blob: cc53c9bff1eb5f0e106250ed2a184d950e4ed0db [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh9a324642003-09-06 20:12:01 +000012** The code in this file implements execution method of the
13** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
14** handles housekeeping details such as creating and deleting
15** VDBE instances. This file is solely interested in executing
16** the VDBE program.
17**
danielk1977fc57d7b2004-05-26 02:04:57 +000018** In the external interface, an "sqlite3_stmt*" is an opaque pointer
drh9a324642003-09-06 20:12:01 +000019** to a VDBE.
drh75897232000-05-29 14:26:00 +000020**
21** The SQL parser generates a program which is then executed by
22** the VDBE to do the work of the SQL statement. VDBE programs are
23** similar in form to assembly language. The program consists of
24** a linear sequence of operations. Each operation has an opcode
drh9cbf3422008-01-17 16:22:13 +000025** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
26** is a null-terminated string. Operand P5 is an unsigned character.
27** Few opcodes use all 5 operands.
drh75897232000-05-29 14:26:00 +000028**
drh9cbf3422008-01-17 16:22:13 +000029** Computation results are stored on a set of registers numbered beginning
30** with 1 and going up to Vdbe.nMem. Each register can store
31** either an integer, a null-terminated string, a floating point
shane21e7feb2008-05-30 15:59:49 +000032** number, or the SQL "NULL" value. An implicit conversion from one
drhb19a2bc2001-09-16 00:13:26 +000033** type to the other occurs as necessary.
drh75897232000-05-29 14:26:00 +000034**
danielk19774adee202004-05-08 08:23:19 +000035** Most of the code in this file is taken up by the sqlite3VdbeExec()
drh75897232000-05-29 14:26:00 +000036** function which does the work of interpreting a VDBE program.
37** But other routines are also provided to help in building up
38** a program instruction by instruction.
39**
drhac82fcf2002-09-08 17:23:41 +000040** Various scripts scan this source file in order to generate HTML
41** documentation, headers files, or other derived files. The formatting
42** of the code in this file is, therefore, important. See other comments
43** in this file for details. If in doubt, do not deviate from existing
44** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000045*/
46#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000047#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000048
49/*
drh487ab3c2001-11-08 00:45:21 +000050** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000051** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000052** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000053** working correctly. This variable has no function other than to
54** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000055*/
drh0f7eb612006-08-08 13:51:43 +000056#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000057int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000058#endif
drh487ab3c2001-11-08 00:45:21 +000059
drhf6038712004-02-08 18:07:34 +000060/*
61** When this global variable is positive, it gets decremented once before
drh881feaa2006-07-26 01:39:30 +000062** each instruction in the VDBE. When reaches zero, the u1.isInterrupted
63** field of the sqlite3 structure is set in order to simulate and interrupt.
drhf6038712004-02-08 18:07:34 +000064**
65** This facility is used for testing purposes only. It does not function
66** in an ordinary build.
67*/
drh0f7eb612006-08-08 13:51:43 +000068#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000069int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000070#endif
drh1350b032002-02-27 19:00:20 +000071
danielk19777e18c252004-05-25 11:47:24 +000072/*
drh6bf89572004-11-03 16:27:01 +000073** The next global variable is incremented each type the OP_Sort opcode
74** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000075** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000076** has no function other than to help verify the correct operation of the
77** library.
78*/
drh0f7eb612006-08-08 13:51:43 +000079#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000080int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000081#endif
drh6bf89572004-11-03 16:27:01 +000082
83/*
drhae7e1512007-05-02 16:51:59 +000084** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000085** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000086** use this information to make sure that the zero-blob functionality
87** is working correctly. This variable has no function other than to
88** help verify the correct operation of the library.
89*/
90#ifdef SQLITE_TEST
91int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +000092static void updateMaxBlobsize(Mem *p){
93 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
94 sqlite3_max_blobsize = p->n;
95 }
96}
drhae7e1512007-05-02 16:51:59 +000097#endif
98
99/*
dan0ff297e2009-09-25 17:03:14 +0000100** The next global variable is incremented each type the OP_Found opcode
101** is executed. This is used to test whether or not the foreign key
102** operation implemented using OP_FkIsZero is working. This variable
103** has no function other than to help verify the correct operation of the
104** library.
105*/
106#ifdef SQLITE_TEST
107int sqlite3_found_count = 0;
108#endif
109
110/*
drhb7654112008-01-12 12:48:07 +0000111** Test a register to see if it exceeds the current maximum blob size.
112** If it does, record the new maximum blob size.
113*/
drh678ccce2008-03-31 18:19:54 +0000114#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
drhca48c902008-01-18 14:08:24 +0000115# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000116#else
117# define UPDATE_MAX_BLOBSIZE(P)
118#endif
119
120/*
drh9cbf3422008-01-17 16:22:13 +0000121** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000122** already. Return non-zero if a malloc() fails.
123*/
drhb21c8cd2007-08-21 19:33:56 +0000124#define Stringify(P, enc) \
125 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
drhf4479502004-05-27 03:12:53 +0000126 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000127
128/*
danielk1977bd7e4602004-05-24 07:34:48 +0000129** An ephemeral string value (signified by the MEM_Ephem flag) contains
130** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000131** is responsible for deallocating that string. Because the register
132** does not control the string, it might be deleted without the register
133** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000134**
135** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000136** string that the register itself controls. In other words, it
danielk1977bd7e4602004-05-24 07:34:48 +0000137** converts an MEM_Ephem string into an MEM_Dyn string.
138*/
drhb21c8cd2007-08-21 19:33:56 +0000139#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000140 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000141 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000142
143/*
danielk19771cc5ed82007-05-16 17:28:43 +0000144** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
145** P if required.
146*/
drhb21c8cd2007-08-21 19:33:56 +0000147#define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
danielk19771cc5ed82007-05-16 17:28:43 +0000148
149/*
shane21e7feb2008-05-30 15:59:49 +0000150** Argument pMem points at a register that will be passed to a
danielk1977c572ef72004-05-27 09:28:41 +0000151** user-defined function or returned to the user as the result of a query.
dan937d0de2009-10-15 18:35:38 +0000152** This routine sets the pMem->type variable used by the sqlite3_value_*()
153** routines.
danielk1977c572ef72004-05-27 09:28:41 +0000154*/
dan937d0de2009-10-15 18:35:38 +0000155void sqlite3VdbeMemStoreType(Mem *pMem){
danielk1977c572ef72004-05-27 09:28:41 +0000156 int flags = pMem->flags;
157 if( flags & MEM_Null ){
drh9c054832004-05-31 18:51:57 +0000158 pMem->type = SQLITE_NULL;
danielk1977c572ef72004-05-27 09:28:41 +0000159 }
160 else if( flags & MEM_Int ){
drh9c054832004-05-31 18:51:57 +0000161 pMem->type = SQLITE_INTEGER;
danielk1977c572ef72004-05-27 09:28:41 +0000162 }
163 else if( flags & MEM_Real ){
drh9c054832004-05-31 18:51:57 +0000164 pMem->type = SQLITE_FLOAT;
danielk1977c572ef72004-05-27 09:28:41 +0000165 }
166 else if( flags & MEM_Str ){
drh9c054832004-05-31 18:51:57 +0000167 pMem->type = SQLITE_TEXT;
danielk1977c572ef72004-05-27 09:28:41 +0000168 }else{
drh9c054832004-05-31 18:51:57 +0000169 pMem->type = SQLITE_BLOB;
danielk1977c572ef72004-05-27 09:28:41 +0000170 }
171}
danielk19778a6b5412004-05-24 07:04:25 +0000172
173/*
drhdfe88ec2008-11-03 20:55:06 +0000174** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000175** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000176*/
drhdfe88ec2008-11-03 20:55:06 +0000177static VdbeCursor *allocateCursor(
178 Vdbe *p, /* The virtual machine */
179 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000180 int nField, /* Number of fields in the table or index */
drh3d4501e2008-12-04 20:40:10 +0000181 int iDb, /* When database the cursor belongs to, or -1 */
drh3e9ca092009-09-08 01:14:48 +0000182 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
danielk1977cd3e8f72008-03-25 09:47:35 +0000183){
184 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000185 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000186 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000187 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000188 **
189 ** * Sometimes cursor numbers are used for a couple of different
190 ** purposes in a vdbe program. The different uses might require
191 ** different sized allocations. Memory cells provide growable
192 ** allocations.
193 **
194 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
195 ** be freed lazily via the sqlite3_release_memory() API. This
196 ** minimizes the number of malloc calls made by the system.
197 **
198 ** Memory cells for cursors are allocated at the top of the address
199 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
200 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
201 */
202 Mem *pMem = &p->aMem[p->nMem-iCur];
203
danielk19775f096132008-03-28 15:44:09 +0000204 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000205 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000206 nByte =
drhc54055b2009-11-13 17:05:53 +0000207 ROUND8(sizeof(VdbeCursor)) +
danielk1977cd3e8f72008-03-25 09:47:35 +0000208 (isBtreeCursor?sqlite3BtreeCursorSize():0) +
209 2*nField*sizeof(u32);
210
drh290c1942004-08-21 17:54:45 +0000211 assert( iCur<p->nCursor );
212 if( p->apCsr[iCur] ){
danielk1977be718892006-06-23 08:05:19 +0000213 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000214 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000215 }
danielk1977cd3e8f72008-03-25 09:47:35 +0000216 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
drhdfe88ec2008-11-03 20:55:06 +0000217 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhf25a5072009-11-18 23:01:25 +0000218 memset(pCx, 0, sizeof(VdbeCursor));
danielk197794eb6a12005-12-15 15:22:08 +0000219 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000220 pCx->nField = nField;
221 if( nField ){
drhc54055b2009-11-13 17:05:53 +0000222 pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
danielk1977cd3e8f72008-03-25 09:47:35 +0000223 }
224 if( isBtreeCursor ){
drhdfe88ec2008-11-03 20:55:06 +0000225 pCx->pCursor = (BtCursor*)
drhc54055b2009-11-13 17:05:53 +0000226 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
drhf25a5072009-11-18 23:01:25 +0000227 sqlite3BtreeCursorZero(pCx->pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000228 }
danielk197794eb6a12005-12-15 15:22:08 +0000229 }
drh4774b132004-06-12 20:12:51 +0000230 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000231}
232
danielk19773d1bfea2004-05-14 11:00:53 +0000233/*
drh29d72102006-02-09 22:13:41 +0000234** Try to convert a value into a numeric representation if we can
235** do so without loss of information. In other words, if the string
236** looks like a number, convert it into a number. If it does not
237** look like a number, leave it alone.
238*/
drhb21c8cd2007-08-21 19:33:56 +0000239static void applyNumericAffinity(Mem *pRec){
drh29d72102006-02-09 22:13:41 +0000240 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
241 int realnum;
danb7dca7d2010-03-05 16:32:12 +0000242 u8 enc = pRec->enc;
drhb21c8cd2007-08-21 19:33:56 +0000243 sqlite3VdbeMemNulTerminate(pRec);
danb7dca7d2010-03-05 16:32:12 +0000244 if( (pRec->flags&MEM_Str) && sqlite3IsNumber(pRec->z, &realnum, enc) ){
drh29d72102006-02-09 22:13:41 +0000245 i64 value;
danb7dca7d2010-03-05 16:32:12 +0000246 char *zUtf8 = pRec->z;
247#ifndef SQLITE_OMIT_UTF16
248 if( enc!=SQLITE_UTF8 ){
249 assert( pRec->db );
250 zUtf8 = sqlite3Utf16to8(pRec->db, pRec->z, pRec->n, enc);
251 if( !zUtf8 ) return;
252 }
253#endif
254 if( !realnum && sqlite3Atoi64(zUtf8, &value) ){
drh3c024d62007-03-30 11:23:45 +0000255 pRec->u.i = value;
danielk1977a7a8e142008-02-13 18:25:27 +0000256 MemSetTypeFlag(pRec, MEM_Int);
drh29d72102006-02-09 22:13:41 +0000257 }else{
danb7dca7d2010-03-05 16:32:12 +0000258 sqlite3AtoF(zUtf8, &pRec->r);
259 MemSetTypeFlag(pRec, MEM_Real);
drh29d72102006-02-09 22:13:41 +0000260 }
danb7dca7d2010-03-05 16:32:12 +0000261#ifndef SQLITE_OMIT_UTF16
262 if( enc!=SQLITE_UTF8 ){
263 sqlite3DbFree(pRec->db, zUtf8);
264 }
265#endif
drh29d72102006-02-09 22:13:41 +0000266 }
267 }
268}
269
270/*
drh8a512562005-11-14 22:29:05 +0000271** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000272**
drh8a512562005-11-14 22:29:05 +0000273** SQLITE_AFF_INTEGER:
274** SQLITE_AFF_REAL:
275** SQLITE_AFF_NUMERIC:
276** Try to convert pRec to an integer representation or a
277** floating-point representation if an integer representation
278** is not possible. Note that the integer representation is
279** always preferred, even if the affinity is REAL, because
280** an integer representation is more space efficient on disk.
281**
282** SQLITE_AFF_TEXT:
283** Convert pRec to a text representation.
284**
285** SQLITE_AFF_NONE:
286** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000287*/
drh17435752007-08-16 04:30:38 +0000288static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000289 Mem *pRec, /* The value to apply affinity to */
290 char affinity, /* The affinity to be applied */
291 u8 enc /* Use this text encoding */
292){
drh8a512562005-11-14 22:29:05 +0000293 if( affinity==SQLITE_AFF_TEXT ){
drh17c40292004-07-21 02:53:29 +0000294 /* Only attempt the conversion to TEXT if there is an integer or real
295 ** representation (blob and NULL do not get converted) but no string
296 ** representation.
297 */
298 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
drhb21c8cd2007-08-21 19:33:56 +0000299 sqlite3VdbeMemStringify(pRec, enc);
drh17c40292004-07-21 02:53:29 +0000300 }
301 pRec->flags &= ~(MEM_Real|MEM_Int);
drh8a512562005-11-14 22:29:05 +0000302 }else if( affinity!=SQLITE_AFF_NONE ){
303 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
304 || affinity==SQLITE_AFF_NUMERIC );
drhb21c8cd2007-08-21 19:33:56 +0000305 applyNumericAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000306 if( pRec->flags & MEM_Real ){
drh8df447f2005-11-01 15:48:24 +0000307 sqlite3VdbeIntegerAffinity(pRec);
drh17c40292004-07-21 02:53:29 +0000308 }
danielk19773d1bfea2004-05-14 11:00:53 +0000309 }
310}
311
danielk1977aee18ef2005-03-09 12:26:50 +0000312/*
drh29d72102006-02-09 22:13:41 +0000313** Try to convert the type of a function argument or a result column
314** into a numeric representation. Use either INTEGER or REAL whichever
315** is appropriate. But only do the conversion if it is possible without
316** loss of information and return the revised type of the argument.
317**
318** This is an EXPERIMENTAL api and is subject to change or removal.
319*/
320int sqlite3_value_numeric_type(sqlite3_value *pVal){
321 Mem *pMem = (Mem*)pVal;
drhb21c8cd2007-08-21 19:33:56 +0000322 applyNumericAffinity(pMem);
dan937d0de2009-10-15 18:35:38 +0000323 sqlite3VdbeMemStoreType(pMem);
drh29d72102006-02-09 22:13:41 +0000324 return pMem->type;
325}
326
327/*
danielk1977aee18ef2005-03-09 12:26:50 +0000328** Exported version of applyAffinity(). This one works on sqlite3_value*,
329** not the internal Mem* type.
330*/
danielk19771e536952007-08-16 10:09:01 +0000331void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000332 sqlite3_value *pVal,
333 u8 affinity,
334 u8 enc
335){
drhb21c8cd2007-08-21 19:33:56 +0000336 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000337}
338
danielk1977b5402fb2005-01-12 07:15:04 +0000339#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000340/*
danielk1977ca6b2912004-05-21 10:49:47 +0000341** Write a nice string representation of the contents of cell pMem
342** into buffer zBuf, length nBuf.
343*/
drh74161702006-02-24 02:53:49 +0000344void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000345 char *zCsr = zBuf;
346 int f = pMem->flags;
347
drh57196282004-10-06 15:41:16 +0000348 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000349
danielk1977ca6b2912004-05-21 10:49:47 +0000350 if( f&MEM_Blob ){
351 int i;
352 char c;
353 if( f & MEM_Dyn ){
354 c = 'z';
355 assert( (f & (MEM_Static|MEM_Ephem))==0 );
356 }else if( f & MEM_Static ){
357 c = 't';
358 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
359 }else if( f & MEM_Ephem ){
360 c = 'e';
361 assert( (f & (MEM_Static|MEM_Dyn))==0 );
362 }else{
363 c = 's';
364 }
365
drh5bb3eb92007-05-04 13:15:55 +0000366 sqlite3_snprintf(100, zCsr, "%c", c);
drhea678832008-12-10 19:26:22 +0000367 zCsr += sqlite3Strlen30(zCsr);
drh5bb3eb92007-05-04 13:15:55 +0000368 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000369 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000370 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000371 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000372 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000373 }
374 for(i=0; i<16 && i<pMem->n; i++){
375 char z = pMem->z[i];
376 if( z<32 || z>126 ) *zCsr++ = '.';
377 else *zCsr++ = z;
378 }
379
drhe718efe2007-05-10 21:14:03 +0000380 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000381 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000382 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000383 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000384 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000385 }
danielk1977b1bc9532004-05-22 03:05:33 +0000386 *zCsr = '\0';
387 }else if( f & MEM_Str ){
388 int j, k;
389 zBuf[0] = ' ';
390 if( f & MEM_Dyn ){
391 zBuf[1] = 'z';
392 assert( (f & (MEM_Static|MEM_Ephem))==0 );
393 }else if( f & MEM_Static ){
394 zBuf[1] = 't';
395 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
396 }else if( f & MEM_Ephem ){
397 zBuf[1] = 'e';
398 assert( (f & (MEM_Static|MEM_Dyn))==0 );
399 }else{
400 zBuf[1] = 's';
401 }
402 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000403 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000404 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000405 zBuf[k++] = '[';
406 for(j=0; j<15 && j<pMem->n; j++){
407 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000408 if( c>=0x20 && c<0x7f ){
409 zBuf[k++] = c;
410 }else{
411 zBuf[k++] = '.';
412 }
413 }
414 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000415 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000416 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000417 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000418 }
danielk1977ca6b2912004-05-21 10:49:47 +0000419}
420#endif
421
drh5b6afba2008-01-05 16:29:28 +0000422#ifdef SQLITE_DEBUG
423/*
424** Print the value of a register for tracing purposes:
425*/
426static void memTracePrint(FILE *out, Mem *p){
427 if( p->flags & MEM_Null ){
428 fprintf(out, " NULL");
429 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
430 fprintf(out, " si:%lld", p->u.i);
431 }else if( p->flags & MEM_Int ){
432 fprintf(out, " i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000433#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000434 }else if( p->flags & MEM_Real ){
435 fprintf(out, " r:%g", p->r);
drh0b3bf922009-06-15 20:45:34 +0000436#endif
drh733bf1b2009-04-22 00:47:00 +0000437 }else if( p->flags & MEM_RowSet ){
438 fprintf(out, " (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000439 }else{
440 char zBuf[200];
441 sqlite3VdbeMemPrettyPrint(p, zBuf);
442 fprintf(out, " ");
443 fprintf(out, "%s", zBuf);
444 }
445}
446static void registerTrace(FILE *out, int iReg, Mem *p){
447 fprintf(out, "REG[%d] = ", iReg);
448 memTracePrint(out, p);
449 fprintf(out, "\n");
450}
451#endif
452
453#ifdef SQLITE_DEBUG
drhb21e7c72008-06-22 12:37:57 +0000454# define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
drh5b6afba2008-01-05 16:29:28 +0000455#else
456# define REGISTER_TRACE(R,M)
457#endif
458
danielk197784ac9d02004-05-18 09:58:06 +0000459
drh7b396862003-01-01 23:06:20 +0000460#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000461
462/*
463** hwtime.h contains inline assembler code for implementing
464** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000465*/
shane9bcbdad2008-05-29 20:22:37 +0000466#include "hwtime.h"
467
drh7b396862003-01-01 23:06:20 +0000468#endif
469
drh8c74a8c2002-08-25 19:20:40 +0000470/*
drhcaec2f12003-01-07 02:47:47 +0000471** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
danielk19776f8a5032004-05-10 10:34:51 +0000472** sqlite3_interrupt() routine has been called. If it has been, then
drhcaec2f12003-01-07 02:47:47 +0000473** processing of the VDBE program is interrupted.
474**
475** This macro added to every instruction that does a jump in order to
476** implement a loop. This test used to be on every single instruction,
477** but that meant we more testing that we needed. By only testing the
478** flag on jump instructions, we get a (small) speed improvement.
479*/
480#define CHECK_FOR_INTERRUPT \
drh881feaa2006-07-26 01:39:30 +0000481 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drhcaec2f12003-01-07 02:47:47 +0000482
danielk1977861f7452008-06-05 11:39:11 +0000483#ifdef SQLITE_DEBUG
484static int fileExists(sqlite3 *db, const char *zFile){
danielk1977ad0132d2008-06-07 08:58:22 +0000485 int res = 0;
486 int rc = SQLITE_OK;
487#ifdef SQLITE_TEST
488 /* If we are currently testing IO errors, then do not call OsAccess() to
489 ** test for the presence of zFile. This is because any IO error that
490 ** occurs here will not be reported, causing the test to fail.
491 */
492 extern int sqlite3_io_error_pending;
493 if( sqlite3_io_error_pending<=0 )
494#endif
495 rc = sqlite3OsAccess(db->pVfs, zFile, SQLITE_ACCESS_EXISTS, &res);
danielk1977861f7452008-06-05 11:39:11 +0000496 return (res && rc==SQLITE_OK);
497}
498#endif
drhcaec2f12003-01-07 02:47:47 +0000499
danielk1977fd7f0452008-12-17 17:30:26 +0000500#ifndef NDEBUG
501/*
502** This function is only called from within an assert() expression. It
503** checks that the sqlite3.nTransaction variable is correctly set to
504** the number of non-transaction savepoints currently in the
505** linked list starting at sqlite3.pSavepoint.
506**
507** Usage:
508**
509** assert( checkSavepointCount(db) );
510*/
511static int checkSavepointCount(sqlite3 *db){
512 int n = 0;
513 Savepoint *p;
514 for(p=db->pSavepoint; p; p=p->pNext) n++;
515 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
516 return 1;
517}
518#endif
519
drhcaec2f12003-01-07 02:47:47 +0000520/*
drhb86ccfb2003-01-28 23:13:10 +0000521** Execute as much of a VDBE program as we can then return.
522**
danielk19774adee202004-05-08 08:23:19 +0000523** sqlite3VdbeMakeReady() must be called before this routine in order to
drhb86ccfb2003-01-28 23:13:10 +0000524** close the program with a final OP_Halt and to set up the callbacks
525** and the error message pointer.
526**
527** Whenever a row or result data is available, this routine will either
528** invoke the result callback (if there is one) or return with
drh326dce72003-01-29 14:06:07 +0000529** SQLITE_ROW.
drhb86ccfb2003-01-28 23:13:10 +0000530**
531** If an attempt is made to open a locked database, then this routine
532** will either invoke the busy callback (if there is one) or it will
533** return SQLITE_BUSY.
534**
535** If an error occurs, an error message is written to memory obtained
drh17435752007-08-16 04:30:38 +0000536** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
drhb86ccfb2003-01-28 23:13:10 +0000537** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
538**
539** If the callback ever returns non-zero, then the program exits
540** immediately. There will be no error message but the p->rc field is
541** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
542**
drh9468c7f2003-03-07 19:50:07 +0000543** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
544** routine to return SQLITE_ERROR.
drhb86ccfb2003-01-28 23:13:10 +0000545**
546** Other fatal errors return SQLITE_ERROR.
547**
danielk19774adee202004-05-08 08:23:19 +0000548** After this routine has finished, sqlite3VdbeFinalize() should be
drhb86ccfb2003-01-28 23:13:10 +0000549** used to clean up the mess that was left behind.
550*/
danielk19774adee202004-05-08 08:23:19 +0000551int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000552 Vdbe *p /* The VDBE */
553){
shaneh84f4b2f2010-02-26 01:46:54 +0000554 int pc=0; /* The program counter */
drhbbe879d2009-11-14 18:04:35 +0000555 Op *aOp = p->aOp; /* Copy of p->aOp */
drhb86ccfb2003-01-28 23:13:10 +0000556 Op *pOp; /* Current operation */
557 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000558 sqlite3 *db = p->db; /* The database */
drh32783152009-11-20 15:02:34 +0000559 u8 resetSchemaOnFault = 0; /* Reset schema after an error if true */
drh8079a0d2006-01-12 17:20:50 +0000560 u8 encoding = ENC(db); /* The database encoding */
drha6c2ed92009-11-14 23:22:23 +0000561#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
shaneh5e17e8b2009-12-03 04:40:47 +0000562 int checkProgress; /* True if progress callbacks are enabled */
drha6c2ed92009-11-14 23:22:23 +0000563 int nProgressOps = 0; /* Opcodes executed since progress callback. */
564#endif
565 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000566 Mem *pIn1 = 0; /* 1st input operand */
567 Mem *pIn2 = 0; /* 2nd input operand */
568 Mem *pIn3 = 0; /* 3rd input operand */
569 Mem *pOut = 0; /* Output operand */
drh0acb7e42008-06-25 00:12:41 +0000570 int iCompare = 0; /* Result of last OP_Compare operation */
shanebe217792009-03-05 04:20:31 +0000571 int *aPermute = 0; /* Permutation of columns for OP_Compare */
drhb86ccfb2003-01-28 23:13:10 +0000572#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000573 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000574 int origPc; /* Program counter at start of opcode */
575#endif
drh856c1032009-06-02 15:21:42 +0000576 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000577
drhca48c902008-01-18 14:08:24 +0000578 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
danielk1977f7590db2009-04-10 12:55:16 +0000579 sqlite3VdbeMutexArrayEnter(p);
danielk19772e588c72005-12-09 14:25:08 +0000580 if( p->rc==SQLITE_NOMEM ){
581 /* This happens if a malloc() inside a call to sqlite3_column_text() or
582 ** sqlite3_column_text16() failed. */
583 goto no_mem;
584 }
drh3a840692003-01-29 22:58:26 +0000585 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
586 p->rc = SQLITE_OK;
drhb86ccfb2003-01-28 23:13:10 +0000587 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000588 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000589 db->busyHandler.nBusy = 0;
drh93581642004-02-12 13:02:55 +0000590 CHECK_FOR_INTERRUPT;
drh602c2372007-03-01 00:29:13 +0000591 sqlite3VdbeIOTraceSql(p);
drha6c2ed92009-11-14 23:22:23 +0000592#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
593 checkProgress = db->xProgress!=0;
594#endif
drh3c23a882007-01-09 14:01:13 +0000595#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000596 sqlite3BeginBenignMalloc();
danielk1977861f7452008-06-05 11:39:11 +0000597 if( p->pc==0
598 && ((p->db->flags & SQLITE_VdbeListing) || fileExists(db, "vdbe_explain"))
drh3c23a882007-01-09 14:01:13 +0000599 ){
600 int i;
601 printf("VDBE Program Listing:\n");
602 sqlite3VdbePrintSql(p);
603 for(i=0; i<p->nOp; i++){
drhbbe879d2009-11-14 18:04:35 +0000604 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
drh3c23a882007-01-09 14:01:13 +0000605 }
606 }
danielk1977861f7452008-06-05 11:39:11 +0000607 if( fileExists(db, "vdbe_trace") ){
drh3c23a882007-01-09 14:01:13 +0000608 p->trace = stdout;
609 }
danielk19772d1d86f2008-06-20 14:59:51 +0000610 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000611#endif
drhb86ccfb2003-01-28 23:13:10 +0000612 for(pc=p->pc; rc==SQLITE_OK; pc++){
drhcaec2f12003-01-07 02:47:47 +0000613 assert( pc>=0 && pc<p->nOp );
drh17435752007-08-16 04:30:38 +0000614 if( db->mallocFailed ) goto no_mem;
drh7b396862003-01-01 23:06:20 +0000615#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +0000616 origPc = pc;
shane9bcbdad2008-05-29 20:22:37 +0000617 start = sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000618#endif
drhbbe879d2009-11-14 18:04:35 +0000619 pOp = &aOp[pc];
drh6e142f52000-06-08 13:36:40 +0000620
danielk19778b60e0f2005-01-12 09:10:39 +0000621 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000622 */
danielk19778b60e0f2005-01-12 09:10:39 +0000623#ifdef SQLITE_DEBUG
drh75897232000-05-29 14:26:00 +0000624 if( p->trace ){
drh3f7d4e42004-07-24 14:35:58 +0000625 if( pc==0 ){
626 printf("VDBE Execution Trace:\n");
627 sqlite3VdbePrintSql(p);
628 }
danielk19774adee202004-05-08 08:23:19 +0000629 sqlite3VdbePrintOp(p->trace, pc, pOp);
drh75897232000-05-29 14:26:00 +0000630 }
drh19db9352008-03-27 22:42:51 +0000631 if( p->trace==0 && pc==0 ){
danielk19772d1d86f2008-06-20 14:59:51 +0000632 sqlite3BeginBenignMalloc();
danielk1977861f7452008-06-05 11:39:11 +0000633 if( fileExists(db, "vdbe_sqltrace") ){
drh19db9352008-03-27 22:42:51 +0000634 sqlite3VdbePrintSql(p);
635 }
danielk19772d1d86f2008-06-20 14:59:51 +0000636 sqlite3EndBenignMalloc();
drh3f7d4e42004-07-24 14:35:58 +0000637 }
638#endif
639
drh6e142f52000-06-08 13:36:40 +0000640
drhf6038712004-02-08 18:07:34 +0000641 /* Check to see if we need to simulate an interrupt. This only happens
642 ** if we have a special test build.
643 */
644#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000645 if( sqlite3_interrupt_count>0 ){
646 sqlite3_interrupt_count--;
647 if( sqlite3_interrupt_count==0 ){
648 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000649 }
650 }
651#endif
652
danielk1977348bb5d2003-10-18 09:37:26 +0000653#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
654 /* Call the progress callback if it is configured and the required number
655 ** of VDBE ops have been executed (either since this invocation of
danielk19774adee202004-05-08 08:23:19 +0000656 ** sqlite3VdbeExec() or since last time the progress callback was called).
danielk1977348bb5d2003-10-18 09:37:26 +0000657 ** If the progress callback returns non-zero, exit the virtual machine with
658 ** a return code SQLITE_ABORT.
659 */
drha6c2ed92009-11-14 23:22:23 +0000660 if( checkProgress ){
drh3914aed2004-01-31 20:40:42 +0000661 if( db->nProgressOps==nProgressOps ){
danielk1977de523ac2007-06-15 14:53:53 +0000662 int prc;
drh9978c972010-02-23 17:36:32 +0000663 prc = db->xProgress(db->pProgressArg);
danielk1977de523ac2007-06-15 14:53:53 +0000664 if( prc!=0 ){
665 rc = SQLITE_INTERRUPT;
drha05a7222008-01-19 03:35:58 +0000666 goto vdbe_error_halt;
danielk1977de523ac2007-06-15 14:53:53 +0000667 }
danielk19773fe11f32007-06-13 16:49:48 +0000668 nProgressOps = 0;
danielk1977348bb5d2003-10-18 09:37:26 +0000669 }
drh3914aed2004-01-31 20:40:42 +0000670 nProgressOps++;
danielk1977348bb5d2003-10-18 09:37:26 +0000671 }
danielk1977348bb5d2003-10-18 09:37:26 +0000672#endif
673
drh3c657212009-11-17 23:59:58 +0000674 /* On any opcode with the "out2-prerelase" tag, free any
675 ** external allocations out of mem[p2] and set mem[p2] to be
676 ** an undefined integer. Opcodes will either fill in the integer
677 ** value or convert mem[p2] to a different type.
drh4c583122008-01-04 22:01:03 +0000678 */
drha6c2ed92009-11-14 23:22:23 +0000679 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
drh3c657212009-11-17 23:59:58 +0000680 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
681 assert( pOp->p2>0 );
682 assert( pOp->p2<=p->nMem );
683 pOut = &aMem[pOp->p2];
684 sqlite3VdbeMemReleaseExternal(pOut);
685 pOut->flags = MEM_Int;
drh4c583122008-01-04 22:01:03 +0000686 }
drh3c657212009-11-17 23:59:58 +0000687
688 /* Sanity checking on other operands */
689#ifdef SQLITE_DEBUG
690 if( (pOp->opflags & OPFLG_IN1)!=0 ){
691 assert( pOp->p1>0 );
692 assert( pOp->p1<=p->nMem );
693 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
694 }
695 if( (pOp->opflags & OPFLG_IN2)!=0 ){
696 assert( pOp->p2>0 );
697 assert( pOp->p2<=p->nMem );
698 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
699 }
700 if( (pOp->opflags & OPFLG_IN3)!=0 ){
701 assert( pOp->p3>0 );
702 assert( pOp->p3<=p->nMem );
703 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
704 }
705 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
706 assert( pOp->p2>0 );
707 assert( pOp->p2<=p->nMem );
708 }
709 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
710 assert( pOp->p3>0 );
711 assert( pOp->p3<=p->nMem );
712 }
713#endif
drh93952eb2009-11-13 19:43:43 +0000714
drh75897232000-05-29 14:26:00 +0000715 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000716
drh5e00f6c2001-09-13 13:46:56 +0000717/*****************************************************************************
718** What follows is a massive switch statement where each case implements a
719** separate instruction in the virtual machine. If we follow the usual
720** indentation conventions, each case should be indented by 6 spaces. But
721** that is a lot of wasted space on the left margin. So the code within
722** the switch statement will break with convention and be flush-left. Another
723** big comment (similar to this one) will mark the point in the code where
724** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000725**
726** The formatting of each case is important. The makefile for SQLite
727** generates two C files "opcodes.h" and "opcodes.c" by scanning this
728** file looking for lines that begin with "case OP_". The opcodes.h files
729** will be filled with #defines that give unique integer values to each
730** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000731** each string is the symbolic name for the corresponding opcode. If the
732** case statement is followed by a comment of the form "/# same as ... #/"
733** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000734**
drh9cbf3422008-01-17 16:22:13 +0000735** Other keywords in the comment that follows each case are used to
736** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
737** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
738** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000739**
drhac82fcf2002-09-08 17:23:41 +0000740** Documentation about VDBE opcodes is generated by scanning this file
741** for lines of that contain "Opcode:". That line and all subsequent
742** comment lines are used in the generation of the opcode.html documentation
743** file.
744**
745** SUMMARY:
746**
747** Formatting is important to scripts that scan this file.
748** Do not deviate from the formatting style currently in use.
749**
drh5e00f6c2001-09-13 13:46:56 +0000750*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000751
drh9cbf3422008-01-17 16:22:13 +0000752/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000753**
754** An unconditional jump to address P2.
755** The next instruction executed will be
756** the one at index P2 from the beginning of
757** the program.
758*/
drh9cbf3422008-01-17 16:22:13 +0000759case OP_Goto: { /* jump */
drhcaec2f12003-01-07 02:47:47 +0000760 CHECK_FOR_INTERRUPT;
drh5e00f6c2001-09-13 13:46:56 +0000761 pc = pOp->p2 - 1;
762 break;
763}
drh75897232000-05-29 14:26:00 +0000764
drh2eb95372008-06-06 15:04:36 +0000765/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000766**
drh2eb95372008-06-06 15:04:36 +0000767** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000768** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000769*/
drh93952eb2009-11-13 19:43:43 +0000770case OP_Gosub: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +0000771 pIn1 = &aMem[pOp->p1];
drh2eb95372008-06-06 15:04:36 +0000772 assert( (pIn1->flags & MEM_Dyn)==0 );
773 pIn1->flags = MEM_Int;
774 pIn1->u.i = pc;
775 REGISTER_TRACE(pOp->p1, pIn1);
drh8c74a8c2002-08-25 19:20:40 +0000776 pc = pOp->p2 - 1;
777 break;
778}
779
drh2eb95372008-06-06 15:04:36 +0000780/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000781**
drh2eb95372008-06-06 15:04:36 +0000782** Jump to the next instruction after the address in register P1.
drh8c74a8c2002-08-25 19:20:40 +0000783*/
drh2eb95372008-06-06 15:04:36 +0000784case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000785 pIn1 = &aMem[pOp->p1];
drh2eb95372008-06-06 15:04:36 +0000786 assert( pIn1->flags & MEM_Int );
drh9c1905f2008-12-10 22:32:56 +0000787 pc = (int)pIn1->u.i;
drh8c74a8c2002-08-25 19:20:40 +0000788 break;
789}
790
drhe00ee6e2008-06-20 15:24:01 +0000791/* Opcode: Yield P1 * * * *
792**
793** Swap the program counter with the value in register P1.
