blob: 4fd19327eda386d68df2e1c0dd575837a51f5376 [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh0fd61352014-02-07 02:29:45 +000012** The code in this file implements the function that runs the
13** bytecode of a prepared statement.
drh75897232000-05-29 14:26:00 +000014**
drhac82fcf2002-09-08 17:23:41 +000015** Various scripts scan this source file in order to generate HTML
16** documentation, headers files, or other derived files. The formatting
17** of the code in this file is, therefore, important. See other comments
18** in this file for details. If in doubt, do not deviate from existing
19** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000020*/
21#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000022#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000023
24/*
drh2b4ded92010-09-27 21:09:31 +000025** Invoke this macro on memory cells just prior to changing the
26** value of the cell. This macro verifies that shallow copies are
drh0fd61352014-02-07 02:29:45 +000027** not misused. A shallow copy of a string or blob just copies a
28** pointer to the string or blob, not the content. If the original
29** is changed while the copy is still in use, the string or blob might
30** be changed out from under the copy. This macro verifies that nothing
drhb6e8fd12014-03-06 01:56:33 +000031** like that ever happens.
drh2b4ded92010-09-27 21:09:31 +000032*/
33#ifdef SQLITE_DEBUG
drhe4c88c02012-01-04 12:57:45 +000034# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
drh2b4ded92010-09-27 21:09:31 +000035#else
36# define memAboutToChange(P,M)
37#endif
38
39/*
drh487ab3c2001-11-08 00:45:21 +000040** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000041** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000042** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000043** working correctly. This variable has no function other than to
44** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000045*/
drh0f7eb612006-08-08 13:51:43 +000046#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000047int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000048#endif
drh487ab3c2001-11-08 00:45:21 +000049
drhf6038712004-02-08 18:07:34 +000050/*
51** When this global variable is positive, it gets decremented once before
drhe4c88c02012-01-04 12:57:45 +000052** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53** field of the sqlite3 structure is set in order to simulate an interrupt.
drhf6038712004-02-08 18:07:34 +000054**
55** This facility is used for testing purposes only. It does not function
56** in an ordinary build.
57*/
drh0f7eb612006-08-08 13:51:43 +000058#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000059int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000060#endif
drh1350b032002-02-27 19:00:20 +000061
danielk19777e18c252004-05-25 11:47:24 +000062/*
drh6bf89572004-11-03 16:27:01 +000063** The next global variable is incremented each type the OP_Sort opcode
64** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000065** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000066** has no function other than to help verify the correct operation of the
67** library.
68*/
drh0f7eb612006-08-08 13:51:43 +000069#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000070int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000071#endif
drh6bf89572004-11-03 16:27:01 +000072
73/*
drhae7e1512007-05-02 16:51:59 +000074** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000075** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000076** use this information to make sure that the zero-blob functionality
77** is working correctly. This variable has no function other than to
78** help verify the correct operation of the library.
79*/
80#ifdef SQLITE_TEST
81int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +000082static void updateMaxBlobsize(Mem *p){
83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84 sqlite3_max_blobsize = p->n;
85 }
86}
drhae7e1512007-05-02 16:51:59 +000087#endif
88
89/*
drh0fd61352014-02-07 02:29:45 +000090** The next global variable is incremented each time the OP_Found opcode
dan0ff297e2009-09-25 17:03:14 +000091** is executed. This is used to test whether or not the foreign key
92** operation implemented using OP_FkIsZero is working. This variable
93** has no function other than to help verify the correct operation of the
94** library.
95*/
96#ifdef SQLITE_TEST
97int sqlite3_found_count = 0;
98#endif
99
100/*
drhb7654112008-01-12 12:48:07 +0000101** Test a register to see if it exceeds the current maximum blob size.
102** If it does, record the new maximum blob size.
103*/
drh678ccce2008-03-31 18:19:54 +0000104#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
drhca48c902008-01-18 14:08:24 +0000105# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000106#else
107# define UPDATE_MAX_BLOBSIZE(P)
108#endif
109
110/*
drh5655c542014-02-19 19:14:34 +0000111** Invoke the VDBE coverage callback, if that callback is defined. This
112** feature is used for test suite validation only and does not appear an
113** production builds.
114**
115** M is an integer, 2 or 3, that indices how many different ways the
116** branch can go. It is usually 2. "I" is the direction the branch
117** goes. 0 means falls through. 1 means branch is taken. 2 means the
118** second alternative branch is taken.
drh4336b0e2014-08-05 00:53:51 +0000119**
120** iSrcLine is the source code line (from the __LINE__ macro) that
121** generated the VDBE instruction. This instrumentation assumes that all
122** source code is in a single file (the amalgamation). Special values 1
123** and 2 for the iSrcLine parameter mean that this particular branch is
124** always taken or never taken, respectively.
drh688852a2014-02-17 22:40:43 +0000125*/
126#if !defined(SQLITE_VDBE_COVERAGE)
127# define VdbeBranchTaken(I,M)
128#else
drh5655c542014-02-19 19:14:34 +0000129# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
130 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
131 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
132 M = iSrcLine;
133 /* Assert the truth of VdbeCoverageAlwaysTaken() and
134 ** VdbeCoverageNeverTaken() */
135 assert( (M & I)==I );
136 }else{
137 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
138 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
139 iSrcLine,I,M);
140 }
141 }
drh688852a2014-02-17 22:40:43 +0000142#endif
143
144/*
drh9cbf3422008-01-17 16:22:13 +0000145** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000146** already. Return non-zero if a malloc() fails.
147*/
drhb21c8cd2007-08-21 19:33:56 +0000148#define Stringify(P, enc) \
drhbd9507c2014-08-23 17:21:37 +0000149 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
drhf4479502004-05-27 03:12:53 +0000150 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000151
152/*
danielk1977bd7e4602004-05-24 07:34:48 +0000153** An ephemeral string value (signified by the MEM_Ephem flag) contains
154** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000155** is responsible for deallocating that string. Because the register
156** does not control the string, it might be deleted without the register
157** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000158**
159** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000160** string that the register itself controls. In other words, it
drhc91b2fd2014-03-01 18:13:23 +0000161** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
danielk1977bd7e4602004-05-24 07:34:48 +0000162*/
drhb21c8cd2007-08-21 19:33:56 +0000163#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000164 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000165 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000166
dan689ab892011-08-12 15:02:00 +0000167/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
drh0fd61352014-02-07 02:29:45 +0000168#define isSorter(x) ((x)->pSorter!=0)
dan689ab892011-08-12 15:02:00 +0000169
danielk19771cc5ed82007-05-16 17:28:43 +0000170/*
drhdfe88ec2008-11-03 20:55:06 +0000171** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000172** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000173*/
drhdfe88ec2008-11-03 20:55:06 +0000174static VdbeCursor *allocateCursor(
175 Vdbe *p, /* The virtual machine */
176 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000177 int nField, /* Number of fields in the table or index */
drhe4c88c02012-01-04 12:57:45 +0000178 int iDb, /* Database the cursor belongs to, or -1 */
drh3e9ca092009-09-08 01:14:48 +0000179 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
danielk1977cd3e8f72008-03-25 09:47:35 +0000180){
181 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000182 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000183 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000184 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000185 **
186 ** * Sometimes cursor numbers are used for a couple of different
187 ** purposes in a vdbe program. The different uses might require
188 ** different sized allocations. Memory cells provide growable
189 ** allocations.
190 **
191 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
192 ** be freed lazily via the sqlite3_release_memory() API. This
193 ** minimizes the number of malloc calls made by the system.
194 **
195 ** Memory cells for cursors are allocated at the top of the address
196 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
197 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
198 */
199 Mem *pMem = &p->aMem[p->nMem-iCur];
200
danielk19775f096132008-03-28 15:44:09 +0000201 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000202 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000203 nByte =
drh5cc10232013-11-21 01:04:02 +0000204 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
205 (isBtreeCursor?sqlite3BtreeCursorSize():0);
danielk1977cd3e8f72008-03-25 09:47:35 +0000206
drh290c1942004-08-21 17:54:45 +0000207 assert( iCur<p->nCursor );
208 if( p->apCsr[iCur] ){
danielk1977be718892006-06-23 08:05:19 +0000209 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000210 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000211 }
drh322f2852014-09-19 00:43:39 +0000212 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
drhdfe88ec2008-11-03 20:55:06 +0000213 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhf25a5072009-11-18 23:01:25 +0000214 memset(pCx, 0, sizeof(VdbeCursor));
danielk197794eb6a12005-12-15 15:22:08 +0000215 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000216 pCx->nField = nField;
drhb53a5a92014-10-12 22:37:22 +0000217 pCx->aOffset = &pCx->aType[nField];
danielk1977cd3e8f72008-03-25 09:47:35 +0000218 if( isBtreeCursor ){
drhdfe88ec2008-11-03 20:55:06 +0000219 pCx->pCursor = (BtCursor*)
drh5cc10232013-11-21 01:04:02 +0000220 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
drhf25a5072009-11-18 23:01:25 +0000221 sqlite3BtreeCursorZero(pCx->pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000222 }
danielk197794eb6a12005-12-15 15:22:08 +0000223 }
drh4774b132004-06-12 20:12:51 +0000224 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000225}
226
danielk19773d1bfea2004-05-14 11:00:53 +0000227/*
drh29d72102006-02-09 22:13:41 +0000228** Try to convert a value into a numeric representation if we can
229** do so without loss of information. In other words, if the string
230** looks like a number, convert it into a number. If it does not
231** look like a number, leave it alone.
drhbd9507c2014-08-23 17:21:37 +0000232**
233** If the bTryForInt flag is true, then extra effort is made to give
234** an integer representation. Strings that look like floating point
235** values but which have no fractional component (example: '48.00')
236** will have a MEM_Int representation when bTryForInt is true.
237**
238** If bTryForInt is false, then if the input string contains a decimal
239** point or exponential notation, the result is only MEM_Real, even
240** if there is an exact integer representation of the quantity.
drh29d72102006-02-09 22:13:41 +0000241*/
drhbd9507c2014-08-23 17:21:37 +0000242static void applyNumericAffinity(Mem *pRec, int bTryForInt){
drh975b4c62014-07-26 16:47:23 +0000243 double rValue;
244 i64 iValue;
245 u8 enc = pRec->enc;
drh11a6eee2014-09-19 22:01:54 +0000246 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
drh975b4c62014-07-26 16:47:23 +0000247 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
248 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
249 pRec->u.i = iValue;
250 pRec->flags |= MEM_Int;
251 }else{
drh74eaba42014-09-18 17:52:15 +0000252 pRec->u.r = rValue;
drh975b4c62014-07-26 16:47:23 +0000253 pRec->flags |= MEM_Real;
drhbd9507c2014-08-23 17:21:37 +0000254 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000255 }
256}
257
258/*
drh8a512562005-11-14 22:29:05 +0000259** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000260**
drh8a512562005-11-14 22:29:05 +0000261** SQLITE_AFF_INTEGER:
262** SQLITE_AFF_REAL:
263** SQLITE_AFF_NUMERIC:
264** Try to convert pRec to an integer representation or a
265** floating-point representation if an integer representation
266** is not possible. Note that the integer representation is
267** always preferred, even if the affinity is REAL, because
268** an integer representation is more space efficient on disk.
269**
270** SQLITE_AFF_TEXT:
271** Convert pRec to a text representation.
272**
drh05883a32015-06-02 15:32:08 +0000273** SQLITE_AFF_BLOB:
drh8a512562005-11-14 22:29:05 +0000274** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000275*/
drh17435752007-08-16 04:30:38 +0000276static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000277 Mem *pRec, /* The value to apply affinity to */
278 char affinity, /* The affinity to be applied */
279 u8 enc /* Use this text encoding */
280){
drh7ea31cc2014-09-18 14:36:00 +0000281 if( affinity>=SQLITE_AFF_NUMERIC ){
drh8a512562005-11-14 22:29:05 +0000282 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
283 || affinity==SQLITE_AFF_NUMERIC );
drhbd9507c2014-08-23 17:21:37 +0000284 if( (pRec->flags & MEM_Int)==0 ){
285 if( (pRec->flags & MEM_Real)==0 ){
drh11a6eee2014-09-19 22:01:54 +0000286 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
drhbd9507c2014-08-23 17:21:37 +0000287 }else{
288 sqlite3VdbeIntegerAffinity(pRec);
289 }
drh17c40292004-07-21 02:53:29 +0000290 }
drh7ea31cc2014-09-18 14:36:00 +0000291 }else if( affinity==SQLITE_AFF_TEXT ){
292 /* Only attempt the conversion to TEXT if there is an integer or real
293 ** representation (blob and NULL do not get converted) but no string
294 ** representation.
295 */
296 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
297 sqlite3VdbeMemStringify(pRec, enc, 1);
298 }
dandde548c2015-05-19 19:44:25 +0000299 pRec->flags &= ~(MEM_Real|MEM_Int);
danielk19773d1bfea2004-05-14 11:00:53 +0000300 }
301}
302
danielk1977aee18ef2005-03-09 12:26:50 +0000303/*
drh29d72102006-02-09 22:13:41 +0000304** Try to convert the type of a function argument or a result column
305** into a numeric representation. Use either INTEGER or REAL whichever
306** is appropriate. But only do the conversion if it is possible without
307** loss of information and return the revised type of the argument.
drh29d72102006-02-09 22:13:41 +0000308*/
309int sqlite3_value_numeric_type(sqlite3_value *pVal){
drh1b27b8c2014-02-10 03:21:57 +0000310 int eType = sqlite3_value_type(pVal);
311 if( eType==SQLITE_TEXT ){
312 Mem *pMem = (Mem*)pVal;
drhbd9507c2014-08-23 17:21:37 +0000313 applyNumericAffinity(pMem, 0);
drh1b27b8c2014-02-10 03:21:57 +0000314 eType = sqlite3_value_type(pVal);
drhe5a8a1d2010-11-18 12:31:24 +0000315 }
drh1b27b8c2014-02-10 03:21:57 +0000316 return eType;
drh29d72102006-02-09 22:13:41 +0000317}
318
319/*
danielk1977aee18ef2005-03-09 12:26:50 +0000320** Exported version of applyAffinity(). This one works on sqlite3_value*,
321** not the internal Mem* type.
322*/
danielk19771e536952007-08-16 10:09:01 +0000323void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000324 sqlite3_value *pVal,
325 u8 affinity,
326 u8 enc
327){
drhb21c8cd2007-08-21 19:33:56 +0000328 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000329}
330
drh3d1d90a2014-03-24 15:00:15 +0000331/*
drhf1a89ed2014-08-23 17:41:15 +0000332** pMem currently only holds a string type (or maybe a BLOB that we can
333** interpret as a string if we want to). Compute its corresponding
drh74eaba42014-09-18 17:52:15 +0000334** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
drhf1a89ed2014-08-23 17:41:15 +0000335** accordingly.
336*/
337static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
338 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
339 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
drh74eaba42014-09-18 17:52:15 +0000340 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
drhf1a89ed2014-08-23 17:41:15 +0000341 return 0;
342 }
343 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
344 return MEM_Int;
345 }
346 return MEM_Real;
347}
348
349/*
drh3d1d90a2014-03-24 15:00:15 +0000350** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
351** none.
352**
353** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
drh74eaba42014-09-18 17:52:15 +0000354** But it does set pMem->u.r and pMem->u.i appropriately.
drh3d1d90a2014-03-24 15:00:15 +0000355*/
356static u16 numericType(Mem *pMem){
357 if( pMem->flags & (MEM_Int|MEM_Real) ){
358 return pMem->flags & (MEM_Int|MEM_Real);
359 }
360 if( pMem->flags & (MEM_Str|MEM_Blob) ){
drhf1a89ed2014-08-23 17:41:15 +0000361 return computeNumericType(pMem);
drh3d1d90a2014-03-24 15:00:15 +0000362 }
363 return 0;
364}
365
danielk1977b5402fb2005-01-12 07:15:04 +0000366#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000367/*
danielk1977ca6b2912004-05-21 10:49:47 +0000368** Write a nice string representation of the contents of cell pMem
369** into buffer zBuf, length nBuf.
370*/
drh74161702006-02-24 02:53:49 +0000371void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000372 char *zCsr = zBuf;
373 int f = pMem->flags;
374
drh57196282004-10-06 15:41:16 +0000375 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000376
danielk1977ca6b2912004-05-21 10:49:47 +0000377 if( f&MEM_Blob ){
378 int i;
379 char c;
380 if( f & MEM_Dyn ){
381 c = 'z';
382 assert( (f & (MEM_Static|MEM_Ephem))==0 );
383 }else if( f & MEM_Static ){
384 c = 't';
385 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
386 }else if( f & MEM_Ephem ){
387 c = 'e';
388 assert( (f & (MEM_Static|MEM_Dyn))==0 );
389 }else{
390 c = 's';
391 }
392
drh5bb3eb92007-05-04 13:15:55 +0000393 sqlite3_snprintf(100, zCsr, "%c", c);
drhea678832008-12-10 19:26:22 +0000394 zCsr += sqlite3Strlen30(zCsr);
drh5bb3eb92007-05-04 13:15:55 +0000395 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000396 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000397 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000398 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000399 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000400 }
401 for(i=0; i<16 && i<pMem->n; i++){
402 char z = pMem->z[i];
403 if( z<32 || z>126 ) *zCsr++ = '.';
404 else *zCsr++ = z;
405 }
406
drhe718efe2007-05-10 21:14:03 +0000407 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000408 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000409 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000410 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000411 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000412 }
danielk1977b1bc9532004-05-22 03:05:33 +0000413 *zCsr = '\0';
414 }else if( f & MEM_Str ){
415 int j, k;
416 zBuf[0] = ' ';
417 if( f & MEM_Dyn ){
418 zBuf[1] = 'z';
419 assert( (f & (MEM_Static|MEM_Ephem))==0 );
420 }else if( f & MEM_Static ){
421 zBuf[1] = 't';
422 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
423 }else if( f & MEM_Ephem ){
424 zBuf[1] = 'e';
425 assert( (f & (MEM_Static|MEM_Dyn))==0 );
426 }else{
427 zBuf[1] = 's';
428 }
429 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000430 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000431 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000432 zBuf[k++] = '[';
433 for(j=0; j<15 && j<pMem->n; j++){
434 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000435 if( c>=0x20 && c<0x7f ){
436 zBuf[k++] = c;
437 }else{
438 zBuf[k++] = '.';
439 }
440 }
441 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000442 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000443 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000444 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000445 }
danielk1977ca6b2912004-05-21 10:49:47 +0000446}
447#endif
448
drh5b6afba2008-01-05 16:29:28 +0000449#ifdef SQLITE_DEBUG
450/*
451** Print the value of a register for tracing purposes:
452*/
drh84e55a82013-11-13 17:58:23 +0000453static void memTracePrint(Mem *p){
drha5750cf2014-02-07 13:20:31 +0000454 if( p->flags & MEM_Undefined ){
drh84e55a82013-11-13 17:58:23 +0000455 printf(" undefined");
drh953f7612012-12-07 22:18:54 +0000456 }else if( p->flags & MEM_Null ){
drh84e55a82013-11-13 17:58:23 +0000457 printf(" NULL");
drh5b6afba2008-01-05 16:29:28 +0000458 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
drh84e55a82013-11-13 17:58:23 +0000459 printf(" si:%lld", p->u.i);
drh5b6afba2008-01-05 16:29:28 +0000460 }else if( p->flags & MEM_Int ){
drh84e55a82013-11-13 17:58:23 +0000461 printf(" i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000462#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000463 }else if( p->flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +0000464 printf(" r:%g", p->u.r);
drh0b3bf922009-06-15 20:45:34 +0000465#endif
drh733bf1b2009-04-22 00:47:00 +0000466 }else if( p->flags & MEM_RowSet ){
drh84e55a82013-11-13 17:58:23 +0000467 printf(" (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000468 }else{
469 char zBuf[200];
470 sqlite3VdbeMemPrettyPrint(p, zBuf);
drh84e55a82013-11-13 17:58:23 +0000471 printf(" %s", zBuf);
drh5b6afba2008-01-05 16:29:28 +0000472 }
473}
drh84e55a82013-11-13 17:58:23 +0000474static void registerTrace(int iReg, Mem *p){
475 printf("REG[%d] = ", iReg);
476 memTracePrint(p);
477 printf("\n");
drh5b6afba2008-01-05 16:29:28 +0000478}
479#endif
480
481#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000482# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
drh5b6afba2008-01-05 16:29:28 +0000483#else
484# define REGISTER_TRACE(R,M)
485#endif
486
danielk197784ac9d02004-05-18 09:58:06 +0000487
drh7b396862003-01-01 23:06:20 +0000488#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000489
490/*
491** hwtime.h contains inline assembler code for implementing
492** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000493*/
shane9bcbdad2008-05-29 20:22:37 +0000494#include "hwtime.h"
495
drh7b396862003-01-01 23:06:20 +0000496#endif
497
danielk1977fd7f0452008-12-17 17:30:26 +0000498#ifndef NDEBUG
499/*
500** This function is only called from within an assert() expression. It
501** checks that the sqlite3.nTransaction variable is correctly set to
502** the number of non-transaction savepoints currently in the
503** linked list starting at sqlite3.pSavepoint.
504**
505** Usage:
506**
507** assert( checkSavepointCount(db) );
508*/
509static int checkSavepointCount(sqlite3 *db){
510 int n = 0;
511 Savepoint *p;
512 for(p=db->pSavepoint; p; p=p->pNext) n++;
513 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
514 return 1;
515}
516#endif
517
drh27a348c2015-04-13 19:14:06 +0000518/*
519** Return the register of pOp->p2 after first preparing it to be
520** overwritten with an integer value.
521*/
522static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
523 Mem *pOut;
524 assert( pOp->p2>0 );
525 assert( pOp->p2<=(p->nMem-p->nCursor) );
526 pOut = &p->aMem[pOp->p2];
527 memAboutToChange(p, pOut);
528 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
529 pOut->flags = MEM_Int;
530 return pOut;
531}
532
drhb9755982010-07-24 16:34:37 +0000533
534/*
drh0fd61352014-02-07 02:29:45 +0000535** Execute as much of a VDBE program as we can.
536** This is the core of sqlite3_step().
drhb86ccfb2003-01-28 23:13:10 +0000537*/
danielk19774adee202004-05-08 08:23:19 +0000538int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000539 Vdbe *p /* The VDBE */
540){
drhbbe879d2009-11-14 18:04:35 +0000541 Op *aOp = p->aOp; /* Copy of p->aOp */
drhf56fa462015-04-13 21:39:54 +0000542 Op *pOp = aOp; /* Current operation */
drh6dc41482015-04-16 17:31:02 +0000543#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
544 Op *pOrigOp; /* Value of pOp at the top of the loop */
545#endif
drhb86ccfb2003-01-28 23:13:10 +0000546 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000547 sqlite3 *db = p->db; /* The database */
drhcdf011d2011-04-04 21:25:28 +0000548 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
drh8079a0d2006-01-12 17:20:50 +0000549 u8 encoding = ENC(db); /* The database encoding */
drhbf159fa2013-06-25 22:01:22 +0000550 int iCompare = 0; /* Result of last OP_Compare operation */
551 unsigned nVmStep = 0; /* Number of virtual machine steps */
drh49afe3a2013-07-10 03:05:14 +0000552#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
drh323df792013-08-05 19:11:29 +0000553 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
drh49afe3a2013-07-10 03:05:14 +0000554#endif
drha6c2ed92009-11-14 23:22:23 +0000555 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000556 Mem *pIn1 = 0; /* 1st input operand */
557 Mem *pIn2 = 0; /* 2nd input operand */
558 Mem *pIn3 = 0; /* 3rd input operand */
559 Mem *pOut = 0; /* Output operand */
shanebe217792009-03-05 04:20:31 +0000560 int *aPermute = 0; /* Permutation of columns for OP_Compare */
drh99a66922011-05-13 18:51:42 +0000561 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
drhb86ccfb2003-01-28 23:13:10 +0000562#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000563 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000564#endif
drh856c1032009-06-02 15:21:42 +0000565 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000566
drhca48c902008-01-18 14:08:24 +0000567 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
drhbdaec522011-04-04 00:14:43 +0000568 sqlite3VdbeEnter(p);
danielk19772e588c72005-12-09 14:25:08 +0000569 if( p->rc==SQLITE_NOMEM ){
570 /* This happens if a malloc() inside a call to sqlite3_column_text() or
571 ** sqlite3_column_text16() failed. */
572 goto no_mem;
573 }
drh3a840692003-01-29 22:58:26 +0000574 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
drh1713afb2013-06-28 01:24:57 +0000575 assert( p->bIsReader || p->readOnly!=0 );
drh3a840692003-01-29 22:58:26 +0000576 p->rc = SQLITE_OK;
drh95a7b3e2013-09-16 12:57:19 +0000577 p->iCurrentTime = 0;
drhb86ccfb2003-01-28 23:13:10 +0000578 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000579 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000580 db->busyHandler.nBusy = 0;
drh0fd61352014-02-07 02:29:45 +0000581 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh602c2372007-03-01 00:29:13 +0000582 sqlite3VdbeIOTraceSql(p);
drh0d1961e2013-07-25 16:27:51 +0000583#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
584 if( db->xProgress ){
drh6cbbdb02015-06-24 14:36:27 +0000585 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
drh0d1961e2013-07-25 16:27:51 +0000586 assert( 0 < db->nProgressOps );
drh6cbbdb02015-06-24 14:36:27 +0000587 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
drh0d1961e2013-07-25 16:27:51 +0000588 }
589#endif
drh3c23a882007-01-09 14:01:13 +0000590#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000591 sqlite3BeginBenignMalloc();
drh84e55a82013-11-13 17:58:23 +0000592 if( p->pc==0
593 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
594 ){
drh3c23a882007-01-09 14:01:13 +0000595 int i;
drh84e55a82013-11-13 17:58:23 +0000596 int once = 1;
drh3c23a882007-01-09 14:01:13 +0000597 sqlite3VdbePrintSql(p);
drh84e55a82013-11-13 17:58:23 +0000598 if( p->db->flags & SQLITE_VdbeListing ){
599 printf("VDBE Program Listing:\n");
600 for(i=0; i<p->nOp; i++){
601 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
602 }
drh3c23a882007-01-09 14:01:13 +0000603 }
drh84e55a82013-11-13 17:58:23 +0000604 if( p->db->flags & SQLITE_VdbeEQP ){
605 for(i=0; i<p->nOp; i++){
606 if( aOp[i].opcode==OP_Explain ){
607 if( once ) printf("VDBE Query Plan:\n");
608 printf("%s\n", aOp[i].p4.z);
609 once = 0;
610 }
611 }
612 }
613 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
drh3c23a882007-01-09 14:01:13 +0000614 }
danielk19772d1d86f2008-06-20 14:59:51 +0000615 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000616#endif
drhf56fa462015-04-13 21:39:54 +0000617 for(pOp=&aOp[p->pc]; rc==SQLITE_OK; pOp++){
618 assert( pOp>=aOp && pOp<&aOp[p->nOp]);
drh17435752007-08-16 04:30:38 +0000619 if( db->mallocFailed ) goto no_mem;
drh7b396862003-01-01 23:06:20 +0000620#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000621 start = sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000622#endif
drhbf159fa2013-06-25 22:01:22 +0000623 nVmStep++;
dan6f9702e2014-11-01 20:38:06 +0000624#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
drhf56fa462015-04-13 21:39:54 +0000625 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
dan6f9702e2014-11-01 20:38:06 +0000626#endif
drh6e142f52000-06-08 13:36:40 +0000627
danielk19778b60e0f2005-01-12 09:10:39 +0000628 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000629 */
danielk19778b60e0f2005-01-12 09:10:39 +0000630#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000631 if( db->flags & SQLITE_VdbeTrace ){
drhf56fa462015-04-13 21:39:54 +0000632 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
drh75897232000-05-29 14:26:00 +0000633 }
drh3f7d4e42004-07-24 14:35:58 +0000634#endif
635
drh6e142f52000-06-08 13:36:40 +0000636
drhf6038712004-02-08 18:07:34 +0000637 /* Check to see if we need to simulate an interrupt. This only happens
638 ** if we have a special test build.
639 */
640#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000641 if( sqlite3_interrupt_count>0 ){
642 sqlite3_interrupt_count--;
643 if( sqlite3_interrupt_count==0 ){
644 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000645 }
646 }
647#endif
648
drh3c657212009-11-17 23:59:58 +0000649 /* Sanity checking on other operands */
650#ifdef SQLITE_DEBUG
drh27a348c2015-04-13 19:14:06 +0000651 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
drh3c657212009-11-17 23:59:58 +0000652 if( (pOp->opflags & OPFLG_IN1)!=0 ){
653 assert( pOp->p1>0 );
dan3bc9f742013-08-15 16:18:39 +0000654 assert( pOp->p1<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000655 assert( memIsValid(&aMem[pOp->p1]) );
drh75fd0542014-03-01 16:24:44 +0000656 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
drh3c657212009-11-17 23:59:58 +0000657 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
658 }
659 if( (pOp->opflags & OPFLG_IN2)!=0 ){
660 assert( pOp->p2>0 );
dan3bc9f742013-08-15 16:18:39 +0000661 assert( pOp->p2<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000662 assert( memIsValid(&aMem[pOp->p2]) );
drh75fd0542014-03-01 16:24:44 +0000663 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
drh3c657212009-11-17 23:59:58 +0000664 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
665 }
666 if( (pOp->opflags & OPFLG_IN3)!=0 ){
667 assert( pOp->p3>0 );
dan3bc9f742013-08-15 16:18:39 +0000668 assert( pOp->p3<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000669 assert( memIsValid(&aMem[pOp->p3]) );
drh75fd0542014-03-01 16:24:44 +0000670 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
drh3c657212009-11-17 23:59:58 +0000671 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
672 }
673 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
674 assert( pOp->p2>0 );
dan3bc9f742013-08-15 16:18:39 +0000675 assert( pOp->p2<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000676 memAboutToChange(p, &aMem[pOp->p2]);
drh3c657212009-11-17 23:59:58 +0000677 }
678 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
679 assert( pOp->p3>0 );
dan3bc9f742013-08-15 16:18:39 +0000680 assert( pOp->p3<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000681 memAboutToChange(p, &aMem[pOp->p3]);
drh3c657212009-11-17 23:59:58 +0000682 }
683#endif
drh6dc41482015-04-16 17:31:02 +0000684#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
685 pOrigOp = pOp;
686#endif
drh93952eb2009-11-13 19:43:43 +0000687
drh75897232000-05-29 14:26:00 +0000688 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000689
drh5e00f6c2001-09-13 13:46:56 +0000690/*****************************************************************************
691** What follows is a massive switch statement where each case implements a
692** separate instruction in the virtual machine. If we follow the usual
693** indentation conventions, each case should be indented by 6 spaces. But
694** that is a lot of wasted space on the left margin. So the code within
695** the switch statement will break with convention and be flush-left. Another
696** big comment (similar to this one) will mark the point in the code where
697** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000698**
699** The formatting of each case is important. The makefile for SQLite
700** generates two C files "opcodes.h" and "opcodes.c" by scanning this
701** file looking for lines that begin with "case OP_". The opcodes.h files
702** will be filled with #defines that give unique integer values to each
703** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000704** each string is the symbolic name for the corresponding opcode. If the
705** case statement is followed by a comment of the form "/# same as ... #/"
706** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000707**
drh9cbf3422008-01-17 16:22:13 +0000708** Other keywords in the comment that follows each case are used to
709** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
drh27a348c2015-04-13 19:14:06 +0000710** Keywords include: in1, in2, in3, out2, out3. See
drh9cbf3422008-01-17 16:22:13 +0000711** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000712**
drhac82fcf2002-09-08 17:23:41 +0000713** Documentation about VDBE opcodes is generated by scanning this file
714** for lines of that contain "Opcode:". That line and all subsequent
715** comment lines are used in the generation of the opcode.html documentation
716** file.
717**
718** SUMMARY:
719**
720** Formatting is important to scripts that scan this file.
721** Do not deviate from the formatting style currently in use.
722**
drh5e00f6c2001-09-13 13:46:56 +0000723*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000724
drh9cbf3422008-01-17 16:22:13 +0000725/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000726**
727** An unconditional jump to address P2.
728** The next instruction executed will be
729** the one at index P2 from the beginning of
730** the program.
drhfe705102014-03-06 13:38:37 +0000731**
732** The P1 parameter is not actually used by this opcode. However, it
733** is sometimes set to 1 instead of 0 as a hint to the command-line shell
734** that this Goto is the bottom of a loop and that the lines from P2 down
735** to the current line should be indented for EXPLAIN output.
drh5e00f6c2001-09-13 13:46:56 +0000736*/
drh9cbf3422008-01-17 16:22:13 +0000737case OP_Goto: { /* jump */
drhf56fa462015-04-13 21:39:54 +0000738jump_to_p2_and_check_for_interrupt:
739 pOp = &aOp[pOp->p2 - 1];
drh49afe3a2013-07-10 03:05:14 +0000740
741 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
742 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
743 ** completion. Check to see if sqlite3_interrupt() has been called
744 ** or if the progress callback needs to be invoked.
745 **
746 ** This code uses unstructured "goto" statements and does not look clean.
747 ** But that is not due to sloppy coding habits. The code is written this
748 ** way for performance, to avoid having to run the interrupt and progress
749 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
750 ** faster according to "valgrind --tool=cachegrind" */
751check_for_interrupt:
drh0fd61352014-02-07 02:29:45 +0000752 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh49afe3a2013-07-10 03:05:14 +0000753#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
754 /* Call the progress callback if it is configured and the required number
755 ** of VDBE ops have been executed (either since this invocation of
756 ** sqlite3VdbeExec() or since last time the progress callback was called).
757 ** If the progress callback returns non-zero, exit the virtual machine with
758 ** a return code SQLITE_ABORT.
759 */
drh0d1961e2013-07-25 16:27:51 +0000760 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
drh400fcba2013-11-14 00:09:48 +0000761 assert( db->nProgressOps!=0 );
762 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
763 if( db->xProgress(db->pProgressArg) ){
drh49afe3a2013-07-10 03:05:14 +0000764 rc = SQLITE_INTERRUPT;
765 goto vdbe_error_halt;
766 }
drh49afe3a2013-07-10 03:05:14 +0000767 }
768#endif
769
drh5e00f6c2001-09-13 13:46:56 +0000770 break;
771}
drh75897232000-05-29 14:26:00 +0000772
drh2eb95372008-06-06 15:04:36 +0000773/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000774**
drh2eb95372008-06-06 15:04:36 +0000775** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000776** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000777*/
drhb8475df2011-12-09 16:21:19 +0000778case OP_Gosub: { /* jump */
dan3bc9f742013-08-15 16:18:39 +0000779 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
drh3c657212009-11-17 23:59:58 +0000780 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000781 assert( VdbeMemDynamic(pIn1)==0 );
drh2b4ded92010-09-27 21:09:31 +0000782 memAboutToChange(p, pIn1);
drh2eb95372008-06-06 15:04:36 +0000783 pIn1->flags = MEM_Int;
drhf56fa462015-04-13 21:39:54 +0000784 pIn1->u.i = (int)(pOp-aOp);
drh2eb95372008-06-06 15:04:36 +0000785 REGISTER_TRACE(pOp->p1, pIn1);
drhf56fa462015-04-13 21:39:54 +0000786
787 /* Most jump operations do a goto to this spot in order to update
788 ** the pOp pointer. */
789jump_to_p2:
790 pOp = &aOp[pOp->p2 - 1];
drh8c74a8c2002-08-25 19:20:40 +0000791 break;
792}
793
drh2eb95372008-06-06 15:04:36 +0000794/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000795**
drh81cf13e2014-02-07 18:27:53 +0000796** Jump to the next instruction after the address in register P1. After
797** the jump, register P1 becomes undefined.
drh8c74a8c2002-08-25 19:20:40 +0000798*/
drh2eb95372008-06-06 15:04:36 +0000799case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000800 pIn1 = &aMem[pOp->p1];
drh81cf13e2014-02-07 18:27:53 +0000801 assert( pIn1->flags==MEM_Int );
drhf56fa462015-04-13 21:39:54 +0000802 pOp = &aOp[pIn1->u.i];
drh81cf13e2014-02-07 18:27:53 +0000803 pIn1->flags = MEM_Undefined;
drh8c74a8c2002-08-25 19:20:40 +0000804 break;
805}
806
drhed71a832014-02-07 19:18:10 +0000807/* Opcode: InitCoroutine P1 P2 P3 * *
drh81cf13e2014-02-07 18:27:53 +0000808**
drh5dad9a32014-07-25 18:37:42 +0000809** Set up register P1 so that it will Yield to the coroutine
drhed71a832014-02-07 19:18:10 +0000810** located at address P3.
811**
drh5dad9a32014-07-25 18:37:42 +0000812** If P2!=0 then the coroutine implementation immediately follows
813** this opcode. So jump over the coroutine implementation to
drhed71a832014-02-07 19:18:10 +0000814** address P2.
drh5dad9a32014-07-25 18:37:42 +0000815**
816** See also: EndCoroutine
drh81cf13e2014-02-07 18:27:53 +0000817*/
818case OP_InitCoroutine: { /* jump */
drhed71a832014-02-07 19:18:10 +0000819 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
820 assert( pOp->p2>=0 && pOp->p2<p->nOp );
821 assert( pOp->p3>=0 && pOp->p3<p->nOp );
drh81cf13e2014-02-07 18:27:53 +0000822 pOut = &aMem[pOp->p1];
drhed71a832014-02-07 19:18:10 +0000823 assert( !VdbeMemDynamic(pOut) );
824 pOut->u.i = pOp->p3 - 1;
drh81cf13e2014-02-07 18:27:53 +0000825 pOut->flags = MEM_Int;
drhf56fa462015-04-13 21:39:54 +0000826 if( pOp->p2 ) goto jump_to_p2;
drh81cf13e2014-02-07 18:27:53 +0000827 break;
828}
829
830/* Opcode: EndCoroutine P1 * * * *
831**
drhbc5cf382014-08-06 01:08:07 +0000832** The instruction at the address in register P1 is a Yield.
drh5dad9a32014-07-25 18:37:42 +0000833** Jump to the P2 parameter of that Yield.
drh81cf13e2014-02-07 18:27:53 +0000834** After the jump, register P1 becomes undefined.
drh5dad9a32014-07-25 18:37:42 +0000835**
836** See also: InitCoroutine
drh81cf13e2014-02-07 18:27:53 +0000837*/
838case OP_EndCoroutine: { /* in1 */
839 VdbeOp *pCaller;
840 pIn1 = &aMem[pOp->p1];
841 assert( pIn1->flags==MEM_Int );
842 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
843 pCaller = &aOp[pIn1->u.i];
844 assert( pCaller->opcode==OP_Yield );
845 assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
drhf56fa462015-04-13 21:39:54 +0000846 pOp = &aOp[pCaller->p2 - 1];
drh81cf13e2014-02-07 18:27:53 +0000847 pIn1->flags = MEM_Undefined;
848 break;
849}
850
851/* Opcode: Yield P1 P2 * * *
drhe00ee6e2008-06-20 15:24:01 +0000852**
drh5dad9a32014-07-25 18:37:42 +0000853** Swap the program counter with the value in register P1. This
854** has the effect of yielding to a coroutine.
drh81cf13e2014-02-07 18:27:53 +0000855**
drh5dad9a32014-07-25 18:37:42 +0000856** If the coroutine that is launched by this instruction ends with
857** Yield or Return then continue to the next instruction. But if
858** the coroutine launched by this instruction ends with
859** EndCoroutine, then jump to P2 rather than continuing with the
860** next instruction.
861**
862** See also: InitCoroutine
drhe00ee6e2008-06-20 15:24:01 +0000863*/
drh81cf13e2014-02-07 18:27:53 +0000864case OP_Yield: { /* in1, jump */
drhe00ee6e2008-06-20 15:24:01 +0000865 int pcDest;
drh3c657212009-11-17 23:59:58 +0000866 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000867 assert( VdbeMemDynamic(pIn1)==0 );
drhe00ee6e2008-06-20 15:24:01 +0000868 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000869 pcDest = (int)pIn1->u.i;
drhf56fa462015-04-13 21:39:54 +0000870 pIn1->u.i = (int)(pOp - aOp);
drhe00ee6e2008-06-20 15:24:01 +0000871 REGISTER_TRACE(pOp->p1, pIn1);
drhf56fa462015-04-13 21:39:54 +0000872 pOp = &aOp[pcDest];
drhe00ee6e2008-06-20 15:24:01 +0000873 break;
874}
875
drhf9c8ce32013-11-05 13:33:55 +0000876/* Opcode: HaltIfNull P1 P2 P3 P4 P5
drh0fd61352014-02-07 02:29:45 +0000877** Synopsis: if r[P3]=null halt
drh5053a792009-02-20 03:02:23 +0000878**
drhef8662b2011-06-20 21:47:58 +0000879** Check the value in register P3. If it is NULL then Halt using
drh5053a792009-02-20 03:02:23 +0000880** parameter P1, P2, and P4 as if this were a Halt instruction. If the
881** value in register P3 is not NULL, then this routine is a no-op.
drhf9c8ce32013-11-05 13:33:55 +0000882** The P5 parameter should be 1.
drh5053a792009-02-20 03:02:23 +0000883*/
884case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000885 pIn3 = &aMem[pOp->p3];
drh5053a792009-02-20 03:02:23 +0000886 if( (pIn3->flags & MEM_Null)==0 ) break;
887 /* Fall through into OP_Halt */
888}
drhe00ee6e2008-06-20 15:24:01 +0000889
drhf9c8ce32013-11-05 13:33:55 +0000890/* Opcode: Halt P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +0000891**
drh3d4501e2008-12-04 20:40:10 +0000892** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000893** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000894**
drh92f02c32004-09-02 14:57:08 +0000895** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
896** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
897** For errors, it can be some other value. If P1!=0 then P2 will determine
898** whether or not to rollback the current transaction. Do not rollback
899** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
900** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000901** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000902**
drh66a51672008-01-03 00:01:23 +0000903** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000904**
drhf9c8ce32013-11-05 13:33:55 +0000905** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
906**
907** 0: (no change)
908** 1: NOT NULL contraint failed: P4
909** 2: UNIQUE constraint failed: P4
910** 3: CHECK constraint failed: P4
911** 4: FOREIGN KEY constraint failed: P4
912**
913** If P5 is not zero and P4 is NULL, then everything after the ":" is
914** omitted.
