blob: 64ab4e95dca3524d90e069373b517362bc38413e [file] [log] [blame]
drhc81c11f2009-11-10 01:30:52 +00001/*
2** 2001 September 15
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** Utility functions used throughout sqlite.
13**
14** This file contains functions for allocating memory, comparing
15** strings, and stuff like that.
16**
17*/
18#include "sqliteInt.h"
19#include <stdarg.h>
drhef9f7192020-01-17 19:14:08 +000020#ifndef SQLITE_OMIT_FLOATING_POINT
drh7e6dc5d2019-05-10 12:14:51 +000021#include <math.h>
drhef9f7192020-01-17 19:14:08 +000022#endif
drhc81c11f2009-11-10 01:30:52 +000023
24/*
25** Routine needed to support the testcase() macro.
26*/
27#ifdef SQLITE_COVERAGE_TEST
28void sqlite3Coverage(int x){
drh68bf0672011-04-11 15:35:24 +000029 static unsigned dummy = 0;
30 dummy += (unsigned)x;
drhc81c11f2009-11-10 01:30:52 +000031}
32#endif
33
drhc007f612014-05-16 14:17:01 +000034/*
drhce059e52019-04-05 17:22:50 +000035** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
36** or to bypass normal error detection during testing in order to let
37** execute proceed futher downstream.
drhc007f612014-05-16 14:17:01 +000038**
drhce059e52019-04-05 17:22:50 +000039** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The
40** sqlite3FaultSim() function only returns non-zero during testing.
drhc007f612014-05-16 14:17:01 +000041**
drhce059e52019-04-05 17:22:50 +000042** During testing, if the test harness has set a fault-sim callback using
43** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
44** each call to sqlite3FaultSim() is relayed to that application-supplied
45** callback and the integer return value form the application-supplied
46** callback is returned by sqlite3FaultSim().
47**
48** The integer argument to sqlite3FaultSim() is a code to identify which
49** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
50** should have a unique code. To prevent legacy testing applications from
51** breaking, the codes should not be changed or reused.
drhc007f612014-05-16 14:17:01 +000052*/
drhd12602a2016-12-07 15:49:02 +000053#ifndef SQLITE_UNTESTABLE
drhc007f612014-05-16 14:17:01 +000054int sqlite3FaultSim(int iTest){
55 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
56 return xCallback ? xCallback(iTest) : SQLITE_OK;
57}
58#endif
59
drh85c8f292010-01-13 17:39:53 +000060#ifndef SQLITE_OMIT_FLOATING_POINT
drhc81c11f2009-11-10 01:30:52 +000061/*
62** Return true if the floating point value is Not a Number (NaN).
drhc81c11f2009-11-10 01:30:52 +000063*/
64int sqlite3IsNaN(double x){
drh05921222019-05-30 00:46:37 +000065 u64 y;
66 memcpy(&y,&x,sizeof(y));
67 return IsNaN(y);
drhc81c11f2009-11-10 01:30:52 +000068}
drh85c8f292010-01-13 17:39:53 +000069#endif /* SQLITE_OMIT_FLOATING_POINT */
drhc81c11f2009-11-10 01:30:52 +000070
71/*
72** Compute a string length that is limited to what can be stored in
73** lower 30 bits of a 32-bit signed integer.
74**
75** The value returned will never be negative. Nor will it ever be greater
76** than the actual length of the string. For very long strings (greater
77** than 1GiB) the value returned might be less than the true string length.
78*/
79int sqlite3Strlen30(const char *z){
drhc81c11f2009-11-10 01:30:52 +000080 if( z==0 ) return 0;
drh1116bf12015-06-30 03:18:33 +000081 return 0x3fffffff & (int)strlen(z);
drhc81c11f2009-11-10 01:30:52 +000082}
83
84/*
drhd7564862016-03-22 20:05:09 +000085** Return the declared type of a column. Or return zDflt if the column
86** has no declared type.
87**
88** The column type is an extra string stored after the zero-terminator on
89** the column name if and only if the COLFLAG_HASTYPE flag is set.
drh94eaafa2016-02-29 15:53:11 +000090*/
drhd7564862016-03-22 20:05:09 +000091char *sqlite3ColumnType(Column *pCol, char *zDflt){
92 if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt;
93 return pCol->zName + strlen(pCol->zName) + 1;
drh94eaafa2016-02-29 15:53:11 +000094}
95
96/*
drh80fbee02016-03-21 11:57:13 +000097** Helper function for sqlite3Error() - called rarely. Broken out into
98** a separate routine to avoid unnecessary register saves on entry to
99** sqlite3Error().
drh13f40da2014-08-22 18:00:11 +0000100*/
drh8d2f41c2016-03-21 11:38:01 +0000101static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){
102 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
103 sqlite3SystemError(db, err_code);
104}
drh80fbee02016-03-21 11:57:13 +0000105
106/*
107** Set the current error code to err_code and clear any prior error message.
108** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
109** that would be appropriate.
110*/
drh13f40da2014-08-22 18:00:11 +0000111void sqlite3Error(sqlite3 *db, int err_code){
112 assert( db!=0 );
113 db->errCode = err_code;
drh8d2f41c2016-03-21 11:38:01 +0000114 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code);
drh13f40da2014-08-22 18:00:11 +0000115}
116
117/*
drh1b9f2142016-03-17 16:01:23 +0000118** Load the sqlite3.iSysErrno field if that is an appropriate thing
119** to do based on the SQLite error code in rc.
120*/
121void sqlite3SystemError(sqlite3 *db, int rc){
122 if( rc==SQLITE_IOERR_NOMEM ) return;
123 rc &= 0xff;
124 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
125 db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
126 }
127}
128
129/*
drhc81c11f2009-11-10 01:30:52 +0000130** Set the most recent error code and error string for the sqlite
131** handle "db". The error code is set to "err_code".
132**
133** If it is not NULL, string zFormat specifies the format of the
134** error string in the style of the printf functions: The following
135** format characters are allowed:
136**
137** %s Insert a string
138** %z A string that should be freed after use
139** %d Insert an integer
140** %T Insert a token
141** %S Insert the first element of a SrcList
142**
143** zFormat and any string tokens that follow it are assumed to be
144** encoded in UTF-8.
145**
146** To clear the most recent error for sqlite handle "db", sqlite3Error
147** should be called with err_code set to SQLITE_OK and zFormat set
148** to NULL.
149*/
drh13f40da2014-08-22 18:00:11 +0000150void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
drha3cc0072013-12-13 16:23:55 +0000151 assert( db!=0 );
152 db->errCode = err_code;
drh8d2f41c2016-03-21 11:38:01 +0000153 sqlite3SystemError(db, err_code);
drh13f40da2014-08-22 18:00:11 +0000154 if( zFormat==0 ){
155 sqlite3Error(db, err_code);
156 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
drha3cc0072013-12-13 16:23:55 +0000157 char *z;
158 va_list ap;
159 va_start(ap, zFormat);
160 z = sqlite3VMPrintf(db, zFormat, ap);
161 va_end(ap);
162 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
drhc81c11f2009-11-10 01:30:52 +0000163 }
164}
165
166/*
167** Add an error message to pParse->zErrMsg and increment pParse->nErr.
168** The following formatting characters are allowed:
169**
170** %s Insert a string
171** %z A string that should be freed after use
172** %d Insert an integer
173** %T Insert a token
174** %S Insert the first element of a SrcList
175**
drh13f40da2014-08-22 18:00:11 +0000176** This function should be used to report any error that occurs while
drhc81c11f2009-11-10 01:30:52 +0000177** compiling an SQL statement (i.e. within sqlite3_prepare()). The
178** last thing the sqlite3_prepare() function does is copy the error
179** stored by this function into the database handle using sqlite3Error().
drh13f40da2014-08-22 18:00:11 +0000180** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
181** during statement execution (sqlite3_step() etc.).
drhc81c11f2009-11-10 01:30:52 +0000182*/
183void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
drha7564662010-02-22 19:32:31 +0000184 char *zMsg;
drhc81c11f2009-11-10 01:30:52 +0000185 va_list ap;
186 sqlite3 *db = pParse->db;
drhc81c11f2009-11-10 01:30:52 +0000187 va_start(ap, zFormat);
drha7564662010-02-22 19:32:31 +0000188 zMsg = sqlite3VMPrintf(db, zFormat, ap);
drhc81c11f2009-11-10 01:30:52 +0000189 va_end(ap);
drha7564662010-02-22 19:32:31 +0000190 if( db->suppressErr ){
191 sqlite3DbFree(db, zMsg);
192 }else{
193 pParse->nErr++;
194 sqlite3DbFree(db, pParse->zErrMsg);
195 pParse->zErrMsg = zMsg;
196 pParse->rc = SQLITE_ERROR;
drh46a31cd2019-11-09 14:38:58 +0000197 pParse->pWith = 0;
drha7564662010-02-22 19:32:31 +0000198 }
drhc81c11f2009-11-10 01:30:52 +0000199}
200
201/*
drhc3dcdba2019-04-09 21:32:46 +0000202** If database connection db is currently parsing SQL, then transfer
203** error code errCode to that parser if the parser has not already
204** encountered some other kind of error.
