blob: 37b585b2ea2ed5c3575c656764bf6fbfd62cbfde [file] [log] [blame]
drhc81c11f2009-11-10 01:30:52 +00001/*
2** 2001 September 15
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** Utility functions used throughout sqlite.
13**
14** This file contains functions for allocating memory, comparing
15** strings, and stuff like that.
16**
17*/
18#include "sqliteInt.h"
19#include <stdarg.h>
drh0ede9eb2015-01-10 16:49:23 +000020#if HAVE_ISNAN || SQLITE_HAVE_ISNAN
drhc81c11f2009-11-10 01:30:52 +000021# include <math.h>
22#endif
23
24/*
25** Routine needed to support the testcase() macro.
26*/
27#ifdef SQLITE_COVERAGE_TEST
28void sqlite3Coverage(int x){
drh68bf0672011-04-11 15:35:24 +000029 static unsigned dummy = 0;
30 dummy += (unsigned)x;
drhc81c11f2009-11-10 01:30:52 +000031}
32#endif
33
drhc007f612014-05-16 14:17:01 +000034/*
35** Give a callback to the test harness that can be used to simulate faults
36** in places where it is difficult or expensive to do so purely by means
37** of inputs.
38**
39** The intent of the integer argument is to let the fault simulator know
40** which of multiple sqlite3FaultSim() calls has been hit.
41**
42** Return whatever integer value the test callback returns, or return
43** SQLITE_OK if no test callback is installed.
44*/
45#ifndef SQLITE_OMIT_BUILTIN_TEST
46int sqlite3FaultSim(int iTest){
47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
48 return xCallback ? xCallback(iTest) : SQLITE_OK;
49}
50#endif
51
drh85c8f292010-01-13 17:39:53 +000052#ifndef SQLITE_OMIT_FLOATING_POINT
drhc81c11f2009-11-10 01:30:52 +000053/*
54** Return true if the floating point value is Not a Number (NaN).
55**
56** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
57** Otherwise, we have our own implementation that works on most systems.
58*/
59int sqlite3IsNaN(double x){
60 int rc; /* The value return */
drh0ede9eb2015-01-10 16:49:23 +000061#if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
drhc81c11f2009-11-10 01:30:52 +000062 /*
63 ** Systems that support the isnan() library function should probably
64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
65 ** found that many systems do not have a working isnan() function so
66 ** this implementation is provided as an alternative.
67 **
68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
69 ** On the other hand, the use of -ffast-math comes with the following
70 ** warning:
71 **
72 ** This option [-ffast-math] should never be turned on by any
73 ** -O option since it can result in incorrect output for programs
74 ** which depend on an exact implementation of IEEE or ISO
75 ** rules/specifications for math functions.
76 **
77 ** Under MSVC, this NaN test may fail if compiled with a floating-
78 ** point precision mode other than /fp:precise. From the MSDN
79 ** documentation:
80 **
81 ** The compiler [with /fp:precise] will properly handle comparisons
82 ** involving NaN. For example, x != x evaluates to true if x is NaN
83 ** ...
84 */
85#ifdef __FAST_MATH__
86# error SQLite will not work correctly with the -ffast-math option of GCC.
87#endif
88 volatile double y = x;
89 volatile double z = y;
90 rc = (y!=z);
drh0ede9eb2015-01-10 16:49:23 +000091#else /* if HAVE_ISNAN */
drhc81c11f2009-11-10 01:30:52 +000092 rc = isnan(x);
drh0ede9eb2015-01-10 16:49:23 +000093#endif /* HAVE_ISNAN */
drhc81c11f2009-11-10 01:30:52 +000094 testcase( rc );
95 return rc;
96}
drh85c8f292010-01-13 17:39:53 +000097#endif /* SQLITE_OMIT_FLOATING_POINT */
drhc81c11f2009-11-10 01:30:52 +000098
99/*
100** Compute a string length that is limited to what can be stored in
101** lower 30 bits of a 32-bit signed integer.
102**
103** The value returned will never be negative. Nor will it ever be greater
104** than the actual length of the string. For very long strings (greater
105** than 1GiB) the value returned might be less than the true string length.
106*/
107int sqlite3Strlen30(const char *z){
drhc81c11f2009-11-10 01:30:52 +0000108 if( z==0 ) return 0;
drh1116bf12015-06-30 03:18:33 +0000109 return 0x3fffffff & (int)strlen(z);
drhc81c11f2009-11-10 01:30:52 +0000110}
111
112/*
drh13f40da2014-08-22 18:00:11 +0000113** Set the current error code to err_code and clear any prior error message.
114*/
115void sqlite3Error(sqlite3 *db, int err_code){
116 assert( db!=0 );
117 db->errCode = err_code;
118 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
119}
120
121/*
drhc81c11f2009-11-10 01:30:52 +0000122** Set the most recent error code and error string for the sqlite
123** handle "db". The error code is set to "err_code".
124**
125** If it is not NULL, string zFormat specifies the format of the
126** error string in the style of the printf functions: The following
127** format characters are allowed:
128**
129** %s Insert a string
130** %z A string that should be freed after use
131** %d Insert an integer
132** %T Insert a token
133** %S Insert the first element of a SrcList
134**
135** zFormat and any string tokens that follow it are assumed to be
136** encoded in UTF-8.
137**
138** To clear the most recent error for sqlite handle "db", sqlite3Error
139** should be called with err_code set to SQLITE_OK and zFormat set
140** to NULL.
141*/
drh13f40da2014-08-22 18:00:11 +0000142void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
drha3cc0072013-12-13 16:23:55 +0000143 assert( db!=0 );
144 db->errCode = err_code;
drh13f40da2014-08-22 18:00:11 +0000145 if( zFormat==0 ){
146 sqlite3Error(db, err_code);
147 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
drha3cc0072013-12-13 16:23:55 +0000148 char *z;
149 va_list ap;
150 va_start(ap, zFormat);
151 z = sqlite3VMPrintf(db, zFormat, ap);
152 va_end(ap);
153 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
drhc81c11f2009-11-10 01:30:52 +0000154 }
155}
156
157/*
158** Add an error message to pParse->zErrMsg and increment pParse->nErr.