794*/
danielk1977f73ab8b2008-12-29 10:39:53 +0000795case OP_Yield: { /* in1 */
drhe00ee6e2008-06-20 15:24:01 +0000796 int pcDest;
drh3c657212009-11-17 23:59:58 +0000797 pIn1 = &aMem[pOp->p1];
drhe00ee6e2008-06-20 15:24:01 +0000798 assert( (pIn1->flags & MEM_Dyn)==0 );
799 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000800 pcDest = (int)pIn1->u.i;
drhe00ee6e2008-06-20 15:24:01 +0000801 pIn1->u.i = pc;
802 REGISTER_TRACE(pOp->p1, pIn1);
803 pc = pcDest;
804 break;
805}
806
drh5053a792009-02-20 03:02:23 +0000807/* Opcode: HaltIfNull P1 P2 P3 P4 *
808**
809** Check the value in register P3. If is is NULL then Halt using
810** parameter P1, P2, and P4 as if this were a Halt instruction. If the
811** value in register P3 is not NULL, then this routine is a no-op.
812*/
813case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000814 pIn3 = &aMem[pOp->p3];
drh5053a792009-02-20 03:02:23 +0000815 if( (pIn3->flags & MEM_Null)==0 ) break;
816 /* Fall through into OP_Halt */
817}
drhe00ee6e2008-06-20 15:24:01 +0000818
drh9cbf3422008-01-17 16:22:13 +0000819/* Opcode: Halt P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +0000820**
drh3d4501e2008-12-04 20:40:10 +0000821** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000822** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000823**
drh92f02c32004-09-02 14:57:08 +0000824** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
825** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
826** For errors, it can be some other value. If P1!=0 then P2 will determine
827** whether or not to rollback the current transaction. Do not rollback
828** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
829** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000830** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000831**
drh66a51672008-01-03 00:01:23 +0000832** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000833**
drh9cfcf5d2002-01-29 18:41:24 +0000834** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000835** every program. So a jump past the last instruction of the program
836** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000837*/
drh9cbf3422008-01-17 16:22:13 +0000838case OP_Halt: {
dan165921a2009-08-28 18:53:45 +0000839 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000840 /* Halt the sub-program. Return control to the parent frame. */
dan165921a2009-08-28 18:53:45 +0000841 VdbeFrame *pFrame = p->pFrame;
842 p->pFrame = pFrame->pParent;
843 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000844 sqlite3VdbeSetChanges(db, p->nChange);
dan165921a2009-08-28 18:53:45 +0000845 pc = sqlite3VdbeFrameRestore(pFrame);
846 if( pOp->p2==OE_Ignore ){
dan2832ad42009-08-31 15:27:27 +0000847 /* Instruction pc is the OP_Program that invoked the sub-program
848 ** currently being halted. If the p2 instruction of this OP_Halt
849 ** instruction is set to OE_Ignore, then the sub-program is throwing
850 ** an IGNORE exception. In this case jump to the address specified
851 ** as the p2 of the calling OP_Program. */
dan76d462e2009-08-30 11:42:51 +0000852 pc = p->aOp[pc].p2-1;
dan165921a2009-08-28 18:53:45 +0000853 }
drhbbe879d2009-11-14 18:04:35 +0000854 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000855 aMem = p->aMem;
dan165921a2009-08-28 18:53:45 +0000856 break;
857 }
dan2832ad42009-08-31 15:27:27 +0000858
drh92f02c32004-09-02 14:57:08 +0000859 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000860 p->errorAction = (u8)pOp->p2;
dan165921a2009-08-28 18:53:45 +0000861 p->pc = pc;
danielk19772dca4ac2008-01-03 11:50:29 +0000862 if( pOp->p4.z ){
drh413c3d32010-02-23 20:11:56 +0000863 assert( p->rc!=SQLITE_OK );
drhf089aa42008-07-08 19:34:06 +0000864 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
drhaf46dc12010-02-24 21:44:07 +0000865 testcase( sqlite3GlobalConfig.xLog!=0 );
drh413c3d32010-02-23 20:11:56 +0000866 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z);
drhcda455b2010-02-24 19:23:56 +0000867 }else if( p->rc ){
drhaf46dc12010-02-24 21:44:07 +0000868 testcase( sqlite3GlobalConfig.xLog!=0 );
drhcda455b2010-02-24 19:23:56 +0000869 sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
drh9cfcf5d2002-01-29 18:41:24 +0000870 }
drh92f02c32004-09-02 14:57:08 +0000871 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +0000872 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +0000873 if( rc==SQLITE_BUSY ){
drh900b31e2007-08-28 02:27:51 +0000874 p->rc = rc = SQLITE_BUSY;
875 }else{
dan1da40a32009-09-19 17:00:31 +0000876 assert( rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT );
877 assert( rc==SQLITE_OK || db->nDeferredCons>0 );
drh900b31e2007-08-28 02:27:51 +0000878 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +0000879 }
drh900b31e2007-08-28 02:27:51 +0000880 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +0000881}
drhc61053b2000-06-04 12:58:36 +0000882
drh4c583122008-01-04 22:01:03 +0000883/* Opcode: Integer P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000884**
drh9cbf3422008-01-17 16:22:13 +0000885** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +0000886*/
drh4c583122008-01-04 22:01:03 +0000887case OP_Integer: { /* out2-prerelease */
drh4c583122008-01-04 22:01:03 +0000888 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +0000889 break;
890}
891
drh4c583122008-01-04 22:01:03 +0000892/* Opcode: Int64 * P2 * P4 *
drh29dda4a2005-07-21 18:23:20 +0000893**
drh66a51672008-01-03 00:01:23 +0000894** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +0000895** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +0000896*/
drh4c583122008-01-04 22:01:03 +0000897case OP_Int64: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000898 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +0000899 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +0000900 break;
901}
drh4f26d6c2004-05-26 23:25:30 +0000902
drh13573c72010-01-12 17:04:07 +0000903#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +0000904/* Opcode: Real * P2 * P4 *
drhf4479502004-05-27 03:12:53 +0000905**
drh4c583122008-01-04 22:01:03 +0000906** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +0000907** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +0000908*/
drh4c583122008-01-04 22:01:03 +0000909case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
910 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +0000911 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh4c583122008-01-04 22:01:03 +0000912 pOut->r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +0000913 break;
914}
drh13573c72010-01-12 17:04:07 +0000915#endif
danielk1977cbb18d22004-05-28 11:37:27 +0000916
drh3c84ddf2008-01-09 02:15:38 +0000917/* Opcode: String8 * P2 * P4 *
danielk1977cbb18d22004-05-28 11:37:27 +0000918**
drh66a51672008-01-03 00:01:23 +0000919** P4 points to a nul terminated UTF-8 string. This opcode is transformed
danielk19770f69c1e2004-05-29 11:24:50 +0000920** into an OP_String before it is executed for the first time.
danielk1977cbb18d22004-05-28 11:37:27 +0000921*/
drh4c583122008-01-04 22:01:03 +0000922case OP_String8: { /* same as TK_STRING, out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000923 assert( pOp->p4.z!=0 );
drhed2df7f2005-11-16 04:34:32 +0000924 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +0000925 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +0000926
927#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +0000928 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +0000929 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
930 if( rc==SQLITE_TOOBIG ) goto too_big;
drh4c583122008-01-04 22:01:03 +0000931 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh3a9cf172009-06-17 21:42:33 +0000932 assert( pOut->zMalloc==pOut->z );
933 assert( pOut->flags & MEM_Dyn );
danielk19775f096132008-03-28 15:44:09 +0000934 pOut->zMalloc = 0;
drh4c583122008-01-04 22:01:03 +0000935 pOut->flags |= MEM_Static;
drh191b54c2008-04-15 12:14:21 +0000936 pOut->flags &= ~MEM_Dyn;
drh66a51672008-01-03 00:01:23 +0000937 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000938 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +0000939 }
drh66a51672008-01-03 00:01:23 +0000940 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +0000941 pOp->p4.z = pOut->z;
942 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +0000943 }
danielk197793758c82005-01-21 08:13:14 +0000944#endif
drhbb4957f2008-03-20 14:03:29 +0000945 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +0000946 goto too_big;
947 }
948 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +0000949}
drhf4479502004-05-27 03:12:53 +0000950
drh4c583122008-01-04 22:01:03 +0000951/* Opcode: String P1 P2 * P4 *
drhf4479502004-05-27 03:12:53 +0000952**
drh9cbf3422008-01-17 16:22:13 +0000953** The string value P4 of length P1 (bytes) is stored in register P2.
drhf4479502004-05-27 03:12:53 +0000954*/
drh4c583122008-01-04 22:01:03 +0000955case OP_String: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000956 assert( pOp->p4.z!=0 );
drh4c583122008-01-04 22:01:03 +0000957 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
958 pOut->z = pOp->p4.z;
959 pOut->n = pOp->p1;
960 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +0000961 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977c572ef72004-05-27 09:28:41 +0000962 break;
963}
964
drh4c583122008-01-04 22:01:03 +0000965/* Opcode: Null * P2 * * *
drhf0863fe2005-06-12 21:35:51 +0000966**
drh9cbf3422008-01-17 16:22:13 +0000967** Write a NULL into register P2.
drhf0863fe2005-06-12 21:35:51 +0000968*/
drh4c583122008-01-04 22:01:03 +0000969case OP_Null: { /* out2-prerelease */
drh3c657212009-11-17 23:59:58 +0000970 pOut->flags = MEM_Null;
drhf0863fe2005-06-12 21:35:51 +0000971 break;
972}
973
974
drh9de221d2008-01-05 06:51:30 +0000975/* Opcode: Blob P1 P2 * P4
danielk1977c572ef72004-05-27 09:28:41 +0000976**
drh9de221d2008-01-05 06:51:30 +0000977** P4 points to a blob of data P1 bytes long. Store this
978** blob in register P2. This instruction is not coded directly
danielk1977cbb18d22004-05-28 11:37:27 +0000979** by the compiler. Instead, the compiler layer specifies
980** an OP_HexBlob opcode, with the hex string representation of
drh66a51672008-01-03 00:01:23 +0000981** the blob as P4. This opcode is transformed to an OP_Blob
danielk197793758c82005-01-21 08:13:14 +0000982** the first time it is executed.
danielk1977c572ef72004-05-27 09:28:41 +0000983*/
drh4c583122008-01-04 22:01:03 +0000984case OP_Blob: { /* out2-prerelease */
drhcbd2da92007-12-17 16:20:06 +0000985 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh4c583122008-01-04 22:01:03 +0000986 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +0000987 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +0000988 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +0000989 break;
990}
991
drh08de1492009-02-20 03:55:05 +0000992/* Opcode: Variable P1 P2 P3 P4 *
drh50457892003-09-06 01:10:47 +0000993**
drh08de1492009-02-20 03:55:05 +0000994** Transfer the values of bound parameters P1..P1+P3-1 into registers
995** P2..P2+P3-1.
996**
997** If the parameter is named, then its name appears in P4 and P3==1.
998** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +0000999*/
drh08de1492009-02-20 03:55:05 +00001000case OP_Variable: {
drh856c1032009-06-02 15:21:42 +00001001 int p1; /* Variable to copy from */
1002 int p2; /* Register to copy to */
1003 int n; /* Number of values left to copy */
1004 Mem *pVar; /* Value being transferred */
1005
1006 p1 = pOp->p1 - 1;
1007 p2 = pOp->p2;
1008 n = pOp->p3;
1009 assert( p1>=0 && p1+n<=p->nVar );
1010 assert( p2>=1 && p2+n-1<=p->nMem );
dan937d0de2009-10-15 18:35:38 +00001011 assert( pOp->p4.z==0 || pOp->p3==1 || pOp->p3==0 );
danielk1977295ba552004-05-19 10:34:51 +00001012
drh08de1492009-02-20 03:55:05 +00001013 while( n-- > 0 ){
drh856c1032009-06-02 15:21:42 +00001014 pVar = &p->aVar[p1++];
drh08de1492009-02-20 03:55:05 +00001015 if( sqlite3VdbeMemTooBig(pVar) ){
1016 goto too_big;
1017 }
drha6c2ed92009-11-14 23:22:23 +00001018 pOut = &aMem[p2++];
drh08de1492009-02-20 03:55:05 +00001019 sqlite3VdbeMemReleaseExternal(pOut);
1020 pOut->flags = MEM_Null;
1021 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1022 UPDATE_MAX_BLOBSIZE(pOut);
drh023ae032007-05-08 12:12:16 +00001023 }
danielk197793d46752004-05-23 13:30:58 +00001024 break;
1025}
danielk1977295ba552004-05-19 10:34:51 +00001026
drhb21e7c72008-06-22 12:37:57 +00001027/* Opcode: Move P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001028**
drhb21e7c72008-06-22 12:37:57 +00001029** Move the values in register P1..P1+P3-1 over into
1030** registers P2..P2+P3-1. Registers P1..P1+P1-1 are
1031** left holding a NULL. It is an error for register ranges
1032** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
drh5e00f6c2001-09-13 13:46:56 +00001033*/
drhe1349cb2008-04-01 00:36:10 +00001034case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001035 char *zMalloc; /* Holding variable for allocated memory */
1036 int n; /* Number of registers left to copy */
1037 int p1; /* Register to copy from */
1038 int p2; /* Register to copy to */
1039
1040 n = pOp->p3;
1041 p1 = pOp->p1;
1042 p2 = pOp->p2;
danielk19776ab3a2e2009-02-19 14:39:25 +00001043 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001044 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001045
drha6c2ed92009-11-14 23:22:23 +00001046 pIn1 = &aMem[p1];
1047 pOut = &aMem[p2];
drhb21e7c72008-06-22 12:37:57 +00001048 while( n-- ){
drha6c2ed92009-11-14 23:22:23 +00001049 assert( pOut<=&aMem[p->nMem] );
1050 assert( pIn1<=&aMem[p->nMem] );
drhb21e7c72008-06-22 12:37:57 +00001051 zMalloc = pOut->zMalloc;
1052 pOut->zMalloc = 0;
1053 sqlite3VdbeMemMove(pOut, pIn1);
1054 pIn1->zMalloc = zMalloc;
1055 REGISTER_TRACE(p2++, pOut);
1056 pIn1++;
1057 pOut++;
1058 }
drhe1349cb2008-04-01 00:36:10 +00001059 break;
1060}
1061
drhb1fdb2a2008-01-05 04:06:03 +00001062/* Opcode: Copy P1 P2 * * *
1063**
drh9cbf3422008-01-17 16:22:13 +00001064** Make a copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001065**
1066** This instruction makes a deep copy of the value. A duplicate
1067** is made of any string or blob constant. See also OP_SCopy.
1068*/
drh93952eb2009-11-13 19:43:43 +00001069case OP_Copy: { /* in1, out2 */
drh3c657212009-11-17 23:59:58 +00001070 pIn1 = &aMem[pOp->p1];
1071 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001072 assert( pOut!=pIn1 );
1073 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1074 Deephemeralize(pOut);
1075 REGISTER_TRACE(pOp->p2, pOut);
1076 break;
1077}
1078
drhb1fdb2a2008-01-05 04:06:03 +00001079/* Opcode: SCopy P1 P2 * * *
1080**
drh9cbf3422008-01-17 16:22:13 +00001081** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001082**
1083** This instruction makes a shallow copy of the value. If the value
1084** is a string or blob, then the copy is only a pointer to the
1085** original and hence if the original changes so will the copy.
1086** Worse, if the original is deallocated, the copy becomes invalid.
1087** Thus the program must guarantee that the original will not change
1088** during the lifetime of the copy. Use OP_Copy to make a complete
1089** copy.
1090*/
drh93952eb2009-11-13 19:43:43 +00001091case OP_SCopy: { /* in1, out2 */
drh3c657212009-11-17 23:59:58 +00001092 pIn1 = &aMem[pOp->p1];
1093 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001094 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001095 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh5b6afba2008-01-05 16:29:28 +00001096 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00001097 break;
1098}
drh75897232000-05-29 14:26:00 +00001099
drh9cbf3422008-01-17 16:22:13 +00001100/* Opcode: ResultRow P1 P2 * * *
drhd4e70eb2008-01-02 00:34:36 +00001101**
shane21e7feb2008-05-30 15:59:49 +00001102** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001103** results. This opcode causes the sqlite3_step() call to terminate
1104** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1105** structure to provide access to the top P1 values as the result
drh9cbf3422008-01-17 16:22:13 +00001106** row.
drhd4e70eb2008-01-02 00:34:36 +00001107*/
drh9cbf3422008-01-17 16:22:13 +00001108case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001109 Mem *pMem;
1110 int i;
1111 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001112 assert( pOp->p1>0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001113 assert( pOp->p1+pOp->p2<=p->nMem+1 );
drhd4e70eb2008-01-02 00:34:36 +00001114
dan32b09f22009-09-23 17:29:59 +00001115 /* If this statement has violated immediate foreign key constraints, do
1116 ** not return the number of rows modified. And do not RELEASE the statement
1117 ** transaction. It needs to be rolled back. */
1118 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1119 assert( db->flags&SQLITE_CountRows );
1120 assert( p->usesStmtJournal );
1121 break;
1122 }
1123
danielk1977bd434552009-03-18 10:33:00 +00001124 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1125 ** DML statements invoke this opcode to return the number of rows
1126 ** modified to the user. This is the only way that a VM that
1127 ** opens a statement transaction may invoke this opcode.
1128 **
1129 ** In case this is such a statement, close any statement transaction
1130 ** opened by this VM before returning control to the user. This is to
1131 ** ensure that statement-transactions are always nested, not overlapping.
1132 ** If the open statement-transaction is not closed here, then the user
1133 ** may step another VM that opens its own statement transaction. This
1134 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001135 **
1136 ** The statement transaction is never a top-level transaction. Hence
1137 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001138 */
1139 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001140 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1141 if( NEVER(rc!=SQLITE_OK) ){
danielk1977bd434552009-03-18 10:33:00 +00001142 break;
1143 }
1144
drhd4e70eb2008-01-02 00:34:36 +00001145 /* Invalidate all ephemeral cursor row caches */
1146 p->cacheCtr = (p->cacheCtr + 2)|1;
1147
1148 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001149 ** and have an assigned type. The results are de-ephemeralized as
drhd4e70eb2008-01-02 00:34:36 +00001150 ** as side effect.
1151 */
drha6c2ed92009-11-14 23:22:23 +00001152 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001153 for(i=0; i<pOp->p2; i++){
1154 sqlite3VdbeMemNulTerminate(&pMem[i]);
dan937d0de2009-10-15 18:35:38 +00001155 sqlite3VdbeMemStoreType(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001156 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001157 }
drh28039692008-03-17 16:54:01 +00001158 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001159
1160 /* Return SQLITE_ROW
1161 */
drhd4e70eb2008-01-02 00:34:36 +00001162 p->pc = pc + 1;
drhd4e70eb2008-01-02 00:34:36 +00001163 rc = SQLITE_ROW;
1164 goto vdbe_return;
1165}
1166
drh5b6afba2008-01-05 16:29:28 +00001167/* Opcode: Concat P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001168**
drh5b6afba2008-01-05 16:29:28 +00001169** Add the text in register P1 onto the end of the text in
1170** register P2 and store the result in register P3.
1171** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001172**
1173** P3 = P2 || P1
1174**
1175** It is illegal for P1 and P3 to be the same register. Sometimes,
1176** if P3 is the same register as P2, the implementation is able
1177** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001178*/
drh5b6afba2008-01-05 16:29:28 +00001179case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001180 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001181
drh3c657212009-11-17 23:59:58 +00001182 pIn1 = &aMem[pOp->p1];
1183 pIn2 = &aMem[pOp->p2];
1184 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001185 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001186 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001187 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001188 break;
drh5e00f6c2001-09-13 13:46:56 +00001189 }
drha0c06522009-06-17 22:50:41 +00001190 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001191 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001192 Stringify(pIn2, encoding);
1193 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001194 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001195 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001196 }
danielk1977a7a8e142008-02-13 18:25:27 +00001197 MemSetTypeFlag(pOut, MEM_Str);
drh9c1905f2008-12-10 22:32:56 +00001198 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001199 goto no_mem;
1200 }
danielk1977a7a8e142008-02-13 18:25:27 +00001201 if( pOut!=pIn2 ){
1202 memcpy(pOut->z, pIn2->z, pIn2->n);
1203 }
1204 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1205 pOut->z[nByte] = 0;
1206 pOut->z[nByte+1] = 0;
1207 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001208 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001209 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001210 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001211 break;
1212}
drh75897232000-05-29 14:26:00 +00001213
drh3c84ddf2008-01-09 02:15:38 +00001214/* Opcode: Add P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001215**
drh60a713c2008-01-21 16:22:45 +00001216** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001217** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001218** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001219*/
drh3c84ddf2008-01-09 02:15:38 +00001220/* Opcode: Multiply P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001221**
drh3c84ddf2008-01-09 02:15:38 +00001222**
shane21e7feb2008-05-30 15:59:49 +00001223** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001224** and store the result in register P3.
1225** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001226*/
drh3c84ddf2008-01-09 02:15:38 +00001227/* Opcode: Subtract P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001228**
drh60a713c2008-01-21 16:22:45 +00001229** Subtract the value in register P1 from the value in register P2
1230** and store the result in register P3.
1231** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001232*/
drh9cbf3422008-01-17 16:22:13 +00001233/* Opcode: Divide P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001234**
drh60a713c2008-01-21 16:22:45 +00001235** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001236** and store the result in register P3 (P3=P2/P1). If the value in
1237** register P1 is zero, then the result is NULL. If either input is
1238** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001239*/
drh9cbf3422008-01-17 16:22:13 +00001240/* Opcode: Remainder P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001241**
drh3c84ddf2008-01-09 02:15:38 +00001242** Compute the remainder after integer division of the value in
1243** register P1 by the value in register P2 and store the result in P3.
1244** If the value in register P2 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001245** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001246*/
drh5b6afba2008-01-05 16:29:28 +00001247case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1248case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1249case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1250case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1251case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00001252 int flags; /* Combined MEM_* flags from both inputs */
1253 i64 iA; /* Integer value of left operand */
1254 i64 iB; /* Integer value of right operand */
1255 double rA; /* Real value of left operand */
1256 double rB; /* Real value of right operand */
1257
drh3c657212009-11-17 23:59:58 +00001258 pIn1 = &aMem[pOp->p1];
drh61669b32008-07-30 13:27:10 +00001259 applyNumericAffinity(pIn1);
drh3c657212009-11-17 23:59:58 +00001260 pIn2 = &aMem[pOp->p2];
drh61669b32008-07-30 13:27:10 +00001261 applyNumericAffinity(pIn2);
drh3c657212009-11-17 23:59:58 +00001262 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001263 flags = pIn1->flags | pIn2->flags;
drha05a7222008-01-19 03:35:58 +00001264 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1265 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
drh856c1032009-06-02 15:21:42 +00001266 iA = pIn1->u.i;
1267 iB = pIn2->u.i;
drh5e00f6c2001-09-13 13:46:56 +00001268 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001269 case OP_Add: iB += iA; break;
1270 case OP_Subtract: iB -= iA; break;
1271 case OP_Multiply: iB *= iA; break;
drhbf4133c2001-10-13 02:59:08 +00001272 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001273 if( iA==0 ) goto arithmetic_result_is_null;
danielk197742d4ef22007-06-26 11:13:25 +00001274 /* Dividing the largest possible negative 64-bit integer (1<<63) by
drh0f050352008-05-09 18:03:13 +00001275 ** -1 returns an integer too large to store in a 64-bit data-type. On
danielk197742d4ef22007-06-26 11:13:25 +00001276 ** some architectures, the value overflows to (1<<63). On others,
1277 ** a SIGFPE is issued. The following statement normalizes this
shane21e7feb2008-05-30 15:59:49 +00001278 ** behavior so that all architectures behave as if integer
1279 ** overflow occurred.
danielk197742d4ef22007-06-26 11:13:25 +00001280 */
drh856c1032009-06-02 15:21:42 +00001281 if( iA==-1 && iB==SMALLEST_INT64 ) iA = 1;
1282 iB /= iA;
drh75897232000-05-29 14:26:00 +00001283 break;
1284 }
drhbf4133c2001-10-13 02:59:08 +00001285 default: {
drh856c1032009-06-02 15:21:42 +00001286 if( iA==0 ) goto arithmetic_result_is_null;
1287 if( iA==-1 ) iA = 1;
1288 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001289 break;
1290 }
drh75897232000-05-29 14:26:00 +00001291 }
drh856c1032009-06-02 15:21:42 +00001292 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001293 MemSetTypeFlag(pOut, MEM_Int);
drh5e00f6c2001-09-13 13:46:56 +00001294 }else{
drh856c1032009-06-02 15:21:42 +00001295 rA = sqlite3VdbeRealValue(pIn1);
1296 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001297 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001298 case OP_Add: rB += rA; break;
1299 case OP_Subtract: rB -= rA; break;
1300 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001301 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001302 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001303 if( rA==(double)0 ) goto arithmetic_result_is_null;
1304 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001305 break;
1306 }
drhbf4133c2001-10-13 02:59:08 +00001307 default: {
shane75ac1de2009-06-09 18:58:52 +00001308 iA = (i64)rA;
1309 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001310 if( iA==0 ) goto arithmetic_result_is_null;
1311 if( iA==-1 ) iA = 1;
1312 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001313 break;
1314 }
drh5e00f6c2001-09-13 13:46:56 +00001315 }
drhc5a7b512010-01-13 16:25:42 +00001316#ifdef SQLITE_OMIT_FLOATING_POINT
1317 pOut->u.i = rB;
1318 MemSetTypeFlag(pOut, MEM_Int);
1319#else
drh856c1032009-06-02 15:21:42 +00001320 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001321 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001322 }
drh856c1032009-06-02 15:21:42 +00001323 pOut->r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001324 MemSetTypeFlag(pOut, MEM_Real);
drh8a512562005-11-14 22:29:05 +00001325 if( (flags & MEM_Real)==0 ){
drh5b6afba2008-01-05 16:29:28 +00001326 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001327 }
drhc5a7b512010-01-13 16:25:42 +00001328#endif
drh5e00f6c2001-09-13 13:46:56 +00001329 }
1330 break;
1331
drha05a7222008-01-19 03:35:58 +00001332arithmetic_result_is_null:
1333 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001334 break;
1335}
1336
drh66a51672008-01-03 00:01:23 +00001337/* Opcode: CollSeq * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001338**
drh66a51672008-01-03 00:01:23 +00001339** P4 is a pointer to a CollSeq struct. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001340** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1341** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001342** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001343**
1344** The interface used by the implementation of the aforementioned functions
1345** to retrieve the collation sequence set by this opcode is not available
1346** publicly, only to user functions defined in func.c.
1347*/
drh9cbf3422008-01-17 16:22:13 +00001348case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001349 assert( pOp->p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00001350 break;
1351}
1352
drh98757152008-01-09 23:04:12 +00001353/* Opcode: Function P1 P2 P3 P4 P5
drh8e0a2f92002-02-23 23:45:45 +00001354**
drh66a51672008-01-03 00:01:23 +00001355** Invoke a user function (P4 is a pointer to a Function structure that
drh98757152008-01-09 23:04:12 +00001356** defines the function) with P5 arguments taken from register P2 and
drh9cbf3422008-01-17 16:22:13 +00001357** successors. The result of the function is stored in register P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001358** Register P3 must not be one of the function inputs.
danielk1977682f68b2004-06-05 10:22:17 +00001359**
drh13449892005-09-07 21:22:45 +00001360** P1 is a 32-bit bitmask indicating whether or not each argument to the
danielk1977682f68b2004-06-05 10:22:17 +00001361** function was determined to be constant at compile time. If the first
drh13449892005-09-07 21:22:45 +00001362** argument was constant then bit 0 of P1 is set. This is used to determine
danielk1977682f68b2004-06-05 10:22:17 +00001363** whether meta data associated with a user function argument using the
1364** sqlite3_set_auxdata() API may be safely retained until the next
1365** invocation of this opcode.
drh1350b032002-02-27 19:00:20 +00001366**
drh13449892005-09-07 21:22:45 +00001367** See also: AggStep and AggFinal
drh8e0a2f92002-02-23 23:45:45 +00001368*/
drh0bce8352002-02-28 00:41:10 +00001369case OP_Function: {
danielk197751ad0ec2004-05-24 12:39:02 +00001370 int i;
drh6810ce62004-01-31 19:22:56 +00001371 Mem *pArg;
danielk197722322fd2004-05-25 23:35:17 +00001372 sqlite3_context ctx;
danielk197751ad0ec2004-05-24 12:39:02 +00001373 sqlite3_value **apVal;
drh856c1032009-06-02 15:21:42 +00001374 int n;
drh1350b032002-02-27 19:00:20 +00001375
drh856c1032009-06-02 15:21:42 +00001376 n = pOp->p5;
danielk19776ddcca52004-05-24 23:48:25 +00001377 apVal = p->apArg;
danielk197751ad0ec2004-05-24 12:39:02 +00001378 assert( apVal || n==0 );
1379
danielk19776ab3a2e2009-02-19 14:39:25 +00001380 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
danielk1977a7a8e142008-02-13 18:25:27 +00001381 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drha6c2ed92009-11-14 23:22:23 +00001382 pArg = &aMem[pOp->p2];
drh6810ce62004-01-31 19:22:56 +00001383 for(i=0; i<n; i++, pArg++){
danielk197751ad0ec2004-05-24 12:39:02 +00001384 apVal[i] = pArg;
dan937d0de2009-10-15 18:35:38 +00001385 sqlite3VdbeMemStoreType(pArg);
drhab5cd702010-04-07 14:32:11 +00001386 REGISTER_TRACE(pOp->p2+i, pArg);
drh8e0a2f92002-02-23 23:45:45 +00001387 }
danielk197751ad0ec2004-05-24 12:39:02 +00001388
drh66a51672008-01-03 00:01:23 +00001389 assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
1390 if( pOp->p4type==P4_FUNCDEF ){
danielk19772dca4ac2008-01-03 11:50:29 +00001391 ctx.pFunc = pOp->p4.pFunc;
danielk1977682f68b2004-06-05 10:22:17 +00001392 ctx.pVdbeFunc = 0;
1393 }else{
danielk19772dca4ac2008-01-03 11:50:29 +00001394 ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
danielk1977682f68b2004-06-05 10:22:17 +00001395 ctx.pFunc = ctx.pVdbeFunc->pFunc;
1396 }
1397
danielk1977a7a8e142008-02-13 18:25:27 +00001398 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00001399 pOut = &aMem[pOp->p3];
drh00706be2004-01-30 14:49:16 +00001400 ctx.s.flags = MEM_Null;
drhfa4a4b92008-03-19 21:45:51 +00001401 ctx.s.db = db;
danielk19775f096132008-03-28 15:44:09 +00001402 ctx.s.xDel = 0;
1403 ctx.s.zMalloc = 0;
danielk1977a7a8e142008-02-13 18:25:27 +00001404
1405 /* The output cell may already have a buffer allocated. Move
1406 ** the pointer to ctx.s so in case the user-function can use
1407 ** the already allocated buffer instead of allocating a new one.
1408 */
1409 sqlite3VdbeMemMove(&ctx.s, pOut);
1410 MemSetTypeFlag(&ctx.s, MEM_Null);
1411
drh8e0a2f92002-02-23 23:45:45 +00001412 ctx.isError = 0;
drhe82f5d02008-10-07 19:53:14 +00001413 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
drhbbe879d2009-11-14 18:04:35 +00001414 assert( pOp>aOp );
drh66a51672008-01-03 00:01:23 +00001415 assert( pOp[-1].p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00001416 assert( pOp[-1].opcode==OP_CollSeq );
danielk19772dca4ac2008-01-03 11:50:29 +00001417 ctx.pColl = pOp[-1].p4.pColl;
danielk1977dc1bdc42004-06-11 10:51:27 +00001418 }
danielk197751ad0ec2004-05-24 12:39:02 +00001419 (*ctx.pFunc->xFunc)(&ctx, n, apVal);
drh17435752007-08-16 04:30:38 +00001420 if( db->mallocFailed ){
danielk1977e0fc5262007-07-26 06:50:05 +00001421 /* Even though a malloc() has failed, the implementation of the
1422 ** user function may have called an sqlite3_result_XXX() function
1423 ** to return a value. The following call releases any resources
1424 ** associated with such a value.
danielk1977e0fc5262007-07-26 06:50:05 +00001425 */
1426 sqlite3VdbeMemRelease(&ctx.s);
1427 goto no_mem;
1428 }
danielk19777e18c252004-05-25 11:47:24 +00001429
shane21e7feb2008-05-30 15:59:49 +00001430 /* If any auxiliary data functions have been called by this user function,
danielk1977682f68b2004-06-05 10:22:17 +00001431 ** immediately call the destructor for any non-static values.
1432 */
1433 if( ctx.pVdbeFunc ){
drh13449892005-09-07 21:22:45 +00001434 sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
danielk19772dca4ac2008-01-03 11:50:29 +00001435 pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
drh66a51672008-01-03 00:01:23 +00001436 pOp->p4type = P4_VDBEFUNC;
danielk1977682f68b2004-06-05 10:22:17 +00001437 }
1438
drh90669c12006-01-20 15:45:36 +00001439 /* If the function returned an error, throw an exception */
1440 if( ctx.isError ){
drhf089aa42008-07-08 19:34:06 +00001441 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
drh69544ec2008-02-06 14:11:34 +00001442 rc = ctx.isError;
drh90669c12006-01-20 15:45:36 +00001443 }
1444
drh9cbf3422008-01-17 16:22:13 +00001445 /* Copy the result of the function into register P3 */
drhb21c8cd2007-08-21 19:33:56 +00001446 sqlite3VdbeChangeEncoding(&ctx.s, encoding);
drh98757152008-01-09 23:04:12 +00001447 sqlite3VdbeMemMove(pOut, &ctx.s);
1448 if( sqlite3VdbeMemTooBig(pOut) ){
drh023ae032007-05-08 12:12:16 +00001449 goto too_big;
1450 }
drh2dcef112008-01-12 19:03:48 +00001451 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00001452 UPDATE_MAX_BLOBSIZE(pOut);
drh8e0a2f92002-02-23 23:45:45 +00001453 break;
1454}
1455
drh98757152008-01-09 23:04:12 +00001456/* Opcode: BitAnd P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001457**
drh98757152008-01-09 23:04:12 +00001458** Take the bit-wise AND of the values in register P1 and P2 and
1459** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001460** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001461*/
drh98757152008-01-09 23:04:12 +00001462/* Opcode: BitOr P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001463**
drh98757152008-01-09 23:04:12 +00001464** Take the bit-wise OR of the values in register P1 and P2 and
1465** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001466** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001467*/
drh98757152008-01-09 23:04:12 +00001468/* Opcode: ShiftLeft P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001469**
drh98757152008-01-09 23:04:12 +00001470** Shift the integer value in register P2 to the left by the
drh60a713c2008-01-21 16:22:45 +00001471** number of bits specified by the integer in regiser P1.
drh98757152008-01-09 23:04:12 +00001472** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001473** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001474*/
drh98757152008-01-09 23:04:12 +00001475/* Opcode: ShiftRight P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001476**
drh98757152008-01-09 23:04:12 +00001477** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001478** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001479** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001480** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001481*/
drh5b6afba2008-01-05 16:29:28 +00001482case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1483case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1484case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1485case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00001486 i64 a;
1487 i64 b;
drh6810ce62004-01-31 19:22:56 +00001488
drh3c657212009-11-17 23:59:58 +00001489 pIn1 = &aMem[pOp->p1];
1490 pIn2 = &aMem[pOp->p2];
1491 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001492 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001493 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001494 break;
1495 }
drh5b6afba2008-01-05 16:29:28 +00001496 a = sqlite3VdbeIntValue(pIn2);
1497 b = sqlite3VdbeIntValue(pIn1);
drhbf4133c2001-10-13 02:59:08 +00001498 switch( pOp->opcode ){
1499 case OP_BitAnd: a &= b; break;
1500 case OP_BitOr: a |= b; break;
1501 case OP_ShiftLeft: a <<= b; break;
drha05a7222008-01-19 03:35:58 +00001502 default: assert( pOp->opcode==OP_ShiftRight );
1503 a >>= b; break;
drhbf4133c2001-10-13 02:59:08 +00001504 }
drh5b6afba2008-01-05 16:29:28 +00001505 pOut->u.i = a;
danielk1977a7a8e142008-02-13 18:25:27 +00001506 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001507 break;
1508}
1509
drh8558cde2008-01-05 05:20:10 +00001510/* Opcode: AddImm P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00001511**
danielk19770cdc0222008-06-26 18:04:03 +00001512** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001513** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001514**
drh8558cde2008-01-05 05:20:10 +00001515** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001516*/
drh9cbf3422008-01-17 16:22:13 +00001517case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001518 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001519 sqlite3VdbeMemIntegerify(pIn1);
1520 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001521 break;
1522}
1523
drh9cbf3422008-01-17 16:22:13 +00001524/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001525**
drh9cbf3422008-01-17 16:22:13 +00001526** Force the value in register P1 to be an integer. If the value
1527** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001528** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001529** raise an SQLITE_MISMATCH exception.
