059 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00006060 pX++;
danielk1977399918f2006-06-14 13:03:23 +00006061 }
danb061d052011-04-25 18:49:57 +00006062 db->vtabOnConflict = pOp->p5;
danielk19771f6eec52006-06-16 06:17:47 +00006063 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
danb061d052011-04-25 18:49:57 +00006064 db->vtabOnConflict = vtabOnConflict;
dan016f7812013-08-21 17:35:48 +00006065 sqlite3VtabImportErrmsg(p, pVtab);
drh35f6b932009-06-23 14:15:04 +00006066 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00006067 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
drh99a66922011-05-13 18:51:42 +00006068 db->lastRowid = lastRowid = rowid;
danielk19771f6eec52006-06-16 06:17:47 +00006069 }
drhd91c1a12013-02-09 13:58:25 +00006070 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
danb061d052011-04-25 18:49:57 +00006071 if( pOp->p5==OE_Ignore ){
6072 rc = SQLITE_OK;
6073 }else{
6074 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6075 }
6076 }else{
6077 p->nChange++;
6078 }
danielk1977399918f2006-06-14 13:03:23 +00006079 }
drh4cbdda92006-06-14 19:00:20 +00006080 break;
danielk1977399918f2006-06-14 13:03:23 +00006081}
6082#endif /* SQLITE_OMIT_VIRTUALTABLE */
6083
danielk197759a93792008-05-15 17:48:20 +00006084#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6085/* Opcode: Pagecount P1 P2 * * *
6086**
6087** Write the current number of pages in database P1 to memory cell P2.
6088*/
6089case OP_Pagecount: { /* out2-prerelease */
drhb1299152010-03-30 22:58:33 +00006090 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00006091 break;
6092}
6093#endif
6094
drh60ac3f42010-11-23 18:59:27 +00006095
6096#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6097/* Opcode: MaxPgcnt P1 P2 P3 * *
6098**
6099** Try to set the maximum page count for database P1 to the value in P3.
drhc84e0332010-11-23 20:25:08 +00006100** Do not let the maximum page count fall below the current page count and
6101** do not change the maximum page count value if P3==0.
6102**
drh60ac3f42010-11-23 18:59:27 +00006103** Store the maximum page count after the change in register P2.
6104*/
6105case OP_MaxPgcnt: { /* out2-prerelease */
drhc84e0332010-11-23 20:25:08 +00006106 unsigned int newMax;
drh60ac3f42010-11-23 18:59:27 +00006107 Btree *pBt;
6108
6109 pBt = db->aDb[pOp->p1].pBt;
drhc84e0332010-11-23 20:25:08 +00006110 newMax = 0;
6111 if( pOp->p3 ){
6112 newMax = sqlite3BtreeLastPage(pBt);
drh6ea28d62010-11-26 16:49:59 +00006113 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
drhc84e0332010-11-23 20:25:08 +00006114 }
6115 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
drh60ac3f42010-11-23 18:59:27 +00006116 break;
6117}
6118#endif
6119
6120
drh949f9cd2008-01-12 21:35:57 +00006121#ifndef SQLITE_OMIT_TRACE
6122/* Opcode: Trace * * * P4 *
6123**
6124** If tracing is enabled (by the sqlite3_trace()) interface, then
6125** the UTF-8 string contained in P4 is emitted on the trace callback.
6126*/
6127case OP_Trace: {
drh856c1032009-06-02 15:21:42 +00006128 char *zTrace;
drhc3f1d5f2011-05-30 23:42:16 +00006129 char *z;
drh856c1032009-06-02 15:21:42 +00006130
drh37f58e92012-09-04 21:34:26 +00006131 if( db->xTrace
6132 && !p->doingRerun
6133 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6134 ){
drhc3f1d5f2011-05-30 23:42:16 +00006135 z = sqlite3VdbeExpandSql(p, zTrace);
6136 db->xTrace(db->pTraceArg, z);
6137 sqlite3DbFree(db, z);
drh949f9cd2008-01-12 21:35:57 +00006138 }
drhc3f1d5f2011-05-30 23:42:16 +00006139#ifdef SQLITE_DEBUG
6140 if( (db->flags & SQLITE_SqlTrace)!=0
6141 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6142 ){
6143 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6144 }
6145#endif /* SQLITE_DEBUG */
drh949f9cd2008-01-12 21:35:57 +00006146 break;
6147}
6148#endif
6149
drh91fd4d42008-01-19 20:11:25 +00006150
6151/* Opcode: Noop * * * * *
6152**
6153** Do nothing. This instruction is often useful as a jump
6154** destination.
drh5e00f6c2001-09-13 13:46:56 +00006155*/
drh91fd4d42008-01-19 20:11:25 +00006156/*
6157** The magic Explain opcode are only inserted when explain==2 (which
6158** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6159** This opcode records information from the optimizer. It is the
6160** the same as a no-op. This opcodesnever appears in a real VM program.
6161*/
6162default: { /* This is really OP_Noop and OP_Explain */
drh13573c72010-01-12 17:04:07 +00006163 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh5e00f6c2001-09-13 13:46:56 +00006164 break;
6165}
6166
6167/*****************************************************************************
6168** The cases of the switch statement above this line should all be indented
6169** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6170** readability. From this point on down, the normal indentation rules are
6171** restored.