915**
drh9cfcf5d2002-01-29 18:41:24 +0000916** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000917** every program. So a jump past the last instruction of the program
918** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000919*/
drh9cbf3422008-01-17 16:22:13 +0000920case OP_Halt: {
drhf9c8ce32013-11-05 13:33:55 +0000921 const char *zType;
922 const char *zLogFmt;
drhf56fa462015-04-13 21:39:54 +0000923 VdbeFrame *pFrame;
924 int pcx;
drhf9c8ce32013-11-05 13:33:55 +0000925
drhf56fa462015-04-13 21:39:54 +0000926 pcx = (int)(pOp - aOp);
dan165921a2009-08-28 18:53:45 +0000927 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000928 /* Halt the sub-program. Return control to the parent frame. */
drhf56fa462015-04-13 21:39:54 +0000929 pFrame = p->pFrame;
dan165921a2009-08-28 18:53:45 +0000930 p->pFrame = pFrame->pParent;
931 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000932 sqlite3VdbeSetChanges(db, p->nChange);
drhf56fa462015-04-13 21:39:54 +0000933 pcx = sqlite3VdbeFrameRestore(pFrame);
drh99a66922011-05-13 18:51:42 +0000934 lastRowid = db->lastRowid;
dan165921a2009-08-28 18:53:45 +0000935 if( pOp->p2==OE_Ignore ){
drhf56fa462015-04-13 21:39:54 +0000936 /* Instruction pcx is the OP_Program that invoked the sub-program
dan2832ad42009-08-31 15:27:27 +0000937 ** currently being halted. If the p2 instruction of this OP_Halt
938 ** instruction is set to OE_Ignore, then the sub-program is throwing
939 ** an IGNORE exception. In this case jump to the address specified
940 ** as the p2 of the calling OP_Program. */
drhf56fa462015-04-13 21:39:54 +0000941 pcx = p->aOp[pcx].p2-1;
dan165921a2009-08-28 18:53:45 +0000942 }
drhbbe879d2009-11-14 18:04:35 +0000943 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000944 aMem = p->aMem;
drhf56fa462015-04-13 21:39:54 +0000945 pOp = &aOp[pcx];
dan165921a2009-08-28 18:53:45 +0000946 break;
947 }
drh92f02c32004-09-02 14:57:08 +0000948 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000949 p->errorAction = (u8)pOp->p2;
drhf56fa462015-04-13 21:39:54 +0000950 p->pc = pcx;
drhf9c8ce32013-11-05 13:33:55 +0000951 if( p->rc ){
drhd9b7ec92013-11-06 14:05:21 +0000952 if( pOp->p5 ){
953 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
954 "FOREIGN KEY" };
955 assert( pOp->p5>=1 && pOp->p5<=4 );
956 testcase( pOp->p5==1 );
957 testcase( pOp->p5==2 );
958 testcase( pOp->p5==3 );
959 testcase( pOp->p5==4 );
960 zType = azType[pOp->p5-1];
961 }else{
962 zType = 0;
963 }
drh4308e342013-11-11 16:55:52 +0000964 assert( zType!=0 || pOp->p4.z!=0 );
drhf9c8ce32013-11-05 13:33:55 +0000965 zLogFmt = "abort at %d in [%s]: %s";
966 if( zType && pOp->p4.z ){
drh22c17b82015-05-15 04:13:15 +0000967 sqlite3VdbeError(p, "%s constraint failed: %s", zType, pOp->p4.z);
drhf9c8ce32013-11-05 13:33:55 +0000968 }else if( pOp->p4.z ){
drh22c17b82015-05-15 04:13:15 +0000969 sqlite3VdbeError(p, "%s", pOp->p4.z);
drhf9c8ce32013-11-05 13:33:55 +0000970 }else{
drh22c17b82015-05-15 04:13:15 +0000971 sqlite3VdbeError(p, "%s constraint failed", zType);
drhf9c8ce32013-11-05 13:33:55 +0000972 }
drhf56fa462015-04-13 21:39:54 +0000973 sqlite3_log(pOp->p1, zLogFmt, pcx, p->zSql, p->zErrMsg);
drh9cfcf5d2002-01-29 18:41:24 +0000974 }
drh92f02c32004-09-02 14:57:08 +0000975 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +0000976 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +0000977 if( rc==SQLITE_BUSY ){
drh900b31e2007-08-28 02:27:51 +0000978 p->rc = rc = SQLITE_BUSY;
979 }else{
drhd91c1a12013-02-09 13:58:25 +0000980 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
drh648e2642013-07-11 15:03:32 +0000981 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
drh900b31e2007-08-28 02:27:51 +0000982 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +0000983 }
drh900b31e2007-08-28 02:27:51 +0000984 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +0000985}
drhc61053b2000-06-04 12:58:36 +0000986
drh4c583122008-01-04 22:01:03 +0000987/* Opcode: Integer P1 P2 * * *
drh81316f82013-10-29 20:40:47 +0000988** Synopsis: r[P2]=P1
drh5e00f6c2001-09-13 13:46:56 +0000989**
drh9cbf3422008-01-17 16:22:13 +0000990** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +0000991*/
drh27a348c2015-04-13 19:14:06 +0000992case OP_Integer: { /* out2 */
993 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +0000994 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +0000995 break;
996}
997
drh4c583122008-01-04 22:01:03 +0000998/* Opcode: Int64 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +0000999** Synopsis: r[P2]=P4
drh29dda4a2005-07-21 18:23:20 +00001000**
drh66a51672008-01-03 00:01:23 +00001001** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +00001002** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +00001003*/
drh27a348c2015-04-13 19:14:06 +00001004case OP_Int64: { /* out2 */
1005 pOut = out2Prerelease(p, pOp);
danielk19772dca4ac2008-01-03 11:50:29 +00001006 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +00001007 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +00001008 break;
1009}
drh4f26d6c2004-05-26 23:25:30 +00001010
drh13573c72010-01-12 17:04:07 +00001011#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +00001012/* Opcode: Real * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001013** Synopsis: r[P2]=P4
drhf4479502004-05-27 03:12:53 +00001014**
drh4c583122008-01-04 22:01:03 +00001015** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +00001016** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +00001017*/
drh27a348c2015-04-13 19:14:06 +00001018case OP_Real: { /* same as TK_FLOAT, out2 */
1019 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001020 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +00001021 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh74eaba42014-09-18 17:52:15 +00001022 pOut->u.r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +00001023 break;
1024}
drh13573c72010-01-12 17:04:07 +00001025#endif
danielk1977cbb18d22004-05-28 11:37:27 +00001026
drh3c84ddf2008-01-09 02:15:38 +00001027/* Opcode: String8 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001028** Synopsis: r[P2]='P4'
danielk1977cbb18d22004-05-28 11:37:27 +00001029**
drh66a51672008-01-03 00:01:23 +00001030** P4 points to a nul terminated UTF-8 string. This opcode is transformed
drhf07cf6e2015-03-06 16:45:16 +00001031** into a String opcode before it is executed for the first time. During
drh0fd61352014-02-07 02:29:45 +00001032** this transformation, the length of string P4 is computed and stored
1033** as the P1 parameter.
danielk1977cbb18d22004-05-28 11:37:27 +00001034*/
drh27a348c2015-04-13 19:14:06 +00001035case OP_String8: { /* same as TK_STRING, out2 */
danielk19772dca4ac2008-01-03 11:50:29 +00001036 assert( pOp->p4.z!=0 );
drh27a348c2015-04-13 19:14:06 +00001037 pOut = out2Prerelease(p, pOp);
drhed2df7f2005-11-16 04:34:32 +00001038 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +00001039 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +00001040
1041#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +00001042 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +00001043 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1044 if( rc==SQLITE_TOOBIG ) goto too_big;
drh4c583122008-01-04 22:01:03 +00001045 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh17bcb102014-09-18 21:25:33 +00001046 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
drhc91b2fd2014-03-01 18:13:23 +00001047 assert( VdbeMemDynamic(pOut)==0 );
drh17bcb102014-09-18 21:25:33 +00001048 pOut->szMalloc = 0;
drh4c583122008-01-04 22:01:03 +00001049 pOut->flags |= MEM_Static;
drh66a51672008-01-03 00:01:23 +00001050 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +00001051 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +00001052 }
drh66a51672008-01-03 00:01:23 +00001053 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +00001054 pOp->p4.z = pOut->z;
1055 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +00001056 }
danielk197793758c82005-01-21 08:13:14 +00001057#endif
drhbb4957f2008-03-20 14:03:29 +00001058 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +00001059 goto too_big;
1060 }
1061 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +00001062}
drhf4479502004-05-27 03:12:53 +00001063
drhf07cf6e2015-03-06 16:45:16 +00001064/* Opcode: String P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00001065** Synopsis: r[P2]='P4' (len=P1)
drhf4479502004-05-27 03:12:53 +00001066**
drh9cbf3422008-01-17 16:22:13 +00001067** The string value P4 of length P1 (bytes) is stored in register P2.
drhf07cf6e2015-03-06 16:45:16 +00001068**
1069** If P5!=0 and the content of register P3 is greater than zero, then
drha9c18a92015-03-06 20:49:52 +00001070** the datatype of the register P2 is converted to BLOB. The content is
1071** the same sequence of bytes, it is merely interpreted as a BLOB instead
1072** of a string, as if it had been CAST.
drhf4479502004-05-27 03:12:53 +00001073*/
drh27a348c2015-04-13 19:14:06 +00001074case OP_String: { /* out2 */
danielk19772dca4ac2008-01-03 11:50:29 +00001075 assert( pOp->p4.z!=0 );
drh27a348c2015-04-13 19:14:06 +00001076 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001077 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1078 pOut->z = pOp->p4.z;
1079 pOut->n = pOp->p1;
1080 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001081 UPDATE_MAX_BLOBSIZE(pOut);
drhf07cf6e2015-03-06 16:45:16 +00001082 if( pOp->p5 ){
1083 assert( pOp->p3>0 );
1084 assert( pOp->p3<=(p->nMem-p->nCursor) );
1085 pIn3 = &aMem[pOp->p3];
1086 assert( pIn3->flags & MEM_Int );
1087 if( pIn3->u.i ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1088 }
danielk1977c572ef72004-05-27 09:28:41 +00001089 break;
1090}
1091
drh053a1282012-09-19 21:15:46 +00001092/* Opcode: Null P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001093** Synopsis: r[P2..P3]=NULL
drhf0863fe2005-06-12 21:35:51 +00001094**
drhb8475df2011-12-09 16:21:19 +00001095** Write a NULL into registers P2. If P3 greater than P2, then also write
drh053a1282012-09-19 21:15:46 +00001096** NULL into register P3 and every register in between P2 and P3. If P3
drhb8475df2011-12-09 16:21:19 +00001097** is less than P2 (typically P3 is zero) then only register P2 is
drh053a1282012-09-19 21:15:46 +00001098** set to NULL.
1099**
1100** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1101** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1102** OP_Ne or OP_Eq.
drhf0863fe2005-06-12 21:35:51 +00001103*/
drh27a348c2015-04-13 19:14:06 +00001104case OP_Null: { /* out2 */
drhb8475df2011-12-09 16:21:19 +00001105 int cnt;
drh053a1282012-09-19 21:15:46 +00001106 u16 nullFlag;
drh27a348c2015-04-13 19:14:06 +00001107 pOut = out2Prerelease(p, pOp);
drhb8475df2011-12-09 16:21:19 +00001108 cnt = pOp->p3-pOp->p2;
dan3bc9f742013-08-15 16:18:39 +00001109 assert( pOp->p3<=(p->nMem-p->nCursor) );
drh053a1282012-09-19 21:15:46 +00001110 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
drhb8475df2011-12-09 16:21:19 +00001111 while( cnt>0 ){
1112 pOut++;
1113 memAboutToChange(p, pOut);
drh0725cab2014-09-17 14:52:46 +00001114 sqlite3VdbeMemSetNull(pOut);
drh053a1282012-09-19 21:15:46 +00001115 pOut->flags = nullFlag;
drhb8475df2011-12-09 16:21:19 +00001116 cnt--;
1117 }
drhf0863fe2005-06-12 21:35:51 +00001118 break;
1119}
1120
drh05a86c52014-02-16 01:55:49 +00001121/* Opcode: SoftNull P1 * * * *
1122** Synopsis: r[P1]=NULL
1123**
1124** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1125** instruction, but do not free any string or blob memory associated with
1126** the register, so that if the value was a string or blob that was
1127** previously copied using OP_SCopy, the copies will continue to be valid.
1128*/
1129case OP_SoftNull: {
1130 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
1131 pOut = &aMem[pOp->p1];
1132 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
1133 break;
1134}
drhf0863fe2005-06-12 21:35:51 +00001135
drha5750cf2014-02-07 13:20:31 +00001136/* Opcode: Blob P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001137** Synopsis: r[P2]=P4 (len=P1)
danielk1977c572ef72004-05-27 09:28:41 +00001138**
drh9de221d2008-01-05 06:51:30 +00001139** P4 points to a blob of data P1 bytes long. Store this
drh710c4842010-08-30 01:17:20 +00001140** blob in register P2.
danielk1977c572ef72004-05-27 09:28:41 +00001141*/
drh27a348c2015-04-13 19:14:06 +00001142case OP_Blob: { /* out2 */
drhcbd2da92007-12-17 16:20:06 +00001143 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh27a348c2015-04-13 19:14:06 +00001144 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001145 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +00001146 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001147 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +00001148 break;
1149}
1150
drheaf52d82010-05-12 13:50:23 +00001151/* Opcode: Variable P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001152** Synopsis: r[P2]=parameter(P1,P4)
drh50457892003-09-06 01:10:47 +00001153**
drheaf52d82010-05-12 13:50:23 +00001154** Transfer the values of bound parameter P1 into register P2
drh08de1492009-02-20 03:55:05 +00001155**
drh0fd61352014-02-07 02:29:45 +00001156** If the parameter is named, then its name appears in P4.
drh08de1492009-02-20 03:55:05 +00001157** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +00001158*/
drh27a348c2015-04-13 19:14:06 +00001159case OP_Variable: { /* out2 */
drh856c1032009-06-02 15:21:42 +00001160 Mem *pVar; /* Value being transferred */
1161
drheaf52d82010-05-12 13:50:23 +00001162 assert( pOp->p1>0 && pOp->p1<=p->nVar );
drh04e9eea2011-06-01 19:16:06 +00001163 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
drheaf52d82010-05-12 13:50:23 +00001164 pVar = &p->aVar[pOp->p1 - 1];
1165 if( sqlite3VdbeMemTooBig(pVar) ){
1166 goto too_big;
drh023ae032007-05-08 12:12:16 +00001167 }
drh27a348c2015-04-13 19:14:06 +00001168 pOut = out2Prerelease(p, pOp);
drheaf52d82010-05-12 13:50:23 +00001169 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1170 UPDATE_MAX_BLOBSIZE(pOut);
danielk197793d46752004-05-23 13:30:58 +00001171 break;
1172}
danielk1977295ba552004-05-19 10:34:51 +00001173
drhb21e7c72008-06-22 12:37:57 +00001174/* Opcode: Move P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00001175** Synopsis: r[P2@P3]=r[P1@P3]
drh5e00f6c2001-09-13 13:46:56 +00001176**
drh079a3072014-03-19 14:10:55 +00001177** Move the P3 values in register P1..P1+P3-1 over into
1178** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
drhb21e7c72008-06-22 12:37:57 +00001179** left holding a NULL. It is an error for register ranges
drh079a3072014-03-19 14:10:55 +00001180** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1181** for P3 to be less than 1.
drh5e00f6c2001-09-13 13:46:56 +00001182*/
drhe1349cb2008-04-01 00:36:10 +00001183case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001184 int n; /* Number of registers left to copy */
1185 int p1; /* Register to copy from */
1186 int p2; /* Register to copy to */
1187
drhe09f43f2013-11-21 04:18:31 +00001188 n = pOp->p3;
drh856c1032009-06-02 15:21:42 +00001189 p1 = pOp->p1;
1190 p2 = pOp->p2;
drh079a3072014-03-19 14:10:55 +00001191 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001192 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001193
drha6c2ed92009-11-14 23:22:23 +00001194 pIn1 = &aMem[p1];
1195 pOut = &aMem[p2];
drhe09f43f2013-11-21 04:18:31 +00001196 do{
dan3bc9f742013-08-15 16:18:39 +00001197 assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
1198 assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00001199 assert( memIsValid(pIn1) );
1200 memAboutToChange(p, pOut);
drh17bcb102014-09-18 21:25:33 +00001201 sqlite3VdbeMemMove(pOut, pIn1);
drh52043d72011-08-03 16:40:15 +00001202#ifdef SQLITE_DEBUG
drhbd6789e2015-04-28 14:00:02 +00001203 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
drh5fb71252015-04-28 12:44:55 +00001204 pOut->pScopyFrom += pOp->p2 - p1;
drh52043d72011-08-03 16:40:15 +00001205 }
1206#endif
drhbd6789e2015-04-28 14:00:02 +00001207 Deephemeralize(pOut);
drhb21e7c72008-06-22 12:37:57 +00001208 REGISTER_TRACE(p2++, pOut);
1209 pIn1++;
1210 pOut++;
drh079a3072014-03-19 14:10:55 +00001211 }while( --n );
drhe1349cb2008-04-01 00:36:10 +00001212 break;
1213}
1214
drhe8e4af72012-09-21 00:04:28 +00001215/* Opcode: Copy P1 P2 P3 * *
drh4eded602013-12-20 15:59:20 +00001216** Synopsis: r[P2@P3+1]=r[P1@P3+1]
drhb1fdb2a2008-01-05 04:06:03 +00001217**
drhe8e4af72012-09-21 00:04:28 +00001218** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
drhb1fdb2a2008-01-05 04:06:03 +00001219**
1220** This instruction makes a deep copy of the value. A duplicate
1221** is made of any string or blob constant. See also OP_SCopy.
1222*/
drhe8e4af72012-09-21 00:04:28 +00001223case OP_Copy: {
1224 int n;
1225
1226 n = pOp->p3;
drh3c657212009-11-17 23:59:58 +00001227 pIn1 = &aMem[pOp->p1];
1228 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001229 assert( pOut!=pIn1 );
drhe8e4af72012-09-21 00:04:28 +00001230 while( 1 ){
1231 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1232 Deephemeralize(pOut);
drh953f7612012-12-07 22:18:54 +00001233#ifdef SQLITE_DEBUG
1234 pOut->pScopyFrom = 0;
1235#endif
drhe8e4af72012-09-21 00:04:28 +00001236 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1237 if( (n--)==0 ) break;
1238 pOut++;
1239 pIn1++;
1240 }
drhe1349cb2008-04-01 00:36:10 +00001241 break;
1242}
1243
drhb1fdb2a2008-01-05 04:06:03 +00001244/* Opcode: SCopy P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001245** Synopsis: r[P2]=r[P1]
drhb1fdb2a2008-01-05 04:06:03 +00001246**
drh9cbf3422008-01-17 16:22:13 +00001247** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001248**
1249** This instruction makes a shallow copy of the value. If the value
1250** is a string or blob, then the copy is only a pointer to the
1251** original and hence if the original changes so will the copy.
1252** Worse, if the original is deallocated, the copy becomes invalid.
1253** Thus the program must guarantee that the original will not change
1254** during the lifetime of the copy. Use OP_Copy to make a complete
1255** copy.
1256*/
drh26198bb2013-10-31 11:15:09 +00001257case OP_SCopy: { /* out2 */
drh3c657212009-11-17 23:59:58 +00001258 pIn1 = &aMem[pOp->p1];
1259 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001260 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001261 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh2b4ded92010-09-27 21:09:31 +00001262#ifdef SQLITE_DEBUG
1263 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1264#endif
drh5e00f6c2001-09-13 13:46:56 +00001265 break;
1266}
drh75897232000-05-29 14:26:00 +00001267
drh9cbf3422008-01-17 16:22:13 +00001268/* Opcode: ResultRow P1 P2 * * *
drh4af5bee2013-10-30 02:37:50 +00001269** Synopsis: output=r[P1@P2]
drhd4e70eb2008-01-02 00:34:36 +00001270**
shane21e7feb2008-05-30 15:59:49 +00001271** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001272** results. This opcode causes the sqlite3_step() call to terminate
1273** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
drh4d87aae2014-02-20 19:42:00 +00001274** structure to provide access to the r(P1)..r(P1+P2-1) values as
drh0fd61352014-02-07 02:29:45 +00001275** the result row.
drhd4e70eb2008-01-02 00:34:36 +00001276*/
drh9cbf3422008-01-17 16:22:13 +00001277case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001278 Mem *pMem;
1279 int i;
1280 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001281 assert( pOp->p1>0 );
dan3bc9f742013-08-15 16:18:39 +00001282 assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 );
drhd4e70eb2008-01-02 00:34:36 +00001283
drhe6400b92013-11-13 23:48:46 +00001284#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1285 /* Run the progress counter just before returning.
1286 */
1287 if( db->xProgress!=0
1288 && nVmStep>=nProgressLimit
1289 && db->xProgress(db->pProgressArg)!=0
1290 ){
1291 rc = SQLITE_INTERRUPT;
1292 goto vdbe_error_halt;
1293 }
1294#endif
1295
dan32b09f22009-09-23 17:29:59 +00001296 /* If this statement has violated immediate foreign key constraints, do
1297 ** not return the number of rows modified. And do not RELEASE the statement
1298 ** transaction. It needs to be rolled back. */
1299 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1300 assert( db->flags&SQLITE_CountRows );
1301 assert( p->usesStmtJournal );
1302 break;
1303 }
1304
danielk1977bd434552009-03-18 10:33:00 +00001305 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1306 ** DML statements invoke this opcode to return the number of rows
1307 ** modified to the user. This is the only way that a VM that
1308 ** opens a statement transaction may invoke this opcode.
1309 **
1310 ** In case this is such a statement, close any statement transaction
1311 ** opened by this VM before returning control to the user. This is to
1312 ** ensure that statement-transactions are always nested, not overlapping.
1313 ** If the open statement-transaction is not closed here, then the user
1314 ** may step another VM that opens its own statement transaction. This
1315 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001316 **
1317 ** The statement transaction is never a top-level transaction. Hence
1318 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001319 */
1320 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001321 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1322 if( NEVER(rc!=SQLITE_OK) ){
danielk1977bd434552009-03-18 10:33:00 +00001323 break;
1324 }
1325
drhd4e70eb2008-01-02 00:34:36 +00001326 /* Invalidate all ephemeral cursor row caches */
1327 p->cacheCtr = (p->cacheCtr + 2)|1;
1328
1329 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001330 ** and have an assigned type. The results are de-ephemeralized as
drhb8a45bb2011-12-31 21:51:55 +00001331 ** a side effect.
drhd4e70eb2008-01-02 00:34:36 +00001332 */
drha6c2ed92009-11-14 23:22:23 +00001333 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001334 for(i=0; i<pOp->p2; i++){
drh2b4ded92010-09-27 21:09:31 +00001335 assert( memIsValid(&pMem[i]) );
drhebc16712010-09-28 00:25:58 +00001336 Deephemeralize(&pMem[i]);
drh746fd9c2010-09-28 06:00:47 +00001337 assert( (pMem[i].flags & MEM_Ephem)==0
1338 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
drhd4e70eb2008-01-02 00:34:36 +00001339 sqlite3VdbeMemNulTerminate(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001340 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001341 }
drh28039692008-03-17 16:54:01 +00001342 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001343
1344 /* Return SQLITE_ROW
1345 */
drhf56fa462015-04-13 21:39:54 +00001346 p->pc = (int)(pOp - aOp) + 1;
drhd4e70eb2008-01-02 00:34:36 +00001347 rc = SQLITE_ROW;
1348 goto vdbe_return;
1349}
1350
drh5b6afba2008-01-05 16:29:28 +00001351/* Opcode: Concat P1 P2 P3 * *
drh313619f2013-10-31 20:34:06 +00001352** Synopsis: r[P3]=r[P2]+r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001353**
drh5b6afba2008-01-05 16:29:28 +00001354** Add the text in register P1 onto the end of the text in
1355** register P2 and store the result in register P3.
1356** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001357**
1358** P3 = P2 || P1
1359**
1360** It is illegal for P1 and P3 to be the same register. Sometimes,
1361** if P3 is the same register as P2, the implementation is able
1362** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001363*/
drh5b6afba2008-01-05 16:29:28 +00001364case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001365 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001366
drh3c657212009-11-17 23:59:58 +00001367 pIn1 = &aMem[pOp->p1];
1368 pIn2 = &aMem[pOp->p2];
1369 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001370 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001371 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001372 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001373 break;
drh5e00f6c2001-09-13 13:46:56 +00001374 }
drha0c06522009-06-17 22:50:41 +00001375 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001376 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001377 Stringify(pIn2, encoding);
1378 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001379 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001380 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001381 }
drh9c1905f2008-12-10 22:32:56 +00001382 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001383 goto no_mem;
1384 }
drhc91b2fd2014-03-01 18:13:23 +00001385 MemSetTypeFlag(pOut, MEM_Str);
danielk1977a7a8e142008-02-13 18:25:27 +00001386 if( pOut!=pIn2 ){
1387 memcpy(pOut->z, pIn2->z, pIn2->n);
1388 }
1389 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
drh81316f82013-10-29 20:40:47 +00001390 pOut->z[nByte]=0;
danielk1977a7a8e142008-02-13 18:25:27 +00001391 pOut->z[nByte+1] = 0;
1392 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001393 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001394 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001395 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001396 break;
1397}
drh75897232000-05-29 14:26:00 +00001398
drh3c84ddf2008-01-09 02:15:38 +00001399/* Opcode: Add P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001400** Synopsis: r[P3]=r[P1]+r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001401**
drh60a713c2008-01-21 16:22:45 +00001402** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001403** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001404** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001405*/
drh3c84ddf2008-01-09 02:15:38 +00001406/* Opcode: Multiply P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001407** Synopsis: r[P3]=r[P1]*r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001408**
drh3c84ddf2008-01-09 02:15:38 +00001409**
shane21e7feb2008-05-30 15:59:49 +00001410** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001411** and store the result in register P3.
1412** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001413*/
drh3c84ddf2008-01-09 02:15:38 +00001414/* Opcode: Subtract P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001415** Synopsis: r[P3]=r[P2]-r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001416**
drh60a713c2008-01-21 16:22:45 +00001417** Subtract the value in register P1 from the value in register P2
1418** and store the result in register P3.
1419** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001420*/
drh9cbf3422008-01-17 16:22:13 +00001421/* Opcode: Divide P1 P2 P3 * *
drh40864a12013-11-15 18:58:37 +00001422** Synopsis: r[P3]=r[P2]/r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001423**
drh60a713c2008-01-21 16:22:45 +00001424** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001425** and store the result in register P3 (P3=P2/P1). If the value in
1426** register P1 is zero, then the result is NULL. If either input is
1427** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001428*/
drh9cbf3422008-01-17 16:22:13 +00001429/* Opcode: Remainder P1 P2 P3 * *
drh40864a12013-11-15 18:58:37 +00001430** Synopsis: r[P3]=r[P2]%r[P1]
drhbf4133c2001-10-13 02:59:08 +00001431**
drh40864a12013-11-15 18:58:37 +00001432** Compute the remainder after integer register P2 is divided by
1433** register P1 and store the result in register P3.
1434** If the value in register P1 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001435** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001436*/
drh5b6afba2008-01-05 16:29:28 +00001437case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1438case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1439case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1440case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1441case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drhbe707b32012-12-10 22:19:14 +00001442 char bIntint; /* Started out as two integer operands */
drh3d1d90a2014-03-24 15:00:15 +00001443 u16 flags; /* Combined MEM_* flags from both inputs */
1444 u16 type1; /* Numeric type of left operand */
1445 u16 type2; /* Numeric type of right operand */
drh856c1032009-06-02 15:21:42 +00001446 i64 iA; /* Integer value of left operand */
1447 i64 iB; /* Integer value of right operand */
1448 double rA; /* Real value of left operand */
1449 double rB; /* Real value of right operand */
1450
drh3c657212009-11-17 23:59:58 +00001451 pIn1 = &aMem[pOp->p1];
drh3d1d90a2014-03-24 15:00:15 +00001452 type1 = numericType(pIn1);
drh3c657212009-11-17 23:59:58 +00001453 pIn2 = &aMem[pOp->p2];
drh3d1d90a2014-03-24 15:00:15 +00001454 type2 = numericType(pIn2);
drh3c657212009-11-17 23:59:58 +00001455 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001456 flags = pIn1->flags | pIn2->flags;
drha05a7222008-01-19 03:35:58 +00001457 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
drh3d1d90a2014-03-24 15:00:15 +00001458 if( (type1 & type2 & MEM_Int)!=0 ){
drh856c1032009-06-02 15:21:42 +00001459 iA = pIn1->u.i;
1460 iB = pIn2->u.i;
drhbe707b32012-12-10 22:19:14 +00001461 bIntint = 1;
drh5e00f6c2001-09-13 13:46:56 +00001462 switch( pOp->opcode ){
drh158b9cb2011-03-05 20:59:46 +00001463 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1464 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1465 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
drhbf4133c2001-10-13 02:59:08 +00001466 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001467 if( iA==0 ) goto arithmetic_result_is_null;
drh158b9cb2011-03-05 20:59:46 +00001468 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
drh856c1032009-06-02 15:21:42 +00001469 iB /= iA;
drh75897232000-05-29 14:26:00 +00001470 break;
1471 }
drhbf4133c2001-10-13 02:59:08 +00001472 default: {
drh856c1032009-06-02 15:21:42 +00001473 if( iA==0 ) goto arithmetic_result_is_null;
1474 if( iA==-1 ) iA = 1;
1475 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001476 break;
1477 }
drh75897232000-05-29 14:26:00 +00001478 }
drh856c1032009-06-02 15:21:42 +00001479 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001480 MemSetTypeFlag(pOut, MEM_Int);
drh5e00f6c2001-09-13 13:46:56 +00001481 }else{
drhbe707b32012-12-10 22:19:14 +00001482 bIntint = 0;
drh158b9cb2011-03-05 20:59:46 +00001483fp_math:
drh856c1032009-06-02 15:21:42 +00001484 rA = sqlite3VdbeRealValue(pIn1);
1485 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001486 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001487 case OP_Add: rB += rA; break;
1488 case OP_Subtract: rB -= rA; break;
1489 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001490 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001491 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001492 if( rA==(double)0 ) goto arithmetic_result_is_null;
1493 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001494 break;
1495 }
drhbf4133c2001-10-13 02:59:08 +00001496 default: {
shane75ac1de2009-06-09 18:58:52 +00001497 iA = (i64)rA;
1498 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001499 if( iA==0 ) goto arithmetic_result_is_null;
1500 if( iA==-1 ) iA = 1;
1501 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001502 break;
1503 }
drh5e00f6c2001-09-13 13:46:56 +00001504 }
drhc5a7b512010-01-13 16:25:42 +00001505#ifdef SQLITE_OMIT_FLOATING_POINT
1506 pOut->u.i = rB;
1507 MemSetTypeFlag(pOut, MEM_Int);
1508#else
drh856c1032009-06-02 15:21:42 +00001509 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001510 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001511 }
drh74eaba42014-09-18 17:52:15 +00001512 pOut->u.r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001513 MemSetTypeFlag(pOut, MEM_Real);
drh3d1d90a2014-03-24 15:00:15 +00001514 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
drh5b6afba2008-01-05 16:29:28 +00001515 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001516 }
drhc5a7b512010-01-13 16:25:42 +00001517#endif
drh5e00f6c2001-09-13 13:46:56 +00001518 }
1519 break;
1520
drha05a7222008-01-19 03:35:58 +00001521arithmetic_result_is_null:
1522 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001523 break;
1524}
1525
drh7a957892012-02-02 17:35:43 +00001526/* Opcode: CollSeq P1 * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001527**
drh66a51672008-01-03 00:01:23 +00001528** P4 is a pointer to a CollSeq struct. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001529** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1530** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001531** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001532**
drh7a957892012-02-02 17:35:43 +00001533** If P1 is not zero, then it is a register that a subsequent min() or
1534** max() aggregate will set to 1 if the current row is not the minimum or
1535** maximum. The P1 register is initialized to 0 by this instruction.
1536**
danielk1977dc1bdc42004-06-11 10:51:27 +00001537** The interface used by the implementation of the aforementioned functions
1538** to retrieve the collation sequence set by this opcode is not available
drh0a0d0562015-03-12 05:08:34 +00001539** publicly. Only built-in functions have access to this feature.
danielk1977dc1bdc42004-06-11 10:51:27 +00001540*/
drh9cbf3422008-01-17 16:22:13 +00001541case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001542 assert( pOp->p4type==P4_COLLSEQ );
drh7a957892012-02-02 17:35:43 +00001543 if( pOp->p1 ){
1544 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1545 }
danielk1977dc1bdc42004-06-11 10:51:27 +00001546 break;
1547}
1548
drh98757152008-01-09 23:04:12 +00001549/* Opcode: Function P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00001550** Synopsis: r[P3]=func(r[P2@P5])
drh8e0a2f92002-02-23 23:45:45 +00001551**
drh66a51672008-01-03 00:01:23 +00001552** Invoke a user function (P4 is a pointer to a Function structure that
drh98757152008-01-09 23:04:12 +00001553** defines the function) with P5 arguments taken from register P2 and
drh9cbf3422008-01-17 16:22:13 +00001554** successors. The result of the function is stored in register P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001555** Register P3 must not be one of the function inputs.
danielk1977682f68b2004-06-05 10:22:17 +00001556**
drh13449892005-09-07 21:22:45 +00001557** P1 is a 32-bit bitmask indicating whether or not each argument to the
danielk1977682f68b2004-06-05 10:22:17 +00001558** function was determined to be constant at compile time. If the first
drh13449892005-09-07 21:22:45 +00001559** argument was constant then bit 0 of P1 is set. This is used to determine
danielk1977682f68b2004-06-05 10:22:17 +00001560** whether meta data associated with a user function argument using the
1561** sqlite3_set_auxdata() API may be safely retained until the next
1562** invocation of this opcode.
drh1350b032002-02-27 19:00:20 +00001563**
drh13449892005-09-07 21:22:45 +00001564** See also: AggStep and AggFinal
drh8e0a2f92002-02-23 23:45:45 +00001565*/
drh0bce8352002-02-28 00:41:10 +00001566case OP_Function: {
danielk197751ad0ec2004-05-24 12:39:02 +00001567 int i;
drh6810ce62004-01-31 19:22:56 +00001568 Mem *pArg;
danielk197722322fd2004-05-25 23:35:17 +00001569 sqlite3_context ctx;
danielk197751ad0ec2004-05-24 12:39:02 +00001570 sqlite3_value **apVal;
drh856c1032009-06-02 15:21:42 +00001571 int n;
drh1350b032002-02-27 19:00:20 +00001572
drh856c1032009-06-02 15:21:42 +00001573 n = pOp->p5;
danielk19776ddcca52004-05-24 23:48:25 +00001574 apVal = p->apArg;
danielk197751ad0ec2004-05-24 12:39:02 +00001575 assert( apVal || n==0 );
dan3bc9f742013-08-15 16:18:39 +00001576 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drh9bd038f2014-08-27 14:14:06 +00001577 ctx.pOut = &aMem[pOp->p3];
1578 memAboutToChange(p, ctx.pOut);
danielk197751ad0ec2004-05-24 12:39:02 +00001579
dan3bc9f742013-08-15 16:18:39 +00001580 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
danielk1977a7a8e142008-02-13 18:25:27 +00001581 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drha6c2ed92009-11-14 23:22:23 +00001582 pArg = &aMem[pOp->p2];
drh6810ce62004-01-31 19:22:56 +00001583 for(i=0; i<n; i++, pArg++){
drh2b4ded92010-09-27 21:09:31 +00001584 assert( memIsValid(pArg) );
danielk197751ad0ec2004-05-24 12:39:02 +00001585 apVal[i] = pArg;
drhebc16712010-09-28 00:25:58 +00001586 Deephemeralize(pArg);
drhab5cd702010-04-07 14:32:11 +00001587 REGISTER_TRACE(pOp->p2+i, pArg);
drh8e0a2f92002-02-23 23:45:45 +00001588 }
danielk197751ad0ec2004-05-24 12:39:02 +00001589
dan0c547792013-07-18 17:12:08 +00001590 assert( pOp->p4type==P4_FUNCDEF );
1591 ctx.pFunc = pOp->p4.pFunc;
drhf56fa462015-04-13 21:39:54 +00001592 ctx.iOp = (int)(pOp - aOp);
dan0c547792013-07-18 17:12:08 +00001593 ctx.pVdbe = p;
drh9bd038f2014-08-27 14:14:06 +00001594 MemSetTypeFlag(ctx.pOut, MEM_Null);
drh9b47ee32013-08-20 03:13:51 +00001595 ctx.fErrorOrAux = 0;
drhf6aff802014-10-08 14:28:31 +00001596 db->lastRowid = lastRowid;
drhee9ff672010-09-03 18:50:48 +00001597 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh3b130be2014-09-26 01:10:02 +00001598 lastRowid = db->lastRowid; /* Remember rowid changes made by xFunc */
danielk19777e18c252004-05-25 11:47:24 +00001599
drh90669c12006-01-20 15:45:36 +00001600 /* If the function returned an error, throw an exception */
drh9b47ee32013-08-20 03:13:51 +00001601 if( ctx.fErrorOrAux ){
1602 if( ctx.isError ){
drh22c17b82015-05-15 04:13:15 +00001603 sqlite3VdbeError(p, "%s", sqlite3_value_text(ctx.pOut));
drh9b47ee32013-08-20 03:13:51 +00001604 rc = ctx.isError;
1605 }
drhf56fa462015-04-13 21:39:54 +00001606 sqlite3VdbeDeleteAuxData(p, (int)(pOp - aOp), pOp->p1);
drh90669c12006-01-20 15:45:36 +00001607 }
1608
drh9cbf3422008-01-17 16:22:13 +00001609 /* Copy the result of the function into register P3 */
drh9bd038f2014-08-27 14:14:06 +00001610 sqlite3VdbeChangeEncoding(ctx.pOut, encoding);
1611 if( sqlite3VdbeMemTooBig(ctx.pOut) ){
drh023ae032007-05-08 12:12:16 +00001612 goto too_big;
1613 }
drh7b94e7f2011-04-04 12:29:20 +00001614
drh9bd038f2014-08-27 14:14:06 +00001615 REGISTER_TRACE(pOp->p3, ctx.pOut);
1616 UPDATE_MAX_BLOBSIZE(ctx.pOut);
drh8e0a2f92002-02-23 23:45:45 +00001617 break;
1618}
1619
drh98757152008-01-09 23:04:12 +00001620/* Opcode: BitAnd P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001621** Synopsis: r[P3]=r[P1]&r[P2]
drhbf4133c2001-10-13 02:59:08 +00001622**
drh98757152008-01-09 23:04:12 +00001623** Take the bit-wise AND of the values in register P1 and P2 and
1624** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001625** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001626*/
drh98757152008-01-09 23:04:12 +00001627/* Opcode: BitOr P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001628** Synopsis: r[P3]=r[P1]|r[P2]
drhbf4133c2001-10-13 02:59:08 +00001629**
drh98757152008-01-09 23:04:12 +00001630** Take the bit-wise OR of the values in register P1 and P2 and
1631** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001632** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001633*/
drh98757152008-01-09 23:04:12 +00001634/* Opcode: ShiftLeft P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001635** Synopsis: r[P3]=r[P2]<<r[P1]
drhbf4133c2001-10-13 02:59:08 +00001636**
drh98757152008-01-09 23:04:12 +00001637** Shift the integer value in register P2 to the left by the
drh710c4842010-08-30 01:17:20 +00001638** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001639** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001640** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001641*/
drh98757152008-01-09 23:04:12 +00001642/* Opcode: ShiftRight P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001643** Synopsis: r[P3]=r[P2]>>r[P1]
drhbf4133c2001-10-13 02:59:08 +00001644**
drh98757152008-01-09 23:04:12 +00001645** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001646** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001647** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001648** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001649*/
drh5b6afba2008-01-05 16:29:28 +00001650case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1651case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1652case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1653case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh158b9cb2011-03-05 20:59:46 +00001654 i64 iA;
1655 u64 uA;
1656 i64 iB;
1657 u8 op;
drh6810ce62004-01-31 19:22:56 +00001658
drh3c657212009-11-17 23:59:58 +00001659 pIn1 = &aMem[pOp->p1];
1660 pIn2 = &aMem[pOp->p2];
1661 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001662 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001663 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001664 break;
1665 }
drh158b9cb2011-03-05 20:59:46 +00001666 iA = sqlite3VdbeIntValue(pIn2);
1667 iB = sqlite3VdbeIntValue(pIn1);
1668 op = pOp->opcode;
1669 if( op==OP_BitAnd ){
1670 iA &= iB;
1671 }else if( op==OP_BitOr ){
1672 iA |= iB;
1673 }else if( iB!=0 ){
1674 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1675
1676 /* If shifting by a negative amount, shift in the other direction */
1677 if( iB<0 ){
1678 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1679 op = 2*OP_ShiftLeft + 1 - op;
1680 iB = iB>(-64) ? -iB : 64;
1681 }
1682
1683 if( iB>=64 ){
1684 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1685 }else{
1686 memcpy(&uA, &iA, sizeof(uA));
1687 if( op==OP_ShiftLeft ){
1688 uA <<= iB;
1689 }else{
1690 uA >>= iB;
1691 /* Sign-extend on a right shift of a negative number */
1692 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1693 }
1694 memcpy(&iA, &uA, sizeof(iA));
1695 }
drhbf4133c2001-10-13 02:59:08 +00001696 }
drh158b9cb2011-03-05 20:59:46 +00001697 pOut->u.i = iA;
danielk1977a7a8e142008-02-13 18:25:27 +00001698 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001699 break;
1700}
1701
drh8558cde2008-01-05 05:20:10 +00001702/* Opcode: AddImm P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001703** Synopsis: r[P1]=r[P1]+P2
drh5e00f6c2001-09-13 13:46:56 +00001704**
danielk19770cdc0222008-06-26 18:04:03 +00001705** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001706** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001707**
drh8558cde2008-01-05 05:20:10 +00001708** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001709*/
drh9cbf3422008-01-17 16:22:13 +00001710case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001711 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001712 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001713 sqlite3VdbeMemIntegerify(pIn1);
1714 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001715 break;
1716}
1717
drh9cbf3422008-01-17 16:22:13 +00001718/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001719**
drh9cbf3422008-01-17 16:22:13 +00001720** Force the value in register P1 to be an integer. If the value
1721** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001722** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001723** raise an SQLITE_MISMATCH exception.
