blob: 84a5087e017024da21dd2bfb6a81ffbe0aae068b [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh0fd61352014-02-07 02:29:45 +000012** The code in this file implements the function that runs the
13** bytecode of a prepared statement.
drh75897232000-05-29 14:26:00 +000014**
drhac82fcf2002-09-08 17:23:41 +000015** Various scripts scan this source file in order to generate HTML
16** documentation, headers files, or other derived files. The formatting
17** of the code in this file is, therefore, important. See other comments
18** in this file for details. If in doubt, do not deviate from existing
19** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000020*/
21#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000022#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000023
24/*
drh2b4ded92010-09-27 21:09:31 +000025** Invoke this macro on memory cells just prior to changing the
26** value of the cell. This macro verifies that shallow copies are
drh0fd61352014-02-07 02:29:45 +000027** not misused. A shallow copy of a string or blob just copies a
28** pointer to the string or blob, not the content. If the original
29** is changed while the copy is still in use, the string or blob might
30** be changed out from under the copy. This macro verifies that nothing
drhb6e8fd12014-03-06 01:56:33 +000031** like that ever happens.
drh2b4ded92010-09-27 21:09:31 +000032*/
33#ifdef SQLITE_DEBUG
drhe4c88c02012-01-04 12:57:45 +000034# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
drh2b4ded92010-09-27 21:09:31 +000035#else
36# define memAboutToChange(P,M)
37#endif
38
39/*
drh487ab3c2001-11-08 00:45:21 +000040** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000041** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000042** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000043** working correctly. This variable has no function other than to
44** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000045*/
drh0f7eb612006-08-08 13:51:43 +000046#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000047int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000048#endif
drh487ab3c2001-11-08 00:45:21 +000049
drhf6038712004-02-08 18:07:34 +000050/*
51** When this global variable is positive, it gets decremented once before
drhe4c88c02012-01-04 12:57:45 +000052** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53** field of the sqlite3 structure is set in order to simulate an interrupt.
drhf6038712004-02-08 18:07:34 +000054**
55** This facility is used for testing purposes only. It does not function
56** in an ordinary build.
57*/
drh0f7eb612006-08-08 13:51:43 +000058#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000059int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000060#endif
drh1350b032002-02-27 19:00:20 +000061
danielk19777e18c252004-05-25 11:47:24 +000062/*
drh6bf89572004-11-03 16:27:01 +000063** The next global variable is incremented each type the OP_Sort opcode
64** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000065** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000066** has no function other than to help verify the correct operation of the
67** library.
68*/
drh0f7eb612006-08-08 13:51:43 +000069#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000070int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000071#endif
drh6bf89572004-11-03 16:27:01 +000072
73/*
drhae7e1512007-05-02 16:51:59 +000074** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000075** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000076** use this information to make sure that the zero-blob functionality
77** is working correctly. This variable has no function other than to
78** help verify the correct operation of the library.
79*/
80#ifdef SQLITE_TEST
81int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +000082static void updateMaxBlobsize(Mem *p){
83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84 sqlite3_max_blobsize = p->n;
85 }
86}
drhae7e1512007-05-02 16:51:59 +000087#endif
88
89/*
drh9b1c62d2011-03-30 21:04:43 +000090** This macro evaluates to true if either the update hook or the preupdate
91** hook are enabled for database connect DB.
92*/
93#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
drh74c33022016-03-30 12:56:55 +000094# define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
drh9b1c62d2011-03-30 21:04:43 +000095#else
drh74c33022016-03-30 12:56:55 +000096# define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
drh9b1c62d2011-03-30 21:04:43 +000097#endif
98
99/*
drh0fd61352014-02-07 02:29:45 +0000100** The next global variable is incremented each time the OP_Found opcode
dan0ff297e2009-09-25 17:03:14 +0000101** is executed. This is used to test whether or not the foreign key
102** operation implemented using OP_FkIsZero is working. This variable
103** has no function other than to help verify the correct operation of the
104** library.
105*/
106#ifdef SQLITE_TEST
107int sqlite3_found_count = 0;
108#endif
109
110/*
drhb7654112008-01-12 12:48:07 +0000111** Test a register to see if it exceeds the current maximum blob size.
112** If it does, record the new maximum blob size.
113*/
drh678ccce2008-03-31 18:19:54 +0000114#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
drhca48c902008-01-18 14:08:24 +0000115# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000116#else
117# define UPDATE_MAX_BLOBSIZE(P)
118#endif
119
120/*
drh5655c542014-02-19 19:14:34 +0000121** Invoke the VDBE coverage callback, if that callback is defined. This
122** feature is used for test suite validation only and does not appear an
123** production builds.
124**
125** M is an integer, 2 or 3, that indices how many different ways the
126** branch can go. It is usually 2. "I" is the direction the branch
127** goes. 0 means falls through. 1 means branch is taken. 2 means the
128** second alternative branch is taken.
drh4336b0e2014-08-05 00:53:51 +0000129**
130** iSrcLine is the source code line (from the __LINE__ macro) that
131** generated the VDBE instruction. This instrumentation assumes that all
132** source code is in a single file (the amalgamation). Special values 1
133** and 2 for the iSrcLine parameter mean that this particular branch is
134** always taken or never taken, respectively.
drh688852a2014-02-17 22:40:43 +0000135*/
136#if !defined(SQLITE_VDBE_COVERAGE)
137# define VdbeBranchTaken(I,M)
138#else
drh5655c542014-02-19 19:14:34 +0000139# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
140 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
141 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
142 M = iSrcLine;
143 /* Assert the truth of VdbeCoverageAlwaysTaken() and
144 ** VdbeCoverageNeverTaken() */
145 assert( (M & I)==I );
146 }else{
147 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
148 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
149 iSrcLine,I,M);
150 }
151 }
drh688852a2014-02-17 22:40:43 +0000152#endif
153
154/*
drh9cbf3422008-01-17 16:22:13 +0000155** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000156** already. Return non-zero if a malloc() fails.
157*/
drhb21c8cd2007-08-21 19:33:56 +0000158#define Stringify(P, enc) \
drhbd9507c2014-08-23 17:21:37 +0000159 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
drhf4479502004-05-27 03:12:53 +0000160 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000161
162/*
danielk1977bd7e4602004-05-24 07:34:48 +0000163** An ephemeral string value (signified by the MEM_Ephem flag) contains
164** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000165** is responsible for deallocating that string. Because the register
166** does not control the string, it might be deleted without the register
167** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000168**
169** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000170** string that the register itself controls. In other words, it
drhc91b2fd2014-03-01 18:13:23 +0000171** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
danielk1977bd7e4602004-05-24 07:34:48 +0000172*/
drhb21c8cd2007-08-21 19:33:56 +0000173#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000174 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000175 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000176
dan689ab892011-08-12 15:02:00 +0000177/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
drhc960dcb2015-11-20 19:22:01 +0000178#define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
danielk19778a6b5412004-05-24 07:04:25 +0000179
180/*
drhdfe88ec2008-11-03 20:55:06 +0000181** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000182** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000183*/
drhdfe88ec2008-11-03 20:55:06 +0000184static VdbeCursor *allocateCursor(
185 Vdbe *p, /* The virtual machine */
186 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000187 int nField, /* Number of fields in the table or index */
drhe4c88c02012-01-04 12:57:45 +0000188 int iDb, /* Database the cursor belongs to, or -1 */
drhc960dcb2015-11-20 19:22:01 +0000189 u8 eCurType /* Type of the new cursor */
danielk1977cd3e8f72008-03-25 09:47:35 +0000190){
191 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000192 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000193 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000194 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000195 **
196 ** * Sometimes cursor numbers are used for a couple of different
197 ** purposes in a vdbe program. The different uses might require
198 ** different sized allocations. Memory cells provide growable
199 ** allocations.
200 **
201 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
202 ** be freed lazily via the sqlite3_release_memory() API. This
203 ** minimizes the number of malloc calls made by the system.
204 **
drh3cdce922016-03-21 00:30:40 +0000205 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
drh9f6168b2016-03-19 23:32:58 +0000206 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
207 ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
danielk1977cd3e8f72008-03-25 09:47:35 +0000208 */
drh9f6168b2016-03-19 23:32:58 +0000209 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
danielk1977cd3e8f72008-03-25 09:47:35 +0000210
danielk19775f096132008-03-28 15:44:09 +0000211 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000212 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000213 nByte =
drh5cc10232013-11-21 01:04:02 +0000214 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
drhc960dcb2015-11-20 19:22:01 +0000215 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
danielk1977cd3e8f72008-03-25 09:47:35 +0000216
drh9f6168b2016-03-19 23:32:58 +0000217 assert( iCur>=0 && iCur<p->nCursor );
drh290c1942004-08-21 17:54:45 +0000218 if( p->apCsr[iCur] ){
danielk1977be718892006-06-23 08:05:19 +0000219 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000220 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000221 }
drh322f2852014-09-19 00:43:39 +0000222 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
drhdfe88ec2008-11-03 20:55:06 +0000223 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhf25a5072009-11-18 23:01:25 +0000224 memset(pCx, 0, sizeof(VdbeCursor));
drhc960dcb2015-11-20 19:22:01 +0000225 pCx->eCurType = eCurType;
danielk197794eb6a12005-12-15 15:22:08 +0000226 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000227 pCx->nField = nField;
drhb53a5a92014-10-12 22:37:22 +0000228 pCx->aOffset = &pCx->aType[nField];
drhc960dcb2015-11-20 19:22:01 +0000229 if( eCurType==CURTYPE_BTREE ){
230 pCx->uc.pCursor = (BtCursor*)
drh5cc10232013-11-21 01:04:02 +0000231 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
drhc960dcb2015-11-20 19:22:01 +0000232 sqlite3BtreeCursorZero(pCx->uc.pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000233 }
danielk197794eb6a12005-12-15 15:22:08 +0000234 }
drh4774b132004-06-12 20:12:51 +0000235 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000236}
237
danielk19773d1bfea2004-05-14 11:00:53 +0000238/*
drh29d72102006-02-09 22:13:41 +0000239** Try to convert a value into a numeric representation if we can
240** do so without loss of information. In other words, if the string
241** looks like a number, convert it into a number. If it does not
242** look like a number, leave it alone.
drhbd9507c2014-08-23 17:21:37 +0000243**
244** If the bTryForInt flag is true, then extra effort is made to give
245** an integer representation. Strings that look like floating point
246** values but which have no fractional component (example: '48.00')
247** will have a MEM_Int representation when bTryForInt is true.
248**
249** If bTryForInt is false, then if the input string contains a decimal
250** point or exponential notation, the result is only MEM_Real, even
251** if there is an exact integer representation of the quantity.
drh29d72102006-02-09 22:13:41 +0000252*/
drhbd9507c2014-08-23 17:21:37 +0000253static void applyNumericAffinity(Mem *pRec, int bTryForInt){
drh975b4c62014-07-26 16:47:23 +0000254 double rValue;
255 i64 iValue;
256 u8 enc = pRec->enc;
drh11a6eee2014-09-19 22:01:54 +0000257 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
drh975b4c62014-07-26 16:47:23 +0000258 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
259 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
260 pRec->u.i = iValue;
261 pRec->flags |= MEM_Int;
262 }else{
drh74eaba42014-09-18 17:52:15 +0000263 pRec->u.r = rValue;
drh975b4c62014-07-26 16:47:23 +0000264 pRec->flags |= MEM_Real;
drhbd9507c2014-08-23 17:21:37 +0000265 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000266 }
267}
268
269/*
drh8a512562005-11-14 22:29:05 +0000270** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000271**
drh8a512562005-11-14 22:29:05 +0000272** SQLITE_AFF_INTEGER:
273** SQLITE_AFF_REAL:
274** SQLITE_AFF_NUMERIC:
275** Try to convert pRec to an integer representation or a
276** floating-point representation if an integer representation
277** is not possible. Note that the integer representation is
278** always preferred, even if the affinity is REAL, because
279** an integer representation is more space efficient on disk.
280**
281** SQLITE_AFF_TEXT:
282** Convert pRec to a text representation.
283**
drh05883a32015-06-02 15:32:08 +0000284** SQLITE_AFF_BLOB:
drh8a512562005-11-14 22:29:05 +0000285** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000286*/
drh17435752007-08-16 04:30:38 +0000287static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000288 Mem *pRec, /* The value to apply affinity to */
289 char affinity, /* The affinity to be applied */
290 u8 enc /* Use this text encoding */
291){
drh7ea31cc2014-09-18 14:36:00 +0000292 if( affinity>=SQLITE_AFF_NUMERIC ){
drh8a512562005-11-14 22:29:05 +0000293 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
294 || affinity==SQLITE_AFF_NUMERIC );
drhbd9507c2014-08-23 17:21:37 +0000295 if( (pRec->flags & MEM_Int)==0 ){
296 if( (pRec->flags & MEM_Real)==0 ){
drh11a6eee2014-09-19 22:01:54 +0000297 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
drhbd9507c2014-08-23 17:21:37 +0000298 }else{
299 sqlite3VdbeIntegerAffinity(pRec);
300 }
drh17c40292004-07-21 02:53:29 +0000301 }
drh7ea31cc2014-09-18 14:36:00 +0000302 }else if( affinity==SQLITE_AFF_TEXT ){
danielk19773d1bfea2004-05-14 11:00:53 +0000303 /* Only attempt the conversion to TEXT if there is an integer or real
drhf4479502004-05-27 03:12:53 +0000304 ** representation (blob and NULL do not get converted) but no string
danielk19773d1bfea2004-05-14 11:00:53 +0000305 ** representation.
306 */
307 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
danielk19773d1bfea2004-05-14 11:00:53 +0000308 sqlite3VdbeMemStringify(pRec, enc, 1);
309 }
dandde548c2015-05-19 19:44:25 +0000310 pRec->flags &= ~(MEM_Real|MEM_Int);
danielk19773d1bfea2004-05-14 11:00:53 +0000311 }
312}
313
danielk1977aee18ef2005-03-09 12:26:50 +0000314/*
drh29d72102006-02-09 22:13:41 +0000315** Try to convert the type of a function argument or a result column
316** into a numeric representation. Use either INTEGER or REAL whichever
317** is appropriate. But only do the conversion if it is possible without
318** loss of information and return the revised type of the argument.
drh29d72102006-02-09 22:13:41 +0000319*/
320int sqlite3_value_numeric_type(sqlite3_value *pVal){
drh1b27b8c2014-02-10 03:21:57 +0000321 int eType = sqlite3_value_type(pVal);
322 if( eType==SQLITE_TEXT ){
323 Mem *pMem = (Mem*)pVal;
drhbd9507c2014-08-23 17:21:37 +0000324 applyNumericAffinity(pMem, 0);
drh1b27b8c2014-02-10 03:21:57 +0000325 eType = sqlite3_value_type(pVal);
drhe5a8a1d2010-11-18 12:31:24 +0000326 }
drh1b27b8c2014-02-10 03:21:57 +0000327 return eType;
drh29d72102006-02-09 22:13:41 +0000328}
329
330/*
danielk1977aee18ef2005-03-09 12:26:50 +0000331** Exported version of applyAffinity(). This one works on sqlite3_value*,
332** not the internal Mem* type.
333*/
danielk19771e536952007-08-16 10:09:01 +0000334void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000335 sqlite3_value *pVal,
336 u8 affinity,
337 u8 enc
338){
drhb21c8cd2007-08-21 19:33:56 +0000339 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000340}
341
drh3d1d90a2014-03-24 15:00:15 +0000342/*
drhf1a89ed2014-08-23 17:41:15 +0000343** pMem currently only holds a string type (or maybe a BLOB that we can
344** interpret as a string if we want to). Compute its corresponding
drh74eaba42014-09-18 17:52:15 +0000345** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
drhf1a89ed2014-08-23 17:41:15 +0000346** accordingly.
347*/
348static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
349 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
350 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
drh74eaba42014-09-18 17:52:15 +0000351 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
drhf1a89ed2014-08-23 17:41:15 +0000352 return 0;
353 }
354 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
355 return MEM_Int;
356 }
357 return MEM_Real;
358}
359
360/*
drh3d1d90a2014-03-24 15:00:15 +0000361** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
362** none.
363**
364** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
drh74eaba42014-09-18 17:52:15 +0000365** But it does set pMem->u.r and pMem->u.i appropriately.
drh3d1d90a2014-03-24 15:00:15 +0000366*/
367static u16 numericType(Mem *pMem){
368 if( pMem->flags & (MEM_Int|MEM_Real) ){
369 return pMem->flags & (MEM_Int|MEM_Real);
370 }
371 if( pMem->flags & (MEM_Str|MEM_Blob) ){
drhf1a89ed2014-08-23 17:41:15 +0000372 return computeNumericType(pMem);
drh3d1d90a2014-03-24 15:00:15 +0000373 }
374 return 0;
375}
376
danielk1977b5402fb2005-01-12 07:15:04 +0000377#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000378/*
danielk1977ca6b2912004-05-21 10:49:47 +0000379** Write a nice string representation of the contents of cell pMem
380** into buffer zBuf, length nBuf.
381*/
drh74161702006-02-24 02:53:49 +0000382void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000383 char *zCsr = zBuf;
384 int f = pMem->flags;
385
drh57196282004-10-06 15:41:16 +0000386 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000387
danielk1977ca6b2912004-05-21 10:49:47 +0000388 if( f&MEM_Blob ){
389 int i;
390 char c;
391 if( f & MEM_Dyn ){
392 c = 'z';
393 assert( (f & (MEM_Static|MEM_Ephem))==0 );
394 }else if( f & MEM_Static ){
395 c = 't';
396 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
397 }else if( f & MEM_Ephem ){
398 c = 'e';
399 assert( (f & (MEM_Static|MEM_Dyn))==0 );
400 }else{
401 c = 's';
402 }
403
drh5bb3eb92007-05-04 13:15:55 +0000404 sqlite3_snprintf(100, zCsr, "%c", c);
drhea678832008-12-10 19:26:22 +0000405 zCsr += sqlite3Strlen30(zCsr);
drh5bb3eb92007-05-04 13:15:55 +0000406 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000407 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000408 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000409 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000410 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000411 }
412 for(i=0; i<16 && i<pMem->n; i++){
413 char z = pMem->z[i];
414 if( z<32 || z>126 ) *zCsr++ = '.';
415 else *zCsr++ = z;
416 }
417
drhe718efe2007-05-10 21:14:03 +0000418 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000419 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000420 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000421 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000422 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000423 }
danielk1977b1bc9532004-05-22 03:05:33 +0000424 *zCsr = '\0';
425 }else if( f & MEM_Str ){
426 int j, k;
427 zBuf[0] = ' ';
428 if( f & MEM_Dyn ){
429 zBuf[1] = 'z';
430 assert( (f & (MEM_Static|MEM_Ephem))==0 );
431 }else if( f & MEM_Static ){
432 zBuf[1] = 't';
433 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
434 }else if( f & MEM_Ephem ){
435 zBuf[1] = 'e';
436 assert( (f & (MEM_Static|MEM_Dyn))==0 );
437 }else{
438 zBuf[1] = 's';
439 }
440 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000441 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000442 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000443 zBuf[k++] = '[';
444 for(j=0; j<15 && j<pMem->n; j++){
445 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000446 if( c>=0x20 && c<0x7f ){
447 zBuf[k++] = c;
448 }else{
449 zBuf[k++] = '.';
450 }
451 }
452 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000453 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000454 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000455 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000456 }
danielk1977ca6b2912004-05-21 10:49:47 +0000457}
458#endif
459
drh5b6afba2008-01-05 16:29:28 +0000460#ifdef SQLITE_DEBUG
461/*
462** Print the value of a register for tracing purposes:
463*/
drh84e55a82013-11-13 17:58:23 +0000464static void memTracePrint(Mem *p){
drha5750cf2014-02-07 13:20:31 +0000465 if( p->flags & MEM_Undefined ){
drh84e55a82013-11-13 17:58:23 +0000466 printf(" undefined");
drh953f7612012-12-07 22:18:54 +0000467 }else if( p->flags & MEM_Null ){
drh84e55a82013-11-13 17:58:23 +0000468 printf(" NULL");
drh5b6afba2008-01-05 16:29:28 +0000469 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
drh84e55a82013-11-13 17:58:23 +0000470 printf(" si:%lld", p->u.i);
drh5b6afba2008-01-05 16:29:28 +0000471 }else if( p->flags & MEM_Int ){
drh84e55a82013-11-13 17:58:23 +0000472 printf(" i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000473#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000474 }else if( p->flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +0000475 printf(" r:%g", p->u.r);
drh0b3bf922009-06-15 20:45:34 +0000476#endif
drh733bf1b2009-04-22 00:47:00 +0000477 }else if( p->flags & MEM_RowSet ){
drh84e55a82013-11-13 17:58:23 +0000478 printf(" (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000479 }else{
480 char zBuf[200];
481 sqlite3VdbeMemPrettyPrint(p, zBuf);
drh84e55a82013-11-13 17:58:23 +0000482 printf(" %s", zBuf);
drh5b6afba2008-01-05 16:29:28 +0000483 }
dan5b6c8e42016-01-30 15:46:03 +0000484 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
drh5b6afba2008-01-05 16:29:28 +0000485}
drh84e55a82013-11-13 17:58:23 +0000486static void registerTrace(int iReg, Mem *p){
487 printf("REG[%d] = ", iReg);
488 memTracePrint(p);
489 printf("\n");
drh5b6afba2008-01-05 16:29:28 +0000490}
491#endif
492
493#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000494# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
drh5b6afba2008-01-05 16:29:28 +0000495#else
496# define REGISTER_TRACE(R,M)
497#endif
498
danielk197784ac9d02004-05-18 09:58:06 +0000499
drh7b396862003-01-01 23:06:20 +0000500#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000501
502/*
503** hwtime.h contains inline assembler code for implementing
504** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000505*/
shane9bcbdad2008-05-29 20:22:37 +0000506#include "hwtime.h"
507
drh7b396862003-01-01 23:06:20 +0000508#endif
509
danielk1977fd7f0452008-12-17 17:30:26 +0000510#ifndef NDEBUG
511/*
512** This function is only called from within an assert() expression. It
513** checks that the sqlite3.nTransaction variable is correctly set to
514** the number of non-transaction savepoints currently in the
515** linked list starting at sqlite3.pSavepoint.
516**
517** Usage:
518**
519** assert( checkSavepointCount(db) );
520*/
521static int checkSavepointCount(sqlite3 *db){
522 int n = 0;
523 Savepoint *p;
524 for(p=db->pSavepoint; p; p=p->pNext) n++;
525 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
526 return 1;
527}
528#endif
529
drh27a348c2015-04-13 19:14:06 +0000530/*
531** Return the register of pOp->p2 after first preparing it to be
532** overwritten with an integer value.
drh9eef8c62015-10-15 17:31:41 +0000533*/
534static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
535 sqlite3VdbeMemSetNull(pOut);
536 pOut->flags = MEM_Int;
537 return pOut;
538}
drh27a348c2015-04-13 19:14:06 +0000539static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
540 Mem *pOut;
541 assert( pOp->p2>0 );
drh9f6168b2016-03-19 23:32:58 +0000542 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
drh27a348c2015-04-13 19:14:06 +0000543 pOut = &p->aMem[pOp->p2];
544 memAboutToChange(p, pOut);
drh9eef8c62015-10-15 17:31:41 +0000545 if( VdbeMemDynamic(pOut) ){
546 return out2PrereleaseWithClear(pOut);
547 }else{
548 pOut->flags = MEM_Int;
549 return pOut;
550 }
drh27a348c2015-04-13 19:14:06 +0000551}
552
drhb9755982010-07-24 16:34:37 +0000553
554/*
drh0fd61352014-02-07 02:29:45 +0000555** Execute as much of a VDBE program as we can.
556** This is the core of sqlite3_step().
drhb86ccfb2003-01-28 23:13:10 +0000557*/
danielk19774adee202004-05-08 08:23:19 +0000558int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000559 Vdbe *p /* The VDBE */
560){
drhbbe879d2009-11-14 18:04:35 +0000561 Op *aOp = p->aOp; /* Copy of p->aOp */
drhf56fa462015-04-13 21:39:54 +0000562 Op *pOp = aOp; /* Current operation */
drh6dc41482015-04-16 17:31:02 +0000563#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
564 Op *pOrigOp; /* Value of pOp at the top of the loop */
565#endif
drhb89aeb62016-01-27 15:49:32 +0000566#ifdef SQLITE_DEBUG
drhdef19e32016-01-27 16:26:25 +0000567 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */
drhb89aeb62016-01-27 15:49:32 +0000568#endif
drhb86ccfb2003-01-28 23:13:10 +0000569 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000570 sqlite3 *db = p->db; /* The database */
drhcdf011d2011-04-04 21:25:28 +0000571 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
drh8079a0d2006-01-12 17:20:50 +0000572 u8 encoding = ENC(db); /* The database encoding */
drhbf159fa2013-06-25 22:01:22 +0000573 int iCompare = 0; /* Result of last OP_Compare operation */
574 unsigned nVmStep = 0; /* Number of virtual machine steps */
drh49afe3a2013-07-10 03:05:14 +0000575#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
drh323df792013-08-05 19:11:29 +0000576 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
drh49afe3a2013-07-10 03:05:14 +0000577#endif
drha6c2ed92009-11-14 23:22:23 +0000578 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000579 Mem *pIn1 = 0; /* 1st input operand */
580 Mem *pIn2 = 0; /* 2nd input operand */
581 Mem *pIn3 = 0; /* 3rd input operand */
582 Mem *pOut = 0; /* Output operand */
shanebe217792009-03-05 04:20:31 +0000583 int *aPermute = 0; /* Permutation of columns for OP_Compare */
drh99a66922011-05-13 18:51:42 +0000584 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
drhb86ccfb2003-01-28 23:13:10 +0000585#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000586 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000587#endif
drh856c1032009-06-02 15:21:42 +0000588 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000589
drhca48c902008-01-18 14:08:24 +0000590 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
drhbdaec522011-04-04 00:14:43 +0000591 sqlite3VdbeEnter(p);
danielk19772e588c72005-12-09 14:25:08 +0000592 if( p->rc==SQLITE_NOMEM ){
593 /* This happens if a malloc() inside a call to sqlite3_column_text() or
594 ** sqlite3_column_text16() failed. */
595 goto no_mem;
596 }
drhcbd8db32015-08-20 17:18:32 +0000597 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
drh1713afb2013-06-28 01:24:57 +0000598 assert( p->bIsReader || p->readOnly!=0 );
drh3a840692003-01-29 22:58:26 +0000599 p->rc = SQLITE_OK;
drh95a7b3e2013-09-16 12:57:19 +0000600 p->iCurrentTime = 0;
drhb86ccfb2003-01-28 23:13:10 +0000601 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000602 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000603 db->busyHandler.nBusy = 0;
drh0fd61352014-02-07 02:29:45 +0000604 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh602c2372007-03-01 00:29:13 +0000605 sqlite3VdbeIOTraceSql(p);
drh0d1961e2013-07-25 16:27:51 +0000606#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
607 if( db->xProgress ){
drh6cbbdb02015-06-24 14:36:27 +0000608 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
drh0d1961e2013-07-25 16:27:51 +0000609 assert( 0 < db->nProgressOps );
drh6cbbdb02015-06-24 14:36:27 +0000610 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
drh0d1961e2013-07-25 16:27:51 +0000611 }
612#endif
drh3c23a882007-01-09 14:01:13 +0000613#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000614 sqlite3BeginBenignMalloc();
drh84e55a82013-11-13 17:58:23 +0000615 if( p->pc==0
616 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
617 ){
drh3c23a882007-01-09 14:01:13 +0000618 int i;
drh84e55a82013-11-13 17:58:23 +0000619 int once = 1;
drh3c23a882007-01-09 14:01:13 +0000620 sqlite3VdbePrintSql(p);
drh84e55a82013-11-13 17:58:23 +0000621 if( p->db->flags & SQLITE_VdbeListing ){
622 printf("VDBE Program Listing:\n");
623 for(i=0; i<p->nOp; i++){
624 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
625 }
drh3c23a882007-01-09 14:01:13 +0000626 }
drh84e55a82013-11-13 17:58:23 +0000627 if( p->db->flags & SQLITE_VdbeEQP ){
628 for(i=0; i<p->nOp; i++){
629 if( aOp[i].opcode==OP_Explain ){
630 if( once ) printf("VDBE Query Plan:\n");
631 printf("%s\n", aOp[i].p4.z);
632 once = 0;
633 }
634 }
635 }
636 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
drh3c23a882007-01-09 14:01:13 +0000637 }
danielk19772d1d86f2008-06-20 14:59:51 +0000638 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000639#endif
drh9467abf2016-02-17 18:44:11 +0000640 for(pOp=&aOp[p->pc]; 1; pOp++){
641 /* Errors are detected by individual opcodes, with an immediate
642 ** jumps to abort_due_to_error. */
643 assert( rc==SQLITE_OK );
644
drhf56fa462015-04-13 21:39:54 +0000645 assert( pOp>=aOp && pOp<&aOp[p->nOp]);
drh7b396862003-01-01 23:06:20 +0000646#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000647 start = sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000648#endif
drhbf159fa2013-06-25 22:01:22 +0000649 nVmStep++;
dan6f9702e2014-11-01 20:38:06 +0000650#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
drhf56fa462015-04-13 21:39:54 +0000651 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
dan6f9702e2014-11-01 20:38:06 +0000652#endif
drh6e142f52000-06-08 13:36:40 +0000653
danielk19778b60e0f2005-01-12 09:10:39 +0000654 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000655 */
danielk19778b60e0f2005-01-12 09:10:39 +0000656#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000657 if( db->flags & SQLITE_VdbeTrace ){
drhf56fa462015-04-13 21:39:54 +0000658 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
drh75897232000-05-29 14:26:00 +0000659 }
drh3f7d4e42004-07-24 14:35:58 +0000660#endif
661
drh6e142f52000-06-08 13:36:40 +0000662
drhf6038712004-02-08 18:07:34 +0000663 /* Check to see if we need to simulate an interrupt. This only happens
664 ** if we have a special test build.
665 */
666#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000667 if( sqlite3_interrupt_count>0 ){
668 sqlite3_interrupt_count--;
669 if( sqlite3_interrupt_count==0 ){
670 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000671 }
672 }
673#endif
674
drh3c657212009-11-17 23:59:58 +0000675 /* Sanity checking on other operands */
676#ifdef SQLITE_DEBUG
drh27a348c2015-04-13 19:14:06 +0000677 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
drh3c657212009-11-17 23:59:58 +0000678 if( (pOp->opflags & OPFLG_IN1)!=0 ){
679 assert( pOp->p1>0 );
drh9f6168b2016-03-19 23:32:58 +0000680 assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000681 assert( memIsValid(&aMem[pOp->p1]) );
drh75fd0542014-03-01 16:24:44 +0000682 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
drh3c657212009-11-17 23:59:58 +0000683 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
684 }
685 if( (pOp->opflags & OPFLG_IN2)!=0 ){
686 assert( pOp->p2>0 );
drh9f6168b2016-03-19 23:32:58 +0000687 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000688 assert( memIsValid(&aMem[pOp->p2]) );
drh75fd0542014-03-01 16:24:44 +0000689 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
drh3c657212009-11-17 23:59:58 +0000690 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
691 }
692 if( (pOp->opflags & OPFLG_IN3)!=0 ){
693 assert( pOp->p3>0 );
drh9f6168b2016-03-19 23:32:58 +0000694 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000695 assert( memIsValid(&aMem[pOp->p3]) );
drh75fd0542014-03-01 16:24:44 +0000696 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
drh3c657212009-11-17 23:59:58 +0000697 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
698 }
699 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
700 assert( pOp->p2>0 );
drh9f6168b2016-03-19 23:32:58 +0000701 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000702 memAboutToChange(p, &aMem[pOp->p2]);
drh3c657212009-11-17 23:59:58 +0000703 }
704 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
705 assert( pOp->p3>0 );
drh9f6168b2016-03-19 23:32:58 +0000706 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000707 memAboutToChange(p, &aMem[pOp->p3]);
drh3c657212009-11-17 23:59:58 +0000708 }
709#endif
drh6dc41482015-04-16 17:31:02 +0000710#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
711 pOrigOp = pOp;
712#endif
drh93952eb2009-11-13 19:43:43 +0000713
drh75897232000-05-29 14:26:00 +0000714 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000715
drh5e00f6c2001-09-13 13:46:56 +0000716/*****************************************************************************
717** What follows is a massive switch statement where each case implements a
718** separate instruction in the virtual machine. If we follow the usual
719** indentation conventions, each case should be indented by 6 spaces. But
720** that is a lot of wasted space on the left margin. So the code within
721** the switch statement will break with convention and be flush-left. Another
722** big comment (similar to this one) will mark the point in the code where
723** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000724**
725** The formatting of each case is important. The makefile for SQLite
726** generates two C files "opcodes.h" and "opcodes.c" by scanning this
727** file looking for lines that begin with "case OP_". The opcodes.h files
728** will be filled with #defines that give unique integer values to each
729** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000730** each string is the symbolic name for the corresponding opcode. If the
731** case statement is followed by a comment of the form "/# same as ... #/"
732** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000733**
drh9cbf3422008-01-17 16:22:13 +0000734** Other keywords in the comment that follows each case are used to
735** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
drh27a348c2015-04-13 19:14:06 +0000736** Keywords include: in1, in2, in3, out2, out3. See
drh9cbf3422008-01-17 16:22:13 +0000737** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000738**
drhac82fcf2002-09-08 17:23:41 +0000739** Documentation about VDBE opcodes is generated by scanning this file
740** for lines of that contain "Opcode:". That line and all subsequent
741** comment lines are used in the generation of the opcode.html documentation
742** file.
743**
744** SUMMARY:
745**
746** Formatting is important to scripts that scan this file.
747** Do not deviate from the formatting style currently in use.
748**
drh5e00f6c2001-09-13 13:46:56 +0000749*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000750
drh9cbf3422008-01-17 16:22:13 +0000751/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000752**
753** An unconditional jump to address P2.
754** The next instruction executed will be
755** the one at index P2 from the beginning of
756** the program.
drhfe705102014-03-06 13:38:37 +0000757**
758** The P1 parameter is not actually used by this opcode. However, it
759** is sometimes set to 1 instead of 0 as a hint to the command-line shell
760** that this Goto is the bottom of a loop and that the lines from P2 down
761** to the current line should be indented for EXPLAIN output.
drh5e00f6c2001-09-13 13:46:56 +0000762*/
drh9cbf3422008-01-17 16:22:13 +0000763case OP_Goto: { /* jump */
drhf56fa462015-04-13 21:39:54 +0000764jump_to_p2_and_check_for_interrupt:
765 pOp = &aOp[pOp->p2 - 1];
drh49afe3a2013-07-10 03:05:14 +0000766
767 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
768 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
769 ** completion. Check to see if sqlite3_interrupt() has been called
770 ** or if the progress callback needs to be invoked.
771 **
772 ** This code uses unstructured "goto" statements and does not look clean.
773 ** But that is not due to sloppy coding habits. The code is written this
774 ** way for performance, to avoid having to run the interrupt and progress
775 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
776 ** faster according to "valgrind --tool=cachegrind" */
777check_for_interrupt:
drh0fd61352014-02-07 02:29:45 +0000778 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh49afe3a2013-07-10 03:05:14 +0000779#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
780 /* Call the progress callback if it is configured and the required number
781 ** of VDBE ops have been executed (either since this invocation of
782 ** sqlite3VdbeExec() or since last time the progress callback was called).
783 ** If the progress callback returns non-zero, exit the virtual machine with
784 ** a return code SQLITE_ABORT.
785 */
drh0d1961e2013-07-25 16:27:51 +0000786 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
drh400fcba2013-11-14 00:09:48 +0000787 assert( db->nProgressOps!=0 );
788 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
789 if( db->xProgress(db->pProgressArg) ){
drh49afe3a2013-07-10 03:05:14 +0000790 rc = SQLITE_INTERRUPT;
drh9467abf2016-02-17 18:44:11 +0000791 goto abort_due_to_error;
drh49afe3a2013-07-10 03:05:14 +0000792 }
drh49afe3a2013-07-10 03:05:14 +0000793 }
794#endif
795
drh5e00f6c2001-09-13 13:46:56 +0000796 break;
797}
drh75897232000-05-29 14:26:00 +0000798
drh2eb95372008-06-06 15:04:36 +0000799/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000800**
drh2eb95372008-06-06 15:04:36 +0000801** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000802** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000803*/
drhb8475df2011-12-09 16:21:19 +0000804case OP_Gosub: { /* jump */
drh9f6168b2016-03-19 23:32:58 +0000805 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drh3c657212009-11-17 23:59:58 +0000806 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000807 assert( VdbeMemDynamic(pIn1)==0 );
drh2b4ded92010-09-27 21:09:31 +0000808 memAboutToChange(p, pIn1);
drh2eb95372008-06-06 15:04:36 +0000809 pIn1->flags = MEM_Int;
drhf56fa462015-04-13 21:39:54 +0000810 pIn1->u.i = (int)(pOp-aOp);
drh2eb95372008-06-06 15:04:36 +0000811 REGISTER_TRACE(pOp->p1, pIn1);
drhf56fa462015-04-13 21:39:54 +0000812
813 /* Most jump operations do a goto to this spot in order to update
814 ** the pOp pointer. */
815jump_to_p2:
816 pOp = &aOp[pOp->p2 - 1];
drh8c74a8c2002-08-25 19:20:40 +0000817 break;
818}
819
drh2eb95372008-06-06 15:04:36 +0000820/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000821**
drh81cf13e2014-02-07 18:27:53 +0000822** Jump to the next instruction after the address in register P1. After
823** the jump, register P1 becomes undefined.
drh8c74a8c2002-08-25 19:20:40 +0000824*/
drh2eb95372008-06-06 15:04:36 +0000825case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000826 pIn1 = &aMem[pOp->p1];
drh81cf13e2014-02-07 18:27:53 +0000827 assert( pIn1->flags==MEM_Int );
drhf56fa462015-04-13 21:39:54 +0000828 pOp = &aOp[pIn1->u.i];
drh81cf13e2014-02-07 18:27:53 +0000829 pIn1->flags = MEM_Undefined;
drh8c74a8c2002-08-25 19:20:40 +0000830 break;
831}
832
drhed71a832014-02-07 19:18:10 +0000833/* Opcode: InitCoroutine P1 P2 P3 * *
drh81cf13e2014-02-07 18:27:53 +0000834**
drh5dad9a32014-07-25 18:37:42 +0000835** Set up register P1 so that it will Yield to the coroutine
drhed71a832014-02-07 19:18:10 +0000836** located at address P3.
837**
drh5dad9a32014-07-25 18:37:42 +0000838** If P2!=0 then the coroutine implementation immediately follows
839** this opcode. So jump over the coroutine implementation to
drhed71a832014-02-07 19:18:10 +0000840** address P2.
drh5dad9a32014-07-25 18:37:42 +0000841**
842** See also: EndCoroutine
drh81cf13e2014-02-07 18:27:53 +0000843*/
844case OP_InitCoroutine: { /* jump */
drh9f6168b2016-03-19 23:32:58 +0000845 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drhed71a832014-02-07 19:18:10 +0000846 assert( pOp->p2>=0 && pOp->p2<p->nOp );
847 assert( pOp->p3>=0 && pOp->p3<p->nOp );
drh81cf13e2014-02-07 18:27:53 +0000848 pOut = &aMem[pOp->p1];
drhed71a832014-02-07 19:18:10 +0000849 assert( !VdbeMemDynamic(pOut) );
850 pOut->u.i = pOp->p3 - 1;
drh81cf13e2014-02-07 18:27:53 +0000851 pOut->flags = MEM_Int;
drhf56fa462015-04-13 21:39:54 +0000852 if( pOp->p2 ) goto jump_to_p2;
drh81cf13e2014-02-07 18:27:53 +0000853 break;
854}
855
856/* Opcode: EndCoroutine P1 * * * *
857**
drhbc5cf382014-08-06 01:08:07 +0000858** The instruction at the address in register P1 is a Yield.
drh5dad9a32014-07-25 18:37:42 +0000859** Jump to the P2 parameter of that Yield.
drh81cf13e2014-02-07 18:27:53 +0000860** After the jump, register P1 becomes undefined.
drh5dad9a32014-07-25 18:37:42 +0000861**
862** See also: InitCoroutine
drh81cf13e2014-02-07 18:27:53 +0000863*/
864case OP_EndCoroutine: { /* in1 */
865 VdbeOp *pCaller;
866 pIn1 = &aMem[pOp->p1];
867 assert( pIn1->flags==MEM_Int );
868 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
869 pCaller = &aOp[pIn1->u.i];
870 assert( pCaller->opcode==OP_Yield );
871 assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
drhf56fa462015-04-13 21:39:54 +0000872 pOp = &aOp[pCaller->p2 - 1];
drh81cf13e2014-02-07 18:27:53 +0000873 pIn1->flags = MEM_Undefined;
874 break;
875}
876
877/* Opcode: Yield P1 P2 * * *
drhe00ee6e2008-06-20 15:24:01 +0000878**
drh5dad9a32014-07-25 18:37:42 +0000879** Swap the program counter with the value in register P1. This
880** has the effect of yielding to a coroutine.
drh81cf13e2014-02-07 18:27:53 +0000881**
drh5dad9a32014-07-25 18:37:42 +0000882** If the coroutine that is launched by this instruction ends with
883** Yield or Return then continue to the next instruction. But if
884** the coroutine launched by this instruction ends with
885** EndCoroutine, then jump to P2 rather than continuing with the
886** next instruction.
887**
888** See also: InitCoroutine
drhe00ee6e2008-06-20 15:24:01 +0000889*/
drh81cf13e2014-02-07 18:27:53 +0000890case OP_Yield: { /* in1, jump */
drhe00ee6e2008-06-20 15:24:01 +0000891 int pcDest;
drh3c657212009-11-17 23:59:58 +0000892 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000893 assert( VdbeMemDynamic(pIn1)==0 );
drhe00ee6e2008-06-20 15:24:01 +0000894 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000895 pcDest = (int)pIn1->u.i;
drhf56fa462015-04-13 21:39:54 +0000896 pIn1->u.i = (int)(pOp - aOp);
drhe00ee6e2008-06-20 15:24:01 +0000897 REGISTER_TRACE(pOp->p1, pIn1);
drhf56fa462015-04-13 21:39:54 +0000898 pOp = &aOp[pcDest];
drhe00ee6e2008-06-20 15:24:01 +0000899 break;
900}
901
drhf9c8ce32013-11-05 13:33:55 +0000902/* Opcode: HaltIfNull P1 P2 P3 P4 P5
drh0fd61352014-02-07 02:29:45 +0000903** Synopsis: if r[P3]=null halt
drh5053a792009-02-20 03:02:23 +0000904**
drhef8662b2011-06-20 21:47:58 +0000905** Check the value in register P3. If it is NULL then Halt using
drh5053a792009-02-20 03:02:23 +0000906** parameter P1, P2, and P4 as if this were a Halt instruction. If the
907** value in register P3 is not NULL, then this routine is a no-op.
drhf9c8ce32013-11-05 13:33:55 +0000908** The P5 parameter should be 1.
drh5053a792009-02-20 03:02:23 +0000909*/
910case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000911 pIn3 = &aMem[pOp->p3];
drh5053a792009-02-20 03:02:23 +0000912 if( (pIn3->flags & MEM_Null)==0 ) break;
913 /* Fall through into OP_Halt */
914}
drhe00ee6e2008-06-20 15:24:01 +0000915
drhf9c8ce32013-11-05 13:33:55 +0000916/* Opcode: Halt P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +0000917**
drh3d4501e2008-12-04 20:40:10 +0000918** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000919** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000920**
drh92f02c32004-09-02 14:57:08 +0000921** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
922** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
923** For errors, it can be some other value. If P1!=0 then P2 will determine
924** whether or not to rollback the current transaction. Do not rollback
925** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
926** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000927** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000928**
drh66a51672008-01-03 00:01:23 +0000929** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000930**
drhf9c8ce32013-11-05 13:33:55 +0000931** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
932**
933** 0: (no change)
934** 1: NOT NULL contraint failed: P4
935** 2: UNIQUE constraint failed: P4
936** 3: CHECK constraint failed: P4
937** 4: FOREIGN KEY constraint failed: P4
938**
939** If P5 is not zero and P4 is NULL, then everything after the ":" is
940** omitted.