1530*/
drh9cbf3422008-01-17 16:22:13 +00001531case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001532 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001533 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1534 if( (pIn1->flags & MEM_Int)==0 ){
drh17c40292004-07-21 02:53:29 +00001535 if( pOp->p2==0 ){
1536 rc = SQLITE_MISMATCH;
1537 goto abort_due_to_error;
drh3c84ddf2008-01-09 02:15:38 +00001538 }else{
drh17c40292004-07-21 02:53:29 +00001539 pc = pOp->p2 - 1;
drh8aff1012001-12-22 14:49:24 +00001540 }
drh8aff1012001-12-22 14:49:24 +00001541 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00001542 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001543 }
1544 break;
1545}
1546
drh13573c72010-01-12 17:04:07 +00001547#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001548/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001549**
drh2133d822008-01-03 18:44:59 +00001550** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001551**
drh8a512562005-11-14 22:29:05 +00001552** This opcode is used when extracting information from a column that
1553** has REAL affinity. Such column values may still be stored as
1554** integers, for space efficiency, but after extraction we want them
1555** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001556*/
drh9cbf3422008-01-17 16:22:13 +00001557case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001558 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001559 if( pIn1->flags & MEM_Int ){
1560 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001561 }
drh487e2622005-06-25 18:42:14 +00001562 break;
1563}
drh13573c72010-01-12 17:04:07 +00001564#endif
drh487e2622005-06-25 18:42:14 +00001565
drh8df447f2005-11-01 15:48:24 +00001566#ifndef SQLITE_OMIT_CAST
drh8558cde2008-01-05 05:20:10 +00001567/* Opcode: ToText P1 * * * *
drh487e2622005-06-25 18:42:14 +00001568**
drh8558cde2008-01-05 05:20:10 +00001569** Force the value in register P1 to be text.
drh31beae92005-11-24 14:34:36 +00001570** If the value is numeric, convert it to a string using the
drh487e2622005-06-25 18:42:14 +00001571** equivalent of printf(). Blob values are unchanged and
1572** are afterwards simply interpreted as text.
1573**
1574** A NULL value is not changed by this routine. It remains NULL.
1575*/
drh9cbf3422008-01-17 16:22:13 +00001576case OP_ToText: { /* same as TK_TO_TEXT, in1 */
drh3c657212009-11-17 23:59:58 +00001577 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001578 if( pIn1->flags & MEM_Null ) break;
drh487e2622005-06-25 18:42:14 +00001579 assert( MEM_Str==(MEM_Blob>>3) );
drh8558cde2008-01-05 05:20:10 +00001580 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
1581 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1582 rc = ExpandBlob(pIn1);
danielk1977a7a8e142008-02-13 18:25:27 +00001583 assert( pIn1->flags & MEM_Str || db->mallocFailed );
drh68ac65e2009-01-05 18:02:27 +00001584 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
drhb7654112008-01-12 12:48:07 +00001585 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001586 break;
1587}
1588
drh8558cde2008-01-05 05:20:10 +00001589/* Opcode: ToBlob P1 * * * *
drh487e2622005-06-25 18:42:14 +00001590**
drh8558cde2008-01-05 05:20:10 +00001591** Force the value in register P1 to be a BLOB.
drh487e2622005-06-25 18:42:14 +00001592** If the value is numeric, convert it to a string first.
1593** Strings are simply reinterpreted as blobs with no change
1594** to the underlying data.
1595**
1596** A NULL value is not changed by this routine. It remains NULL.
1597*/
drh9cbf3422008-01-17 16:22:13 +00001598case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
drh3c657212009-11-17 23:59:58 +00001599 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001600 if( pIn1->flags & MEM_Null ) break;
1601 if( (pIn1->flags & MEM_Blob)==0 ){
1602 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
danielk1977a7a8e142008-02-13 18:25:27 +00001603 assert( pIn1->flags & MEM_Str || db->mallocFailed );
drhde58ddb2009-01-05 22:30:38 +00001604 MemSetTypeFlag(pIn1, MEM_Blob);
1605 }else{
1606 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
drh487e2622005-06-25 18:42:14 +00001607 }
drhb7654112008-01-12 12:48:07 +00001608 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001609 break;
1610}
drh8a512562005-11-14 22:29:05 +00001611
drh8558cde2008-01-05 05:20:10 +00001612/* Opcode: ToNumeric P1 * * * *
drh8a512562005-11-14 22:29:05 +00001613**
drh8558cde2008-01-05 05:20:10 +00001614** Force the value in register P1 to be numeric (either an
drh8a512562005-11-14 22:29:05 +00001615** integer or a floating-point number.)
1616** If the value is text or blob, try to convert it to an using the
1617** equivalent of atoi() or atof() and store 0 if no such conversion
1618** is possible.
1619**
1620** A NULL value is not changed by this routine. It remains NULL.
1621*/
drh9cbf3422008-01-17 16:22:13 +00001622case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
drh3c657212009-11-17 23:59:58 +00001623 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001624 if( (pIn1->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){
1625 sqlite3VdbeMemNumerify(pIn1);
drh8a512562005-11-14 22:29:05 +00001626 }
1627 break;
1628}
1629#endif /* SQLITE_OMIT_CAST */
1630
drh8558cde2008-01-05 05:20:10 +00001631/* Opcode: ToInt P1 * * * *
drh8a512562005-11-14 22:29:05 +00001632**
drh8558cde2008-01-05 05:20:10 +00001633** Force the value in register P1 be an integer. If
drh8a512562005-11-14 22:29:05 +00001634** The value is currently a real number, drop its fractional part.
1635** If the value is text or blob, try to convert it to an integer using the
1636** equivalent of atoi() and store 0 if no such conversion is possible.
1637**
1638** A NULL value is not changed by this routine. It remains NULL.
1639*/
drh9cbf3422008-01-17 16:22:13 +00001640case OP_ToInt: { /* same as TK_TO_INT, in1 */
drh3c657212009-11-17 23:59:58 +00001641 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001642 if( (pIn1->flags & MEM_Null)==0 ){
1643 sqlite3VdbeMemIntegerify(pIn1);
drh8a512562005-11-14 22:29:05 +00001644 }
1645 break;
1646}
1647
drh13573c72010-01-12 17:04:07 +00001648#if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
drh8558cde2008-01-05 05:20:10 +00001649/* Opcode: ToReal P1 * * * *
drh8a512562005-11-14 22:29:05 +00001650**
drh8558cde2008-01-05 05:20:10 +00001651** Force the value in register P1 to be a floating point number.
drh8a512562005-11-14 22:29:05 +00001652** If The value is currently an integer, convert it.
1653** If the value is text or blob, try to convert it to an integer using the
drh60a713c2008-01-21 16:22:45 +00001654** equivalent of atoi() and store 0.0 if no such conversion is possible.
drh8a512562005-11-14 22:29:05 +00001655**
1656** A NULL value is not changed by this routine. It remains NULL.
1657*/
drh9cbf3422008-01-17 16:22:13 +00001658case OP_ToReal: { /* same as TK_TO_REAL, in1 */
drh3c657212009-11-17 23:59:58 +00001659 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001660 if( (pIn1->flags & MEM_Null)==0 ){
1661 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001662 }
1663 break;
1664}
drh13573c72010-01-12 17:04:07 +00001665#endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
drh487e2622005-06-25 18:42:14 +00001666
drh35573352008-01-08 23:54:25 +00001667/* Opcode: Lt P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001668**
drh35573352008-01-08 23:54:25 +00001669** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1670** jump to address P2.
drhf5905aa2002-05-26 20:54:33 +00001671**
drh35573352008-01-08 23:54:25 +00001672** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1673** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
1674** bit is clear then fall thru if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001675**
drh35573352008-01-08 23:54:25 +00001676** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001677** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001678** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001679** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001680** affinity is used. Note that the affinity conversions are stored
1681** back into the input registers P1 and P3. So this opcode can cause
1682** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001683**
1684** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001685** the values are compared. If both values are blobs then memcmp() is
1686** used to determine the results of the comparison. If both values
1687** are text, then the appropriate collating function specified in
1688** P4 is used to do the comparison. If P4 is not specified then
1689** memcmp() is used to compare text string. If both values are
1690** numeric, then a numeric comparison is used. If the two values
1691** are of different types, then numbers are considered less than
1692** strings and strings are considered less than blobs.
drhc9b84a12002-06-20 11:36:48 +00001693**
drh35573352008-01-08 23:54:25 +00001694** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1695** store a boolean result (either 0, or 1, or NULL) in register P2.
drh5e00f6c2001-09-13 13:46:56 +00001696*/
drh9cbf3422008-01-17 16:22:13 +00001697/* Opcode: Ne P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001698**
drh35573352008-01-08 23:54:25 +00001699** This works just like the Lt opcode except that the jump is taken if
1700** the operands in registers P1 and P3 are not equal. See the Lt opcode for
drh53db1452004-05-20 13:54:53 +00001701** additional information.
drh6a2fe092009-09-23 02:29:36 +00001702**
1703** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1704** true or false and is never NULL. If both operands are NULL then the result
1705** of comparison is false. If either operand is NULL then the result is true.
1706** If neither operand is NULL the the result is the same as it would be if
1707** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001708*/
drh9cbf3422008-01-17 16:22:13 +00001709/* Opcode: Eq P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001710**
drh35573352008-01-08 23:54:25 +00001711** This works just like the Lt opcode except that the jump is taken if
1712** the operands in registers P1 and P3 are equal.
1713** See the Lt opcode for additional information.
drh6a2fe092009-09-23 02:29:36 +00001714**
1715** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1716** true or false and is never NULL. If both operands are NULL then the result
1717** of comparison is true. If either operand is NULL then the result is false.
1718** If neither operand is NULL the the result is the same as it would be if
1719** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001720*/
drh9cbf3422008-01-17 16:22:13 +00001721/* Opcode: Le P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001722**
drh35573352008-01-08 23:54:25 +00001723** This works just like the Lt opcode except that the jump is taken if
1724** the content of register P3 is less than or equal to the content of
1725** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001726*/
drh9cbf3422008-01-17 16:22:13 +00001727/* Opcode: Gt P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001728**
drh35573352008-01-08 23:54:25 +00001729** This works just like the Lt opcode except that the jump is taken if
1730** the content of register P3 is greater than the content of
1731** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001732*/
drh9cbf3422008-01-17 16:22:13 +00001733/* Opcode: Ge P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001734**
drh35573352008-01-08 23:54:25 +00001735** This works just like the Lt opcode except that the jump is taken if
1736** the content of register P3 is greater than or equal to the content of
1737** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001738*/
drh9cbf3422008-01-17 16:22:13 +00001739case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1740case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1741case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1742case OP_Le: /* same as TK_LE, jump, in1, in3 */
1743case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1744case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh6a2fe092009-09-23 02:29:36 +00001745 int res; /* Result of the comparison of pIn1 against pIn3 */
1746 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00001747 u16 flags1; /* Copy of initial value of pIn1->flags */
1748 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00001749
drh3c657212009-11-17 23:59:58 +00001750 pIn1 = &aMem[pOp->p1];
1751 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00001752 flags1 = pIn1->flags;
1753 flags3 = pIn3->flags;
drh6a2fe092009-09-23 02:29:36 +00001754 if( (pIn1->flags | pIn3->flags)&MEM_Null ){
1755 /* One or both operands are NULL */
1756 if( pOp->p5 & SQLITE_NULLEQ ){
1757 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1758 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1759 ** or not both operands are null.
1760 */
1761 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
1762 res = (pIn1->flags & pIn3->flags & MEM_Null)==0;
1763 }else{
1764 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1765 ** then the result is always NULL.
1766 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1767 */
1768 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001769 pOut = &aMem[pOp->p2];
drh6a2fe092009-09-23 02:29:36 +00001770 MemSetTypeFlag(pOut, MEM_Null);
1771 REGISTER_TRACE(pOp->p2, pOut);
1772 }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
1773 pc = pOp->p2-1;
1774 }
1775 break;
danielk1977a37cdde2004-05-16 11:15:36 +00001776 }
drh6a2fe092009-09-23 02:29:36 +00001777 }else{
1778 /* Neither operand is NULL. Do a comparison. */
1779 affinity = pOp->p5 & SQLITE_AFF_MASK;
1780 if( affinity ){
1781 applyAffinity(pIn1, affinity, encoding);
1782 applyAffinity(pIn3, affinity, encoding);
1783 if( db->mallocFailed ) goto no_mem;
1784 }
danielk1977a37cdde2004-05-16 11:15:36 +00001785
drh6a2fe092009-09-23 02:29:36 +00001786 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1787 ExpandBlob(pIn1);
1788 ExpandBlob(pIn3);
1789 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00001790 }
danielk1977a37cdde2004-05-16 11:15:36 +00001791 switch( pOp->opcode ){
1792 case OP_Eq: res = res==0; break;
1793 case OP_Ne: res = res!=0; break;
1794 case OP_Lt: res = res<0; break;
1795 case OP_Le: res = res<=0; break;
1796 case OP_Gt: res = res>0; break;
1797 default: res = res>=0; break;
1798 }
1799
drh35573352008-01-08 23:54:25 +00001800 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001801 pOut = &aMem[pOp->p2];
danielk1977a7a8e142008-02-13 18:25:27 +00001802 MemSetTypeFlag(pOut, MEM_Int);
drh35573352008-01-08 23:54:25 +00001803 pOut->u.i = res;
1804 REGISTER_TRACE(pOp->p2, pOut);
1805 }else if( res ){
1806 pc = pOp->p2-1;
danielk1977a37cdde2004-05-16 11:15:36 +00001807 }
danb7dca7d2010-03-05 16:32:12 +00001808
1809 /* Undo any changes made by applyAffinity() to the input registers. */
1810 pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
1811 pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
danielk1977a37cdde2004-05-16 11:15:36 +00001812 break;
1813}
drhc9b84a12002-06-20 11:36:48 +00001814
drh0acb7e42008-06-25 00:12:41 +00001815/* Opcode: Permutation * * * P4 *
1816**
shanebe217792009-03-05 04:20:31 +00001817** Set the permutation used by the OP_Compare operator to be the array
drh0acb7e42008-06-25 00:12:41 +00001818** of integers in P4.
1819**
1820** The permutation is only valid until the next OP_Permutation, OP_Compare,
1821** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur
1822** immediately prior to the OP_Compare.
1823*/
1824case OP_Permutation: {
1825 assert( pOp->p4type==P4_INTARRAY );
1826 assert( pOp->p4.ai );
1827 aPermute = pOp->p4.ai;
1828 break;
1829}
1830
drh16ee60f2008-06-20 18:13:25 +00001831/* Opcode: Compare P1 P2 P3 P4 *
1832**
1833** Compare to vectors of registers in reg(P1)..reg(P1+P3-1) (all this
1834** one "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
1835** the comparison for use by the next OP_Jump instruct.
1836**
drh0acb7e42008-06-25 00:12:41 +00001837** P4 is a KeyInfo structure that defines collating sequences and sort
1838** orders for the comparison. The permutation applies to registers
1839** only. The KeyInfo elements are used sequentially.
1840**
1841** The comparison is a sort comparison, so NULLs compare equal,
1842** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00001843** and strings are less than blobs.
1844*/
1845case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00001846 int n;
1847 int i;
1848 int p1;
1849 int p2;
1850 const KeyInfo *pKeyInfo;
1851 int idx;
1852 CollSeq *pColl; /* Collating sequence to use on this term */
1853 int bRev; /* True for DESCENDING sort order */
1854
1855 n = pOp->p3;
1856 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00001857 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00001858 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00001859 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00001860 p2 = pOp->p2;
drh6a2fe092009-09-23 02:29:36 +00001861#if SQLITE_DEBUG
1862 if( aPermute ){
1863 int k, mx = 0;
1864 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
1865 assert( p1>0 && p1+mx<=p->nMem+1 );
1866 assert( p2>0 && p2+mx<=p->nMem+1 );
1867 }else{
1868 assert( p1>0 && p1+n<=p->nMem+1 );
1869 assert( p2>0 && p2+n<=p->nMem+1 );
1870 }
1871#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00001872 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00001873 idx = aPermute ? aPermute[i] : i;
drha6c2ed92009-11-14 23:22:23 +00001874 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
1875 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drh93a960a2008-07-10 00:32:42 +00001876 assert( i<pKeyInfo->nField );
1877 pColl = pKeyInfo->aColl[i];
1878 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00001879 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00001880 if( iCompare ){
1881 if( bRev ) iCompare = -iCompare;
1882 break;
1883 }
drh16ee60f2008-06-20 18:13:25 +00001884 }
drh0acb7e42008-06-25 00:12:41 +00001885 aPermute = 0;
drh16ee60f2008-06-20 18:13:25 +00001886 break;
1887}
1888
1889/* Opcode: Jump P1 P2 P3 * *
1890**
1891** Jump to the instruction at address P1, P2, or P3 depending on whether
1892** in the most recent OP_Compare instruction the P1 vector was less than
1893** equal to, or greater than the P2 vector, respectively.
1894*/
drh0acb7e42008-06-25 00:12:41 +00001895case OP_Jump: { /* jump */
1896 if( iCompare<0 ){
drh16ee60f2008-06-20 18:13:25 +00001897 pc = pOp->p1 - 1;
drh0acb7e42008-06-25 00:12:41 +00001898 }else if( iCompare==0 ){
drh16ee60f2008-06-20 18:13:25 +00001899 pc = pOp->p2 - 1;
1900 }else{
1901 pc = pOp->p3 - 1;
1902 }
1903 break;
1904}
1905
drh5b6afba2008-01-05 16:29:28 +00001906/* Opcode: And P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001907**
drh5b6afba2008-01-05 16:29:28 +00001908** Take the logical AND of the values in registers P1 and P2 and
1909** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00001910**
drh5b6afba2008-01-05 16:29:28 +00001911** If either P1 or P2 is 0 (false) then the result is 0 even if
1912** the other input is NULL. A NULL and true or two NULLs give
1913** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00001914*/
drh5b6afba2008-01-05 16:29:28 +00001915/* Opcode: Or P1 P2 P3 * *
1916**
1917** Take the logical OR of the values in register P1 and P2 and
1918** store the answer in register P3.
1919**
1920** If either P1 or P2 is nonzero (true) then the result is 1 (true)
1921** even if the other input is NULL. A NULL and false or two NULLs
1922** give a NULL output.
1923*/
1924case OP_And: /* same as TK_AND, in1, in2, out3 */
1925case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00001926 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
1927 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00001928
drh3c657212009-11-17 23:59:58 +00001929 pIn1 = &aMem[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00001930 if( pIn1->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00001931 v1 = 2;
drh5e00f6c2001-09-13 13:46:56 +00001932 }else{
drh5b6afba2008-01-05 16:29:28 +00001933 v1 = sqlite3VdbeIntValue(pIn1)!=0;
drhbb113512002-05-27 01:04:51 +00001934 }
drh3c657212009-11-17 23:59:58 +00001935 pIn2 = &aMem[pOp->p2];
drh5b6afba2008-01-05 16:29:28 +00001936 if( pIn2->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00001937 v2 = 2;
1938 }else{
drh5b6afba2008-01-05 16:29:28 +00001939 v2 = sqlite3VdbeIntValue(pIn2)!=0;
drhbb113512002-05-27 01:04:51 +00001940 }
1941 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00001942 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00001943 v1 = and_logic[v1*3+v2];
1944 }else{
drh5b6afba2008-01-05 16:29:28 +00001945 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00001946 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00001947 }
drh3c657212009-11-17 23:59:58 +00001948 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00001949 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00001950 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00001951 }else{
drh5b6afba2008-01-05 16:29:28 +00001952 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00001953 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00001954 }
drh5e00f6c2001-09-13 13:46:56 +00001955 break;
1956}
1957
drhe99fa2a2008-12-15 15:27:51 +00001958/* Opcode: Not P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00001959**
drhe99fa2a2008-12-15 15:27:51 +00001960** Interpret the value in register P1 as a boolean value. Store the
1961** boolean complement in register P2. If the value in register P1 is
1962** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00001963*/
drh93952eb2009-11-13 19:43:43 +00001964case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00001965 pIn1 = &aMem[pOp->p1];
1966 pOut = &aMem[pOp->p2];
drhe99fa2a2008-12-15 15:27:51 +00001967 if( pIn1->flags & MEM_Null ){
1968 sqlite3VdbeMemSetNull(pOut);
1969 }else{
1970 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
1971 }
drh5e00f6c2001-09-13 13:46:56 +00001972 break;
1973}
1974
drhe99fa2a2008-12-15 15:27:51 +00001975/* Opcode: BitNot P1 P2 * * *
drhbf4133c2001-10-13 02:59:08 +00001976**
drhe99fa2a2008-12-15 15:27:51 +00001977** Interpret the content of register P1 as an integer. Store the
1978** ones-complement of the P1 value into register P2. If P1 holds
1979** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00001980*/
drh93952eb2009-11-13 19:43:43 +00001981case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00001982 pIn1 = &aMem[pOp->p1];
1983 pOut = &aMem[pOp->p2];
drhe99fa2a2008-12-15 15:27:51 +00001984 if( pIn1->flags & MEM_Null ){
1985 sqlite3VdbeMemSetNull(pOut);
1986 }else{
1987 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
1988 }
drhbf4133c2001-10-13 02:59:08 +00001989 break;
1990}
1991
drh3c84ddf2008-01-09 02:15:38 +00001992/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001993**
drh3c84ddf2008-01-09 02:15:38 +00001994** Jump to P2 if the value in register P1 is true. The value is
1995** is considered true if it is numeric and non-zero. If the value
1996** in P1 is NULL then take the jump if P3 is true.
drh5e00f6c2001-09-13 13:46:56 +00001997*/
drh3c84ddf2008-01-09 02:15:38 +00001998/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00001999**
drh3c84ddf2008-01-09 02:15:38 +00002000** Jump to P2 if the value in register P1 is False. The value is
2001** is considered true if it has a numeric value of zero. If the value
2002** in P1 is NULL then take the jump if P3 is true.
drhf5905aa2002-05-26 20:54:33 +00002003*/
drh9cbf3422008-01-17 16:22:13 +00002004case OP_If: /* jump, in1 */
2005case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00002006 int c;
drh3c657212009-11-17 23:59:58 +00002007 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00002008 if( pIn1->flags & MEM_Null ){
2009 c = pOp->p3;
drhf5905aa2002-05-26 20:54:33 +00002010 }else{
drhba0232a2005-06-06 17:27:19 +00002011#ifdef SQLITE_OMIT_FLOATING_POINT
shanefbd60f82009-02-04 03:59:25 +00002012 c = sqlite3VdbeIntValue(pIn1)!=0;
drhba0232a2005-06-06 17:27:19 +00002013#else
drh3c84ddf2008-01-09 02:15:38 +00002014 c = sqlite3VdbeRealValue(pIn1)!=0.0;
drhba0232a2005-06-06 17:27:19 +00002015#endif
drhf5905aa2002-05-26 20:54:33 +00002016 if( pOp->opcode==OP_IfNot ) c = !c;
2017 }
drh3c84ddf2008-01-09 02:15:38 +00002018 if( c ){
2019 pc = pOp->p2-1;
2020 }
drh5e00f6c2001-09-13 13:46:56 +00002021 break;
2022}
2023
drh830ecf92009-06-18 00:41:55 +00002024/* Opcode: IsNull P1 P2 * * *
drh477df4b2008-01-05 18:48:24 +00002025**
drh830ecf92009-06-18 00:41:55 +00002026** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002027*/
drh9cbf3422008-01-17 16:22:13 +00002028case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002029 pIn1 = &aMem[pOp->p1];
drh830ecf92009-06-18 00:41:55 +00002030 if( (pIn1->flags & MEM_Null)!=0 ){
2031 pc = pOp->p2 - 1;
2032 }
drh477df4b2008-01-05 18:48:24 +00002033 break;
2034}
2035
drh98757152008-01-09 23:04:12 +00002036/* Opcode: NotNull P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002037**
drh6a288a32008-01-07 19:20:24 +00002038** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002039*/
drh9cbf3422008-01-17 16:22:13 +00002040case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002041 pIn1 = &aMem[pOp->p1];
drh6a288a32008-01-07 19:20:24 +00002042 if( (pIn1->flags & MEM_Null)==0 ){
2043 pc = pOp->p2 - 1;
2044 }
drh5e00f6c2001-09-13 13:46:56 +00002045 break;
2046}
2047
drh3e9ca092009-09-08 01:14:48 +00002048/* Opcode: Column P1 P2 P3 P4 P5
danielk1977192ac1d2004-05-10 07:17:30 +00002049**
danielk1977cfcdaef2004-05-12 07:33:33 +00002050** Interpret the data that cursor P1 points to as a structure built using
2051** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002052** information about the format of the data.) Extract the P2-th column
2053** from this record. If there are less that (P2+1)
2054** values in the record, extract a NULL.
2055**
drh9cbf3422008-01-17 16:22:13 +00002056** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002057**
danielk19771f4aa332008-01-03 09:51:55 +00002058** If the column contains fewer than P2 fields, then extract a NULL. Or,
2059** if the P4 argument is a P4_MEM use the value of the P4 argument as
2060** the result.
drh3e9ca092009-09-08 01:14:48 +00002061**
2062** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2063** then the cache of the cursor is reset prior to extracting the column.
2064** The first OP_Column against a pseudo-table after the value of the content
2065** register has changed should have this bit set.
danielk1977192ac1d2004-05-10 07:17:30 +00002066*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002067case OP_Column: {
drh35cd6432009-06-05 14:17:21 +00002068 u32 payloadSize; /* Number of bytes in the record */
drh856c1032009-06-02 15:21:42 +00002069 i64 payloadSize64; /* Number of bytes in the record */
2070 int p1; /* P1 value of the opcode */
2071 int p2; /* column number to retrieve */
2072 VdbeCursor *pC; /* The VDBE cursor */
drhe61cffc2004-06-12 18:12:15 +00002073 char *zRec; /* Pointer to complete record-data */
drhd3194f52004-05-27 19:59:32 +00002074 BtCursor *pCrsr; /* The BTree cursor */
2075 u32 *aType; /* aType[i] holds the numeric type of the i-th column */
2076 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk197764202cf2008-11-17 15:31:47 +00002077 int nField; /* number of fields in the record */
danielk1977cfcdaef2004-05-12 07:33:33 +00002078 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002079 int i; /* Loop counter */
2080 char *zData; /* Part of the record being decoded */
drhd4e70eb2008-01-02 00:34:36 +00002081 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002082 Mem sMem; /* For storing the record being decoded */
drh35cd6432009-06-05 14:17:21 +00002083 u8 *zIdx; /* Index into header */
2084 u8 *zEndHdr; /* Pointer to first byte after the header */
2085 u32 offset; /* Offset into the data */
drh6658cd92010-02-05 14:12:53 +00002086 u32 szField; /* Number of bytes in the content of a field */
drh35cd6432009-06-05 14:17:21 +00002087 int szHdr; /* Size of the header size field at start of record */
2088 int avail; /* Number of bytes of available data */
drh3e9ca092009-09-08 01:14:48 +00002089 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002090
drh856c1032009-06-02 15:21:42 +00002091
2092 p1 = pOp->p1;
2093 p2 = pOp->p2;
2094 pC = 0;
drhb27b7f52008-12-10 18:03:45 +00002095 memset(&sMem, 0, sizeof(sMem));
drhd3194f52004-05-27 19:59:32 +00002096 assert( p1<p->nCursor );
drh9cbf3422008-01-17 16:22:13 +00002097 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00002098 pDest = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00002099 MemSetTypeFlag(pDest, MEM_Null);
shane36840fd2009-06-26 16:32:13 +00002100 zRec = 0;
danielk1977cfcdaef2004-05-12 07:33:33 +00002101
drhe61cffc2004-06-12 18:12:15 +00002102 /* This block sets the variable payloadSize to be the total number of
2103 ** bytes in the record.
2104 **
2105 ** zRec is set to be the complete text of the record if it is available.
drhb73857f2006-03-17 00:25:59 +00002106 ** The complete record text is always available for pseudo-tables
2107 ** If the record is stored in a cursor, the complete record text
2108 ** might be available in the pC->aRow cache. Or it might not be.
2109 ** If the data is unavailable, zRec is set to NULL.
drhd3194f52004-05-27 19:59:32 +00002110 **
2111 ** We also compute the number of columns in the record. For cursors,
drhdfe88ec2008-11-03 20:55:06 +00002112 ** the number of columns is stored in the VdbeCursor.nField element.
danielk1977cfcdaef2004-05-12 07:33:33 +00002113 */
drhb73857f2006-03-17 00:25:59 +00002114 pC = p->apCsr[p1];
danielk19776c924092007-11-12 08:09:34 +00002115 assert( pC!=0 );
danielk19770817d0d2007-02-14 09:19:36 +00002116#ifndef SQLITE_OMIT_VIRTUALTABLE
2117 assert( pC->pVtabCursor==0 );
2118#endif
shane36840fd2009-06-26 16:32:13 +00002119 pCrsr = pC->pCursor;
2120 if( pCrsr!=0 ){
drhe61cffc2004-06-12 18:12:15 +00002121 /* The record is stored in a B-Tree */
drh536065a2005-01-26 21:55:31 +00002122 rc = sqlite3VdbeCursorMoveto(pC);
drh52f159e2005-01-27 00:33:21 +00002123 if( rc ) goto abort_due_to_error;
danielk1977192ac1d2004-05-10 07:17:30 +00002124 if( pC->nullRow ){
2125 payloadSize = 0;
drh76873ab2006-01-07 18:48:26 +00002126 }else if( pC->cacheStatus==p->cacheCtr ){
drh9188b382004-05-14 21:12:22 +00002127 payloadSize = pC->payloadSize;
drh2646da72005-12-09 20:02:05 +00002128 zRec = (char*)pC->aRow;
drhf0863fe2005-06-12 21:35:51 +00002129 }else if( pC->isIndex ){
drhea8ffdf2009-07-22 00:35:23 +00002130 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drhc27ae612009-07-14 18:35:44 +00002131 rc = sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2132 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhaa736092009-06-22 00:55:30 +00002133 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2134 ** payload size, so it is impossible for payloadSize64 to be
2135 ** larger than 32 bits. */
2136 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
drh35cd6432009-06-05 14:17:21 +00002137 payloadSize = (u32)payloadSize64;
danielk1977192ac1d2004-05-10 07:17:30 +00002138 }else{
drhea8ffdf2009-07-22 00:35:23 +00002139 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drhc27ae612009-07-14 18:35:44 +00002140 rc = sqlite3BtreeDataSize(pCrsr, &payloadSize);
drhea8ffdf2009-07-22 00:35:23 +00002141 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
danielk1977192ac1d2004-05-10 07:17:30 +00002142 }
drh3e9ca092009-09-08 01:14:48 +00002143 }else if( pC->pseudoTableReg>0 ){
drha6c2ed92009-11-14 23:22:23 +00002144 pReg = &aMem[pC->pseudoTableReg];
drh3e9ca092009-09-08 01:14:48 +00002145 assert( pReg->flags & MEM_Blob );
2146 payloadSize = pReg->n;
2147 zRec = pReg->z;
2148 pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
danielk1977192ac1d2004-05-10 07:17:30 +00002149 assert( payloadSize==0 || zRec!=0 );
drh9a65f2c2009-06-22 19:05:40 +00002150 }else{
2151 /* Consider the row to be NULL */
2152 payloadSize = 0;
danielk1977192ac1d2004-05-10 07:17:30 +00002153 }
2154
drh9cbf3422008-01-17 16:22:13 +00002155 /* If payloadSize is 0, then just store a NULL */
danielk1977192ac1d2004-05-10 07:17:30 +00002156 if( payloadSize==0 ){
danielk1977a7a8e142008-02-13 18:25:27 +00002157 assert( pDest->flags&MEM_Null );
drhd4e70eb2008-01-02 00:34:36 +00002158 goto op_column_out;
danielk1977192ac1d2004-05-10 07:17:30 +00002159 }
drh35cd6432009-06-05 14:17:21 +00002160 assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
2161 if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002162 goto too_big;
2163 }
danielk1977192ac1d2004-05-10 07:17:30 +00002164
shane36840fd2009-06-26 16:32:13 +00002165 nField = pC->nField;
drhd3194f52004-05-27 19:59:32 +00002166 assert( p2<nField );
danielk1977b4964b72004-05-18 01:23:38 +00002167
drh9188b382004-05-14 21:12:22 +00002168 /* Read and parse the table header. Store the results of the parse
2169 ** into the record header cache fields of the cursor.
danielk1977192ac1d2004-05-10 07:17:30 +00002170 */
danielk1977cd3e8f72008-03-25 09:47:35 +00002171 aType = pC->aType;
drha05a7222008-01-19 03:35:58 +00002172 if( pC->cacheStatus==p->cacheCtr ){
drhd3194f52004-05-27 19:59:32 +00002173 aOffset = pC->aOffset;
2174 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00002175 assert(aType);
drh856c1032009-06-02 15:21:42 +00002176 avail = 0;
drhb73857f2006-03-17 00:25:59 +00002177 pC->aOffset = aOffset = &aType[nField];
2178 pC->payloadSize = payloadSize;
2179 pC->cacheStatus = p->cacheCtr;
danielk1977192ac1d2004-05-10 07:17:30 +00002180
drhd3194f52004-05-27 19:59:32 +00002181 /* Figure out how many bytes are in the header */
danielk197784ac9d02004-05-18 09:58:06 +00002182 if( zRec ){
2183 zData = zRec;
2184 }else{
drhf0863fe2005-06-12 21:35:51 +00002185 if( pC->isIndex ){
drhe51c44f2004-05-30 20:46:09 +00002186 zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
drhd3194f52004-05-27 19:59:32 +00002187 }else{
drhe51c44f2004-05-30 20:46:09 +00002188 zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
drh9188b382004-05-14 21:12:22 +00002189 }
drhe61cffc2004-06-12 18:12:15 +00002190 /* If KeyFetch()/DataFetch() managed to get the entire payload,
2191 ** save the payload in the pC->aRow cache. That will save us from
2192 ** having to make additional calls to fetch the content portion of
2193 ** the record.
2194 */
drh35cd6432009-06-05 14:17:21 +00002195 assert( avail>=0 );
2196 if( payloadSize <= (u32)avail ){
drh2646da72005-12-09 20:02:05 +00002197 zRec = zData;
2198 pC->aRow = (u8*)zData;
drhe61cffc2004-06-12 18:12:15 +00002199 }else{
2200 pC->aRow = 0;
2201 }
drhd3194f52004-05-27 19:59:32 +00002202 }
drh588f5bc2007-01-02 18:41:54 +00002203 /* The following assert is true in all cases accept when
2204 ** the database file has been corrupted externally.
2205 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
drh35cd6432009-06-05 14:17:21 +00002206 szHdr = getVarint32((u8*)zData, offset);
2207
2208 /* Make sure a corrupt database has not given us an oversize header.
2209 ** Do this now to avoid an oversize memory allocation.
2210 **
2211 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2212 ** types use so much data space that there can only be 4096 and 32 of
2213 ** them, respectively. So the maximum header length results from a
2214 ** 3-byte type for each of the maximum of 32768 columns plus three
2215 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2216 */
2217 if( offset > 98307 ){
2218 rc = SQLITE_CORRUPT_BKPT;
2219 goto op_column_out;
2220 }
2221
2222 /* Compute in len the number of bytes of data we need to read in order
2223 ** to get nField type values. offset is an upper bound on this. But
2224 ** nField might be significantly less than the true number of columns
2225 ** in the table, and in that case, 5*nField+3 might be smaller than offset.
2226 ** We want to minimize len in order to limit the size of the memory
2227 ** allocation, especially if a corrupt database file has caused offset
2228 ** to be oversized. Offset is limited to 98307 above. But 98307 might
2229 ** still exceed Robson memory allocation limits on some configurations.
