blob: 6b817ab6d671e7c79f66b3d33b7d86b7f620f766 [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh9a324642003-09-06 20:12:01 +000012** The code in this file implements execution method of the
13** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
14** handles housekeeping details such as creating and deleting
15** VDBE instances. This file is solely interested in executing
16** the VDBE program.
17**
danielk1977fc57d7b2004-05-26 02:04:57 +000018** In the external interface, an "sqlite3_stmt*" is an opaque pointer
drh9a324642003-09-06 20:12:01 +000019** to a VDBE.
drh75897232000-05-29 14:26:00 +000020**
21** The SQL parser generates a program which is then executed by
22** the VDBE to do the work of the SQL statement. VDBE programs are
23** similar in form to assembly language. The program consists of
24** a linear sequence of operations. Each operation has an opcode
drh9cbf3422008-01-17 16:22:13 +000025** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
26** is a null-terminated string. Operand P5 is an unsigned character.
27** Few opcodes use all 5 operands.
drh75897232000-05-29 14:26:00 +000028**
drh9cbf3422008-01-17 16:22:13 +000029** Computation results are stored on a set of registers numbered beginning
30** with 1 and going up to Vdbe.nMem. Each register can store
31** either an integer, a null-terminated string, a floating point
shane21e7feb2008-05-30 15:59:49 +000032** number, or the SQL "NULL" value. An implicit conversion from one
drhb19a2bc2001-09-16 00:13:26 +000033** type to the other occurs as necessary.
drh75897232000-05-29 14:26:00 +000034**
danielk19774adee202004-05-08 08:23:19 +000035** Most of the code in this file is taken up by the sqlite3VdbeExec()
drh75897232000-05-29 14:26:00 +000036** function which does the work of interpreting a VDBE program.
37** But other routines are also provided to help in building up
38** a program instruction by instruction.
39**
drhac82fcf2002-09-08 17:23:41 +000040** Various scripts scan this source file in order to generate HTML
41** documentation, headers files, or other derived files. The formatting
42** of the code in this file is, therefore, important. See other comments
43** in this file for details. If in doubt, do not deviate from existing
44** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000045*/
46#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000047#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000048
49/*
drh2b4ded92010-09-27 21:09:31 +000050** Invoke this macro on memory cells just prior to changing the
51** value of the cell. This macro verifies that shallow copies are
52** not misused.
53*/
54#ifdef SQLITE_DEBUG
55# define memAboutToChange(P,M) sqlite3VdbeMemPrepareToChange(P,M)
56#else
57# define memAboutToChange(P,M)
58#endif
59
60/*
drh487ab3c2001-11-08 00:45:21 +000061** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000062** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000063** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000064** working correctly. This variable has no function other than to
65** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000066*/
drh0f7eb612006-08-08 13:51:43 +000067#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000068int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000069#endif
drh487ab3c2001-11-08 00:45:21 +000070
drhf6038712004-02-08 18:07:34 +000071/*
72** When this global variable is positive, it gets decremented once before
drh881feaa2006-07-26 01:39:30 +000073** each instruction in the VDBE. When reaches zero, the u1.isInterrupted
74** field of the sqlite3 structure is set in order to simulate and interrupt.
drhf6038712004-02-08 18:07:34 +000075**
76** This facility is used for testing purposes only. It does not function
77** in an ordinary build.
78*/
drh0f7eb612006-08-08 13:51:43 +000079#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000080int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000081#endif
drh1350b032002-02-27 19:00:20 +000082
danielk19777e18c252004-05-25 11:47:24 +000083/*
drh6bf89572004-11-03 16:27:01 +000084** The next global variable is incremented each type the OP_Sort opcode
85** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000086** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000087** has no function other than to help verify the correct operation of the
88** library.
89*/
drh0f7eb612006-08-08 13:51:43 +000090#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000091int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000092#endif
drh6bf89572004-11-03 16:27:01 +000093
94/*
drhae7e1512007-05-02 16:51:59 +000095** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000096** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000097** use this information to make sure that the zero-blob functionality
98** is working correctly. This variable has no function other than to
99** help verify the correct operation of the library.
100*/
101#ifdef SQLITE_TEST
102int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +0000103static void updateMaxBlobsize(Mem *p){
104 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
105 sqlite3_max_blobsize = p->n;
106 }
107}
drhae7e1512007-05-02 16:51:59 +0000108#endif
109
110/*
dan0ff297e2009-09-25 17:03:14 +0000111** The next global variable is incremented each type the OP_Found opcode
112** is executed. This is used to test whether or not the foreign key
113** operation implemented using OP_FkIsZero is working. This variable
114** has no function other than to help verify the correct operation of the
115** library.
116*/
117#ifdef SQLITE_TEST
118int sqlite3_found_count = 0;
119#endif
120
121/*
drhb7654112008-01-12 12:48:07 +0000122** Test a register to see if it exceeds the current maximum blob size.
123** If it does, record the new maximum blob size.
124*/
drh678ccce2008-03-31 18:19:54 +0000125#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
drhca48c902008-01-18 14:08:24 +0000126# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000127#else
128# define UPDATE_MAX_BLOBSIZE(P)
129#endif
130
131/*
drh9cbf3422008-01-17 16:22:13 +0000132** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000133** already. Return non-zero if a malloc() fails.
134*/
drhb21c8cd2007-08-21 19:33:56 +0000135#define Stringify(P, enc) \
136 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
drhf4479502004-05-27 03:12:53 +0000137 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000138
139/*
danielk1977bd7e4602004-05-24 07:34:48 +0000140** An ephemeral string value (signified by the MEM_Ephem flag) contains
141** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000142** is responsible for deallocating that string. Because the register
143** does not control the string, it might be deleted without the register
144** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000145**
146** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000147** string that the register itself controls. In other words, it
danielk1977bd7e4602004-05-24 07:34:48 +0000148** converts an MEM_Ephem string into an MEM_Dyn string.
149*/
drhb21c8cd2007-08-21 19:33:56 +0000150#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000151 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000152 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000153
154/*
danielk19771cc5ed82007-05-16 17:28:43 +0000155** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
156** P if required.
157*/
drhb21c8cd2007-08-21 19:33:56 +0000158#define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
danielk19771cc5ed82007-05-16 17:28:43 +0000159
160/*
shane21e7feb2008-05-30 15:59:49 +0000161** Argument pMem points at a register that will be passed to a
danielk1977c572ef72004-05-27 09:28:41 +0000162** user-defined function or returned to the user as the result of a query.
dan937d0de2009-10-15 18:35:38 +0000163** This routine sets the pMem->type variable used by the sqlite3_value_*()
164** routines.
danielk1977c572ef72004-05-27 09:28:41 +0000165*/
dan937d0de2009-10-15 18:35:38 +0000166void sqlite3VdbeMemStoreType(Mem *pMem){
danielk1977c572ef72004-05-27 09:28:41 +0000167 int flags = pMem->flags;
168 if( flags & MEM_Null ){
drh9c054832004-05-31 18:51:57 +0000169 pMem->type = SQLITE_NULL;
danielk1977c572ef72004-05-27 09:28:41 +0000170 }
171 else if( flags & MEM_Int ){
drh9c054832004-05-31 18:51:57 +0000172 pMem->type = SQLITE_INTEGER;
danielk1977c572ef72004-05-27 09:28:41 +0000173 }
174 else if( flags & MEM_Real ){
drh9c054832004-05-31 18:51:57 +0000175 pMem->type = SQLITE_FLOAT;
danielk1977c572ef72004-05-27 09:28:41 +0000176 }
177 else if( flags & MEM_Str ){
drh9c054832004-05-31 18:51:57 +0000178 pMem->type = SQLITE_TEXT;
danielk1977c572ef72004-05-27 09:28:41 +0000179 }else{
drh9c054832004-05-31 18:51:57 +0000180 pMem->type = SQLITE_BLOB;
danielk1977c572ef72004-05-27 09:28:41 +0000181 }
182}
danielk19778a6b5412004-05-24 07:04:25 +0000183
184/*
drhdfe88ec2008-11-03 20:55:06 +0000185** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000186** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000187*/
drhdfe88ec2008-11-03 20:55:06 +0000188static VdbeCursor *allocateCursor(
189 Vdbe *p, /* The virtual machine */
190 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000191 int nField, /* Number of fields in the table or index */
drh3d4501e2008-12-04 20:40:10 +0000192 int iDb, /* When database the cursor belongs to, or -1 */
drh3e9ca092009-09-08 01:14:48 +0000193 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
danielk1977cd3e8f72008-03-25 09:47:35 +0000194){
195 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000196 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000197 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000198 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000199 **
200 ** * Sometimes cursor numbers are used for a couple of different
201 ** purposes in a vdbe program. The different uses might require
202 ** different sized allocations. Memory cells provide growable
203 ** allocations.
204 **
205 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
206 ** be freed lazily via the sqlite3_release_memory() API. This
207 ** minimizes the number of malloc calls made by the system.
208 **
209 ** Memory cells for cursors are allocated at the top of the address
210 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
211 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
212 */
213 Mem *pMem = &p->aMem[p->nMem-iCur];
214
danielk19775f096132008-03-28 15:44:09 +0000215 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000216 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000217 nByte =
drhc54055b2009-11-13 17:05:53 +0000218 ROUND8(sizeof(VdbeCursor)) +
danielk1977cd3e8f72008-03-25 09:47:35 +0000219 (isBtreeCursor?sqlite3BtreeCursorSize():0) +
220 2*nField*sizeof(u32);
221
drh290c1942004-08-21 17:54:45 +0000222 assert( iCur<p->nCursor );
223 if( p->apCsr[iCur] ){
danielk1977be718892006-06-23 08:05:19 +0000224 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000225 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000226 }
danielk1977cd3e8f72008-03-25 09:47:35 +0000227 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
drhdfe88ec2008-11-03 20:55:06 +0000228 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhf25a5072009-11-18 23:01:25 +0000229 memset(pCx, 0, sizeof(VdbeCursor));
danielk197794eb6a12005-12-15 15:22:08 +0000230 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000231 pCx->nField = nField;
232 if( nField ){
drhc54055b2009-11-13 17:05:53 +0000233 pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
danielk1977cd3e8f72008-03-25 09:47:35 +0000234 }
235 if( isBtreeCursor ){
drhdfe88ec2008-11-03 20:55:06 +0000236 pCx->pCursor = (BtCursor*)
drhc54055b2009-11-13 17:05:53 +0000237 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
drhf25a5072009-11-18 23:01:25 +0000238 sqlite3BtreeCursorZero(pCx->pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000239 }
danielk197794eb6a12005-12-15 15:22:08 +0000240 }
drh4774b132004-06-12 20:12:51 +0000241 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000242}
243
danielk19773d1bfea2004-05-14 11:00:53 +0000244/*
drh29d72102006-02-09 22:13:41 +0000245** Try to convert a value into a numeric representation if we can
246** do so without loss of information. In other words, if the string
247** looks like a number, convert it into a number. If it does not
248** look like a number, leave it alone.
249*/
drhb21c8cd2007-08-21 19:33:56 +0000250static void applyNumericAffinity(Mem *pRec){
drh29d72102006-02-09 22:13:41 +0000251 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
drh9339da12010-09-30 00:50:49 +0000252 double rValue;
253 i64 iValue;
danb7dca7d2010-03-05 16:32:12 +0000254 u8 enc = pRec->enc;
drh9339da12010-09-30 00:50:49 +0000255 if( (pRec->flags&MEM_Str)==0 ) return;
256 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
shaneh5f1d6b62010-09-30 16:51:25 +0000257 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
drh9339da12010-09-30 00:50:49 +0000258 pRec->u.i = iValue;
259 pRec->flags |= MEM_Int;
260 }else{
261 pRec->r = rValue;
262 pRec->flags |= MEM_Real;
drh29d72102006-02-09 22:13:41 +0000263 }
264 }
265}
266
267/*
drh8a512562005-11-14 22:29:05 +0000268** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000269**
drh8a512562005-11-14 22:29:05 +0000270** SQLITE_AFF_INTEGER:
271** SQLITE_AFF_REAL:
272** SQLITE_AFF_NUMERIC:
273** Try to convert pRec to an integer representation or a
274** floating-point representation if an integer representation
275** is not possible. Note that the integer representation is
276** always preferred, even if the affinity is REAL, because
277** an integer representation is more space efficient on disk.
278**
279** SQLITE_AFF_TEXT:
280** Convert pRec to a text representation.
281**
282** SQLITE_AFF_NONE:
283** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000284*/
drh17435752007-08-16 04:30:38 +0000285static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000286 Mem *pRec, /* The value to apply affinity to */
287 char affinity, /* The affinity to be applied */
288 u8 enc /* Use this text encoding */
289){
drh8a512562005-11-14 22:29:05 +0000290 if( affinity==SQLITE_AFF_TEXT ){
drh17c40292004-07-21 02:53:29 +0000291 /* Only attempt the conversion to TEXT if there is an integer or real
292 ** representation (blob and NULL do not get converted) but no string
293 ** representation.
294 */
295 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
drhb21c8cd2007-08-21 19:33:56 +0000296 sqlite3VdbeMemStringify(pRec, enc);
drh17c40292004-07-21 02:53:29 +0000297 }
298 pRec->flags &= ~(MEM_Real|MEM_Int);
drh8a512562005-11-14 22:29:05 +0000299 }else if( affinity!=SQLITE_AFF_NONE ){
300 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
301 || affinity==SQLITE_AFF_NUMERIC );
drhb21c8cd2007-08-21 19:33:56 +0000302 applyNumericAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000303 if( pRec->flags & MEM_Real ){
drh8df447f2005-11-01 15:48:24 +0000304 sqlite3VdbeIntegerAffinity(pRec);
drh17c40292004-07-21 02:53:29 +0000305 }
danielk19773d1bfea2004-05-14 11:00:53 +0000306 }
307}
308
danielk1977aee18ef2005-03-09 12:26:50 +0000309/*
drh29d72102006-02-09 22:13:41 +0000310** Try to convert the type of a function argument or a result column
311** into a numeric representation. Use either INTEGER or REAL whichever
312** is appropriate. But only do the conversion if it is possible without
313** loss of information and return the revised type of the argument.
drh29d72102006-02-09 22:13:41 +0000314*/
315int sqlite3_value_numeric_type(sqlite3_value *pVal){
316 Mem *pMem = (Mem*)pVal;
drhe5a8a1d2010-11-18 12:31:24 +0000317 if( pMem->type==SQLITE_TEXT ){
318 applyNumericAffinity(pMem);
319 sqlite3VdbeMemStoreType(pMem);
320 }
drh29d72102006-02-09 22:13:41 +0000321 return pMem->type;
322}
323
324/*
danielk1977aee18ef2005-03-09 12:26:50 +0000325** Exported version of applyAffinity(). This one works on sqlite3_value*,
326** not the internal Mem* type.
327*/
danielk19771e536952007-08-16 10:09:01 +0000328void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000329 sqlite3_value *pVal,
330 u8 affinity,
331 u8 enc
332){
drhb21c8cd2007-08-21 19:33:56 +0000333 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000334}
335
danielk1977b5402fb2005-01-12 07:15:04 +0000336#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000337/*
danielk1977ca6b2912004-05-21 10:49:47 +0000338** Write a nice string representation of the contents of cell pMem
339** into buffer zBuf, length nBuf.
340*/
drh74161702006-02-24 02:53:49 +0000341void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000342 char *zCsr = zBuf;
343 int f = pMem->flags;
344
drh57196282004-10-06 15:41:16 +0000345 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000346
danielk1977ca6b2912004-05-21 10:49:47 +0000347 if( f&MEM_Blob ){
348 int i;
349 char c;
350 if( f & MEM_Dyn ){
351 c = 'z';
352 assert( (f & (MEM_Static|MEM_Ephem))==0 );
353 }else if( f & MEM_Static ){
354 c = 't';
355 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
356 }else if( f & MEM_Ephem ){
357 c = 'e';
358 assert( (f & (MEM_Static|MEM_Dyn))==0 );
359 }else{
360 c = 's';
361 }
362
drh5bb3eb92007-05-04 13:15:55 +0000363 sqlite3_snprintf(100, zCsr, "%c", c);
drhea678832008-12-10 19:26:22 +0000364 zCsr += sqlite3Strlen30(zCsr);
drh5bb3eb92007-05-04 13:15:55 +0000365 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000366 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000367 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000368 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000369 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000370 }
371 for(i=0; i<16 && i<pMem->n; i++){
372 char z = pMem->z[i];
373 if( z<32 || z>126 ) *zCsr++ = '.';
374 else *zCsr++ = z;
375 }
376
drhe718efe2007-05-10 21:14:03 +0000377 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000378 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000379 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000380 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000381 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000382 }
danielk1977b1bc9532004-05-22 03:05:33 +0000383 *zCsr = '\0';
384 }else if( f & MEM_Str ){
385 int j, k;
386 zBuf[0] = ' ';
387 if( f & MEM_Dyn ){
388 zBuf[1] = 'z';
389 assert( (f & (MEM_Static|MEM_Ephem))==0 );
390 }else if( f & MEM_Static ){
391 zBuf[1] = 't';
392 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
393 }else if( f & MEM_Ephem ){
394 zBuf[1] = 'e';
395 assert( (f & (MEM_Static|MEM_Dyn))==0 );
396 }else{
397 zBuf[1] = 's';
398 }
399 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000400 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000401 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000402 zBuf[k++] = '[';
403 for(j=0; j<15 && j<pMem->n; j++){
404 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000405 if( c>=0x20 && c<0x7f ){
406 zBuf[k++] = c;
407 }else{
408 zBuf[k++] = '.';
409 }
410 }
411 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000412 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000413 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000414 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000415 }
danielk1977ca6b2912004-05-21 10:49:47 +0000416}
417#endif
418
drh5b6afba2008-01-05 16:29:28 +0000419#ifdef SQLITE_DEBUG
420/*
421** Print the value of a register for tracing purposes:
422*/
423static void memTracePrint(FILE *out, Mem *p){
424 if( p->flags & MEM_Null ){
425 fprintf(out, " NULL");
426 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
427 fprintf(out, " si:%lld", p->u.i);
428 }else if( p->flags & MEM_Int ){
429 fprintf(out, " i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000430#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000431 }else if( p->flags & MEM_Real ){
432 fprintf(out, " r:%g", p->r);
drh0b3bf922009-06-15 20:45:34 +0000433#endif
drh733bf1b2009-04-22 00:47:00 +0000434 }else if( p->flags & MEM_RowSet ){
435 fprintf(out, " (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000436 }else{
437 char zBuf[200];
438 sqlite3VdbeMemPrettyPrint(p, zBuf);
439 fprintf(out, " ");
440 fprintf(out, "%s", zBuf);
441 }
442}
443static void registerTrace(FILE *out, int iReg, Mem *p){
444 fprintf(out, "REG[%d] = ", iReg);
445 memTracePrint(out, p);
446 fprintf(out, "\n");
447}
448#endif
449
450#ifdef SQLITE_DEBUG
drhb21e7c72008-06-22 12:37:57 +0000451# define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
drh5b6afba2008-01-05 16:29:28 +0000452#else
453# define REGISTER_TRACE(R,M)
454#endif
455
danielk197784ac9d02004-05-18 09:58:06 +0000456
drh7b396862003-01-01 23:06:20 +0000457#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000458
459/*
460** hwtime.h contains inline assembler code for implementing
461** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000462*/
shane9bcbdad2008-05-29 20:22:37 +0000463#include "hwtime.h"
464
drh7b396862003-01-01 23:06:20 +0000465#endif
466
drh8c74a8c2002-08-25 19:20:40 +0000467/*
drhcaec2f12003-01-07 02:47:47 +0000468** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
danielk19776f8a5032004-05-10 10:34:51 +0000469** sqlite3_interrupt() routine has been called. If it has been, then
drhcaec2f12003-01-07 02:47:47 +0000470** processing of the VDBE program is interrupted.
471**
472** This macro added to every instruction that does a jump in order to
473** implement a loop. This test used to be on every single instruction,
474** but that meant we more testing that we needed. By only testing the
475** flag on jump instructions, we get a (small) speed improvement.
476*/
477#define CHECK_FOR_INTERRUPT \
drh881feaa2006-07-26 01:39:30 +0000478 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drhcaec2f12003-01-07 02:47:47 +0000479
480
danielk1977fd7f0452008-12-17 17:30:26 +0000481#ifndef NDEBUG
482/*
483** This function is only called from within an assert() expression. It
484** checks that the sqlite3.nTransaction variable is correctly set to
485** the number of non-transaction savepoints currently in the
486** linked list starting at sqlite3.pSavepoint.
487**
488** Usage:
489**
490** assert( checkSavepointCount(db) );
491*/
492static int checkSavepointCount(sqlite3 *db){
493 int n = 0;
494 Savepoint *p;
495 for(p=db->pSavepoint; p; p=p->pNext) n++;
496 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
497 return 1;
498}
499#endif
500
drhcaec2f12003-01-07 02:47:47 +0000501/*
drhb9755982010-07-24 16:34:37 +0000502** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
503** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
504** in memory obtained from sqlite3DbMalloc).
505*/
506static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){
507 sqlite3 *db = p->db;
508 sqlite3DbFree(db, p->zErrMsg);
509 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
510 sqlite3_free(pVtab->zErrMsg);
511 pVtab->zErrMsg = 0;
512}
513
514
515/*
drhb86ccfb2003-01-28 23:13:10 +0000516** Execute as much of a VDBE program as we can then return.
517**
danielk19774adee202004-05-08 08:23:19 +0000518** sqlite3VdbeMakeReady() must be called before this routine in order to
drhb86ccfb2003-01-28 23:13:10 +0000519** close the program with a final OP_Halt and to set up the callbacks
520** and the error message pointer.
521**
522** Whenever a row or result data is available, this routine will either
523** invoke the result callback (if there is one) or return with
drh326dce72003-01-29 14:06:07 +0000524** SQLITE_ROW.
drhb86ccfb2003-01-28 23:13:10 +0000525**
526** If an attempt is made to open a locked database, then this routine
527** will either invoke the busy callback (if there is one) or it will
528** return SQLITE_BUSY.
529**
530** If an error occurs, an error message is written to memory obtained
drh17435752007-08-16 04:30:38 +0000531** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
drhb86ccfb2003-01-28 23:13:10 +0000532** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
533**
534** If the callback ever returns non-zero, then the program exits
535** immediately. There will be no error message but the p->rc field is
536** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
537**
drh9468c7f2003-03-07 19:50:07 +0000538** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
539** routine to return SQLITE_ERROR.
drhb86ccfb2003-01-28 23:13:10 +0000540**
541** Other fatal errors return SQLITE_ERROR.
542**
danielk19774adee202004-05-08 08:23:19 +0000543** After this routine has finished, sqlite3VdbeFinalize() should be
drhb86ccfb2003-01-28 23:13:10 +0000544** used to clean up the mess that was left behind.
545*/
danielk19774adee202004-05-08 08:23:19 +0000546int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000547 Vdbe *p /* The VDBE */
548){
shaneh84f4b2f2010-02-26 01:46:54 +0000549 int pc=0; /* The program counter */
drhbbe879d2009-11-14 18:04:35 +0000550 Op *aOp = p->aOp; /* Copy of p->aOp */
drhb86ccfb2003-01-28 23:13:10 +0000551 Op *pOp; /* Current operation */
552 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000553 sqlite3 *db = p->db; /* The database */
drhcdf011d2011-04-04 21:25:28 +0000554 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
drh8079a0d2006-01-12 17:20:50 +0000555 u8 encoding = ENC(db); /* The database encoding */
drha6c2ed92009-11-14 23:22:23 +0000556#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
shaneh5e17e8b2009-12-03 04:40:47 +0000557 int checkProgress; /* True if progress callbacks are enabled */
drha6c2ed92009-11-14 23:22:23 +0000558 int nProgressOps = 0; /* Opcodes executed since progress callback. */
559#endif
560 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000561 Mem *pIn1 = 0; /* 1st input operand */
562 Mem *pIn2 = 0; /* 2nd input operand */
563 Mem *pIn3 = 0; /* 3rd input operand */
564 Mem *pOut = 0; /* Output operand */
drh0acb7e42008-06-25 00:12:41 +0000565 int iCompare = 0; /* Result of last OP_Compare operation */
shanebe217792009-03-05 04:20:31 +0000566 int *aPermute = 0; /* Permutation of columns for OP_Compare */
drh99a66922011-05-13 18:51:42 +0000567 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
drhb86ccfb2003-01-28 23:13:10 +0000568#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000569 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000570 int origPc; /* Program counter at start of opcode */
571#endif
drh856c1032009-06-02 15:21:42 +0000572 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000573
drhca48c902008-01-18 14:08:24 +0000574 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
drhbdaec522011-04-04 00:14:43 +0000575 sqlite3VdbeEnter(p);
danielk19772e588c72005-12-09 14:25:08 +0000576 if( p->rc==SQLITE_NOMEM ){
577 /* This happens if a malloc() inside a call to sqlite3_column_text() or
578 ** sqlite3_column_text16() failed. */
579 goto no_mem;
580 }
drh3a840692003-01-29 22:58:26 +0000581 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
582 p->rc = SQLITE_OK;
drhb86ccfb2003-01-28 23:13:10 +0000583 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000584 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000585 db->busyHandler.nBusy = 0;
drh93581642004-02-12 13:02:55 +0000586 CHECK_FOR_INTERRUPT;
drh602c2372007-03-01 00:29:13 +0000587 sqlite3VdbeIOTraceSql(p);
drha6c2ed92009-11-14 23:22:23 +0000588#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
589 checkProgress = db->xProgress!=0;
590#endif
drh3c23a882007-01-09 14:01:13 +0000591#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000592 sqlite3BeginBenignMalloc();
drh42224412010-05-31 14:28:25 +0000593 if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){
drh3c23a882007-01-09 14:01:13 +0000594 int i;
595 printf("VDBE Program Listing:\n");
596 sqlite3VdbePrintSql(p);
597 for(i=0; i<p->nOp; i++){
drhbbe879d2009-11-14 18:04:35 +0000598 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
drh3c23a882007-01-09 14:01:13 +0000599 }
600 }
danielk19772d1d86f2008-06-20 14:59:51 +0000601 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000602#endif
drhb86ccfb2003-01-28 23:13:10 +0000603 for(pc=p->pc; rc==SQLITE_OK; pc++){
drhcaec2f12003-01-07 02:47:47 +0000604 assert( pc>=0 && pc<p->nOp );
drh17435752007-08-16 04:30:38 +0000605 if( db->mallocFailed ) goto no_mem;
drh7b396862003-01-01 23:06:20 +0000606#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +0000607 origPc = pc;
shane9bcbdad2008-05-29 20:22:37 +0000608 start = sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000609#endif
drhbbe879d2009-11-14 18:04:35 +0000610 pOp = &aOp[pc];
drh6e142f52000-06-08 13:36:40 +0000611
danielk19778b60e0f2005-01-12 09:10:39 +0000612 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000613 */
danielk19778b60e0f2005-01-12 09:10:39 +0000614#ifdef SQLITE_DEBUG
drh75897232000-05-29 14:26:00 +0000615 if( p->trace ){
drh3f7d4e42004-07-24 14:35:58 +0000616 if( pc==0 ){
617 printf("VDBE Execution Trace:\n");
618 sqlite3VdbePrintSql(p);
619 }
danielk19774adee202004-05-08 08:23:19 +0000620 sqlite3VdbePrintOp(p->trace, pc, pOp);
drh75897232000-05-29 14:26:00 +0000621 }
drh3f7d4e42004-07-24 14:35:58 +0000622#endif
623
drh6e142f52000-06-08 13:36:40 +0000624
drhf6038712004-02-08 18:07:34 +0000625 /* Check to see if we need to simulate an interrupt. This only happens
626 ** if we have a special test build.
627 */
628#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000629 if( sqlite3_interrupt_count>0 ){
630 sqlite3_interrupt_count--;
631 if( sqlite3_interrupt_count==0 ){
632 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000633 }
634 }
635#endif
636
danielk1977348bb5d2003-10-18 09:37:26 +0000637#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
638 /* Call the progress callback if it is configured and the required number
639 ** of VDBE ops have been executed (either since this invocation of
danielk19774adee202004-05-08 08:23:19 +0000640 ** sqlite3VdbeExec() or since last time the progress callback was called).
danielk1977348bb5d2003-10-18 09:37:26 +0000641 ** If the progress callback returns non-zero, exit the virtual machine with
642 ** a return code SQLITE_ABORT.
643 */
drha6c2ed92009-11-14 23:22:23 +0000644 if( checkProgress ){
drh3914aed2004-01-31 20:40:42 +0000645 if( db->nProgressOps==nProgressOps ){
danielk1977de523ac2007-06-15 14:53:53 +0000646 int prc;
drh9978c972010-02-23 17:36:32 +0000647 prc = db->xProgress(db->pProgressArg);
danielk1977de523ac2007-06-15 14:53:53 +0000648 if( prc!=0 ){
649 rc = SQLITE_INTERRUPT;
drha05a7222008-01-19 03:35:58 +0000650 goto vdbe_error_halt;
danielk1977de523ac2007-06-15 14:53:53 +0000651 }
danielk19773fe11f32007-06-13 16:49:48 +0000652 nProgressOps = 0;
danielk1977348bb5d2003-10-18 09:37:26 +0000653 }
drh3914aed2004-01-31 20:40:42 +0000654 nProgressOps++;
danielk1977348bb5d2003-10-18 09:37:26 +0000655 }
danielk1977348bb5d2003-10-18 09:37:26 +0000656#endif
657
drh3c657212009-11-17 23:59:58 +0000658 /* On any opcode with the "out2-prerelase" tag, free any
659 ** external allocations out of mem[p2] and set mem[p2] to be
660 ** an undefined integer. Opcodes will either fill in the integer
661 ** value or convert mem[p2] to a different type.
drh4c583122008-01-04 22:01:03 +0000662 */
drha6c2ed92009-11-14 23:22:23 +0000663 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
drh3c657212009-11-17 23:59:58 +0000664 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
665 assert( pOp->p2>0 );
666 assert( pOp->p2<=p->nMem );
667 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +0000668 memAboutToChange(p, pOut);
drh3c657212009-11-17 23:59:58 +0000669 sqlite3VdbeMemReleaseExternal(pOut);
670 pOut->flags = MEM_Int;
drh4c583122008-01-04 22:01:03 +0000671 }
drh3c657212009-11-17 23:59:58 +0000672
673 /* Sanity checking on other operands */
674#ifdef SQLITE_DEBUG
675 if( (pOp->opflags & OPFLG_IN1)!=0 ){
676 assert( pOp->p1>0 );
677 assert( pOp->p1<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000678 assert( memIsValid(&aMem[pOp->p1]) );
drh3c657212009-11-17 23:59:58 +0000679 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
680 }
681 if( (pOp->opflags & OPFLG_IN2)!=0 ){
682 assert( pOp->p2>0 );
683 assert( pOp->p2<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000684 assert( memIsValid(&aMem[pOp->p2]) );
drh3c657212009-11-17 23:59:58 +0000685 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
686 }
687 if( (pOp->opflags & OPFLG_IN3)!=0 ){
688 assert( pOp->p3>0 );
689 assert( pOp->p3<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000690 assert( memIsValid(&aMem[pOp->p3]) );
drh3c657212009-11-17 23:59:58 +0000691 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
692 }
693 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
694 assert( pOp->p2>0 );
695 assert( pOp->p2<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000696 memAboutToChange(p, &aMem[pOp->p2]);
drh3c657212009-11-17 23:59:58 +0000697 }
698 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
699 assert( pOp->p3>0 );
700 assert( pOp->p3<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000701 memAboutToChange(p, &aMem[pOp->p3]);
drh3c657212009-11-17 23:59:58 +0000702 }
703#endif
drh93952eb2009-11-13 19:43:43 +0000704
drh75897232000-05-29 14:26:00 +0000705 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000706
drh5e00f6c2001-09-13 13:46:56 +0000707/*****************************************************************************
708** What follows is a massive switch statement where each case implements a
709** separate instruction in the virtual machine. If we follow the usual
710** indentation conventions, each case should be indented by 6 spaces. But
711** that is a lot of wasted space on the left margin. So the code within
712** the switch statement will break with convention and be flush-left. Another
713** big comment (similar to this one) will mark the point in the code where
714** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000715**
716** The formatting of each case is important. The makefile for SQLite
717** generates two C files "opcodes.h" and "opcodes.c" by scanning this
718** file looking for lines that begin with "case OP_". The opcodes.h files
719** will be filled with #defines that give unique integer values to each
720** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000721** each string is the symbolic name for the corresponding opcode. If the
722** case statement is followed by a comment of the form "/# same as ... #/"
723** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000724**
drh9cbf3422008-01-17 16:22:13 +0000725** Other keywords in the comment that follows each case are used to
726** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
727** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
728** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000729**
drhac82fcf2002-09-08 17:23:41 +0000730** Documentation about VDBE opcodes is generated by scanning this file
731** for lines of that contain "Opcode:". That line and all subsequent
732** comment lines are used in the generation of the opcode.html documentation
733** file.
734**
735** SUMMARY:
736**
737** Formatting is important to scripts that scan this file.
738** Do not deviate from the formatting style currently in use.
739**
drh5e00f6c2001-09-13 13:46:56 +0000740*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000741
drh9cbf3422008-01-17 16:22:13 +0000742/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000743**
744** An unconditional jump to address P2.
745** The next instruction executed will be
746** the one at index P2 from the beginning of
747** the program.
748*/
drh9cbf3422008-01-17 16:22:13 +0000749case OP_Goto: { /* jump */
drhcaec2f12003-01-07 02:47:47 +0000750 CHECK_FOR_INTERRUPT;
drh5e00f6c2001-09-13 13:46:56 +0000751 pc = pOp->p2 - 1;
752 break;
753}
drh75897232000-05-29 14:26:00 +0000754
drh2eb95372008-06-06 15:04:36 +0000755/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000756**
drh2eb95372008-06-06 15:04:36 +0000757** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000758** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000759*/
drh93952eb2009-11-13 19:43:43 +0000760case OP_Gosub: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +0000761 pIn1 = &aMem[pOp->p1];
drh2eb95372008-06-06 15:04:36 +0000762 assert( (pIn1->flags & MEM_Dyn)==0 );
drh2b4ded92010-09-27 21:09:31 +0000763 memAboutToChange(p, pIn1);
drh2eb95372008-06-06 15:04:36 +0000764 pIn1->flags = MEM_Int;
765 pIn1->u.i = pc;
766 REGISTER_TRACE(pOp->p1, pIn1);
drh8c74a8c2002-08-25 19:20:40 +0000767 pc = pOp->p2 - 1;
768 break;
769}
770
drh2eb95372008-06-06 15:04:36 +0000771/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000772**
drh2eb95372008-06-06 15:04:36 +0000773** Jump to the next instruction after the address in register P1.
drh8c74a8c2002-08-25 19:20:40 +0000774*/
drh2eb95372008-06-06 15:04:36 +0000775case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000776 pIn1 = &aMem[pOp->p1];
drh2eb95372008-06-06 15:04:36 +0000777 assert( pIn1->flags & MEM_Int );
drh9c1905f2008-12-10 22:32:56 +0000778 pc = (int)pIn1->u.i;
drh8c74a8c2002-08-25 19:20:40 +0000779 break;
780}
781
drhe00ee6e2008-06-20 15:24:01 +0000782/* Opcode: Yield P1 * * * *
783**
784** Swap the program counter with the value in register P1.
785*/
danielk1977f73ab8b2008-12-29 10:39:53 +0000786case OP_Yield: { /* in1 */
drhe00ee6e2008-06-20 15:24:01 +0000787 int pcDest;
drh3c657212009-11-17 23:59:58 +0000788 pIn1 = &aMem[pOp->p1];
drhe00ee6e2008-06-20 15:24:01 +0000789 assert( (pIn1->flags & MEM_Dyn)==0 );
790 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000791 pcDest = (int)pIn1->u.i;
drhe00ee6e2008-06-20 15:24:01 +0000792 pIn1->u.i = pc;
793 REGISTER_TRACE(pOp->p1, pIn1);
794 pc = pcDest;
795 break;
796}
797
drh5053a792009-02-20 03:02:23 +0000798/* Opcode: HaltIfNull P1 P2 P3 P4 *
799**
drhef8662b2011-06-20 21:47:58 +0000800** Check the value in register P3. If it is NULL then Halt using
drh5053a792009-02-20 03:02:23 +0000801** parameter P1, P2, and P4 as if this were a Halt instruction. If the
802** value in register P3 is not NULL, then this routine is a no-op.