941**
drh9cfcf5d2002-01-29 18:41:24 +0000942** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000943** every program. So a jump past the last instruction of the program
944** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000945*/
drh9cbf3422008-01-17 16:22:13 +0000946case OP_Halt: {
drhf9c8ce32013-11-05 13:33:55 +0000947 const char *zType;
948 const char *zLogFmt;
drhf56fa462015-04-13 21:39:54 +0000949 VdbeFrame *pFrame;
950 int pcx;
drhf9c8ce32013-11-05 13:33:55 +0000951
drhf56fa462015-04-13 21:39:54 +0000952 pcx = (int)(pOp - aOp);
dan165921a2009-08-28 18:53:45 +0000953 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000954 /* Halt the sub-program. Return control to the parent frame. */
drhf56fa462015-04-13 21:39:54 +0000955 pFrame = p->pFrame;
dan165921a2009-08-28 18:53:45 +0000956 p->pFrame = pFrame->pParent;
957 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000958 sqlite3VdbeSetChanges(db, p->nChange);
drhf56fa462015-04-13 21:39:54 +0000959 pcx = sqlite3VdbeFrameRestore(pFrame);
drh99a66922011-05-13 18:51:42 +0000960 lastRowid = db->lastRowid;
dan165921a2009-08-28 18:53:45 +0000961 if( pOp->p2==OE_Ignore ){
drhf56fa462015-04-13 21:39:54 +0000962 /* Instruction pcx is the OP_Program that invoked the sub-program
dan2832ad42009-08-31 15:27:27 +0000963 ** currently being halted. If the p2 instruction of this OP_Halt
964 ** instruction is set to OE_Ignore, then the sub-program is throwing
965 ** an IGNORE exception. In this case jump to the address specified
966 ** as the p2 of the calling OP_Program. */
drhf56fa462015-04-13 21:39:54 +0000967 pcx = p->aOp[pcx].p2-1;
dan165921a2009-08-28 18:53:45 +0000968 }
drhbbe879d2009-11-14 18:04:35 +0000969 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000970 aMem = p->aMem;
drhf56fa462015-04-13 21:39:54 +0000971 pOp = &aOp[pcx];
dan165921a2009-08-28 18:53:45 +0000972 break;
973 }
drh92f02c32004-09-02 14:57:08 +0000974 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000975 p->errorAction = (u8)pOp->p2;
drhf56fa462015-04-13 21:39:54 +0000976 p->pc = pcx;
drhf9c8ce32013-11-05 13:33:55 +0000977 if( p->rc ){
drhd9b7ec92013-11-06 14:05:21 +0000978 if( pOp->p5 ){
979 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
980 "FOREIGN KEY" };
981 assert( pOp->p5>=1 && pOp->p5<=4 );
982 testcase( pOp->p5==1 );
983 testcase( pOp->p5==2 );
984 testcase( pOp->p5==3 );
985 testcase( pOp->p5==4 );
986 zType = azType[pOp->p5-1];
987 }else{
988 zType = 0;
989 }
drh4308e342013-11-11 16:55:52 +0000990 assert( zType!=0 || pOp->p4.z!=0 );
drhf9c8ce32013-11-05 13:33:55 +0000991 zLogFmt = "abort at %d in [%s]: %s";
992 if( zType && pOp->p4.z ){
drh22c17b82015-05-15 04:13:15 +0000993 sqlite3VdbeError(p, "%s constraint failed: %s", zType, pOp->p4.z);
drhf9c8ce32013-11-05 13:33:55 +0000994 }else if( pOp->p4.z ){
drh22c17b82015-05-15 04:13:15 +0000995 sqlite3VdbeError(p, "%s", pOp->p4.z);
drhf9c8ce32013-11-05 13:33:55 +0000996 }else{
drh22c17b82015-05-15 04:13:15 +0000997 sqlite3VdbeError(p, "%s constraint failed", zType);
drhf9c8ce32013-11-05 13:33:55 +0000998 }
drhf56fa462015-04-13 21:39:54 +0000999 sqlite3_log(pOp->p1, zLogFmt, pcx, p->zSql, p->zErrMsg);
drh9cfcf5d2002-01-29 18:41:24 +00001000 }
drh92f02c32004-09-02 14:57:08 +00001001 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +00001002 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +00001003 if( rc==SQLITE_BUSY ){
drh900b31e2007-08-28 02:27:51 +00001004 p->rc = rc = SQLITE_BUSY;
1005 }else{
drhd91c1a12013-02-09 13:58:25 +00001006 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
dancb3e4b72013-07-03 19:53:05 +00001007 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
drh900b31e2007-08-28 02:27:51 +00001008 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +00001009 }
drh900b31e2007-08-28 02:27:51 +00001010 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +00001011}
drhc61053b2000-06-04 12:58:36 +00001012
drh4c583122008-01-04 22:01:03 +00001013/* Opcode: Integer P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001014** Synopsis: r[P2]=P1
drh5e00f6c2001-09-13 13:46:56 +00001015**
drh9cbf3422008-01-17 16:22:13 +00001016** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +00001017*/
drh27a348c2015-04-13 19:14:06 +00001018case OP_Integer: { /* out2 */
1019 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001020 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +00001021 break;
1022}
1023
drh4c583122008-01-04 22:01:03 +00001024/* Opcode: Int64 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001025** Synopsis: r[P2]=P4
drh29dda4a2005-07-21 18:23:20 +00001026**
drh66a51672008-01-03 00:01:23 +00001027** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +00001028** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +00001029*/
drh27a348c2015-04-13 19:14:06 +00001030case OP_Int64: { /* out2 */
1031 pOut = out2Prerelease(p, pOp);
danielk19772dca4ac2008-01-03 11:50:29 +00001032 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +00001033 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +00001034 break;
1035}
drh4f26d6c2004-05-26 23:25:30 +00001036
drh13573c72010-01-12 17:04:07 +00001037#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +00001038/* Opcode: Real * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001039** Synopsis: r[P2]=P4
drhf4479502004-05-27 03:12:53 +00001040**
drh4c583122008-01-04 22:01:03 +00001041** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +00001042** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +00001043*/
drh27a348c2015-04-13 19:14:06 +00001044case OP_Real: { /* same as TK_FLOAT, out2 */
1045 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001046 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +00001047 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh74eaba42014-09-18 17:52:15 +00001048 pOut->u.r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +00001049 break;
1050}
drh13573c72010-01-12 17:04:07 +00001051#endif
danielk1977cbb18d22004-05-28 11:37:27 +00001052
drh3c84ddf2008-01-09 02:15:38 +00001053/* Opcode: String8 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001054** Synopsis: r[P2]='P4'
danielk1977cbb18d22004-05-28 11:37:27 +00001055**
drh66a51672008-01-03 00:01:23 +00001056** P4 points to a nul terminated UTF-8 string. This opcode is transformed
drhf07cf6e2015-03-06 16:45:16 +00001057** into a String opcode before it is executed for the first time. During
drh0fd61352014-02-07 02:29:45 +00001058** this transformation, the length of string P4 is computed and stored
1059** as the P1 parameter.
danielk1977cbb18d22004-05-28 11:37:27 +00001060*/
drh27a348c2015-04-13 19:14:06 +00001061case OP_String8: { /* same as TK_STRING, out2 */
danielk19772dca4ac2008-01-03 11:50:29 +00001062 assert( pOp->p4.z!=0 );
drh27a348c2015-04-13 19:14:06 +00001063 pOut = out2Prerelease(p, pOp);
drhed2df7f2005-11-16 04:34:32 +00001064 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +00001065 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +00001066
1067#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +00001068 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +00001069 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
drh9467abf2016-02-17 18:44:11 +00001070 if( rc ){
1071 assert( rc==SQLITE_TOOBIG ); /* This is the only possible error here */
1072 goto too_big;
1073 }
drh4c583122008-01-04 22:01:03 +00001074 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh17bcb102014-09-18 21:25:33 +00001075 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
drhc91b2fd2014-03-01 18:13:23 +00001076 assert( VdbeMemDynamic(pOut)==0 );
drh17bcb102014-09-18 21:25:33 +00001077 pOut->szMalloc = 0;
drh4c583122008-01-04 22:01:03 +00001078 pOut->flags |= MEM_Static;
drh66a51672008-01-03 00:01:23 +00001079 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +00001080 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +00001081 }
drh66a51672008-01-03 00:01:23 +00001082 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +00001083 pOp->p4.z = pOut->z;
1084 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +00001085 }
danielk197793758c82005-01-21 08:13:14 +00001086#endif
drhbb4957f2008-03-20 14:03:29 +00001087 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +00001088 goto too_big;
1089 }
1090 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +00001091}
drhf4479502004-05-27 03:12:53 +00001092
drhf07cf6e2015-03-06 16:45:16 +00001093/* Opcode: String P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00001094** Synopsis: r[P2]='P4' (len=P1)
drhf4479502004-05-27 03:12:53 +00001095**
drh9cbf3422008-01-17 16:22:13 +00001096** The string value P4 of length P1 (bytes) is stored in register P2.
drhf07cf6e2015-03-06 16:45:16 +00001097**
1098** If P5!=0 and the content of register P3 is greater than zero, then
drha9c18a92015-03-06 20:49:52 +00001099** the datatype of the register P2 is converted to BLOB. The content is
1100** the same sequence of bytes, it is merely interpreted as a BLOB instead
1101** of a string, as if it had been CAST.
drhf4479502004-05-27 03:12:53 +00001102*/
drh27a348c2015-04-13 19:14:06 +00001103case OP_String: { /* out2 */
danielk19772dca4ac2008-01-03 11:50:29 +00001104 assert( pOp->p4.z!=0 );
drh27a348c2015-04-13 19:14:06 +00001105 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001106 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1107 pOut->z = pOp->p4.z;
1108 pOut->n = pOp->p1;
1109 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001110 UPDATE_MAX_BLOBSIZE(pOut);
drh41d2e662015-12-01 21:23:07 +00001111#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
drhf07cf6e2015-03-06 16:45:16 +00001112 if( pOp->p5 ){
1113 assert( pOp->p3>0 );
drh9f6168b2016-03-19 23:32:58 +00001114 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drhf07cf6e2015-03-06 16:45:16 +00001115 pIn3 = &aMem[pOp->p3];
1116 assert( pIn3->flags & MEM_Int );
1117 if( pIn3->u.i ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1118 }
drh41d2e662015-12-01 21:23:07 +00001119#endif
danielk1977c572ef72004-05-27 09:28:41 +00001120 break;
1121}
1122
drh053a1282012-09-19 21:15:46 +00001123/* Opcode: Null P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001124** Synopsis: r[P2..P3]=NULL
drhf0863fe2005-06-12 21:35:51 +00001125**
drhb8475df2011-12-09 16:21:19 +00001126** Write a NULL into registers P2. If P3 greater than P2, then also write
drh053a1282012-09-19 21:15:46 +00001127** NULL into register P3 and every register in between P2 and P3. If P3
drhb8475df2011-12-09 16:21:19 +00001128** is less than P2 (typically P3 is zero) then only register P2 is
drh053a1282012-09-19 21:15:46 +00001129** set to NULL.
1130**
1131** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1132** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1133** OP_Ne or OP_Eq.
drhf0863fe2005-06-12 21:35:51 +00001134*/
drh27a348c2015-04-13 19:14:06 +00001135case OP_Null: { /* out2 */
drhb8475df2011-12-09 16:21:19 +00001136 int cnt;
drh053a1282012-09-19 21:15:46 +00001137 u16 nullFlag;
drh27a348c2015-04-13 19:14:06 +00001138 pOut = out2Prerelease(p, pOp);
drhb8475df2011-12-09 16:21:19 +00001139 cnt = pOp->p3-pOp->p2;
drh9f6168b2016-03-19 23:32:58 +00001140 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drh053a1282012-09-19 21:15:46 +00001141 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
drhb8475df2011-12-09 16:21:19 +00001142 while( cnt>0 ){
1143 pOut++;
1144 memAboutToChange(p, pOut);
drh0725cab2014-09-17 14:52:46 +00001145 sqlite3VdbeMemSetNull(pOut);
drh053a1282012-09-19 21:15:46 +00001146 pOut->flags = nullFlag;
drhb8475df2011-12-09 16:21:19 +00001147 cnt--;
1148 }
drhf0863fe2005-06-12 21:35:51 +00001149 break;
1150}
1151
drh05a86c52014-02-16 01:55:49 +00001152/* Opcode: SoftNull P1 * * * *
1153** Synopsis: r[P1]=NULL
1154**
1155** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1156** instruction, but do not free any string or blob memory associated with
1157** the register, so that if the value was a string or blob that was
1158** previously copied using OP_SCopy, the copies will continue to be valid.
1159*/
1160case OP_SoftNull: {
drh9f6168b2016-03-19 23:32:58 +00001161 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drh05a86c52014-02-16 01:55:49 +00001162 pOut = &aMem[pOp->p1];
1163 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
1164 break;
1165}
drhf0863fe2005-06-12 21:35:51 +00001166
drha5750cf2014-02-07 13:20:31 +00001167/* Opcode: Blob P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001168** Synopsis: r[P2]=P4 (len=P1)
danielk1977c572ef72004-05-27 09:28:41 +00001169**
drh9de221d2008-01-05 06:51:30 +00001170** P4 points to a blob of data P1 bytes long. Store this
drh710c4842010-08-30 01:17:20 +00001171** blob in register P2.
danielk1977c572ef72004-05-27 09:28:41 +00001172*/
drh27a348c2015-04-13 19:14:06 +00001173case OP_Blob: { /* out2 */
drhcbd2da92007-12-17 16:20:06 +00001174 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh27a348c2015-04-13 19:14:06 +00001175 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001176 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +00001177 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001178 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +00001179 break;
1180}
1181
drheaf52d82010-05-12 13:50:23 +00001182/* Opcode: Variable P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001183** Synopsis: r[P2]=parameter(P1,P4)
drh50457892003-09-06 01:10:47 +00001184**
drheaf52d82010-05-12 13:50:23 +00001185** Transfer the values of bound parameter P1 into register P2
drh08de1492009-02-20 03:55:05 +00001186**
drh0fd61352014-02-07 02:29:45 +00001187** If the parameter is named, then its name appears in P4.
drh08de1492009-02-20 03:55:05 +00001188** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +00001189*/
drh27a348c2015-04-13 19:14:06 +00001190case OP_Variable: { /* out2 */
drh856c1032009-06-02 15:21:42 +00001191 Mem *pVar; /* Value being transferred */
1192
drheaf52d82010-05-12 13:50:23 +00001193 assert( pOp->p1>0 && pOp->p1<=p->nVar );
drh04e9eea2011-06-01 19:16:06 +00001194 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
drheaf52d82010-05-12 13:50:23 +00001195 pVar = &p->aVar[pOp->p1 - 1];
1196 if( sqlite3VdbeMemTooBig(pVar) ){
1197 goto too_big;
drh023ae032007-05-08 12:12:16 +00001198 }
drh27a348c2015-04-13 19:14:06 +00001199 pOut = out2Prerelease(p, pOp);
drheaf52d82010-05-12 13:50:23 +00001200 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1201 UPDATE_MAX_BLOBSIZE(pOut);
danielk197793d46752004-05-23 13:30:58 +00001202 break;
1203}
danielk1977295ba552004-05-19 10:34:51 +00001204
drhb21e7c72008-06-22 12:37:57 +00001205/* Opcode: Move P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00001206** Synopsis: r[P2@P3]=r[P1@P3]
drh5e00f6c2001-09-13 13:46:56 +00001207**
drh079a3072014-03-19 14:10:55 +00001208** Move the P3 values in register P1..P1+P3-1 over into
1209** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
drhb21e7c72008-06-22 12:37:57 +00001210** left holding a NULL. It is an error for register ranges
drh079a3072014-03-19 14:10:55 +00001211** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1212** for P3 to be less than 1.
drh5e00f6c2001-09-13 13:46:56 +00001213*/
drhe1349cb2008-04-01 00:36:10 +00001214case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001215 int n; /* Number of registers left to copy */
1216 int p1; /* Register to copy from */
1217 int p2; /* Register to copy to */
1218
drhe09f43f2013-11-21 04:18:31 +00001219 n = pOp->p3;
drh856c1032009-06-02 15:21:42 +00001220 p1 = pOp->p1;
1221 p2 = pOp->p2;
drh079a3072014-03-19 14:10:55 +00001222 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001223 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001224
drha6c2ed92009-11-14 23:22:23 +00001225 pIn1 = &aMem[p1];
1226 pOut = &aMem[p2];
drhe09f43f2013-11-21 04:18:31 +00001227 do{
drh9f6168b2016-03-19 23:32:58 +00001228 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1229 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00001230 assert( memIsValid(pIn1) );
1231 memAboutToChange(p, pOut);
drh17bcb102014-09-18 21:25:33 +00001232 sqlite3VdbeMemMove(pOut, pIn1);
drh52043d72011-08-03 16:40:15 +00001233#ifdef SQLITE_DEBUG
drhbd6789e2015-04-28 14:00:02 +00001234 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
drh5fb71252015-04-28 12:44:55 +00001235 pOut->pScopyFrom += pOp->p2 - p1;
drh52043d72011-08-03 16:40:15 +00001236 }
1237#endif
drhbd6789e2015-04-28 14:00:02 +00001238 Deephemeralize(pOut);
drhb21e7c72008-06-22 12:37:57 +00001239 REGISTER_TRACE(p2++, pOut);
1240 pIn1++;
1241 pOut++;
drh079a3072014-03-19 14:10:55 +00001242 }while( --n );
drhe1349cb2008-04-01 00:36:10 +00001243 break;
1244}
1245
drhe8e4af72012-09-21 00:04:28 +00001246/* Opcode: Copy P1 P2 P3 * *
drh4eded602013-12-20 15:59:20 +00001247** Synopsis: r[P2@P3+1]=r[P1@P3+1]
drhb1fdb2a2008-01-05 04:06:03 +00001248**
drhe8e4af72012-09-21 00:04:28 +00001249** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
drhb1fdb2a2008-01-05 04:06:03 +00001250**
1251** This instruction makes a deep copy of the value. A duplicate
1252** is made of any string or blob constant. See also OP_SCopy.
1253*/
drhe8e4af72012-09-21 00:04:28 +00001254case OP_Copy: {
1255 int n;
1256
1257 n = pOp->p3;
drh3c657212009-11-17 23:59:58 +00001258 pIn1 = &aMem[pOp->p1];
1259 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001260 assert( pOut!=pIn1 );
drhe8e4af72012-09-21 00:04:28 +00001261 while( 1 ){
1262 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1263 Deephemeralize(pOut);
drh953f7612012-12-07 22:18:54 +00001264#ifdef SQLITE_DEBUG
1265 pOut->pScopyFrom = 0;
1266#endif
drhe8e4af72012-09-21 00:04:28 +00001267 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1268 if( (n--)==0 ) break;
1269 pOut++;
1270 pIn1++;
1271 }
drhe1349cb2008-04-01 00:36:10 +00001272 break;
1273}
1274
drhb1fdb2a2008-01-05 04:06:03 +00001275/* Opcode: SCopy P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001276** Synopsis: r[P2]=r[P1]
drhb1fdb2a2008-01-05 04:06:03 +00001277**
drh9cbf3422008-01-17 16:22:13 +00001278** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001279**
1280** This instruction makes a shallow copy of the value. If the value
1281** is a string or blob, then the copy is only a pointer to the
1282** original and hence if the original changes so will the copy.
1283** Worse, if the original is deallocated, the copy becomes invalid.
1284** Thus the program must guarantee that the original will not change
1285** during the lifetime of the copy. Use OP_Copy to make a complete
1286** copy.
1287*/
drh26198bb2013-10-31 11:15:09 +00001288case OP_SCopy: { /* out2 */
drh3c657212009-11-17 23:59:58 +00001289 pIn1 = &aMem[pOp->p1];
1290 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001291 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001292 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh2b4ded92010-09-27 21:09:31 +00001293#ifdef SQLITE_DEBUG
1294 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1295#endif
drh5e00f6c2001-09-13 13:46:56 +00001296 break;
1297}
drh75897232000-05-29 14:26:00 +00001298
drhfed7ac62015-10-15 18:04:59 +00001299/* Opcode: IntCopy P1 P2 * * *
1300** Synopsis: r[P2]=r[P1]
1301**
1302** Transfer the integer value held in register P1 into register P2.
1303**
1304** This is an optimized version of SCopy that works only for integer
1305** values.
1306*/
1307case OP_IntCopy: { /* out2 */
1308 pIn1 = &aMem[pOp->p1];
1309 assert( (pIn1->flags & MEM_Int)!=0 );
1310 pOut = &aMem[pOp->p2];
1311 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1312 break;
1313}
1314
drh9cbf3422008-01-17 16:22:13 +00001315/* Opcode: ResultRow P1 P2 * * *
drh4af5bee2013-10-30 02:37:50 +00001316** Synopsis: output=r[P1@P2]
drhd4e70eb2008-01-02 00:34:36 +00001317**
shane21e7feb2008-05-30 15:59:49 +00001318** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001319** results. This opcode causes the sqlite3_step() call to terminate
1320** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
drh4d87aae2014-02-20 19:42:00 +00001321** structure to provide access to the r(P1)..r(P1+P2-1) values as
drh0fd61352014-02-07 02:29:45 +00001322** the result row.
drhd4e70eb2008-01-02 00:34:36 +00001323*/
drh9cbf3422008-01-17 16:22:13 +00001324case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001325 Mem *pMem;
1326 int i;
1327 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001328 assert( pOp->p1>0 );
drh9f6168b2016-03-19 23:32:58 +00001329 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
drhd4e70eb2008-01-02 00:34:36 +00001330
drhe6400b92013-11-13 23:48:46 +00001331#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1332 /* Run the progress counter just before returning.
1333 */
1334 if( db->xProgress!=0
1335 && nVmStep>=nProgressLimit
1336 && db->xProgress(db->pProgressArg)!=0
1337 ){
1338 rc = SQLITE_INTERRUPT;
drh9467abf2016-02-17 18:44:11 +00001339 goto abort_due_to_error;
drhe6400b92013-11-13 23:48:46 +00001340 }
1341#endif
1342
dan32b09f22009-09-23 17:29:59 +00001343 /* If this statement has violated immediate foreign key constraints, do
1344 ** not return the number of rows modified. And do not RELEASE the statement
1345 ** transaction. It needs to be rolled back. */
1346 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1347 assert( db->flags&SQLITE_CountRows );
1348 assert( p->usesStmtJournal );
drh9467abf2016-02-17 18:44:11 +00001349 goto abort_due_to_error;
dan32b09f22009-09-23 17:29:59 +00001350 }
1351
danielk1977bd434552009-03-18 10:33:00 +00001352 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1353 ** DML statements invoke this opcode to return the number of rows
1354 ** modified to the user. This is the only way that a VM that
1355 ** opens a statement transaction may invoke this opcode.
1356 **
1357 ** In case this is such a statement, close any statement transaction
1358 ** opened by this VM before returning control to the user. This is to
1359 ** ensure that statement-transactions are always nested, not overlapping.
1360 ** If the open statement-transaction is not closed here, then the user
1361 ** may step another VM that opens its own statement transaction. This
1362 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001363 **
1364 ** The statement transaction is never a top-level transaction. Hence
1365 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001366 */
1367 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001368 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
drh9467abf2016-02-17 18:44:11 +00001369 assert( rc==SQLITE_OK );
danielk1977bd434552009-03-18 10:33:00 +00001370
drhd4e70eb2008-01-02 00:34:36 +00001371 /* Invalidate all ephemeral cursor row caches */
1372 p->cacheCtr = (p->cacheCtr + 2)|1;
1373
1374 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001375 ** and have an assigned type. The results are de-ephemeralized as
drhb8a45bb2011-12-31 21:51:55 +00001376 ** a side effect.
drhd4e70eb2008-01-02 00:34:36 +00001377 */
drha6c2ed92009-11-14 23:22:23 +00001378 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001379 for(i=0; i<pOp->p2; i++){
drh2b4ded92010-09-27 21:09:31 +00001380 assert( memIsValid(&pMem[i]) );
drhebc16712010-09-28 00:25:58 +00001381 Deephemeralize(&pMem[i]);
drh746fd9c2010-09-28 06:00:47 +00001382 assert( (pMem[i].flags & MEM_Ephem)==0
1383 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
drhd4e70eb2008-01-02 00:34:36 +00001384 sqlite3VdbeMemNulTerminate(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001385 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001386 }
drh28039692008-03-17 16:54:01 +00001387 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001388
1389 /* Return SQLITE_ROW
1390 */
drhf56fa462015-04-13 21:39:54 +00001391 p->pc = (int)(pOp - aOp) + 1;
drhd4e70eb2008-01-02 00:34:36 +00001392 rc = SQLITE_ROW;
1393 goto vdbe_return;
1394}
1395
drh5b6afba2008-01-05 16:29:28 +00001396/* Opcode: Concat P1 P2 P3 * *
drh313619f2013-10-31 20:34:06 +00001397** Synopsis: r[P3]=r[P2]+r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001398**
drh5b6afba2008-01-05 16:29:28 +00001399** Add the text in register P1 onto the end of the text in
1400** register P2 and store the result in register P3.
1401** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001402**
1403** P3 = P2 || P1
1404**
1405** It is illegal for P1 and P3 to be the same register. Sometimes,
1406** if P3 is the same register as P2, the implementation is able
1407** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001408*/
drh5b6afba2008-01-05 16:29:28 +00001409case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001410 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001411
drh3c657212009-11-17 23:59:58 +00001412 pIn1 = &aMem[pOp->p1];
1413 pIn2 = &aMem[pOp->p2];
1414 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001415 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001416 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001417 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001418 break;
drh5e00f6c2001-09-13 13:46:56 +00001419 }
drha0c06522009-06-17 22:50:41 +00001420 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001421 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001422 Stringify(pIn2, encoding);
1423 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001424 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001425 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001426 }
drh9c1905f2008-12-10 22:32:56 +00001427 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001428 goto no_mem;
1429 }
drhc91b2fd2014-03-01 18:13:23 +00001430 MemSetTypeFlag(pOut, MEM_Str);
danielk1977a7a8e142008-02-13 18:25:27 +00001431 if( pOut!=pIn2 ){
1432 memcpy(pOut->z, pIn2->z, pIn2->n);
1433 }
1434 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
drh81316f82013-10-29 20:40:47 +00001435 pOut->z[nByte]=0;
danielk1977a7a8e142008-02-13 18:25:27 +00001436 pOut->z[nByte+1] = 0;
1437 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001438 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001439 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001440 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001441 break;
1442}
drh75897232000-05-29 14:26:00 +00001443
drh3c84ddf2008-01-09 02:15:38 +00001444/* Opcode: Add P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001445** Synopsis: r[P3]=r[P1]+r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001446**
drh60a713c2008-01-21 16:22:45 +00001447** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001448** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001449** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001450*/
drh3c84ddf2008-01-09 02:15:38 +00001451/* Opcode: Multiply P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001452** Synopsis: r[P3]=r[P1]*r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001453**
drh3c84ddf2008-01-09 02:15:38 +00001454**
shane21e7feb2008-05-30 15:59:49 +00001455** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001456** and store the result in register P3.
1457** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001458*/
drh3c84ddf2008-01-09 02:15:38 +00001459/* Opcode: Subtract P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001460** Synopsis: r[P3]=r[P2]-r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001461**
drh60a713c2008-01-21 16:22:45 +00001462** Subtract the value in register P1 from the value in register P2
1463** and store the result in register P3.
1464** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001465*/
drh9cbf3422008-01-17 16:22:13 +00001466/* Opcode: Divide P1 P2 P3 * *
drh40864a12013-11-15 18:58:37 +00001467** Synopsis: r[P3]=r[P2]/r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001468**
drh60a713c2008-01-21 16:22:45 +00001469** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001470** and store the result in register P3 (P3=P2/P1). If the value in
1471** register P1 is zero, then the result is NULL. If either input is
1472** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001473*/
drh9cbf3422008-01-17 16:22:13 +00001474/* Opcode: Remainder P1 P2 P3 * *
drh40864a12013-11-15 18:58:37 +00001475** Synopsis: r[P3]=r[P2]%r[P1]
drhbf4133c2001-10-13 02:59:08 +00001476**
drh40864a12013-11-15 18:58:37 +00001477** Compute the remainder after integer register P2 is divided by
1478** register P1 and store the result in register P3.
1479** If the value in register P1 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001480** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001481*/
drh5b6afba2008-01-05 16:29:28 +00001482case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1483case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1484case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1485case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1486case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drhbe707b32012-12-10 22:19:14 +00001487 char bIntint; /* Started out as two integer operands */
drh3d1d90a2014-03-24 15:00:15 +00001488 u16 flags; /* Combined MEM_* flags from both inputs */
1489 u16 type1; /* Numeric type of left operand */
1490 u16 type2; /* Numeric type of right operand */
drh856c1032009-06-02 15:21:42 +00001491 i64 iA; /* Integer value of left operand */
1492 i64 iB; /* Integer value of right operand */
1493 double rA; /* Real value of left operand */
1494 double rB; /* Real value of right operand */
1495
drh3c657212009-11-17 23:59:58 +00001496 pIn1 = &aMem[pOp->p1];
drh3d1d90a2014-03-24 15:00:15 +00001497 type1 = numericType(pIn1);
drh3c657212009-11-17 23:59:58 +00001498 pIn2 = &aMem[pOp->p2];
drh3d1d90a2014-03-24 15:00:15 +00001499 type2 = numericType(pIn2);
drh3c657212009-11-17 23:59:58 +00001500 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001501 flags = pIn1->flags | pIn2->flags;
drha05a7222008-01-19 03:35:58 +00001502 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
drh3d1d90a2014-03-24 15:00:15 +00001503 if( (type1 & type2 & MEM_Int)!=0 ){
drh856c1032009-06-02 15:21:42 +00001504 iA = pIn1->u.i;
1505 iB = pIn2->u.i;
drhbe707b32012-12-10 22:19:14 +00001506 bIntint = 1;
drh5e00f6c2001-09-13 13:46:56 +00001507 switch( pOp->opcode ){
drh158b9cb2011-03-05 20:59:46 +00001508 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1509 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1510 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
drhbf4133c2001-10-13 02:59:08 +00001511 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001512 if( iA==0 ) goto arithmetic_result_is_null;
drh158b9cb2011-03-05 20:59:46 +00001513 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
drh856c1032009-06-02 15:21:42 +00001514 iB /= iA;
drh75897232000-05-29 14:26:00 +00001515 break;
1516 }
drhbf4133c2001-10-13 02:59:08 +00001517 default: {
drh856c1032009-06-02 15:21:42 +00001518 if( iA==0 ) goto arithmetic_result_is_null;
1519 if( iA==-1 ) iA = 1;
1520 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001521 break;
1522 }
drh75897232000-05-29 14:26:00 +00001523 }
drh856c1032009-06-02 15:21:42 +00001524 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001525 MemSetTypeFlag(pOut, MEM_Int);
drh5e00f6c2001-09-13 13:46:56 +00001526 }else{
drhbe707b32012-12-10 22:19:14 +00001527 bIntint = 0;
drh158b9cb2011-03-05 20:59:46 +00001528fp_math:
drh856c1032009-06-02 15:21:42 +00001529 rA = sqlite3VdbeRealValue(pIn1);
1530 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001531 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001532 case OP_Add: rB += rA; break;
1533 case OP_Subtract: rB -= rA; break;
1534 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001535 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001536 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001537 if( rA==(double)0 ) goto arithmetic_result_is_null;
1538 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001539 break;
1540 }
drhbf4133c2001-10-13 02:59:08 +00001541 default: {
shane75ac1de2009-06-09 18:58:52 +00001542 iA = (i64)rA;
1543 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001544 if( iA==0 ) goto arithmetic_result_is_null;
1545 if( iA==-1 ) iA = 1;
1546 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001547 break;
1548 }
drh5e00f6c2001-09-13 13:46:56 +00001549 }
drhc5a7b512010-01-13 16:25:42 +00001550#ifdef SQLITE_OMIT_FLOATING_POINT
1551 pOut->u.i = rB;
1552 MemSetTypeFlag(pOut, MEM_Int);
1553#else
drh856c1032009-06-02 15:21:42 +00001554 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001555 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001556 }
drh74eaba42014-09-18 17:52:15 +00001557 pOut->u.r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001558 MemSetTypeFlag(pOut, MEM_Real);
drh3d1d90a2014-03-24 15:00:15 +00001559 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
drh5b6afba2008-01-05 16:29:28 +00001560 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001561 }
drhc5a7b512010-01-13 16:25:42 +00001562#endif
drh5e00f6c2001-09-13 13:46:56 +00001563 }
1564 break;
1565
drha05a7222008-01-19 03:35:58 +00001566arithmetic_result_is_null:
1567 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001568 break;
1569}
1570
drh7a957892012-02-02 17:35:43 +00001571/* Opcode: CollSeq P1 * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001572**
drh66a51672008-01-03 00:01:23 +00001573** P4 is a pointer to a CollSeq struct. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001574** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1575** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001576** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001577**
drh7a957892012-02-02 17:35:43 +00001578** If P1 is not zero, then it is a register that a subsequent min() or
1579** max() aggregate will set to 1 if the current row is not the minimum or
1580** maximum. The P1 register is initialized to 0 by this instruction.
1581**
danielk1977dc1bdc42004-06-11 10:51:27 +00001582** The interface used by the implementation of the aforementioned functions
1583** to retrieve the collation sequence set by this opcode is not available
drh0a0d0562015-03-12 05:08:34 +00001584** publicly. Only built-in functions have access to this feature.
danielk1977dc1bdc42004-06-11 10:51:27 +00001585*/
drh9cbf3422008-01-17 16:22:13 +00001586case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001587 assert( pOp->p4type==P4_COLLSEQ );
drh7a957892012-02-02 17:35:43 +00001588 if( pOp->p1 ){
1589 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1590 }
danielk1977dc1bdc42004-06-11 10:51:27 +00001591 break;
1592}
1593
drh9c7c9132015-06-26 18:16:52 +00001594/* Opcode: Function0 P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00001595** Synopsis: r[P3]=func(r[P2@P5])
drh8e0a2f92002-02-23 23:45:45 +00001596**
drhe2d9e7c2015-06-26 18:47:53 +00001597** Invoke a user function (P4 is a pointer to a FuncDef object that
drh98757152008-01-09 23:04:12 +00001598** defines the function) with P5 arguments taken from register P2 and
drh9cbf3422008-01-17 16:22:13 +00001599** successors. The result of the function is stored in register P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001600** Register P3 must not be one of the function inputs.
danielk1977682f68b2004-06-05 10:22:17 +00001601**
drh13449892005-09-07 21:22:45 +00001602** P1 is a 32-bit bitmask indicating whether or not each argument to the
danielk1977682f68b2004-06-05 10:22:17 +00001603** function was determined to be constant at compile time. If the first
drh13449892005-09-07 21:22:45 +00001604** argument was constant then bit 0 of P1 is set. This is used to determine
danielk1977682f68b2004-06-05 10:22:17 +00001605** whether meta data associated with a user function argument using the
1606** sqlite3_set_auxdata() API may be safely retained until the next
1607** invocation of this opcode.
drh1350b032002-02-27 19:00:20 +00001608**
drh9c7c9132015-06-26 18:16:52 +00001609** See also: Function, AggStep, AggFinal
drh8e0a2f92002-02-23 23:45:45 +00001610*/
drh9c7c9132015-06-26 18:16:52 +00001611/* Opcode: Function P1 P2 P3 P4 P5
1612** Synopsis: r[P3]=func(r[P2@P5])
1613**
1614** Invoke a user function (P4 is a pointer to an sqlite3_context object that
1615** contains a pointer to the function to be run) with P5 arguments taken
1616** from register P2 and successors. The result of the function is stored
1617** in register P3. Register P3 must not be one of the function inputs.
1618**
1619** P1 is a 32-bit bitmask indicating whether or not each argument to the
1620** function was determined to be constant at compile time. If the first
1621** argument was constant then bit 0 of P1 is set. This is used to determine
1622** whether meta data associated with a user function argument using the
1623** sqlite3_set_auxdata() API may be safely retained until the next
1624** invocation of this opcode.
1625**
1626** SQL functions are initially coded as OP_Function0 with P4 pointing
drhe2d9e7c2015-06-26 18:47:53 +00001627** to a FuncDef object. But on first evaluation, the P4 operand is
drh9c7c9132015-06-26 18:16:52 +00001628** automatically converted into an sqlite3_context object and the operation
1629** changed to this OP_Function opcode. In this way, the initialization of
1630** the sqlite3_context object occurs only once, rather than once for each
1631** evaluation of the function.
1632**
1633** See also: Function0, AggStep, AggFinal
1634*/
1635case OP_Function0: {
drh856c1032009-06-02 15:21:42 +00001636 int n;
drh9c7c9132015-06-26 18:16:52 +00001637 sqlite3_context *pCtx;
danielk197751ad0ec2004-05-24 12:39:02 +00001638
dan0c547792013-07-18 17:12:08 +00001639 assert( pOp->p4type==P4_FUNCDEF );
drh9c7c9132015-06-26 18:16:52 +00001640 n = pOp->p5;
drh9f6168b2016-03-19 23:32:58 +00001641 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
1642 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
drh9c7c9132015-06-26 18:16:52 +00001643 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drh575fad62016-02-05 13:38:36 +00001644 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
drh9c7c9132015-06-26 18:16:52 +00001645 if( pCtx==0 ) goto no_mem;
1646 pCtx->pOut = 0;
1647 pCtx->pFunc = pOp->p4.pFunc;
1648 pCtx->iOp = (int)(pOp - aOp);
1649 pCtx->pVdbe = p;
1650 pCtx->argc = n;
1651 pOp->p4type = P4_FUNCCTX;
1652 pOp->p4.pCtx = pCtx;
1653 pOp->opcode = OP_Function;
1654 /* Fall through into OP_Function */
1655}
1656case OP_Function: {
1657 int i;
1658 sqlite3_context *pCtx;
1659
1660 assert( pOp->p4type==P4_FUNCCTX );
1661 pCtx = pOp->p4.pCtx;
1662
1663 /* If this function is inside of a trigger, the register array in aMem[]
1664 ** might change from one evaluation to the next. The next block of code
1665 ** checks to see if the register array has changed, and if so it
1666 ** reinitializes the relavant parts of the sqlite3_context object */
drhe2d9e7c2015-06-26 18:47:53 +00001667 pOut = &aMem[pOp->p3];
1668 if( pCtx->pOut != pOut ){
1669 pCtx->pOut = pOut;
drh9c7c9132015-06-26 18:16:52 +00001670 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
1671 }
1672
1673 memAboutToChange(p, pCtx->pOut);
1674#ifdef SQLITE_DEBUG
1675 for(i=0; i<pCtx->argc; i++){
1676 assert( memIsValid(pCtx->argv[i]) );
1677 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
1678 }
1679#endif
1680 MemSetTypeFlag(pCtx->pOut, MEM_Null);
1681 pCtx->fErrorOrAux = 0;
drhf6aff802014-10-08 14:28:31 +00001682 db->lastRowid = lastRowid;
drh2d801512016-01-14 22:19:58 +00001683 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
1684 lastRowid = db->lastRowid; /* Remember rowid changes made by xSFunc */
danielk19777e18c252004-05-25 11:47:24 +00001685
drh90669c12006-01-20 15:45:36 +00001686 /* If the function returned an error, throw an exception */
drh9c7c9132015-06-26 18:16:52 +00001687 if( pCtx->fErrorOrAux ){
1688 if( pCtx->isError ){
1689 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
1690 rc = pCtx->isError;
drh9b47ee32013-08-20 03:13:51 +00001691 }
drhb9626cf2016-02-22 16:04:31 +00001692 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
drh9467abf2016-02-17 18:44:11 +00001693 if( rc ) goto abort_due_to_error;
drh90669c12006-01-20 15:45:36 +00001694 }
1695
drh9cbf3422008-01-17 16:22:13 +00001696 /* Copy the result of the function into register P3 */
drhe2d9e7c2015-06-26 18:47:53 +00001697 if( pOut->flags & (MEM_Str|MEM_Blob) ){
1698 sqlite3VdbeChangeEncoding(pCtx->pOut, encoding);
1699 if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big;
drh023ae032007-05-08 12:12:16 +00001700 }
drh7b94e7f2011-04-04 12:29:20 +00001701
drh9c7c9132015-06-26 18:16:52 +00001702 REGISTER_TRACE(pOp->p3, pCtx->pOut);
1703 UPDATE_MAX_BLOBSIZE(pCtx->pOut);
drh8e0a2f92002-02-23 23:45:45 +00001704 break;
1705}
1706
drh98757152008-01-09 23:04:12 +00001707/* Opcode: BitAnd P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001708** Synopsis: r[P3]=r[P1]&r[P2]
drhbf4133c2001-10-13 02:59:08 +00001709**
drh98757152008-01-09 23:04:12 +00001710** Take the bit-wise AND of the values in register P1 and P2 and
1711** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001712** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001713*/
drh98757152008-01-09 23:04:12 +00001714/* Opcode: BitOr P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001715** Synopsis: r[P3]=r[P1]|r[P2]
drhbf4133c2001-10-13 02:59:08 +00001716**
drh98757152008-01-09 23:04:12 +00001717** Take the bit-wise OR of the values in register P1 and P2 and
1718** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001719** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001720*/
drh98757152008-01-09 23:04:12 +00001721/* Opcode: ShiftLeft P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001722** Synopsis: r[P3]=r[P2]<<r[P1]
drhbf4133c2001-10-13 02:59:08 +00001723**
drh98757152008-01-09 23:04:12 +00001724** Shift the integer value in register P2 to the left by the
drh710c4842010-08-30 01:17:20 +00001725** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001726** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001727** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001728*/
drh98757152008-01-09 23:04:12 +00001729/* Opcode: ShiftRight P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001730** Synopsis: r[P3]=r[P2]>>r[P1]
drhbf4133c2001-10-13 02:59:08 +00001731**
drh98757152008-01-09 23:04:12 +00001732** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001733** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001734** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001735** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001736*/
drh5b6afba2008-01-05 16:29:28 +00001737case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1738case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1739case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1740case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh158b9cb2011-03-05 20:59:46 +00001741 i64 iA;
1742 u64 uA;
1743 i64 iB;
1744 u8 op;
drh6810ce62004-01-31 19:22:56 +00001745
drh3c657212009-11-17 23:59:58 +00001746 pIn1 = &aMem[pOp->p1];
1747 pIn2 = &aMem[pOp->p2];
1748 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001749 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001750 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001751 break;
1752 }
drh158b9cb2011-03-05 20:59:46 +00001753 iA = sqlite3VdbeIntValue(pIn2);
1754 iB = sqlite3VdbeIntValue(pIn1);
1755 op = pOp->opcode;
1756 if( op==OP_BitAnd ){
1757 iA &= iB;
1758 }else if( op==OP_BitOr ){
1759 iA |= iB;
1760 }else if( iB!=0 ){
1761 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1762
1763 /* If shifting by a negative amount, shift in the other direction */
1764 if( iB<0 ){
1765 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1766 op = 2*OP_ShiftLeft + 1 - op;
1767 iB = iB>(-64) ? -iB : 64;
1768 }
1769
1770 if( iB>=64 ){
1771 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1772 }else{
1773 memcpy(&uA, &iA, sizeof(uA));
1774 if( op==OP_ShiftLeft ){
1775 uA <<= iB;
1776 }else{
1777 uA >>= iB;
1778 /* Sign-extend on a right shift of a negative number */
1779 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1780 }
1781 memcpy(&iA, &uA, sizeof(iA));
1782 }
drhbf4133c2001-10-13 02:59:08 +00001783 }
drh158b9cb2011-03-05 20:59:46 +00001784 pOut->u.i = iA;
danielk1977a7a8e142008-02-13 18:25:27 +00001785 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001786 break;
1787}
1788
drh8558cde2008-01-05 05:20:10 +00001789/* Opcode: AddImm P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001790** Synopsis: r[P1]=r[P1]+P2
drh5e00f6c2001-09-13 13:46:56 +00001791**
danielk19770cdc0222008-06-26 18:04:03 +00001792** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001793** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001794**
drh8558cde2008-01-05 05:20:10 +00001795** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001796*/
drh9cbf3422008-01-17 16:22:13 +00001797case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001798 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001799 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001800 sqlite3VdbeMemIntegerify(pIn1);
1801 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001802 break;
1803}
1804
drh9cbf3422008-01-17 16:22:13 +00001805/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001806**
drh9cbf3422008-01-17 16:22:13 +00001807** Force the value in register P1 to be an integer. If the value
1808** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001809** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001810** raise an SQLITE_MISMATCH exception.