2230 ** On systems that cannot tolerate large memory allocations, nField*5+3
2231 ** will likely be much smaller since nField will likely be less than
2232 ** 20 or so. This insures that Robson memory allocation limits are
2233 ** not exceeded even for corrupt database files.
2234 */
2235 len = nField*5 + 3;
shane75ac1de2009-06-09 18:58:52 +00002236 if( len > (int)offset ) len = (int)offset;
drhe61cffc2004-06-12 18:12:15 +00002237
2238 /* The KeyFetch() or DataFetch() above are fast and will get the entire
2239 ** record header in most cases. But they will fail to get the complete
2240 ** record header if the record header does not fit on a single page
2241 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
2242 ** acquire the complete header text.
2243 */
drh35cd6432009-06-05 14:17:21 +00002244 if( !zRec && avail<len ){
danielk1977a7a8e142008-02-13 18:25:27 +00002245 sMem.flags = 0;
2246 sMem.db = 0;
drh35cd6432009-06-05 14:17:21 +00002247 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
danielk197784ac9d02004-05-18 09:58:06 +00002248 if( rc!=SQLITE_OK ){
danielk19773c9cc8d2005-01-17 03:40:08 +00002249 goto op_column_out;
drh9188b382004-05-14 21:12:22 +00002250 }
drhb6f54522004-05-20 02:42:16 +00002251 zData = sMem.z;
drh9188b382004-05-14 21:12:22 +00002252 }
drh35cd6432009-06-05 14:17:21 +00002253 zEndHdr = (u8 *)&zData[len];
2254 zIdx = (u8 *)&zData[szHdr];
drh9188b382004-05-14 21:12:22 +00002255
drhd3194f52004-05-27 19:59:32 +00002256 /* Scan the header and use it to fill in the aType[] and aOffset[]
2257 ** arrays. aType[i] will contain the type integer for the i-th
2258 ** column and aOffset[i] will contain the offset from the beginning
2259 ** of the record to the start of the data for the i-th column
drh9188b382004-05-14 21:12:22 +00002260 */
danielk1977dedf45b2006-01-13 17:12:01 +00002261 for(i=0; i<nField; i++){
2262 if( zIdx<zEndHdr ){
drh6658cd92010-02-05 14:12:53 +00002263 aOffset[i] = offset;
shane3f8d5cf2008-04-24 19:15:09 +00002264 zIdx += getVarint32(zIdx, aType[i]);
drh6658cd92010-02-05 14:12:53 +00002265 szField = sqlite3VdbeSerialTypeLen(aType[i]);
2266 offset += szField;
2267 if( offset<szField ){ /* True if offset overflows */
2268 zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
2269 break;
2270 }
danielk1977dedf45b2006-01-13 17:12:01 +00002271 }else{
2272 /* If i is less that nField, then there are less fields in this
2273 ** record than SetNumColumns indicated there are columns in the
2274 ** table. Set the offset for any extra columns not present in
drh9cbf3422008-01-17 16:22:13 +00002275 ** the record to 0. This tells code below to store a NULL
2276 ** instead of deserializing a value from the record.
danielk1977dedf45b2006-01-13 17:12:01 +00002277 */
2278 aOffset[i] = 0;
2279 }
drh9188b382004-05-14 21:12:22 +00002280 }
danielk19775f096132008-03-28 15:44:09 +00002281 sqlite3VdbeMemRelease(&sMem);
drhd3194f52004-05-27 19:59:32 +00002282 sMem.flags = MEM_Null;
2283
danielk19779792eef2006-01-13 15:58:43 +00002284 /* If we have read more header data than was contained in the header,
2285 ** or if the end of the last field appears to be past the end of the
shane2ca8bc02008-05-07 18:59:28 +00002286 ** record, or if the end of the last field appears to be before the end
2287 ** of the record (when all fields present), then we must be dealing
2288 ** with a corrupt database.
drhd3194f52004-05-27 19:59:32 +00002289 */
drh6658cd92010-02-05 14:12:53 +00002290 if( (zIdx > zEndHdr) || (offset > payloadSize)
2291 || (zIdx==zEndHdr && offset!=payloadSize) ){
drh49285702005-09-17 15:20:26 +00002292 rc = SQLITE_CORRUPT_BKPT;
danielk19773c9cc8d2005-01-17 03:40:08 +00002293 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002294 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002295 }
danielk1977192ac1d2004-05-10 07:17:30 +00002296
danielk197736963fd2005-02-19 08:18:05 +00002297 /* Get the column information. If aOffset[p2] is non-zero, then
2298 ** deserialize the value from the record. If aOffset[p2] is zero,
2299 ** then there are not enough fields in the record to satisfy the
drh66a51672008-01-03 00:01:23 +00002300 ** request. In this case, set the value NULL or to P4 if P4 is
drh29dda4a2005-07-21 18:23:20 +00002301 ** a pointer to a Mem object.
drh9188b382004-05-14 21:12:22 +00002302 */
danielk197736963fd2005-02-19 08:18:05 +00002303 if( aOffset[p2] ){
2304 assert( rc==SQLITE_OK );
2305 if( zRec ){
danielk1977808ec7c2008-07-29 10:18:57 +00002306 sqlite3VdbeMemReleaseExternal(pDest);
2307 sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
danielk197736963fd2005-02-19 08:18:05 +00002308 }else{
2309 len = sqlite3VdbeSerialTypeLen(aType[p2]);
danielk1977a7a8e142008-02-13 18:25:27 +00002310 sqlite3VdbeMemMove(&sMem, pDest);
drhb21c8cd2007-08-21 19:33:56 +00002311 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
danielk197736963fd2005-02-19 08:18:05 +00002312 if( rc!=SQLITE_OK ){
2313 goto op_column_out;
2314 }
2315 zData = sMem.z;
danielk1977a7a8e142008-02-13 18:25:27 +00002316 sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
danielk19777701e812005-01-10 12:59:51 +00002317 }
drhd4e70eb2008-01-02 00:34:36 +00002318 pDest->enc = encoding;
danielk197736963fd2005-02-19 08:18:05 +00002319 }else{
danielk197760585dd2008-01-03 08:08:40 +00002320 if( pOp->p4type==P4_MEM ){
danielk19772dca4ac2008-01-03 11:50:29 +00002321 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
danielk1977aee18ef2005-03-09 12:26:50 +00002322 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00002323 assert( pDest->flags&MEM_Null );
danielk1977aee18ef2005-03-09 12:26:50 +00002324 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002325 }
drhfebe1062004-08-28 18:17:48 +00002326
2327 /* If we dynamically allocated space to hold the data (in the
2328 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
drhd4e70eb2008-01-02 00:34:36 +00002329 ** dynamically allocated space over to the pDest structure.
drhfebe1062004-08-28 18:17:48 +00002330 ** This prevents a memory copy.
2331 */
danielk19775f096132008-03-28 15:44:09 +00002332 if( sMem.zMalloc ){
2333 assert( sMem.z==sMem.zMalloc );
danielk1977a7a8e142008-02-13 18:25:27 +00002334 assert( !(pDest->flags & MEM_Dyn) );
2335 assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
2336 pDest->flags &= ~(MEM_Ephem|MEM_Static);
danielk19775f096132008-03-28 15:44:09 +00002337 pDest->flags |= MEM_Term;
danielk1977a7a8e142008-02-13 18:25:27 +00002338 pDest->z = sMem.z;
danielk19775f096132008-03-28 15:44:09 +00002339 pDest->zMalloc = sMem.zMalloc;
danielk1977b1bc9532004-05-22 03:05:33 +00002340 }
drhfebe1062004-08-28 18:17:48 +00002341
drhd4e70eb2008-01-02 00:34:36 +00002342 rc = sqlite3VdbeMemMakeWriteable(pDest);
drhd3194f52004-05-27 19:59:32 +00002343
danielk19773c9cc8d2005-01-17 03:40:08 +00002344op_column_out:
drhb7654112008-01-12 12:48:07 +00002345 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002346 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002347 break;
2348}
2349
danielk1977751de562008-04-18 09:01:15 +00002350/* Opcode: Affinity P1 P2 * P4 *
2351**
2352** Apply affinities to a range of P2 registers starting with P1.
2353**
2354** P4 is a string that is P2 characters long. The nth character of the
2355** string indicates the column affinity that should be used for the nth
2356** memory cell in the range.
2357*/
2358case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002359 const char *zAffinity; /* The affinity to be applied */
2360 char cAff; /* A single character of affinity */
danielk1977751de562008-04-18 09:01:15 +00002361
drh856c1032009-06-02 15:21:42 +00002362 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002363 assert( zAffinity!=0 );
2364 assert( zAffinity[pOp->p2]==0 );
2365 pIn1 = &aMem[pOp->p1];
2366 while( (cAff = *(zAffinity++))!=0 ){
2367 assert( pIn1 <= &p->aMem[p->nMem] );
2368 ExpandBlob(pIn1);
2369 applyAffinity(pIn1, cAff, encoding);
2370 pIn1++;
danielk1977751de562008-04-18 09:01:15 +00002371 }
2372 break;
2373}
2374
drh1db639c2008-01-17 02:36:28 +00002375/* Opcode: MakeRecord P1 P2 P3 P4 *
drh7a224de2004-06-02 01:22:02 +00002376**
drh1db639c2008-01-17 02:36:28 +00002377** Convert P2 registers beginning with P1 into a single entry
drh7a224de2004-06-02 01:22:02 +00002378** suitable for use as a data record in a database table or as a key
shane21e7feb2008-05-30 15:59:49 +00002379** in an index. The details of the format are irrelevant as long as
drh1e968a02008-03-25 00:22:21 +00002380** the OP_Column opcode can decode the record later.
2381** Refer to source code comments for the details of the record
drh7a224de2004-06-02 01:22:02 +00002382** format.
2383**
danielk1977751de562008-04-18 09:01:15 +00002384** P4 may be a string that is P2 characters long. The nth character of the
drh7a224de2004-06-02 01:22:02 +00002385** string indicates the column affinity that should be used for the nth
drh9cbf3422008-01-17 16:22:13 +00002386** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002387**
drh8a512562005-11-14 22:29:05 +00002388** The mapping from character to affinity is given by the SQLITE_AFF_
2389** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002390**
drh66a51672008-01-03 00:01:23 +00002391** If P4 is NULL then all index fields have the affinity NONE.
drh7f057c92005-06-24 03:53:06 +00002392*/
drh1db639c2008-01-17 02:36:28 +00002393case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002394 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2395 Mem *pRec; /* The new record */
2396 u64 nData; /* Number of bytes of data space */
2397 int nHdr; /* Number of bytes of header space */
2398 i64 nByte; /* Data space required for this record */
2399 int nZero; /* Number of zero bytes at the end of the record */
2400 int nVarint; /* Number of bytes in a varint */
2401 u32 serial_type; /* Type field */
2402 Mem *pData0; /* First field to be combined into the record */
2403 Mem *pLast; /* Last field of the record */
2404 int nField; /* Number of fields in the record */
2405 char *zAffinity; /* The affinity string for the record */
2406 int file_format; /* File format to use for encoding */
2407 int i; /* Space used in zNewRecord[] */
2408 int len; /* Length of a field */
2409
drhf3218fe2004-05-28 08:21:02 +00002410 /* Assuming the record contains N fields, the record format looks
2411 ** like this:
2412 **
drh7a224de2004-06-02 01:22:02 +00002413 ** ------------------------------------------------------------------------
2414 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2415 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002416 **
drh9cbf3422008-01-17 16:22:13 +00002417 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2418 ** and so froth.
drhf3218fe2004-05-28 08:21:02 +00002419 **
2420 ** Each type field is a varint representing the serial type of the
2421 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002422 ** hdr-size field is also a varint which is the offset from the beginning
2423 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002424 */
drh856c1032009-06-02 15:21:42 +00002425 nData = 0; /* Number of bytes of data space */
2426 nHdr = 0; /* Number of bytes of header space */
2427 nByte = 0; /* Data space required for this record */
2428 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002429 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002430 zAffinity = pOp->p4.z;
danielk19776ab3a2e2009-02-19 14:39:25 +00002431 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
drha6c2ed92009-11-14 23:22:23 +00002432 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002433 nField = pOp->p2;
2434 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002435 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002436
drhf3218fe2004-05-28 08:21:02 +00002437 /* Loop through the elements that will make up the record to figure
2438 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002439 */
drha2a49dc2008-01-02 14:28:13 +00002440 for(pRec=pData0; pRec<=pLast; pRec++){
drhd3d39e92004-05-20 22:16:29 +00002441 if( zAffinity ){
drhb21c8cd2007-08-21 19:33:56 +00002442 applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
drhd3d39e92004-05-20 22:16:29 +00002443 }
danielk1977d908f5a2007-05-11 07:08:28 +00002444 if( pRec->flags&MEM_Zero && pRec->n>0 ){
drha05a7222008-01-19 03:35:58 +00002445 sqlite3VdbeMemExpandBlob(pRec);
danielk1977d908f5a2007-05-11 07:08:28 +00002446 }
drhd946db02005-12-29 19:23:06 +00002447 serial_type = sqlite3VdbeSerialType(pRec, file_format);
drhae7e1512007-05-02 16:51:59 +00002448 len = sqlite3VdbeSerialTypeLen(serial_type);
2449 nData += len;
drhf3218fe2004-05-28 08:21:02 +00002450 nHdr += sqlite3VarintLen(serial_type);
drhfdf972a2007-05-02 13:30:27 +00002451 if( pRec->flags & MEM_Zero ){
2452 /* Only pure zero-filled BLOBs can be input to this Opcode.
2453 ** We do not allow blobs with a prefix and a zero-filled tail. */
drh8df32842008-12-09 02:51:23 +00002454 nZero += pRec->u.nZero;
drhae7e1512007-05-02 16:51:59 +00002455 }else if( len ){
drhfdf972a2007-05-02 13:30:27 +00002456 nZero = 0;
2457 }
danielk19778d059842004-05-12 11:24:02 +00002458 }
danielk19773d1bfea2004-05-14 11:00:53 +00002459
drhf3218fe2004-05-28 08:21:02 +00002460 /* Add the initial header varint and total the size */
drhcb9882a2005-03-17 03:15:40 +00002461 nHdr += nVarint = sqlite3VarintLen(nHdr);
2462 if( nVarint<sqlite3VarintLen(nHdr) ){
2463 nHdr++;
2464 }
drhfdf972a2007-05-02 13:30:27 +00002465 nByte = nHdr+nData-nZero;
drhbb4957f2008-03-20 14:03:29 +00002466 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002467 goto too_big;
2468 }
drhf3218fe2004-05-28 08:21:02 +00002469
danielk1977a7a8e142008-02-13 18:25:27 +00002470 /* Make sure the output register has a buffer large enough to store
2471 ** the new record. The output register (pOp->p3) is not allowed to
2472 ** be one of the input registers (because the following call to
2473 ** sqlite3VdbeMemGrow() could clobber the value before it is used).
2474 */
2475 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
drha6c2ed92009-11-14 23:22:23 +00002476 pOut = &aMem[pOp->p3];
drh9c1905f2008-12-10 22:32:56 +00002477 if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002478 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002479 }
danielk1977a7a8e142008-02-13 18:25:27 +00002480 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002481
2482 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002483 i = putVarint32(zNewRecord, nHdr);
drha2a49dc2008-01-02 14:28:13 +00002484 for(pRec=pData0; pRec<=pLast; pRec++){
drhd946db02005-12-29 19:23:06 +00002485 serial_type = sqlite3VdbeSerialType(pRec, file_format);
shane3f8d5cf2008-04-24 19:15:09 +00002486 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
danielk19778d059842004-05-12 11:24:02 +00002487 }
drha2a49dc2008-01-02 14:28:13 +00002488 for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
drh9c1905f2008-12-10 22:32:56 +00002489 i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
drhf3218fe2004-05-28 08:21:02 +00002490 }
drhfdf972a2007-05-02 13:30:27 +00002491 assert( i==nByte );
drhf3218fe2004-05-28 08:21:02 +00002492
drh9cbf3422008-01-17 16:22:13 +00002493 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drh9c1905f2008-12-10 22:32:56 +00002494 pOut->n = (int)nByte;
danielk1977a7a8e142008-02-13 18:25:27 +00002495 pOut->flags = MEM_Blob | MEM_Dyn;
2496 pOut->xDel = 0;
drhfdf972a2007-05-02 13:30:27 +00002497 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002498 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002499 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002500 }
drh477df4b2008-01-05 18:48:24 +00002501 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
drh1013c932008-01-06 00:25:21 +00002502 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002503 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002504 break;
2505}
2506
danielk1977a5533162009-02-24 10:01:51 +00002507/* Opcode: Count P1 P2 * * *
2508**
2509** Store the number of entries (an integer value) in the table or index
2510** opened by cursor P1 in register P2
2511*/
2512#ifndef SQLITE_OMIT_BTREECOUNT
2513case OP_Count: { /* out2-prerelease */
2514 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002515 BtCursor *pCrsr;
2516
2517 pCrsr = p->apCsr[pOp->p1]->pCursor;
drh818e39a2009-04-02 20:27:28 +00002518 if( pCrsr ){
2519 rc = sqlite3BtreeCount(pCrsr, &nEntry);
2520 }else{
2521 nEntry = 0;
2522 }
danielk1977a5533162009-02-24 10:01:51 +00002523 pOut->u.i = nEntry;
2524 break;
2525}
2526#endif
2527
danielk1977fd7f0452008-12-17 17:30:26 +00002528/* Opcode: Savepoint P1 * * P4 *
2529**
2530** Open, release or rollback the savepoint named by parameter P4, depending
2531** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2532** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2533*/
2534case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002535 int p1; /* Value of P1 operand */
2536 char *zName; /* Name of savepoint */
2537 int nName;
2538 Savepoint *pNew;
2539 Savepoint *pSavepoint;
2540 Savepoint *pTmp;
2541 int iSavepoint;
2542 int ii;
2543
2544 p1 = pOp->p1;
2545 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002546
2547 /* Assert that the p1 parameter is valid. Also that if there is no open
2548 ** transaction, then there cannot be any savepoints.
2549 */
2550 assert( db->pSavepoint==0 || db->autoCommit==0 );
2551 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2552 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2553 assert( checkSavepointCount(db) );
2554
2555 if( p1==SAVEPOINT_BEGIN ){
danielk197734cf35d2008-12-18 18:31:38 +00002556 if( db->writeVdbeCnt>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002557 /* A new savepoint cannot be created if there are active write
2558 ** statements (i.e. open read/write incremental blob handles).
2559 */
2560 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
2561 "SQL statements in progress");
2562 rc = SQLITE_BUSY;
2563 }else{
drh856c1032009-06-02 15:21:42 +00002564 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002565
2566 /* Create a new savepoint structure. */
2567 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2568 if( pNew ){
2569 pNew->zName = (char *)&pNew[1];
2570 memcpy(pNew->zName, zName, nName+1);
2571
2572 /* If there is no open transaction, then mark this as a special
2573 ** "transaction savepoint". */
2574 if( db->autoCommit ){
2575 db->autoCommit = 0;
2576 db->isTransactionSavepoint = 1;
2577 }else{
2578 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002579 }
danielk1977fd7f0452008-12-17 17:30:26 +00002580
2581 /* Link the new savepoint into the database handle's list. */
2582 pNew->pNext = db->pSavepoint;
2583 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002584 pNew->nDeferredCons = db->nDeferredCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002585 }
2586 }
2587 }else{
drh856c1032009-06-02 15:21:42 +00002588 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00002589
2590 /* Find the named savepoint. If there is no such savepoint, then an
2591 ** an error is returned to the user. */
2592 for(
drh856c1032009-06-02 15:21:42 +00002593 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002594 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00002595 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00002596 ){
2597 iSavepoint++;
2598 }
2599 if( !pSavepoint ){
2600 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
2601 rc = SQLITE_ERROR;
2602 }else if(
2603 db->writeVdbeCnt>0 || (p1==SAVEPOINT_ROLLBACK && db->activeVdbeCnt>1)
2604 ){
2605 /* It is not possible to release (commit) a savepoint if there are
2606 ** active write statements. It is not possible to rollback a savepoint
2607 ** if there are any active statements at all.
2608 */
2609 sqlite3SetString(&p->zErrMsg, db,
2610 "cannot %s savepoint - SQL statements in progress",
2611 (p1==SAVEPOINT_ROLLBACK ? "rollback": "release")
2612 );
2613 rc = SQLITE_BUSY;
2614 }else{
2615
2616 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00002617 ** and this is a RELEASE command, then the current transaction
2618 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00002619 */
2620 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2621 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00002622 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002623 goto vdbe_return;
2624 }
danielk1977fd7f0452008-12-17 17:30:26 +00002625 db->autoCommit = 1;
2626 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2627 p->pc = pc;
2628 db->autoCommit = 0;
2629 p->rc = rc = SQLITE_BUSY;
2630 goto vdbe_return;
2631 }
danielk197734cf35d2008-12-18 18:31:38 +00002632 db->isTransactionSavepoint = 0;
2633 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00002634 }else{
danielk1977fd7f0452008-12-17 17:30:26 +00002635 iSavepoint = db->nSavepoint - iSavepoint - 1;
2636 for(ii=0; ii<db->nDb; ii++){
2637 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2638 if( rc!=SQLITE_OK ){
2639 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00002640 }
danielk1977fd7f0452008-12-17 17:30:26 +00002641 }
drh9f0bbf92009-01-02 21:08:09 +00002642 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002643 sqlite3ExpirePreparedStatements(db);
2644 sqlite3ResetInternalSchema(db, 0);
2645 }
2646 }
2647
2648 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2649 ** savepoints nested inside of the savepoint being operated on. */
2650 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00002651 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002652 db->pSavepoint = pTmp->pNext;
2653 sqlite3DbFree(db, pTmp);
2654 db->nSavepoint--;
2655 }
2656
dan1da40a32009-09-19 17:00:31 +00002657 /* If it is a RELEASE, then destroy the savepoint being operated on
2658 ** too. If it is a ROLLBACK TO, then set the number of deferred
2659 ** constraint violations present in the database to the value stored
2660 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00002661 if( p1==SAVEPOINT_RELEASE ){
2662 assert( pSavepoint==db->pSavepoint );
2663 db->pSavepoint = pSavepoint->pNext;
2664 sqlite3DbFree(db, pSavepoint);
2665 if( !isTransaction ){
2666 db->nSavepoint--;
2667 }
dan1da40a32009-09-19 17:00:31 +00002668 }else{
2669 db->nDeferredCons = pSavepoint->nDeferredCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002670 }
2671 }
2672 }
2673
2674 break;
2675}
2676
drh98757152008-01-09 23:04:12 +00002677/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00002678**
2679** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00002680** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00002681** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2682** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00002683**
2684** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00002685*/
drh9cbf3422008-01-17 16:22:13 +00002686case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00002687 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00002688 int iRollback;
drh856c1032009-06-02 15:21:42 +00002689 int turnOnAC;
danielk19771d850a72004-05-31 08:26:49 +00002690
drh856c1032009-06-02 15:21:42 +00002691 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00002692 iRollback = pOp->p2;
drh856c1032009-06-02 15:21:42 +00002693 turnOnAC = desiredAutoCommit && !db->autoCommit;
drhad4a4b82008-11-05 16:37:34 +00002694 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00002695 assert( desiredAutoCommit==1 || iRollback==0 );
drh92f02c32004-09-02 14:57:08 +00002696 assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
danielk197746c43ed2004-06-30 06:30:25 +00002697
shane68c02732009-06-09 18:14:18 +00002698 if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){
drhad4a4b82008-11-05 16:37:34 +00002699 /* If this instruction implements a ROLLBACK and other VMs are
danielk197746c43ed2004-06-30 06:30:25 +00002700 ** still running, and a transaction is active, return an error indicating
2701 ** that the other VMs must complete first.
2702 */
drhad4a4b82008-11-05 16:37:34 +00002703 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2704 "SQL statements in progress");
drh99dfe5e2008-10-30 15:03:15 +00002705 rc = SQLITE_BUSY;
drh9eb8cbe2009-06-19 22:23:41 +00002706 }else if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){
drhad4a4b82008-11-05 16:37:34 +00002707 /* If this instruction implements a COMMIT and other VMs are writing
2708 ** return an error indicating that the other VMs must complete first.
2709 */
2710 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
2711 "SQL statements in progress");
2712 rc = SQLITE_BUSY;
2713 }else if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00002714 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00002715 assert( desiredAutoCommit==1 );
danielk19771d850a72004-05-31 08:26:49 +00002716 sqlite3RollbackAll(db);
danielk1977f3f06bb2005-12-16 15:24:28 +00002717 db->autoCommit = 1;
dan32b09f22009-09-23 17:29:59 +00002718 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002719 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002720 }else{
shane7d3846a2008-12-11 02:58:26 +00002721 db->autoCommit = (u8)desiredAutoCommit;
danielk1977f3f06bb2005-12-16 15:24:28 +00002722 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
danielk1977f3f06bb2005-12-16 15:24:28 +00002723 p->pc = pc;
drh9c1905f2008-12-10 22:32:56 +00002724 db->autoCommit = (u8)(1-desiredAutoCommit);
drh900b31e2007-08-28 02:27:51 +00002725 p->rc = rc = SQLITE_BUSY;
2726 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002727 }
danielk19771d850a72004-05-31 08:26:49 +00002728 }
danielk1977bd434552009-03-18 10:33:00 +00002729 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00002730 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00002731 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00002732 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00002733 }else{
drh900b31e2007-08-28 02:27:51 +00002734 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00002735 }
drh900b31e2007-08-28 02:27:51 +00002736 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00002737 }else{
drhf089aa42008-07-08 19:34:06 +00002738 sqlite3SetString(&p->zErrMsg, db,
drhad4a4b82008-11-05 16:37:34 +00002739 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00002740 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00002741 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00002742
2743 rc = SQLITE_ERROR;
drh663fc632002-02-02 18:49:19 +00002744 }
2745 break;
2746}
2747
drh98757152008-01-09 23:04:12 +00002748/* Opcode: Transaction P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002749**
2750** Begin a transaction. The transaction ends when a Commit or Rollback
drh663fc632002-02-02 18:49:19 +00002751** opcode is encountered. Depending on the ON CONFLICT setting, the
2752** transaction might also be rolled back if an error is encountered.
drh5e00f6c2001-09-13 13:46:56 +00002753**
drh001bbcb2003-03-19 03:14:00 +00002754** P1 is the index of the database file on which the transaction is
2755** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00002756** file used for temporary tables. Indices of 2 or more are used for
2757** attached databases.
drhcabb0812002-09-14 13:47:32 +00002758**
drh80242052004-06-09 00:48:12 +00002759** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
danielk1977ee5741e2004-05-31 10:01:34 +00002760** obtained on the database file when a write-transaction is started. No
drh80242052004-06-09 00:48:12 +00002761** other process can start another write transaction while this transaction is
2762** underway. Starting a write transaction also creates a rollback journal. A
2763** write transaction must be started before any changes can be made to the
drh684917c2004-10-05 02:41:42 +00002764** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
2765** on the file.
danielk1977ee5741e2004-05-31 10:01:34 +00002766**
dane0af83a2009-09-08 19:15:01 +00002767** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2768** true (this flag is set if the Vdbe may modify more than one row and may
2769** throw an ABORT exception), a statement transaction may also be opened.
2770** More specifically, a statement transaction is opened iff the database
2771** connection is currently not in autocommit mode, or if there are other
2772** active statements. A statement transaction allows the affects of this
2773** VDBE to be rolled back after an error without having to roll back the
2774** entire transaction. If no error is encountered, the statement transaction
2775** will automatically commit when the VDBE halts.
2776**
danielk1977ee5741e2004-05-31 10:01:34 +00002777** If P2 is zero, then a read-lock is obtained on the database file.
drh5e00f6c2001-09-13 13:46:56 +00002778*/
drh9cbf3422008-01-17 16:22:13 +00002779case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00002780 Btree *pBt;
2781
drh653b82a2009-06-22 11:10:47 +00002782 assert( pOp->p1>=0 && pOp->p1<db->nDb );
2783 assert( (p->btreeMask & (1<<pOp->p1))!=0 );
2784 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00002785
danielk197724162fe2004-06-04 06:22:00 +00002786 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00002787 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
danielk197724162fe2004-06-04 06:22:00 +00002788 if( rc==SQLITE_BUSY ){
danielk19772a764eb2004-06-12 01:43:26 +00002789 p->pc = pc;
drh900b31e2007-08-28 02:27:51 +00002790 p->rc = rc = SQLITE_BUSY;
drh900b31e2007-08-28 02:27:51 +00002791 goto vdbe_return;
danielk197724162fe2004-06-04 06:22:00 +00002792 }
drh9e9f1bd2009-10-13 15:36:51 +00002793 if( rc!=SQLITE_OK ){
danielk197724162fe2004-06-04 06:22:00 +00002794 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00002795 }
dane0af83a2009-09-08 19:15:01 +00002796
2797 if( pOp->p2 && p->usesStmtJournal
2798 && (db->autoCommit==0 || db->activeVdbeCnt>1)
2799 ){
2800 assert( sqlite3BtreeIsInTrans(pBt) );
2801 if( p->iStatement==0 ){
2802 assert( db->nStatement>=0 && db->nSavepoint>=0 );
2803 db->nStatement++;
2804 p->iStatement = db->nSavepoint + db->nStatement;
2805 }
2806 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
dan1da40a32009-09-19 17:00:31 +00002807
2808 /* Store the current value of the database handles deferred constraint
2809 ** counter. If the statement transaction needs to be rolled back,
2810 ** the value of this counter needs to be restored too. */
2811 p->nStmtDefCons = db->nDeferredCons;
dane0af83a2009-09-08 19:15:01 +00002812 }
drhb86ccfb2003-01-28 23:13:10 +00002813 }
drh5e00f6c2001-09-13 13:46:56 +00002814 break;
2815}
2816
drhb1fdb2a2008-01-05 04:06:03 +00002817/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00002818**
drh9cbf3422008-01-17 16:22:13 +00002819** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00002820** P3==1 is the schema version. P3==2 is the database format.
2821** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00002822** the main database file and P1==1 is the database file used to store
2823** temporary tables.
drh4a324312001-12-21 14:30:42 +00002824**
drh50e5dad2001-09-15 00:57:28 +00002825** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00002826** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00002827** executing this instruction.
2828*/
drh4c583122008-01-04 22:01:03 +00002829case OP_ReadCookie: { /* out2-prerelease */
drhf328bc82004-05-10 23:29:49 +00002830 int iMeta;
drh856c1032009-06-02 15:21:42 +00002831 int iDb;
2832 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00002833
drh856c1032009-06-02 15:21:42 +00002834 iDb = pOp->p1;
2835 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00002836 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00002837 assert( iDb>=0 && iDb<db->nDb );
2838 assert( db->aDb[iDb].pBt!=0 );
drhfb982642007-08-30 01:19:59 +00002839 assert( (p->btreeMask & (1<<iDb))!=0 );
danielk19770d19f7a2009-06-03 11:25:07 +00002840
danielk1977602b4662009-07-02 07:47:33 +00002841 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh4c583122008-01-04 22:01:03 +00002842 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00002843 break;
2844}
2845
drh98757152008-01-09 23:04:12 +00002846/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00002847**
drh98757152008-01-09 23:04:12 +00002848** Write the content of register P3 (interpreted as an integer)
danielk19770d19f7a2009-06-03 11:25:07 +00002849** into cookie number P2 of database P1. P2==1 is the schema version.
2850** P2==2 is the database format. P2==3 is the recommended pager cache
2851** size, and so forth. P1==0 is the main database file and P1==1 is the
2852** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00002853**
2854** A transaction must be started before executing this opcode.
2855*/
drh9cbf3422008-01-17 16:22:13 +00002856case OP_SetCookie: { /* in3 */
drh3f7d4e42004-07-24 14:35:58 +00002857 Db *pDb;
drh4a324312001-12-21 14:30:42 +00002858 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00002859 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhfb982642007-08-30 01:19:59 +00002860 assert( (p->btreeMask & (1<<pOp->p1))!=0 );
drh3f7d4e42004-07-24 14:35:58 +00002861 pDb = &db->aDb[pOp->p1];
2862 assert( pDb->pBt!=0 );
drh3c657212009-11-17 23:59:58 +00002863 pIn3 = &aMem[pOp->p3];
drh98757152008-01-09 23:04:12 +00002864 sqlite3VdbeMemIntegerify(pIn3);
drha3b321d2004-05-11 09:31:31 +00002865 /* See note about index shifting on OP_ReadCookie */
danielk19770d19f7a2009-06-03 11:25:07 +00002866 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
2867 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00002868 /* When the schema cookie changes, record the new cookie internally */
drh9c1905f2008-12-10 22:32:56 +00002869 pDb->pSchema->schema_cookie = (int)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00002870 db->flags |= SQLITE_InternChanges;
danielk19770d19f7a2009-06-03 11:25:07 +00002871 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00002872 /* Record changes in the file format */
drh9c1905f2008-12-10 22:32:56 +00002873 pDb->pSchema->file_format = (u8)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00002874 }
drhfd426c62006-01-30 15:34:22 +00002875 if( pOp->p1==1 ){
2876 /* Invalidate all prepared statements whenever the TEMP database
2877 ** schema is changed. Ticket #1644 */
2878 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00002879 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00002880 }
drh50e5dad2001-09-15 00:57:28 +00002881 break;
2882}
2883
drh4a324312001-12-21 14:30:42 +00002884/* Opcode: VerifyCookie P1 P2 *
drh50e5dad2001-09-15 00:57:28 +00002885**
drh001bbcb2003-03-19 03:14:00 +00002886** Check the value of global database parameter number 0 (the
2887** schema version) and make sure it is equal to P2.
2888** P1 is the database number which is 0 for the main database file
2889** and 1 for the file holding temporary tables and some higher number
2890** for auxiliary databases.
drh50e5dad2001-09-15 00:57:28 +00002891**
2892** The cookie changes its value whenever the database schema changes.
drhb19a2bc2001-09-16 00:13:26 +00002893** This operation is used to detect when that the cookie has changed
drh50e5dad2001-09-15 00:57:28 +00002894** and that the current process needs to reread the schema.
2895**
2896** Either a transaction needs to have been started or an OP_Open needs
2897** to be executed (to establish a read lock) before this opcode is
2898** invoked.
2899*/
drh9cbf3422008-01-17 16:22:13 +00002900case OP_VerifyCookie: {
drhf328bc82004-05-10 23:29:49 +00002901 int iMeta;
drhc275b4e2004-07-19 17:25:24 +00002902 Btree *pBt;
drh001bbcb2003-03-19 03:14:00 +00002903 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhfb982642007-08-30 01:19:59 +00002904 assert( (p->btreeMask & (1<<pOp->p1))!=0 );
drhc275b4e2004-07-19 17:25:24 +00002905 pBt = db->aDb[pOp->p1].pBt;
2906 if( pBt ){
danielk1977602b4662009-07-02 07:47:33 +00002907 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
drhc275b4e2004-07-19 17:25:24 +00002908 }else{
drhc275b4e2004-07-19 17:25:24 +00002909 iMeta = 0;
2910 }
danielk1977602b4662009-07-02 07:47:33 +00002911 if( iMeta!=pOp->p2 ){
drh633e6d52008-07-28 19:34:53 +00002912 sqlite3DbFree(db, p->zErrMsg);
danielk1977a1644fd2007-08-29 12:31:25 +00002913 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
danielk1977896e7922007-04-17 08:32:33 +00002914 /* If the schema-cookie from the database file matches the cookie
2915 ** stored with the in-memory representation of the schema, do
2916 ** not reload the schema from the database file.
2917 **
shane21e7feb2008-05-30 15:59:49 +00002918 ** If virtual-tables are in use, this is not just an optimization.
danielk1977896e7922007-04-17 08:32:33 +00002919 ** Often, v-tables store their data in other SQLite tables, which
2920 ** are queried from within xNext() and other v-table methods using
2921 ** prepared queries. If such a query is out-of-date, we do not want to
2922 ** discard the database schema, as the user code implementing the
2923 ** v-table would have to be ready for the sqlite3_vtab structure itself
2924 ** to be invalidated whenever sqlite3_step() is called from within
2925 ** a v-table method.
2926 */
2927 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
2928 sqlite3ResetInternalSchema(db, pOp->p1);
2929 }
2930
drhf6d8ab82007-01-12 23:43:42 +00002931 sqlite3ExpirePreparedStatements(db);
drh50e5dad2001-09-15 00:57:28 +00002932 rc = SQLITE_SCHEMA;
2933 }
2934 break;
2935}
2936
drh98757152008-01-09 23:04:12 +00002937/* Opcode: OpenRead P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00002938**
drhecdc7532001-09-23 02:35:53 +00002939** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00002940** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00002941** P3==0 means the main database, P3==1 means the database used for
2942** temporary tables, and P3>1 means used the corresponding attached
2943** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00002944** values need not be contiguous but all P1 values should be small integers.