205*/
206int sqlite3ErrorToParser(sqlite3 *db, int errCode){
207 Parse *pParse;
208 if( db==0 || (pParse = db->pParse)==0 ) return errCode;
209 pParse->rc = errCode;
210 pParse->nErr++;
211 return errCode;
212}
213
214/*
drhc81c11f2009-11-10 01:30:52 +0000215** Convert an SQL-style quoted string into a normal string by removing
216** the quote characters. The conversion is done in-place. If the
217** input does not begin with a quote character, then this routine
218** is a no-op.
219**
220** The input string must be zero-terminated. A new zero-terminator
221** is added to the dequoted string.
222**
223** The return value is -1 if no dequoting occurs or the length of the
224** dequoted string, exclusive of the zero terminator, if dequoting does
225** occur.
226**
drh51d35b02019-01-11 13:32:23 +0000227** 2002-02-14: This routine is extended to remove MS-Access style
peter.d.reid60ec9142014-09-06 16:39:46 +0000228** brackets from around identifiers. For example: "[a-b-c]" becomes
drhc81c11f2009-11-10 01:30:52 +0000229** "a-b-c".
230*/
drh244b9d62016-04-11 19:01:08 +0000231void sqlite3Dequote(char *z){
drhc81c11f2009-11-10 01:30:52 +0000232 char quote;
233 int i, j;
drh244b9d62016-04-11 19:01:08 +0000234 if( z==0 ) return;
drhc81c11f2009-11-10 01:30:52 +0000235 quote = z[0];
drh244b9d62016-04-11 19:01:08 +0000236 if( !sqlite3Isquote(quote) ) return;
237 if( quote=='[' ) quote = ']';
drh9ccd8652013-09-13 16:36:46 +0000238 for(i=1, j=0;; i++){
239 assert( z[i] );
drhc81c11f2009-11-10 01:30:52 +0000240 if( z[i]==quote ){
241 if( z[i+1]==quote ){
242 z[j++] = quote;
243 i++;
244 }else{
245 break;
246 }
247 }else{
248 z[j++] = z[i];
249 }
250 }
251 z[j] = 0;
drhc81c11f2009-11-10 01:30:52 +0000252}
drh51d35b02019-01-11 13:32:23 +0000253void sqlite3DequoteExpr(Expr *p){
254 assert( sqlite3Isquote(p->u.zToken[0]) );
255 p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
256 sqlite3Dequote(p->u.zToken);
257}
drhc81c11f2009-11-10 01:30:52 +0000258
drh40aced52016-01-22 17:48:09 +0000259/*
260** Generate a Token object from a string
261*/
262void sqlite3TokenInit(Token *p, char *z){
263 p->z = z;
264 p->n = sqlite3Strlen30(z);
265}
266
drhc81c11f2009-11-10 01:30:52 +0000267/* Convenient short-hand */
268#define UpperToLower sqlite3UpperToLower
269
270/*
271** Some systems have stricmp(). Others have strcasecmp(). Because
272** there is no consistency, we will define our own.
drh9f129f42010-08-31 15:27:32 +0000273**
drh0299b402012-03-19 17:42:46 +0000274** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
275** sqlite3_strnicmp() APIs allow applications and extensions to compare
276** the contents of two buffers containing UTF-8 strings in a
277** case-independent fashion, using the same definition of "case
278** independence" that SQLite uses internally when comparing identifiers.
drhc81c11f2009-11-10 01:30:52 +0000279*/
drh3fa97302012-02-22 16:58:36 +0000280int sqlite3_stricmp(const char *zLeft, const char *zRight){
drh9ca95732014-10-24 00:35:58 +0000281 if( zLeft==0 ){
282 return zRight ? -1 : 0;
283 }else if( zRight==0 ){
284 return 1;
285 }
drh80738d92016-02-15 00:34:16 +0000286 return sqlite3StrICmp(zLeft, zRight);
287}
288int sqlite3StrICmp(const char *zLeft, const char *zRight){
289 unsigned char *a, *b;
drh7e427332019-04-17 11:34:44 +0000290 int c, x;
drhc81c11f2009-11-10 01:30:52 +0000291 a = (unsigned char *)zLeft;
292 b = (unsigned char *)zRight;
drh80738d92016-02-15 00:34:16 +0000293 for(;;){
drh7e427332019-04-17 11:34:44 +0000294 c = *a;
295 x = *b;
296 if( c==x ){
297 if( c==0 ) break;
298 }else{
299 c = (int)UpperToLower[c] - (int)UpperToLower[x];
300 if( c ) break;
301 }
drh80738d92016-02-15 00:34:16 +0000302 a++;
303 b++;
304 }
305 return c;
drhc81c11f2009-11-10 01:30:52 +0000306}
307int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
308 register unsigned char *a, *b;
drh9ca95732014-10-24 00:35:58 +0000309 if( zLeft==0 ){
310 return zRight ? -1 : 0;
311 }else if( zRight==0 ){
312 return 1;
313 }
drhc81c11f2009-11-10 01:30:52 +0000314 a = (unsigned char *)zLeft;
315 b = (unsigned char *)zRight;
316 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
317 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
318}
319
320/*
drhd44390c2020-04-06 18:16:31 +0000321** Compute an 8-bit hash on a string that is insensitive to case differences
322*/
323u8 sqlite3StrIHash(const char *z){
324 u8 h = 0;
325 if( z==0 ) return 0;
326 while( z[0] ){
327 h += UpperToLower[(unsigned char)z[0]];
328 z++;
329 }
330 return h;
331}
332
333/*
drh02a43f62017-12-26 14:46:20 +0000334** Compute 10 to the E-th power. Examples: E==1 results in 10.
335** E==2 results in 100. E==50 results in 1.0e50.
336**
337** This routine only works for values of E between 1 and 341.
338*/
339static LONGDOUBLE_TYPE sqlite3Pow10(int E){
drh3dc97272018-01-17 21:14:17 +0000340#if defined(_MSC_VER)
341 static const LONGDOUBLE_TYPE x[] = {
drh38a59af2019-05-25 17:41:07 +0000342 1.0e+001L,
343 1.0e+002L,
344 1.0e+004L,
345 1.0e+008L,
346 1.0e+016L,
347 1.0e+032L,
348 1.0e+064L,
349 1.0e+128L,
350 1.0e+256L
drh3dc97272018-01-17 21:14:17 +0000351 };
352 LONGDOUBLE_TYPE r = 1.0;
353 int i;
354 assert( E>=0 && E<=307 );
355 for(i=0; E!=0; i++, E >>=1){
356 if( E & 1 ) r *= x[i];
357 }
358 return r;
359#else
drh02a43f62017-12-26 14:46:20 +0000360 LONGDOUBLE_TYPE x = 10.0;
361 LONGDOUBLE_TYPE r = 1.0;
362 while(1){
363 if( E & 1 ) r *= x;
364 E >>= 1;
365 if( E==0 ) break;
366 x *= x;
367 }
368 return r;
drh3dc97272018-01-17 21:14:17 +0000369#endif
drh02a43f62017-12-26 14:46:20 +0000370}
371
372/*
drh9339da12010-09-30 00:50:49 +0000373** The string z[] is an text representation of a real number.
drh025586a2010-09-30 17:33:11 +0000374** Convert this string to a double and write it into *pResult.
drhc81c11f2009-11-10 01:30:52 +0000375**
drh9339da12010-09-30 00:50:49 +0000376** The string z[] is length bytes in length (bytes, not characters) and
377** uses the encoding enc. The string is not necessarily zero-terminated.
drhc81c11f2009-11-10 01:30:52 +0000378**
drh9339da12010-09-30 00:50:49 +0000379** Return TRUE if the result is a valid real number (or integer) and FALSE
drh8a3884e2019-05-29 21:18:27 +0000380** if the string is empty or contains extraneous text. More specifically
381** return
382** 1 => The input string is a pure integer
383** 2 or more => The input has a decimal point or eNNN clause
drh9a278222019-06-07 22:26:08 +0000384** 0 or less => The input string is not a valid number
385** -1 => Not a valid number, but has a valid prefix which
386** includes a decimal point and/or an eNNN clause
drh8a3884e2019-05-29 21:18:27 +0000387**
388** Valid numbers are in one of these formats:
drh025586a2010-09-30 17:33:11 +0000389**
390** [+-]digits[E[+-]digits]
391** [+-]digits.[digits][E[+-]digits]
392** [+-].digits[E[+-]digits]
393**
394** Leading and trailing whitespace is ignored for the purpose of determining
395** validity.