159** The following formatting characters are allowed:
160**
161** %s Insert a string
162** %z A string that should be freed after use
163** %d Insert an integer
164** %T Insert a token
165** %S Insert the first element of a SrcList
166**
drh13f40da2014-08-22 18:00:11 +0000167** This function should be used to report any error that occurs while
drhc81c11f2009-11-10 01:30:52 +0000168** compiling an SQL statement (i.e. within sqlite3_prepare()). The
169** last thing the sqlite3_prepare() function does is copy the error
170** stored by this function into the database handle using sqlite3Error().
drh13f40da2014-08-22 18:00:11 +0000171** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
172** during statement execution (sqlite3_step() etc.).
drhc81c11f2009-11-10 01:30:52 +0000173*/
174void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
drha7564662010-02-22 19:32:31 +0000175 char *zMsg;
drhc81c11f2009-11-10 01:30:52 +0000176 va_list ap;
177 sqlite3 *db = pParse->db;
drhc81c11f2009-11-10 01:30:52 +0000178 va_start(ap, zFormat);
drha7564662010-02-22 19:32:31 +0000179 zMsg = sqlite3VMPrintf(db, zFormat, ap);
drhc81c11f2009-11-10 01:30:52 +0000180 va_end(ap);
drha7564662010-02-22 19:32:31 +0000181 if( db->suppressErr ){
182 sqlite3DbFree(db, zMsg);
183 }else{
184 pParse->nErr++;
185 sqlite3DbFree(db, pParse->zErrMsg);
186 pParse->zErrMsg = zMsg;
187 pParse->rc = SQLITE_ERROR;
drha7564662010-02-22 19:32:31 +0000188 }
drhc81c11f2009-11-10 01:30:52 +0000189}
190
191/*
192** Convert an SQL-style quoted string into a normal string by removing
193** the quote characters. The conversion is done in-place. If the
194** input does not begin with a quote character, then this routine
195** is a no-op.
196**
197** The input string must be zero-terminated. A new zero-terminator
198** is added to the dequoted string.
199**
200** The return value is -1 if no dequoting occurs or the length of the
201** dequoted string, exclusive of the zero terminator, if dequoting does
202** occur.
203**
204** 2002-Feb-14: This routine is extended to remove MS-Access style
peter.d.reid60ec9142014-09-06 16:39:46 +0000205** brackets from around identifiers. For example: "[a-b-c]" becomes
drhc81c11f2009-11-10 01:30:52 +0000206** "a-b-c".
207*/
208int sqlite3Dequote(char *z){
209 char quote;
210 int i, j;
211 if( z==0 ) return -1;
212 quote = z[0];
213 switch( quote ){
214 case '\'': break;
215 case '"': break;
216 case '`': break; /* For MySQL compatibility */
217 case '[': quote = ']'; break; /* For MS SqlServer compatibility */
218 default: return -1;
219 }
drh9ccd8652013-09-13 16:36:46 +0000220 for(i=1, j=0;; i++){
221 assert( z[i] );
drhc81c11f2009-11-10 01:30:52 +0000222 if( z[i]==quote ){
223 if( z[i+1]==quote ){
224 z[j++] = quote;
225 i++;
226 }else{
227 break;
228 }
229 }else{
230 z[j++] = z[i];
231 }
232 }
233 z[j] = 0;
234 return j;
235}
236
drh40aced52016-01-22 17:48:09 +0000237/*
238** Generate a Token object from a string
239*/
240void sqlite3TokenInit(Token *p, char *z){
241 p->z = z;
242 p->n = sqlite3Strlen30(z);
243}
244
drhc81c11f2009-11-10 01:30:52 +0000245/* Convenient short-hand */
246#define UpperToLower sqlite3UpperToLower
247
248/*
249** Some systems have stricmp(). Others have strcasecmp(). Because
250** there is no consistency, we will define our own.
drh9f129f42010-08-31 15:27:32 +0000251**
drh0299b402012-03-19 17:42:46 +0000252** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
253** sqlite3_strnicmp() APIs allow applications and extensions to compare
254** the contents of two buffers containing UTF-8 strings in a
255** case-independent fashion, using the same definition of "case
256** independence" that SQLite uses internally when comparing identifiers.
drhc81c11f2009-11-10 01:30:52 +0000257*/
drh3fa97302012-02-22 16:58:36 +0000258int sqlite3_stricmp(const char *zLeft, const char *zRight){
drhc81c11f2009-11-10 01:30:52 +0000259 register unsigned char *a, *b;
drh9ca95732014-10-24 00:35:58 +0000260 if( zLeft==0 ){
261 return zRight ? -1 : 0;
262 }else if( zRight==0 ){
263 return 1;
264 }
drhc81c11f2009-11-10 01:30:52 +0000265 a = (unsigned char *)zLeft;
266 b = (unsigned char *)zRight;
267 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
268 return UpperToLower[*a] - UpperToLower[*b];
269}
270int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
271 register unsigned char *a, *b;
drh9ca95732014-10-24 00:35:58 +0000272 if( zLeft==0 ){
273 return zRight ? -1 : 0;
274 }else if( zRight==0 ){
275 return 1;
276 }
drhc81c11f2009-11-10 01:30:52 +0000277 a = (unsigned char *)zLeft;
278 b = (unsigned char *)zRight;
279 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
280 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
281}
282
283/*
drh9339da12010-09-30 00:50:49 +0000284** The string z[] is an text representation of a real number.
drh025586a2010-09-30 17:33:11 +0000285** Convert this string to a double and write it into *pResult.
drhc81c11f2009-11-10 01:30:52 +0000286**
drh9339da12010-09-30 00:50:49 +0000287** The string z[] is length bytes in length (bytes, not characters) and
288** uses the encoding enc. The string is not necessarily zero-terminated.
drhc81c11f2009-11-10 01:30:52 +0000289**
drh9339da12010-09-30 00:50:49 +0000290** Return TRUE if the result is a valid real number (or integer) and FALSE
drh025586a2010-09-30 17:33:11 +0000291** if the string is empty or contains extraneous text. Valid numbers
292** are in one of these formats:
293**
294** [+-]digits[E[+-]digits]
295** [+-]digits.[digits][E[+-]digits]
296** [+-].digits[E[+-]digits]
297**
298** Leading and trailing whitespace is ignored for the purpose of determining
299** validity.