2945** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00002946**
drh98757152008-01-09 23:04:12 +00002947** If P5!=0 then use the content of register P2 as the root page, not
2948** the value of P2 itself.
drh5edc3122001-09-13 21:53:09 +00002949**
drhb19a2bc2001-09-16 00:13:26 +00002950** There will be a read lock on the database whenever there is an
2951** open cursor. If the database was unlocked prior to this instruction
2952** then a read lock is acquired as part of this instruction. A read
2953** lock allows other processes to read the database but prohibits
2954** any other process from modifying the database. The read lock is
2955** released when all cursors are closed. If this instruction attempts
2956** to get a read lock but fails, the script terminates with an
2957** SQLITE_BUSY error code.
2958**
danielk1977d336e222009-02-20 10:58:41 +00002959** The P4 value may be either an integer (P4_INT32) or a pointer to
2960** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
2961** structure, then said structure defines the content and collating
2962** sequence of the index being opened. Otherwise, if P4 is an integer
2963** value, it is set to the number of columns in the table.
drhf57b3392001-10-08 13:22:32 +00002964**
drh001bbcb2003-03-19 03:14:00 +00002965** See also OpenWrite.
drh5e00f6c2001-09-13 13:46:56 +00002966*/
drh98757152008-01-09 23:04:12 +00002967/* Opcode: OpenWrite P1 P2 P3 P4 P5
drhecdc7532001-09-23 02:35:53 +00002968**
2969** Open a read/write cursor named P1 on the table or index whose root
drh98757152008-01-09 23:04:12 +00002970** page is P2. Or if P5!=0 use the content of register P2 to find the
2971** root page.
drhecdc7532001-09-23 02:35:53 +00002972**
danielk1977d336e222009-02-20 10:58:41 +00002973** The P4 value may be either an integer (P4_INT32) or a pointer to
2974** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
2975** structure, then said structure defines the content and collating
2976** sequence of the index being opened. Otherwise, if P4 is an integer
drh35cd6432009-06-05 14:17:21 +00002977** value, it is set to the number of columns in the table, or to the
2978** largest index of any column of the table that is actually used.
jplyon5a564222003-06-02 06:15:58 +00002979**
drh001bbcb2003-03-19 03:14:00 +00002980** This instruction works just like OpenRead except that it opens the cursor
drhecdc7532001-09-23 02:35:53 +00002981** in read/write mode. For a given table, there can be one or more read-only
2982** cursors or a single read/write cursor but not both.
drhf57b3392001-10-08 13:22:32 +00002983**
drh001bbcb2003-03-19 03:14:00 +00002984** See also OpenRead.
drhecdc7532001-09-23 02:35:53 +00002985*/
drh9cbf3422008-01-17 16:22:13 +00002986case OP_OpenRead:
2987case OP_OpenWrite: {
drh856c1032009-06-02 15:21:42 +00002988 int nField;
2989 KeyInfo *pKeyInfo;
drh856c1032009-06-02 15:21:42 +00002990 int p2;
2991 int iDb;
drhf57b3392001-10-08 13:22:32 +00002992 int wrFlag;
2993 Btree *pX;
drhdfe88ec2008-11-03 20:55:06 +00002994 VdbeCursor *pCur;
drhd946db02005-12-29 19:23:06 +00002995 Db *pDb;
drh856c1032009-06-02 15:21:42 +00002996
danfa401de2009-10-16 14:55:03 +00002997 if( p->expired ){
2998 rc = SQLITE_ABORT;
2999 break;
3000 }
3001
drh856c1032009-06-02 15:21:42 +00003002 nField = 0;
3003 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00003004 p2 = pOp->p2;
3005 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00003006 assert( iDb>=0 && iDb<db->nDb );
drhfb982642007-08-30 01:19:59 +00003007 assert( (p->btreeMask & (1<<iDb))!=0 );
drhd946db02005-12-29 19:23:06 +00003008 pDb = &db->aDb[iDb];
3009 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00003010 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00003011 if( pOp->opcode==OP_OpenWrite ){
3012 wrFlag = 1;
danielk1977da184232006-01-05 11:34:32 +00003013 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3014 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00003015 }
3016 }else{
3017 wrFlag = 0;
3018 }
drh98757152008-01-09 23:04:12 +00003019 if( pOp->p5 ){
drh9cbf3422008-01-17 16:22:13 +00003020 assert( p2>0 );
3021 assert( p2<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00003022 pIn2 = &aMem[p2];
drh9cbf3422008-01-17 16:22:13 +00003023 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003024 p2 = (int)pIn2->u.i;
drh9a65f2c2009-06-22 19:05:40 +00003025 /* The p2 value always comes from a prior OP_CreateTable opcode and
3026 ** that opcode will always set the p2 value to 2 or more or else fail.
3027 ** If there were a failure, the prepared statement would have halted
3028 ** before reaching this instruction. */
drh27731d72009-06-22 12:05:10 +00003029 if( NEVER(p2<2) ) {
shanedcc50b72008-11-13 18:29:50 +00003030 rc = SQLITE_CORRUPT_BKPT;
3031 goto abort_due_to_error;
3032 }
drh5edc3122001-09-13 21:53:09 +00003033 }
danielk1977d336e222009-02-20 10:58:41 +00003034 if( pOp->p4type==P4_KEYINFO ){
3035 pKeyInfo = pOp->p4.pKeyInfo;
3036 pKeyInfo->enc = ENC(p->db);
3037 nField = pKeyInfo->nField+1;
3038 }else if( pOp->p4type==P4_INT32 ){
3039 nField = pOp->p4.i;
3040 }
drh653b82a2009-06-22 11:10:47 +00003041 assert( pOp->p1>=0 );
3042 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
drh4774b132004-06-12 20:12:51 +00003043 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003044 pCur->nullRow = 1;
danielk1977d336e222009-02-20 10:58:41 +00003045 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3046 pCur->pKeyInfo = pKeyInfo;
3047
danielk1977172114a2009-07-07 15:47:12 +00003048 /* Since it performs no memory allocation or IO, the only values that
3049 ** sqlite3BtreeCursor() may return are SQLITE_EMPTY and SQLITE_OK.
3050 ** SQLITE_EMPTY is only returned when attempting to open the table
3051 ** rooted at page 1 of a zero-byte database. */
3052 assert( rc==SQLITE_EMPTY || rc==SQLITE_OK );
3053 if( rc==SQLITE_EMPTY ){
3054 pCur->pCursor = 0;
3055 rc = SQLITE_OK;
danielk197724162fe2004-06-04 06:22:00 +00003056 }
danielk1977172114a2009-07-07 15:47:12 +00003057
3058 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
3059 ** SQLite used to check if the root-page flags were sane at this point
3060 ** and report database corruption if they were not, but this check has
3061 ** since moved into the btree layer. */
3062 pCur->isTable = pOp->p4type!=P4_KEYINFO;
3063 pCur->isIndex = !pCur->isTable;
drh5e00f6c2001-09-13 13:46:56 +00003064 break;
3065}
3066
drh98757152008-01-09 23:04:12 +00003067/* Opcode: OpenEphemeral P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00003068**
drhb9bb7c12006-06-11 23:41:55 +00003069** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003070** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003071** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003072** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003073**
drh25d3adb2010-04-05 15:11:08 +00003074** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003075** The cursor points to a BTree table if P4==0 and to a BTree index
3076** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003077** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003078**
3079** This opcode was once called OpenTemp. But that created
3080** confusion because the term "temp table", might refer either
3081** to a TEMP table at the SQL level, or to a table opened by
3082** this opcode. Then this opcode was call OpenVirtual. But
3083** that created confusion with the whole virtual-table idea.
drh5e00f6c2001-09-13 13:46:56 +00003084*/
drha21a64d2010-04-06 22:33:55 +00003085/* Opcode: OpenAutoindex P1 P2 * P4 *
3086**
3087** This opcode works the same as OP_OpenEphemeral. It has a
3088** different name to distinguish its use. Tables created using
3089** by this opcode will be used for automatically created transient
3090** indices in joins.
3091*/
3092case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003093case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003094 VdbeCursor *pCx;
drh33f4e022007-09-03 15:19:34 +00003095 static const int openFlags =
3096 SQLITE_OPEN_READWRITE |
3097 SQLITE_OPEN_CREATE |
3098 SQLITE_OPEN_EXCLUSIVE |
3099 SQLITE_OPEN_DELETEONCLOSE |
3100 SQLITE_OPEN_TRANSIENT_DB;
3101
drh653b82a2009-06-22 11:10:47 +00003102 assert( pOp->p1>=0 );
3103 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
drh4774b132004-06-12 20:12:51 +00003104 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003105 pCx->nullRow = 1;
drh33f4e022007-09-03 15:19:34 +00003106 rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags,
3107 &pCx->pBt);
drh5e00f6c2001-09-13 13:46:56 +00003108 if( rc==SQLITE_OK ){
danielk197740b38dc2004-06-26 08:38:24 +00003109 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
drh5e00f6c2001-09-13 13:46:56 +00003110 }
3111 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003112 /* If a transient index is required, create it by calling
3113 ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
3114 ** opening it. If a transient table is required, just use the
danielk19770dbe72b2004-05-11 04:54:49 +00003115 ** automatically created table with root-page 1 (an INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003116 */
danielk19772dca4ac2008-01-03 11:50:29 +00003117 if( pOp->p4.pKeyInfo ){
drhc6b52df2002-01-04 03:09:29 +00003118 int pgno;
drh66a51672008-01-03 00:01:23 +00003119 assert( pOp->p4type==P4_KEYINFO );
danielk19774adee202004-05-08 08:23:19 +00003120 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA);
drhc6b52df2002-01-04 03:09:29 +00003121 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003122 assert( pgno==MASTER_ROOT+1 );
drh1e968a02008-03-25 00:22:21 +00003123 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
danielk1977cd3e8f72008-03-25 09:47:35 +00003124 (KeyInfo*)pOp->p4.z, pCx->pCursor);
danielk19772dca4ac2008-01-03 11:50:29 +00003125 pCx->pKeyInfo = pOp->p4.pKeyInfo;
danielk197714db2662006-01-09 16:12:04 +00003126 pCx->pKeyInfo->enc = ENC(p->db);
drhc6b52df2002-01-04 03:09:29 +00003127 }
drhf0863fe2005-06-12 21:35:51 +00003128 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003129 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00003130 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
drhf0863fe2005-06-12 21:35:51 +00003131 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003132 }
drh5e00f6c2001-09-13 13:46:56 +00003133 }
drhf0863fe2005-06-12 21:35:51 +00003134 pCx->isIndex = !pCx->isTable;
drh5e00f6c2001-09-13 13:46:56 +00003135 break;
3136}
3137
danielk1977d336e222009-02-20 10:58:41 +00003138/* Opcode: OpenPseudo P1 P2 P3 * *
drh70ce3f02003-04-15 19:22:22 +00003139**
3140** Open a new cursor that points to a fake table that contains a single
drh3e9ca092009-09-08 01:14:48 +00003141** row of data. The content of that one row in the content of memory
3142** register P2. In other words, cursor P1 becomes an alias for the
3143** MEM_Blob content contained in register P2.
drh70ce3f02003-04-15 19:22:22 +00003144**
drh2d8d7ce2010-02-15 15:17:05 +00003145** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00003146** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003147** individual columns using the OP_Column opcode. The OP_Column opcode
3148** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003149**
3150** P3 is the number of fields in the records that will be stored by
3151** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003152*/
drh9cbf3422008-01-17 16:22:13 +00003153case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003154 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003155
drh653b82a2009-06-22 11:10:47 +00003156 assert( pOp->p1>=0 );
3157 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
drh4774b132004-06-12 20:12:51 +00003158 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003159 pCx->nullRow = 1;
drh3e9ca092009-09-08 01:14:48 +00003160 pCx->pseudoTableReg = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003161 pCx->isTable = 1;
3162 pCx->isIndex = 0;
drh70ce3f02003-04-15 19:22:22 +00003163 break;
3164}
3165
drh98757152008-01-09 23:04:12 +00003166/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003167**
3168** Close a cursor previously opened as P1. If P1 is not
3169** currently open, this instruction is a no-op.
3170*/
drh9cbf3422008-01-17 16:22:13 +00003171case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003172 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3173 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3174 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003175 break;
3176}
3177
drh959403f2008-12-12 17:56:16 +00003178/* Opcode: SeekGe P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003179**
danielk1977b790c6c2008-04-18 10:25:24 +00003180** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003181** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003182** to an SQL index, then P3 is the first in an array of P4 registers
3183** that are used as an unpacked index key.
3184**
3185** Reposition cursor P1 so that it points to the smallest entry that
3186** is greater than or equal to the key value. If there are no records
3187** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003188**
drh959403f2008-12-12 17:56:16 +00003189** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003190*/
drh959403f2008-12-12 17:56:16 +00003191/* Opcode: SeekGt P1 P2 P3 P4 *
drh7cf6e4d2004-05-19 14:56:55 +00003192**
danielk1977b790c6c2008-04-18 10:25:24 +00003193** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003194** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003195** to an SQL index, then P3 is the first in an array of P4 registers
3196** that are used as an unpacked index key.
3197**
3198** Reposition cursor P1 so that it points to the smallest entry that
3199** is greater than the key value. If there are no records greater than
3200** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003201**
drh959403f2008-12-12 17:56:16 +00003202** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003203*/
drh959403f2008-12-12 17:56:16 +00003204/* Opcode: SeekLt P1 P2 P3 P4 *
drhc045ec52002-12-04 20:01:06 +00003205**
danielk1977b790c6c2008-04-18 10:25:24 +00003206** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003207** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003208** to an SQL index, then P3 is the first in an array of P4 registers
3209** that are used as an unpacked index key.
3210**
3211** Reposition cursor P1 so that it points to the largest entry that
3212** is less than the key value. If there are no records less than
3213** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003214**
drh959403f2008-12-12 17:56:16 +00003215** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003216*/
drh959403f2008-12-12 17:56:16 +00003217/* Opcode: SeekLe P1 P2 P3 P4 *
danielk19773d1bfea2004-05-14 11:00:53 +00003218**
danielk1977b790c6c2008-04-18 10:25:24 +00003219** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003220** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003221** to an SQL index, then P3 is the first in an array of P4 registers
3222** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003223**
danielk1977b790c6c2008-04-18 10:25:24 +00003224** Reposition cursor P1 so that it points to the largest entry that
3225** is less than or equal to the key value. If there are no records
3226** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003227**
drh959403f2008-12-12 17:56:16 +00003228** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003229*/
drh959403f2008-12-12 17:56:16 +00003230case OP_SeekLt: /* jump, in3 */
3231case OP_SeekLe: /* jump, in3 */
3232case OP_SeekGe: /* jump, in3 */
3233case OP_SeekGt: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003234 int res;
3235 int oc;
drhdfe88ec2008-11-03 20:55:06 +00003236 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003237 UnpackedRecord r;
3238 int nField;
3239 i64 iKey; /* The rowid we are to seek to */
drh80ff32f2001-11-04 18:32:46 +00003240
drh653b82a2009-06-22 11:10:47 +00003241 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003242 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003243 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003244 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003245 assert( pC->pseudoTableReg==0 );
drh1f350122009-11-13 20:52:43 +00003246 assert( OP_SeekLe == OP_SeekLt+1 );
3247 assert( OP_SeekGe == OP_SeekLt+2 );
3248 assert( OP_SeekGt == OP_SeekLt+3 );
drh70ce3f02003-04-15 19:22:22 +00003249 if( pC->pCursor!=0 ){
drh7cf6e4d2004-05-19 14:56:55 +00003250 oc = pOp->opcode;
drha11846b2004-01-07 18:52:56 +00003251 pC->nullRow = 0;
drhf0863fe2005-06-12 21:35:51 +00003252 if( pC->isTable ){
drh959403f2008-12-12 17:56:16 +00003253 /* The input value in P3 might be of any type: integer, real, string,
3254 ** blob, or NULL. But it needs to be an integer before we can do
3255 ** the seek, so covert it. */
drh3c657212009-11-17 23:59:58 +00003256 pIn3 = &aMem[pOp->p3];
drh959403f2008-12-12 17:56:16 +00003257 applyNumericAffinity(pIn3);
3258 iKey = sqlite3VdbeIntValue(pIn3);
3259 pC->rowidIsValid = 0;
3260
3261 /* If the P3 value could not be converted into an integer without
3262 ** loss of information, then special processing is required... */
3263 if( (pIn3->flags & MEM_Int)==0 ){
3264 if( (pIn3->flags & MEM_Real)==0 ){
3265 /* If the P3 value cannot be converted into any kind of a number,
3266 ** then the seek is not possible, so jump to P2 */
3267 pc = pOp->p2 - 1;
3268 break;
3269 }
3270 /* If we reach this point, then the P3 value must be a floating
3271 ** point number. */
3272 assert( (pIn3->flags & MEM_Real)!=0 );
3273
3274 if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
drhaa736092009-06-22 00:55:30 +00003275 /* The P3 value is too large in magnitude to be expressed as an
drh959403f2008-12-12 17:56:16 +00003276 ** integer. */
3277 res = 1;
3278 if( pIn3->r<0 ){
drh1f350122009-11-13 20:52:43 +00003279 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
drh959403f2008-12-12 17:56:16 +00003280 rc = sqlite3BtreeFirst(pC->pCursor, &res);
3281 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3282 }
3283 }else{
drh1f350122009-11-13 20:52:43 +00003284 if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe );
drh959403f2008-12-12 17:56:16 +00003285 rc = sqlite3BtreeLast(pC->pCursor, &res);
3286 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3287 }
3288 }
3289 if( res ){
3290 pc = pOp->p2 - 1;
3291 }
3292 break;
3293 }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
3294 /* Use the ceiling() function to convert real->int */
3295 if( pIn3->r > (double)iKey ) iKey++;
3296 }else{
3297 /* Use the floor() function to convert real->int */
3298 assert( oc==OP_SeekLe || oc==OP_SeekGt );
3299 if( pIn3->r < (double)iKey ) iKey--;
3300 }
3301 }
drhe63d9992008-08-13 19:11:48 +00003302 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
danielk197728129562005-01-11 10:25:06 +00003303 if( rc!=SQLITE_OK ){
3304 goto abort_due_to_error;
3305 }
drh959403f2008-12-12 17:56:16 +00003306 if( res==0 ){
3307 pC->rowidIsValid = 1;
3308 pC->lastRowid = iKey;
3309 }
drh5e00f6c2001-09-13 13:46:56 +00003310 }else{
drh856c1032009-06-02 15:21:42 +00003311 nField = pOp->p4.i;
danielk1977b790c6c2008-04-18 10:25:24 +00003312 assert( pOp->p4type==P4_INT32 );
3313 assert( nField>0 );
3314 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00003315 r.nField = (u16)nField;
drh1f350122009-11-13 20:52:43 +00003316
3317 /* The next line of code computes as follows, only faster:
3318 ** if( oc==OP_SeekGt || oc==OP_SeekLe ){
3319 ** r.flags = UNPACKED_INCRKEY;
3320 ** }else{
3321 ** r.flags = 0;
3322 ** }
3323 */
shaneh5e17e8b2009-12-03 04:40:47 +00003324 r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
drh1f350122009-11-13 20:52:43 +00003325 assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
3326 assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
3327 assert( oc!=OP_SeekGe || r.flags==0 );
3328 assert( oc!=OP_SeekLt || r.flags==0 );
3329
drha6c2ed92009-11-14 23:22:23 +00003330 r.aMem = &aMem[pOp->p3];
drh039fc322009-11-17 18:31:47 +00003331 ExpandBlob(r.aMem);
drhe63d9992008-08-13 19:11:48 +00003332 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
danielk197728129562005-01-11 10:25:06 +00003333 if( rc!=SQLITE_OK ){
3334 goto abort_due_to_error;
3335 }
drhf0863fe2005-06-12 21:35:51 +00003336 pC->rowidIsValid = 0;
drh5e00f6c2001-09-13 13:46:56 +00003337 }
drha11846b2004-01-07 18:52:56 +00003338 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003339 pC->cacheStatus = CACHE_STALE;
drh0f7eb612006-08-08 13:51:43 +00003340#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +00003341 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00003342#endif
drh1f350122009-11-13 20:52:43 +00003343 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
drh959403f2008-12-12 17:56:16 +00003344 if( res<0 || (res==0 && oc==OP_SeekGt) ){
danielk197728129562005-01-11 10:25:06 +00003345 rc = sqlite3BtreeNext(pC->pCursor, &res);
danielk197701427a62005-01-11 13:02:33 +00003346 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhf0863fe2005-06-12 21:35:51 +00003347 pC->rowidIsValid = 0;
drh1af3fdb2004-07-18 21:33:01 +00003348 }else{
3349 res = 0;
drh8721ce42001-11-07 14:22:00 +00003350 }
drh7cf6e4d2004-05-19 14:56:55 +00003351 }else{
drh959403f2008-12-12 17:56:16 +00003352 assert( oc==OP_SeekLt || oc==OP_SeekLe );
3353 if( res>0 || (res==0 && oc==OP_SeekLt) ){
danielk197701427a62005-01-11 13:02:33 +00003354 rc = sqlite3BtreePrevious(pC->pCursor, &res);
3355 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhf0863fe2005-06-12 21:35:51 +00003356 pC->rowidIsValid = 0;
drh1a844c32002-12-04 22:29:28 +00003357 }else{
3358 /* res might be negative because the table is empty. Check to
3359 ** see if this is the case.
3360 */
drhf328bc82004-05-10 23:29:49 +00003361 res = sqlite3BtreeEof(pC->pCursor);
drh1a844c32002-12-04 22:29:28 +00003362 }
drh1af3fdb2004-07-18 21:33:01 +00003363 }
drh91fd4d42008-01-19 20:11:25 +00003364 assert( pOp->p2>0 );
drh1af3fdb2004-07-18 21:33:01 +00003365 if( res ){
drh91fd4d42008-01-19 20:11:25 +00003366 pc = pOp->p2 - 1;
drh8721ce42001-11-07 14:22:00 +00003367 }
drhaa736092009-06-22 00:55:30 +00003368 }else{
danielk1977f7b9d662008-06-23 18:49:43 +00003369 /* This happens when attempting to open the sqlite3_master table
3370 ** for read access returns SQLITE_EMPTY. In this case always
3371 ** take the jump (since there are no records in the table).
3372 */
3373 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00003374 }
drh5e00f6c2001-09-13 13:46:56 +00003375 break;
3376}
3377
drh959403f2008-12-12 17:56:16 +00003378/* Opcode: Seek P1 P2 * * *
3379**
3380** P1 is an open table cursor and P2 is a rowid integer. Arrange
3381** for P1 to move so that it points to the rowid given by P2.
3382**
3383** This is actually a deferred seek. Nothing actually happens until
3384** the cursor is used to read a record. That way, if no reads
3385** occur, no unnecessary I/O happens.
3386*/
3387case OP_Seek: { /* in2 */
drh959403f2008-12-12 17:56:16 +00003388 VdbeCursor *pC;
3389
drh653b82a2009-06-22 11:10:47 +00003390 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3391 pC = p->apCsr[pOp->p1];
drh959403f2008-12-12 17:56:16 +00003392 assert( pC!=0 );
drhaa736092009-06-22 00:55:30 +00003393 if( ALWAYS(pC->pCursor!=0) ){
drh959403f2008-12-12 17:56:16 +00003394 assert( pC->isTable );
3395 pC->nullRow = 0;
drh3c657212009-11-17 23:59:58 +00003396 pIn2 = &aMem[pOp->p2];
drh959403f2008-12-12 17:56:16 +00003397 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3398 pC->rowidIsValid = 0;
3399 pC->deferredMoveto = 1;
3400 }
3401 break;
3402}
3403
3404
drh8cff69d2009-11-12 19:59:44 +00003405/* Opcode: Found P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003406**
drh8cff69d2009-11-12 19:59:44 +00003407** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3408** P4>0 then register P3 is the first of P4 registers that form an unpacked
3409** record.
3410**
3411** Cursor P1 is on an index btree. If the record identified by P3 and P4
3412** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00003413** P1 is left pointing at the matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003414*/
drh8cff69d2009-11-12 19:59:44 +00003415/* Opcode: NotFound P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003416**
drh8cff69d2009-11-12 19:59:44 +00003417** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3418** P4>0 then register P3 is the first of P4 registers that form an unpacked
3419** record.
3420**
3421** Cursor P1 is on an index btree. If the record identified by P3 and P4
3422** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3423** does contain an entry whose prefix matches the P3/P4 record then control
3424** falls through to the next instruction and P1 is left pointing at the
3425** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003426**
drhcb6d50e2008-08-21 19:28:30 +00003427** See also: Found, NotExists, IsUnique
drh5e00f6c2001-09-13 13:46:56 +00003428*/
drh9cbf3422008-01-17 16:22:13 +00003429case OP_NotFound: /* jump, in3 */
3430case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003431 int alreadyExists;
drhdfe88ec2008-11-03 20:55:06 +00003432 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003433 int res;
3434 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00003435 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00003436 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
3437
dan0ff297e2009-09-25 17:03:14 +00003438#ifdef SQLITE_TEST
3439 sqlite3_found_count++;
3440#endif
3441
drh856c1032009-06-02 15:21:42 +00003442 alreadyExists = 0;
drhaa736092009-06-22 00:55:30 +00003443 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00003444 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00003445 pC = p->apCsr[pOp->p1];
3446 assert( pC!=0 );
drh3c657212009-11-17 23:59:58 +00003447 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003448 if( ALWAYS(pC->pCursor!=0) ){
drhe63d9992008-08-13 19:11:48 +00003449
drhf0863fe2005-06-12 21:35:51 +00003450 assert( pC->isTable==0 );
drh8cff69d2009-11-12 19:59:44 +00003451 if( pOp->p4.i>0 ){
3452 r.pKeyInfo = pC->pKeyInfo;
shaneh5e17e8b2009-12-03 04:40:47 +00003453 r.nField = (u16)pOp->p4.i;
drh8cff69d2009-11-12 19:59:44 +00003454 r.aMem = pIn3;
3455 r.flags = UNPACKED_PREFIX_MATCH;
3456 pIdxKey = &r;
3457 }else{
3458 assert( pIn3->flags & MEM_Blob );
3459 ExpandBlob(pIn3);
3460 pIdxKey = sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z,
3461 aTempRec, sizeof(aTempRec));
3462 if( pIdxKey==0 ){
3463 goto no_mem;
3464 }
3465 pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
danielk19779a96b662007-11-29 17:05:18 +00003466 }
drhe63d9992008-08-13 19:11:48 +00003467 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
drh8cff69d2009-11-12 19:59:44 +00003468 if( pOp->p4.i==0 ){
3469 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
3470 }
danielk197777519402007-08-30 11:48:31 +00003471 if( rc!=SQLITE_OK ){
3472 break;
3473 }
3474 alreadyExists = (res==0);
drha11846b2004-01-07 18:52:56 +00003475 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003476 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003477 }
3478 if( pOp->opcode==OP_Found ){
3479 if( alreadyExists ) pc = pOp->p2 - 1;
3480 }else{
3481 if( !alreadyExists ) pc = pOp->p2 - 1;
3482 }
drh5e00f6c2001-09-13 13:46:56 +00003483 break;
3484}
3485
drh98757152008-01-09 23:04:12 +00003486/* Opcode: IsUnique P1 P2 P3 P4 *
drh9cfcf5d2002-01-29 18:41:24 +00003487**
drh8cff69d2009-11-12 19:59:44 +00003488** Cursor P1 is open on an index b-tree - that is to say, a btree which
3489** no data and where the key are records generated by OP_MakeRecord with
3490** the list field being the integer ROWID of the entry that the index
3491** entry refers to.
danielk1977de630352009-05-04 11:42:29 +00003492**
3493** The P3 register contains an integer record number. Call this record
3494** number R. Register P4 is the first in a set of N contiguous registers
3495** that make up an unpacked index key that can be used with cursor P1.
3496** The value of N can be inferred from the cursor. N includes the rowid
3497** value appended to the end of the index record. This rowid value may
3498** or may not be the same as R.
3499**
3500** If any of the N registers beginning with register P4 contains a NULL
3501** value, jump immediately to P2.
3502**
3503** Otherwise, this instruction checks if cursor P1 contains an entry
3504** where the first (N-1) fields match but the rowid value at the end
3505** of the index entry is not R. If there is no such entry, control jumps
3506** to instruction P2. Otherwise, the rowid of the conflicting index
3507** entry is copied to register P3 and control falls through to the next
3508** instruction.
drh9cfcf5d2002-01-29 18:41:24 +00003509**
drh9cbf3422008-01-17 16:22:13 +00003510** See also: NotFound, NotExists, Found
drh9cfcf5d2002-01-29 18:41:24 +00003511*/
drh9cbf3422008-01-17 16:22:13 +00003512case OP_IsUnique: { /* jump, in3 */
shane60a4b532009-05-06 18:57:09 +00003513 u16 ii;
drhdfe88ec2008-11-03 20:55:06 +00003514 VdbeCursor *pCx;
drh9cfcf5d2002-01-29 18:41:24 +00003515 BtCursor *pCrsr;
shane60a4b532009-05-06 18:57:09 +00003516 u16 nField;
drha6c2ed92009-11-14 23:22:23 +00003517 Mem *aMx;
drh856c1032009-06-02 15:21:42 +00003518 UnpackedRecord r; /* B-Tree index search key */
3519 i64 R; /* Rowid stored in register P3 */
drh9cfcf5d2002-01-29 18:41:24 +00003520
drh3c657212009-11-17 23:59:58 +00003521 pIn3 = &aMem[pOp->p3];
drha6c2ed92009-11-14 23:22:23 +00003522 aMx = &aMem[pOp->p4.i];
danielk1977de630352009-05-04 11:42:29 +00003523 /* Assert that the values of parameters P1 and P4 are in range. */
drh98757152008-01-09 23:04:12 +00003524 assert( pOp->p4type==P4_INT32 );
drh9cbf3422008-01-17 16:22:13 +00003525 assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
danielk1977de630352009-05-04 11:42:29 +00003526 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3527
3528 /* Find the index cursor. */
3529 pCx = p->apCsr[pOp->p1];
3530 assert( pCx->deferredMoveto==0 );
3531 pCx->seekResult = 0;
3532 pCx->cacheStatus = CACHE_STALE;
drhf328bc82004-05-10 23:29:49 +00003533 pCrsr = pCx->pCursor;
danielk1977de630352009-05-04 11:42:29 +00003534
3535 /* If any of the values are NULL, take the jump. */
3536 nField = pCx->pKeyInfo->nField;
3537 for(ii=0; ii<nField; ii++){
drha6c2ed92009-11-14 23:22:23 +00003538 if( aMx[ii].flags & MEM_Null ){
danielk1977de630352009-05-04 11:42:29 +00003539 pc = pOp->p2 - 1;
3540 pCrsr = 0;
3541 break;
3542 }
3543 }
drha6c2ed92009-11-14 23:22:23 +00003544 assert( (aMx[nField].flags & MEM_Null)==0 );
danielk1977de630352009-05-04 11:42:29 +00003545
drhf328bc82004-05-10 23:29:49 +00003546 if( pCrsr!=0 ){
danielk1977de630352009-05-04 11:42:29 +00003547 /* Populate the index search key. */
3548 r.pKeyInfo = pCx->pKeyInfo;
3549 r.nField = nField + 1;
3550 r.flags = UNPACKED_PREFIX_SEARCH;
drha6c2ed92009-11-14 23:22:23 +00003551 r.aMem = aMx;
danielk1977452c9892004-05-13 05:16:15 +00003552
danielk1977de630352009-05-04 11:42:29 +00003553 /* Extract the value of R from register P3. */
3554 sqlite3VdbeMemIntegerify(pIn3);
3555 R = pIn3->u.i;
3556
3557 /* Search the B-Tree index. If no conflicting record is found, jump
3558 ** to P2. Otherwise, copy the rowid of the conflicting record to
3559 ** register P3 and fall through to the next instruction. */
3560 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
3561 if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
drh9cfcf5d2002-01-29 18:41:24 +00003562 pc = pOp->p2 - 1;
danielk1977de630352009-05-04 11:42:29 +00003563 }else{
3564 pIn3->u.i = r.rowid;
drh9cfcf5d2002-01-29 18:41:24 +00003565 }
drh9cfcf5d2002-01-29 18:41:24 +00003566 }
3567 break;
3568}
3569
drh9cbf3422008-01-17 16:22:13 +00003570/* Opcode: NotExists P1 P2 P3 * *
drh6b125452002-01-28 15:53:03 +00003571**
drh9cbf3422008-01-17 16:22:13 +00003572** Use the content of register P3 as a integer key. If a record
danielk197796cb76f2008-01-04 13:24:28 +00003573** with that key does not exist in table of P1, then jump to P2.
3574** If the record does exist, then fall thru. The cursor is left
drh9cbf3422008-01-17 16:22:13 +00003575** pointing to the record if it exists.
drh6b125452002-01-28 15:53:03 +00003576**
3577** The difference between this operation and NotFound is that this
drhf0863fe2005-06-12 21:35:51 +00003578** operation assumes the key is an integer and that P1 is a table whereas
3579** NotFound assumes key is a blob constructed from MakeRecord and
3580** P1 is an index.
drh6b125452002-01-28 15:53:03 +00003581**
drhcb6d50e2008-08-21 19:28:30 +00003582** See also: Found, NotFound, IsUnique
drh6b125452002-01-28 15:53:03 +00003583*/
drh9cbf3422008-01-17 16:22:13 +00003584case OP_NotExists: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00003585 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00003586 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00003587 int res;
3588 u64 iKey;
3589
drh3c657212009-11-17 23:59:58 +00003590 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003591 assert( pIn3->flags & MEM_Int );
3592 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3593 pC = p->apCsr[pOp->p1];
3594 assert( pC!=0 );
3595 assert( pC->isTable );
drh3e9ca092009-09-08 01:14:48 +00003596 assert( pC->pseudoTableReg==0 );
drhaa736092009-06-22 00:55:30 +00003597 pCrsr = pC->pCursor;
3598 if( pCrsr!=0 ){
drh856c1032009-06-02 15:21:42 +00003599 res = 0;
drhaa736092009-06-22 00:55:30 +00003600 iKey = pIn3->u.i;
danielk1977de630352009-05-04 11:42:29 +00003601 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drh98757152008-01-09 23:04:12 +00003602 pC->lastRowid = pIn3->u.i;
drh9c1905f2008-12-10 22:32:56 +00003603 pC->rowidIsValid = res==0 ?1:0;
drh9188b382004-05-14 21:12:22 +00003604 pC->nullRow = 0;
drh76873ab2006-01-07 18:48:26 +00003605 pC->cacheStatus = CACHE_STALE;
danielk19771d461462009-04-21 09:02:45 +00003606 pC->deferredMoveto = 0;
danielk197728129562005-01-11 10:25:06 +00003607 if( res!=0 ){
drh17f71932002-02-21 12:01:27 +00003608 pc = pOp->p2 - 1;
drh91fd4d42008-01-19 20:11:25 +00003609 assert( pC->rowidIsValid==0 );
drh6b125452002-01-28 15:53:03 +00003610 }
danielk1977de630352009-05-04 11:42:29 +00003611 pC->seekResult = res;
drhaa736092009-06-22 00:55:30 +00003612 }else{
danielk1977f7b9d662008-06-23 18:49:43 +00003613 /* This happens when an attempt to open a read cursor on the
3614 ** sqlite_master table returns SQLITE_EMPTY.