1724*/
drh9cbf3422008-01-17 16:22:13 +00001725case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001726 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001727 if( (pIn1->flags & MEM_Int)==0 ){
drh83b301b2013-11-20 00:59:02 +00001728 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
drh688852a2014-02-17 22:40:43 +00001729 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
drh83b301b2013-11-20 00:59:02 +00001730 if( (pIn1->flags & MEM_Int)==0 ){
1731 if( pOp->p2==0 ){
1732 rc = SQLITE_MISMATCH;
1733 goto abort_due_to_error;
1734 }else{
drhf56fa462015-04-13 21:39:54 +00001735 goto jump_to_p2;
drh83b301b2013-11-20 00:59:02 +00001736 }
drh8aff1012001-12-22 14:49:24 +00001737 }
drh8aff1012001-12-22 14:49:24 +00001738 }
drh83b301b2013-11-20 00:59:02 +00001739 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001740 break;
1741}
1742
drh13573c72010-01-12 17:04:07 +00001743#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001744/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001745**
drh2133d822008-01-03 18:44:59 +00001746** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001747**
drh8a512562005-11-14 22:29:05 +00001748** This opcode is used when extracting information from a column that
1749** has REAL affinity. Such column values may still be stored as
1750** integers, for space efficiency, but after extraction we want them
1751** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001752*/
drh9cbf3422008-01-17 16:22:13 +00001753case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001754 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001755 if( pIn1->flags & MEM_Int ){
1756 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001757 }
drh487e2622005-06-25 18:42:14 +00001758 break;
1759}
drh13573c72010-01-12 17:04:07 +00001760#endif
drh487e2622005-06-25 18:42:14 +00001761
drh8df447f2005-11-01 15:48:24 +00001762#ifndef SQLITE_OMIT_CAST
drh4169e432014-08-25 20:11:52 +00001763/* Opcode: Cast P1 P2 * * *
mistachkina1dc42a2014-08-27 17:53:40 +00001764** Synopsis: affinity(r[P1])
drh487e2622005-06-25 18:42:14 +00001765**
drh4169e432014-08-25 20:11:52 +00001766** Force the value in register P1 to be the type defined by P2.
1767**
1768** <ul>
1769** <li value="97"> TEXT
1770** <li value="98"> BLOB
1771** <li value="99"> NUMERIC
1772** <li value="100"> INTEGER
1773** <li value="101"> REAL
1774** </ul>
drh487e2622005-06-25 18:42:14 +00001775**
1776** A NULL value is not changed by this routine. It remains NULL.
1777*/
drh4169e432014-08-25 20:11:52 +00001778case OP_Cast: { /* in1 */
drh05883a32015-06-02 15:32:08 +00001779 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
drh05bbb2e2014-08-25 22:37:19 +00001780 testcase( pOp->p2==SQLITE_AFF_TEXT );
drh05883a32015-06-02 15:32:08 +00001781 testcase( pOp->p2==SQLITE_AFF_BLOB );
drh05bbb2e2014-08-25 22:37:19 +00001782 testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1783 testcase( pOp->p2==SQLITE_AFF_INTEGER );
1784 testcase( pOp->p2==SQLITE_AFF_REAL );
drh3c657212009-11-17 23:59:58 +00001785 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001786 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001787 rc = ExpandBlob(pIn1);
drh4169e432014-08-25 20:11:52 +00001788 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
drhb7654112008-01-12 12:48:07 +00001789 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001790 break;
1791}
drh8a512562005-11-14 22:29:05 +00001792#endif /* SQLITE_OMIT_CAST */
1793
drh35573352008-01-08 23:54:25 +00001794/* Opcode: Lt P1 P2 P3 P4 P5
drh72dbffd2013-11-15 03:21:43 +00001795** Synopsis: if r[P1]<r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001796**
drh35573352008-01-08 23:54:25 +00001797** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1798** jump to address P2.
drhf5905aa2002-05-26 20:54:33 +00001799**
drh35573352008-01-08 23:54:25 +00001800** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1801** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
drh710c4842010-08-30 01:17:20 +00001802** bit is clear then fall through if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001803**
drh35573352008-01-08 23:54:25 +00001804** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001805** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001806** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001807** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001808** affinity is used. Note that the affinity conversions are stored
1809** back into the input registers P1 and P3. So this opcode can cause
1810** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001811**
1812** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001813** the values are compared. If both values are blobs then memcmp() is
1814** used to determine the results of the comparison. If both values
1815** are text, then the appropriate collating function specified in
1816** P4 is used to do the comparison. If P4 is not specified then
1817** memcmp() is used to compare text string. If both values are
1818** numeric, then a numeric comparison is used. If the two values
1819** are of different types, then numbers are considered less than
1820** strings and strings are considered less than blobs.
drhc9b84a12002-06-20 11:36:48 +00001821**
drh35573352008-01-08 23:54:25 +00001822** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1823** store a boolean result (either 0, or 1, or NULL) in register P2.
drh053a1282012-09-19 21:15:46 +00001824**
1825** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1826** equal to one another, provided that they do not have their MEM_Cleared
1827** bit set.
drh5e00f6c2001-09-13 13:46:56 +00001828*/
drh9cbf3422008-01-17 16:22:13 +00001829/* Opcode: Ne P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001830** Synopsis: if r[P1]!=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001831**
drh35573352008-01-08 23:54:25 +00001832** This works just like the Lt opcode except that the jump is taken if
1833** the operands in registers P1 and P3 are not equal. See the Lt opcode for
drh53db1452004-05-20 13:54:53 +00001834** additional information.
drh6a2fe092009-09-23 02:29:36 +00001835**
1836** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1837** true or false and is never NULL. If both operands are NULL then the result
1838** of comparison is false. If either operand is NULL then the result is true.
drhef8662b2011-06-20 21:47:58 +00001839** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001840** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001841*/
drh9cbf3422008-01-17 16:22:13 +00001842/* Opcode: Eq P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001843** Synopsis: if r[P1]==r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001844**
drh35573352008-01-08 23:54:25 +00001845** This works just like the Lt opcode except that the jump is taken if
1846** the operands in registers P1 and P3 are equal.
1847** See the Lt opcode for additional information.
drh6a2fe092009-09-23 02:29:36 +00001848**
1849** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1850** true or false and is never NULL. If both operands are NULL then the result
1851** of comparison is true. If either operand is NULL then the result is false.
drhef8662b2011-06-20 21:47:58 +00001852** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001853** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001854*/
drh9cbf3422008-01-17 16:22:13 +00001855/* Opcode: Le P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001856** Synopsis: if r[P1]<=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001857**
drh35573352008-01-08 23:54:25 +00001858** This works just like the Lt opcode except that the jump is taken if
1859** the content of register P3 is less than or equal to the content of
1860** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001861*/
drh9cbf3422008-01-17 16:22:13 +00001862/* Opcode: Gt P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001863** Synopsis: if r[P1]>r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001864**
drh35573352008-01-08 23:54:25 +00001865** This works just like the Lt opcode except that the jump is taken if
1866** the content of register P3 is greater than the content of
1867** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001868*/
drh9cbf3422008-01-17 16:22:13 +00001869/* Opcode: Ge P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001870** Synopsis: if r[P1]>=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001871**
drh35573352008-01-08 23:54:25 +00001872** This works just like the Lt opcode except that the jump is taken if
1873** the content of register P3 is greater than or equal to the content of
1874** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001875*/
drh9cbf3422008-01-17 16:22:13 +00001876case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1877case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1878case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1879case OP_Le: /* same as TK_LE, jump, in1, in3 */
1880case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1881case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh6a2fe092009-09-23 02:29:36 +00001882 int res; /* Result of the comparison of pIn1 against pIn3 */
1883 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00001884 u16 flags1; /* Copy of initial value of pIn1->flags */
1885 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00001886
drh3c657212009-11-17 23:59:58 +00001887 pIn1 = &aMem[pOp->p1];
1888 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00001889 flags1 = pIn1->flags;
1890 flags3 = pIn3->flags;
drhc3f1d5f2011-05-30 23:42:16 +00001891 if( (flags1 | flags3)&MEM_Null ){
drh6a2fe092009-09-23 02:29:36 +00001892 /* One or both operands are NULL */
1893 if( pOp->p5 & SQLITE_NULLEQ ){
1894 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1895 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1896 ** or not both operands are null.
1897 */
1898 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
drh053a1282012-09-19 21:15:46 +00001899 assert( (flags1 & MEM_Cleared)==0 );
drh3d77dee2014-02-19 14:20:49 +00001900 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
drh053a1282012-09-19 21:15:46 +00001901 if( (flags1&MEM_Null)!=0
1902 && (flags3&MEM_Null)!=0
1903 && (flags3&MEM_Cleared)==0
1904 ){
1905 res = 0; /* Results are equal */
1906 }else{
1907 res = 1; /* Results are not equal */
1908 }
drh6a2fe092009-09-23 02:29:36 +00001909 }else{
1910 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1911 ** then the result is always NULL.
1912 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1913 */
drh688852a2014-02-17 22:40:43 +00001914 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001915 pOut = &aMem[pOp->p2];
drh6a2fe092009-09-23 02:29:36 +00001916 MemSetTypeFlag(pOut, MEM_Null);
1917 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00001918 }else{
drhf4345e42014-02-18 11:31:59 +00001919 VdbeBranchTaken(2,3);
drh688852a2014-02-17 22:40:43 +00001920 if( pOp->p5 & SQLITE_JUMPIFNULL ){
drhf56fa462015-04-13 21:39:54 +00001921 goto jump_to_p2;
drh688852a2014-02-17 22:40:43 +00001922 }
drh6a2fe092009-09-23 02:29:36 +00001923 }
1924 break;
danielk1977a37cdde2004-05-16 11:15:36 +00001925 }
drh6a2fe092009-09-23 02:29:36 +00001926 }else{
1927 /* Neither operand is NULL. Do a comparison. */
1928 affinity = pOp->p5 & SQLITE_AFF_MASK;
drh24a09622014-09-18 16:28:59 +00001929 if( affinity>=SQLITE_AFF_NUMERIC ){
drhe7a34662014-09-19 22:44:20 +00001930 if( (pIn1->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drh24a09622014-09-18 16:28:59 +00001931 applyNumericAffinity(pIn1,0);
1932 }
drhe7a34662014-09-19 22:44:20 +00001933 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drh24a09622014-09-18 16:28:59 +00001934 applyNumericAffinity(pIn3,0);
1935 }
1936 }else if( affinity==SQLITE_AFF_TEXT ){
1937 if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00001938 testcase( pIn1->flags & MEM_Int );
1939 testcase( pIn1->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00001940 sqlite3VdbeMemStringify(pIn1, encoding, 1);
drhbc8a6b32015-03-31 11:42:23 +00001941 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
1942 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
drh24a09622014-09-18 16:28:59 +00001943 }
1944 if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00001945 testcase( pIn3->flags & MEM_Int );
1946 testcase( pIn3->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00001947 sqlite3VdbeMemStringify(pIn3, encoding, 1);
drhbc8a6b32015-03-31 11:42:23 +00001948 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
1949 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
drh24a09622014-09-18 16:28:59 +00001950 }
drh6a2fe092009-09-23 02:29:36 +00001951 }
drh6a2fe092009-09-23 02:29:36 +00001952 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
drhca5506b2014-09-17 23:37:38 +00001953 if( pIn1->flags & MEM_Zero ){
1954 sqlite3VdbeMemExpandBlob(pIn1);
1955 flags1 &= ~MEM_Zero;
1956 }
1957 if( pIn3->flags & MEM_Zero ){
1958 sqlite3VdbeMemExpandBlob(pIn3);
1959 flags3 &= ~MEM_Zero;
1960 }
drh24a09622014-09-18 16:28:59 +00001961 if( db->mallocFailed ) goto no_mem;
drh6a2fe092009-09-23 02:29:36 +00001962 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00001963 }
danielk1977a37cdde2004-05-16 11:15:36 +00001964 switch( pOp->opcode ){
1965 case OP_Eq: res = res==0; break;
1966 case OP_Ne: res = res!=0; break;
1967 case OP_Lt: res = res<0; break;
1968 case OP_Le: res = res<=0; break;
1969 case OP_Gt: res = res>0; break;
1970 default: res = res>=0; break;
1971 }
1972
drhf56fa462015-04-13 21:39:54 +00001973 /* Undo any changes made by applyAffinity() to the input registers. */
1974 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1975 pIn1->flags = flags1;
1976 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
1977 pIn3->flags = flags3;
1978
drh35573352008-01-08 23:54:25 +00001979 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001980 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00001981 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00001982 MemSetTypeFlag(pOut, MEM_Int);
drh35573352008-01-08 23:54:25 +00001983 pOut->u.i = res;
1984 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00001985 }else{
drhf4345e42014-02-18 11:31:59 +00001986 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
drh688852a2014-02-17 22:40:43 +00001987 if( res ){
drhf56fa462015-04-13 21:39:54 +00001988 goto jump_to_p2;
drh688852a2014-02-17 22:40:43 +00001989 }
danielk1977a37cdde2004-05-16 11:15:36 +00001990 }
1991 break;
1992}
drhc9b84a12002-06-20 11:36:48 +00001993
drh0acb7e42008-06-25 00:12:41 +00001994/* Opcode: Permutation * * * P4 *
1995**
shanebe217792009-03-05 04:20:31 +00001996** Set the permutation used by the OP_Compare operator to be the array
drh0acb7e42008-06-25 00:12:41 +00001997** of integers in P4.
1998**
drh953f7612012-12-07 22:18:54 +00001999** The permutation is only valid until the next OP_Compare that has
2000** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2001** occur immediately prior to the OP_Compare.
drh0acb7e42008-06-25 00:12:41 +00002002*/
2003case OP_Permutation: {
2004 assert( pOp->p4type==P4_INTARRAY );
2005 assert( pOp->p4.ai );
2006 aPermute = pOp->p4.ai;
2007 break;
2008}
2009
drh953f7612012-12-07 22:18:54 +00002010/* Opcode: Compare P1 P2 P3 P4 P5
drh079a3072014-03-19 14:10:55 +00002011** Synopsis: r[P1@P3] <-> r[P2@P3]
drh16ee60f2008-06-20 18:13:25 +00002012**
drh710c4842010-08-30 01:17:20 +00002013** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2014** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
drh16ee60f2008-06-20 18:13:25 +00002015** the comparison for use by the next OP_Jump instruct.
2016**
drh0ca10df2012-12-08 13:26:23 +00002017** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2018** determined by the most recent OP_Permutation operator. If the
2019** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2020** order.
2021**
drh0acb7e42008-06-25 00:12:41 +00002022** P4 is a KeyInfo structure that defines collating sequences and sort
2023** orders for the comparison. The permutation applies to registers
2024** only. The KeyInfo elements are used sequentially.
2025**
2026** The comparison is a sort comparison, so NULLs compare equal,
2027** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00002028** and strings are less than blobs.
2029*/
2030case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00002031 int n;
2032 int i;
2033 int p1;
2034 int p2;
2035 const KeyInfo *pKeyInfo;
2036 int idx;
2037 CollSeq *pColl; /* Collating sequence to use on this term */
2038 int bRev; /* True for DESCENDING sort order */
2039
drh953f7612012-12-07 22:18:54 +00002040 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
drh856c1032009-06-02 15:21:42 +00002041 n = pOp->p3;
2042 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00002043 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00002044 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00002045 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00002046 p2 = pOp->p2;
drh6a2fe092009-09-23 02:29:36 +00002047#if SQLITE_DEBUG
2048 if( aPermute ){
2049 int k, mx = 0;
2050 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
dan3bc9f742013-08-15 16:18:39 +00002051 assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 );
2052 assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002053 }else{
dan3bc9f742013-08-15 16:18:39 +00002054 assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 );
2055 assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002056 }
2057#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00002058 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00002059 idx = aPermute ? aPermute[i] : i;
drh2b4ded92010-09-27 21:09:31 +00002060 assert( memIsValid(&aMem[p1+idx]) );
2061 assert( memIsValid(&aMem[p2+idx]) );
drha6c2ed92009-11-14 23:22:23 +00002062 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2063 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drh93a960a2008-07-10 00:32:42 +00002064 assert( i<pKeyInfo->nField );
2065 pColl = pKeyInfo->aColl[i];
2066 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00002067 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00002068 if( iCompare ){
2069 if( bRev ) iCompare = -iCompare;
2070 break;
2071 }
drh16ee60f2008-06-20 18:13:25 +00002072 }
drh0acb7e42008-06-25 00:12:41 +00002073 aPermute = 0;
drh16ee60f2008-06-20 18:13:25 +00002074 break;
2075}
2076
2077/* Opcode: Jump P1 P2 P3 * *
2078**
2079** Jump to the instruction at address P1, P2, or P3 depending on whether
2080** in the most recent OP_Compare instruction the P1 vector was less than
2081** equal to, or greater than the P2 vector, respectively.
2082*/
drh0acb7e42008-06-25 00:12:41 +00002083case OP_Jump: { /* jump */
2084 if( iCompare<0 ){
drhf56fa462015-04-13 21:39:54 +00002085 VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
drh0acb7e42008-06-25 00:12:41 +00002086 }else if( iCompare==0 ){
drhf56fa462015-04-13 21:39:54 +00002087 VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
drh16ee60f2008-06-20 18:13:25 +00002088 }else{
drhf56fa462015-04-13 21:39:54 +00002089 VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
drh16ee60f2008-06-20 18:13:25 +00002090 }
2091 break;
2092}
2093
drh5b6afba2008-01-05 16:29:28 +00002094/* Opcode: And P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002095** Synopsis: r[P3]=(r[P1] && r[P2])
drh5e00f6c2001-09-13 13:46:56 +00002096**
drh5b6afba2008-01-05 16:29:28 +00002097** Take the logical AND of the values in registers P1 and P2 and
2098** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00002099**
drh5b6afba2008-01-05 16:29:28 +00002100** If either P1 or P2 is 0 (false) then the result is 0 even if
2101** the other input is NULL. A NULL and true or two NULLs give
2102** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00002103*/
drh5b6afba2008-01-05 16:29:28 +00002104/* Opcode: Or P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002105** Synopsis: r[P3]=(r[P1] || r[P2])
drh5b6afba2008-01-05 16:29:28 +00002106**
2107** Take the logical OR of the values in register P1 and P2 and
2108** store the answer in register P3.
2109**
2110** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2111** even if the other input is NULL. A NULL and false or two NULLs
2112** give a NULL output.
2113*/
2114case OP_And: /* same as TK_AND, in1, in2, out3 */
2115case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00002116 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2117 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00002118
drh3c657212009-11-17 23:59:58 +00002119 pIn1 = &aMem[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00002120 if( pIn1->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002121 v1 = 2;
drh5e00f6c2001-09-13 13:46:56 +00002122 }else{
drh5b6afba2008-01-05 16:29:28 +00002123 v1 = sqlite3VdbeIntValue(pIn1)!=0;
drhbb113512002-05-27 01:04:51 +00002124 }
drh3c657212009-11-17 23:59:58 +00002125 pIn2 = &aMem[pOp->p2];
drh5b6afba2008-01-05 16:29:28 +00002126 if( pIn2->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002127 v2 = 2;
2128 }else{
drh5b6afba2008-01-05 16:29:28 +00002129 v2 = sqlite3VdbeIntValue(pIn2)!=0;
drhbb113512002-05-27 01:04:51 +00002130 }
2131 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00002132 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00002133 v1 = and_logic[v1*3+v2];
2134 }else{
drh5b6afba2008-01-05 16:29:28 +00002135 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00002136 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00002137 }
drh3c657212009-11-17 23:59:58 +00002138 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00002139 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00002140 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00002141 }else{
drh5b6afba2008-01-05 16:29:28 +00002142 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00002143 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00002144 }
drh5e00f6c2001-09-13 13:46:56 +00002145 break;
2146}
2147
drhe99fa2a2008-12-15 15:27:51 +00002148/* Opcode: Not P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002149** Synopsis: r[P2]= !r[P1]
drh5e00f6c2001-09-13 13:46:56 +00002150**
drhe99fa2a2008-12-15 15:27:51 +00002151** Interpret the value in register P1 as a boolean value. Store the
2152** boolean complement in register P2. If the value in register P1 is
2153** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00002154*/
drh93952eb2009-11-13 19:43:43 +00002155case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002156 pIn1 = &aMem[pOp->p1];
2157 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002158 sqlite3VdbeMemSetNull(pOut);
2159 if( (pIn1->flags & MEM_Null)==0 ){
2160 pOut->flags = MEM_Int;
2161 pOut->u.i = !sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002162 }
drh5e00f6c2001-09-13 13:46:56 +00002163 break;
2164}
2165
drhe99fa2a2008-12-15 15:27:51 +00002166/* Opcode: BitNot P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002167** Synopsis: r[P1]= ~r[P1]
drhbf4133c2001-10-13 02:59:08 +00002168**
drhe99fa2a2008-12-15 15:27:51 +00002169** Interpret the content of register P1 as an integer. Store the
2170** ones-complement of the P1 value into register P2. If P1 holds
2171** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00002172*/
drh93952eb2009-11-13 19:43:43 +00002173case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002174 pIn1 = &aMem[pOp->p1];
2175 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002176 sqlite3VdbeMemSetNull(pOut);
2177 if( (pIn1->flags & MEM_Null)==0 ){
2178 pOut->flags = MEM_Int;
2179 pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002180 }
drhbf4133c2001-10-13 02:59:08 +00002181 break;
2182}
2183
drh48f2d3b2011-09-16 01:34:43 +00002184/* Opcode: Once P1 P2 * * *
2185**
drh5dad9a32014-07-25 18:37:42 +00002186** Check the "once" flag number P1. If it is set, jump to instruction P2.
2187** Otherwise, set the flag and fall through to the next instruction.
2188** In other words, this opcode causes all following opcodes up through P2
2189** (but not including P2) to run just once and to be skipped on subsequent
2190** times through the loop.
2191**
2192** All "once" flags are initially cleared whenever a prepared statement
2193** first begins to run.
drh48f2d3b2011-09-16 01:34:43 +00002194*/
dan1d8cb212011-12-09 13:24:16 +00002195case OP_Once: { /* jump */
2196 assert( pOp->p1<p->nOnceFlag );
drh688852a2014-02-17 22:40:43 +00002197 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2);
dan1d8cb212011-12-09 13:24:16 +00002198 if( p->aOnceFlag[pOp->p1] ){
drhf56fa462015-04-13 21:39:54 +00002199 goto jump_to_p2;
dan1d8cb212011-12-09 13:24:16 +00002200 }else{
2201 p->aOnceFlag[pOp->p1] = 1;
2202 }
2203 break;
2204}
2205
drh3c84ddf2008-01-09 02:15:38 +00002206/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00002207**
drhef8662b2011-06-20 21:47:58 +00002208** Jump to P2 if the value in register P1 is true. The value
drh3c84ddf2008-01-09 02:15:38 +00002209** is considered true if it is numeric and non-zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002210** in P1 is NULL then take the jump if and only if P3 is non-zero.
drh5e00f6c2001-09-13 13:46:56 +00002211*/
drh3c84ddf2008-01-09 02:15:38 +00002212/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00002213**
drhef8662b2011-06-20 21:47:58 +00002214** Jump to P2 if the value in register P1 is False. The value
drhb8475df2011-12-09 16:21:19 +00002215** is considered false if it has a numeric value of zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002216** in P1 is NULL then take the jump if and only if P3 is non-zero.
drhf5905aa2002-05-26 20:54:33 +00002217*/
drh9cbf3422008-01-17 16:22:13 +00002218case OP_If: /* jump, in1 */
2219case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00002220 int c;
drh3c657212009-11-17 23:59:58 +00002221 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00002222 if( pIn1->flags & MEM_Null ){
2223 c = pOp->p3;
drhf5905aa2002-05-26 20:54:33 +00002224 }else{
drhba0232a2005-06-06 17:27:19 +00002225#ifdef SQLITE_OMIT_FLOATING_POINT
shanefbd60f82009-02-04 03:59:25 +00002226 c = sqlite3VdbeIntValue(pIn1)!=0;
drhba0232a2005-06-06 17:27:19 +00002227#else
drh3c84ddf2008-01-09 02:15:38 +00002228 c = sqlite3VdbeRealValue(pIn1)!=0.0;
drhba0232a2005-06-06 17:27:19 +00002229#endif
drhf5905aa2002-05-26 20:54:33 +00002230 if( pOp->opcode==OP_IfNot ) c = !c;
2231 }
drh688852a2014-02-17 22:40:43 +00002232 VdbeBranchTaken(c!=0, 2);
drh3c84ddf2008-01-09 02:15:38 +00002233 if( c ){
drhf56fa462015-04-13 21:39:54 +00002234 goto jump_to_p2;
drh3c84ddf2008-01-09 02:15:38 +00002235 }
drh5e00f6c2001-09-13 13:46:56 +00002236 break;
2237}
2238
drh830ecf92009-06-18 00:41:55 +00002239/* Opcode: IsNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002240** Synopsis: if r[P1]==NULL goto P2
drh477df4b2008-01-05 18:48:24 +00002241**
drh830ecf92009-06-18 00:41:55 +00002242** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002243*/
drh9cbf3422008-01-17 16:22:13 +00002244case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002245 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002246 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
drh830ecf92009-06-18 00:41:55 +00002247 if( (pIn1->flags & MEM_Null)!=0 ){
drhf56fa462015-04-13 21:39:54 +00002248 goto jump_to_p2;
drh830ecf92009-06-18 00:41:55 +00002249 }
drh477df4b2008-01-05 18:48:24 +00002250 break;
2251}
2252
drh98757152008-01-09 23:04:12 +00002253/* Opcode: NotNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002254** Synopsis: if r[P1]!=NULL goto P2
drh5e00f6c2001-09-13 13:46:56 +00002255**
drh6a288a32008-01-07 19:20:24 +00002256** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002257*/
drh9cbf3422008-01-17 16:22:13 +00002258case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002259 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002260 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
drh6a288a32008-01-07 19:20:24 +00002261 if( (pIn1->flags & MEM_Null)==0 ){
drhf56fa462015-04-13 21:39:54 +00002262 goto jump_to_p2;
drh6a288a32008-01-07 19:20:24 +00002263 }
drh5e00f6c2001-09-13 13:46:56 +00002264 break;
2265}
2266
drh3e9ca092009-09-08 01:14:48 +00002267/* Opcode: Column P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00002268** Synopsis: r[P3]=PX
danielk1977192ac1d2004-05-10 07:17:30 +00002269**
danielk1977cfcdaef2004-05-12 07:33:33 +00002270** Interpret the data that cursor P1 points to as a structure built using
2271** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002272** information about the format of the data.) Extract the P2-th column
2273** from this record. If there are less that (P2+1)
2274** values in the record, extract a NULL.
2275**
drh9cbf3422008-01-17 16:22:13 +00002276** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002277**
danielk19771f4aa332008-01-03 09:51:55 +00002278** If the column contains fewer than P2 fields, then extract a NULL. Or,
2279** if the P4 argument is a P4_MEM use the value of the P4 argument as
2280** the result.
drh3e9ca092009-09-08 01:14:48 +00002281**
2282** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2283** then the cache of the cursor is reset prior to extracting the column.
2284** The first OP_Column against a pseudo-table after the value of the content
2285** register has changed should have this bit set.
drha748fdc2012-03-28 01:34:47 +00002286**
drhdda5c082012-03-28 13:41:10 +00002287** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2288** the result is guaranteed to only be used as the argument of a length()
2289** or typeof() function, respectively. The loading of large blobs can be
2290** skipped for length() and all content loading can be skipped for typeof().
danielk1977192ac1d2004-05-10 07:17:30 +00002291*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002292case OP_Column: {
drh856c1032009-06-02 15:21:42 +00002293 i64 payloadSize64; /* Number of bytes in the record */
drh856c1032009-06-02 15:21:42 +00002294 int p2; /* column number to retrieve */
2295 VdbeCursor *pC; /* The VDBE cursor */
drhd3194f52004-05-27 19:59:32 +00002296 BtCursor *pCrsr; /* The BTree cursor */
drhd3194f52004-05-27 19:59:32 +00002297 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk1977cfcdaef2004-05-12 07:33:33 +00002298 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002299 int i; /* Loop counter */
drhd4e70eb2008-01-02 00:34:36 +00002300 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002301 Mem sMem; /* For storing the record being decoded */
drh399af1d2013-11-20 17:25:55 +00002302 const u8 *zData; /* Part of the record being decoded */
2303 const u8 *zHdr; /* Next unparsed byte of the header */
2304 const u8 *zEndHdr; /* Pointer to first byte after the header */
drh35cd6432009-06-05 14:17:21 +00002305 u32 offset; /* Offset into the data */
drh6658cd92010-02-05 14:12:53 +00002306 u32 szField; /* Number of bytes in the content of a field */
drh501932c2013-11-21 21:59:53 +00002307 u32 avail; /* Number of bytes of available data */
drh5a077b72011-08-29 02:16:18 +00002308 u32 t; /* A type code from the record header */
drh0c8f7602014-09-19 16:56:45 +00002309 u16 fx; /* pDest->flags value */
drh3e9ca092009-09-08 01:14:48 +00002310 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002311
drh399af1d2013-11-20 17:25:55 +00002312 p2 = pOp->p2;
dan3bc9f742013-08-15 16:18:39 +00002313 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00002314 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00002315 memAboutToChange(p, pDest);
drhc8606e42013-11-20 19:28:03 +00002316 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2317 pC = p->apCsr[pOp->p1];
drha5759672012-10-30 14:39:12 +00002318 assert( pC!=0 );
drhc8606e42013-11-20 19:28:03 +00002319 assert( p2<pC->nField );
drhb53a5a92014-10-12 22:37:22 +00002320 aOffset = pC->aOffset;
danielk19770817d0d2007-02-14 09:19:36 +00002321#ifndef SQLITE_OMIT_VIRTUALTABLE
drh380d6852013-11-20 20:58:00 +00002322 assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */
danielk19770817d0d2007-02-14 09:19:36 +00002323#endif
shane36840fd2009-06-26 16:32:13 +00002324 pCrsr = pC->pCursor;
drh380d6852013-11-20 20:58:00 +00002325 assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */
2326 assert( pCrsr!=0 || pC->nullRow ); /* pC->nullRow on PseudoTables */
drh399af1d2013-11-20 17:25:55 +00002327
2328 /* If the cursor cache is stale, bring it up-to-date */
2329 rc = sqlite3VdbeCursorMoveto(pC);
2330 if( rc ) goto abort_due_to_error;
drh6cf4a7d2014-10-13 13:00:58 +00002331 if( pC->cacheStatus!=p->cacheCtr ){
drhc8606e42013-11-20 19:28:03 +00002332 if( pC->nullRow ){
2333 if( pCrsr==0 ){
2334 assert( pC->pseudoTableReg>0 );
2335 pReg = &aMem[pC->pseudoTableReg];
drhc8606e42013-11-20 19:28:03 +00002336 assert( pReg->flags & MEM_Blob );
2337 assert( memIsValid(pReg) );
2338 pC->payloadSize = pC->szRow = avail = pReg->n;
2339 pC->aRow = (u8*)pReg->z;
2340 }else{
drh6b5631e2014-11-05 15:57:39 +00002341 sqlite3VdbeMemSetNull(pDest);
drh399af1d2013-11-20 17:25:55 +00002342 goto op_column_out;
2343 }
danielk197784ac9d02004-05-18 09:58:06 +00002344 }else{
drhc8606e42013-11-20 19:28:03 +00002345 assert( pCrsr );
drh14da87f2013-11-20 21:51:33 +00002346 if( pC->isTable==0 ){
drh399af1d2013-11-20 17:25:55 +00002347 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2348 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2349 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
2350 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2351 ** payload size, so it is impossible for payloadSize64 to be
2352 ** larger than 32 bits. */
2353 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
2354 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
2355 pC->payloadSize = (u32)payloadSize64;
drhd3194f52004-05-27 19:59:32 +00002356 }else{
drh399af1d2013-11-20 17:25:55 +00002357 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2358 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
2359 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
2360 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
drh9188b382004-05-14 21:12:22 +00002361 }
drh399af1d2013-11-20 17:25:55 +00002362 assert( avail<=65536 ); /* Maximum page size is 64KiB */
2363 if( pC->payloadSize <= (u32)avail ){
2364 pC->szRow = pC->payloadSize;
drhe61cffc2004-06-12 18:12:15 +00002365 }else{
drh399af1d2013-11-20 17:25:55 +00002366 pC->szRow = avail;
2367 }
2368 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2369 goto too_big;
drhe61cffc2004-06-12 18:12:15 +00002370 }
drhd3194f52004-05-27 19:59:32 +00002371 }
drh399af1d2013-11-20 17:25:55 +00002372 pC->cacheStatus = p->cacheCtr;
2373 pC->iHdrOffset = getVarint32(pC->aRow, offset);
2374 pC->nHdrParsed = 0;
2375 aOffset[0] = offset;
drh35cd6432009-06-05 14:17:21 +00002376
2377 /* Make sure a corrupt database has not given us an oversize header.
2378 ** Do this now to avoid an oversize memory allocation.
2379 **
2380 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2381 ** types use so much data space that there can only be 4096 and 32 of
2382 ** them, respectively. So the maximum header length results from a
2383 ** 3-byte type for each of the maximum of 32768 columns plus three
2384 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2385 */
drh399af1d2013-11-20 17:25:55 +00002386 if( offset > 98307 || offset > pC->payloadSize ){
drh35cd6432009-06-05 14:17:21 +00002387 rc = SQLITE_CORRUPT_BKPT;
drhc8606e42013-11-20 19:28:03 +00002388 goto op_column_error;
drh35cd6432009-06-05 14:17:21 +00002389 }
drhc81aa2e2014-10-11 23:31:52 +00002390
2391 if( avail<offset ){
2392 /* pC->aRow does not have to hold the entire row, but it does at least
2393 ** need to cover the header of the record. If pC->aRow does not contain
2394 ** the complete header, then set it to zero, forcing the header to be
2395 ** dynamically allocated. */
2396 pC->aRow = 0;
2397 pC->szRow = 0;
2398 }
2399
2400 /* The following goto is an optimization. It can be omitted and
2401 ** everything will still work. But OP_Column is measurably faster
2402 ** by skipping the subsequent conditional, which is always true.
2403 */
2404 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
2405 goto op_column_read_header;
drh399af1d2013-11-20 17:25:55 +00002406 }
drh35cd6432009-06-05 14:17:21 +00002407
drh399af1d2013-11-20 17:25:55 +00002408 /* Make sure at least the first p2+1 entries of the header have been
drh0c8f7602014-09-19 16:56:45 +00002409 ** parsed and valid information is in aOffset[] and pC->aType[].
drh399af1d2013-11-20 17:25:55 +00002410 */
drhc8606e42013-11-20 19:28:03 +00002411 if( pC->nHdrParsed<=p2 ){
drh380d6852013-11-20 20:58:00 +00002412 /* If there is more header available for parsing in the record, try
2413 ** to extract additional fields up through the p2+1-th field
drhd3194f52004-05-27 19:59:32 +00002414 */
drhc81aa2e2014-10-11 23:31:52 +00002415 op_column_read_header:
drhc8606e42013-11-20 19:28:03 +00002416 if( pC->iHdrOffset<aOffset[0] ){
2417 /* Make sure zData points to enough of the record to cover the header. */
2418 if( pC->aRow==0 ){
2419 memset(&sMem, 0, sizeof(sMem));
drh14da87f2013-11-20 21:51:33 +00002420 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0],
2421 !pC->isTable, &sMem);
drhc8606e42013-11-20 19:28:03 +00002422 if( rc!=SQLITE_OK ){
2423 goto op_column_error;
2424 }
2425 zData = (u8*)sMem.z;
2426 }else{
2427 zData = pC->aRow;
2428 }
2429
drh0c8f7602014-09-19 16:56:45 +00002430 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
drhc8606e42013-11-20 19:28:03 +00002431 i = pC->nHdrParsed;
2432 offset = aOffset[i];
2433 zHdr = zData + pC->iHdrOffset;
2434 zEndHdr = zData + aOffset[0];
2435 assert( i<=p2 && zHdr<zEndHdr );
2436 do{
2437 if( zHdr[0]<0x80 ){
2438 t = zHdr[0];
2439 zHdr++;
2440 }else{
2441 zHdr += sqlite3GetVarint32(zHdr, &t);
2442 }
drh0c8f7602014-09-19 16:56:45 +00002443 pC->aType[i] = t;
drhc8606e42013-11-20 19:28:03 +00002444 szField = sqlite3VdbeSerialTypeLen(t);
2445 offset += szField;
2446 if( offset<szField ){ /* True if offset overflows */
2447 zHdr = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
2448 break;
2449 }
2450 i++;
2451 aOffset[i] = offset;
2452 }while( i<=p2 && zHdr<zEndHdr );
2453 pC->nHdrParsed = i;
2454 pC->iHdrOffset = (u32)(zHdr - zData);
2455 if( pC->aRow==0 ){
2456 sqlite3VdbeMemRelease(&sMem);
2457 sMem.flags = MEM_Null;
2458 }
2459
drh8dd83622014-10-13 23:39:02 +00002460 /* The record is corrupt if any of the following are true:
2461 ** (1) the bytes of the header extend past the declared header size
2462 ** (zHdr>zEndHdr)
2463 ** (2) the entire header was used but not all data was used
2464 ** (zHdr==zEndHdr && offset!=pC->payloadSize)
2465 ** (3) the end of the data extends beyond the end of the record.
2466 ** (offset > pC->payloadSize)
drhc8606e42013-11-20 19:28:03 +00002467 */
drh8dd83622014-10-13 23:39:02 +00002468 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset!=pC->payloadSize))
drhc8606e42013-11-20 19:28:03 +00002469 || (offset > pC->payloadSize)
drhc8606e42013-11-20 19:28:03 +00002470 ){
2471 rc = SQLITE_CORRUPT_BKPT;
2472 goto op_column_error;
2473 }
2474 }
2475
drhf2db3382015-04-30 20:33:25 +00002476 /* If after trying to extract new entries from the header, nHdrParsed is
drh380d6852013-11-20 20:58:00 +00002477 ** still not up to p2, that means that the record has fewer than p2
2478 ** columns. So the result will be either the default value or a NULL.
2479 */
drhc8606e42013-11-20 19:28:03 +00002480 if( pC->nHdrParsed<=p2 ){
2481 if( pOp->p4type==P4_MEM ){
2482 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2483 }else{
drh22e8d832014-10-29 00:58:38 +00002484 sqlite3VdbeMemSetNull(pDest);
drhc8606e42013-11-20 19:28:03 +00002485 }
danielk19773c9cc8d2005-01-17 03:40:08 +00002486 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002487 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002488 }
danielk1977192ac1d2004-05-10 07:17:30 +00002489
drh380d6852013-11-20 20:58:00 +00002490 /* Extract the content for the p2+1-th column. Control can only
drh0c8f7602014-09-19 16:56:45 +00002491 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
drh380d6852013-11-20 20:58:00 +00002492 ** all valid.
drh9188b382004-05-14 21:12:22 +00002493 */
drhc8606e42013-11-20 19:28:03 +00002494 assert( p2<pC->nHdrParsed );
2495 assert( rc==SQLITE_OK );
drh75fd0542014-03-01 16:24:44 +00002496 assert( sqlite3VdbeCheckMemInvariants(pDest) );
drh0725cab2014-09-17 14:52:46 +00002497 if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
drh0c8f7602014-09-19 16:56:45 +00002498 t = pC->aType[p2];
drhc8606e42013-11-20 19:28:03 +00002499 if( pC->szRow>=aOffset[p2+1] ){
drh380d6852013-11-20 20:58:00 +00002500 /* This is the common case where the desired content fits on the original
2501 ** page - where the content is not on an overflow page */
drh0c8f7602014-09-19 16:56:45 +00002502 sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest);
danielk197736963fd2005-02-19 08:18:05 +00002503 }else{
drh58c96082013-12-23 11:33:32 +00002504 /* This branch happens only when content is on overflow pages */
drh380d6852013-11-20 20:58:00 +00002505 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2506 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2507 || (len = sqlite3VdbeSerialTypeLen(t))==0
drhc8606e42013-11-20 19:28:03 +00002508 ){
drh2a2a6962014-09-16 18:22:44 +00002509 /* Content is irrelevant for
2510 ** 1. the typeof() function,
2511 ** 2. the length(X) function if X is a blob, and
2512 ** 3. if the content length is zero.