396**
397** If some prefix of the input string is a valid number, this routine
398** returns FALSE but it still converts the prefix and writes the result
399** into *pResult.
drhc81c11f2009-11-10 01:30:52 +0000400*/
mistachkin6dcf9a42019-10-10 23:58:16 +0000401#if defined(_MSC_VER)
402#pragma warning(disable : 4756)
403#endif
drh9339da12010-09-30 00:50:49 +0000404int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
drhc81c11f2009-11-10 01:30:52 +0000405#ifndef SQLITE_OMIT_FLOATING_POINT
drh0e5fba72013-03-20 12:04:29 +0000406 int incr;
drhe3a4f2c2019-12-13 23:38:57 +0000407 const char *zEnd;
drhc81c11f2009-11-10 01:30:52 +0000408 /* sign * significand * (10 ^ (esign * exponent)) */
drh025586a2010-09-30 17:33:11 +0000409 int sign = 1; /* sign of significand */
410 i64 s = 0; /* significand */
411 int d = 0; /* adjust exponent for shifting decimal point */
412 int esign = 1; /* sign of exponent */
413 int e = 0; /* exponent */
414 int eValid = 1; /* True exponent is either not used or is well-formed */
drhc81c11f2009-11-10 01:30:52 +0000415 double result;
drhc2b893a2019-05-25 18:17:53 +0000416 int nDigit = 0; /* Number of digits processed */
drh8a3884e2019-05-29 21:18:27 +0000417 int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */
drhc81c11f2009-11-10 01:30:52 +0000418
drh0e5fba72013-03-20 12:04:29 +0000419 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
drh025586a2010-09-30 17:33:11 +0000420 *pResult = 0.0; /* Default return value, in case of an error */
drhe3a4f2c2019-12-13 23:38:57 +0000421 if( length==0 ) return 0;
drh025586a2010-09-30 17:33:11 +0000422
drh0e5fba72013-03-20 12:04:29 +0000423 if( enc==SQLITE_UTF8 ){
424 incr = 1;
drhe3a4f2c2019-12-13 23:38:57 +0000425 zEnd = z + length;
drh0e5fba72013-03-20 12:04:29 +0000426 }else{
427 int i;
428 incr = 2;
drh87969b22020-01-08 12:17:46 +0000429 length &= ~1;
drh0e5fba72013-03-20 12:04:29 +0000430 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
drh84422db2019-05-30 13:47:10 +0000431 testcase( enc==SQLITE_UTF16LE );
432 testcase( enc==SQLITE_UTF16BE );
drh0e5fba72013-03-20 12:04:29 +0000433 for(i=3-enc; i<length && z[i]==0; i+=2){}
drh8a3884e2019-05-29 21:18:27 +0000434 if( i<length ) eType = -100;
drhad975d52016-04-27 15:24:13 +0000435 zEnd = &z[i^1];
drh0e5fba72013-03-20 12:04:29 +0000436 z += (enc&1);
437 }
drh9339da12010-09-30 00:50:49 +0000438
drhc81c11f2009-11-10 01:30:52 +0000439 /* skip leading spaces */
drh9339da12010-09-30 00:50:49 +0000440 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
drh025586a2010-09-30 17:33:11 +0000441 if( z>=zEnd ) return 0;
drh9339da12010-09-30 00:50:49 +0000442
drhc81c11f2009-11-10 01:30:52 +0000443 /* get sign of significand */
444 if( *z=='-' ){
445 sign = -1;
drh9339da12010-09-30 00:50:49 +0000446 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000447 }else if( *z=='+' ){
drh9339da12010-09-30 00:50:49 +0000448 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000449 }
drh9339da12010-09-30 00:50:49 +0000450
drhc81c11f2009-11-10 01:30:52 +0000451 /* copy max significant digits to significand */
drhc2b893a2019-05-25 18:17:53 +0000452 while( z<zEnd && sqlite3Isdigit(*z) ){
drhc81c11f2009-11-10 01:30:52 +0000453 s = s*10 + (*z - '0');
drhc2b893a2019-05-25 18:17:53 +0000454 z+=incr; nDigit++;
455 if( s>=((LARGEST_INT64-9)/10) ){
456 /* skip non-significant significand digits
457 ** (increase exponent by d to shift decimal left) */
458 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; }
459 }
drhc81c11f2009-11-10 01:30:52 +0000460 }
drh9339da12010-09-30 00:50:49 +0000461 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000462
463 /* if decimal point is present */
464 if( *z=='.' ){
drh9339da12010-09-30 00:50:49 +0000465 z+=incr;
drh8a3884e2019-05-29 21:18:27 +0000466 eType++;
drhc81c11f2009-11-10 01:30:52 +0000467 /* copy digits from after decimal to significand
468 ** (decrease exponent by d to shift decimal right) */
drh15af62a2016-04-26 23:14:45 +0000469 while( z<zEnd && sqlite3Isdigit(*z) ){
470 if( s<((LARGEST_INT64-9)/10) ){
471 s = s*10 + (*z - '0');
472 d--;
drhc2b893a2019-05-25 18:17:53 +0000473 nDigit++;
drh15af62a2016-04-26 23:14:45 +0000474 }
drhc2b893a2019-05-25 18:17:53 +0000475 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000476 }
drhc81c11f2009-11-10 01:30:52 +0000477 }
drh9339da12010-09-30 00:50:49 +0000478 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000479
480 /* if exponent is present */
481 if( *z=='e' || *z=='E' ){
drh9339da12010-09-30 00:50:49 +0000482 z+=incr;
drh025586a2010-09-30 17:33:11 +0000483 eValid = 0;
drh8a3884e2019-05-29 21:18:27 +0000484 eType++;
drhad975d52016-04-27 15:24:13 +0000485
486 /* This branch is needed to avoid a (harmless) buffer overread. The
487 ** special comment alerts the mutation tester that the correct answer
488 ** is obtained even if the branch is omitted */
489 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/
490
drhc81c11f2009-11-10 01:30:52 +0000491 /* get sign of exponent */
492 if( *z=='-' ){
493 esign = -1;
drh9339da12010-09-30 00:50:49 +0000494 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000495 }else if( *z=='+' ){
drh9339da12010-09-30 00:50:49 +0000496 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000497 }
498 /* copy digits to exponent */
drh9339da12010-09-30 00:50:49 +0000499 while( z<zEnd && sqlite3Isdigit(*z) ){
drh57db4a72011-10-17 20:41:46 +0000500 e = e<10000 ? (e*10 + (*z - '0')) : 10000;
drh9339da12010-09-30 00:50:49 +0000501 z+=incr;
drh025586a2010-09-30 17:33:11 +0000502 eValid = 1;
drhc81c11f2009-11-10 01:30:52 +0000503 }
504 }
505
drh025586a2010-09-30 17:33:11 +0000506 /* skip trailing spaces */
drhc6daa012016-04-27 02:35:03 +0000507 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
drh025586a2010-09-30 17:33:11 +0000508
drh9339da12010-09-30 00:50:49 +0000509do_atof_calc:
drhc81c11f2009-11-10 01:30:52 +0000510 /* adjust exponent by d, and update sign */
511 e = (e*esign) + d;
512 if( e<0 ) {
513 esign = -1;
514 e *= -1;
515 } else {
516 esign = 1;
517 }
518
drhad975d52016-04-27 15:24:13 +0000519 if( s==0 ) {
520 /* In the IEEE 754 standard, zero is signed. */
drhc6daa012016-04-27 02:35:03 +0000521 result = sign<0 ? -(double)0 : (double)0;
drhc81c11f2009-11-10 01:30:52 +0000522 } else {
drhad975d52016-04-27 15:24:13 +0000523 /* Attempt to reduce exponent.
524 **
525 ** Branches that are not required for the correct answer but which only
526 ** help to obtain the correct answer faster are marked with special
527 ** comments, as a hint to the mutation tester.
528 */
529 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/
530 if( esign>0 ){
531 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/
532 s *= 10;
533 }else{
534 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/
535 s /= 10;
536 }
537 e--;
drhc81c11f2009-11-10 01:30:52 +0000538 }
539
540 /* adjust the sign of significand */
541 s = sign<0 ? -s : s;
542
drhad975d52016-04-27 15:24:13 +0000543 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/
544 result = (double)s;
545 }else{
drhc81c11f2009-11-10 01:30:52 +0000546 /* attempt to handle extremely small/large numbers better */
drhad975d52016-04-27 15:24:13 +0000547 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/
548 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/
drh02a43f62017-12-26 14:46:20 +0000549 LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308);
drhad975d52016-04-27 15:24:13 +0000550 if( esign<0 ){
551 result = s / scale;
552 result /= 1.0e+308;
553 }else{
554 result = s * scale;
555 result *= 1.0e+308;
556 }
557 }else{ assert( e>=342 );
558 if( esign<0 ){
559 result = 0.0*s;
560 }else{
drhb9772e72017-09-12 13:27:43 +0000561#ifdef INFINITY
drh3ba18ad2017-09-12 15:05:34 +0000562 result = INFINITY*s;
drhb9772e72017-09-12 13:27:43 +0000563#else
drhad975d52016-04-27 15:24:13 +0000564 result = 1e308*1e308*s; /* Infinity */
drhb9772e72017-09-12 13:27:43 +0000565#endif
drhad975d52016-04-27 15:24:13 +0000566 }
drh2458a2e2011-10-17 12:14:26 +0000567 }
drhc81c11f2009-11-10 01:30:52 +0000568 }else{
drh02a43f62017-12-26 14:46:20 +0000569 LONGDOUBLE_TYPE scale = sqlite3Pow10(e);
drhc81c11f2009-11-10 01:30:52 +0000570 if( esign<0 ){
571 result = s / scale;
572 }else{
573 result = s * scale;
574 }
575 }
drhc81c11f2009-11-10 01:30:52 +0000576 }
577 }
578
579 /* store the result */
580 *pResult = result;
581
drh025586a2010-09-30 17:33:11 +0000582 /* return true if number and no extra non-whitespace chracters after */
drh9a278222019-06-07 22:26:08 +0000583 if( z==zEnd && nDigit>0 && eValid && eType>0 ){
584 return eType;
drh378a7d32019-06-10 23:45:10 +0000585 }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
drh9a278222019-06-07 22:26:08 +0000586 return -1;
587 }else{
588 return 0;
589 }
drhc81c11f2009-11-10 01:30:52 +0000590#else
shaneh5f1d6b62010-09-30 16:51:25 +0000591 return !sqlite3Atoi64(z, pResult, length, enc);
drhc81c11f2009-11-10 01:30:52 +0000592#endif /* SQLITE_OMIT_FLOATING_POINT */
593}
mistachkin6dcf9a42019-10-10 23:58:16 +0000594#if defined(_MSC_VER)
595#pragma warning(default : 4756)
596#endif
drhc81c11f2009-11-10 01:30:52 +0000597
598/*
drh82b0f102020-07-21 18:25:19 +0000599** Render an signed 64-bit integer as text. Store the result in zOut[].