1811*/
drh9cbf3422008-01-17 16:22:13 +00001812case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001813 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001814 if( (pIn1->flags & MEM_Int)==0 ){
drh83b301b2013-11-20 00:59:02 +00001815 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
drh688852a2014-02-17 22:40:43 +00001816 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
drh83b301b2013-11-20 00:59:02 +00001817 if( (pIn1->flags & MEM_Int)==0 ){
1818 if( pOp->p2==0 ){
1819 rc = SQLITE_MISMATCH;
1820 goto abort_due_to_error;
1821 }else{
drhf56fa462015-04-13 21:39:54 +00001822 goto jump_to_p2;
drh83b301b2013-11-20 00:59:02 +00001823 }
drh8aff1012001-12-22 14:49:24 +00001824 }
drh8aff1012001-12-22 14:49:24 +00001825 }
drh83b301b2013-11-20 00:59:02 +00001826 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001827 break;
1828}
1829
drh13573c72010-01-12 17:04:07 +00001830#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001831/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001832**
drh2133d822008-01-03 18:44:59 +00001833** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001834**
drh8a512562005-11-14 22:29:05 +00001835** This opcode is used when extracting information from a column that
1836** has REAL affinity. Such column values may still be stored as
1837** integers, for space efficiency, but after extraction we want them
1838** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001839*/
drh9cbf3422008-01-17 16:22:13 +00001840case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001841 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001842 if( pIn1->flags & MEM_Int ){
1843 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001844 }
drh487e2622005-06-25 18:42:14 +00001845 break;
1846}
drh13573c72010-01-12 17:04:07 +00001847#endif
drh487e2622005-06-25 18:42:14 +00001848
drh8df447f2005-11-01 15:48:24 +00001849#ifndef SQLITE_OMIT_CAST
drh4169e432014-08-25 20:11:52 +00001850/* Opcode: Cast P1 P2 * * *
mistachkina1dc42a2014-08-27 17:53:40 +00001851** Synopsis: affinity(r[P1])
drh487e2622005-06-25 18:42:14 +00001852**
drh4169e432014-08-25 20:11:52 +00001853** Force the value in register P1 to be the type defined by P2.
1854**
1855** <ul>
1856** <li value="97"> TEXT
1857** <li value="98"> BLOB
1858** <li value="99"> NUMERIC
1859** <li value="100"> INTEGER
1860** <li value="101"> REAL
1861** </ul>
drh487e2622005-06-25 18:42:14 +00001862**
1863** A NULL value is not changed by this routine. It remains NULL.
1864*/
drh4169e432014-08-25 20:11:52 +00001865case OP_Cast: { /* in1 */
drh05883a32015-06-02 15:32:08 +00001866 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
drh05bbb2e2014-08-25 22:37:19 +00001867 testcase( pOp->p2==SQLITE_AFF_TEXT );
drh05883a32015-06-02 15:32:08 +00001868 testcase( pOp->p2==SQLITE_AFF_BLOB );
drh05bbb2e2014-08-25 22:37:19 +00001869 testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1870 testcase( pOp->p2==SQLITE_AFF_INTEGER );
1871 testcase( pOp->p2==SQLITE_AFF_REAL );
drh3c657212009-11-17 23:59:58 +00001872 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001873 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001874 rc = ExpandBlob(pIn1);
drh4169e432014-08-25 20:11:52 +00001875 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
drhb7654112008-01-12 12:48:07 +00001876 UPDATE_MAX_BLOBSIZE(pIn1);
drh9467abf2016-02-17 18:44:11 +00001877 if( rc ) goto abort_due_to_error;
drh487e2622005-06-25 18:42:14 +00001878 break;
1879}
drh8a512562005-11-14 22:29:05 +00001880#endif /* SQLITE_OMIT_CAST */
1881
drh35573352008-01-08 23:54:25 +00001882/* Opcode: Lt P1 P2 P3 P4 P5
drh72dbffd2013-11-15 03:21:43 +00001883** Synopsis: if r[P1]<r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001884**
drh35573352008-01-08 23:54:25 +00001885** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1886** jump to address P2.
drhf5905aa2002-05-26 20:54:33 +00001887**
drh35573352008-01-08 23:54:25 +00001888** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1889** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
drh710c4842010-08-30 01:17:20 +00001890** bit is clear then fall through if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001891**
drh35573352008-01-08 23:54:25 +00001892** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001893** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001894** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001895** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001896** affinity is used. Note that the affinity conversions are stored
1897** back into the input registers P1 and P3. So this opcode can cause
1898** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001899**
1900** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001901** the values are compared. If both values are blobs then memcmp() is
1902** used to determine the results of the comparison. If both values
1903** are text, then the appropriate collating function specified in
1904** P4 is used to do the comparison. If P4 is not specified then
1905** memcmp() is used to compare text string. If both values are
1906** numeric, then a numeric comparison is used. If the two values
1907** are of different types, then numbers are considered less than
1908** strings and strings are considered less than blobs.
drhc9b84a12002-06-20 11:36:48 +00001909**
drh35573352008-01-08 23:54:25 +00001910** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1911** store a boolean result (either 0, or 1, or NULL) in register P2.
drh053a1282012-09-19 21:15:46 +00001912**
1913** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1914** equal to one another, provided that they do not have their MEM_Cleared
1915** bit set.
drh5e00f6c2001-09-13 13:46:56 +00001916*/
drh9cbf3422008-01-17 16:22:13 +00001917/* Opcode: Ne P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001918** Synopsis: if r[P1]!=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001919**
drh35573352008-01-08 23:54:25 +00001920** This works just like the Lt opcode except that the jump is taken if
1921** the operands in registers P1 and P3 are not equal. See the Lt opcode for
drh53db1452004-05-20 13:54:53 +00001922** additional information.
drh6a2fe092009-09-23 02:29:36 +00001923**
1924** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1925** true or false and is never NULL. If both operands are NULL then the result
1926** of comparison is false. If either operand is NULL then the result is true.
drhef8662b2011-06-20 21:47:58 +00001927** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001928** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001929*/
drh9cbf3422008-01-17 16:22:13 +00001930/* Opcode: Eq P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001931** Synopsis: if r[P1]==r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001932**
drh35573352008-01-08 23:54:25 +00001933** This works just like the Lt opcode except that the jump is taken if
1934** the operands in registers P1 and P3 are equal.
1935** See the Lt opcode for additional information.
drh6a2fe092009-09-23 02:29:36 +00001936**
1937** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1938** true or false and is never NULL. If both operands are NULL then the result
1939** of comparison is true. If either operand is NULL then the result is false.
drhef8662b2011-06-20 21:47:58 +00001940** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001941** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001942*/
drh9cbf3422008-01-17 16:22:13 +00001943/* Opcode: Le P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001944** Synopsis: if r[P1]<=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001945**
drh35573352008-01-08 23:54:25 +00001946** This works just like the Lt opcode except that the jump is taken if
1947** the content of register P3 is less than or equal to the content of
1948** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001949*/
drh9cbf3422008-01-17 16:22:13 +00001950/* Opcode: Gt P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001951** Synopsis: if r[P1]>r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001952**
drh35573352008-01-08 23:54:25 +00001953** This works just like the Lt opcode except that the jump is taken if
1954** the content of register P3 is greater than the content of
1955** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001956*/
drh9cbf3422008-01-17 16:22:13 +00001957/* Opcode: Ge P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001958** Synopsis: if r[P1]>=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001959**
drh35573352008-01-08 23:54:25 +00001960** This works just like the Lt opcode except that the jump is taken if
1961** the content of register P3 is greater than or equal to the content of
1962** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001963*/
drh9cbf3422008-01-17 16:22:13 +00001964case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1965case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1966case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1967case OP_Le: /* same as TK_LE, jump, in1, in3 */
1968case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1969case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh6a2fe092009-09-23 02:29:36 +00001970 int res; /* Result of the comparison of pIn1 against pIn3 */
1971 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00001972 u16 flags1; /* Copy of initial value of pIn1->flags */
1973 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00001974
drh3c657212009-11-17 23:59:58 +00001975 pIn1 = &aMem[pOp->p1];
1976 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00001977 flags1 = pIn1->flags;
1978 flags3 = pIn3->flags;
drhc3f1d5f2011-05-30 23:42:16 +00001979 if( (flags1 | flags3)&MEM_Null ){
drh6a2fe092009-09-23 02:29:36 +00001980 /* One or both operands are NULL */
1981 if( pOp->p5 & SQLITE_NULLEQ ){
1982 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1983 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1984 ** or not both operands are null.
1985 */
1986 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
drh053a1282012-09-19 21:15:46 +00001987 assert( (flags1 & MEM_Cleared)==0 );
drh3d77dee2014-02-19 14:20:49 +00001988 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
drh053a1282012-09-19 21:15:46 +00001989 if( (flags1&MEM_Null)!=0
1990 && (flags3&MEM_Null)!=0
1991 && (flags3&MEM_Cleared)==0
1992 ){
1993 res = 0; /* Results are equal */
1994 }else{
1995 res = 1; /* Results are not equal */
1996 }
drh6a2fe092009-09-23 02:29:36 +00001997 }else{
1998 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1999 ** then the result is always NULL.
2000 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2001 */
drh688852a2014-02-17 22:40:43 +00002002 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00002003 pOut = &aMem[pOp->p2];
danb1d6b532015-12-14 19:42:19 +00002004 memAboutToChange(p, pOut);
drh6a2fe092009-09-23 02:29:36 +00002005 MemSetTypeFlag(pOut, MEM_Null);
2006 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00002007 }else{
drhf4345e42014-02-18 11:31:59 +00002008 VdbeBranchTaken(2,3);
drh688852a2014-02-17 22:40:43 +00002009 if( pOp->p5 & SQLITE_JUMPIFNULL ){
drhf56fa462015-04-13 21:39:54 +00002010 goto jump_to_p2;
drh688852a2014-02-17 22:40:43 +00002011 }
drh6a2fe092009-09-23 02:29:36 +00002012 }
2013 break;
danielk1977a37cdde2004-05-16 11:15:36 +00002014 }
drh6a2fe092009-09-23 02:29:36 +00002015 }else{
2016 /* Neither operand is NULL. Do a comparison. */
2017 affinity = pOp->p5 & SQLITE_AFF_MASK;
drh24a09622014-09-18 16:28:59 +00002018 if( affinity>=SQLITE_AFF_NUMERIC ){
drhe5520e22015-12-31 04:34:26 +00002019 if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drh24a09622014-09-18 16:28:59 +00002020 applyNumericAffinity(pIn1,0);
2021 }
drhe5520e22015-12-31 04:34:26 +00002022 if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drh24a09622014-09-18 16:28:59 +00002023 applyNumericAffinity(pIn3,0);
2024 }
2025 }else if( affinity==SQLITE_AFF_TEXT ){
drhe5520e22015-12-31 04:34:26 +00002026 if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00002027 testcase( pIn1->flags & MEM_Int );
2028 testcase( pIn1->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00002029 sqlite3VdbeMemStringify(pIn1, encoding, 1);
drhbc8a6b32015-03-31 11:42:23 +00002030 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2031 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
drh24a09622014-09-18 16:28:59 +00002032 }
drhe5520e22015-12-31 04:34:26 +00002033 if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00002034 testcase( pIn3->flags & MEM_Int );
2035 testcase( pIn3->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00002036 sqlite3VdbeMemStringify(pIn3, encoding, 1);
drhbc8a6b32015-03-31 11:42:23 +00002037 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2038 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
drh24a09622014-09-18 16:28:59 +00002039 }
drh6a2fe092009-09-23 02:29:36 +00002040 }
drh6a2fe092009-09-23 02:29:36 +00002041 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
drhe5520e22015-12-31 04:34:26 +00002042 if( flags1 & MEM_Zero ){
drhca5506b2014-09-17 23:37:38 +00002043 sqlite3VdbeMemExpandBlob(pIn1);
2044 flags1 &= ~MEM_Zero;
2045 }
drhe5520e22015-12-31 04:34:26 +00002046 if( flags3 & MEM_Zero ){
drhca5506b2014-09-17 23:37:38 +00002047 sqlite3VdbeMemExpandBlob(pIn3);
2048 flags3 &= ~MEM_Zero;
2049 }
drh6a2fe092009-09-23 02:29:36 +00002050 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00002051 }
danielk1977a37cdde2004-05-16 11:15:36 +00002052 switch( pOp->opcode ){
2053 case OP_Eq: res = res==0; break;
2054 case OP_Ne: res = res!=0; break;
2055 case OP_Lt: res = res<0; break;
2056 case OP_Le: res = res<=0; break;
2057 case OP_Gt: res = res>0; break;
2058 default: res = res>=0; break;
2059 }
2060
drhf56fa462015-04-13 21:39:54 +00002061 /* Undo any changes made by applyAffinity() to the input registers. */
2062 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2063 pIn1->flags = flags1;
2064 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2065 pIn3->flags = flags3;
2066
drh35573352008-01-08 23:54:25 +00002067 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00002068 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00002069 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00002070 MemSetTypeFlag(pOut, MEM_Int);
drh35573352008-01-08 23:54:25 +00002071 pOut->u.i = res;
2072 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00002073 }else{
drhf4345e42014-02-18 11:31:59 +00002074 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
drh688852a2014-02-17 22:40:43 +00002075 if( res ){
drhf56fa462015-04-13 21:39:54 +00002076 goto jump_to_p2;
drh688852a2014-02-17 22:40:43 +00002077 }
danielk1977a37cdde2004-05-16 11:15:36 +00002078 }
2079 break;
2080}
drhc9b84a12002-06-20 11:36:48 +00002081
drh0acb7e42008-06-25 00:12:41 +00002082/* Opcode: Permutation * * * P4 *
2083**
shanebe217792009-03-05 04:20:31 +00002084** Set the permutation used by the OP_Compare operator to be the array
drh0acb7e42008-06-25 00:12:41 +00002085** of integers in P4.
2086**
drh953f7612012-12-07 22:18:54 +00002087** The permutation is only valid until the next OP_Compare that has
2088** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2089** occur immediately prior to the OP_Compare.
drhb1702022016-01-30 00:45:18 +00002090**
2091** The first integer in the P4 integer array is the length of the array
2092** and does not become part of the permutation.
drh0acb7e42008-06-25 00:12:41 +00002093*/
2094case OP_Permutation: {
2095 assert( pOp->p4type==P4_INTARRAY );
2096 assert( pOp->p4.ai );
drhb1702022016-01-30 00:45:18 +00002097 aPermute = pOp->p4.ai + 1;
drh0acb7e42008-06-25 00:12:41 +00002098 break;
2099}
2100
drh953f7612012-12-07 22:18:54 +00002101/* Opcode: Compare P1 P2 P3 P4 P5
drh079a3072014-03-19 14:10:55 +00002102** Synopsis: r[P1@P3] <-> r[P2@P3]
drh16ee60f2008-06-20 18:13:25 +00002103**
drh710c4842010-08-30 01:17:20 +00002104** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2105** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
drh16ee60f2008-06-20 18:13:25 +00002106** the comparison for use by the next OP_Jump instruct.
2107**
drh0ca10df2012-12-08 13:26:23 +00002108** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2109** determined by the most recent OP_Permutation operator. If the
2110** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2111** order.
2112**
drh0acb7e42008-06-25 00:12:41 +00002113** P4 is a KeyInfo structure that defines collating sequences and sort
2114** orders for the comparison. The permutation applies to registers
2115** only. The KeyInfo elements are used sequentially.
2116**
2117** The comparison is a sort comparison, so NULLs compare equal,
2118** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00002119** and strings are less than blobs.
2120*/
2121case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00002122 int n;
2123 int i;
2124 int p1;
2125 int p2;
2126 const KeyInfo *pKeyInfo;
2127 int idx;
2128 CollSeq *pColl; /* Collating sequence to use on this term */
2129 int bRev; /* True for DESCENDING sort order */
2130
drh953f7612012-12-07 22:18:54 +00002131 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
drh856c1032009-06-02 15:21:42 +00002132 n = pOp->p3;
2133 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00002134 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00002135 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00002136 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00002137 p2 = pOp->p2;
drh6a2fe092009-09-23 02:29:36 +00002138#if SQLITE_DEBUG
2139 if( aPermute ){
2140 int k, mx = 0;
2141 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
drh9f6168b2016-03-19 23:32:58 +00002142 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2143 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002144 }else{
drh9f6168b2016-03-19 23:32:58 +00002145 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2146 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002147 }
2148#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00002149 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00002150 idx = aPermute ? aPermute[i] : i;
drh2b4ded92010-09-27 21:09:31 +00002151 assert( memIsValid(&aMem[p1+idx]) );
2152 assert( memIsValid(&aMem[p2+idx]) );
drha6c2ed92009-11-14 23:22:23 +00002153 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2154 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drh93a960a2008-07-10 00:32:42 +00002155 assert( i<pKeyInfo->nField );
2156 pColl = pKeyInfo->aColl[i];
2157 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00002158 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00002159 if( iCompare ){
2160 if( bRev ) iCompare = -iCompare;
2161 break;
2162 }
drh16ee60f2008-06-20 18:13:25 +00002163 }
drh0acb7e42008-06-25 00:12:41 +00002164 aPermute = 0;
drh16ee60f2008-06-20 18:13:25 +00002165 break;
2166}
2167
2168/* Opcode: Jump P1 P2 P3 * *
2169**
2170** Jump to the instruction at address P1, P2, or P3 depending on whether
2171** in the most recent OP_Compare instruction the P1 vector was less than
2172** equal to, or greater than the P2 vector, respectively.
2173*/
drh0acb7e42008-06-25 00:12:41 +00002174case OP_Jump: { /* jump */
2175 if( iCompare<0 ){
drhf56fa462015-04-13 21:39:54 +00002176 VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
drh0acb7e42008-06-25 00:12:41 +00002177 }else if( iCompare==0 ){
drhf56fa462015-04-13 21:39:54 +00002178 VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
drh16ee60f2008-06-20 18:13:25 +00002179 }else{
drhf56fa462015-04-13 21:39:54 +00002180 VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
drh16ee60f2008-06-20 18:13:25 +00002181 }
2182 break;
2183}
2184
drh5b6afba2008-01-05 16:29:28 +00002185/* Opcode: And P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002186** Synopsis: r[P3]=(r[P1] && r[P2])
drh5e00f6c2001-09-13 13:46:56 +00002187**
drh5b6afba2008-01-05 16:29:28 +00002188** Take the logical AND of the values in registers P1 and P2 and
2189** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00002190**
drh5b6afba2008-01-05 16:29:28 +00002191** If either P1 or P2 is 0 (false) then the result is 0 even if
2192** the other input is NULL. A NULL and true or two NULLs give
2193** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00002194*/
drh5b6afba2008-01-05 16:29:28 +00002195/* Opcode: Or P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002196** Synopsis: r[P3]=(r[P1] || r[P2])
drh5b6afba2008-01-05 16:29:28 +00002197**
2198** Take the logical OR of the values in register P1 and P2 and
2199** store the answer in register P3.
2200**
2201** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2202** even if the other input is NULL. A NULL and false or two NULLs
2203** give a NULL output.
2204*/
2205case OP_And: /* same as TK_AND, in1, in2, out3 */
2206case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00002207 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2208 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00002209
drh3c657212009-11-17 23:59:58 +00002210 pIn1 = &aMem[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00002211 if( pIn1->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002212 v1 = 2;
drh5e00f6c2001-09-13 13:46:56 +00002213 }else{
drh5b6afba2008-01-05 16:29:28 +00002214 v1 = sqlite3VdbeIntValue(pIn1)!=0;
drhbb113512002-05-27 01:04:51 +00002215 }
drh3c657212009-11-17 23:59:58 +00002216 pIn2 = &aMem[pOp->p2];
drh5b6afba2008-01-05 16:29:28 +00002217 if( pIn2->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002218 v2 = 2;
2219 }else{
drh5b6afba2008-01-05 16:29:28 +00002220 v2 = sqlite3VdbeIntValue(pIn2)!=0;
drhbb113512002-05-27 01:04:51 +00002221 }
2222 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00002223 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00002224 v1 = and_logic[v1*3+v2];
2225 }else{
drh5b6afba2008-01-05 16:29:28 +00002226 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00002227 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00002228 }
drh3c657212009-11-17 23:59:58 +00002229 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00002230 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00002231 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00002232 }else{
drh5b6afba2008-01-05 16:29:28 +00002233 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00002234 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00002235 }
drh5e00f6c2001-09-13 13:46:56 +00002236 break;
2237}
2238
drhe99fa2a2008-12-15 15:27:51 +00002239/* Opcode: Not P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002240** Synopsis: r[P2]= !r[P1]
drh5e00f6c2001-09-13 13:46:56 +00002241**
drhe99fa2a2008-12-15 15:27:51 +00002242** Interpret the value in register P1 as a boolean value. Store the
2243** boolean complement in register P2. If the value in register P1 is
2244** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00002245*/
drh93952eb2009-11-13 19:43:43 +00002246case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002247 pIn1 = &aMem[pOp->p1];
2248 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002249 sqlite3VdbeMemSetNull(pOut);
2250 if( (pIn1->flags & MEM_Null)==0 ){
2251 pOut->flags = MEM_Int;
2252 pOut->u.i = !sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002253 }
drh5e00f6c2001-09-13 13:46:56 +00002254 break;
2255}
2256
drhe99fa2a2008-12-15 15:27:51 +00002257/* Opcode: BitNot P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002258** Synopsis: r[P1]= ~r[P1]
drhbf4133c2001-10-13 02:59:08 +00002259**
drhe99fa2a2008-12-15 15:27:51 +00002260** Interpret the content of register P1 as an integer. Store the
2261** ones-complement of the P1 value into register P2. If P1 holds
2262** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00002263*/
drh93952eb2009-11-13 19:43:43 +00002264case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002265 pIn1 = &aMem[pOp->p1];
2266 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002267 sqlite3VdbeMemSetNull(pOut);
2268 if( (pIn1->flags & MEM_Null)==0 ){
2269 pOut->flags = MEM_Int;
2270 pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002271 }
drhbf4133c2001-10-13 02:59:08 +00002272 break;
2273}
2274
drh48f2d3b2011-09-16 01:34:43 +00002275/* Opcode: Once P1 P2 * * *
2276**
drh5dad9a32014-07-25 18:37:42 +00002277** Check the "once" flag number P1. If it is set, jump to instruction P2.
2278** Otherwise, set the flag and fall through to the next instruction.
2279** In other words, this opcode causes all following opcodes up through P2
2280** (but not including P2) to run just once and to be skipped on subsequent
2281** times through the loop.
2282**
2283** All "once" flags are initially cleared whenever a prepared statement
2284** first begins to run.
drh48f2d3b2011-09-16 01:34:43 +00002285*/
dan1d8cb212011-12-09 13:24:16 +00002286case OP_Once: { /* jump */
2287 assert( pOp->p1<p->nOnceFlag );
drh688852a2014-02-17 22:40:43 +00002288 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2);
dan1d8cb212011-12-09 13:24:16 +00002289 if( p->aOnceFlag[pOp->p1] ){
drhf56fa462015-04-13 21:39:54 +00002290 goto jump_to_p2;
dan1d8cb212011-12-09 13:24:16 +00002291 }else{
2292 p->aOnceFlag[pOp->p1] = 1;
2293 }
2294 break;
2295}
2296
drh3c84ddf2008-01-09 02:15:38 +00002297/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00002298**
drhef8662b2011-06-20 21:47:58 +00002299** Jump to P2 if the value in register P1 is true. The value
drh3c84ddf2008-01-09 02:15:38 +00002300** is considered true if it is numeric and non-zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002301** in P1 is NULL then take the jump if and only if P3 is non-zero.
drh5e00f6c2001-09-13 13:46:56 +00002302*/
drh3c84ddf2008-01-09 02:15:38 +00002303/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00002304**
drhef8662b2011-06-20 21:47:58 +00002305** Jump to P2 if the value in register P1 is False. The value
drhb8475df2011-12-09 16:21:19 +00002306** is considered false if it has a numeric value of zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002307** in P1 is NULL then take the jump if and only if P3 is non-zero.
drhf5905aa2002-05-26 20:54:33 +00002308*/
drh9cbf3422008-01-17 16:22:13 +00002309case OP_If: /* jump, in1 */
2310case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00002311 int c;
drh3c657212009-11-17 23:59:58 +00002312 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00002313 if( pIn1->flags & MEM_Null ){
2314 c = pOp->p3;
drhf5905aa2002-05-26 20:54:33 +00002315 }else{
drhba0232a2005-06-06 17:27:19 +00002316#ifdef SQLITE_OMIT_FLOATING_POINT
shanefbd60f82009-02-04 03:59:25 +00002317 c = sqlite3VdbeIntValue(pIn1)!=0;
drhba0232a2005-06-06 17:27:19 +00002318#else
drh3c84ddf2008-01-09 02:15:38 +00002319 c = sqlite3VdbeRealValue(pIn1)!=0.0;
drhba0232a2005-06-06 17:27:19 +00002320#endif
drhf5905aa2002-05-26 20:54:33 +00002321 if( pOp->opcode==OP_IfNot ) c = !c;
2322 }
drh688852a2014-02-17 22:40:43 +00002323 VdbeBranchTaken(c!=0, 2);
drh3c84ddf2008-01-09 02:15:38 +00002324 if( c ){
drhf56fa462015-04-13 21:39:54 +00002325 goto jump_to_p2;
drh3c84ddf2008-01-09 02:15:38 +00002326 }
drh5e00f6c2001-09-13 13:46:56 +00002327 break;
2328}
2329
drh830ecf92009-06-18 00:41:55 +00002330/* Opcode: IsNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002331** Synopsis: if r[P1]==NULL goto P2
drh477df4b2008-01-05 18:48:24 +00002332**
drh830ecf92009-06-18 00:41:55 +00002333** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002334*/
drh9cbf3422008-01-17 16:22:13 +00002335case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002336 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002337 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
drh830ecf92009-06-18 00:41:55 +00002338 if( (pIn1->flags & MEM_Null)!=0 ){
drhf56fa462015-04-13 21:39:54 +00002339 goto jump_to_p2;
drh830ecf92009-06-18 00:41:55 +00002340 }
drh477df4b2008-01-05 18:48:24 +00002341 break;
2342}
2343
drh98757152008-01-09 23:04:12 +00002344/* Opcode: NotNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002345** Synopsis: if r[P1]!=NULL goto P2
drh5e00f6c2001-09-13 13:46:56 +00002346**
drh6a288a32008-01-07 19:20:24 +00002347** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002348*/
drh9cbf3422008-01-17 16:22:13 +00002349case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002350 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002351 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
drh6a288a32008-01-07 19:20:24 +00002352 if( (pIn1->flags & MEM_Null)==0 ){
drhf56fa462015-04-13 21:39:54 +00002353 goto jump_to_p2;
drh6a288a32008-01-07 19:20:24 +00002354 }
drh5e00f6c2001-09-13 13:46:56 +00002355 break;
2356}
2357
drh3e9ca092009-09-08 01:14:48 +00002358/* Opcode: Column P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00002359** Synopsis: r[P3]=PX
danielk1977192ac1d2004-05-10 07:17:30 +00002360**
danielk1977cfcdaef2004-05-12 07:33:33 +00002361** Interpret the data that cursor P1 points to as a structure built using
2362** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002363** information about the format of the data.) Extract the P2-th column
2364** from this record. If there are less that (P2+1)
2365** values in the record, extract a NULL.
2366**
drh9cbf3422008-01-17 16:22:13 +00002367** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002368**
danielk19771f4aa332008-01-03 09:51:55 +00002369** If the column contains fewer than P2 fields, then extract a NULL. Or,
2370** if the P4 argument is a P4_MEM use the value of the P4 argument as
2371** the result.
drh3e9ca092009-09-08 01:14:48 +00002372**
2373** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2374** then the cache of the cursor is reset prior to extracting the column.
2375** The first OP_Column against a pseudo-table after the value of the content
2376** register has changed should have this bit set.
drha748fdc2012-03-28 01:34:47 +00002377**
drhdda5c082012-03-28 13:41:10 +00002378** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2379** the result is guaranteed to only be used as the argument of a length()
2380** or typeof() function, respectively. The loading of large blobs can be
2381** skipped for length() and all content loading can be skipped for typeof().
danielk1977192ac1d2004-05-10 07:17:30 +00002382*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002383case OP_Column: {
drh856c1032009-06-02 15:21:42 +00002384 i64 payloadSize64; /* Number of bytes in the record */
drh856c1032009-06-02 15:21:42 +00002385 int p2; /* column number to retrieve */
2386 VdbeCursor *pC; /* The VDBE cursor */
drhd3194f52004-05-27 19:59:32 +00002387 BtCursor *pCrsr; /* The BTree cursor */
drhd3194f52004-05-27 19:59:32 +00002388 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk1977cfcdaef2004-05-12 07:33:33 +00002389 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002390 int i; /* Loop counter */
drhd4e70eb2008-01-02 00:34:36 +00002391 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002392 Mem sMem; /* For storing the record being decoded */
drh399af1d2013-11-20 17:25:55 +00002393 const u8 *zData; /* Part of the record being decoded */
2394 const u8 *zHdr; /* Next unparsed byte of the header */
2395 const u8 *zEndHdr; /* Pointer to first byte after the header */
drh35cd6432009-06-05 14:17:21 +00002396 u32 offset; /* Offset into the data */
drhc6ce38832015-10-15 21:30:24 +00002397 u64 offset64; /* 64-bit offset */
drh501932c2013-11-21 21:59:53 +00002398 u32 avail; /* Number of bytes of available data */
drh5a077b72011-08-29 02:16:18 +00002399 u32 t; /* A type code from the record header */
drh3e9ca092009-09-08 01:14:48 +00002400 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002401
dande892d92016-01-29 19:29:45 +00002402 pC = p->apCsr[pOp->p1];
drh856c1032009-06-02 15:21:42 +00002403 p2 = pOp->p2;
dande892d92016-01-29 19:29:45 +00002404
2405 /* If the cursor cache is stale, bring it up-to-date */
2406 rc = sqlite3VdbeCursorMoveto(&pC, &p2);
2407
drh9f6168b2016-03-19 23:32:58 +00002408 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00002409 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00002410 memAboutToChange(p, pDest);
drhc8606e42013-11-20 19:28:03 +00002411 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
danielk19776c924092007-11-12 08:09:34 +00002412 assert( pC!=0 );
drhc8606e42013-11-20 19:28:03 +00002413 assert( p2<pC->nField );
drhb53a5a92014-10-12 22:37:22 +00002414 aOffset = pC->aOffset;
drh62aaa6c2015-11-21 17:27:42 +00002415 assert( pC->eCurType!=CURTYPE_VTAB );
drhc960dcb2015-11-20 19:22:01 +00002416 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2417 assert( pC->eCurType!=CURTYPE_SORTER );
2418 pCrsr = pC->uc.pCursor;
drh399af1d2013-11-20 17:25:55 +00002419
drh399af1d2013-11-20 17:25:55 +00002420 if( rc ) goto abort_due_to_error;
drh6cf4a7d2014-10-13 13:00:58 +00002421 if( pC->cacheStatus!=p->cacheCtr ){
danielk1977192ac1d2004-05-10 07:17:30 +00002422 if( pC->nullRow ){
drhc960dcb2015-11-20 19:22:01 +00002423 if( pC->eCurType==CURTYPE_PSEUDO ){
2424 assert( pC->uc.pseudoTableReg>0 );
2425 pReg = &aMem[pC->uc.pseudoTableReg];
drhc8606e42013-11-20 19:28:03 +00002426 assert( pReg->flags & MEM_Blob );
2427 assert( memIsValid(pReg) );
2428 pC->payloadSize = pC->szRow = avail = pReg->n;
2429 pC->aRow = (u8*)pReg->z;
2430 }else{
drh6b5631e2014-11-05 15:57:39 +00002431 sqlite3VdbeMemSetNull(pDest);
drh399af1d2013-11-20 17:25:55 +00002432 goto op_column_out;
2433 }
danielk1977192ac1d2004-05-10 07:17:30 +00002434 }else{
drhc960dcb2015-11-20 19:22:01 +00002435 assert( pC->eCurType==CURTYPE_BTREE );
drhc8606e42013-11-20 19:28:03 +00002436 assert( pCrsr );
drh14da87f2013-11-20 21:51:33 +00002437 if( pC->isTable==0 ){
drh399af1d2013-11-20 17:25:55 +00002438 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2439 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2440 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
2441 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2442 ** payload size, so it is impossible for payloadSize64 to be
2443 ** larger than 32 bits. */
2444 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
2445 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
2446 pC->payloadSize = (u32)payloadSize64;
drhd3194f52004-05-27 19:59:32 +00002447 }else{
drh399af1d2013-11-20 17:25:55 +00002448 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2449 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
2450 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
2451 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
drh9188b382004-05-14 21:12:22 +00002452 }
drh399af1d2013-11-20 17:25:55 +00002453 assert( avail<=65536 ); /* Maximum page size is 64KiB */
2454 if( pC->payloadSize <= (u32)avail ){
2455 pC->szRow = pC->payloadSize;
drh5f7dacb2015-11-20 13:33:56 +00002456 }else if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2457 goto too_big;
drhe61cffc2004-06-12 18:12:15 +00002458 }else{
drh399af1d2013-11-20 17:25:55 +00002459 pC->szRow = avail;
2460 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002461 }
drh9188b382004-05-14 21:12:22 +00002462 pC->cacheStatus = p->cacheCtr;
drh399af1d2013-11-20 17:25:55 +00002463 pC->iHdrOffset = getVarint32(pC->aRow, offset);
2464 pC->nHdrParsed = 0;
2465 aOffset[0] = offset;
drh35cd6432009-06-05 14:17:21 +00002466
drhc81aa2e2014-10-11 23:31:52 +00002467
2468 if( avail<offset ){
2469 /* pC->aRow does not have to hold the entire row, but it does at least
2470 ** need to cover the header of the record. If pC->aRow does not contain
2471 ** the complete header, then set it to zero, forcing the header to be
2472 ** dynamically allocated. */
2473 pC->aRow = 0;
2474 pC->szRow = 0;
drh848a3322015-10-16 12:53:47 +00002475
2476 /* Make sure a corrupt database has not given us an oversize header.
2477 ** Do this now to avoid an oversize memory allocation.
2478 **
2479 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2480 ** types use so much data space that there can only be 4096 and 32 of
2481 ** them, respectively. So the maximum header length results from a
2482 ** 3-byte type for each of the maximum of 32768 columns plus three
2483 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2484 */
2485 if( offset > 98307 || offset > pC->payloadSize ){
2486 rc = SQLITE_CORRUPT_BKPT;
drh9467abf2016-02-17 18:44:11 +00002487 goto abort_due_to_error;
drh848a3322015-10-16 12:53:47 +00002488 }
drhc81aa2e2014-10-11 23:31:52 +00002489 }
2490
2491 /* The following goto is an optimization. It can be omitted and
2492 ** everything will still work. But OP_Column is measurably faster
2493 ** by skipping the subsequent conditional, which is always true.
2494 */
2495 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
2496 goto op_column_read_header;
drh399af1d2013-11-20 17:25:55 +00002497 }
drh35cd6432009-06-05 14:17:21 +00002498
drh399af1d2013-11-20 17:25:55 +00002499 /* Make sure at least the first p2+1 entries of the header have been
drh0c8f7602014-09-19 16:56:45 +00002500 ** parsed and valid information is in aOffset[] and pC->aType[].
drh399af1d2013-11-20 17:25:55 +00002501 */
drhc8606e42013-11-20 19:28:03 +00002502 if( pC->nHdrParsed<=p2 ){
drh380d6852013-11-20 20:58:00 +00002503 /* If there is more header available for parsing in the record, try
2504 ** to extract additional fields up through the p2+1-th field
drh35cd6432009-06-05 14:17:21 +00002505 */
drhc81aa2e2014-10-11 23:31:52 +00002506 op_column_read_header:
drhc8606e42013-11-20 19:28:03 +00002507 if( pC->iHdrOffset<aOffset[0] ){
2508 /* Make sure zData points to enough of the record to cover the header. */
2509 if( pC->aRow==0 ){
2510 memset(&sMem, 0, sizeof(sMem));
drh95fa6062015-10-16 13:50:08 +00002511 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], !pC->isTable, &sMem);
drh9467abf2016-02-17 18:44:11 +00002512 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhc8606e42013-11-20 19:28:03 +00002513 zData = (u8*)sMem.z;
2514 }else{
2515 zData = pC->aRow;
drh9188b382004-05-14 21:12:22 +00002516 }
drhc8606e42013-11-20 19:28:03 +00002517
drh0c8f7602014-09-19 16:56:45 +00002518 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
drhc8606e42013-11-20 19:28:03 +00002519 i = pC->nHdrParsed;
drhc6ce38832015-10-15 21:30:24 +00002520 offset64 = aOffset[i];
drhc8606e42013-11-20 19:28:03 +00002521 zHdr = zData + pC->iHdrOffset;
2522 zEndHdr = zData + aOffset[0];
2523 assert( i<=p2 && zHdr<zEndHdr );
2524 do{
drh95fa6062015-10-16 13:50:08 +00002525 if( (t = zHdr[0])<0x80 ){
drhc8606e42013-11-20 19:28:03 +00002526 zHdr++;
drhfaf37272015-10-16 14:23:42 +00002527 offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
drh5a077b72011-08-29 02:16:18 +00002528 }else{
drhc8606e42013-11-20 19:28:03 +00002529 zHdr += sqlite3GetVarint32(zHdr, &t);
drhfaf37272015-10-16 14:23:42 +00002530 offset64 += sqlite3VdbeSerialTypeLen(t);
drh5a077b72011-08-29 02:16:18 +00002531 }
drhfaf37272015-10-16 14:23:42 +00002532 pC->aType[i++] = t;
drhc6ce38832015-10-15 21:30:24 +00002533 aOffset[i] = (u32)(offset64 & 0xffffffff);
drhc8606e42013-11-20 19:28:03 +00002534 }while( i<=p2 && zHdr<zEndHdr );
2535 pC->nHdrParsed = i;
2536 pC->iHdrOffset = (u32)(zHdr - zData);
drhc8606e42013-11-20 19:28:03 +00002537
drh8dd83622014-10-13 23:39:02 +00002538 /* The record is corrupt if any of the following are true:
2539 ** (1) the bytes of the header extend past the declared header size
drh8dd83622014-10-13 23:39:02 +00002540 ** (2) the entire header was used but not all data was used
drh8dd83622014-10-13 23:39:02 +00002541 ** (3) the end of the data extends beyond the end of the record.
drhc8606e42013-11-20 19:28:03 +00002542 */
drhc6ce38832015-10-15 21:30:24 +00002543 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2544 || (offset64 > pC->payloadSize)
drhc8606e42013-11-20 19:28:03 +00002545 ){
drhddb2b4a2016-03-25 12:10:32 +00002546 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
drhc8606e42013-11-20 19:28:03 +00002547 rc = SQLITE_CORRUPT_BKPT;
drh9467abf2016-02-17 18:44:11 +00002548 goto abort_due_to_error;
danielk1977dedf45b2006-01-13 17:12:01 +00002549 }
drhddb2b4a2016-03-25 12:10:32 +00002550 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2551
mistachkin8c7cd6a2015-12-16 21:09:53 +00002552 }else{
drh9fbc8852016-01-04 03:48:46 +00002553 t = 0;
drh9188b382004-05-14 21:12:22 +00002554 }
drhd3194f52004-05-27 19:59:32 +00002555
drhf2db3382015-04-30 20:33:25 +00002556 /* If after trying to extract new entries from the header, nHdrParsed is
drh380d6852013-11-20 20:58:00 +00002557 ** still not up to p2, that means that the record has fewer than p2
2558 ** columns. So the result will be either the default value or a NULL.
drhd3194f52004-05-27 19:59:32 +00002559 */
drhc8606e42013-11-20 19:28:03 +00002560 if( pC->nHdrParsed<=p2 ){
2561 if( pOp->p4type==P4_MEM ){
2562 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2563 }else{
drh22e8d832014-10-29 00:58:38 +00002564 sqlite3VdbeMemSetNull(pDest);
drhc8606e42013-11-20 19:28:03 +00002565 }
danielk19773c9cc8d2005-01-17 03:40:08 +00002566 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002567 }
drh95fa6062015-10-16 13:50:08 +00002568 }else{
2569 t = pC->aType[p2];
danielk1977cfcdaef2004-05-12 07:33:33 +00002570 }
danielk1977192ac1d2004-05-10 07:17:30 +00002571
drh380d6852013-11-20 20:58:00 +00002572 /* Extract the content for the p2+1-th column. Control can only
drh0c8f7602014-09-19 16:56:45 +00002573 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
drh380d6852013-11-20 20:58:00 +00002574 ** all valid.
drh9188b382004-05-14 21:12:22 +00002575 */
drhc8606e42013-11-20 19:28:03 +00002576 assert( p2<pC->nHdrParsed );
2577 assert( rc==SQLITE_OK );
drh75fd0542014-03-01 16:24:44 +00002578 assert( sqlite3VdbeCheckMemInvariants(pDest) );
drh0725cab2014-09-17 14:52:46 +00002579 if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
drh95fa6062015-10-16 13:50:08 +00002580 assert( t==pC->aType[p2] );
drh69f6e252016-01-11 18:05:00 +00002581 pDest->enc = encoding;
drhc8606e42013-11-20 19:28:03 +00002582 if( pC->szRow>=aOffset[p2+1] ){
drh380d6852013-11-20 20:58:00 +00002583 /* This is the common case where the desired content fits on the original
2584 ** page - where the content is not on an overflow page */
drh69f6e252016-01-11 18:05:00 +00002585 zData = pC->aRow + aOffset[p2];
2586 if( t<12 ){
2587 sqlite3VdbeSerialGet(zData, t, pDest);
2588 }else{
2589 /* If the column value is a string, we need a persistent value, not
2590 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
2591 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2592 */
2593 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2594 pDest->n = len = (t-12)/2;
2595 if( pDest->szMalloc < len+2 ){
2596 pDest->flags = MEM_Null;
2597 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2598 }else{
2599 pDest->z = pDest->zMalloc;
2600 }
2601 memcpy(pDest->z, zData, len);
2602 pDest->z[len] = 0;
2603 pDest->z[len+1] = 0;
2604 pDest->flags = aFlag[t&1];
2605 }
danielk197736963fd2005-02-19 08:18:05 +00002606 }else{
drh58c96082013-12-23 11:33:32 +00002607 /* This branch happens only when content is on overflow pages */
drh380d6852013-11-20 20:58:00 +00002608 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2609 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2610 || (len = sqlite3VdbeSerialTypeLen(t))==0
drhc8606e42013-11-20 19:28:03 +00002611 ){
drh2a2a6962014-09-16 18:22:44 +00002612 /* Content is irrelevant for
2613 ** 1. the typeof() function,
2614 ** 2. the length(X) function if X is a blob, and
2615 ** 3. if the content length is zero.
2616 ** So we might as well use bogus content rather than reading
drh69f6e252016-01-11 18:05:00 +00002617 ** content from disk. */
2618 static u8 aZero[8]; /* This is the bogus content */
2619 sqlite3VdbeSerialGet(aZero, t, pDest);
danielk1977aee18ef2005-03-09 12:26:50 +00002620 }else{
drh14da87f2013-11-20 21:51:33 +00002621 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
drh2a2a6962014-09-16 18:22:44 +00002622 pDest);
drh9467abf2016-02-17 18:44:11 +00002623 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2624 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2625 pDest->flags &= ~MEM_Ephem;
danielk1977aee18ef2005-03-09 12:26:50 +00002626 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002627 }
drhd3194f52004-05-27 19:59:32 +00002628
danielk19773c9cc8d2005-01-17 03:40:08 +00002629op_column_out:
drhb7654112008-01-12 12:48:07 +00002630 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002631 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002632 break;
2633}
2634
danielk1977751de562008-04-18 09:01:15 +00002635/* Opcode: Affinity P1 P2 * P4 *
drhf63552b2013-10-30 00:25:03 +00002636** Synopsis: affinity(r[P1@P2])
danielk1977751de562008-04-18 09:01:15 +00002637**
2638** Apply affinities to a range of P2 registers starting with P1.
2639**
2640** P4 is a string that is P2 characters long. The nth character of the
2641** string indicates the column affinity that should be used for the nth
2642** memory cell in the range.