300**
301** If some prefix of the input string is a valid number, this routine
302** returns FALSE but it still converts the prefix and writes the result
303** into *pResult.
drhc81c11f2009-11-10 01:30:52 +0000304*/
drh9339da12010-09-30 00:50:49 +0000305int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
drhc81c11f2009-11-10 01:30:52 +0000306#ifndef SQLITE_OMIT_FLOATING_POINT
drh0e5fba72013-03-20 12:04:29 +0000307 int incr;
drh9339da12010-09-30 00:50:49 +0000308 const char *zEnd = z + length;
drhc81c11f2009-11-10 01:30:52 +0000309 /* sign * significand * (10 ^ (esign * exponent)) */
drh025586a2010-09-30 17:33:11 +0000310 int sign = 1; /* sign of significand */
311 i64 s = 0; /* significand */
312 int d = 0; /* adjust exponent for shifting decimal point */
313 int esign = 1; /* sign of exponent */
314 int e = 0; /* exponent */
315 int eValid = 1; /* True exponent is either not used or is well-formed */
drhc81c11f2009-11-10 01:30:52 +0000316 double result;
317 int nDigits = 0;
drh0e5fba72013-03-20 12:04:29 +0000318 int nonNum = 0;
drhc81c11f2009-11-10 01:30:52 +0000319
drh0e5fba72013-03-20 12:04:29 +0000320 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
drh025586a2010-09-30 17:33:11 +0000321 *pResult = 0.0; /* Default return value, in case of an error */
322
drh0e5fba72013-03-20 12:04:29 +0000323 if( enc==SQLITE_UTF8 ){
324 incr = 1;
325 }else{
326 int i;
327 incr = 2;
328 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
329 for(i=3-enc; i<length && z[i]==0; i+=2){}
330 nonNum = i<length;
331 zEnd = z+i+enc-3;
332 z += (enc&1);
333 }
drh9339da12010-09-30 00:50:49 +0000334
drhc81c11f2009-11-10 01:30:52 +0000335 /* skip leading spaces */
drh9339da12010-09-30 00:50:49 +0000336 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
drh025586a2010-09-30 17:33:11 +0000337 if( z>=zEnd ) return 0;
drh9339da12010-09-30 00:50:49 +0000338
drhc81c11f2009-11-10 01:30:52 +0000339 /* get sign of significand */
340 if( *z=='-' ){
341 sign = -1;
drh9339da12010-09-30 00:50:49 +0000342 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000343 }else if( *z=='+' ){
drh9339da12010-09-30 00:50:49 +0000344 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000345 }
drh9339da12010-09-30 00:50:49 +0000346
drhc81c11f2009-11-10 01:30:52 +0000347 /* skip leading zeroes */
drh9339da12010-09-30 00:50:49 +0000348 while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;
drhc81c11f2009-11-10 01:30:52 +0000349
350 /* copy max significant digits to significand */
drh9339da12010-09-30 00:50:49 +0000351 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
drhc81c11f2009-11-10 01:30:52 +0000352 s = s*10 + (*z - '0');
drh9339da12010-09-30 00:50:49 +0000353 z+=incr, nDigits++;
drhc81c11f2009-11-10 01:30:52 +0000354 }
drh9339da12010-09-30 00:50:49 +0000355
drhc81c11f2009-11-10 01:30:52 +0000356 /* skip non-significant significand digits
357 ** (increase exponent by d to shift decimal left) */
drh9339da12010-09-30 00:50:49 +0000358 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++;
359 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000360
361 /* if decimal point is present */
362 if( *z=='.' ){
drh9339da12010-09-30 00:50:49 +0000363 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000364 /* copy digits from after decimal to significand
365 ** (decrease exponent by d to shift decimal right) */
drh9339da12010-09-30 00:50:49 +0000366 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
drhc81c11f2009-11-10 01:30:52 +0000367 s = s*10 + (*z - '0');
drh9339da12010-09-30 00:50:49 +0000368 z+=incr, nDigits++, d--;
drhc81c11f2009-11-10 01:30:52 +0000369 }
370 /* skip non-significant digits */
drh9339da12010-09-30 00:50:49 +0000371 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++;
drhc81c11f2009-11-10 01:30:52 +0000372 }
drh9339da12010-09-30 00:50:49 +0000373 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000374
375 /* if exponent is present */
376 if( *z=='e' || *z=='E' ){
drh9339da12010-09-30 00:50:49 +0000377 z+=incr;
drh025586a2010-09-30 17:33:11 +0000378 eValid = 0;
drh9339da12010-09-30 00:50:49 +0000379 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000380 /* get sign of exponent */
381 if( *z=='-' ){
382 esign = -1;
drh9339da12010-09-30 00:50:49 +0000383 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000384 }else if( *z=='+' ){
drh9339da12010-09-30 00:50:49 +0000385 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000386 }
387 /* copy digits to exponent */
drh9339da12010-09-30 00:50:49 +0000388 while( z<zEnd && sqlite3Isdigit(*z) ){
drh57db4a72011-10-17 20:41:46 +0000389 e = e<10000 ? (e*10 + (*z - '0')) : 10000;
drh9339da12010-09-30 00:50:49 +0000390 z+=incr;
drh025586a2010-09-30 17:33:11 +0000391 eValid = 1;
drhc81c11f2009-11-10 01:30:52 +0000392 }
393 }
394
drh025586a2010-09-30 17:33:11 +0000395 /* skip trailing spaces */
396 if( nDigits && eValid ){
397 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
398 }
399
drh9339da12010-09-30 00:50:49 +0000400do_atof_calc:
drhc81c11f2009-11-10 01:30:52 +0000401 /* adjust exponent by d, and update sign */
402 e = (e*esign) + d;
403 if( e<0 ) {
404 esign = -1;
405 e *= -1;
406 } else {
407 esign = 1;
408 }
409
410 /* if 0 significand */
411 if( !s ) {
412 /* In the IEEE 754 standard, zero is signed.