803*/
804case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000805 pIn3 = &aMem[pOp->p3];
drh5053a792009-02-20 03:02:23 +0000806 if( (pIn3->flags & MEM_Null)==0 ) break;
807 /* Fall through into OP_Halt */
808}
drhe00ee6e2008-06-20 15:24:01 +0000809
drh9cbf3422008-01-17 16:22:13 +0000810/* Opcode: Halt P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +0000811**
drh3d4501e2008-12-04 20:40:10 +0000812** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000813** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000814**
drh92f02c32004-09-02 14:57:08 +0000815** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
816** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
817** For errors, it can be some other value. If P1!=0 then P2 will determine
818** whether or not to rollback the current transaction. Do not rollback
819** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
820** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000821** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000822**
drh66a51672008-01-03 00:01:23 +0000823** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000824**
drh9cfcf5d2002-01-29 18:41:24 +0000825** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000826** every program. So a jump past the last instruction of the program
827** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000828*/
drh9cbf3422008-01-17 16:22:13 +0000829case OP_Halt: {
dan165921a2009-08-28 18:53:45 +0000830 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000831 /* Halt the sub-program. Return control to the parent frame. */
dan165921a2009-08-28 18:53:45 +0000832 VdbeFrame *pFrame = p->pFrame;
833 p->pFrame = pFrame->pParent;
834 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000835 sqlite3VdbeSetChanges(db, p->nChange);
dan165921a2009-08-28 18:53:45 +0000836 pc = sqlite3VdbeFrameRestore(pFrame);
drh99a66922011-05-13 18:51:42 +0000837 lastRowid = db->lastRowid;
dan165921a2009-08-28 18:53:45 +0000838 if( pOp->p2==OE_Ignore ){
dan2832ad42009-08-31 15:27:27 +0000839 /* Instruction pc is the OP_Program that invoked the sub-program
840 ** currently being halted. If the p2 instruction of this OP_Halt
841 ** instruction is set to OE_Ignore, then the sub-program is throwing
842 ** an IGNORE exception. In this case jump to the address specified
843 ** as the p2 of the calling OP_Program. */
dan76d462e2009-08-30 11:42:51 +0000844 pc = p->aOp[pc].p2-1;
dan165921a2009-08-28 18:53:45 +0000845 }
drhbbe879d2009-11-14 18:04:35 +0000846 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000847 aMem = p->aMem;
dan165921a2009-08-28 18:53:45 +0000848 break;
849 }
dan2832ad42009-08-31 15:27:27 +0000850
drh92f02c32004-09-02 14:57:08 +0000851 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000852 p->errorAction = (u8)pOp->p2;
dan165921a2009-08-28 18:53:45 +0000853 p->pc = pc;
danielk19772dca4ac2008-01-03 11:50:29 +0000854 if( pOp->p4.z ){
drh413c3d32010-02-23 20:11:56 +0000855 assert( p->rc!=SQLITE_OK );
drhf089aa42008-07-08 19:34:06 +0000856 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
drhaf46dc12010-02-24 21:44:07 +0000857 testcase( sqlite3GlobalConfig.xLog!=0 );
drh413c3d32010-02-23 20:11:56 +0000858 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z);
drhcda455b2010-02-24 19:23:56 +0000859 }else if( p->rc ){
drhaf46dc12010-02-24 21:44:07 +0000860 testcase( sqlite3GlobalConfig.xLog!=0 );
drhcda455b2010-02-24 19:23:56 +0000861 sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
drh9cfcf5d2002-01-29 18:41:24 +0000862 }
drh92f02c32004-09-02 14:57:08 +0000863 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +0000864 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +0000865 if( rc==SQLITE_BUSY ){
drh900b31e2007-08-28 02:27:51 +0000866 p->rc = rc = SQLITE_BUSY;
867 }else{
dan1da40a32009-09-19 17:00:31 +0000868 assert( rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT );
869 assert( rc==SQLITE_OK || db->nDeferredCons>0 );
drh900b31e2007-08-28 02:27:51 +0000870 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +0000871 }
drh900b31e2007-08-28 02:27:51 +0000872 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +0000873}
drhc61053b2000-06-04 12:58:36 +0000874
drh4c583122008-01-04 22:01:03 +0000875/* Opcode: Integer P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000876**
drh9cbf3422008-01-17 16:22:13 +0000877** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +0000878*/
drh4c583122008-01-04 22:01:03 +0000879case OP_Integer: { /* out2-prerelease */
drh4c583122008-01-04 22:01:03 +0000880 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +0000881 break;
882}
883
drh4c583122008-01-04 22:01:03 +0000884/* Opcode: Int64 * P2 * P4 *
drh29dda4a2005-07-21 18:23:20 +0000885**
drh66a51672008-01-03 00:01:23 +0000886** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +0000887** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +0000888*/
drh4c583122008-01-04 22:01:03 +0000889case OP_Int64: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000890 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +0000891 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +0000892 break;
893}
drh4f26d6c2004-05-26 23:25:30 +0000894
drh13573c72010-01-12 17:04:07 +0000895#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +0000896/* Opcode: Real * P2 * P4 *
drhf4479502004-05-27 03:12:53 +0000897**
drh4c583122008-01-04 22:01:03 +0000898** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +0000899** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +0000900*/
drh4c583122008-01-04 22:01:03 +0000901case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
902 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +0000903 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh4c583122008-01-04 22:01:03 +0000904 pOut->r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +0000905 break;
906}
drh13573c72010-01-12 17:04:07 +0000907#endif
danielk1977cbb18d22004-05-28 11:37:27 +0000908
drh3c84ddf2008-01-09 02:15:38 +0000909/* Opcode: String8 * P2 * P4 *
danielk1977cbb18d22004-05-28 11:37:27 +0000910**
drh66a51672008-01-03 00:01:23 +0000911** P4 points to a nul terminated UTF-8 string. This opcode is transformed
danielk19770f69c1e2004-05-29 11:24:50 +0000912** into an OP_String before it is executed for the first time.
danielk1977cbb18d22004-05-28 11:37:27 +0000913*/
drh4c583122008-01-04 22:01:03 +0000914case OP_String8: { /* same as TK_STRING, out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000915 assert( pOp->p4.z!=0 );
drhed2df7f2005-11-16 04:34:32 +0000916 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +0000917 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +0000918
919#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +0000920 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +0000921 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
922 if( rc==SQLITE_TOOBIG ) goto too_big;
drh4c583122008-01-04 22:01:03 +0000923 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh3a9cf172009-06-17 21:42:33 +0000924 assert( pOut->zMalloc==pOut->z );
925 assert( pOut->flags & MEM_Dyn );
danielk19775f096132008-03-28 15:44:09 +0000926 pOut->zMalloc = 0;
drh4c583122008-01-04 22:01:03 +0000927 pOut->flags |= MEM_Static;
drh191b54c2008-04-15 12:14:21 +0000928 pOut->flags &= ~MEM_Dyn;
drh66a51672008-01-03 00:01:23 +0000929 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000930 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +0000931 }
drh66a51672008-01-03 00:01:23 +0000932 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +0000933 pOp->p4.z = pOut->z;
934 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +0000935 }
danielk197793758c82005-01-21 08:13:14 +0000936#endif
drhbb4957f2008-03-20 14:03:29 +0000937 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +0000938 goto too_big;
939 }
940 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +0000941}
drhf4479502004-05-27 03:12:53 +0000942
drh4c583122008-01-04 22:01:03 +0000943/* Opcode: String P1 P2 * P4 *
drhf4479502004-05-27 03:12:53 +0000944**
drh9cbf3422008-01-17 16:22:13 +0000945** The string value P4 of length P1 (bytes) is stored in register P2.
drhf4479502004-05-27 03:12:53 +0000946*/
drh4c583122008-01-04 22:01:03 +0000947case OP_String: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000948 assert( pOp->p4.z!=0 );
drh4c583122008-01-04 22:01:03 +0000949 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
950 pOut->z = pOp->p4.z;
951 pOut->n = pOp->p1;
952 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +0000953 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977c572ef72004-05-27 09:28:41 +0000954 break;
955}
956
drh4c583122008-01-04 22:01:03 +0000957/* Opcode: Null * P2 * * *
drhf0863fe2005-06-12 21:35:51 +0000958**
drh9cbf3422008-01-17 16:22:13 +0000959** Write a NULL into register P2.
drhf0863fe2005-06-12 21:35:51 +0000960*/
drh4c583122008-01-04 22:01:03 +0000961case OP_Null: { /* out2-prerelease */
drh3c657212009-11-17 23:59:58 +0000962 pOut->flags = MEM_Null;
drhf0863fe2005-06-12 21:35:51 +0000963 break;
964}
965
966
drh9de221d2008-01-05 06:51:30 +0000967/* Opcode: Blob P1 P2 * P4
danielk1977c572ef72004-05-27 09:28:41 +0000968**
drh9de221d2008-01-05 06:51:30 +0000969** P4 points to a blob of data P1 bytes long. Store this
drh710c4842010-08-30 01:17:20 +0000970** blob in register P2.
danielk1977c572ef72004-05-27 09:28:41 +0000971*/
drh4c583122008-01-04 22:01:03 +0000972case OP_Blob: { /* out2-prerelease */
drhcbd2da92007-12-17 16:20:06 +0000973 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh4c583122008-01-04 22:01:03 +0000974 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +0000975 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +0000976 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +0000977 break;
978}
979
drheaf52d82010-05-12 13:50:23 +0000980/* Opcode: Variable P1 P2 * P4 *
drh50457892003-09-06 01:10:47 +0000981**
drheaf52d82010-05-12 13:50:23 +0000982** Transfer the values of bound parameter P1 into register P2
drh08de1492009-02-20 03:55:05 +0000983**
984** If the parameter is named, then its name appears in P4 and P3==1.
985** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +0000986*/
drheaf52d82010-05-12 13:50:23 +0000987case OP_Variable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +0000988 Mem *pVar; /* Value being transferred */
989
drheaf52d82010-05-12 13:50:23 +0000990 assert( pOp->p1>0 && pOp->p1<=p->nVar );
drh04e9eea2011-06-01 19:16:06 +0000991 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
drheaf52d82010-05-12 13:50:23 +0000992 pVar = &p->aVar[pOp->p1 - 1];
993 if( sqlite3VdbeMemTooBig(pVar) ){
994 goto too_big;
drh023ae032007-05-08 12:12:16 +0000995 }
drheaf52d82010-05-12 13:50:23 +0000996 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
997 UPDATE_MAX_BLOBSIZE(pOut);
danielk197793d46752004-05-23 13:30:58 +0000998 break;
999}
danielk1977295ba552004-05-19 10:34:51 +00001000
drhb21e7c72008-06-22 12:37:57 +00001001/* Opcode: Move P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001002**
drhb21e7c72008-06-22 12:37:57 +00001003** Move the values in register P1..P1+P3-1 over into
1004** registers P2..P2+P3-1. Registers P1..P1+P1-1 are
1005** left holding a NULL. It is an error for register ranges
1006** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
drh5e00f6c2001-09-13 13:46:56 +00001007*/
drhe1349cb2008-04-01 00:36:10 +00001008case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001009 char *zMalloc; /* Holding variable for allocated memory */
1010 int n; /* Number of registers left to copy */
1011 int p1; /* Register to copy from */
1012 int p2; /* Register to copy to */
1013
1014 n = pOp->p3;
1015 p1 = pOp->p1;
1016 p2 = pOp->p2;
danielk19776ab3a2e2009-02-19 14:39:25 +00001017 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001018 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001019
drha6c2ed92009-11-14 23:22:23 +00001020 pIn1 = &aMem[p1];
1021 pOut = &aMem[p2];
drhb21e7c72008-06-22 12:37:57 +00001022 while( n-- ){
drha6c2ed92009-11-14 23:22:23 +00001023 assert( pOut<=&aMem[p->nMem] );
1024 assert( pIn1<=&aMem[p->nMem] );
drh2b4ded92010-09-27 21:09:31 +00001025 assert( memIsValid(pIn1) );
1026 memAboutToChange(p, pOut);
drhb21e7c72008-06-22 12:37:57 +00001027 zMalloc = pOut->zMalloc;
1028 pOut->zMalloc = 0;
1029 sqlite3VdbeMemMove(pOut, pIn1);
drh52043d72011-08-03 16:40:15 +00001030#ifdef SQLITE_DEBUG
1031 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
1032 pOut->pScopyFrom += p1 - pOp->p2;
1033 }
1034#endif
drhb21e7c72008-06-22 12:37:57 +00001035 pIn1->zMalloc = zMalloc;
1036 REGISTER_TRACE(p2++, pOut);
1037 pIn1++;
1038 pOut++;
1039 }
drhe1349cb2008-04-01 00:36:10 +00001040 break;
1041}
1042
drhb1fdb2a2008-01-05 04:06:03 +00001043/* Opcode: Copy P1 P2 * * *
1044**
drh9cbf3422008-01-17 16:22:13 +00001045** Make a copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001046**
1047** This instruction makes a deep copy of the value. A duplicate
1048** is made of any string or blob constant. See also OP_SCopy.
1049*/
drh93952eb2009-11-13 19:43:43 +00001050case OP_Copy: { /* in1, out2 */
drh3c657212009-11-17 23:59:58 +00001051 pIn1 = &aMem[pOp->p1];
1052 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001053 assert( pOut!=pIn1 );
1054 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1055 Deephemeralize(pOut);
1056 REGISTER_TRACE(pOp->p2, pOut);
1057 break;
1058}
1059
drhb1fdb2a2008-01-05 04:06:03 +00001060/* Opcode: SCopy P1 P2 * * *
1061**
drh9cbf3422008-01-17 16:22:13 +00001062** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001063**
1064** This instruction makes a shallow copy of the value. If the value
1065** is a string or blob, then the copy is only a pointer to the
1066** original and hence if the original changes so will the copy.
1067** Worse, if the original is deallocated, the copy becomes invalid.
1068** Thus the program must guarantee that the original will not change
1069** during the lifetime of the copy. Use OP_Copy to make a complete
1070** copy.
1071*/
drh93952eb2009-11-13 19:43:43 +00001072case OP_SCopy: { /* in1, out2 */
drh3c657212009-11-17 23:59:58 +00001073 pIn1 = &aMem[pOp->p1];
1074 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001075 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001076 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh2b4ded92010-09-27 21:09:31 +00001077#ifdef SQLITE_DEBUG
1078 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1079#endif
drh5b6afba2008-01-05 16:29:28 +00001080 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00001081 break;
1082}
drh75897232000-05-29 14:26:00 +00001083
drh9cbf3422008-01-17 16:22:13 +00001084/* Opcode: ResultRow P1 P2 * * *
drhd4e70eb2008-01-02 00:34:36 +00001085**
shane21e7feb2008-05-30 15:59:49 +00001086** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001087** results. This opcode causes the sqlite3_step() call to terminate
1088** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1089** structure to provide access to the top P1 values as the result
drh9cbf3422008-01-17 16:22:13 +00001090** row.
drhd4e70eb2008-01-02 00:34:36 +00001091*/
drh9cbf3422008-01-17 16:22:13 +00001092case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001093 Mem *pMem;
1094 int i;
1095 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001096 assert( pOp->p1>0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001097 assert( pOp->p1+pOp->p2<=p->nMem+1 );
drhd4e70eb2008-01-02 00:34:36 +00001098
dan32b09f22009-09-23 17:29:59 +00001099 /* If this statement has violated immediate foreign key constraints, do
1100 ** not return the number of rows modified. And do not RELEASE the statement
1101 ** transaction. It needs to be rolled back. */
1102 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1103 assert( db->flags&SQLITE_CountRows );
1104 assert( p->usesStmtJournal );
1105 break;
1106 }
1107
danielk1977bd434552009-03-18 10:33:00 +00001108 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1109 ** DML statements invoke this opcode to return the number of rows
1110 ** modified to the user. This is the only way that a VM that
1111 ** opens a statement transaction may invoke this opcode.
1112 **
1113 ** In case this is such a statement, close any statement transaction
1114 ** opened by this VM before returning control to the user. This is to
1115 ** ensure that statement-transactions are always nested, not overlapping.
1116 ** If the open statement-transaction is not closed here, then the user
1117 ** may step another VM that opens its own statement transaction. This
1118 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001119 **
1120 ** The statement transaction is never a top-level transaction. Hence
1121 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001122 */
1123 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001124 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1125 if( NEVER(rc!=SQLITE_OK) ){
danielk1977bd434552009-03-18 10:33:00 +00001126 break;
1127 }
1128
drhd4e70eb2008-01-02 00:34:36 +00001129 /* Invalidate all ephemeral cursor row caches */
1130 p->cacheCtr = (p->cacheCtr + 2)|1;
1131
1132 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001133 ** and have an assigned type. The results are de-ephemeralized as
drhd4e70eb2008-01-02 00:34:36 +00001134 ** as side effect.
1135 */
drha6c2ed92009-11-14 23:22:23 +00001136 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001137 for(i=0; i<pOp->p2; i++){
drh2b4ded92010-09-27 21:09:31 +00001138 assert( memIsValid(&pMem[i]) );
drhebc16712010-09-28 00:25:58 +00001139 Deephemeralize(&pMem[i]);
drh746fd9c2010-09-28 06:00:47 +00001140 assert( (pMem[i].flags & MEM_Ephem)==0
1141 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
drhd4e70eb2008-01-02 00:34:36 +00001142 sqlite3VdbeMemNulTerminate(&pMem[i]);
dan937d0de2009-10-15 18:35:38 +00001143 sqlite3VdbeMemStoreType(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001144 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001145 }
drh28039692008-03-17 16:54:01 +00001146 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001147
1148 /* Return SQLITE_ROW
1149 */
drhd4e70eb2008-01-02 00:34:36 +00001150 p->pc = pc + 1;
drhd4e70eb2008-01-02 00:34:36 +00001151 rc = SQLITE_ROW;
1152 goto vdbe_return;
1153}
1154
drh5b6afba2008-01-05 16:29:28 +00001155/* Opcode: Concat P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001156**
drh5b6afba2008-01-05 16:29:28 +00001157** Add the text in register P1 onto the end of the text in
1158** register P2 and store the result in register P3.
1159** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001160**
1161** P3 = P2 || P1
1162**
1163** It is illegal for P1 and P3 to be the same register. Sometimes,
1164** if P3 is the same register as P2, the implementation is able
1165** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001166*/
drh5b6afba2008-01-05 16:29:28 +00001167case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001168 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001169
drh3c657212009-11-17 23:59:58 +00001170 pIn1 = &aMem[pOp->p1];
1171 pIn2 = &aMem[pOp->p2];
1172 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001173 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001174 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001175 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001176 break;
drh5e00f6c2001-09-13 13:46:56 +00001177 }
drha0c06522009-06-17 22:50:41 +00001178 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001179 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001180 Stringify(pIn2, encoding);
1181 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001182 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001183 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001184 }
danielk1977a7a8e142008-02-13 18:25:27 +00001185 MemSetTypeFlag(pOut, MEM_Str);
drh9c1905f2008-12-10 22:32:56 +00001186 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001187 goto no_mem;
1188 }
danielk1977a7a8e142008-02-13 18:25:27 +00001189 if( pOut!=pIn2 ){
1190 memcpy(pOut->z, pIn2->z, pIn2->n);
1191 }
1192 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1193 pOut->z[nByte] = 0;
1194 pOut->z[nByte+1] = 0;
1195 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001196 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001197 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001198 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001199 break;
1200}
drh75897232000-05-29 14:26:00 +00001201
drh3c84ddf2008-01-09 02:15:38 +00001202/* Opcode: Add P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001203**
drh60a713c2008-01-21 16:22:45 +00001204** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001205** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001206** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001207*/
drh3c84ddf2008-01-09 02:15:38 +00001208/* Opcode: Multiply P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001209**
drh3c84ddf2008-01-09 02:15:38 +00001210**
shane21e7feb2008-05-30 15:59:49 +00001211** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001212** and store the result in register P3.
1213** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001214*/
drh3c84ddf2008-01-09 02:15:38 +00001215/* Opcode: Subtract P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001216**
drh60a713c2008-01-21 16:22:45 +00001217** Subtract the value in register P1 from the value in register P2
1218** and store the result in register P3.
1219** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001220*/
drh9cbf3422008-01-17 16:22:13 +00001221/* Opcode: Divide P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001222**
drh60a713c2008-01-21 16:22:45 +00001223** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001224** and store the result in register P3 (P3=P2/P1). If the value in
1225** register P1 is zero, then the result is NULL. If either input is
1226** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001227*/
drh9cbf3422008-01-17 16:22:13 +00001228/* Opcode: Remainder P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001229**
drh3c84ddf2008-01-09 02:15:38 +00001230** Compute the remainder after integer division of the value in
1231** register P1 by the value in register P2 and store the result in P3.
1232** If the value in register P2 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001233** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001234*/
drh5b6afba2008-01-05 16:29:28 +00001235case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1236case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1237case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1238case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1239case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00001240 int flags; /* Combined MEM_* flags from both inputs */
1241 i64 iA; /* Integer value of left operand */
1242 i64 iB; /* Integer value of right operand */
1243 double rA; /* Real value of left operand */
1244 double rB; /* Real value of right operand */
1245
drh3c657212009-11-17 23:59:58 +00001246 pIn1 = &aMem[pOp->p1];
drh61669b32008-07-30 13:27:10 +00001247 applyNumericAffinity(pIn1);
drh3c657212009-11-17 23:59:58 +00001248 pIn2 = &aMem[pOp->p2];
drh61669b32008-07-30 13:27:10 +00001249 applyNumericAffinity(pIn2);
drh3c657212009-11-17 23:59:58 +00001250 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001251 flags = pIn1->flags | pIn2->flags;
drha05a7222008-01-19 03:35:58 +00001252 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1253 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
drh856c1032009-06-02 15:21:42 +00001254 iA = pIn1->u.i;
1255 iB = pIn2->u.i;
drh5e00f6c2001-09-13 13:46:56 +00001256 switch( pOp->opcode ){
drh158b9cb2011-03-05 20:59:46 +00001257 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1258 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1259 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
drhbf4133c2001-10-13 02:59:08 +00001260 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001261 if( iA==0 ) goto arithmetic_result_is_null;
drh158b9cb2011-03-05 20:59:46 +00001262 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
drh856c1032009-06-02 15:21:42 +00001263 iB /= iA;
drh75897232000-05-29 14:26:00 +00001264 break;
1265 }
drhbf4133c2001-10-13 02:59:08 +00001266 default: {
drh856c1032009-06-02 15:21:42 +00001267 if( iA==0 ) goto arithmetic_result_is_null;
1268 if( iA==-1 ) iA = 1;
1269 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001270 break;
1271 }
drh75897232000-05-29 14:26:00 +00001272 }
drh856c1032009-06-02 15:21:42 +00001273 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001274 MemSetTypeFlag(pOut, MEM_Int);
drh5e00f6c2001-09-13 13:46:56 +00001275 }else{
drh158b9cb2011-03-05 20:59:46 +00001276fp_math:
drh856c1032009-06-02 15:21:42 +00001277 rA = sqlite3VdbeRealValue(pIn1);
1278 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001279 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001280 case OP_Add: rB += rA; break;
1281 case OP_Subtract: rB -= rA; break;
1282 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001283 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001284 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001285 if( rA==(double)0 ) goto arithmetic_result_is_null;
1286 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001287 break;
1288 }
drhbf4133c2001-10-13 02:59:08 +00001289 default: {
shane75ac1de2009-06-09 18:58:52 +00001290 iA = (i64)rA;
1291 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001292 if( iA==0 ) goto arithmetic_result_is_null;
1293 if( iA==-1 ) iA = 1;
1294 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001295 break;
1296 }
drh5e00f6c2001-09-13 13:46:56 +00001297 }
drhc5a7b512010-01-13 16:25:42 +00001298#ifdef SQLITE_OMIT_FLOATING_POINT
1299 pOut->u.i = rB;
1300 MemSetTypeFlag(pOut, MEM_Int);
1301#else
drh856c1032009-06-02 15:21:42 +00001302 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001303 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001304 }
drh856c1032009-06-02 15:21:42 +00001305 pOut->r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001306 MemSetTypeFlag(pOut, MEM_Real);
drh8a512562005-11-14 22:29:05 +00001307 if( (flags & MEM_Real)==0 ){
drh5b6afba2008-01-05 16:29:28 +00001308 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001309 }
drhc5a7b512010-01-13 16:25:42 +00001310#endif
drh5e00f6c2001-09-13 13:46:56 +00001311 }
1312 break;
1313
drha05a7222008-01-19 03:35:58 +00001314arithmetic_result_is_null:
1315 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001316 break;
1317}
1318
drh66a51672008-01-03 00:01:23 +00001319/* Opcode: CollSeq * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001320**
drh66a51672008-01-03 00:01:23 +00001321** P4 is a pointer to a CollSeq struct. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001322** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1323** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001324** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001325**
1326** The interface used by the implementation of the aforementioned functions
1327** to retrieve the collation sequence set by this opcode is not available
1328** publicly, only to user functions defined in func.c.
1329*/
drh9cbf3422008-01-17 16:22:13 +00001330case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001331 assert( pOp->p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00001332 break;
1333}
1334
drh98757152008-01-09 23:04:12 +00001335/* Opcode: Function P1 P2 P3 P4 P5
drh8e0a2f92002-02-23 23:45:45 +00001336**
drh66a51672008-01-03 00:01:23 +00001337** Invoke a user function (P4 is a pointer to a Function structure that
drh98757152008-01-09 23:04:12 +00001338** defines the function) with P5 arguments taken from register P2 and
drh9cbf3422008-01-17 16:22:13 +00001339** successors. The result of the function is stored in register P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001340** Register P3 must not be one of the function inputs.
danielk1977682f68b2004-06-05 10:22:17 +00001341**
drh13449892005-09-07 21:22:45 +00001342** P1 is a 32-bit bitmask indicating whether or not each argument to the
danielk1977682f68b2004-06-05 10:22:17 +00001343** function was determined to be constant at compile time. If the first
drh13449892005-09-07 21:22:45 +00001344** argument was constant then bit 0 of P1 is set. This is used to determine
danielk1977682f68b2004-06-05 10:22:17 +00001345** whether meta data associated with a user function argument using the
1346** sqlite3_set_auxdata() API may be safely retained until the next
1347** invocation of this opcode.
drh1350b032002-02-27 19:00:20 +00001348**
drh13449892005-09-07 21:22:45 +00001349** See also: AggStep and AggFinal
drh8e0a2f92002-02-23 23:45:45 +00001350*/
drh0bce8352002-02-28 00:41:10 +00001351case OP_Function: {
danielk197751ad0ec2004-05-24 12:39:02 +00001352 int i;
drh6810ce62004-01-31 19:22:56 +00001353 Mem *pArg;
danielk197722322fd2004-05-25 23:35:17 +00001354 sqlite3_context ctx;
danielk197751ad0ec2004-05-24 12:39:02 +00001355 sqlite3_value **apVal;
drh856c1032009-06-02 15:21:42 +00001356 int n;
drh1350b032002-02-27 19:00:20 +00001357
drh856c1032009-06-02 15:21:42 +00001358 n = pOp->p5;
danielk19776ddcca52004-05-24 23:48:25 +00001359 apVal = p->apArg;
danielk197751ad0ec2004-05-24 12:39:02 +00001360 assert( apVal || n==0 );
drhebc16712010-09-28 00:25:58 +00001361 assert( pOp->p3>0 && pOp->p3<=p->nMem );
1362 pOut = &aMem[pOp->p3];
1363 memAboutToChange(p, pOut);
danielk197751ad0ec2004-05-24 12:39:02 +00001364
danielk19776ab3a2e2009-02-19 14:39:25 +00001365 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
danielk1977a7a8e142008-02-13 18:25:27 +00001366 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drha6c2ed92009-11-14 23:22:23 +00001367 pArg = &aMem[pOp->p2];
drh6810ce62004-01-31 19:22:56 +00001368 for(i=0; i<n; i++, pArg++){
drh2b4ded92010-09-27 21:09:31 +00001369 assert( memIsValid(pArg) );
danielk197751ad0ec2004-05-24 12:39:02 +00001370 apVal[i] = pArg;
drhebc16712010-09-28 00:25:58 +00001371 Deephemeralize(pArg);
dan937d0de2009-10-15 18:35:38 +00001372 sqlite3VdbeMemStoreType(pArg);
drhab5cd702010-04-07 14:32:11 +00001373 REGISTER_TRACE(pOp->p2+i, pArg);
drh8e0a2f92002-02-23 23:45:45 +00001374 }
danielk197751ad0ec2004-05-24 12:39:02 +00001375
drh66a51672008-01-03 00:01:23 +00001376 assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
1377 if( pOp->p4type==P4_FUNCDEF ){
danielk19772dca4ac2008-01-03 11:50:29 +00001378 ctx.pFunc = pOp->p4.pFunc;
danielk1977682f68b2004-06-05 10:22:17 +00001379 ctx.pVdbeFunc = 0;
1380 }else{
danielk19772dca4ac2008-01-03 11:50:29 +00001381 ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
danielk1977682f68b2004-06-05 10:22:17 +00001382 ctx.pFunc = ctx.pVdbeFunc->pFunc;
1383 }
1384
drh00706be2004-01-30 14:49:16 +00001385 ctx.s.flags = MEM_Null;
drhfa4a4b92008-03-19 21:45:51 +00001386 ctx.s.db = db;
danielk19775f096132008-03-28 15:44:09 +00001387 ctx.s.xDel = 0;
1388 ctx.s.zMalloc = 0;
danielk1977a7a8e142008-02-13 18:25:27 +00001389
1390 /* The output cell may already have a buffer allocated. Move
1391 ** the pointer to ctx.s so in case the user-function can use
1392 ** the already allocated buffer instead of allocating a new one.
1393 */
1394 sqlite3VdbeMemMove(&ctx.s, pOut);
1395 MemSetTypeFlag(&ctx.s, MEM_Null);
1396
drh8e0a2f92002-02-23 23:45:45 +00001397 ctx.isError = 0;
drhe82f5d02008-10-07 19:53:14 +00001398 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
drhbbe879d2009-11-14 18:04:35 +00001399 assert( pOp>aOp );
drh66a51672008-01-03 00:01:23 +00001400 assert( pOp[-1].p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00001401 assert( pOp[-1].opcode==OP_CollSeq );
danielk19772dca4ac2008-01-03 11:50:29 +00001402 ctx.pColl = pOp[-1].p4.pColl;
danielk1977dc1bdc42004-06-11 10:51:27 +00001403 }
drh99a66922011-05-13 18:51:42 +00001404 db->lastRowid = lastRowid;
drhee9ff672010-09-03 18:50:48 +00001405 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh99a66922011-05-13 18:51:42 +00001406 lastRowid = db->lastRowid;
danielk19777e18c252004-05-25 11:47:24 +00001407
shane21e7feb2008-05-30 15:59:49 +00001408 /* If any auxiliary data functions have been called by this user function,
danielk1977682f68b2004-06-05 10:22:17 +00001409 ** immediately call the destructor for any non-static values.
1410 */
1411 if( ctx.pVdbeFunc ){
drh13449892005-09-07 21:22:45 +00001412 sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
danielk19772dca4ac2008-01-03 11:50:29 +00001413 pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
drh66a51672008-01-03 00:01:23 +00001414 pOp->p4type = P4_VDBEFUNC;
danielk1977682f68b2004-06-05 10:22:17 +00001415 }
1416
dan5f84e142011-06-14 14:18:45 +00001417 if( db->mallocFailed ){
1418 /* Even though a malloc() has failed, the implementation of the
1419 ** user function may have called an sqlite3_result_XXX() function
1420 ** to return a value. The following call releases any resources
1421 ** associated with such a value.
1422 */
1423 sqlite3VdbeMemRelease(&ctx.s);
1424 goto no_mem;
1425 }
1426
drh90669c12006-01-20 15:45:36 +00001427 /* If the function returned an error, throw an exception */
1428 if( ctx.isError ){
drhf089aa42008-07-08 19:34:06 +00001429 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
drh69544ec2008-02-06 14:11:34 +00001430 rc = ctx.isError;
drh90669c12006-01-20 15:45:36 +00001431 }
1432
drh9cbf3422008-01-17 16:22:13 +00001433 /* Copy the result of the function into register P3 */
drhb21c8cd2007-08-21 19:33:56 +00001434 sqlite3VdbeChangeEncoding(&ctx.s, encoding);
drh98757152008-01-09 23:04:12 +00001435 sqlite3VdbeMemMove(pOut, &ctx.s);
1436 if( sqlite3VdbeMemTooBig(pOut) ){
drh023ae032007-05-08 12:12:16 +00001437 goto too_big;
1438 }
drh7b94e7f2011-04-04 12:29:20 +00001439
1440#if 0
1441 /* The app-defined function has done something that as caused this
1442 ** statement to expire. (Perhaps the function called sqlite3_exec()
1443 ** with a CREATE TABLE statement.)
1444 */
1445 if( p->expired ) rc = SQLITE_ABORT;
1446#endif
1447
drh2dcef112008-01-12 19:03:48 +00001448 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00001449 UPDATE_MAX_BLOBSIZE(pOut);
drh8e0a2f92002-02-23 23:45:45 +00001450 break;
1451}
1452
drh98757152008-01-09 23:04:12 +00001453/* Opcode: BitAnd P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001454**
drh98757152008-01-09 23:04:12 +00001455** Take the bit-wise AND of the values in register P1 and P2 and
1456** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001457** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001458*/
drh98757152008-01-09 23:04:12 +00001459/* Opcode: BitOr P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001460**
drh98757152008-01-09 23:04:12 +00001461** Take the bit-wise OR of the values in register P1 and P2 and
1462** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001463** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001464*/
drh98757152008-01-09 23:04:12 +00001465/* Opcode: ShiftLeft P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001466**
drh98757152008-01-09 23:04:12 +00001467** Shift the integer value in register P2 to the left by the
drh710c4842010-08-30 01:17:20 +00001468** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001469** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001470** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001471*/
drh98757152008-01-09 23:04:12 +00001472/* Opcode: ShiftRight P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001473**
drh98757152008-01-09 23:04:12 +00001474** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001475** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001476** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001477** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001478*/
drh5b6afba2008-01-05 16:29:28 +00001479case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1480case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1481case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1482case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh158b9cb2011-03-05 20:59:46 +00001483 i64 iA;
1484 u64 uA;
1485 i64 iB;
1486 u8 op;
drh6810ce62004-01-31 19:22:56 +00001487
drh3c657212009-11-17 23:59:58 +00001488 pIn1 = &aMem[pOp->p1];
1489 pIn2 = &aMem[pOp->p2];
1490 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001491 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001492 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001493 break;
1494 }
drh158b9cb2011-03-05 20:59:46 +00001495 iA = sqlite3VdbeIntValue(pIn2);
1496 iB = sqlite3VdbeIntValue(pIn1);
1497 op = pOp->opcode;
1498 if( op==OP_BitAnd ){
1499 iA &= iB;
1500 }else if( op==OP_BitOr ){
1501 iA |= iB;
1502 }else if( iB!=0 ){
1503 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1504
1505 /* If shifting by a negative amount, shift in the other direction */
1506 if( iB<0 ){
1507 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1508 op = 2*OP_ShiftLeft + 1 - op;
1509 iB = iB>(-64) ? -iB : 64;
1510 }
1511
1512 if( iB>=64 ){
1513 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1514 }else{
1515 memcpy(&uA, &iA, sizeof(uA));
1516 if( op==OP_ShiftLeft ){
1517 uA <<= iB;
1518 }else{
1519 uA >>= iB;
1520 /* Sign-extend on a right shift of a negative number */
1521 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1522 }
1523 memcpy(&iA, &uA, sizeof(iA));
1524 }
drhbf4133c2001-10-13 02:59:08 +00001525 }
drh158b9cb2011-03-05 20:59:46 +00001526 pOut->u.i = iA;
danielk1977a7a8e142008-02-13 18:25:27 +00001527 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001528 break;
1529}
1530
drh8558cde2008-01-05 05:20:10 +00001531/* Opcode: AddImm P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00001532**
danielk19770cdc0222008-06-26 18:04:03 +00001533** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001534** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001535**
drh8558cde2008-01-05 05:20:10 +00001536** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001537*/
drh9cbf3422008-01-17 16:22:13 +00001538case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001539 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001540 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001541 sqlite3VdbeMemIntegerify(pIn1);
1542 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001543 break;
1544}
1545
drh9cbf3422008-01-17 16:22:13 +00001546/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001547**
drh9cbf3422008-01-17 16:22:13 +00001548** Force the value in register P1 to be an integer. If the value
1549** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001550** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001551** raise an SQLITE_MISMATCH exception.
1552*/
drh9cbf3422008-01-17 16:22:13 +00001553case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001554 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001555 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1556 if( (pIn1->flags & MEM_Int)==0 ){
drh17c40292004-07-21 02:53:29 +00001557 if( pOp->p2==0 ){
1558 rc = SQLITE_MISMATCH;
1559 goto abort_due_to_error;
drh3c84ddf2008-01-09 02:15:38 +00001560 }else{
drh17c40292004-07-21 02:53:29 +00001561 pc = pOp->p2 - 1;
drh8aff1012001-12-22 14:49:24 +00001562 }
drh8aff1012001-12-22 14:49:24 +00001563 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00001564 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001565 }
1566 break;
1567}
1568
drh13573c72010-01-12 17:04:07 +00001569#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001570/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001571**
drh2133d822008-01-03 18:44:59 +00001572** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001573**
drh8a512562005-11-14 22:29:05 +00001574** This opcode is used when extracting information from a column that
1575** has REAL affinity. Such column values may still be stored as
1576** integers, for space efficiency, but after extraction we want them
1577** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001578*/
drh9cbf3422008-01-17 16:22:13 +00001579case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001580 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001581 if( pIn1->flags & MEM_Int ){
1582 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001583 }
drh487e2622005-06-25 18:42:14 +00001584 break;
1585}
drh13573c72010-01-12 17:04:07 +00001586#endif
drh487e2622005-06-25 18:42:14 +00001587
drh8df447f2005-11-01 15:48:24 +00001588#ifndef SQLITE_OMIT_CAST
drh8558cde2008-01-05 05:20:10 +00001589/* Opcode: ToText P1 * * * *
drh487e2622005-06-25 18:42:14 +00001590**
drh8558cde2008-01-05 05:20:10 +00001591** Force the value in register P1 to be text.
drh31beae92005-11-24 14:34:36 +00001592** If the value is numeric, convert it to a string using the
drh487e2622005-06-25 18:42:14 +00001593** equivalent of printf(). Blob values are unchanged and
1594** are afterwards simply interpreted as text.