600**
601** The caller must ensure that zOut[] is at least 21 bytes in size.
602*/
603void sqlite3Int64ToText(i64 v, char *zOut){
604 int i;
605 u64 x;
606 char zTemp[22];
607 if( v<0 ){
608 x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : -v;
609 }else{
610 x = v;
611 }
612 i = sizeof(zTemp)-2;
613 zTemp[sizeof(zTemp)-1] = 0;
614 do{
615 zTemp[i--] = (x%10) + '0';
616 x = x/10;
617 }while( x );
618 if( v<0 ) zTemp[i--] = '-';
619 memcpy(zOut, &zTemp[i+1], sizeof(zTemp)-1-i);
620}
621
622/*
drhc81c11f2009-11-10 01:30:52 +0000623** Compare the 19-character string zNum against the text representation
624** value 2^63: 9223372036854775808. Return negative, zero, or positive
625** if zNum is less than, equal to, or greater than the string.
shaneh5f1d6b62010-09-30 16:51:25 +0000626** Note that zNum must contain exactly 19 characters.
drhc81c11f2009-11-10 01:30:52 +0000627**
628** Unlike memcmp() this routine is guaranteed to return the difference
629** in the values of the last digit if the only difference is in the
630** last digit. So, for example,
631**
drh9339da12010-09-30 00:50:49 +0000632** compare2pow63("9223372036854775800", 1)
drhc81c11f2009-11-10 01:30:52 +0000633**
634** will return -8.
635*/
drh9339da12010-09-30 00:50:49 +0000636static int compare2pow63(const char *zNum, int incr){
637 int c = 0;
638 int i;
639 /* 012345678901234567 */
640 const char *pow63 = "922337203685477580";
641 for(i=0; c==0 && i<18; i++){
642 c = (zNum[i*incr]-pow63[i])*10;
643 }
drhc81c11f2009-11-10 01:30:52 +0000644 if( c==0 ){
drh9339da12010-09-30 00:50:49 +0000645 c = zNum[18*incr] - '8';
drh44dbca82010-01-13 04:22:20 +0000646 testcase( c==(-1) );
647 testcase( c==0 );
648 testcase( c==(+1) );
drhc81c11f2009-11-10 01:30:52 +0000649 }
650 return c;
651}
652
drhc81c11f2009-11-10 01:30:52 +0000653/*
drh9296c182014-07-23 13:40:49 +0000654** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
655** routine does *not* accept hexadecimal notation.
drh158b9cb2011-03-05 20:59:46 +0000656**
drh84d4f1a2017-09-20 10:47:10 +0000657** Returns:
drh158b9cb2011-03-05 20:59:46 +0000658**
drh9a278222019-06-07 22:26:08 +0000659** -1 Not even a prefix of the input text looks like an integer
drh84d4f1a2017-09-20 10:47:10 +0000660** 0 Successful transformation. Fits in a 64-bit signed integer.
drh4eb57ce2018-01-26 18:37:34 +0000661** 1 Excess non-space text after the integer value
drh84d4f1a2017-09-20 10:47:10 +0000662** 2 Integer too large for a 64-bit signed integer or is malformed
663** 3 Special case of 9223372036854775808
drhc81c11f2009-11-10 01:30:52 +0000664**
drh9339da12010-09-30 00:50:49 +0000665** length is the number of bytes in the string (bytes, not characters).
666** The string is not necessarily zero-terminated. The encoding is
667** given by enc.
drhc81c11f2009-11-10 01:30:52 +0000668*/
drh9339da12010-09-30 00:50:49 +0000669int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
drh0e5fba72013-03-20 12:04:29 +0000670 int incr;
drh158b9cb2011-03-05 20:59:46 +0000671 u64 u = 0;
shaneh5f1d6b62010-09-30 16:51:25 +0000672 int neg = 0; /* assume positive */
drh9339da12010-09-30 00:50:49 +0000673 int i;
674 int c = 0;
drh609d5842016-04-28 00:32:16 +0000675 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */
drh84d4f1a2017-09-20 10:47:10 +0000676 int rc; /* Baseline return code */
drhc81c11f2009-11-10 01:30:52 +0000677 const char *zStart;
drh9339da12010-09-30 00:50:49 +0000678 const char *zEnd = zNum + length;
drh0e5fba72013-03-20 12:04:29 +0000679 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
680 if( enc==SQLITE_UTF8 ){
681 incr = 1;
682 }else{
683 incr = 2;
684 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
685 for(i=3-enc; i<length && zNum[i]==0; i+=2){}
686 nonNum = i<length;
drh609d5842016-04-28 00:32:16 +0000687 zEnd = &zNum[i^1];
drh0e5fba72013-03-20 12:04:29 +0000688 zNum += (enc&1);
689 }
drh9339da12010-09-30 00:50:49 +0000690 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
drh158b9cb2011-03-05 20:59:46 +0000691 if( zNum<zEnd ){
692 if( *zNum=='-' ){
693 neg = 1;
694 zNum+=incr;
695 }else if( *zNum=='+' ){
696 zNum+=incr;
697 }
drhc81c11f2009-11-10 01:30:52 +0000698 }
699 zStart = zNum;
drh9339da12010-09-30 00:50:49 +0000700 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
701 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
drh158b9cb2011-03-05 20:59:46 +0000702 u = u*10 + c - '0';
drhc81c11f2009-11-10 01:30:52 +0000703 }
drh4eb57ce2018-01-26 18:37:34 +0000704 testcase( i==18*incr );
705 testcase( i==19*incr );
706 testcase( i==20*incr );
drh1822ebf2018-01-27 14:25:27 +0000707 if( u>LARGEST_INT64 ){
708 /* This test and assignment is needed only to suppress UB warnings
709 ** from clang and -fsanitize=undefined. This test and assignment make
710 ** the code a little larger and slower, and no harm comes from omitting
711 ** them, but we must appaise the undefined-behavior pharisees. */
712 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
713 }else if( neg ){
drh158b9cb2011-03-05 20:59:46 +0000714 *pNum = -(i64)u;
715 }else{
716 *pNum = (i64)u;
717 }
drh4eb57ce2018-01-26 18:37:34 +0000718 rc = 0;
drh9a278222019-06-07 22:26:08 +0000719 if( i==0 && zStart==zNum ){ /* No digits */
720 rc = -1;
721 }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */
drh84d4f1a2017-09-20 10:47:10 +0000722 rc = 1;
drh4eb57ce2018-01-26 18:37:34 +0000723 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */
724 int jj = i;
725 do{
726 if( !sqlite3Isspace(zNum[jj]) ){
727 rc = 1; /* Extra non-space text after the integer */
728 break;
729 }
730 jj += incr;
731 }while( &zNum[jj]<zEnd );
drh84d4f1a2017-09-20 10:47:10 +0000732 }
drh4eb57ce2018-01-26 18:37:34 +0000733 if( i<19*incr ){
drhc81c11f2009-11-10 01:30:52 +0000734 /* Less than 19 digits, so we know that it fits in 64 bits */
drh158b9cb2011-03-05 20:59:46 +0000735 assert( u<=LARGEST_INT64 );
drh84d4f1a2017-09-20 10:47:10 +0000736 return rc;
drhc81c11f2009-11-10 01:30:52 +0000737 }else{
drh158b9cb2011-03-05 20:59:46 +0000738 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
drh4eb57ce2018-01-26 18:37:34 +0000739 c = i>19*incr ? 1 : compare2pow63(zNum, incr);
drh158b9cb2011-03-05 20:59:46 +0000740 if( c<0 ){
741 /* zNum is less than 9223372036854775808 so it fits */
742 assert( u<=LARGEST_INT64 );
drh84d4f1a2017-09-20 10:47:10 +0000743 return rc;
drh158b9cb2011-03-05 20:59:46 +0000744 }else{
drh4eb57ce2018-01-26 18:37:34 +0000745 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
746 if( c>0 ){
747 /* zNum is greater than 9223372036854775808 so it overflows */
748 return 2;
749 }else{
750 /* zNum is exactly 9223372036854775808. Fits if negative. The
751 ** special case 2 overflow if positive */
752 assert( u-1==LARGEST_INT64 );
753 return neg ? rc : 3;
754 }
drh158b9cb2011-03-05 20:59:46 +0000755 }
drhc81c11f2009-11-10 01:30:52 +0000756 }
757}
758
759/*
drh9296c182014-07-23 13:40:49 +0000760** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
761** into a 64-bit signed integer. This routine accepts hexadecimal literals,
762** whereas sqlite3Atoi64() does not.