3615 */
danielk1977f7b9d662008-06-23 18:49:43 +00003616 pc = pOp->p2 - 1;
3617 assert( pC->rowidIsValid==0 );
danielk1977de630352009-05-04 11:42:29 +00003618 pC->seekResult = 0;
drh6b125452002-01-28 15:53:03 +00003619 }
drh6b125452002-01-28 15:53:03 +00003620 break;
3621}
3622
drh4c583122008-01-04 22:01:03 +00003623/* Opcode: Sequence P1 P2 * * *
drh4db38a72005-09-01 12:16:28 +00003624**
drh4c583122008-01-04 22:01:03 +00003625** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00003626** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00003627** The sequence number on the cursor is incremented after this
3628** instruction.
drh4db38a72005-09-01 12:16:28 +00003629*/
drh4c583122008-01-04 22:01:03 +00003630case OP_Sequence: { /* out2-prerelease */
drh653b82a2009-06-22 11:10:47 +00003631 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3632 assert( p->apCsr[pOp->p1]!=0 );
3633 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00003634 break;
3635}
3636
3637
drh98757152008-01-09 23:04:12 +00003638/* Opcode: NewRowid P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00003639**
drhf0863fe2005-06-12 21:35:51 +00003640** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00003641** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00003642** table that cursor P1 points to. The new record number is written
3643** written to register P2.
drh205f48e2004-11-05 00:43:11 +00003644**
dan76d462e2009-08-30 11:42:51 +00003645** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3646** the largest previously generated record number. No new record numbers are
3647** allowed to be less than this value. When this value reaches its maximum,
3648** a SQLITE_FULL error is generated. The P3 register is updated with the '
3649** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00003650** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00003651*/
drh4c583122008-01-04 22:01:03 +00003652case OP_NewRowid: { /* out2-prerelease */
drhaa736092009-06-22 00:55:30 +00003653 i64 v; /* The new rowid */
3654 VdbeCursor *pC; /* Cursor of table to get the new rowid */
3655 int res; /* Result of an sqlite3BtreeLast() */
3656 int cnt; /* Counter to limit the number of searches */
3657 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00003658 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00003659
drh856c1032009-06-02 15:21:42 +00003660 v = 0;
3661 res = 0;
drhaa736092009-06-22 00:55:30 +00003662 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3663 pC = p->apCsr[pOp->p1];
3664 assert( pC!=0 );
3665 if( NEVER(pC->pCursor==0) ){
drhf328bc82004-05-10 23:29:49 +00003666 /* The zero initialization above is all that is needed */
drh5e00f6c2001-09-13 13:46:56 +00003667 }else{
drh5cf8e8c2002-02-19 22:42:05 +00003668 /* The next rowid or record number (different terms for the same
3669 ** thing) is obtained in a two-step algorithm.
3670 **
3671 ** First we attempt to find the largest existing rowid and add one
3672 ** to that. But if the largest existing rowid is already the maximum
3673 ** positive integer, we have to fall through to the second
3674 ** probabilistic algorithm
3675 **
3676 ** The second algorithm is to select a rowid at random and see if
3677 ** it already exists in the table. If it does not exist, we have
3678 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00003679 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00003680 */
drhaa736092009-06-22 00:55:30 +00003681 assert( pC->isTable );
drh5e00f6c2001-09-13 13:46:56 +00003682 cnt = 0;
drhfe2093d2005-01-20 22:48:47 +00003683
drh75f86a42005-02-17 00:03:06 +00003684#ifdef SQLITE_32BIT_ROWID
3685# define MAX_ROWID 0x7fffffff
3686#else
drhfe2093d2005-01-20 22:48:47 +00003687 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3688 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3689 ** to provide the constant while making all compilers happy.
3690 */
danielk197764202cf2008-11-17 15:31:47 +00003691# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00003692#endif
drhfe2093d2005-01-20 22:48:47 +00003693
drh5cf8e8c2002-02-19 22:42:05 +00003694 if( !pC->useRandomRowid ){
drh7f751222009-03-17 22:33:00 +00003695 v = sqlite3BtreeGetCachedRowid(pC->pCursor);
3696 if( v==0 ){
danielk1977261919c2005-12-06 12:52:59 +00003697 rc = sqlite3BtreeLast(pC->pCursor, &res);
3698 if( rc!=SQLITE_OK ){
3699 goto abort_due_to_error;
3700 }
drh32fbe342002-10-19 20:16:37 +00003701 if( res ){
drhc79c7612010-01-01 18:57:48 +00003702 v = 1; /* IMP: R-61914-48074 */
drh5cf8e8c2002-02-19 22:42:05 +00003703 }else{
drhea8ffdf2009-07-22 00:35:23 +00003704 assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
drhc27ae612009-07-14 18:35:44 +00003705 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
3706 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
drh75f86a42005-02-17 00:03:06 +00003707 if( v==MAX_ROWID ){
drh32fbe342002-10-19 20:16:37 +00003708 pC->useRandomRowid = 1;
3709 }else{
drhc79c7612010-01-01 18:57:48 +00003710 v++; /* IMP: R-29538-34987 */
drh32fbe342002-10-19 20:16:37 +00003711 }
drh5cf8e8c2002-02-19 22:42:05 +00003712 }
drh3fc190c2001-09-14 03:24:23 +00003713 }
drh205f48e2004-11-05 00:43:11 +00003714
3715#ifndef SQLITE_OMIT_AUTOINCREMENT
drh4c583122008-01-04 22:01:03 +00003716 if( pOp->p3 ){
shaneabc6b892009-09-10 19:09:03 +00003717 /* Assert that P3 is a valid memory cell. */
3718 assert( pOp->p3>0 );
dan76d462e2009-08-30 11:42:51 +00003719 if( p->pFrame ){
3720 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00003721 /* Assert that P3 is a valid memory cell. */
3722 assert( pOp->p3<=pFrame->nMem );
dan76d462e2009-08-30 11:42:51 +00003723 pMem = &pFrame->aMem[pOp->p3];
3724 }else{
shaneabc6b892009-09-10 19:09:03 +00003725 /* Assert that P3 is a valid memory cell. */
3726 assert( pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00003727 pMem = &aMem[pOp->p3];
dan76d462e2009-08-30 11:42:51 +00003728 }
dan76d462e2009-08-30 11:42:51 +00003729
3730 REGISTER_TRACE(pOp->p3, pMem);
drh8a512562005-11-14 22:29:05 +00003731 sqlite3VdbeMemIntegerify(pMem);
drh4c583122008-01-04 22:01:03 +00003732 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
drh3c024d62007-03-30 11:23:45 +00003733 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
drhc79c7612010-01-01 18:57:48 +00003734 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
drh205f48e2004-11-05 00:43:11 +00003735 goto abort_due_to_error;
3736 }
drh3c024d62007-03-30 11:23:45 +00003737 if( v<pMem->u.i+1 ){
3738 v = pMem->u.i + 1;
drh205f48e2004-11-05 00:43:11 +00003739 }
drh3c024d62007-03-30 11:23:45 +00003740 pMem->u.i = v;
drh205f48e2004-11-05 00:43:11 +00003741 }
3742#endif
3743
drh7f751222009-03-17 22:33:00 +00003744 sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
drh5cf8e8c2002-02-19 22:42:05 +00003745 }
3746 if( pC->useRandomRowid ){
drhc79c7612010-01-01 18:57:48 +00003747 /* IMPLEMENTATION-OF: R-48598-02938 If the largest ROWID is equal to the
3748 ** largest possible integer (9223372036854775807) then the database
3749 ** engine starts picking candidate ROWIDs at random until it finds one
3750 ** that is not previously used.
3751 */
drhaa736092009-06-22 00:55:30 +00003752 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
3753 ** an AUTOINCREMENT table. */
drh9ed7a992009-06-26 15:14:55 +00003754 v = db->lastRowid;
drh5cf8e8c2002-02-19 22:42:05 +00003755 cnt = 0;
3756 do{
drh91fd4d42008-01-19 20:11:25 +00003757 if( cnt==0 && (v&0xffffff)==v ){
3758 v++;
3759 }else{
drh2fa18682008-03-19 14:15:34 +00003760 sqlite3_randomness(sizeof(v), &v);
drh5cf8e8c2002-02-19 22:42:05 +00003761 if( cnt<5 ) v &= 0xffffff;
drh5cf8e8c2002-02-19 22:42:05 +00003762 }
drhaa736092009-06-22 00:55:30 +00003763 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v, 0, &res);
drh5cf8e8c2002-02-19 22:42:05 +00003764 cnt++;
drhaa736092009-06-22 00:55:30 +00003765 }while( cnt<100 && rc==SQLITE_OK && res==0 );
drhaa736092009-06-22 00:55:30 +00003766 if( rc==SQLITE_OK && res==0 ){
drhc79c7612010-01-01 18:57:48 +00003767 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00003768 goto abort_due_to_error;
3769 }
drh1eaa2692001-09-18 02:02:23 +00003770 }
drhf0863fe2005-06-12 21:35:51 +00003771 pC->rowidIsValid = 0;
drha11846b2004-01-07 18:52:56 +00003772 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003773 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003774 }
drh4c583122008-01-04 22:01:03 +00003775 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00003776 break;
3777}
3778
danielk19771f4aa332008-01-03 09:51:55 +00003779/* Opcode: Insert P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003780**
jplyon5a564222003-06-02 06:15:58 +00003781** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00003782** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00003783** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00003784** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00003785** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00003786**
danielk19771f4aa332008-01-03 09:51:55 +00003787** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
3788** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00003789** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00003790** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00003791**
drh3e9ca092009-09-08 01:14:48 +00003792** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
3793** the last seek operation (OP_NotExists) was a success, then this
3794** operation will not attempt to find the appropriate row before doing
3795** the insert but will instead overwrite the row that the cursor is
3796** currently pointing to. Presumably, the prior OP_NotExists opcode
3797** has already positioned the cursor correctly. This is an optimization
3798** that boosts performance by avoiding redundant seeks.
3799**
3800** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
3801** UPDATE operation. Otherwise (if the flag is clear) then this opcode
3802** is part of an INSERT operation. The difference is only important to
3803** the update hook.
3804**
drh66a51672008-01-03 00:01:23 +00003805** Parameter P4 may point to a string containing the table-name, or
danielk19771f6eec52006-06-16 06:17:47 +00003806** may be NULL. If it is not NULL, then the update-hook
3807** (sqlite3.xUpdateCallback) is invoked following a successful insert.
3808**
drh93aed5a2008-01-16 17:46:38 +00003809** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
3810** allocated, then ownership of P2 is transferred to the pseudo-cursor
3811** and register P2 becomes ephemeral. If the cursor is changed, the
3812** value of register P2 will then change. Make sure this does not
3813** cause any problems.)
3814**
drhf0863fe2005-06-12 21:35:51 +00003815** This instruction only works on tables. The equivalent instruction
3816** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00003817*/
drhe05c9292009-10-29 13:48:10 +00003818/* Opcode: InsertInt P1 P2 P3 P4 P5
3819**
3820** This works exactly like OP_Insert except that the key is the
3821** integer value P3, not the value of the integer stored in register P3.
3822*/
3823case OP_Insert:
3824case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00003825 Mem *pData; /* MEM cell holding data for the record to be inserted */
3826 Mem *pKey; /* MEM cell holding key for the record */
3827 i64 iKey; /* The integer ROWID or key for the record to be inserted */
3828 VdbeCursor *pC; /* Cursor to table into which insert is written */
3829 int nZero; /* Number of zero-bytes to append */
3830 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
3831 const char *zDb; /* database name - used by the update hook */
3832 const char *zTbl; /* Table name - used by the opdate hook */
3833 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
drh856c1032009-06-02 15:21:42 +00003834
drha6c2ed92009-11-14 23:22:23 +00003835 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00003836 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3837 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00003838 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003839 assert( pC->pCursor!=0 );
3840 assert( pC->pseudoTableReg==0 );
drha05a7222008-01-19 03:35:58 +00003841 assert( pC->isTable );
drh5b6afba2008-01-05 16:29:28 +00003842 REGISTER_TRACE(pOp->p2, pData);
danielk19775f8d8a82004-05-11 00:28:42 +00003843
drhe05c9292009-10-29 13:48:10 +00003844 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00003845 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00003846 assert( pKey->flags & MEM_Int );
3847 REGISTER_TRACE(pOp->p3, pKey);
3848 iKey = pKey->u.i;
3849 }else{
3850 assert( pOp->opcode==OP_InsertInt );
3851 iKey = pOp->p3;
3852 }
3853
drha05a7222008-01-19 03:35:58 +00003854 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drhe05c9292009-10-29 13:48:10 +00003855 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = iKey;
drha05a7222008-01-19 03:35:58 +00003856 if( pData->flags & MEM_Null ){
3857 pData->z = 0;
3858 pData->n = 0;
3859 }else{
3860 assert( pData->flags & (MEM_Blob|MEM_Str) );
3861 }
drh3e9ca092009-09-08 01:14:48 +00003862 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
3863 if( pData->flags & MEM_Zero ){
3864 nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00003865 }else{
drh3e9ca092009-09-08 01:14:48 +00003866 nZero = 0;
drha05a7222008-01-19 03:35:58 +00003867 }
drh3e9ca092009-09-08 01:14:48 +00003868 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
3869 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
3870 pData->z, pData->n, nZero,
3871 pOp->p5 & OPFLAG_APPEND, seekResult
3872 );
drha05a7222008-01-19 03:35:58 +00003873 pC->rowidIsValid = 0;
3874 pC->deferredMoveto = 0;
3875 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00003876
drha05a7222008-01-19 03:35:58 +00003877 /* Invoke the update-hook if required. */
3878 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
drh856c1032009-06-02 15:21:42 +00003879 zDb = db->aDb[pC->iDb].zName;
3880 zTbl = pOp->p4.z;
3881 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
drha05a7222008-01-19 03:35:58 +00003882 assert( pC->isTable );
3883 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
3884 assert( pC->iDb>=0 );
3885 }
drh5e00f6c2001-09-13 13:46:56 +00003886 break;
3887}
3888
drh98757152008-01-09 23:04:12 +00003889/* Opcode: Delete P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00003890**
drh5edc3122001-09-13 21:53:09 +00003891** Delete the record at which the P1 cursor is currently pointing.
3892**
3893** The cursor will be left pointing at either the next or the previous
3894** record in the table. If it is left pointing at the next record, then
drhb19a2bc2001-09-16 00:13:26 +00003895** the next Next instruction will be a no-op. Hence it is OK to delete
3896** a record from within an Next loop.
drhc8d30ac2002-04-12 10:08:59 +00003897**
rdcb0c374f2004-02-20 22:53:38 +00003898** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
danielk1977b28af712004-06-21 06:50:26 +00003899** incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00003900**
drh91fd4d42008-01-19 20:11:25 +00003901** P1 must not be pseudo-table. It has to be a real table with
3902** multiple rows.
3903**
3904** If P4 is not NULL, then it is the name of the table that P1 is
3905** pointing to. The update hook will be invoked, if it exists.
3906** If P4 is not NULL then the P1 cursor must have been positioned
3907** using OP_NotFound prior to invoking this opcode.
drh5e00f6c2001-09-13 13:46:56 +00003908*/
drh9cbf3422008-01-17 16:22:13 +00003909case OP_Delete: {
drh856c1032009-06-02 15:21:42 +00003910 i64 iKey;
drhdfe88ec2008-11-03 20:55:06 +00003911 VdbeCursor *pC;
drh91fd4d42008-01-19 20:11:25 +00003912
drh856c1032009-06-02 15:21:42 +00003913 iKey = 0;
drh653b82a2009-06-22 11:10:47 +00003914 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3915 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003916 assert( pC!=0 );
drh91fd4d42008-01-19 20:11:25 +00003917 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
danielk197794eb6a12005-12-15 15:22:08 +00003918
drh91fd4d42008-01-19 20:11:25 +00003919 /* If the update-hook will be invoked, set iKey to the rowid of the
3920 ** row being deleted.
3921 */
3922 if( db->xUpdateCallback && pOp->p4.z ){
3923 assert( pC->isTable );
3924 assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
3925 iKey = pC->lastRowid;
3926 }
danielk197794eb6a12005-12-15 15:22:08 +00003927
drh9a65f2c2009-06-22 19:05:40 +00003928 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
3929 ** OP_Column on the same table without any intervening operations that
3930 ** might move or invalidate the cursor. Hence cursor pC is always pointing
3931 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
3932 ** below is always a no-op and cannot fail. We will run it anyhow, though,
3933 ** to guard against future changes to the code generator.
3934 **/
3935 assert( pC->deferredMoveto==0 );
drh91fd4d42008-01-19 20:11:25 +00003936 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00003937 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
3938
drh7f751222009-03-17 22:33:00 +00003939 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
drh91fd4d42008-01-19 20:11:25 +00003940 rc = sqlite3BtreeDelete(pC->pCursor);
drh91fd4d42008-01-19 20:11:25 +00003941 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00003942
drh91fd4d42008-01-19 20:11:25 +00003943 /* Invoke the update-hook if required. */
3944 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
3945 const char *zDb = db->aDb[pC->iDb].zName;
3946 const char *zTbl = pOp->p4.z;
3947 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
3948 assert( pC->iDb>=0 );
drh5e00f6c2001-09-13 13:46:56 +00003949 }
danielk1977b28af712004-06-21 06:50:26 +00003950 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
rdcb0c374f2004-02-20 22:53:38 +00003951 break;
3952}
drhb7f1d9a2009-09-08 02:27:58 +00003953/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00003954**
drhb7f1d9a2009-09-08 02:27:58 +00003955** The value of the change counter is copied to the database handle
3956** change counter (returned by subsequent calls to sqlite3_changes()).
3957** Then the VMs internal change counter resets to 0.
3958** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00003959*/
drh9cbf3422008-01-17 16:22:13 +00003960case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00003961 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00003962 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00003963 break;
3964}
3965
drh98757152008-01-09 23:04:12 +00003966/* Opcode: RowData P1 P2 * * *
drh70ce3f02003-04-15 19:22:22 +00003967**
drh98757152008-01-09 23:04:12 +00003968** Write into register P2 the complete row data for cursor P1.
3969** There is no interpretation of the data.
3970** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00003971** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00003972**
drhde4fcfd2008-01-19 23:50:26 +00003973** If the P1 cursor must be pointing to a valid row (not a NULL row)
3974** of a real table, not a pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003975*/
drh98757152008-01-09 23:04:12 +00003976/* Opcode: RowKey P1 P2 * * *
drh143f3c42004-01-07 20:37:52 +00003977**
drh98757152008-01-09 23:04:12 +00003978** Write into register P2 the complete row key for cursor P1.
3979** There is no interpretation of the data.
drh9cbf3422008-01-17 16:22:13 +00003980** The key is copied onto the P3 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00003981** it is found in the database file.
drh143f3c42004-01-07 20:37:52 +00003982**
drhde4fcfd2008-01-19 23:50:26 +00003983** If the P1 cursor must be pointing to a valid row (not a NULL row)
3984** of a real table, not a pseudo-table.
drh143f3c42004-01-07 20:37:52 +00003985*/
danielk1977a7a8e142008-02-13 18:25:27 +00003986case OP_RowKey:
3987case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00003988 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00003989 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00003990 u32 n;
drh856c1032009-06-02 15:21:42 +00003991 i64 n64;
drh70ce3f02003-04-15 19:22:22 +00003992
drha6c2ed92009-11-14 23:22:23 +00003993 pOut = &aMem[pOp->p2];
danielk1977a7a8e142008-02-13 18:25:27 +00003994
drhf0863fe2005-06-12 21:35:51 +00003995 /* Note that RowKey and RowData are really exactly the same instruction */
drh653b82a2009-06-22 11:10:47 +00003996 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3997 pC = p->apCsr[pOp->p1];
drhf0863fe2005-06-12 21:35:51 +00003998 assert( pC->isTable || pOp->opcode==OP_RowKey );
3999 assert( pC->isIndex || pOp->opcode==OP_RowData );
drh4774b132004-06-12 20:12:51 +00004000 assert( pC!=0 );
drhde4fcfd2008-01-19 23:50:26 +00004001 assert( pC->nullRow==0 );
drh3e9ca092009-09-08 01:14:48 +00004002 assert( pC->pseudoTableReg==0 );
drhde4fcfd2008-01-19 23:50:26 +00004003 assert( pC->pCursor!=0 );
4004 pCrsr = pC->pCursor;
drhea8ffdf2009-07-22 00:35:23 +00004005 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drh9a65f2c2009-06-22 19:05:40 +00004006
4007 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4008 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4009 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always
4010 ** a no-op and can never fail. But we leave it in place as a safety.
4011 */
4012 assert( pC->deferredMoveto==0 );
drhde4fcfd2008-01-19 23:50:26 +00004013 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004014 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4015
drhde4fcfd2008-01-19 23:50:26 +00004016 if( pC->isIndex ){
drhde4fcfd2008-01-19 23:50:26 +00004017 assert( !pC->isTable );
drhc27ae612009-07-14 18:35:44 +00004018 rc = sqlite3BtreeKeySize(pCrsr, &n64);
4019 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhbb4957f2008-03-20 14:03:29 +00004020 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhde4fcfd2008-01-19 23:50:26 +00004021 goto too_big;
drh70ce3f02003-04-15 19:22:22 +00004022 }
drhbfb19dc2009-06-05 16:46:53 +00004023 n = (u32)n64;
drhde4fcfd2008-01-19 23:50:26 +00004024 }else{
drhc27ae612009-07-14 18:35:44 +00004025 rc = sqlite3BtreeDataSize(pCrsr, &n);
drhea8ffdf2009-07-22 00:35:23 +00004026 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
shane75ac1de2009-06-09 18:58:52 +00004027 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00004028 goto too_big;
4029 }
drhde4fcfd2008-01-19 23:50:26 +00004030 }
danielk1977a7a8e142008-02-13 18:25:27 +00004031 if( sqlite3VdbeMemGrow(pOut, n, 0) ){
4032 goto no_mem;
drhde4fcfd2008-01-19 23:50:26 +00004033 }
danielk1977a7a8e142008-02-13 18:25:27 +00004034 pOut->n = n;
4035 MemSetTypeFlag(pOut, MEM_Blob);
drhde4fcfd2008-01-19 23:50:26 +00004036 if( pC->isIndex ){
4037 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4038 }else{
4039 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
drh5e00f6c2001-09-13 13:46:56 +00004040 }
danielk197796cb76f2008-01-04 13:24:28 +00004041 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
drhb7654112008-01-12 12:48:07 +00004042 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00004043 break;
4044}
4045
drh2133d822008-01-03 18:44:59 +00004046/* Opcode: Rowid P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004047**
drh2133d822008-01-03 18:44:59 +00004048** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004049** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004050**
4051** P1 can be either an ordinary table or a virtual table. There used to
4052** be a separate OP_VRowid opcode for use with virtual tables, but this
4053** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004054*/
drh4c583122008-01-04 22:01:03 +00004055case OP_Rowid: { /* out2-prerelease */
drhdfe88ec2008-11-03 20:55:06 +00004056 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004057 i64 v;
drh856c1032009-06-02 15:21:42 +00004058 sqlite3_vtab *pVtab;
4059 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004060
drh653b82a2009-06-22 11:10:47 +00004061 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4062 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004063 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00004064 assert( pC->pseudoTableReg==0 );
drh044925b2009-04-22 17:15:02 +00004065 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004066 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004067 break;
4068 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004069 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004070#ifndef SQLITE_OMIT_VIRTUALTABLE
4071 }else if( pC->pVtabCursor ){
drh044925b2009-04-22 17:15:02 +00004072 pVtab = pC->pVtabCursor->pVtab;
4073 pModule = pVtab->pModule;
4074 assert( pModule->xRowid );
drh044925b2009-04-22 17:15:02 +00004075 rc = pModule->xRowid(pC->pVtabCursor, &v);
4076 sqlite3DbFree(db, p->zErrMsg);
4077 p->zErrMsg = pVtab->zErrMsg;
4078 pVtab->zErrMsg = 0;
drh044925b2009-04-22 17:15:02 +00004079#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004080 }else{
drh6be240e2009-07-14 02:33:02 +00004081 assert( pC->pCursor!=0 );
drh61495262009-04-22 15:32:59 +00004082 rc = sqlite3VdbeCursorMoveto(pC);
4083 if( rc ) goto abort_due_to_error;
4084 if( pC->rowidIsValid ){
4085 v = pC->lastRowid;
drh61495262009-04-22 15:32:59 +00004086 }else{
drhc27ae612009-07-14 18:35:44 +00004087 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4088 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */
drh61495262009-04-22 15:32:59 +00004089 }
drh5e00f6c2001-09-13 13:46:56 +00004090 }
drh4c583122008-01-04 22:01:03 +00004091 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004092 break;
4093}
4094
drh9cbf3422008-01-17 16:22:13 +00004095/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004096**
4097** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004098** that occur while the cursor is on the null row will always
4099** write a NULL.
drh17f71932002-02-21 12:01:27 +00004100*/
drh9cbf3422008-01-17 16:22:13 +00004101case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004102 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004103
drh653b82a2009-06-22 11:10:47 +00004104 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4105 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004106 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004107 pC->nullRow = 1;
drhf0863fe2005-06-12 21:35:51 +00004108 pC->rowidIsValid = 0;
danielk1977be51a652008-10-08 17:58:48 +00004109 if( pC->pCursor ){
4110 sqlite3BtreeClearCursor(pC->pCursor);
4111 }
drh17f71932002-02-21 12:01:27 +00004112 break;
4113}
4114
drh9cbf3422008-01-17 16:22:13 +00004115/* Opcode: Last P1 P2 * * *
drh9562b552002-02-19 15:00:07 +00004116**
drhf0863fe2005-06-12 21:35:51 +00004117** The next use of the Rowid or Column or Next instruction for P1
drh9562b552002-02-19 15:00:07 +00004118** will refer to the last entry in the database table or index.
4119** If the table or index is empty and P2>0, then jump immediately to P2.
4120** If P2 is 0 or if the table or index is not empty, fall through
4121** to the following instruction.
4122*/
drh9cbf3422008-01-17 16:22:13 +00004123case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004124 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004125 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004126 int res;
drh9562b552002-02-19 15:00:07 +00004127
drh653b82a2009-06-22 11:10:47 +00004128 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4129 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004130 assert( pC!=0 );
drha05a7222008-01-19 03:35:58 +00004131 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004132 if( pCrsr==0 ){
4133 res = 1;
4134 }else{
4135 rc = sqlite3BtreeLast(pCrsr, &res);
4136 }
drh9c1905f2008-12-10 22:32:56 +00004137 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004138 pC->deferredMoveto = 0;
drha7e77062009-01-14 00:55:09 +00004139 pC->rowidIsValid = 0;
drha05a7222008-01-19 03:35:58 +00004140 pC->cacheStatus = CACHE_STALE;
drh9a65f2c2009-06-22 19:05:40 +00004141 if( pOp->p2>0 && res ){
drha05a7222008-01-19 03:35:58 +00004142 pc = pOp->p2 - 1;
drh9562b552002-02-19 15:00:07 +00004143 }
4144 break;
4145}
4146
drh0342b1f2005-09-01 03:07:44 +00004147
drh9cbf3422008-01-17 16:22:13 +00004148/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004149**
4150** This opcode does exactly the same thing as OP_Rewind except that
4151** it increments an undocumented global variable used for testing.
4152**
4153** Sorting is accomplished by writing records into a sorting index,
4154** then rewinding that index and playing it back from beginning to
4155** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4156** rewinding so that the global variable will be incremented and
4157** regression tests can determine whether or not the optimizer is
4158** correctly optimizing out sorts.
4159*/
drh9cbf3422008-01-17 16:22:13 +00004160case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00004161#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00004162 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00004163 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00004164#endif
drhd1d38482008-10-07 23:46:38 +00004165 p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
drh0342b1f2005-09-01 03:07:44 +00004166 /* Fall through into OP_Rewind */
4167}
drh9cbf3422008-01-17 16:22:13 +00004168/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004169**
drhf0863fe2005-06-12 21:35:51 +00004170** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00004171** will refer to the first entry in the database table or index.
4172** If the table or index is empty and P2>0, then jump immediately to P2.
4173** If P2 is 0 or if the table or index is not empty, fall through
4174** to the following instruction.
drh5e00f6c2001-09-13 13:46:56 +00004175*/
drh9cbf3422008-01-17 16:22:13 +00004176case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004177 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004178 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00004179 int res;
drh5e00f6c2001-09-13 13:46:56 +00004180
drh653b82a2009-06-22 11:10:47 +00004181 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4182 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004183 assert( pC!=0 );
drh70ce3f02003-04-15 19:22:22 +00004184 if( (pCrsr = pC->pCursor)!=0 ){
danielk19774adee202004-05-08 08:23:19 +00004185 rc = sqlite3BtreeFirst(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004186 pC->atFirst = res==0 ?1:0;
drha11846b2004-01-07 18:52:56 +00004187 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004188 pC->cacheStatus = CACHE_STALE;
drha7e77062009-01-14 00:55:09 +00004189 pC->rowidIsValid = 0;
drh70ce3f02003-04-15 19:22:22 +00004190 }else{
drhf4dada72004-05-11 09:57:35 +00004191 res = 1;
4192 }
drh9c1905f2008-12-10 22:32:56 +00004193 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004194 assert( pOp->p2>0 && pOp->p2<p->nOp );
4195 if( res ){
drhf4dada72004-05-11 09:57:35 +00004196 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00004197 }
4198 break;
4199}
4200
drhafc266a2010-03-31 17:47:44 +00004201/* Opcode: Next P1 P2 * * P5
drh5e00f6c2001-09-13 13:46:56 +00004202**
4203** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00004204** table or index. If there are no more key/value pairs then fall through
4205** to the following instruction. But if the cursor advance was successful,
4206** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00004207**
drh60a713c2008-01-21 16:22:45 +00004208** The P1 cursor must be for a real table, not a pseudo-table.
4209**
drhafc266a2010-03-31 17:47:44 +00004210** If P5 is positive and the jump is taken, then event counter
4211** number P5-1 in the prepared statement is incremented.
4212**
drhc045ec52002-12-04 20:01:06 +00004213** See also: Prev
drh8721ce42001-11-07 14:22:00 +00004214*/
drhafc266a2010-03-31 17:47:44 +00004215/* Opcode: Prev P1 P2 * * P5
drhc045ec52002-12-04 20:01:06 +00004216**
4217** Back up cursor P1 so that it points to the previous key/data pair in its
4218** table or index. If there is no previous key/value pairs then fall through
4219** to the following instruction. But if the cursor backup was successful,
4220** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00004221**
4222** The P1 cursor must be for a real table, not a pseudo-table.
drhafc266a2010-03-31 17:47:44 +00004223**
4224** If P5 is positive and the jump is taken, then event counter
4225** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00004226*/
drh9cbf3422008-01-17 16:22:13 +00004227case OP_Prev: /* jump */
4228case OP_Next: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004229 VdbeCursor *pC;
drh8721ce42001-11-07 14:22:00 +00004230 BtCursor *pCrsr;
drha3460582008-07-11 21:02:53 +00004231 int res;
drh8721ce42001-11-07 14:22:00 +00004232
drhcaec2f12003-01-07 02:47:47 +00004233 CHECK_FOR_INTERRUPT;
drh70ce3f02003-04-15 19:22:22 +00004234 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drhafc266a2010-03-31 17:47:44 +00004235 assert( pOp->p5<=ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00004236 pC = p->apCsr[pOp->p1];
drh72e8fa42007-03-28 14:30:06 +00004237 if( pC==0 ){
4238 break; /* See ticket #2273 */
4239 }
drh60a713c2008-01-21 16:22:45 +00004240 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004241 if( pCrsr==0 ){
4242 pC->nullRow = 1;
4243 break;
4244 }
drha3460582008-07-11 21:02:53 +00004245 res = 1;
4246 assert( pC->deferredMoveto==0 );
4247 rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
4248 sqlite3BtreePrevious(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004249 pC->nullRow = (u8)res;
drha3460582008-07-11 21:02:53 +00004250 pC->cacheStatus = CACHE_STALE;
4251 if( res==0 ){
4252 pc = pOp->p2 - 1;
drhd1d38482008-10-07 23:46:38 +00004253 if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
drh0f7eb612006-08-08 13:51:43 +00004254#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00004255 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00004256#endif
drh8721ce42001-11-07 14:22:00 +00004257 }
drhf0863fe2005-06-12 21:35:51 +00004258 pC->rowidIsValid = 0;
drh8721ce42001-11-07 14:22:00 +00004259 break;
4260}
4261
danielk1977de630352009-05-04 11:42:29 +00004262/* Opcode: IdxInsert P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00004263**
drhaa9b8962008-01-08 02:57:55 +00004264** Register P2 holds a SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00004265** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00004266** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00004267**
drhaa9b8962008-01-08 02:57:55 +00004268** P3 is a flag that provides a hint to the b-tree layer that this
drhe4d90812007-03-29 05:51:49 +00004269** insert is likely to be an append.
4270**
drhf0863fe2005-06-12 21:35:51 +00004271** This instruction only works for indices. The equivalent instruction
4272** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00004273*/
drh9cbf3422008-01-17 16:22:13 +00004274case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00004275 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004276 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004277 int nKey;
4278 const char *zKey;
4279
drh653b82a2009-06-22 11:10:47 +00004280 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4281 pC = p->apCsr[pOp->p1];
4282 assert( pC!=0 );
drh3c657212009-11-17 23:59:58 +00004283 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00004284 assert( pIn2->flags & MEM_Blob );
drh653b82a2009-06-22 11:10:47 +00004285 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004286 if( ALWAYS(pCrsr!=0) ){
drhf0863fe2005-06-12 21:35:51 +00004287 assert( pC->isTable==0 );
drhaa9b8962008-01-08 02:57:55 +00004288 rc = ExpandBlob(pIn2);
danielk1977d908f5a2007-05-11 07:08:28 +00004289 if( rc==SQLITE_OK ){
drh856c1032009-06-02 15:21:42 +00004290 nKey = pIn2->n;
4291 zKey = pIn2->z;
danielk1977de630352009-05-04 11:42:29 +00004292 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4293 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4294 );
danielk1977d908f5a2007-05-11 07:08:28 +00004295 assert( pC->deferredMoveto==0 );
4296 pC->cacheStatus = CACHE_STALE;
4297 }
drh5e00f6c2001-09-13 13:46:56 +00004298 }
drh5e00f6c2001-09-13 13:46:56 +00004299 break;
4300}
4301
drhd1d38482008-10-07 23:46:38 +00004302/* Opcode: IdxDelete P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004303**
drhe14006d2008-03-25 17:23:32 +00004304** The content of P3 registers starting at register P2 form
4305** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00004306** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00004307*/
drhe14006d2008-03-25 17:23:32 +00004308case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00004309 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004310 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00004311 int res;
4312 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00004313
drhe14006d2008-03-25 17:23:32 +00004314 assert( pOp->p3>0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00004315 assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
drh653b82a2009-06-22 11:10:47 +00004316 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4317 pC = p->apCsr[pOp->p1];
4318 assert( pC!=0 );
4319 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004320 if( ALWAYS(pCrsr!=0) ){
drhe14006d2008-03-25 17:23:32 +00004321 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00004322 r.nField = (u16)pOp->p3;
drhe63d9992008-08-13 19:11:48 +00004323 r.flags = 0;
drha6c2ed92009-11-14 23:22:23 +00004324 r.aMem = &aMem[pOp->p2];
drhe63d9992008-08-13 19:11:48 +00004325 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
danielk197775bab7d2006-01-23 13:09:45 +00004326 if( rc==SQLITE_OK && res==0 ){
danielk19774adee202004-05-08 08:23:19 +00004327 rc = sqlite3BtreeDelete(pCrsr);
drh5e00f6c2001-09-13 13:46:56 +00004328 }
drh9188b382004-05-14 21:12:22 +00004329 assert( pC->deferredMoveto==0 );
drh76873ab2006-01-07 18:48:26 +00004330 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004331 }
drh5e00f6c2001-09-13 13:46:56 +00004332 break;
4333}
4334
drh2133d822008-01-03 18:44:59 +00004335/* Opcode: IdxRowid P1 P2 * * *
drh8721ce42001-11-07 14:22:00 +00004336**
drh2133d822008-01-03 18:44:59 +00004337** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00004338** the end of the index key pointed to by cursor P1. This integer should be
4339** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00004340**
drh9437bd22009-02-01 00:29:56 +00004341** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00004342*/
drh4c583122008-01-04 22:01:03 +00004343case OP_IdxRowid: { /* out2-prerelease */
drh8721ce42001-11-07 14:22:00 +00004344 BtCursor *pCrsr;
drhdfe88ec2008-11-03 20:55:06 +00004345 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004346 i64 rowid;
drh8721ce42001-11-07 14:22:00 +00004347
drh653b82a2009-06-22 11:10:47 +00004348 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4349 pC = p->apCsr[pOp->p1];
4350 assert( pC!=0 );
4351 pCrsr = pC->pCursor;
drh3c657212009-11-17 23:59:58 +00004352 pOut->flags = MEM_Null;
drh9a65f2c2009-06-22 19:05:40 +00004353 if( ALWAYS(pCrsr!=0) ){
danielk1977c4d201c2009-04-07 09:16:56 +00004354 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004355 if( NEVER(rc) ) goto abort_due_to_error;
drhd7556d22004-05-14 21:59:40 +00004356 assert( pC->deferredMoveto==0 );
drhf0863fe2005-06-12 21:35:51 +00004357 assert( pC->isTable==0 );
drh4c583122008-01-04 22:01:03 +00004358 if( !pC->nullRow ){
drh35f6b932009-06-23 14:15:04 +00004359 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
danielk19771d850a72004-05-31 08:26:49 +00004360 if( rc!=SQLITE_OK ){
4361 goto abort_due_to_error;
4362 }
drh4c583122008-01-04 22:01:03 +00004363 pOut->u.i = rowid;
drh3c657212009-11-17 23:59:58 +00004364 pOut->flags = MEM_Int;
danielk19773d1bfea2004-05-14 11:00:53 +00004365 }
drh8721ce42001-11-07 14:22:00 +00004366 }
4367 break;
4368}
4369
danielk197761dd5832008-04-18 11:31:12 +00004370/* Opcode: IdxGE P1 P2 P3 P4 P5
drh8721ce42001-11-07 14:22:00 +00004371**
danielk197761dd5832008-04-18 11:31:12 +00004372** The P4 register values beginning with P3 form an unpacked index
4373** key that omits the ROWID. Compare this key value against the index
4374** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004375**
danielk197761dd5832008-04-18 11:31:12 +00004376** If the P1 index entry is greater than or equal to the key value
4377** then jump to P2. Otherwise fall through to the next instruction.
drh772ae622004-05-19 13:13:08 +00004378**
danielk197761dd5832008-04-18 11:31:12 +00004379** If P5 is non-zero then the key value is increased by an epsilon
4380** prior to the comparison. This make the opcode work like IdxGT except
4381** that if the key from register P3 is a prefix of the key in the cursor,
4382** the result is false whereas it would be true with IdxGT.
drh8721ce42001-11-07 14:22:00 +00004383*/
drh98757152008-01-09 23:04:12 +00004384/* Opcode: IdxLT P1 P2 P3 * P5
drhc045ec52002-12-04 20:01:06 +00004385**
danielk197761dd5832008-04-18 11:31:12 +00004386** The P4 register values beginning with P3 form an unpacked index
4387** key that omits the ROWID. Compare this key value against the index
4388** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004389**
danielk197761dd5832008-04-18 11:31:12 +00004390** If the P1 index entry is less than the key value then jump to P2.