1595**
1596** A NULL value is not changed by this routine. It remains NULL.
1597*/
drh9cbf3422008-01-17 16:22:13 +00001598case OP_ToText: { /* same as TK_TO_TEXT, in1 */
drh3c657212009-11-17 23:59:58 +00001599 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001600 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001601 if( pIn1->flags & MEM_Null ) break;
drh487e2622005-06-25 18:42:14 +00001602 assert( MEM_Str==(MEM_Blob>>3) );
drh8558cde2008-01-05 05:20:10 +00001603 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
1604 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1605 rc = ExpandBlob(pIn1);
danielk1977a7a8e142008-02-13 18:25:27 +00001606 assert( pIn1->flags & MEM_Str || db->mallocFailed );
drh68ac65e2009-01-05 18:02:27 +00001607 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
drhb7654112008-01-12 12:48:07 +00001608 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001609 break;
1610}
1611
drh8558cde2008-01-05 05:20:10 +00001612/* Opcode: ToBlob P1 * * * *
drh487e2622005-06-25 18:42:14 +00001613**
drh8558cde2008-01-05 05:20:10 +00001614** Force the value in register P1 to be a BLOB.
drh487e2622005-06-25 18:42:14 +00001615** If the value is numeric, convert it to a string first.
1616** Strings are simply reinterpreted as blobs with no change
1617** to the underlying data.
1618**
1619** A NULL value is not changed by this routine. It remains NULL.
1620*/
drh9cbf3422008-01-17 16:22:13 +00001621case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
drh3c657212009-11-17 23:59:58 +00001622 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001623 if( pIn1->flags & MEM_Null ) break;
1624 if( (pIn1->flags & MEM_Blob)==0 ){
1625 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
danielk1977a7a8e142008-02-13 18:25:27 +00001626 assert( pIn1->flags & MEM_Str || db->mallocFailed );
drhde58ddb2009-01-05 22:30:38 +00001627 MemSetTypeFlag(pIn1, MEM_Blob);
1628 }else{
1629 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
drh487e2622005-06-25 18:42:14 +00001630 }
drhb7654112008-01-12 12:48:07 +00001631 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001632 break;
1633}
drh8a512562005-11-14 22:29:05 +00001634
drh8558cde2008-01-05 05:20:10 +00001635/* Opcode: ToNumeric P1 * * * *
drh8a512562005-11-14 22:29:05 +00001636**
drh8558cde2008-01-05 05:20:10 +00001637** Force the value in register P1 to be numeric (either an
drh8a512562005-11-14 22:29:05 +00001638** integer or a floating-point number.)
1639** If the value is text or blob, try to convert it to an using the
1640** equivalent of atoi() or atof() and store 0 if no such conversion
1641** is possible.
1642**
1643** A NULL value is not changed by this routine. It remains NULL.
1644*/
drh9cbf3422008-01-17 16:22:13 +00001645case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
drh3c657212009-11-17 23:59:58 +00001646 pIn1 = &aMem[pOp->p1];
drh93518622010-09-30 14:48:06 +00001647 sqlite3VdbeMemNumerify(pIn1);
drh8a512562005-11-14 22:29:05 +00001648 break;
1649}
1650#endif /* SQLITE_OMIT_CAST */
1651
drh8558cde2008-01-05 05:20:10 +00001652/* Opcode: ToInt P1 * * * *
drh8a512562005-11-14 22:29:05 +00001653**
drh710c4842010-08-30 01:17:20 +00001654** Force the value in register P1 to be an integer. If
drh8a512562005-11-14 22:29:05 +00001655** The value is currently a real number, drop its fractional part.
1656** If the value is text or blob, try to convert it to an integer using the
1657** equivalent of atoi() and store 0 if no such conversion is possible.
1658**
1659** A NULL value is not changed by this routine. It remains NULL.
1660*/
drh9cbf3422008-01-17 16:22:13 +00001661case OP_ToInt: { /* same as TK_TO_INT, in1 */
drh3c657212009-11-17 23:59:58 +00001662 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001663 if( (pIn1->flags & MEM_Null)==0 ){
1664 sqlite3VdbeMemIntegerify(pIn1);
drh8a512562005-11-14 22:29:05 +00001665 }
1666 break;
1667}
1668
drh13573c72010-01-12 17:04:07 +00001669#if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
drh8558cde2008-01-05 05:20:10 +00001670/* Opcode: ToReal P1 * * * *
drh8a512562005-11-14 22:29:05 +00001671**
drh8558cde2008-01-05 05:20:10 +00001672** Force the value in register P1 to be a floating point number.
drh8a512562005-11-14 22:29:05 +00001673** If The value is currently an integer, convert it.
1674** If the value is text or blob, try to convert it to an integer using the
drh60a713c2008-01-21 16:22:45 +00001675** equivalent of atoi() and store 0.0 if no such conversion is possible.
drh8a512562005-11-14 22:29:05 +00001676**
1677** A NULL value is not changed by this routine. It remains NULL.
1678*/
drh9cbf3422008-01-17 16:22:13 +00001679case OP_ToReal: { /* same as TK_TO_REAL, in1 */
drh3c657212009-11-17 23:59:58 +00001680 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001681 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001682 if( (pIn1->flags & MEM_Null)==0 ){
1683 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001684 }
1685 break;
1686}
drh13573c72010-01-12 17:04:07 +00001687#endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
drh487e2622005-06-25 18:42:14 +00001688
drh35573352008-01-08 23:54:25 +00001689/* Opcode: Lt P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001690**
drh35573352008-01-08 23:54:25 +00001691** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1692** jump to address P2.
drhf5905aa2002-05-26 20:54:33 +00001693**
drh35573352008-01-08 23:54:25 +00001694** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1695** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
drh710c4842010-08-30 01:17:20 +00001696** bit is clear then fall through if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001697**
drh35573352008-01-08 23:54:25 +00001698** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001699** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001700** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001701** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001702** affinity is used. Note that the affinity conversions are stored
1703** back into the input registers P1 and P3. So this opcode can cause
1704** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001705**
1706** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001707** the values are compared. If both values are blobs then memcmp() is
1708** used to determine the results of the comparison. If both values
1709** are text, then the appropriate collating function specified in
1710** P4 is used to do the comparison. If P4 is not specified then
1711** memcmp() is used to compare text string. If both values are
1712** numeric, then a numeric comparison is used. If the two values
1713** are of different types, then numbers are considered less than
1714** strings and strings are considered less than blobs.
drhc9b84a12002-06-20 11:36:48 +00001715**
drh35573352008-01-08 23:54:25 +00001716** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1717** store a boolean result (either 0, or 1, or NULL) in register P2.
drh5e00f6c2001-09-13 13:46:56 +00001718*/
drh9cbf3422008-01-17 16:22:13 +00001719/* Opcode: Ne P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001720**
drh35573352008-01-08 23:54:25 +00001721** This works just like the Lt opcode except that the jump is taken if
1722** the operands in registers P1 and P3 are not equal. See the Lt opcode for
drh53db1452004-05-20 13:54:53 +00001723** additional information.
drh6a2fe092009-09-23 02:29:36 +00001724**
1725** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1726** true or false and is never NULL. If both operands are NULL then the result
1727** of comparison is false. If either operand is NULL then the result is true.
drhef8662b2011-06-20 21:47:58 +00001728** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001729** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001730*/
drh9cbf3422008-01-17 16:22:13 +00001731/* Opcode: Eq P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001732**
drh35573352008-01-08 23:54:25 +00001733** This works just like the Lt opcode except that the jump is taken if
1734** the operands in registers P1 and P3 are equal.
1735** See the Lt opcode for additional information.
drh6a2fe092009-09-23 02:29:36 +00001736**
1737** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1738** true or false and is never NULL. If both operands are NULL then the result
1739** of comparison is true. If either operand is NULL then the result is false.
drhef8662b2011-06-20 21:47:58 +00001740** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001741** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001742*/
drh9cbf3422008-01-17 16:22:13 +00001743/* Opcode: Le P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001744**
drh35573352008-01-08 23:54:25 +00001745** This works just like the Lt opcode except that the jump is taken if
1746** the content of register P3 is less than or equal to the content of
1747** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001748*/
drh9cbf3422008-01-17 16:22:13 +00001749/* Opcode: Gt P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001750**
drh35573352008-01-08 23:54:25 +00001751** This works just like the Lt opcode except that the jump is taken if
1752** the content of register P3 is greater than the content of
1753** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001754*/
drh9cbf3422008-01-17 16:22:13 +00001755/* Opcode: Ge P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001756**
drh35573352008-01-08 23:54:25 +00001757** This works just like the Lt opcode except that the jump is taken if
1758** the content of register P3 is greater than or equal to the content of
1759** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001760*/
drh9cbf3422008-01-17 16:22:13 +00001761case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1762case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1763case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1764case OP_Le: /* same as TK_LE, jump, in1, in3 */
1765case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1766case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh6a2fe092009-09-23 02:29:36 +00001767 int res; /* Result of the comparison of pIn1 against pIn3 */
1768 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00001769 u16 flags1; /* Copy of initial value of pIn1->flags */
1770 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00001771
drh3c657212009-11-17 23:59:58 +00001772 pIn1 = &aMem[pOp->p1];
1773 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00001774 flags1 = pIn1->flags;
1775 flags3 = pIn3->flags;
drhc3f1d5f2011-05-30 23:42:16 +00001776 if( (flags1 | flags3)&MEM_Null ){
drh6a2fe092009-09-23 02:29:36 +00001777 /* One or both operands are NULL */
1778 if( pOp->p5 & SQLITE_NULLEQ ){
1779 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1780 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1781 ** or not both operands are null.
1782 */
1783 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
drhc3f1d5f2011-05-30 23:42:16 +00001784 res = (flags1 & flags3 & MEM_Null)==0;
drh6a2fe092009-09-23 02:29:36 +00001785 }else{
1786 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1787 ** then the result is always NULL.
1788 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1789 */
1790 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001791 pOut = &aMem[pOp->p2];
drh6a2fe092009-09-23 02:29:36 +00001792 MemSetTypeFlag(pOut, MEM_Null);
1793 REGISTER_TRACE(pOp->p2, pOut);
1794 }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
1795 pc = pOp->p2-1;
1796 }
1797 break;
danielk1977a37cdde2004-05-16 11:15:36 +00001798 }
drh6a2fe092009-09-23 02:29:36 +00001799 }else{
1800 /* Neither operand is NULL. Do a comparison. */
1801 affinity = pOp->p5 & SQLITE_AFF_MASK;
1802 if( affinity ){
1803 applyAffinity(pIn1, affinity, encoding);
1804 applyAffinity(pIn3, affinity, encoding);
1805 if( db->mallocFailed ) goto no_mem;
1806 }
danielk1977a37cdde2004-05-16 11:15:36 +00001807
drh6a2fe092009-09-23 02:29:36 +00001808 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1809 ExpandBlob(pIn1);
1810 ExpandBlob(pIn3);
1811 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00001812 }
danielk1977a37cdde2004-05-16 11:15:36 +00001813 switch( pOp->opcode ){
1814 case OP_Eq: res = res==0; break;
1815 case OP_Ne: res = res!=0; break;
1816 case OP_Lt: res = res<0; break;
1817 case OP_Le: res = res<=0; break;
1818 case OP_Gt: res = res>0; break;
1819 default: res = res>=0; break;
1820 }
1821
drh35573352008-01-08 23:54:25 +00001822 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001823 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00001824 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00001825 MemSetTypeFlag(pOut, MEM_Int);
drh35573352008-01-08 23:54:25 +00001826 pOut->u.i = res;
1827 REGISTER_TRACE(pOp->p2, pOut);
1828 }else if( res ){
1829 pc = pOp->p2-1;
danielk1977a37cdde2004-05-16 11:15:36 +00001830 }
danb7dca7d2010-03-05 16:32:12 +00001831
1832 /* Undo any changes made by applyAffinity() to the input registers. */
1833 pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
1834 pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
danielk1977a37cdde2004-05-16 11:15:36 +00001835 break;
1836}
drhc9b84a12002-06-20 11:36:48 +00001837
drh0acb7e42008-06-25 00:12:41 +00001838/* Opcode: Permutation * * * P4 *
1839**
shanebe217792009-03-05 04:20:31 +00001840** Set the permutation used by the OP_Compare operator to be the array
drh0acb7e42008-06-25 00:12:41 +00001841** of integers in P4.
1842**
1843** The permutation is only valid until the next OP_Permutation, OP_Compare,
1844** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur
1845** immediately prior to the OP_Compare.
1846*/
1847case OP_Permutation: {
1848 assert( pOp->p4type==P4_INTARRAY );
1849 assert( pOp->p4.ai );
1850 aPermute = pOp->p4.ai;
1851 break;
1852}
1853
drh16ee60f2008-06-20 18:13:25 +00001854/* Opcode: Compare P1 P2 P3 P4 *
1855**
drh710c4842010-08-30 01:17:20 +00001856** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
1857** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
drh16ee60f2008-06-20 18:13:25 +00001858** the comparison for use by the next OP_Jump instruct.
1859**
drh0acb7e42008-06-25 00:12:41 +00001860** P4 is a KeyInfo structure that defines collating sequences and sort
1861** orders for the comparison. The permutation applies to registers
1862** only. The KeyInfo elements are used sequentially.
1863**
1864** The comparison is a sort comparison, so NULLs compare equal,
1865** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00001866** and strings are less than blobs.
1867*/
1868case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00001869 int n;
1870 int i;
1871 int p1;
1872 int p2;
1873 const KeyInfo *pKeyInfo;
1874 int idx;
1875 CollSeq *pColl; /* Collating sequence to use on this term */
1876 int bRev; /* True for DESCENDING sort order */
1877
1878 n = pOp->p3;
1879 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00001880 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00001881 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00001882 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00001883 p2 = pOp->p2;
drh6a2fe092009-09-23 02:29:36 +00001884#if SQLITE_DEBUG
1885 if( aPermute ){
1886 int k, mx = 0;
1887 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
1888 assert( p1>0 && p1+mx<=p->nMem+1 );
1889 assert( p2>0 && p2+mx<=p->nMem+1 );
1890 }else{
1891 assert( p1>0 && p1+n<=p->nMem+1 );
1892 assert( p2>0 && p2+n<=p->nMem+1 );
1893 }
1894#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00001895 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00001896 idx = aPermute ? aPermute[i] : i;
drh2b4ded92010-09-27 21:09:31 +00001897 assert( memIsValid(&aMem[p1+idx]) );
1898 assert( memIsValid(&aMem[p2+idx]) );
drha6c2ed92009-11-14 23:22:23 +00001899 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
1900 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drh93a960a2008-07-10 00:32:42 +00001901 assert( i<pKeyInfo->nField );
1902 pColl = pKeyInfo->aColl[i];
1903 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00001904 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00001905 if( iCompare ){
1906 if( bRev ) iCompare = -iCompare;
1907 break;
1908 }
drh16ee60f2008-06-20 18:13:25 +00001909 }
drh0acb7e42008-06-25 00:12:41 +00001910 aPermute = 0;
drh16ee60f2008-06-20 18:13:25 +00001911 break;
1912}
1913
1914/* Opcode: Jump P1 P2 P3 * *
1915**
1916** Jump to the instruction at address P1, P2, or P3 depending on whether
1917** in the most recent OP_Compare instruction the P1 vector was less than
1918** equal to, or greater than the P2 vector, respectively.
1919*/
drh0acb7e42008-06-25 00:12:41 +00001920case OP_Jump: { /* jump */
1921 if( iCompare<0 ){
drh16ee60f2008-06-20 18:13:25 +00001922 pc = pOp->p1 - 1;
drh0acb7e42008-06-25 00:12:41 +00001923 }else if( iCompare==0 ){
drh16ee60f2008-06-20 18:13:25 +00001924 pc = pOp->p2 - 1;
1925 }else{
1926 pc = pOp->p3 - 1;
1927 }
1928 break;
1929}
1930
drh5b6afba2008-01-05 16:29:28 +00001931/* Opcode: And P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001932**
drh5b6afba2008-01-05 16:29:28 +00001933** Take the logical AND of the values in registers P1 and P2 and
1934** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00001935**
drh5b6afba2008-01-05 16:29:28 +00001936** If either P1 or P2 is 0 (false) then the result is 0 even if
1937** the other input is NULL. A NULL and true or two NULLs give
1938** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00001939*/
drh5b6afba2008-01-05 16:29:28 +00001940/* Opcode: Or P1 P2 P3 * *
1941**
1942** Take the logical OR of the values in register P1 and P2 and
1943** store the answer in register P3.
1944**
1945** If either P1 or P2 is nonzero (true) then the result is 1 (true)
1946** even if the other input is NULL. A NULL and false or two NULLs
1947** give a NULL output.
1948*/
1949case OP_And: /* same as TK_AND, in1, in2, out3 */
1950case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00001951 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
1952 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00001953
drh3c657212009-11-17 23:59:58 +00001954 pIn1 = &aMem[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00001955 if( pIn1->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00001956 v1 = 2;
drh5e00f6c2001-09-13 13:46:56 +00001957 }else{
drh5b6afba2008-01-05 16:29:28 +00001958 v1 = sqlite3VdbeIntValue(pIn1)!=0;
drhbb113512002-05-27 01:04:51 +00001959 }
drh3c657212009-11-17 23:59:58 +00001960 pIn2 = &aMem[pOp->p2];
drh5b6afba2008-01-05 16:29:28 +00001961 if( pIn2->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00001962 v2 = 2;
1963 }else{
drh5b6afba2008-01-05 16:29:28 +00001964 v2 = sqlite3VdbeIntValue(pIn2)!=0;
drhbb113512002-05-27 01:04:51 +00001965 }
1966 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00001967 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00001968 v1 = and_logic[v1*3+v2];
1969 }else{
drh5b6afba2008-01-05 16:29:28 +00001970 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00001971 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00001972 }
drh3c657212009-11-17 23:59:58 +00001973 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00001974 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00001975 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00001976 }else{
drh5b6afba2008-01-05 16:29:28 +00001977 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00001978 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00001979 }
drh5e00f6c2001-09-13 13:46:56 +00001980 break;
1981}
1982
drhe99fa2a2008-12-15 15:27:51 +00001983/* Opcode: Not P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00001984**
drhe99fa2a2008-12-15 15:27:51 +00001985** Interpret the value in register P1 as a boolean value. Store the
1986** boolean complement in register P2. If the value in register P1 is
1987** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00001988*/
drh93952eb2009-11-13 19:43:43 +00001989case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00001990 pIn1 = &aMem[pOp->p1];
1991 pOut = &aMem[pOp->p2];
drhe99fa2a2008-12-15 15:27:51 +00001992 if( pIn1->flags & MEM_Null ){
1993 sqlite3VdbeMemSetNull(pOut);
1994 }else{
1995 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
1996 }
drh5e00f6c2001-09-13 13:46:56 +00001997 break;
1998}
1999
drhe99fa2a2008-12-15 15:27:51 +00002000/* Opcode: BitNot P1 P2 * * *
drhbf4133c2001-10-13 02:59:08 +00002001**
drhe99fa2a2008-12-15 15:27:51 +00002002** Interpret the content of register P1 as an integer. Store the
2003** ones-complement of the P1 value into register P2. If P1 holds
2004** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00002005*/
drh93952eb2009-11-13 19:43:43 +00002006case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002007 pIn1 = &aMem[pOp->p1];
2008 pOut = &aMem[pOp->p2];
drhe99fa2a2008-12-15 15:27:51 +00002009 if( pIn1->flags & MEM_Null ){
2010 sqlite3VdbeMemSetNull(pOut);
2011 }else{
2012 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
2013 }
drhbf4133c2001-10-13 02:59:08 +00002014 break;
2015}
2016
drh3c84ddf2008-01-09 02:15:38 +00002017/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00002018**
drhef8662b2011-06-20 21:47:58 +00002019** Jump to P2 if the value in register P1 is true. The value
drh3c84ddf2008-01-09 02:15:38 +00002020** is considered true if it is numeric and non-zero. If the value
2021** in P1 is NULL then take the jump if P3 is true.
drh5e00f6c2001-09-13 13:46:56 +00002022*/
drh3c84ddf2008-01-09 02:15:38 +00002023/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00002024**
drhef8662b2011-06-20 21:47:58 +00002025** Jump to P2 if the value in register P1 is False. The value
drh3c84ddf2008-01-09 02:15:38 +00002026** is considered true if it has a numeric value of zero. If the value
2027** in P1 is NULL then take the jump if P3 is true.
drhf5905aa2002-05-26 20:54:33 +00002028*/
drh9cbf3422008-01-17 16:22:13 +00002029case OP_If: /* jump, in1 */
2030case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00002031 int c;
drh3c657212009-11-17 23:59:58 +00002032 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00002033 if( pIn1->flags & MEM_Null ){
2034 c = pOp->p3;
drhf5905aa2002-05-26 20:54:33 +00002035 }else{
drhba0232a2005-06-06 17:27:19 +00002036#ifdef SQLITE_OMIT_FLOATING_POINT
shanefbd60f82009-02-04 03:59:25 +00002037 c = sqlite3VdbeIntValue(pIn1)!=0;
drhba0232a2005-06-06 17:27:19 +00002038#else
drh3c84ddf2008-01-09 02:15:38 +00002039 c = sqlite3VdbeRealValue(pIn1)!=0.0;
drhba0232a2005-06-06 17:27:19 +00002040#endif
drhf5905aa2002-05-26 20:54:33 +00002041 if( pOp->opcode==OP_IfNot ) c = !c;
2042 }
drh3c84ddf2008-01-09 02:15:38 +00002043 if( c ){
2044 pc = pOp->p2-1;
2045 }
drh5e00f6c2001-09-13 13:46:56 +00002046 break;
2047}
2048
drh830ecf92009-06-18 00:41:55 +00002049/* Opcode: IsNull P1 P2 * * *
drh477df4b2008-01-05 18:48:24 +00002050**
drh830ecf92009-06-18 00:41:55 +00002051** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002052*/
drh9cbf3422008-01-17 16:22:13 +00002053case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002054 pIn1 = &aMem[pOp->p1];
drh830ecf92009-06-18 00:41:55 +00002055 if( (pIn1->flags & MEM_Null)!=0 ){
2056 pc = pOp->p2 - 1;
2057 }
drh477df4b2008-01-05 18:48:24 +00002058 break;
2059}
2060
drh98757152008-01-09 23:04:12 +00002061/* Opcode: NotNull P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002062**
drh6a288a32008-01-07 19:20:24 +00002063** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002064*/
drh9cbf3422008-01-17 16:22:13 +00002065case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002066 pIn1 = &aMem[pOp->p1];
drh6a288a32008-01-07 19:20:24 +00002067 if( (pIn1->flags & MEM_Null)==0 ){
2068 pc = pOp->p2 - 1;
2069 }
drh5e00f6c2001-09-13 13:46:56 +00002070 break;
2071}
2072
drh3e9ca092009-09-08 01:14:48 +00002073/* Opcode: Column P1 P2 P3 P4 P5
danielk1977192ac1d2004-05-10 07:17:30 +00002074**
danielk1977cfcdaef2004-05-12 07:33:33 +00002075** Interpret the data that cursor P1 points to as a structure built using
2076** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002077** information about the format of the data.) Extract the P2-th column
2078** from this record. If there are less that (P2+1)
2079** values in the record, extract a NULL.
2080**
drh9cbf3422008-01-17 16:22:13 +00002081** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002082**
danielk19771f4aa332008-01-03 09:51:55 +00002083** If the column contains fewer than P2 fields, then extract a NULL. Or,
2084** if the P4 argument is a P4_MEM use the value of the P4 argument as
2085** the result.
drh3e9ca092009-09-08 01:14:48 +00002086**
2087** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2088** then the cache of the cursor is reset prior to extracting the column.
2089** The first OP_Column against a pseudo-table after the value of the content
2090** register has changed should have this bit set.
danielk1977192ac1d2004-05-10 07:17:30 +00002091*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002092case OP_Column: {
drh35cd6432009-06-05 14:17:21 +00002093 u32 payloadSize; /* Number of bytes in the record */
drh856c1032009-06-02 15:21:42 +00002094 i64 payloadSize64; /* Number of bytes in the record */
2095 int p1; /* P1 value of the opcode */
2096 int p2; /* column number to retrieve */
2097 VdbeCursor *pC; /* The VDBE cursor */
drhe61cffc2004-06-12 18:12:15 +00002098 char *zRec; /* Pointer to complete record-data */
drhd3194f52004-05-27 19:59:32 +00002099 BtCursor *pCrsr; /* The BTree cursor */
2100 u32 *aType; /* aType[i] holds the numeric type of the i-th column */
2101 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk197764202cf2008-11-17 15:31:47 +00002102 int nField; /* number of fields in the record */
danielk1977cfcdaef2004-05-12 07:33:33 +00002103 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002104 int i; /* Loop counter */
2105 char *zData; /* Part of the record being decoded */
drhd4e70eb2008-01-02 00:34:36 +00002106 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002107 Mem sMem; /* For storing the record being decoded */
drh35cd6432009-06-05 14:17:21 +00002108 u8 *zIdx; /* Index into header */
2109 u8 *zEndHdr; /* Pointer to first byte after the header */
2110 u32 offset; /* Offset into the data */
drh6658cd92010-02-05 14:12:53 +00002111 u32 szField; /* Number of bytes in the content of a field */
drh35cd6432009-06-05 14:17:21 +00002112 int szHdr; /* Size of the header size field at start of record */
2113 int avail; /* Number of bytes of available data */
drh3e9ca092009-09-08 01:14:48 +00002114 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002115
drh856c1032009-06-02 15:21:42 +00002116
2117 p1 = pOp->p1;
2118 p2 = pOp->p2;
2119 pC = 0;
drhb27b7f52008-12-10 18:03:45 +00002120 memset(&sMem, 0, sizeof(sMem));
drhd3194f52004-05-27 19:59:32 +00002121 assert( p1<p->nCursor );
drh9cbf3422008-01-17 16:22:13 +00002122 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00002123 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00002124 memAboutToChange(p, pDest);
danielk1977a7a8e142008-02-13 18:25:27 +00002125 MemSetTypeFlag(pDest, MEM_Null);
shane36840fd2009-06-26 16:32:13 +00002126 zRec = 0;
danielk1977cfcdaef2004-05-12 07:33:33 +00002127
drhe61cffc2004-06-12 18:12:15 +00002128 /* This block sets the variable payloadSize to be the total number of
2129 ** bytes in the record.
2130 **
2131 ** zRec is set to be the complete text of the record if it is available.
drhb73857f2006-03-17 00:25:59 +00002132 ** The complete record text is always available for pseudo-tables
2133 ** If the record is stored in a cursor, the complete record text
2134 ** might be available in the pC->aRow cache. Or it might not be.
2135 ** If the data is unavailable, zRec is set to NULL.
drhd3194f52004-05-27 19:59:32 +00002136 **
2137 ** We also compute the number of columns in the record. For cursors,
drhdfe88ec2008-11-03 20:55:06 +00002138 ** the number of columns is stored in the VdbeCursor.nField element.
danielk1977cfcdaef2004-05-12 07:33:33 +00002139 */
drhb73857f2006-03-17 00:25:59 +00002140 pC = p->apCsr[p1];
danielk19776c924092007-11-12 08:09:34 +00002141 assert( pC!=0 );
danielk19770817d0d2007-02-14 09:19:36 +00002142#ifndef SQLITE_OMIT_VIRTUALTABLE
2143 assert( pC->pVtabCursor==0 );
2144#endif
shane36840fd2009-06-26 16:32:13 +00002145 pCrsr = pC->pCursor;
2146 if( pCrsr!=0 ){
drhe61cffc2004-06-12 18:12:15 +00002147 /* The record is stored in a B-Tree */
drh536065a2005-01-26 21:55:31 +00002148 rc = sqlite3VdbeCursorMoveto(pC);
drh52f159e2005-01-27 00:33:21 +00002149 if( rc ) goto abort_due_to_error;
danielk1977192ac1d2004-05-10 07:17:30 +00002150 if( pC->nullRow ){
2151 payloadSize = 0;
drh76873ab2006-01-07 18:48:26 +00002152 }else if( pC->cacheStatus==p->cacheCtr ){
drh9188b382004-05-14 21:12:22 +00002153 payloadSize = pC->payloadSize;
drh2646da72005-12-09 20:02:05 +00002154 zRec = (char*)pC->aRow;
drhf0863fe2005-06-12 21:35:51 +00002155 }else if( pC->isIndex ){
drhea8ffdf2009-07-22 00:35:23 +00002156 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drhc27ae612009-07-14 18:35:44 +00002157 rc = sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2158 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhaa736092009-06-22 00:55:30 +00002159 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2160 ** payload size, so it is impossible for payloadSize64 to be
2161 ** larger than 32 bits. */
2162 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
drh35cd6432009-06-05 14:17:21 +00002163 payloadSize = (u32)payloadSize64;
danielk1977192ac1d2004-05-10 07:17:30 +00002164 }else{
drhea8ffdf2009-07-22 00:35:23 +00002165 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drhc27ae612009-07-14 18:35:44 +00002166 rc = sqlite3BtreeDataSize(pCrsr, &payloadSize);
drhea8ffdf2009-07-22 00:35:23 +00002167 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
danielk1977192ac1d2004-05-10 07:17:30 +00002168 }
drh3e9ca092009-09-08 01:14:48 +00002169 }else if( pC->pseudoTableReg>0 ){
drha6c2ed92009-11-14 23:22:23 +00002170 pReg = &aMem[pC->pseudoTableReg];
drh3e9ca092009-09-08 01:14:48 +00002171 assert( pReg->flags & MEM_Blob );
drh2b4ded92010-09-27 21:09:31 +00002172 assert( memIsValid(pReg) );
drh3e9ca092009-09-08 01:14:48 +00002173 payloadSize = pReg->n;
2174 zRec = pReg->z;
2175 pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
danielk1977192ac1d2004-05-10 07:17:30 +00002176 assert( payloadSize==0 || zRec!=0 );
drh9a65f2c2009-06-22 19:05:40 +00002177 }else{
2178 /* Consider the row to be NULL */
2179 payloadSize = 0;
danielk1977192ac1d2004-05-10 07:17:30 +00002180 }
2181
drh9cbf3422008-01-17 16:22:13 +00002182 /* If payloadSize is 0, then just store a NULL */
danielk1977192ac1d2004-05-10 07:17:30 +00002183 if( payloadSize==0 ){
danielk1977a7a8e142008-02-13 18:25:27 +00002184 assert( pDest->flags&MEM_Null );
drhd4e70eb2008-01-02 00:34:36 +00002185 goto op_column_out;
danielk1977192ac1d2004-05-10 07:17:30 +00002186 }
drh35cd6432009-06-05 14:17:21 +00002187 assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
2188 if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002189 goto too_big;
2190 }
danielk1977192ac1d2004-05-10 07:17:30 +00002191
shane36840fd2009-06-26 16:32:13 +00002192 nField = pC->nField;
drhd3194f52004-05-27 19:59:32 +00002193 assert( p2<nField );
danielk1977b4964b72004-05-18 01:23:38 +00002194
drh9188b382004-05-14 21:12:22 +00002195 /* Read and parse the table header. Store the results of the parse
2196 ** into the record header cache fields of the cursor.
danielk1977192ac1d2004-05-10 07:17:30 +00002197 */
danielk1977cd3e8f72008-03-25 09:47:35 +00002198 aType = pC->aType;
drha05a7222008-01-19 03:35:58 +00002199 if( pC->cacheStatus==p->cacheCtr ){
drhd3194f52004-05-27 19:59:32 +00002200 aOffset = pC->aOffset;
2201 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00002202 assert(aType);
drh856c1032009-06-02 15:21:42 +00002203 avail = 0;
drhb73857f2006-03-17 00:25:59 +00002204 pC->aOffset = aOffset = &aType[nField];
2205 pC->payloadSize = payloadSize;
2206 pC->cacheStatus = p->cacheCtr;
danielk1977192ac1d2004-05-10 07:17:30 +00002207
drhd3194f52004-05-27 19:59:32 +00002208 /* Figure out how many bytes are in the header */
danielk197784ac9d02004-05-18 09:58:06 +00002209 if( zRec ){
2210 zData = zRec;
2211 }else{
drhf0863fe2005-06-12 21:35:51 +00002212 if( pC->isIndex ){
drhe51c44f2004-05-30 20:46:09 +00002213 zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
drhd3194f52004-05-27 19:59:32 +00002214 }else{
drhe51c44f2004-05-30 20:46:09 +00002215 zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
drh9188b382004-05-14 21:12:22 +00002216 }
drhe61cffc2004-06-12 18:12:15 +00002217 /* If KeyFetch()/DataFetch() managed to get the entire payload,
2218 ** save the payload in the pC->aRow cache. That will save us from
2219 ** having to make additional calls to fetch the content portion of
2220 ** the record.
2221 */
drh35cd6432009-06-05 14:17:21 +00002222 assert( avail>=0 );
2223 if( payloadSize <= (u32)avail ){
drh2646da72005-12-09 20:02:05 +00002224 zRec = zData;
2225 pC->aRow = (u8*)zData;
drhe61cffc2004-06-12 18:12:15 +00002226 }else{
2227 pC->aRow = 0;
2228 }
drhd3194f52004-05-27 19:59:32 +00002229 }
drh588f5bc2007-01-02 18:41:54 +00002230 /* The following assert is true in all cases accept when
2231 ** the database file has been corrupted externally.
2232 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
drh35cd6432009-06-05 14:17:21 +00002233 szHdr = getVarint32((u8*)zData, offset);
2234
2235 /* Make sure a corrupt database has not given us an oversize header.
2236 ** Do this now to avoid an oversize memory allocation.
2237 **
2238 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2239 ** types use so much data space that there can only be 4096 and 32 of
2240 ** them, respectively. So the maximum header length results from a
2241 ** 3-byte type for each of the maximum of 32768 columns plus three
2242 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2243 */
2244 if( offset > 98307 ){
2245 rc = SQLITE_CORRUPT_BKPT;
2246 goto op_column_out;
2247 }
2248
2249 /* Compute in len the number of bytes of data we need to read in order
2250 ** to get nField type values. offset is an upper bound on this. But
2251 ** nField might be significantly less than the true number of columns
2252 ** in the table, and in that case, 5*nField+3 might be smaller than offset.
2253 ** We want to minimize len in order to limit the size of the memory
2254 ** allocation, especially if a corrupt database file has caused offset
2255 ** to be oversized. Offset is limited to 98307 above. But 98307 might
2256 ** still exceed Robson memory allocation limits on some configurations.
2257 ** On systems that cannot tolerate large memory allocations, nField*5+3
2258 ** will likely be much smaller since nField will likely be less than
2259 ** 20 or so. This insures that Robson memory allocation limits are
2260 ** not exceeded even for corrupt database files.
2261 */
2262 len = nField*5 + 3;
shane75ac1de2009-06-09 18:58:52 +00002263 if( len > (int)offset ) len = (int)offset;
drhe61cffc2004-06-12 18:12:15 +00002264
2265 /* The KeyFetch() or DataFetch() above are fast and will get the entire
2266 ** record header in most cases. But they will fail to get the complete
2267 ** record header if the record header does not fit on a single page
2268 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
2269 ** acquire the complete header text.