763**
764** Returns:
765**
766** 0 Successful transformation. Fits in a 64-bit signed integer.
drh84d4f1a2017-09-20 10:47:10 +0000767** 1 Excess text after the integer value
768** 2 Integer too large for a 64-bit signed integer or is malformed
769** 3 Special case of 9223372036854775808
drh9296c182014-07-23 13:40:49 +0000770*/
771int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
772#ifndef SQLITE_OMIT_HEX_INTEGER
773 if( z[0]=='0'
774 && (z[1]=='x' || z[1]=='X')
drh9296c182014-07-23 13:40:49 +0000775 ){
776 u64 u = 0;
777 int i, k;
778 for(i=2; z[i]=='0'; i++){}
779 for(k=i; sqlite3Isxdigit(z[k]); k++){
780 u = u*16 + sqlite3HexToInt(z[k]);
781 }
782 memcpy(pOut, &u, 8);
drh84d4f1a2017-09-20 10:47:10 +0000783 return (z[k]==0 && k-i<=16) ? 0 : 2;
drh9296c182014-07-23 13:40:49 +0000784 }else
785#endif /* SQLITE_OMIT_HEX_INTEGER */
786 {
787 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
788 }
789}
790
791/*
drhc81c11f2009-11-10 01:30:52 +0000792** If zNum represents an integer that will fit in 32-bits, then set
793** *pValue to that integer and return true. Otherwise return false.
794**
drh9296c182014-07-23 13:40:49 +0000795** This routine accepts both decimal and hexadecimal notation for integers.
796**
drhc81c11f2009-11-10 01:30:52 +0000797** Any non-numeric characters that following zNum are ignored.
798** This is different from sqlite3Atoi64() which requires the
799** input number to be zero-terminated.
800*/
801int sqlite3GetInt32(const char *zNum, int *pValue){
802 sqlite_int64 v = 0;
803 int i, c;
804 int neg = 0;
805 if( zNum[0]=='-' ){
806 neg = 1;
807 zNum++;
808 }else if( zNum[0]=='+' ){
809 zNum++;
810 }
drh28e048c2014-07-23 01:26:51 +0000811#ifndef SQLITE_OMIT_HEX_INTEGER
812 else if( zNum[0]=='0'
813 && (zNum[1]=='x' || zNum[1]=='X')
814 && sqlite3Isxdigit(zNum[2])
815 ){
816 u32 u = 0;
817 zNum += 2;
818 while( zNum[0]=='0' ) zNum++;
819 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
820 u = u*16 + sqlite3HexToInt(zNum[i]);
821 }
822 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
823 memcpy(pValue, &u, 4);
824 return 1;
825 }else{
826 return 0;
827 }
828 }
829#endif
drh313e6fd2017-05-03 17:44:28 +0000830 if( !sqlite3Isdigit(zNum[0]) ) return 0;
drh935f2e72015-04-18 04:45:00 +0000831 while( zNum[0]=='0' ) zNum++;
drhc81c11f2009-11-10 01:30:52 +0000832 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
833 v = v*10 + c;
834 }
835
836 /* The longest decimal representation of a 32 bit integer is 10 digits:
837 **
838 ** 1234567890
839 ** 2^31 -> 2147483648
840 */
drh44dbca82010-01-13 04:22:20 +0000841 testcase( i==10 );
drhc81c11f2009-11-10 01:30:52 +0000842 if( i>10 ){
843 return 0;
844 }
drh44dbca82010-01-13 04:22:20 +0000845 testcase( v-neg==2147483647 );
drhc81c11f2009-11-10 01:30:52 +0000846 if( v-neg>2147483647 ){
847 return 0;
848 }
849 if( neg ){
850 v = -v;
851 }
852 *pValue = (int)v;
853 return 1;
854}
855
856/*
drh60ac3f42010-11-23 18:59:27 +0000857** Return a 32-bit integer value extracted from a string. If the
858** string is not an integer, just return 0.
859*/
860int sqlite3Atoi(const char *z){
861 int x = 0;
862 if( z ) sqlite3GetInt32(z, &x);
863 return x;
864}
865
866/*
drhabc38152020-07-22 13:38:04 +0000867** Try to convert z into an unsigned 32-bit integer. Return true on
868** success and false if there is an error.
869**
870** Only decimal notation is accepted.
871*/
872int sqlite3GetUInt32(const char *z, u32 *pI){
873 u64 v = 0;
874 int i;
875 for(i=0; sqlite3Isdigit(z[i]); i++){
876 v = v*10 + z[i] - '0';
drh69306bf2020-07-22 20:12:10 +0000877 if( v>4294967296LL ){ *pI = 0; return 0; }
drhabc38152020-07-22 13:38:04 +0000878 }
drh69306bf2020-07-22 20:12:10 +0000879 if( i==0 || z[i]!=0 ){ *pI = 0; return 0; }
drhabc38152020-07-22 13:38:04 +0000880 *pI = (u32)v;
881 return 1;
882}
883
884/*
drhc81c11f2009-11-10 01:30:52 +0000885** The variable-length integer encoding is as follows:
886**
887** KEY:
888** A = 0xxxxxxx 7 bits of data and one flag bit
889** B = 1xxxxxxx 7 bits of data and one flag bit
890** C = xxxxxxxx 8 bits of data
891**
892** 7 bits - A
893** 14 bits - BA
894** 21 bits - BBA
895** 28 bits - BBBA
896** 35 bits - BBBBA
897** 42 bits - BBBBBA
898** 49 bits - BBBBBBA
899** 56 bits - BBBBBBBA
900** 64 bits - BBBBBBBBC
901*/
902
903/*
904** Write a 64-bit variable-length integer to memory starting at p[0].
905** The length of data write will be between 1 and 9 bytes. The number
906** of bytes written is returned.
907**
908** A variable-length integer consists of the lower 7 bits of each byte
909** for all bytes that have the 8th bit set and one byte with the 8th
910** bit clear. Except, if we get to the 9th byte, it stores the full
911** 8 bits and is the last byte.
912*/
drh2f2b2b82014-08-22 18:48:25 +0000913static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
drhc81c11f2009-11-10 01:30:52 +0000914 int i, j, n;
915 u8 buf[10];
916 if( v & (((u64)0xff000000)<<32) ){
917 p[8] = (u8)v;
918 v >>= 8;
919 for(i=7; i>=0; i--){
920 p[i] = (u8)((v & 0x7f) | 0x80);
921 v >>= 7;
922 }
923 return 9;
924 }
925 n = 0;
926 do{
927 buf[n++] = (u8)((v & 0x7f) | 0x80);
928 v >>= 7;
929 }while( v!=0 );
930 buf[0] &= 0x7f;
931 assert( n<=9 );
932 for(i=0, j=n-1; j>=0; j--, i++){
933 p[i] = buf[j];
934 }
935 return n;
936}
drh2f2b2b82014-08-22 18:48:25 +0000937int sqlite3PutVarint(unsigned char *p, u64 v){
938 if( v<=0x7f ){
939 p[0] = v&0x7f;
drhc81c11f2009-11-10 01:30:52 +0000940 return 1;
941 }
drh2f2b2b82014-08-22 18:48:25 +0000942 if( v<=0x3fff ){
943 p[0] = ((v>>7)&0x7f)|0x80;
944 p[1] = v&0x7f;
drhc81c11f2009-11-10 01:30:52 +0000945 return 2;
946 }
drh2f2b2b82014-08-22 18:48:25 +0000947 return putVarint64(p,v);
drhc81c11f2009-11-10 01:30:52 +0000948}
949
950/*
drh0b2864c2010-03-03 15:18:38 +0000951** Bitmasks used by sqlite3GetVarint(). These precomputed constants
952** are defined here rather than simply putting the constant expressions
953** inline in order to work around bugs in the RVT compiler.
954**
955** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
956**
957** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
958*/
959#define SLOT_2_0 0x001fc07f
960#define SLOT_4_2_0 0xf01fc07f
961
962
963/*
drhc81c11f2009-11-10 01:30:52 +0000964** Read a 64-bit variable-length integer from memory starting at p[0].
965** Return the number of bytes read. The value is stored in *v.