2513 ** So we might as well use bogus content rather than reading
2514 ** content from disk. NULL will work for the value for strings
2515 ** and blobs and whatever is in the payloadSize64 variable
2516 ** will work for everything else. */
2517 sqlite3VdbeSerialGet(t<=13 ? (u8*)&payloadSize64 : 0, t, pDest);
danielk1977aee18ef2005-03-09 12:26:50 +00002518 }else{
drh14da87f2013-11-20 21:51:33 +00002519 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
drh2a2a6962014-09-16 18:22:44 +00002520 pDest);
drhc8606e42013-11-20 19:28:03 +00002521 if( rc!=SQLITE_OK ){
2522 goto op_column_error;
2523 }
drh2a2a6962014-09-16 18:22:44 +00002524 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2525 pDest->flags &= ~MEM_Ephem;
danielk1977aee18ef2005-03-09 12:26:50 +00002526 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002527 }
drhc8606e42013-11-20 19:28:03 +00002528 pDest->enc = encoding;
drhd3194f52004-05-27 19:59:32 +00002529
danielk19773c9cc8d2005-01-17 03:40:08 +00002530op_column_out:
drh7b5ebca2014-09-19 15:28:33 +00002531 /* If the column value is an ephemeral string, go ahead and persist
2532 ** that string in case the cursor moves before the column value is
2533 ** used. The following code does the equivalent of Deephemeralize()
2534 ** but does it faster. */
2535 if( (pDest->flags & MEM_Ephem)!=0 && pDest->z ){
drh0c8f7602014-09-19 16:56:45 +00002536 fx = pDest->flags & (MEM_Str|MEM_Blob);
2537 assert( fx!=0 );
drh7b5ebca2014-09-19 15:28:33 +00002538 zData = (const u8*)pDest->z;
2539 len = pDest->n;
2540 if( sqlite3VdbeMemClearAndResize(pDest, len+2) ) goto no_mem;
2541 memcpy(pDest->z, zData, len);
2542 pDest->z[len] = 0;
2543 pDest->z[len+1] = 0;
drh0c8f7602014-09-19 16:56:45 +00002544 pDest->flags = fx|MEM_Term;
drh7b5ebca2014-09-19 15:28:33 +00002545 }
drhc8606e42013-11-20 19:28:03 +00002546op_column_error:
drhb7654112008-01-12 12:48:07 +00002547 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002548 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002549 break;
2550}
2551
danielk1977751de562008-04-18 09:01:15 +00002552/* Opcode: Affinity P1 P2 * P4 *
drhf63552b2013-10-30 00:25:03 +00002553** Synopsis: affinity(r[P1@P2])
danielk1977751de562008-04-18 09:01:15 +00002554**
2555** Apply affinities to a range of P2 registers starting with P1.
2556**
2557** P4 is a string that is P2 characters long. The nth character of the
2558** string indicates the column affinity that should be used for the nth
2559** memory cell in the range.
2560*/
2561case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002562 const char *zAffinity; /* The affinity to be applied */
2563 char cAff; /* A single character of affinity */
danielk1977751de562008-04-18 09:01:15 +00002564
drh856c1032009-06-02 15:21:42 +00002565 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002566 assert( zAffinity!=0 );
2567 assert( zAffinity[pOp->p2]==0 );
2568 pIn1 = &aMem[pOp->p1];
2569 while( (cAff = *(zAffinity++))!=0 ){
dan3bc9f742013-08-15 16:18:39 +00002570 assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00002571 assert( memIsValid(pIn1) );
drh039fc322009-11-17 18:31:47 +00002572 applyAffinity(pIn1, cAff, encoding);
2573 pIn1++;
danielk1977751de562008-04-18 09:01:15 +00002574 }
2575 break;
2576}
2577
drh1db639c2008-01-17 02:36:28 +00002578/* Opcode: MakeRecord P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00002579** Synopsis: r[P3]=mkrec(r[P1@P2])
drh7a224de2004-06-02 01:22:02 +00002580**
drh710c4842010-08-30 01:17:20 +00002581** Convert P2 registers beginning with P1 into the [record format]
2582** use as a data record in a database table or as a key
2583** in an index. The OP_Column opcode can decode the record later.
drh7a224de2004-06-02 01:22:02 +00002584**
danielk1977751de562008-04-18 09:01:15 +00002585** P4 may be a string that is P2 characters long. The nth character of the
drh7a224de2004-06-02 01:22:02 +00002586** string indicates the column affinity that should be used for the nth
drh9cbf3422008-01-17 16:22:13 +00002587** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002588**
drh8a512562005-11-14 22:29:05 +00002589** The mapping from character to affinity is given by the SQLITE_AFF_
2590** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002591**
drh05883a32015-06-02 15:32:08 +00002592** If P4 is NULL then all index fields have the affinity BLOB.
drh7f057c92005-06-24 03:53:06 +00002593*/
drh1db639c2008-01-17 02:36:28 +00002594case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002595 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2596 Mem *pRec; /* The new record */
2597 u64 nData; /* Number of bytes of data space */
2598 int nHdr; /* Number of bytes of header space */
2599 i64 nByte; /* Data space required for this record */
drh4a335072015-04-11 02:08:48 +00002600 i64 nZero; /* Number of zero bytes at the end of the record */
drh856c1032009-06-02 15:21:42 +00002601 int nVarint; /* Number of bytes in a varint */
2602 u32 serial_type; /* Type field */
2603 Mem *pData0; /* First field to be combined into the record */
2604 Mem *pLast; /* Last field of the record */
2605 int nField; /* Number of fields in the record */
2606 char *zAffinity; /* The affinity string for the record */
2607 int file_format; /* File format to use for encoding */
drh59bf00c2013-12-08 23:33:28 +00002608 int i; /* Space used in zNewRecord[] header */
2609 int j; /* Space used in zNewRecord[] content */
drh856c1032009-06-02 15:21:42 +00002610 int len; /* Length of a field */
2611
drhf3218fe2004-05-28 08:21:02 +00002612 /* Assuming the record contains N fields, the record format looks
2613 ** like this:
2614 **
drh7a224de2004-06-02 01:22:02 +00002615 ** ------------------------------------------------------------------------
2616 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2617 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002618 **
drh9cbf3422008-01-17 16:22:13 +00002619 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
peter.d.reid60ec9142014-09-06 16:39:46 +00002620 ** and so forth.
drhf3218fe2004-05-28 08:21:02 +00002621 **
2622 ** Each type field is a varint representing the serial type of the
2623 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002624 ** hdr-size field is also a varint which is the offset from the beginning
2625 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002626 */
drh856c1032009-06-02 15:21:42 +00002627 nData = 0; /* Number of bytes of data space */
2628 nHdr = 0; /* Number of bytes of header space */
drh856c1032009-06-02 15:21:42 +00002629 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002630 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002631 zAffinity = pOp->p4.z;
dan3bc9f742013-08-15 16:18:39 +00002632 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 );
drha6c2ed92009-11-14 23:22:23 +00002633 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002634 nField = pOp->p2;
2635 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002636 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002637
drh2b4ded92010-09-27 21:09:31 +00002638 /* Identify the output register */
2639 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2640 pOut = &aMem[pOp->p3];
2641 memAboutToChange(p, pOut);
2642
drh3e6c0602013-12-10 20:53:01 +00002643 /* Apply the requested affinity to all inputs
2644 */
2645 assert( pData0<=pLast );
2646 if( zAffinity ){
2647 pRec = pData0;
2648 do{
drh57bf4a82014-02-17 14:59:22 +00002649 applyAffinity(pRec++, *(zAffinity++), encoding);
2650 assert( zAffinity[0]==0 || pRec<=pLast );
2651 }while( zAffinity[0] );
drh3e6c0602013-12-10 20:53:01 +00002652 }
2653
drhf3218fe2004-05-28 08:21:02 +00002654 /* Loop through the elements that will make up the record to figure
2655 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002656 */
drh038b7bc2013-12-09 23:17:22 +00002657 pRec = pLast;
drh59bf00c2013-12-08 23:33:28 +00002658 do{
drh2b4ded92010-09-27 21:09:31 +00002659 assert( memIsValid(pRec) );
drhfacf47a2014-10-13 20:12:47 +00002660 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format);
drhae7e1512007-05-02 16:51:59 +00002661 len = sqlite3VdbeSerialTypeLen(serial_type);
drh038b7bc2013-12-09 23:17:22 +00002662 if( pRec->flags & MEM_Zero ){
2663 if( nData ){
2664 sqlite3VdbeMemExpandBlob(pRec);
2665 }else{
2666 nZero += pRec->u.nZero;
2667 len -= pRec->u.nZero;
2668 }
2669 }
drhae7e1512007-05-02 16:51:59 +00002670 nData += len;
drh59bf00c2013-12-08 23:33:28 +00002671 testcase( serial_type==127 );
2672 testcase( serial_type==128 );
drh2a242872013-12-08 22:59:29 +00002673 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
drh038b7bc2013-12-09 23:17:22 +00002674 }while( (--pRec)>=pData0 );
danielk19773d1bfea2004-05-14 11:00:53 +00002675
drh654858d2014-11-20 02:18:14 +00002676 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2677 ** which determines the total number of bytes in the header. The varint
2678 ** value is the size of the header in bytes including the size varint
2679 ** itself. */
drh59bf00c2013-12-08 23:33:28 +00002680 testcase( nHdr==126 );
2681 testcase( nHdr==127 );
drh2a242872013-12-08 22:59:29 +00002682 if( nHdr<=126 ){
2683 /* The common case */
2684 nHdr += 1;
2685 }else{
2686 /* Rare case of a really large header */
2687 nVarint = sqlite3VarintLen(nHdr);
2688 nHdr += nVarint;
2689 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
drhcb9882a2005-03-17 03:15:40 +00002690 }
drh038b7bc2013-12-09 23:17:22 +00002691 nByte = nHdr+nData;
drh4a335072015-04-11 02:08:48 +00002692 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002693 goto too_big;
2694 }
drhf3218fe2004-05-28 08:21:02 +00002695
danielk1977a7a8e142008-02-13 18:25:27 +00002696 /* Make sure the output register has a buffer large enough to store
2697 ** the new record. The output register (pOp->p3) is not allowed to
2698 ** be one of the input registers (because the following call to
drh322f2852014-09-19 00:43:39 +00002699 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
danielk1977a7a8e142008-02-13 18:25:27 +00002700 */
drh322f2852014-09-19 00:43:39 +00002701 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002702 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002703 }
danielk1977a7a8e142008-02-13 18:25:27 +00002704 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002705
2706 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002707 i = putVarint32(zNewRecord, nHdr);
drh59bf00c2013-12-08 23:33:28 +00002708 j = nHdr;
2709 assert( pData0<=pLast );
2710 pRec = pData0;
2711 do{
drhfacf47a2014-10-13 20:12:47 +00002712 serial_type = pRec->uTemp;
drh654858d2014-11-20 02:18:14 +00002713 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2714 ** additional varints, one per column. */
drh038b7bc2013-12-09 23:17:22 +00002715 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
drh654858d2014-11-20 02:18:14 +00002716 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2717 ** immediately follow the header. */
drha9ab4812013-12-11 11:00:44 +00002718 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
drh59bf00c2013-12-08 23:33:28 +00002719 }while( (++pRec)<=pLast );
2720 assert( i==nHdr );
2721 assert( j==nByte );
drhf3218fe2004-05-28 08:21:02 +00002722
dan3bc9f742013-08-15 16:18:39 +00002723 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drh9c1905f2008-12-10 22:32:56 +00002724 pOut->n = (int)nByte;
drhc91b2fd2014-03-01 18:13:23 +00002725 pOut->flags = MEM_Blob;
drhfdf972a2007-05-02 13:30:27 +00002726 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002727 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002728 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002729 }
drh477df4b2008-01-05 18:48:24 +00002730 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
drh1013c932008-01-06 00:25:21 +00002731 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002732 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002733 break;
2734}
2735
danielk1977a5533162009-02-24 10:01:51 +00002736/* Opcode: Count P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002737** Synopsis: r[P2]=count()
danielk1977a5533162009-02-24 10:01:51 +00002738**
2739** Store the number of entries (an integer value) in the table or index
2740** opened by cursor P1 in register P2
2741*/
2742#ifndef SQLITE_OMIT_BTREECOUNT
drh27a348c2015-04-13 19:14:06 +00002743case OP_Count: { /* out2 */
danielk1977a5533162009-02-24 10:01:51 +00002744 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002745 BtCursor *pCrsr;
2746
2747 pCrsr = p->apCsr[pOp->p1]->pCursor;
drh3da046d2013-11-11 03:24:11 +00002748 assert( pCrsr );
drh2dc06482013-12-11 00:59:10 +00002749 nEntry = 0; /* Not needed. Only used to silence a warning. */
drh3da046d2013-11-11 03:24:11 +00002750 rc = sqlite3BtreeCount(pCrsr, &nEntry);
drh27a348c2015-04-13 19:14:06 +00002751 pOut = out2Prerelease(p, pOp);
danielk1977a5533162009-02-24 10:01:51 +00002752 pOut->u.i = nEntry;
2753 break;
2754}
2755#endif
2756
danielk1977fd7f0452008-12-17 17:30:26 +00002757/* Opcode: Savepoint P1 * * P4 *
2758**
2759** Open, release or rollback the savepoint named by parameter P4, depending
2760** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2761** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2762*/
2763case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002764 int p1; /* Value of P1 operand */
2765 char *zName; /* Name of savepoint */
2766 int nName;
2767 Savepoint *pNew;
2768 Savepoint *pSavepoint;
2769 Savepoint *pTmp;
2770 int iSavepoint;
2771 int ii;
2772
2773 p1 = pOp->p1;
2774 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002775
2776 /* Assert that the p1 parameter is valid. Also that if there is no open
2777 ** transaction, then there cannot be any savepoints.
2778 */
2779 assert( db->pSavepoint==0 || db->autoCommit==0 );
2780 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2781 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2782 assert( checkSavepointCount(db) );
danc0537fe2013-06-28 19:41:43 +00002783 assert( p->bIsReader );
danielk1977fd7f0452008-12-17 17:30:26 +00002784
2785 if( p1==SAVEPOINT_BEGIN ){
drh4f7d3a52013-06-27 23:54:02 +00002786 if( db->nVdbeWrite>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002787 /* A new savepoint cannot be created if there are active write
2788 ** statements (i.e. open read/write incremental blob handles).
2789 */
drh22c17b82015-05-15 04:13:15 +00002790 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
danielk1977fd7f0452008-12-17 17:30:26 +00002791 rc = SQLITE_BUSY;
2792 }else{
drh856c1032009-06-02 15:21:42 +00002793 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002794
drhbe07ec52011-06-03 12:15:26 +00002795#ifndef SQLITE_OMIT_VIRTUALTABLE
dand9495cd2011-04-27 12:08:04 +00002796 /* This call is Ok even if this savepoint is actually a transaction
2797 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2798 ** If this is a transaction savepoint being opened, it is guaranteed
2799 ** that the db->aVTrans[] array is empty. */
2800 assert( db->autoCommit==0 || db->nVTrans==0 );
drha24bc9c2011-05-24 00:35:56 +00002801 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2802 db->nStatement+db->nSavepoint);
dand9495cd2011-04-27 12:08:04 +00002803 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh305ebab2011-05-26 14:19:14 +00002804#endif
dand9495cd2011-04-27 12:08:04 +00002805
danielk1977fd7f0452008-12-17 17:30:26 +00002806 /* Create a new savepoint structure. */
2807 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2808 if( pNew ){
2809 pNew->zName = (char *)&pNew[1];
2810 memcpy(pNew->zName, zName, nName+1);
2811
2812 /* If there is no open transaction, then mark this as a special
2813 ** "transaction savepoint". */
2814 if( db->autoCommit ){
2815 db->autoCommit = 0;
2816 db->isTransactionSavepoint = 1;
2817 }else{
2818 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002819 }
danielk1977fd7f0452008-12-17 17:30:26 +00002820
2821 /* Link the new savepoint into the database handle's list. */
2822 pNew->pNext = db->pSavepoint;
2823 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002824 pNew->nDeferredCons = db->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00002825 pNew->nDeferredImmCons = db->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002826 }
2827 }
2828 }else{
drh856c1032009-06-02 15:21:42 +00002829 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00002830
2831 /* Find the named savepoint. If there is no such savepoint, then an
2832 ** an error is returned to the user. */
2833 for(
drh856c1032009-06-02 15:21:42 +00002834 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002835 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00002836 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00002837 ){
2838 iSavepoint++;
2839 }
2840 if( !pSavepoint ){
drh22c17b82015-05-15 04:13:15 +00002841 sqlite3VdbeError(p, "no such savepoint: %s", zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002842 rc = SQLITE_ERROR;
drh4f7d3a52013-06-27 23:54:02 +00002843 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
danielk1977fd7f0452008-12-17 17:30:26 +00002844 /* It is not possible to release (commit) a savepoint if there are
drh0f198a72012-02-13 16:43:16 +00002845 ** active write statements.
danielk1977fd7f0452008-12-17 17:30:26 +00002846 */
drh22c17b82015-05-15 04:13:15 +00002847 sqlite3VdbeError(p, "cannot release savepoint - "
2848 "SQL statements in progress");
danielk1977fd7f0452008-12-17 17:30:26 +00002849 rc = SQLITE_BUSY;
2850 }else{
2851
2852 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00002853 ** and this is a RELEASE command, then the current transaction
2854 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00002855 */
2856 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2857 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00002858 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002859 goto vdbe_return;
2860 }
danielk1977fd7f0452008-12-17 17:30:26 +00002861 db->autoCommit = 1;
2862 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
drhf56fa462015-04-13 21:39:54 +00002863 p->pc = (int)(pOp - aOp);
danielk1977fd7f0452008-12-17 17:30:26 +00002864 db->autoCommit = 0;
2865 p->rc = rc = SQLITE_BUSY;
2866 goto vdbe_return;
2867 }
danielk197734cf35d2008-12-18 18:31:38 +00002868 db->isTransactionSavepoint = 0;
2869 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00002870 }else{
drh47b7fc72014-11-11 01:33:57 +00002871 int isSchemaChange;
danielk1977fd7f0452008-12-17 17:30:26 +00002872 iSavepoint = db->nSavepoint - iSavepoint - 1;
drh31f10052012-03-31 17:17:26 +00002873 if( p1==SAVEPOINT_ROLLBACK ){
drh47b7fc72014-11-11 01:33:57 +00002874 isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
drh31f10052012-03-31 17:17:26 +00002875 for(ii=0; ii<db->nDb; ii++){
drh77b1dee2014-11-17 17:13:06 +00002876 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
2877 SQLITE_ABORT_ROLLBACK,
drh47b7fc72014-11-11 01:33:57 +00002878 isSchemaChange==0);
dan80231042014-11-12 14:56:02 +00002879 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh31f10052012-03-31 17:17:26 +00002880 }
drh47b7fc72014-11-11 01:33:57 +00002881 }else{
2882 isSchemaChange = 0;
drh0f198a72012-02-13 16:43:16 +00002883 }
2884 for(ii=0; ii<db->nDb; ii++){
danielk1977fd7f0452008-12-17 17:30:26 +00002885 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2886 if( rc!=SQLITE_OK ){
2887 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00002888 }
danielk1977fd7f0452008-12-17 17:30:26 +00002889 }
drh47b7fc72014-11-11 01:33:57 +00002890 if( isSchemaChange ){
danielk1977fd7f0452008-12-17 17:30:26 +00002891 sqlite3ExpirePreparedStatements(db);
drh81028a42012-05-15 18:28:27 +00002892 sqlite3ResetAllSchemasOfConnection(db);
danc311fee2010-08-31 16:25:19 +00002893 db->flags = (db->flags | SQLITE_InternChanges);
danielk1977fd7f0452008-12-17 17:30:26 +00002894 }
2895 }
2896
2897 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2898 ** savepoints nested inside of the savepoint being operated on. */
2899 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00002900 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002901 db->pSavepoint = pTmp->pNext;
2902 sqlite3DbFree(db, pTmp);
2903 db->nSavepoint--;
2904 }
2905
dan1da40a32009-09-19 17:00:31 +00002906 /* If it is a RELEASE, then destroy the savepoint being operated on
2907 ** too. If it is a ROLLBACK TO, then set the number of deferred
2908 ** constraint violations present in the database to the value stored
2909 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00002910 if( p1==SAVEPOINT_RELEASE ){
2911 assert( pSavepoint==db->pSavepoint );
2912 db->pSavepoint = pSavepoint->pNext;
2913 sqlite3DbFree(db, pSavepoint);
2914 if( !isTransaction ){
2915 db->nSavepoint--;
2916 }
dan1da40a32009-09-19 17:00:31 +00002917 }else{
2918 db->nDeferredCons = pSavepoint->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00002919 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002920 }
dand9495cd2011-04-27 12:08:04 +00002921
danea8562e2015-04-18 16:25:54 +00002922 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
dand9495cd2011-04-27 12:08:04 +00002923 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2924 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2925 }
danielk1977fd7f0452008-12-17 17:30:26 +00002926 }
2927 }
2928
2929 break;
2930}
2931
drh98757152008-01-09 23:04:12 +00002932/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00002933**
2934** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00002935** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00002936** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2937** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00002938**
2939** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00002940*/
drh9cbf3422008-01-17 16:22:13 +00002941case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00002942 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00002943 int iRollback;
drh856c1032009-06-02 15:21:42 +00002944 int turnOnAC;
danielk19771d850a72004-05-31 08:26:49 +00002945
drh856c1032009-06-02 15:21:42 +00002946 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00002947 iRollback = pOp->p2;
drh856c1032009-06-02 15:21:42 +00002948 turnOnAC = desiredAutoCommit && !db->autoCommit;
drhad4a4b82008-11-05 16:37:34 +00002949 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00002950 assert( desiredAutoCommit==1 || iRollback==0 );
drh4f7d3a52013-06-27 23:54:02 +00002951 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
danc0537fe2013-06-28 19:41:43 +00002952 assert( p->bIsReader );
danielk197746c43ed2004-06-30 06:30:25 +00002953
drh4f7d3a52013-06-27 23:54:02 +00002954 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){
drhad4a4b82008-11-05 16:37:34 +00002955 /* If this instruction implements a COMMIT and other VMs are writing
2956 ** return an error indicating that the other VMs must complete first.
2957 */
drh22c17b82015-05-15 04:13:15 +00002958 sqlite3VdbeError(p, "cannot commit transaction - "
2959 "SQL statements in progress");
drhad4a4b82008-11-05 16:37:34 +00002960 rc = SQLITE_BUSY;
2961 }else if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00002962 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00002963 assert( desiredAutoCommit==1 );
drh21021a52012-02-13 17:01:51 +00002964 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977f3f06bb2005-12-16 15:24:28 +00002965 db->autoCommit = 1;
dan32b09f22009-09-23 17:29:59 +00002966 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002967 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002968 }else{
shane7d3846a2008-12-11 02:58:26 +00002969 db->autoCommit = (u8)desiredAutoCommit;
danielk1977f3f06bb2005-12-16 15:24:28 +00002970 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
drhf56fa462015-04-13 21:39:54 +00002971 p->pc = (int)(pOp - aOp);
drh9c1905f2008-12-10 22:32:56 +00002972 db->autoCommit = (u8)(1-desiredAutoCommit);
drh900b31e2007-08-28 02:27:51 +00002973 p->rc = rc = SQLITE_BUSY;
2974 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002975 }
danielk19771d850a72004-05-31 08:26:49 +00002976 }
danielk1977bd434552009-03-18 10:33:00 +00002977 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00002978 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00002979 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00002980 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00002981 }else{
drh900b31e2007-08-28 02:27:51 +00002982 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00002983 }
drh900b31e2007-08-28 02:27:51 +00002984 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00002985 }else{
drh22c17b82015-05-15 04:13:15 +00002986 sqlite3VdbeError(p,
drhad4a4b82008-11-05 16:37:34 +00002987 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00002988 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00002989 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00002990
2991 rc = SQLITE_ERROR;
drh663fc632002-02-02 18:49:19 +00002992 }
2993 break;
2994}
2995
drhb22f7c82014-02-06 23:56:27 +00002996/* Opcode: Transaction P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00002997**
drh05a86c52014-02-16 01:55:49 +00002998** Begin a transaction on database P1 if a transaction is not already
2999** active.
3000** If P2 is non-zero, then a write-transaction is started, or if a
3001** read-transaction is already active, it is upgraded to a write-transaction.
3002** If P2 is zero, then a read-transaction is started.
drh5e00f6c2001-09-13 13:46:56 +00003003**
drh001bbcb2003-03-19 03:14:00 +00003004** P1 is the index of the database file on which the transaction is
3005** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00003006** file used for temporary tables. Indices of 2 or more are used for
3007** attached databases.
drhcabb0812002-09-14 13:47:32 +00003008**
dane0af83a2009-09-08 19:15:01 +00003009** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3010** true (this flag is set if the Vdbe may modify more than one row and may
3011** throw an ABORT exception), a statement transaction may also be opened.
3012** More specifically, a statement transaction is opened iff the database
3013** connection is currently not in autocommit mode, or if there are other
drha4510172012-02-02 15:50:17 +00003014** active statements. A statement transaction allows the changes made by this
dane0af83a2009-09-08 19:15:01 +00003015** VDBE to be rolled back after an error without having to roll back the
3016** entire transaction. If no error is encountered, the statement transaction
3017** will automatically commit when the VDBE halts.
3018**
drhb22f7c82014-02-06 23:56:27 +00003019** If P5!=0 then this opcode also checks the schema cookie against P3
3020** and the schema generation counter against P4.
3021** The cookie changes its value whenever the database schema changes.
3022** This operation is used to detect when that the cookie has changed
drh05a86c52014-02-16 01:55:49 +00003023** and that the current process needs to reread the schema. If the schema
3024** cookie in P3 differs from the schema cookie in the database header or
3025** if the schema generation counter in P4 differs from the current
3026** generation counter, then an SQLITE_SCHEMA error is raised and execution
3027** halts. The sqlite3_step() wrapper function might then reprepare the
3028** statement and rerun it from the beginning.
drh5e00f6c2001-09-13 13:46:56 +00003029*/
drh9cbf3422008-01-17 16:22:13 +00003030case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00003031 Btree *pBt;
drhb22f7c82014-02-06 23:56:27 +00003032 int iMeta;
3033 int iGen;
danielk19771d850a72004-05-31 08:26:49 +00003034
drh1713afb2013-06-28 01:24:57 +00003035 assert( p->bIsReader );
drh9e92a472013-06-27 17:40:30 +00003036 assert( p->readOnly==0 || pOp->p2==0 );
drh653b82a2009-06-22 11:10:47 +00003037 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003038 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh13447bf2013-07-10 13:33:49 +00003039 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3040 rc = SQLITE_READONLY;
3041 goto abort_due_to_error;
3042 }
drh653b82a2009-06-22 11:10:47 +00003043 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00003044
danielk197724162fe2004-06-04 06:22:00 +00003045 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00003046 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
danielk197724162fe2004-06-04 06:22:00 +00003047 if( rc==SQLITE_BUSY ){
drhf56fa462015-04-13 21:39:54 +00003048 p->pc = (int)(pOp - aOp);
drh900b31e2007-08-28 02:27:51 +00003049 p->rc = rc = SQLITE_BUSY;
drh900b31e2007-08-28 02:27:51 +00003050 goto vdbe_return;
danielk197724162fe2004-06-04 06:22:00 +00003051 }
drh9e9f1bd2009-10-13 15:36:51 +00003052 if( rc!=SQLITE_OK ){
danielk197724162fe2004-06-04 06:22:00 +00003053 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00003054 }
dane0af83a2009-09-08 19:15:01 +00003055
3056 if( pOp->p2 && p->usesStmtJournal
danc0537fe2013-06-28 19:41:43 +00003057 && (db->autoCommit==0 || db->nVdbeRead>1)
dane0af83a2009-09-08 19:15:01 +00003058 ){
3059 assert( sqlite3BtreeIsInTrans(pBt) );
3060 if( p->iStatement==0 ){
3061 assert( db->nStatement>=0 && db->nSavepoint>=0 );
3062 db->nStatement++;
3063 p->iStatement = db->nSavepoint + db->nStatement;
3064 }
dana311b802011-04-26 19:21:34 +00003065
drh346506f2011-05-25 01:16:42 +00003066 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
dana311b802011-04-26 19:21:34 +00003067 if( rc==SQLITE_OK ){
3068 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3069 }
dan1da40a32009-09-19 17:00:31 +00003070
3071 /* Store the current value of the database handles deferred constraint
3072 ** counter. If the statement transaction needs to be rolled back,
3073 ** the value of this counter needs to be restored too. */
3074 p->nStmtDefCons = db->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00003075 p->nStmtDefImmCons = db->nDeferredImmCons;
dane0af83a2009-09-08 19:15:01 +00003076 }
drhb22f7c82014-02-06 23:56:27 +00003077
drh51a74d42015-02-28 01:04:27 +00003078 /* Gather the schema version number for checking:
3079 ** IMPLEMENTATION-OF: R-32195-19465 The schema version is used by SQLite
3080 ** each time a query is executed to ensure that the internal cache of the
3081 ** schema used when compiling the SQL query matches the schema of the
3082 ** database against which the compiled query is actually executed.
3083 */
drhb22f7c82014-02-06 23:56:27 +00003084 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3085 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3086 }else{
3087 iGen = iMeta = 0;
3088 }
3089 assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3090 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3091 sqlite3DbFree(db, p->zErrMsg);
3092 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3093 /* If the schema-cookie from the database file matches the cookie
3094 ** stored with the in-memory representation of the schema, do
3095 ** not reload the schema from the database file.
3096 **
3097 ** If virtual-tables are in use, this is not just an optimization.
3098 ** Often, v-tables store their data in other SQLite tables, which
3099 ** are queried from within xNext() and other v-table methods using
3100 ** prepared queries. If such a query is out-of-date, we do not want to
3101 ** discard the database schema, as the user code implementing the
3102 ** v-table would have to be ready for the sqlite3_vtab structure itself
3103 ** to be invalidated whenever sqlite3_step() is called from within
3104 ** a v-table method.
3105 */
3106 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3107 sqlite3ResetOneSchema(db, pOp->p1);
3108 }
3109 p->expired = 1;
3110 rc = SQLITE_SCHEMA;
drhb86ccfb2003-01-28 23:13:10 +00003111 }
drh5e00f6c2001-09-13 13:46:56 +00003112 break;
3113}
3114
drhb1fdb2a2008-01-05 04:06:03 +00003115/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003116**
drh9cbf3422008-01-17 16:22:13 +00003117** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00003118** P3==1 is the schema version. P3==2 is the database format.
3119** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00003120** the main database file and P1==1 is the database file used to store
3121** temporary tables.
drh4a324312001-12-21 14:30:42 +00003122**
drh50e5dad2001-09-15 00:57:28 +00003123** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00003124** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00003125** executing this instruction.
3126*/
drh27a348c2015-04-13 19:14:06 +00003127case OP_ReadCookie: { /* out2 */
drhf328bc82004-05-10 23:29:49 +00003128 int iMeta;
drh856c1032009-06-02 15:21:42 +00003129 int iDb;
3130 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00003131
drh1713afb2013-06-28 01:24:57 +00003132 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00003133 iDb = pOp->p1;
3134 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00003135 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00003136 assert( iDb>=0 && iDb<db->nDb );
3137 assert( db->aDb[iDb].pBt!=0 );
drha7ab6d82014-07-21 15:44:39 +00003138 assert( DbMaskTest(p->btreeMask, iDb) );
danielk19770d19f7a2009-06-03 11:25:07 +00003139
danielk1977602b4662009-07-02 07:47:33 +00003140 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh27a348c2015-04-13 19:14:06 +00003141 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00003142 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00003143 break;
3144}
3145
drh98757152008-01-09 23:04:12 +00003146/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003147**
drh98757152008-01-09 23:04:12 +00003148** Write the content of register P3 (interpreted as an integer)
danielk19770d19f7a2009-06-03 11:25:07 +00003149** into cookie number P2 of database P1. P2==1 is the schema version.
3150** P2==2 is the database format. P2==3 is the recommended pager cache
3151** size, and so forth. P1==0 is the main database file and P1==1 is the
3152** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00003153**
3154** A transaction must be started before executing this opcode.
3155*/
drh9cbf3422008-01-17 16:22:13 +00003156case OP_SetCookie: { /* in3 */
drh3f7d4e42004-07-24 14:35:58 +00003157 Db *pDb;
drh4a324312001-12-21 14:30:42 +00003158 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00003159 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003160 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00003161 assert( p->readOnly==0 );
drh3f7d4e42004-07-24 14:35:58 +00003162 pDb = &db->aDb[pOp->p1];
3163 assert( pDb->pBt!=0 );
drh21206082011-04-04 18:22:02 +00003164 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drh3c657212009-11-17 23:59:58 +00003165 pIn3 = &aMem[pOp->p3];
drh98757152008-01-09 23:04:12 +00003166 sqlite3VdbeMemIntegerify(pIn3);
drha3b321d2004-05-11 09:31:31 +00003167 /* See note about index shifting on OP_ReadCookie */
danielk19770d19f7a2009-06-03 11:25:07 +00003168 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
3169 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00003170 /* When the schema cookie changes, record the new cookie internally */
drh9c1905f2008-12-10 22:32:56 +00003171 pDb->pSchema->schema_cookie = (int)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00003172 db->flags |= SQLITE_InternChanges;
danielk19770d19f7a2009-06-03 11:25:07 +00003173 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00003174 /* Record changes in the file format */
drh9c1905f2008-12-10 22:32:56 +00003175 pDb->pSchema->file_format = (u8)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00003176 }
drhfd426c62006-01-30 15:34:22 +00003177 if( pOp->p1==1 ){
3178 /* Invalidate all prepared statements whenever the TEMP database
3179 ** schema is changed. Ticket #1644 */
3180 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00003181 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00003182 }
drh50e5dad2001-09-15 00:57:28 +00003183 break;
3184}
3185
drh98757152008-01-09 23:04:12 +00003186/* Opcode: OpenRead P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003187** Synopsis: root=P2 iDb=P3
drh5e00f6c2001-09-13 13:46:56 +00003188**
drhecdc7532001-09-23 02:35:53 +00003189** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00003190** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00003191** P3==0 means the main database, P3==1 means the database used for
3192** temporary tables, and P3>1 means used the corresponding attached
3193** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00003194** values need not be contiguous but all P1 values should be small integers.
3195** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00003196**
drh98757152008-01-09 23:04:12 +00003197** If P5!=0 then use the content of register P2 as the root page, not
3198** the value of P2 itself.
drh5edc3122001-09-13 21:53:09 +00003199**
drhb19a2bc2001-09-16 00:13:26 +00003200** There will be a read lock on the database whenever there is an
3201** open cursor. If the database was unlocked prior to this instruction
3202** then a read lock is acquired as part of this instruction. A read
3203** lock allows other processes to read the database but prohibits
3204** any other process from modifying the database. The read lock is
3205** released when all cursors are closed. If this instruction attempts
3206** to get a read lock but fails, the script terminates with an
3207** SQLITE_BUSY error code.
3208**
danielk1977d336e222009-02-20 10:58:41 +00003209** The P4 value may be either an integer (P4_INT32) or a pointer to
3210** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3211** structure, then said structure defines the content and collating
3212** sequence of the index being opened. Otherwise, if P4 is an integer
3213** value, it is set to the number of columns in the table.
drhf57b3392001-10-08 13:22:32 +00003214**
drh35263192014-07-22 20:02:19 +00003215** See also: OpenWrite, ReopenIdx
3216*/
3217/* Opcode: ReopenIdx P1 P2 P3 P4 P5
3218** Synopsis: root=P2 iDb=P3
3219**
3220** The ReopenIdx opcode works exactly like ReadOpen except that it first
3221** checks to see if the cursor on P1 is already open with a root page
3222** number of P2 and if it is this opcode becomes a no-op. In other words,
3223** if the cursor is already open, do not reopen it.
3224**
3225** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3226** a P4_KEYINFO object. Furthermore, the P3 value must be the same as
3227** every other ReopenIdx or OpenRead for the same cursor number.
3228**
3229** See the OpenRead opcode documentation for additional information.
drh5e00f6c2001-09-13 13:46:56 +00003230*/
drh98757152008-01-09 23:04:12 +00003231/* Opcode: OpenWrite P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003232** Synopsis: root=P2 iDb=P3
drhecdc7532001-09-23 02:35:53 +00003233**
3234** Open a read/write cursor named P1 on the table or index whose root
drh98757152008-01-09 23:04:12 +00003235** page is P2. Or if P5!=0 use the content of register P2 to find the
3236** root page.
drhecdc7532001-09-23 02:35:53 +00003237**
danielk1977d336e222009-02-20 10:58:41 +00003238** The P4 value may be either an integer (P4_INT32) or a pointer to
3239** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3240** structure, then said structure defines the content and collating
3241** sequence of the index being opened. Otherwise, if P4 is an integer
drh35cd6432009-06-05 14:17:21 +00003242** value, it is set to the number of columns in the table, or to the
3243** largest index of any column of the table that is actually used.
jplyon5a564222003-06-02 06:15:58 +00003244**
drh001bbcb2003-03-19 03:14:00 +00003245** This instruction works just like OpenRead except that it opens the cursor
drhecdc7532001-09-23 02:35:53 +00003246** in read/write mode. For a given table, there can be one or more read-only
3247** cursors or a single read/write cursor but not both.
drhf57b3392001-10-08 13:22:32 +00003248**
drh001bbcb2003-03-19 03:14:00 +00003249** See also OpenRead.
drhecdc7532001-09-23 02:35:53 +00003250*/
drh35263192014-07-22 20:02:19 +00003251case OP_ReopenIdx: {
drh1fa509a2015-03-20 16:34:49 +00003252 int nField;
3253 KeyInfo *pKeyInfo;
3254 int p2;
3255 int iDb;
3256 int wrFlag;
3257 Btree *pX;
drh35263192014-07-22 20:02:19 +00003258 VdbeCursor *pCur;
drh1fa509a2015-03-20 16:34:49 +00003259 Db *pDb;
drh35263192014-07-22 20:02:19 +00003260
drhe0997b32015-03-20 14:57:50 +00003261 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
drh35263192014-07-22 20:02:19 +00003262 assert( pOp->p4type==P4_KEYINFO );
3263 pCur = p->apCsr[pOp->p1];
drhe8f2c9d2014-08-06 17:49:13 +00003264 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
drh35263192014-07-22 20:02:19 +00003265 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
drhe0997b32015-03-20 14:57:50 +00003266 goto open_cursor_set_hints;
drh35263192014-07-22 20:02:19 +00003267 }
3268 /* If the cursor is not currently open or is open on a different
3269 ** index, then fall through into OP_OpenRead to force a reopen */
drh9cbf3422008-01-17 16:22:13 +00003270case OP_OpenRead:
drh1fa509a2015-03-20 16:34:49 +00003271case OP_OpenWrite:
drh856c1032009-06-02 15:21:42 +00003272
drhe0997b32015-03-20 14:57:50 +00003273 assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR|OPFLAG_SEEKEQ))==pOp->p5 );
3274 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
drh1713afb2013-06-28 01:24:57 +00003275 assert( p->bIsReader );
drh35263192014-07-22 20:02:19 +00003276 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3277 || p->readOnly==0 );
dan428c2182012-08-06 18:50:11 +00003278
danfa401de2009-10-16 14:55:03 +00003279 if( p->expired ){
drh47b7fc72014-11-11 01:33:57 +00003280 rc = SQLITE_ABORT_ROLLBACK;
danfa401de2009-10-16 14:55:03 +00003281 break;
3282 }
3283
drh856c1032009-06-02 15:21:42 +00003284 nField = 0;
3285 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00003286 p2 = pOp->p2;
3287 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00003288 assert( iDb>=0 && iDb<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003289 assert( DbMaskTest(p->btreeMask, iDb) );
drhd946db02005-12-29 19:23:06 +00003290 pDb = &db->aDb[iDb];
3291 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00003292 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00003293 if( pOp->opcode==OP_OpenWrite ){
3294 wrFlag = 1;
drh21206082011-04-04 18:22:02 +00003295 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
danielk1977da184232006-01-05 11:34:32 +00003296 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3297 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00003298 }
3299 }else{
3300 wrFlag = 0;
3301 }
dan428c2182012-08-06 18:50:11 +00003302 if( pOp->p5 & OPFLAG_P2ISREG ){
drh9cbf3422008-01-17 16:22:13 +00003303 assert( p2>0 );
dan3bc9f742013-08-15 16:18:39 +00003304 assert( p2<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00003305 pIn2 = &aMem[p2];
drh2b4ded92010-09-27 21:09:31 +00003306 assert( memIsValid(pIn2) );
3307 assert( (pIn2->flags & MEM_Int)!=0 );
drh9cbf3422008-01-17 16:22:13 +00003308 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003309 p2 = (int)pIn2->u.i;
drh9a65f2c2009-06-22 19:05:40 +00003310 /* The p2 value always comes from a prior OP_CreateTable opcode and
3311 ** that opcode will always set the p2 value to 2 or more or else fail.