6172*****************************************************************************/
6173 }
drh6e142f52000-06-08 13:36:40 +00006174
drh7b396862003-01-01 23:06:20 +00006175#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00006176 {
shane9bcbdad2008-05-29 20:22:37 +00006177 u64 elapsed = sqlite3Hwtime() - start;
6178 pOp->cycles += elapsed;
drh8178a752003-01-05 21:41:40 +00006179 pOp->cnt++;
6180#if 0
shane9bcbdad2008-05-29 20:22:37 +00006181 fprintf(stdout, "%10llu ", elapsed);
drhbbe879d2009-11-14 18:04:35 +00006182 sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
drh8178a752003-01-05 21:41:40 +00006183#endif
6184 }
drh7b396862003-01-01 23:06:20 +00006185#endif
6186
drh6e142f52000-06-08 13:36:40 +00006187 /* The following code adds nothing to the actual functionality
6188 ** of the program. It is only here for testing and debugging.
6189 ** On the other hand, it does burn CPU cycles every time through
6190 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6191 */
6192#ifndef NDEBUG
drha6110402005-07-28 20:51:19 +00006193 assert( pc>=-1 && pc<p->nOp );
drhae7e1512007-05-02 16:51:59 +00006194
drhcf1023c2007-05-08 20:59:49 +00006195#ifdef SQLITE_DEBUG
drh5b6afba2008-01-05 16:29:28 +00006196 if( p->trace ){
6197 if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
drh3c657212009-11-17 23:59:58 +00006198 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
6199 registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
drh75897232000-05-29 14:26:00 +00006200 }
drh3c657212009-11-17 23:59:58 +00006201 if( pOp->opflags & OPFLG_OUT3 ){
6202 registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00006203 }
drh75897232000-05-29 14:26:00 +00006204 }
danielk1977b5402fb2005-01-12 07:15:04 +00006205#endif /* SQLITE_DEBUG */
6206#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00006207 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00006208
drha05a7222008-01-19 03:35:58 +00006209 /* If we reach this point, it means that execution is finished with
6210 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00006211 */
drha05a7222008-01-19 03:35:58 +00006212vdbe_error_halt:
6213 assert( rc );
6214 p->rc = rc;
drha64fa912010-03-04 00:53:32 +00006215 testcase( sqlite3GlobalConfig.xLog!=0 );
6216 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
6217 pc, p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00006218 sqlite3VdbeHalt(p);
danielk19777eaabcd2008-07-07 14:56:56 +00006219 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6220 rc = SQLITE_ERROR;
drhcdf011d2011-04-04 21:25:28 +00006221 if( resetSchemaOnFault>0 ){
drh81028a42012-05-15 18:28:27 +00006222 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
drhbdaec522011-04-04 00:14:43 +00006223 }
drh900b31e2007-08-28 02:27:51 +00006224
6225 /* This is the only way out of this procedure. We have to
6226 ** release the mutexes on btrees that were acquired at the
6227 ** top. */
6228vdbe_return:
drh99a66922011-05-13 18:51:42 +00006229 db->lastRowid = lastRowid;
drh77dfd5b2013-08-19 11:15:48 +00006230 testcase( nVmStep>0 );
drh9b47ee32013-08-20 03:13:51 +00006231 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
drhbdaec522011-04-04 00:14:43 +00006232 sqlite3VdbeLeave(p);
drhb86ccfb2003-01-28 23:13:10 +00006233 return rc;
6234
drh023ae032007-05-08 12:12:16 +00006235 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6236 ** is encountered.
6237 */
6238too_big:
drhf089aa42008-07-08 19:34:06 +00006239 sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00006240 rc = SQLITE_TOOBIG;
drha05a7222008-01-19 03:35:58 +00006241 goto vdbe_error_halt;
drh023ae032007-05-08 12:12:16 +00006242
drh98640a32007-06-07 19:08:32 +00006243 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00006244 */
6245no_mem:
drh17435752007-08-16 04:30:38 +00006246 db->mallocFailed = 1;
drhf089aa42008-07-08 19:34:06 +00006247 sqlite3SetString(&p->zErrMsg, db, "out of memory");
drhb86ccfb2003-01-28 23:13:10 +00006248 rc = SQLITE_NOMEM;
drha05a7222008-01-19 03:35:58 +00006249 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006250
drhb86ccfb2003-01-28 23:13:10 +00006251 /* Jump to here for any other kind of fatal error. The "rc" variable
6252 ** should hold the error number.
6253 */
6254abort_due_to_error:
drha05a7222008-01-19 03:35:58 +00006255 assert( p->zErrMsg==0 );
6256 if( db->mallocFailed ) rc = SQLITE_NOMEM;
danielk19777eaabcd2008-07-07 14:56:56 +00006257 if( rc!=SQLITE_IOERR_NOMEM ){
drhf089aa42008-07-08 19:34:06 +00006258 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
danielk19777eaabcd2008-07-07 14:56:56 +00006259 }
drha05a7222008-01-19 03:35:58 +00006260 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006261
danielk19776f8a5032004-05-10 10:34:51 +00006262 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00006263 ** flag.
6264 */
6265abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00006266 assert( db->u1.isInterrupted );
drh7e8b8482008-01-23 03:03:05 +00006267 rc = SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00006268 p->rc = rc;
drhf089aa42008-07-08 19:34:06 +00006269 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
drha05a7222008-01-19 03:35:58 +00006270 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006271}