4391** Otherwise fall through to the next instruction.
drh772ae622004-05-19 13:13:08 +00004392**
danielk197761dd5832008-04-18 11:31:12 +00004393** If P5 is non-zero then the key value is increased by an epsilon prior
4394** to the comparison. This makes the opcode work like IdxLE.
drhc045ec52002-12-04 20:01:06 +00004395*/
drh93952eb2009-11-13 19:43:43 +00004396case OP_IdxLT: /* jump */
4397case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004398 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004399 int res;
4400 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00004401
drh653b82a2009-06-22 11:10:47 +00004402 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4403 pC = p->apCsr[pOp->p1];
4404 assert( pC!=0 );
drh9a65f2c2009-06-22 19:05:40 +00004405 if( ALWAYS(pC->pCursor!=0) ){
drhd7556d22004-05-14 21:59:40 +00004406 assert( pC->deferredMoveto==0 );
drha05a7222008-01-19 03:35:58 +00004407 assert( pOp->p5==0 || pOp->p5==1 );
danielk197761dd5832008-04-18 11:31:12 +00004408 assert( pOp->p4type==P4_INT32 );
4409 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00004410 r.nField = (u16)pOp->p4.i;
drhe63d9992008-08-13 19:11:48 +00004411 if( pOp->p5 ){
4412 r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID;
4413 }else{
4414 r.flags = UNPACKED_IGNORE_ROWID;
4415 }
drha6c2ed92009-11-14 23:22:23 +00004416 r.aMem = &aMem[pOp->p3];
drhe63d9992008-08-13 19:11:48 +00004417 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
drhc045ec52002-12-04 20:01:06 +00004418 if( pOp->opcode==OP_IdxLT ){
4419 res = -res;
drha05a7222008-01-19 03:35:58 +00004420 }else{
4421 assert( pOp->opcode==OP_IdxGE );
drh8721ce42001-11-07 14:22:00 +00004422 res++;
4423 }
4424 if( res>0 ){
4425 pc = pOp->p2 - 1 ;
4426 }
4427 }
4428 break;
4429}
4430
drh98757152008-01-09 23:04:12 +00004431/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004432**
4433** Delete an entire database table or index whose root page in the database
4434** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00004435**
drh98757152008-01-09 23:04:12 +00004436** The table being destroyed is in the main database file if P3==0. If
4437** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00004438** that is used to store tables create using CREATE TEMPORARY TABLE.
4439**
drh205f48e2004-11-05 00:43:11 +00004440** If AUTOVACUUM is enabled then it is possible that another root page
4441** might be moved into the newly deleted root page in order to keep all
4442** root pages contiguous at the beginning of the database. The former
4443** value of the root page that moved - its value before the move occurred -
drh9cbf3422008-01-17 16:22:13 +00004444** is stored in register P2. If no page
drh98757152008-01-09 23:04:12 +00004445** movement was required (because the table being dropped was already
4446** the last one in the database) then a zero is stored in register P2.
4447** If AUTOVACUUM is disabled then a zero is stored in register P2.
drh205f48e2004-11-05 00:43:11 +00004448**
drhb19a2bc2001-09-16 00:13:26 +00004449** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00004450*/
drh98757152008-01-09 23:04:12 +00004451case OP_Destroy: { /* out2-prerelease */
danielk1977a0bf2652004-11-04 14:30:04 +00004452 int iMoved;
drh3765df42006-06-28 18:18:09 +00004453 int iCnt;
drh5a91a532007-01-05 16:39:43 +00004454 Vdbe *pVdbe;
drh856c1032009-06-02 15:21:42 +00004455 int iDb;
4456#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk1977212b2182006-06-23 14:32:08 +00004457 iCnt = 0;
drh856c1032009-06-02 15:21:42 +00004458 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
danielk1977212b2182006-06-23 14:32:08 +00004459 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
4460 iCnt++;
4461 }
4462 }
drh3765df42006-06-28 18:18:09 +00004463#else
4464 iCnt = db->activeVdbeCnt;
danielk1977212b2182006-06-23 14:32:08 +00004465#endif
drh3c657212009-11-17 23:59:58 +00004466 pOut->flags = MEM_Null;
danielk1977212b2182006-06-23 14:32:08 +00004467 if( iCnt>1 ){
danielk1977e6efa742004-11-10 11:55:10 +00004468 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00004469 p->errorAction = OE_Abort;
danielk1977e6efa742004-11-10 11:55:10 +00004470 }else{
drh856c1032009-06-02 15:21:42 +00004471 iDb = pOp->p3;
danielk1977212b2182006-06-23 14:32:08 +00004472 assert( iCnt==1 );
drh98757152008-01-09 23:04:12 +00004473 assert( (p->btreeMask & (1<<iDb))!=0 );
4474 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00004475 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00004476 pOut->u.i = iMoved;
drh3765df42006-06-28 18:18:09 +00004477#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977e6efa742004-11-10 11:55:10 +00004478 if( rc==SQLITE_OK && iMoved!=0 ){
drh98757152008-01-09 23:04:12 +00004479 sqlite3RootPageMoved(&db->aDb[iDb], iMoved, pOp->p1);
drh32783152009-11-20 15:02:34 +00004480 resetSchemaOnFault = 1;
danielk1977e6efa742004-11-10 11:55:10 +00004481 }
drh3765df42006-06-28 18:18:09 +00004482#endif
danielk1977a0bf2652004-11-04 14:30:04 +00004483 }
drh5e00f6c2001-09-13 13:46:56 +00004484 break;
4485}
4486
danielk1977c7af4842008-10-27 13:59:33 +00004487/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00004488**
4489** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00004490** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00004491** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00004492**
drhf57b3392001-10-08 13:22:32 +00004493** The table being clear is in the main database file if P2==0. If
4494** P2==1 then the table to be clear is in the auxiliary database file
4495** that is used to store tables create using CREATE TEMPORARY TABLE.
4496**
shanebe217792009-03-05 04:20:31 +00004497** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00004498** intkey table (an SQL table, not an index). In this case the row change
4499** count is incremented by the number of rows in the table being cleared.
4500** If P3 is greater than zero, then the value stored in register P3 is
4501** also incremented by the number of rows in the table being cleared.
4502**
drhb19a2bc2001-09-16 00:13:26 +00004503** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00004504*/
drh9cbf3422008-01-17 16:22:13 +00004505case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00004506 int nChange;
4507
4508 nChange = 0;
drhfb982642007-08-30 01:19:59 +00004509 assert( (p->btreeMask & (1<<pOp->p2))!=0 );
danielk1977c7af4842008-10-27 13:59:33 +00004510 rc = sqlite3BtreeClearTable(
4511 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
4512 );
4513 if( pOp->p3 ){
4514 p->nChange += nChange;
4515 if( pOp->p3>0 ){
drha6c2ed92009-11-14 23:22:23 +00004516 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00004517 }
4518 }
drh5edc3122001-09-13 21:53:09 +00004519 break;
4520}
4521
drh4c583122008-01-04 22:01:03 +00004522/* Opcode: CreateTable P1 P2 * * *
drh5b2fd562001-09-13 15:21:31 +00004523**
drh4c583122008-01-04 22:01:03 +00004524** Allocate a new table in the main database file if P1==0 or in the
4525** auxiliary database file if P1==1 or in an attached database if
4526** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00004527** register P2
drh5b2fd562001-09-13 15:21:31 +00004528**
drhc6b52df2002-01-04 03:09:29 +00004529** The difference between a table and an index is this: A table must
4530** have a 4-byte integer key and can have arbitrary data. An index
4531** has an arbitrary key but no data.
4532**
drhb19a2bc2001-09-16 00:13:26 +00004533** See also: CreateIndex
drh5b2fd562001-09-13 15:21:31 +00004534*/
drh4c583122008-01-04 22:01:03 +00004535/* Opcode: CreateIndex P1 P2 * * *
drhf57b3392001-10-08 13:22:32 +00004536**
drh4c583122008-01-04 22:01:03 +00004537** Allocate a new index in the main database file if P1==0 or in the
4538** auxiliary database file if P1==1 or in an attached database if
4539** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00004540** register P2.
drhf57b3392001-10-08 13:22:32 +00004541**
drhc6b52df2002-01-04 03:09:29 +00004542** See documentation on OP_CreateTable for additional information.
drhf57b3392001-10-08 13:22:32 +00004543*/
drh4c583122008-01-04 22:01:03 +00004544case OP_CreateIndex: /* out2-prerelease */
4545case OP_CreateTable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00004546 int pgno;
drhf328bc82004-05-10 23:29:49 +00004547 int flags;
drh234c39d2004-07-24 03:30:47 +00004548 Db *pDb;
drh856c1032009-06-02 15:21:42 +00004549
4550 pgno = 0;
drh234c39d2004-07-24 03:30:47 +00004551 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhfb982642007-08-30 01:19:59 +00004552 assert( (p->btreeMask & (1<<pOp->p1))!=0 );
drh234c39d2004-07-24 03:30:47 +00004553 pDb = &db->aDb[pOp->p1];
4554 assert( pDb->pBt!=0 );
drhc6b52df2002-01-04 03:09:29 +00004555 if( pOp->opcode==OP_CreateTable ){
danielk197794076252004-05-14 12:16:11 +00004556 /* flags = BTREE_INTKEY; */
4557 flags = BTREE_LEAFDATA|BTREE_INTKEY;
drhc6b52df2002-01-04 03:09:29 +00004558 }else{
drhf328bc82004-05-10 23:29:49 +00004559 flags = BTREE_ZERODATA;
drhc6b52df2002-01-04 03:09:29 +00004560 }
drh234c39d2004-07-24 03:30:47 +00004561 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
drh88a003e2008-12-11 16:17:03 +00004562 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00004563 break;
4564}
4565
drh98757152008-01-09 23:04:12 +00004566/* Opcode: ParseSchema P1 P2 * P4 *
drh234c39d2004-07-24 03:30:47 +00004567**
4568** Read and parse all entries from the SQLITE_MASTER table of database P1
drh66a51672008-01-03 00:01:23 +00004569** that match the WHERE clause P4. P2 is the "force" flag. Always do
drh3c23a882007-01-09 14:01:13 +00004570** the parsing if P2 is true. If P2 is false, then this routine is a
4571** no-op if the schema is not currently loaded. In other words, if P2
4572** is false, the SQLITE_MASTER table is only parsed if the rest of the
4573** schema is already loaded into the symbol table.
drh234c39d2004-07-24 03:30:47 +00004574**
4575** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00004576** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00004577*/
drh9cbf3422008-01-17 16:22:13 +00004578case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00004579 int iDb;
4580 const char *zMaster;
4581 char *zSql;
4582 InitData initData;
4583
4584 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00004585 assert( iDb>=0 && iDb<db->nDb );
danielk1977a8bbef82009-03-23 17:11:26 +00004586
4587 /* If pOp->p2 is 0, then this opcode is being executed to read a
4588 ** single row, for example the row corresponding to a new index
4589 ** created by this VDBE, from the sqlite_master table. It only
4590 ** does this if the corresponding in-memory schema is currently
4591 ** loaded. Otherwise, the new index definition can be loaded along
4592 ** with the rest of the schema when it is required.
4593 **
4594 ** Although the mutex on the BtShared object that corresponds to
4595 ** database iDb (the database containing the sqlite_master table
4596 ** read by this instruction) is currently held, it is necessary to
4597 ** obtain the mutexes on all attached databases before checking if
4598 ** the schema of iDb is loaded. This is because, at the start of
4599 ** the sqlite3_exec() call below, SQLite will invoke
4600 ** sqlite3BtreeEnterAll(). If all mutexes are not already held, the
4601 ** iDb mutex may be temporarily released to avoid deadlock. If
4602 ** this happens, then some other thread may delete the in-memory
4603 ** schema of database iDb before the SQL statement runs. The schema
4604 ** will not be reloaded becuase the db->init.busy flag is set. This
4605 ** can result in a "no such table: sqlite_master" or "malformed
4606 ** database schema" error being returned to the user.
4607 */
4608 assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
4609 sqlite3BtreeEnterAll(db);
drh46bbabd2009-06-24 13:16:03 +00004610 if( pOp->p2 || DbHasProperty(db, iDb, DB_SchemaLoaded) ){
drh856c1032009-06-02 15:21:42 +00004611 zMaster = SCHEMA_TABLE(iDb);
danielk1977a8bbef82009-03-23 17:11:26 +00004612 initData.db = db;
4613 initData.iDb = pOp->p1;
4614 initData.pzErrMsg = &p->zErrMsg;
4615 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00004616 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
danielk1977a8bbef82009-03-23 17:11:26 +00004617 db->aDb[iDb].zName, zMaster, pOp->p4.z);
4618 if( zSql==0 ){
4619 rc = SQLITE_NOMEM;
4620 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00004621 assert( db->init.busy==0 );
4622 db->init.busy = 1;
4623 initData.rc = SQLITE_OK;
4624 assert( !db->mallocFailed );
4625 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
4626 if( rc==SQLITE_OK ) rc = initData.rc;
4627 sqlite3DbFree(db, zSql);
4628 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00004629 }
drh3c23a882007-01-09 14:01:13 +00004630 }
danielk1977a8bbef82009-03-23 17:11:26 +00004631 sqlite3BtreeLeaveAll(db);
danielk1977261919c2005-12-06 12:52:59 +00004632 if( rc==SQLITE_NOMEM ){
danielk1977261919c2005-12-06 12:52:59 +00004633 goto no_mem;
4634 }
drh234c39d2004-07-24 03:30:47 +00004635 break;
4636}
4637
drh8bfdf722009-06-19 14:06:03 +00004638#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00004639/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00004640**
4641** Read the sqlite_stat1 table for database P1 and load the content
4642** of that table into the internal index hash table. This will cause
4643** the analysis to be used when preparing all subsequent queries.
4644*/
drh9cbf3422008-01-17 16:22:13 +00004645case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00004646 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4647 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh497e4462005-07-23 03:18:40 +00004648 break;
4649}
drh8bfdf722009-06-19 14:06:03 +00004650#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00004651
drh98757152008-01-09 23:04:12 +00004652/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004653**
4654** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004655** the table named P4 in database P1. This is called after a table
drh956bc922004-07-24 17:38:29 +00004656** is dropped in order to keep the internal representation of the
4657** schema consistent with what is on disk.
4658*/
drh9cbf3422008-01-17 16:22:13 +00004659case OP_DropTable: {
danielk19772dca4ac2008-01-03 11:50:29 +00004660 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004661 break;
4662}
4663
drh98757152008-01-09 23:04:12 +00004664/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004665**
4666** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004667** the index named P4 in database P1. This is called after an index
drh956bc922004-07-24 17:38:29 +00004668** is dropped in order to keep the internal representation of the
4669** schema consistent with what is on disk.
4670*/
drh9cbf3422008-01-17 16:22:13 +00004671case OP_DropIndex: {
danielk19772dca4ac2008-01-03 11:50:29 +00004672 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004673 break;
4674}
4675
drh98757152008-01-09 23:04:12 +00004676/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004677**
4678** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004679** the trigger named P4 in database P1. This is called after a trigger
drh956bc922004-07-24 17:38:29 +00004680** is dropped in order to keep the internal representation of the
4681** schema consistent with what is on disk.
4682*/
drh9cbf3422008-01-17 16:22:13 +00004683case OP_DropTrigger: {
danielk19772dca4ac2008-01-03 11:50:29 +00004684 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004685 break;
4686}
4687
drh234c39d2004-07-24 03:30:47 +00004688
drhb7f91642004-10-31 02:22:47 +00004689#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98757152008-01-09 23:04:12 +00004690/* Opcode: IntegrityCk P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00004691**
drh98757152008-01-09 23:04:12 +00004692** Do an analysis of the currently open database. Store in
4693** register P1 the text of an error message describing any problems.
4694** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00004695**
drh98757152008-01-09 23:04:12 +00004696** The register P3 contains the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00004697** At most reg(P3) errors will be reported.
4698** In other words, the analysis stops as soon as reg(P1) errors are
4699** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00004700**
drh79069752004-05-22 21:30:40 +00004701** The root page numbers of all tables in the database are integer
drh60a713c2008-01-21 16:22:45 +00004702** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
drh98757152008-01-09 23:04:12 +00004703** total.
drh21504322002-06-25 13:16:02 +00004704**
drh98757152008-01-09 23:04:12 +00004705** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00004706** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00004707**
drh1dcdbc02007-01-27 02:24:54 +00004708** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00004709*/
drhaaab5722002-02-19 13:39:21 +00004710case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00004711 int nRoot; /* Number of tables to check. (Number of root pages.) */
4712 int *aRoot; /* Array of rootpage numbers for tables to be checked */
4713 int j; /* Loop counter */
4714 int nErr; /* Number of errors reported */
4715 char *z; /* Text of the error report */
4716 Mem *pnErr; /* Register keeping track of errors remaining */
4717
4718 nRoot = pOp->p2;
drh79069752004-05-22 21:30:40 +00004719 assert( nRoot>0 );
drh633e6d52008-07-28 19:34:53 +00004720 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
drhcaec2f12003-01-07 02:47:47 +00004721 if( aRoot==0 ) goto no_mem;
drh98757152008-01-09 23:04:12 +00004722 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00004723 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00004724 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00004725 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00004726 pIn1 = &aMem[pOp->p1];
drh79069752004-05-22 21:30:40 +00004727 for(j=0; j<nRoot; j++){
drh9c1905f2008-12-10 22:32:56 +00004728 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
drh1dd397f2002-02-03 03:34:07 +00004729 }
4730 aRoot[j] = 0;
drh98757152008-01-09 23:04:12 +00004731 assert( pOp->p5<db->nDb );
4732 assert( (p->btreeMask & (1<<pOp->p5))!=0 );
4733 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
drh9c1905f2008-12-10 22:32:56 +00004734 (int)pnErr->u.i, &nErr);
drhc890fec2008-08-01 20:10:08 +00004735 sqlite3DbFree(db, aRoot);
drh3c024d62007-03-30 11:23:45 +00004736 pnErr->u.i -= nErr;
drha05a7222008-01-19 03:35:58 +00004737 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00004738 if( nErr==0 ){
4739 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00004740 }else if( z==0 ){
4741 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00004742 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00004743 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00004744 }
drhb7654112008-01-12 12:48:07 +00004745 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00004746 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00004747 break;
4748}
drhb7f91642004-10-31 02:22:47 +00004749#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00004750
drh3d4501e2008-12-04 20:40:10 +00004751/* Opcode: RowSetAdd P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004752**
drh3d4501e2008-12-04 20:40:10 +00004753** Insert the integer value held by register P2 into a boolean index
4754** held in register P1.
4755**
4756** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00004757*/
drh93952eb2009-11-13 19:43:43 +00004758case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00004759 pIn1 = &aMem[pOp->p1];
4760 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00004761 assert( (pIn2->flags & MEM_Int)!=0 );
4762 if( (pIn1->flags & MEM_RowSet)==0 ){
4763 sqlite3VdbeMemSetRowSet(pIn1);
4764 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00004765 }
drh93952eb2009-11-13 19:43:43 +00004766 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00004767 break;
4768}
4769
4770/* Opcode: RowSetRead P1 P2 P3 * *
4771**
4772** Extract the smallest value from boolean index P1 and put that value into
4773** register P3. Or, if boolean index P1 is initially empty, leave P3
4774** unchanged and jump to instruction P2.
4775*/
drh93952eb2009-11-13 19:43:43 +00004776case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00004777 i64 val;
drh3d4501e2008-12-04 20:40:10 +00004778 CHECK_FOR_INTERRUPT;
drh3c657212009-11-17 23:59:58 +00004779 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00004780 if( (pIn1->flags & MEM_RowSet)==0
4781 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00004782 ){
4783 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00004784 sqlite3VdbeMemSetNull(pIn1);
drh3d4501e2008-12-04 20:40:10 +00004785 pc = pOp->p2 - 1;
4786 }else{
4787 /* A value was pulled from the index */
drh3c657212009-11-17 23:59:58 +00004788 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh17435752007-08-16 04:30:38 +00004789 }
drh5e00f6c2001-09-13 13:46:56 +00004790 break;
4791}
4792
drh1b26c7c2009-04-22 02:15:47 +00004793/* Opcode: RowSetTest P1 P2 P3 P4
danielk19771d461462009-04-21 09:02:45 +00004794**
drhade97602009-04-21 15:05:18 +00004795** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00004796** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00004797** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00004798** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00004799** next opcode.
danielk19771d461462009-04-21 09:02:45 +00004800**
drh1b26c7c2009-04-22 02:15:47 +00004801** The RowSet object is optimized for the case where successive sets
danielk19771d461462009-04-21 09:02:45 +00004802** of integers, where each set contains no duplicates. Each set
4803** of values is identified by a unique P4 value. The first set
drh1b26c7c2009-04-22 02:15:47 +00004804** must have P4==0, the final set P4=-1. P4 must be either -1 or
4805** non-negative. For non-negative values of P4 only the lower 4
4806** bits are significant.
danielk19771d461462009-04-21 09:02:45 +00004807**
4808** This allows optimizations: (a) when P4==0 there is no need to test
drh1b26c7c2009-04-22 02:15:47 +00004809** the rowset object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00004810** (b) when P4==-1 there is no need to insert the value, as it will
4811** never be tested for, and (c) when a value that is part of set X is
4812** inserted, there is no need to search to see if the same value was
4813** previously inserted as part of set X (only if it was previously
4814** inserted as part of some other set).
4815*/
drh1b26c7c2009-04-22 02:15:47 +00004816case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00004817 int iSet;
4818 int exists;
4819
drh3c657212009-11-17 23:59:58 +00004820 pIn1 = &aMem[pOp->p1];
4821 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00004822 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00004823 assert( pIn3->flags&MEM_Int );
4824
drh1b26c7c2009-04-22 02:15:47 +00004825 /* If there is anything other than a rowset object in memory cell P1,
4826 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00004827 */
drh733bf1b2009-04-22 00:47:00 +00004828 if( (pIn1->flags & MEM_RowSet)==0 ){
4829 sqlite3VdbeMemSetRowSet(pIn1);
4830 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00004831 }
4832
4833 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00004834 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00004835 if( iSet ){
shane60a4b532009-05-06 18:57:09 +00004836 exists = sqlite3RowSetTest(pIn1->u.pRowSet,
4837 (u8)(iSet>=0 ? iSet & 0xf : 0xff),
drh733bf1b2009-04-22 00:47:00 +00004838 pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00004839 if( exists ){
4840 pc = pOp->p2 - 1;
4841 break;
4842 }
4843 }
4844 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00004845 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00004846 }
4847 break;
4848}
4849
drh5e00f6c2001-09-13 13:46:56 +00004850
danielk197793758c82005-01-21 08:13:14 +00004851#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00004852
4853/* Opcode: Program P1 P2 P3 P4 *
4854**
dan76d462e2009-08-30 11:42:51 +00004855** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00004856**
dan76d462e2009-08-30 11:42:51 +00004857** P1 contains the address of the memory cell that contains the first memory
4858** cell in an array of values used as arguments to the sub-program. P2
4859** contains the address to jump to if the sub-program throws an IGNORE
4860** exception using the RAISE() function. Register P3 contains the address
4861** of a memory cell in this (the parent) VM that is used to allocate the
4862** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00004863**
4864** P4 is a pointer to the VM containing the trigger program.
4865*/
dan76d462e2009-08-30 11:42:51 +00004866case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00004867 int nMem; /* Number of memory registers for sub-program */
4868 int nByte; /* Bytes of runtime space required for sub-program */
4869 Mem *pRt; /* Register to allocate runtime space */
4870 Mem *pMem; /* Used to iterate through memory cells */
4871 Mem *pEnd; /* Last memory cell in new array */
4872 VdbeFrame *pFrame; /* New vdbe frame to execute in */
4873 SubProgram *pProgram; /* Sub-program to execute */
4874 void *t; /* Token identifying trigger */
4875
4876 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00004877 pRt = &aMem[pOp->p3];
dan165921a2009-08-28 18:53:45 +00004878 assert( pProgram->nOp>0 );
4879
dan1da40a32009-09-19 17:00:31 +00004880 /* If the p5 flag is clear, then recursive invocation of triggers is
4881 ** disabled for backwards compatibility (p5 is set if this sub-program
4882 ** is really a trigger, not a foreign key action, and the flag set
4883 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00004884 **
4885 ** It is recursive invocation of triggers, at the SQL level, that is
4886 ** disabled. In some cases a single trigger may generate more than one
4887 ** SubProgram (if the trigger may be executed with more than one different
4888 ** ON CONFLICT algorithm). SubProgram structures associated with a
4889 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00004890 ** variable. */
4891 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00004892 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00004893 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
4894 if( pFrame ) break;
4895 }
4896
danf5894502009-10-07 18:41:19 +00004897 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00004898 rc = SQLITE_ERROR;
4899 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
4900 break;
4901 }
4902
4903 /* Register pRt is used to store the memory required to save the state
4904 ** of the current program, and the memory required at runtime to execute
4905 ** the trigger program. If this trigger has been fired before, then pRt
4906 ** is already allocated. Otherwise, it must be initialized. */
4907 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00004908 /* SubProgram.nMem is set to the number of memory cells used by the
4909 ** program stored in SubProgram.aOp. As well as these, one memory
4910 ** cell is required for each cursor used by the program. Set local
4911 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
4912 */
dan65a7cd12009-09-01 12:16:01 +00004913 nMem = pProgram->nMem + pProgram->nCsr;
4914 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00004915 + nMem * sizeof(Mem)
4916 + pProgram->nCsr * sizeof(VdbeCursor *);
4917 pFrame = sqlite3DbMallocZero(db, nByte);
4918 if( !pFrame ){
4919 goto no_mem;
4920 }
4921 sqlite3VdbeMemRelease(pRt);
4922 pRt->flags = MEM_Frame;
4923 pRt->u.pFrame = pFrame;
4924
4925 pFrame->v = p;
4926 pFrame->nChildMem = nMem;
4927 pFrame->nChildCsr = pProgram->nCsr;
4928 pFrame->pc = pc;
4929 pFrame->aMem = p->aMem;
4930 pFrame->nMem = p->nMem;
4931 pFrame->apCsr = p->apCsr;
4932 pFrame->nCursor = p->nCursor;
4933 pFrame->aOp = p->aOp;
4934 pFrame->nOp = p->nOp;
4935 pFrame->token = pProgram->token;
4936
4937 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
4938 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
4939 pMem->flags = MEM_Null;
4940 pMem->db = db;
4941 }
4942 }else{
4943 pFrame = pRt->u.pFrame;
4944 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
4945 assert( pProgram->nCsr==pFrame->nChildCsr );
4946 assert( pc==pFrame->pc );
4947 }
4948
4949 p->nFrame++;
4950 pFrame->pParent = p->pFrame;
dan76d462e2009-08-30 11:42:51 +00004951 pFrame->lastRowid = db->lastRowid;
4952 pFrame->nChange = p->nChange;
dan2832ad42009-08-31 15:27:27 +00004953 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00004954 p->pFrame = pFrame;
drha6c2ed92009-11-14 23:22:23 +00004955 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
dan165921a2009-08-28 18:53:45 +00004956 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00004957 p->nCursor = (u16)pFrame->nChildCsr;
drha6c2ed92009-11-14 23:22:23 +00004958 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
drhbbe879d2009-11-14 18:04:35 +00004959 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00004960 p->nOp = pProgram->nOp;
4961 pc = -1;
4962
4963 break;
4964}
4965
dan76d462e2009-08-30 11:42:51 +00004966/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00004967**
dan76d462e2009-08-30 11:42:51 +00004968** This opcode is only ever present in sub-programs called via the
4969** OP_Program instruction. Copy a value currently stored in a memory
4970** cell of the calling (parent) frame to cell P2 in the current frames
4971** address space. This is used by trigger programs to access the new.*
4972** and old.* values.
dan165921a2009-08-28 18:53:45 +00004973**
dan76d462e2009-08-30 11:42:51 +00004974** The address of the cell in the parent frame is determined by adding
4975** the value of the P1 argument to the value of the P1 argument to the
4976** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00004977*/
dan76d462e2009-08-30 11:42:51 +00004978case OP_Param: { /* out2-prerelease */
dan65a7cd12009-09-01 12:16:01 +00004979 VdbeFrame *pFrame;
4980 Mem *pIn;
4981 pFrame = p->pFrame;
4982 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00004983 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
4984 break;
4985}
4986
danielk197793758c82005-01-21 08:13:14 +00004987#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00004988
dan1da40a32009-09-19 17:00:31 +00004989#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00004990/* Opcode: FkCounter P1 P2 * * *
dan1da40a32009-09-19 17:00:31 +00004991**
dan0ff297e2009-09-25 17:03:14 +00004992** Increment a "constraint counter" by P2 (P2 may be negative or positive).
4993** If P1 is non-zero, the database constraint counter is incremented
4994** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00004995** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00004996*/
dan32b09f22009-09-23 17:29:59 +00004997case OP_FkCounter: {
dan0ff297e2009-09-25 17:03:14 +00004998 if( pOp->p1 ){
4999 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00005000 }else{
dan0ff297e2009-09-25 17:03:14 +00005001 p->nFkConstraint += pOp->p2;
5002 }
5003 break;
5004}
5005
5006/* Opcode: FkIfZero P1 P2 * * *
5007**
5008** This opcode tests if a foreign key constraint-counter is currently zero.
5009** If so, jump to instruction P2. Otherwise, fall through to the next
5010** instruction.
5011**
5012** If P1 is non-zero, then the jump is taken if the database constraint-counter
5013** is zero (the one that counts deferred constraint violations). If P1 is
5014** zero, the jump is taken if the statement constraint-counter is zero
5015** (immediate foreign key constraint violations).
5016*/
5017case OP_FkIfZero: { /* jump */
5018 if( pOp->p1 ){
5019 if( db->nDeferredCons==0 ) pc = pOp->p2-1;
5020 }else{
5021 if( p->nFkConstraint==0 ) pc = pOp->p2-1;
dan32b09f22009-09-23 17:29:59 +00005022 }
dan1da40a32009-09-19 17:00:31 +00005023 break;
5024}
5025#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5026
drh205f48e2004-11-05 00:43:11 +00005027#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00005028/* Opcode: MemMax P1 P2 * * *
drh205f48e2004-11-05 00:43:11 +00005029**
dan76d462e2009-08-30 11:42:51 +00005030** P1 is a register in the root frame of this VM (the root frame is
5031** different from the current frame if this instruction is being executed
5032** within a sub-program). Set the value of register P1 to the maximum of
5033** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00005034**
5035** This instruction throws an error if the memory cell is not initially
5036** an integer.
5037*/
dan76d462e2009-08-30 11:42:51 +00005038case OP_MemMax: { /* in2 */
5039 Mem *pIn1;
5040 VdbeFrame *pFrame;
5041 if( p->pFrame ){
5042 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5043 pIn1 = &pFrame->aMem[pOp->p1];
5044 }else{
drha6c2ed92009-11-14 23:22:23 +00005045 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00005046 }
drh98757152008-01-09 23:04:12 +00005047 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00005048 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00005049 sqlite3VdbeMemIntegerify(pIn2);
5050 if( pIn1->u.i<pIn2->u.i){
5051 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00005052 }
5053 break;
5054}
5055#endif /* SQLITE_OMIT_AUTOINCREMENT */
5056
drh98757152008-01-09 23:04:12 +00005057/* Opcode: IfPos P1 P2 * * *
danielk1977a2dc3b12005-02-05 12:48:48 +00005058**
drh98757152008-01-09 23:04:12 +00005059** If the value of register P1 is 1 or greater, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005060**
drh98757152008-01-09 23:04:12 +00005061** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005062** not contain an integer. An assertion fault will result if you try.
danielk1977a2dc3b12005-02-05 12:48:48 +00005063*/
drh9cbf3422008-01-17 16:22:13 +00005064case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005065 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005066 assert( pIn1->flags&MEM_Int );
drh3c84ddf2008-01-09 02:15:38 +00005067 if( pIn1->u.i>0 ){
drhec7429a2005-10-06 16:53:14 +00005068 pc = pOp->p2 - 1;
5069 }
5070 break;
5071}
5072
drh98757152008-01-09 23:04:12 +00005073/* Opcode: IfNeg P1 P2 * * *
drh15007a92006-01-08 18:10:17 +00005074**
drh98757152008-01-09 23:04:12 +00005075** If the value of register P1 is less than zero, jump to P2.
drh15007a92006-01-08 18:10:17 +00005076**
drh98757152008-01-09 23:04:12 +00005077** It is illegal to use this instruction on a register that does
drh15007a92006-01-08 18:10:17 +00005078** not contain an integer. An assertion fault will result if you try.