2643*/
2644case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002645 const char *zAffinity; /* The affinity to be applied */
2646 char cAff; /* A single character of affinity */
danielk1977751de562008-04-18 09:01:15 +00002647
drh856c1032009-06-02 15:21:42 +00002648 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002649 assert( zAffinity!=0 );
2650 assert( zAffinity[pOp->p2]==0 );
2651 pIn1 = &aMem[pOp->p1];
2652 while( (cAff = *(zAffinity++))!=0 ){
drh9f6168b2016-03-19 23:32:58 +00002653 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00002654 assert( memIsValid(pIn1) );
drh039fc322009-11-17 18:31:47 +00002655 applyAffinity(pIn1, cAff, encoding);
2656 pIn1++;
danielk1977751de562008-04-18 09:01:15 +00002657 }
2658 break;
2659}
2660
drh1db639c2008-01-17 02:36:28 +00002661/* Opcode: MakeRecord P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00002662** Synopsis: r[P3]=mkrec(r[P1@P2])
drh7a224de2004-06-02 01:22:02 +00002663**
drh710c4842010-08-30 01:17:20 +00002664** Convert P2 registers beginning with P1 into the [record format]
2665** use as a data record in a database table or as a key
2666** in an index. The OP_Column opcode can decode the record later.
drh7a224de2004-06-02 01:22:02 +00002667**
danielk1977751de562008-04-18 09:01:15 +00002668** P4 may be a string that is P2 characters long. The nth character of the
drh7a224de2004-06-02 01:22:02 +00002669** string indicates the column affinity that should be used for the nth
drh9cbf3422008-01-17 16:22:13 +00002670** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002671**
drh8a512562005-11-14 22:29:05 +00002672** The mapping from character to affinity is given by the SQLITE_AFF_
2673** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002674**
drh05883a32015-06-02 15:32:08 +00002675** If P4 is NULL then all index fields have the affinity BLOB.
drh7f057c92005-06-24 03:53:06 +00002676*/
drh1db639c2008-01-17 02:36:28 +00002677case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002678 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2679 Mem *pRec; /* The new record */
2680 u64 nData; /* Number of bytes of data space */
2681 int nHdr; /* Number of bytes of header space */
2682 i64 nByte; /* Data space required for this record */
drh4a335072015-04-11 02:08:48 +00002683 i64 nZero; /* Number of zero bytes at the end of the record */
drh856c1032009-06-02 15:21:42 +00002684 int nVarint; /* Number of bytes in a varint */
2685 u32 serial_type; /* Type field */
2686 Mem *pData0; /* First field to be combined into the record */
2687 Mem *pLast; /* Last field of the record */
2688 int nField; /* Number of fields in the record */
2689 char *zAffinity; /* The affinity string for the record */
2690 int file_format; /* File format to use for encoding */
drh59bf00c2013-12-08 23:33:28 +00002691 int i; /* Space used in zNewRecord[] header */
2692 int j; /* Space used in zNewRecord[] content */
drhbe37c122015-10-16 14:54:17 +00002693 u32 len; /* Length of a field */
drh856c1032009-06-02 15:21:42 +00002694
drhf3218fe2004-05-28 08:21:02 +00002695 /* Assuming the record contains N fields, the record format looks
2696 ** like this:
2697 **
drh7a224de2004-06-02 01:22:02 +00002698 ** ------------------------------------------------------------------------
2699 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2700 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002701 **
drh9cbf3422008-01-17 16:22:13 +00002702 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
peter.d.reid60ec9142014-09-06 16:39:46 +00002703 ** and so forth.
drhf3218fe2004-05-28 08:21:02 +00002704 **
2705 ** Each type field is a varint representing the serial type of the
2706 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002707 ** hdr-size field is also a varint which is the offset from the beginning
2708 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002709 */
drh856c1032009-06-02 15:21:42 +00002710 nData = 0; /* Number of bytes of data space */
2711 nHdr = 0; /* Number of bytes of header space */
drh856c1032009-06-02 15:21:42 +00002712 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002713 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002714 zAffinity = pOp->p4.z;
drh9f6168b2016-03-19 23:32:58 +00002715 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
drha6c2ed92009-11-14 23:22:23 +00002716 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002717 nField = pOp->p2;
2718 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002719 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002720
drh2b4ded92010-09-27 21:09:31 +00002721 /* Identify the output register */
2722 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2723 pOut = &aMem[pOp->p3];
2724 memAboutToChange(p, pOut);
2725
drh3e6c0602013-12-10 20:53:01 +00002726 /* Apply the requested affinity to all inputs
2727 */
2728 assert( pData0<=pLast );
2729 if( zAffinity ){
2730 pRec = pData0;
2731 do{
drh57bf4a82014-02-17 14:59:22 +00002732 applyAffinity(pRec++, *(zAffinity++), encoding);
2733 assert( zAffinity[0]==0 || pRec<=pLast );
2734 }while( zAffinity[0] );
drh3e6c0602013-12-10 20:53:01 +00002735 }
2736
drhf3218fe2004-05-28 08:21:02 +00002737 /* Loop through the elements that will make up the record to figure
2738 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002739 */
drh038b7bc2013-12-09 23:17:22 +00002740 pRec = pLast;
drh59bf00c2013-12-08 23:33:28 +00002741 do{
drh2b4ded92010-09-27 21:09:31 +00002742 assert( memIsValid(pRec) );
drhbe37c122015-10-16 14:54:17 +00002743 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len);
drhfdf972a2007-05-02 13:30:27 +00002744 if( pRec->flags & MEM_Zero ){
drh038b7bc2013-12-09 23:17:22 +00002745 if( nData ){
drh53e66c32015-07-24 15:49:23 +00002746 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
drh038b7bc2013-12-09 23:17:22 +00002747 }else{
2748 nZero += pRec->u.nZero;
2749 len -= pRec->u.nZero;
2750 }
drhfdf972a2007-05-02 13:30:27 +00002751 }
drh8079a0d2006-01-12 17:20:50 +00002752 nData += len;
drh59bf00c2013-12-08 23:33:28 +00002753 testcase( serial_type==127 );
2754 testcase( serial_type==128 );
drh2a242872013-12-08 22:59:29 +00002755 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
drh038b7bc2013-12-09 23:17:22 +00002756 }while( (--pRec)>=pData0 );
danielk19773d1bfea2004-05-14 11:00:53 +00002757
drh654858d2014-11-20 02:18:14 +00002758 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2759 ** which determines the total number of bytes in the header. The varint
2760 ** value is the size of the header in bytes including the size varint
2761 ** itself. */
drh59bf00c2013-12-08 23:33:28 +00002762 testcase( nHdr==126 );
2763 testcase( nHdr==127 );
drh2a242872013-12-08 22:59:29 +00002764 if( nHdr<=126 ){
2765 /* The common case */
2766 nHdr += 1;
2767 }else{
2768 /* Rare case of a really large header */
2769 nVarint = sqlite3VarintLen(nHdr);
2770 nHdr += nVarint;
2771 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
drhcb9882a2005-03-17 03:15:40 +00002772 }
drh038b7bc2013-12-09 23:17:22 +00002773 nByte = nHdr+nData;
drh4a335072015-04-11 02:08:48 +00002774 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002775 goto too_big;
2776 }
drhf3218fe2004-05-28 08:21:02 +00002777
danielk1977a7a8e142008-02-13 18:25:27 +00002778 /* Make sure the output register has a buffer large enough to store
2779 ** the new record. The output register (pOp->p3) is not allowed to
2780 ** be one of the input registers (because the following call to
drh322f2852014-09-19 00:43:39 +00002781 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
danielk1977a7a8e142008-02-13 18:25:27 +00002782 */
drh322f2852014-09-19 00:43:39 +00002783 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002784 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002785 }
danielk1977a7a8e142008-02-13 18:25:27 +00002786 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002787
2788 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002789 i = putVarint32(zNewRecord, nHdr);
drh59bf00c2013-12-08 23:33:28 +00002790 j = nHdr;
2791 assert( pData0<=pLast );
2792 pRec = pData0;
2793 do{
drhfacf47a2014-10-13 20:12:47 +00002794 serial_type = pRec->uTemp;
drh654858d2014-11-20 02:18:14 +00002795 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2796 ** additional varints, one per column. */
drh038b7bc2013-12-09 23:17:22 +00002797 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
drh654858d2014-11-20 02:18:14 +00002798 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2799 ** immediately follow the header. */
drha9ab4812013-12-11 11:00:44 +00002800 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
drh59bf00c2013-12-08 23:33:28 +00002801 }while( (++pRec)<=pLast );
2802 assert( i==nHdr );
2803 assert( j==nByte );
drhf3218fe2004-05-28 08:21:02 +00002804
drh9f6168b2016-03-19 23:32:58 +00002805 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drh9c1905f2008-12-10 22:32:56 +00002806 pOut->n = (int)nByte;
drhc91b2fd2014-03-01 18:13:23 +00002807 pOut->flags = MEM_Blob;
drhfdf972a2007-05-02 13:30:27 +00002808 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002809 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002810 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002811 }
drh477df4b2008-01-05 18:48:24 +00002812 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
drh1013c932008-01-06 00:25:21 +00002813 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002814 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002815 break;
2816}
2817
danielk1977a5533162009-02-24 10:01:51 +00002818/* Opcode: Count P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002819** Synopsis: r[P2]=count()
danielk1977a5533162009-02-24 10:01:51 +00002820**
2821** Store the number of entries (an integer value) in the table or index
2822** opened by cursor P1 in register P2
2823*/
2824#ifndef SQLITE_OMIT_BTREECOUNT
drh27a348c2015-04-13 19:14:06 +00002825case OP_Count: { /* out2 */
danielk1977a5533162009-02-24 10:01:51 +00002826 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002827 BtCursor *pCrsr;
2828
drhc960dcb2015-11-20 19:22:01 +00002829 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
2830 pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
drh3da046d2013-11-11 03:24:11 +00002831 assert( pCrsr );
drh2dc06482013-12-11 00:59:10 +00002832 nEntry = 0; /* Not needed. Only used to silence a warning. */
drh3da046d2013-11-11 03:24:11 +00002833 rc = sqlite3BtreeCount(pCrsr, &nEntry);
drh9467abf2016-02-17 18:44:11 +00002834 if( rc ) goto abort_due_to_error;
drh27a348c2015-04-13 19:14:06 +00002835 pOut = out2Prerelease(p, pOp);
danielk1977a5533162009-02-24 10:01:51 +00002836 pOut->u.i = nEntry;
2837 break;
2838}
2839#endif
2840
danielk1977fd7f0452008-12-17 17:30:26 +00002841/* Opcode: Savepoint P1 * * P4 *
2842**
2843** Open, release or rollback the savepoint named by parameter P4, depending
2844** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2845** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2846*/
2847case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002848 int p1; /* Value of P1 operand */
2849 char *zName; /* Name of savepoint */
2850 int nName;
2851 Savepoint *pNew;
2852 Savepoint *pSavepoint;
2853 Savepoint *pTmp;
2854 int iSavepoint;
2855 int ii;
2856
2857 p1 = pOp->p1;
2858 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002859
2860 /* Assert that the p1 parameter is valid. Also that if there is no open
2861 ** transaction, then there cannot be any savepoints.
2862 */
2863 assert( db->pSavepoint==0 || db->autoCommit==0 );
2864 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2865 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2866 assert( checkSavepointCount(db) );
danc0537fe2013-06-28 19:41:43 +00002867 assert( p->bIsReader );
danielk1977fd7f0452008-12-17 17:30:26 +00002868
2869 if( p1==SAVEPOINT_BEGIN ){
drh4f7d3a52013-06-27 23:54:02 +00002870 if( db->nVdbeWrite>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002871 /* A new savepoint cannot be created if there are active write
2872 ** statements (i.e. open read/write incremental blob handles).
2873 */
drh22c17b82015-05-15 04:13:15 +00002874 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
danielk1977fd7f0452008-12-17 17:30:26 +00002875 rc = SQLITE_BUSY;
2876 }else{
drh856c1032009-06-02 15:21:42 +00002877 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002878
drhbe07ec52011-06-03 12:15:26 +00002879#ifndef SQLITE_OMIT_VIRTUALTABLE
dand9495cd2011-04-27 12:08:04 +00002880 /* This call is Ok even if this savepoint is actually a transaction
2881 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2882 ** If this is a transaction savepoint being opened, it is guaranteed
2883 ** that the db->aVTrans[] array is empty. */
2884 assert( db->autoCommit==0 || db->nVTrans==0 );
drha24bc9c2011-05-24 00:35:56 +00002885 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2886 db->nStatement+db->nSavepoint);
dand9495cd2011-04-27 12:08:04 +00002887 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh305ebab2011-05-26 14:19:14 +00002888#endif
dand9495cd2011-04-27 12:08:04 +00002889
danielk1977fd7f0452008-12-17 17:30:26 +00002890 /* Create a new savepoint structure. */
drh575fad62016-02-05 13:38:36 +00002891 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
danielk1977fd7f0452008-12-17 17:30:26 +00002892 if( pNew ){
2893 pNew->zName = (char *)&pNew[1];
2894 memcpy(pNew->zName, zName, nName+1);
2895
2896 /* If there is no open transaction, then mark this as a special
2897 ** "transaction savepoint". */
2898 if( db->autoCommit ){
2899 db->autoCommit = 0;
2900 db->isTransactionSavepoint = 1;
2901 }else{
2902 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002903 }
dan21e8d012011-03-03 20:05:59 +00002904
danielk1977fd7f0452008-12-17 17:30:26 +00002905 /* Link the new savepoint into the database handle's list. */
2906 pNew->pNext = db->pSavepoint;
2907 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002908 pNew->nDeferredCons = db->nDeferredCons;
dancb3e4b72013-07-03 19:53:05 +00002909 pNew->nDeferredImmCons = db->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002910 }
2911 }
2912 }else{
drh856c1032009-06-02 15:21:42 +00002913 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00002914
2915 /* Find the named savepoint. If there is no such savepoint, then an
2916 ** an error is returned to the user. */
2917 for(
drh856c1032009-06-02 15:21:42 +00002918 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002919 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00002920 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00002921 ){
2922 iSavepoint++;
2923 }
2924 if( !pSavepoint ){
drh22c17b82015-05-15 04:13:15 +00002925 sqlite3VdbeError(p, "no such savepoint: %s", zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002926 rc = SQLITE_ERROR;
drh4f7d3a52013-06-27 23:54:02 +00002927 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
danielk1977fd7f0452008-12-17 17:30:26 +00002928 /* It is not possible to release (commit) a savepoint if there are
drh0f198a72012-02-13 16:43:16 +00002929 ** active write statements.
danielk1977fd7f0452008-12-17 17:30:26 +00002930 */
drh22c17b82015-05-15 04:13:15 +00002931 sqlite3VdbeError(p, "cannot release savepoint - "
2932 "SQL statements in progress");
danielk1977fd7f0452008-12-17 17:30:26 +00002933 rc = SQLITE_BUSY;
2934 }else{
2935
2936 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00002937 ** and this is a RELEASE command, then the current transaction
2938 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00002939 */
2940 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2941 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00002942 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002943 goto vdbe_return;
2944 }
danielk1977fd7f0452008-12-17 17:30:26 +00002945 db->autoCommit = 1;
2946 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
drhf56fa462015-04-13 21:39:54 +00002947 p->pc = (int)(pOp - aOp);
danielk1977fd7f0452008-12-17 17:30:26 +00002948 db->autoCommit = 0;
2949 p->rc = rc = SQLITE_BUSY;
2950 goto vdbe_return;
2951 }
danielk197734cf35d2008-12-18 18:31:38 +00002952 db->isTransactionSavepoint = 0;
2953 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00002954 }else{
drh47b7fc72014-11-11 01:33:57 +00002955 int isSchemaChange;
danielk1977fd7f0452008-12-17 17:30:26 +00002956 iSavepoint = db->nSavepoint - iSavepoint - 1;
drh31f10052012-03-31 17:17:26 +00002957 if( p1==SAVEPOINT_ROLLBACK ){
drh47b7fc72014-11-11 01:33:57 +00002958 isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
drh31f10052012-03-31 17:17:26 +00002959 for(ii=0; ii<db->nDb; ii++){
drh77b1dee2014-11-17 17:13:06 +00002960 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
2961 SQLITE_ABORT_ROLLBACK,
drh47b7fc72014-11-11 01:33:57 +00002962 isSchemaChange==0);
dan80231042014-11-12 14:56:02 +00002963 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh31f10052012-03-31 17:17:26 +00002964 }
drh47b7fc72014-11-11 01:33:57 +00002965 }else{
2966 isSchemaChange = 0;
drh0f198a72012-02-13 16:43:16 +00002967 }
2968 for(ii=0; ii<db->nDb; ii++){
danielk1977fd7f0452008-12-17 17:30:26 +00002969 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2970 if( rc!=SQLITE_OK ){
2971 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00002972 }
danielk1977fd7f0452008-12-17 17:30:26 +00002973 }
drh47b7fc72014-11-11 01:33:57 +00002974 if( isSchemaChange ){
danielk1977fd7f0452008-12-17 17:30:26 +00002975 sqlite3ExpirePreparedStatements(db);
drh81028a42012-05-15 18:28:27 +00002976 sqlite3ResetAllSchemasOfConnection(db);
danc311fee2010-08-31 16:25:19 +00002977 db->flags = (db->flags | SQLITE_InternChanges);
danielk1977fd7f0452008-12-17 17:30:26 +00002978 }
2979 }
2980
2981 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2982 ** savepoints nested inside of the savepoint being operated on. */
2983 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00002984 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002985 db->pSavepoint = pTmp->pNext;
2986 sqlite3DbFree(db, pTmp);
2987 db->nSavepoint--;
2988 }
2989
dan1da40a32009-09-19 17:00:31 +00002990 /* If it is a RELEASE, then destroy the savepoint being operated on
2991 ** too. If it is a ROLLBACK TO, then set the number of deferred
2992 ** constraint violations present in the database to the value stored
2993 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00002994 if( p1==SAVEPOINT_RELEASE ){
2995 assert( pSavepoint==db->pSavepoint );
2996 db->pSavepoint = pSavepoint->pNext;
2997 sqlite3DbFree(db, pSavepoint);
2998 if( !isTransaction ){
2999 db->nSavepoint--;
3000 }
dan1da40a32009-09-19 17:00:31 +00003001 }else{
3002 db->nDeferredCons = pSavepoint->nDeferredCons;
dancb3e4b72013-07-03 19:53:05 +00003003 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00003004 }
dand9495cd2011-04-27 12:08:04 +00003005
danea8562e2015-04-18 16:25:54 +00003006 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
dand9495cd2011-04-27 12:08:04 +00003007 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3008 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3009 }
danielk1977fd7f0452008-12-17 17:30:26 +00003010 }
3011 }
drh9467abf2016-02-17 18:44:11 +00003012 if( rc ) goto abort_due_to_error;
danielk1977fd7f0452008-12-17 17:30:26 +00003013
3014 break;
3015}
3016
drh98757152008-01-09 23:04:12 +00003017/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00003018**
3019** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00003020** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00003021** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
3022** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00003023**
3024** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00003025*/
drh9cbf3422008-01-17 16:22:13 +00003026case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00003027 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00003028 int iRollback;
danielk19771d850a72004-05-31 08:26:49 +00003029
drh856c1032009-06-02 15:21:42 +00003030 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00003031 iRollback = pOp->p2;
drhad4a4b82008-11-05 16:37:34 +00003032 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00003033 assert( desiredAutoCommit==1 || iRollback==0 );
drh4f7d3a52013-06-27 23:54:02 +00003034 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
danc0537fe2013-06-28 19:41:43 +00003035 assert( p->bIsReader );
danielk197746c43ed2004-06-30 06:30:25 +00003036
drhb0c88652016-02-01 13:21:13 +00003037 if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00003038 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00003039 assert( desiredAutoCommit==1 );
drh21021a52012-02-13 17:01:51 +00003040 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977f3f06bb2005-12-16 15:24:28 +00003041 db->autoCommit = 1;
drhb0c88652016-02-01 13:21:13 +00003042 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3043 /* If this instruction implements a COMMIT and other VMs are writing
3044 ** return an error indicating that the other VMs must complete first.
3045 */
3046 sqlite3VdbeError(p, "cannot commit transaction - "
3047 "SQL statements in progress");
3048 rc = SQLITE_BUSY;
drh9467abf2016-02-17 18:44:11 +00003049 goto abort_due_to_error;
dan32b09f22009-09-23 17:29:59 +00003050 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00003051 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00003052 }else{
shane7d3846a2008-12-11 02:58:26 +00003053 db->autoCommit = (u8)desiredAutoCommit;
drh8ff25872015-07-31 18:59:56 +00003054 }
3055 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3056 p->pc = (int)(pOp - aOp);
3057 db->autoCommit = (u8)(1-desiredAutoCommit);
3058 p->rc = rc = SQLITE_BUSY;
3059 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00003060 }
danielk1977bd434552009-03-18 10:33:00 +00003061 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00003062 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00003063 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00003064 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00003065 }else{
drh900b31e2007-08-28 02:27:51 +00003066 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00003067 }
drh900b31e2007-08-28 02:27:51 +00003068 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00003069 }else{
drh22c17b82015-05-15 04:13:15 +00003070 sqlite3VdbeError(p,
drhad4a4b82008-11-05 16:37:34 +00003071 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00003072 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00003073 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00003074
3075 rc = SQLITE_ERROR;
drh9467abf2016-02-17 18:44:11 +00003076 goto abort_due_to_error;
drh663fc632002-02-02 18:49:19 +00003077 }
3078 break;
3079}
3080
drhb22f7c82014-02-06 23:56:27 +00003081/* Opcode: Transaction P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003082**
drh05a86c52014-02-16 01:55:49 +00003083** Begin a transaction on database P1 if a transaction is not already
3084** active.
3085** If P2 is non-zero, then a write-transaction is started, or if a
3086** read-transaction is already active, it is upgraded to a write-transaction.
3087** If P2 is zero, then a read-transaction is started.
drh5e00f6c2001-09-13 13:46:56 +00003088**
drh001bbcb2003-03-19 03:14:00 +00003089** P1 is the index of the database file on which the transaction is
3090** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00003091** file used for temporary tables. Indices of 2 or more are used for
3092** attached databases.
drhcabb0812002-09-14 13:47:32 +00003093**
dane0af83a2009-09-08 19:15:01 +00003094** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3095** true (this flag is set if the Vdbe may modify more than one row and may
3096** throw an ABORT exception), a statement transaction may also be opened.
3097** More specifically, a statement transaction is opened iff the database
3098** connection is currently not in autocommit mode, or if there are other
drha4510172012-02-02 15:50:17 +00003099** active statements. A statement transaction allows the changes made by this
dane0af83a2009-09-08 19:15:01 +00003100** VDBE to be rolled back after an error without having to roll back the
3101** entire transaction. If no error is encountered, the statement transaction
3102** will automatically commit when the VDBE halts.
3103**
drhb22f7c82014-02-06 23:56:27 +00003104** If P5!=0 then this opcode also checks the schema cookie against P3
3105** and the schema generation counter against P4.
3106** The cookie changes its value whenever the database schema changes.
3107** This operation is used to detect when that the cookie has changed
drh05a86c52014-02-16 01:55:49 +00003108** and that the current process needs to reread the schema. If the schema
3109** cookie in P3 differs from the schema cookie in the database header or
3110** if the schema generation counter in P4 differs from the current
3111** generation counter, then an SQLITE_SCHEMA error is raised and execution
3112** halts. The sqlite3_step() wrapper function might then reprepare the
3113** statement and rerun it from the beginning.
drh5e00f6c2001-09-13 13:46:56 +00003114*/
drh9cbf3422008-01-17 16:22:13 +00003115case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00003116 Btree *pBt;
drhb22f7c82014-02-06 23:56:27 +00003117 int iMeta;
3118 int iGen;
danielk19771d850a72004-05-31 08:26:49 +00003119
drh1713afb2013-06-28 01:24:57 +00003120 assert( p->bIsReader );
drh9e92a472013-06-27 17:40:30 +00003121 assert( p->readOnly==0 || pOp->p2==0 );
drh653b82a2009-06-22 11:10:47 +00003122 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003123 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh13447bf2013-07-10 13:33:49 +00003124 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3125 rc = SQLITE_READONLY;
3126 goto abort_due_to_error;
3127 }
drh653b82a2009-06-22 11:10:47 +00003128 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00003129
danielk197724162fe2004-06-04 06:22:00 +00003130 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00003131 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
drhcbd8db32015-08-20 17:18:32 +00003132 testcase( rc==SQLITE_BUSY_SNAPSHOT );
3133 testcase( rc==SQLITE_BUSY_RECOVERY );
3134 if( (rc&0xff)==SQLITE_BUSY ){
drhf56fa462015-04-13 21:39:54 +00003135 p->pc = (int)(pOp - aOp);
drhcbd8db32015-08-20 17:18:32 +00003136 p->rc = rc;
drh900b31e2007-08-28 02:27:51 +00003137 goto vdbe_return;
danielk197724162fe2004-06-04 06:22:00 +00003138 }
drh9e9f1bd2009-10-13 15:36:51 +00003139 if( rc!=SQLITE_OK ){
danielk197724162fe2004-06-04 06:22:00 +00003140 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00003141 }
dane0af83a2009-09-08 19:15:01 +00003142
3143 if( pOp->p2 && p->usesStmtJournal
danc0537fe2013-06-28 19:41:43 +00003144 && (db->autoCommit==0 || db->nVdbeRead>1)
dane0af83a2009-09-08 19:15:01 +00003145 ){
3146 assert( sqlite3BtreeIsInTrans(pBt) );
3147 if( p->iStatement==0 ){
3148 assert( db->nStatement>=0 && db->nSavepoint>=0 );
3149 db->nStatement++;
3150 p->iStatement = db->nSavepoint + db->nStatement;
3151 }
dana311b802011-04-26 19:21:34 +00003152
drh346506f2011-05-25 01:16:42 +00003153 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
dana311b802011-04-26 19:21:34 +00003154 if( rc==SQLITE_OK ){
3155 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3156 }
dan1da40a32009-09-19 17:00:31 +00003157
3158 /* Store the current value of the database handles deferred constraint
3159 ** counter. If the statement transaction needs to be rolled back,
3160 ** the value of this counter needs to be restored too. */
3161 p->nStmtDefCons = db->nDeferredCons;
dancb3e4b72013-07-03 19:53:05 +00003162 p->nStmtDefImmCons = db->nDeferredImmCons;
dane0af83a2009-09-08 19:15:01 +00003163 }
drhb22f7c82014-02-06 23:56:27 +00003164
drh51a74d42015-02-28 01:04:27 +00003165 /* Gather the schema version number for checking:
3166 ** IMPLEMENTATION-OF: R-32195-19465 The schema version is used by SQLite
3167 ** each time a query is executed to ensure that the internal cache of the
3168 ** schema used when compiling the SQL query matches the schema of the
3169 ** database against which the compiled query is actually executed.
3170 */
drhb22f7c82014-02-06 23:56:27 +00003171 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3172 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3173 }else{
3174 iGen = iMeta = 0;
3175 }
3176 assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3177 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3178 sqlite3DbFree(db, p->zErrMsg);
3179 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3180 /* If the schema-cookie from the database file matches the cookie
3181 ** stored with the in-memory representation of the schema, do
3182 ** not reload the schema from the database file.
3183 **
3184 ** If virtual-tables are in use, this is not just an optimization.
3185 ** Often, v-tables store their data in other SQLite tables, which
3186 ** are queried from within xNext() and other v-table methods using
3187 ** prepared queries. If such a query is out-of-date, we do not want to
3188 ** discard the database schema, as the user code implementing the
3189 ** v-table would have to be ready for the sqlite3_vtab structure itself
3190 ** to be invalidated whenever sqlite3_step() is called from within
3191 ** a v-table method.
3192 */
3193 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3194 sqlite3ResetOneSchema(db, pOp->p1);
3195 }
3196 p->expired = 1;
3197 rc = SQLITE_SCHEMA;
drhb86ccfb2003-01-28 23:13:10 +00003198 }
drh9467abf2016-02-17 18:44:11 +00003199 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00003200 break;
3201}
3202
drhb1fdb2a2008-01-05 04:06:03 +00003203/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003204**
drh9cbf3422008-01-17 16:22:13 +00003205** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00003206** P3==1 is the schema version. P3==2 is the database format.
3207** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00003208** the main database file and P1==1 is the database file used to store
3209** temporary tables.
drh4a324312001-12-21 14:30:42 +00003210**
drh50e5dad2001-09-15 00:57:28 +00003211** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00003212** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00003213** executing this instruction.
3214*/
drh27a348c2015-04-13 19:14:06 +00003215case OP_ReadCookie: { /* out2 */
drhf328bc82004-05-10 23:29:49 +00003216 int iMeta;
drh856c1032009-06-02 15:21:42 +00003217 int iDb;
3218 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00003219
drh1713afb2013-06-28 01:24:57 +00003220 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00003221 iDb = pOp->p1;
3222 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00003223 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00003224 assert( iDb>=0 && iDb<db->nDb );
3225 assert( db->aDb[iDb].pBt!=0 );
drha7ab6d82014-07-21 15:44:39 +00003226 assert( DbMaskTest(p->btreeMask, iDb) );
danielk19770d19f7a2009-06-03 11:25:07 +00003227
danielk1977602b4662009-07-02 07:47:33 +00003228 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh27a348c2015-04-13 19:14:06 +00003229 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00003230 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00003231 break;
3232}
3233
drh98757152008-01-09 23:04:12 +00003234/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003235**
drh1861afc2016-02-01 21:48:34 +00003236** Write the integer value P3 into cookie number P2 of database P1.
3237** P2==1 is the schema version. P2==2 is the database format.
3238** P2==3 is the recommended pager cache
danielk19770d19f7a2009-06-03 11:25:07 +00003239** size, and so forth. P1==0 is the main database file and P1==1 is the
3240** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00003241**
3242** A transaction must be started before executing this opcode.
3243*/
drh1861afc2016-02-01 21:48:34 +00003244case OP_SetCookie: {
drh3f7d4e42004-07-24 14:35:58 +00003245 Db *pDb;
drh4a324312001-12-21 14:30:42 +00003246 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00003247 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003248 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00003249 assert( p->readOnly==0 );
drh3f7d4e42004-07-24 14:35:58 +00003250 pDb = &db->aDb[pOp->p1];
3251 assert( pDb->pBt!=0 );
drh21206082011-04-04 18:22:02 +00003252 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drha3b321d2004-05-11 09:31:31 +00003253 /* See note about index shifting on OP_ReadCookie */
drh1861afc2016-02-01 21:48:34 +00003254 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
danielk19770d19f7a2009-06-03 11:25:07 +00003255 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00003256 /* When the schema cookie changes, record the new cookie internally */
drh1861afc2016-02-01 21:48:34 +00003257 pDb->pSchema->schema_cookie = pOp->p3;
drh3f7d4e42004-07-24 14:35:58 +00003258 db->flags |= SQLITE_InternChanges;
danielk19770d19f7a2009-06-03 11:25:07 +00003259 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00003260 /* Record changes in the file format */
drh1861afc2016-02-01 21:48:34 +00003261 pDb->pSchema->file_format = pOp->p3;
drh3f7d4e42004-07-24 14:35:58 +00003262 }
drhfd426c62006-01-30 15:34:22 +00003263 if( pOp->p1==1 ){
3264 /* Invalidate all prepared statements whenever the TEMP database
3265 ** schema is changed. Ticket #1644 */
3266 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00003267 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00003268 }
drh9467abf2016-02-17 18:44:11 +00003269 if( rc ) goto abort_due_to_error;
drh50e5dad2001-09-15 00:57:28 +00003270 break;
3271}
3272
drh98757152008-01-09 23:04:12 +00003273/* Opcode: OpenRead P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003274** Synopsis: root=P2 iDb=P3
drh5e00f6c2001-09-13 13:46:56 +00003275**
drhecdc7532001-09-23 02:35:53 +00003276** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00003277** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00003278** P3==0 means the main database, P3==1 means the database used for
3279** temporary tables, and P3>1 means used the corresponding attached
3280** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00003281** values need not be contiguous but all P1 values should be small integers.
3282** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00003283**
drh98757152008-01-09 23:04:12 +00003284** If P5!=0 then use the content of register P2 as the root page, not
3285** the value of P2 itself.
drh5edc3122001-09-13 21:53:09 +00003286**
drhb19a2bc2001-09-16 00:13:26 +00003287** There will be a read lock on the database whenever there is an
3288** open cursor. If the database was unlocked prior to this instruction
3289** then a read lock is acquired as part of this instruction. A read
3290** lock allows other processes to read the database but prohibits
3291** any other process from modifying the database. The read lock is
3292** released when all cursors are closed. If this instruction attempts
3293** to get a read lock but fails, the script terminates with an
3294** SQLITE_BUSY error code.
3295**
danielk1977d336e222009-02-20 10:58:41 +00003296** The P4 value may be either an integer (P4_INT32) or a pointer to
3297** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3298** structure, then said structure defines the content and collating
3299** sequence of the index being opened. Otherwise, if P4 is an integer
3300** value, it is set to the number of columns in the table.
drhf57b3392001-10-08 13:22:32 +00003301**
drh35263192014-07-22 20:02:19 +00003302** See also: OpenWrite, ReopenIdx
3303*/
3304/* Opcode: ReopenIdx P1 P2 P3 P4 P5
3305** Synopsis: root=P2 iDb=P3
3306**
3307** The ReopenIdx opcode works exactly like ReadOpen except that it first
3308** checks to see if the cursor on P1 is already open with a root page
3309** number of P2 and if it is this opcode becomes a no-op. In other words,
3310** if the cursor is already open, do not reopen it.
3311**
3312** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3313** a P4_KEYINFO object. Furthermore, the P3 value must be the same as
3314** every other ReopenIdx or OpenRead for the same cursor number.
3315**
3316** See the OpenRead opcode documentation for additional information.
drh5e00f6c2001-09-13 13:46:56 +00003317*/
drh98757152008-01-09 23:04:12 +00003318/* Opcode: OpenWrite P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003319** Synopsis: root=P2 iDb=P3
drhecdc7532001-09-23 02:35:53 +00003320**
3321** Open a read/write cursor named P1 on the table or index whose root
drh98757152008-01-09 23:04:12 +00003322** page is P2. Or if P5!=0 use the content of register P2 to find the
3323** root page.
drhecdc7532001-09-23 02:35:53 +00003324**
danielk1977d336e222009-02-20 10:58:41 +00003325** The P4 value may be either an integer (P4_INT32) or a pointer to
3326** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3327** structure, then said structure defines the content and collating
3328** sequence of the index being opened. Otherwise, if P4 is an integer
drh35cd6432009-06-05 14:17:21 +00003329** value, it is set to the number of columns in the table, or to the
3330** largest index of any column of the table that is actually used.
jplyon5a564222003-06-02 06:15:58 +00003331**
drh001bbcb2003-03-19 03:14:00 +00003332** This instruction works just like OpenRead except that it opens the cursor
drhecdc7532001-09-23 02:35:53 +00003333** in read/write mode. For a given table, there can be one or more read-only
3334** cursors or a single read/write cursor but not both.
drhf57b3392001-10-08 13:22:32 +00003335**
drh001bbcb2003-03-19 03:14:00 +00003336** See also OpenRead.
drhecdc7532001-09-23 02:35:53 +00003337*/
drh35263192014-07-22 20:02:19 +00003338case OP_ReopenIdx: {
drh856c1032009-06-02 15:21:42 +00003339 int nField;
3340 KeyInfo *pKeyInfo;
drh856c1032009-06-02 15:21:42 +00003341 int p2;
3342 int iDb;
drhf57b3392001-10-08 13:22:32 +00003343 int wrFlag;
3344 Btree *pX;
drhdfe88ec2008-11-03 20:55:06 +00003345 VdbeCursor *pCur;
drhd946db02005-12-29 19:23:06 +00003346 Db *pDb;
drh856c1032009-06-02 15:21:42 +00003347
drhe0997b32015-03-20 14:57:50 +00003348 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
drh35263192014-07-22 20:02:19 +00003349 assert( pOp->p4type==P4_KEYINFO );
3350 pCur = p->apCsr[pOp->p1];
drhe8f2c9d2014-08-06 17:49:13 +00003351 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
drh35263192014-07-22 20:02:19 +00003352 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
drhe0997b32015-03-20 14:57:50 +00003353 goto open_cursor_set_hints;
drh35263192014-07-22 20:02:19 +00003354 }
3355 /* If the cursor is not currently open or is open on a different
3356 ** index, then fall through into OP_OpenRead to force a reopen */
drh5e00f6c2001-09-13 13:46:56 +00003357case OP_OpenRead:
drh1fa509a2015-03-20 16:34:49 +00003358case OP_OpenWrite:
drh856c1032009-06-02 15:21:42 +00003359
drhe0997b32015-03-20 14:57:50 +00003360 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
drh1713afb2013-06-28 01:24:57 +00003361 assert( p->bIsReader );
drh35263192014-07-22 20:02:19 +00003362 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3363 || p->readOnly==0 );
dan428c2182012-08-06 18:50:11 +00003364
danfa401de2009-10-16 14:55:03 +00003365 if( p->expired ){
drh47b7fc72014-11-11 01:33:57 +00003366 rc = SQLITE_ABORT_ROLLBACK;
drh9467abf2016-02-17 18:44:11 +00003367 goto abort_due_to_error;
danfa401de2009-10-16 14:55:03 +00003368 }
3369
drh856c1032009-06-02 15:21:42 +00003370 nField = 0;
3371 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00003372 p2 = pOp->p2;
3373 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00003374 assert( iDb>=0 && iDb<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003375 assert( DbMaskTest(p->btreeMask, iDb) );
drhd946db02005-12-29 19:23:06 +00003376 pDb = &db->aDb[iDb];
3377 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00003378 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00003379 if( pOp->opcode==OP_OpenWrite ){
danfd261ec2015-10-22 20:54:33 +00003380 assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3381 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
drh21206082011-04-04 18:22:02 +00003382 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
danielk1977da184232006-01-05 11:34:32 +00003383 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3384 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00003385 }
3386 }else{
3387 wrFlag = 0;
3388 }
dan428c2182012-08-06 18:50:11 +00003389 if( pOp->p5 & OPFLAG_P2ISREG ){
drh9cbf3422008-01-17 16:22:13 +00003390 assert( p2>0 );
drh9f6168b2016-03-19 23:32:58 +00003391 assert( p2<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00003392 pIn2 = &aMem[p2];
drh2b4ded92010-09-27 21:09:31 +00003393 assert( memIsValid(pIn2) );
3394 assert( (pIn2->flags & MEM_Int)!=0 );
drh9cbf3422008-01-17 16:22:13 +00003395 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003396 p2 = (int)pIn2->u.i;
drh9a65f2c2009-06-22 19:05:40 +00003397 /* The p2 value always comes from a prior OP_CreateTable opcode and
3398 ** that opcode will always set the p2 value to 2 or more or else fail.
3399 ** If there were a failure, the prepared statement would have halted
3400 ** before reaching this instruction. */
drh9467abf2016-02-17 18:44:11 +00003401 assert( p2>=2 );
drh5edc3122001-09-13 21:53:09 +00003402 }
danielk1977d336e222009-02-20 10:58:41 +00003403 if( pOp->p4type==P4_KEYINFO ){
3404 pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003405 assert( pKeyInfo->enc==ENC(db) );
3406 assert( pKeyInfo->db==db );
drhad124322013-10-23 13:30:58 +00003407 nField = pKeyInfo->nField+pKeyInfo->nXField;
danielk1977d336e222009-02-20 10:58:41 +00003408 }else if( pOp->p4type==P4_INT32 ){
3409 nField = pOp->p4.i;
3410 }
drh653b82a2009-06-22 11:10:47 +00003411 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003412 assert( nField>=0 );
3413 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
drhc960dcb2015-11-20 19:22:01 +00003414 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
drh4774b132004-06-12 20:12:51 +00003415 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003416 pCur->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003417 pCur->isOrdered = 1;
drh35263192014-07-22 20:02:19 +00003418 pCur->pgnoRoot = p2;
drhb89aeb62016-01-27 15:49:32 +00003419#ifdef SQLITE_DEBUG
3420 pCur->wrFlag = wrFlag;
3421#endif
drhc960dcb2015-11-20 19:22:01 +00003422 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
danielk1977d336e222009-02-20 10:58:41 +00003423 pCur->pKeyInfo = pKeyInfo;
drh14da87f2013-11-20 21:51:33 +00003424 /* Set the VdbeCursor.isTable variable. Previous versions of
danielk1977172114a2009-07-07 15:47:12 +00003425 ** SQLite used to check if the root-page flags were sane at this point
3426 ** and report database corruption if they were not, but this check has
3427 ** since moved into the btree layer. */
3428 pCur->isTable = pOp->p4type!=P4_KEYINFO;
drhe0997b32015-03-20 14:57:50 +00003429
3430open_cursor_set_hints:
3431 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3432 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
drh0403cb32015-08-14 23:57:04 +00003433 testcase( pOp->p5 & OPFLAG_BULKCSR );
drh9abe8412016-01-02 05:00:31 +00003434#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh0403cb32015-08-14 23:57:04 +00003435 testcase( pOp->p2 & OPFLAG_SEEKEQ );
3436#endif
drhc960dcb2015-11-20 19:22:01 +00003437 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
drhf7854c72015-10-27 13:24:37 +00003438 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
drh9467abf2016-02-17 18:44:11 +00003439 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00003440 break;
3441}
3442
drh2a5d9902011-08-26 00:34:45 +00003443/* Opcode: OpenEphemeral P1 P2 * P4 P5
drh81316f82013-10-29 20:40:47 +00003444** Synopsis: nColumn=P2
drh5e00f6c2001-09-13 13:46:56 +00003445**
drhb9bb7c12006-06-11 23:41:55 +00003446** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003447** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003448** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003449** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003450**
drh25d3adb2010-04-05 15:11:08 +00003451** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003452** The cursor points to a BTree table if P4==0 and to a BTree index
3453** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003454** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003455**
drh2a5d9902011-08-26 00:34:45 +00003456** The P5 parameter can be a mask of the BTREE_* flags defined
3457** in btree.h. These flags control aspects of the operation of
3458** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3459** added automatically.
drh5e00f6c2001-09-13 13:46:56 +00003460*/
drha21a64d2010-04-06 22:33:55 +00003461/* Opcode: OpenAutoindex P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00003462** Synopsis: nColumn=P2
drha21a64d2010-04-06 22:33:55 +00003463**
3464** This opcode works the same as OP_OpenEphemeral. It has a
3465** different name to distinguish its use. Tables created using
3466** by this opcode will be used for automatically created transient
3467** indices in joins.
3468*/
3469case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003470case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003471 VdbeCursor *pCx;
drh41e13e12013-11-07 14:09:39 +00003472 KeyInfo *pKeyInfo;
3473
drhd4187c72010-08-30 22:15:45 +00003474 static const int vfsFlags =
drh33f4e022007-09-03 15:19:34 +00003475 SQLITE_OPEN_READWRITE |
3476 SQLITE_OPEN_CREATE |
3477 SQLITE_OPEN_EXCLUSIVE |
3478 SQLITE_OPEN_DELETEONCLOSE |
3479 SQLITE_OPEN_TRANSIENT_DB;
drh653b82a2009-06-22 11:10:47 +00003480 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003481 assert( pOp->p2>=0 );
drhc960dcb2015-11-20 19:22:01 +00003482 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
drh4774b132004-06-12 20:12:51 +00003483 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003484 pCx->nullRow = 1;
drh079a3072014-03-19 14:10:55 +00003485 pCx->isEphemeral = 1;
dan3a6d8ae2011-04-23 15:54:54 +00003486 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
drhd4187c72010-08-30 22:15:45 +00003487 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
drh5e00f6c2001-09-13 13:46:56 +00003488 if( rc==SQLITE_OK ){
danielk197740b38dc2004-06-26 08:38:24 +00003489 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
drh5e00f6c2001-09-13 13:46:56 +00003490 }
3491 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003492 /* If a transient index is required, create it by calling
drhd4187c72010-08-30 22:15:45 +00003493 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
danielk19774adee202004-05-08 08:23:19 +00003494 ** opening it. If a transient table is required, just use the
drhd4187c72010-08-30 22:15:45 +00003495 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003496 */
drh41e13e12013-11-07 14:09:39 +00003497 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
drhc6b52df2002-01-04 03:09:29 +00003498 int pgno;
drh66a51672008-01-03 00:01:23 +00003499 assert( pOp->p4type==P4_KEYINFO );
drhe1b4f0f2011-06-29 17:11:39 +00003500 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
drhc6b52df2002-01-04 03:09:29 +00003501 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003502 assert( pgno==MASTER_ROOT+1 );
drh41e13e12013-11-07 14:09:39 +00003503 assert( pKeyInfo->db==db );
3504 assert( pKeyInfo->enc==ENC(db) );
3505 pCx->pKeyInfo = pKeyInfo;
drh62aaa6c2015-11-21 17:27:42 +00003506 rc = sqlite3BtreeCursor(pCx->pBt, pgno, BTREE_WRCSR,
3507 pKeyInfo, pCx->uc.pCursor);
drhc6b52df2002-01-04 03:09:29 +00003508 }
drhf0863fe2005-06-12 21:35:51 +00003509 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003510 }else{
drh62aaa6c2015-11-21 17:27:42 +00003511 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, BTREE_WRCSR,
3512 0, pCx->uc.pCursor);
drhf0863fe2005-06-12 21:35:51 +00003513 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003514 }
drh5e00f6c2001-09-13 13:46:56 +00003515 }
drh9467abf2016-02-17 18:44:11 +00003516 if( rc ) goto abort_due_to_error;
drhd4187c72010-08-30 22:15:45 +00003517 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
dan5134d132011-09-02 10:31:11 +00003518 break;
3519}
3520
danfad9f9a2014-04-01 18:41:51 +00003521/* Opcode: SorterOpen P1 P2 P3 P4 *
dan5134d132011-09-02 10:31:11 +00003522**
3523** This opcode works like OP_OpenEphemeral except that it opens
3524** a transient index that is specifically designed to sort large
3525** tables using an external merge-sort algorithm.
danfad9f9a2014-04-01 18:41:51 +00003526**
3527** If argument P3 is non-zero, then it indicates that the sorter may
3528** assume that a stable sort considering the first P3 fields of each
3529** key is sufficient to produce the required results.
dan5134d132011-09-02 10:31:11 +00003530*/
drhca892a72011-09-03 00:17:51 +00003531case OP_SorterOpen: {
dan5134d132011-09-02 10:31:11 +00003532 VdbeCursor *pCx;
drh3a949872012-09-18 13:20:13 +00003533
drh399af1d2013-11-20 17:25:55 +00003534 assert( pOp->p1>=0 );
3535 assert( pOp->p2>=0 );
drhc960dcb2015-11-20 19:22:01 +00003536 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
dan5134d132011-09-02 10:31:11 +00003537 if( pCx==0 ) goto no_mem;
3538 pCx->pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003539 assert( pCx->pKeyInfo->db==db );
3540 assert( pCx->pKeyInfo->enc==ENC(db) );
danfad9f9a2014-04-01 18:41:51 +00003541 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
drh9467abf2016-02-17 18:44:11 +00003542 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00003543 break;
3544}
3545
dan78d58432014-03-25 15:04:07 +00003546/* Opcode: SequenceTest P1 P2 * * *
3547** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3548**
3549** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3550** to P2. Regardless of whether or not the jump is taken, increment the
3551** the sequence value.