413 ** Add the sign if we've seen at least one digit */
414 result = (sign<0 && nDigits) ? -(double)0 : (double)0;
415 } else {
416 /* attempt to reduce exponent */
417 if( esign>0 ){
418 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
419 }else{
420 while( !(s%10) && e>0 ) e--,s/=10;
421 }
422
423 /* adjust the sign of significand */
424 s = sign<0 ? -s : s;
425
426 /* if exponent, scale significand as appropriate
427 ** and store in result. */
428 if( e ){
drh89f15082012-06-19 00:45:16 +0000429 LONGDOUBLE_TYPE scale = 1.0;
drhc81c11f2009-11-10 01:30:52 +0000430 /* attempt to handle extremely small/large numbers better */
431 if( e>307 && e<342 ){
432 while( e%308 ) { scale *= 1.0e+1; e -= 1; }
433 if( esign<0 ){
434 result = s / scale;
435 result /= 1.0e+308;
436 }else{
437 result = s * scale;
438 result *= 1.0e+308;
439 }
drh2458a2e2011-10-17 12:14:26 +0000440 }else if( e>=342 ){
441 if( esign<0 ){
442 result = 0.0*s;
443 }else{
444 result = 1e308*1e308*s; /* Infinity */
445 }
drhc81c11f2009-11-10 01:30:52 +0000446 }else{
447 /* 1.0e+22 is the largest power of 10 than can be
448 ** represented exactly. */
449 while( e%22 ) { scale *= 1.0e+1; e -= 1; }
450 while( e>0 ) { scale *= 1.0e+22; e -= 22; }
451 if( esign<0 ){
452 result = s / scale;
453 }else{
454 result = s * scale;
455 }
456 }
457 } else {
458 result = (double)s;
459 }
460 }
461
462 /* store the result */
463 *pResult = result;
464
drh025586a2010-09-30 17:33:11 +0000465 /* return true if number and no extra non-whitespace chracters after */
drh0e5fba72013-03-20 12:04:29 +0000466 return z>=zEnd && nDigits>0 && eValid && nonNum==0;
drhc81c11f2009-11-10 01:30:52 +0000467#else
shaneh5f1d6b62010-09-30 16:51:25 +0000468 return !sqlite3Atoi64(z, pResult, length, enc);
drhc81c11f2009-11-10 01:30:52 +0000469#endif /* SQLITE_OMIT_FLOATING_POINT */
470}
471
472/*
473** Compare the 19-character string zNum against the text representation
474** value 2^63: 9223372036854775808. Return negative, zero, or positive
475** if zNum is less than, equal to, or greater than the string.
shaneh5f1d6b62010-09-30 16:51:25 +0000476** Note that zNum must contain exactly 19 characters.
drhc81c11f2009-11-10 01:30:52 +0000477**
478** Unlike memcmp() this routine is guaranteed to return the difference
479** in the values of the last digit if the only difference is in the
480** last digit. So, for example,
481**
drh9339da12010-09-30 00:50:49 +0000482** compare2pow63("9223372036854775800", 1)
drhc81c11f2009-11-10 01:30:52 +0000483**
484** will return -8.
485*/
drh9339da12010-09-30 00:50:49 +0000486static int compare2pow63(const char *zNum, int incr){
487 int c = 0;
488 int i;
489 /* 012345678901234567 */
490 const char *pow63 = "922337203685477580";
491 for(i=0; c==0 && i<18; i++){
492 c = (zNum[i*incr]-pow63[i])*10;
493 }
drhc81c11f2009-11-10 01:30:52 +0000494 if( c==0 ){
drh9339da12010-09-30 00:50:49 +0000495 c = zNum[18*incr] - '8';
drh44dbca82010-01-13 04:22:20 +0000496 testcase( c==(-1) );
497 testcase( c==0 );
498 testcase( c==(+1) );
drhc81c11f2009-11-10 01:30:52 +0000499 }
500 return c;
501}
502
drhc81c11f2009-11-10 01:30:52 +0000503/*
drh9296c182014-07-23 13:40:49 +0000504** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
505** routine does *not* accept hexadecimal notation.
drh158b9cb2011-03-05 20:59:46 +0000506**
507** If the zNum value is representable as a 64-bit twos-complement
508** integer, then write that value into *pNum and return 0.
509**
drha256c1a2013-12-01 01:18:29 +0000510** If zNum is exactly 9223372036854775808, return 2. This special
511** case is broken out because while 9223372036854775808 cannot be a
512** signed 64-bit integer, its negative -9223372036854775808 can be.
drh158b9cb2011-03-05 20:59:46 +0000513**
514** If zNum is too big for a 64-bit integer and is not
drha256c1a2013-12-01 01:18:29 +0000515** 9223372036854775808 or if zNum contains any non-numeric text,
drh0e5fba72013-03-20 12:04:29 +0000516** then return 1.
drhc81c11f2009-11-10 01:30:52 +0000517**
drh9339da12010-09-30 00:50:49 +0000518** length is the number of bytes in the string (bytes, not characters).
519** The string is not necessarily zero-terminated. The encoding is
520** given by enc.