2270 */
drh35cd6432009-06-05 14:17:21 +00002271 if( !zRec && avail<len ){
danielk1977a7a8e142008-02-13 18:25:27 +00002272 sMem.flags = 0;
2273 sMem.db = 0;
drh35cd6432009-06-05 14:17:21 +00002274 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
danielk197784ac9d02004-05-18 09:58:06 +00002275 if( rc!=SQLITE_OK ){
danielk19773c9cc8d2005-01-17 03:40:08 +00002276 goto op_column_out;
drh9188b382004-05-14 21:12:22 +00002277 }
drhb6f54522004-05-20 02:42:16 +00002278 zData = sMem.z;
drh9188b382004-05-14 21:12:22 +00002279 }
drh35cd6432009-06-05 14:17:21 +00002280 zEndHdr = (u8 *)&zData[len];
2281 zIdx = (u8 *)&zData[szHdr];
drh9188b382004-05-14 21:12:22 +00002282
drhd3194f52004-05-27 19:59:32 +00002283 /* Scan the header and use it to fill in the aType[] and aOffset[]
2284 ** arrays. aType[i] will contain the type integer for the i-th
2285 ** column and aOffset[i] will contain the offset from the beginning
2286 ** of the record to the start of the data for the i-th column
drh9188b382004-05-14 21:12:22 +00002287 */
danielk1977dedf45b2006-01-13 17:12:01 +00002288 for(i=0; i<nField; i++){
2289 if( zIdx<zEndHdr ){
drh6658cd92010-02-05 14:12:53 +00002290 aOffset[i] = offset;
shane3f8d5cf2008-04-24 19:15:09 +00002291 zIdx += getVarint32(zIdx, aType[i]);
drh6658cd92010-02-05 14:12:53 +00002292 szField = sqlite3VdbeSerialTypeLen(aType[i]);
2293 offset += szField;
2294 if( offset<szField ){ /* True if offset overflows */
2295 zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
2296 break;
2297 }
danielk1977dedf45b2006-01-13 17:12:01 +00002298 }else{
2299 /* If i is less that nField, then there are less fields in this
2300 ** record than SetNumColumns indicated there are columns in the
2301 ** table. Set the offset for any extra columns not present in
drh9cbf3422008-01-17 16:22:13 +00002302 ** the record to 0. This tells code below to store a NULL
2303 ** instead of deserializing a value from the record.
danielk1977dedf45b2006-01-13 17:12:01 +00002304 */
2305 aOffset[i] = 0;
2306 }
drh9188b382004-05-14 21:12:22 +00002307 }
danielk19775f096132008-03-28 15:44:09 +00002308 sqlite3VdbeMemRelease(&sMem);
drhd3194f52004-05-27 19:59:32 +00002309 sMem.flags = MEM_Null;
2310
danielk19779792eef2006-01-13 15:58:43 +00002311 /* If we have read more header data than was contained in the header,
2312 ** or if the end of the last field appears to be past the end of the
shane2ca8bc02008-05-07 18:59:28 +00002313 ** record, or if the end of the last field appears to be before the end
2314 ** of the record (when all fields present), then we must be dealing
2315 ** with a corrupt database.
drhd3194f52004-05-27 19:59:32 +00002316 */
drh6658cd92010-02-05 14:12:53 +00002317 if( (zIdx > zEndHdr) || (offset > payloadSize)
2318 || (zIdx==zEndHdr && offset!=payloadSize) ){
drh49285702005-09-17 15:20:26 +00002319 rc = SQLITE_CORRUPT_BKPT;
danielk19773c9cc8d2005-01-17 03:40:08 +00002320 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002321 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002322 }
danielk1977192ac1d2004-05-10 07:17:30 +00002323
danielk197736963fd2005-02-19 08:18:05 +00002324 /* Get the column information. If aOffset[p2] is non-zero, then
2325 ** deserialize the value from the record. If aOffset[p2] is zero,
2326 ** then there are not enough fields in the record to satisfy the
drh66a51672008-01-03 00:01:23 +00002327 ** request. In this case, set the value NULL or to P4 if P4 is
drh29dda4a2005-07-21 18:23:20 +00002328 ** a pointer to a Mem object.
drh9188b382004-05-14 21:12:22 +00002329 */
danielk197736963fd2005-02-19 08:18:05 +00002330 if( aOffset[p2] ){
2331 assert( rc==SQLITE_OK );
2332 if( zRec ){
danielk1977808ec7c2008-07-29 10:18:57 +00002333 sqlite3VdbeMemReleaseExternal(pDest);
2334 sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
danielk197736963fd2005-02-19 08:18:05 +00002335 }else{
2336 len = sqlite3VdbeSerialTypeLen(aType[p2]);
danielk1977a7a8e142008-02-13 18:25:27 +00002337 sqlite3VdbeMemMove(&sMem, pDest);
drhb21c8cd2007-08-21 19:33:56 +00002338 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
danielk197736963fd2005-02-19 08:18:05 +00002339 if( rc!=SQLITE_OK ){
2340 goto op_column_out;
2341 }
2342 zData = sMem.z;
danielk1977a7a8e142008-02-13 18:25:27 +00002343 sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
danielk19777701e812005-01-10 12:59:51 +00002344 }
drhd4e70eb2008-01-02 00:34:36 +00002345 pDest->enc = encoding;
danielk197736963fd2005-02-19 08:18:05 +00002346 }else{
danielk197760585dd2008-01-03 08:08:40 +00002347 if( pOp->p4type==P4_MEM ){
danielk19772dca4ac2008-01-03 11:50:29 +00002348 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
danielk1977aee18ef2005-03-09 12:26:50 +00002349 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00002350 assert( pDest->flags&MEM_Null );
danielk1977aee18ef2005-03-09 12:26:50 +00002351 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002352 }
drhfebe1062004-08-28 18:17:48 +00002353
2354 /* If we dynamically allocated space to hold the data (in the
2355 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
drhd4e70eb2008-01-02 00:34:36 +00002356 ** dynamically allocated space over to the pDest structure.
drhfebe1062004-08-28 18:17:48 +00002357 ** This prevents a memory copy.
2358 */
danielk19775f096132008-03-28 15:44:09 +00002359 if( sMem.zMalloc ){
2360 assert( sMem.z==sMem.zMalloc );
danielk1977a7a8e142008-02-13 18:25:27 +00002361 assert( !(pDest->flags & MEM_Dyn) );
2362 assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
2363 pDest->flags &= ~(MEM_Ephem|MEM_Static);
danielk19775f096132008-03-28 15:44:09 +00002364 pDest->flags |= MEM_Term;
danielk1977a7a8e142008-02-13 18:25:27 +00002365 pDest->z = sMem.z;
danielk19775f096132008-03-28 15:44:09 +00002366 pDest->zMalloc = sMem.zMalloc;
danielk1977b1bc9532004-05-22 03:05:33 +00002367 }
drhfebe1062004-08-28 18:17:48 +00002368
drhd4e70eb2008-01-02 00:34:36 +00002369 rc = sqlite3VdbeMemMakeWriteable(pDest);
drhd3194f52004-05-27 19:59:32 +00002370
danielk19773c9cc8d2005-01-17 03:40:08 +00002371op_column_out:
drhb7654112008-01-12 12:48:07 +00002372 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002373 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002374 break;
2375}
2376
danielk1977751de562008-04-18 09:01:15 +00002377/* Opcode: Affinity P1 P2 * P4 *
2378**
2379** Apply affinities to a range of P2 registers starting with P1.
2380**
2381** P4 is a string that is P2 characters long. The nth character of the
2382** string indicates the column affinity that should be used for the nth
2383** memory cell in the range.
2384*/
2385case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002386 const char *zAffinity; /* The affinity to be applied */
2387 char cAff; /* A single character of affinity */
danielk1977751de562008-04-18 09:01:15 +00002388
drh856c1032009-06-02 15:21:42 +00002389 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002390 assert( zAffinity!=0 );
2391 assert( zAffinity[pOp->p2]==0 );
2392 pIn1 = &aMem[pOp->p1];
2393 while( (cAff = *(zAffinity++))!=0 ){
2394 assert( pIn1 <= &p->aMem[p->nMem] );
drh2b4ded92010-09-27 21:09:31 +00002395 assert( memIsValid(pIn1) );
drh039fc322009-11-17 18:31:47 +00002396 ExpandBlob(pIn1);
2397 applyAffinity(pIn1, cAff, encoding);
2398 pIn1++;
danielk1977751de562008-04-18 09:01:15 +00002399 }
2400 break;
2401}
2402
drh1db639c2008-01-17 02:36:28 +00002403/* Opcode: MakeRecord P1 P2 P3 P4 *
drh7a224de2004-06-02 01:22:02 +00002404**
drh710c4842010-08-30 01:17:20 +00002405** Convert P2 registers beginning with P1 into the [record format]
2406** use as a data record in a database table or as a key
2407** in an index. The OP_Column opcode can decode the record later.
drh7a224de2004-06-02 01:22:02 +00002408**
danielk1977751de562008-04-18 09:01:15 +00002409** P4 may be a string that is P2 characters long. The nth character of the
drh7a224de2004-06-02 01:22:02 +00002410** string indicates the column affinity that should be used for the nth
drh9cbf3422008-01-17 16:22:13 +00002411** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002412**
drh8a512562005-11-14 22:29:05 +00002413** The mapping from character to affinity is given by the SQLITE_AFF_
2414** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002415**
drh66a51672008-01-03 00:01:23 +00002416** If P4 is NULL then all index fields have the affinity NONE.
drh7f057c92005-06-24 03:53:06 +00002417*/
drh1db639c2008-01-17 02:36:28 +00002418case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002419 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2420 Mem *pRec; /* The new record */
2421 u64 nData; /* Number of bytes of data space */
2422 int nHdr; /* Number of bytes of header space */
2423 i64 nByte; /* Data space required for this record */
2424 int nZero; /* Number of zero bytes at the end of the record */
2425 int nVarint; /* Number of bytes in a varint */
2426 u32 serial_type; /* Type field */
2427 Mem *pData0; /* First field to be combined into the record */
2428 Mem *pLast; /* Last field of the record */
2429 int nField; /* Number of fields in the record */
2430 char *zAffinity; /* The affinity string for the record */
2431 int file_format; /* File format to use for encoding */
2432 int i; /* Space used in zNewRecord[] */
2433 int len; /* Length of a field */
2434
drhf3218fe2004-05-28 08:21:02 +00002435 /* Assuming the record contains N fields, the record format looks
2436 ** like this:
2437 **
drh7a224de2004-06-02 01:22:02 +00002438 ** ------------------------------------------------------------------------
2439 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2440 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002441 **
drh9cbf3422008-01-17 16:22:13 +00002442 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2443 ** and so froth.
drhf3218fe2004-05-28 08:21:02 +00002444 **
2445 ** Each type field is a varint representing the serial type of the
2446 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002447 ** hdr-size field is also a varint which is the offset from the beginning
2448 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002449 */
drh856c1032009-06-02 15:21:42 +00002450 nData = 0; /* Number of bytes of data space */
2451 nHdr = 0; /* Number of bytes of header space */
drh856c1032009-06-02 15:21:42 +00002452 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002453 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002454 zAffinity = pOp->p4.z;
danielk19776ab3a2e2009-02-19 14:39:25 +00002455 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
drha6c2ed92009-11-14 23:22:23 +00002456 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002457 nField = pOp->p2;
2458 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002459 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002460
drh2b4ded92010-09-27 21:09:31 +00002461 /* Identify the output register */
2462 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2463 pOut = &aMem[pOp->p3];
2464 memAboutToChange(p, pOut);
2465
drhf3218fe2004-05-28 08:21:02 +00002466 /* Loop through the elements that will make up the record to figure
2467 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002468 */
drha2a49dc2008-01-02 14:28:13 +00002469 for(pRec=pData0; pRec<=pLast; pRec++){
drh2b4ded92010-09-27 21:09:31 +00002470 assert( memIsValid(pRec) );
drhd3d39e92004-05-20 22:16:29 +00002471 if( zAffinity ){
drhb21c8cd2007-08-21 19:33:56 +00002472 applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
drhd3d39e92004-05-20 22:16:29 +00002473 }
danielk1977d908f5a2007-05-11 07:08:28 +00002474 if( pRec->flags&MEM_Zero && pRec->n>0 ){
drha05a7222008-01-19 03:35:58 +00002475 sqlite3VdbeMemExpandBlob(pRec);
danielk1977d908f5a2007-05-11 07:08:28 +00002476 }
drhd946db02005-12-29 19:23:06 +00002477 serial_type = sqlite3VdbeSerialType(pRec, file_format);
drhae7e1512007-05-02 16:51:59 +00002478 len = sqlite3VdbeSerialTypeLen(serial_type);
2479 nData += len;
drhf3218fe2004-05-28 08:21:02 +00002480 nHdr += sqlite3VarintLen(serial_type);
drhfdf972a2007-05-02 13:30:27 +00002481 if( pRec->flags & MEM_Zero ){
2482 /* Only pure zero-filled BLOBs can be input to this Opcode.
2483 ** We do not allow blobs with a prefix and a zero-filled tail. */
drh8df32842008-12-09 02:51:23 +00002484 nZero += pRec->u.nZero;
drhae7e1512007-05-02 16:51:59 +00002485 }else if( len ){
drhfdf972a2007-05-02 13:30:27 +00002486 nZero = 0;
2487 }
danielk19778d059842004-05-12 11:24:02 +00002488 }
danielk19773d1bfea2004-05-14 11:00:53 +00002489
drhf3218fe2004-05-28 08:21:02 +00002490 /* Add the initial header varint and total the size */
drhcb9882a2005-03-17 03:15:40 +00002491 nHdr += nVarint = sqlite3VarintLen(nHdr);
2492 if( nVarint<sqlite3VarintLen(nHdr) ){
2493 nHdr++;
2494 }
drhfdf972a2007-05-02 13:30:27 +00002495 nByte = nHdr+nData-nZero;
drhbb4957f2008-03-20 14:03:29 +00002496 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002497 goto too_big;
2498 }
drhf3218fe2004-05-28 08:21:02 +00002499
danielk1977a7a8e142008-02-13 18:25:27 +00002500 /* Make sure the output register has a buffer large enough to store
2501 ** the new record. The output register (pOp->p3) is not allowed to
2502 ** be one of the input registers (because the following call to
2503 ** sqlite3VdbeMemGrow() could clobber the value before it is used).
2504 */
drh9c1905f2008-12-10 22:32:56 +00002505 if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002506 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002507 }
danielk1977a7a8e142008-02-13 18:25:27 +00002508 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002509
2510 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002511 i = putVarint32(zNewRecord, nHdr);
drha2a49dc2008-01-02 14:28:13 +00002512 for(pRec=pData0; pRec<=pLast; pRec++){
drhd946db02005-12-29 19:23:06 +00002513 serial_type = sqlite3VdbeSerialType(pRec, file_format);
shane3f8d5cf2008-04-24 19:15:09 +00002514 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
danielk19778d059842004-05-12 11:24:02 +00002515 }
drha2a49dc2008-01-02 14:28:13 +00002516 for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
drh9c1905f2008-12-10 22:32:56 +00002517 i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
drhf3218fe2004-05-28 08:21:02 +00002518 }
drhfdf972a2007-05-02 13:30:27 +00002519 assert( i==nByte );
drhf3218fe2004-05-28 08:21:02 +00002520
drh9cbf3422008-01-17 16:22:13 +00002521 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drh9c1905f2008-12-10 22:32:56 +00002522 pOut->n = (int)nByte;
danielk1977a7a8e142008-02-13 18:25:27 +00002523 pOut->flags = MEM_Blob | MEM_Dyn;
2524 pOut->xDel = 0;
drhfdf972a2007-05-02 13:30:27 +00002525 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002526 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002527 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002528 }
drh477df4b2008-01-05 18:48:24 +00002529 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
drh1013c932008-01-06 00:25:21 +00002530 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002531 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002532 break;
2533}
2534
danielk1977a5533162009-02-24 10:01:51 +00002535/* Opcode: Count P1 P2 * * *
2536**
2537** Store the number of entries (an integer value) in the table or index
2538** opened by cursor P1 in register P2
2539*/
2540#ifndef SQLITE_OMIT_BTREECOUNT
2541case OP_Count: { /* out2-prerelease */
2542 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002543 BtCursor *pCrsr;
2544
2545 pCrsr = p->apCsr[pOp->p1]->pCursor;
drh818e39a2009-04-02 20:27:28 +00002546 if( pCrsr ){
2547 rc = sqlite3BtreeCount(pCrsr, &nEntry);
2548 }else{
2549 nEntry = 0;
2550 }
danielk1977a5533162009-02-24 10:01:51 +00002551 pOut->u.i = nEntry;
2552 break;
2553}
2554#endif
2555
danielk1977fd7f0452008-12-17 17:30:26 +00002556/* Opcode: Savepoint P1 * * P4 *
2557**
2558** Open, release or rollback the savepoint named by parameter P4, depending
2559** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2560** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2561*/
2562case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002563 int p1; /* Value of P1 operand */
2564 char *zName; /* Name of savepoint */
2565 int nName;
2566 Savepoint *pNew;
2567 Savepoint *pSavepoint;
2568 Savepoint *pTmp;
2569 int iSavepoint;
2570 int ii;
2571
2572 p1 = pOp->p1;
2573 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002574
2575 /* Assert that the p1 parameter is valid. Also that if there is no open
2576 ** transaction, then there cannot be any savepoints.
2577 */
2578 assert( db->pSavepoint==0 || db->autoCommit==0 );
2579 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2580 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2581 assert( checkSavepointCount(db) );
2582
2583 if( p1==SAVEPOINT_BEGIN ){
danielk197734cf35d2008-12-18 18:31:38 +00002584 if( db->writeVdbeCnt>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002585 /* A new savepoint cannot be created if there are active write
2586 ** statements (i.e. open read/write incremental blob handles).
2587 */
2588 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
2589 "SQL statements in progress");
2590 rc = SQLITE_BUSY;
2591 }else{
drh856c1032009-06-02 15:21:42 +00002592 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002593
drhbe07ec52011-06-03 12:15:26 +00002594#ifndef SQLITE_OMIT_VIRTUALTABLE
dand9495cd2011-04-27 12:08:04 +00002595 /* This call is Ok even if this savepoint is actually a transaction
2596 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2597 ** If this is a transaction savepoint being opened, it is guaranteed
2598 ** that the db->aVTrans[] array is empty. */
2599 assert( db->autoCommit==0 || db->nVTrans==0 );
drha24bc9c2011-05-24 00:35:56 +00002600 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2601 db->nStatement+db->nSavepoint);
dand9495cd2011-04-27 12:08:04 +00002602 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh305ebab2011-05-26 14:19:14 +00002603#endif
dand9495cd2011-04-27 12:08:04 +00002604
danielk1977fd7f0452008-12-17 17:30:26 +00002605 /* Create a new savepoint structure. */
2606 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2607 if( pNew ){
2608 pNew->zName = (char *)&pNew[1];
2609 memcpy(pNew->zName, zName, nName+1);
2610
2611 /* If there is no open transaction, then mark this as a special
2612 ** "transaction savepoint". */
2613 if( db->autoCommit ){
2614 db->autoCommit = 0;
2615 db->isTransactionSavepoint = 1;
2616 }else{
2617 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002618 }
danielk1977fd7f0452008-12-17 17:30:26 +00002619
2620 /* Link the new savepoint into the database handle's list. */
2621 pNew->pNext = db->pSavepoint;
2622 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002623 pNew->nDeferredCons = db->nDeferredCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002624 }
2625 }
2626 }else{
drh856c1032009-06-02 15:21:42 +00002627 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00002628
2629 /* Find the named savepoint. If there is no such savepoint, then an
2630 ** an error is returned to the user. */
2631 for(
drh856c1032009-06-02 15:21:42 +00002632 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002633 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00002634 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00002635 ){
2636 iSavepoint++;
2637 }
2638 if( !pSavepoint ){
2639 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
2640 rc = SQLITE_ERROR;
2641 }else if(
2642 db->writeVdbeCnt>0 || (p1==SAVEPOINT_ROLLBACK && db->activeVdbeCnt>1)
2643 ){
2644 /* It is not possible to release (commit) a savepoint if there are
2645 ** active write statements. It is not possible to rollback a savepoint
2646 ** if there are any active statements at all.
2647 */
2648 sqlite3SetString(&p->zErrMsg, db,
2649 "cannot %s savepoint - SQL statements in progress",
2650 (p1==SAVEPOINT_ROLLBACK ? "rollback": "release")
2651 );
2652 rc = SQLITE_BUSY;
2653 }else{
2654
2655 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00002656 ** and this is a RELEASE command, then the current transaction
2657 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00002658 */
2659 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2660 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00002661 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002662 goto vdbe_return;
2663 }
danielk1977fd7f0452008-12-17 17:30:26 +00002664 db->autoCommit = 1;
2665 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2666 p->pc = pc;
2667 db->autoCommit = 0;
2668 p->rc = rc = SQLITE_BUSY;
2669 goto vdbe_return;
2670 }
danielk197734cf35d2008-12-18 18:31:38 +00002671 db->isTransactionSavepoint = 0;
2672 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00002673 }else{
danielk1977fd7f0452008-12-17 17:30:26 +00002674 iSavepoint = db->nSavepoint - iSavepoint - 1;
2675 for(ii=0; ii<db->nDb; ii++){
2676 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2677 if( rc!=SQLITE_OK ){
2678 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00002679 }
danielk1977fd7f0452008-12-17 17:30:26 +00002680 }
drh9f0bbf92009-01-02 21:08:09 +00002681 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002682 sqlite3ExpirePreparedStatements(db);
drhc7792fa2011-04-02 16:28:52 +00002683 sqlite3ResetInternalSchema(db, -1);
danc311fee2010-08-31 16:25:19 +00002684 db->flags = (db->flags | SQLITE_InternChanges);
danielk1977fd7f0452008-12-17 17:30:26 +00002685 }
2686 }
2687
2688 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2689 ** savepoints nested inside of the savepoint being operated on. */
2690 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00002691 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002692 db->pSavepoint = pTmp->pNext;
2693 sqlite3DbFree(db, pTmp);
2694 db->nSavepoint--;
2695 }
2696
dan1da40a32009-09-19 17:00:31 +00002697 /* If it is a RELEASE, then destroy the savepoint being operated on
2698 ** too. If it is a ROLLBACK TO, then set the number of deferred
2699 ** constraint violations present in the database to the value stored
2700 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00002701 if( p1==SAVEPOINT_RELEASE ){
2702 assert( pSavepoint==db->pSavepoint );
2703 db->pSavepoint = pSavepoint->pNext;
2704 sqlite3DbFree(db, pSavepoint);
2705 if( !isTransaction ){
2706 db->nSavepoint--;
2707 }
dan1da40a32009-09-19 17:00:31 +00002708 }else{
2709 db->nDeferredCons = pSavepoint->nDeferredCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002710 }
dand9495cd2011-04-27 12:08:04 +00002711
2712 if( !isTransaction ){
2713 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2714 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2715 }
danielk1977fd7f0452008-12-17 17:30:26 +00002716 }
2717 }
2718
2719 break;
2720}
2721
drh98757152008-01-09 23:04:12 +00002722/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00002723**
2724** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00002725** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00002726** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2727** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00002728**
2729** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00002730*/
drh9cbf3422008-01-17 16:22:13 +00002731case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00002732 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00002733 int iRollback;
drh856c1032009-06-02 15:21:42 +00002734 int turnOnAC;
danielk19771d850a72004-05-31 08:26:49 +00002735
drh856c1032009-06-02 15:21:42 +00002736 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00002737 iRollback = pOp->p2;
drh856c1032009-06-02 15:21:42 +00002738 turnOnAC = desiredAutoCommit && !db->autoCommit;
drhad4a4b82008-11-05 16:37:34 +00002739 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00002740 assert( desiredAutoCommit==1 || iRollback==0 );
drh92f02c32004-09-02 14:57:08 +00002741 assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
danielk197746c43ed2004-06-30 06:30:25 +00002742
shane68c02732009-06-09 18:14:18 +00002743 if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){
drhad4a4b82008-11-05 16:37:34 +00002744 /* If this instruction implements a ROLLBACK and other VMs are
danielk197746c43ed2004-06-30 06:30:25 +00002745 ** still running, and a transaction is active, return an error indicating
2746 ** that the other VMs must complete first.
2747 */
drhad4a4b82008-11-05 16:37:34 +00002748 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2749 "SQL statements in progress");
drh99dfe5e2008-10-30 15:03:15 +00002750 rc = SQLITE_BUSY;
drh9eb8cbe2009-06-19 22:23:41 +00002751 }else if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){
drhad4a4b82008-11-05 16:37:34 +00002752 /* If this instruction implements a COMMIT and other VMs are writing
2753 ** return an error indicating that the other VMs must complete first.
2754 */
2755 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
2756 "SQL statements in progress");
2757 rc = SQLITE_BUSY;
2758 }else if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00002759 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00002760 assert( desiredAutoCommit==1 );
danielk19771d850a72004-05-31 08:26:49 +00002761 sqlite3RollbackAll(db);
danielk1977f3f06bb2005-12-16 15:24:28 +00002762 db->autoCommit = 1;
dan32b09f22009-09-23 17:29:59 +00002763 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002764 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002765 }else{
shane7d3846a2008-12-11 02:58:26 +00002766 db->autoCommit = (u8)desiredAutoCommit;
danielk1977f3f06bb2005-12-16 15:24:28 +00002767 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
danielk1977f3f06bb2005-12-16 15:24:28 +00002768 p->pc = pc;
drh9c1905f2008-12-10 22:32:56 +00002769 db->autoCommit = (u8)(1-desiredAutoCommit);
drh900b31e2007-08-28 02:27:51 +00002770 p->rc = rc = SQLITE_BUSY;
2771 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002772 }
danielk19771d850a72004-05-31 08:26:49 +00002773 }
danielk1977bd434552009-03-18 10:33:00 +00002774 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00002775 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00002776 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00002777 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00002778 }else{
drh900b31e2007-08-28 02:27:51 +00002779 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00002780 }
drh900b31e2007-08-28 02:27:51 +00002781 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00002782 }else{
drhf089aa42008-07-08 19:34:06 +00002783 sqlite3SetString(&p->zErrMsg, db,
drhad4a4b82008-11-05 16:37:34 +00002784 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00002785 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00002786 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00002787
2788 rc = SQLITE_ERROR;
drh663fc632002-02-02 18:49:19 +00002789 }
2790 break;
2791}
2792
drh98757152008-01-09 23:04:12 +00002793/* Opcode: Transaction P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002794**
2795** Begin a transaction. The transaction ends when a Commit or Rollback
drh663fc632002-02-02 18:49:19 +00002796** opcode is encountered. Depending on the ON CONFLICT setting, the
2797** transaction might also be rolled back if an error is encountered.
drh5e00f6c2001-09-13 13:46:56 +00002798**
drh001bbcb2003-03-19 03:14:00 +00002799** P1 is the index of the database file on which the transaction is
2800** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00002801** file used for temporary tables. Indices of 2 or more are used for
2802** attached databases.
drhcabb0812002-09-14 13:47:32 +00002803**
drh80242052004-06-09 00:48:12 +00002804** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
danielk1977ee5741e2004-05-31 10:01:34 +00002805** obtained on the database file when a write-transaction is started. No
drh80242052004-06-09 00:48:12 +00002806** other process can start another write transaction while this transaction is
2807** underway. Starting a write transaction also creates a rollback journal. A
2808** write transaction must be started before any changes can be made to the
drh684917c2004-10-05 02:41:42 +00002809** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
2810** on the file.
danielk1977ee5741e2004-05-31 10:01:34 +00002811**
dane0af83a2009-09-08 19:15:01 +00002812** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2813** true (this flag is set if the Vdbe may modify more than one row and may
2814** throw an ABORT exception), a statement transaction may also be opened.
2815** More specifically, a statement transaction is opened iff the database
2816** connection is currently not in autocommit mode, or if there are other
2817** active statements. A statement transaction allows the affects of this
2818** VDBE to be rolled back after an error without having to roll back the
2819** entire transaction. If no error is encountered, the statement transaction
2820** will automatically commit when the VDBE halts.
2821**
danielk1977ee5741e2004-05-31 10:01:34 +00002822** If P2 is zero, then a read-lock is obtained on the database file.
drh5e00f6c2001-09-13 13:46:56 +00002823*/
drh9cbf3422008-01-17 16:22:13 +00002824case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00002825 Btree *pBt;
2826
drh653b82a2009-06-22 11:10:47 +00002827 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00002828 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh653b82a2009-06-22 11:10:47 +00002829 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00002830
danielk197724162fe2004-06-04 06:22:00 +00002831 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00002832 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
danielk197724162fe2004-06-04 06:22:00 +00002833 if( rc==SQLITE_BUSY ){
danielk19772a764eb2004-06-12 01:43:26 +00002834 p->pc = pc;
drh900b31e2007-08-28 02:27:51 +00002835 p->rc = rc = SQLITE_BUSY;
drh900b31e2007-08-28 02:27:51 +00002836 goto vdbe_return;
danielk197724162fe2004-06-04 06:22:00 +00002837 }
drh9e9f1bd2009-10-13 15:36:51 +00002838 if( rc!=SQLITE_OK ){
danielk197724162fe2004-06-04 06:22:00 +00002839 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00002840 }
dane0af83a2009-09-08 19:15:01 +00002841
2842 if( pOp->p2 && p->usesStmtJournal
2843 && (db->autoCommit==0 || db->activeVdbeCnt>1)
2844 ){
2845 assert( sqlite3BtreeIsInTrans(pBt) );
2846 if( p->iStatement==0 ){
2847 assert( db->nStatement>=0 && db->nSavepoint>=0 );
2848 db->nStatement++;
2849 p->iStatement = db->nSavepoint + db->nStatement;
2850 }
dana311b802011-04-26 19:21:34 +00002851
drh346506f2011-05-25 01:16:42 +00002852 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
dana311b802011-04-26 19:21:34 +00002853 if( rc==SQLITE_OK ){
2854 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
2855 }
dan1da40a32009-09-19 17:00:31 +00002856
2857 /* Store the current value of the database handles deferred constraint
2858 ** counter. If the statement transaction needs to be rolled back,
2859 ** the value of this counter needs to be restored too. */
2860 p->nStmtDefCons = db->nDeferredCons;
dane0af83a2009-09-08 19:15:01 +00002861 }
drhb86ccfb2003-01-28 23:13:10 +00002862 }
drh5e00f6c2001-09-13 13:46:56 +00002863 break;
2864}
2865
drhb1fdb2a2008-01-05 04:06:03 +00002866/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00002867**
drh9cbf3422008-01-17 16:22:13 +00002868** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00002869** P3==1 is the schema version. P3==2 is the database format.
2870** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00002871** the main database file and P1==1 is the database file used to store
2872** temporary tables.
drh4a324312001-12-21 14:30:42 +00002873**
drh50e5dad2001-09-15 00:57:28 +00002874** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00002875** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00002876** executing this instruction.
2877*/
drh4c583122008-01-04 22:01:03 +00002878case OP_ReadCookie: { /* out2-prerelease */
drhf328bc82004-05-10 23:29:49 +00002879 int iMeta;
drh856c1032009-06-02 15:21:42 +00002880 int iDb;
2881 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00002882
drh856c1032009-06-02 15:21:42 +00002883 iDb = pOp->p1;
2884 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00002885 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00002886 assert( iDb>=0 && iDb<db->nDb );
2887 assert( db->aDb[iDb].pBt!=0 );
drhdddd7792011-04-03 18:19:25 +00002888 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
danielk19770d19f7a2009-06-03 11:25:07 +00002889
danielk1977602b4662009-07-02 07:47:33 +00002890 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh4c583122008-01-04 22:01:03 +00002891 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00002892 break;
2893}
2894
drh98757152008-01-09 23:04:12 +00002895/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00002896**
drh98757152008-01-09 23:04:12 +00002897** Write the content of register P3 (interpreted as an integer)
danielk19770d19f7a2009-06-03 11:25:07 +00002898** into cookie number P2 of database P1. P2==1 is the schema version.
2899** P2==2 is the database format. P2==3 is the recommended pager cache
2900** size, and so forth. P1==0 is the main database file and P1==1 is the
2901** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00002902**
2903** A transaction must be started before executing this opcode.
2904*/
drh9cbf3422008-01-17 16:22:13 +00002905case OP_SetCookie: { /* in3 */
drh3f7d4e42004-07-24 14:35:58 +00002906 Db *pDb;
drh4a324312001-12-21 14:30:42 +00002907 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00002908 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00002909 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh3f7d4e42004-07-24 14:35:58 +00002910 pDb = &db->aDb[pOp->p1];
2911 assert( pDb->pBt!=0 );
drh21206082011-04-04 18:22:02 +00002912 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drh3c657212009-11-17 23:59:58 +00002913 pIn3 = &aMem[pOp->p3];
drh98757152008-01-09 23:04:12 +00002914 sqlite3VdbeMemIntegerify(pIn3);
drha3b321d2004-05-11 09:31:31 +00002915 /* See note about index shifting on OP_ReadCookie */
danielk19770d19f7a2009-06-03 11:25:07 +00002916 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
2917 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00002918 /* When the schema cookie changes, record the new cookie internally */
drh9c1905f2008-12-10 22:32:56 +00002919 pDb->pSchema->schema_cookie = (int)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00002920 db->flags |= SQLITE_InternChanges;
danielk19770d19f7a2009-06-03 11:25:07 +00002921 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00002922 /* Record changes in the file format */
drh9c1905f2008-12-10 22:32:56 +00002923 pDb->pSchema->file_format = (u8)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00002924 }
drhfd426c62006-01-30 15:34:22 +00002925 if( pOp->p1==1 ){
2926 /* Invalidate all prepared statements whenever the TEMP database
2927 ** schema is changed. Ticket #1644 */
2928 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00002929 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00002930 }
drh50e5dad2001-09-15 00:57:28 +00002931 break;
2932}
2933
drhc2a75552011-03-18 21:55:46 +00002934/* Opcode: VerifyCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00002935**
drh001bbcb2003-03-19 03:14:00 +00002936** Check the value of global database parameter number 0 (the
drhc2a75552011-03-18 21:55:46 +00002937** schema version) and make sure it is equal to P2 and that the
2938** generation counter on the local schema parse equals P3.
2939**
drh001bbcb2003-03-19 03:14:00 +00002940** P1 is the database number which is 0 for the main database file
2941** and 1 for the file holding temporary tables and some higher number
2942** for auxiliary databases.
drh50e5dad2001-09-15 00:57:28 +00002943**
2944** The cookie changes its value whenever the database schema changes.
drhb19a2bc2001-09-16 00:13:26 +00002945** This operation is used to detect when that the cookie has changed
drh50e5dad2001-09-15 00:57:28 +00002946** and that the current process needs to reread the schema.
2947**
2948** Either a transaction needs to have been started or an OP_Open needs
2949** to be executed (to establish a read lock) before this opcode is
2950** invoked.
2951*/
drh9cbf3422008-01-17 16:22:13 +00002952case OP_VerifyCookie: {
drhf328bc82004-05-10 23:29:49 +00002953 int iMeta;
drhc2a75552011-03-18 21:55:46 +00002954 int iGen;
drhc275b4e2004-07-19 17:25:24 +00002955 Btree *pBt;
drhc2a75552011-03-18 21:55:46 +00002956
drh001bbcb2003-03-19 03:14:00 +00002957 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00002958 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh21206082011-04-04 18:22:02 +00002959 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drhc275b4e2004-07-19 17:25:24 +00002960 pBt = db->aDb[pOp->p1].pBt;
2961 if( pBt ){
danielk1977602b4662009-07-02 07:47:33 +00002962 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
drhc2a75552011-03-18 21:55:46 +00002963 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
drhc275b4e2004-07-19 17:25:24 +00002964 }else{
drhfcd71b62011-04-05 22:08:24 +00002965 iGen = iMeta = 0;
drhc275b4e2004-07-19 17:25:24 +00002966 }
drhc2a75552011-03-18 21:55:46 +00002967 if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){
drh633e6d52008-07-28 19:34:53 +00002968 sqlite3DbFree(db, p->zErrMsg);
danielk1977a1644fd2007-08-29 12:31:25 +00002969 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
danielk1977896e7922007-04-17 08:32:33 +00002970 /* If the schema-cookie from the database file matches the cookie
2971 ** stored with the in-memory representation of the schema, do
2972 ** not reload the schema from the database file.
2973 **
shane21e7feb2008-05-30 15:59:49 +00002974 ** If virtual-tables are in use, this is not just an optimization.
danielk1977896e7922007-04-17 08:32:33 +00002975 ** Often, v-tables store their data in other SQLite tables, which
2976 ** are queried from within xNext() and other v-table methods using
2977 ** prepared queries. If such a query is out-of-date, we do not want to
2978 ** discard the database schema, as the user code implementing the
2979 ** v-table would have to be ready for the sqlite3_vtab structure itself
2980 ** to be invalidated whenever sqlite3_step() is called from within
2981 ** a v-table method.
2982 */
2983 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
2984 sqlite3ResetInternalSchema(db, pOp->p1);
2985 }
2986
drh5b6c5452011-02-22 03:34:56 +00002987 p->expired = 1;
drh50e5dad2001-09-15 00:57:28 +00002988 rc = SQLITE_SCHEMA;
2989 }
2990 break;
2991}
2992
drh98757152008-01-09 23:04:12 +00002993/* Opcode: OpenRead P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00002994**
drhecdc7532001-09-23 02:35:53 +00002995** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00002996** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00002997** P3==0 means the main database, P3==1 means the database used for
2998** temporary tables, and P3>1 means used the corresponding attached
2999** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00003000** values need not be contiguous but all P1 values should be small integers.
3001** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00003002**
drh98757152008-01-09 23:04:12 +00003003** If P5!=0 then use the content of register P2 as the root page, not
3004** the value of P2 itself.
drh5edc3122001-09-13 21:53:09 +00003005**
drhb19a2bc2001-09-16 00:13:26 +00003006** There will be a read lock on the database whenever there is an
3007** open cursor. If the database was unlocked prior to this instruction
3008** then a read lock is acquired as part of this instruction. A read
3009** lock allows other processes to read the database but prohibits
3010** any other process from modifying the database. The read lock is
3011** released when all cursors are closed. If this instruction attempts
3012** to get a read lock but fails, the script terminates with an
3013** SQLITE_BUSY error code.