966*/
967u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
968 u32 a,b,s;
969
drh698c86f2019-04-17 12:07:08 +0000970 if( ((signed char*)p)[0]>=0 ){
971 *v = *p;
drhc81c11f2009-11-10 01:30:52 +0000972 return 1;
973 }
drh698c86f2019-04-17 12:07:08 +0000974 if( ((signed char*)p)[1]>=0 ){
975 *v = ((u32)(p[0]&0x7f)<<7) | p[1];
drhc81c11f2009-11-10 01:30:52 +0000976 return 2;
977 }
978
drh0b2864c2010-03-03 15:18:38 +0000979 /* Verify that constants are precomputed correctly */
980 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
shaneh1da207e2010-03-09 14:41:12 +0000981 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
drh0b2864c2010-03-03 15:18:38 +0000982
drh698c86f2019-04-17 12:07:08 +0000983 a = ((u32)p[0])<<14;
984 b = p[1];
985 p += 2;
drhc81c11f2009-11-10 01:30:52 +0000986 a |= *p;
987 /* a: p0<<14 | p2 (unmasked) */
988 if (!(a&0x80))
989 {
drh0b2864c2010-03-03 15:18:38 +0000990 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000991 b &= 0x7f;
992 b = b<<7;
993 a |= b;
994 *v = a;
995 return 3;
996 }
997
998 /* CSE1 from below */
drh0b2864c2010-03-03 15:18:38 +0000999 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001000 p++;
1001 b = b<<14;
1002 b |= *p;
1003 /* b: p1<<14 | p3 (unmasked) */
1004 if (!(b&0x80))
1005 {
drh0b2864c2010-03-03 15:18:38 +00001006 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001007 /* moved CSE1 up */
1008 /* a &= (0x7f<<14)|(0x7f); */
1009 a = a<<7;
1010 a |= b;
1011 *v = a;
1012 return 4;
1013 }
1014
1015 /* a: p0<<14 | p2 (masked) */
1016 /* b: p1<<14 | p3 (unmasked) */
1017 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1018 /* moved CSE1 up */
1019 /* a &= (0x7f<<14)|(0x7f); */
drh0b2864c2010-03-03 15:18:38 +00001020 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001021 s = a;
1022 /* s: p0<<14 | p2 (masked) */
1023
1024 p++;
1025 a = a<<14;
1026 a |= *p;
1027 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1028 if (!(a&0x80))
1029 {
drh62aaa6c2015-11-21 17:27:42 +00001030 /* we can skip these cause they were (effectively) done above
1031 ** while calculating s */
drhc81c11f2009-11-10 01:30:52 +00001032 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1033 /* b &= (0x7f<<14)|(0x7f); */
1034 b = b<<7;
1035 a |= b;
1036 s = s>>18;
1037 *v = ((u64)s)<<32 | a;
1038 return 5;
1039 }
1040
1041 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1042 s = s<<7;
1043 s |= b;
1044 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1045
1046 p++;
1047 b = b<<14;
1048 b |= *p;
1049 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
1050 if (!(b&0x80))
1051 {
1052 /* we can skip this cause it was (effectively) done above in calc'ing s */
1053 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
drh0b2864c2010-03-03 15:18:38 +00001054 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001055 a = a<<7;
1056 a |= b;
1057 s = s>>18;
1058 *v = ((u64)s)<<32 | a;
1059 return 6;
1060 }
1061
1062 p++;
1063 a = a<<14;
1064 a |= *p;
1065 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1066 if (!(a&0x80))
1067 {
drh0b2864c2010-03-03 15:18:38 +00001068 a &= SLOT_4_2_0;
1069 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001070 b = b<<7;
1071 a |= b;
1072 s = s>>11;
1073 *v = ((u64)s)<<32 | a;
1074 return 7;
1075 }
1076
1077 /* CSE2 from below */
drh0b2864c2010-03-03 15:18:38 +00001078 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001079 p++;
1080 b = b<<14;
1081 b |= *p;
1082 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1083 if (!(b&0x80))
1084 {
drh0b2864c2010-03-03 15:18:38 +00001085 b &= SLOT_4_2_0;
drhc81c11f2009-11-10 01:30:52 +00001086 /* moved CSE2 up */
1087 /* a &= (0x7f<<14)|(0x7f); */
1088 a = a<<7;
1089 a |= b;
1090 s = s>>4;
1091 *v = ((u64)s)<<32 | a;
1092 return 8;
1093 }
1094
1095 p++;
1096 a = a<<15;
1097 a |= *p;
1098 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1099
1100 /* moved CSE2 up */
1101 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
drh0b2864c2010-03-03 15:18:38 +00001102 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001103 b = b<<8;
1104 a |= b;
1105
1106 s = s<<4;
1107 b = p[-4];
1108 b &= 0x7f;
1109 b = b>>3;
1110 s |= b;
1111
1112 *v = ((u64)s)<<32 | a;
1113
1114 return 9;
1115}
1116
1117/*
1118** Read a 32-bit variable-length integer from memory starting at p[0].
1119** Return the number of bytes read. The value is stored in *v.
1120**
1121** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1122** integer, then set *v to 0xffffffff.
1123**
1124** A MACRO version, getVarint32, is provided which inlines the
1125** single-byte case. All code should use the MACRO version as
1126** this function assumes the single-byte case has already been handled.
1127*/
1128u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1129 u32 a,b;
1130
1131 /* The 1-byte case. Overwhelmingly the most common. Handled inline
1132 ** by the getVarin32() macro */
1133 a = *p;
1134 /* a: p0 (unmasked) */
1135#ifndef getVarint32
1136 if (!(a&0x80))
1137 {
1138 /* Values between 0 and 127 */
1139 *v = a;
1140 return 1;
1141 }
1142#endif
1143
1144 /* The 2-byte case */
1145 p++;
1146 b = *p;
1147 /* b: p1 (unmasked) */
1148 if (!(b&0x80))
1149 {
1150 /* Values between 128 and 16383 */
1151 a &= 0x7f;
1152 a = a<<7;
1153 *v = a | b;
1154 return 2;
1155 }
1156
1157 /* The 3-byte case */
1158 p++;
1159 a = a<<14;
1160 a |= *p;
1161 /* a: p0<<14 | p2 (unmasked) */
1162 if (!(a&0x80))
1163 {
1164 /* Values between 16384 and 2097151 */
1165 a &= (0x7f<<14)|(0x7f);
1166 b &= 0x7f;
1167 b = b<<7;
1168 *v = a | b;
1169 return 3;
1170 }
1171
1172 /* A 32-bit varint is used to store size information in btrees.
1173 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1174 ** A 3-byte varint is sufficient, for example, to record the size
1175 ** of a 1048569-byte BLOB or string.
1176 **
1177 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
1178 ** rare larger cases can be handled by the slower 64-bit varint
1179 ** routine.
1180 */
1181#if 1
1182 {
1183 u64 v64;
1184 u8 n;
1185
drh15cedda2020-07-02 17:05:11 +00001186 n = sqlite3GetVarint(p-2, &v64);
drhc81c11f2009-11-10 01:30:52 +00001187 assert( n>3 && n<=9 );
1188 if( (v64 & SQLITE_MAX_U32)!=v64 ){
1189 *v = 0xffffffff;
1190 }else{
1191 *v = (u32)v64;
1192 }
1193 return n;
1194 }
1195
1196#else
1197 /* For following code (kept for historical record only) shows an
1198 ** unrolling for the 3- and 4-byte varint cases. This code is
1199 ** slightly faster, but it is also larger and much harder to test.
1200 */
1201 p++;
1202 b = b<<14;
1203 b |= *p;
1204 /* b: p1<<14 | p3 (unmasked) */
1205 if (!(b&0x80))
1206 {
1207 /* Values between 2097152 and 268435455 */
1208 b &= (0x7f<<14)|(0x7f);
1209 a &= (0x7f<<14)|(0x7f);
1210 a = a<<7;
1211 *v = a | b;
1212 return 4;
1213 }
1214
1215 p++;
1216 a = a<<14;
1217 a |= *p;
1218 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1219 if (!(a&0x80))
1220 {
dan3bbe7612010-03-03 16:02:05 +00001221 /* Values between 268435456 and 34359738367 */
1222 a &= SLOT_4_2_0;
1223 b &= SLOT_4_2_0;
drhc81c11f2009-11-10 01:30:52 +00001224 b = b<<7;
1225 *v = a | b;
1226 return 5;
1227 }
1228
1229 /* We can only reach this point when reading a corrupt database
1230 ** file. In that case we are not in any hurry. Use the (relatively
1231 ** slow) general-purpose sqlite3GetVarint() routine to extract the
1232 ** value. */
1233 {
1234 u64 v64;
1235 u8 n;
1236
1237 p -= 4;
1238 n = sqlite3GetVarint(p, &v64);
1239 assert( n>5 && n<=9 );
1240 *v = (u32)v64;
1241 return n;
1242 }
1243#endif
1244}
1245
1246/*
1247** Return the number of bytes that will be needed to store the given
1248** 64-bit integer.
1249*/
1250int sqlite3VarintLen(u64 v){
drh59a53642015-09-01 22:29:07 +00001251 int i;
drh6f17c092016-03-04 21:18:09 +00001252 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
drhc81c11f2009-11-10 01:30:52 +00001253 return i;
1254}
1255
1256
1257/*
1258** Read or write a four-byte big-endian integer value.
1259*/
1260u32 sqlite3Get4byte(const u8 *p){
drh5372e4d2015-06-30 12:47:09 +00001261#if SQLITE_BYTEORDER==4321
1262 u32 x;
1263 memcpy(&x,p,4);
1264 return x;
drhdc5ece82017-02-15 15:09:09 +00001265#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
drh5372e4d2015-06-30 12:47:09 +00001266 u32 x;
1267 memcpy(&x,p,4);
1268 return __builtin_bswap32(x);
drha39284b2017-02-09 17:12:22 +00001269#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
mistachkin647ca462015-06-30 17:28:40 +00001270 u32 x;
1271 memcpy(&x,p,4);
1272 return _byteswap_ulong(x);
drh5372e4d2015-06-30 12:47:09 +00001273#else
drh693e6712014-01-24 22:58:00 +00001274 testcase( p[0]&0x80 );
1275 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
drh5372e4d2015-06-30 12:47:09 +00001276#endif
drhc81c11f2009-11-10 01:30:52 +00001277}
1278void sqlite3Put4byte(unsigned char *p, u32 v){
drh5372e4d2015-06-30 12:47:09 +00001279#if SQLITE_BYTEORDER==4321
1280 memcpy(p,&v,4);
drhdc5ece82017-02-15 15:09:09 +00001281#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
drh5372e4d2015-06-30 12:47:09 +00001282 u32 x = __builtin_bswap32(v);
1283 memcpy(p,&x,4);
drha39284b2017-02-09 17:12:22 +00001284#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
mistachkin647ca462015-06-30 17:28:40 +00001285 u32 x = _byteswap_ulong(v);
1286 memcpy(p,&x,4);
drh5372e4d2015-06-30 12:47:09 +00001287#else
drhc81c11f2009-11-10 01:30:52 +00001288 p[0] = (u8)(v>>24);
1289 p[1] = (u8)(v>>16);
1290 p[2] = (u8)(v>>8);
1291 p[3] = (u8)v;
drh5372e4d2015-06-30 12:47:09 +00001292#endif
drhc81c11f2009-11-10 01:30:52 +00001293}
1294
drh9296c182014-07-23 13:40:49 +00001295
1296
1297/*
1298** Translate a single byte of Hex into an integer.