5079*/
drh9cbf3422008-01-17 16:22:13 +00005080case OP_IfNeg: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005081 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005082 assert( pIn1->flags&MEM_Int );
drh3c84ddf2008-01-09 02:15:38 +00005083 if( pIn1->u.i<0 ){
drh15007a92006-01-08 18:10:17 +00005084 pc = pOp->p2 - 1;
5085 }
5086 break;
5087}
5088
drh9b918ed2009-11-12 03:13:26 +00005089/* Opcode: IfZero P1 P2 P3 * *
drhec7429a2005-10-06 16:53:14 +00005090**
drh9b918ed2009-11-12 03:13:26 +00005091** The register P1 must contain an integer. Add literal P3 to the
5092** value in register P1. If the result is exactly 0, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005093**
drh98757152008-01-09 23:04:12 +00005094** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005095** not contain an integer. An assertion fault will result if you try.
drhec7429a2005-10-06 16:53:14 +00005096*/
drh9cbf3422008-01-17 16:22:13 +00005097case OP_IfZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005098 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005099 assert( pIn1->flags&MEM_Int );
drh9b918ed2009-11-12 03:13:26 +00005100 pIn1->u.i += pOp->p3;
drh3c84ddf2008-01-09 02:15:38 +00005101 if( pIn1->u.i==0 ){
drha2a49dc2008-01-02 14:28:13 +00005102 pc = pOp->p2 - 1;
5103 }
5104 break;
5105}
5106
drh98757152008-01-09 23:04:12 +00005107/* Opcode: AggStep * P2 P3 P4 P5
drhe5095352002-02-24 03:25:14 +00005108**
drh0bce8352002-02-28 00:41:10 +00005109** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00005110** function has P5 arguments. P4 is a pointer to the FuncDef
5111** structure that specifies the function. Use register
5112** P3 as the accumulator.
drhe5095352002-02-24 03:25:14 +00005113**
drh98757152008-01-09 23:04:12 +00005114** The P5 arguments are taken from register P2 and its
5115** successors.
drhe5095352002-02-24 03:25:14 +00005116*/
drh9cbf3422008-01-17 16:22:13 +00005117case OP_AggStep: {
drh856c1032009-06-02 15:21:42 +00005118 int n;
drhe5095352002-02-24 03:25:14 +00005119 int i;
drhc54a6172009-06-02 16:06:03 +00005120 Mem *pMem;
5121 Mem *pRec;
danielk197722322fd2004-05-25 23:35:17 +00005122 sqlite3_context ctx;
danielk19776ddcca52004-05-24 23:48:25 +00005123 sqlite3_value **apVal;
drhe5095352002-02-24 03:25:14 +00005124
drh856c1032009-06-02 15:21:42 +00005125 n = pOp->p5;
drh6810ce62004-01-31 19:22:56 +00005126 assert( n>=0 );
drha6c2ed92009-11-14 23:22:23 +00005127 pRec = &aMem[pOp->p2];
danielk19776ddcca52004-05-24 23:48:25 +00005128 apVal = p->apArg;
5129 assert( apVal || n==0 );
drh6810ce62004-01-31 19:22:56 +00005130 for(i=0; i<n; i++, pRec++){
danielk1977c572ef72004-05-27 09:28:41 +00005131 apVal[i] = pRec;
dan937d0de2009-10-15 18:35:38 +00005132 sqlite3VdbeMemStoreType(pRec);
drhe5095352002-02-24 03:25:14 +00005133 }
danielk19772dca4ac2008-01-03 11:50:29 +00005134 ctx.pFunc = pOp->p4.pFunc;
drh98757152008-01-09 23:04:12 +00005135 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005136 ctx.pMem = pMem = &aMem[pOp->p3];
drhabfcea22005-09-06 20:36:48 +00005137 pMem->n++;
drh90669c12006-01-20 15:45:36 +00005138 ctx.s.flags = MEM_Null;
5139 ctx.s.z = 0;
danielk19775f096132008-03-28 15:44:09 +00005140 ctx.s.zMalloc = 0;
drh90669c12006-01-20 15:45:36 +00005141 ctx.s.xDel = 0;
drhb21c8cd2007-08-21 19:33:56 +00005142 ctx.s.db = db;
drh1350b032002-02-27 19:00:20 +00005143 ctx.isError = 0;
danielk1977dc1bdc42004-06-11 10:51:27 +00005144 ctx.pColl = 0;
drhe82f5d02008-10-07 19:53:14 +00005145 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
danielk1977dc1bdc42004-06-11 10:51:27 +00005146 assert( pOp>p->aOp );
drh66a51672008-01-03 00:01:23 +00005147 assert( pOp[-1].p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00005148 assert( pOp[-1].opcode==OP_CollSeq );
danielk19772dca4ac2008-01-03 11:50:29 +00005149 ctx.pColl = pOp[-1].p4.pColl;
danielk1977dc1bdc42004-06-11 10:51:27 +00005150 }
danielk19776ddcca52004-05-24 23:48:25 +00005151 (ctx.pFunc->xStep)(&ctx, n, apVal);
drh1350b032002-02-27 19:00:20 +00005152 if( ctx.isError ){
drhf089aa42008-07-08 19:34:06 +00005153 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
drh69544ec2008-02-06 14:11:34 +00005154 rc = ctx.isError;
drh1350b032002-02-27 19:00:20 +00005155 }
drh90669c12006-01-20 15:45:36 +00005156 sqlite3VdbeMemRelease(&ctx.s);
drh5e00f6c2001-09-13 13:46:56 +00005157 break;
5158}
5159
drh98757152008-01-09 23:04:12 +00005160/* Opcode: AggFinal P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00005161**
drh13449892005-09-07 21:22:45 +00005162** Execute the finalizer function for an aggregate. P1 is
5163** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00005164**
5165** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00005166** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00005167** argument is not used by this opcode. It is only there to disambiguate
5168** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00005169** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00005170** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00005171*/
drh9cbf3422008-01-17 16:22:13 +00005172case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00005173 Mem *pMem;
drh0a07c102008-01-03 18:03:08 +00005174 assert( pOp->p1>0 && pOp->p1<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005175 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00005176 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00005177 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00005178 if( rc ){
drhf089aa42008-07-08 19:34:06 +00005179 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
drh90669c12006-01-20 15:45:36 +00005180 }
drh2dca8682008-03-21 17:13:13 +00005181 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00005182 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00005183 if( sqlite3VdbeMemTooBig(pMem) ){
5184 goto too_big;
5185 }
drh5e00f6c2001-09-13 13:46:56 +00005186 break;
5187}
5188
danf05c86d2010-04-13 11:56:03 +00005189/* Opcode: Checkpoint P1 * * * *
dane04dc882010-04-20 18:53:15 +00005190**
5191** Checkpoint database P1. This is a no-op if P1 is not currently in
5192** WAL mode.
dan7c246102010-04-12 19:00:29 +00005193*/
5194case OP_Checkpoint: {
5195 Btree *pBt; /* Btree to checkpoint */
dan7c246102010-04-12 19:00:29 +00005196
5197 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5198 assert( (p->btreeMask & (1<<pOp->p1))!=0 );
5199 pBt = db->aDb[pOp->p1].pBt;
danf05c86d2010-04-13 11:56:03 +00005200 rc = sqlite3PagerCheckpoint(sqlite3BtreePager(pBt));
dan7c246102010-04-12 19:00:29 +00005201 break;
5202};
drh5e00f6c2001-09-13 13:46:56 +00005203
dane04dc882010-04-20 18:53:15 +00005204/* Opcode: JournalMode P1 P2 P3 * *
5205**
5206** Change the journal mode of database P1 to P3. P3 must be one of the
5207** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5208** modes (delete, truncate, persist, off and memory), this is a simple
5209** operation. No IO is required.
5210**
5211** If changing into or out of WAL mode the procedure is more complicated.
5212**
5213** Write a string containing the final journal-mode to register P2.
5214*/
5215case OP_JournalMode: {
5216 Btree *pBt; /* Btree to change journal mode of */
5217 Pager *pPager; /* Pager associated with pBt */
5218 int eNew = pOp->p3; /* New journal mode */
5219
5220 assert( eNew==PAGER_JOURNALMODE_DELETE
5221 || eNew==PAGER_JOURNALMODE_TRUNCATE
5222 || eNew==PAGER_JOURNALMODE_PERSIST
5223 || eNew==PAGER_JOURNALMODE_OFF
5224 || eNew==PAGER_JOURNALMODE_MEMORY
5225 || eNew==PAGER_JOURNALMODE_WAL
5226 || eNew==PAGER_JOURNALMODE_QUERY
5227 );
5228 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5229 assert( (p->btreeMask & (1<<pOp->p1))!=0 );
5230
5231 pBt = db->aDb[pOp->p1].pBt;
5232 pPager = sqlite3BtreePager(pBt);
5233
5234 if( eNew!=PAGER_JOURNALMODE_QUERY ){
5235 int eOld = sqlite3PagerJournalMode(pPager, PAGER_JOURNALMODE_QUERY);
5236 if( (eNew!=eOld)
5237 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5238 ){
5239 if( !db->autoCommit || db->activeVdbeCnt>1 ){
5240 rc = SQLITE_ERROR;
5241 sqlite3SetString(&p->zErrMsg, db,
5242 "cannot change %s wal mode from within a transaction",
5243 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5244 );
5245 }else{
5246
5247 /* If leaving WAL mode, close the log file. If successful, the call to
5248 ** PagerCloseLog() checkpoints and deletes the write-ahead-log file.
5249 ** An EXCLUSIVE lock is still held on the database file after returning.
5250 */
5251 if( eOld==PAGER_JOURNALMODE_WAL ){
5252 rc = sqlite3PagerCloseLog(pPager);
5253 if( rc!=SQLITE_OK ) goto abort_due_to_error;
5254 sqlite3PagerJournalMode(pPager, eNew);
5255 }else{
5256 sqlite3PagerJournalMode(pPager, PAGER_JOURNALMODE_DELETE);
5257 }
5258
5259 /* Open a transaction on the database file. Regardless of the journal
5260 ** mode, this transaction always uses a rollback journal.
5261 */
5262 assert( sqlite3BtreeIsInTrans(pBt)==0 );
5263 rc = sqlite3BtreeBeginTrans(pBt, 2);
5264 assert( rc==SQLITE_OK || eOld!=PAGER_JOURNALMODE_WAL );
5265 if( rc!=SQLITE_OK ) goto abort_due_to_error;
5266 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
5267 if( rc!=SQLITE_OK ) goto abort_due_to_error;
5268 }
5269 }
5270 }
5271
5272 eNew = sqlite3PagerJournalMode(pPager, eNew);
5273 pOut = &aMem[pOp->p2];
5274 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
5275 pOut->z = sqlite3JournalModename(eNew);
5276 pOut->n = sqlite3Strlen30(pOut->z);
5277 pOut->enc = SQLITE_UTF8;
5278 sqlite3VdbeChangeEncoding(pOut, encoding);
5279 break;
5280};
5281
drhfdbcdee2007-03-27 14:44:50 +00005282#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh98757152008-01-09 23:04:12 +00005283/* Opcode: Vacuum * * * * *
drh6f8c91c2003-12-07 00:24:35 +00005284**
5285** Vacuum the entire database. This opcode will cause other virtual
5286** machines to be created and run. It may not be called from within
5287** a transaction.
5288*/
drh9cbf3422008-01-17 16:22:13 +00005289case OP_Vacuum: {
danielk19774adee202004-05-08 08:23:19 +00005290 rc = sqlite3RunVacuum(&p->zErrMsg, db);
drh6f8c91c2003-12-07 00:24:35 +00005291 break;
5292}
drh154d4b22006-09-21 11:02:16 +00005293#endif
drh6f8c91c2003-12-07 00:24:35 +00005294
danielk1977dddbcdc2007-04-26 14:42:34 +00005295#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00005296/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00005297**
5298** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00005299** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00005300** P2. Otherwise, fall through to the next instruction.
5301*/
drh9cbf3422008-01-17 16:22:13 +00005302case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00005303 Btree *pBt;
5304
5305 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhfb982642007-08-30 01:19:59 +00005306 assert( (p->btreeMask & (1<<pOp->p1))!=0 );
drhca5557f2007-05-04 18:30:40 +00005307 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00005308 rc = sqlite3BtreeIncrVacuum(pBt);
5309 if( rc==SQLITE_DONE ){
5310 pc = pOp->p2 - 1;
5311 rc = SQLITE_OK;
5312 }
5313 break;
5314}
5315#endif
5316
drh98757152008-01-09 23:04:12 +00005317/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00005318**
5319** Cause precompiled statements to become expired. An expired statement
5320** fails with an error code of SQLITE_SCHEMA if it is ever executed
5321** (via sqlite3_step()).
5322**
5323** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5324** then only the currently executing statement is affected.
5325*/
drh9cbf3422008-01-17 16:22:13 +00005326case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00005327 if( !pOp->p1 ){
5328 sqlite3ExpirePreparedStatements(db);
5329 }else{
5330 p->expired = 1;
5331 }
5332 break;
5333}
5334
danielk1977c00da102006-01-07 13:21:04 +00005335#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00005336/* Opcode: TableLock P1 P2 P3 P4 *
danielk1977c00da102006-01-07 13:21:04 +00005337**
5338** Obtain a lock on a particular table. This instruction is only used when
5339** the shared-cache feature is enabled.
5340**
danielk197796d48e92009-06-29 06:00:37 +00005341** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00005342** on which the lock is acquired. A readlock is obtained if P3==0 or
5343** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00005344**
5345** P2 contains the root-page of the table to lock.
5346**
drh66a51672008-01-03 00:01:23 +00005347** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00005348** used to generate an error message if the lock cannot be obtained.
5349*/
drh9cbf3422008-01-17 16:22:13 +00005350case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00005351 u8 isWriteLock = (u8)pOp->p3;
5352 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5353 int p1 = pOp->p1;
5354 assert( p1>=0 && p1<db->nDb );
5355 assert( (p->btreeMask & (1<<p1))!=0 );
5356 assert( isWriteLock==0 || isWriteLock==1 );
5357 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5358 if( (rc&0xFF)==SQLITE_LOCKED ){
5359 const char *z = pOp->p4.z;
5360 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
5361 }
danielk1977c00da102006-01-07 13:21:04 +00005362 }
5363 break;
5364}
drhb9bb7c12006-06-11 23:41:55 +00005365#endif /* SQLITE_OMIT_SHARED_CACHE */
5366
5367#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005368/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005369**
danielk19773e3a84d2008-08-01 17:37:40 +00005370** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5371** xBegin method for that table.
5372**
5373** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00005374** within a callback to a virtual table xSync() method. If it is, the error
5375** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00005376*/
drh9cbf3422008-01-17 16:22:13 +00005377case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00005378 VTable *pVTab;
5379 pVTab = pOp->p4.pVtab;
5380 rc = sqlite3VtabBegin(db, pVTab);
5381 if( pVTab ){
danielk19773e3a84d2008-08-01 17:37:40 +00005382 sqlite3DbFree(db, p->zErrMsg);
danielk1977595a5232009-07-24 17:58:53 +00005383 p->zErrMsg = pVTab->pVtab->zErrMsg;
5384 pVTab->pVtab->zErrMsg = 0;
danielk19773e3a84d2008-08-01 17:37:40 +00005385 }
danielk1977f9e7dda2006-06-16 16:08:53 +00005386 break;
5387}
5388#endif /* SQLITE_OMIT_VIRTUALTABLE */
5389
5390#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005391/* Opcode: VCreate P1 * * P4 *
danielk1977f9e7dda2006-06-16 16:08:53 +00005392**
drh66a51672008-01-03 00:01:23 +00005393** P4 is the name of a virtual table in database P1. Call the xCreate method
danielk1977f9e7dda2006-06-16 16:08:53 +00005394** for that table.
5395*/
drh9cbf3422008-01-17 16:22:13 +00005396case OP_VCreate: {
danielk19772dca4ac2008-01-03 11:50:29 +00005397 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
drhb9bb7c12006-06-11 23:41:55 +00005398 break;
5399}
5400#endif /* SQLITE_OMIT_VIRTUALTABLE */
5401
5402#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005403/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005404**
drh66a51672008-01-03 00:01:23 +00005405** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00005406** of that table.
drhb9bb7c12006-06-11 23:41:55 +00005407*/
drh9cbf3422008-01-17 16:22:13 +00005408case OP_VDestroy: {
danielk1977212b2182006-06-23 14:32:08 +00005409 p->inVtabMethod = 2;
danielk19772dca4ac2008-01-03 11:50:29 +00005410 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
danielk1977212b2182006-06-23 14:32:08 +00005411 p->inVtabMethod = 0;
drhb9bb7c12006-06-11 23:41:55 +00005412 break;
5413}
5414#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00005415
drh9eff6162006-06-12 21:59:13 +00005416#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005417/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00005418**
drh66a51672008-01-03 00:01:23 +00005419** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00005420** P1 is a cursor number. This opcode opens a cursor to the virtual
5421** table and stores that cursor in P1.
5422*/
drh9cbf3422008-01-17 16:22:13 +00005423case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00005424 VdbeCursor *pCur;
5425 sqlite3_vtab_cursor *pVtabCursor;
5426 sqlite3_vtab *pVtab;
5427 sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005428
drh856c1032009-06-02 15:21:42 +00005429 pCur = 0;
5430 pVtabCursor = 0;
danielk1977595a5232009-07-24 17:58:53 +00005431 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00005432 pModule = (sqlite3_module *)pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005433 assert(pVtab && pModule);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005434 rc = pModule->xOpen(pVtab, &pVtabCursor);
drh633e6d52008-07-28 19:34:53 +00005435 sqlite3DbFree(db, p->zErrMsg);
drh80cc85b2008-07-23 21:07:25 +00005436 p->zErrMsg = pVtab->zErrMsg;
5437 pVtab->zErrMsg = 0;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005438 if( SQLITE_OK==rc ){
shane21e7feb2008-05-30 15:59:49 +00005439 /* Initialize sqlite3_vtab_cursor base class */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005440 pVtabCursor->pVtab = pVtab;
5441
5442 /* Initialise vdbe cursor object */
danielk1977d336e222009-02-20 10:58:41 +00005443 pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
danielk1977be718892006-06-23 08:05:19 +00005444 if( pCur ){
5445 pCur->pVtabCursor = pVtabCursor;
5446 pCur->pModule = pVtabCursor->pVtab->pModule;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005447 }else{
drh17435752007-08-16 04:30:38 +00005448 db->mallocFailed = 1;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005449 pModule->xClose(pVtabCursor);
danielk1977be718892006-06-23 08:05:19 +00005450 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005451 }
drh9eff6162006-06-12 21:59:13 +00005452 break;
5453}
5454#endif /* SQLITE_OMIT_VIRTUALTABLE */
5455
5456#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00005457/* Opcode: VFilter P1 P2 P3 P4 *
drh9eff6162006-06-12 21:59:13 +00005458**
5459** P1 is a cursor opened using VOpen. P2 is an address to jump to if
5460** the filtered result set is empty.
5461**
drh66a51672008-01-03 00:01:23 +00005462** P4 is either NULL or a string that was generated by the xBestIndex
5463** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00005464** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00005465**
drh9eff6162006-06-12 21:59:13 +00005466** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00005467** by P1. The integer query plan parameter to xFilter is stored in register
5468** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00005469** xFilter method. Registers P3+2..P3+1+argc are the argc
5470** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00005471** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00005472**
danielk19776dbee812008-01-03 18:39:41 +00005473** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00005474*/
drh9cbf3422008-01-17 16:22:13 +00005475case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005476 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00005477 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005478 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00005479 Mem *pQuery;
5480 Mem *pArgc;
drh4dc754d2008-07-23 18:17:32 +00005481 sqlite3_vtab_cursor *pVtabCursor;
5482 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00005483 VdbeCursor *pCur;
5484 int res;
5485 int i;
5486 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005487
drha6c2ed92009-11-14 23:22:23 +00005488 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005489 pArgc = &pQuery[1];
5490 pCur = p->apCsr[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00005491 REGISTER_TRACE(pOp->p3, pQuery);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005492 assert( pCur->pVtabCursor );
drh4dc754d2008-07-23 18:17:32 +00005493 pVtabCursor = pCur->pVtabCursor;
5494 pVtab = pVtabCursor->pVtab;
5495 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005496
drh9cbf3422008-01-17 16:22:13 +00005497 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00005498 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00005499 nArg = (int)pArgc->u.i;
5500 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005501
drh644a5292006-12-20 14:53:38 +00005502 /* Invoke the xFilter method */
5503 {
drh856c1032009-06-02 15:21:42 +00005504 res = 0;
5505 apArg = p->apArg;
drh4be8b512006-06-13 23:51:34 +00005506 for(i = 0; i<nArg; i++){
danielk19776dbee812008-01-03 18:39:41 +00005507 apArg[i] = &pArgc[i+1];
dan937d0de2009-10-15 18:35:38 +00005508 sqlite3VdbeMemStoreType(apArg[i]);
danielk19775fac9f82006-06-13 14:16:58 +00005509 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005510
danielk1977be718892006-06-23 08:05:19 +00005511 p->inVtabMethod = 1;
drh4dc754d2008-07-23 18:17:32 +00005512 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
danielk1977be718892006-06-23 08:05:19 +00005513 p->inVtabMethod = 0;
danielk19773e3a84d2008-08-01 17:37:40 +00005514 sqlite3DbFree(db, p->zErrMsg);
5515 p->zErrMsg = pVtab->zErrMsg;
5516 pVtab->zErrMsg = 0;
danielk1977a298e902006-06-22 09:53:48 +00005517 if( rc==SQLITE_OK ){
drh4dc754d2008-07-23 18:17:32 +00005518 res = pModule->xEof(pVtabCursor);
danielk1977a298e902006-06-22 09:53:48 +00005519 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005520
danielk1977a298e902006-06-22 09:53:48 +00005521 if( res ){
danielk1977b7a7b9a2006-06-13 10:24:42 +00005522 pc = pOp->p2 - 1;
5523 }
5524 }
drh1d454a32008-01-31 19:34:51 +00005525 pCur->nullRow = 0;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005526
drh9eff6162006-06-12 21:59:13 +00005527 break;
5528}
5529#endif /* SQLITE_OMIT_VIRTUALTABLE */
5530
5531#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005532/* Opcode: VColumn P1 P2 P3 * *
drh9eff6162006-06-12 21:59:13 +00005533**
drh2133d822008-01-03 18:44:59 +00005534** Store the value of the P2-th column of
5535** the row of the virtual-table that the
5536** P1 cursor is pointing to into register P3.
drh9eff6162006-06-12 21:59:13 +00005537*/
5538case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00005539 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005540 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00005541 Mem *pDest;
5542 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005543
drhdfe88ec2008-11-03 20:55:06 +00005544 VdbeCursor *pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00005545 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00005546 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005547 pDest = &aMem[pOp->p3];
drh2945b4a2008-01-31 15:53:45 +00005548 if( pCur->nullRow ){
5549 sqlite3VdbeMemSetNull(pDest);
5550 break;
5551 }
danielk19773e3a84d2008-08-01 17:37:40 +00005552 pVtab = pCur->pVtabCursor->pVtab;
5553 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00005554 assert( pModule->xColumn );
5555 memset(&sContext, 0, sizeof(sContext));
danielk1977a7a8e142008-02-13 18:25:27 +00005556
5557 /* The output cell may already have a buffer allocated. Move
5558 ** the current contents to sContext.s so in case the user-function
5559 ** can use the already allocated buffer instead of allocating a
5560 ** new one.
5561 */
5562 sqlite3VdbeMemMove(&sContext.s, pDest);
5563 MemSetTypeFlag(&sContext.s, MEM_Null);
5564
drhde4fcfd2008-01-19 23:50:26 +00005565 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
danielk19773e3a84d2008-08-01 17:37:40 +00005566 sqlite3DbFree(db, p->zErrMsg);
5567 p->zErrMsg = pVtab->zErrMsg;
5568 pVtab->zErrMsg = 0;
drh4c8555f2009-06-25 01:47:11 +00005569 if( sContext.isError ){
5570 rc = sContext.isError;
5571 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005572
drhde4fcfd2008-01-19 23:50:26 +00005573 /* Copy the result of the function to the P3 register. We
shanebe217792009-03-05 04:20:31 +00005574 ** do this regardless of whether or not an error occurred to ensure any
drhde4fcfd2008-01-19 23:50:26 +00005575 ** dynamic allocation in sContext.s (a Mem struct) is released.
5576 */
5577 sqlite3VdbeChangeEncoding(&sContext.s, encoding);
drhde4fcfd2008-01-19 23:50:26 +00005578 sqlite3VdbeMemMove(pDest, &sContext.s);
drh5ff44372009-11-24 16:26:17 +00005579 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00005580 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005581
drhde4fcfd2008-01-19 23:50:26 +00005582 if( sqlite3VdbeMemTooBig(pDest) ){
5583 goto too_big;
5584 }
drh9eff6162006-06-12 21:59:13 +00005585 break;
5586}
5587#endif /* SQLITE_OMIT_VIRTUALTABLE */
5588
5589#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005590/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00005591**
5592** Advance virtual table P1 to the next row in its result set and
5593** jump to instruction P2. Or, if the virtual table has reached
5594** the end of its result set, then fall through to the next instruction.
5595*/
drh9cbf3422008-01-17 16:22:13 +00005596case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00005597 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005598 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00005599 int res;
drh856c1032009-06-02 15:21:42 +00005600 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005601
drhc54a6172009-06-02 16:06:03 +00005602 res = 0;
drh856c1032009-06-02 15:21:42 +00005603 pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00005604 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00005605 if( pCur->nullRow ){
5606 break;
5607 }
danielk19773e3a84d2008-08-01 17:37:40 +00005608 pVtab = pCur->pVtabCursor->pVtab;
5609 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00005610 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00005611
drhde4fcfd2008-01-19 23:50:26 +00005612 /* Invoke the xNext() method of the module. There is no way for the
5613 ** underlying implementation to return an error if one occurs during
5614 ** xNext(). Instead, if an error occurs, true is returned (indicating that
5615 ** data is available) and the error code returned when xColumn or
5616 ** some other method is next invoked on the save virtual table cursor.
5617 */
drhde4fcfd2008-01-19 23:50:26 +00005618 p->inVtabMethod = 1;
5619 rc = pModule->xNext(pCur->pVtabCursor);
5620 p->inVtabMethod = 0;
danielk19773e3a84d2008-08-01 17:37:40 +00005621 sqlite3DbFree(db, p->zErrMsg);
5622 p->zErrMsg = pVtab->zErrMsg;
5623 pVtab->zErrMsg = 0;
drhde4fcfd2008-01-19 23:50:26 +00005624 if( rc==SQLITE_OK ){
5625 res = pModule->xEof(pCur->pVtabCursor);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005626 }
5627
drhde4fcfd2008-01-19 23:50:26 +00005628 if( !res ){
5629 /* If there is data, jump to P2 */
5630 pc = pOp->p2 - 1;
5631 }
drh9eff6162006-06-12 21:59:13 +00005632 break;
5633}
5634#endif /* SQLITE_OMIT_VIRTUALTABLE */
5635
danielk1977182c4ba2007-06-27 15:53:34 +00005636#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005637/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00005638**
drh66a51672008-01-03 00:01:23 +00005639** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00005640** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00005641** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00005642*/
drh9cbf3422008-01-17 16:22:13 +00005643case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00005644 sqlite3_vtab *pVtab;
5645 Mem *pName;
5646
danielk1977595a5232009-07-24 17:58:53 +00005647 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00005648 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00005649 assert( pVtab->pModule->xRename );
drh5b6afba2008-01-05 16:29:28 +00005650 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00005651 assert( pName->flags & MEM_Str );
danielk19776dbee812008-01-03 18:39:41 +00005652 rc = pVtab->pModule->xRename(pVtab, pName->z);
drh633e6d52008-07-28 19:34:53 +00005653 sqlite3DbFree(db, p->zErrMsg);
drh80cc85b2008-07-23 21:07:25 +00005654 p->zErrMsg = pVtab->zErrMsg;
5655 pVtab->zErrMsg = 0;
danielk1977182c4ba2007-06-27 15:53:34 +00005656
danielk1977182c4ba2007-06-27 15:53:34 +00005657 break;
5658}
5659#endif
drh4cbdda92006-06-14 19:00:20 +00005660
5661#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005662/* Opcode: VUpdate P1 P2 P3 P4 *
danielk1977399918f2006-06-14 13:03:23 +00005663**
drh66a51672008-01-03 00:01:23 +00005664** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00005665** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00005666** are contiguous memory cells starting at P3 to pass to the xUpdate
5667** invocation. The value in register (P3+P2-1) corresponds to the
5668** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00005669**
5670** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00005671** The argv[0] element (which corresponds to memory cell P3)
5672** is the rowid of a row to delete. If argv[0] is NULL then no
5673** deletion occurs. The argv[1] element is the rowid of the new
5674** row. This can be NULL to have the virtual table select the new
5675** rowid for itself. The subsequent elements in the array are
5676** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00005677**
5678** If P2==1 then no insert is performed. argv[0] is the rowid of
5679** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00005680**
5681** P1 is a boolean flag. If it is set to true and the xUpdate call
5682** is successful, then the value returned by sqlite3_last_insert_rowid()
5683** is set to the value of the rowid for the row just inserted.
danielk1977399918f2006-06-14 13:03:23 +00005684*/
drh9cbf3422008-01-17 16:22:13 +00005685case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00005686 sqlite3_vtab *pVtab;
5687 sqlite3_module *pModule;
5688 int nArg;
5689 int i;
5690 sqlite_int64 rowid;
5691 Mem **apArg;
5692 Mem *pX;
5693
danielk1977595a5232009-07-24 17:58:53 +00005694 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00005695 pModule = (sqlite3_module *)pVtab->pModule;
5696 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00005697 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00005698 if( ALWAYS(pModule->xUpdate) ){
drh856c1032009-06-02 15:21:42 +00005699 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00005700 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00005701 for(i=0; i<nArg; i++){
dan937d0de2009-10-15 18:35:38 +00005702 sqlite3VdbeMemStoreType(pX);
drh9c419382006-06-16 21:13:21 +00005703 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00005704 pX++;
danielk1977399918f2006-06-14 13:03:23 +00005705 }
danielk19771f6eec52006-06-16 06:17:47 +00005706 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
drh633e6d52008-07-28 19:34:53 +00005707 sqlite3DbFree(db, p->zErrMsg);
drh80cc85b2008-07-23 21:07:25 +00005708 p->zErrMsg = pVtab->zErrMsg;
5709 pVtab->zErrMsg = 0;
drh35f6b932009-06-23 14:15:04 +00005710 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00005711 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
5712 db->lastRowid = rowid;
5713 }
drhb5df1442008-04-10 14:00:09 +00005714 p->nChange++;
danielk1977399918f2006-06-14 13:03:23 +00005715 }
drh4cbdda92006-06-14 19:00:20 +00005716 break;
danielk1977399918f2006-06-14 13:03:23 +00005717}
5718#endif /* SQLITE_OMIT_VIRTUALTABLE */
5719
danielk197759a93792008-05-15 17:48:20 +00005720#ifndef SQLITE_OMIT_PAGER_PRAGMAS
5721/* Opcode: Pagecount P1 P2 * * *
5722**
5723** Write the current number of pages in database P1 to memory cell P2.
5724*/
5725case OP_Pagecount: { /* out2-prerelease */
drhb1299152010-03-30 22:58:33 +00005726 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00005727 break;
5728}
5729#endif
5730
drh949f9cd2008-01-12 21:35:57 +00005731#ifndef SQLITE_OMIT_TRACE
5732/* Opcode: Trace * * * P4 *
5733**
5734** If tracing is enabled (by the sqlite3_trace()) interface, then
5735** the UTF-8 string contained in P4 is emitted on the trace callback.
5736*/
5737case OP_Trace: {
drh856c1032009-06-02 15:21:42 +00005738 char *zTrace;
5739
5740 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
danielk19776ab3a2e2009-02-19 14:39:25 +00005741 if( zTrace ){
drh949f9cd2008-01-12 21:35:57 +00005742 if( db->xTrace ){
drhc7bc4fd2009-11-25 18:03:42 +00005743 char *z = sqlite3VdbeExpandSql(p, zTrace);
5744 db->xTrace(db->pTraceArg, z);
5745 sqlite3DbFree(db, z);
drh949f9cd2008-01-12 21:35:57 +00005746 }
5747#ifdef SQLITE_DEBUG
5748 if( (db->flags & SQLITE_SqlTrace)!=0 ){
danielk19776ab3a2e2009-02-19 14:39:25 +00005749 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
drh949f9cd2008-01-12 21:35:57 +00005750 }
5751#endif /* SQLITE_DEBUG */
5752 }
5753 break;
5754}
5755#endif
5756
drh91fd4d42008-01-19 20:11:25 +00005757
5758/* Opcode: Noop * * * * *
5759**
5760** Do nothing. This instruction is often useful as a jump
5761** destination.
drh5e00f6c2001-09-13 13:46:56 +00005762*/
drh91fd4d42008-01-19 20:11:25 +00005763/*
5764** The magic Explain opcode are only inserted when explain==2 (which
5765** is to say when the EXPLAIN QUERY PLAN syntax is used.)
5766** This opcode records information from the optimizer. It is the
5767** the same as a no-op. This opcodesnever appears in a real VM program.
5768*/
5769default: { /* This is really OP_Noop and OP_Explain */
drh13573c72010-01-12 17:04:07 +00005770 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh5e00f6c2001-09-13 13:46:56 +00005771 break;
5772}
5773
5774/*****************************************************************************
5775** The cases of the switch statement above this line should all be indented
5776** by 6 spaces. But the left-most 6 spaces have been removed to improve the
5777** readability. From this point on down, the normal indentation rules are
5778** restored.
5779*****************************************************************************/
5780 }
drh6e142f52000-06-08 13:36:40 +00005781
drh7b396862003-01-01 23:06:20 +00005782#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00005783 {
shane9bcbdad2008-05-29 20:22:37 +00005784 u64 elapsed = sqlite3Hwtime() - start;
5785 pOp->cycles += elapsed;
drh8178a752003-01-05 21:41:40 +00005786 pOp->cnt++;
5787#if 0
shane9bcbdad2008-05-29 20:22:37 +00005788 fprintf(stdout, "%10llu ", elapsed);
drhbbe879d2009-11-14 18:04:35 +00005789 sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
drh8178a752003-01-05 21:41:40 +00005790#endif
5791 }
drh7b396862003-01-01 23:06:20 +00005792#endif
5793
drh6e142f52000-06-08 13:36:40 +00005794 /* The following code adds nothing to the actual functionality
5795 ** of the program. It is only here for testing and debugging.
5796 ** On the other hand, it does burn CPU cycles every time through
5797 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
5798 */
5799#ifndef NDEBUG
drha6110402005-07-28 20:51:19 +00005800 assert( pc>=-1 && pc<p->nOp );
drhae7e1512007-05-02 16:51:59 +00005801
drhcf1023c2007-05-08 20:59:49 +00005802#ifdef SQLITE_DEBUG
drh5b6afba2008-01-05 16:29:28 +00005803 if( p->trace ){
5804 if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
drh3c657212009-11-17 23:59:58 +00005805 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
5806 registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
drh75897232000-05-29 14:26:00 +00005807 }
drh3c657212009-11-17 23:59:58 +00005808 if( pOp->opflags & OPFLG_OUT3 ){
5809 registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00005810 }
drh75897232000-05-29 14:26:00 +00005811 }
danielk1977b5402fb2005-01-12 07:15:04 +00005812#endif /* SQLITE_DEBUG */
5813#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00005814 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00005815
drha05a7222008-01-19 03:35:58 +00005816 /* If we reach this point, it means that execution is finished with
5817 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00005818 */
drha05a7222008-01-19 03:35:58 +00005819vdbe_error_halt:
5820 assert( rc );
5821 p->rc = rc;
drha64fa912010-03-04 00:53:32 +00005822 testcase( sqlite3GlobalConfig.xLog!=0 );
5823 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
5824 pc, p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00005825 sqlite3VdbeHalt(p);
danielk19777eaabcd2008-07-07 14:56:56 +00005826 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
5827 rc = SQLITE_ERROR;
drh32783152009-11-20 15:02:34 +00005828 if( resetSchemaOnFault ) sqlite3ResetInternalSchema(db, 0);
drh900b31e2007-08-28 02:27:51 +00005829
5830 /* This is the only way out of this procedure. We have to
5831 ** release the mutexes on btrees that were acquired at the
5832 ** top. */
5833vdbe_return:
drh4cf7c7f2007-08-28 23:28:07 +00005834 sqlite3BtreeMutexArrayLeave(&p->aMutex);
drhb86ccfb2003-01-28 23:13:10 +00005835 return rc;
5836
drh023ae032007-05-08 12:12:16 +00005837 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
5838 ** is encountered.
5839 */
5840too_big:
drhf089aa42008-07-08 19:34:06 +00005841 sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00005842 rc = SQLITE_TOOBIG;
drha05a7222008-01-19 03:35:58 +00005843 goto vdbe_error_halt;
drh023ae032007-05-08 12:12:16 +00005844
drh98640a32007-06-07 19:08:32 +00005845 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00005846 */
5847no_mem:
drh17435752007-08-16 04:30:38 +00005848 db->mallocFailed = 1;
drhf089aa42008-07-08 19:34:06 +00005849 sqlite3SetString(&p->zErrMsg, db, "out of memory");
drhb86ccfb2003-01-28 23:13:10 +00005850 rc = SQLITE_NOMEM;
drha05a7222008-01-19 03:35:58 +00005851 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00005852
drhb86ccfb2003-01-28 23:13:10 +00005853 /* Jump to here for any other kind of fatal error. The "rc" variable
5854 ** should hold the error number.
5855 */
5856abort_due_to_error:
drha05a7222008-01-19 03:35:58 +00005857 assert( p->zErrMsg==0 );
5858 if( db->mallocFailed ) rc = SQLITE_NOMEM;
danielk19777eaabcd2008-07-07 14:56:56 +00005859 if( rc!=SQLITE_IOERR_NOMEM ){
drhf089aa42008-07-08 19:34:06 +00005860 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
danielk19777eaabcd2008-07-07 14:56:56 +00005861 }
drha05a7222008-01-19 03:35:58 +00005862 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00005863
danielk19776f8a5032004-05-10 10:34:51 +00005864 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00005865 ** flag.
5866 */
5867abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00005868 assert( db->u1.isInterrupted );
drh7e8b8482008-01-23 03:03:05 +00005869 rc = SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00005870 p->rc = rc;
drhf089aa42008-07-08 19:34:06 +00005871 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
drha05a7222008-01-19 03:35:58 +00005872 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00005873}