3014**
danielk1977d336e222009-02-20 10:58:41 +00003015** The P4 value may be either an integer (P4_INT32) or a pointer to
3016** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3017** structure, then said structure defines the content and collating
3018** sequence of the index being opened. Otherwise, if P4 is an integer
3019** value, it is set to the number of columns in the table.
drhf57b3392001-10-08 13:22:32 +00003020**
drh001bbcb2003-03-19 03:14:00 +00003021** See also OpenWrite.
drh5e00f6c2001-09-13 13:46:56 +00003022*/
drh98757152008-01-09 23:04:12 +00003023/* Opcode: OpenWrite P1 P2 P3 P4 P5
drhecdc7532001-09-23 02:35:53 +00003024**
3025** Open a read/write cursor named P1 on the table or index whose root
drh98757152008-01-09 23:04:12 +00003026** page is P2. Or if P5!=0 use the content of register P2 to find the
3027** root page.
drhecdc7532001-09-23 02:35:53 +00003028**
danielk1977d336e222009-02-20 10:58:41 +00003029** The P4 value may be either an integer (P4_INT32) or a pointer to
3030** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3031** structure, then said structure defines the content and collating
3032** sequence of the index being opened. Otherwise, if P4 is an integer
drh35cd6432009-06-05 14:17:21 +00003033** value, it is set to the number of columns in the table, or to the
3034** largest index of any column of the table that is actually used.
jplyon5a564222003-06-02 06:15:58 +00003035**
drh001bbcb2003-03-19 03:14:00 +00003036** This instruction works just like OpenRead except that it opens the cursor
drhecdc7532001-09-23 02:35:53 +00003037** in read/write mode. For a given table, there can be one or more read-only
3038** cursors or a single read/write cursor but not both.
drhf57b3392001-10-08 13:22:32 +00003039**
drh001bbcb2003-03-19 03:14:00 +00003040** See also OpenRead.
drhecdc7532001-09-23 02:35:53 +00003041*/
drh9cbf3422008-01-17 16:22:13 +00003042case OP_OpenRead:
3043case OP_OpenWrite: {
drh856c1032009-06-02 15:21:42 +00003044 int nField;
3045 KeyInfo *pKeyInfo;
drh856c1032009-06-02 15:21:42 +00003046 int p2;
3047 int iDb;
drhf57b3392001-10-08 13:22:32 +00003048 int wrFlag;
3049 Btree *pX;
drhdfe88ec2008-11-03 20:55:06 +00003050 VdbeCursor *pCur;
drhd946db02005-12-29 19:23:06 +00003051 Db *pDb;
drh856c1032009-06-02 15:21:42 +00003052
danfa401de2009-10-16 14:55:03 +00003053 if( p->expired ){
3054 rc = SQLITE_ABORT;
3055 break;
3056 }
3057
drh856c1032009-06-02 15:21:42 +00003058 nField = 0;
3059 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00003060 p2 = pOp->p2;
3061 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00003062 assert( iDb>=0 && iDb<db->nDb );
drhdddd7792011-04-03 18:19:25 +00003063 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
drhd946db02005-12-29 19:23:06 +00003064 pDb = &db->aDb[iDb];
3065 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00003066 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00003067 if( pOp->opcode==OP_OpenWrite ){
3068 wrFlag = 1;
drh21206082011-04-04 18:22:02 +00003069 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
danielk1977da184232006-01-05 11:34:32 +00003070 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3071 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00003072 }
3073 }else{
3074 wrFlag = 0;
3075 }
drh98757152008-01-09 23:04:12 +00003076 if( pOp->p5 ){
drh9cbf3422008-01-17 16:22:13 +00003077 assert( p2>0 );
3078 assert( p2<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00003079 pIn2 = &aMem[p2];
drh2b4ded92010-09-27 21:09:31 +00003080 assert( memIsValid(pIn2) );
3081 assert( (pIn2->flags & MEM_Int)!=0 );
drh9cbf3422008-01-17 16:22:13 +00003082 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003083 p2 = (int)pIn2->u.i;
drh9a65f2c2009-06-22 19:05:40 +00003084 /* The p2 value always comes from a prior OP_CreateTable opcode and
3085 ** that opcode will always set the p2 value to 2 or more or else fail.
3086 ** If there were a failure, the prepared statement would have halted
3087 ** before reaching this instruction. */
drh27731d72009-06-22 12:05:10 +00003088 if( NEVER(p2<2) ) {
shanedcc50b72008-11-13 18:29:50 +00003089 rc = SQLITE_CORRUPT_BKPT;
3090 goto abort_due_to_error;
3091 }
drh5edc3122001-09-13 21:53:09 +00003092 }
danielk1977d336e222009-02-20 10:58:41 +00003093 if( pOp->p4type==P4_KEYINFO ){
3094 pKeyInfo = pOp->p4.pKeyInfo;
3095 pKeyInfo->enc = ENC(p->db);
3096 nField = pKeyInfo->nField+1;
3097 }else if( pOp->p4type==P4_INT32 ){
3098 nField = pOp->p4.i;
3099 }
drh653b82a2009-06-22 11:10:47 +00003100 assert( pOp->p1>=0 );
3101 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
drh4774b132004-06-12 20:12:51 +00003102 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003103 pCur->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003104 pCur->isOrdered = 1;
danielk1977d336e222009-02-20 10:58:41 +00003105 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3106 pCur->pKeyInfo = pKeyInfo;
3107
danielk1977172114a2009-07-07 15:47:12 +00003108 /* Since it performs no memory allocation or IO, the only values that
3109 ** sqlite3BtreeCursor() may return are SQLITE_EMPTY and SQLITE_OK.
3110 ** SQLITE_EMPTY is only returned when attempting to open the table
3111 ** rooted at page 1 of a zero-byte database. */
3112 assert( rc==SQLITE_EMPTY || rc==SQLITE_OK );
3113 if( rc==SQLITE_EMPTY ){
3114 pCur->pCursor = 0;
3115 rc = SQLITE_OK;
danielk197724162fe2004-06-04 06:22:00 +00003116 }
danielk1977172114a2009-07-07 15:47:12 +00003117
3118 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
3119 ** SQLite used to check if the root-page flags were sane at this point
3120 ** and report database corruption if they were not, but this check has
3121 ** since moved into the btree layer. */
3122 pCur->isTable = pOp->p4type!=P4_KEYINFO;
3123 pCur->isIndex = !pCur->isTable;
drh5e00f6c2001-09-13 13:46:56 +00003124 break;
3125}
3126
drh98757152008-01-09 23:04:12 +00003127/* Opcode: OpenEphemeral P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00003128**
drhb9bb7c12006-06-11 23:41:55 +00003129** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003130** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003131** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003132** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003133**
drh25d3adb2010-04-05 15:11:08 +00003134** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003135** The cursor points to a BTree table if P4==0 and to a BTree index
3136** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003137** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003138**
3139** This opcode was once called OpenTemp. But that created
3140** confusion because the term "temp table", might refer either
3141** to a TEMP table at the SQL level, or to a table opened by
3142** this opcode. Then this opcode was call OpenVirtual. But
3143** that created confusion with the whole virtual-table idea.
drh5e00f6c2001-09-13 13:46:56 +00003144*/
drha21a64d2010-04-06 22:33:55 +00003145/* Opcode: OpenAutoindex P1 P2 * P4 *
3146**
3147** This opcode works the same as OP_OpenEphemeral. It has a
3148** different name to distinguish its use. Tables created using
3149** by this opcode will be used for automatically created transient
3150** indices in joins.
3151*/
3152case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003153case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003154 VdbeCursor *pCx;
drhd4187c72010-08-30 22:15:45 +00003155 static const int vfsFlags =
drh33f4e022007-09-03 15:19:34 +00003156 SQLITE_OPEN_READWRITE |
3157 SQLITE_OPEN_CREATE |
3158 SQLITE_OPEN_EXCLUSIVE |
3159 SQLITE_OPEN_DELETEONCLOSE |
3160 SQLITE_OPEN_TRANSIENT_DB;
3161
drh653b82a2009-06-22 11:10:47 +00003162 assert( pOp->p1>=0 );
3163 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
drh4774b132004-06-12 20:12:51 +00003164 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003165 pCx->nullRow = 1;
dan3a6d8ae2011-04-23 15:54:54 +00003166 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
drhd4187c72010-08-30 22:15:45 +00003167 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
drh5e00f6c2001-09-13 13:46:56 +00003168 if( rc==SQLITE_OK ){
danielk197740b38dc2004-06-26 08:38:24 +00003169 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
drh5e00f6c2001-09-13 13:46:56 +00003170 }
3171 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003172 /* If a transient index is required, create it by calling
drhd4187c72010-08-30 22:15:45 +00003173 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
danielk19774adee202004-05-08 08:23:19 +00003174 ** opening it. If a transient table is required, just use the
drhd4187c72010-08-30 22:15:45 +00003175 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003176 */
danielk19772dca4ac2008-01-03 11:50:29 +00003177 if( pOp->p4.pKeyInfo ){
drhc6b52df2002-01-04 03:09:29 +00003178 int pgno;
drh66a51672008-01-03 00:01:23 +00003179 assert( pOp->p4type==P4_KEYINFO );
drhe1b4f0f2011-06-29 17:11:39 +00003180 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
drhc6b52df2002-01-04 03:09:29 +00003181 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003182 assert( pgno==MASTER_ROOT+1 );
drh1e968a02008-03-25 00:22:21 +00003183 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
danielk1977cd3e8f72008-03-25 09:47:35 +00003184 (KeyInfo*)pOp->p4.z, pCx->pCursor);
danielk19772dca4ac2008-01-03 11:50:29 +00003185 pCx->pKeyInfo = pOp->p4.pKeyInfo;
danielk197714db2662006-01-09 16:12:04 +00003186 pCx->pKeyInfo->enc = ENC(p->db);
drhc6b52df2002-01-04 03:09:29 +00003187 }
drhf0863fe2005-06-12 21:35:51 +00003188 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003189 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00003190 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
drhf0863fe2005-06-12 21:35:51 +00003191 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003192 }
drh5e00f6c2001-09-13 13:46:56 +00003193 }
drhd4187c72010-08-30 22:15:45 +00003194 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
drhf0863fe2005-06-12 21:35:51 +00003195 pCx->isIndex = !pCx->isTable;
drh5e00f6c2001-09-13 13:46:56 +00003196 break;
3197}
3198
danielk1977d336e222009-02-20 10:58:41 +00003199/* Opcode: OpenPseudo P1 P2 P3 * *
drh70ce3f02003-04-15 19:22:22 +00003200**
3201** Open a new cursor that points to a fake table that contains a single
drh3e9ca092009-09-08 01:14:48 +00003202** row of data. The content of that one row in the content of memory
3203** register P2. In other words, cursor P1 becomes an alias for the
3204** MEM_Blob content contained in register P2.
drh70ce3f02003-04-15 19:22:22 +00003205**
drh2d8d7ce2010-02-15 15:17:05 +00003206** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00003207** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003208** individual columns using the OP_Column opcode. The OP_Column opcode
3209** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003210**
3211** P3 is the number of fields in the records that will be stored by
3212** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003213*/
drh9cbf3422008-01-17 16:22:13 +00003214case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003215 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003216
drh653b82a2009-06-22 11:10:47 +00003217 assert( pOp->p1>=0 );
3218 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
drh4774b132004-06-12 20:12:51 +00003219 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003220 pCx->nullRow = 1;
drh3e9ca092009-09-08 01:14:48 +00003221 pCx->pseudoTableReg = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003222 pCx->isTable = 1;
3223 pCx->isIndex = 0;
drh70ce3f02003-04-15 19:22:22 +00003224 break;
3225}
3226
drh98757152008-01-09 23:04:12 +00003227/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003228**
3229** Close a cursor previously opened as P1. If P1 is not
3230** currently open, this instruction is a no-op.
3231*/
drh9cbf3422008-01-17 16:22:13 +00003232case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003233 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3234 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3235 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003236 break;
3237}
3238
drh959403f2008-12-12 17:56:16 +00003239/* Opcode: SeekGe P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003240**
danielk1977b790c6c2008-04-18 10:25:24 +00003241** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003242** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003243** to an SQL index, then P3 is the first in an array of P4 registers
3244** that are used as an unpacked index key.
3245**
3246** Reposition cursor P1 so that it points to the smallest entry that
3247** is greater than or equal to the key value. If there are no records
3248** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003249**
drh959403f2008-12-12 17:56:16 +00003250** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003251*/
drh959403f2008-12-12 17:56:16 +00003252/* Opcode: SeekGt P1 P2 P3 P4 *
drh7cf6e4d2004-05-19 14:56:55 +00003253**
danielk1977b790c6c2008-04-18 10:25:24 +00003254** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003255** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003256** to an SQL index, then P3 is the first in an array of P4 registers
3257** that are used as an unpacked index key.
3258**
3259** Reposition cursor P1 so that it points to the smallest entry that
3260** is greater than the key value. If there are no records greater than
3261** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003262**
drh959403f2008-12-12 17:56:16 +00003263** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003264*/
drh959403f2008-12-12 17:56:16 +00003265/* Opcode: SeekLt P1 P2 P3 P4 *
drhc045ec52002-12-04 20:01:06 +00003266**
danielk1977b790c6c2008-04-18 10:25:24 +00003267** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003268** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003269** to an SQL index, then P3 is the first in an array of P4 registers
3270** that are used as an unpacked index key.
3271**
3272** Reposition cursor P1 so that it points to the largest entry that
3273** is less than the key value. If there are no records less than
3274** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003275**
drh959403f2008-12-12 17:56:16 +00003276** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003277*/
drh959403f2008-12-12 17:56:16 +00003278/* Opcode: SeekLe P1 P2 P3 P4 *
danielk19773d1bfea2004-05-14 11:00:53 +00003279**
danielk1977b790c6c2008-04-18 10:25:24 +00003280** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003281** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003282** to an SQL index, then P3 is the first in an array of P4 registers
3283** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003284**
danielk1977b790c6c2008-04-18 10:25:24 +00003285** Reposition cursor P1 so that it points to the largest entry that
3286** is less than or equal to the key value. If there are no records
3287** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003288**
drh959403f2008-12-12 17:56:16 +00003289** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003290*/
drh959403f2008-12-12 17:56:16 +00003291case OP_SeekLt: /* jump, in3 */
3292case OP_SeekLe: /* jump, in3 */
3293case OP_SeekGe: /* jump, in3 */
3294case OP_SeekGt: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003295 int res;
3296 int oc;
drhdfe88ec2008-11-03 20:55:06 +00003297 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003298 UnpackedRecord r;
3299 int nField;
3300 i64 iKey; /* The rowid we are to seek to */
drh80ff32f2001-11-04 18:32:46 +00003301
drh653b82a2009-06-22 11:10:47 +00003302 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003303 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003304 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003305 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003306 assert( pC->pseudoTableReg==0 );
drh1f350122009-11-13 20:52:43 +00003307 assert( OP_SeekLe == OP_SeekLt+1 );
3308 assert( OP_SeekGe == OP_SeekLt+2 );
3309 assert( OP_SeekGt == OP_SeekLt+3 );
drhd4187c72010-08-30 22:15:45 +00003310 assert( pC->isOrdered );
drh70ce3f02003-04-15 19:22:22 +00003311 if( pC->pCursor!=0 ){
drh7cf6e4d2004-05-19 14:56:55 +00003312 oc = pOp->opcode;
drha11846b2004-01-07 18:52:56 +00003313 pC->nullRow = 0;
drhf0863fe2005-06-12 21:35:51 +00003314 if( pC->isTable ){
drh959403f2008-12-12 17:56:16 +00003315 /* The input value in P3 might be of any type: integer, real, string,
3316 ** blob, or NULL. But it needs to be an integer before we can do
3317 ** the seek, so covert it. */
drh3c657212009-11-17 23:59:58 +00003318 pIn3 = &aMem[pOp->p3];
drh959403f2008-12-12 17:56:16 +00003319 applyNumericAffinity(pIn3);
3320 iKey = sqlite3VdbeIntValue(pIn3);
3321 pC->rowidIsValid = 0;
3322
3323 /* If the P3 value could not be converted into an integer without
3324 ** loss of information, then special processing is required... */
3325 if( (pIn3->flags & MEM_Int)==0 ){
3326 if( (pIn3->flags & MEM_Real)==0 ){
3327 /* If the P3 value cannot be converted into any kind of a number,
3328 ** then the seek is not possible, so jump to P2 */
3329 pc = pOp->p2 - 1;
3330 break;
3331 }
3332 /* If we reach this point, then the P3 value must be a floating
3333 ** point number. */
3334 assert( (pIn3->flags & MEM_Real)!=0 );
3335
3336 if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
drhaa736092009-06-22 00:55:30 +00003337 /* The P3 value is too large in magnitude to be expressed as an
drh959403f2008-12-12 17:56:16 +00003338 ** integer. */
3339 res = 1;
3340 if( pIn3->r<0 ){
drh1f350122009-11-13 20:52:43 +00003341 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
drh959403f2008-12-12 17:56:16 +00003342 rc = sqlite3BtreeFirst(pC->pCursor, &res);
3343 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3344 }
3345 }else{
drh1f350122009-11-13 20:52:43 +00003346 if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe );
drh959403f2008-12-12 17:56:16 +00003347 rc = sqlite3BtreeLast(pC->pCursor, &res);
3348 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3349 }
3350 }
3351 if( res ){
3352 pc = pOp->p2 - 1;
3353 }
3354 break;
3355 }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
3356 /* Use the ceiling() function to convert real->int */
3357 if( pIn3->r > (double)iKey ) iKey++;
3358 }else{
3359 /* Use the floor() function to convert real->int */
3360 assert( oc==OP_SeekLe || oc==OP_SeekGt );
3361 if( pIn3->r < (double)iKey ) iKey--;
3362 }
3363 }
drhe63d9992008-08-13 19:11:48 +00003364 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
danielk197728129562005-01-11 10:25:06 +00003365 if( rc!=SQLITE_OK ){
3366 goto abort_due_to_error;
3367 }
drh959403f2008-12-12 17:56:16 +00003368 if( res==0 ){
3369 pC->rowidIsValid = 1;
3370 pC->lastRowid = iKey;
3371 }
drh5e00f6c2001-09-13 13:46:56 +00003372 }else{
drh856c1032009-06-02 15:21:42 +00003373 nField = pOp->p4.i;
danielk1977b790c6c2008-04-18 10:25:24 +00003374 assert( pOp->p4type==P4_INT32 );
3375 assert( nField>0 );
3376 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00003377 r.nField = (u16)nField;
drh1f350122009-11-13 20:52:43 +00003378
3379 /* The next line of code computes as follows, only faster:
3380 ** if( oc==OP_SeekGt || oc==OP_SeekLe ){
3381 ** r.flags = UNPACKED_INCRKEY;
3382 ** }else{
3383 ** r.flags = 0;
3384 ** }
3385 */
shaneh5e17e8b2009-12-03 04:40:47 +00003386 r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
drh1f350122009-11-13 20:52:43 +00003387 assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
3388 assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
3389 assert( oc!=OP_SeekGe || r.flags==0 );
3390 assert( oc!=OP_SeekLt || r.flags==0 );
3391
drha6c2ed92009-11-14 23:22:23 +00003392 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00003393#ifdef SQLITE_DEBUG
3394 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3395#endif
drh039fc322009-11-17 18:31:47 +00003396 ExpandBlob(r.aMem);
drhe63d9992008-08-13 19:11:48 +00003397 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
danielk197728129562005-01-11 10:25:06 +00003398 if( rc!=SQLITE_OK ){
3399 goto abort_due_to_error;
3400 }
drhf0863fe2005-06-12 21:35:51 +00003401 pC->rowidIsValid = 0;
drh5e00f6c2001-09-13 13:46:56 +00003402 }
drha11846b2004-01-07 18:52:56 +00003403 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003404 pC->cacheStatus = CACHE_STALE;
drh0f7eb612006-08-08 13:51:43 +00003405#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +00003406 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00003407#endif
drh1f350122009-11-13 20:52:43 +00003408 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
drh959403f2008-12-12 17:56:16 +00003409 if( res<0 || (res==0 && oc==OP_SeekGt) ){
danielk197728129562005-01-11 10:25:06 +00003410 rc = sqlite3BtreeNext(pC->pCursor, &res);
danielk197701427a62005-01-11 13:02:33 +00003411 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhf0863fe2005-06-12 21:35:51 +00003412 pC->rowidIsValid = 0;
drh1af3fdb2004-07-18 21:33:01 +00003413 }else{
3414 res = 0;
drh8721ce42001-11-07 14:22:00 +00003415 }
drh7cf6e4d2004-05-19 14:56:55 +00003416 }else{
drh959403f2008-12-12 17:56:16 +00003417 assert( oc==OP_SeekLt || oc==OP_SeekLe );
3418 if( res>0 || (res==0 && oc==OP_SeekLt) ){
danielk197701427a62005-01-11 13:02:33 +00003419 rc = sqlite3BtreePrevious(pC->pCursor, &res);
3420 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhf0863fe2005-06-12 21:35:51 +00003421 pC->rowidIsValid = 0;
drh1a844c32002-12-04 22:29:28 +00003422 }else{
3423 /* res might be negative because the table is empty. Check to
3424 ** see if this is the case.
3425 */
drhf328bc82004-05-10 23:29:49 +00003426 res = sqlite3BtreeEof(pC->pCursor);
drh1a844c32002-12-04 22:29:28 +00003427 }
drh1af3fdb2004-07-18 21:33:01 +00003428 }
drh91fd4d42008-01-19 20:11:25 +00003429 assert( pOp->p2>0 );
drh1af3fdb2004-07-18 21:33:01 +00003430 if( res ){
drh91fd4d42008-01-19 20:11:25 +00003431 pc = pOp->p2 - 1;
drh8721ce42001-11-07 14:22:00 +00003432 }
drhaa736092009-06-22 00:55:30 +00003433 }else{
danielk1977f7b9d662008-06-23 18:49:43 +00003434 /* This happens when attempting to open the sqlite3_master table
3435 ** for read access returns SQLITE_EMPTY. In this case always
3436 ** take the jump (since there are no records in the table).
3437 */
3438 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00003439 }
drh5e00f6c2001-09-13 13:46:56 +00003440 break;
3441}
3442
drh959403f2008-12-12 17:56:16 +00003443/* Opcode: Seek P1 P2 * * *
3444**
3445** P1 is an open table cursor and P2 is a rowid integer. Arrange
3446** for P1 to move so that it points to the rowid given by P2.
3447**
3448** This is actually a deferred seek. Nothing actually happens until
3449** the cursor is used to read a record. That way, if no reads
3450** occur, no unnecessary I/O happens.
3451*/
3452case OP_Seek: { /* in2 */
drh959403f2008-12-12 17:56:16 +00003453 VdbeCursor *pC;
3454
drh653b82a2009-06-22 11:10:47 +00003455 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3456 pC = p->apCsr[pOp->p1];
drh959403f2008-12-12 17:56:16 +00003457 assert( pC!=0 );
drhaa736092009-06-22 00:55:30 +00003458 if( ALWAYS(pC->pCursor!=0) ){
drh959403f2008-12-12 17:56:16 +00003459 assert( pC->isTable );
3460 pC->nullRow = 0;
drh3c657212009-11-17 23:59:58 +00003461 pIn2 = &aMem[pOp->p2];
drh959403f2008-12-12 17:56:16 +00003462 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3463 pC->rowidIsValid = 0;
3464 pC->deferredMoveto = 1;
3465 }
3466 break;
3467}
3468
3469
drh8cff69d2009-11-12 19:59:44 +00003470/* Opcode: Found P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003471**
drh8cff69d2009-11-12 19:59:44 +00003472** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3473** P4>0 then register P3 is the first of P4 registers that form an unpacked
3474** record.
3475**
3476** Cursor P1 is on an index btree. If the record identified by P3 and P4
3477** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00003478** P1 is left pointing at the matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003479*/
drh8cff69d2009-11-12 19:59:44 +00003480/* Opcode: NotFound P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003481**
drh8cff69d2009-11-12 19:59:44 +00003482** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3483** P4>0 then register P3 is the first of P4 registers that form an unpacked
3484** record.
3485**
3486** Cursor P1 is on an index btree. If the record identified by P3 and P4
3487** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3488** does contain an entry whose prefix matches the P3/P4 record then control
3489** falls through to the next instruction and P1 is left pointing at the
3490** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003491**
drhcb6d50e2008-08-21 19:28:30 +00003492** See also: Found, NotExists, IsUnique
drh5e00f6c2001-09-13 13:46:56 +00003493*/
drh9cbf3422008-01-17 16:22:13 +00003494case OP_NotFound: /* jump, in3 */
3495case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003496 int alreadyExists;
drhdfe88ec2008-11-03 20:55:06 +00003497 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003498 int res;
3499 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00003500 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00003501 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
3502
dan0ff297e2009-09-25 17:03:14 +00003503#ifdef SQLITE_TEST
3504 sqlite3_found_count++;
3505#endif
3506
drh856c1032009-06-02 15:21:42 +00003507 alreadyExists = 0;
drhaa736092009-06-22 00:55:30 +00003508 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00003509 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00003510 pC = p->apCsr[pOp->p1];
3511 assert( pC!=0 );
drh3c657212009-11-17 23:59:58 +00003512 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003513 if( ALWAYS(pC->pCursor!=0) ){
drhe63d9992008-08-13 19:11:48 +00003514
drhf0863fe2005-06-12 21:35:51 +00003515 assert( pC->isTable==0 );
drh8cff69d2009-11-12 19:59:44 +00003516 if( pOp->p4.i>0 ){
3517 r.pKeyInfo = pC->pKeyInfo;
shaneh5e17e8b2009-12-03 04:40:47 +00003518 r.nField = (u16)pOp->p4.i;
drh8cff69d2009-11-12 19:59:44 +00003519 r.aMem = pIn3;
drh2b4ded92010-09-27 21:09:31 +00003520#ifdef SQLITE_DEBUG
3521 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3522#endif
drh8cff69d2009-11-12 19:59:44 +00003523 r.flags = UNPACKED_PREFIX_MATCH;
3524 pIdxKey = &r;
3525 }else{
3526 assert( pIn3->flags & MEM_Blob );
drhd81a1422010-09-28 07:11:24 +00003527 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
drh8cff69d2009-11-12 19:59:44 +00003528 pIdxKey = sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z,
3529 aTempRec, sizeof(aTempRec));
3530 if( pIdxKey==0 ){
3531 goto no_mem;
3532 }
3533 pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
danielk19779a96b662007-11-29 17:05:18 +00003534 }
drhe63d9992008-08-13 19:11:48 +00003535 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
drh8cff69d2009-11-12 19:59:44 +00003536 if( pOp->p4.i==0 ){
3537 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
3538 }
danielk197777519402007-08-30 11:48:31 +00003539 if( rc!=SQLITE_OK ){
3540 break;
3541 }
3542 alreadyExists = (res==0);
drha11846b2004-01-07 18:52:56 +00003543 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003544 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003545 }
3546 if( pOp->opcode==OP_Found ){
3547 if( alreadyExists ) pc = pOp->p2 - 1;
3548 }else{
3549 if( !alreadyExists ) pc = pOp->p2 - 1;
3550 }
drh5e00f6c2001-09-13 13:46:56 +00003551 break;
3552}
3553
drh98757152008-01-09 23:04:12 +00003554/* Opcode: IsUnique P1 P2 P3 P4 *
drh9cfcf5d2002-01-29 18:41:24 +00003555**
drh8cff69d2009-11-12 19:59:44 +00003556** Cursor P1 is open on an index b-tree - that is to say, a btree which
3557** no data and where the key are records generated by OP_MakeRecord with
3558** the list field being the integer ROWID of the entry that the index
3559** entry refers to.
danielk1977de630352009-05-04 11:42:29 +00003560**
3561** The P3 register contains an integer record number. Call this record
3562** number R. Register P4 is the first in a set of N contiguous registers
3563** that make up an unpacked index key that can be used with cursor P1.
3564** The value of N can be inferred from the cursor. N includes the rowid
3565** value appended to the end of the index record. This rowid value may
3566** or may not be the same as R.
3567**
3568** If any of the N registers beginning with register P4 contains a NULL
3569** value, jump immediately to P2.
3570**
3571** Otherwise, this instruction checks if cursor P1 contains an entry
3572** where the first (N-1) fields match but the rowid value at the end
3573** of the index entry is not R. If there is no such entry, control jumps
3574** to instruction P2. Otherwise, the rowid of the conflicting index
3575** entry is copied to register P3 and control falls through to the next
3576** instruction.
drh9cfcf5d2002-01-29 18:41:24 +00003577**
drh9cbf3422008-01-17 16:22:13 +00003578** See also: NotFound, NotExists, Found
drh9cfcf5d2002-01-29 18:41:24 +00003579*/
drh9cbf3422008-01-17 16:22:13 +00003580case OP_IsUnique: { /* jump, in3 */
shane60a4b532009-05-06 18:57:09 +00003581 u16 ii;
drhdfe88ec2008-11-03 20:55:06 +00003582 VdbeCursor *pCx;
drh9cfcf5d2002-01-29 18:41:24 +00003583 BtCursor *pCrsr;
shane60a4b532009-05-06 18:57:09 +00003584 u16 nField;
drha6c2ed92009-11-14 23:22:23 +00003585 Mem *aMx;
drh856c1032009-06-02 15:21:42 +00003586 UnpackedRecord r; /* B-Tree index search key */
3587 i64 R; /* Rowid stored in register P3 */
drh9cfcf5d2002-01-29 18:41:24 +00003588
drh3c657212009-11-17 23:59:58 +00003589 pIn3 = &aMem[pOp->p3];
drha6c2ed92009-11-14 23:22:23 +00003590 aMx = &aMem[pOp->p4.i];
danielk1977de630352009-05-04 11:42:29 +00003591 /* Assert that the values of parameters P1 and P4 are in range. */
drh98757152008-01-09 23:04:12 +00003592 assert( pOp->p4type==P4_INT32 );
drh9cbf3422008-01-17 16:22:13 +00003593 assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
danielk1977de630352009-05-04 11:42:29 +00003594 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3595
3596 /* Find the index cursor. */
3597 pCx = p->apCsr[pOp->p1];
3598 assert( pCx->deferredMoveto==0 );
3599 pCx->seekResult = 0;
3600 pCx->cacheStatus = CACHE_STALE;
drhf328bc82004-05-10 23:29:49 +00003601 pCrsr = pCx->pCursor;
danielk1977de630352009-05-04 11:42:29 +00003602
3603 /* If any of the values are NULL, take the jump. */
3604 nField = pCx->pKeyInfo->nField;
3605 for(ii=0; ii<nField; ii++){
drha6c2ed92009-11-14 23:22:23 +00003606 if( aMx[ii].flags & MEM_Null ){
danielk1977de630352009-05-04 11:42:29 +00003607 pc = pOp->p2 - 1;
3608 pCrsr = 0;
3609 break;
3610 }
3611 }
drha6c2ed92009-11-14 23:22:23 +00003612 assert( (aMx[nField].flags & MEM_Null)==0 );
danielk1977de630352009-05-04 11:42:29 +00003613
drhf328bc82004-05-10 23:29:49 +00003614 if( pCrsr!=0 ){
danielk1977de630352009-05-04 11:42:29 +00003615 /* Populate the index search key. */
3616 r.pKeyInfo = pCx->pKeyInfo;
3617 r.nField = nField + 1;
3618 r.flags = UNPACKED_PREFIX_SEARCH;
drha6c2ed92009-11-14 23:22:23 +00003619 r.aMem = aMx;
drh2b4ded92010-09-27 21:09:31 +00003620#ifdef SQLITE_DEBUG
3621 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3622#endif
danielk1977452c9892004-05-13 05:16:15 +00003623
danielk1977de630352009-05-04 11:42:29 +00003624 /* Extract the value of R from register P3. */
3625 sqlite3VdbeMemIntegerify(pIn3);
3626 R = pIn3->u.i;
3627
3628 /* Search the B-Tree index. If no conflicting record is found, jump
3629 ** to P2. Otherwise, copy the rowid of the conflicting record to
3630 ** register P3 and fall through to the next instruction. */
3631 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
3632 if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
drh9cfcf5d2002-01-29 18:41:24 +00003633 pc = pOp->p2 - 1;
danielk1977de630352009-05-04 11:42:29 +00003634 }else{
3635 pIn3->u.i = r.rowid;
drh9cfcf5d2002-01-29 18:41:24 +00003636 }
drh9cfcf5d2002-01-29 18:41:24 +00003637 }
3638 break;
3639}
3640
drh9cbf3422008-01-17 16:22:13 +00003641/* Opcode: NotExists P1 P2 P3 * *
drh6b125452002-01-28 15:53:03 +00003642**
drhef8662b2011-06-20 21:47:58 +00003643** Use the content of register P3 as an integer key. If a record
danielk197796cb76f2008-01-04 13:24:28 +00003644** with that key does not exist in table of P1, then jump to P2.
drh710c4842010-08-30 01:17:20 +00003645** If the record does exist, then fall through. The cursor is left
drh9cbf3422008-01-17 16:22:13 +00003646** pointing to the record if it exists.
drh6b125452002-01-28 15:53:03 +00003647**
3648** The difference between this operation and NotFound is that this
drhf0863fe2005-06-12 21:35:51 +00003649** operation assumes the key is an integer and that P1 is a table whereas
3650** NotFound assumes key is a blob constructed from MakeRecord and
3651** P1 is an index.
drh6b125452002-01-28 15:53:03 +00003652**
drhcb6d50e2008-08-21 19:28:30 +00003653** See also: Found, NotFound, IsUnique
drh6b125452002-01-28 15:53:03 +00003654*/
drh9cbf3422008-01-17 16:22:13 +00003655case OP_NotExists: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00003656 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00003657 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00003658 int res;
3659 u64 iKey;
3660
drh3c657212009-11-17 23:59:58 +00003661 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003662 assert( pIn3->flags & MEM_Int );
3663 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3664 pC = p->apCsr[pOp->p1];
3665 assert( pC!=0 );
3666 assert( pC->isTable );
drh3e9ca092009-09-08 01:14:48 +00003667 assert( pC->pseudoTableReg==0 );
drhaa736092009-06-22 00:55:30 +00003668 pCrsr = pC->pCursor;
3669 if( pCrsr!=0 ){
drh856c1032009-06-02 15:21:42 +00003670 res = 0;
drhaa736092009-06-22 00:55:30 +00003671 iKey = pIn3->u.i;
danielk1977de630352009-05-04 11:42:29 +00003672 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drh98757152008-01-09 23:04:12 +00003673 pC->lastRowid = pIn3->u.i;
drh9c1905f2008-12-10 22:32:56 +00003674 pC->rowidIsValid = res==0 ?1:0;
drh9188b382004-05-14 21:12:22 +00003675 pC->nullRow = 0;
drh76873ab2006-01-07 18:48:26 +00003676 pC->cacheStatus = CACHE_STALE;
danielk19771d461462009-04-21 09:02:45 +00003677 pC->deferredMoveto = 0;
danielk197728129562005-01-11 10:25:06 +00003678 if( res!=0 ){
drh17f71932002-02-21 12:01:27 +00003679 pc = pOp->p2 - 1;
drh91fd4d42008-01-19 20:11:25 +00003680 assert( pC->rowidIsValid==0 );
drh6b125452002-01-28 15:53:03 +00003681 }
danielk1977de630352009-05-04 11:42:29 +00003682 pC->seekResult = res;
drhaa736092009-06-22 00:55:30 +00003683 }else{
danielk1977f7b9d662008-06-23 18:49:43 +00003684 /* This happens when an attempt to open a read cursor on the
3685 ** sqlite_master table returns SQLITE_EMPTY.
3686 */
danielk1977f7b9d662008-06-23 18:49:43 +00003687 pc = pOp->p2 - 1;
3688 assert( pC->rowidIsValid==0 );
danielk1977de630352009-05-04 11:42:29 +00003689 pC->seekResult = 0;
drh6b125452002-01-28 15:53:03 +00003690 }
drh6b125452002-01-28 15:53:03 +00003691 break;
3692}
3693
drh4c583122008-01-04 22:01:03 +00003694/* Opcode: Sequence P1 P2 * * *
drh4db38a72005-09-01 12:16:28 +00003695**
drh4c583122008-01-04 22:01:03 +00003696** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00003697** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00003698** The sequence number on the cursor is incremented after this
3699** instruction.
drh4db38a72005-09-01 12:16:28 +00003700*/
drh4c583122008-01-04 22:01:03 +00003701case OP_Sequence: { /* out2-prerelease */
drh653b82a2009-06-22 11:10:47 +00003702 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3703 assert( p->apCsr[pOp->p1]!=0 );
3704 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00003705 break;
3706}
3707
3708
drh98757152008-01-09 23:04:12 +00003709/* Opcode: NewRowid P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00003710**
drhf0863fe2005-06-12 21:35:51 +00003711** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00003712** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00003713** table that cursor P1 points to. The new record number is written
3714** written to register P2.
drh205f48e2004-11-05 00:43:11 +00003715**
dan76d462e2009-08-30 11:42:51 +00003716** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3717** the largest previously generated record number. No new record numbers are
3718** allowed to be less than this value. When this value reaches its maximum,
drhef8662b2011-06-20 21:47:58 +00003719** an SQLITE_FULL error is generated. The P3 register is updated with the '
dan76d462e2009-08-30 11:42:51 +00003720** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00003721** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00003722*/
drh4c583122008-01-04 22:01:03 +00003723case OP_NewRowid: { /* out2-prerelease */
drhaa736092009-06-22 00:55:30 +00003724 i64 v; /* The new rowid */
3725 VdbeCursor *pC; /* Cursor of table to get the new rowid */
3726 int res; /* Result of an sqlite3BtreeLast() */
3727 int cnt; /* Counter to limit the number of searches */
3728 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00003729 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00003730
drh856c1032009-06-02 15:21:42 +00003731 v = 0;
3732 res = 0;
drhaa736092009-06-22 00:55:30 +00003733 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3734 pC = p->apCsr[pOp->p1];
3735 assert( pC!=0 );
3736 if( NEVER(pC->pCursor==0) ){
drhf328bc82004-05-10 23:29:49 +00003737 /* The zero initialization above is all that is needed */
drh5e00f6c2001-09-13 13:46:56 +00003738 }else{
drh5cf8e8c2002-02-19 22:42:05 +00003739 /* The next rowid or record number (different terms for the same
3740 ** thing) is obtained in a two-step algorithm.