3312 ** If there were a failure, the prepared statement would have halted
3313 ** before reaching this instruction. */
drh27731d72009-06-22 12:05:10 +00003314 if( NEVER(p2<2) ) {
shanedcc50b72008-11-13 18:29:50 +00003315 rc = SQLITE_CORRUPT_BKPT;
3316 goto abort_due_to_error;
3317 }
drh5edc3122001-09-13 21:53:09 +00003318 }
danielk1977d336e222009-02-20 10:58:41 +00003319 if( pOp->p4type==P4_KEYINFO ){
3320 pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003321 assert( pKeyInfo->enc==ENC(db) );
3322 assert( pKeyInfo->db==db );
drhad124322013-10-23 13:30:58 +00003323 nField = pKeyInfo->nField+pKeyInfo->nXField;
danielk1977d336e222009-02-20 10:58:41 +00003324 }else if( pOp->p4type==P4_INT32 ){
3325 nField = pOp->p4.i;
3326 }
drh653b82a2009-06-22 11:10:47 +00003327 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003328 assert( nField>=0 );
3329 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
drh653b82a2009-06-22 11:10:47 +00003330 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
drh4774b132004-06-12 20:12:51 +00003331 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003332 pCur->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003333 pCur->isOrdered = 1;
drh35263192014-07-22 20:02:19 +00003334 pCur->pgnoRoot = p2;
danielk1977d336e222009-02-20 10:58:41 +00003335 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3336 pCur->pKeyInfo = pKeyInfo;
drh14da87f2013-11-20 21:51:33 +00003337 /* Set the VdbeCursor.isTable variable. Previous versions of
danielk1977172114a2009-07-07 15:47:12 +00003338 ** SQLite used to check if the root-page flags were sane at this point
3339 ** and report database corruption if they were not, but this check has
3340 ** since moved into the btree layer. */
3341 pCur->isTable = pOp->p4type!=P4_KEYINFO;
drhe0997b32015-03-20 14:57:50 +00003342
3343open_cursor_set_hints:
3344 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3345 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3346 sqlite3BtreeCursorHints(pCur->pCursor,
3347 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
drh5e00f6c2001-09-13 13:46:56 +00003348 break;
3349}
3350
drh2a5d9902011-08-26 00:34:45 +00003351/* Opcode: OpenEphemeral P1 P2 * P4 P5
drh81316f82013-10-29 20:40:47 +00003352** Synopsis: nColumn=P2
drh5e00f6c2001-09-13 13:46:56 +00003353**
drhb9bb7c12006-06-11 23:41:55 +00003354** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003355** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003356** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003357** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003358**
drh25d3adb2010-04-05 15:11:08 +00003359** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003360** The cursor points to a BTree table if P4==0 and to a BTree index
3361** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003362** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003363**
drh2a5d9902011-08-26 00:34:45 +00003364** The P5 parameter can be a mask of the BTREE_* flags defined
3365** in btree.h. These flags control aspects of the operation of
3366** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3367** added automatically.
drh5e00f6c2001-09-13 13:46:56 +00003368*/
drha21a64d2010-04-06 22:33:55 +00003369/* Opcode: OpenAutoindex P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00003370** Synopsis: nColumn=P2
drha21a64d2010-04-06 22:33:55 +00003371**
3372** This opcode works the same as OP_OpenEphemeral. It has a
3373** different name to distinguish its use. Tables created using
3374** by this opcode will be used for automatically created transient
3375** indices in joins.
3376*/
3377case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003378case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003379 VdbeCursor *pCx;
drh41e13e12013-11-07 14:09:39 +00003380 KeyInfo *pKeyInfo;
3381
drhd4187c72010-08-30 22:15:45 +00003382 static const int vfsFlags =
drh33f4e022007-09-03 15:19:34 +00003383 SQLITE_OPEN_READWRITE |
3384 SQLITE_OPEN_CREATE |
3385 SQLITE_OPEN_EXCLUSIVE |
3386 SQLITE_OPEN_DELETEONCLOSE |
3387 SQLITE_OPEN_TRANSIENT_DB;
drh653b82a2009-06-22 11:10:47 +00003388 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003389 assert( pOp->p2>=0 );
drh653b82a2009-06-22 11:10:47 +00003390 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
drh4774b132004-06-12 20:12:51 +00003391 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003392 pCx->nullRow = 1;
drh079a3072014-03-19 14:10:55 +00003393 pCx->isEphemeral = 1;
dan689ab892011-08-12 15:02:00 +00003394 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3395 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
drh5e00f6c2001-09-13 13:46:56 +00003396 if( rc==SQLITE_OK ){
danielk197740b38dc2004-06-26 08:38:24 +00003397 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
drh5e00f6c2001-09-13 13:46:56 +00003398 }
3399 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003400 /* If a transient index is required, create it by calling
drhd4187c72010-08-30 22:15:45 +00003401 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
danielk19774adee202004-05-08 08:23:19 +00003402 ** opening it. If a transient table is required, just use the
drhd4187c72010-08-30 22:15:45 +00003403 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003404 */
drh41e13e12013-11-07 14:09:39 +00003405 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
drhc6b52df2002-01-04 03:09:29 +00003406 int pgno;
drh66a51672008-01-03 00:01:23 +00003407 assert( pOp->p4type==P4_KEYINFO );
drhe1b4f0f2011-06-29 17:11:39 +00003408 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
drhc6b52df2002-01-04 03:09:29 +00003409 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003410 assert( pgno==MASTER_ROOT+1 );
drh41e13e12013-11-07 14:09:39 +00003411 assert( pKeyInfo->db==db );
3412 assert( pKeyInfo->enc==ENC(db) );
3413 pCx->pKeyInfo = pKeyInfo;
3414 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor);
drhc6b52df2002-01-04 03:09:29 +00003415 }
drhf0863fe2005-06-12 21:35:51 +00003416 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003417 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00003418 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
drhf0863fe2005-06-12 21:35:51 +00003419 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003420 }
drh5e00f6c2001-09-13 13:46:56 +00003421 }
drhd4187c72010-08-30 22:15:45 +00003422 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
dan5134d132011-09-02 10:31:11 +00003423 break;
3424}
3425
danfad9f9a2014-04-01 18:41:51 +00003426/* Opcode: SorterOpen P1 P2 P3 P4 *
dan5134d132011-09-02 10:31:11 +00003427**
3428** This opcode works like OP_OpenEphemeral except that it opens
3429** a transient index that is specifically designed to sort large
3430** tables using an external merge-sort algorithm.
danfad9f9a2014-04-01 18:41:51 +00003431**
3432** If argument P3 is non-zero, then it indicates that the sorter may
3433** assume that a stable sort considering the first P3 fields of each
3434** key is sufficient to produce the required results.
dan5134d132011-09-02 10:31:11 +00003435*/
drhca892a72011-09-03 00:17:51 +00003436case OP_SorterOpen: {
dan5134d132011-09-02 10:31:11 +00003437 VdbeCursor *pCx;
drh3a949872012-09-18 13:20:13 +00003438
drh399af1d2013-11-20 17:25:55 +00003439 assert( pOp->p1>=0 );
3440 assert( pOp->p2>=0 );
dan5134d132011-09-02 10:31:11 +00003441 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3442 if( pCx==0 ) goto no_mem;
3443 pCx->pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003444 assert( pCx->pKeyInfo->db==db );
3445 assert( pCx->pKeyInfo->enc==ENC(db) );
danfad9f9a2014-04-01 18:41:51 +00003446 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
drh5e00f6c2001-09-13 13:46:56 +00003447 break;
3448}
3449
dan78d58432014-03-25 15:04:07 +00003450/* Opcode: SequenceTest P1 P2 * * *
3451** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3452**
3453** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3454** to P2. Regardless of whether or not the jump is taken, increment the
3455** the sequence value.
3456*/
3457case OP_SequenceTest: {
3458 VdbeCursor *pC;
3459 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3460 pC = p->apCsr[pOp->p1];
3461 assert( pC->pSorter );
3462 if( (pC->seqCount++)==0 ){
drhf56fa462015-04-13 21:39:54 +00003463 goto jump_to_p2;
dan78d58432014-03-25 15:04:07 +00003464 }
3465 break;
3466}
3467
drh5f612292014-02-08 23:20:32 +00003468/* Opcode: OpenPseudo P1 P2 P3 * *
drh60830e32014-02-10 15:56:34 +00003469** Synopsis: P3 columns in r[P2]
drh70ce3f02003-04-15 19:22:22 +00003470**
3471** Open a new cursor that points to a fake table that contains a single
drh5f612292014-02-08 23:20:32 +00003472** row of data. The content of that one row is the content of memory
3473** register P2. In other words, cursor P1 becomes an alias for the
3474** MEM_Blob content contained in register P2.
drh70ce3f02003-04-15 19:22:22 +00003475**
drh2d8d7ce2010-02-15 15:17:05 +00003476** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00003477** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003478** individual columns using the OP_Column opcode. The OP_Column opcode
3479** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003480**
3481** P3 is the number of fields in the records that will be stored by
3482** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003483*/
drh9cbf3422008-01-17 16:22:13 +00003484case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003485 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003486
drh653b82a2009-06-22 11:10:47 +00003487 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003488 assert( pOp->p3>=0 );
drh653b82a2009-06-22 11:10:47 +00003489 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
drh4774b132004-06-12 20:12:51 +00003490 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003491 pCx->nullRow = 1;
drh3e9ca092009-09-08 01:14:48 +00003492 pCx->pseudoTableReg = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003493 pCx->isTable = 1;
drh5f612292014-02-08 23:20:32 +00003494 assert( pOp->p5==0 );
drh70ce3f02003-04-15 19:22:22 +00003495 break;
3496}
3497
drh98757152008-01-09 23:04:12 +00003498/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003499**
3500** Close a cursor previously opened as P1. If P1 is not
3501** currently open, this instruction is a no-op.
3502*/
drh9cbf3422008-01-17 16:22:13 +00003503case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003504 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3505 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3506 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003507 break;
3508}
3509
drh97bae792015-06-05 15:59:57 +00003510#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3511/* Opcode: ColumnsUsed P1 * * P4 *
3512**
3513** This opcode (which only exists if SQLite was compiled with
3514** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3515** table or index for cursor P1 are used. P4 is a 64-bit integer
3516** (P4_INT64) in which the first 63 bits are one for each of the
3517** first 63 columns of the table or index that are actually used
3518** by the cursor. The high-order bit is set if any column after
3519** the 64th is used.
3520*/
3521case OP_ColumnsUsed: {
3522 VdbeCursor *pC;
3523 pC = p->apCsr[pOp->p1];
3524 assert( pC->pCursor );
3525 pC->maskUsed = *(u64*)pOp->p4.pI64;
3526 break;
3527}
3528#endif
3529
drh8af3f772014-07-25 18:01:06 +00003530/* Opcode: SeekGE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003531** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003532**
danielk1977b790c6c2008-04-18 10:25:24 +00003533** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003534** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003535** to an SQL index, then P3 is the first in an array of P4 registers
3536** that are used as an unpacked index key.
3537**
3538** Reposition cursor P1 so that it points to the smallest entry that
3539** is greater than or equal to the key value. If there are no records
3540** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003541**
drh8af3f772014-07-25 18:01:06 +00003542** This opcode leaves the cursor configured to move in forward order,
drhbc5cf382014-08-06 01:08:07 +00003543** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003544** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003545**
drh935850e2014-05-24 17:15:15 +00003546** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003547*/
drh8af3f772014-07-25 18:01:06 +00003548/* Opcode: SeekGT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003549** Synopsis: key=r[P3@P4]
drh7cf6e4d2004-05-19 14:56:55 +00003550**
danielk1977b790c6c2008-04-18 10:25:24 +00003551** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003552** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003553** to an SQL index, then P3 is the first in an array of P4 registers
3554** that are used as an unpacked index key.
3555**
3556** Reposition cursor P1 so that it points to the smallest entry that
3557** is greater than the key value. If there are no records greater than
3558** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003559**
drh8af3f772014-07-25 18:01:06 +00003560** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00003561** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003562** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003563**
drh935850e2014-05-24 17:15:15 +00003564** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003565*/
drh8af3f772014-07-25 18:01:06 +00003566/* Opcode: SeekLT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003567** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00003568**
danielk1977b790c6c2008-04-18 10:25:24 +00003569** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003570** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003571** to an SQL index, then P3 is the first in an array of P4 registers
3572** that are used as an unpacked index key.
3573**
3574** Reposition cursor P1 so that it points to the largest entry that
3575** is less than the key value. If there are no records less than
3576** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003577**
drh8af3f772014-07-25 18:01:06 +00003578** This opcode leaves the cursor configured to move in reverse order,
3579** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003580** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003581**
drh935850e2014-05-24 17:15:15 +00003582** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003583*/
drh8af3f772014-07-25 18:01:06 +00003584/* Opcode: SeekLE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003585** Synopsis: key=r[P3@P4]
danielk19773d1bfea2004-05-14 11:00:53 +00003586**
danielk1977b790c6c2008-04-18 10:25:24 +00003587** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003588** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003589** to an SQL index, then P3 is the first in an array of P4 registers
3590** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003591**
danielk1977b790c6c2008-04-18 10:25:24 +00003592** Reposition cursor P1 so that it points to the largest entry that
3593** is less than or equal to the key value. If there are no records
3594** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003595**
drh8af3f772014-07-25 18:01:06 +00003596** This opcode leaves the cursor configured to move in reverse order,
3597** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003598** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003599**
drh935850e2014-05-24 17:15:15 +00003600** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003601*/
drh4a1d3652014-02-14 15:13:36 +00003602case OP_SeekLT: /* jump, in3 */
3603case OP_SeekLE: /* jump, in3 */
3604case OP_SeekGE: /* jump, in3 */
3605case OP_SeekGT: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003606 int res;
3607 int oc;
drhdfe88ec2008-11-03 20:55:06 +00003608 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003609 UnpackedRecord r;
3610 int nField;
3611 i64 iKey; /* The rowid we are to seek to */
drh80ff32f2001-11-04 18:32:46 +00003612
drh653b82a2009-06-22 11:10:47 +00003613 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003614 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003615 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003616 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003617 assert( pC->pseudoTableReg==0 );
drh4a1d3652014-02-14 15:13:36 +00003618 assert( OP_SeekLE == OP_SeekLT+1 );
3619 assert( OP_SeekGE == OP_SeekLT+2 );
3620 assert( OP_SeekGT == OP_SeekLT+3 );
drhd4187c72010-08-30 22:15:45 +00003621 assert( pC->isOrdered );
drh3da046d2013-11-11 03:24:11 +00003622 assert( pC->pCursor!=0 );
3623 oc = pOp->opcode;
3624 pC->nullRow = 0;
drh8af3f772014-07-25 18:01:06 +00003625#ifdef SQLITE_DEBUG
3626 pC->seekOp = pOp->opcode;
3627#endif
drhe0997b32015-03-20 14:57:50 +00003628
3629 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3630 ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3631 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3632 */
3633#ifdef SQLITE_DEBUG
3634 if( sqlite3BtreeCursorHasHint(pC->pCursor, BTREE_SEEK_EQ) ){
3635 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3636 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3637 assert( pOp[1].p1==pOp[0].p1 );
3638 assert( pOp[1].p2==pOp[0].p2 );
3639 assert( pOp[1].p3==pOp[0].p3 );
3640 assert( pOp[1].p4.i==pOp[0].p4.i );
3641 }
3642#endif
3643
drh3da046d2013-11-11 03:24:11 +00003644 if( pC->isTable ){
3645 /* The input value in P3 might be of any type: integer, real, string,
3646 ** blob, or NULL. But it needs to be an integer before we can do
peter.d.reid60ec9142014-09-06 16:39:46 +00003647 ** the seek, so convert it. */
drh3da046d2013-11-11 03:24:11 +00003648 pIn3 = &aMem[pOp->p3];
drh11a6eee2014-09-19 22:01:54 +00003649 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drhbd9507c2014-08-23 17:21:37 +00003650 applyNumericAffinity(pIn3, 0);
3651 }
drh3da046d2013-11-11 03:24:11 +00003652 iKey = sqlite3VdbeIntValue(pIn3);
drh959403f2008-12-12 17:56:16 +00003653
drh3da046d2013-11-11 03:24:11 +00003654 /* If the P3 value could not be converted into an integer without
3655 ** loss of information, then special processing is required... */
3656 if( (pIn3->flags & MEM_Int)==0 ){
3657 if( (pIn3->flags & MEM_Real)==0 ){
3658 /* If the P3 value cannot be converted into any kind of a number,
3659 ** then the seek is not possible, so jump to P2 */
drhf56fa462015-04-13 21:39:54 +00003660 VdbeBranchTaken(1,2); goto jump_to_p2;
drh3da046d2013-11-11 03:24:11 +00003661 break;
3662 }
drh959403f2008-12-12 17:56:16 +00003663
danaa1776f2013-11-26 18:22:59 +00003664 /* If the approximation iKey is larger than the actual real search
3665 ** term, substitute >= for > and < for <=. e.g. if the search term
3666 ** is 4.9 and the integer approximation 5:
3667 **
3668 ** (x > 4.9) -> (x >= 5)
3669 ** (x <= 4.9) -> (x < 5)
3670 */
drh74eaba42014-09-18 17:52:15 +00003671 if( pIn3->u.r<(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003672 assert( OP_SeekGE==(OP_SeekGT-1) );
3673 assert( OP_SeekLT==(OP_SeekLE-1) );
3674 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3675 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
danaa1776f2013-11-26 18:22:59 +00003676 }
3677
3678 /* If the approximation iKey is smaller than the actual real search
3679 ** term, substitute <= for < and > for >=. */
drh74eaba42014-09-18 17:52:15 +00003680 else if( pIn3->u.r>(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003681 assert( OP_SeekLE==(OP_SeekLT+1) );
3682 assert( OP_SeekGT==(OP_SeekGE+1) );
3683 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3684 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
drh8721ce42001-11-07 14:22:00 +00003685 }
drh3da046d2013-11-11 03:24:11 +00003686 }
3687 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
drhb53a5a92014-10-12 22:37:22 +00003688 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00003689 if( rc!=SQLITE_OK ){
3690 goto abort_due_to_error;
drh1af3fdb2004-07-18 21:33:01 +00003691 }
drhaa736092009-06-22 00:55:30 +00003692 }else{
drh3da046d2013-11-11 03:24:11 +00003693 nField = pOp->p4.i;
3694 assert( pOp->p4type==P4_INT32 );
3695 assert( nField>0 );
3696 r.pKeyInfo = pC->pKeyInfo;
3697 r.nField = (u16)nField;
3698
3699 /* The next line of code computes as follows, only faster:
drh4a1d3652014-02-14 15:13:36 +00003700 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
dan1fed5da2014-02-25 21:01:25 +00003701 ** r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00003702 ** }else{
dan1fed5da2014-02-25 21:01:25 +00003703 ** r.default_rc = +1;
drh3da046d2013-11-11 03:24:11 +00003704 ** }
danielk1977f7b9d662008-06-23 18:49:43 +00003705 */
dan1fed5da2014-02-25 21:01:25 +00003706 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3707 assert( oc!=OP_SeekGT || r.default_rc==-1 );
3708 assert( oc!=OP_SeekLE || r.default_rc==-1 );
3709 assert( oc!=OP_SeekGE || r.default_rc==+1 );
3710 assert( oc!=OP_SeekLT || r.default_rc==+1 );
drh3da046d2013-11-11 03:24:11 +00003711
3712 r.aMem = &aMem[pOp->p3];
3713#ifdef SQLITE_DEBUG
3714 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3715#endif
3716 ExpandBlob(r.aMem);
3717 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
3718 if( rc!=SQLITE_OK ){
3719 goto abort_due_to_error;
3720 }
drh3da046d2013-11-11 03:24:11 +00003721 }
3722 pC->deferredMoveto = 0;
3723 pC->cacheStatus = CACHE_STALE;
3724#ifdef SQLITE_TEST
3725 sqlite3_search_count++;
3726#endif
drh4a1d3652014-02-14 15:13:36 +00003727 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
3728 if( res<0 || (res==0 && oc==OP_SeekGT) ){
drhe39a7322014-02-03 14:04:11 +00003729 res = 0;
drh3da046d2013-11-11 03:24:11 +00003730 rc = sqlite3BtreeNext(pC->pCursor, &res);
3731 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00003732 }else{
3733 res = 0;
3734 }
3735 }else{
drh4a1d3652014-02-14 15:13:36 +00003736 assert( oc==OP_SeekLT || oc==OP_SeekLE );
3737 if( res>0 || (res==0 && oc==OP_SeekLT) ){
drhe39a7322014-02-03 14:04:11 +00003738 res = 0;
drh3da046d2013-11-11 03:24:11 +00003739 rc = sqlite3BtreePrevious(pC->pCursor, &res);
3740 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00003741 }else{
3742 /* res might be negative because the table is empty. Check to
3743 ** see if this is the case.
3744 */
3745 res = sqlite3BtreeEof(pC->pCursor);
3746 }
3747 }
3748 assert( pOp->p2>0 );
drh688852a2014-02-17 22:40:43 +00003749 VdbeBranchTaken(res!=0,2);
drh3da046d2013-11-11 03:24:11 +00003750 if( res ){
drhf56fa462015-04-13 21:39:54 +00003751 goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00003752 }
drh5e00f6c2001-09-13 13:46:56 +00003753 break;
3754}
3755
drh959403f2008-12-12 17:56:16 +00003756/* Opcode: Seek P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00003757** Synopsis: intkey=r[P2]
drh959403f2008-12-12 17:56:16 +00003758**
3759** P1 is an open table cursor and P2 is a rowid integer. Arrange
3760** for P1 to move so that it points to the rowid given by P2.
3761**
3762** This is actually a deferred seek. Nothing actually happens until
3763** the cursor is used to read a record. That way, if no reads
3764** occur, no unnecessary I/O happens.
3765*/
3766case OP_Seek: { /* in2 */
drh959403f2008-12-12 17:56:16 +00003767 VdbeCursor *pC;
3768
drh653b82a2009-06-22 11:10:47 +00003769 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3770 pC = p->apCsr[pOp->p1];
drh959403f2008-12-12 17:56:16 +00003771 assert( pC!=0 );
drh3da046d2013-11-11 03:24:11 +00003772 assert( pC->pCursor!=0 );
3773 assert( pC->isTable );
3774 pC->nullRow = 0;
3775 pIn2 = &aMem[pOp->p2];
3776 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
drh3da046d2013-11-11 03:24:11 +00003777 pC->deferredMoveto = 1;
drh959403f2008-12-12 17:56:16 +00003778 break;
3779}
3780
3781
drh8cff69d2009-11-12 19:59:44 +00003782/* Opcode: Found P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003783** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003784**
drh8cff69d2009-11-12 19:59:44 +00003785** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3786** P4>0 then register P3 is the first of P4 registers that form an unpacked
3787** record.
3788**
3789** Cursor P1 is on an index btree. If the record identified by P3 and P4
3790** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00003791** P1 is left pointing at the matching entry.
drh6f225d02013-10-26 13:36:51 +00003792**
drhcefc87f2014-08-01 01:40:33 +00003793** This operation leaves the cursor in a state where it can be
3794** advanced in the forward direction. The Next instruction will work,
3795** but not the Prev instruction.
drh8af3f772014-07-25 18:01:06 +00003796**
drh6f225d02013-10-26 13:36:51 +00003797** See also: NotFound, NoConflict, NotExists. SeekGe
drh5e00f6c2001-09-13 13:46:56 +00003798*/
drh8cff69d2009-11-12 19:59:44 +00003799/* Opcode: NotFound P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003800** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003801**
drh8cff69d2009-11-12 19:59:44 +00003802** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3803** P4>0 then register P3 is the first of P4 registers that form an unpacked
3804** record.
3805**
3806** Cursor P1 is on an index btree. If the record identified by P3 and P4
3807** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3808** does contain an entry whose prefix matches the P3/P4 record then control
3809** falls through to the next instruction and P1 is left pointing at the
3810** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003811**
drh8af3f772014-07-25 18:01:06 +00003812** This operation leaves the cursor in a state where it cannot be
3813** advanced in either direction. In other words, the Next and Prev
3814** opcodes do not work after this operation.
3815**
drh6f225d02013-10-26 13:36:51 +00003816** See also: Found, NotExists, NoConflict
drh5e00f6c2001-09-13 13:46:56 +00003817*/
drh6f225d02013-10-26 13:36:51 +00003818/* Opcode: NoConflict P1 P2 P3 P4 *
drh4af5bee2013-10-30 02:37:50 +00003819** Synopsis: key=r[P3@P4]
drh6f225d02013-10-26 13:36:51 +00003820**
3821** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3822** P4>0 then register P3 is the first of P4 registers that form an unpacked
3823** record.
3824**
3825** Cursor P1 is on an index btree. If the record identified by P3 and P4
3826** contains any NULL value, jump immediately to P2. If all terms of the
3827** record are not-NULL then a check is done to determine if any row in the
3828** P1 index btree has a matching key prefix. If there are no matches, jump
3829** immediately to P2. If there is a match, fall through and leave the P1
3830** cursor pointing to the matching row.
3831**
3832** This opcode is similar to OP_NotFound with the exceptions that the
3833** branch is always taken if any part of the search key input is NULL.
3834**
drh8af3f772014-07-25 18:01:06 +00003835** This operation leaves the cursor in a state where it cannot be
3836** advanced in either direction. In other words, the Next and Prev
3837** opcodes do not work after this operation.
3838**
drh6f225d02013-10-26 13:36:51 +00003839** See also: NotFound, Found, NotExists
3840*/
3841case OP_NoConflict: /* jump, in3 */
drh9cbf3422008-01-17 16:22:13 +00003842case OP_NotFound: /* jump, in3 */
3843case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003844 int alreadyExists;
drhf56fa462015-04-13 21:39:54 +00003845 int takeJump;
drh6f225d02013-10-26 13:36:51 +00003846 int ii;
drhdfe88ec2008-11-03 20:55:06 +00003847 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003848 int res;
dan03e9cfc2011-09-05 14:20:27 +00003849 char *pFree;
drh856c1032009-06-02 15:21:42 +00003850 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00003851 UnpackedRecord r;
drhb4139222013-11-06 14:36:08 +00003852 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
drh856c1032009-06-02 15:21:42 +00003853
dan0ff297e2009-09-25 17:03:14 +00003854#ifdef SQLITE_TEST
drh6f225d02013-10-26 13:36:51 +00003855 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
dan0ff297e2009-09-25 17:03:14 +00003856#endif
3857
drhaa736092009-06-22 00:55:30 +00003858 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00003859 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00003860 pC = p->apCsr[pOp->p1];
3861 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00003862#ifdef SQLITE_DEBUG
drhcefc87f2014-08-01 01:40:33 +00003863 pC->seekOp = pOp->opcode;
drh8af3f772014-07-25 18:01:06 +00003864#endif
drh3c657212009-11-17 23:59:58 +00003865 pIn3 = &aMem[pOp->p3];
drh3da046d2013-11-11 03:24:11 +00003866 assert( pC->pCursor!=0 );
3867 assert( pC->isTable==0 );
drhf56fa462015-04-13 21:39:54 +00003868 pFree = 0;
drh3da046d2013-11-11 03:24:11 +00003869 if( pOp->p4.i>0 ){
3870 r.pKeyInfo = pC->pKeyInfo;
3871 r.nField = (u16)pOp->p4.i;
3872 r.aMem = pIn3;
drh826af372014-02-08 19:12:21 +00003873 for(ii=0; ii<r.nField; ii++){
3874 assert( memIsValid(&r.aMem[ii]) );
3875 ExpandBlob(&r.aMem[ii]);
drh2b4ded92010-09-27 21:09:31 +00003876#ifdef SQLITE_DEBUG
drh826af372014-02-08 19:12:21 +00003877 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
drh2b4ded92010-09-27 21:09:31 +00003878#endif
drh826af372014-02-08 19:12:21 +00003879 }
drh3da046d2013-11-11 03:24:11 +00003880 pIdxKey = &r;
3881 }else{
3882 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3883 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
danb391b942014-11-07 14:41:11 +00003884 );
drh3da046d2013-11-11 03:24:11 +00003885 if( pIdxKey==0 ) goto no_mem;
3886 assert( pIn3->flags & MEM_Blob );
danb391b942014-11-07 14:41:11 +00003887 ExpandBlob(pIn3);
drh3da046d2013-11-11 03:24:11 +00003888 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
drh3da046d2013-11-11 03:24:11 +00003889 }
dan1fed5da2014-02-25 21:01:25 +00003890 pIdxKey->default_rc = 0;
drhf56fa462015-04-13 21:39:54 +00003891 takeJump = 0;
drh3da046d2013-11-11 03:24:11 +00003892 if( pOp->opcode==OP_NoConflict ){
3893 /* For the OP_NoConflict opcode, take the jump if any of the
3894 ** input fields are NULL, since any key with a NULL will not
3895 ** conflict */
mistachkin7bb6e8e2015-01-12 18:52:41 +00003896 for(ii=0; ii<pIdxKey->nField; ii++){
3897 if( pIdxKey->aMem[ii].flags & MEM_Null ){
drhf56fa462015-04-13 21:39:54 +00003898 takeJump = 1;
drh3da046d2013-11-11 03:24:11 +00003899 break;
drh6f225d02013-10-26 13:36:51 +00003900 }
3901 }
drh5e00f6c2001-09-13 13:46:56 +00003902 }
drh3da046d2013-11-11 03:24:11 +00003903 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
drhf56fa462015-04-13 21:39:54 +00003904 sqlite3DbFree(db, pFree);
drh3da046d2013-11-11 03:24:11 +00003905 if( rc!=SQLITE_OK ){
3906 break;
3907 }
drh1fd522f2013-11-21 00:10:35 +00003908 pC->seekResult = res;
drh3da046d2013-11-11 03:24:11 +00003909 alreadyExists = (res==0);
3910 pC->nullRow = 1-alreadyExists;
3911 pC->deferredMoveto = 0;
3912 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003913 if( pOp->opcode==OP_Found ){
drh688852a2014-02-17 22:40:43 +00003914 VdbeBranchTaken(alreadyExists!=0,2);
drhf56fa462015-04-13 21:39:54 +00003915 if( alreadyExists ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00003916 }else{
drhf56fa462015-04-13 21:39:54 +00003917 VdbeBranchTaken(takeJump||alreadyExists==0,2);
3918 if( takeJump || !alreadyExists ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00003919 }
drh5e00f6c2001-09-13 13:46:56 +00003920 break;
3921}
3922
drh9cbf3422008-01-17 16:22:13 +00003923/* Opcode: NotExists P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00003924** Synopsis: intkey=r[P3]
drh6b125452002-01-28 15:53:03 +00003925**
drh261c02d2013-10-25 14:46:15 +00003926** P1 is the index of a cursor open on an SQL table btree (with integer
3927** keys). P3 is an integer rowid. If P1 does not contain a record with
3928** rowid P3 then jump immediately to P2. If P1 does contain a record
3929** with rowid P3 then leave the cursor pointing at that record and fall
3930** through to the next instruction.
drh6b125452002-01-28 15:53:03 +00003931**
drh261c02d2013-10-25 14:46:15 +00003932** The OP_NotFound opcode performs the same operation on index btrees
3933** (with arbitrary multi-value keys).
drh6b125452002-01-28 15:53:03 +00003934**
drh8af3f772014-07-25 18:01:06 +00003935** This opcode leaves the cursor in a state where it cannot be advanced
3936** in either direction. In other words, the Next and Prev opcodes will
3937** not work following this opcode.
3938**
drh11e85272013-10-26 15:40:48 +00003939** See also: Found, NotFound, NoConflict
drh6b125452002-01-28 15:53:03 +00003940*/
drh9cbf3422008-01-17 16:22:13 +00003941case OP_NotExists: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00003942 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00003943 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00003944 int res;
3945 u64 iKey;
3946
drh3c657212009-11-17 23:59:58 +00003947 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003948 assert( pIn3->flags & MEM_Int );
3949 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3950 pC = p->apCsr[pOp->p1];
3951 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00003952#ifdef SQLITE_DEBUG
3953 pC->seekOp = 0;
3954#endif
drhaa736092009-06-22 00:55:30 +00003955 assert( pC->isTable );
drh3e9ca092009-09-08 01:14:48 +00003956 assert( pC->pseudoTableReg==0 );
drhaa736092009-06-22 00:55:30 +00003957 pCrsr = pC->pCursor;
drh3da046d2013-11-11 03:24:11 +00003958 assert( pCrsr!=0 );
3959 res = 0;
3960 iKey = pIn3->u.i;
3961 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drhb53a5a92014-10-12 22:37:22 +00003962 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00003963 pC->nullRow = 0;
3964 pC->cacheStatus = CACHE_STALE;
3965 pC->deferredMoveto = 0;
drh688852a2014-02-17 22:40:43 +00003966 VdbeBranchTaken(res!=0,2);
drh1fd522f2013-11-21 00:10:35 +00003967 pC->seekResult = res;
drhf56fa462015-04-13 21:39:54 +00003968 if( res!=0 ) goto jump_to_p2;
drh6b125452002-01-28 15:53:03 +00003969 break;
3970}
3971
drh4c583122008-01-04 22:01:03 +00003972/* Opcode: Sequence P1 P2 * * *
drh079a3072014-03-19 14:10:55 +00003973** Synopsis: r[P2]=cursor[P1].ctr++
drh4db38a72005-09-01 12:16:28 +00003974**
drh4c583122008-01-04 22:01:03 +00003975** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00003976** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00003977** The sequence number on the cursor is incremented after this
3978** instruction.
drh4db38a72005-09-01 12:16:28 +00003979*/
drh27a348c2015-04-13 19:14:06 +00003980case OP_Sequence: { /* out2 */
drh653b82a2009-06-22 11:10:47 +00003981 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3982 assert( p->apCsr[pOp->p1]!=0 );
drh27a348c2015-04-13 19:14:06 +00003983 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00003984 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00003985 break;
3986}
3987
3988
drh98757152008-01-09 23:04:12 +00003989/* Opcode: NewRowid P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00003990** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00003991**
drhf0863fe2005-06-12 21:35:51 +00003992** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00003993** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00003994** table that cursor P1 points to. The new record number is written
3995** written to register P2.
drh205f48e2004-11-05 00:43:11 +00003996**
dan76d462e2009-08-30 11:42:51 +00003997** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3998** the largest previously generated record number. No new record numbers are
3999** allowed to be less than this value. When this value reaches its maximum,
drhef8662b2011-06-20 21:47:58 +00004000** an SQLITE_FULL error is generated. The P3 register is updated with the '
dan76d462e2009-08-30 11:42:51 +00004001** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00004002** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00004003*/
drh27a348c2015-04-13 19:14:06 +00004004case OP_NewRowid: { /* out2 */
drhaa736092009-06-22 00:55:30 +00004005 i64 v; /* The new rowid */
4006 VdbeCursor *pC; /* Cursor of table to get the new rowid */
4007 int res; /* Result of an sqlite3BtreeLast() */
4008 int cnt; /* Counter to limit the number of searches */
4009 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00004010 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00004011
drh856c1032009-06-02 15:21:42 +00004012 v = 0;
4013 res = 0;
drh27a348c2015-04-13 19:14:06 +00004014 pOut = out2Prerelease(p, pOp);
drhaa736092009-06-22 00:55:30 +00004015 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4016 pC = p->apCsr[pOp->p1];
4017 assert( pC!=0 );
4018 if( NEVER(pC->pCursor==0) ){
drhf328bc82004-05-10 23:29:49 +00004019 /* The zero initialization above is all that is needed */
drh5e00f6c2001-09-13 13:46:56 +00004020 }else{
drh5cf8e8c2002-02-19 22:42:05 +00004021 /* The next rowid or record number (different terms for the same
4022 ** thing) is obtained in a two-step algorithm.
4023 **
4024 ** First we attempt to find the largest existing rowid and add one
4025 ** to that. But if the largest existing rowid is already the maximum
4026 ** positive integer, we have to fall through to the second
4027 ** probabilistic algorithm
4028 **
4029 ** The second algorithm is to select a rowid at random and see if
4030 ** it already exists in the table. If it does not exist, we have
4031 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00004032 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00004033 */
drhaa736092009-06-22 00:55:30 +00004034 assert( pC->isTable );
drhfe2093d2005-01-20 22:48:47 +00004035
drh75f86a42005-02-17 00:03:06 +00004036#ifdef SQLITE_32BIT_ROWID
4037# define MAX_ROWID 0x7fffffff
4038#else
drhfe2093d2005-01-20 22:48:47 +00004039 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4040 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
4041 ** to provide the constant while making all compilers happy.
4042 */
danielk197764202cf2008-11-17 15:31:47 +00004043# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00004044#endif
drhfe2093d2005-01-20 22:48:47 +00004045
drh5cf8e8c2002-02-19 22:42:05 +00004046 if( !pC->useRandomRowid ){
drhe0670b62014-02-12 21:31:12 +00004047 rc = sqlite3BtreeLast(pC->pCursor, &res);
4048 if( rc!=SQLITE_OK ){
4049 goto abort_due_to_error;
4050 }
4051 if( res ){
4052 v = 1; /* IMP: R-61914-48074 */
4053 }else{
4054 assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
4055 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4056 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
4057 if( v>=MAX_ROWID ){
4058 pC->useRandomRowid = 1;
drh5cf8e8c2002-02-19 22:42:05 +00004059 }else{
drhe0670b62014-02-12 21:31:12 +00004060 v++; /* IMP: R-29538-34987 */
drh5cf8e8c2002-02-19 22:42:05 +00004061 }
drh3fc190c2001-09-14 03:24:23 +00004062 }
drhe0670b62014-02-12 21:31:12 +00004063 }
drh205f48e2004-11-05 00:43:11 +00004064
4065#ifndef SQLITE_OMIT_AUTOINCREMENT
drhe0670b62014-02-12 21:31:12 +00004066 if( pOp->p3 ){
4067 /* Assert that P3 is a valid memory cell. */
4068 assert( pOp->p3>0 );
4069 if( p->pFrame ){
4070 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00004071 /* Assert that P3 is a valid memory cell. */
drhe0670b62014-02-12 21:31:12 +00004072 assert( pOp->p3<=pFrame->nMem );
4073 pMem = &pFrame->aMem[pOp->p3];
4074 }else{
4075 /* Assert that P3 is a valid memory cell. */
4076 assert( pOp->p3<=(p->nMem-p->nCursor) );
4077 pMem = &aMem[pOp->p3];
4078 memAboutToChange(p, pMem);
drh205f48e2004-11-05 00:43:11 +00004079 }
drhe0670b62014-02-12 21:31:12 +00004080 assert( memIsValid(pMem) );
drh205f48e2004-11-05 00:43:11 +00004081
drhe0670b62014-02-12 21:31:12 +00004082 REGISTER_TRACE(pOp->p3, pMem);
4083 sqlite3VdbeMemIntegerify(pMem);
4084 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
4085 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4086 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
4087 goto abort_due_to_error;
4088 }
4089 if( v<pMem->u.i+1 ){
4090 v = pMem->u.i + 1;
4091 }
4092 pMem->u.i = v;
drh5cf8e8c2002-02-19 22:42:05 +00004093 }
drhe0670b62014-02-12 21:31:12 +00004094#endif
drh5cf8e8c2002-02-19 22:42:05 +00004095 if( pC->useRandomRowid ){
drh748a52c2010-09-01 11:50:08 +00004096 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
drhc79c7612010-01-01 18:57:48 +00004097 ** largest possible integer (9223372036854775807) then the database
drh748a52c2010-09-01 11:50:08 +00004098 ** engine starts picking positive candidate ROWIDs at random until
4099 ** it finds one that is not previously used. */
drhaa736092009-06-22 00:55:30 +00004100 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
4101 ** an AUTOINCREMENT table. */
drh5cf8e8c2002-02-19 22:42:05 +00004102 cnt = 0;
drh2c4dc632014-09-25 12:31:28 +00004103 do{
4104 sqlite3_randomness(sizeof(v), &v);
drhd8633462014-09-25 17:42:41 +00004105 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
drh2c4dc632014-09-25 12:31:28 +00004106 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
drh748a52c2010-09-01 11:50:08 +00004107 0, &res))==SQLITE_OK)
shanehc4d340a2010-09-01 02:37:56 +00004108 && (res==0)
drh2c4dc632014-09-25 12:31:28 +00004109 && (++cnt<100));
drhaa736092009-06-22 00:55:30 +00004110 if( rc==SQLITE_OK && res==0 ){
drhc79c7612010-01-01 18:57:48 +00004111 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00004112 goto abort_due_to_error;
4113 }
drh748a52c2010-09-01 11:50:08 +00004114 assert( v>0 ); /* EV: R-40812-03570 */
drh1eaa2692001-09-18 02:02:23 +00004115 }
drha11846b2004-01-07 18:52:56 +00004116 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004117 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004118 }
drh4c583122008-01-04 22:01:03 +00004119 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004120 break;
4121}
4122
danielk19771f4aa332008-01-03 09:51:55 +00004123/* Opcode: Insert P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004124** Synopsis: intkey=r[P3] data=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004125**
jplyon5a564222003-06-02 06:15:58 +00004126** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00004127** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00004128** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00004129** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00004130** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00004131**
danielk19771f4aa332008-01-03 09:51:55 +00004132** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4133** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00004134** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00004135** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00004136**
drh3e9ca092009-09-08 01:14:48 +00004137** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4138** the last seek operation (OP_NotExists) was a success, then this
4139** operation will not attempt to find the appropriate row before doing
4140** the insert but will instead overwrite the row that the cursor is
4141** currently pointing to. Presumably, the prior OP_NotExists opcode
4142** has already positioned the cursor correctly. This is an optimization
4143** that boosts performance by avoiding redundant seeks.
4144**
4145** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4146** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4147** is part of an INSERT operation. The difference is only important to
4148** the update hook.
4149**
drh66a51672008-01-03 00:01:23 +00004150** Parameter P4 may point to a string containing the table-name, or
danielk19771f6eec52006-06-16 06:17:47 +00004151** may be NULL. If it is not NULL, then the update-hook
4152** (sqlite3.xUpdateCallback) is invoked following a successful insert.
4153**
drh93aed5a2008-01-16 17:46:38 +00004154** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4155** allocated, then ownership of P2 is transferred to the pseudo-cursor
4156** and register P2 becomes ephemeral. If the cursor is changed, the
4157** value of register P2 will then change. Make sure this does not
4158** cause any problems.)
4159**
drhf0863fe2005-06-12 21:35:51 +00004160** This instruction only works on tables. The equivalent instruction
4161** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00004162*/
drhe05c9292009-10-29 13:48:10 +00004163/* Opcode: InsertInt P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004164** Synopsis: intkey=P3 data=r[P2]
drhe05c9292009-10-29 13:48:10 +00004165**
4166** This works exactly like OP_Insert except that the key is the
4167** integer value P3, not the value of the integer stored in register P3.