drhc81c11f2009-11-10 01:30:52 +0000521*/
drh9339da12010-09-30 00:50:49 +0000522int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
drh0e5fba72013-03-20 12:04:29 +0000523 int incr;
drh158b9cb2011-03-05 20:59:46 +0000524 u64 u = 0;
shaneh5f1d6b62010-09-30 16:51:25 +0000525 int neg = 0; /* assume positive */
drh9339da12010-09-30 00:50:49 +0000526 int i;
527 int c = 0;
drh0e5fba72013-03-20 12:04:29 +0000528 int nonNum = 0;
drhc81c11f2009-11-10 01:30:52 +0000529 const char *zStart;
drh9339da12010-09-30 00:50:49 +0000530 const char *zEnd = zNum + length;
drh0e5fba72013-03-20 12:04:29 +0000531 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
532 if( enc==SQLITE_UTF8 ){
533 incr = 1;
534 }else{
535 incr = 2;
536 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
537 for(i=3-enc; i<length && zNum[i]==0; i+=2){}
538 nonNum = i<length;
539 zEnd = zNum+i+enc-3;
540 zNum += (enc&1);
541 }
drh9339da12010-09-30 00:50:49 +0000542 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
drh158b9cb2011-03-05 20:59:46 +0000543 if( zNum<zEnd ){
544 if( *zNum=='-' ){
545 neg = 1;
546 zNum+=incr;
547 }else if( *zNum=='+' ){
548 zNum+=incr;
549 }
drhc81c11f2009-11-10 01:30:52 +0000550 }
551 zStart = zNum;
drh9339da12010-09-30 00:50:49 +0000552 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
553 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
drh158b9cb2011-03-05 20:59:46 +0000554 u = u*10 + c - '0';
drhc81c11f2009-11-10 01:30:52 +0000555 }
drh158b9cb2011-03-05 20:59:46 +0000556 if( u>LARGEST_INT64 ){
drhde1a8b82013-11-26 15:45:02 +0000557 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
drh158b9cb2011-03-05 20:59:46 +0000558 }else if( neg ){
559 *pNum = -(i64)u;
560 }else{
561 *pNum = (i64)u;
562 }
drh44dbca82010-01-13 04:22:20 +0000563 testcase( i==18 );
564 testcase( i==19 );
565 testcase( i==20 );
drh62aaa6c2015-11-21 17:27:42 +0000566 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum)
567 || i>19*incr || nonNum ){
drhc81c11f2009-11-10 01:30:52 +0000568 /* zNum is empty or contains non-numeric text or is longer
shaneh5f1d6b62010-09-30 16:51:25 +0000569 ** than 19 digits (thus guaranteeing that it is too large) */
570 return 1;
drh9339da12010-09-30 00:50:49 +0000571 }else if( i<19*incr ){
drhc81c11f2009-11-10 01:30:52 +0000572 /* Less than 19 digits, so we know that it fits in 64 bits */
drh158b9cb2011-03-05 20:59:46 +0000573 assert( u<=LARGEST_INT64 );
shaneh5f1d6b62010-09-30 16:51:25 +0000574 return 0;
drhc81c11f2009-11-10 01:30:52 +0000575 }else{
drh158b9cb2011-03-05 20:59:46 +0000576 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
577 c = compare2pow63(zNum, incr);
578 if( c<0 ){
579 /* zNum is less than 9223372036854775808 so it fits */
580 assert( u<=LARGEST_INT64 );
581 return 0;
582 }else if( c>0 ){
583 /* zNum is greater than 9223372036854775808 so it overflows */
584 return 1;
585 }else{
586 /* zNum is exactly 9223372036854775808. Fits if negative. The
587 ** special case 2 overflow if positive */
588 assert( u-1==LARGEST_INT64 );
drh158b9cb2011-03-05 20:59:46 +0000589 return neg ? 0 : 2;
590 }
drhc81c11f2009-11-10 01:30:52 +0000591 }
592}
593
594/*
drh9296c182014-07-23 13:40:49 +0000595** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
596** into a 64-bit signed integer. This routine accepts hexadecimal literals,
597** whereas sqlite3Atoi64() does not.
598**
599** Returns:
600**
601** 0 Successful transformation. Fits in a 64-bit signed integer.
602** 1 Integer too large for a 64-bit signed integer or is malformed
603** 2 Special case of 9223372036854775808
604*/
605int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
606#ifndef SQLITE_OMIT_HEX_INTEGER
607 if( z[0]=='0'
608 && (z[1]=='x' || z[1]=='X')
609 && sqlite3Isxdigit(z[2])
610 ){
611 u64 u = 0;
612 int i, k;
613 for(i=2; z[i]=='0'; i++){}
614 for(k=i; sqlite3Isxdigit(z[k]); k++){
615 u = u*16 + sqlite3HexToInt(z[k]);
616 }
617 memcpy(pOut, &u, 8);
618 return (z[k]==0 && k-i<=16) ? 0 : 1;
619 }else
620#endif /* SQLITE_OMIT_HEX_INTEGER */
621 {
622 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
623 }
624}
625
626/*
drhc81c11f2009-11-10 01:30:52 +0000627** If zNum represents an integer that will fit in 32-bits, then set
628** *pValue to that integer and return true. Otherwise return false.
629**
drh9296c182014-07-23 13:40:49 +0000630** This routine accepts both decimal and hexadecimal notation for integers.
631**
drhc81c11f2009-11-10 01:30:52 +0000632** Any non-numeric characters that following zNum are ignored.
633** This is different from sqlite3Atoi64() which requires the
634** input number to be zero-terminated.
635*/
636int sqlite3GetInt32(const char *zNum, int *pValue){
637 sqlite_int64 v = 0;
638 int i, c;
639 int neg = 0;
640 if( zNum[0]=='-' ){
641 neg = 1;
642 zNum++;
643 }else if( zNum[0]=='+' ){
644 zNum++;
645 }
drh28e048c2014-07-23 01:26:51 +0000646#ifndef SQLITE_OMIT_HEX_INTEGER
647 else if( zNum[0]=='0'
648 && (zNum[1]=='x' || zNum[1]=='X')
649 && sqlite3Isxdigit(zNum[2])
650 ){
651 u32 u = 0;
652 zNum += 2;
653 while( zNum[0]=='0' ) zNum++;
654 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
655 u = u*16 + sqlite3HexToInt(zNum[i]);
656 }
657 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
658 memcpy(pValue, &u, 4);
659 return 1;
660 }else{
661 return 0;
662 }
663 }
664#endif
drh935f2e72015-04-18 04:45:00 +0000665 while( zNum[0]=='0' ) zNum++;
drhc81c11f2009-11-10 01:30:52 +0000666 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
667 v = v*10 + c;
668 }
669
670 /* The longest decimal representation of a 32 bit integer is 10 digits:
671 **
672 ** 1234567890
673 ** 2^31 -> 2147483648
674 */
drh44dbca82010-01-13 04:22:20 +0000675 testcase( i==10 );
drhc81c11f2009-11-10 01:30:52 +0000676 if( i>10 ){
677 return 0;
678 }
drh44dbca82010-01-13 04:22:20 +0000679 testcase( v-neg==2147483647 );
drhc81c11f2009-11-10 01:30:52 +0000680 if( v-neg>2147483647 ){
681 return 0;
682 }
683 if( neg ){
684 v = -v;
685 }
686 *pValue = (int)v;
687 return 1;
688}
689
690/*
drh60ac3f42010-11-23 18:59:27 +0000691** Return a 32-bit integer value extracted from a string. If the
692** string is not an integer, just return 0.