3741 **
3742 ** First we attempt to find the largest existing rowid and add one
3743 ** to that. But if the largest existing rowid is already the maximum
3744 ** positive integer, we have to fall through to the second
3745 ** probabilistic algorithm
3746 **
3747 ** The second algorithm is to select a rowid at random and see if
3748 ** it already exists in the table. If it does not exist, we have
3749 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00003750 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00003751 */
drhaa736092009-06-22 00:55:30 +00003752 assert( pC->isTable );
drhfe2093d2005-01-20 22:48:47 +00003753
drh75f86a42005-02-17 00:03:06 +00003754#ifdef SQLITE_32BIT_ROWID
3755# define MAX_ROWID 0x7fffffff
3756#else
drhfe2093d2005-01-20 22:48:47 +00003757 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3758 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3759 ** to provide the constant while making all compilers happy.
3760 */
danielk197764202cf2008-11-17 15:31:47 +00003761# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00003762#endif
drhfe2093d2005-01-20 22:48:47 +00003763
drh5cf8e8c2002-02-19 22:42:05 +00003764 if( !pC->useRandomRowid ){
drh7f751222009-03-17 22:33:00 +00003765 v = sqlite3BtreeGetCachedRowid(pC->pCursor);
3766 if( v==0 ){
danielk1977261919c2005-12-06 12:52:59 +00003767 rc = sqlite3BtreeLast(pC->pCursor, &res);
3768 if( rc!=SQLITE_OK ){
3769 goto abort_due_to_error;
3770 }
drh32fbe342002-10-19 20:16:37 +00003771 if( res ){
drhc79c7612010-01-01 18:57:48 +00003772 v = 1; /* IMP: R-61914-48074 */
drh5cf8e8c2002-02-19 22:42:05 +00003773 }else{
drhea8ffdf2009-07-22 00:35:23 +00003774 assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
drhc27ae612009-07-14 18:35:44 +00003775 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
3776 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
drh75f86a42005-02-17 00:03:06 +00003777 if( v==MAX_ROWID ){
drh32fbe342002-10-19 20:16:37 +00003778 pC->useRandomRowid = 1;
3779 }else{
drhc79c7612010-01-01 18:57:48 +00003780 v++; /* IMP: R-29538-34987 */
drh32fbe342002-10-19 20:16:37 +00003781 }
drh5cf8e8c2002-02-19 22:42:05 +00003782 }
drh3fc190c2001-09-14 03:24:23 +00003783 }
drh205f48e2004-11-05 00:43:11 +00003784
3785#ifndef SQLITE_OMIT_AUTOINCREMENT
drh4c583122008-01-04 22:01:03 +00003786 if( pOp->p3 ){
shaneabc6b892009-09-10 19:09:03 +00003787 /* Assert that P3 is a valid memory cell. */
3788 assert( pOp->p3>0 );
dan76d462e2009-08-30 11:42:51 +00003789 if( p->pFrame ){
3790 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00003791 /* Assert that P3 is a valid memory cell. */
3792 assert( pOp->p3<=pFrame->nMem );
dan76d462e2009-08-30 11:42:51 +00003793 pMem = &pFrame->aMem[pOp->p3];
3794 }else{
shaneabc6b892009-09-10 19:09:03 +00003795 /* Assert that P3 is a valid memory cell. */
3796 assert( pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00003797 pMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00003798 memAboutToChange(p, pMem);
dan76d462e2009-08-30 11:42:51 +00003799 }
drh2b4ded92010-09-27 21:09:31 +00003800 assert( memIsValid(pMem) );
dan76d462e2009-08-30 11:42:51 +00003801
3802 REGISTER_TRACE(pOp->p3, pMem);
drh8a512562005-11-14 22:29:05 +00003803 sqlite3VdbeMemIntegerify(pMem);
drh4c583122008-01-04 22:01:03 +00003804 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
drh3c024d62007-03-30 11:23:45 +00003805 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
drhc79c7612010-01-01 18:57:48 +00003806 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
drh205f48e2004-11-05 00:43:11 +00003807 goto abort_due_to_error;
3808 }
drh3c024d62007-03-30 11:23:45 +00003809 if( v<pMem->u.i+1 ){
3810 v = pMem->u.i + 1;
drh205f48e2004-11-05 00:43:11 +00003811 }
drh3c024d62007-03-30 11:23:45 +00003812 pMem->u.i = v;
drh205f48e2004-11-05 00:43:11 +00003813 }
3814#endif
3815
drh7f751222009-03-17 22:33:00 +00003816 sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
drh5cf8e8c2002-02-19 22:42:05 +00003817 }
3818 if( pC->useRandomRowid ){
drh748a52c2010-09-01 11:50:08 +00003819 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
drhc79c7612010-01-01 18:57:48 +00003820 ** largest possible integer (9223372036854775807) then the database
drh748a52c2010-09-01 11:50:08 +00003821 ** engine starts picking positive candidate ROWIDs at random until
3822 ** it finds one that is not previously used. */
drhaa736092009-06-22 00:55:30 +00003823 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
3824 ** an AUTOINCREMENT table. */
shanehc4d340a2010-09-01 02:37:56 +00003825 /* on the first attempt, simply do one more than previous */
drh99a66922011-05-13 18:51:42 +00003826 v = lastRowid;
shanehc4d340a2010-09-01 02:37:56 +00003827 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
3828 v++; /* ensure non-zero */
drh5cf8e8c2002-02-19 22:42:05 +00003829 cnt = 0;
drh748a52c2010-09-01 11:50:08 +00003830 while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
3831 0, &res))==SQLITE_OK)
shanehc4d340a2010-09-01 02:37:56 +00003832 && (res==0)
3833 && (++cnt<100)){
3834 /* collision - try another random rowid */
3835 sqlite3_randomness(sizeof(v), &v);
3836 if( cnt<5 ){
3837 /* try "small" random rowids for the initial attempts */
3838 v &= 0xffffff;
drh91fd4d42008-01-19 20:11:25 +00003839 }else{
shanehc4d340a2010-09-01 02:37:56 +00003840 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
drh5cf8e8c2002-02-19 22:42:05 +00003841 }
shanehc4d340a2010-09-01 02:37:56 +00003842 v++; /* ensure non-zero */
3843 }
drhaa736092009-06-22 00:55:30 +00003844 if( rc==SQLITE_OK && res==0 ){
drhc79c7612010-01-01 18:57:48 +00003845 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00003846 goto abort_due_to_error;
3847 }
drh748a52c2010-09-01 11:50:08 +00003848 assert( v>0 ); /* EV: R-40812-03570 */
drh1eaa2692001-09-18 02:02:23 +00003849 }
drhf0863fe2005-06-12 21:35:51 +00003850 pC->rowidIsValid = 0;
drha11846b2004-01-07 18:52:56 +00003851 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003852 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003853 }
drh4c583122008-01-04 22:01:03 +00003854 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00003855 break;
3856}
3857
danielk19771f4aa332008-01-03 09:51:55 +00003858/* Opcode: Insert P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003859**
jplyon5a564222003-06-02 06:15:58 +00003860** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00003861** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00003862** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00003863** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00003864** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00003865**
danielk19771f4aa332008-01-03 09:51:55 +00003866** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
3867** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00003868** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00003869** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00003870**
drh3e9ca092009-09-08 01:14:48 +00003871** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
3872** the last seek operation (OP_NotExists) was a success, then this
3873** operation will not attempt to find the appropriate row before doing
3874** the insert but will instead overwrite the row that the cursor is
3875** currently pointing to. Presumably, the prior OP_NotExists opcode
3876** has already positioned the cursor correctly. This is an optimization
3877** that boosts performance by avoiding redundant seeks.
3878**
3879** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
3880** UPDATE operation. Otherwise (if the flag is clear) then this opcode
3881** is part of an INSERT operation. The difference is only important to
3882** the update hook.
3883**
drh66a51672008-01-03 00:01:23 +00003884** Parameter P4 may point to a string containing the table-name, or
danielk19771f6eec52006-06-16 06:17:47 +00003885** may be NULL. If it is not NULL, then the update-hook
3886** (sqlite3.xUpdateCallback) is invoked following a successful insert.
3887**
drh93aed5a2008-01-16 17:46:38 +00003888** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
3889** allocated, then ownership of P2 is transferred to the pseudo-cursor
3890** and register P2 becomes ephemeral. If the cursor is changed, the
3891** value of register P2 will then change. Make sure this does not
3892** cause any problems.)
3893**
drhf0863fe2005-06-12 21:35:51 +00003894** This instruction only works on tables. The equivalent instruction
3895** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00003896*/
drhe05c9292009-10-29 13:48:10 +00003897/* Opcode: InsertInt P1 P2 P3 P4 P5
3898**
3899** This works exactly like OP_Insert except that the key is the
3900** integer value P3, not the value of the integer stored in register P3.
3901*/
3902case OP_Insert:
3903case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00003904 Mem *pData; /* MEM cell holding data for the record to be inserted */
3905 Mem *pKey; /* MEM cell holding key for the record */
3906 i64 iKey; /* The integer ROWID or key for the record to be inserted */
3907 VdbeCursor *pC; /* Cursor to table into which insert is written */
3908 int nZero; /* Number of zero-bytes to append */
3909 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
3910 const char *zDb; /* database name - used by the update hook */
3911 const char *zTbl; /* Table name - used by the opdate hook */
3912 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
drh856c1032009-06-02 15:21:42 +00003913
drha6c2ed92009-11-14 23:22:23 +00003914 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00003915 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh2b4ded92010-09-27 21:09:31 +00003916 assert( memIsValid(pData) );
drh653b82a2009-06-22 11:10:47 +00003917 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00003918 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003919 assert( pC->pCursor!=0 );
3920 assert( pC->pseudoTableReg==0 );
drha05a7222008-01-19 03:35:58 +00003921 assert( pC->isTable );
drh5b6afba2008-01-05 16:29:28 +00003922 REGISTER_TRACE(pOp->p2, pData);
danielk19775f8d8a82004-05-11 00:28:42 +00003923
drhe05c9292009-10-29 13:48:10 +00003924 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00003925 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00003926 assert( pKey->flags & MEM_Int );
drh2b4ded92010-09-27 21:09:31 +00003927 assert( memIsValid(pKey) );
drhe05c9292009-10-29 13:48:10 +00003928 REGISTER_TRACE(pOp->p3, pKey);
3929 iKey = pKey->u.i;
3930 }else{
3931 assert( pOp->opcode==OP_InsertInt );
3932 iKey = pOp->p3;
3933 }
3934
drha05a7222008-01-19 03:35:58 +00003935 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh99a66922011-05-13 18:51:42 +00003936 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
drha05a7222008-01-19 03:35:58 +00003937 if( pData->flags & MEM_Null ){
3938 pData->z = 0;
3939 pData->n = 0;
3940 }else{
3941 assert( pData->flags & (MEM_Blob|MEM_Str) );
3942 }
drh3e9ca092009-09-08 01:14:48 +00003943 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
3944 if( pData->flags & MEM_Zero ){
3945 nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00003946 }else{
drh3e9ca092009-09-08 01:14:48 +00003947 nZero = 0;
drha05a7222008-01-19 03:35:58 +00003948 }
drh3e9ca092009-09-08 01:14:48 +00003949 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
3950 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
3951 pData->z, pData->n, nZero,
3952 pOp->p5 & OPFLAG_APPEND, seekResult
3953 );
drha05a7222008-01-19 03:35:58 +00003954 pC->rowidIsValid = 0;
3955 pC->deferredMoveto = 0;
3956 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00003957
drha05a7222008-01-19 03:35:58 +00003958 /* Invoke the update-hook if required. */
3959 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
drh856c1032009-06-02 15:21:42 +00003960 zDb = db->aDb[pC->iDb].zName;
3961 zTbl = pOp->p4.z;
3962 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
drha05a7222008-01-19 03:35:58 +00003963 assert( pC->isTable );
3964 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
3965 assert( pC->iDb>=0 );
3966 }
drh5e00f6c2001-09-13 13:46:56 +00003967 break;
3968}
3969
drh98757152008-01-09 23:04:12 +00003970/* Opcode: Delete P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00003971**
drh5edc3122001-09-13 21:53:09 +00003972** Delete the record at which the P1 cursor is currently pointing.
3973**
3974** The cursor will be left pointing at either the next or the previous
3975** record in the table. If it is left pointing at the next record, then
drhb19a2bc2001-09-16 00:13:26 +00003976** the next Next instruction will be a no-op. Hence it is OK to delete
3977** a record from within an Next loop.
drhc8d30ac2002-04-12 10:08:59 +00003978**
rdcb0c374f2004-02-20 22:53:38 +00003979** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
danielk1977b28af712004-06-21 06:50:26 +00003980** incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00003981**
drh91fd4d42008-01-19 20:11:25 +00003982** P1 must not be pseudo-table. It has to be a real table with
3983** multiple rows.
3984**
3985** If P4 is not NULL, then it is the name of the table that P1 is
3986** pointing to. The update hook will be invoked, if it exists.
3987** If P4 is not NULL then the P1 cursor must have been positioned
3988** using OP_NotFound prior to invoking this opcode.
drh5e00f6c2001-09-13 13:46:56 +00003989*/
drh9cbf3422008-01-17 16:22:13 +00003990case OP_Delete: {
drh856c1032009-06-02 15:21:42 +00003991 i64 iKey;
drhdfe88ec2008-11-03 20:55:06 +00003992 VdbeCursor *pC;
drh91fd4d42008-01-19 20:11:25 +00003993
drh856c1032009-06-02 15:21:42 +00003994 iKey = 0;
drh653b82a2009-06-22 11:10:47 +00003995 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3996 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003997 assert( pC!=0 );
drh91fd4d42008-01-19 20:11:25 +00003998 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
danielk197794eb6a12005-12-15 15:22:08 +00003999
drh91fd4d42008-01-19 20:11:25 +00004000 /* If the update-hook will be invoked, set iKey to the rowid of the
4001 ** row being deleted.
4002 */
4003 if( db->xUpdateCallback && pOp->p4.z ){
4004 assert( pC->isTable );
4005 assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
4006 iKey = pC->lastRowid;
4007 }
danielk197794eb6a12005-12-15 15:22:08 +00004008
drh9a65f2c2009-06-22 19:05:40 +00004009 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
4010 ** OP_Column on the same table without any intervening operations that
4011 ** might move or invalidate the cursor. Hence cursor pC is always pointing
4012 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
4013 ** below is always a no-op and cannot fail. We will run it anyhow, though,
4014 ** to guard against future changes to the code generator.
4015 **/
4016 assert( pC->deferredMoveto==0 );
drh91fd4d42008-01-19 20:11:25 +00004017 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004018 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4019
drh7f751222009-03-17 22:33:00 +00004020 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
drh91fd4d42008-01-19 20:11:25 +00004021 rc = sqlite3BtreeDelete(pC->pCursor);
drh91fd4d42008-01-19 20:11:25 +00004022 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004023
drh91fd4d42008-01-19 20:11:25 +00004024 /* Invoke the update-hook if required. */
4025 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4026 const char *zDb = db->aDb[pC->iDb].zName;
4027 const char *zTbl = pOp->p4.z;
4028 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
4029 assert( pC->iDb>=0 );
drh5e00f6c2001-09-13 13:46:56 +00004030 }
danielk1977b28af712004-06-21 06:50:26 +00004031 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
rdcb0c374f2004-02-20 22:53:38 +00004032 break;
4033}
drhb7f1d9a2009-09-08 02:27:58 +00004034/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00004035**
drhb7f1d9a2009-09-08 02:27:58 +00004036** The value of the change counter is copied to the database handle
4037** change counter (returned by subsequent calls to sqlite3_changes()).
4038** Then the VMs internal change counter resets to 0.
4039** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00004040*/
drh9cbf3422008-01-17 16:22:13 +00004041case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00004042 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00004043 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00004044 break;
4045}
4046
drh98757152008-01-09 23:04:12 +00004047/* Opcode: RowData P1 P2 * * *
drh70ce3f02003-04-15 19:22:22 +00004048**
drh98757152008-01-09 23:04:12 +00004049** Write into register P2 the complete row data for cursor P1.
4050** There is no interpretation of the data.
4051** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004052** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00004053**
drhde4fcfd2008-01-19 23:50:26 +00004054** If the P1 cursor must be pointing to a valid row (not a NULL row)
4055** of a real table, not a pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00004056*/
drh98757152008-01-09 23:04:12 +00004057/* Opcode: RowKey P1 P2 * * *
drh143f3c42004-01-07 20:37:52 +00004058**
drh98757152008-01-09 23:04:12 +00004059** Write into register P2 the complete row key for cursor P1.
4060** There is no interpretation of the data.
drh9cbf3422008-01-17 16:22:13 +00004061** The key is copied onto the P3 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004062** it is found in the database file.
drh143f3c42004-01-07 20:37:52 +00004063**
drhde4fcfd2008-01-19 23:50:26 +00004064** If the P1 cursor must be pointing to a valid row (not a NULL row)
4065** of a real table, not a pseudo-table.
drh143f3c42004-01-07 20:37:52 +00004066*/
danielk1977a7a8e142008-02-13 18:25:27 +00004067case OP_RowKey:
4068case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00004069 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00004070 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00004071 u32 n;
drh856c1032009-06-02 15:21:42 +00004072 i64 n64;
drh70ce3f02003-04-15 19:22:22 +00004073
drha6c2ed92009-11-14 23:22:23 +00004074 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004075 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00004076
drhf0863fe2005-06-12 21:35:51 +00004077 /* Note that RowKey and RowData are really exactly the same instruction */
drh653b82a2009-06-22 11:10:47 +00004078 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4079 pC = p->apCsr[pOp->p1];
drhf0863fe2005-06-12 21:35:51 +00004080 assert( pC->isTable || pOp->opcode==OP_RowKey );
4081 assert( pC->isIndex || pOp->opcode==OP_RowData );
drh4774b132004-06-12 20:12:51 +00004082 assert( pC!=0 );
drhde4fcfd2008-01-19 23:50:26 +00004083 assert( pC->nullRow==0 );
drh3e9ca092009-09-08 01:14:48 +00004084 assert( pC->pseudoTableReg==0 );
drhde4fcfd2008-01-19 23:50:26 +00004085 assert( pC->pCursor!=0 );
4086 pCrsr = pC->pCursor;
drhea8ffdf2009-07-22 00:35:23 +00004087 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drh9a65f2c2009-06-22 19:05:40 +00004088
4089 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4090 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4091 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always
4092 ** a no-op and can never fail. But we leave it in place as a safety.
4093 */
4094 assert( pC->deferredMoveto==0 );
drhde4fcfd2008-01-19 23:50:26 +00004095 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004096 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4097
drhde4fcfd2008-01-19 23:50:26 +00004098 if( pC->isIndex ){
drhde4fcfd2008-01-19 23:50:26 +00004099 assert( !pC->isTable );
drhc27ae612009-07-14 18:35:44 +00004100 rc = sqlite3BtreeKeySize(pCrsr, &n64);
4101 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhbb4957f2008-03-20 14:03:29 +00004102 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhde4fcfd2008-01-19 23:50:26 +00004103 goto too_big;
drh70ce3f02003-04-15 19:22:22 +00004104 }
drhbfb19dc2009-06-05 16:46:53 +00004105 n = (u32)n64;
drhde4fcfd2008-01-19 23:50:26 +00004106 }else{
drhc27ae612009-07-14 18:35:44 +00004107 rc = sqlite3BtreeDataSize(pCrsr, &n);
drhea8ffdf2009-07-22 00:35:23 +00004108 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
shane75ac1de2009-06-09 18:58:52 +00004109 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00004110 goto too_big;
4111 }
drhde4fcfd2008-01-19 23:50:26 +00004112 }
danielk1977a7a8e142008-02-13 18:25:27 +00004113 if( sqlite3VdbeMemGrow(pOut, n, 0) ){
4114 goto no_mem;
drhde4fcfd2008-01-19 23:50:26 +00004115 }
danielk1977a7a8e142008-02-13 18:25:27 +00004116 pOut->n = n;
4117 MemSetTypeFlag(pOut, MEM_Blob);
drhde4fcfd2008-01-19 23:50:26 +00004118 if( pC->isIndex ){
4119 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4120 }else{
4121 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
drh5e00f6c2001-09-13 13:46:56 +00004122 }
danielk197796cb76f2008-01-04 13:24:28 +00004123 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
drhb7654112008-01-12 12:48:07 +00004124 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00004125 break;
4126}
4127
drh2133d822008-01-03 18:44:59 +00004128/* Opcode: Rowid P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004129**
drh2133d822008-01-03 18:44:59 +00004130** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004131** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004132**
4133** P1 can be either an ordinary table or a virtual table. There used to
4134** be a separate OP_VRowid opcode for use with virtual tables, but this
4135** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004136*/
drh4c583122008-01-04 22:01:03 +00004137case OP_Rowid: { /* out2-prerelease */
drhdfe88ec2008-11-03 20:55:06 +00004138 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004139 i64 v;
drh856c1032009-06-02 15:21:42 +00004140 sqlite3_vtab *pVtab;
4141 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004142
drh653b82a2009-06-22 11:10:47 +00004143 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4144 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004145 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00004146 assert( pC->pseudoTableReg==0 );
drh044925b2009-04-22 17:15:02 +00004147 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004148 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004149 break;
4150 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004151 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004152#ifndef SQLITE_OMIT_VIRTUALTABLE
4153 }else if( pC->pVtabCursor ){
drh044925b2009-04-22 17:15:02 +00004154 pVtab = pC->pVtabCursor->pVtab;
4155 pModule = pVtab->pModule;
4156 assert( pModule->xRowid );
drh044925b2009-04-22 17:15:02 +00004157 rc = pModule->xRowid(pC->pVtabCursor, &v);
drhb9755982010-07-24 16:34:37 +00004158 importVtabErrMsg(p, pVtab);
drh044925b2009-04-22 17:15:02 +00004159#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004160 }else{
drh6be240e2009-07-14 02:33:02 +00004161 assert( pC->pCursor!=0 );
drh61495262009-04-22 15:32:59 +00004162 rc = sqlite3VdbeCursorMoveto(pC);
4163 if( rc ) goto abort_due_to_error;
4164 if( pC->rowidIsValid ){
4165 v = pC->lastRowid;
drh61495262009-04-22 15:32:59 +00004166 }else{
drhc27ae612009-07-14 18:35:44 +00004167 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4168 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */
drh61495262009-04-22 15:32:59 +00004169 }
drh5e00f6c2001-09-13 13:46:56 +00004170 }
drh4c583122008-01-04 22:01:03 +00004171 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004172 break;
4173}
4174
drh9cbf3422008-01-17 16:22:13 +00004175/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004176**
4177** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004178** that occur while the cursor is on the null row will always
4179** write a NULL.
drh17f71932002-02-21 12:01:27 +00004180*/
drh9cbf3422008-01-17 16:22:13 +00004181case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004182 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004183
drh653b82a2009-06-22 11:10:47 +00004184 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4185 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004186 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004187 pC->nullRow = 1;
drhf0863fe2005-06-12 21:35:51 +00004188 pC->rowidIsValid = 0;
danielk1977be51a652008-10-08 17:58:48 +00004189 if( pC->pCursor ){
4190 sqlite3BtreeClearCursor(pC->pCursor);
4191 }
drh17f71932002-02-21 12:01:27 +00004192 break;
4193}
4194
drh9cbf3422008-01-17 16:22:13 +00004195/* Opcode: Last P1 P2 * * *
drh9562b552002-02-19 15:00:07 +00004196**
drhf0863fe2005-06-12 21:35:51 +00004197** The next use of the Rowid or Column or Next instruction for P1
drh9562b552002-02-19 15:00:07 +00004198** will refer to the last entry in the database table or index.
4199** If the table or index is empty and P2>0, then jump immediately to P2.
4200** If P2 is 0 or if the table or index is not empty, fall through
4201** to the following instruction.
4202*/
drh9cbf3422008-01-17 16:22:13 +00004203case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004204 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004205 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004206 int res;
drh9562b552002-02-19 15:00:07 +00004207
drh653b82a2009-06-22 11:10:47 +00004208 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4209 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004210 assert( pC!=0 );
drha05a7222008-01-19 03:35:58 +00004211 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004212 if( pCrsr==0 ){
4213 res = 1;
4214 }else{
4215 rc = sqlite3BtreeLast(pCrsr, &res);
4216 }
drh9c1905f2008-12-10 22:32:56 +00004217 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004218 pC->deferredMoveto = 0;
drha7e77062009-01-14 00:55:09 +00004219 pC->rowidIsValid = 0;
drha05a7222008-01-19 03:35:58 +00004220 pC->cacheStatus = CACHE_STALE;
drh9a65f2c2009-06-22 19:05:40 +00004221 if( pOp->p2>0 && res ){
drha05a7222008-01-19 03:35:58 +00004222 pc = pOp->p2 - 1;
drh9562b552002-02-19 15:00:07 +00004223 }
4224 break;
4225}
4226
drh0342b1f2005-09-01 03:07:44 +00004227
drh9cbf3422008-01-17 16:22:13 +00004228/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004229**
4230** This opcode does exactly the same thing as OP_Rewind except that
4231** it increments an undocumented global variable used for testing.
4232**
4233** Sorting is accomplished by writing records into a sorting index,
4234** then rewinding that index and playing it back from beginning to
4235** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4236** rewinding so that the global variable will be incremented and
4237** regression tests can determine whether or not the optimizer is
4238** correctly optimizing out sorts.
4239*/
drh9cbf3422008-01-17 16:22:13 +00004240case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00004241#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00004242 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00004243 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00004244#endif
drhd1d38482008-10-07 23:46:38 +00004245 p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
drh0342b1f2005-09-01 03:07:44 +00004246 /* Fall through into OP_Rewind */
4247}
drh9cbf3422008-01-17 16:22:13 +00004248/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004249**
drhf0863fe2005-06-12 21:35:51 +00004250** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00004251** will refer to the first entry in the database table or index.
4252** If the table or index is empty and P2>0, then jump immediately to P2.
4253** If P2 is 0 or if the table or index is not empty, fall through
4254** to the following instruction.
drh5e00f6c2001-09-13 13:46:56 +00004255*/
drh9cbf3422008-01-17 16:22:13 +00004256case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004257 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004258 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00004259 int res;
drh5e00f6c2001-09-13 13:46:56 +00004260
drh653b82a2009-06-22 11:10:47 +00004261 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4262 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004263 assert( pC!=0 );
dan2411dea2010-07-03 05:56:09 +00004264 res = 1;
drh70ce3f02003-04-15 19:22:22 +00004265 if( (pCrsr = pC->pCursor)!=0 ){
danielk19774adee202004-05-08 08:23:19 +00004266 rc = sqlite3BtreeFirst(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004267 pC->atFirst = res==0 ?1:0;
drha11846b2004-01-07 18:52:56 +00004268 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004269 pC->cacheStatus = CACHE_STALE;
drha7e77062009-01-14 00:55:09 +00004270 pC->rowidIsValid = 0;
drhf4dada72004-05-11 09:57:35 +00004271 }
drh9c1905f2008-12-10 22:32:56 +00004272 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004273 assert( pOp->p2>0 && pOp->p2<p->nOp );
4274 if( res ){
drhf4dada72004-05-11 09:57:35 +00004275 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00004276 }
4277 break;
4278}
4279
drhafc266a2010-03-31 17:47:44 +00004280/* Opcode: Next P1 P2 * * P5
drh5e00f6c2001-09-13 13:46:56 +00004281**
4282** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00004283** table or index. If there are no more key/value pairs then fall through
4284** to the following instruction. But if the cursor advance was successful,
4285** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00004286**
drh60a713c2008-01-21 16:22:45 +00004287** The P1 cursor must be for a real table, not a pseudo-table.
4288**
drhafc266a2010-03-31 17:47:44 +00004289** If P5 is positive and the jump is taken, then event counter
4290** number P5-1 in the prepared statement is incremented.
4291**
drhc045ec52002-12-04 20:01:06 +00004292** See also: Prev
drh8721ce42001-11-07 14:22:00 +00004293*/
drhafc266a2010-03-31 17:47:44 +00004294/* Opcode: Prev P1 P2 * * P5
drhc045ec52002-12-04 20:01:06 +00004295**
4296** Back up cursor P1 so that it points to the previous key/data pair in its
4297** table or index. If there is no previous key/value pairs then fall through
4298** to the following instruction. But if the cursor backup was successful,
4299** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00004300**
4301** The P1 cursor must be for a real table, not a pseudo-table.
drhafc266a2010-03-31 17:47:44 +00004302**
4303** If P5 is positive and the jump is taken, then event counter
4304** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00004305*/
drh9cbf3422008-01-17 16:22:13 +00004306case OP_Prev: /* jump */
4307case OP_Next: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004308 VdbeCursor *pC;
drh8721ce42001-11-07 14:22:00 +00004309 BtCursor *pCrsr;
drha3460582008-07-11 21:02:53 +00004310 int res;
drh8721ce42001-11-07 14:22:00 +00004311
drhcaec2f12003-01-07 02:47:47 +00004312 CHECK_FOR_INTERRUPT;
drh70ce3f02003-04-15 19:22:22 +00004313 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drhafc266a2010-03-31 17:47:44 +00004314 assert( pOp->p5<=ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00004315 pC = p->apCsr[pOp->p1];
drh72e8fa42007-03-28 14:30:06 +00004316 if( pC==0 ){
4317 break; /* See ticket #2273 */
4318 }
drh60a713c2008-01-21 16:22:45 +00004319 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004320 if( pCrsr==0 ){
4321 pC->nullRow = 1;
4322 break;
4323 }
drha3460582008-07-11 21:02:53 +00004324 res = 1;
4325 assert( pC->deferredMoveto==0 );
4326 rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
4327 sqlite3BtreePrevious(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004328 pC->nullRow = (u8)res;
drha3460582008-07-11 21:02:53 +00004329 pC->cacheStatus = CACHE_STALE;
4330 if( res==0 ){
4331 pc = pOp->p2 - 1;
drhd1d38482008-10-07 23:46:38 +00004332 if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
drh0f7eb612006-08-08 13:51:43 +00004333#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00004334 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00004335#endif
drh8721ce42001-11-07 14:22:00 +00004336 }
drhf0863fe2005-06-12 21:35:51 +00004337 pC->rowidIsValid = 0;
drh8721ce42001-11-07 14:22:00 +00004338 break;
4339}
4340
danielk1977de630352009-05-04 11:42:29 +00004341/* Opcode: IdxInsert P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00004342**
drhef8662b2011-06-20 21:47:58 +00004343** Register P2 holds an SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00004344** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00004345** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00004346**
drhaa9b8962008-01-08 02:57:55 +00004347** P3 is a flag that provides a hint to the b-tree layer that this
drhe4d90812007-03-29 05:51:49 +00004348** insert is likely to be an append.
4349**
drhf0863fe2005-06-12 21:35:51 +00004350** This instruction only works for indices. The equivalent instruction
4351** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00004352*/
drh9cbf3422008-01-17 16:22:13 +00004353case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00004354 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004355 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004356 int nKey;
4357 const char *zKey;
4358
drh653b82a2009-06-22 11:10:47 +00004359 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4360 pC = p->apCsr[pOp->p1];
4361 assert( pC!=0 );
drh3c657212009-11-17 23:59:58 +00004362 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00004363 assert( pIn2->flags & MEM_Blob );
drh653b82a2009-06-22 11:10:47 +00004364 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004365 if( ALWAYS(pCrsr!=0) ){
drhf0863fe2005-06-12 21:35:51 +00004366 assert( pC->isTable==0 );
drhaa9b8962008-01-08 02:57:55 +00004367 rc = ExpandBlob(pIn2);
danielk1977d908f5a2007-05-11 07:08:28 +00004368 if( rc==SQLITE_OK ){
drh856c1032009-06-02 15:21:42 +00004369 nKey = pIn2->n;
4370 zKey = pIn2->z;
danielk1977de630352009-05-04 11:42:29 +00004371 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4372 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4373 );
danielk1977d908f5a2007-05-11 07:08:28 +00004374 assert( pC->deferredMoveto==0 );
4375 pC->cacheStatus = CACHE_STALE;
4376 }
drh5e00f6c2001-09-13 13:46:56 +00004377 }
drh5e00f6c2001-09-13 13:46:56 +00004378 break;
4379}
4380
drhd1d38482008-10-07 23:46:38 +00004381/* Opcode: IdxDelete P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004382**
drhe14006d2008-03-25 17:23:32 +00004383** The content of P3 registers starting at register P2 form
4384** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00004385** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00004386*/
drhe14006d2008-03-25 17:23:32 +00004387case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00004388 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004389 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00004390 int res;
4391 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00004392
drhe14006d2008-03-25 17:23:32 +00004393 assert( pOp->p3>0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00004394 assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
drh653b82a2009-06-22 11:10:47 +00004395 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4396 pC = p->apCsr[pOp->p1];
4397 assert( pC!=0 );
4398 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004399 if( ALWAYS(pCrsr!=0) ){
drhe14006d2008-03-25 17:23:32 +00004400 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00004401 r.nField = (u16)pOp->p3;
drhe63d9992008-08-13 19:11:48 +00004402 r.flags = 0;
drha6c2ed92009-11-14 23:22:23 +00004403 r.aMem = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004404#ifdef SQLITE_DEBUG
4405 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4406#endif
drhe63d9992008-08-13 19:11:48 +00004407 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
danielk197775bab7d2006-01-23 13:09:45 +00004408 if( rc==SQLITE_OK && res==0 ){
danielk19774adee202004-05-08 08:23:19 +00004409 rc = sqlite3BtreeDelete(pCrsr);
drh5e00f6c2001-09-13 13:46:56 +00004410 }
drh9188b382004-05-14 21:12:22 +00004411 assert( pC->deferredMoveto==0 );
drh76873ab2006-01-07 18:48:26 +00004412 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004413 }
drh5e00f6c2001-09-13 13:46:56 +00004414 break;
4415}
4416
drh2133d822008-01-03 18:44:59 +00004417/* Opcode: IdxRowid P1 P2 * * *
drh8721ce42001-11-07 14:22:00 +00004418**
drh2133d822008-01-03 18:44:59 +00004419** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00004420** the end of the index key pointed to by cursor P1. This integer should be
4421** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00004422**
drh9437bd22009-02-01 00:29:56 +00004423** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00004424*/
drh4c583122008-01-04 22:01:03 +00004425case OP_IdxRowid: { /* out2-prerelease */
drh8721ce42001-11-07 14:22:00 +00004426 BtCursor *pCrsr;
drhdfe88ec2008-11-03 20:55:06 +00004427 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004428 i64 rowid;
drh8721ce42001-11-07 14:22:00 +00004429
drh653b82a2009-06-22 11:10:47 +00004430 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4431 pC = p->apCsr[pOp->p1];
4432 assert( pC!=0 );
4433 pCrsr = pC->pCursor;
drh3c657212009-11-17 23:59:58 +00004434 pOut->flags = MEM_Null;
drh9a65f2c2009-06-22 19:05:40 +00004435 if( ALWAYS(pCrsr!=0) ){
danielk1977c4d201c2009-04-07 09:16:56 +00004436 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004437 if( NEVER(rc) ) goto abort_due_to_error;
drhd7556d22004-05-14 21:59:40 +00004438 assert( pC->deferredMoveto==0 );
drhf0863fe2005-06-12 21:35:51 +00004439 assert( pC->isTable==0 );
drh4c583122008-01-04 22:01:03 +00004440 if( !pC->nullRow ){
drh35f6b932009-06-23 14:15:04 +00004441 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
danielk19771d850a72004-05-31 08:26:49 +00004442 if( rc!=SQLITE_OK ){
4443 goto abort_due_to_error;
4444 }
drh4c583122008-01-04 22:01:03 +00004445 pOut->u.i = rowid;
drh3c657212009-11-17 23:59:58 +00004446 pOut->flags = MEM_Int;
danielk19773d1bfea2004-05-14 11:00:53 +00004447 }
drh8721ce42001-11-07 14:22:00 +00004448 }
4449 break;
4450}
4451
danielk197761dd5832008-04-18 11:31:12 +00004452/* Opcode: IdxGE P1 P2 P3 P4 P5
drh8721ce42001-11-07 14:22:00 +00004453**
danielk197761dd5832008-04-18 11:31:12 +00004454** The P4 register values beginning with P3 form an unpacked index
4455** key that omits the ROWID. Compare this key value against the index
4456** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004457**
danielk197761dd5832008-04-18 11:31:12 +00004458** If the P1 index entry is greater than or equal to the key value
4459** then jump to P2. Otherwise fall through to the next instruction.
drh772ae622004-05-19 13:13:08 +00004460**
danielk197761dd5832008-04-18 11:31:12 +00004461** If P5 is non-zero then the key value is increased by an epsilon
4462** prior to the comparison. This make the opcode work like IdxGT except
4463** that if the key from register P3 is a prefix of the key in the cursor,
4464** the result is false whereas it would be true with IdxGT.
drh8721ce42001-11-07 14:22:00 +00004465*/
drh3bb9b932010-08-06 02:10:00 +00004466/* Opcode: IdxLT P1 P2 P3 P4 P5
drhc045ec52002-12-04 20:01:06 +00004467**
danielk197761dd5832008-04-18 11:31:12 +00004468** The P4 register values beginning with P3 form an unpacked index
4469** key that omits the ROWID. Compare this key value against the index
4470** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004471**
danielk197761dd5832008-04-18 11:31:12 +00004472** If the P1 index entry is less than the key value then jump to P2.