4168*/
4169case OP_Insert:
4170case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00004171 Mem *pData; /* MEM cell holding data for the record to be inserted */
4172 Mem *pKey; /* MEM cell holding key for the record */
4173 i64 iKey; /* The integer ROWID or key for the record to be inserted */
4174 VdbeCursor *pC; /* Cursor to table into which insert is written */
4175 int nZero; /* Number of zero-bytes to append */
drh1fd522f2013-11-21 00:10:35 +00004176 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
drh3e9ca092009-09-08 01:14:48 +00004177 const char *zDb; /* database name - used by the update hook */
4178 const char *zTbl; /* Table name - used by the opdate hook */
4179 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
drh856c1032009-06-02 15:21:42 +00004180
drha6c2ed92009-11-14 23:22:23 +00004181 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00004182 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh2b4ded92010-09-27 21:09:31 +00004183 assert( memIsValid(pData) );
drh653b82a2009-06-22 11:10:47 +00004184 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00004185 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00004186 assert( pC->pCursor!=0 );
4187 assert( pC->pseudoTableReg==0 );
drha05a7222008-01-19 03:35:58 +00004188 assert( pC->isTable );
drh5b6afba2008-01-05 16:29:28 +00004189 REGISTER_TRACE(pOp->p2, pData);
danielk19775f8d8a82004-05-11 00:28:42 +00004190
drhe05c9292009-10-29 13:48:10 +00004191 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00004192 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00004193 assert( pKey->flags & MEM_Int );
drh2b4ded92010-09-27 21:09:31 +00004194 assert( memIsValid(pKey) );
drhe05c9292009-10-29 13:48:10 +00004195 REGISTER_TRACE(pOp->p3, pKey);
4196 iKey = pKey->u.i;
4197 }else{
4198 assert( pOp->opcode==OP_InsertInt );
4199 iKey = pOp->p3;
4200 }
4201
drha05a7222008-01-19 03:35:58 +00004202 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh99a66922011-05-13 18:51:42 +00004203 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
drha05a7222008-01-19 03:35:58 +00004204 if( pData->flags & MEM_Null ){
4205 pData->z = 0;
4206 pData->n = 0;
4207 }else{
4208 assert( pData->flags & (MEM_Blob|MEM_Str) );
4209 }
drh3e9ca092009-09-08 01:14:48 +00004210 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4211 if( pData->flags & MEM_Zero ){
4212 nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00004213 }else{
drh3e9ca092009-09-08 01:14:48 +00004214 nZero = 0;
drha05a7222008-01-19 03:35:58 +00004215 }
drh3e9ca092009-09-08 01:14:48 +00004216 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
4217 pData->z, pData->n, nZero,
drhebf10b12013-11-25 17:38:26 +00004218 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
drh3e9ca092009-09-08 01:14:48 +00004219 );
drha05a7222008-01-19 03:35:58 +00004220 pC->deferredMoveto = 0;
4221 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004222
drha05a7222008-01-19 03:35:58 +00004223 /* Invoke the update-hook if required. */
4224 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
drh856c1032009-06-02 15:21:42 +00004225 zDb = db->aDb[pC->iDb].zName;
4226 zTbl = pOp->p4.z;
4227 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
drha05a7222008-01-19 03:35:58 +00004228 assert( pC->isTable );
4229 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4230 assert( pC->iDb>=0 );
4231 }
drh5e00f6c2001-09-13 13:46:56 +00004232 break;
4233}
4234
drh98757152008-01-09 23:04:12 +00004235/* Opcode: Delete P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00004236**
drh5edc3122001-09-13 21:53:09 +00004237** Delete the record at which the P1 cursor is currently pointing.
4238**
4239** The cursor will be left pointing at either the next or the previous
4240** record in the table. If it is left pointing at the next record, then
drhb19a2bc2001-09-16 00:13:26 +00004241** the next Next instruction will be a no-op. Hence it is OK to delete
drhbc5cf382014-08-06 01:08:07 +00004242** a record from within a Next loop.
drhc8d30ac2002-04-12 10:08:59 +00004243**
rdcb0c374f2004-02-20 22:53:38 +00004244** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
danielk1977b28af712004-06-21 06:50:26 +00004245** incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00004246**
drh91fd4d42008-01-19 20:11:25 +00004247** P1 must not be pseudo-table. It has to be a real table with
4248** multiple rows.
4249**
4250** If P4 is not NULL, then it is the name of the table that P1 is
4251** pointing to. The update hook will be invoked, if it exists.
4252** If P4 is not NULL then the P1 cursor must have been positioned
4253** using OP_NotFound prior to invoking this opcode.
drh5e00f6c2001-09-13 13:46:56 +00004254*/
drh9cbf3422008-01-17 16:22:13 +00004255case OP_Delete: {
drhdfe88ec2008-11-03 20:55:06 +00004256 VdbeCursor *pC;
drh91fd4d42008-01-19 20:11:25 +00004257
drh653b82a2009-06-22 11:10:47 +00004258 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4259 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004260 assert( pC!=0 );
drh91fd4d42008-01-19 20:11:25 +00004261 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
drh9a65f2c2009-06-22 19:05:40 +00004262 assert( pC->deferredMoveto==0 );
drh9a65f2c2009-06-22 19:05:40 +00004263
drhb53a5a92014-10-12 22:37:22 +00004264#ifdef SQLITE_DEBUG
4265 /* The seek operation that positioned the cursor prior to OP_Delete will
4266 ** have also set the pC->movetoTarget field to the rowid of the row that
4267 ** is being deleted */
4268 if( pOp->p4.z && pC->isTable ){
4269 i64 iKey = 0;
4270 sqlite3BtreeKeySize(pC->pCursor, &iKey);
4271 assert( pC->movetoTarget==iKey );
4272 }
4273#endif
4274
drh91fd4d42008-01-19 20:11:25 +00004275 rc = sqlite3BtreeDelete(pC->pCursor);
drh91fd4d42008-01-19 20:11:25 +00004276 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004277
drh91fd4d42008-01-19 20:11:25 +00004278 /* Invoke the update-hook if required. */
drhbbbb0e82013-11-26 23:27:07 +00004279 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){
drh2c77be02013-11-27 21:07:03 +00004280 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
drhb53a5a92014-10-12 22:37:22 +00004281 db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);
drh91fd4d42008-01-19 20:11:25 +00004282 assert( pC->iDb>=0 );
drh5e00f6c2001-09-13 13:46:56 +00004283 }
danielk1977b28af712004-06-21 06:50:26 +00004284 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
rdcb0c374f2004-02-20 22:53:38 +00004285 break;
4286}
drhb7f1d9a2009-09-08 02:27:58 +00004287/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00004288**
drhb7f1d9a2009-09-08 02:27:58 +00004289** The value of the change counter is copied to the database handle
4290** change counter (returned by subsequent calls to sqlite3_changes()).
4291** Then the VMs internal change counter resets to 0.
4292** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00004293*/
drh9cbf3422008-01-17 16:22:13 +00004294case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00004295 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00004296 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00004297 break;
4298}
4299
drh1153c7b2013-11-01 22:02:56 +00004300/* Opcode: SorterCompare P1 P2 P3 P4
drhac502322014-07-30 13:56:48 +00004301** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
dan5134d132011-09-02 10:31:11 +00004302**
drh1153c7b2013-11-01 22:02:56 +00004303** P1 is a sorter cursor. This instruction compares a prefix of the
drhbc5cf382014-08-06 01:08:07 +00004304** record blob in register P3 against a prefix of the entry that
drhac502322014-07-30 13:56:48 +00004305** the sorter cursor currently points to. Only the first P4 fields
4306** of r[P3] and the sorter record are compared.
drh1153c7b2013-11-01 22:02:56 +00004307**
4308** If either P3 or the sorter contains a NULL in one of their significant
4309** fields (not counting the P4 fields at the end which are ignored) then
4310** the comparison is assumed to be equal.
4311**
4312** Fall through to next instruction if the two records compare equal to
4313** each other. Jump to P2 if they are different.
dan5134d132011-09-02 10:31:11 +00004314*/
4315case OP_SorterCompare: {
4316 VdbeCursor *pC;
4317 int res;
drhac502322014-07-30 13:56:48 +00004318 int nKeyCol;
dan5134d132011-09-02 10:31:11 +00004319
4320 pC = p->apCsr[pOp->p1];
4321 assert( isSorter(pC) );
drh1153c7b2013-11-01 22:02:56 +00004322 assert( pOp->p4type==P4_INT32 );
dan5134d132011-09-02 10:31:11 +00004323 pIn3 = &aMem[pOp->p3];
drhac502322014-07-30 13:56:48 +00004324 nKeyCol = pOp->p4.i;
drh958d2612014-04-18 13:40:07 +00004325 res = 0;
drhac502322014-07-30 13:56:48 +00004326 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
drh688852a2014-02-17 22:40:43 +00004327 VdbeBranchTaken(res!=0,2);
drhf56fa462015-04-13 21:39:54 +00004328 if( res ) goto jump_to_p2;
dan5134d132011-09-02 10:31:11 +00004329 break;
4330};
4331
drh6cf4a7d2014-10-13 13:00:58 +00004332/* Opcode: SorterData P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004333** Synopsis: r[P2]=data
dan5134d132011-09-02 10:31:11 +00004334**
4335** Write into register P2 the current sorter data for sorter cursor P1.
drh6cf4a7d2014-10-13 13:00:58 +00004336** Then clear the column header cache on cursor P3.
4337**
4338** This opcode is normally use to move a record out of the sorter and into
4339** a register that is the source for a pseudo-table cursor created using
4340** OpenPseudo. That pseudo-table cursor is the one that is identified by
4341** parameter P3. Clearing the P3 column cache as part of this opcode saves
4342** us from having to issue a separate NullRow instruction to clear that cache.
dan5134d132011-09-02 10:31:11 +00004343*/
4344case OP_SorterData: {
4345 VdbeCursor *pC;
drh3a949872012-09-18 13:20:13 +00004346
dan5134d132011-09-02 10:31:11 +00004347 pOut = &aMem[pOp->p2];
4348 pC = p->apCsr[pOp->p1];
drh14da87f2013-11-20 21:51:33 +00004349 assert( isSorter(pC) );
dan5134d132011-09-02 10:31:11 +00004350 rc = sqlite3VdbeSorterRowkey(pC, pOut);
dan38524132014-05-01 20:26:48 +00004351 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
drh6cf4a7d2014-10-13 13:00:58 +00004352 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4353 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
dan5134d132011-09-02 10:31:11 +00004354 break;
4355}
4356
drh98757152008-01-09 23:04:12 +00004357/* Opcode: RowData P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004358** Synopsis: r[P2]=data
drh70ce3f02003-04-15 19:22:22 +00004359**
drh98757152008-01-09 23:04:12 +00004360** Write into register P2 the complete row data for cursor P1.
4361** There is no interpretation of the data.
4362** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004363** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00004364**
drhde4fcfd2008-01-19 23:50:26 +00004365** If the P1 cursor must be pointing to a valid row (not a NULL row)
4366** of a real table, not a pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00004367*/
drh98757152008-01-09 23:04:12 +00004368/* Opcode: RowKey P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004369** Synopsis: r[P2]=key
drh143f3c42004-01-07 20:37:52 +00004370**
drh98757152008-01-09 23:04:12 +00004371** Write into register P2 the complete row key for cursor P1.
4372** There is no interpretation of the data.
drh0fd61352014-02-07 02:29:45 +00004373** The key is copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004374** it is found in the database file.
drh143f3c42004-01-07 20:37:52 +00004375**
drhde4fcfd2008-01-19 23:50:26 +00004376** If the P1 cursor must be pointing to a valid row (not a NULL row)
4377** of a real table, not a pseudo-table.
drh143f3c42004-01-07 20:37:52 +00004378*/
danielk1977a7a8e142008-02-13 18:25:27 +00004379case OP_RowKey:
4380case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00004381 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00004382 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00004383 u32 n;
drh856c1032009-06-02 15:21:42 +00004384 i64 n64;
drh70ce3f02003-04-15 19:22:22 +00004385
drha6c2ed92009-11-14 23:22:23 +00004386 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004387 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00004388
drhf0863fe2005-06-12 21:35:51 +00004389 /* Note that RowKey and RowData are really exactly the same instruction */
drh653b82a2009-06-22 11:10:47 +00004390 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4391 pC = p->apCsr[pOp->p1];
drh14da87f2013-11-20 21:51:33 +00004392 assert( isSorter(pC)==0 );
drhc6aff302011-09-01 15:32:47 +00004393 assert( pC->isTable || pOp->opcode!=OP_RowData );
drh14da87f2013-11-20 21:51:33 +00004394 assert( pC->isTable==0 || pOp->opcode==OP_RowData );
drh4774b132004-06-12 20:12:51 +00004395 assert( pC!=0 );
drhde4fcfd2008-01-19 23:50:26 +00004396 assert( pC->nullRow==0 );
drh3e9ca092009-09-08 01:14:48 +00004397 assert( pC->pseudoTableReg==0 );
drhde4fcfd2008-01-19 23:50:26 +00004398 assert( pC->pCursor!=0 );
4399 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004400
4401 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4402 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
drhc22284f2014-10-13 16:02:20 +00004403 ** the cursor. If this where not the case, on of the following assert()s
4404 ** would fail. Should this ever change (because of changes in the code
4405 ** generator) then the fix would be to insert a call to
4406 ** sqlite3VdbeCursorMoveto().
drh9a65f2c2009-06-22 19:05:40 +00004407 */
4408 assert( pC->deferredMoveto==0 );
drhc22284f2014-10-13 16:02:20 +00004409 assert( sqlite3BtreeCursorIsValid(pCrsr) );
4410#if 0 /* Not required due to the previous to assert() statements */
drhde4fcfd2008-01-19 23:50:26 +00004411 rc = sqlite3VdbeCursorMoveto(pC);
drhc22284f2014-10-13 16:02:20 +00004412 if( rc!=SQLITE_OK ) goto abort_due_to_error;
4413#endif
drh9a65f2c2009-06-22 19:05:40 +00004414
drh14da87f2013-11-20 21:51:33 +00004415 if( pC->isTable==0 ){
drhde4fcfd2008-01-19 23:50:26 +00004416 assert( !pC->isTable );
drhb07028f2011-10-14 21:49:18 +00004417 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
drhc27ae612009-07-14 18:35:44 +00004418 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhbb4957f2008-03-20 14:03:29 +00004419 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhde4fcfd2008-01-19 23:50:26 +00004420 goto too_big;
drh70ce3f02003-04-15 19:22:22 +00004421 }
drhbfb19dc2009-06-05 16:46:53 +00004422 n = (u32)n64;
drhde4fcfd2008-01-19 23:50:26 +00004423 }else{
drhb07028f2011-10-14 21:49:18 +00004424 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
drhea8ffdf2009-07-22 00:35:23 +00004425 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
shane75ac1de2009-06-09 18:58:52 +00004426 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00004427 goto too_big;
4428 }
drhde4fcfd2008-01-19 23:50:26 +00004429 }
drh722246e2014-10-07 23:02:24 +00004430 testcase( n==0 );
4431 if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
danielk1977a7a8e142008-02-13 18:25:27 +00004432 goto no_mem;
drhde4fcfd2008-01-19 23:50:26 +00004433 }
danielk1977a7a8e142008-02-13 18:25:27 +00004434 pOut->n = n;
4435 MemSetTypeFlag(pOut, MEM_Blob);
drh14da87f2013-11-20 21:51:33 +00004436 if( pC->isTable==0 ){
drhde4fcfd2008-01-19 23:50:26 +00004437 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4438 }else{
4439 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
drh5e00f6c2001-09-13 13:46:56 +00004440 }
danielk197796cb76f2008-01-04 13:24:28 +00004441 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
drhb7654112008-01-12 12:48:07 +00004442 UPDATE_MAX_BLOBSIZE(pOut);
drhee0ec8e2013-10-31 17:38:01 +00004443 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00004444 break;
4445}
4446
drh2133d822008-01-03 18:44:59 +00004447/* Opcode: Rowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004448** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00004449**
drh2133d822008-01-03 18:44:59 +00004450** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004451** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004452**
4453** P1 can be either an ordinary table or a virtual table. There used to
4454** be a separate OP_VRowid opcode for use with virtual tables, but this
4455** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004456*/
drh27a348c2015-04-13 19:14:06 +00004457case OP_Rowid: { /* out2 */
drhdfe88ec2008-11-03 20:55:06 +00004458 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004459 i64 v;
drh856c1032009-06-02 15:21:42 +00004460 sqlite3_vtab *pVtab;
4461 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004462
drh27a348c2015-04-13 19:14:06 +00004463 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00004464 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4465 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004466 assert( pC!=0 );
drh21172c42012-10-30 00:29:07 +00004467 assert( pC->pseudoTableReg==0 || pC->nullRow );
drh044925b2009-04-22 17:15:02 +00004468 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004469 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004470 break;
4471 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004472 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004473#ifndef SQLITE_OMIT_VIRTUALTABLE
4474 }else if( pC->pVtabCursor ){
drh044925b2009-04-22 17:15:02 +00004475 pVtab = pC->pVtabCursor->pVtab;
4476 pModule = pVtab->pModule;
4477 assert( pModule->xRowid );
drh044925b2009-04-22 17:15:02 +00004478 rc = pModule->xRowid(pC->pVtabCursor, &v);
dan016f7812013-08-21 17:35:48 +00004479 sqlite3VtabImportErrmsg(p, pVtab);
drh044925b2009-04-22 17:15:02 +00004480#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004481 }else{
drh6be240e2009-07-14 02:33:02 +00004482 assert( pC->pCursor!=0 );
drhc22284f2014-10-13 16:02:20 +00004483 rc = sqlite3VdbeCursorRestore(pC);
drh61495262009-04-22 15:32:59 +00004484 if( rc ) goto abort_due_to_error;
dan2b8669a2014-11-17 19:42:48 +00004485 if( pC->nullRow ){
4486 pOut->flags = MEM_Null;
4487 break;
4488 }
drhb53a5a92014-10-12 22:37:22 +00004489 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
drhc22284f2014-10-13 16:02:20 +00004490 assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */
drh5e00f6c2001-09-13 13:46:56 +00004491 }
drh4c583122008-01-04 22:01:03 +00004492 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004493 break;
4494}
4495
drh9cbf3422008-01-17 16:22:13 +00004496/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004497**
4498** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004499** that occur while the cursor is on the null row will always
4500** write a NULL.
drh17f71932002-02-21 12:01:27 +00004501*/
drh9cbf3422008-01-17 16:22:13 +00004502case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004503 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004504
drh653b82a2009-06-22 11:10:47 +00004505 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4506 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004507 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004508 pC->nullRow = 1;
drh399af1d2013-11-20 17:25:55 +00004509 pC->cacheStatus = CACHE_STALE;
danielk1977be51a652008-10-08 17:58:48 +00004510 if( pC->pCursor ){
4511 sqlite3BtreeClearCursor(pC->pCursor);
4512 }
drh17f71932002-02-21 12:01:27 +00004513 break;
4514}
4515
danb18e60b2015-04-01 16:18:00 +00004516/* Opcode: Last P1 P2 P3 * *
drh9562b552002-02-19 15:00:07 +00004517**
drh8af3f772014-07-25 18:01:06 +00004518** The next use of the Rowid or Column or Prev instruction for P1
drh9562b552002-02-19 15:00:07 +00004519** will refer to the last entry in the database table or index.
4520** If the table or index is empty and P2>0, then jump immediately to P2.
4521** If P2 is 0 or if the table or index is not empty, fall through
4522** to the following instruction.
drh8af3f772014-07-25 18:01:06 +00004523**
4524** This opcode leaves the cursor configured to move in reverse order,
4525** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004526** configured to use Prev, not Next.
drh9562b552002-02-19 15:00:07 +00004527*/
drh9cbf3422008-01-17 16:22:13 +00004528case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004529 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004530 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004531 int res;
drh9562b552002-02-19 15:00:07 +00004532
drh653b82a2009-06-22 11:10:47 +00004533 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4534 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004535 assert( pC!=0 );
drha05a7222008-01-19 03:35:58 +00004536 pCrsr = pC->pCursor;
drh7abc5402011-10-22 21:00:46 +00004537 res = 0;
drh3da046d2013-11-11 03:24:11 +00004538 assert( pCrsr!=0 );
4539 rc = sqlite3BtreeLast(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004540 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004541 pC->deferredMoveto = 0;
4542 pC->cacheStatus = CACHE_STALE;
danb18e60b2015-04-01 16:18:00 +00004543 pC->seekResult = pOp->p3;
drh8af3f772014-07-25 18:01:06 +00004544#ifdef SQLITE_DEBUG
4545 pC->seekOp = OP_Last;
4546#endif
drh688852a2014-02-17 22:40:43 +00004547 if( pOp->p2>0 ){
4548 VdbeBranchTaken(res!=0,2);
drhf56fa462015-04-13 21:39:54 +00004549 if( res ) goto jump_to_p2;
drh9562b552002-02-19 15:00:07 +00004550 }
4551 break;
4552}
4553
drh0342b1f2005-09-01 03:07:44 +00004554
drh9cbf3422008-01-17 16:22:13 +00004555/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004556**
4557** This opcode does exactly the same thing as OP_Rewind except that
4558** it increments an undocumented global variable used for testing.
4559**
4560** Sorting is accomplished by writing records into a sorting index,
4561** then rewinding that index and playing it back from beginning to
4562** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4563** rewinding so that the global variable will be incremented and
4564** regression tests can determine whether or not the optimizer is
4565** correctly optimizing out sorts.
4566*/
drhc6aff302011-09-01 15:32:47 +00004567case OP_SorterSort: /* jump */
drh9cbf3422008-01-17 16:22:13 +00004568case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00004569#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00004570 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00004571 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00004572#endif
drh9b47ee32013-08-20 03:13:51 +00004573 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
drh0342b1f2005-09-01 03:07:44 +00004574 /* Fall through into OP_Rewind */
4575}
drh9cbf3422008-01-17 16:22:13 +00004576/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004577**
drhf0863fe2005-06-12 21:35:51 +00004578** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00004579** will refer to the first entry in the database table or index.
dan04489b62014-10-31 20:11:32 +00004580** If the table or index is empty, jump immediately to P2.
4581** If the table or index is not empty, fall through to the following
4582** instruction.
drh8af3f772014-07-25 18:01:06 +00004583**
4584** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00004585** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004586** configured to use Next, not Prev.
drh5e00f6c2001-09-13 13:46:56 +00004587*/
drh9cbf3422008-01-17 16:22:13 +00004588case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004589 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004590 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00004591 int res;
drh5e00f6c2001-09-13 13:46:56 +00004592
drh653b82a2009-06-22 11:10:47 +00004593 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4594 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004595 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00004596 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
dan2411dea2010-07-03 05:56:09 +00004597 res = 1;
drh8af3f772014-07-25 18:01:06 +00004598#ifdef SQLITE_DEBUG
4599 pC->seekOp = OP_Rewind;
4600#endif
dan689ab892011-08-12 15:02:00 +00004601 if( isSorter(pC) ){
drh958d2612014-04-18 13:40:07 +00004602 rc = sqlite3VdbeSorterRewind(pC, &res);
dana205a482011-08-27 18:48:57 +00004603 }else{
4604 pCrsr = pC->pCursor;
4605 assert( pCrsr );
danielk19774adee202004-05-08 08:23:19 +00004606 rc = sqlite3BtreeFirst(pCrsr, &res);
drha11846b2004-01-07 18:52:56 +00004607 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004608 pC->cacheStatus = CACHE_STALE;
drhf4dada72004-05-11 09:57:35 +00004609 }
drh9c1905f2008-12-10 22:32:56 +00004610 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004611 assert( pOp->p2>0 && pOp->p2<p->nOp );
drh688852a2014-02-17 22:40:43 +00004612 VdbeBranchTaken(res!=0,2);
drhf56fa462015-04-13 21:39:54 +00004613 if( res ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00004614 break;
4615}
4616
drh0fd61352014-02-07 02:29:45 +00004617/* Opcode: Next P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004618**
4619** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00004620** table or index. If there are no more key/value pairs then fall through
4621** to the following instruction. But if the cursor advance was successful,
4622** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00004623**
drh5dad9a32014-07-25 18:37:42 +00004624** The Next opcode is only valid following an SeekGT, SeekGE, or
4625** OP_Rewind opcode used to position the cursor. Next is not allowed
4626** to follow SeekLT, SeekLE, or OP_Last.
drh8af3f772014-07-25 18:01:06 +00004627**
drhf93cd942013-11-21 03:12:25 +00004628** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
4629** been opened prior to this opcode or the program will segfault.
drh60a713c2008-01-21 16:22:45 +00004630**
drhe39a7322014-02-03 14:04:11 +00004631** The P3 value is a hint to the btree implementation. If P3==1, that
4632** means P1 is an SQL index and that this instruction could have been
4633** omitted if that index had been unique. P3 is usually 0. P3 is
4634** always either 0 or 1.
4635**
dana205a482011-08-27 18:48:57 +00004636** P4 is always of type P4_ADVANCE. The function pointer points to
4637** sqlite3BtreeNext().
4638**
drhafc266a2010-03-31 17:47:44 +00004639** If P5 is positive and the jump is taken, then event counter
4640** number P5-1 in the prepared statement is incremented.
4641**
drhf93cd942013-11-21 03:12:25 +00004642** See also: Prev, NextIfOpen
4643*/
drh0fd61352014-02-07 02:29:45 +00004644/* Opcode: NextIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00004645**
drh5dad9a32014-07-25 18:37:42 +00004646** This opcode works just like Next except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00004647** open it behaves a no-op.
drh8721ce42001-11-07 14:22:00 +00004648*/
drh0fd61352014-02-07 02:29:45 +00004649/* Opcode: Prev P1 P2 P3 P4 P5
drhc045ec52002-12-04 20:01:06 +00004650**
4651** Back up cursor P1 so that it points to the previous key/data pair in its
4652** table or index. If there is no previous key/value pairs then fall through
4653** to the following instruction. But if the cursor backup was successful,
4654** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00004655**
drh8af3f772014-07-25 18:01:06 +00004656**
drh5dad9a32014-07-25 18:37:42 +00004657** The Prev opcode is only valid following an SeekLT, SeekLE, or
4658** OP_Last opcode used to position the cursor. Prev is not allowed
4659** to follow SeekGT, SeekGE, or OP_Rewind.
drh8af3f772014-07-25 18:01:06 +00004660**
drhf93cd942013-11-21 03:12:25 +00004661** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
4662** not open then the behavior is undefined.
drhafc266a2010-03-31 17:47:44 +00004663**
drhe39a7322014-02-03 14:04:11 +00004664** The P3 value is a hint to the btree implementation. If P3==1, that
4665** means P1 is an SQL index and that this instruction could have been
4666** omitted if that index had been unique. P3 is usually 0. P3 is
4667** always either 0 or 1.
4668**
dana205a482011-08-27 18:48:57 +00004669** P4 is always of type P4_ADVANCE. The function pointer points to
4670** sqlite3BtreePrevious().
4671**
drhafc266a2010-03-31 17:47:44 +00004672** If P5 is positive and the jump is taken, then event counter
4673** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00004674*/
drh0fd61352014-02-07 02:29:45 +00004675/* Opcode: PrevIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00004676**
drh5dad9a32014-07-25 18:37:42 +00004677** This opcode works just like Prev except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00004678** open it behaves a no-op.
4679*/
4680case OP_SorterNext: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004681 VdbeCursor *pC;
drha3460582008-07-11 21:02:53 +00004682 int res;
drh8721ce42001-11-07 14:22:00 +00004683
drhf93cd942013-11-21 03:12:25 +00004684 pC = p->apCsr[pOp->p1];
4685 assert( isSorter(pC) );
drh323913c2014-03-23 16:29:23 +00004686 res = 0;
drhf93cd942013-11-21 03:12:25 +00004687 rc = sqlite3VdbeSorterNext(db, pC, &res);
4688 goto next_tail;
4689case OP_PrevIfOpen: /* jump */
4690case OP_NextIfOpen: /* jump */
4691 if( p->apCsr[pOp->p1]==0 ) break;
4692 /* Fall through */
4693case OP_Prev: /* jump */
4694case OP_Next: /* jump */
drh70ce3f02003-04-15 19:22:22 +00004695 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh9b47ee32013-08-20 03:13:51 +00004696 assert( pOp->p5<ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00004697 pC = p->apCsr[pOp->p1];
drhe39a7322014-02-03 14:04:11 +00004698 res = pOp->p3;
drhf93cd942013-11-21 03:12:25 +00004699 assert( pC!=0 );
4700 assert( pC->deferredMoveto==0 );
4701 assert( pC->pCursor );
drhe39a7322014-02-03 14:04:11 +00004702 assert( res==0 || (res==1 && pC->isTable==0) );
4703 testcase( res==1 );
drhf93cd942013-11-21 03:12:25 +00004704 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4705 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4706 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
4707 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
drh8af3f772014-07-25 18:01:06 +00004708
4709 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
4710 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
4711 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
4712 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
drhcefc87f2014-08-01 01:40:33 +00004713 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
drh8af3f772014-07-25 18:01:06 +00004714 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
4715 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
4716 || pC->seekOp==OP_Last );
4717
drhf93cd942013-11-21 03:12:25 +00004718 rc = pOp->p4.xAdvance(pC->pCursor, &res);
4719next_tail:
drha3460582008-07-11 21:02:53 +00004720 pC->cacheStatus = CACHE_STALE;
drh688852a2014-02-17 22:40:43 +00004721 VdbeBranchTaken(res==0,2);
drha3460582008-07-11 21:02:53 +00004722 if( res==0 ){
drhf93cd942013-11-21 03:12:25 +00004723 pC->nullRow = 0;
drh9b47ee32013-08-20 03:13:51 +00004724 p->aCounter[pOp->p5]++;
drh0f7eb612006-08-08 13:51:43 +00004725#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00004726 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00004727#endif
drhf56fa462015-04-13 21:39:54 +00004728 goto jump_to_p2_and_check_for_interrupt;
drhf93cd942013-11-21 03:12:25 +00004729 }else{
4730 pC->nullRow = 1;
drh8721ce42001-11-07 14:22:00 +00004731 }
drh49afe3a2013-07-10 03:05:14 +00004732 goto check_for_interrupt;
drh8721ce42001-11-07 14:22:00 +00004733}
4734
danielk1977de630352009-05-04 11:42:29 +00004735/* Opcode: IdxInsert P1 P2 P3 * P5
drh81316f82013-10-29 20:40:47 +00004736** Synopsis: key=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004737**
drhef8662b2011-06-20 21:47:58 +00004738** Register P2 holds an SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00004739** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00004740** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00004741**
drhaa9b8962008-01-08 02:57:55 +00004742** P3 is a flag that provides a hint to the b-tree layer that this
drhe4d90812007-03-29 05:51:49 +00004743** insert is likely to be an append.
4744**
mistachkin21a919f2014-02-07 03:28:02 +00004745** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
4746** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
4747** then the change counter is unchanged.
drh0fd61352014-02-07 02:29:45 +00004748**
mistachkin21a919f2014-02-07 03:28:02 +00004749** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
4750** just done a seek to the spot where the new entry is to be inserted.
4751** This flag avoids doing an extra seek.
drh0fd61352014-02-07 02:29:45 +00004752**
drhf0863fe2005-06-12 21:35:51 +00004753** This instruction only works for indices. The equivalent instruction
4754** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00004755*/
drhca892a72011-09-03 00:17:51 +00004756case OP_SorterInsert: /* in2 */
drh9cbf3422008-01-17 16:22:13 +00004757case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00004758 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004759 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004760 int nKey;
4761 const char *zKey;
4762
drh653b82a2009-06-22 11:10:47 +00004763 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4764 pC = p->apCsr[pOp->p1];
4765 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00004766 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
drh3c657212009-11-17 23:59:58 +00004767 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00004768 assert( pIn2->flags & MEM_Blob );
drh653b82a2009-06-22 11:10:47 +00004769 pCrsr = pC->pCursor;
drh6546af12013-11-04 15:23:25 +00004770 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh3da046d2013-11-11 03:24:11 +00004771 assert( pCrsr!=0 );
4772 assert( pC->isTable==0 );
4773 rc = ExpandBlob(pIn2);
4774 if( rc==SQLITE_OK ){
4775 if( isSorter(pC) ){
drh958d2612014-04-18 13:40:07 +00004776 rc = sqlite3VdbeSorterWrite(pC, pIn2);
drh3da046d2013-11-11 03:24:11 +00004777 }else{
4778 nKey = pIn2->n;
4779 zKey = pIn2->z;
4780 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4781 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4782 );
4783 assert( pC->deferredMoveto==0 );
4784 pC->cacheStatus = CACHE_STALE;
danielk1977d908f5a2007-05-11 07:08:28 +00004785 }
drh5e00f6c2001-09-13 13:46:56 +00004786 }
drh5e00f6c2001-09-13 13:46:56 +00004787 break;
4788}
4789
drh4308e342013-11-11 16:55:52 +00004790/* Opcode: IdxDelete P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00004791** Synopsis: key=r[P2@P3]
drh5e00f6c2001-09-13 13:46:56 +00004792**
drhe14006d2008-03-25 17:23:32 +00004793** The content of P3 registers starting at register P2 form
4794** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00004795** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00004796*/
drhe14006d2008-03-25 17:23:32 +00004797case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00004798 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004799 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00004800 int res;
4801 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00004802
drhe14006d2008-03-25 17:23:32 +00004803 assert( pOp->p3>0 );
dan3bc9f742013-08-15 16:18:39 +00004804 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
drh653b82a2009-06-22 11:10:47 +00004805 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4806 pC = p->apCsr[pOp->p1];
4807 assert( pC!=0 );
4808 pCrsr = pC->pCursor;
drh3da046d2013-11-11 03:24:11 +00004809 assert( pCrsr!=0 );
drh4308e342013-11-11 16:55:52 +00004810 assert( pOp->p5==0 );
drh3da046d2013-11-11 03:24:11 +00004811 r.pKeyInfo = pC->pKeyInfo;
4812 r.nField = (u16)pOp->p3;
dan1fed5da2014-02-25 21:01:25 +00004813 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00004814 r.aMem = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004815#ifdef SQLITE_DEBUG
drh3da046d2013-11-11 03:24:11 +00004816 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
drh2b4ded92010-09-27 21:09:31 +00004817#endif
drh3da046d2013-11-11 03:24:11 +00004818 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
4819 if( rc==SQLITE_OK && res==0 ){
4820 rc = sqlite3BtreeDelete(pCrsr);
drh5e00f6c2001-09-13 13:46:56 +00004821 }
drh3da046d2013-11-11 03:24:11 +00004822 assert( pC->deferredMoveto==0 );
4823 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004824 break;
4825}
4826
drh2133d822008-01-03 18:44:59 +00004827/* Opcode: IdxRowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004828** Synopsis: r[P2]=rowid
drh8721ce42001-11-07 14:22:00 +00004829**
drh2133d822008-01-03 18:44:59 +00004830** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00004831** the end of the index key pointed to by cursor P1. This integer should be
4832** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00004833**
drh9437bd22009-02-01 00:29:56 +00004834** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00004835*/
drh27a348c2015-04-13 19:14:06 +00004836case OP_IdxRowid: { /* out2 */
drh8721ce42001-11-07 14:22:00 +00004837 BtCursor *pCrsr;
drhdfe88ec2008-11-03 20:55:06 +00004838 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004839 i64 rowid;
drh8721ce42001-11-07 14:22:00 +00004840
drh27a348c2015-04-13 19:14:06 +00004841 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00004842 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4843 pC = p->apCsr[pOp->p1];
4844 assert( pC!=0 );
4845 pCrsr = pC->pCursor;
drh3da046d2013-11-11 03:24:11 +00004846 assert( pCrsr!=0 );
drh3c657212009-11-17 23:59:58 +00004847 pOut->flags = MEM_Null;
drh3da046d2013-11-11 03:24:11 +00004848 assert( pC->isTable==0 );
drhc22284f2014-10-13 16:02:20 +00004849 assert( pC->deferredMoveto==0 );
4850
4851 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
4852 ** out from under the cursor. That will never happend for an IdxRowid
4853 ** opcode, hence the NEVER() arround the check of the return value.
4854 */
4855 rc = sqlite3VdbeCursorRestore(pC);
4856 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4857
drh3da046d2013-11-11 03:24:11 +00004858 if( !pC->nullRow ){
drh2dc06482013-12-11 00:59:10 +00004859 rowid = 0; /* Not needed. Only used to silence a warning. */
drhd3b74202014-09-17 16:41:15 +00004860 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
drh3da046d2013-11-11 03:24:11 +00004861 if( rc!=SQLITE_OK ){
4862 goto abort_due_to_error;
danielk19773d1bfea2004-05-14 11:00:53 +00004863 }
drh3da046d2013-11-11 03:24:11 +00004864 pOut->u.i = rowid;
4865 pOut->flags = MEM_Int;
drh8721ce42001-11-07 14:22:00 +00004866 }
4867 break;
4868}
4869
danielk197761dd5832008-04-18 11:31:12 +00004870/* Opcode: IdxGE P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00004871** Synopsis: key=r[P3@P4]
drh8721ce42001-11-07 14:22:00 +00004872**
danielk197761dd5832008-04-18 11:31:12 +00004873** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00004874** key that omits the PRIMARY KEY. Compare this key value against the index
4875** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
4876** fields at the end.
drhf3218fe2004-05-28 08:21:02 +00004877**
danielk197761dd5832008-04-18 11:31:12 +00004878** If the P1 index entry is greater than or equal to the key value
4879** then jump to P2. Otherwise fall through to the next instruction.
drh4a1d3652014-02-14 15:13:36 +00004880*/
4881/* Opcode: IdxGT P1 P2 P3 P4 P5
4882** Synopsis: key=r[P3@P4]
drh772ae622004-05-19 13:13:08 +00004883**
drh4a1d3652014-02-14 15:13:36 +00004884** The P4 register values beginning with P3 form an unpacked index
4885** key that omits the PRIMARY KEY. Compare this key value against the index
4886** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
4887** fields at the end.
4888**
4889** If the P1 index entry is greater than the key value
4890** then jump to P2. Otherwise fall through to the next instruction.
drh8721ce42001-11-07 14:22:00 +00004891*/
drh3bb9b932010-08-06 02:10:00 +00004892/* Opcode: IdxLT P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00004893** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00004894**
danielk197761dd5832008-04-18 11:31:12 +00004895** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00004896** key that omits the PRIMARY KEY or ROWID. Compare this key value against
4897** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
4898** ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004899**
danielk197761dd5832008-04-18 11:31:12 +00004900** If the P1 index entry is less than the key value then jump to P2.
4901** Otherwise fall through to the next instruction.
drhc045ec52002-12-04 20:01:06 +00004902*/
drh4a1d3652014-02-14 15:13:36 +00004903/* Opcode: IdxLE P1 P2 P3 P4 P5
4904** Synopsis: key=r[P3@P4]
4905**
4906** The P4 register values beginning with P3 form an unpacked index
4907** key that omits the PRIMARY KEY or ROWID. Compare this key value against
4908** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
4909** ROWID on the P1 index.
4910**
4911** If the P1 index entry is less than or equal to the key value then jump
4912** to P2. Otherwise fall through to the next instruction.
4913*/
4914case OP_IdxLE: /* jump */
4915case OP_IdxGT: /* jump */
drh93952eb2009-11-13 19:43:43 +00004916case OP_IdxLT: /* jump */
drh4a1d3652014-02-14 15:13:36 +00004917case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004918 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004919 int res;
4920 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00004921
drh653b82a2009-06-22 11:10:47 +00004922 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4923 pC = p->apCsr[pOp->p1];
4924 assert( pC!=0 );
drhd4187c72010-08-30 22:15:45 +00004925 assert( pC->isOrdered );
drh3da046d2013-11-11 03:24:11 +00004926 assert( pC->pCursor!=0);
4927 assert( pC->deferredMoveto==0 );
4928 assert( pOp->p5==0 || pOp->p5==1 );
4929 assert( pOp->p4type==P4_INT32 );
4930 r.pKeyInfo = pC->pKeyInfo;
4931 r.nField = (u16)pOp->p4.i;
drh4a1d3652014-02-14 15:13:36 +00004932 if( pOp->opcode<OP_IdxLT ){
4933 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
dan1fed5da2014-02-25 21:01:25 +00004934 r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00004935 }else{
drh4a1d3652014-02-14 15:13:36 +00004936 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
dan1fed5da2014-02-25 21:01:25 +00004937 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00004938 }
4939 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00004940#ifdef SQLITE_DEBUG
drh3da046d2013-11-11 03:24:11 +00004941 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
drh2b4ded92010-09-27 21:09:31 +00004942#endif
drh2dc06482013-12-11 00:59:10 +00004943 res = 0; /* Not needed. Only used to silence a warning. */
drhd3b74202014-09-17 16:41:15 +00004944 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
drh4a1d3652014-02-14 15:13:36 +00004945 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
4946 if( (pOp->opcode&1)==(OP_IdxLT&1) ){
4947 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
drh3da046d2013-11-11 03:24:11 +00004948 res = -res;
4949 }else{
drh4a1d3652014-02-14 15:13:36 +00004950 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
drh3da046d2013-11-11 03:24:11 +00004951 res++;
4952 }
drh688852a2014-02-17 22:40:43 +00004953 VdbeBranchTaken(res>0,2);
drhf56fa462015-04-13 21:39:54 +00004954 if( res>0 ) goto jump_to_p2;
drh8721ce42001-11-07 14:22:00 +00004955 break;
4956}
4957
drh98757152008-01-09 23:04:12 +00004958/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004959**
4960** Delete an entire database table or index whose root page in the database
4961** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00004962**
drh98757152008-01-09 23:04:12 +00004963** The table being destroyed is in the main database file if P3==0. If
4964** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00004965** that is used to store tables create using CREATE TEMPORARY TABLE.