3552*/
3553case OP_SequenceTest: {
3554 VdbeCursor *pC;
3555 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3556 pC = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00003557 assert( isSorter(pC) );
dan78d58432014-03-25 15:04:07 +00003558 if( (pC->seqCount++)==0 ){
drhf56fa462015-04-13 21:39:54 +00003559 goto jump_to_p2;
dan78d58432014-03-25 15:04:07 +00003560 }
drh5e00f6c2001-09-13 13:46:56 +00003561 break;
3562}
3563
drh5f612292014-02-08 23:20:32 +00003564/* Opcode: OpenPseudo P1 P2 P3 * *
drh60830e32014-02-10 15:56:34 +00003565** Synopsis: P3 columns in r[P2]
drh70ce3f02003-04-15 19:22:22 +00003566**
3567** Open a new cursor that points to a fake table that contains a single
drh5f612292014-02-08 23:20:32 +00003568** row of data. The content of that one row is the content of memory
3569** register P2. In other words, cursor P1 becomes an alias for the
3570** MEM_Blob content contained in register P2.
drh70ce3f02003-04-15 19:22:22 +00003571**
drh2d8d7ce2010-02-15 15:17:05 +00003572** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00003573** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003574** individual columns using the OP_Column opcode. The OP_Column opcode
3575** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003576**
3577** P3 is the number of fields in the records that will be stored by
3578** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003579*/
drh9cbf3422008-01-17 16:22:13 +00003580case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003581 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003582
drh653b82a2009-06-22 11:10:47 +00003583 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003584 assert( pOp->p3>=0 );
drhc960dcb2015-11-20 19:22:01 +00003585 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
drh4774b132004-06-12 20:12:51 +00003586 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003587 pCx->nullRow = 1;
drhc960dcb2015-11-20 19:22:01 +00003588 pCx->uc.pseudoTableReg = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003589 pCx->isTable = 1;
drh5f612292014-02-08 23:20:32 +00003590 assert( pOp->p5==0 );
drh70ce3f02003-04-15 19:22:22 +00003591 break;
3592}
3593
drh98757152008-01-09 23:04:12 +00003594/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003595**
3596** Close a cursor previously opened as P1. If P1 is not
3597** currently open, this instruction is a no-op.
3598*/
drh9cbf3422008-01-17 16:22:13 +00003599case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003600 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3601 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3602 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003603 break;
3604}
3605
drh97bae792015-06-05 15:59:57 +00003606#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3607/* Opcode: ColumnsUsed P1 * * P4 *
3608**
3609** This opcode (which only exists if SQLite was compiled with
3610** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3611** table or index for cursor P1 are used. P4 is a 64-bit integer
3612** (P4_INT64) in which the first 63 bits are one for each of the
3613** first 63 columns of the table or index that are actually used
3614** by the cursor. The high-order bit is set if any column after
3615** the 64th is used.
3616*/
3617case OP_ColumnsUsed: {
3618 VdbeCursor *pC;
3619 pC = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00003620 assert( pC->eCurType==CURTYPE_BTREE );
drh97bae792015-06-05 15:59:57 +00003621 pC->maskUsed = *(u64*)pOp->p4.pI64;
3622 break;
3623}
3624#endif
3625
drh8af3f772014-07-25 18:01:06 +00003626/* Opcode: SeekGE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003627** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003628**
danielk1977b790c6c2008-04-18 10:25:24 +00003629** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003630** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003631** to an SQL index, then P3 is the first in an array of P4 registers
3632** that are used as an unpacked index key.
3633**
3634** Reposition cursor P1 so that it points to the smallest entry that
3635** is greater than or equal to the key value. If there are no records
3636** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003637**
drhb1d607d2015-11-05 22:30:54 +00003638** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3639** opcode will always land on a record that equally equals the key, or
3640** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
3641** opcode must be followed by an IdxLE opcode with the same arguments.
3642** The IdxLE opcode will be skipped if this opcode succeeds, but the
3643** IdxLE opcode will be used on subsequent loop iterations.
3644**
drh8af3f772014-07-25 18:01:06 +00003645** This opcode leaves the cursor configured to move in forward order,
drhbc5cf382014-08-06 01:08:07 +00003646** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003647** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003648**
drh935850e2014-05-24 17:15:15 +00003649** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003650*/
drh8af3f772014-07-25 18:01:06 +00003651/* Opcode: SeekGT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003652** Synopsis: key=r[P3@P4]
drh7cf6e4d2004-05-19 14:56:55 +00003653**
danielk1977b790c6c2008-04-18 10:25:24 +00003654** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003655** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003656** to an SQL index, then P3 is the first in an array of P4 registers
3657** that are used as an unpacked index key.
3658**
3659** Reposition cursor P1 so that it points to the smallest entry that
3660** is greater than the key value. If there are no records greater than
3661** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003662**
drh8af3f772014-07-25 18:01:06 +00003663** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00003664** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003665** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003666**
drh935850e2014-05-24 17:15:15 +00003667** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003668*/
drh8af3f772014-07-25 18:01:06 +00003669/* Opcode: SeekLT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003670** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00003671**
danielk1977b790c6c2008-04-18 10:25:24 +00003672** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003673** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003674** to an SQL index, then P3 is the first in an array of P4 registers
3675** that are used as an unpacked index key.
3676**
3677** Reposition cursor P1 so that it points to the largest entry that
3678** is less than the key value. If there are no records less than
3679** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003680**
drh8af3f772014-07-25 18:01:06 +00003681** This opcode leaves the cursor configured to move in reverse order,
3682** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003683** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003684**
drh935850e2014-05-24 17:15:15 +00003685** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003686*/
drh8af3f772014-07-25 18:01:06 +00003687/* Opcode: SeekLE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003688** Synopsis: key=r[P3@P4]
danielk19773d1bfea2004-05-14 11:00:53 +00003689**
danielk1977b790c6c2008-04-18 10:25:24 +00003690** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003691** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003692** to an SQL index, then P3 is the first in an array of P4 registers
3693** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003694**
danielk1977b790c6c2008-04-18 10:25:24 +00003695** Reposition cursor P1 so that it points to the largest entry that
3696** is less than or equal to the key value. If there are no records
3697** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003698**
drh8af3f772014-07-25 18:01:06 +00003699** This opcode leaves the cursor configured to move in reverse order,
3700** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003701** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003702**
drhb1d607d2015-11-05 22:30:54 +00003703** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3704** opcode will always land on a record that equally equals the key, or
3705** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
3706** opcode must be followed by an IdxGE opcode with the same arguments.
3707** The IdxGE opcode will be skipped if this opcode succeeds, but the
3708** IdxGE opcode will be used on subsequent loop iterations.
3709**
drh935850e2014-05-24 17:15:15 +00003710** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003711*/
drh4a1d3652014-02-14 15:13:36 +00003712case OP_SeekLT: /* jump, in3 */
3713case OP_SeekLE: /* jump, in3 */
3714case OP_SeekGE: /* jump, in3 */
3715case OP_SeekGT: { /* jump, in3 */
drhb1d607d2015-11-05 22:30:54 +00003716 int res; /* Comparison result */
3717 int oc; /* Opcode */
3718 VdbeCursor *pC; /* The cursor to seek */
3719 UnpackedRecord r; /* The key to seek for */
3720 int nField; /* Number of columns or fields in the key */
3721 i64 iKey; /* The rowid we are to seek to */
drhd6b79462015-11-07 01:19:00 +00003722 int eqOnly; /* Only interested in == results */
drh80ff32f2001-11-04 18:32:46 +00003723
drh653b82a2009-06-22 11:10:47 +00003724 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003725 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003726 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003727 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00003728 assert( pC->eCurType==CURTYPE_BTREE );
drh4a1d3652014-02-14 15:13:36 +00003729 assert( OP_SeekLE == OP_SeekLT+1 );
3730 assert( OP_SeekGE == OP_SeekLT+2 );
3731 assert( OP_SeekGT == OP_SeekLT+3 );
drhd4187c72010-08-30 22:15:45 +00003732 assert( pC->isOrdered );
drhc960dcb2015-11-20 19:22:01 +00003733 assert( pC->uc.pCursor!=0 );
drh3da046d2013-11-11 03:24:11 +00003734 oc = pOp->opcode;
drhd6b79462015-11-07 01:19:00 +00003735 eqOnly = 0;
drh3da046d2013-11-11 03:24:11 +00003736 pC->nullRow = 0;
drh8af3f772014-07-25 18:01:06 +00003737#ifdef SQLITE_DEBUG
3738 pC->seekOp = pOp->opcode;
3739#endif
drhe0997b32015-03-20 14:57:50 +00003740
drh3da046d2013-11-11 03:24:11 +00003741 if( pC->isTable ){
drhd6b79462015-11-07 01:19:00 +00003742 /* The BTREE_SEEK_EQ flag is only set on index cursors */
drhc960dcb2015-11-20 19:22:01 +00003743 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 );
drhd6b79462015-11-07 01:19:00 +00003744
drh3da046d2013-11-11 03:24:11 +00003745 /* The input value in P3 might be of any type: integer, real, string,
3746 ** blob, or NULL. But it needs to be an integer before we can do
peter.d.reid60ec9142014-09-06 16:39:46 +00003747 ** the seek, so convert it. */
drh3da046d2013-11-11 03:24:11 +00003748 pIn3 = &aMem[pOp->p3];
drh11a6eee2014-09-19 22:01:54 +00003749 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drhbd9507c2014-08-23 17:21:37 +00003750 applyNumericAffinity(pIn3, 0);
3751 }
drh3da046d2013-11-11 03:24:11 +00003752 iKey = sqlite3VdbeIntValue(pIn3);
drh959403f2008-12-12 17:56:16 +00003753
drh3da046d2013-11-11 03:24:11 +00003754 /* If the P3 value could not be converted into an integer without
3755 ** loss of information, then special processing is required... */
3756 if( (pIn3->flags & MEM_Int)==0 ){
3757 if( (pIn3->flags & MEM_Real)==0 ){
3758 /* If the P3 value cannot be converted into any kind of a number,
3759 ** then the seek is not possible, so jump to P2 */
drhf56fa462015-04-13 21:39:54 +00003760 VdbeBranchTaken(1,2); goto jump_to_p2;
drh3da046d2013-11-11 03:24:11 +00003761 break;
3762 }
drh959403f2008-12-12 17:56:16 +00003763
danaa1776f2013-11-26 18:22:59 +00003764 /* If the approximation iKey is larger than the actual real search
3765 ** term, substitute >= for > and < for <=. e.g. if the search term
3766 ** is 4.9 and the integer approximation 5:
3767 **
3768 ** (x > 4.9) -> (x >= 5)
3769 ** (x <= 4.9) -> (x < 5)
3770 */
drh74eaba42014-09-18 17:52:15 +00003771 if( pIn3->u.r<(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003772 assert( OP_SeekGE==(OP_SeekGT-1) );
3773 assert( OP_SeekLT==(OP_SeekLE-1) );
3774 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3775 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
danaa1776f2013-11-26 18:22:59 +00003776 }
3777
3778 /* If the approximation iKey is smaller than the actual real search
3779 ** term, substitute <= for < and > for >=. */
drh74eaba42014-09-18 17:52:15 +00003780 else if( pIn3->u.r>(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003781 assert( OP_SeekLE==(OP_SeekLT+1) );
3782 assert( OP_SeekGT==(OP_SeekGE+1) );
3783 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3784 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
drh8721ce42001-11-07 14:22:00 +00003785 }
drh3da046d2013-11-11 03:24:11 +00003786 }
drhc960dcb2015-11-20 19:22:01 +00003787 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
drhb53a5a92014-10-12 22:37:22 +00003788 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00003789 if( rc!=SQLITE_OK ){
3790 goto abort_due_to_error;
drh1af3fdb2004-07-18 21:33:01 +00003791 }
drhaa736092009-06-22 00:55:30 +00003792 }else{
drhd6b79462015-11-07 01:19:00 +00003793 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3794 ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3795 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3796 */
drhc960dcb2015-11-20 19:22:01 +00003797 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
drhd6b79462015-11-07 01:19:00 +00003798 eqOnly = 1;
3799 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3800 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3801 assert( pOp[1].p1==pOp[0].p1 );
3802 assert( pOp[1].p2==pOp[0].p2 );
3803 assert( pOp[1].p3==pOp[0].p3 );
3804 assert( pOp[1].p4.i==pOp[0].p4.i );
3805 }
3806
drh3da046d2013-11-11 03:24:11 +00003807 nField = pOp->p4.i;
3808 assert( pOp->p4type==P4_INT32 );
3809 assert( nField>0 );
3810 r.pKeyInfo = pC->pKeyInfo;
3811 r.nField = (u16)nField;
3812
3813 /* The next line of code computes as follows, only faster:
drh4a1d3652014-02-14 15:13:36 +00003814 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
dan1fed5da2014-02-25 21:01:25 +00003815 ** r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00003816 ** }else{
dan1fed5da2014-02-25 21:01:25 +00003817 ** r.default_rc = +1;
drh3da046d2013-11-11 03:24:11 +00003818 ** }
danielk1977f7b9d662008-06-23 18:49:43 +00003819 */
dan1fed5da2014-02-25 21:01:25 +00003820 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3821 assert( oc!=OP_SeekGT || r.default_rc==-1 );
3822 assert( oc!=OP_SeekLE || r.default_rc==-1 );
3823 assert( oc!=OP_SeekGE || r.default_rc==+1 );
3824 assert( oc!=OP_SeekLT || r.default_rc==+1 );
drh3da046d2013-11-11 03:24:11 +00003825
3826 r.aMem = &aMem[pOp->p3];
3827#ifdef SQLITE_DEBUG
3828 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3829#endif
3830 ExpandBlob(r.aMem);
drh70528d72015-11-05 20:25:09 +00003831 r.eqSeen = 0;
drhc960dcb2015-11-20 19:22:01 +00003832 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
drh3da046d2013-11-11 03:24:11 +00003833 if( rc!=SQLITE_OK ){
3834 goto abort_due_to_error;
3835 }
drhb1d607d2015-11-05 22:30:54 +00003836 if( eqOnly && r.eqSeen==0 ){
3837 assert( res!=0 );
3838 goto seek_not_found;
drh70528d72015-11-05 20:25:09 +00003839 }
drh3da046d2013-11-11 03:24:11 +00003840 }
3841 pC->deferredMoveto = 0;
3842 pC->cacheStatus = CACHE_STALE;
3843#ifdef SQLITE_TEST
3844 sqlite3_search_count++;
3845#endif
drh4a1d3652014-02-14 15:13:36 +00003846 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
3847 if( res<0 || (res==0 && oc==OP_SeekGT) ){
drhe39a7322014-02-03 14:04:11 +00003848 res = 0;
drhc960dcb2015-11-20 19:22:01 +00003849 rc = sqlite3BtreeNext(pC->uc.pCursor, &res);
drh3da046d2013-11-11 03:24:11 +00003850 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00003851 }else{
3852 res = 0;
3853 }
3854 }else{
drh4a1d3652014-02-14 15:13:36 +00003855 assert( oc==OP_SeekLT || oc==OP_SeekLE );
3856 if( res>0 || (res==0 && oc==OP_SeekLT) ){
drhe39a7322014-02-03 14:04:11 +00003857 res = 0;
drhc960dcb2015-11-20 19:22:01 +00003858 rc = sqlite3BtreePrevious(pC->uc.pCursor, &res);
drh3da046d2013-11-11 03:24:11 +00003859 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00003860 }else{
3861 /* res might be negative because the table is empty. Check to
3862 ** see if this is the case.
3863 */
drhc960dcb2015-11-20 19:22:01 +00003864 res = sqlite3BtreeEof(pC->uc.pCursor);
drh3da046d2013-11-11 03:24:11 +00003865 }
3866 }
drhb1d607d2015-11-05 22:30:54 +00003867seek_not_found:
drh3da046d2013-11-11 03:24:11 +00003868 assert( pOp->p2>0 );
drh688852a2014-02-17 22:40:43 +00003869 VdbeBranchTaken(res!=0,2);
drh3da046d2013-11-11 03:24:11 +00003870 if( res ){
drhf56fa462015-04-13 21:39:54 +00003871 goto jump_to_p2;
drhb1d607d2015-11-05 22:30:54 +00003872 }else if( eqOnly ){
3873 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3874 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
drh5e00f6c2001-09-13 13:46:56 +00003875 }
drh5e00f6c2001-09-13 13:46:56 +00003876 break;
3877}
drh959403f2008-12-12 17:56:16 +00003878
3879
drh8cff69d2009-11-12 19:59:44 +00003880/* Opcode: Found P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003881** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003882**
drh8cff69d2009-11-12 19:59:44 +00003883** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3884** P4>0 then register P3 is the first of P4 registers that form an unpacked
3885** record.
3886**
3887** Cursor P1 is on an index btree. If the record identified by P3 and P4
3888** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00003889** P1 is left pointing at the matching entry.
drh6f225d02013-10-26 13:36:51 +00003890**
drhcefc87f2014-08-01 01:40:33 +00003891** This operation leaves the cursor in a state where it can be
3892** advanced in the forward direction. The Next instruction will work,
3893** but not the Prev instruction.
drh8af3f772014-07-25 18:01:06 +00003894**
drh6f225d02013-10-26 13:36:51 +00003895** See also: NotFound, NoConflict, NotExists. SeekGe
drh5e00f6c2001-09-13 13:46:56 +00003896*/
drh8cff69d2009-11-12 19:59:44 +00003897/* Opcode: NotFound P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003898** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003899**
drh8cff69d2009-11-12 19:59:44 +00003900** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3901** P4>0 then register P3 is the first of P4 registers that form an unpacked
3902** record.
3903**
3904** Cursor P1 is on an index btree. If the record identified by P3 and P4
3905** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3906** does contain an entry whose prefix matches the P3/P4 record then control
3907** falls through to the next instruction and P1 is left pointing at the
3908** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003909**
drh8af3f772014-07-25 18:01:06 +00003910** This operation leaves the cursor in a state where it cannot be
3911** advanced in either direction. In other words, the Next and Prev
3912** opcodes do not work after this operation.
3913**
drh6f225d02013-10-26 13:36:51 +00003914** See also: Found, NotExists, NoConflict
drh5e00f6c2001-09-13 13:46:56 +00003915*/
drh6f225d02013-10-26 13:36:51 +00003916/* Opcode: NoConflict P1 P2 P3 P4 *
drh4af5bee2013-10-30 02:37:50 +00003917** Synopsis: key=r[P3@P4]
drh6f225d02013-10-26 13:36:51 +00003918**
3919** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3920** P4>0 then register P3 is the first of P4 registers that form an unpacked
3921** record.
3922**
3923** Cursor P1 is on an index btree. If the record identified by P3 and P4
3924** contains any NULL value, jump immediately to P2. If all terms of the
3925** record are not-NULL then a check is done to determine if any row in the
3926** P1 index btree has a matching key prefix. If there are no matches, jump
3927** immediately to P2. If there is a match, fall through and leave the P1
3928** cursor pointing to the matching row.
3929**
3930** This opcode is similar to OP_NotFound with the exceptions that the
3931** branch is always taken if any part of the search key input is NULL.
3932**
drh8af3f772014-07-25 18:01:06 +00003933** This operation leaves the cursor in a state where it cannot be
3934** advanced in either direction. In other words, the Next and Prev
3935** opcodes do not work after this operation.
3936**
drh6f225d02013-10-26 13:36:51 +00003937** See also: NotFound, Found, NotExists
3938*/
3939case OP_NoConflict: /* jump, in3 */
drh9cbf3422008-01-17 16:22:13 +00003940case OP_NotFound: /* jump, in3 */
3941case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003942 int alreadyExists;
drhf56fa462015-04-13 21:39:54 +00003943 int takeJump;
drh6f225d02013-10-26 13:36:51 +00003944 int ii;
drhdfe88ec2008-11-03 20:55:06 +00003945 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003946 int res;
dan03e9cfc2011-09-05 14:20:27 +00003947 char *pFree;
drh856c1032009-06-02 15:21:42 +00003948 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00003949 UnpackedRecord r;
drhb4139222013-11-06 14:36:08 +00003950 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
drh856c1032009-06-02 15:21:42 +00003951
dan0ff297e2009-09-25 17:03:14 +00003952#ifdef SQLITE_TEST
drh6f225d02013-10-26 13:36:51 +00003953 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
dan0ff297e2009-09-25 17:03:14 +00003954#endif
3955
drhaa736092009-06-22 00:55:30 +00003956 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00003957 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00003958 pC = p->apCsr[pOp->p1];
3959 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00003960#ifdef SQLITE_DEBUG
drhcefc87f2014-08-01 01:40:33 +00003961 pC->seekOp = pOp->opcode;
drh8af3f772014-07-25 18:01:06 +00003962#endif
drh3c657212009-11-17 23:59:58 +00003963 pIn3 = &aMem[pOp->p3];
drhc960dcb2015-11-20 19:22:01 +00003964 assert( pC->eCurType==CURTYPE_BTREE );
3965 assert( pC->uc.pCursor!=0 );
drh3da046d2013-11-11 03:24:11 +00003966 assert( pC->isTable==0 );
drhf56fa462015-04-13 21:39:54 +00003967 pFree = 0;
drh3da046d2013-11-11 03:24:11 +00003968 if( pOp->p4.i>0 ){
3969 r.pKeyInfo = pC->pKeyInfo;
3970 r.nField = (u16)pOp->p4.i;
3971 r.aMem = pIn3;
drh826af372014-02-08 19:12:21 +00003972 for(ii=0; ii<r.nField; ii++){
3973 assert( memIsValid(&r.aMem[ii]) );
3974 ExpandBlob(&r.aMem[ii]);
drh2b4ded92010-09-27 21:09:31 +00003975#ifdef SQLITE_DEBUG
drh826af372014-02-08 19:12:21 +00003976 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
drh2b4ded92010-09-27 21:09:31 +00003977#endif
drh826af372014-02-08 19:12:21 +00003978 }
drh3da046d2013-11-11 03:24:11 +00003979 pIdxKey = &r;
3980 }else{
3981 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3982 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
danb391b942014-11-07 14:41:11 +00003983 );
drh3da046d2013-11-11 03:24:11 +00003984 if( pIdxKey==0 ) goto no_mem;
3985 assert( pIn3->flags & MEM_Blob );
danb391b942014-11-07 14:41:11 +00003986 ExpandBlob(pIn3);
drh3da046d2013-11-11 03:24:11 +00003987 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
drh5e00f6c2001-09-13 13:46:56 +00003988 }
dan1fed5da2014-02-25 21:01:25 +00003989 pIdxKey->default_rc = 0;
drhf56fa462015-04-13 21:39:54 +00003990 takeJump = 0;
drh3da046d2013-11-11 03:24:11 +00003991 if( pOp->opcode==OP_NoConflict ){
3992 /* For the OP_NoConflict opcode, take the jump if any of the
3993 ** input fields are NULL, since any key with a NULL will not
3994 ** conflict */
mistachkin7bb6e8e2015-01-12 18:52:41 +00003995 for(ii=0; ii<pIdxKey->nField; ii++){
3996 if( pIdxKey->aMem[ii].flags & MEM_Null ){
drhf56fa462015-04-13 21:39:54 +00003997 takeJump = 1;
drh3da046d2013-11-11 03:24:11 +00003998 break;
drh6f225d02013-10-26 13:36:51 +00003999 }
4000 }
drh5e00f6c2001-09-13 13:46:56 +00004001 }
drhc960dcb2015-11-20 19:22:01 +00004002 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
drhf56fa462015-04-13 21:39:54 +00004003 sqlite3DbFree(db, pFree);
drh3da046d2013-11-11 03:24:11 +00004004 if( rc!=SQLITE_OK ){
drh9467abf2016-02-17 18:44:11 +00004005 goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00004006 }
4007 pC->seekResult = res;
4008 alreadyExists = (res==0);
4009 pC->nullRow = 1-alreadyExists;
4010 pC->deferredMoveto = 0;
4011 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004012 if( pOp->opcode==OP_Found ){
drh688852a2014-02-17 22:40:43 +00004013 VdbeBranchTaken(alreadyExists!=0,2);
drhf56fa462015-04-13 21:39:54 +00004014 if( alreadyExists ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00004015 }else{
drhf56fa462015-04-13 21:39:54 +00004016 VdbeBranchTaken(takeJump||alreadyExists==0,2);
4017 if( takeJump || !alreadyExists ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00004018 }
drh5e00f6c2001-09-13 13:46:56 +00004019 break;
4020}
4021
drh9cbf3422008-01-17 16:22:13 +00004022/* Opcode: NotExists P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004023** Synopsis: intkey=r[P3]
drh6b125452002-01-28 15:53:03 +00004024**
drh261c02d2013-10-25 14:46:15 +00004025** P1 is the index of a cursor open on an SQL table btree (with integer
4026** keys). P3 is an integer rowid. If P1 does not contain a record with
danc6157e12015-09-14 09:23:47 +00004027** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
4028** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4029** leave the cursor pointing at that record and fall through to the next
4030** instruction.
drh6b125452002-01-28 15:53:03 +00004031**
drh261c02d2013-10-25 14:46:15 +00004032** The OP_NotFound opcode performs the same operation on index btrees
4033** (with arbitrary multi-value keys).
drh6b125452002-01-28 15:53:03 +00004034**
drh8af3f772014-07-25 18:01:06 +00004035** This opcode leaves the cursor in a state where it cannot be advanced
4036** in either direction. In other words, the Next and Prev opcodes will
4037** not work following this opcode.
4038**
drh11e85272013-10-26 15:40:48 +00004039** See also: Found, NotFound, NoConflict
drh6b125452002-01-28 15:53:03 +00004040*/
drh9cbf3422008-01-17 16:22:13 +00004041case OP_NotExists: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00004042 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00004043 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004044 int res;
4045 u64 iKey;
4046
drh3c657212009-11-17 23:59:58 +00004047 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00004048 assert( pIn3->flags & MEM_Int );
4049 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4050 pC = p->apCsr[pOp->p1];
4051 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00004052#ifdef SQLITE_DEBUG
4053 pC->seekOp = 0;
4054#endif
drhaa736092009-06-22 00:55:30 +00004055 assert( pC->isTable );
drhc960dcb2015-11-20 19:22:01 +00004056 assert( pC->eCurType==CURTYPE_BTREE );
4057 pCrsr = pC->uc.pCursor;
drh3da046d2013-11-11 03:24:11 +00004058 assert( pCrsr!=0 );
4059 res = 0;
4060 iKey = pIn3->u.i;
4061 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drhb79d5522015-09-14 19:26:37 +00004062 assert( rc==SQLITE_OK || res==0 );
drhb53a5a92014-10-12 22:37:22 +00004063 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00004064 pC->nullRow = 0;
4065 pC->cacheStatus = CACHE_STALE;
4066 pC->deferredMoveto = 0;
drh688852a2014-02-17 22:40:43 +00004067 VdbeBranchTaken(res!=0,2);
drh3da046d2013-11-11 03:24:11 +00004068 pC->seekResult = res;
danc6157e12015-09-14 09:23:47 +00004069 if( res!=0 ){
drhb79d5522015-09-14 19:26:37 +00004070 assert( rc==SQLITE_OK );
4071 if( pOp->p2==0 ){
4072 rc = SQLITE_CORRUPT_BKPT;
4073 }else{
4074 goto jump_to_p2;
4075 }
danc6157e12015-09-14 09:23:47 +00004076 }
drh9467abf2016-02-17 18:44:11 +00004077 if( rc ) goto abort_due_to_error;
drh6b125452002-01-28 15:53:03 +00004078 break;
4079}
4080
drh4c583122008-01-04 22:01:03 +00004081/* Opcode: Sequence P1 P2 * * *
drh079a3072014-03-19 14:10:55 +00004082** Synopsis: r[P2]=cursor[P1].ctr++
drh4db38a72005-09-01 12:16:28 +00004083**
drh4c583122008-01-04 22:01:03 +00004084** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00004085** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00004086** The sequence number on the cursor is incremented after this
4087** instruction.
drh4db38a72005-09-01 12:16:28 +00004088*/
drh27a348c2015-04-13 19:14:06 +00004089case OP_Sequence: { /* out2 */
drh653b82a2009-06-22 11:10:47 +00004090 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4091 assert( p->apCsr[pOp->p1]!=0 );
drhc960dcb2015-11-20 19:22:01 +00004092 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
drh27a348c2015-04-13 19:14:06 +00004093 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00004094 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00004095 break;
4096}
4097
4098
drh98757152008-01-09 23:04:12 +00004099/* Opcode: NewRowid P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004100** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00004101**
drhf0863fe2005-06-12 21:35:51 +00004102** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00004103** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00004104** table that cursor P1 points to. The new record number is written
4105** written to register P2.
drh205f48e2004-11-05 00:43:11 +00004106**
dan76d462e2009-08-30 11:42:51 +00004107** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4108** the largest previously generated record number. No new record numbers are
4109** allowed to be less than this value. When this value reaches its maximum,
drhef8662b2011-06-20 21:47:58 +00004110** an SQLITE_FULL error is generated. The P3 register is updated with the '
dan76d462e2009-08-30 11:42:51 +00004111** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00004112** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00004113*/
drh27a348c2015-04-13 19:14:06 +00004114case OP_NewRowid: { /* out2 */
drhaa736092009-06-22 00:55:30 +00004115 i64 v; /* The new rowid */
4116 VdbeCursor *pC; /* Cursor of table to get the new rowid */
4117 int res; /* Result of an sqlite3BtreeLast() */
4118 int cnt; /* Counter to limit the number of searches */
4119 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00004120 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00004121
drh856c1032009-06-02 15:21:42 +00004122 v = 0;
4123 res = 0;
drh27a348c2015-04-13 19:14:06 +00004124 pOut = out2Prerelease(p, pOp);
drhaa736092009-06-22 00:55:30 +00004125 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4126 pC = p->apCsr[pOp->p1];
4127 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004128 assert( pC->eCurType==CURTYPE_BTREE );
4129 assert( pC->uc.pCursor!=0 );
drh98ef0f62015-06-30 01:25:52 +00004130 {
drh5cf8e8c2002-02-19 22:42:05 +00004131 /* The next rowid or record number (different terms for the same
4132 ** thing) is obtained in a two-step algorithm.
4133 **
4134 ** First we attempt to find the largest existing rowid and add one
4135 ** to that. But if the largest existing rowid is already the maximum
4136 ** positive integer, we have to fall through to the second
4137 ** probabilistic algorithm
4138 **
4139 ** The second algorithm is to select a rowid at random and see if
4140 ** it already exists in the table. If it does not exist, we have
4141 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00004142 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00004143 */
drhaa736092009-06-22 00:55:30 +00004144 assert( pC->isTable );
drhfe2093d2005-01-20 22:48:47 +00004145
drh75f86a42005-02-17 00:03:06 +00004146#ifdef SQLITE_32BIT_ROWID
4147# define MAX_ROWID 0x7fffffff
4148#else
drhfe2093d2005-01-20 22:48:47 +00004149 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4150 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
4151 ** to provide the constant while making all compilers happy.
4152 */
danielk197764202cf2008-11-17 15:31:47 +00004153# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00004154#endif
drhfe2093d2005-01-20 22:48:47 +00004155
drh5cf8e8c2002-02-19 22:42:05 +00004156 if( !pC->useRandomRowid ){
drhc960dcb2015-11-20 19:22:01 +00004157 rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
drhe0670b62014-02-12 21:31:12 +00004158 if( rc!=SQLITE_OK ){
4159 goto abort_due_to_error;
4160 }
4161 if( res ){
4162 v = 1; /* IMP: R-61914-48074 */
4163 }else{
drhc960dcb2015-11-20 19:22:01 +00004164 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
4165 rc = sqlite3BtreeKeySize(pC->uc.pCursor, &v);
drhe0670b62014-02-12 21:31:12 +00004166 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
4167 if( v>=MAX_ROWID ){
4168 pC->useRandomRowid = 1;
drh5cf8e8c2002-02-19 22:42:05 +00004169 }else{
drhe0670b62014-02-12 21:31:12 +00004170 v++; /* IMP: R-29538-34987 */
drh5cf8e8c2002-02-19 22:42:05 +00004171 }
drh3fc190c2001-09-14 03:24:23 +00004172 }
drhe0670b62014-02-12 21:31:12 +00004173 }
drh205f48e2004-11-05 00:43:11 +00004174
4175#ifndef SQLITE_OMIT_AUTOINCREMENT
drhe0670b62014-02-12 21:31:12 +00004176 if( pOp->p3 ){
4177 /* Assert that P3 is a valid memory cell. */
4178 assert( pOp->p3>0 );
4179 if( p->pFrame ){
4180 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00004181 /* Assert that P3 is a valid memory cell. */
drhe0670b62014-02-12 21:31:12 +00004182 assert( pOp->p3<=pFrame->nMem );
4183 pMem = &pFrame->aMem[pOp->p3];
4184 }else{
4185 /* Assert that P3 is a valid memory cell. */
drh9f6168b2016-03-19 23:32:58 +00004186 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drhe0670b62014-02-12 21:31:12 +00004187 pMem = &aMem[pOp->p3];
4188 memAboutToChange(p, pMem);
drh205f48e2004-11-05 00:43:11 +00004189 }
drhe0670b62014-02-12 21:31:12 +00004190 assert( memIsValid(pMem) );
drh205f48e2004-11-05 00:43:11 +00004191
drhe0670b62014-02-12 21:31:12 +00004192 REGISTER_TRACE(pOp->p3, pMem);
4193 sqlite3VdbeMemIntegerify(pMem);
4194 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
4195 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4196 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
4197 goto abort_due_to_error;
4198 }
4199 if( v<pMem->u.i+1 ){
4200 v = pMem->u.i + 1;
4201 }
4202 pMem->u.i = v;
drh5cf8e8c2002-02-19 22:42:05 +00004203 }
drhe0670b62014-02-12 21:31:12 +00004204#endif
drh5cf8e8c2002-02-19 22:42:05 +00004205 if( pC->useRandomRowid ){
drh748a52c2010-09-01 11:50:08 +00004206 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
drhc79c7612010-01-01 18:57:48 +00004207 ** largest possible integer (9223372036854775807) then the database
drh748a52c2010-09-01 11:50:08 +00004208 ** engine starts picking positive candidate ROWIDs at random until
4209 ** it finds one that is not previously used. */
drhaa736092009-06-22 00:55:30 +00004210 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
4211 ** an AUTOINCREMENT table. */
drh5cf8e8c2002-02-19 22:42:05 +00004212 cnt = 0;
drh2c4dc632014-09-25 12:31:28 +00004213 do{
4214 sqlite3_randomness(sizeof(v), &v);
drhd8633462014-09-25 17:42:41 +00004215 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
drhc960dcb2015-11-20 19:22:01 +00004216 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
drh748a52c2010-09-01 11:50:08 +00004217 0, &res))==SQLITE_OK)
shanehc4d340a2010-09-01 02:37:56 +00004218 && (res==0)
drh2c4dc632014-09-25 12:31:28 +00004219 && (++cnt<100));
drh9467abf2016-02-17 18:44:11 +00004220 if( rc ) goto abort_due_to_error;
4221 if( res==0 ){
drhc79c7612010-01-01 18:57:48 +00004222 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00004223 goto abort_due_to_error;
4224 }
drh748a52c2010-09-01 11:50:08 +00004225 assert( v>0 ); /* EV: R-40812-03570 */
drh1eaa2692001-09-18 02:02:23 +00004226 }
drha11846b2004-01-07 18:52:56 +00004227 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004228 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004229 }
drh4c583122008-01-04 22:01:03 +00004230 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004231 break;
4232}
4233
danielk19771f4aa332008-01-03 09:51:55 +00004234/* Opcode: Insert P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004235** Synopsis: intkey=r[P3] data=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004236**
jplyon5a564222003-06-02 06:15:58 +00004237** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00004238** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00004239** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00004240** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00004241** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00004242**
danielk19771f4aa332008-01-03 09:51:55 +00004243** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4244** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00004245** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00004246** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00004247**
drh3e9ca092009-09-08 01:14:48 +00004248** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4249** the last seek operation (OP_NotExists) was a success, then this
4250** operation will not attempt to find the appropriate row before doing
4251** the insert but will instead overwrite the row that the cursor is
4252** currently pointing to. Presumably, the prior OP_NotExists opcode
4253** has already positioned the cursor correctly. This is an optimization
4254** that boosts performance by avoiding redundant seeks.
4255**
4256** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4257** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4258** is part of an INSERT operation. The difference is only important to
4259** the update hook.
4260**
dan319eeb72011-03-19 08:38:50 +00004261** Parameter P4 may point to a Table structure, or may be NULL. If it is
4262** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
4263** following a successful insert.
danielk19771f6eec52006-06-16 06:17:47 +00004264**
drh93aed5a2008-01-16 17:46:38 +00004265** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4266** allocated, then ownership of P2 is transferred to the pseudo-cursor
4267** and register P2 becomes ephemeral. If the cursor is changed, the
4268** value of register P2 will then change. Make sure this does not
4269** cause any problems.)
4270**
drhf0863fe2005-06-12 21:35:51 +00004271** This instruction only works on tables. The equivalent instruction
4272** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00004273*/
drhe05c9292009-10-29 13:48:10 +00004274/* Opcode: InsertInt P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004275** Synopsis: intkey=P3 data=r[P2]
drhe05c9292009-10-29 13:48:10 +00004276**
4277** This works exactly like OP_Insert except that the key is the
4278** integer value P3, not the value of the integer stored in register P3.
4279*/
4280case OP_Insert:
4281case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00004282 Mem *pData; /* MEM cell holding data for the record to be inserted */
4283 Mem *pKey; /* MEM cell holding key for the record */
4284 i64 iKey; /* The integer ROWID or key for the record to be inserted */
4285 VdbeCursor *pC; /* Cursor to table into which insert is written */
4286 int nZero; /* Number of zero-bytes to append */
4287 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4288 const char *zDb; /* database name - used by the update hook */
dan319eeb72011-03-19 08:38:50 +00004289 Table *pTab; /* Table structure - used by update and pre-update hooks */
drh74c33022016-03-30 12:56:55 +00004290 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
drh856c1032009-06-02 15:21:42 +00004291
drh74c33022016-03-30 12:56:55 +00004292 op = 0;
drha6c2ed92009-11-14 23:22:23 +00004293 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00004294 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh2b4ded92010-09-27 21:09:31 +00004295 assert( memIsValid(pData) );
drh653b82a2009-06-22 11:10:47 +00004296 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00004297 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004298 assert( pC->eCurType==CURTYPE_BTREE );
4299 assert( pC->uc.pCursor!=0 );
drha05a7222008-01-19 03:35:58 +00004300 assert( pC->isTable );
drhcbf1b8e2013-11-11 22:55:26 +00004301 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
drh5b6afba2008-01-05 16:29:28 +00004302 REGISTER_TRACE(pOp->p2, pData);
danielk19775f8d8a82004-05-11 00:28:42 +00004303
drhe05c9292009-10-29 13:48:10 +00004304 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00004305 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00004306 assert( pKey->flags & MEM_Int );
drh2b4ded92010-09-27 21:09:31 +00004307 assert( memIsValid(pKey) );
drhe05c9292009-10-29 13:48:10 +00004308 REGISTER_TRACE(pOp->p3, pKey);
4309 iKey = pKey->u.i;
4310 }else{
4311 assert( pOp->opcode==OP_InsertInt );
4312 iKey = pOp->p3;
4313 }
4314
drh9b1c62d2011-03-30 21:04:43 +00004315 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
dan46c47d42011-03-01 18:42:07 +00004316 assert( pC->isTable );
4317 assert( pC->iDb>=0 );
4318 zDb = db->aDb[pC->iDb].zName;
dan319eeb72011-03-19 08:38:50 +00004319 pTab = pOp->p4.pTab;
drhc556f3c2016-03-30 15:30:07 +00004320 assert( HasRowid(pTab) );
dan46c47d42011-03-01 18:42:07 +00004321 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
drh74c33022016-03-30 12:56:55 +00004322 }else{
4323 pTab = 0; /* Not needed. Silence a comiler warning. */
4324 zDb = 0; /* Not needed. Silence a compiler warning. */
dan46c47d42011-03-01 18:42:07 +00004325 }
4326
drh9b1c62d2011-03-30 21:04:43 +00004327#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
dan46c47d42011-03-01 18:42:07 +00004328 /* Invoke the pre-update hook, if any */
4329 if( db->xPreUpdateCallback
dan319eeb72011-03-19 08:38:50 +00004330 && pOp->p4type==P4_TABLE
drh92fe38e2014-10-14 13:41:32 +00004331 && !(pOp->p5 & OPFLAG_ISUPDATE)
dan46c47d42011-03-01 18:42:07 +00004332 ){
dan319eeb72011-03-19 08:38:50 +00004333 sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, iKey, pOp->p2);
dan46c47d42011-03-01 18:42:07 +00004334 }
drh9b1c62d2011-03-30 21:04:43 +00004335#endif
dan46c47d42011-03-01 18:42:07 +00004336
drha05a7222008-01-19 03:35:58 +00004337 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh99a66922011-05-13 18:51:42 +00004338 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
drha05a7222008-01-19 03:35:58 +00004339 if( pData->flags & MEM_Null ){
4340 pData->z = 0;
4341 pData->n = 0;
4342 }else{
4343 assert( pData->flags & (MEM_Blob|MEM_Str) );
4344 }
drh3e9ca092009-09-08 01:14:48 +00004345 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4346 if( pData->flags & MEM_Zero ){
4347 nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00004348 }else{
drh3e9ca092009-09-08 01:14:48 +00004349 nZero = 0;
drha05a7222008-01-19 03:35:58 +00004350 }
drhc960dcb2015-11-20 19:22:01 +00004351 rc = sqlite3BtreeInsert(pC->uc.pCursor, 0, iKey,
drh3e9ca092009-09-08 01:14:48 +00004352 pData->z, pData->n, nZero,
drhebf10b12013-11-25 17:38:26 +00004353 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
drh3e9ca092009-09-08 01:14:48 +00004354 );
drha05a7222008-01-19 03:35:58 +00004355 pC->deferredMoveto = 0;
4356 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004357
drha05a7222008-01-19 03:35:58 +00004358 /* Invoke the update-hook if required. */
drh9467abf2016-02-17 18:44:11 +00004359 if( rc ) goto abort_due_to_error;
drhc556f3c2016-03-30 15:30:07 +00004360 if( db->xUpdateCallback && op ){
dan319eeb72011-03-19 08:38:50 +00004361 db->xUpdateCallback(db->pUpdateArg, op, zDb, pTab->zName, iKey);
drha05a7222008-01-19 03:35:58 +00004362 }
drh5e00f6c2001-09-13 13:46:56 +00004363 break;
4364}
4365
dan438b8812015-09-15 15:55:15 +00004366/* Opcode: Delete P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004367**
drh5edc3122001-09-13 21:53:09 +00004368** Delete the record at which the P1 cursor is currently pointing.
4369**
drhe807bdb2016-01-21 17:06:33 +00004370** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
4371** the cursor will be left pointing at either the next or the previous
4372** record in the table. If it is left pointing at the next record, then
4373** the next Next instruction will be a no-op. As a result, in this case
4374** it is ok to delete a record from within a Next loop. If
4375** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
4376** left in an undefined state.
drhc8d30ac2002-04-12 10:08:59 +00004377**
drhdef19e32016-01-27 16:26:25 +00004378** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
4379** delete one of several associated with deleting a table row and all its
4380** associated index entries. Exactly one of those deletes is the "primary"
4381** delete. The others are all on OPFLAG_FORDELETE cursors or else are
4382** marked with the AUXDELETE flag.
drhe807bdb2016-01-21 17:06:33 +00004383**
4384** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
4385** change count is incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00004386**
drh91fd4d42008-01-19 20:11:25 +00004387** P1 must not be pseudo-table. It has to be a real table with
4388** multiple rows.