693*/
694int sqlite3Atoi(const char *z){
695 int x = 0;
696 if( z ) sqlite3GetInt32(z, &x);
697 return x;
698}
699
700/*
drhc81c11f2009-11-10 01:30:52 +0000701** The variable-length integer encoding is as follows:
702**
703** KEY:
704** A = 0xxxxxxx 7 bits of data and one flag bit
705** B = 1xxxxxxx 7 bits of data and one flag bit
706** C = xxxxxxxx 8 bits of data
707**
708** 7 bits - A
709** 14 bits - BA
710** 21 bits - BBA
711** 28 bits - BBBA
712** 35 bits - BBBBA
713** 42 bits - BBBBBA
714** 49 bits - BBBBBBA
715** 56 bits - BBBBBBBA
716** 64 bits - BBBBBBBBC
717*/
718
719/*
720** Write a 64-bit variable-length integer to memory starting at p[0].
721** The length of data write will be between 1 and 9 bytes. The number
722** of bytes written is returned.
723**
724** A variable-length integer consists of the lower 7 bits of each byte
725** for all bytes that have the 8th bit set and one byte with the 8th
726** bit clear. Except, if we get to the 9th byte, it stores the full
727** 8 bits and is the last byte.
728*/
drh2f2b2b82014-08-22 18:48:25 +0000729static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
drhc81c11f2009-11-10 01:30:52 +0000730 int i, j, n;
731 u8 buf[10];
732 if( v & (((u64)0xff000000)<<32) ){
733 p[8] = (u8)v;
734 v >>= 8;
735 for(i=7; i>=0; i--){
736 p[i] = (u8)((v & 0x7f) | 0x80);
737 v >>= 7;
738 }
739 return 9;
740 }
741 n = 0;
742 do{
743 buf[n++] = (u8)((v & 0x7f) | 0x80);
744 v >>= 7;
745 }while( v!=0 );
746 buf[0] &= 0x7f;
747 assert( n<=9 );
748 for(i=0, j=n-1; j>=0; j--, i++){
749 p[i] = buf[j];
750 }
751 return n;
752}
drh2f2b2b82014-08-22 18:48:25 +0000753int sqlite3PutVarint(unsigned char *p, u64 v){
754 if( v<=0x7f ){
755 p[0] = v&0x7f;
drhc81c11f2009-11-10 01:30:52 +0000756 return 1;
757 }
drh2f2b2b82014-08-22 18:48:25 +0000758 if( v<=0x3fff ){
759 p[0] = ((v>>7)&0x7f)|0x80;
760 p[1] = v&0x7f;
drhc81c11f2009-11-10 01:30:52 +0000761 return 2;
762 }
drh2f2b2b82014-08-22 18:48:25 +0000763 return putVarint64(p,v);
drhc81c11f2009-11-10 01:30:52 +0000764}
765
766/*
drh0b2864c2010-03-03 15:18:38 +0000767** Bitmasks used by sqlite3GetVarint(). These precomputed constants
768** are defined here rather than simply putting the constant expressions
769** inline in order to work around bugs in the RVT compiler.
770**
771** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
772**
773** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
774*/
775#define SLOT_2_0 0x001fc07f
776#define SLOT_4_2_0 0xf01fc07f
777
778
779/*
drhc81c11f2009-11-10 01:30:52 +0000780** Read a 64-bit variable-length integer from memory starting at p[0].
781** Return the number of bytes read. The value is stored in *v.
782*/
783u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
784 u32 a,b,s;
785
786 a = *p;
787 /* a: p0 (unmasked) */
788 if (!(a&0x80))
789 {
790 *v = a;
791 return 1;
792 }
793
794 p++;
795 b = *p;
796 /* b: p1 (unmasked) */
797 if (!(b&0x80))
798 {
799 a &= 0x7f;
800 a = a<<7;
801 a |= b;
802 *v = a;
803 return 2;
804 }
805
drh0b2864c2010-03-03 15:18:38 +0000806 /* Verify that constants are precomputed correctly */
807 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
shaneh1da207e2010-03-09 14:41:12 +0000808 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
drh0b2864c2010-03-03 15:18:38 +0000809
drhc81c11f2009-11-10 01:30:52 +0000810 p++;
811 a = a<<14;
812 a |= *p;
813 /* a: p0<<14 | p2 (unmasked) */
814 if (!(a&0x80))
815 {
drh0b2864c2010-03-03 15:18:38 +0000816 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000817 b &= 0x7f;
818 b = b<<7;
819 a |= b;
820 *v = a;
821 return 3;
822 }
823
824 /* CSE1 from below */
drh0b2864c2010-03-03 15:18:38 +0000825 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000826 p++;
827 b = b<<14;
828 b |= *p;
829 /* b: p1<<14 | p3 (unmasked) */
830 if (!(b&0x80))
831 {
drh0b2864c2010-03-03 15:18:38 +0000832 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000833 /* moved CSE1 up */
834 /* a &= (0x7f<<14)|(0x7f); */
835 a = a<<7;
836 a |= b;
837 *v = a;
838 return 4;
839 }
840
841 /* a: p0<<14 | p2 (masked) */
842 /* b: p1<<14 | p3 (unmasked) */
843 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
844 /* moved CSE1 up */
845 /* a &= (0x7f<<14)|(0x7f); */
drh0b2864c2010-03-03 15:18:38 +0000846 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000847 s = a;
848 /* s: p0<<14 | p2 (masked) */
849
850 p++;
851 a = a<<14;
852 a |= *p;
853 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
854 if (!(a&0x80))
855 {
drh62aaa6c2015-11-21 17:27:42 +0000856 /* we can skip these cause they were (effectively) done above
857 ** while calculating s */
drhc81c11f2009-11-10 01:30:52 +0000858 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
859 /* b &= (0x7f<<14)|(0x7f); */
860 b = b<<7;
861 a |= b;
862 s = s>>18;
863 *v = ((u64)s)<<32 | a;
864 return 5;
865 }
866
867 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
868 s = s<<7;
869 s |= b;
870 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
871
872 p++;
873 b = b<<14;
874 b |= *p;
875 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
876 if (!(b&0x80))
877 {
878 /* we can skip this cause it was (effectively) done above in calc'ing s */
879 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
drh0b2864c2010-03-03 15:18:38 +0000880 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000881 a = a<<7;
882 a |= b;
883 s = s>>18;
884 *v = ((u64)s)<<32 | a;
885 return 6;
886 }
887
888 p++;
889 a = a<<14;
890 a |= *p;
891 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
892 if (!(a&0x80))
893 {
drh0b2864c2010-03-03 15:18:38 +0000894 a &= SLOT_4_2_0;
895 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000896 b = b<<7;
897 a |= b;
898 s = s>>11;
899 *v = ((u64)s)<<32 | a;
900 return 7;
901 }
902
903 /* CSE2 from below */
drh0b2864c2010-03-03 15:18:38 +0000904 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000905 p++;
906 b = b<<14;
907 b |= *p;
908 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
909 if (!(b&0x80))
910 {
drh0b2864c2010-03-03 15:18:38 +0000911 b &= SLOT_4_2_0;
drhc81c11f2009-11-10 01:30:52 +0000912 /* moved CSE2 up */
913 /* a &= (0x7f<<14)|(0x7f); */
914 a = a<<7;
915 a |= b;
916 s = s>>4;
917 *v = ((u64)s)<<32 | a;
918 return 8;
919 }
920
921 p++;
922 a = a<<15;
923 a |= *p;
924 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
925
926 /* moved CSE2 up */
927 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
drh0b2864c2010-03-03 15:18:38 +0000928 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000929 b = b<<8;
930 a |= b;
931
932 s = s<<4;
933 b = p[-4];
934 b &= 0x7f;
935 b = b>>3;
936 s |= b;
937
938 *v = ((u64)s)<<32 | a;
939
940 return 9;
941}
942
943/*
944** Read a 32-bit variable-length integer from memory starting at p[0].