4966**
drh205f48e2004-11-05 00:43:11 +00004967** If AUTOVACUUM is enabled then it is possible that another root page
4968** might be moved into the newly deleted root page in order to keep all
4969** root pages contiguous at the beginning of the database. The former
4970** value of the root page that moved - its value before the move occurred -
drh9cbf3422008-01-17 16:22:13 +00004971** is stored in register P2. If no page
drh98757152008-01-09 23:04:12 +00004972** movement was required (because the table being dropped was already
4973** the last one in the database) then a zero is stored in register P2.
4974** If AUTOVACUUM is disabled then a zero is stored in register P2.
drh205f48e2004-11-05 00:43:11 +00004975**
drhb19a2bc2001-09-16 00:13:26 +00004976** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00004977*/
drh27a348c2015-04-13 19:14:06 +00004978case OP_Destroy: { /* out2 */
danielk1977a0bf2652004-11-04 14:30:04 +00004979 int iMoved;
drh856c1032009-06-02 15:21:42 +00004980 int iDb;
drh3a949872012-09-18 13:20:13 +00004981
drh9e92a472013-06-27 17:40:30 +00004982 assert( p->readOnly==0 );
drh27a348c2015-04-13 19:14:06 +00004983 pOut = out2Prerelease(p, pOp);
drh3c657212009-11-17 23:59:58 +00004984 pOut->flags = MEM_Null;
drh086723a2015-03-24 12:51:52 +00004985 if( db->nVdbeRead > db->nVDestroy+1 ){
danielk1977e6efa742004-11-10 11:55:10 +00004986 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00004987 p->errorAction = OE_Abort;
danielk1977e6efa742004-11-10 11:55:10 +00004988 }else{
drh856c1032009-06-02 15:21:42 +00004989 iDb = pOp->p3;
drha7ab6d82014-07-21 15:44:39 +00004990 assert( DbMaskTest(p->btreeMask, iDb) );
drh2dc06482013-12-11 00:59:10 +00004991 iMoved = 0; /* Not needed. Only to silence a warning. */
drh98757152008-01-09 23:04:12 +00004992 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00004993 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00004994 pOut->u.i = iMoved;
drh3765df42006-06-28 18:18:09 +00004995#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977e6efa742004-11-10 11:55:10 +00004996 if( rc==SQLITE_OK && iMoved!=0 ){
drhcdf011d2011-04-04 21:25:28 +00004997 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
4998 /* All OP_Destroy operations occur on the same btree */
4999 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5000 resetSchemaOnFault = iDb+1;
danielk1977e6efa742004-11-10 11:55:10 +00005001 }
drh3765df42006-06-28 18:18:09 +00005002#endif
danielk1977a0bf2652004-11-04 14:30:04 +00005003 }
drh5e00f6c2001-09-13 13:46:56 +00005004 break;
5005}
5006
danielk1977c7af4842008-10-27 13:59:33 +00005007/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00005008**
5009** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00005010** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00005011** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00005012**
drhf57b3392001-10-08 13:22:32 +00005013** The table being clear is in the main database file if P2==0. If
5014** P2==1 then the table to be clear is in the auxiliary database file
5015** that is used to store tables create using CREATE TEMPORARY TABLE.
5016**
shanebe217792009-03-05 04:20:31 +00005017** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00005018** intkey table (an SQL table, not an index). In this case the row change
5019** count is incremented by the number of rows in the table being cleared.
5020** If P3 is greater than zero, then the value stored in register P3 is
5021** also incremented by the number of rows in the table being cleared.
5022**
drhb19a2bc2001-09-16 00:13:26 +00005023** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00005024*/
drh9cbf3422008-01-17 16:22:13 +00005025case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00005026 int nChange;
5027
5028 nChange = 0;
drh9e92a472013-06-27 17:40:30 +00005029 assert( p->readOnly==0 );
drha7ab6d82014-07-21 15:44:39 +00005030 assert( DbMaskTest(p->btreeMask, pOp->p2) );
danielk1977c7af4842008-10-27 13:59:33 +00005031 rc = sqlite3BtreeClearTable(
5032 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5033 );
5034 if( pOp->p3 ){
5035 p->nChange += nChange;
5036 if( pOp->p3>0 ){
drh2b4ded92010-09-27 21:09:31 +00005037 assert( memIsValid(&aMem[pOp->p3]) );
5038 memAboutToChange(p, &aMem[pOp->p3]);
drha6c2ed92009-11-14 23:22:23 +00005039 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00005040 }
5041 }
drh5edc3122001-09-13 21:53:09 +00005042 break;
5043}
5044
drh65ea12c2014-03-19 17:41:36 +00005045/* Opcode: ResetSorter P1 * * * *
drh079a3072014-03-19 14:10:55 +00005046**
drh65ea12c2014-03-19 17:41:36 +00005047** Delete all contents from the ephemeral table or sorter
5048** that is open on cursor P1.
drh079a3072014-03-19 14:10:55 +00005049**
drh65ea12c2014-03-19 17:41:36 +00005050** This opcode only works for cursors used for sorting and
5051** opened with OP_OpenEphemeral or OP_SorterOpen.
drh079a3072014-03-19 14:10:55 +00005052*/
drh65ea12c2014-03-19 17:41:36 +00005053case OP_ResetSorter: {
drh079a3072014-03-19 14:10:55 +00005054 VdbeCursor *pC;
5055
5056 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5057 pC = p->apCsr[pOp->p1];
5058 assert( pC!=0 );
drh65ea12c2014-03-19 17:41:36 +00005059 if( pC->pSorter ){
5060 sqlite3VdbeSorterReset(db, pC->pSorter);
5061 }else{
5062 assert( pC->isEphemeral );
5063 rc = sqlite3BtreeClearTableOfCursor(pC->pCursor);
5064 }
drh079a3072014-03-19 14:10:55 +00005065 break;
5066}
5067
drh4c583122008-01-04 22:01:03 +00005068/* Opcode: CreateTable P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005069** Synopsis: r[P2]=root iDb=P1
drh5b2fd562001-09-13 15:21:31 +00005070**
drh4c583122008-01-04 22:01:03 +00005071** Allocate a new table in the main database file if P1==0 or in the
5072** auxiliary database file if P1==1 or in an attached database if
5073** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00005074** register P2
drh5b2fd562001-09-13 15:21:31 +00005075**
drhc6b52df2002-01-04 03:09:29 +00005076** The difference between a table and an index is this: A table must
5077** have a 4-byte integer key and can have arbitrary data. An index
5078** has an arbitrary key but no data.
5079**
drhb19a2bc2001-09-16 00:13:26 +00005080** See also: CreateIndex
drh5b2fd562001-09-13 15:21:31 +00005081*/
drh4c583122008-01-04 22:01:03 +00005082/* Opcode: CreateIndex P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005083** Synopsis: r[P2]=root iDb=P1
drhf57b3392001-10-08 13:22:32 +00005084**
drh4c583122008-01-04 22:01:03 +00005085** Allocate a new index in the main database file if P1==0 or in the
5086** auxiliary database file if P1==1 or in an attached database if
5087** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00005088** register P2.
drhf57b3392001-10-08 13:22:32 +00005089**
drhc6b52df2002-01-04 03:09:29 +00005090** See documentation on OP_CreateTable for additional information.
drhf57b3392001-10-08 13:22:32 +00005091*/
drh27a348c2015-04-13 19:14:06 +00005092case OP_CreateIndex: /* out2 */
5093case OP_CreateTable: { /* out2 */
drh856c1032009-06-02 15:21:42 +00005094 int pgno;
drhf328bc82004-05-10 23:29:49 +00005095 int flags;
drh234c39d2004-07-24 03:30:47 +00005096 Db *pDb;
drh856c1032009-06-02 15:21:42 +00005097
drh27a348c2015-04-13 19:14:06 +00005098 pOut = out2Prerelease(p, pOp);
drh856c1032009-06-02 15:21:42 +00005099 pgno = 0;
drh234c39d2004-07-24 03:30:47 +00005100 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005101 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00005102 assert( p->readOnly==0 );
drh234c39d2004-07-24 03:30:47 +00005103 pDb = &db->aDb[pOp->p1];
5104 assert( pDb->pBt!=0 );
drhc6b52df2002-01-04 03:09:29 +00005105 if( pOp->opcode==OP_CreateTable ){
danielk197794076252004-05-14 12:16:11 +00005106 /* flags = BTREE_INTKEY; */
drhd4187c72010-08-30 22:15:45 +00005107 flags = BTREE_INTKEY;
drhc6b52df2002-01-04 03:09:29 +00005108 }else{
drhd4187c72010-08-30 22:15:45 +00005109 flags = BTREE_BLOBKEY;
drhc6b52df2002-01-04 03:09:29 +00005110 }
drh234c39d2004-07-24 03:30:47 +00005111 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
drh88a003e2008-12-11 16:17:03 +00005112 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00005113 break;
5114}
5115
drh22645842011-03-24 01:34:03 +00005116/* Opcode: ParseSchema P1 * * P4 *
drh234c39d2004-07-24 03:30:47 +00005117**
5118** Read and parse all entries from the SQLITE_MASTER table of database P1
drh22645842011-03-24 01:34:03 +00005119** that match the WHERE clause P4.
drh234c39d2004-07-24 03:30:47 +00005120**
5121** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00005122** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00005123*/
drh9cbf3422008-01-17 16:22:13 +00005124case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00005125 int iDb;
5126 const char *zMaster;
5127 char *zSql;
5128 InitData initData;
5129
drhbdaec522011-04-04 00:14:43 +00005130 /* Any prepared statement that invokes this opcode will hold mutexes
5131 ** on every btree. This is a prerequisite for invoking
5132 ** sqlite3InitCallback().
5133 */
5134#ifdef SQLITE_DEBUG
5135 for(iDb=0; iDb<db->nDb; iDb++){
5136 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5137 }
5138#endif
drhbdaec522011-04-04 00:14:43 +00005139
drh856c1032009-06-02 15:21:42 +00005140 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00005141 assert( iDb>=0 && iDb<db->nDb );
dan6c154872011-04-02 09:44:43 +00005142 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
drhbdaec522011-04-04 00:14:43 +00005143 /* Used to be a conditional */ {
drh856c1032009-06-02 15:21:42 +00005144 zMaster = SCHEMA_TABLE(iDb);
danielk1977a8bbef82009-03-23 17:11:26 +00005145 initData.db = db;
5146 initData.iDb = pOp->p1;
5147 initData.pzErrMsg = &p->zErrMsg;
5148 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00005149 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
danielk1977a8bbef82009-03-23 17:11:26 +00005150 db->aDb[iDb].zName, zMaster, pOp->p4.z);
5151 if( zSql==0 ){
5152 rc = SQLITE_NOMEM;
5153 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00005154 assert( db->init.busy==0 );
5155 db->init.busy = 1;
5156 initData.rc = SQLITE_OK;
5157 assert( !db->mallocFailed );
5158 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5159 if( rc==SQLITE_OK ) rc = initData.rc;
5160 sqlite3DbFree(db, zSql);
5161 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00005162 }
drh3c23a882007-01-09 14:01:13 +00005163 }
drh81028a42012-05-15 18:28:27 +00005164 if( rc ) sqlite3ResetAllSchemasOfConnection(db);
danielk1977261919c2005-12-06 12:52:59 +00005165 if( rc==SQLITE_NOMEM ){
danielk1977261919c2005-12-06 12:52:59 +00005166 goto no_mem;
5167 }
drh234c39d2004-07-24 03:30:47 +00005168 break;
5169}
5170
drh8bfdf722009-06-19 14:06:03 +00005171#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00005172/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00005173**
5174** Read the sqlite_stat1 table for database P1 and load the content
5175** of that table into the internal index hash table. This will cause
5176** the analysis to be used when preparing all subsequent queries.
5177*/
drh9cbf3422008-01-17 16:22:13 +00005178case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00005179 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5180 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh497e4462005-07-23 03:18:40 +00005181 break;
5182}
drh8bfdf722009-06-19 14:06:03 +00005183#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00005184
drh98757152008-01-09 23:04:12 +00005185/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005186**
5187** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005188** the table named P4 in database P1. This is called after a table
drh5dad9a32014-07-25 18:37:42 +00005189** is dropped from disk (using the Destroy opcode) in order to keep
5190** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005191** schema consistent with what is on disk.
5192*/
drh9cbf3422008-01-17 16:22:13 +00005193case OP_DropTable: {
danielk19772dca4ac2008-01-03 11:50:29 +00005194 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005195 break;
5196}
5197
drh98757152008-01-09 23:04:12 +00005198/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005199**
5200** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005201** the index named P4 in database P1. This is called after an index
drh5dad9a32014-07-25 18:37:42 +00005202** is dropped from disk (using the Destroy opcode)
5203** in order to keep the internal representation of the
drh956bc922004-07-24 17:38:29 +00005204** schema consistent with what is on disk.
5205*/
drh9cbf3422008-01-17 16:22:13 +00005206case OP_DropIndex: {
danielk19772dca4ac2008-01-03 11:50:29 +00005207 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005208 break;
5209}
5210
drh98757152008-01-09 23:04:12 +00005211/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005212**
5213** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005214** the trigger named P4 in database P1. This is called after a trigger
drh5dad9a32014-07-25 18:37:42 +00005215** is dropped from disk (using the Destroy opcode) in order to keep
5216** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005217** schema consistent with what is on disk.
5218*/
drh9cbf3422008-01-17 16:22:13 +00005219case OP_DropTrigger: {
danielk19772dca4ac2008-01-03 11:50:29 +00005220 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005221 break;
5222}
5223
drh234c39d2004-07-24 03:30:47 +00005224
drhb7f91642004-10-31 02:22:47 +00005225#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98757152008-01-09 23:04:12 +00005226/* Opcode: IntegrityCk P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00005227**
drh98757152008-01-09 23:04:12 +00005228** Do an analysis of the currently open database. Store in
5229** register P1 the text of an error message describing any problems.
5230** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00005231**
drh98757152008-01-09 23:04:12 +00005232** The register P3 contains the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00005233** At most reg(P3) errors will be reported.
5234** In other words, the analysis stops as soon as reg(P1) errors are
5235** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00005236**
drh79069752004-05-22 21:30:40 +00005237** The root page numbers of all tables in the database are integer
drh60a713c2008-01-21 16:22:45 +00005238** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
drh98757152008-01-09 23:04:12 +00005239** total.
drh21504322002-06-25 13:16:02 +00005240**
drh98757152008-01-09 23:04:12 +00005241** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00005242** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00005243**
drh1dcdbc02007-01-27 02:24:54 +00005244** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00005245*/
drhaaab5722002-02-19 13:39:21 +00005246case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00005247 int nRoot; /* Number of tables to check. (Number of root pages.) */
5248 int *aRoot; /* Array of rootpage numbers for tables to be checked */
5249 int j; /* Loop counter */
5250 int nErr; /* Number of errors reported */
5251 char *z; /* Text of the error report */
5252 Mem *pnErr; /* Register keeping track of errors remaining */
drh9e92a472013-06-27 17:40:30 +00005253
drh1713afb2013-06-28 01:24:57 +00005254 assert( p->bIsReader );
drh98757152008-01-09 23:04:12 +00005255 nRoot = pOp->p2;
drh79069752004-05-22 21:30:40 +00005256 assert( nRoot>0 );
drh633e6d52008-07-28 19:34:53 +00005257 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
drhcaec2f12003-01-07 02:47:47 +00005258 if( aRoot==0 ) goto no_mem;
dan3bc9f742013-08-15 16:18:39 +00005259 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005260 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00005261 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00005262 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00005263 pIn1 = &aMem[pOp->p1];
drh79069752004-05-22 21:30:40 +00005264 for(j=0; j<nRoot; j++){
drh9c1905f2008-12-10 22:32:56 +00005265 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
drh1dd397f2002-02-03 03:34:07 +00005266 }
5267 aRoot[j] = 0;
drh98757152008-01-09 23:04:12 +00005268 assert( pOp->p5<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005269 assert( DbMaskTest(p->btreeMask, pOp->p5) );
drh98757152008-01-09 23:04:12 +00005270 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
drh9c1905f2008-12-10 22:32:56 +00005271 (int)pnErr->u.i, &nErr);
drhc890fec2008-08-01 20:10:08 +00005272 sqlite3DbFree(db, aRoot);
drh3c024d62007-03-30 11:23:45 +00005273 pnErr->u.i -= nErr;
drha05a7222008-01-19 03:35:58 +00005274 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00005275 if( nErr==0 ){
5276 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00005277 }else if( z==0 ){
5278 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00005279 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00005280 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00005281 }
drhb7654112008-01-12 12:48:07 +00005282 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00005283 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00005284 break;
5285}
drhb7f91642004-10-31 02:22:47 +00005286#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00005287
drh3d4501e2008-12-04 20:40:10 +00005288/* Opcode: RowSetAdd P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005289** Synopsis: rowset(P1)=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00005290**
drh3d4501e2008-12-04 20:40:10 +00005291** Insert the integer value held by register P2 into a boolean index
5292** held in register P1.
5293**
5294** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00005295*/
drh93952eb2009-11-13 19:43:43 +00005296case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00005297 pIn1 = &aMem[pOp->p1];
5298 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00005299 assert( (pIn2->flags & MEM_Int)!=0 );
5300 if( (pIn1->flags & MEM_RowSet)==0 ){
5301 sqlite3VdbeMemSetRowSet(pIn1);
5302 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00005303 }
drh93952eb2009-11-13 19:43:43 +00005304 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00005305 break;
5306}
5307
5308/* Opcode: RowSetRead P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00005309** Synopsis: r[P3]=rowset(P1)
drh3d4501e2008-12-04 20:40:10 +00005310**
5311** Extract the smallest value from boolean index P1 and put that value into
5312** register P3. Or, if boolean index P1 is initially empty, leave P3
5313** unchanged and jump to instruction P2.
5314*/
drh93952eb2009-11-13 19:43:43 +00005315case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00005316 i64 val;
drh49afe3a2013-07-10 03:05:14 +00005317
drh3c657212009-11-17 23:59:58 +00005318 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00005319 if( (pIn1->flags & MEM_RowSet)==0
5320 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00005321 ){
5322 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00005323 sqlite3VdbeMemSetNull(pIn1);
drh688852a2014-02-17 22:40:43 +00005324 VdbeBranchTaken(1,2);
drhf56fa462015-04-13 21:39:54 +00005325 goto jump_to_p2_and_check_for_interrupt;
drh3d4501e2008-12-04 20:40:10 +00005326 }else{
5327 /* A value was pulled from the index */
drh688852a2014-02-17 22:40:43 +00005328 VdbeBranchTaken(0,2);
drhf56fa462015-04-13 21:39:54 +00005329 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh17435752007-08-16 04:30:38 +00005330 }
drh49afe3a2013-07-10 03:05:14 +00005331 goto check_for_interrupt;
drh5e00f6c2001-09-13 13:46:56 +00005332}
5333
drh1b26c7c2009-04-22 02:15:47 +00005334/* Opcode: RowSetTest P1 P2 P3 P4
drh81316f82013-10-29 20:40:47 +00005335** Synopsis: if r[P3] in rowset(P1) goto P2
danielk19771d461462009-04-21 09:02:45 +00005336**
drhade97602009-04-21 15:05:18 +00005337** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00005338** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00005339** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00005340** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00005341** next opcode.
danielk19771d461462009-04-21 09:02:45 +00005342**
drh1b26c7c2009-04-22 02:15:47 +00005343** The RowSet object is optimized for the case where successive sets
danielk19771d461462009-04-21 09:02:45 +00005344** of integers, where each set contains no duplicates. Each set
5345** of values is identified by a unique P4 value. The first set
drh1b26c7c2009-04-22 02:15:47 +00005346** must have P4==0, the final set P4=-1. P4 must be either -1 or
5347** non-negative. For non-negative values of P4 only the lower 4
5348** bits are significant.
danielk19771d461462009-04-21 09:02:45 +00005349**
5350** This allows optimizations: (a) when P4==0 there is no need to test
drh1b26c7c2009-04-22 02:15:47 +00005351** the rowset object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00005352** (b) when P4==-1 there is no need to insert the value, as it will
5353** never be tested for, and (c) when a value that is part of set X is
5354** inserted, there is no need to search to see if the same value was
5355** previously inserted as part of set X (only if it was previously
5356** inserted as part of some other set).
5357*/
drh1b26c7c2009-04-22 02:15:47 +00005358case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00005359 int iSet;
5360 int exists;
5361
drh3c657212009-11-17 23:59:58 +00005362 pIn1 = &aMem[pOp->p1];
5363 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005364 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00005365 assert( pIn3->flags&MEM_Int );
5366
drh1b26c7c2009-04-22 02:15:47 +00005367 /* If there is anything other than a rowset object in memory cell P1,
5368 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00005369 */
drh733bf1b2009-04-22 00:47:00 +00005370 if( (pIn1->flags & MEM_RowSet)==0 ){
5371 sqlite3VdbeMemSetRowSet(pIn1);
5372 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00005373 }
5374
5375 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00005376 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00005377 if( iSet ){
drhd83cad22014-04-10 02:24:48 +00005378 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
drh688852a2014-02-17 22:40:43 +00005379 VdbeBranchTaken(exists!=0,2);
drhf56fa462015-04-13 21:39:54 +00005380 if( exists ) goto jump_to_p2;
danielk19771d461462009-04-21 09:02:45 +00005381 }
5382 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00005383 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005384 }
5385 break;
5386}
5387
drh5e00f6c2001-09-13 13:46:56 +00005388
danielk197793758c82005-01-21 08:13:14 +00005389#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00005390
drh0fd61352014-02-07 02:29:45 +00005391/* Opcode: Program P1 P2 P3 P4 P5
dan165921a2009-08-28 18:53:45 +00005392**
dan76d462e2009-08-30 11:42:51 +00005393** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00005394**
dan76d462e2009-08-30 11:42:51 +00005395** P1 contains the address of the memory cell that contains the first memory
5396** cell in an array of values used as arguments to the sub-program. P2
5397** contains the address to jump to if the sub-program throws an IGNORE
5398** exception using the RAISE() function. Register P3 contains the address
5399** of a memory cell in this (the parent) VM that is used to allocate the
5400** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00005401**
5402** P4 is a pointer to the VM containing the trigger program.
drh0fd61352014-02-07 02:29:45 +00005403**
5404** If P5 is non-zero, then recursive program invocation is enabled.
dan165921a2009-08-28 18:53:45 +00005405*/
dan76d462e2009-08-30 11:42:51 +00005406case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00005407 int nMem; /* Number of memory registers for sub-program */
5408 int nByte; /* Bytes of runtime space required for sub-program */
5409 Mem *pRt; /* Register to allocate runtime space */
5410 Mem *pMem; /* Used to iterate through memory cells */
5411 Mem *pEnd; /* Last memory cell in new array */
5412 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5413 SubProgram *pProgram; /* Sub-program to execute */
5414 void *t; /* Token identifying trigger */
5415
5416 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00005417 pRt = &aMem[pOp->p3];
dan165921a2009-08-28 18:53:45 +00005418 assert( pProgram->nOp>0 );
5419
dan1da40a32009-09-19 17:00:31 +00005420 /* If the p5 flag is clear, then recursive invocation of triggers is
5421 ** disabled for backwards compatibility (p5 is set if this sub-program
5422 ** is really a trigger, not a foreign key action, and the flag set
5423 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00005424 **
5425 ** It is recursive invocation of triggers, at the SQL level, that is
5426 ** disabled. In some cases a single trigger may generate more than one
5427 ** SubProgram (if the trigger may be executed with more than one different
5428 ** ON CONFLICT algorithm). SubProgram structures associated with a
5429 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00005430 ** variable. */
5431 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00005432 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00005433 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5434 if( pFrame ) break;
5435 }
5436
danf5894502009-10-07 18:41:19 +00005437 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00005438 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00005439 sqlite3VdbeError(p, "too many levels of trigger recursion");
dan165921a2009-08-28 18:53:45 +00005440 break;
5441 }
5442
5443 /* Register pRt is used to store the memory required to save the state
5444 ** of the current program, and the memory required at runtime to execute
5445 ** the trigger program. If this trigger has been fired before, then pRt
5446 ** is already allocated. Otherwise, it must be initialized. */
5447 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00005448 /* SubProgram.nMem is set to the number of memory cells used by the
5449 ** program stored in SubProgram.aOp. As well as these, one memory
5450 ** cell is required for each cursor used by the program. Set local
5451 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5452 */
dan65a7cd12009-09-01 12:16:01 +00005453 nMem = pProgram->nMem + pProgram->nCsr;
5454 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00005455 + nMem * sizeof(Mem)
dan1d8cb212011-12-09 13:24:16 +00005456 + pProgram->nCsr * sizeof(VdbeCursor *)
5457 + pProgram->nOnce * sizeof(u8);
dan165921a2009-08-28 18:53:45 +00005458 pFrame = sqlite3DbMallocZero(db, nByte);
5459 if( !pFrame ){
5460 goto no_mem;
5461 }
5462 sqlite3VdbeMemRelease(pRt);
5463 pRt->flags = MEM_Frame;
5464 pRt->u.pFrame = pFrame;
5465
5466 pFrame->v = p;
5467 pFrame->nChildMem = nMem;
5468 pFrame->nChildCsr = pProgram->nCsr;
drhf56fa462015-04-13 21:39:54 +00005469 pFrame->pc = (int)(pOp - aOp);
dan165921a2009-08-28 18:53:45 +00005470 pFrame->aMem = p->aMem;
5471 pFrame->nMem = p->nMem;
5472 pFrame->apCsr = p->apCsr;
5473 pFrame->nCursor = p->nCursor;
5474 pFrame->aOp = p->aOp;
5475 pFrame->nOp = p->nOp;
5476 pFrame->token = pProgram->token;
dan1d8cb212011-12-09 13:24:16 +00005477 pFrame->aOnceFlag = p->aOnceFlag;
5478 pFrame->nOnceFlag = p->nOnceFlag;
dane2f771b2014-11-03 15:33:17 +00005479#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00005480 pFrame->anExec = p->anExec;
dane2f771b2014-11-03 15:33:17 +00005481#endif
dan165921a2009-08-28 18:53:45 +00005482
5483 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5484 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
drha5750cf2014-02-07 13:20:31 +00005485 pMem->flags = MEM_Undefined;
dan165921a2009-08-28 18:53:45 +00005486 pMem->db = db;
5487 }
5488 }else{
5489 pFrame = pRt->u.pFrame;
5490 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5491 assert( pProgram->nCsr==pFrame->nChildCsr );
drhf56fa462015-04-13 21:39:54 +00005492 assert( (int)(pOp - aOp)==pFrame->pc );
dan165921a2009-08-28 18:53:45 +00005493 }
5494
5495 p->nFrame++;
5496 pFrame->pParent = p->pFrame;
drh99a66922011-05-13 18:51:42 +00005497 pFrame->lastRowid = lastRowid;
dan76d462e2009-08-30 11:42:51 +00005498 pFrame->nChange = p->nChange;
danc3da6672014-10-28 18:24:16 +00005499 pFrame->nDbChange = p->db->nChange;
dan2832ad42009-08-31 15:27:27 +00005500 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00005501 p->pFrame = pFrame;
drha6c2ed92009-11-14 23:22:23 +00005502 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
dan165921a2009-08-28 18:53:45 +00005503 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00005504 p->nCursor = (u16)pFrame->nChildCsr;
drha6c2ed92009-11-14 23:22:23 +00005505 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
drhbbe879d2009-11-14 18:04:35 +00005506 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00005507 p->nOp = pProgram->nOp;
dan1d8cb212011-12-09 13:24:16 +00005508 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5509 p->nOnceFlag = pProgram->nOnce;
dane2f771b2014-11-03 15:33:17 +00005510#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00005511 p->anExec = 0;
dane2f771b2014-11-03 15:33:17 +00005512#endif
drhf56fa462015-04-13 21:39:54 +00005513 pOp = &aOp[-1];
dan1d8cb212011-12-09 13:24:16 +00005514 memset(p->aOnceFlag, 0, p->nOnceFlag);
dan165921a2009-08-28 18:53:45 +00005515
5516 break;
5517}
5518
dan76d462e2009-08-30 11:42:51 +00005519/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00005520**
dan76d462e2009-08-30 11:42:51 +00005521** This opcode is only ever present in sub-programs called via the
5522** OP_Program instruction. Copy a value currently stored in a memory
5523** cell of the calling (parent) frame to cell P2 in the current frames
5524** address space. This is used by trigger programs to access the new.*
5525** and old.* values.
dan165921a2009-08-28 18:53:45 +00005526**
dan76d462e2009-08-30 11:42:51 +00005527** The address of the cell in the parent frame is determined by adding
5528** the value of the P1 argument to the value of the P1 argument to the
5529** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00005530*/
drh27a348c2015-04-13 19:14:06 +00005531case OP_Param: { /* out2 */
dan65a7cd12009-09-01 12:16:01 +00005532 VdbeFrame *pFrame;
5533 Mem *pIn;
drh27a348c2015-04-13 19:14:06 +00005534 pOut = out2Prerelease(p, pOp);
dan65a7cd12009-09-01 12:16:01 +00005535 pFrame = p->pFrame;
5536 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00005537 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5538 break;
5539}
5540
danielk197793758c82005-01-21 08:13:14 +00005541#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00005542
dan1da40a32009-09-19 17:00:31 +00005543#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00005544/* Opcode: FkCounter P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005545** Synopsis: fkctr[P1]+=P2
dan1da40a32009-09-19 17:00:31 +00005546**
dan0ff297e2009-09-25 17:03:14 +00005547** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5548** If P1 is non-zero, the database constraint counter is incremented
5549** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00005550** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00005551*/
dan32b09f22009-09-23 17:29:59 +00005552case OP_FkCounter: {
drh648e2642013-07-11 15:03:32 +00005553 if( db->flags & SQLITE_DeferFKs ){
5554 db->nDeferredImmCons += pOp->p2;
5555 }else if( pOp->p1 ){
dan0ff297e2009-09-25 17:03:14 +00005556 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00005557 }else{
dan0ff297e2009-09-25 17:03:14 +00005558 p->nFkConstraint += pOp->p2;
5559 }
5560 break;
5561}
5562
5563/* Opcode: FkIfZero P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005564** Synopsis: if fkctr[P1]==0 goto P2
dan0ff297e2009-09-25 17:03:14 +00005565**
5566** This opcode tests if a foreign key constraint-counter is currently zero.
5567** If so, jump to instruction P2. Otherwise, fall through to the next
5568** instruction.
5569**
5570** If P1 is non-zero, then the jump is taken if the database constraint-counter
5571** is zero (the one that counts deferred constraint violations). If P1 is
5572** zero, the jump is taken if the statement constraint-counter is zero
5573** (immediate foreign key constraint violations).
5574*/
5575case OP_FkIfZero: { /* jump */
5576 if( pOp->p1 ){
drh688852a2014-02-17 22:40:43 +00005577 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
drhf56fa462015-04-13 21:39:54 +00005578 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
dan0ff297e2009-09-25 17:03:14 +00005579 }else{
drh688852a2014-02-17 22:40:43 +00005580 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
drhf56fa462015-04-13 21:39:54 +00005581 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
dan32b09f22009-09-23 17:29:59 +00005582 }
dan1da40a32009-09-19 17:00:31 +00005583 break;
5584}
5585#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5586
drh205f48e2004-11-05 00:43:11 +00005587#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00005588/* Opcode: MemMax P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005589** Synopsis: r[P1]=max(r[P1],r[P2])
drh205f48e2004-11-05 00:43:11 +00005590**
dan76d462e2009-08-30 11:42:51 +00005591** P1 is a register in the root frame of this VM (the root frame is
5592** different from the current frame if this instruction is being executed
5593** within a sub-program). Set the value of register P1 to the maximum of
5594** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00005595**
5596** This instruction throws an error if the memory cell is not initially
5597** an integer.
5598*/
dan76d462e2009-08-30 11:42:51 +00005599case OP_MemMax: { /* in2 */
dan76d462e2009-08-30 11:42:51 +00005600 VdbeFrame *pFrame;
5601 if( p->pFrame ){
5602 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5603 pIn1 = &pFrame->aMem[pOp->p1];
5604 }else{
drha6c2ed92009-11-14 23:22:23 +00005605 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00005606 }
drhec86c722011-12-09 17:27:51 +00005607 assert( memIsValid(pIn1) );
drh98757152008-01-09 23:04:12 +00005608 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00005609 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00005610 sqlite3VdbeMemIntegerify(pIn2);
5611 if( pIn1->u.i<pIn2->u.i){
5612 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00005613 }
5614 break;
5615}
5616#endif /* SQLITE_OMIT_AUTOINCREMENT */
5617
drh98757152008-01-09 23:04:12 +00005618/* Opcode: IfPos P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005619** Synopsis: if r[P1]>0 goto P2
danielk1977a2dc3b12005-02-05 12:48:48 +00005620**
drh16897072015-03-07 00:57:37 +00005621** Register P1 must contain an integer.
5622** If the value of register P1 is 1 or greater, jump to P2 and
5623** add the literal value P3 to register P1.
drh6f58f702006-01-08 05:26:41 +00005624**
drh16897072015-03-07 00:57:37 +00005625** If the initial value of register P1 is less than 1, then the
5626** value is unchanged and control passes through to the next instruction.
danielk1977a2dc3b12005-02-05 12:48:48 +00005627*/
drh9cbf3422008-01-17 16:22:13 +00005628case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005629 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005630 assert( pIn1->flags&MEM_Int );
drh688852a2014-02-17 22:40:43 +00005631 VdbeBranchTaken( pIn1->u.i>0, 2);
drhf56fa462015-04-13 21:39:54 +00005632 if( pIn1->u.i>0 ) goto jump_to_p2;
drhec7429a2005-10-06 16:53:14 +00005633 break;
5634}
5635
drh4336b0e2014-08-05 00:53:51 +00005636/* Opcode: IfNeg P1 P2 P3 * *
5637** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2
drh15007a92006-01-08 18:10:17 +00005638**
drhbc5cf382014-08-06 01:08:07 +00005639** Register P1 must contain an integer. Add literal P3 to the value in
drh4336b0e2014-08-05 00:53:51 +00005640** register P1 then if the value of register P1 is less than zero, jump to P2.
drh15007a92006-01-08 18:10:17 +00005641*/
drh9cbf3422008-01-17 16:22:13 +00005642case OP_IfNeg: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005643 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005644 assert( pIn1->flags&MEM_Int );
drh4336b0e2014-08-05 00:53:51 +00005645 pIn1->u.i += pOp->p3;
drh688852a2014-02-17 22:40:43 +00005646 VdbeBranchTaken(pIn1->u.i<0, 2);
drhf56fa462015-04-13 21:39:54 +00005647 if( pIn1->u.i<0 ) goto jump_to_p2;
drh15007a92006-01-08 18:10:17 +00005648 break;
5649}
5650
drh16897072015-03-07 00:57:37 +00005651/* Opcode: IfNotZero P1 P2 P3 * *
5652** Synopsis: if r[P1]!=0 then r[P1]+=P3, goto P2
drhec7429a2005-10-06 16:53:14 +00005653**
drh16897072015-03-07 00:57:37 +00005654** Register P1 must contain an integer. If the content of register P1 is
5655** initially nonzero, then add P3 to P1 and jump to P2. If register P1 is
5656** initially zero, leave it unchanged and fall through.
drhec7429a2005-10-06 16:53:14 +00005657*/
drh16897072015-03-07 00:57:37 +00005658case OP_IfNotZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005659 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005660 assert( pIn1->flags&MEM_Int );
drh16897072015-03-07 00:57:37 +00005661 VdbeBranchTaken(pIn1->u.i<0, 2);
5662 if( pIn1->u.i ){
5663 pIn1->u.i += pOp->p3;
drhf56fa462015-04-13 21:39:54 +00005664 goto jump_to_p2;
drh16897072015-03-07 00:57:37 +00005665 }
5666 break;
5667}
5668
5669/* Opcode: DecrJumpZero P1 P2 * * *
5670** Synopsis: if (--r[P1])==0 goto P2
5671**
5672** Register P1 must hold an integer. Decrement the value in register P1
5673** then jump to P2 if the new value is exactly zero.
5674*/
5675case OP_DecrJumpZero: { /* jump, in1 */
5676 pIn1 = &aMem[pOp->p1];
5677 assert( pIn1->flags&MEM_Int );
5678 pIn1->u.i--;
drh688852a2014-02-17 22:40:43 +00005679 VdbeBranchTaken(pIn1->u.i==0, 2);
drhf56fa462015-04-13 21:39:54 +00005680 if( pIn1->u.i==0 ) goto jump_to_p2;
drha2a49dc2008-01-02 14:28:13 +00005681 break;
5682}
5683
drh16897072015-03-07 00:57:37 +00005684
5685/* Opcode: JumpZeroIncr P1 P2 * * *
5686** Synopsis: if (r[P1]++)==0 ) goto P2
5687**
5688** The register P1 must contain an integer. If register P1 is initially
5689** zero, then jump to P2. Increment register P1 regardless of whether or
5690** not the jump is taken.
5691*/
5692case OP_JumpZeroIncr: { /* jump, in1 */
5693 pIn1 = &aMem[pOp->p1];
5694 assert( pIn1->flags&MEM_Int );
5695 VdbeBranchTaken(pIn1->u.i==0, 2);
drhf56fa462015-04-13 21:39:54 +00005696 if( (pIn1->u.i++)==0 ) goto jump_to_p2;
drh16897072015-03-07 00:57:37 +00005697 break;
5698}
5699
drh98757152008-01-09 23:04:12 +00005700/* Opcode: AggStep * P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005701** Synopsis: accum=r[P3] step(r[P2@P5])
drhe5095352002-02-24 03:25:14 +00005702**
drh0bce8352002-02-28 00:41:10 +00005703** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00005704** function has P5 arguments. P4 is a pointer to the FuncDef
5705** structure that specifies the function. Use register
5706** P3 as the accumulator.
drhe5095352002-02-24 03:25:14 +00005707**
drh98757152008-01-09 23:04:12 +00005708** The P5 arguments are taken from register P2 and its
5709** successors.
drhe5095352002-02-24 03:25:14 +00005710*/
drh9cbf3422008-01-17 16:22:13 +00005711case OP_AggStep: {
drh856c1032009-06-02 15:21:42 +00005712 int n;
drhe5095352002-02-24 03:25:14 +00005713 int i;
drhc54a6172009-06-02 16:06:03 +00005714 Mem *pMem;
5715 Mem *pRec;
drh9bd038f2014-08-27 14:14:06 +00005716 Mem t;
danielk197722322fd2004-05-25 23:35:17 +00005717 sqlite3_context ctx;
danielk19776ddcca52004-05-24 23:48:25 +00005718 sqlite3_value **apVal;
drhe5095352002-02-24 03:25:14 +00005719
drh856c1032009-06-02 15:21:42 +00005720 n = pOp->p5;
drh6810ce62004-01-31 19:22:56 +00005721 assert( n>=0 );
drha6c2ed92009-11-14 23:22:23 +00005722 pRec = &aMem[pOp->p2];
danielk19776ddcca52004-05-24 23:48:25 +00005723 apVal = p->apArg;
5724 assert( apVal || n==0 );
drh6810ce62004-01-31 19:22:56 +00005725 for(i=0; i<n; i++, pRec++){
drh2b4ded92010-09-27 21:09:31 +00005726 assert( memIsValid(pRec) );
danielk1977c572ef72004-05-27 09:28:41 +00005727 apVal[i] = pRec;
drh2b4ded92010-09-27 21:09:31 +00005728 memAboutToChange(p, pRec);
drhe5095352002-02-24 03:25:14 +00005729 }
danielk19772dca4ac2008-01-03 11:50:29 +00005730 ctx.pFunc = pOp->p4.pFunc;
dan3bc9f742013-08-15 16:18:39 +00005731 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005732 ctx.pMem = pMem = &aMem[pOp->p3];
drhabfcea22005-09-06 20:36:48 +00005733 pMem->n++;
drhd3b74202014-09-17 16:41:15 +00005734 sqlite3VdbeMemInit(&t, db, MEM_Null);
drh9bd038f2014-08-27 14:14:06 +00005735 ctx.pOut = &t;
drh1350b032002-02-27 19:00:20 +00005736 ctx.isError = 0;
drha15cc472014-09-25 13:17:30 +00005737 ctx.pVdbe = p;
drhf56fa462015-04-13 21:39:54 +00005738 ctx.iOp = (int)(pOp - aOp);
drh7a957892012-02-02 17:35:43 +00005739 ctx.skipFlag = 0;
drhee9ff672010-09-03 18:50:48 +00005740 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh1350b032002-02-27 19:00:20 +00005741 if( ctx.isError ){
drh22c17b82015-05-15 04:13:15 +00005742 sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
drh69544ec2008-02-06 14:11:34 +00005743 rc = ctx.isError;
drh1350b032002-02-27 19:00:20 +00005744 }
drh7a957892012-02-02 17:35:43 +00005745 if( ctx.skipFlag ){
5746 assert( pOp[-1].opcode==OP_CollSeq );
5747 i = pOp[-1].p1;
5748 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5749 }
drh9bd038f2014-08-27 14:14:06 +00005750 sqlite3VdbeMemRelease(&t);
drh5e00f6c2001-09-13 13:46:56 +00005751 break;
5752}
5753
drh98757152008-01-09 23:04:12 +00005754/* Opcode: AggFinal P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00005755** Synopsis: accum=r[P1] N=P2
drh5e00f6c2001-09-13 13:46:56 +00005756**
drh13449892005-09-07 21:22:45 +00005757** Execute the finalizer function for an aggregate. P1 is
5758** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00005759**
5760** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00005761** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00005762** argument is not used by this opcode. It is only there to disambiguate
5763** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00005764** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00005765** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00005766*/
drh9cbf3422008-01-17 16:22:13 +00005767case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00005768 Mem *pMem;
dan3bc9f742013-08-15 16:18:39 +00005769 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005770 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00005771 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00005772 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00005773 if( rc ){
drh22c17b82015-05-15 04:13:15 +00005774 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
drh90669c12006-01-20 15:45:36 +00005775 }
drh2dca8682008-03-21 17:13:13 +00005776 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00005777 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00005778 if( sqlite3VdbeMemTooBig(pMem) ){
5779 goto too_big;
5780 }
drh5e00f6c2001-09-13 13:46:56 +00005781 break;
5782}
5783
dan5cf53532010-05-01 16:40:20 +00005784#ifndef SQLITE_OMIT_WAL
dancdc1f042010-11-18 12:11:05 +00005785/* Opcode: Checkpoint P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00005786**
5787** Checkpoint database P1. This is a no-op if P1 is not currently in
drha25165f2014-12-04 04:50:59 +00005788** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
5789** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
drh30aa3b92011-02-07 23:56:01 +00005790** SQLITE_BUSY or not, respectively. Write the number of pages in the
5791** WAL after the checkpoint into mem[P3+1] and the number of pages
5792** in the WAL that have been checkpointed after the checkpoint
5793** completes into mem[P3+2]. However on an error, mem[P3+1] and
5794** mem[P3+2] are initialized to -1.
dan7c246102010-04-12 19:00:29 +00005795*/
5796case OP_Checkpoint: {
drh30aa3b92011-02-07 23:56:01 +00005797 int i; /* Loop counter */
5798 int aRes[3]; /* Results */
5799 Mem *pMem; /* Write results here */
5800
drh9e92a472013-06-27 17:40:30 +00005801 assert( p->readOnly==0 );
drh30aa3b92011-02-07 23:56:01 +00005802 aRes[0] = 0;
5803 aRes[1] = aRes[2] = -1;
dancdc1f042010-11-18 12:11:05 +00005804 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5805 || pOp->p2==SQLITE_CHECKPOINT_FULL
5806 || pOp->p2==SQLITE_CHECKPOINT_RESTART
danf26a1542014-12-02 19:04:54 +00005807 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
dancdc1f042010-11-18 12:11:05 +00005808 );
drh30aa3b92011-02-07 23:56:01 +00005809 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
dancdc1f042010-11-18 12:11:05 +00005810 if( rc==SQLITE_BUSY ){
5811 rc = SQLITE_OK;
drh30aa3b92011-02-07 23:56:01 +00005812 aRes[0] = 1;
dancdc1f042010-11-18 12:11:05 +00005813 }
drh30aa3b92011-02-07 23:56:01 +00005814 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5815 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5816 }
dan7c246102010-04-12 19:00:29 +00005817 break;
5818};
dan5cf53532010-05-01 16:40:20 +00005819#endif
drh5e00f6c2001-09-13 13:46:56 +00005820
drhcac29a62010-07-02 19:36:52 +00005821#ifndef SQLITE_OMIT_PRAGMA
drh0fd61352014-02-07 02:29:45 +00005822/* Opcode: JournalMode P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00005823**
5824** Change the journal mode of database P1 to P3. P3 must be one of the
5825** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5826** modes (delete, truncate, persist, off and memory), this is a simple
5827** operation. No IO is required.