4389**
dan319eeb72011-03-19 08:38:50 +00004390** If P4 is not NULL then it points to a Table struture. In this case either
4391** the update or pre-update hook, or both, may be invoked. The P1 cursor must
4392** have been positioned using OP_NotFound prior to invoking this opcode in
4393** this case. Specifically, if one is configured, the pre-update hook is
4394** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
4395** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
dan46c47d42011-03-01 18:42:07 +00004396**
4397** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
4398** of the memory cell that contains the value that the rowid of the row will
4399** be set to by the update.
drh5e00f6c2001-09-13 13:46:56 +00004400*/
drh9cbf3422008-01-17 16:22:13 +00004401case OP_Delete: {
drhdfe88ec2008-11-03 20:55:06 +00004402 VdbeCursor *pC;
dan46c47d42011-03-01 18:42:07 +00004403 const char *zDb;
dan319eeb72011-03-19 08:38:50 +00004404 Table *pTab;
dan46c47d42011-03-01 18:42:07 +00004405 int opflags;
drh91fd4d42008-01-19 20:11:25 +00004406
dan46c47d42011-03-01 18:42:07 +00004407 opflags = pOp->p2;
drh653b82a2009-06-22 11:10:47 +00004408 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4409 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004410 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004411 assert( pC->eCurType==CURTYPE_BTREE );
4412 assert( pC->uc.pCursor!=0 );
drh9a65f2c2009-06-22 19:05:40 +00004413 assert( pC->deferredMoveto==0 );
drh9a65f2c2009-06-22 19:05:40 +00004414
drhb53a5a92014-10-12 22:37:22 +00004415#ifdef SQLITE_DEBUG
dan438b8812015-09-15 15:55:15 +00004416 if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){
4417 /* If p5 is zero, the seek operation that positioned the cursor prior to
4418 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
4419 ** the row that is being deleted */
drhb53a5a92014-10-12 22:37:22 +00004420 i64 iKey = 0;
drhc960dcb2015-11-20 19:22:01 +00004421 sqlite3BtreeKeySize(pC->uc.pCursor, &iKey);
drh92fe38e2014-10-14 13:41:32 +00004422 assert( pC->movetoTarget==iKey );
drhb53a5a92014-10-12 22:37:22 +00004423 }
4424#endif
drh91fd4d42008-01-19 20:11:25 +00004425
dan438b8812015-09-15 15:55:15 +00004426 /* If the update-hook or pre-update-hook will be invoked, set zDb to
4427 ** the name of the db to pass as to it. Also set local pTab to a copy
4428 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
4429 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
4430 ** VdbeCursor.movetoTarget to the current rowid. */
drhc556f3c2016-03-30 15:30:07 +00004431 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
dan46c47d42011-03-01 18:42:07 +00004432 assert( pC->iDb>=0 );
drhc556f3c2016-03-30 15:30:07 +00004433 assert( pOp->p4.pTab!=0 );
dan46c47d42011-03-01 18:42:07 +00004434 zDb = db->aDb[pC->iDb].zName;
dan319eeb72011-03-19 08:38:50 +00004435 pTab = pOp->p4.pTab;
drhc556f3c2016-03-30 15:30:07 +00004436 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
drh1bb15fc2015-12-02 20:40:26 +00004437 sqlite3BtreeKeySize(pC->uc.pCursor, &pC->movetoTarget);
dan438b8812015-09-15 15:55:15 +00004438 }
drh74c33022016-03-30 12:56:55 +00004439 }else{
4440 zDb = 0; /* Not needed. Silence a compiler warning. */
4441 pTab = 0; /* Not needed. Silence a compiler warning. */
drh92fe38e2014-10-14 13:41:32 +00004442 }
dan46c47d42011-03-01 18:42:07 +00004443
drh9b1c62d2011-03-30 21:04:43 +00004444#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
dan46c47d42011-03-01 18:42:07 +00004445 /* Invoke the pre-update-hook if required. */
dan438b8812015-09-15 15:55:15 +00004446 if( db->xPreUpdateCallback && pOp->p4.pTab && HasRowid(pTab) ){
dan46c47d42011-03-01 18:42:07 +00004447 assert( !(opflags & OPFLAG_ISUPDATE) || (aMem[pOp->p3].flags & MEM_Int) );
4448 sqlite3VdbePreUpdateHook(p, pC,
4449 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
drh92fe38e2014-10-14 13:41:32 +00004450 zDb, pTab, pC->movetoTarget,
dan37db03b2011-03-16 19:59:18 +00004451 pOp->p3
dan46c47d42011-03-01 18:42:07 +00004452 );
4453 }
dan46c47d42011-03-01 18:42:07 +00004454 if( opflags & OPFLAG_ISNOOP ) break;
drhc556f3c2016-03-30 15:30:07 +00004455#endif
drhb53a5a92014-10-12 22:37:22 +00004456
drhdef19e32016-01-27 16:26:25 +00004457 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
4458 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
drhe807bdb2016-01-21 17:06:33 +00004459 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
drhdef19e32016-01-27 16:26:25 +00004460 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
drhb89aeb62016-01-27 15:49:32 +00004461
4462#ifdef SQLITE_DEBUG
dane61bbf42016-01-28 17:06:17 +00004463 if( p->pFrame==0 ){
4464 if( pC->isEphemeral==0
4465 && (pOp->p5 & OPFLAG_AUXDELETE)==0
4466 && (pC->wrFlag & OPFLAG_FORDELETE)==0
4467 ){
4468 nExtraDelete++;
4469 }
4470 if( pOp->p2 & OPFLAG_NCHANGE ){
4471 nExtraDelete--;
4472 }
drhb89aeb62016-01-27 15:49:32 +00004473 }
4474#endif
4475
drhc960dcb2015-11-20 19:22:01 +00004476 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
drh91fd4d42008-01-19 20:11:25 +00004477 pC->cacheStatus = CACHE_STALE;
drhd3e1af42016-02-25 18:54:30 +00004478 if( rc ) goto abort_due_to_error;
danielk197794eb6a12005-12-15 15:22:08 +00004479
drh91fd4d42008-01-19 20:11:25 +00004480 /* Invoke the update-hook if required. */
dan46c47d42011-03-01 18:42:07 +00004481 if( opflags & OPFLAG_NCHANGE ){
4482 p->nChange++;
drhc556f3c2016-03-30 15:30:07 +00004483 if( db->xUpdateCallback && HasRowid(pTab) ){
drh92fe38e2014-10-14 13:41:32 +00004484 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
dan438b8812015-09-15 15:55:15 +00004485 pC->movetoTarget);
4486 assert( pC->iDb>=0 );
dan46c47d42011-03-01 18:42:07 +00004487 }
drh5e00f6c2001-09-13 13:46:56 +00004488 }
dan438b8812015-09-15 15:55:15 +00004489
rdcb0c374f2004-02-20 22:53:38 +00004490 break;
4491}
drhb7f1d9a2009-09-08 02:27:58 +00004492/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00004493**
drhb7f1d9a2009-09-08 02:27:58 +00004494** The value of the change counter is copied to the database handle
4495** change counter (returned by subsequent calls to sqlite3_changes()).
4496** Then the VMs internal change counter resets to 0.
4497** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00004498*/
drh9cbf3422008-01-17 16:22:13 +00004499case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00004500 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00004501 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00004502 break;
4503}
4504
drh1153c7b2013-11-01 22:02:56 +00004505/* Opcode: SorterCompare P1 P2 P3 P4
drhac502322014-07-30 13:56:48 +00004506** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
dan5134d132011-09-02 10:31:11 +00004507**
drh1153c7b2013-11-01 22:02:56 +00004508** P1 is a sorter cursor. This instruction compares a prefix of the
drhbc5cf382014-08-06 01:08:07 +00004509** record blob in register P3 against a prefix of the entry that
drhac502322014-07-30 13:56:48 +00004510** the sorter cursor currently points to. Only the first P4 fields
4511** of r[P3] and the sorter record are compared.
drh1153c7b2013-11-01 22:02:56 +00004512**
4513** If either P3 or the sorter contains a NULL in one of their significant
4514** fields (not counting the P4 fields at the end which are ignored) then
4515** the comparison is assumed to be equal.
4516**
4517** Fall through to next instruction if the two records compare equal to
4518** each other. Jump to P2 if they are different.
dan5134d132011-09-02 10:31:11 +00004519*/
4520case OP_SorterCompare: {
4521 VdbeCursor *pC;
4522 int res;
drhac502322014-07-30 13:56:48 +00004523 int nKeyCol;
dan5134d132011-09-02 10:31:11 +00004524
4525 pC = p->apCsr[pOp->p1];
4526 assert( isSorter(pC) );
drh1153c7b2013-11-01 22:02:56 +00004527 assert( pOp->p4type==P4_INT32 );
dan5134d132011-09-02 10:31:11 +00004528 pIn3 = &aMem[pOp->p3];
drhac502322014-07-30 13:56:48 +00004529 nKeyCol = pOp->p4.i;
drh958d2612014-04-18 13:40:07 +00004530 res = 0;
drhac502322014-07-30 13:56:48 +00004531 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
drh688852a2014-02-17 22:40:43 +00004532 VdbeBranchTaken(res!=0,2);
drh9467abf2016-02-17 18:44:11 +00004533 if( rc ) goto abort_due_to_error;
drhf56fa462015-04-13 21:39:54 +00004534 if( res ) goto jump_to_p2;
dan5134d132011-09-02 10:31:11 +00004535 break;
4536};
4537
drh6cf4a7d2014-10-13 13:00:58 +00004538/* Opcode: SorterData P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004539** Synopsis: r[P2]=data
dan5134d132011-09-02 10:31:11 +00004540**
4541** Write into register P2 the current sorter data for sorter cursor P1.
drh6cf4a7d2014-10-13 13:00:58 +00004542** Then clear the column header cache on cursor P3.
4543**
4544** This opcode is normally use to move a record out of the sorter and into
4545** a register that is the source for a pseudo-table cursor created using
4546** OpenPseudo. That pseudo-table cursor is the one that is identified by
4547** parameter P3. Clearing the P3 column cache as part of this opcode saves
4548** us from having to issue a separate NullRow instruction to clear that cache.
dan5134d132011-09-02 10:31:11 +00004549*/
4550case OP_SorterData: {
4551 VdbeCursor *pC;
drh3a949872012-09-18 13:20:13 +00004552
dan5134d132011-09-02 10:31:11 +00004553 pOut = &aMem[pOp->p2];
4554 pC = p->apCsr[pOp->p1];
drh14da87f2013-11-20 21:51:33 +00004555 assert( isSorter(pC) );
dan5134d132011-09-02 10:31:11 +00004556 rc = sqlite3VdbeSorterRowkey(pC, pOut);
dan38524132014-05-01 20:26:48 +00004557 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
drh6cf4a7d2014-10-13 13:00:58 +00004558 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh9467abf2016-02-17 18:44:11 +00004559 if( rc ) goto abort_due_to_error;
drh6cf4a7d2014-10-13 13:00:58 +00004560 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
dan5134d132011-09-02 10:31:11 +00004561 break;
4562}
4563
drh98757152008-01-09 23:04:12 +00004564/* Opcode: RowData P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004565** Synopsis: r[P2]=data
drh70ce3f02003-04-15 19:22:22 +00004566**
drh98757152008-01-09 23:04:12 +00004567** Write into register P2 the complete row data for cursor P1.
4568** There is no interpretation of the data.
4569** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004570** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00004571**
drhde4fcfd2008-01-19 23:50:26 +00004572** If the P1 cursor must be pointing to a valid row (not a NULL row)
4573** of a real table, not a pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00004574*/
drh98757152008-01-09 23:04:12 +00004575/* Opcode: RowKey P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004576** Synopsis: r[P2]=key
drh143f3c42004-01-07 20:37:52 +00004577**
drh98757152008-01-09 23:04:12 +00004578** Write into register P2 the complete row key for cursor P1.
4579** There is no interpretation of the data.
drh0fd61352014-02-07 02:29:45 +00004580** The key is copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004581** it is found in the database file.
drh143f3c42004-01-07 20:37:52 +00004582**
drhde4fcfd2008-01-19 23:50:26 +00004583** If the P1 cursor must be pointing to a valid row (not a NULL row)
4584** of a real table, not a pseudo-table.
drh143f3c42004-01-07 20:37:52 +00004585*/
danielk1977a7a8e142008-02-13 18:25:27 +00004586case OP_RowKey:
4587case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00004588 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00004589 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00004590 u32 n;
drh856c1032009-06-02 15:21:42 +00004591 i64 n64;
drh70ce3f02003-04-15 19:22:22 +00004592
drha6c2ed92009-11-14 23:22:23 +00004593 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004594 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00004595
drhf0863fe2005-06-12 21:35:51 +00004596 /* Note that RowKey and RowData are really exactly the same instruction */
drh653b82a2009-06-22 11:10:47 +00004597 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4598 pC = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00004599 assert( pC!=0 );
4600 assert( pC->eCurType==CURTYPE_BTREE );
drh14da87f2013-11-20 21:51:33 +00004601 assert( isSorter(pC)==0 );
drhc6aff302011-09-01 15:32:47 +00004602 assert( pC->isTable || pOp->opcode!=OP_RowData );
drh14da87f2013-11-20 21:51:33 +00004603 assert( pC->isTable==0 || pOp->opcode==OP_RowData );
drhde4fcfd2008-01-19 23:50:26 +00004604 assert( pC->nullRow==0 );
drhc960dcb2015-11-20 19:22:01 +00004605 assert( pC->uc.pCursor!=0 );
4606 pCrsr = pC->uc.pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004607
4608 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4609 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
drhc22284f2014-10-13 16:02:20 +00004610 ** the cursor. If this where not the case, on of the following assert()s
4611 ** would fail. Should this ever change (because of changes in the code
4612 ** generator) then the fix would be to insert a call to
4613 ** sqlite3VdbeCursorMoveto().
drh9a65f2c2009-06-22 19:05:40 +00004614 */
4615 assert( pC->deferredMoveto==0 );
drhc22284f2014-10-13 16:02:20 +00004616 assert( sqlite3BtreeCursorIsValid(pCrsr) );
4617#if 0 /* Not required due to the previous to assert() statements */
drhde4fcfd2008-01-19 23:50:26 +00004618 rc = sqlite3VdbeCursorMoveto(pC);
drhc22284f2014-10-13 16:02:20 +00004619 if( rc!=SQLITE_OK ) goto abort_due_to_error;
4620#endif
drh9a65f2c2009-06-22 19:05:40 +00004621
drh14da87f2013-11-20 21:51:33 +00004622 if( pC->isTable==0 ){
drhde4fcfd2008-01-19 23:50:26 +00004623 assert( !pC->isTable );
drhb07028f2011-10-14 21:49:18 +00004624 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
drhc27ae612009-07-14 18:35:44 +00004625 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhbb4957f2008-03-20 14:03:29 +00004626 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhde4fcfd2008-01-19 23:50:26 +00004627 goto too_big;
drh70ce3f02003-04-15 19:22:22 +00004628 }
drhbfb19dc2009-06-05 16:46:53 +00004629 n = (u32)n64;
drhde4fcfd2008-01-19 23:50:26 +00004630 }else{
drhb07028f2011-10-14 21:49:18 +00004631 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
drhea8ffdf2009-07-22 00:35:23 +00004632 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
shane75ac1de2009-06-09 18:58:52 +00004633 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00004634 goto too_big;
4635 }
drhde4fcfd2008-01-19 23:50:26 +00004636 }
drh722246e2014-10-07 23:02:24 +00004637 testcase( n==0 );
4638 if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
danielk1977a7a8e142008-02-13 18:25:27 +00004639 goto no_mem;
drhde4fcfd2008-01-19 23:50:26 +00004640 }
danielk1977a7a8e142008-02-13 18:25:27 +00004641 pOut->n = n;
4642 MemSetTypeFlag(pOut, MEM_Blob);
drh14da87f2013-11-20 21:51:33 +00004643 if( pC->isTable==0 ){
drhde4fcfd2008-01-19 23:50:26 +00004644 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4645 }else{
4646 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
drh5e00f6c2001-09-13 13:46:56 +00004647 }
drh9467abf2016-02-17 18:44:11 +00004648 if( rc ) goto abort_due_to_error;
danielk197796cb76f2008-01-04 13:24:28 +00004649 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
drhb7654112008-01-12 12:48:07 +00004650 UPDATE_MAX_BLOBSIZE(pOut);
drhee0ec8e2013-10-31 17:38:01 +00004651 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00004652 break;
4653}
4654
drh2133d822008-01-03 18:44:59 +00004655/* Opcode: Rowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004656** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00004657**
drh2133d822008-01-03 18:44:59 +00004658** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004659** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004660**
4661** P1 can be either an ordinary table or a virtual table. There used to
4662** be a separate OP_VRowid opcode for use with virtual tables, but this
4663** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004664*/
drh27a348c2015-04-13 19:14:06 +00004665case OP_Rowid: { /* out2 */
drhdfe88ec2008-11-03 20:55:06 +00004666 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004667 i64 v;
drh856c1032009-06-02 15:21:42 +00004668 sqlite3_vtab *pVtab;
4669 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004670
drh27a348c2015-04-13 19:14:06 +00004671 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00004672 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4673 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004674 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004675 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
drh044925b2009-04-22 17:15:02 +00004676 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004677 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004678 break;
4679 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004680 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004681#ifndef SQLITE_OMIT_VIRTUALTABLE
drhc960dcb2015-11-20 19:22:01 +00004682 }else if( pC->eCurType==CURTYPE_VTAB ){
4683 assert( pC->uc.pVCur!=0 );
4684 pVtab = pC->uc.pVCur->pVtab;
drh044925b2009-04-22 17:15:02 +00004685 pModule = pVtab->pModule;
4686 assert( pModule->xRowid );
drhc960dcb2015-11-20 19:22:01 +00004687 rc = pModule->xRowid(pC->uc.pVCur, &v);
dan016f7812013-08-21 17:35:48 +00004688 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00004689 if( rc ) goto abort_due_to_error;
drh044925b2009-04-22 17:15:02 +00004690#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004691 }else{
drhc960dcb2015-11-20 19:22:01 +00004692 assert( pC->eCurType==CURTYPE_BTREE );
4693 assert( pC->uc.pCursor!=0 );
drhc22284f2014-10-13 16:02:20 +00004694 rc = sqlite3VdbeCursorRestore(pC);
drh61495262009-04-22 15:32:59 +00004695 if( rc ) goto abort_due_to_error;
dan2b8669a2014-11-17 19:42:48 +00004696 if( pC->nullRow ){
4697 pOut->flags = MEM_Null;
4698 break;
4699 }
drhc960dcb2015-11-20 19:22:01 +00004700 rc = sqlite3BtreeKeySize(pC->uc.pCursor, &v);
drhc22284f2014-10-13 16:02:20 +00004701 assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */
drh5e00f6c2001-09-13 13:46:56 +00004702 }
drh4c583122008-01-04 22:01:03 +00004703 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004704 break;
4705}
4706
drh9cbf3422008-01-17 16:22:13 +00004707/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004708**
4709** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004710** that occur while the cursor is on the null row will always
4711** write a NULL.
drh17f71932002-02-21 12:01:27 +00004712*/
drh9cbf3422008-01-17 16:22:13 +00004713case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004714 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004715
drh653b82a2009-06-22 11:10:47 +00004716 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4717 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004718 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004719 pC->nullRow = 1;
drh399af1d2013-11-20 17:25:55 +00004720 pC->cacheStatus = CACHE_STALE;
drhc960dcb2015-11-20 19:22:01 +00004721 if( pC->eCurType==CURTYPE_BTREE ){
4722 assert( pC->uc.pCursor!=0 );
4723 sqlite3BtreeClearCursor(pC->uc.pCursor);
danielk1977be51a652008-10-08 17:58:48 +00004724 }
drh17f71932002-02-21 12:01:27 +00004725 break;
4726}
4727
danb18e60b2015-04-01 16:18:00 +00004728/* Opcode: Last P1 P2 P3 * *
drh9562b552002-02-19 15:00:07 +00004729**
drh8af3f772014-07-25 18:01:06 +00004730** The next use of the Rowid or Column or Prev instruction for P1
drh9562b552002-02-19 15:00:07 +00004731** will refer to the last entry in the database table or index.
4732** If the table or index is empty and P2>0, then jump immediately to P2.
4733** If P2 is 0 or if the table or index is not empty, fall through
4734** to the following instruction.
drh8af3f772014-07-25 18:01:06 +00004735**
4736** This opcode leaves the cursor configured to move in reverse order,
4737** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004738** configured to use Prev, not Next.
drh9562b552002-02-19 15:00:07 +00004739*/
drh9cbf3422008-01-17 16:22:13 +00004740case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004741 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004742 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004743 int res;
drh9562b552002-02-19 15:00:07 +00004744
drh653b82a2009-06-22 11:10:47 +00004745 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4746 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004747 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004748 assert( pC->eCurType==CURTYPE_BTREE );
4749 pCrsr = pC->uc.pCursor;
drh7abc5402011-10-22 21:00:46 +00004750 res = 0;
drh3da046d2013-11-11 03:24:11 +00004751 assert( pCrsr!=0 );
4752 rc = sqlite3BtreeLast(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004753 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004754 pC->deferredMoveto = 0;
4755 pC->cacheStatus = CACHE_STALE;
danb18e60b2015-04-01 16:18:00 +00004756 pC->seekResult = pOp->p3;
drh8af3f772014-07-25 18:01:06 +00004757#ifdef SQLITE_DEBUG
4758 pC->seekOp = OP_Last;
4759#endif
drh9467abf2016-02-17 18:44:11 +00004760 if( rc ) goto abort_due_to_error;
drh688852a2014-02-17 22:40:43 +00004761 if( pOp->p2>0 ){
4762 VdbeBranchTaken(res!=0,2);
drhf56fa462015-04-13 21:39:54 +00004763 if( res ) goto jump_to_p2;
drh9562b552002-02-19 15:00:07 +00004764 }
4765 break;
4766}
4767
drh0342b1f2005-09-01 03:07:44 +00004768
drh9cbf3422008-01-17 16:22:13 +00004769/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004770**
4771** This opcode does exactly the same thing as OP_Rewind except that
4772** it increments an undocumented global variable used for testing.
4773**
4774** Sorting is accomplished by writing records into a sorting index,
4775** then rewinding that index and playing it back from beginning to
4776** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4777** rewinding so that the global variable will be incremented and
4778** regression tests can determine whether or not the optimizer is
4779** correctly optimizing out sorts.
4780*/
drhc6aff302011-09-01 15:32:47 +00004781case OP_SorterSort: /* jump */
drh9cbf3422008-01-17 16:22:13 +00004782case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00004783#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00004784 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00004785 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00004786#endif
drh9b47ee32013-08-20 03:13:51 +00004787 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
drh0342b1f2005-09-01 03:07:44 +00004788 /* Fall through into OP_Rewind */
4789}
drh9cbf3422008-01-17 16:22:13 +00004790/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004791**
drhf0863fe2005-06-12 21:35:51 +00004792** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00004793** will refer to the first entry in the database table or index.
dan04489b62014-10-31 20:11:32 +00004794** If the table or index is empty, jump immediately to P2.
4795** If the table or index is not empty, fall through to the following
4796** instruction.
drh8af3f772014-07-25 18:01:06 +00004797**
4798** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00004799** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004800** configured to use Next, not Prev.
drh5e00f6c2001-09-13 13:46:56 +00004801*/
drh9cbf3422008-01-17 16:22:13 +00004802case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004803 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004804 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00004805 int res;
drh5e00f6c2001-09-13 13:46:56 +00004806
drh653b82a2009-06-22 11:10:47 +00004807 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4808 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004809 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00004810 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
dan2411dea2010-07-03 05:56:09 +00004811 res = 1;
drh8af3f772014-07-25 18:01:06 +00004812#ifdef SQLITE_DEBUG
4813 pC->seekOp = OP_Rewind;
4814#endif
dan689ab892011-08-12 15:02:00 +00004815 if( isSorter(pC) ){
drh958d2612014-04-18 13:40:07 +00004816 rc = sqlite3VdbeSorterRewind(pC, &res);
dana205a482011-08-27 18:48:57 +00004817 }else{
drhc960dcb2015-11-20 19:22:01 +00004818 assert( pC->eCurType==CURTYPE_BTREE );
4819 pCrsr = pC->uc.pCursor;
dana205a482011-08-27 18:48:57 +00004820 assert( pCrsr );
danielk19774adee202004-05-08 08:23:19 +00004821 rc = sqlite3BtreeFirst(pCrsr, &res);
drha11846b2004-01-07 18:52:56 +00004822 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004823 pC->cacheStatus = CACHE_STALE;
drhf4dada72004-05-11 09:57:35 +00004824 }
drh9467abf2016-02-17 18:44:11 +00004825 if( rc ) goto abort_due_to_error;
drh9c1905f2008-12-10 22:32:56 +00004826 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004827 assert( pOp->p2>0 && pOp->p2<p->nOp );
drh688852a2014-02-17 22:40:43 +00004828 VdbeBranchTaken(res!=0,2);
drhf56fa462015-04-13 21:39:54 +00004829 if( res ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00004830 break;
4831}
4832
drh0fd61352014-02-07 02:29:45 +00004833/* Opcode: Next P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004834**
4835** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00004836** table or index. If there are no more key/value pairs then fall through
4837** to the following instruction. But if the cursor advance was successful,
4838** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00004839**
drh5dad9a32014-07-25 18:37:42 +00004840** The Next opcode is only valid following an SeekGT, SeekGE, or
4841** OP_Rewind opcode used to position the cursor. Next is not allowed
4842** to follow SeekLT, SeekLE, or OP_Last.
drh8af3f772014-07-25 18:01:06 +00004843**
drhf93cd942013-11-21 03:12:25 +00004844** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
4845** been opened prior to this opcode or the program will segfault.
drh60a713c2008-01-21 16:22:45 +00004846**
drhe39a7322014-02-03 14:04:11 +00004847** The P3 value is a hint to the btree implementation. If P3==1, that
4848** means P1 is an SQL index and that this instruction could have been
4849** omitted if that index had been unique. P3 is usually 0. P3 is
4850** always either 0 or 1.
4851**
dana205a482011-08-27 18:48:57 +00004852** P4 is always of type P4_ADVANCE. The function pointer points to
4853** sqlite3BtreeNext().
4854**
drhafc266a2010-03-31 17:47:44 +00004855** If P5 is positive and the jump is taken, then event counter
4856** number P5-1 in the prepared statement is incremented.
4857**
drhf93cd942013-11-21 03:12:25 +00004858** See also: Prev, NextIfOpen
4859*/
drh0fd61352014-02-07 02:29:45 +00004860/* Opcode: NextIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00004861**
drh5dad9a32014-07-25 18:37:42 +00004862** This opcode works just like Next except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00004863** open it behaves a no-op.
drh8721ce42001-11-07 14:22:00 +00004864*/
drh0fd61352014-02-07 02:29:45 +00004865/* Opcode: Prev P1 P2 P3 P4 P5
drhc045ec52002-12-04 20:01:06 +00004866**
4867** Back up cursor P1 so that it points to the previous key/data pair in its
4868** table or index. If there is no previous key/value pairs then fall through
4869** to the following instruction. But if the cursor backup was successful,
4870** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00004871**
drh8af3f772014-07-25 18:01:06 +00004872**
drh5dad9a32014-07-25 18:37:42 +00004873** The Prev opcode is only valid following an SeekLT, SeekLE, or
4874** OP_Last opcode used to position the cursor. Prev is not allowed
4875** to follow SeekGT, SeekGE, or OP_Rewind.
drh8af3f772014-07-25 18:01:06 +00004876**
drhf93cd942013-11-21 03:12:25 +00004877** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
4878** not open then the behavior is undefined.
drhafc266a2010-03-31 17:47:44 +00004879**
drhe39a7322014-02-03 14:04:11 +00004880** The P3 value is a hint to the btree implementation. If P3==1, that
4881** means P1 is an SQL index and that this instruction could have been
4882** omitted if that index had been unique. P3 is usually 0. P3 is
4883** always either 0 or 1.
4884**
dana205a482011-08-27 18:48:57 +00004885** P4 is always of type P4_ADVANCE. The function pointer points to
4886** sqlite3BtreePrevious().
4887**
drhafc266a2010-03-31 17:47:44 +00004888** If P5 is positive and the jump is taken, then event counter
4889** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00004890*/
drh0fd61352014-02-07 02:29:45 +00004891/* Opcode: PrevIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00004892**
drh5dad9a32014-07-25 18:37:42 +00004893** This opcode works just like Prev except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00004894** open it behaves a no-op.
4895*/
4896case OP_SorterNext: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004897 VdbeCursor *pC;
drha3460582008-07-11 21:02:53 +00004898 int res;
drh8721ce42001-11-07 14:22:00 +00004899
drhf93cd942013-11-21 03:12:25 +00004900 pC = p->apCsr[pOp->p1];
4901 assert( isSorter(pC) );
drh323913c2014-03-23 16:29:23 +00004902 res = 0;
drhf93cd942013-11-21 03:12:25 +00004903 rc = sqlite3VdbeSorterNext(db, pC, &res);
4904 goto next_tail;
4905case OP_PrevIfOpen: /* jump */
4906case OP_NextIfOpen: /* jump */
4907 if( p->apCsr[pOp->p1]==0 ) break;
4908 /* Fall through */
4909case OP_Prev: /* jump */
4910case OP_Next: /* jump */
drh70ce3f02003-04-15 19:22:22 +00004911 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh9b47ee32013-08-20 03:13:51 +00004912 assert( pOp->p5<ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00004913 pC = p->apCsr[pOp->p1];
drhe39a7322014-02-03 14:04:11 +00004914 res = pOp->p3;
drhf93cd942013-11-21 03:12:25 +00004915 assert( pC!=0 );
4916 assert( pC->deferredMoveto==0 );
drhc960dcb2015-11-20 19:22:01 +00004917 assert( pC->eCurType==CURTYPE_BTREE );
drhe39a7322014-02-03 14:04:11 +00004918 assert( res==0 || (res==1 && pC->isTable==0) );
4919 testcase( res==1 );
drhf93cd942013-11-21 03:12:25 +00004920 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4921 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4922 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
4923 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
drh8af3f772014-07-25 18:01:06 +00004924
4925 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
4926 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
4927 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
4928 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
drhcefc87f2014-08-01 01:40:33 +00004929 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
drh8af3f772014-07-25 18:01:06 +00004930 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
4931 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
4932 || pC->seekOp==OP_Last );
4933
drhc960dcb2015-11-20 19:22:01 +00004934 rc = pOp->p4.xAdvance(pC->uc.pCursor, &res);
drhf93cd942013-11-21 03:12:25 +00004935next_tail:
drha3460582008-07-11 21:02:53 +00004936 pC->cacheStatus = CACHE_STALE;
drh688852a2014-02-17 22:40:43 +00004937 VdbeBranchTaken(res==0,2);
drh9467abf2016-02-17 18:44:11 +00004938 if( rc ) goto abort_due_to_error;
drha3460582008-07-11 21:02:53 +00004939 if( res==0 ){
drhf93cd942013-11-21 03:12:25 +00004940 pC->nullRow = 0;
drh9b47ee32013-08-20 03:13:51 +00004941 p->aCounter[pOp->p5]++;
drh0f7eb612006-08-08 13:51:43 +00004942#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00004943 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00004944#endif
drhf56fa462015-04-13 21:39:54 +00004945 goto jump_to_p2_and_check_for_interrupt;
drhf93cd942013-11-21 03:12:25 +00004946 }else{
4947 pC->nullRow = 1;
drh8721ce42001-11-07 14:22:00 +00004948 }
drh49afe3a2013-07-10 03:05:14 +00004949 goto check_for_interrupt;
drh8721ce42001-11-07 14:22:00 +00004950}
4951
danielk1977de630352009-05-04 11:42:29 +00004952/* Opcode: IdxInsert P1 P2 P3 * P5
drh81316f82013-10-29 20:40:47 +00004953** Synopsis: key=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004954**
drhef8662b2011-06-20 21:47:58 +00004955** Register P2 holds an SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00004956** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00004957** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00004958**
drhaa9b8962008-01-08 02:57:55 +00004959** P3 is a flag that provides a hint to the b-tree layer that this
drhe4d90812007-03-29 05:51:49 +00004960** insert is likely to be an append.
4961**
mistachkin21a919f2014-02-07 03:28:02 +00004962** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
4963** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
4964** then the change counter is unchanged.
drh0fd61352014-02-07 02:29:45 +00004965**
mistachkin21a919f2014-02-07 03:28:02 +00004966** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
4967** just done a seek to the spot where the new entry is to be inserted.
4968** This flag avoids doing an extra seek.
drh0fd61352014-02-07 02:29:45 +00004969**
drhf0863fe2005-06-12 21:35:51 +00004970** This instruction only works for indices. The equivalent instruction
4971** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00004972*/
drhca892a72011-09-03 00:17:51 +00004973case OP_SorterInsert: /* in2 */
drh9cbf3422008-01-17 16:22:13 +00004974case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00004975 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004976 int nKey;
4977 const char *zKey;
4978
drh653b82a2009-06-22 11:10:47 +00004979 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4980 pC = p->apCsr[pOp->p1];
4981 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00004982 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
drh3c657212009-11-17 23:59:58 +00004983 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00004984 assert( pIn2->flags & MEM_Blob );
drh6546af12013-11-04 15:23:25 +00004985 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drhc960dcb2015-11-20 19:22:01 +00004986 assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
drh3da046d2013-11-11 03:24:11 +00004987 assert( pC->isTable==0 );
4988 rc = ExpandBlob(pIn2);
drh9467abf2016-02-17 18:44:11 +00004989 if( rc ) goto abort_due_to_error;
4990 if( pOp->opcode==OP_SorterInsert ){
4991 rc = sqlite3VdbeSorterWrite(pC, pIn2);
4992 }else{
4993 nKey = pIn2->n;
4994 zKey = pIn2->z;
4995 rc = sqlite3BtreeInsert(pC->uc.pCursor, zKey, nKey, "", 0, 0, pOp->p3,
4996 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4997 );
4998 assert( pC->deferredMoveto==0 );
4999 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00005000 }
drh9467abf2016-02-17 18:44:11 +00005001 if( rc) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00005002 break;
5003}
5004
drhd1d38482008-10-07 23:46:38 +00005005/* Opcode: IdxDelete P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00005006** Synopsis: key=r[P2@P3]
drh5e00f6c2001-09-13 13:46:56 +00005007**
drhe14006d2008-03-25 17:23:32 +00005008** The content of P3 registers starting at register P2 form
5009** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00005010** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00005011*/
drhe14006d2008-03-25 17:23:32 +00005012case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00005013 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00005014 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00005015 int res;
5016 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00005017
drhe14006d2008-03-25 17:23:32 +00005018 assert( pOp->p3>0 );
drh9f6168b2016-03-19 23:32:58 +00005019 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
drh653b82a2009-06-22 11:10:47 +00005020 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5021 pC = p->apCsr[pOp->p1];
5022 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00005023 assert( pC->eCurType==CURTYPE_BTREE );
5024 pCrsr = pC->uc.pCursor;
drh3da046d2013-11-11 03:24:11 +00005025 assert( pCrsr!=0 );
drh4308e342013-11-11 16:55:52 +00005026 assert( pOp->p5==0 );
drh3da046d2013-11-11 03:24:11 +00005027 r.pKeyInfo = pC->pKeyInfo;
5028 r.nField = (u16)pOp->p3;
dan1fed5da2014-02-25 21:01:25 +00005029 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00005030 r.aMem = &aMem[pOp->p2];
drh3da046d2013-11-11 03:24:11 +00005031 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
drh9467abf2016-02-17 18:44:11 +00005032 if( rc ) goto abort_due_to_error;
5033 if( res==0 ){
dane61bbf42016-01-28 17:06:17 +00005034 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
drh9467abf2016-02-17 18:44:11 +00005035 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00005036 }
drh3da046d2013-11-11 03:24:11 +00005037 assert( pC->deferredMoveto==0 );
5038 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00005039 break;
5040}
5041
drh784c1b92016-01-30 16:59:56 +00005042/* Opcode: Seek P1 * P3 P4 *
5043** Synopsis: Move P3 to P1.rowid
5044**
5045** P1 is an open index cursor and P3 is a cursor on the corresponding
5046** table. This opcode does a deferred seek of the P3 table cursor
5047** to the row that corresponds to the current row of P1.
5048**
5049** This is a deferred seek. Nothing actually happens until
5050** the cursor is used to read a record. That way, if no reads
5051** occur, no unnecessary I/O happens.
5052**
5053** P4 may be an array of integers (type P4_INTARRAY) containing
drh19d720d2016-02-03 19:52:06 +00005054** one entry for each column in the P3 table. If array entry a(i)
5055** is non-zero, then reading column a(i)-1 from cursor P3 is
drh784c1b92016-01-30 16:59:56 +00005056** equivalent to performing the deferred seek and then reading column i
5057** from P1. This information is stored in P3 and used to redirect
5058** reads against P3 over to P1, thus possibly avoiding the need to
5059** seek and read cursor P3.
5060*/
drh2133d822008-01-03 18:44:59 +00005061/* Opcode: IdxRowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005062** Synopsis: r[P2]=rowid
drh8721ce42001-11-07 14:22:00 +00005063**
drh2133d822008-01-03 18:44:59 +00005064** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00005065** the end of the index key pointed to by cursor P1. This integer should be
5066** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00005067**
drh9437bd22009-02-01 00:29:56 +00005068** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00005069*/
drh784c1b92016-01-30 16:59:56 +00005070case OP_Seek:
drh27a348c2015-04-13 19:14:06 +00005071case OP_IdxRowid: { /* out2 */
drh784c1b92016-01-30 16:59:56 +00005072 VdbeCursor *pC; /* The P1 index cursor */
5073 VdbeCursor *pTabCur; /* The P2 table cursor (OP_Seek only) */
5074 i64 rowid; /* Rowid that P1 current points to */
drh8721ce42001-11-07 14:22:00 +00005075
drh653b82a2009-06-22 11:10:47 +00005076 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5077 pC = p->apCsr[pOp->p1];
5078 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00005079 assert( pC->eCurType==CURTYPE_BTREE );
drh784c1b92016-01-30 16:59:56 +00005080 assert( pC->uc.pCursor!=0 );
drh3da046d2013-11-11 03:24:11 +00005081 assert( pC->isTable==0 );
drhc22284f2014-10-13 16:02:20 +00005082 assert( pC->deferredMoveto==0 );
drh784c1b92016-01-30 16:59:56 +00005083 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
5084
5085 /* The IdxRowid and Seek opcodes are combined because of the commonality
5086 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
5087 rc = sqlite3VdbeCursorRestore(pC);
drhc22284f2014-10-13 16:02:20 +00005088
5089 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
drh784c1b92016-01-30 16:59:56 +00005090 ** out from under the cursor. That will never happens for an IdxRowid
5091 ** or Seek opcode */
drhc22284f2014-10-13 16:02:20 +00005092 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
5093
drh3da046d2013-11-11 03:24:11 +00005094 if( !pC->nullRow ){
drh2dc06482013-12-11 00:59:10 +00005095 rowid = 0; /* Not needed. Only used to silence a warning. */
drh784c1b92016-01-30 16:59:56 +00005096 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
drh3da046d2013-11-11 03:24:11 +00005097 if( rc!=SQLITE_OK ){
5098 goto abort_due_to_error;
danielk19773d1bfea2004-05-14 11:00:53 +00005099 }
drh784c1b92016-01-30 16:59:56 +00005100 if( pOp->opcode==OP_Seek ){
5101 assert( pOp->p3>=0 && pOp->p3<p->nCursor );
5102 pTabCur = p->apCsr[pOp->p3];
5103 assert( pTabCur!=0 );
5104 assert( pTabCur->eCurType==CURTYPE_BTREE );
5105 assert( pTabCur->uc.pCursor!=0 );
5106 assert( pTabCur->isTable );
5107 pTabCur->nullRow = 0;
5108 pTabCur->movetoTarget = rowid;
5109 pTabCur->deferredMoveto = 1;
5110 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
5111 pTabCur->aAltMap = pOp->p4.ai;
5112 pTabCur->pAltCursor = pC;
5113 }else{
5114 pOut = out2Prerelease(p, pOp);
5115 pOut->u.i = rowid;
5116 pOut->flags = MEM_Int;
5117 }
5118 }else{
5119 assert( pOp->opcode==OP_IdxRowid );
5120 sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
drh8721ce42001-11-07 14:22:00 +00005121 }
5122 break;
5123}
5124
danielk197761dd5832008-04-18 11:31:12 +00005125/* Opcode: IdxGE P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005126** Synopsis: key=r[P3@P4]
drh8721ce42001-11-07 14:22:00 +00005127**
danielk197761dd5832008-04-18 11:31:12 +00005128** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00005129** key that omits the PRIMARY KEY. Compare this key value against the index
5130** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5131** fields at the end.
drhf3218fe2004-05-28 08:21:02 +00005132**
danielk197761dd5832008-04-18 11:31:12 +00005133** If the P1 index entry is greater than or equal to the key value
5134** then jump to P2. Otherwise fall through to the next instruction.
drh4a1d3652014-02-14 15:13:36 +00005135*/
5136/* Opcode: IdxGT P1 P2 P3 P4 P5
5137** Synopsis: key=r[P3@P4]
drh772ae622004-05-19 13:13:08 +00005138**
drh4a1d3652014-02-14 15:13:36 +00005139** The P4 register values beginning with P3 form an unpacked index
5140** key that omits the PRIMARY KEY. Compare this key value against the index
5141** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5142** fields at the end.
5143**
5144** If the P1 index entry is greater than the key value
5145** then jump to P2. Otherwise fall through to the next instruction.
drh8721ce42001-11-07 14:22:00 +00005146*/
drh3bb9b932010-08-06 02:10:00 +00005147/* Opcode: IdxLT P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005148** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00005149**
danielk197761dd5832008-04-18 11:31:12 +00005150** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00005151** key that omits the PRIMARY KEY or ROWID. Compare this key value against
5152** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5153** ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00005154**
danielk197761dd5832008-04-18 11:31:12 +00005155** If the P1 index entry is less than the key value then jump to P2.
5156** Otherwise fall through to the next instruction.
drhc045ec52002-12-04 20:01:06 +00005157*/
drh4a1d3652014-02-14 15:13:36 +00005158/* Opcode: IdxLE P1 P2 P3 P4 P5
5159** Synopsis: key=r[P3@P4]
5160**
5161** The P4 register values beginning with P3 form an unpacked index
5162** key that omits the PRIMARY KEY or ROWID. Compare this key value against
5163** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5164** ROWID on the P1 index.
5165**
5166** If the P1 index entry is less than or equal to the key value then jump
5167** to P2. Otherwise fall through to the next instruction.
5168*/
5169case OP_IdxLE: /* jump */
5170case OP_IdxGT: /* jump */
drh93952eb2009-11-13 19:43:43 +00005171case OP_IdxLT: /* jump */
drh4a1d3652014-02-14 15:13:36 +00005172case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00005173 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00005174 int res;
5175 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00005176
drh653b82a2009-06-22 11:10:47 +00005177 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5178 pC = p->apCsr[pOp->p1];
5179 assert( pC!=0 );
drhd4187c72010-08-30 22:15:45 +00005180 assert( pC->isOrdered );
drhc960dcb2015-11-20 19:22:01 +00005181 assert( pC->eCurType==CURTYPE_BTREE );
5182 assert( pC->uc.pCursor!=0);
drh3da046d2013-11-11 03:24:11 +00005183 assert( pC->deferredMoveto==0 );
5184 assert( pOp->p5==0 || pOp->p5==1 );
5185 assert( pOp->p4type==P4_INT32 );
5186 r.pKeyInfo = pC->pKeyInfo;
5187 r.nField = (u16)pOp->p4.i;
drh4a1d3652014-02-14 15:13:36 +00005188 if( pOp->opcode<OP_IdxLT ){
5189 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
dan1fed5da2014-02-25 21:01:25 +00005190 r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00005191 }else{
drh4a1d3652014-02-14 15:13:36 +00005192 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
dan1fed5da2014-02-25 21:01:25 +00005193 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00005194 }
5195 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00005196#ifdef SQLITE_DEBUG
drh3da046d2013-11-11 03:24:11 +00005197 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
drh2b4ded92010-09-27 21:09:31 +00005198#endif
drh2dc06482013-12-11 00:59:10 +00005199 res = 0; /* Not needed. Only used to silence a warning. */
drhd3b74202014-09-17 16:41:15 +00005200 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
drh4a1d3652014-02-14 15:13:36 +00005201 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5202 if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5203 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
drh3da046d2013-11-11 03:24:11 +00005204 res = -res;
5205 }else{
drh4a1d3652014-02-14 15:13:36 +00005206 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
drh3da046d2013-11-11 03:24:11 +00005207 res++;
5208 }
drh688852a2014-02-17 22:40:43 +00005209 VdbeBranchTaken(res>0,2);
drh9467abf2016-02-17 18:44:11 +00005210 if( rc ) goto abort_due_to_error;
drhf56fa462015-04-13 21:39:54 +00005211 if( res>0 ) goto jump_to_p2;
drh8721ce42001-11-07 14:22:00 +00005212 break;
5213}
5214
drh98757152008-01-09 23:04:12 +00005215/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00005216**
5217** Delete an entire database table or index whose root page in the database
5218** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00005219**
drh98757152008-01-09 23:04:12 +00005220** The table being destroyed is in the main database file if P3==0. If
5221** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00005222** that is used to store tables create using CREATE TEMPORARY TABLE.