945** Return the number of bytes read. The value is stored in *v.
946**
947** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
948** integer, then set *v to 0xffffffff.
949**
950** A MACRO version, getVarint32, is provided which inlines the
951** single-byte case. All code should use the MACRO version as
952** this function assumes the single-byte case has already been handled.
953*/
954u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
955 u32 a,b;
956
957 /* The 1-byte case. Overwhelmingly the most common. Handled inline
958 ** by the getVarin32() macro */
959 a = *p;
960 /* a: p0 (unmasked) */
961#ifndef getVarint32
962 if (!(a&0x80))
963 {
964 /* Values between 0 and 127 */
965 *v = a;
966 return 1;
967 }
968#endif
969
970 /* The 2-byte case */
971 p++;
972 b = *p;
973 /* b: p1 (unmasked) */
974 if (!(b&0x80))
975 {
976 /* Values between 128 and 16383 */
977 a &= 0x7f;
978 a = a<<7;
979 *v = a | b;
980 return 2;
981 }
982
983 /* The 3-byte case */
984 p++;
985 a = a<<14;
986 a |= *p;
987 /* a: p0<<14 | p2 (unmasked) */
988 if (!(a&0x80))
989 {
990 /* Values between 16384 and 2097151 */
991 a &= (0x7f<<14)|(0x7f);
992 b &= 0x7f;
993 b = b<<7;
994 *v = a | b;
995 return 3;
996 }
997
998 /* A 32-bit varint is used to store size information in btrees.
999 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1000 ** A 3-byte varint is sufficient, for example, to record the size
1001 ** of a 1048569-byte BLOB or string.
1002 **
1003 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
1004 ** rare larger cases can be handled by the slower 64-bit varint
1005 ** routine.
1006 */
1007#if 1
1008 {
1009 u64 v64;
1010 u8 n;
1011
1012 p -= 2;
1013 n = sqlite3GetVarint(p, &v64);
1014 assert( n>3 && n<=9 );
1015 if( (v64 & SQLITE_MAX_U32)!=v64 ){
1016 *v = 0xffffffff;
1017 }else{
1018 *v = (u32)v64;
1019 }
1020 return n;
1021 }
1022
1023#else
1024 /* For following code (kept for historical record only) shows an
1025 ** unrolling for the 3- and 4-byte varint cases. This code is
1026 ** slightly faster, but it is also larger and much harder to test.
1027 */
1028 p++;
1029 b = b<<14;
1030 b |= *p;
1031 /* b: p1<<14 | p3 (unmasked) */
1032 if (!(b&0x80))
1033 {
1034 /* Values between 2097152 and 268435455 */
1035 b &= (0x7f<<14)|(0x7f);
1036 a &= (0x7f<<14)|(0x7f);
1037 a = a<<7;
1038 *v = a | b;
1039 return 4;
1040 }
1041
1042 p++;
1043 a = a<<14;
1044 a |= *p;
1045 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1046 if (!(a&0x80))
1047 {
dan3bbe7612010-03-03 16:02:05 +00001048 /* Values between 268435456 and 34359738367 */
1049 a &= SLOT_4_2_0;
1050 b &= SLOT_4_2_0;
drhc81c11f2009-11-10 01:30:52 +00001051 b = b<<7;
1052 *v = a | b;
1053 return 5;
1054 }
1055
1056 /* We can only reach this point when reading a corrupt database
1057 ** file. In that case we are not in any hurry. Use the (relatively
1058 ** slow) general-purpose sqlite3GetVarint() routine to extract the
1059 ** value. */
1060 {
1061 u64 v64;
1062 u8 n;
1063
1064 p -= 4;
1065 n = sqlite3GetVarint(p, &v64);
1066 assert( n>5 && n<=9 );
1067 *v = (u32)v64;
1068 return n;
1069 }
1070#endif
1071}
1072
1073/*
1074** Return the number of bytes that will be needed to store the given
1075** 64-bit integer.
1076*/
1077int sqlite3VarintLen(u64 v){
drh59a53642015-09-01 22:29:07 +00001078 int i;
1079 for(i=1; (v >>= 7)!=0; i++){ assert( i<9 ); }
drhc81c11f2009-11-10 01:30:52 +00001080 return i;
1081}
1082
1083
1084/*
1085** Read or write a four-byte big-endian integer value.