4473** Otherwise fall through to the next instruction.
drh772ae622004-05-19 13:13:08 +00004474**
danielk197761dd5832008-04-18 11:31:12 +00004475** If P5 is non-zero then the key value is increased by an epsilon prior
4476** to the comparison. This makes the opcode work like IdxLE.
drhc045ec52002-12-04 20:01:06 +00004477*/
drh93952eb2009-11-13 19:43:43 +00004478case OP_IdxLT: /* jump */
4479case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004480 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004481 int res;
4482 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00004483
drh653b82a2009-06-22 11:10:47 +00004484 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4485 pC = p->apCsr[pOp->p1];
4486 assert( pC!=0 );
drhd4187c72010-08-30 22:15:45 +00004487 assert( pC->isOrdered );
drh9a65f2c2009-06-22 19:05:40 +00004488 if( ALWAYS(pC->pCursor!=0) ){
drhd7556d22004-05-14 21:59:40 +00004489 assert( pC->deferredMoveto==0 );
drha05a7222008-01-19 03:35:58 +00004490 assert( pOp->p5==0 || pOp->p5==1 );
danielk197761dd5832008-04-18 11:31:12 +00004491 assert( pOp->p4type==P4_INT32 );
4492 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00004493 r.nField = (u16)pOp->p4.i;
drhe63d9992008-08-13 19:11:48 +00004494 if( pOp->p5 ){
4495 r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID;
4496 }else{
4497 r.flags = UNPACKED_IGNORE_ROWID;
4498 }
drha6c2ed92009-11-14 23:22:23 +00004499 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00004500#ifdef SQLITE_DEBUG
4501 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4502#endif
drhe63d9992008-08-13 19:11:48 +00004503 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
drhc045ec52002-12-04 20:01:06 +00004504 if( pOp->opcode==OP_IdxLT ){
4505 res = -res;
drha05a7222008-01-19 03:35:58 +00004506 }else{
4507 assert( pOp->opcode==OP_IdxGE );
drh8721ce42001-11-07 14:22:00 +00004508 res++;
4509 }
4510 if( res>0 ){
4511 pc = pOp->p2 - 1 ;
4512 }
4513 }
4514 break;
4515}
4516
drh98757152008-01-09 23:04:12 +00004517/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004518**
4519** Delete an entire database table or index whose root page in the database
4520** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00004521**
drh98757152008-01-09 23:04:12 +00004522** The table being destroyed is in the main database file if P3==0. If
4523** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00004524** that is used to store tables create using CREATE TEMPORARY TABLE.
4525**
drh205f48e2004-11-05 00:43:11 +00004526** If AUTOVACUUM is enabled then it is possible that another root page
4527** might be moved into the newly deleted root page in order to keep all
4528** root pages contiguous at the beginning of the database. The former
4529** value of the root page that moved - its value before the move occurred -
drh9cbf3422008-01-17 16:22:13 +00004530** is stored in register P2. If no page
drh98757152008-01-09 23:04:12 +00004531** movement was required (because the table being dropped was already
4532** the last one in the database) then a zero is stored in register P2.
4533** If AUTOVACUUM is disabled then a zero is stored in register P2.
drh205f48e2004-11-05 00:43:11 +00004534**
drhb19a2bc2001-09-16 00:13:26 +00004535** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00004536*/
drh98757152008-01-09 23:04:12 +00004537case OP_Destroy: { /* out2-prerelease */
danielk1977a0bf2652004-11-04 14:30:04 +00004538 int iMoved;
drh3765df42006-06-28 18:18:09 +00004539 int iCnt;
drh5a91a532007-01-05 16:39:43 +00004540 Vdbe *pVdbe;
drh856c1032009-06-02 15:21:42 +00004541 int iDb;
4542#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk1977212b2182006-06-23 14:32:08 +00004543 iCnt = 0;
drh856c1032009-06-02 15:21:42 +00004544 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
danielk1977212b2182006-06-23 14:32:08 +00004545 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
4546 iCnt++;
4547 }
4548 }
drh3765df42006-06-28 18:18:09 +00004549#else
4550 iCnt = db->activeVdbeCnt;
danielk1977212b2182006-06-23 14:32:08 +00004551#endif
drh3c657212009-11-17 23:59:58 +00004552 pOut->flags = MEM_Null;
danielk1977212b2182006-06-23 14:32:08 +00004553 if( iCnt>1 ){
danielk1977e6efa742004-11-10 11:55:10 +00004554 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00004555 p->errorAction = OE_Abort;
danielk1977e6efa742004-11-10 11:55:10 +00004556 }else{
drh856c1032009-06-02 15:21:42 +00004557 iDb = pOp->p3;
danielk1977212b2182006-06-23 14:32:08 +00004558 assert( iCnt==1 );
drhdddd7792011-04-03 18:19:25 +00004559 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
drh98757152008-01-09 23:04:12 +00004560 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00004561 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00004562 pOut->u.i = iMoved;
drh3765df42006-06-28 18:18:09 +00004563#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977e6efa742004-11-10 11:55:10 +00004564 if( rc==SQLITE_OK && iMoved!=0 ){
drhcdf011d2011-04-04 21:25:28 +00004565 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
4566 /* All OP_Destroy operations occur on the same btree */
4567 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
4568 resetSchemaOnFault = iDb+1;
danielk1977e6efa742004-11-10 11:55:10 +00004569 }
drh3765df42006-06-28 18:18:09 +00004570#endif
danielk1977a0bf2652004-11-04 14:30:04 +00004571 }
drh5e00f6c2001-09-13 13:46:56 +00004572 break;
4573}
4574
danielk1977c7af4842008-10-27 13:59:33 +00004575/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00004576**
4577** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00004578** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00004579** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00004580**
drhf57b3392001-10-08 13:22:32 +00004581** The table being clear is in the main database file if P2==0. If
4582** P2==1 then the table to be clear is in the auxiliary database file
4583** that is used to store tables create using CREATE TEMPORARY TABLE.
4584**
shanebe217792009-03-05 04:20:31 +00004585** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00004586** intkey table (an SQL table, not an index). In this case the row change
4587** count is incremented by the number of rows in the table being cleared.
4588** If P3 is greater than zero, then the value stored in register P3 is
4589** also incremented by the number of rows in the table being cleared.
4590**
drhb19a2bc2001-09-16 00:13:26 +00004591** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00004592*/
drh9cbf3422008-01-17 16:22:13 +00004593case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00004594 int nChange;
4595
4596 nChange = 0;
drhdddd7792011-04-03 18:19:25 +00004597 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
danielk1977c7af4842008-10-27 13:59:33 +00004598 rc = sqlite3BtreeClearTable(
4599 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
4600 );
4601 if( pOp->p3 ){
4602 p->nChange += nChange;
4603 if( pOp->p3>0 ){
drh2b4ded92010-09-27 21:09:31 +00004604 assert( memIsValid(&aMem[pOp->p3]) );
4605 memAboutToChange(p, &aMem[pOp->p3]);
drha6c2ed92009-11-14 23:22:23 +00004606 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00004607 }
4608 }
drh5edc3122001-09-13 21:53:09 +00004609 break;
4610}
4611
drh4c583122008-01-04 22:01:03 +00004612/* Opcode: CreateTable P1 P2 * * *
drh5b2fd562001-09-13 15:21:31 +00004613**
drh4c583122008-01-04 22:01:03 +00004614** Allocate a new table in the main database file if P1==0 or in the
4615** auxiliary database file if P1==1 or in an attached database if
4616** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00004617** register P2
drh5b2fd562001-09-13 15:21:31 +00004618**
drhc6b52df2002-01-04 03:09:29 +00004619** The difference between a table and an index is this: A table must
4620** have a 4-byte integer key and can have arbitrary data. An index
4621** has an arbitrary key but no data.
4622**
drhb19a2bc2001-09-16 00:13:26 +00004623** See also: CreateIndex
drh5b2fd562001-09-13 15:21:31 +00004624*/
drh4c583122008-01-04 22:01:03 +00004625/* Opcode: CreateIndex P1 P2 * * *
drhf57b3392001-10-08 13:22:32 +00004626**
drh4c583122008-01-04 22:01:03 +00004627** Allocate a new index in the main database file if P1==0 or in the
4628** auxiliary database file if P1==1 or in an attached database if
4629** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00004630** register P2.
drhf57b3392001-10-08 13:22:32 +00004631**
drhc6b52df2002-01-04 03:09:29 +00004632** See documentation on OP_CreateTable for additional information.
drhf57b3392001-10-08 13:22:32 +00004633*/
drh4c583122008-01-04 22:01:03 +00004634case OP_CreateIndex: /* out2-prerelease */
4635case OP_CreateTable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00004636 int pgno;
drhf328bc82004-05-10 23:29:49 +00004637 int flags;
drh234c39d2004-07-24 03:30:47 +00004638 Db *pDb;
drh856c1032009-06-02 15:21:42 +00004639
4640 pgno = 0;
drh234c39d2004-07-24 03:30:47 +00004641 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00004642 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh234c39d2004-07-24 03:30:47 +00004643 pDb = &db->aDb[pOp->p1];
4644 assert( pDb->pBt!=0 );
drhc6b52df2002-01-04 03:09:29 +00004645 if( pOp->opcode==OP_CreateTable ){
danielk197794076252004-05-14 12:16:11 +00004646 /* flags = BTREE_INTKEY; */
drhd4187c72010-08-30 22:15:45 +00004647 flags = BTREE_INTKEY;
drhc6b52df2002-01-04 03:09:29 +00004648 }else{
drhd4187c72010-08-30 22:15:45 +00004649 flags = BTREE_BLOBKEY;
drhc6b52df2002-01-04 03:09:29 +00004650 }
drh234c39d2004-07-24 03:30:47 +00004651 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
drh88a003e2008-12-11 16:17:03 +00004652 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00004653 break;
4654}
4655
drh22645842011-03-24 01:34:03 +00004656/* Opcode: ParseSchema P1 * * P4 *
drh234c39d2004-07-24 03:30:47 +00004657**
4658** Read and parse all entries from the SQLITE_MASTER table of database P1
drh22645842011-03-24 01:34:03 +00004659** that match the WHERE clause P4.
drh234c39d2004-07-24 03:30:47 +00004660**
4661** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00004662** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00004663*/
drh9cbf3422008-01-17 16:22:13 +00004664case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00004665 int iDb;
4666 const char *zMaster;
4667 char *zSql;
4668 InitData initData;
4669
drhbdaec522011-04-04 00:14:43 +00004670 /* Any prepared statement that invokes this opcode will hold mutexes
4671 ** on every btree. This is a prerequisite for invoking
4672 ** sqlite3InitCallback().
4673 */
4674#ifdef SQLITE_DEBUG
4675 for(iDb=0; iDb<db->nDb; iDb++){
4676 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
4677 }
4678#endif
drhbdaec522011-04-04 00:14:43 +00004679
drh856c1032009-06-02 15:21:42 +00004680 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00004681 assert( iDb>=0 && iDb<db->nDb );
dan6c154872011-04-02 09:44:43 +00004682 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
drhbdaec522011-04-04 00:14:43 +00004683 /* Used to be a conditional */ {
drh856c1032009-06-02 15:21:42 +00004684 zMaster = SCHEMA_TABLE(iDb);
danielk1977a8bbef82009-03-23 17:11:26 +00004685 initData.db = db;
4686 initData.iDb = pOp->p1;
4687 initData.pzErrMsg = &p->zErrMsg;
4688 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00004689 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
danielk1977a8bbef82009-03-23 17:11:26 +00004690 db->aDb[iDb].zName, zMaster, pOp->p4.z);
4691 if( zSql==0 ){
4692 rc = SQLITE_NOMEM;
4693 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00004694 assert( db->init.busy==0 );
4695 db->init.busy = 1;
4696 initData.rc = SQLITE_OK;
4697 assert( !db->mallocFailed );
4698 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
4699 if( rc==SQLITE_OK ) rc = initData.rc;
4700 sqlite3DbFree(db, zSql);
4701 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00004702 }
drh3c23a882007-01-09 14:01:13 +00004703 }
danielk1977261919c2005-12-06 12:52:59 +00004704 if( rc==SQLITE_NOMEM ){
danielk1977261919c2005-12-06 12:52:59 +00004705 goto no_mem;
4706 }
drh234c39d2004-07-24 03:30:47 +00004707 break;
4708}
4709
drh8bfdf722009-06-19 14:06:03 +00004710#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00004711/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00004712**
4713** Read the sqlite_stat1 table for database P1 and load the content
4714** of that table into the internal index hash table. This will cause
4715** the analysis to be used when preparing all subsequent queries.
4716*/
drh9cbf3422008-01-17 16:22:13 +00004717case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00004718 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4719 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh497e4462005-07-23 03:18:40 +00004720 break;
4721}
drh8bfdf722009-06-19 14:06:03 +00004722#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00004723
drh98757152008-01-09 23:04:12 +00004724/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004725**
4726** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004727** the table named P4 in database P1. This is called after a table
drh956bc922004-07-24 17:38:29 +00004728** is dropped in order to keep the internal representation of the
4729** schema consistent with what is on disk.
4730*/
drh9cbf3422008-01-17 16:22:13 +00004731case OP_DropTable: {
danielk19772dca4ac2008-01-03 11:50:29 +00004732 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004733 break;
4734}
4735
drh98757152008-01-09 23:04:12 +00004736/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004737**
4738** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004739** the index named P4 in database P1. This is called after an index
drh956bc922004-07-24 17:38:29 +00004740** is dropped in order to keep the internal representation of the
4741** schema consistent with what is on disk.
4742*/
drh9cbf3422008-01-17 16:22:13 +00004743case OP_DropIndex: {
danielk19772dca4ac2008-01-03 11:50:29 +00004744 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004745 break;
4746}
4747
drh98757152008-01-09 23:04:12 +00004748/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004749**
4750** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004751** the trigger named P4 in database P1. This is called after a trigger
drh956bc922004-07-24 17:38:29 +00004752** is dropped in order to keep the internal representation of the
4753** schema consistent with what is on disk.
4754*/
drh9cbf3422008-01-17 16:22:13 +00004755case OP_DropTrigger: {
danielk19772dca4ac2008-01-03 11:50:29 +00004756 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004757 break;
4758}
4759
drh234c39d2004-07-24 03:30:47 +00004760
drhb7f91642004-10-31 02:22:47 +00004761#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98757152008-01-09 23:04:12 +00004762/* Opcode: IntegrityCk P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00004763**
drh98757152008-01-09 23:04:12 +00004764** Do an analysis of the currently open database. Store in
4765** register P1 the text of an error message describing any problems.
4766** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00004767**
drh98757152008-01-09 23:04:12 +00004768** The register P3 contains the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00004769** At most reg(P3) errors will be reported.
4770** In other words, the analysis stops as soon as reg(P1) errors are
4771** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00004772**
drh79069752004-05-22 21:30:40 +00004773** The root page numbers of all tables in the database are integer
drh60a713c2008-01-21 16:22:45 +00004774** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
drh98757152008-01-09 23:04:12 +00004775** total.
drh21504322002-06-25 13:16:02 +00004776**
drh98757152008-01-09 23:04:12 +00004777** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00004778** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00004779**
drh1dcdbc02007-01-27 02:24:54 +00004780** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00004781*/
drhaaab5722002-02-19 13:39:21 +00004782case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00004783 int nRoot; /* Number of tables to check. (Number of root pages.) */
4784 int *aRoot; /* Array of rootpage numbers for tables to be checked */
4785 int j; /* Loop counter */
4786 int nErr; /* Number of errors reported */
4787 char *z; /* Text of the error report */
4788 Mem *pnErr; /* Register keeping track of errors remaining */
4789
4790 nRoot = pOp->p2;
drh79069752004-05-22 21:30:40 +00004791 assert( nRoot>0 );
drh633e6d52008-07-28 19:34:53 +00004792 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
drhcaec2f12003-01-07 02:47:47 +00004793 if( aRoot==0 ) goto no_mem;
drh98757152008-01-09 23:04:12 +00004794 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00004795 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00004796 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00004797 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00004798 pIn1 = &aMem[pOp->p1];
drh79069752004-05-22 21:30:40 +00004799 for(j=0; j<nRoot; j++){
drh9c1905f2008-12-10 22:32:56 +00004800 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
drh1dd397f2002-02-03 03:34:07 +00004801 }
4802 aRoot[j] = 0;
drh98757152008-01-09 23:04:12 +00004803 assert( pOp->p5<db->nDb );
drhdddd7792011-04-03 18:19:25 +00004804 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
drh98757152008-01-09 23:04:12 +00004805 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
drh9c1905f2008-12-10 22:32:56 +00004806 (int)pnErr->u.i, &nErr);
drhc890fec2008-08-01 20:10:08 +00004807 sqlite3DbFree(db, aRoot);
drh3c024d62007-03-30 11:23:45 +00004808 pnErr->u.i -= nErr;
drha05a7222008-01-19 03:35:58 +00004809 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00004810 if( nErr==0 ){
4811 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00004812 }else if( z==0 ){
4813 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00004814 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00004815 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00004816 }
drhb7654112008-01-12 12:48:07 +00004817 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00004818 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00004819 break;
4820}
drhb7f91642004-10-31 02:22:47 +00004821#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00004822
drh3d4501e2008-12-04 20:40:10 +00004823/* Opcode: RowSetAdd P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004824**
drh3d4501e2008-12-04 20:40:10 +00004825** Insert the integer value held by register P2 into a boolean index
4826** held in register P1.
4827**
4828** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00004829*/
drh93952eb2009-11-13 19:43:43 +00004830case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00004831 pIn1 = &aMem[pOp->p1];
4832 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00004833 assert( (pIn2->flags & MEM_Int)!=0 );
4834 if( (pIn1->flags & MEM_RowSet)==0 ){
4835 sqlite3VdbeMemSetRowSet(pIn1);
4836 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00004837 }
drh93952eb2009-11-13 19:43:43 +00004838 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00004839 break;
4840}
4841
4842/* Opcode: RowSetRead P1 P2 P3 * *
4843**
4844** Extract the smallest value from boolean index P1 and put that value into
4845** register P3. Or, if boolean index P1 is initially empty, leave P3
4846** unchanged and jump to instruction P2.
4847*/
drh93952eb2009-11-13 19:43:43 +00004848case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00004849 i64 val;
drh3d4501e2008-12-04 20:40:10 +00004850 CHECK_FOR_INTERRUPT;
drh3c657212009-11-17 23:59:58 +00004851 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00004852 if( (pIn1->flags & MEM_RowSet)==0
4853 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00004854 ){
4855 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00004856 sqlite3VdbeMemSetNull(pIn1);
drh3d4501e2008-12-04 20:40:10 +00004857 pc = pOp->p2 - 1;
4858 }else{
4859 /* A value was pulled from the index */
drh3c657212009-11-17 23:59:58 +00004860 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh17435752007-08-16 04:30:38 +00004861 }
drh5e00f6c2001-09-13 13:46:56 +00004862 break;
4863}
4864
drh1b26c7c2009-04-22 02:15:47 +00004865/* Opcode: RowSetTest P1 P2 P3 P4
danielk19771d461462009-04-21 09:02:45 +00004866**
drhade97602009-04-21 15:05:18 +00004867** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00004868** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00004869** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00004870** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00004871** next opcode.
danielk19771d461462009-04-21 09:02:45 +00004872**
drh1b26c7c2009-04-22 02:15:47 +00004873** The RowSet object is optimized for the case where successive sets
danielk19771d461462009-04-21 09:02:45 +00004874** of integers, where each set contains no duplicates. Each set
4875** of values is identified by a unique P4 value. The first set
drh1b26c7c2009-04-22 02:15:47 +00004876** must have P4==0, the final set P4=-1. P4 must be either -1 or
4877** non-negative. For non-negative values of P4 only the lower 4
4878** bits are significant.
danielk19771d461462009-04-21 09:02:45 +00004879**
4880** This allows optimizations: (a) when P4==0 there is no need to test
drh1b26c7c2009-04-22 02:15:47 +00004881** the rowset object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00004882** (b) when P4==-1 there is no need to insert the value, as it will
4883** never be tested for, and (c) when a value that is part of set X is
4884** inserted, there is no need to search to see if the same value was
4885** previously inserted as part of set X (only if it was previously
4886** inserted as part of some other set).
4887*/
drh1b26c7c2009-04-22 02:15:47 +00004888case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00004889 int iSet;
4890 int exists;
4891
drh3c657212009-11-17 23:59:58 +00004892 pIn1 = &aMem[pOp->p1];
4893 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00004894 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00004895 assert( pIn3->flags&MEM_Int );
4896
drh1b26c7c2009-04-22 02:15:47 +00004897 /* If there is anything other than a rowset object in memory cell P1,
4898 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00004899 */
drh733bf1b2009-04-22 00:47:00 +00004900 if( (pIn1->flags & MEM_RowSet)==0 ){
4901 sqlite3VdbeMemSetRowSet(pIn1);
4902 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00004903 }
4904
4905 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00004906 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00004907 if( iSet ){
shane60a4b532009-05-06 18:57:09 +00004908 exists = sqlite3RowSetTest(pIn1->u.pRowSet,
4909 (u8)(iSet>=0 ? iSet & 0xf : 0xff),
drh733bf1b2009-04-22 00:47:00 +00004910 pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00004911 if( exists ){
4912 pc = pOp->p2 - 1;
4913 break;
4914 }
4915 }
4916 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00004917 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00004918 }
4919 break;
4920}
4921
drh5e00f6c2001-09-13 13:46:56 +00004922
danielk197793758c82005-01-21 08:13:14 +00004923#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00004924
4925/* Opcode: Program P1 P2 P3 P4 *
4926**
dan76d462e2009-08-30 11:42:51 +00004927** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00004928**
dan76d462e2009-08-30 11:42:51 +00004929** P1 contains the address of the memory cell that contains the first memory
4930** cell in an array of values used as arguments to the sub-program. P2
4931** contains the address to jump to if the sub-program throws an IGNORE
4932** exception using the RAISE() function. Register P3 contains the address
4933** of a memory cell in this (the parent) VM that is used to allocate the
4934** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00004935**
4936** P4 is a pointer to the VM containing the trigger program.
4937*/
dan76d462e2009-08-30 11:42:51 +00004938case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00004939 int nMem; /* Number of memory registers for sub-program */
4940 int nByte; /* Bytes of runtime space required for sub-program */
4941 Mem *pRt; /* Register to allocate runtime space */
4942 Mem *pMem; /* Used to iterate through memory cells */
4943 Mem *pEnd; /* Last memory cell in new array */
4944 VdbeFrame *pFrame; /* New vdbe frame to execute in */
4945 SubProgram *pProgram; /* Sub-program to execute */
4946 void *t; /* Token identifying trigger */
4947
4948 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00004949 pRt = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00004950 assert( memIsValid(pRt) );
dan165921a2009-08-28 18:53:45 +00004951 assert( pProgram->nOp>0 );
4952
dan1da40a32009-09-19 17:00:31 +00004953 /* If the p5 flag is clear, then recursive invocation of triggers is
4954 ** disabled for backwards compatibility (p5 is set if this sub-program
4955 ** is really a trigger, not a foreign key action, and the flag set
4956 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00004957 **
4958 ** It is recursive invocation of triggers, at the SQL level, that is
4959 ** disabled. In some cases a single trigger may generate more than one
4960 ** SubProgram (if the trigger may be executed with more than one different
4961 ** ON CONFLICT algorithm). SubProgram structures associated with a
4962 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00004963 ** variable. */
4964 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00004965 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00004966 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
4967 if( pFrame ) break;
4968 }
4969
danf5894502009-10-07 18:41:19 +00004970 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00004971 rc = SQLITE_ERROR;
4972 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
4973 break;
4974 }
4975
4976 /* Register pRt is used to store the memory required to save the state
4977 ** of the current program, and the memory required at runtime to execute
4978 ** the trigger program. If this trigger has been fired before, then pRt
4979 ** is already allocated. Otherwise, it must be initialized. */
4980 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00004981 /* SubProgram.nMem is set to the number of memory cells used by the
4982 ** program stored in SubProgram.aOp. As well as these, one memory
4983 ** cell is required for each cursor used by the program. Set local
4984 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
4985 */
dan65a7cd12009-09-01 12:16:01 +00004986 nMem = pProgram->nMem + pProgram->nCsr;
4987 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00004988 + nMem * sizeof(Mem)
4989 + pProgram->nCsr * sizeof(VdbeCursor *);
4990 pFrame = sqlite3DbMallocZero(db, nByte);
4991 if( !pFrame ){
4992 goto no_mem;
4993 }
4994 sqlite3VdbeMemRelease(pRt);
4995 pRt->flags = MEM_Frame;
4996 pRt->u.pFrame = pFrame;
4997
4998 pFrame->v = p;
4999 pFrame->nChildMem = nMem;
5000 pFrame->nChildCsr = pProgram->nCsr;
5001 pFrame->pc = pc;
5002 pFrame->aMem = p->aMem;
5003 pFrame->nMem = p->nMem;
5004 pFrame->apCsr = p->apCsr;
5005 pFrame->nCursor = p->nCursor;
5006 pFrame->aOp = p->aOp;
5007 pFrame->nOp = p->nOp;
5008 pFrame->token = pProgram->token;
5009
5010 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5011 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
5012 pMem->flags = MEM_Null;
5013 pMem->db = db;
5014 }
5015 }else{
5016 pFrame = pRt->u.pFrame;
5017 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5018 assert( pProgram->nCsr==pFrame->nChildCsr );
5019 assert( pc==pFrame->pc );
5020 }
5021
5022 p->nFrame++;
5023 pFrame->pParent = p->pFrame;
drh99a66922011-05-13 18:51:42 +00005024 pFrame->lastRowid = lastRowid;
dan76d462e2009-08-30 11:42:51 +00005025 pFrame->nChange = p->nChange;
dan2832ad42009-08-31 15:27:27 +00005026 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00005027 p->pFrame = pFrame;
drha6c2ed92009-11-14 23:22:23 +00005028 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
dan165921a2009-08-28 18:53:45 +00005029 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00005030 p->nCursor = (u16)pFrame->nChildCsr;
drha6c2ed92009-11-14 23:22:23 +00005031 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
drhbbe879d2009-11-14 18:04:35 +00005032 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00005033 p->nOp = pProgram->nOp;
5034 pc = -1;
5035
5036 break;
5037}
5038
dan76d462e2009-08-30 11:42:51 +00005039/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00005040**
dan76d462e2009-08-30 11:42:51 +00005041** This opcode is only ever present in sub-programs called via the
5042** OP_Program instruction. Copy a value currently stored in a memory
5043** cell of the calling (parent) frame to cell P2 in the current frames
5044** address space. This is used by trigger programs to access the new.*
5045** and old.* values.
dan165921a2009-08-28 18:53:45 +00005046**
dan76d462e2009-08-30 11:42:51 +00005047** The address of the cell in the parent frame is determined by adding
5048** the value of the P1 argument to the value of the P1 argument to the
5049** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00005050*/
dan76d462e2009-08-30 11:42:51 +00005051case OP_Param: { /* out2-prerelease */
dan65a7cd12009-09-01 12:16:01 +00005052 VdbeFrame *pFrame;
5053 Mem *pIn;
5054 pFrame = p->pFrame;
5055 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00005056 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5057 break;
5058}
5059
danielk197793758c82005-01-21 08:13:14 +00005060#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00005061
dan1da40a32009-09-19 17:00:31 +00005062#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00005063/* Opcode: FkCounter P1 P2 * * *
dan1da40a32009-09-19 17:00:31 +00005064**
dan0ff297e2009-09-25 17:03:14 +00005065** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5066** If P1 is non-zero, the database constraint counter is incremented
5067** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00005068** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00005069*/
dan32b09f22009-09-23 17:29:59 +00005070case OP_FkCounter: {
dan0ff297e2009-09-25 17:03:14 +00005071 if( pOp->p1 ){
5072 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00005073 }else{
dan0ff297e2009-09-25 17:03:14 +00005074 p->nFkConstraint += pOp->p2;
5075 }
5076 break;
5077}
5078
5079/* Opcode: FkIfZero P1 P2 * * *
5080**
5081** This opcode tests if a foreign key constraint-counter is currently zero.
5082** If so, jump to instruction P2. Otherwise, fall through to the next
5083** instruction.
5084**
5085** If P1 is non-zero, then the jump is taken if the database constraint-counter
5086** is zero (the one that counts deferred constraint violations). If P1 is
5087** zero, the jump is taken if the statement constraint-counter is zero
5088** (immediate foreign key constraint violations).
5089*/
5090case OP_FkIfZero: { /* jump */
5091 if( pOp->p1 ){
5092 if( db->nDeferredCons==0 ) pc = pOp->p2-1;
5093 }else{
5094 if( p->nFkConstraint==0 ) pc = pOp->p2-1;
dan32b09f22009-09-23 17:29:59 +00005095 }
dan1da40a32009-09-19 17:00:31 +00005096 break;
5097}
5098#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5099
drh205f48e2004-11-05 00:43:11 +00005100#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00005101/* Opcode: MemMax P1 P2 * * *
drh205f48e2004-11-05 00:43:11 +00005102**
dan76d462e2009-08-30 11:42:51 +00005103** P1 is a register in the root frame of this VM (the root frame is
5104** different from the current frame if this instruction is being executed
5105** within a sub-program). Set the value of register P1 to the maximum of
5106** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00005107**
5108** This instruction throws an error if the memory cell is not initially
5109** an integer.
5110*/
dan76d462e2009-08-30 11:42:51 +00005111case OP_MemMax: { /* in2 */
5112 Mem *pIn1;
5113 VdbeFrame *pFrame;
5114 if( p->pFrame ){
5115 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5116 pIn1 = &pFrame->aMem[pOp->p1];
5117 }else{
drha6c2ed92009-11-14 23:22:23 +00005118 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00005119 }
drh2b4ded92010-09-27 21:09:31 +00005120 assert( memIsValid(pIn1) );
drh98757152008-01-09 23:04:12 +00005121 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00005122 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00005123 sqlite3VdbeMemIntegerify(pIn2);
5124 if( pIn1->u.i<pIn2->u.i){
5125 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00005126 }
5127 break;
5128}
5129#endif /* SQLITE_OMIT_AUTOINCREMENT */
5130
drh98757152008-01-09 23:04:12 +00005131/* Opcode: IfPos P1 P2 * * *
danielk1977a2dc3b12005-02-05 12:48:48 +00005132**
drh98757152008-01-09 23:04:12 +00005133** If the value of register P1 is 1 or greater, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005134**
drh98757152008-01-09 23:04:12 +00005135** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005136** not contain an integer. An assertion fault will result if you try.
danielk1977a2dc3b12005-02-05 12:48:48 +00005137*/
drh9cbf3422008-01-17 16:22:13 +00005138case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005139 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005140 assert( pIn1->flags&MEM_Int );
drh3c84ddf2008-01-09 02:15:38 +00005141 if( pIn1->u.i>0 ){
drhec7429a2005-10-06 16:53:14 +00005142 pc = pOp->p2 - 1;
5143 }
5144 break;
5145}
5146
drh98757152008-01-09 23:04:12 +00005147/* Opcode: IfNeg P1 P2 * * *
drh15007a92006-01-08 18:10:17 +00005148**
drh98757152008-01-09 23:04:12 +00005149** If the value of register P1 is less than zero, jump to P2.
drh15007a92006-01-08 18:10:17 +00005150**
drh98757152008-01-09 23:04:12 +00005151** It is illegal to use this instruction on a register that does
drh15007a92006-01-08 18:10:17 +00005152** not contain an integer. An assertion fault will result if you try.
5153*/
drh9cbf3422008-01-17 16:22:13 +00005154case OP_IfNeg: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005155 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005156 assert( pIn1->flags&MEM_Int );
drh3c84ddf2008-01-09 02:15:38 +00005157 if( pIn1->u.i<0 ){
drh15007a92006-01-08 18:10:17 +00005158 pc = pOp->p2 - 1;
5159 }
5160 break;
5161}
5162
drh9b918ed2009-11-12 03:13:26 +00005163/* Opcode: IfZero P1 P2 P3 * *
drhec7429a2005-10-06 16:53:14 +00005164**
drh9b918ed2009-11-12 03:13:26 +00005165** The register P1 must contain an integer. Add literal P3 to the
5166** value in register P1. If the result is exactly 0, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005167**
drh98757152008-01-09 23:04:12 +00005168** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005169** not contain an integer. An assertion fault will result if you try.
drhec7429a2005-10-06 16:53:14 +00005170*/
drh9cbf3422008-01-17 16:22:13 +00005171case OP_IfZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005172 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005173 assert( pIn1->flags&MEM_Int );
drh9b918ed2009-11-12 03:13:26 +00005174 pIn1->u.i += pOp->p3;
drh3c84ddf2008-01-09 02:15:38 +00005175 if( pIn1->u.i==0 ){
drha2a49dc2008-01-02 14:28:13 +00005176 pc = pOp->p2 - 1;
5177 }
5178 break;
5179}
5180
drh98757152008-01-09 23:04:12 +00005181/* Opcode: AggStep * P2 P3 P4 P5
drhe5095352002-02-24 03:25:14 +00005182**
drh0bce8352002-02-28 00:41:10 +00005183** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00005184** function has P5 arguments. P4 is a pointer to the FuncDef
5185** structure that specifies the function. Use register
5186** P3 as the accumulator.
drhe5095352002-02-24 03:25:14 +00005187**
drh98757152008-01-09 23:04:12 +00005188** The P5 arguments are taken from register P2 and its
5189** successors.
drhe5095352002-02-24 03:25:14 +00005190*/
drh9cbf3422008-01-17 16:22:13 +00005191case OP_AggStep: {
drh856c1032009-06-02 15:21:42 +00005192 int n;
drhe5095352002-02-24 03:25:14 +00005193 int i;
drhc54a6172009-06-02 16:06:03 +00005194 Mem *pMem;
5195 Mem *pRec;
danielk197722322fd2004-05-25 23:35:17 +00005196 sqlite3_context ctx;
danielk19776ddcca52004-05-24 23:48:25 +00005197 sqlite3_value **apVal;
drhe5095352002-02-24 03:25:14 +00005198
drh856c1032009-06-02 15:21:42 +00005199 n = pOp->p5;
drh6810ce62004-01-31 19:22:56 +00005200 assert( n>=0 );
drha6c2ed92009-11-14 23:22:23 +00005201 pRec = &aMem[pOp->p2];
danielk19776ddcca52004-05-24 23:48:25 +00005202 apVal = p->apArg;
5203 assert( apVal || n==0 );
drh6810ce62004-01-31 19:22:56 +00005204 for(i=0; i<n; i++, pRec++){
drh2b4ded92010-09-27 21:09:31 +00005205 assert( memIsValid(pRec) );
danielk1977c572ef72004-05-27 09:28:41 +00005206 apVal[i] = pRec;
drh2b4ded92010-09-27 21:09:31 +00005207 memAboutToChange(p, pRec);
dan937d0de2009-10-15 18:35:38 +00005208 sqlite3VdbeMemStoreType(pRec);
drhe5095352002-02-24 03:25:14 +00005209 }
danielk19772dca4ac2008-01-03 11:50:29 +00005210 ctx.pFunc = pOp->p4.pFunc;
drh98757152008-01-09 23:04:12 +00005211 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005212 ctx.pMem = pMem = &aMem[pOp->p3];
drhabfcea22005-09-06 20:36:48 +00005213 pMem->n++;
drh90669c12006-01-20 15:45:36 +00005214 ctx.s.flags = MEM_Null;
5215 ctx.s.z = 0;
danielk19775f096132008-03-28 15:44:09 +00005216 ctx.s.zMalloc = 0;
drh90669c12006-01-20 15:45:36 +00005217 ctx.s.xDel = 0;
drhb21c8cd2007-08-21 19:33:56 +00005218 ctx.s.db = db;
drh1350b032002-02-27 19:00:20 +00005219 ctx.isError = 0;
danielk1977dc1bdc42004-06-11 10:51:27 +00005220 ctx.pColl = 0;
drhe82f5d02008-10-07 19:53:14 +00005221 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
danielk1977dc1bdc42004-06-11 10:51:27 +00005222 assert( pOp>p->aOp );
drh66a51672008-01-03 00:01:23 +00005223 assert( pOp[-1].p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00005224 assert( pOp[-1].opcode==OP_CollSeq );
danielk19772dca4ac2008-01-03 11:50:29 +00005225 ctx.pColl = pOp[-1].p4.pColl;
danielk1977dc1bdc42004-06-11 10:51:27 +00005226 }
drhee9ff672010-09-03 18:50:48 +00005227 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh1350b032002-02-27 19:00:20 +00005228 if( ctx.isError ){
drhf089aa42008-07-08 19:34:06 +00005229 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
drh69544ec2008-02-06 14:11:34 +00005230 rc = ctx.isError;
drh1350b032002-02-27 19:00:20 +00005231 }
drhbdaec522011-04-04 00:14:43 +00005232
drh90669c12006-01-20 15:45:36 +00005233 sqlite3VdbeMemRelease(&ctx.s);
drhbdaec522011-04-04 00:14:43 +00005234
drh5e00f6c2001-09-13 13:46:56 +00005235 break;
5236}
5237
drh98757152008-01-09 23:04:12 +00005238/* Opcode: AggFinal P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00005239**
drh13449892005-09-07 21:22:45 +00005240** Execute the finalizer function for an aggregate. P1 is
5241** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00005242**
5243** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00005244** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00005245** argument is not used by this opcode. It is only there to disambiguate
5246** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00005247** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00005248** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00005249*/
drh9cbf3422008-01-17 16:22:13 +00005250case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00005251 Mem *pMem;
drh0a07c102008-01-03 18:03:08 +00005252 assert( pOp->p1>0 && pOp->p1<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005253 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00005254 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00005255 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00005256 if( rc ){
drhf089aa42008-07-08 19:34:06 +00005257 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
drh90669c12006-01-20 15:45:36 +00005258 }
drh2dca8682008-03-21 17:13:13 +00005259 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00005260 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00005261 if( sqlite3VdbeMemTooBig(pMem) ){
5262 goto too_big;
5263 }
drh5e00f6c2001-09-13 13:46:56 +00005264 break;
5265}
5266
dan5cf53532010-05-01 16:40:20 +00005267#ifndef SQLITE_OMIT_WAL
dancdc1f042010-11-18 12:11:05 +00005268/* Opcode: Checkpoint P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00005269**
5270** Checkpoint database P1. This is a no-op if P1 is not currently in
dancdc1f042010-11-18 12:11:05 +00005271** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
drh30aa3b92011-02-07 23:56:01 +00005272** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
5273** SQLITE_BUSY or not, respectively. Write the number of pages in the
5274** WAL after the checkpoint into mem[P3+1] and the number of pages
5275** in the WAL that have been checkpointed after the checkpoint
5276** completes into mem[P3+2]. However on an error, mem[P3+1] and
5277** mem[P3+2] are initialized to -1.
dan7c246102010-04-12 19:00:29 +00005278*/
5279case OP_Checkpoint: {
drh30aa3b92011-02-07 23:56:01 +00005280 int i; /* Loop counter */
5281 int aRes[3]; /* Results */
5282 Mem *pMem; /* Write results here */
5283
5284 aRes[0] = 0;
5285 aRes[1] = aRes[2] = -1;
dancdc1f042010-11-18 12:11:05 +00005286 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5287 || pOp->p2==SQLITE_CHECKPOINT_FULL
5288 || pOp->p2==SQLITE_CHECKPOINT_RESTART
5289 );
drh30aa3b92011-02-07 23:56:01 +00005290 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
dancdc1f042010-11-18 12:11:05 +00005291 if( rc==SQLITE_BUSY ){
5292 rc = SQLITE_OK;
drh30aa3b92011-02-07 23:56:01 +00005293 aRes[0] = 1;
dancdc1f042010-11-18 12:11:05 +00005294 }
drh30aa3b92011-02-07 23:56:01 +00005295 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5296 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5297 }
dan7c246102010-04-12 19:00:29 +00005298 break;
5299};
dan5cf53532010-05-01 16:40:20 +00005300#endif
drh5e00f6c2001-09-13 13:46:56 +00005301
drhcac29a62010-07-02 19:36:52 +00005302#ifndef SQLITE_OMIT_PRAGMA
drhab9b7442010-05-10 11:20:05 +00005303/* Opcode: JournalMode P1 P2 P3 * P5
dane04dc882010-04-20 18:53:15 +00005304**
5305** Change the journal mode of database P1 to P3. P3 must be one of the
5306** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5307** modes (delete, truncate, persist, off and memory), this is a simple
5308** operation. No IO is required.