5223**
drh205f48e2004-11-05 00:43:11 +00005224** If AUTOVACUUM is enabled then it is possible that another root page
5225** might be moved into the newly deleted root page in order to keep all
5226** root pages contiguous at the beginning of the database. The former
5227** value of the root page that moved - its value before the move occurred -
drh9cbf3422008-01-17 16:22:13 +00005228** is stored in register P2. If no page
drh98757152008-01-09 23:04:12 +00005229** movement was required (because the table being dropped was already
5230** the last one in the database) then a zero is stored in register P2.
5231** If AUTOVACUUM is disabled then a zero is stored in register P2.
drh205f48e2004-11-05 00:43:11 +00005232**
drhb19a2bc2001-09-16 00:13:26 +00005233** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00005234*/
drh27a348c2015-04-13 19:14:06 +00005235case OP_Destroy: { /* out2 */
danielk1977a0bf2652004-11-04 14:30:04 +00005236 int iMoved;
drh856c1032009-06-02 15:21:42 +00005237 int iDb;
drh3a949872012-09-18 13:20:13 +00005238
drh9e92a472013-06-27 17:40:30 +00005239 assert( p->readOnly==0 );
drh055f2982016-01-15 15:06:41 +00005240 assert( pOp->p1>1 );
drh27a348c2015-04-13 19:14:06 +00005241 pOut = out2Prerelease(p, pOp);
drh3c657212009-11-17 23:59:58 +00005242 pOut->flags = MEM_Null;
drh086723a2015-03-24 12:51:52 +00005243 if( db->nVdbeRead > db->nVDestroy+1 ){
danielk1977e6efa742004-11-10 11:55:10 +00005244 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00005245 p->errorAction = OE_Abort;
drh9467abf2016-02-17 18:44:11 +00005246 goto abort_due_to_error;
danielk1977e6efa742004-11-10 11:55:10 +00005247 }else{
drh856c1032009-06-02 15:21:42 +00005248 iDb = pOp->p3;
drha7ab6d82014-07-21 15:44:39 +00005249 assert( DbMaskTest(p->btreeMask, iDb) );
drh2dc06482013-12-11 00:59:10 +00005250 iMoved = 0; /* Not needed. Only to silence a warning. */
drh98757152008-01-09 23:04:12 +00005251 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00005252 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00005253 pOut->u.i = iMoved;
drh9467abf2016-02-17 18:44:11 +00005254 if( rc ) goto abort_due_to_error;
drh3765df42006-06-28 18:18:09 +00005255#ifndef SQLITE_OMIT_AUTOVACUUM
drh9467abf2016-02-17 18:44:11 +00005256 if( iMoved!=0 ){
drhcdf011d2011-04-04 21:25:28 +00005257 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5258 /* All OP_Destroy operations occur on the same btree */
5259 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5260 resetSchemaOnFault = iDb+1;
danielk1977e6efa742004-11-10 11:55:10 +00005261 }
drh3765df42006-06-28 18:18:09 +00005262#endif
danielk1977a0bf2652004-11-04 14:30:04 +00005263 }
drh5e00f6c2001-09-13 13:46:56 +00005264 break;
5265}
5266
danielk1977c7af4842008-10-27 13:59:33 +00005267/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00005268**
5269** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00005270** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00005271** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00005272**
drhf57b3392001-10-08 13:22:32 +00005273** The table being clear is in the main database file if P2==0. If
5274** P2==1 then the table to be clear is in the auxiliary database file
5275** that is used to store tables create using CREATE TEMPORARY TABLE.
5276**
shanebe217792009-03-05 04:20:31 +00005277** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00005278** intkey table (an SQL table, not an index). In this case the row change
5279** count is incremented by the number of rows in the table being cleared.
5280** If P3 is greater than zero, then the value stored in register P3 is
5281** also incremented by the number of rows in the table being cleared.
5282**
drhb19a2bc2001-09-16 00:13:26 +00005283** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00005284*/
drh9cbf3422008-01-17 16:22:13 +00005285case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00005286 int nChange;
5287
5288 nChange = 0;
drh9e92a472013-06-27 17:40:30 +00005289 assert( p->readOnly==0 );
drha7ab6d82014-07-21 15:44:39 +00005290 assert( DbMaskTest(p->btreeMask, pOp->p2) );
danielk1977c7af4842008-10-27 13:59:33 +00005291 rc = sqlite3BtreeClearTable(
5292 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5293 );
5294 if( pOp->p3 ){
5295 p->nChange += nChange;
5296 if( pOp->p3>0 ){
drh2b4ded92010-09-27 21:09:31 +00005297 assert( memIsValid(&aMem[pOp->p3]) );
5298 memAboutToChange(p, &aMem[pOp->p3]);
drha6c2ed92009-11-14 23:22:23 +00005299 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00005300 }
5301 }
drh9467abf2016-02-17 18:44:11 +00005302 if( rc ) goto abort_due_to_error;
drh5edc3122001-09-13 21:53:09 +00005303 break;
5304}
5305
drh65ea12c2014-03-19 17:41:36 +00005306/* Opcode: ResetSorter P1 * * * *
drh079a3072014-03-19 14:10:55 +00005307**
drh65ea12c2014-03-19 17:41:36 +00005308** Delete all contents from the ephemeral table or sorter
5309** that is open on cursor P1.
drh079a3072014-03-19 14:10:55 +00005310**
drh65ea12c2014-03-19 17:41:36 +00005311** This opcode only works for cursors used for sorting and
5312** opened with OP_OpenEphemeral or OP_SorterOpen.
drh079a3072014-03-19 14:10:55 +00005313*/
drh65ea12c2014-03-19 17:41:36 +00005314case OP_ResetSorter: {
drh079a3072014-03-19 14:10:55 +00005315 VdbeCursor *pC;
5316
5317 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5318 pC = p->apCsr[pOp->p1];
5319 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00005320 if( isSorter(pC) ){
5321 sqlite3VdbeSorterReset(db, pC->uc.pSorter);
drh65ea12c2014-03-19 17:41:36 +00005322 }else{
drhc960dcb2015-11-20 19:22:01 +00005323 assert( pC->eCurType==CURTYPE_BTREE );
drh65ea12c2014-03-19 17:41:36 +00005324 assert( pC->isEphemeral );
drhc960dcb2015-11-20 19:22:01 +00005325 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
drh9467abf2016-02-17 18:44:11 +00005326 if( rc ) goto abort_due_to_error;
drh65ea12c2014-03-19 17:41:36 +00005327 }
drh079a3072014-03-19 14:10:55 +00005328 break;
5329}
5330
drh4c583122008-01-04 22:01:03 +00005331/* Opcode: CreateTable P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005332** Synopsis: r[P2]=root iDb=P1
drh5b2fd562001-09-13 15:21:31 +00005333**
drh4c583122008-01-04 22:01:03 +00005334** Allocate a new table in the main database file if P1==0 or in the
5335** auxiliary database file if P1==1 or in an attached database if
5336** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00005337** register P2
drh5b2fd562001-09-13 15:21:31 +00005338**
drhc6b52df2002-01-04 03:09:29 +00005339** The difference between a table and an index is this: A table must
5340** have a 4-byte integer key and can have arbitrary data. An index
5341** has an arbitrary key but no data.
5342**
drhb19a2bc2001-09-16 00:13:26 +00005343** See also: CreateIndex
drh5b2fd562001-09-13 15:21:31 +00005344*/
drh4c583122008-01-04 22:01:03 +00005345/* Opcode: CreateIndex P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005346** Synopsis: r[P2]=root iDb=P1
drhf57b3392001-10-08 13:22:32 +00005347**
drh4c583122008-01-04 22:01:03 +00005348** Allocate a new index in the main database file if P1==0 or in the
5349** auxiliary database file if P1==1 or in an attached database if
5350** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00005351** register P2.
drhf57b3392001-10-08 13:22:32 +00005352**
drhc6b52df2002-01-04 03:09:29 +00005353** See documentation on OP_CreateTable for additional information.
drhf57b3392001-10-08 13:22:32 +00005354*/
drh27a348c2015-04-13 19:14:06 +00005355case OP_CreateIndex: /* out2 */
5356case OP_CreateTable: { /* out2 */
drh856c1032009-06-02 15:21:42 +00005357 int pgno;
drhf328bc82004-05-10 23:29:49 +00005358 int flags;
drh234c39d2004-07-24 03:30:47 +00005359 Db *pDb;
drh856c1032009-06-02 15:21:42 +00005360
drh27a348c2015-04-13 19:14:06 +00005361 pOut = out2Prerelease(p, pOp);
drh856c1032009-06-02 15:21:42 +00005362 pgno = 0;
drh234c39d2004-07-24 03:30:47 +00005363 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005364 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00005365 assert( p->readOnly==0 );
drh234c39d2004-07-24 03:30:47 +00005366 pDb = &db->aDb[pOp->p1];
5367 assert( pDb->pBt!=0 );
drhc6b52df2002-01-04 03:09:29 +00005368 if( pOp->opcode==OP_CreateTable ){
danielk197794076252004-05-14 12:16:11 +00005369 /* flags = BTREE_INTKEY; */
drhd4187c72010-08-30 22:15:45 +00005370 flags = BTREE_INTKEY;
drhc6b52df2002-01-04 03:09:29 +00005371 }else{
drhd4187c72010-08-30 22:15:45 +00005372 flags = BTREE_BLOBKEY;
drhc6b52df2002-01-04 03:09:29 +00005373 }
drh234c39d2004-07-24 03:30:47 +00005374 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
drh9467abf2016-02-17 18:44:11 +00005375 if( rc ) goto abort_due_to_error;
drh88a003e2008-12-11 16:17:03 +00005376 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00005377 break;
5378}
5379
drh22645842011-03-24 01:34:03 +00005380/* Opcode: ParseSchema P1 * * P4 *
drh234c39d2004-07-24 03:30:47 +00005381**
5382** Read and parse all entries from the SQLITE_MASTER table of database P1
drh22645842011-03-24 01:34:03 +00005383** that match the WHERE clause P4.
drh234c39d2004-07-24 03:30:47 +00005384**
5385** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00005386** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00005387*/
drh9cbf3422008-01-17 16:22:13 +00005388case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00005389 int iDb;
5390 const char *zMaster;
5391 char *zSql;
5392 InitData initData;
5393
drhbdaec522011-04-04 00:14:43 +00005394 /* Any prepared statement that invokes this opcode will hold mutexes
5395 ** on every btree. This is a prerequisite for invoking
5396 ** sqlite3InitCallback().
5397 */
5398#ifdef SQLITE_DEBUG
5399 for(iDb=0; iDb<db->nDb; iDb++){
5400 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5401 }
5402#endif
drhbdaec522011-04-04 00:14:43 +00005403
drh856c1032009-06-02 15:21:42 +00005404 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00005405 assert( iDb>=0 && iDb<db->nDb );
dan6c154872011-04-02 09:44:43 +00005406 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
drhbdaec522011-04-04 00:14:43 +00005407 /* Used to be a conditional */ {
drh856c1032009-06-02 15:21:42 +00005408 zMaster = SCHEMA_TABLE(iDb);
danielk1977a8bbef82009-03-23 17:11:26 +00005409 initData.db = db;
5410 initData.iDb = pOp->p1;
5411 initData.pzErrMsg = &p->zErrMsg;
5412 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00005413 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
danielk1977a8bbef82009-03-23 17:11:26 +00005414 db->aDb[iDb].zName, zMaster, pOp->p4.z);
5415 if( zSql==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005416 rc = SQLITE_NOMEM_BKPT;
danielk1977a8bbef82009-03-23 17:11:26 +00005417 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00005418 assert( db->init.busy==0 );
5419 db->init.busy = 1;
5420 initData.rc = SQLITE_OK;
5421 assert( !db->mallocFailed );
5422 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5423 if( rc==SQLITE_OK ) rc = initData.rc;
5424 sqlite3DbFree(db, zSql);
5425 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00005426 }
drh3c23a882007-01-09 14:01:13 +00005427 }
drh9467abf2016-02-17 18:44:11 +00005428 if( rc ){
5429 sqlite3ResetAllSchemasOfConnection(db);
5430 if( rc==SQLITE_NOMEM ){
5431 goto no_mem;
5432 }
5433 goto abort_due_to_error;
danielk1977261919c2005-12-06 12:52:59 +00005434 }
drh234c39d2004-07-24 03:30:47 +00005435 break;
5436}
5437
drh8bfdf722009-06-19 14:06:03 +00005438#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00005439/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00005440**
5441** Read the sqlite_stat1 table for database P1 and load the content
5442** of that table into the internal index hash table. This will cause
5443** the analysis to be used when preparing all subsequent queries.
5444*/
drh9cbf3422008-01-17 16:22:13 +00005445case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00005446 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5447 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh9467abf2016-02-17 18:44:11 +00005448 if( rc ) goto abort_due_to_error;
drh497e4462005-07-23 03:18:40 +00005449 break;
5450}
drh8bfdf722009-06-19 14:06:03 +00005451#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00005452
drh98757152008-01-09 23:04:12 +00005453/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005454**
5455** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005456** the table named P4 in database P1. This is called after a table
drh5dad9a32014-07-25 18:37:42 +00005457** is dropped from disk (using the Destroy opcode) in order to keep
5458** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005459** schema consistent with what is on disk.
5460*/
drh9cbf3422008-01-17 16:22:13 +00005461case OP_DropTable: {
danielk19772dca4ac2008-01-03 11:50:29 +00005462 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005463 break;
5464}
5465
drh98757152008-01-09 23:04:12 +00005466/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005467**
5468** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005469** the index named P4 in database P1. This is called after an index
drh5dad9a32014-07-25 18:37:42 +00005470** is dropped from disk (using the Destroy opcode)
5471** in order to keep the internal representation of the
drh956bc922004-07-24 17:38:29 +00005472** schema consistent with what is on disk.
5473*/
drh9cbf3422008-01-17 16:22:13 +00005474case OP_DropIndex: {
danielk19772dca4ac2008-01-03 11:50:29 +00005475 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005476 break;
5477}
5478
drh98757152008-01-09 23:04:12 +00005479/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005480**
5481** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005482** the trigger named P4 in database P1. This is called after a trigger
drh5dad9a32014-07-25 18:37:42 +00005483** is dropped from disk (using the Destroy opcode) in order to keep
5484** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005485** schema consistent with what is on disk.
5486*/
drh9cbf3422008-01-17 16:22:13 +00005487case OP_DropTrigger: {
danielk19772dca4ac2008-01-03 11:50:29 +00005488 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005489 break;
5490}
5491
drh234c39d2004-07-24 03:30:47 +00005492
drhb7f91642004-10-31 02:22:47 +00005493#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98968b22016-03-15 22:00:39 +00005494/* Opcode: IntegrityCk P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00005495**
drh98757152008-01-09 23:04:12 +00005496** Do an analysis of the currently open database. Store in
5497** register P1 the text of an error message describing any problems.
5498** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00005499**
drh98757152008-01-09 23:04:12 +00005500** The register P3 contains the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00005501** At most reg(P3) errors will be reported.
5502** In other words, the analysis stops as soon as reg(P1) errors are
5503** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00005504**
drh98968b22016-03-15 22:00:39 +00005505** The root page numbers of all tables in the database are integers
5506** stored in P4_INTARRAY argument.
drh21504322002-06-25 13:16:02 +00005507**
drh98757152008-01-09 23:04:12 +00005508** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00005509** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00005510**
drh1dcdbc02007-01-27 02:24:54 +00005511** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00005512*/
drhaaab5722002-02-19 13:39:21 +00005513case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00005514 int nRoot; /* Number of tables to check. (Number of root pages.) */
5515 int *aRoot; /* Array of rootpage numbers for tables to be checked */
drh98757152008-01-09 23:04:12 +00005516 int nErr; /* Number of errors reported */
5517 char *z; /* Text of the error report */
5518 Mem *pnErr; /* Register keeping track of errors remaining */
drh9e92a472013-06-27 17:40:30 +00005519
drh1713afb2013-06-28 01:24:57 +00005520 assert( p->bIsReader );
drh98757152008-01-09 23:04:12 +00005521 nRoot = pOp->p2;
drh98968b22016-03-15 22:00:39 +00005522 aRoot = pOp->p4.ai;
drh79069752004-05-22 21:30:40 +00005523 assert( nRoot>0 );
drh98968b22016-03-15 22:00:39 +00005524 assert( aRoot[nRoot]==0 );
drh9f6168b2016-03-19 23:32:58 +00005525 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005526 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00005527 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00005528 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00005529 pIn1 = &aMem[pOp->p1];
drh98757152008-01-09 23:04:12 +00005530 assert( pOp->p5<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005531 assert( DbMaskTest(p->btreeMask, pOp->p5) );
drh98757152008-01-09 23:04:12 +00005532 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
drh9c1905f2008-12-10 22:32:56 +00005533 (int)pnErr->u.i, &nErr);
drh3c024d62007-03-30 11:23:45 +00005534 pnErr->u.i -= nErr;
drha05a7222008-01-19 03:35:58 +00005535 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00005536 if( nErr==0 ){
5537 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00005538 }else if( z==0 ){
5539 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00005540 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00005541 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00005542 }
drhb7654112008-01-12 12:48:07 +00005543 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00005544 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00005545 break;
5546}
drhb7f91642004-10-31 02:22:47 +00005547#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00005548
drh3d4501e2008-12-04 20:40:10 +00005549/* Opcode: RowSetAdd P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005550** Synopsis: rowset(P1)=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00005551**
drh3d4501e2008-12-04 20:40:10 +00005552** Insert the integer value held by register P2 into a boolean index
5553** held in register P1.
5554**
5555** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00005556*/
drh93952eb2009-11-13 19:43:43 +00005557case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00005558 pIn1 = &aMem[pOp->p1];
5559 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00005560 assert( (pIn2->flags & MEM_Int)!=0 );
5561 if( (pIn1->flags & MEM_RowSet)==0 ){
5562 sqlite3VdbeMemSetRowSet(pIn1);
5563 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00005564 }
drh93952eb2009-11-13 19:43:43 +00005565 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00005566 break;
5567}
5568
5569/* Opcode: RowSetRead P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00005570** Synopsis: r[P3]=rowset(P1)
drh3d4501e2008-12-04 20:40:10 +00005571**
5572** Extract the smallest value from boolean index P1 and put that value into
5573** register P3. Or, if boolean index P1 is initially empty, leave P3
5574** unchanged and jump to instruction P2.
5575*/
drh93952eb2009-11-13 19:43:43 +00005576case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00005577 i64 val;
drh49afe3a2013-07-10 03:05:14 +00005578
drh3c657212009-11-17 23:59:58 +00005579 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00005580 if( (pIn1->flags & MEM_RowSet)==0
5581 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00005582 ){
5583 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00005584 sqlite3VdbeMemSetNull(pIn1);
drh688852a2014-02-17 22:40:43 +00005585 VdbeBranchTaken(1,2);
drhf56fa462015-04-13 21:39:54 +00005586 goto jump_to_p2_and_check_for_interrupt;
drh3d4501e2008-12-04 20:40:10 +00005587 }else{
5588 /* A value was pulled from the index */
drh688852a2014-02-17 22:40:43 +00005589 VdbeBranchTaken(0,2);
drhf56fa462015-04-13 21:39:54 +00005590 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh17435752007-08-16 04:30:38 +00005591 }
drh49afe3a2013-07-10 03:05:14 +00005592 goto check_for_interrupt;
drh5e00f6c2001-09-13 13:46:56 +00005593}
5594
drh1b26c7c2009-04-22 02:15:47 +00005595/* Opcode: RowSetTest P1 P2 P3 P4
drh81316f82013-10-29 20:40:47 +00005596** Synopsis: if r[P3] in rowset(P1) goto P2
danielk19771d461462009-04-21 09:02:45 +00005597**
drhade97602009-04-21 15:05:18 +00005598** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00005599** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00005600** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00005601** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00005602** next opcode.
danielk19771d461462009-04-21 09:02:45 +00005603**
drh1b26c7c2009-04-22 02:15:47 +00005604** The RowSet object is optimized for the case where successive sets
danielk19771d461462009-04-21 09:02:45 +00005605** of integers, where each set contains no duplicates. Each set
5606** of values is identified by a unique P4 value. The first set
drh1b26c7c2009-04-22 02:15:47 +00005607** must have P4==0, the final set P4=-1. P4 must be either -1 or
5608** non-negative. For non-negative values of P4 only the lower 4
5609** bits are significant.
danielk19771d461462009-04-21 09:02:45 +00005610**
5611** This allows optimizations: (a) when P4==0 there is no need to test
drh1b26c7c2009-04-22 02:15:47 +00005612** the rowset object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00005613** (b) when P4==-1 there is no need to insert the value, as it will
5614** never be tested for, and (c) when a value that is part of set X is
5615** inserted, there is no need to search to see if the same value was
5616** previously inserted as part of set X (only if it was previously
5617** inserted as part of some other set).
5618*/
drh1b26c7c2009-04-22 02:15:47 +00005619case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00005620 int iSet;
5621 int exists;
5622
drh3c657212009-11-17 23:59:58 +00005623 pIn1 = &aMem[pOp->p1];
5624 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005625 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00005626 assert( pIn3->flags&MEM_Int );
5627
drh1b26c7c2009-04-22 02:15:47 +00005628 /* If there is anything other than a rowset object in memory cell P1,
5629 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00005630 */
drh733bf1b2009-04-22 00:47:00 +00005631 if( (pIn1->flags & MEM_RowSet)==0 ){
5632 sqlite3VdbeMemSetRowSet(pIn1);
5633 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00005634 }
5635
5636 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00005637 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00005638 if( iSet ){
drhd83cad22014-04-10 02:24:48 +00005639 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
drh688852a2014-02-17 22:40:43 +00005640 VdbeBranchTaken(exists!=0,2);
drhf56fa462015-04-13 21:39:54 +00005641 if( exists ) goto jump_to_p2;
danielk19771d461462009-04-21 09:02:45 +00005642 }
5643 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00005644 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005645 }
5646 break;
5647}
5648
drh5e00f6c2001-09-13 13:46:56 +00005649
danielk197793758c82005-01-21 08:13:14 +00005650#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00005651
drh0fd61352014-02-07 02:29:45 +00005652/* Opcode: Program P1 P2 P3 P4 P5
dan165921a2009-08-28 18:53:45 +00005653**
dan76d462e2009-08-30 11:42:51 +00005654** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00005655**
dan76d462e2009-08-30 11:42:51 +00005656** P1 contains the address of the memory cell that contains the first memory
5657** cell in an array of values used as arguments to the sub-program. P2
5658** contains the address to jump to if the sub-program throws an IGNORE
5659** exception using the RAISE() function. Register P3 contains the address
5660** of a memory cell in this (the parent) VM that is used to allocate the
5661** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00005662**
5663** P4 is a pointer to the VM containing the trigger program.
drh0fd61352014-02-07 02:29:45 +00005664**
5665** If P5 is non-zero, then recursive program invocation is enabled.
dan165921a2009-08-28 18:53:45 +00005666*/
dan76d462e2009-08-30 11:42:51 +00005667case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00005668 int nMem; /* Number of memory registers for sub-program */
5669 int nByte; /* Bytes of runtime space required for sub-program */
5670 Mem *pRt; /* Register to allocate runtime space */
5671 Mem *pMem; /* Used to iterate through memory cells */
5672 Mem *pEnd; /* Last memory cell in new array */
5673 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5674 SubProgram *pProgram; /* Sub-program to execute */
5675 void *t; /* Token identifying trigger */
5676
5677 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00005678 pRt = &aMem[pOp->p3];
dan165921a2009-08-28 18:53:45 +00005679 assert( pProgram->nOp>0 );
5680
dan1da40a32009-09-19 17:00:31 +00005681 /* If the p5 flag is clear, then recursive invocation of triggers is
5682 ** disabled for backwards compatibility (p5 is set if this sub-program
5683 ** is really a trigger, not a foreign key action, and the flag set
5684 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00005685 **
5686 ** It is recursive invocation of triggers, at the SQL level, that is
5687 ** disabled. In some cases a single trigger may generate more than one
5688 ** SubProgram (if the trigger may be executed with more than one different
5689 ** ON CONFLICT algorithm). SubProgram structures associated with a
5690 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00005691 ** variable. */
5692 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00005693 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00005694 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5695 if( pFrame ) break;
5696 }
5697
danf5894502009-10-07 18:41:19 +00005698 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00005699 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00005700 sqlite3VdbeError(p, "too many levels of trigger recursion");
drh9467abf2016-02-17 18:44:11 +00005701 goto abort_due_to_error;
dan165921a2009-08-28 18:53:45 +00005702 }
5703
5704 /* Register pRt is used to store the memory required to save the state
5705 ** of the current program, and the memory required at runtime to execute
5706 ** the trigger program. If this trigger has been fired before, then pRt
5707 ** is already allocated. Otherwise, it must be initialized. */
5708 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00005709 /* SubProgram.nMem is set to the number of memory cells used by the
5710 ** program stored in SubProgram.aOp. As well as these, one memory
5711 ** cell is required for each cursor used by the program. Set local
5712 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5713 */
dan65a7cd12009-09-01 12:16:01 +00005714 nMem = pProgram->nMem + pProgram->nCsr;
drh3cdce922016-03-21 00:30:40 +00005715 assert( nMem>0 );
5716 if( pProgram->nCsr==0 ) nMem++;
dan65a7cd12009-09-01 12:16:01 +00005717 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00005718 + nMem * sizeof(Mem)
dan1d8cb212011-12-09 13:24:16 +00005719 + pProgram->nCsr * sizeof(VdbeCursor *)
5720 + pProgram->nOnce * sizeof(u8);
dan165921a2009-08-28 18:53:45 +00005721 pFrame = sqlite3DbMallocZero(db, nByte);
5722 if( !pFrame ){
5723 goto no_mem;
5724 }
5725 sqlite3VdbeMemRelease(pRt);
5726 pRt->flags = MEM_Frame;
5727 pRt->u.pFrame = pFrame;
5728
5729 pFrame->v = p;
5730 pFrame->nChildMem = nMem;
5731 pFrame->nChildCsr = pProgram->nCsr;
drhf56fa462015-04-13 21:39:54 +00005732 pFrame->pc = (int)(pOp - aOp);
dan165921a2009-08-28 18:53:45 +00005733 pFrame->aMem = p->aMem;
5734 pFrame->nMem = p->nMem;
5735 pFrame->apCsr = p->apCsr;
5736 pFrame->nCursor = p->nCursor;
5737 pFrame->aOp = p->aOp;
5738 pFrame->nOp = p->nOp;
5739 pFrame->token = pProgram->token;
dan1d8cb212011-12-09 13:24:16 +00005740 pFrame->aOnceFlag = p->aOnceFlag;
5741 pFrame->nOnceFlag = p->nOnceFlag;
dane2f771b2014-11-03 15:33:17 +00005742#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00005743 pFrame->anExec = p->anExec;
dane2f771b2014-11-03 15:33:17 +00005744#endif
dan165921a2009-08-28 18:53:45 +00005745
5746 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5747 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
drha5750cf2014-02-07 13:20:31 +00005748 pMem->flags = MEM_Undefined;
dan165921a2009-08-28 18:53:45 +00005749 pMem->db = db;
5750 }
5751 }else{
5752 pFrame = pRt->u.pFrame;
drh9f6168b2016-03-19 23:32:58 +00005753 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
5754 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
dan165921a2009-08-28 18:53:45 +00005755 assert( pProgram->nCsr==pFrame->nChildCsr );
drhf56fa462015-04-13 21:39:54 +00005756 assert( (int)(pOp - aOp)==pFrame->pc );
dan165921a2009-08-28 18:53:45 +00005757 }
5758
5759 p->nFrame++;
5760 pFrame->pParent = p->pFrame;
drh99a66922011-05-13 18:51:42 +00005761 pFrame->lastRowid = lastRowid;
dan76d462e2009-08-30 11:42:51 +00005762 pFrame->nChange = p->nChange;
danc3da6672014-10-28 18:24:16 +00005763 pFrame->nDbChange = p->db->nChange;
dan32001322016-02-19 18:54:29 +00005764 assert( pFrame->pAuxData==0 );
5765 pFrame->pAuxData = p->pAuxData;
5766 p->pAuxData = 0;
dan2832ad42009-08-31 15:27:27 +00005767 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00005768 p->pFrame = pFrame;
drh9f6168b2016-03-19 23:32:58 +00005769 p->aMem = aMem = VdbeFrameMem(pFrame);
dan165921a2009-08-28 18:53:45 +00005770 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00005771 p->nCursor = (u16)pFrame->nChildCsr;
drh9f6168b2016-03-19 23:32:58 +00005772 p->apCsr = (VdbeCursor **)&aMem[p->nMem];
drhbbe879d2009-11-14 18:04:35 +00005773 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00005774 p->nOp = pProgram->nOp;
dan1d8cb212011-12-09 13:24:16 +00005775 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5776 p->nOnceFlag = pProgram->nOnce;
dane2f771b2014-11-03 15:33:17 +00005777#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00005778 p->anExec = 0;
dane2f771b2014-11-03 15:33:17 +00005779#endif
drhf56fa462015-04-13 21:39:54 +00005780 pOp = &aOp[-1];
dan1d8cb212011-12-09 13:24:16 +00005781 memset(p->aOnceFlag, 0, p->nOnceFlag);
dan165921a2009-08-28 18:53:45 +00005782
5783 break;
5784}
5785
dan76d462e2009-08-30 11:42:51 +00005786/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00005787**
dan76d462e2009-08-30 11:42:51 +00005788** This opcode is only ever present in sub-programs called via the
5789** OP_Program instruction. Copy a value currently stored in a memory
5790** cell of the calling (parent) frame to cell P2 in the current frames
5791** address space. This is used by trigger programs to access the new.*
5792** and old.* values.
dan165921a2009-08-28 18:53:45 +00005793**
dan76d462e2009-08-30 11:42:51 +00005794** The address of the cell in the parent frame is determined by adding
5795** the value of the P1 argument to the value of the P1 argument to the
5796** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00005797*/
drh27a348c2015-04-13 19:14:06 +00005798case OP_Param: { /* out2 */
dan65a7cd12009-09-01 12:16:01 +00005799 VdbeFrame *pFrame;
5800 Mem *pIn;
drh27a348c2015-04-13 19:14:06 +00005801 pOut = out2Prerelease(p, pOp);
dan65a7cd12009-09-01 12:16:01 +00005802 pFrame = p->pFrame;
5803 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00005804 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5805 break;
5806}
5807
danielk197793758c82005-01-21 08:13:14 +00005808#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00005809
dan1da40a32009-09-19 17:00:31 +00005810#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00005811/* Opcode: FkCounter P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005812** Synopsis: fkctr[P1]+=P2
dan1da40a32009-09-19 17:00:31 +00005813**
dan0ff297e2009-09-25 17:03:14 +00005814** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5815** If P1 is non-zero, the database constraint counter is incremented
5816** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00005817** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00005818*/
dan32b09f22009-09-23 17:29:59 +00005819case OP_FkCounter: {
drh963c74d2013-07-11 12:19:12 +00005820 if( db->flags & SQLITE_DeferFKs ){
dancb3e4b72013-07-03 19:53:05 +00005821 db->nDeferredImmCons += pOp->p2;
5822 }else if( pOp->p1 ){
dan0ff297e2009-09-25 17:03:14 +00005823 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00005824 }else{
dan0ff297e2009-09-25 17:03:14 +00005825 p->nFkConstraint += pOp->p2;
5826 }
5827 break;
5828}
5829
5830/* Opcode: FkIfZero P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005831** Synopsis: if fkctr[P1]==0 goto P2
dan0ff297e2009-09-25 17:03:14 +00005832**
5833** This opcode tests if a foreign key constraint-counter is currently zero.
5834** If so, jump to instruction P2. Otherwise, fall through to the next
5835** instruction.
5836**
5837** If P1 is non-zero, then the jump is taken if the database constraint-counter
5838** is zero (the one that counts deferred constraint violations). If P1 is
5839** zero, the jump is taken if the statement constraint-counter is zero
5840** (immediate foreign key constraint violations).
5841*/
5842case OP_FkIfZero: { /* jump */
5843 if( pOp->p1 ){
drh688852a2014-02-17 22:40:43 +00005844 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
drhf56fa462015-04-13 21:39:54 +00005845 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
dan0ff297e2009-09-25 17:03:14 +00005846 }else{
drh688852a2014-02-17 22:40:43 +00005847 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
drhf56fa462015-04-13 21:39:54 +00005848 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
dan32b09f22009-09-23 17:29:59 +00005849 }
dan1da40a32009-09-19 17:00:31 +00005850 break;
5851}
5852#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5853
drh205f48e2004-11-05 00:43:11 +00005854#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00005855/* Opcode: MemMax P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005856** Synopsis: r[P1]=max(r[P1],r[P2])
drh205f48e2004-11-05 00:43:11 +00005857**
dan76d462e2009-08-30 11:42:51 +00005858** P1 is a register in the root frame of this VM (the root frame is
5859** different from the current frame if this instruction is being executed
5860** within a sub-program). Set the value of register P1 to the maximum of
5861** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00005862**
5863** This instruction throws an error if the memory cell is not initially
5864** an integer.
5865*/
dan76d462e2009-08-30 11:42:51 +00005866case OP_MemMax: { /* in2 */
dan76d462e2009-08-30 11:42:51 +00005867 VdbeFrame *pFrame;
5868 if( p->pFrame ){
5869 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5870 pIn1 = &pFrame->aMem[pOp->p1];
5871 }else{
drha6c2ed92009-11-14 23:22:23 +00005872 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00005873 }
drh2b4ded92010-09-27 21:09:31 +00005874 assert( memIsValid(pIn1) );
drh98757152008-01-09 23:04:12 +00005875 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00005876 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00005877 sqlite3VdbeMemIntegerify(pIn2);
5878 if( pIn1->u.i<pIn2->u.i){
5879 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00005880 }
5881 break;
5882}
5883#endif /* SQLITE_OMIT_AUTOINCREMENT */
5884
drh8b0cf382015-10-06 21:07:06 +00005885/* Opcode: IfPos P1 P2 P3 * *
5886** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
danielk1977a2dc3b12005-02-05 12:48:48 +00005887**
drh16897072015-03-07 00:57:37 +00005888** Register P1 must contain an integer.
mistachkin91a3ecb2015-10-06 21:49:55 +00005889** If the value of register P1 is 1 or greater, subtract P3 from the
drh8b0cf382015-10-06 21:07:06 +00005890** value in P1 and jump to P2.
drh6f58f702006-01-08 05:26:41 +00005891**
drh16897072015-03-07 00:57:37 +00005892** If the initial value of register P1 is less than 1, then the
5893** value is unchanged and control passes through to the next instruction.
danielk1977a2dc3b12005-02-05 12:48:48 +00005894*/
drh9cbf3422008-01-17 16:22:13 +00005895case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005896 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005897 assert( pIn1->flags&MEM_Int );
drh688852a2014-02-17 22:40:43 +00005898 VdbeBranchTaken( pIn1->u.i>0, 2);
drh8b0cf382015-10-06 21:07:06 +00005899 if( pIn1->u.i>0 ){
5900 pIn1->u.i -= pOp->p3;
5901 goto jump_to_p2;
5902 }
drhec7429a2005-10-06 16:53:14 +00005903 break;
5904}
5905
drhcc2fa4c2016-01-25 15:57:29 +00005906/* Opcode: OffsetLimit P1 P2 P3 * *
5907** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
drh15007a92006-01-08 18:10:17 +00005908**
drhcc2fa4c2016-01-25 15:57:29 +00005909** This opcode performs a commonly used computation associated with
5910** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3]
5911** holds the offset counter. The opcode computes the combined value
5912** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
5913** value computed is the total number of rows that will need to be
5914** visited in order to complete the query.
5915**
5916** If r[P3] is zero or negative, that means there is no OFFSET
5917** and r[P2] is set to be the value of the LIMIT, r[P1].
5918**
5919** if r[P1] is zero or negative, that means there is no LIMIT
5920** and r[P2] is set to -1.
5921**
5922** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
drh15007a92006-01-08 18:10:17 +00005923*/
drhcc2fa4c2016-01-25 15:57:29 +00005924case OP_OffsetLimit: { /* in1, out2, in3 */
drh3c657212009-11-17 23:59:58 +00005925 pIn1 = &aMem[pOp->p1];
drhcc2fa4c2016-01-25 15:57:29 +00005926 pIn3 = &aMem[pOp->p3];
5927 pOut = out2Prerelease(p, pOp);
5928 assert( pIn1->flags & MEM_Int );
5929 assert( pIn3->flags & MEM_Int );
5930 pOut->u.i = pIn1->u.i<=0 ? -1 : pIn1->u.i+(pIn3->u.i>0?pIn3->u.i:0);
drh15007a92006-01-08 18:10:17 +00005931 break;
5932}
5933
drh16897072015-03-07 00:57:37 +00005934/* Opcode: IfNotZero P1 P2 P3 * *
drh8b0cf382015-10-06 21:07:06 +00005935** Synopsis: if r[P1]!=0 then r[P1]-=P3, goto P2
drhec7429a2005-10-06 16:53:14 +00005936**
drh16897072015-03-07 00:57:37 +00005937** Register P1 must contain an integer. If the content of register P1 is
mistachkin91a3ecb2015-10-06 21:49:55 +00005938** initially nonzero, then subtract P3 from the value in register P1 and
drh8b0cf382015-10-06 21:07:06 +00005939** jump to P2. If register P1 is initially zero, leave it unchanged
5940** and fall through.
drhec7429a2005-10-06 16:53:14 +00005941*/
drh16897072015-03-07 00:57:37 +00005942case OP_IfNotZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005943 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005944 assert( pIn1->flags&MEM_Int );
drh16897072015-03-07 00:57:37 +00005945 VdbeBranchTaken(pIn1->u.i<0, 2);
5946 if( pIn1->u.i ){
drh8b0cf382015-10-06 21:07:06 +00005947 pIn1->u.i -= pOp->p3;
drhf56fa462015-04-13 21:39:54 +00005948 goto jump_to_p2;
drh16897072015-03-07 00:57:37 +00005949 }
5950 break;
5951}
5952
5953/* Opcode: DecrJumpZero P1 P2 * * *
5954** Synopsis: if (--r[P1])==0 goto P2
5955**
5956** Register P1 must hold an integer. Decrement the value in register P1
5957** then jump to P2 if the new value is exactly zero.
5958*/
5959case OP_DecrJumpZero: { /* jump, in1 */
5960 pIn1 = &aMem[pOp->p1];
5961 assert( pIn1->flags&MEM_Int );
5962 pIn1->u.i--;
drh688852a2014-02-17 22:40:43 +00005963 VdbeBranchTaken(pIn1->u.i==0, 2);
drhf56fa462015-04-13 21:39:54 +00005964 if( pIn1->u.i==0 ) goto jump_to_p2;
drha2a49dc2008-01-02 14:28:13 +00005965 break;
5966}
5967
drh16897072015-03-07 00:57:37 +00005968
5969/* Opcode: JumpZeroIncr P1 P2 * * *
5970** Synopsis: if (r[P1]++)==0 ) goto P2
5971**
5972** The register P1 must contain an integer. If register P1 is initially
5973** zero, then jump to P2. Increment register P1 regardless of whether or
5974** not the jump is taken.
5975*/
5976case OP_JumpZeroIncr: { /* jump, in1 */
5977 pIn1 = &aMem[pOp->p1];
5978 assert( pIn1->flags&MEM_Int );
5979 VdbeBranchTaken(pIn1->u.i==0, 2);
drhf56fa462015-04-13 21:39:54 +00005980 if( (pIn1->u.i++)==0 ) goto jump_to_p2;
drh16897072015-03-07 00:57:37 +00005981 break;
5982}
5983
drhe2d9e7c2015-06-26 18:47:53 +00005984/* Opcode: AggStep0 * P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005985** Synopsis: accum=r[P3] step(r[P2@P5])
drhe5095352002-02-24 03:25:14 +00005986**
drh0bce8352002-02-28 00:41:10 +00005987** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00005988** function has P5 arguments. P4 is a pointer to the FuncDef
drhe2d9e7c2015-06-26 18:47:53 +00005989** structure that specifies the function. Register P3 is the
5990** accumulator.
drhe5095352002-02-24 03:25:14 +00005991**
drh98757152008-01-09 23:04:12 +00005992** The P5 arguments are taken from register P2 and its
5993** successors.
drhe5095352002-02-24 03:25:14 +00005994*/
drhe2d9e7c2015-06-26 18:47:53 +00005995/* Opcode: AggStep * P2 P3 P4 P5
5996** Synopsis: accum=r[P3] step(r[P2@P5])
5997**
5998** Execute the step function for an aggregate. The
5999** function has P5 arguments. P4 is a pointer to an sqlite3_context
6000** object that is used to run the function. Register P3 is
6001** as the accumulator.
6002**
6003** The P5 arguments are taken from register P2 and its
6004** successors.
6005**
6006** This opcode is initially coded as OP_AggStep0. On first evaluation,
6007** the FuncDef stored in P4 is converted into an sqlite3_context and
6008** the opcode is changed. In this way, the initialization of the
6009** sqlite3_context only happens once, instead of on each call to the
6010** step function.