1299** This routine only works if h really is a valid hexadecimal
1300** character: 0..9a..fA..F
1301*/
1302u8 sqlite3HexToInt(int h){
1303 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
1304#ifdef SQLITE_ASCII
1305 h += 9*(1&(h>>6));
1306#endif
1307#ifdef SQLITE_EBCDIC
1308 h += 9*(1&~(h>>4));
1309#endif
1310 return (u8)(h & 0xf);
1311}
1312
drhb48c0d52020-02-07 01:12:53 +00001313#if !defined(SQLITE_OMIT_BLOB_LITERAL)
drhc81c11f2009-11-10 01:30:52 +00001314/*
1315** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1316** value. Return a pointer to its binary value. Space to hold the
1317** binary value has been obtained from malloc and must be freed by
1318** the calling routine.
1319*/
1320void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1321 char *zBlob;
1322 int i;
1323
drh575fad62016-02-05 13:38:36 +00001324 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
drhc81c11f2009-11-10 01:30:52 +00001325 n--;
1326 if( zBlob ){
1327 for(i=0; i<n; i+=2){
dancd74b612011-04-22 19:37:32 +00001328 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
drhc81c11f2009-11-10 01:30:52 +00001329 }
1330 zBlob[i/2] = 0;
1331 }
1332 return zBlob;
1333}
drhb48c0d52020-02-07 01:12:53 +00001334#endif /* !SQLITE_OMIT_BLOB_LITERAL */
drhc81c11f2009-11-10 01:30:52 +00001335
drh413c3d32010-02-23 20:11:56 +00001336/*
1337** Log an error that is an API call on a connection pointer that should
1338** not have been used. The "type" of connection pointer is given as the
1339** argument. The zType is a word like "NULL" or "closed" or "invalid".
1340*/
1341static void logBadConnection(const char *zType){
1342 sqlite3_log(SQLITE_MISUSE,
1343 "API call with %s database connection pointer",
1344 zType
1345 );
1346}
drhc81c11f2009-11-10 01:30:52 +00001347
1348/*
drhc81c11f2009-11-10 01:30:52 +00001349** Check to make sure we have a valid db pointer. This test is not
1350** foolproof but it does provide some measure of protection against
1351** misuse of the interface such as passing in db pointers that are
1352** NULL or which have been previously closed. If this routine returns
1353** 1 it means that the db pointer is valid and 0 if it should not be
1354** dereferenced for any reason. The calling function should invoke
1355** SQLITE_MISUSE immediately.
1356**
1357** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1358** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1359** open properly and is not fit for general use but which can be
1360** used as an argument to sqlite3_errmsg() or sqlite3_close().
1361*/
1362int sqlite3SafetyCheckOk(sqlite3 *db){
1363 u32 magic;
drh413c3d32010-02-23 20:11:56 +00001364 if( db==0 ){
1365 logBadConnection("NULL");
1366 return 0;
1367 }
drhc81c11f2009-11-10 01:30:52 +00001368 magic = db->magic;
drh9978c972010-02-23 17:36:32 +00001369 if( magic!=SQLITE_MAGIC_OPEN ){
drhe294da02010-02-25 23:44:15 +00001370 if( sqlite3SafetyCheckSickOrOk(db) ){
1371 testcase( sqlite3GlobalConfig.xLog!=0 );
drh413c3d32010-02-23 20:11:56 +00001372 logBadConnection("unopened");
1373 }
drhc81c11f2009-11-10 01:30:52 +00001374 return 0;
1375 }else{
1376 return 1;
1377 }
1378}
1379int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1380 u32 magic;
1381 magic = db->magic;
1382 if( magic!=SQLITE_MAGIC_SICK &&
1383 magic!=SQLITE_MAGIC_OPEN &&
drh413c3d32010-02-23 20:11:56 +00001384 magic!=SQLITE_MAGIC_BUSY ){
drhe294da02010-02-25 23:44:15 +00001385 testcase( sqlite3GlobalConfig.xLog!=0 );
drhaf46dc12010-02-24 21:44:07 +00001386 logBadConnection("invalid");
drh413c3d32010-02-23 20:11:56 +00001387 return 0;
1388 }else{
1389 return 1;
1390 }
drhc81c11f2009-11-10 01:30:52 +00001391}
drh158b9cb2011-03-05 20:59:46 +00001392
1393/*
1394** Attempt to add, substract, or multiply the 64-bit signed value iB against
1395** the other 64-bit signed integer at *pA and store the result in *pA.
1396** Return 0 on success. Or if the operation would have resulted in an
1397** overflow, leave *pA unchanged and return 1.
1398*/
1399int sqlite3AddInt64(i64 *pA, i64 iB){
drhb9772e72017-09-12 13:27:43 +00001400#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
drh4a477612017-01-03 17:33:43 +00001401 return __builtin_add_overflow(*pA, iB, pA);
1402#else
drh158b9cb2011-03-05 20:59:46 +00001403 i64 iA = *pA;
1404 testcase( iA==0 ); testcase( iA==1 );
1405 testcase( iB==-1 ); testcase( iB==0 );
1406 if( iB>=0 ){
1407 testcase( iA>0 && LARGEST_INT64 - iA == iB );
1408 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1409 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
drh158b9cb2011-03-05 20:59:46 +00001410 }else{
1411 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1412 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1413 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
drh158b9cb2011-03-05 20:59:46 +00001414 }
drh53a6eb32014-02-10 12:59:15 +00001415 *pA += iB;
drh158b9cb2011-03-05 20:59:46 +00001416 return 0;
drh4a477612017-01-03 17:33:43 +00001417#endif
drh158b9cb2011-03-05 20:59:46 +00001418}
1419int sqlite3SubInt64(i64 *pA, i64 iB){
drhb9772e72017-09-12 13:27:43 +00001420#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
drh4a477612017-01-03 17:33:43 +00001421 return __builtin_sub_overflow(*pA, iB, pA);
1422#else
drh158b9cb2011-03-05 20:59:46 +00001423 testcase( iB==SMALLEST_INT64+1 );
1424 if( iB==SMALLEST_INT64 ){
1425 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1426 if( (*pA)>=0 ) return 1;
1427 *pA -= iB;
1428 return 0;
1429 }else{
1430 return sqlite3AddInt64(pA, -iB);
1431 }
drh4a477612017-01-03 17:33:43 +00001432#endif
drh158b9cb2011-03-05 20:59:46 +00001433}
drh158b9cb2011-03-05 20:59:46 +00001434int sqlite3MulInt64(i64 *pA, i64 iB){
drhb9772e72017-09-12 13:27:43 +00001435#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
drh4a477612017-01-03 17:33:43 +00001436 return __builtin_mul_overflow(*pA, iB, pA);
1437#else
drh158b9cb2011-03-05 20:59:46 +00001438 i64 iA = *pA;
drh09952c62016-09-20 22:04:05 +00001439 if( iB>0 ){
1440 if( iA>LARGEST_INT64/iB ) return 1;
1441 if( iA<SMALLEST_INT64/iB ) return 1;
1442 }else if( iB<0 ){
1443 if( iA>0 ){
1444 if( iB<SMALLEST_INT64/iA ) return 1;
1445 }else if( iA<0 ){
1446 if( iB==SMALLEST_INT64 ) return 1;
1447 if( iA==SMALLEST_INT64 ) return 1;
1448 if( -iA>LARGEST_INT64/-iB ) return 1;
drh53a6eb32014-02-10 12:59:15 +00001449 }
drh53a6eb32014-02-10 12:59:15 +00001450 }
drh09952c62016-09-20 22:04:05 +00001451 *pA = iA*iB;
drh158b9cb2011-03-05 20:59:46 +00001452 return 0;
drh4a477612017-01-03 17:33:43 +00001453#endif
drh158b9cb2011-03-05 20:59:46 +00001454}
drhd50ffc42011-03-08 02:38:28 +00001455
1456/*
1457** Compute the absolute value of a 32-bit signed integer, of possible. Or
1458** if the integer has a value of -2147483648, return +2147483647
1459*/
1460int sqlite3AbsInt32(int x){
1461 if( x>=0 ) return x;
drh87e79ae2011-03-08 13:06:41 +00001462 if( x==(int)0x80000000 ) return 0x7fffffff;
drhd50ffc42011-03-08 02:38:28 +00001463 return -x;
1464}
drh81cc5162011-05-17 20:36:21 +00001465
1466#ifdef SQLITE_ENABLE_8_3_NAMES
1467/*
drhb51bf432011-07-21 21:29:35 +00001468** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
drh81cc5162011-05-17 20:36:21 +00001469** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1470** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1471** three characters, then shorten the suffix on z[] to be the last three
1472** characters of the original suffix.
1473**
drhb51bf432011-07-21 21:29:35 +00001474** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1475** do the suffix shortening regardless of URI parameter.