5309**
5310** If changing into or out of WAL mode the procedure is more complicated.
5311**
5312** Write a string containing the final journal-mode to register P2.
5313*/
drhd80b2332010-05-01 00:59:37 +00005314case OP_JournalMode: { /* out2-prerelease */
dane04dc882010-04-20 18:53:15 +00005315 Btree *pBt; /* Btree to change journal mode of */
5316 Pager *pPager; /* Pager associated with pBt */
drhd80b2332010-05-01 00:59:37 +00005317 int eNew; /* New journal mode */
5318 int eOld; /* The old journal mode */
drhd80b2332010-05-01 00:59:37 +00005319 const char *zFilename; /* Name of database file for pPager */
dane04dc882010-04-20 18:53:15 +00005320
drhd80b2332010-05-01 00:59:37 +00005321 eNew = pOp->p3;
dane04dc882010-04-20 18:53:15 +00005322 assert( eNew==PAGER_JOURNALMODE_DELETE
5323 || eNew==PAGER_JOURNALMODE_TRUNCATE
5324 || eNew==PAGER_JOURNALMODE_PERSIST
5325 || eNew==PAGER_JOURNALMODE_OFF
5326 || eNew==PAGER_JOURNALMODE_MEMORY
5327 || eNew==PAGER_JOURNALMODE_WAL
5328 || eNew==PAGER_JOURNALMODE_QUERY
5329 );
5330 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drh3ebaee92010-05-06 21:37:22 +00005331
dane04dc882010-04-20 18:53:15 +00005332 pBt = db->aDb[pOp->p1].pBt;
5333 pPager = sqlite3BtreePager(pBt);
drh0b9b4302010-06-11 17:01:24 +00005334 eOld = sqlite3PagerGetJournalMode(pPager);
5335 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5336 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
dan5cf53532010-05-01 16:40:20 +00005337
5338#ifndef SQLITE_OMIT_WAL
drhd80b2332010-05-01 00:59:37 +00005339 zFilename = sqlite3PagerFilename(pPager);
dane04dc882010-04-20 18:53:15 +00005340
drhd80b2332010-05-01 00:59:37 +00005341 /* Do not allow a transition to journal_mode=WAL for a database
drh6e1f4822010-07-13 23:41:40 +00005342 ** in temporary storage or if the VFS does not support shared memory
drhd80b2332010-05-01 00:59:37 +00005343 */
5344 if( eNew==PAGER_JOURNALMODE_WAL
drhd9e5c4f2010-05-12 18:01:39 +00005345 && (zFilename[0]==0 /* Temp file */
drh6e1f4822010-07-13 23:41:40 +00005346 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
dane180c292010-04-26 17:42:56 +00005347 ){
drh0b9b4302010-06-11 17:01:24 +00005348 eNew = eOld;
dane180c292010-04-26 17:42:56 +00005349 }
5350
drh0b9b4302010-06-11 17:01:24 +00005351 if( (eNew!=eOld)
5352 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5353 ){
5354 if( !db->autoCommit || db->activeVdbeCnt>1 ){
5355 rc = SQLITE_ERROR;
5356 sqlite3SetString(&p->zErrMsg, db,
5357 "cannot change %s wal mode from within a transaction",
5358 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5359 );
5360 break;
5361 }else{
5362
5363 if( eOld==PAGER_JOURNALMODE_WAL ){
5364 /* If leaving WAL mode, close the log file. If successful, the call
5365 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5366 ** file. An EXCLUSIVE lock may still be held on the database file
5367 ** after a successful return.
dane04dc882010-04-20 18:53:15 +00005368 */
drh0b9b4302010-06-11 17:01:24 +00005369 rc = sqlite3PagerCloseWal(pPager);
drhab9b7442010-05-10 11:20:05 +00005370 if( rc==SQLITE_OK ){
drh0b9b4302010-06-11 17:01:24 +00005371 sqlite3PagerSetJournalMode(pPager, eNew);
drh89c3f2f2010-05-15 01:09:38 +00005372 }
drh242c4f72010-06-22 14:49:39 +00005373 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5374 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5375 ** as an intermediate */
5376 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
drh0b9b4302010-06-11 17:01:24 +00005377 }
5378
5379 /* Open a transaction on the database file. Regardless of the journal
5380 ** mode, this transaction always uses a rollback journal.
5381 */
5382 assert( sqlite3BtreeIsInTrans(pBt)==0 );
5383 if( rc==SQLITE_OK ){
dan731bf5b2010-06-17 16:44:21 +00005384 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
dane04dc882010-04-20 18:53:15 +00005385 }
5386 }
5387 }
dan5cf53532010-05-01 16:40:20 +00005388#endif /* ifndef SQLITE_OMIT_WAL */
dane04dc882010-04-20 18:53:15 +00005389
dand956efe2010-06-18 16:13:45 +00005390 if( rc ){
dand956efe2010-06-18 16:13:45 +00005391 eNew = eOld;
5392 }
drh0b9b4302010-06-11 17:01:24 +00005393 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
dan731bf5b2010-06-17 16:44:21 +00005394
dane04dc882010-04-20 18:53:15 +00005395 pOut = &aMem[pOp->p2];
5396 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
danb9780022010-04-21 18:37:57 +00005397 pOut->z = (char *)sqlite3JournalModename(eNew);
dane04dc882010-04-20 18:53:15 +00005398 pOut->n = sqlite3Strlen30(pOut->z);
5399 pOut->enc = SQLITE_UTF8;
5400 sqlite3VdbeChangeEncoding(pOut, encoding);
5401 break;
drhcac29a62010-07-02 19:36:52 +00005402};
5403#endif /* SQLITE_OMIT_PRAGMA */
dane04dc882010-04-20 18:53:15 +00005404
drhfdbcdee2007-03-27 14:44:50 +00005405#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh98757152008-01-09 23:04:12 +00005406/* Opcode: Vacuum * * * * *
drh6f8c91c2003-12-07 00:24:35 +00005407**
5408** Vacuum the entire database. This opcode will cause other virtual
5409** machines to be created and run. It may not be called from within
5410** a transaction.
5411*/
drh9cbf3422008-01-17 16:22:13 +00005412case OP_Vacuum: {
danielk19774adee202004-05-08 08:23:19 +00005413 rc = sqlite3RunVacuum(&p->zErrMsg, db);
drh6f8c91c2003-12-07 00:24:35 +00005414 break;
5415}
drh154d4b22006-09-21 11:02:16 +00005416#endif
drh6f8c91c2003-12-07 00:24:35 +00005417
danielk1977dddbcdc2007-04-26 14:42:34 +00005418#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00005419/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00005420**
5421** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00005422** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00005423** P2. Otherwise, fall through to the next instruction.
5424*/
drh9cbf3422008-01-17 16:22:13 +00005425case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00005426 Btree *pBt;
5427
5428 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00005429 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drhca5557f2007-05-04 18:30:40 +00005430 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00005431 rc = sqlite3BtreeIncrVacuum(pBt);
5432 if( rc==SQLITE_DONE ){
5433 pc = pOp->p2 - 1;
5434 rc = SQLITE_OK;
5435 }
5436 break;
5437}
5438#endif
5439
drh98757152008-01-09 23:04:12 +00005440/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00005441**
5442** Cause precompiled statements to become expired. An expired statement
5443** fails with an error code of SQLITE_SCHEMA if it is ever executed
5444** (via sqlite3_step()).
5445**
5446** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5447** then only the currently executing statement is affected.
5448*/
drh9cbf3422008-01-17 16:22:13 +00005449case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00005450 if( !pOp->p1 ){
5451 sqlite3ExpirePreparedStatements(db);
5452 }else{
5453 p->expired = 1;
5454 }
5455 break;
5456}
5457
danielk1977c00da102006-01-07 13:21:04 +00005458#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00005459/* Opcode: TableLock P1 P2 P3 P4 *
danielk1977c00da102006-01-07 13:21:04 +00005460**
5461** Obtain a lock on a particular table. This instruction is only used when
5462** the shared-cache feature is enabled.
5463**
danielk197796d48e92009-06-29 06:00:37 +00005464** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00005465** on which the lock is acquired. A readlock is obtained if P3==0 or
5466** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00005467**
5468** P2 contains the root-page of the table to lock.
5469**
drh66a51672008-01-03 00:01:23 +00005470** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00005471** used to generate an error message if the lock cannot be obtained.
5472*/
drh9cbf3422008-01-17 16:22:13 +00005473case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00005474 u8 isWriteLock = (u8)pOp->p3;
5475 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5476 int p1 = pOp->p1;
5477 assert( p1>=0 && p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00005478 assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +00005479 assert( isWriteLock==0 || isWriteLock==1 );
5480 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5481 if( (rc&0xFF)==SQLITE_LOCKED ){
5482 const char *z = pOp->p4.z;
5483 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
5484 }
danielk1977c00da102006-01-07 13:21:04 +00005485 }
5486 break;
5487}
drhb9bb7c12006-06-11 23:41:55 +00005488#endif /* SQLITE_OMIT_SHARED_CACHE */
5489
5490#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005491/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005492**
danielk19773e3a84d2008-08-01 17:37:40 +00005493** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5494** xBegin method for that table.
5495**
5496** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00005497** within a callback to a virtual table xSync() method. If it is, the error
5498** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00005499*/
drh9cbf3422008-01-17 16:22:13 +00005500case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00005501 VTable *pVTab;
5502 pVTab = pOp->p4.pVtab;
5503 rc = sqlite3VtabBegin(db, pVTab);
drhb9755982010-07-24 16:34:37 +00005504 if( pVTab ) importVtabErrMsg(p, pVTab->pVtab);
danielk1977f9e7dda2006-06-16 16:08:53 +00005505 break;
5506}
5507#endif /* SQLITE_OMIT_VIRTUALTABLE */
5508
5509#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005510/* Opcode: VCreate P1 * * P4 *
danielk1977f9e7dda2006-06-16 16:08:53 +00005511**
drh66a51672008-01-03 00:01:23 +00005512** P4 is the name of a virtual table in database P1. Call the xCreate method
danielk1977f9e7dda2006-06-16 16:08:53 +00005513** for that table.
5514*/
drh9cbf3422008-01-17 16:22:13 +00005515case OP_VCreate: {
danielk19772dca4ac2008-01-03 11:50:29 +00005516 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
drhb9bb7c12006-06-11 23:41:55 +00005517 break;
5518}
5519#endif /* SQLITE_OMIT_VIRTUALTABLE */
5520
5521#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005522/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005523**
drh66a51672008-01-03 00:01:23 +00005524** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00005525** of that table.
drhb9bb7c12006-06-11 23:41:55 +00005526*/
drh9cbf3422008-01-17 16:22:13 +00005527case OP_VDestroy: {
danielk1977212b2182006-06-23 14:32:08 +00005528 p->inVtabMethod = 2;
danielk19772dca4ac2008-01-03 11:50:29 +00005529 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
danielk1977212b2182006-06-23 14:32:08 +00005530 p->inVtabMethod = 0;
drhb9bb7c12006-06-11 23:41:55 +00005531 break;
5532}
5533#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00005534
drh9eff6162006-06-12 21:59:13 +00005535#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005536/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00005537**
drh66a51672008-01-03 00:01:23 +00005538** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00005539** P1 is a cursor number. This opcode opens a cursor to the virtual
5540** table and stores that cursor in P1.
5541*/
drh9cbf3422008-01-17 16:22:13 +00005542case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00005543 VdbeCursor *pCur;
5544 sqlite3_vtab_cursor *pVtabCursor;
5545 sqlite3_vtab *pVtab;
5546 sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005547
drh856c1032009-06-02 15:21:42 +00005548 pCur = 0;
5549 pVtabCursor = 0;
danielk1977595a5232009-07-24 17:58:53 +00005550 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00005551 pModule = (sqlite3_module *)pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005552 assert(pVtab && pModule);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005553 rc = pModule->xOpen(pVtab, &pVtabCursor);
drhb9755982010-07-24 16:34:37 +00005554 importVtabErrMsg(p, pVtab);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005555 if( SQLITE_OK==rc ){
shane21e7feb2008-05-30 15:59:49 +00005556 /* Initialize sqlite3_vtab_cursor base class */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005557 pVtabCursor->pVtab = pVtab;
5558
5559 /* Initialise vdbe cursor object */
danielk1977d336e222009-02-20 10:58:41 +00005560 pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
danielk1977be718892006-06-23 08:05:19 +00005561 if( pCur ){
5562 pCur->pVtabCursor = pVtabCursor;
5563 pCur->pModule = pVtabCursor->pVtab->pModule;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005564 }else{
drh17435752007-08-16 04:30:38 +00005565 db->mallocFailed = 1;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005566 pModule->xClose(pVtabCursor);
danielk1977be718892006-06-23 08:05:19 +00005567 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005568 }
drh9eff6162006-06-12 21:59:13 +00005569 break;
5570}
5571#endif /* SQLITE_OMIT_VIRTUALTABLE */
5572
5573#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00005574/* Opcode: VFilter P1 P2 P3 P4 *
drh9eff6162006-06-12 21:59:13 +00005575**
5576** P1 is a cursor opened using VOpen. P2 is an address to jump to if
5577** the filtered result set is empty.
5578**
drh66a51672008-01-03 00:01:23 +00005579** P4 is either NULL or a string that was generated by the xBestIndex
5580** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00005581** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00005582**
drh9eff6162006-06-12 21:59:13 +00005583** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00005584** by P1. The integer query plan parameter to xFilter is stored in register
5585** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00005586** xFilter method. Registers P3+2..P3+1+argc are the argc
5587** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00005588** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00005589**
danielk19776dbee812008-01-03 18:39:41 +00005590** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00005591*/
drh9cbf3422008-01-17 16:22:13 +00005592case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005593 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00005594 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005595 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00005596 Mem *pQuery;
5597 Mem *pArgc;
drh4dc754d2008-07-23 18:17:32 +00005598 sqlite3_vtab_cursor *pVtabCursor;
5599 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00005600 VdbeCursor *pCur;
5601 int res;
5602 int i;
5603 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005604
drha6c2ed92009-11-14 23:22:23 +00005605 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005606 pArgc = &pQuery[1];
5607 pCur = p->apCsr[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00005608 assert( memIsValid(pQuery) );
drh5b6afba2008-01-05 16:29:28 +00005609 REGISTER_TRACE(pOp->p3, pQuery);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005610 assert( pCur->pVtabCursor );
drh4dc754d2008-07-23 18:17:32 +00005611 pVtabCursor = pCur->pVtabCursor;
5612 pVtab = pVtabCursor->pVtab;
5613 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005614
drh9cbf3422008-01-17 16:22:13 +00005615 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00005616 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00005617 nArg = (int)pArgc->u.i;
5618 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005619
drh644a5292006-12-20 14:53:38 +00005620 /* Invoke the xFilter method */
5621 {
drh856c1032009-06-02 15:21:42 +00005622 res = 0;
5623 apArg = p->apArg;
drh4be8b512006-06-13 23:51:34 +00005624 for(i = 0; i<nArg; i++){
danielk19776dbee812008-01-03 18:39:41 +00005625 apArg[i] = &pArgc[i+1];
dan937d0de2009-10-15 18:35:38 +00005626 sqlite3VdbeMemStoreType(apArg[i]);
danielk19775fac9f82006-06-13 14:16:58 +00005627 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005628
danielk1977be718892006-06-23 08:05:19 +00005629 p->inVtabMethod = 1;
drh4dc754d2008-07-23 18:17:32 +00005630 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
danielk1977be718892006-06-23 08:05:19 +00005631 p->inVtabMethod = 0;
drhb9755982010-07-24 16:34:37 +00005632 importVtabErrMsg(p, pVtab);
danielk1977a298e902006-06-22 09:53:48 +00005633 if( rc==SQLITE_OK ){
drh4dc754d2008-07-23 18:17:32 +00005634 res = pModule->xEof(pVtabCursor);
danielk1977a298e902006-06-22 09:53:48 +00005635 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005636
danielk1977a298e902006-06-22 09:53:48 +00005637 if( res ){
danielk1977b7a7b9a2006-06-13 10:24:42 +00005638 pc = pOp->p2 - 1;
5639 }
5640 }
drh1d454a32008-01-31 19:34:51 +00005641 pCur->nullRow = 0;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005642
drh9eff6162006-06-12 21:59:13 +00005643 break;
5644}
5645#endif /* SQLITE_OMIT_VIRTUALTABLE */
5646
5647#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005648/* Opcode: VColumn P1 P2 P3 * *
drh9eff6162006-06-12 21:59:13 +00005649**
drh2133d822008-01-03 18:44:59 +00005650** Store the value of the P2-th column of
5651** the row of the virtual-table that the
5652** P1 cursor is pointing to into register P3.
drh9eff6162006-06-12 21:59:13 +00005653*/
5654case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00005655 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005656 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00005657 Mem *pDest;
5658 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005659
drhdfe88ec2008-11-03 20:55:06 +00005660 VdbeCursor *pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00005661 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00005662 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005663 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00005664 memAboutToChange(p, pDest);
drh2945b4a2008-01-31 15:53:45 +00005665 if( pCur->nullRow ){
5666 sqlite3VdbeMemSetNull(pDest);
5667 break;
5668 }
danielk19773e3a84d2008-08-01 17:37:40 +00005669 pVtab = pCur->pVtabCursor->pVtab;
5670 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00005671 assert( pModule->xColumn );
5672 memset(&sContext, 0, sizeof(sContext));
danielk1977a7a8e142008-02-13 18:25:27 +00005673
5674 /* The output cell may already have a buffer allocated. Move
5675 ** the current contents to sContext.s so in case the user-function
5676 ** can use the already allocated buffer instead of allocating a
5677 ** new one.
5678 */
5679 sqlite3VdbeMemMove(&sContext.s, pDest);
5680 MemSetTypeFlag(&sContext.s, MEM_Null);
5681
drhde4fcfd2008-01-19 23:50:26 +00005682 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
drhb9755982010-07-24 16:34:37 +00005683 importVtabErrMsg(p, pVtab);
drh4c8555f2009-06-25 01:47:11 +00005684 if( sContext.isError ){
5685 rc = sContext.isError;
5686 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005687
drhde4fcfd2008-01-19 23:50:26 +00005688 /* Copy the result of the function to the P3 register. We
shanebe217792009-03-05 04:20:31 +00005689 ** do this regardless of whether or not an error occurred to ensure any
drhde4fcfd2008-01-19 23:50:26 +00005690 ** dynamic allocation in sContext.s (a Mem struct) is released.
5691 */
5692 sqlite3VdbeChangeEncoding(&sContext.s, encoding);
drhde4fcfd2008-01-19 23:50:26 +00005693 sqlite3VdbeMemMove(pDest, &sContext.s);
drh5ff44372009-11-24 16:26:17 +00005694 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00005695 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005696
drhde4fcfd2008-01-19 23:50:26 +00005697 if( sqlite3VdbeMemTooBig(pDest) ){
5698 goto too_big;
5699 }
drh9eff6162006-06-12 21:59:13 +00005700 break;
5701}
5702#endif /* SQLITE_OMIT_VIRTUALTABLE */
5703
5704#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005705/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00005706**
5707** Advance virtual table P1 to the next row in its result set and
5708** jump to instruction P2. Or, if the virtual table has reached
5709** the end of its result set, then fall through to the next instruction.
5710*/
drh9cbf3422008-01-17 16:22:13 +00005711case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00005712 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005713 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00005714 int res;
drh856c1032009-06-02 15:21:42 +00005715 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005716
drhc54a6172009-06-02 16:06:03 +00005717 res = 0;
drh856c1032009-06-02 15:21:42 +00005718 pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00005719 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00005720 if( pCur->nullRow ){
5721 break;
5722 }
danielk19773e3a84d2008-08-01 17:37:40 +00005723 pVtab = pCur->pVtabCursor->pVtab;
5724 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00005725 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00005726
drhde4fcfd2008-01-19 23:50:26 +00005727 /* Invoke the xNext() method of the module. There is no way for the
5728 ** underlying implementation to return an error if one occurs during
5729 ** xNext(). Instead, if an error occurs, true is returned (indicating that
5730 ** data is available) and the error code returned when xColumn or
5731 ** some other method is next invoked on the save virtual table cursor.
5732 */
drhde4fcfd2008-01-19 23:50:26 +00005733 p->inVtabMethod = 1;
5734 rc = pModule->xNext(pCur->pVtabCursor);
5735 p->inVtabMethod = 0;
drhb9755982010-07-24 16:34:37 +00005736 importVtabErrMsg(p, pVtab);
drhde4fcfd2008-01-19 23:50:26 +00005737 if( rc==SQLITE_OK ){
5738 res = pModule->xEof(pCur->pVtabCursor);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005739 }
5740
drhde4fcfd2008-01-19 23:50:26 +00005741 if( !res ){
5742 /* If there is data, jump to P2 */
5743 pc = pOp->p2 - 1;
5744 }
drh9eff6162006-06-12 21:59:13 +00005745 break;
5746}
5747#endif /* SQLITE_OMIT_VIRTUALTABLE */
5748
danielk1977182c4ba2007-06-27 15:53:34 +00005749#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005750/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00005751**
drh66a51672008-01-03 00:01:23 +00005752** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00005753** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00005754** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00005755*/
drh9cbf3422008-01-17 16:22:13 +00005756case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00005757 sqlite3_vtab *pVtab;
5758 Mem *pName;
5759
danielk1977595a5232009-07-24 17:58:53 +00005760 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00005761 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00005762 assert( pVtab->pModule->xRename );
drh2b4ded92010-09-27 21:09:31 +00005763 assert( memIsValid(pName) );
drh5b6afba2008-01-05 16:29:28 +00005764 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00005765 assert( pName->flags & MEM_Str );
danielk19776dbee812008-01-03 18:39:41 +00005766 rc = pVtab->pModule->xRename(pVtab, pName->z);
drhb9755982010-07-24 16:34:37 +00005767 importVtabErrMsg(p, pVtab);
dana235d0c2010-08-24 16:59:47 +00005768 p->expired = 0;
danielk1977182c4ba2007-06-27 15:53:34 +00005769
danielk1977182c4ba2007-06-27 15:53:34 +00005770 break;
5771}
5772#endif
drh4cbdda92006-06-14 19:00:20 +00005773
5774#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005775/* Opcode: VUpdate P1 P2 P3 P4 *
danielk1977399918f2006-06-14 13:03:23 +00005776**
drh66a51672008-01-03 00:01:23 +00005777** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00005778** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00005779** are contiguous memory cells starting at P3 to pass to the xUpdate
5780** invocation. The value in register (P3+P2-1) corresponds to the
5781** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00005782**
5783** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00005784** The argv[0] element (which corresponds to memory cell P3)
5785** is the rowid of a row to delete. If argv[0] is NULL then no
5786** deletion occurs. The argv[1] element is the rowid of the new
5787** row. This can be NULL to have the virtual table select the new
5788** rowid for itself. The subsequent elements in the array are
5789** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00005790**
5791** If P2==1 then no insert is performed. argv[0] is the rowid of
5792** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00005793**
5794** P1 is a boolean flag. If it is set to true and the xUpdate call
5795** is successful, then the value returned by sqlite3_last_insert_rowid()
5796** is set to the value of the rowid for the row just inserted.
danielk1977399918f2006-06-14 13:03:23 +00005797*/
drh9cbf3422008-01-17 16:22:13 +00005798case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00005799 sqlite3_vtab *pVtab;
5800 sqlite3_module *pModule;
5801 int nArg;
5802 int i;
5803 sqlite_int64 rowid;
5804 Mem **apArg;
5805 Mem *pX;
5806
danb061d052011-04-25 18:49:57 +00005807 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
5808 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
5809 );
danielk1977595a5232009-07-24 17:58:53 +00005810 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00005811 pModule = (sqlite3_module *)pVtab->pModule;
5812 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00005813 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00005814 if( ALWAYS(pModule->xUpdate) ){
danb061d052011-04-25 18:49:57 +00005815 u8 vtabOnConflict = db->vtabOnConflict;
drh856c1032009-06-02 15:21:42 +00005816 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00005817 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00005818 for(i=0; i<nArg; i++){
drh2b4ded92010-09-27 21:09:31 +00005819 assert( memIsValid(pX) );
5820 memAboutToChange(p, pX);
dan937d0de2009-10-15 18:35:38 +00005821 sqlite3VdbeMemStoreType(pX);
drh9c419382006-06-16 21:13:21 +00005822 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00005823 pX++;
danielk1977399918f2006-06-14 13:03:23 +00005824 }
danb061d052011-04-25 18:49:57 +00005825 db->vtabOnConflict = pOp->p5;
danielk19771f6eec52006-06-16 06:17:47 +00005826 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
danb061d052011-04-25 18:49:57 +00005827 db->vtabOnConflict = vtabOnConflict;
drhb9755982010-07-24 16:34:37 +00005828 importVtabErrMsg(p, pVtab);
drh35f6b932009-06-23 14:15:04 +00005829 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00005830 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
drh99a66922011-05-13 18:51:42 +00005831 db->lastRowid = lastRowid = rowid;
danielk19771f6eec52006-06-16 06:17:47 +00005832 }
danb061d052011-04-25 18:49:57 +00005833 if( rc==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
5834 if( pOp->p5==OE_Ignore ){
5835 rc = SQLITE_OK;
5836 }else{
5837 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
5838 }
5839 }else{
5840 p->nChange++;
5841 }
danielk1977399918f2006-06-14 13:03:23 +00005842 }
drh4cbdda92006-06-14 19:00:20 +00005843 break;
danielk1977399918f2006-06-14 13:03:23 +00005844}
5845#endif /* SQLITE_OMIT_VIRTUALTABLE */
5846
danielk197759a93792008-05-15 17:48:20 +00005847#ifndef SQLITE_OMIT_PAGER_PRAGMAS
5848/* Opcode: Pagecount P1 P2 * * *
5849**
5850** Write the current number of pages in database P1 to memory cell P2.
5851*/
5852case OP_Pagecount: { /* out2-prerelease */
drhb1299152010-03-30 22:58:33 +00005853 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00005854 break;
5855}
5856#endif
5857
drh60ac3f42010-11-23 18:59:27 +00005858
5859#ifndef SQLITE_OMIT_PAGER_PRAGMAS
5860/* Opcode: MaxPgcnt P1 P2 P3 * *
5861**
5862** Try to set the maximum page count for database P1 to the value in P3.
drhc84e0332010-11-23 20:25:08 +00005863** Do not let the maximum page count fall below the current page count and
5864** do not change the maximum page count value if P3==0.
5865**
drh60ac3f42010-11-23 18:59:27 +00005866** Store the maximum page count after the change in register P2.
5867*/
5868case OP_MaxPgcnt: { /* out2-prerelease */
drhc84e0332010-11-23 20:25:08 +00005869 unsigned int newMax;
drh60ac3f42010-11-23 18:59:27 +00005870 Btree *pBt;
5871
5872 pBt = db->aDb[pOp->p1].pBt;
drhc84e0332010-11-23 20:25:08 +00005873 newMax = 0;
5874 if( pOp->p3 ){
5875 newMax = sqlite3BtreeLastPage(pBt);
drh6ea28d62010-11-26 16:49:59 +00005876 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
drhc84e0332010-11-23 20:25:08 +00005877 }
5878 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
drh60ac3f42010-11-23 18:59:27 +00005879 break;
5880}
5881#endif
5882
5883
drh949f9cd2008-01-12 21:35:57 +00005884#ifndef SQLITE_OMIT_TRACE
5885/* Opcode: Trace * * * P4 *
5886**
5887** If tracing is enabled (by the sqlite3_trace()) interface, then
5888** the UTF-8 string contained in P4 is emitted on the trace callback.
5889*/
5890case OP_Trace: {
drh856c1032009-06-02 15:21:42 +00005891 char *zTrace;
drhc3f1d5f2011-05-30 23:42:16 +00005892 char *z;
drh856c1032009-06-02 15:21:42 +00005893
drhc3f1d5f2011-05-30 23:42:16 +00005894 if( db->xTrace && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 ){
5895 z = sqlite3VdbeExpandSql(p, zTrace);
5896 db->xTrace(db->pTraceArg, z);
5897 sqlite3DbFree(db, z);
drh949f9cd2008-01-12 21:35:57 +00005898 }
drhc3f1d5f2011-05-30 23:42:16 +00005899#ifdef SQLITE_DEBUG
5900 if( (db->flags & SQLITE_SqlTrace)!=0
5901 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
5902 ){
5903 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
5904 }
5905#endif /* SQLITE_DEBUG */
drh949f9cd2008-01-12 21:35:57 +00005906 break;
5907}
5908#endif
5909
drh91fd4d42008-01-19 20:11:25 +00005910
5911/* Opcode: Noop * * * * *
5912**
5913** Do nothing. This instruction is often useful as a jump
5914** destination.
drh5e00f6c2001-09-13 13:46:56 +00005915*/
drh91fd4d42008-01-19 20:11:25 +00005916/*
5917** The magic Explain opcode are only inserted when explain==2 (which
5918** is to say when the EXPLAIN QUERY PLAN syntax is used.)
5919** This opcode records information from the optimizer. It is the
5920** the same as a no-op. This opcodesnever appears in a real VM program.
5921*/
5922default: { /* This is really OP_Noop and OP_Explain */
drh13573c72010-01-12 17:04:07 +00005923 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh5e00f6c2001-09-13 13:46:56 +00005924 break;
5925}
5926
5927/*****************************************************************************
5928** The cases of the switch statement above this line should all be indented
5929** by 6 spaces. But the left-most 6 spaces have been removed to improve the
5930** readability. From this point on down, the normal indentation rules are
5931** restored.
5932*****************************************************************************/
5933 }
drh6e142f52000-06-08 13:36:40 +00005934
drh7b396862003-01-01 23:06:20 +00005935#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00005936 {
shane9bcbdad2008-05-29 20:22:37 +00005937 u64 elapsed = sqlite3Hwtime() - start;
5938 pOp->cycles += elapsed;
drh8178a752003-01-05 21:41:40 +00005939 pOp->cnt++;
5940#if 0
shane9bcbdad2008-05-29 20:22:37 +00005941 fprintf(stdout, "%10llu ", elapsed);
drhbbe879d2009-11-14 18:04:35 +00005942 sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
drh8178a752003-01-05 21:41:40 +00005943#endif
5944 }
drh7b396862003-01-01 23:06:20 +00005945#endif
5946
drh6e142f52000-06-08 13:36:40 +00005947 /* The following code adds nothing to the actual functionality
5948 ** of the program. It is only here for testing and debugging.
5949 ** On the other hand, it does burn CPU cycles every time through
5950 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
5951 */
5952#ifndef NDEBUG
drha6110402005-07-28 20:51:19 +00005953 assert( pc>=-1 && pc<p->nOp );
drhae7e1512007-05-02 16:51:59 +00005954
drhcf1023c2007-05-08 20:59:49 +00005955#ifdef SQLITE_DEBUG
drh5b6afba2008-01-05 16:29:28 +00005956 if( p->trace ){
5957 if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
drh3c657212009-11-17 23:59:58 +00005958 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
5959 registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
drh75897232000-05-29 14:26:00 +00005960 }
drh3c657212009-11-17 23:59:58 +00005961 if( pOp->opflags & OPFLG_OUT3 ){
5962 registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00005963 }
drh75897232000-05-29 14:26:00 +00005964 }
danielk1977b5402fb2005-01-12 07:15:04 +00005965#endif /* SQLITE_DEBUG */
5966#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00005967 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00005968
drha05a7222008-01-19 03:35:58 +00005969 /* If we reach this point, it means that execution is finished with
5970 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00005971 */
drha05a7222008-01-19 03:35:58 +00005972vdbe_error_halt:
5973 assert( rc );
5974 p->rc = rc;
drha64fa912010-03-04 00:53:32 +00005975 testcase( sqlite3GlobalConfig.xLog!=0 );
5976 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
5977 pc, p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00005978 sqlite3VdbeHalt(p);
danielk19777eaabcd2008-07-07 14:56:56 +00005979 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
5980 rc = SQLITE_ERROR;
drhcdf011d2011-04-04 21:25:28 +00005981 if( resetSchemaOnFault>0 ){
5982 sqlite3ResetInternalSchema(db, resetSchemaOnFault-1);
drhbdaec522011-04-04 00:14:43 +00005983 }
drh900b31e2007-08-28 02:27:51 +00005984
5985 /* This is the only way out of this procedure. We have to
5986 ** release the mutexes on btrees that were acquired at the
5987 ** top. */
5988vdbe_return:
drh99a66922011-05-13 18:51:42 +00005989 db->lastRowid = lastRowid;
drhbdaec522011-04-04 00:14:43 +00005990 sqlite3VdbeLeave(p);
drhb86ccfb2003-01-28 23:13:10 +00005991 return rc;
5992
drh023ae032007-05-08 12:12:16 +00005993 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
5994 ** is encountered.
5995 */
5996too_big:
drhf089aa42008-07-08 19:34:06 +00005997 sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00005998 rc = SQLITE_TOOBIG;
drha05a7222008-01-19 03:35:58 +00005999 goto vdbe_error_halt;
drh023ae032007-05-08 12:12:16 +00006000
drh98640a32007-06-07 19:08:32 +00006001 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00006002 */
6003no_mem:
drh17435752007-08-16 04:30:38 +00006004 db->mallocFailed = 1;
drhf089aa42008-07-08 19:34:06 +00006005 sqlite3SetString(&p->zErrMsg, db, "out of memory");
drhb86ccfb2003-01-28 23:13:10 +00006006 rc = SQLITE_NOMEM;
drha05a7222008-01-19 03:35:58 +00006007 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006008
drhb86ccfb2003-01-28 23:13:10 +00006009 /* Jump to here for any other kind of fatal error. The "rc" variable
6010 ** should hold the error number.
6011 */
6012abort_due_to_error:
drha05a7222008-01-19 03:35:58 +00006013 assert( p->zErrMsg==0 );
6014 if( db->mallocFailed ) rc = SQLITE_NOMEM;
danielk19777eaabcd2008-07-07 14:56:56 +00006015 if( rc!=SQLITE_IOERR_NOMEM ){
drhf089aa42008-07-08 19:34:06 +00006016 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
danielk19777eaabcd2008-07-07 14:56:56 +00006017 }
drha05a7222008-01-19 03:35:58 +00006018 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006019
danielk19776f8a5032004-05-10 10:34:51 +00006020 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00006021 ** flag.
6022 */
6023abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00006024 assert( db->u1.isInterrupted );
drh7e8b8482008-01-23 03:03:05 +00006025 rc = SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00006026 p->rc = rc;
drhf089aa42008-07-08 19:34:06 +00006027 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
drha05a7222008-01-19 03:35:58 +00006028 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006029}