6011*/
drh9c7c9132015-06-26 18:16:52 +00006012case OP_AggStep0: {
drh856c1032009-06-02 15:21:42 +00006013 int n;
drh9c7c9132015-06-26 18:16:52 +00006014 sqlite3_context *pCtx;
drhe5095352002-02-24 03:25:14 +00006015
drh9c7c9132015-06-26 18:16:52 +00006016 assert( pOp->p4type==P4_FUNCDEF );
drh856c1032009-06-02 15:21:42 +00006017 n = pOp->p5;
drh9f6168b2016-03-19 23:32:58 +00006018 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6019 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
drh9c7c9132015-06-26 18:16:52 +00006020 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drh575fad62016-02-05 13:38:36 +00006021 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
drh9c7c9132015-06-26 18:16:52 +00006022 if( pCtx==0 ) goto no_mem;
6023 pCtx->pMem = 0;
6024 pCtx->pFunc = pOp->p4.pFunc;
6025 pCtx->iOp = (int)(pOp - aOp);
6026 pCtx->pVdbe = p;
6027 pCtx->argc = n;
6028 pOp->p4type = P4_FUNCCTX;
6029 pOp->p4.pCtx = pCtx;
6030 pOp->opcode = OP_AggStep;
6031 /* Fall through into OP_AggStep */
6032}
6033case OP_AggStep: {
6034 int i;
6035 sqlite3_context *pCtx;
6036 Mem *pMem;
6037 Mem t;
6038
6039 assert( pOp->p4type==P4_FUNCCTX );
6040 pCtx = pOp->p4.pCtx;
6041 pMem = &aMem[pOp->p3];
6042
6043 /* If this function is inside of a trigger, the register array in aMem[]
6044 ** might change from one evaluation to the next. The next block of code
6045 ** checks to see if the register array has changed, and if so it
6046 ** reinitializes the relavant parts of the sqlite3_context object */
6047 if( pCtx->pMem != pMem ){
6048 pCtx->pMem = pMem;
6049 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
6050 }
6051
6052#ifdef SQLITE_DEBUG
6053 for(i=0; i<pCtx->argc; i++){
6054 assert( memIsValid(pCtx->argv[i]) );
6055 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
6056 }
6057#endif
6058
drhabfcea22005-09-06 20:36:48 +00006059 pMem->n++;
drhd3b74202014-09-17 16:41:15 +00006060 sqlite3VdbeMemInit(&t, db, MEM_Null);
drh9c7c9132015-06-26 18:16:52 +00006061 pCtx->pOut = &t;
6062 pCtx->fErrorOrAux = 0;
6063 pCtx->skipFlag = 0;
drh2d801512016-01-14 22:19:58 +00006064 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
drh9c7c9132015-06-26 18:16:52 +00006065 if( pCtx->fErrorOrAux ){
6066 if( pCtx->isError ){
6067 sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
6068 rc = pCtx->isError;
6069 }
6070 sqlite3VdbeMemRelease(&t);
drh9467abf2016-02-17 18:44:11 +00006071 if( rc ) goto abort_due_to_error;
drh9c7c9132015-06-26 18:16:52 +00006072 }else{
6073 assert( t.flags==MEM_Null );
drh1350b032002-02-27 19:00:20 +00006074 }
drh9c7c9132015-06-26 18:16:52 +00006075 if( pCtx->skipFlag ){
drh7a957892012-02-02 17:35:43 +00006076 assert( pOp[-1].opcode==OP_CollSeq );
6077 i = pOp[-1].p1;
6078 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
6079 }
drh5e00f6c2001-09-13 13:46:56 +00006080 break;
6081}
6082
drh98757152008-01-09 23:04:12 +00006083/* Opcode: AggFinal P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00006084** Synopsis: accum=r[P1] N=P2
drh5e00f6c2001-09-13 13:46:56 +00006085**
drh13449892005-09-07 21:22:45 +00006086** Execute the finalizer function for an aggregate. P1 is
6087** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00006088**
6089** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00006090** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00006091** argument is not used by this opcode. It is only there to disambiguate
6092** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00006093** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00006094** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00006095*/
drh9cbf3422008-01-17 16:22:13 +00006096case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00006097 Mem *pMem;
drh9f6168b2016-03-19 23:32:58 +00006098 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00006099 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00006100 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00006101 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00006102 if( rc ){
drh22c17b82015-05-15 04:13:15 +00006103 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
drh9467abf2016-02-17 18:44:11 +00006104 goto abort_due_to_error;
drh90669c12006-01-20 15:45:36 +00006105 }
drh2dca8682008-03-21 17:13:13 +00006106 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00006107 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00006108 if( sqlite3VdbeMemTooBig(pMem) ){
6109 goto too_big;
6110 }
drh5e00f6c2001-09-13 13:46:56 +00006111 break;
6112}
6113
dan5cf53532010-05-01 16:40:20 +00006114#ifndef SQLITE_OMIT_WAL
dancdc1f042010-11-18 12:11:05 +00006115/* Opcode: Checkpoint P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00006116**
6117** Checkpoint database P1. This is a no-op if P1 is not currently in
drha25165f2014-12-04 04:50:59 +00006118** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
6119** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
drh30aa3b92011-02-07 23:56:01 +00006120** SQLITE_BUSY or not, respectively. Write the number of pages in the
6121** WAL after the checkpoint into mem[P3+1] and the number of pages
6122** in the WAL that have been checkpointed after the checkpoint
6123** completes into mem[P3+2]. However on an error, mem[P3+1] and
6124** mem[P3+2] are initialized to -1.
dan7c246102010-04-12 19:00:29 +00006125*/
6126case OP_Checkpoint: {
drh30aa3b92011-02-07 23:56:01 +00006127 int i; /* Loop counter */
6128 int aRes[3]; /* Results */
6129 Mem *pMem; /* Write results here */
6130
drh9e92a472013-06-27 17:40:30 +00006131 assert( p->readOnly==0 );
drh30aa3b92011-02-07 23:56:01 +00006132 aRes[0] = 0;
6133 aRes[1] = aRes[2] = -1;
dancdc1f042010-11-18 12:11:05 +00006134 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
6135 || pOp->p2==SQLITE_CHECKPOINT_FULL
6136 || pOp->p2==SQLITE_CHECKPOINT_RESTART
danf26a1542014-12-02 19:04:54 +00006137 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
dancdc1f042010-11-18 12:11:05 +00006138 );
drh30aa3b92011-02-07 23:56:01 +00006139 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
drh9467abf2016-02-17 18:44:11 +00006140 if( rc ){
6141 if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
dancdc1f042010-11-18 12:11:05 +00006142 rc = SQLITE_OK;
drh30aa3b92011-02-07 23:56:01 +00006143 aRes[0] = 1;
dancdc1f042010-11-18 12:11:05 +00006144 }
drh30aa3b92011-02-07 23:56:01 +00006145 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
6146 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
6147 }
dan7c246102010-04-12 19:00:29 +00006148 break;
6149};
dan5cf53532010-05-01 16:40:20 +00006150#endif
drh5e00f6c2001-09-13 13:46:56 +00006151
drhcac29a62010-07-02 19:36:52 +00006152#ifndef SQLITE_OMIT_PRAGMA
drh0fd61352014-02-07 02:29:45 +00006153/* Opcode: JournalMode P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00006154**
6155** Change the journal mode of database P1 to P3. P3 must be one of the
6156** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
6157** modes (delete, truncate, persist, off and memory), this is a simple
6158** operation. No IO is required.
6159**
6160** If changing into or out of WAL mode the procedure is more complicated.
6161**
6162** Write a string containing the final journal-mode to register P2.
6163*/
drh27a348c2015-04-13 19:14:06 +00006164case OP_JournalMode: { /* out2 */
dane04dc882010-04-20 18:53:15 +00006165 Btree *pBt; /* Btree to change journal mode of */
6166 Pager *pPager; /* Pager associated with pBt */
drhd80b2332010-05-01 00:59:37 +00006167 int eNew; /* New journal mode */
6168 int eOld; /* The old journal mode */
mistachkin59ee77c2012-09-13 15:26:44 +00006169#ifndef SQLITE_OMIT_WAL
drhd80b2332010-05-01 00:59:37 +00006170 const char *zFilename; /* Name of database file for pPager */
mistachkin59ee77c2012-09-13 15:26:44 +00006171#endif
dane04dc882010-04-20 18:53:15 +00006172
drh27a348c2015-04-13 19:14:06 +00006173 pOut = out2Prerelease(p, pOp);
drhd80b2332010-05-01 00:59:37 +00006174 eNew = pOp->p3;
dane04dc882010-04-20 18:53:15 +00006175 assert( eNew==PAGER_JOURNALMODE_DELETE
6176 || eNew==PAGER_JOURNALMODE_TRUNCATE
6177 || eNew==PAGER_JOURNALMODE_PERSIST
6178 || eNew==PAGER_JOURNALMODE_OFF
6179 || eNew==PAGER_JOURNALMODE_MEMORY
6180 || eNew==PAGER_JOURNALMODE_WAL
6181 || eNew==PAGER_JOURNALMODE_QUERY
6182 );
6183 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drh9e92a472013-06-27 17:40:30 +00006184 assert( p->readOnly==0 );
drh3ebaee92010-05-06 21:37:22 +00006185
dane04dc882010-04-20 18:53:15 +00006186 pBt = db->aDb[pOp->p1].pBt;
6187 pPager = sqlite3BtreePager(pBt);
drh0b9b4302010-06-11 17:01:24 +00006188 eOld = sqlite3PagerGetJournalMode(pPager);
6189 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
6190 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
dan5cf53532010-05-01 16:40:20 +00006191
6192#ifndef SQLITE_OMIT_WAL
drhd4e0bb02012-05-27 01:19:04 +00006193 zFilename = sqlite3PagerFilename(pPager, 1);
dane04dc882010-04-20 18:53:15 +00006194
drhd80b2332010-05-01 00:59:37 +00006195 /* Do not allow a transition to journal_mode=WAL for a database
drh6e1f4822010-07-13 23:41:40 +00006196 ** in temporary storage or if the VFS does not support shared memory
drhd80b2332010-05-01 00:59:37 +00006197 */
6198 if( eNew==PAGER_JOURNALMODE_WAL
drh057fc812011-10-17 23:15:31 +00006199 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
drh6e1f4822010-07-13 23:41:40 +00006200 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
dane180c292010-04-26 17:42:56 +00006201 ){
drh0b9b4302010-06-11 17:01:24 +00006202 eNew = eOld;
dane180c292010-04-26 17:42:56 +00006203 }
6204
drh0b9b4302010-06-11 17:01:24 +00006205 if( (eNew!=eOld)
6206 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
6207 ){
danc0537fe2013-06-28 19:41:43 +00006208 if( !db->autoCommit || db->nVdbeRead>1 ){
drh0b9b4302010-06-11 17:01:24 +00006209 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00006210 sqlite3VdbeError(p,
drh0b9b4302010-06-11 17:01:24 +00006211 "cannot change %s wal mode from within a transaction",
6212 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
6213 );
drh9467abf2016-02-17 18:44:11 +00006214 goto abort_due_to_error;
drh0b9b4302010-06-11 17:01:24 +00006215 }else{
6216
6217 if( eOld==PAGER_JOURNALMODE_WAL ){
6218 /* If leaving WAL mode, close the log file. If successful, the call
6219 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
6220 ** file. An EXCLUSIVE lock may still be held on the database file
6221 ** after a successful return.
dane04dc882010-04-20 18:53:15 +00006222 */
drh0b9b4302010-06-11 17:01:24 +00006223 rc = sqlite3PagerCloseWal(pPager);
drhab9b7442010-05-10 11:20:05 +00006224 if( rc==SQLITE_OK ){
drh0b9b4302010-06-11 17:01:24 +00006225 sqlite3PagerSetJournalMode(pPager, eNew);
drh89c3f2f2010-05-15 01:09:38 +00006226 }
drh242c4f72010-06-22 14:49:39 +00006227 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
6228 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
6229 ** as an intermediate */
6230 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
drh0b9b4302010-06-11 17:01:24 +00006231 }
6232
6233 /* Open a transaction on the database file. Regardless of the journal
6234 ** mode, this transaction always uses a rollback journal.
6235 */
6236 assert( sqlite3BtreeIsInTrans(pBt)==0 );
6237 if( rc==SQLITE_OK ){
dan731bf5b2010-06-17 16:44:21 +00006238 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
dane04dc882010-04-20 18:53:15 +00006239 }
6240 }
6241 }
dan5cf53532010-05-01 16:40:20 +00006242#endif /* ifndef SQLITE_OMIT_WAL */
dane04dc882010-04-20 18:53:15 +00006243
drh9467abf2016-02-17 18:44:11 +00006244 if( rc ) eNew = eOld;
drh0b9b4302010-06-11 17:01:24 +00006245 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
dan731bf5b2010-06-17 16:44:21 +00006246
dane04dc882010-04-20 18:53:15 +00006247 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
danb9780022010-04-21 18:37:57 +00006248 pOut->z = (char *)sqlite3JournalModename(eNew);
dane04dc882010-04-20 18:53:15 +00006249 pOut->n = sqlite3Strlen30(pOut->z);
6250 pOut->enc = SQLITE_UTF8;
6251 sqlite3VdbeChangeEncoding(pOut, encoding);
drh9467abf2016-02-17 18:44:11 +00006252 if( rc ) goto abort_due_to_error;
dane04dc882010-04-20 18:53:15 +00006253 break;
drhcac29a62010-07-02 19:36:52 +00006254};
6255#endif /* SQLITE_OMIT_PRAGMA */
dane04dc882010-04-20 18:53:15 +00006256
drhfdbcdee2007-03-27 14:44:50 +00006257#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh98757152008-01-09 23:04:12 +00006258/* Opcode: Vacuum * * * * *
drh6f8c91c2003-12-07 00:24:35 +00006259**
6260** Vacuum the entire database. This opcode will cause other virtual
6261** machines to be created and run. It may not be called from within
6262** a transaction.
6263*/
drh9cbf3422008-01-17 16:22:13 +00006264case OP_Vacuum: {
drh9e92a472013-06-27 17:40:30 +00006265 assert( p->readOnly==0 );
danielk19774adee202004-05-08 08:23:19 +00006266 rc = sqlite3RunVacuum(&p->zErrMsg, db);
drh9467abf2016-02-17 18:44:11 +00006267 if( rc ) goto abort_due_to_error;
drh6f8c91c2003-12-07 00:24:35 +00006268 break;
6269}
drh154d4b22006-09-21 11:02:16 +00006270#endif
drh6f8c91c2003-12-07 00:24:35 +00006271
danielk1977dddbcdc2007-04-26 14:42:34 +00006272#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00006273/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00006274**
6275** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00006276** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00006277** P2. Otherwise, fall through to the next instruction.
6278*/
drh9cbf3422008-01-17 16:22:13 +00006279case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00006280 Btree *pBt;
6281
6282 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00006283 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00006284 assert( p->readOnly==0 );
drhca5557f2007-05-04 18:30:40 +00006285 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00006286 rc = sqlite3BtreeIncrVacuum(pBt);
drh688852a2014-02-17 22:40:43 +00006287 VdbeBranchTaken(rc==SQLITE_DONE,2);
drh9467abf2016-02-17 18:44:11 +00006288 if( rc ){
6289 if( rc!=SQLITE_DONE ) goto abort_due_to_error;
danielk1977dddbcdc2007-04-26 14:42:34 +00006290 rc = SQLITE_OK;
drhf56fa462015-04-13 21:39:54 +00006291 goto jump_to_p2;
danielk1977dddbcdc2007-04-26 14:42:34 +00006292 }
6293 break;
6294}
6295#endif
6296
drh98757152008-01-09 23:04:12 +00006297/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00006298**
drh25df48d2014-07-22 14:58:12 +00006299** Cause precompiled statements to expire. When an expired statement
6300** is executed using sqlite3_step() it will either automatically
6301** reprepare itself (if it was originally created using sqlite3_prepare_v2())
6302** or it will fail with SQLITE_SCHEMA.
danielk1977a21c6b62005-01-24 10:25:59 +00006303**
6304** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
drh25df48d2014-07-22 14:58:12 +00006305** then only the currently executing statement is expired.
danielk1977a21c6b62005-01-24 10:25:59 +00006306*/
drh9cbf3422008-01-17 16:22:13 +00006307case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00006308 if( !pOp->p1 ){
6309 sqlite3ExpirePreparedStatements(db);
6310 }else{
6311 p->expired = 1;
6312 }
6313 break;
6314}
6315
danielk1977c00da102006-01-07 13:21:04 +00006316#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00006317/* Opcode: TableLock P1 P2 P3 P4 *
drh81316f82013-10-29 20:40:47 +00006318** Synopsis: iDb=P1 root=P2 write=P3
danielk1977c00da102006-01-07 13:21:04 +00006319**
6320** Obtain a lock on a particular table. This instruction is only used when
6321** the shared-cache feature is enabled.
6322**
danielk197796d48e92009-06-29 06:00:37 +00006323** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00006324** on which the lock is acquired. A readlock is obtained if P3==0 or
6325** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00006326**
6327** P2 contains the root-page of the table to lock.
6328**
drh66a51672008-01-03 00:01:23 +00006329** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00006330** used to generate an error message if the lock cannot be obtained.
6331*/
drh9cbf3422008-01-17 16:22:13 +00006332case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00006333 u8 isWriteLock = (u8)pOp->p3;
6334 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
6335 int p1 = pOp->p1;
6336 assert( p1>=0 && p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00006337 assert( DbMaskTest(p->btreeMask, p1) );
danielk1977e0d9e6f2009-07-03 16:25:06 +00006338 assert( isWriteLock==0 || isWriteLock==1 );
6339 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
drh9467abf2016-02-17 18:44:11 +00006340 if( rc ){
6341 if( (rc&0xFF)==SQLITE_LOCKED ){
6342 const char *z = pOp->p4.z;
6343 sqlite3VdbeError(p, "database table is locked: %s", z);
6344 }
6345 goto abort_due_to_error;
danielk1977e0d9e6f2009-07-03 16:25:06 +00006346 }
danielk1977c00da102006-01-07 13:21:04 +00006347 }
6348 break;
6349}
drhb9bb7c12006-06-11 23:41:55 +00006350#endif /* SQLITE_OMIT_SHARED_CACHE */
6351
6352#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006353/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00006354**
danielk19773e3a84d2008-08-01 17:37:40 +00006355** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6356** xBegin method for that table.
6357**
6358** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00006359** within a callback to a virtual table xSync() method. If it is, the error
6360** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00006361*/
drh9cbf3422008-01-17 16:22:13 +00006362case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00006363 VTable *pVTab;
6364 pVTab = pOp->p4.pVtab;
6365 rc = sqlite3VtabBegin(db, pVTab);
dan016f7812013-08-21 17:35:48 +00006366 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
drh9467abf2016-02-17 18:44:11 +00006367 if( rc ) goto abort_due_to_error;
danielk1977f9e7dda2006-06-16 16:08:53 +00006368 break;
6369}
6370#endif /* SQLITE_OMIT_VIRTUALTABLE */
6371
6372#ifndef SQLITE_OMIT_VIRTUALTABLE
dan73779452015-03-19 18:56:17 +00006373/* Opcode: VCreate P1 P2 * * *
danielk1977f9e7dda2006-06-16 16:08:53 +00006374**
dan73779452015-03-19 18:56:17 +00006375** P2 is a register that holds the name of a virtual table in database
6376** P1. Call the xCreate method for that table.
danielk1977f9e7dda2006-06-16 16:08:53 +00006377*/
drh9cbf3422008-01-17 16:22:13 +00006378case OP_VCreate: {
dan73779452015-03-19 18:56:17 +00006379 Mem sMem; /* For storing the record being decoded */
drh47464062015-03-21 12:22:16 +00006380 const char *zTab; /* Name of the virtual table */
6381
dan73779452015-03-19 18:56:17 +00006382 memset(&sMem, 0, sizeof(sMem));
6383 sMem.db = db;
drh47464062015-03-21 12:22:16 +00006384 /* Because P2 is always a static string, it is impossible for the
6385 ** sqlite3VdbeMemCopy() to fail */
6386 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6387 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
dan73779452015-03-19 18:56:17 +00006388 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
drh47464062015-03-21 12:22:16 +00006389 assert( rc==SQLITE_OK );
6390 zTab = (const char*)sqlite3_value_text(&sMem);
6391 assert( zTab || db->mallocFailed );
6392 if( zTab ){
6393 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
dan73779452015-03-19 18:56:17 +00006394 }
6395 sqlite3VdbeMemRelease(&sMem);
drh9467abf2016-02-17 18:44:11 +00006396 if( rc ) goto abort_due_to_error;
drhb9bb7c12006-06-11 23:41:55 +00006397 break;
6398}
6399#endif /* SQLITE_OMIT_VIRTUALTABLE */
6400
6401#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006402/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00006403**
drh66a51672008-01-03 00:01:23 +00006404** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00006405** of that table.
drhb9bb7c12006-06-11 23:41:55 +00006406*/
drh9cbf3422008-01-17 16:22:13 +00006407case OP_VDestroy: {
drh086723a2015-03-24 12:51:52 +00006408 db->nVDestroy++;
danielk19772dca4ac2008-01-03 11:50:29 +00006409 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
drh086723a2015-03-24 12:51:52 +00006410 db->nVDestroy--;
drh9467abf2016-02-17 18:44:11 +00006411 if( rc ) goto abort_due_to_error;
drhb9bb7c12006-06-11 23:41:55 +00006412 break;
6413}
6414#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00006415
drh9eff6162006-06-12 21:59:13 +00006416#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006417/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00006418**
drh66a51672008-01-03 00:01:23 +00006419** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00006420** P1 is a cursor number. This opcode opens a cursor to the virtual
6421** table and stores that cursor in P1.
6422*/
drh9cbf3422008-01-17 16:22:13 +00006423case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00006424 VdbeCursor *pCur;
drhc960dcb2015-11-20 19:22:01 +00006425 sqlite3_vtab_cursor *pVCur;
drh856c1032009-06-02 15:21:42 +00006426 sqlite3_vtab *pVtab;
drhf496a7d2015-03-24 14:05:50 +00006427 const sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006428
drh1713afb2013-06-28 01:24:57 +00006429 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00006430 pCur = 0;
drhc960dcb2015-11-20 19:22:01 +00006431 pVCur = 0;
danielk1977595a5232009-07-24 17:58:53 +00006432 pVtab = pOp->p4.pVtab->pVtab;
drhf496a7d2015-03-24 14:05:50 +00006433 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6434 rc = SQLITE_LOCKED;
drh9467abf2016-02-17 18:44:11 +00006435 goto abort_due_to_error;
drhf496a7d2015-03-24 14:05:50 +00006436 }
6437 pModule = pVtab->pModule;
drhc960dcb2015-11-20 19:22:01 +00006438 rc = pModule->xOpen(pVtab, &pVCur);
dan016f7812013-08-21 17:35:48 +00006439 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00006440 if( rc ) goto abort_due_to_error;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006441
drh9467abf2016-02-17 18:44:11 +00006442 /* Initialize sqlite3_vtab_cursor base class */
6443 pVCur->pVtab = pVtab;
6444
6445 /* Initialize vdbe cursor object */
6446 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
6447 if( pCur ){
6448 pCur->uc.pVCur = pVCur;
6449 pVtab->nRef++;
6450 }else{
6451 assert( db->mallocFailed );
6452 pModule->xClose(pVCur);
6453 goto no_mem;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006454 }
drh9eff6162006-06-12 21:59:13 +00006455 break;
6456}
6457#endif /* SQLITE_OMIT_VIRTUALTABLE */
6458
6459#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00006460/* Opcode: VFilter P1 P2 P3 P4 *
drh831116d2014-04-03 14:31:00 +00006461** Synopsis: iplan=r[P3] zplan='P4'
drh9eff6162006-06-12 21:59:13 +00006462**
6463** P1 is a cursor opened using VOpen. P2 is an address to jump to if
6464** the filtered result set is empty.
6465**
drh66a51672008-01-03 00:01:23 +00006466** P4 is either NULL or a string that was generated by the xBestIndex
6467** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00006468** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00006469**
drh9eff6162006-06-12 21:59:13 +00006470** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00006471** by P1. The integer query plan parameter to xFilter is stored in register
6472** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00006473** xFilter method. Registers P3+2..P3+1+argc are the argc
6474** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00006475** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00006476**
danielk19776dbee812008-01-03 18:39:41 +00006477** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00006478*/
drh9cbf3422008-01-17 16:22:13 +00006479case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00006480 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00006481 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006482 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00006483 Mem *pQuery;
6484 Mem *pArgc;
drhc960dcb2015-11-20 19:22:01 +00006485 sqlite3_vtab_cursor *pVCur;
drh4dc754d2008-07-23 18:17:32 +00006486 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00006487 VdbeCursor *pCur;
6488 int res;
6489 int i;
6490 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006491
drha6c2ed92009-11-14 23:22:23 +00006492 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00006493 pArgc = &pQuery[1];
6494 pCur = p->apCsr[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00006495 assert( memIsValid(pQuery) );
drh5b6afba2008-01-05 16:29:28 +00006496 REGISTER_TRACE(pOp->p3, pQuery);
drhc960dcb2015-11-20 19:22:01 +00006497 assert( pCur->eCurType==CURTYPE_VTAB );
6498 pVCur = pCur->uc.pVCur;
6499 pVtab = pVCur->pVtab;
drh4dc754d2008-07-23 18:17:32 +00006500 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006501
drh9cbf3422008-01-17 16:22:13 +00006502 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00006503 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00006504 nArg = (int)pArgc->u.i;
6505 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006506
drh644a5292006-12-20 14:53:38 +00006507 /* Invoke the xFilter method */
drhf56fa462015-04-13 21:39:54 +00006508 res = 0;
6509 apArg = p->apArg;
6510 for(i = 0; i<nArg; i++){
6511 apArg[i] = &pArgc[i+1];
6512 }
drhc960dcb2015-11-20 19:22:01 +00006513 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
drhf56fa462015-04-13 21:39:54 +00006514 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00006515 if( rc ) goto abort_due_to_error;
6516 res = pModule->xEof(pVCur);
drh1d454a32008-01-31 19:34:51 +00006517 pCur->nullRow = 0;
drhf56fa462015-04-13 21:39:54 +00006518 VdbeBranchTaken(res!=0,2);
6519 if( res ) goto jump_to_p2;
drh9eff6162006-06-12 21:59:13 +00006520 break;
6521}
6522#endif /* SQLITE_OMIT_VIRTUALTABLE */
6523
6524#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006525/* Opcode: VColumn P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00006526** Synopsis: r[P3]=vcolumn(P2)
drh9eff6162006-06-12 21:59:13 +00006527**
drh2133d822008-01-03 18:44:59 +00006528** Store the value of the P2-th column of
6529** the row of the virtual-table that the
6530** P1 cursor is pointing to into register P3.
drh9eff6162006-06-12 21:59:13 +00006531*/
6532case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00006533 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006534 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00006535 Mem *pDest;
6536 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006537
drhdfe88ec2008-11-03 20:55:06 +00006538 VdbeCursor *pCur = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00006539 assert( pCur->eCurType==CURTYPE_VTAB );
drh9f6168b2016-03-19 23:32:58 +00006540 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00006541 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00006542 memAboutToChange(p, pDest);
drh2945b4a2008-01-31 15:53:45 +00006543 if( pCur->nullRow ){
6544 sqlite3VdbeMemSetNull(pDest);
6545 break;
6546 }
drhc960dcb2015-11-20 19:22:01 +00006547 pVtab = pCur->uc.pVCur->pVtab;
danielk19773e3a84d2008-08-01 17:37:40 +00006548 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006549 assert( pModule->xColumn );
6550 memset(&sContext, 0, sizeof(sContext));
drh9bd038f2014-08-27 14:14:06 +00006551 sContext.pOut = pDest;
6552 MemSetTypeFlag(pDest, MEM_Null);
drhc960dcb2015-11-20 19:22:01 +00006553 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
dan016f7812013-08-21 17:35:48 +00006554 sqlite3VtabImportErrmsg(p, pVtab);
drh4c8555f2009-06-25 01:47:11 +00006555 if( sContext.isError ){
6556 rc = sContext.isError;
6557 }
drh9bd038f2014-08-27 14:14:06 +00006558 sqlite3VdbeChangeEncoding(pDest, encoding);
drh5ff44372009-11-24 16:26:17 +00006559 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00006560 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006561
drhde4fcfd2008-01-19 23:50:26 +00006562 if( sqlite3VdbeMemTooBig(pDest) ){
6563 goto too_big;
6564 }
drh9467abf2016-02-17 18:44:11 +00006565 if( rc ) goto abort_due_to_error;
drh9eff6162006-06-12 21:59:13 +00006566 break;
6567}
6568#endif /* SQLITE_OMIT_VIRTUALTABLE */
6569
6570#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006571/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00006572**
6573** Advance virtual table P1 to the next row in its result set and
6574** jump to instruction P2. Or, if the virtual table has reached
6575** the end of its result set, then fall through to the next instruction.
6576*/
drh9cbf3422008-01-17 16:22:13 +00006577case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00006578 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006579 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00006580 int res;
drh856c1032009-06-02 15:21:42 +00006581 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006582
drhc54a6172009-06-02 16:06:03 +00006583 res = 0;
drh856c1032009-06-02 15:21:42 +00006584 pCur = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00006585 assert( pCur->eCurType==CURTYPE_VTAB );
drh2945b4a2008-01-31 15:53:45 +00006586 if( pCur->nullRow ){
6587 break;
6588 }
drhc960dcb2015-11-20 19:22:01 +00006589 pVtab = pCur->uc.pVCur->pVtab;
danielk19773e3a84d2008-08-01 17:37:40 +00006590 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006591 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00006592
drhde4fcfd2008-01-19 23:50:26 +00006593 /* Invoke the xNext() method of the module. There is no way for the
6594 ** underlying implementation to return an error if one occurs during
6595 ** xNext(). Instead, if an error occurs, true is returned (indicating that
6596 ** data is available) and the error code returned when xColumn or
6597 ** some other method is next invoked on the save virtual table cursor.
6598 */
drhc960dcb2015-11-20 19:22:01 +00006599 rc = pModule->xNext(pCur->uc.pVCur);
dan016f7812013-08-21 17:35:48 +00006600 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00006601 if( rc ) goto abort_due_to_error;
6602 res = pModule->xEof(pCur->uc.pVCur);
drh688852a2014-02-17 22:40:43 +00006603 VdbeBranchTaken(!res,2);
drhde4fcfd2008-01-19 23:50:26 +00006604 if( !res ){
6605 /* If there is data, jump to P2 */
drhf56fa462015-04-13 21:39:54 +00006606 goto jump_to_p2_and_check_for_interrupt;
drhde4fcfd2008-01-19 23:50:26 +00006607 }
drh49afe3a2013-07-10 03:05:14 +00006608 goto check_for_interrupt;
drh9eff6162006-06-12 21:59:13 +00006609}
6610#endif /* SQLITE_OMIT_VIRTUALTABLE */
6611
danielk1977182c4ba2007-06-27 15:53:34 +00006612#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006613/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00006614**
drh66a51672008-01-03 00:01:23 +00006615** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00006616** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00006617** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00006618*/
drh9cbf3422008-01-17 16:22:13 +00006619case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00006620 sqlite3_vtab *pVtab;
6621 Mem *pName;
6622
danielk1977595a5232009-07-24 17:58:53 +00006623 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00006624 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00006625 assert( pVtab->pModule->xRename );
drh2b4ded92010-09-27 21:09:31 +00006626 assert( memIsValid(pName) );
drh9e92a472013-06-27 17:40:30 +00006627 assert( p->readOnly==0 );
drh5b6afba2008-01-05 16:29:28 +00006628 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00006629 assert( pName->flags & MEM_Str );
drh98655a62011-10-18 22:07:47 +00006630 testcase( pName->enc==SQLITE_UTF8 );
6631 testcase( pName->enc==SQLITE_UTF16BE );
6632 testcase( pName->enc==SQLITE_UTF16LE );
6633 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
drh9467abf2016-02-17 18:44:11 +00006634 if( rc ) goto abort_due_to_error;
6635 rc = pVtab->pModule->xRename(pVtab, pName->z);
6636 sqlite3VtabImportErrmsg(p, pVtab);
6637 p->expired = 0;
6638 if( rc ) goto abort_due_to_error;
danielk1977182c4ba2007-06-27 15:53:34 +00006639 break;
6640}
6641#endif
drh4cbdda92006-06-14 19:00:20 +00006642
6643#ifndef SQLITE_OMIT_VIRTUALTABLE
drh0fd61352014-02-07 02:29:45 +00006644/* Opcode: VUpdate P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00006645** Synopsis: data=r[P3@P2]
danielk1977399918f2006-06-14 13:03:23 +00006646**
drh66a51672008-01-03 00:01:23 +00006647** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00006648** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00006649** are contiguous memory cells starting at P3 to pass to the xUpdate
6650** invocation. The value in register (P3+P2-1) corresponds to the
6651** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00006652**
6653** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00006654** The argv[0] element (which corresponds to memory cell P3)
6655** is the rowid of a row to delete. If argv[0] is NULL then no
6656** deletion occurs. The argv[1] element is the rowid of the new
6657** row. This can be NULL to have the virtual table select the new
6658** rowid for itself. The subsequent elements in the array are
6659** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00006660**
6661** If P2==1 then no insert is performed. argv[0] is the rowid of
6662** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00006663**
6664** P1 is a boolean flag. If it is set to true and the xUpdate call
6665** is successful, then the value returned by sqlite3_last_insert_rowid()
6666** is set to the value of the rowid for the row just inserted.
drh0fd61352014-02-07 02:29:45 +00006667**
6668** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6669** apply in the case of a constraint failure on an insert or update.
danielk1977399918f2006-06-14 13:03:23 +00006670*/
drh9cbf3422008-01-17 16:22:13 +00006671case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00006672 sqlite3_vtab *pVtab;
drhf496a7d2015-03-24 14:05:50 +00006673 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00006674 int nArg;
6675 int i;
6676 sqlite_int64 rowid;
6677 Mem **apArg;
6678 Mem *pX;
6679
danb061d052011-04-25 18:49:57 +00006680 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
6681 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6682 );
drh9e92a472013-06-27 17:40:30 +00006683 assert( p->readOnly==0 );
danielk1977595a5232009-07-24 17:58:53 +00006684 pVtab = pOp->p4.pVtab->pVtab;
drhf496a7d2015-03-24 14:05:50 +00006685 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6686 rc = SQLITE_LOCKED;
drh9467abf2016-02-17 18:44:11 +00006687 goto abort_due_to_error;
drhf496a7d2015-03-24 14:05:50 +00006688 }
6689 pModule = pVtab->pModule;
drh856c1032009-06-02 15:21:42 +00006690 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00006691 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00006692 if( ALWAYS(pModule->xUpdate) ){
danb061d052011-04-25 18:49:57 +00006693 u8 vtabOnConflict = db->vtabOnConflict;
drh856c1032009-06-02 15:21:42 +00006694 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00006695 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00006696 for(i=0; i<nArg; i++){
drh2b4ded92010-09-27 21:09:31 +00006697 assert( memIsValid(pX) );
6698 memAboutToChange(p, pX);
drh9c419382006-06-16 21:13:21 +00006699 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00006700 pX++;
danielk1977399918f2006-06-14 13:03:23 +00006701 }
danb061d052011-04-25 18:49:57 +00006702 db->vtabOnConflict = pOp->p5;
danielk19771f6eec52006-06-16 06:17:47 +00006703 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
danb061d052011-04-25 18:49:57 +00006704 db->vtabOnConflict = vtabOnConflict;
dan016f7812013-08-21 17:35:48 +00006705 sqlite3VtabImportErrmsg(p, pVtab);
drh35f6b932009-06-23 14:15:04 +00006706 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00006707 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
drh99a66922011-05-13 18:51:42 +00006708 db->lastRowid = lastRowid = rowid;
danielk19771f6eec52006-06-16 06:17:47 +00006709 }
drhd91c1a12013-02-09 13:58:25 +00006710 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
danb061d052011-04-25 18:49:57 +00006711 if( pOp->p5==OE_Ignore ){
6712 rc = SQLITE_OK;
6713 }else{
6714 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6715 }
6716 }else{
6717 p->nChange++;
6718 }
drh9467abf2016-02-17 18:44:11 +00006719 if( rc ) goto abort_due_to_error;
danielk1977399918f2006-06-14 13:03:23 +00006720 }
drh4cbdda92006-06-14 19:00:20 +00006721 break;
danielk1977399918f2006-06-14 13:03:23 +00006722}
6723#endif /* SQLITE_OMIT_VIRTUALTABLE */
6724
danielk197759a93792008-05-15 17:48:20 +00006725#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6726/* Opcode: Pagecount P1 P2 * * *
6727**
6728** Write the current number of pages in database P1 to memory cell P2.
6729*/
drh27a348c2015-04-13 19:14:06 +00006730case OP_Pagecount: { /* out2 */
6731 pOut = out2Prerelease(p, pOp);
drhb1299152010-03-30 22:58:33 +00006732 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00006733 break;
6734}
6735#endif
6736
drh60ac3f42010-11-23 18:59:27 +00006737
6738#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6739/* Opcode: MaxPgcnt P1 P2 P3 * *
6740**
6741** Try to set the maximum page count for database P1 to the value in P3.
drhc84e0332010-11-23 20:25:08 +00006742** Do not let the maximum page count fall below the current page count and
6743** do not change the maximum page count value if P3==0.
6744**
drh60ac3f42010-11-23 18:59:27 +00006745** Store the maximum page count after the change in register P2.
6746*/
drh27a348c2015-04-13 19:14:06 +00006747case OP_MaxPgcnt: { /* out2 */
drhc84e0332010-11-23 20:25:08 +00006748 unsigned int newMax;
drh60ac3f42010-11-23 18:59:27 +00006749 Btree *pBt;
6750
drh27a348c2015-04-13 19:14:06 +00006751 pOut = out2Prerelease(p, pOp);
drh60ac3f42010-11-23 18:59:27 +00006752 pBt = db->aDb[pOp->p1].pBt;
drhc84e0332010-11-23 20:25:08 +00006753 newMax = 0;
6754 if( pOp->p3 ){
6755 newMax = sqlite3BtreeLastPage(pBt);
drh6ea28d62010-11-26 16:49:59 +00006756 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
drhc84e0332010-11-23 20:25:08 +00006757 }
6758 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
drh60ac3f42010-11-23 18:59:27 +00006759 break;
6760}
6761#endif
6762
6763
drhaceb31b2014-02-08 01:40:27 +00006764/* Opcode: Init * P2 * P4 *
6765** Synopsis: Start at P2
6766**
6767** Programs contain a single instance of this opcode as the very first
6768** opcode.
drh949f9cd2008-01-12 21:35:57 +00006769**
6770** If tracing is enabled (by the sqlite3_trace()) interface, then
6771** the UTF-8 string contained in P4 is emitted on the trace callback.
drhaceb31b2014-02-08 01:40:27 +00006772** Or if P4 is blank, use the string returned by sqlite3_sql().
6773**
6774** If P2 is not zero, jump to instruction P2.
drh949f9cd2008-01-12 21:35:57 +00006775*/
drhaceb31b2014-02-08 01:40:27 +00006776case OP_Init: { /* jump */
drh856c1032009-06-02 15:21:42 +00006777 char *zTrace;
drhc3f1d5f2011-05-30 23:42:16 +00006778 char *z;
drh856c1032009-06-02 15:21:42 +00006779
drhaceb31b2014-02-08 01:40:27 +00006780#ifndef SQLITE_OMIT_TRACE
drh37f58e92012-09-04 21:34:26 +00006781 if( db->xTrace
6782 && !p->doingRerun
6783 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6784 ){
drhc3f1d5f2011-05-30 23:42:16 +00006785 z = sqlite3VdbeExpandSql(p, zTrace);
6786 db->xTrace(db->pTraceArg, z);
6787 sqlite3DbFree(db, z);
drh949f9cd2008-01-12 21:35:57 +00006788 }
drh8f8b2312013-10-18 20:03:43 +00006789#ifdef SQLITE_USE_FCNTL_TRACE
6790 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
6791 if( zTrace ){
6792 int i;
6793 for(i=0; i<db->nDb; i++){
drha7ab6d82014-07-21 15:44:39 +00006794 if( DbMaskTest(p->btreeMask, i)==0 ) continue;
drh8f8b2312013-10-18 20:03:43 +00006795 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
6796 }
6797 }
6798#endif /* SQLITE_USE_FCNTL_TRACE */
drhc3f1d5f2011-05-30 23:42:16 +00006799#ifdef SQLITE_DEBUG
6800 if( (db->flags & SQLITE_SqlTrace)!=0
6801 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6802 ){
6803 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6804 }
6805#endif /* SQLITE_DEBUG */
drhaceb31b2014-02-08 01:40:27 +00006806#endif /* SQLITE_OMIT_TRACE */
drhf56fa462015-04-13 21:39:54 +00006807 if( pOp->p2 ) goto jump_to_p2;
drh949f9cd2008-01-12 21:35:57 +00006808 break;
6809}
drh949f9cd2008-01-12 21:35:57 +00006810
drh28935362013-12-07 20:39:19 +00006811#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh0df57012015-08-14 15:05:55 +00006812/* Opcode: CursorHint P1 * * P4 *
drh28935362013-12-07 20:39:19 +00006813**
6814** Provide a hint to cursor P1 that it only needs to return rows that
drh0df57012015-08-14 15:05:55 +00006815** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
6816** to values currently held in registers. TK_COLUMN terms in the P4
6817** expression refer to columns in the b-tree to which cursor P1 is pointing.
drh28935362013-12-07 20:39:19 +00006818*/
6819case OP_CursorHint: {
6820 VdbeCursor *pC;
6821
6822 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6823 assert( pOp->p4type==P4_EXPR );
6824 pC = p->apCsr[pOp->p1];
dan91d3a612014-07-15 11:59:44 +00006825 if( pC ){
drhc960dcb2015-11-20 19:22:01 +00006826 assert( pC->eCurType==CURTYPE_BTREE );
drh62aaa6c2015-11-21 17:27:42 +00006827 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
6828 pOp->p4.pExpr, aMem);
dan91d3a612014-07-15 11:59:44 +00006829 }
drh28935362013-12-07 20:39:19 +00006830 break;
6831}
6832#endif /* SQLITE_ENABLE_CURSOR_HINTS */
drh91fd4d42008-01-19 20:11:25 +00006833
6834/* Opcode: Noop * * * * *
6835**
6836** Do nothing. This instruction is often useful as a jump
6837** destination.
drh5e00f6c2001-09-13 13:46:56 +00006838*/
drh91fd4d42008-01-19 20:11:25 +00006839/*
6840** The magic Explain opcode are only inserted when explain==2 (which
6841** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6842** This opcode records information from the optimizer. It is the
6843** the same as a no-op. This opcodesnever appears in a real VM program.
6844*/
6845default: { /* This is really OP_Noop and OP_Explain */
drh13573c72010-01-12 17:04:07 +00006846 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh5e00f6c2001-09-13 13:46:56 +00006847 break;
6848}
6849
6850/*****************************************************************************
6851** The cases of the switch statement above this line should all be indented
6852** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6853** readability. From this point on down, the normal indentation rules are
6854** restored.
6855*****************************************************************************/
6856 }
drh6e142f52000-06-08 13:36:40 +00006857
drh7b396862003-01-01 23:06:20 +00006858#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00006859 {
drha01c7c72014-04-25 12:35:31 +00006860 u64 endTime = sqlite3Hwtime();
drh6dc41482015-04-16 17:31:02 +00006861 if( endTime>start ) pOrigOp->cycles += endTime - start;
6862 pOrigOp->cnt++;
drh8178a752003-01-05 21:41:40 +00006863 }
drh7b396862003-01-01 23:06:20 +00006864#endif
6865
drh6e142f52000-06-08 13:36:40 +00006866 /* The following code adds nothing to the actual functionality
6867 ** of the program. It is only here for testing and debugging.
6868 ** On the other hand, it does burn CPU cycles every time through
6869 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6870 */
6871#ifndef NDEBUG
drh6dc41482015-04-16 17:31:02 +00006872 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
drhae7e1512007-05-02 16:51:59 +00006873
drhcf1023c2007-05-08 20:59:49 +00006874#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +00006875 if( db->flags & SQLITE_VdbeTrace ){
6876 if( rc!=0 ) printf("rc=%d\n",rc);
drh6dc41482015-04-16 17:31:02 +00006877 if( pOrigOp->opflags & (OPFLG_OUT2) ){
6878 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
drh75897232000-05-29 14:26:00 +00006879 }
drh6dc41482015-04-16 17:31:02 +00006880 if( pOrigOp->opflags & OPFLG_OUT3 ){
6881 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00006882 }
drh75897232000-05-29 14:26:00 +00006883 }
danielk1977b5402fb2005-01-12 07:15:04 +00006884#endif /* SQLITE_DEBUG */
6885#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00006886 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00006887
drha05a7222008-01-19 03:35:58 +00006888 /* If we reach this point, it means that execution is finished with
6889 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00006890 */
drh9467abf2016-02-17 18:44:11 +00006891abort_due_to_error:
6892 if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT;
drha05a7222008-01-19 03:35:58 +00006893 assert( rc );
drh9467abf2016-02-17 18:44:11 +00006894 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
6895 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
6896 }
drha05a7222008-01-19 03:35:58 +00006897 p->rc = rc;
drhf68521c2016-03-21 12:28:02 +00006898 sqlite3SystemError(db, rc);
drha64fa912010-03-04 00:53:32 +00006899 testcase( sqlite3GlobalConfig.xLog!=0 );
6900 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
drhf56fa462015-04-13 21:39:54 +00006901 (int)(pOp - aOp), p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00006902 sqlite3VdbeHalt(p);
drh4a642b62016-02-05 01:55:27 +00006903 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
danielk19777eaabcd2008-07-07 14:56:56 +00006904 rc = SQLITE_ERROR;
drhcdf011d2011-04-04 21:25:28 +00006905 if( resetSchemaOnFault>0 ){
drh81028a42012-05-15 18:28:27 +00006906 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
drhbdaec522011-04-04 00:14:43 +00006907 }
drh900b31e2007-08-28 02:27:51 +00006908
6909 /* This is the only way out of this procedure. We have to
6910 ** release the mutexes on btrees that were acquired at the
6911 ** top. */
6912vdbe_return:
drh99a66922011-05-13 18:51:42 +00006913 db->lastRowid = lastRowid;
drh77dfd5b2013-08-19 11:15:48 +00006914 testcase( nVmStep>0 );
drh9b47ee32013-08-20 03:13:51 +00006915 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
drhbdaec522011-04-04 00:14:43 +00006916 sqlite3VdbeLeave(p);
dan83f0ab82016-01-29 18:04:31 +00006917 assert( rc!=SQLITE_OK || nExtraDelete==0
6918 || sqlite3_strlike("DELETE%",p->zSql,0)!=0
6919 );
drhb86ccfb2003-01-28 23:13:10 +00006920 return rc;
6921
drh023ae032007-05-08 12:12:16 +00006922 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6923 ** is encountered.
6924 */
6925too_big:
drh22c17b82015-05-15 04:13:15 +00006926 sqlite3VdbeError(p, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00006927 rc = SQLITE_TOOBIG;
drh9467abf2016-02-17 18:44:11 +00006928 goto abort_due_to_error;
drh023ae032007-05-08 12:12:16 +00006929
drh98640a32007-06-07 19:08:32 +00006930 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00006931 */
6932no_mem:
drh4a642b62016-02-05 01:55:27 +00006933 sqlite3OomFault(db);
drh22c17b82015-05-15 04:13:15 +00006934 sqlite3VdbeError(p, "out of memory");
mistachkinfad30392016-02-13 23:43:46 +00006935 rc = SQLITE_NOMEM_BKPT;
drh9467abf2016-02-17 18:44:11 +00006936 goto abort_due_to_error;
drhb86ccfb2003-01-28 23:13:10 +00006937
danielk19776f8a5032004-05-10 10:34:51 +00006938 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00006939 ** flag.
6940 */
6941abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00006942 assert( db->u1.isInterrupted );
mistachkinfad30392016-02-13 23:43:46 +00006943 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00006944 p->rc = rc;
drh22c17b82015-05-15 04:13:15 +00006945 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
drh9467abf2016-02-17 18:44:11 +00006946 goto abort_due_to_error;
drhb86ccfb2003-01-28 23:13:10 +00006947}