5828**
5829** If changing into or out of WAL mode the procedure is more complicated.
5830**
5831** Write a string containing the final journal-mode to register P2.
5832*/
drh27a348c2015-04-13 19:14:06 +00005833case OP_JournalMode: { /* out2 */
dane04dc882010-04-20 18:53:15 +00005834 Btree *pBt; /* Btree to change journal mode of */
5835 Pager *pPager; /* Pager associated with pBt */
drhd80b2332010-05-01 00:59:37 +00005836 int eNew; /* New journal mode */
5837 int eOld; /* The old journal mode */
mistachkin59ee77c2012-09-13 15:26:44 +00005838#ifndef SQLITE_OMIT_WAL
drhd80b2332010-05-01 00:59:37 +00005839 const char *zFilename; /* Name of database file for pPager */
mistachkin59ee77c2012-09-13 15:26:44 +00005840#endif
dane04dc882010-04-20 18:53:15 +00005841
drh27a348c2015-04-13 19:14:06 +00005842 pOut = out2Prerelease(p, pOp);
drhd80b2332010-05-01 00:59:37 +00005843 eNew = pOp->p3;
dane04dc882010-04-20 18:53:15 +00005844 assert( eNew==PAGER_JOURNALMODE_DELETE
5845 || eNew==PAGER_JOURNALMODE_TRUNCATE
5846 || eNew==PAGER_JOURNALMODE_PERSIST
5847 || eNew==PAGER_JOURNALMODE_OFF
5848 || eNew==PAGER_JOURNALMODE_MEMORY
5849 || eNew==PAGER_JOURNALMODE_WAL
5850 || eNew==PAGER_JOURNALMODE_QUERY
5851 );
5852 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drh9e92a472013-06-27 17:40:30 +00005853 assert( p->readOnly==0 );
drh3ebaee92010-05-06 21:37:22 +00005854
dane04dc882010-04-20 18:53:15 +00005855 pBt = db->aDb[pOp->p1].pBt;
5856 pPager = sqlite3BtreePager(pBt);
drh0b9b4302010-06-11 17:01:24 +00005857 eOld = sqlite3PagerGetJournalMode(pPager);
5858 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5859 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
dan5cf53532010-05-01 16:40:20 +00005860
5861#ifndef SQLITE_OMIT_WAL
drhd4e0bb02012-05-27 01:19:04 +00005862 zFilename = sqlite3PagerFilename(pPager, 1);
dane04dc882010-04-20 18:53:15 +00005863
drhd80b2332010-05-01 00:59:37 +00005864 /* Do not allow a transition to journal_mode=WAL for a database
drh6e1f4822010-07-13 23:41:40 +00005865 ** in temporary storage or if the VFS does not support shared memory
drhd80b2332010-05-01 00:59:37 +00005866 */
5867 if( eNew==PAGER_JOURNALMODE_WAL
drh057fc812011-10-17 23:15:31 +00005868 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
drh6e1f4822010-07-13 23:41:40 +00005869 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
dane180c292010-04-26 17:42:56 +00005870 ){
drh0b9b4302010-06-11 17:01:24 +00005871 eNew = eOld;
dane180c292010-04-26 17:42:56 +00005872 }
5873
drh0b9b4302010-06-11 17:01:24 +00005874 if( (eNew!=eOld)
5875 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5876 ){
danc0537fe2013-06-28 19:41:43 +00005877 if( !db->autoCommit || db->nVdbeRead>1 ){
drh0b9b4302010-06-11 17:01:24 +00005878 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00005879 sqlite3VdbeError(p,
drh0b9b4302010-06-11 17:01:24 +00005880 "cannot change %s wal mode from within a transaction",
5881 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5882 );
5883 break;
5884 }else{
5885
5886 if( eOld==PAGER_JOURNALMODE_WAL ){
5887 /* If leaving WAL mode, close the log file. If successful, the call
5888 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5889 ** file. An EXCLUSIVE lock may still be held on the database file
5890 ** after a successful return.
dane04dc882010-04-20 18:53:15 +00005891 */
drh0b9b4302010-06-11 17:01:24 +00005892 rc = sqlite3PagerCloseWal(pPager);
drhab9b7442010-05-10 11:20:05 +00005893 if( rc==SQLITE_OK ){
drh0b9b4302010-06-11 17:01:24 +00005894 sqlite3PagerSetJournalMode(pPager, eNew);
drh89c3f2f2010-05-15 01:09:38 +00005895 }
drh242c4f72010-06-22 14:49:39 +00005896 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5897 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5898 ** as an intermediate */
5899 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
drh0b9b4302010-06-11 17:01:24 +00005900 }
5901
5902 /* Open a transaction on the database file. Regardless of the journal
5903 ** mode, this transaction always uses a rollback journal.
5904 */
5905 assert( sqlite3BtreeIsInTrans(pBt)==0 );
5906 if( rc==SQLITE_OK ){
dan731bf5b2010-06-17 16:44:21 +00005907 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
dane04dc882010-04-20 18:53:15 +00005908 }
5909 }
5910 }
dan5cf53532010-05-01 16:40:20 +00005911#endif /* ifndef SQLITE_OMIT_WAL */
dane04dc882010-04-20 18:53:15 +00005912
dand956efe2010-06-18 16:13:45 +00005913 if( rc ){
dand956efe2010-06-18 16:13:45 +00005914 eNew = eOld;
5915 }
drh0b9b4302010-06-11 17:01:24 +00005916 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
dan731bf5b2010-06-17 16:44:21 +00005917
dane04dc882010-04-20 18:53:15 +00005918 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
danb9780022010-04-21 18:37:57 +00005919 pOut->z = (char *)sqlite3JournalModename(eNew);
dane04dc882010-04-20 18:53:15 +00005920 pOut->n = sqlite3Strlen30(pOut->z);
5921 pOut->enc = SQLITE_UTF8;
5922 sqlite3VdbeChangeEncoding(pOut, encoding);
5923 break;
drhcac29a62010-07-02 19:36:52 +00005924};
5925#endif /* SQLITE_OMIT_PRAGMA */
dane04dc882010-04-20 18:53:15 +00005926
drhfdbcdee2007-03-27 14:44:50 +00005927#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh98757152008-01-09 23:04:12 +00005928/* Opcode: Vacuum * * * * *
drh6f8c91c2003-12-07 00:24:35 +00005929**
5930** Vacuum the entire database. This opcode will cause other virtual
5931** machines to be created and run. It may not be called from within
5932** a transaction.
5933*/
drh9cbf3422008-01-17 16:22:13 +00005934case OP_Vacuum: {
drh9e92a472013-06-27 17:40:30 +00005935 assert( p->readOnly==0 );
danielk19774adee202004-05-08 08:23:19 +00005936 rc = sqlite3RunVacuum(&p->zErrMsg, db);
drh6f8c91c2003-12-07 00:24:35 +00005937 break;
5938}
drh154d4b22006-09-21 11:02:16 +00005939#endif
drh6f8c91c2003-12-07 00:24:35 +00005940
danielk1977dddbcdc2007-04-26 14:42:34 +00005941#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00005942/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00005943**
5944** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00005945** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00005946** P2. Otherwise, fall through to the next instruction.
5947*/
drh9cbf3422008-01-17 16:22:13 +00005948case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00005949 Btree *pBt;
5950
5951 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005952 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00005953 assert( p->readOnly==0 );
drhca5557f2007-05-04 18:30:40 +00005954 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00005955 rc = sqlite3BtreeIncrVacuum(pBt);
drh688852a2014-02-17 22:40:43 +00005956 VdbeBranchTaken(rc==SQLITE_DONE,2);
danielk1977dddbcdc2007-04-26 14:42:34 +00005957 if( rc==SQLITE_DONE ){
danielk1977dddbcdc2007-04-26 14:42:34 +00005958 rc = SQLITE_OK;
drhf56fa462015-04-13 21:39:54 +00005959 goto jump_to_p2;
danielk1977dddbcdc2007-04-26 14:42:34 +00005960 }
5961 break;
5962}
5963#endif
5964
drh98757152008-01-09 23:04:12 +00005965/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00005966**
drh25df48d2014-07-22 14:58:12 +00005967** Cause precompiled statements to expire. When an expired statement
5968** is executed using sqlite3_step() it will either automatically
5969** reprepare itself (if it was originally created using sqlite3_prepare_v2())
5970** or it will fail with SQLITE_SCHEMA.
danielk1977a21c6b62005-01-24 10:25:59 +00005971**
5972** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
drh25df48d2014-07-22 14:58:12 +00005973** then only the currently executing statement is expired.
danielk1977a21c6b62005-01-24 10:25:59 +00005974*/
drh9cbf3422008-01-17 16:22:13 +00005975case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00005976 if( !pOp->p1 ){
5977 sqlite3ExpirePreparedStatements(db);
5978 }else{
5979 p->expired = 1;
5980 }
5981 break;
5982}
5983
danielk1977c00da102006-01-07 13:21:04 +00005984#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00005985/* Opcode: TableLock P1 P2 P3 P4 *
drh81316f82013-10-29 20:40:47 +00005986** Synopsis: iDb=P1 root=P2 write=P3
danielk1977c00da102006-01-07 13:21:04 +00005987**
5988** Obtain a lock on a particular table. This instruction is only used when
5989** the shared-cache feature is enabled.
5990**
danielk197796d48e92009-06-29 06:00:37 +00005991** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00005992** on which the lock is acquired. A readlock is obtained if P3==0 or
5993** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00005994**
5995** P2 contains the root-page of the table to lock.
5996**
drh66a51672008-01-03 00:01:23 +00005997** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00005998** used to generate an error message if the lock cannot be obtained.
5999*/
drh9cbf3422008-01-17 16:22:13 +00006000case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00006001 u8 isWriteLock = (u8)pOp->p3;
6002 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
6003 int p1 = pOp->p1;
6004 assert( p1>=0 && p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00006005 assert( DbMaskTest(p->btreeMask, p1) );
danielk1977e0d9e6f2009-07-03 16:25:06 +00006006 assert( isWriteLock==0 || isWriteLock==1 );
6007 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
6008 if( (rc&0xFF)==SQLITE_LOCKED ){
6009 const char *z = pOp->p4.z;
drh22c17b82015-05-15 04:13:15 +00006010 sqlite3VdbeError(p, "database table is locked: %s", z);
danielk1977e0d9e6f2009-07-03 16:25:06 +00006011 }
danielk1977c00da102006-01-07 13:21:04 +00006012 }
6013 break;
6014}
drhb9bb7c12006-06-11 23:41:55 +00006015#endif /* SQLITE_OMIT_SHARED_CACHE */
6016
6017#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006018/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00006019**
danielk19773e3a84d2008-08-01 17:37:40 +00006020** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6021** xBegin method for that table.
6022**
6023** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00006024** within a callback to a virtual table xSync() method. If it is, the error
6025** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00006026*/
drh9cbf3422008-01-17 16:22:13 +00006027case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00006028 VTable *pVTab;
6029 pVTab = pOp->p4.pVtab;
6030 rc = sqlite3VtabBegin(db, pVTab);
dan016f7812013-08-21 17:35:48 +00006031 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
danielk1977f9e7dda2006-06-16 16:08:53 +00006032 break;
6033}
6034#endif /* SQLITE_OMIT_VIRTUALTABLE */
6035
6036#ifndef SQLITE_OMIT_VIRTUALTABLE
dan73779452015-03-19 18:56:17 +00006037/* Opcode: VCreate P1 P2 * * *
danielk1977f9e7dda2006-06-16 16:08:53 +00006038**
dan73779452015-03-19 18:56:17 +00006039** P2 is a register that holds the name of a virtual table in database
6040** P1. Call the xCreate method for that table.
danielk1977f9e7dda2006-06-16 16:08:53 +00006041*/
drh9cbf3422008-01-17 16:22:13 +00006042case OP_VCreate: {
dan73779452015-03-19 18:56:17 +00006043 Mem sMem; /* For storing the record being decoded */
drh47464062015-03-21 12:22:16 +00006044 const char *zTab; /* Name of the virtual table */
6045
dan73779452015-03-19 18:56:17 +00006046 memset(&sMem, 0, sizeof(sMem));
6047 sMem.db = db;
drh47464062015-03-21 12:22:16 +00006048 /* Because P2 is always a static string, it is impossible for the
6049 ** sqlite3VdbeMemCopy() to fail */
6050 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6051 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
dan73779452015-03-19 18:56:17 +00006052 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
drh47464062015-03-21 12:22:16 +00006053 assert( rc==SQLITE_OK );
6054 zTab = (const char*)sqlite3_value_text(&sMem);
6055 assert( zTab || db->mallocFailed );
6056 if( zTab ){
6057 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
dan73779452015-03-19 18:56:17 +00006058 }
6059 sqlite3VdbeMemRelease(&sMem);
drhb9bb7c12006-06-11 23:41:55 +00006060 break;
6061}
6062#endif /* SQLITE_OMIT_VIRTUALTABLE */
6063
6064#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006065/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00006066**
drh66a51672008-01-03 00:01:23 +00006067** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00006068** of that table.
drhb9bb7c12006-06-11 23:41:55 +00006069*/
drh9cbf3422008-01-17 16:22:13 +00006070case OP_VDestroy: {
drh086723a2015-03-24 12:51:52 +00006071 db->nVDestroy++;
danielk19772dca4ac2008-01-03 11:50:29 +00006072 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
drh086723a2015-03-24 12:51:52 +00006073 db->nVDestroy--;
drhb9bb7c12006-06-11 23:41:55 +00006074 break;
6075}
6076#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00006077
drh9eff6162006-06-12 21:59:13 +00006078#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006079/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00006080**
drh66a51672008-01-03 00:01:23 +00006081** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00006082** P1 is a cursor number. This opcode opens a cursor to the virtual
6083** table and stores that cursor in P1.
6084*/
drh9cbf3422008-01-17 16:22:13 +00006085case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00006086 VdbeCursor *pCur;
6087 sqlite3_vtab_cursor *pVtabCursor;
6088 sqlite3_vtab *pVtab;
drhf496a7d2015-03-24 14:05:50 +00006089 const sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006090
drh1713afb2013-06-28 01:24:57 +00006091 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00006092 pCur = 0;
6093 pVtabCursor = 0;
danielk1977595a5232009-07-24 17:58:53 +00006094 pVtab = pOp->p4.pVtab->pVtab;
drhf496a7d2015-03-24 14:05:50 +00006095 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6096 rc = SQLITE_LOCKED;
6097 break;
6098 }
6099 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006100 rc = pModule->xOpen(pVtab, &pVtabCursor);
dan016f7812013-08-21 17:35:48 +00006101 sqlite3VtabImportErrmsg(p, pVtab);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006102 if( SQLITE_OK==rc ){
shane21e7feb2008-05-30 15:59:49 +00006103 /* Initialize sqlite3_vtab_cursor base class */
danielk1977b7a7b9a2006-06-13 10:24:42 +00006104 pVtabCursor->pVtab = pVtab;
6105
mistachkin48864df2013-03-21 21:20:32 +00006106 /* Initialize vdbe cursor object */
danielk1977d336e222009-02-20 10:58:41 +00006107 pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
danielk1977be718892006-06-23 08:05:19 +00006108 if( pCur ){
6109 pCur->pVtabCursor = pVtabCursor;
drha68d6282015-03-24 13:32:53 +00006110 pVtab->nRef++;
danielk1977b7a2f2e2006-06-23 11:34:54 +00006111 }else{
dan995f8b92015-04-27 19:53:55 +00006112 assert( db->mallocFailed );
danielk1977b7a2f2e2006-06-23 11:34:54 +00006113 pModule->xClose(pVtabCursor);
dan995f8b92015-04-27 19:53:55 +00006114 goto no_mem;
danielk1977be718892006-06-23 08:05:19 +00006115 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00006116 }
drh9eff6162006-06-12 21:59:13 +00006117 break;
6118}
6119#endif /* SQLITE_OMIT_VIRTUALTABLE */
6120
6121#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00006122/* Opcode: VFilter P1 P2 P3 P4 *
drh831116d2014-04-03 14:31:00 +00006123** Synopsis: iplan=r[P3] zplan='P4'
drh9eff6162006-06-12 21:59:13 +00006124**
6125** P1 is a cursor opened using VOpen. P2 is an address to jump to if
6126** the filtered result set is empty.
6127**
drh66a51672008-01-03 00:01:23 +00006128** P4 is either NULL or a string that was generated by the xBestIndex
6129** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00006130** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00006131**
drh9eff6162006-06-12 21:59:13 +00006132** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00006133** by P1. The integer query plan parameter to xFilter is stored in register
6134** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00006135** xFilter method. Registers P3+2..P3+1+argc are the argc
6136** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00006137** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00006138**
danielk19776dbee812008-01-03 18:39:41 +00006139** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00006140*/
drh9cbf3422008-01-17 16:22:13 +00006141case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00006142 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00006143 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006144 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00006145 Mem *pQuery;
6146 Mem *pArgc;
drh4dc754d2008-07-23 18:17:32 +00006147 sqlite3_vtab_cursor *pVtabCursor;
6148 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00006149 VdbeCursor *pCur;
6150 int res;
6151 int i;
6152 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006153
drha6c2ed92009-11-14 23:22:23 +00006154 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00006155 pArgc = &pQuery[1];
6156 pCur = p->apCsr[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00006157 assert( memIsValid(pQuery) );
drh5b6afba2008-01-05 16:29:28 +00006158 REGISTER_TRACE(pOp->p3, pQuery);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006159 assert( pCur->pVtabCursor );
drh4dc754d2008-07-23 18:17:32 +00006160 pVtabCursor = pCur->pVtabCursor;
6161 pVtab = pVtabCursor->pVtab;
6162 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006163
drh9cbf3422008-01-17 16:22:13 +00006164 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00006165 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00006166 nArg = (int)pArgc->u.i;
6167 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006168
drh644a5292006-12-20 14:53:38 +00006169 /* Invoke the xFilter method */
drhf56fa462015-04-13 21:39:54 +00006170 res = 0;
6171 apArg = p->apArg;
6172 for(i = 0; i<nArg; i++){
6173 apArg[i] = &pArgc[i+1];
6174 }
6175 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
6176 sqlite3VtabImportErrmsg(p, pVtab);
6177 if( rc==SQLITE_OK ){
6178 res = pModule->xEof(pVtabCursor);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006179 }
drh1d454a32008-01-31 19:34:51 +00006180 pCur->nullRow = 0;
drhf56fa462015-04-13 21:39:54 +00006181 VdbeBranchTaken(res!=0,2);
6182 if( res ) goto jump_to_p2;
drh9eff6162006-06-12 21:59:13 +00006183 break;
6184}
6185#endif /* SQLITE_OMIT_VIRTUALTABLE */
6186
6187#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006188/* Opcode: VColumn P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00006189** Synopsis: r[P3]=vcolumn(P2)
drh9eff6162006-06-12 21:59:13 +00006190**
drh2133d822008-01-03 18:44:59 +00006191** Store the value of the P2-th column of
6192** the row of the virtual-table that the
6193** P1 cursor is pointing to into register P3.
drh9eff6162006-06-12 21:59:13 +00006194*/
6195case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00006196 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006197 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00006198 Mem *pDest;
6199 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006200
drhdfe88ec2008-11-03 20:55:06 +00006201 VdbeCursor *pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00006202 assert( pCur->pVtabCursor );
dan3bc9f742013-08-15 16:18:39 +00006203 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00006204 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00006205 memAboutToChange(p, pDest);
drh2945b4a2008-01-31 15:53:45 +00006206 if( pCur->nullRow ){
6207 sqlite3VdbeMemSetNull(pDest);
6208 break;
6209 }
danielk19773e3a84d2008-08-01 17:37:40 +00006210 pVtab = pCur->pVtabCursor->pVtab;
6211 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006212 assert( pModule->xColumn );
6213 memset(&sContext, 0, sizeof(sContext));
drh9bd038f2014-08-27 14:14:06 +00006214 sContext.pOut = pDest;
6215 MemSetTypeFlag(pDest, MEM_Null);
drhde4fcfd2008-01-19 23:50:26 +00006216 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
dan016f7812013-08-21 17:35:48 +00006217 sqlite3VtabImportErrmsg(p, pVtab);
drh4c8555f2009-06-25 01:47:11 +00006218 if( sContext.isError ){
6219 rc = sContext.isError;
6220 }
drh9bd038f2014-08-27 14:14:06 +00006221 sqlite3VdbeChangeEncoding(pDest, encoding);
drh5ff44372009-11-24 16:26:17 +00006222 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00006223 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006224
drhde4fcfd2008-01-19 23:50:26 +00006225 if( sqlite3VdbeMemTooBig(pDest) ){
6226 goto too_big;
6227 }
drh9eff6162006-06-12 21:59:13 +00006228 break;
6229}
6230#endif /* SQLITE_OMIT_VIRTUALTABLE */
6231
6232#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006233/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00006234**
6235** Advance virtual table P1 to the next row in its result set and
6236** jump to instruction P2. Or, if the virtual table has reached
6237** the end of its result set, then fall through to the next instruction.
6238*/
drh9cbf3422008-01-17 16:22:13 +00006239case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00006240 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006241 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00006242 int res;
drh856c1032009-06-02 15:21:42 +00006243 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006244
drhc54a6172009-06-02 16:06:03 +00006245 res = 0;
drh856c1032009-06-02 15:21:42 +00006246 pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00006247 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00006248 if( pCur->nullRow ){
6249 break;
6250 }
danielk19773e3a84d2008-08-01 17:37:40 +00006251 pVtab = pCur->pVtabCursor->pVtab;
6252 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006253 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00006254
drhde4fcfd2008-01-19 23:50:26 +00006255 /* Invoke the xNext() method of the module. There is no way for the
6256 ** underlying implementation to return an error if one occurs during
6257 ** xNext(). Instead, if an error occurs, true is returned (indicating that
6258 ** data is available) and the error code returned when xColumn or
6259 ** some other method is next invoked on the save virtual table cursor.
6260 */
drhde4fcfd2008-01-19 23:50:26 +00006261 rc = pModule->xNext(pCur->pVtabCursor);
dan016f7812013-08-21 17:35:48 +00006262 sqlite3VtabImportErrmsg(p, pVtab);
drhde4fcfd2008-01-19 23:50:26 +00006263 if( rc==SQLITE_OK ){
6264 res = pModule->xEof(pCur->pVtabCursor);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006265 }
drh688852a2014-02-17 22:40:43 +00006266 VdbeBranchTaken(!res,2);
drhde4fcfd2008-01-19 23:50:26 +00006267 if( !res ){
6268 /* If there is data, jump to P2 */
drhf56fa462015-04-13 21:39:54 +00006269 goto jump_to_p2_and_check_for_interrupt;
drhde4fcfd2008-01-19 23:50:26 +00006270 }
drh49afe3a2013-07-10 03:05:14 +00006271 goto check_for_interrupt;
drh9eff6162006-06-12 21:59:13 +00006272}
6273#endif /* SQLITE_OMIT_VIRTUALTABLE */
6274
danielk1977182c4ba2007-06-27 15:53:34 +00006275#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006276/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00006277**
drh66a51672008-01-03 00:01:23 +00006278** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00006279** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00006280** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00006281*/
drh9cbf3422008-01-17 16:22:13 +00006282case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00006283 sqlite3_vtab *pVtab;
6284 Mem *pName;
6285
danielk1977595a5232009-07-24 17:58:53 +00006286 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00006287 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00006288 assert( pVtab->pModule->xRename );
drh2b4ded92010-09-27 21:09:31 +00006289 assert( memIsValid(pName) );
drh9e92a472013-06-27 17:40:30 +00006290 assert( p->readOnly==0 );
drh5b6afba2008-01-05 16:29:28 +00006291 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00006292 assert( pName->flags & MEM_Str );
drh98655a62011-10-18 22:07:47 +00006293 testcase( pName->enc==SQLITE_UTF8 );
6294 testcase( pName->enc==SQLITE_UTF16BE );
6295 testcase( pName->enc==SQLITE_UTF16LE );
6296 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
6297 if( rc==SQLITE_OK ){
6298 rc = pVtab->pModule->xRename(pVtab, pName->z);
dan016f7812013-08-21 17:35:48 +00006299 sqlite3VtabImportErrmsg(p, pVtab);
drh98655a62011-10-18 22:07:47 +00006300 p->expired = 0;
6301 }
danielk1977182c4ba2007-06-27 15:53:34 +00006302 break;
6303}
6304#endif
drh4cbdda92006-06-14 19:00:20 +00006305
6306#ifndef SQLITE_OMIT_VIRTUALTABLE
drh0fd61352014-02-07 02:29:45 +00006307/* Opcode: VUpdate P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00006308** Synopsis: data=r[P3@P2]
danielk1977399918f2006-06-14 13:03:23 +00006309**
drh66a51672008-01-03 00:01:23 +00006310** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00006311** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00006312** are contiguous memory cells starting at P3 to pass to the xUpdate
6313** invocation. The value in register (P3+P2-1) corresponds to the
6314** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00006315**
6316** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00006317** The argv[0] element (which corresponds to memory cell P3)
6318** is the rowid of a row to delete. If argv[0] is NULL then no
6319** deletion occurs. The argv[1] element is the rowid of the new
6320** row. This can be NULL to have the virtual table select the new
6321** rowid for itself. The subsequent elements in the array are
6322** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00006323**
6324** If P2==1 then no insert is performed. argv[0] is the rowid of
6325** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00006326**
6327** P1 is a boolean flag. If it is set to true and the xUpdate call
6328** is successful, then the value returned by sqlite3_last_insert_rowid()
6329** is set to the value of the rowid for the row just inserted.
drh0fd61352014-02-07 02:29:45 +00006330**
6331** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6332** apply in the case of a constraint failure on an insert or update.
danielk1977399918f2006-06-14 13:03:23 +00006333*/
drh9cbf3422008-01-17 16:22:13 +00006334case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00006335 sqlite3_vtab *pVtab;
drhf496a7d2015-03-24 14:05:50 +00006336 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00006337 int nArg;
6338 int i;
6339 sqlite_int64 rowid;
6340 Mem **apArg;
6341 Mem *pX;
6342
danb061d052011-04-25 18:49:57 +00006343 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
6344 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6345 );
drh9e92a472013-06-27 17:40:30 +00006346 assert( p->readOnly==0 );
danielk1977595a5232009-07-24 17:58:53 +00006347 pVtab = pOp->p4.pVtab->pVtab;
drhf496a7d2015-03-24 14:05:50 +00006348 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6349 rc = SQLITE_LOCKED;
6350 break;
6351 }
6352 pModule = pVtab->pModule;
drh856c1032009-06-02 15:21:42 +00006353 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00006354 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00006355 if( ALWAYS(pModule->xUpdate) ){
danb061d052011-04-25 18:49:57 +00006356 u8 vtabOnConflict = db->vtabOnConflict;
drh856c1032009-06-02 15:21:42 +00006357 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00006358 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00006359 for(i=0; i<nArg; i++){
drh2b4ded92010-09-27 21:09:31 +00006360 assert( memIsValid(pX) );
6361 memAboutToChange(p, pX);
drh9c419382006-06-16 21:13:21 +00006362 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00006363 pX++;
danielk1977399918f2006-06-14 13:03:23 +00006364 }
danb061d052011-04-25 18:49:57 +00006365 db->vtabOnConflict = pOp->p5;
danielk19771f6eec52006-06-16 06:17:47 +00006366 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
danb061d052011-04-25 18:49:57 +00006367 db->vtabOnConflict = vtabOnConflict;
dan016f7812013-08-21 17:35:48 +00006368 sqlite3VtabImportErrmsg(p, pVtab);
drh35f6b932009-06-23 14:15:04 +00006369 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00006370 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
drh99a66922011-05-13 18:51:42 +00006371 db->lastRowid = lastRowid = rowid;
danielk19771f6eec52006-06-16 06:17:47 +00006372 }
drhd91c1a12013-02-09 13:58:25 +00006373 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
danb061d052011-04-25 18:49:57 +00006374 if( pOp->p5==OE_Ignore ){
6375 rc = SQLITE_OK;
6376 }else{
6377 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6378 }
6379 }else{
6380 p->nChange++;
6381 }
danielk1977399918f2006-06-14 13:03:23 +00006382 }
drh4cbdda92006-06-14 19:00:20 +00006383 break;
danielk1977399918f2006-06-14 13:03:23 +00006384}
6385#endif /* SQLITE_OMIT_VIRTUALTABLE */
6386
danielk197759a93792008-05-15 17:48:20 +00006387#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6388/* Opcode: Pagecount P1 P2 * * *
6389**
6390** Write the current number of pages in database P1 to memory cell P2.
6391*/
drh27a348c2015-04-13 19:14:06 +00006392case OP_Pagecount: { /* out2 */
6393 pOut = out2Prerelease(p, pOp);
drhb1299152010-03-30 22:58:33 +00006394 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00006395 break;
6396}
6397#endif
6398
drh60ac3f42010-11-23 18:59:27 +00006399
6400#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6401/* Opcode: MaxPgcnt P1 P2 P3 * *
6402**
6403** Try to set the maximum page count for database P1 to the value in P3.
drhc84e0332010-11-23 20:25:08 +00006404** Do not let the maximum page count fall below the current page count and
6405** do not change the maximum page count value if P3==0.
6406**
drh60ac3f42010-11-23 18:59:27 +00006407** Store the maximum page count after the change in register P2.
6408*/
drh27a348c2015-04-13 19:14:06 +00006409case OP_MaxPgcnt: { /* out2 */
drhc84e0332010-11-23 20:25:08 +00006410 unsigned int newMax;
drh60ac3f42010-11-23 18:59:27 +00006411 Btree *pBt;
6412
drh27a348c2015-04-13 19:14:06 +00006413 pOut = out2Prerelease(p, pOp);
drh60ac3f42010-11-23 18:59:27 +00006414 pBt = db->aDb[pOp->p1].pBt;
drhc84e0332010-11-23 20:25:08 +00006415 newMax = 0;
6416 if( pOp->p3 ){
6417 newMax = sqlite3BtreeLastPage(pBt);
drh6ea28d62010-11-26 16:49:59 +00006418 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
drhc84e0332010-11-23 20:25:08 +00006419 }
6420 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
drh60ac3f42010-11-23 18:59:27 +00006421 break;
6422}
6423#endif
6424
6425
drhaceb31b2014-02-08 01:40:27 +00006426/* Opcode: Init * P2 * P4 *
6427** Synopsis: Start at P2
6428**
6429** Programs contain a single instance of this opcode as the very first
6430** opcode.
drh949f9cd2008-01-12 21:35:57 +00006431**
6432** If tracing is enabled (by the sqlite3_trace()) interface, then
6433** the UTF-8 string contained in P4 is emitted on the trace callback.
drhaceb31b2014-02-08 01:40:27 +00006434** Or if P4 is blank, use the string returned by sqlite3_sql().
6435**
6436** If P2 is not zero, jump to instruction P2.
drh949f9cd2008-01-12 21:35:57 +00006437*/
drhaceb31b2014-02-08 01:40:27 +00006438case OP_Init: { /* jump */
drh856c1032009-06-02 15:21:42 +00006439 char *zTrace;
drhc3f1d5f2011-05-30 23:42:16 +00006440 char *z;
drh856c1032009-06-02 15:21:42 +00006441
drhaceb31b2014-02-08 01:40:27 +00006442#ifndef SQLITE_OMIT_TRACE
drh37f58e92012-09-04 21:34:26 +00006443 if( db->xTrace
6444 && !p->doingRerun
6445 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6446 ){
drhc3f1d5f2011-05-30 23:42:16 +00006447 z = sqlite3VdbeExpandSql(p, zTrace);
6448 db->xTrace(db->pTraceArg, z);
6449 sqlite3DbFree(db, z);
drh949f9cd2008-01-12 21:35:57 +00006450 }
drh8f8b2312013-10-18 20:03:43 +00006451#ifdef SQLITE_USE_FCNTL_TRACE
6452 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
6453 if( zTrace ){
6454 int i;
6455 for(i=0; i<db->nDb; i++){
drha7ab6d82014-07-21 15:44:39 +00006456 if( DbMaskTest(p->btreeMask, i)==0 ) continue;
drh8f8b2312013-10-18 20:03:43 +00006457 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
6458 }
6459 }
6460#endif /* SQLITE_USE_FCNTL_TRACE */
drhc3f1d5f2011-05-30 23:42:16 +00006461#ifdef SQLITE_DEBUG
6462 if( (db->flags & SQLITE_SqlTrace)!=0
6463 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6464 ){
6465 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6466 }
6467#endif /* SQLITE_DEBUG */
drhaceb31b2014-02-08 01:40:27 +00006468#endif /* SQLITE_OMIT_TRACE */
drhf56fa462015-04-13 21:39:54 +00006469 if( pOp->p2 ) goto jump_to_p2;
drh949f9cd2008-01-12 21:35:57 +00006470 break;
6471}
drh949f9cd2008-01-12 21:35:57 +00006472
drh91fd4d42008-01-19 20:11:25 +00006473
6474/* Opcode: Noop * * * * *
6475**
6476** Do nothing. This instruction is often useful as a jump
6477** destination.
drh5e00f6c2001-09-13 13:46:56 +00006478*/
drh91fd4d42008-01-19 20:11:25 +00006479/*
6480** The magic Explain opcode are only inserted when explain==2 (which
6481** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6482** This opcode records information from the optimizer. It is the
6483** the same as a no-op. This opcodesnever appears in a real VM program.
6484*/
6485default: { /* This is really OP_Noop and OP_Explain */
drh13573c72010-01-12 17:04:07 +00006486 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh5e00f6c2001-09-13 13:46:56 +00006487 break;
6488}
6489
6490/*****************************************************************************
6491** The cases of the switch statement above this line should all be indented
6492** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6493** readability. From this point on down, the normal indentation rules are
6494** restored.
6495*****************************************************************************/
6496 }
drh6e142f52000-06-08 13:36:40 +00006497
drh7b396862003-01-01 23:06:20 +00006498#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00006499 {
drha01c7c72014-04-25 12:35:31 +00006500 u64 endTime = sqlite3Hwtime();
drh6dc41482015-04-16 17:31:02 +00006501 if( endTime>start ) pOrigOp->cycles += endTime - start;
6502 pOrigOp->cnt++;
drh8178a752003-01-05 21:41:40 +00006503 }
drh7b396862003-01-01 23:06:20 +00006504#endif
6505
drh6e142f52000-06-08 13:36:40 +00006506 /* The following code adds nothing to the actual functionality
6507 ** of the program. It is only here for testing and debugging.
6508 ** On the other hand, it does burn CPU cycles every time through
6509 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6510 */
6511#ifndef NDEBUG
drh6dc41482015-04-16 17:31:02 +00006512 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
drhae7e1512007-05-02 16:51:59 +00006513
drhcf1023c2007-05-08 20:59:49 +00006514#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +00006515 if( db->flags & SQLITE_VdbeTrace ){
6516 if( rc!=0 ) printf("rc=%d\n",rc);
drh6dc41482015-04-16 17:31:02 +00006517 if( pOrigOp->opflags & (OPFLG_OUT2) ){
6518 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
drh75897232000-05-29 14:26:00 +00006519 }
drh6dc41482015-04-16 17:31:02 +00006520 if( pOrigOp->opflags & OPFLG_OUT3 ){
6521 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00006522 }
drh75897232000-05-29 14:26:00 +00006523 }
danielk1977b5402fb2005-01-12 07:15:04 +00006524#endif /* SQLITE_DEBUG */
6525#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00006526 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00006527
drha05a7222008-01-19 03:35:58 +00006528 /* If we reach this point, it means that execution is finished with
6529 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00006530 */
drha05a7222008-01-19 03:35:58 +00006531vdbe_error_halt:
6532 assert( rc );
6533 p->rc = rc;
drha64fa912010-03-04 00:53:32 +00006534 testcase( sqlite3GlobalConfig.xLog!=0 );
6535 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
drhf56fa462015-04-13 21:39:54 +00006536 (int)(pOp - aOp), p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00006537 sqlite3VdbeHalt(p);
danielk19777eaabcd2008-07-07 14:56:56 +00006538 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6539 rc = SQLITE_ERROR;
drhcdf011d2011-04-04 21:25:28 +00006540 if( resetSchemaOnFault>0 ){
drh81028a42012-05-15 18:28:27 +00006541 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
drhbdaec522011-04-04 00:14:43 +00006542 }
drh900b31e2007-08-28 02:27:51 +00006543
6544 /* This is the only way out of this procedure. We have to
6545 ** release the mutexes on btrees that were acquired at the
6546 ** top. */
6547vdbe_return:
drh99a66922011-05-13 18:51:42 +00006548 db->lastRowid = lastRowid;
drh77dfd5b2013-08-19 11:15:48 +00006549 testcase( nVmStep>0 );
drh9b47ee32013-08-20 03:13:51 +00006550 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
drhbdaec522011-04-04 00:14:43 +00006551 sqlite3VdbeLeave(p);
drhb86ccfb2003-01-28 23:13:10 +00006552 return rc;
6553
drh023ae032007-05-08 12:12:16 +00006554 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6555 ** is encountered.
6556 */
6557too_big:
drh22c17b82015-05-15 04:13:15 +00006558 sqlite3VdbeError(p, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00006559 rc = SQLITE_TOOBIG;
drha05a7222008-01-19 03:35:58 +00006560 goto vdbe_error_halt;
drh023ae032007-05-08 12:12:16 +00006561
drh98640a32007-06-07 19:08:32 +00006562 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00006563 */
6564no_mem:
drh17435752007-08-16 04:30:38 +00006565 db->mallocFailed = 1;
drh22c17b82015-05-15 04:13:15 +00006566 sqlite3VdbeError(p, "out of memory");
drhb86ccfb2003-01-28 23:13:10 +00006567 rc = SQLITE_NOMEM;
drha05a7222008-01-19 03:35:58 +00006568 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006569
drhb86ccfb2003-01-28 23:13:10 +00006570 /* Jump to here for any other kind of fatal error. The "rc" variable
6571 ** should hold the error number.
6572 */
6573abort_due_to_error:
drha05a7222008-01-19 03:35:58 +00006574 assert( p->zErrMsg==0 );
6575 if( db->mallocFailed ) rc = SQLITE_NOMEM;
danielk19777eaabcd2008-07-07 14:56:56 +00006576 if( rc!=SQLITE_IOERR_NOMEM ){
drh22c17b82015-05-15 04:13:15 +00006577 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
danielk19777eaabcd2008-07-07 14:56:56 +00006578 }
drha05a7222008-01-19 03:35:58 +00006579 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006580
danielk19776f8a5032004-05-10 10:34:51 +00006581 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00006582 ** flag.
6583 */
6584abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00006585 assert( db->u1.isInterrupted );
drh7e8b8482008-01-23 03:03:05 +00006586 rc = SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00006587 p->rc = rc;
drh22c17b82015-05-15 04:13:15 +00006588 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
drha05a7222008-01-19 03:35:58 +00006589 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006590}