1476**
drh81cc5162011-05-17 20:36:21 +00001477** Examples:
1478**
1479** test.db-journal => test.nal
1480** test.db-wal => test.wal
1481** test.db-shm => test.shm
drhf5808602011-12-16 00:33:04 +00001482** test.db-mj7f3319fa => test.9fa
drh81cc5162011-05-17 20:36:21 +00001483*/
1484void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
drhb51bf432011-07-21 21:29:35 +00001485#if SQLITE_ENABLE_8_3_NAMES<2
drh7d39e172012-01-02 12:41:53 +00001486 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
drhb51bf432011-07-21 21:29:35 +00001487#endif
1488 {
drh81cc5162011-05-17 20:36:21 +00001489 int i, sz;
1490 sz = sqlite3Strlen30(z);
drhc83f2d42011-05-18 02:41:10 +00001491 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
drhc02a43a2012-01-10 23:18:38 +00001492 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
drh81cc5162011-05-17 20:36:21 +00001493 }
1494}
1495#endif
drhbf539c42013-10-05 18:16:02 +00001496
1497/*
1498** Find (an approximate) sum of two LogEst values. This computation is
1499** not a simple "+" operator because LogEst is stored as a logarithmic
1500** value.
1501**
1502*/
1503LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1504 static const unsigned char x[] = {
1505 10, 10, /* 0,1 */
1506 9, 9, /* 2,3 */
1507 8, 8, /* 4,5 */
1508 7, 7, 7, /* 6,7,8 */
1509 6, 6, 6, /* 9,10,11 */
1510 5, 5, 5, /* 12-14 */
1511 4, 4, 4, 4, /* 15-18 */
1512 3, 3, 3, 3, 3, 3, /* 19-24 */
1513 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1514 };
1515 if( a>=b ){
1516 if( a>b+49 ) return a;
1517 if( a>b+31 ) return a+1;
1518 return a+x[a-b];
1519 }else{
1520 if( b>a+49 ) return b;
1521 if( b>a+31 ) return b+1;
1522 return b+x[b-a];
1523 }
1524}
1525
1526/*
drh224155d2014-04-30 13:19:09 +00001527** Convert an integer into a LogEst. In other words, compute an
1528** approximation for 10*log2(x).
drhbf539c42013-10-05 18:16:02 +00001529*/
1530LogEst sqlite3LogEst(u64 x){
1531 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1532 LogEst y = 40;
1533 if( x<8 ){
1534 if( x<2 ) return 0;
1535 while( x<8 ){ y -= 10; x <<= 1; }
1536 }else{
drhceb4b1d2017-08-17 20:53:07 +00001537#if GCC_VERSION>=5004000
1538 int i = 60 - __builtin_clzll(x);
1539 y += i*10;
1540 x >>= i;
1541#else
drh75ab50c2016-04-28 14:15:12 +00001542 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/
drhbf539c42013-10-05 18:16:02 +00001543 while( x>15 ){ y += 10; x >>= 1; }
drhceb4b1d2017-08-17 20:53:07 +00001544#endif
drhbf539c42013-10-05 18:16:02 +00001545 }
1546 return a[x&7] + y - 10;
1547}
1548
1549#ifndef SQLITE_OMIT_VIRTUALTABLE
1550/*
1551** Convert a double into a LogEst
1552** In other words, compute an approximation for 10*log2(x).
1553*/
1554LogEst sqlite3LogEstFromDouble(double x){
1555 u64 a;
1556 LogEst e;
1557 assert( sizeof(x)==8 && sizeof(a)==8 );
1558 if( x<=1 ) return 0;
1559 if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1560 memcpy(&a, &x, 8);
1561 e = (a>>52) - 1022;
1562 return e*10;
1563}
1564#endif /* SQLITE_OMIT_VIRTUALTABLE */
1565
drh14bfd992016-03-05 14:00:09 +00001566#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
drh175b8f02019-08-08 15:24:17 +00001567 defined(SQLITE_ENABLE_STAT4) || \
drhd566c952016-02-25 21:19:03 +00001568 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
drhbf539c42013-10-05 18:16:02 +00001569/*
1570** Convert a LogEst into an integer.
drhd566c952016-02-25 21:19:03 +00001571**
1572** Note that this routine is only used when one or more of various
1573** non-standard compile-time options is enabled.
drhbf539c42013-10-05 18:16:02 +00001574*/
1575u64 sqlite3LogEstToInt(LogEst x){
1576 u64 n;
drhbf539c42013-10-05 18:16:02 +00001577 n = x%10;
1578 x /= 10;
1579 if( n>=5 ) n -= 2;
1580 else if( n>=1 ) n -= 1;
drhecdf20d2016-03-10 14:28:24 +00001581#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1582 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1583 if( x>60 ) return (u64)LARGEST_INT64;
1584#else
drh175b8f02019-08-08 15:24:17 +00001585 /* If only SQLITE_ENABLE_STAT4 is on, then the largest input
drhecdf20d2016-03-10 14:28:24 +00001586 ** possible to this routine is 310, resulting in a maximum x of 31 */
1587 assert( x<=60 );
1588#endif
1589 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
drhbf539c42013-10-05 18:16:02 +00001590}
drhd566c952016-02-25 21:19:03 +00001591#endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */
drh9bf755c2016-12-23 03:59:31 +00001592
1593/*
1594** Add a new name/number pair to a VList. This might require that the
1595** VList object be reallocated, so return the new VList. If an OOM
drhce1bbe52016-12-23 13:52:45 +00001596** error occurs, the original VList returned and the
drh9bf755c2016-12-23 03:59:31 +00001597** db->mallocFailed flag is set.
1598**
1599** A VList is really just an array of integers. To destroy a VList,
1600** simply pass it to sqlite3DbFree().
1601**
1602** The first integer is the number of integers allocated for the whole
1603** VList. The second integer is the number of integers actually used.
1604** Each name/number pair is encoded by subsequent groups of 3 or more
1605** integers.
1606**
drhce1bbe52016-12-23 13:52:45 +00001607** Each name/number pair starts with two integers which are the numeric
drh9bf755c2016-12-23 03:59:31 +00001608** value for the pair and the size of the name/number pair, respectively.
1609** The text name overlays one or more following integers. The text name
1610** is always zero-terminated.
drhce1bbe52016-12-23 13:52:45 +00001611**
1612** Conceptually:
1613**
1614** struct VList {
1615** int nAlloc; // Number of allocated slots
1616** int nUsed; // Number of used slots
1617** struct VListEntry {
1618** int iValue; // Value for this entry
1619** int nSlot; // Slots used by this entry
1620** // ... variable name goes here
1621** } a[0];
1622** }
1623**
1624** During code generation, pointers to the variable names within the
1625** VList are taken. When that happens, nAlloc is set to zero as an
1626** indication that the VList may never again be enlarged, since the
1627** accompanying realloc() would invalidate the pointers.
drh9bf755c2016-12-23 03:59:31 +00001628*/
1629VList *sqlite3VListAdd(
1630 sqlite3 *db, /* The database connection used for malloc() */
1631 VList *pIn, /* The input VList. Might be NULL */
1632 const char *zName, /* Name of symbol to add */
1633 int nName, /* Bytes of text in zName */
1634 int iVal /* Value to associate with zName */
1635){
1636 int nInt; /* number of sizeof(int) objects needed for zName */
drhce1bbe52016-12-23 13:52:45 +00001637 char *z; /* Pointer to where zName will be stored */
1638 int i; /* Index in pIn[] where zName is stored */
drh9bf755c2016-12-23 03:59:31 +00001639
1640 nInt = nName/4 + 3;
drhce1bbe52016-12-23 13:52:45 +00001641 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */
drh9bf755c2016-12-23 03:59:31 +00001642 if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1643 /* Enlarge the allocation */
drh0aa32312019-04-13 04:01:12 +00001644 sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt;
drh9bf755c2016-12-23 03:59:31 +00001645 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
drhce1bbe52016-12-23 13:52:45 +00001646 if( pOut==0 ) return pIn;
drh9bf755c2016-12-23 03:59:31 +00001647 if( pIn==0 ) pOut[1] = 2;
1648 pIn = pOut;
1649 pIn[0] = nAlloc;
1650 }
1651 i = pIn[1];
1652 pIn[i] = iVal;
1653 pIn[i+1] = nInt;
1654 z = (char*)&pIn[i+2];
1655 pIn[1] = i+nInt;
1656 assert( pIn[1]<=pIn[0] );
1657 memcpy(z, zName, nName);
1658 z[nName] = 0;
1659 return pIn;
1660}
1661
1662/*
1663** Return a pointer to the name of a variable in the given VList that
1664** has the value iVal. Or return a NULL if there is no such variable in
1665** the list
1666*/
1667const char *sqlite3VListNumToName(VList *pIn, int iVal){
1668 int i, mx;
1669 if( pIn==0 ) return 0;
1670 mx = pIn[1];
1671 i = 2;
1672 do{
1673 if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1674 i += pIn[i+1];
1675 }while( i<mx );
1676 return 0;
1677}
1678
1679/*
1680** Return the number of the variable named zName, if it is in VList.
1681** or return 0 if there is no such variable.
1682*/
1683int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1684 int i, mx;
1685 if( pIn==0 ) return 0;
1686 mx = pIn[1];
1687 i = 2;
1688 do{
1689 const char *z = (const char*)&pIn[i+2];
1690 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1691 i += pIn[i+1];
1692 }while( i<mx );
1693 return 0;
1694}