1086*/
1087u32 sqlite3Get4byte(const u8 *p){
drh5372e4d2015-06-30 12:47:09 +00001088#if SQLITE_BYTEORDER==4321
1089 u32 x;
1090 memcpy(&x,p,4);
1091 return x;
mistachkin60e08072015-07-29 21:47:39 +00001092#elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
1093 && defined(__GNUC__) && GCC_VERSION>=4003000
drh5372e4d2015-06-30 12:47:09 +00001094 u32 x;
1095 memcpy(&x,p,4);
1096 return __builtin_bswap32(x);
mistachkin60e08072015-07-29 21:47:39 +00001097#elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
1098 && defined(_MSC_VER) && _MSC_VER>=1300
mistachkin647ca462015-06-30 17:28:40 +00001099 u32 x;
1100 memcpy(&x,p,4);
1101 return _byteswap_ulong(x);
drh5372e4d2015-06-30 12:47:09 +00001102#else
drh693e6712014-01-24 22:58:00 +00001103 testcase( p[0]&0x80 );
1104 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
drh5372e4d2015-06-30 12:47:09 +00001105#endif
drhc81c11f2009-11-10 01:30:52 +00001106}
1107void sqlite3Put4byte(unsigned char *p, u32 v){
drh5372e4d2015-06-30 12:47:09 +00001108#if SQLITE_BYTEORDER==4321
1109 memcpy(p,&v,4);
mistachkinf156c9b2015-07-03 17:54:49 +00001110#elif SQLITE_BYTEORDER==1234 && defined(__GNUC__) && GCC_VERSION>=4003000
drh5372e4d2015-06-30 12:47:09 +00001111 u32 x = __builtin_bswap32(v);
1112 memcpy(p,&x,4);
mistachkin647ca462015-06-30 17:28:40 +00001113#elif SQLITE_BYTEORDER==1234 && defined(_MSC_VER) && _MSC_VER>=1300
1114 u32 x = _byteswap_ulong(v);
1115 memcpy(p,&x,4);
drh5372e4d2015-06-30 12:47:09 +00001116#else
drhc81c11f2009-11-10 01:30:52 +00001117 p[0] = (u8)(v>>24);
1118 p[1] = (u8)(v>>16);
1119 p[2] = (u8)(v>>8);
1120 p[3] = (u8)v;
drh5372e4d2015-06-30 12:47:09 +00001121#endif
drhc81c11f2009-11-10 01:30:52 +00001122}
1123
drh9296c182014-07-23 13:40:49 +00001124
1125
1126/*
1127** Translate a single byte of Hex into an integer.
1128** This routine only works if h really is a valid hexadecimal
1129** character: 0..9a..fA..F
1130*/
1131u8 sqlite3HexToInt(int h){
1132 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
1133#ifdef SQLITE_ASCII
1134 h += 9*(1&(h>>6));
1135#endif
1136#ifdef SQLITE_EBCDIC
1137 h += 9*(1&~(h>>4));
1138#endif
1139 return (u8)(h & 0xf);
1140}
1141
drhc81c11f2009-11-10 01:30:52 +00001142#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1143/*
1144** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1145** value. Return a pointer to its binary value. Space to hold the
1146** binary value has been obtained from malloc and must be freed by
1147** the calling routine.
1148*/
1149void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1150 char *zBlob;
1151 int i;
1152
drh575fad62016-02-05 13:38:36 +00001153 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
drhc81c11f2009-11-10 01:30:52 +00001154 n--;
1155 if( zBlob ){
1156 for(i=0; i<n; i+=2){
dancd74b612011-04-22 19:37:32 +00001157 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
drhc81c11f2009-11-10 01:30:52 +00001158 }
1159 zBlob[i/2] = 0;
1160 }
1161 return zBlob;
1162}
1163#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1164
drh413c3d32010-02-23 20:11:56 +00001165/*
1166** Log an error that is an API call on a connection pointer that should
1167** not have been used. The "type" of connection pointer is given as the
1168** argument. The zType is a word like "NULL" or "closed" or "invalid".
1169*/
1170static void logBadConnection(const char *zType){
1171 sqlite3_log(SQLITE_MISUSE,
1172 "API call with %s database connection pointer",
1173 zType
1174 );
1175}
drhc81c11f2009-11-10 01:30:52 +00001176
1177/*
drhc81c11f2009-11-10 01:30:52 +00001178** Check to make sure we have a valid db pointer. This test is not
1179** foolproof but it does provide some measure of protection against
1180** misuse of the interface such as passing in db pointers that are
1181** NULL or which have been previously closed. If this routine returns
1182** 1 it means that the db pointer is valid and 0 if it should not be
1183** dereferenced for any reason. The calling function should invoke
1184** SQLITE_MISUSE immediately.
1185**
1186** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1187** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1188** open properly and is not fit for general use but which can be
1189** used as an argument to sqlite3_errmsg() or sqlite3_close().
1190*/
1191int sqlite3SafetyCheckOk(sqlite3 *db){
1192 u32 magic;
drh413c3d32010-02-23 20:11:56 +00001193 if( db==0 ){
1194 logBadConnection("NULL");
1195 return 0;
1196 }
drhc81c11f2009-11-10 01:30:52 +00001197 magic = db->magic;
drh9978c972010-02-23 17:36:32 +00001198 if( magic!=SQLITE_MAGIC_OPEN ){
drhe294da02010-02-25 23:44:15 +00001199 if( sqlite3SafetyCheckSickOrOk(db) ){
1200 testcase( sqlite3GlobalConfig.xLog!=0 );
drh413c3d32010-02-23 20:11:56 +00001201 logBadConnection("unopened");
1202 }
drhc81c11f2009-11-10 01:30:52 +00001203 return 0;
1204 }else{
1205 return 1;
1206 }
1207}
1208int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1209 u32 magic;
1210 magic = db->magic;
1211 if( magic!=SQLITE_MAGIC_SICK &&
1212 magic!=SQLITE_MAGIC_OPEN &&
drh413c3d32010-02-23 20:11:56 +00001213 magic!=SQLITE_MAGIC_BUSY ){
drhe294da02010-02-25 23:44:15 +00001214 testcase( sqlite3GlobalConfig.xLog!=0 );
drhaf46dc12010-02-24 21:44:07 +00001215 logBadConnection("invalid");
drh413c3d32010-02-23 20:11:56 +00001216 return 0;
1217 }else{
1218 return 1;
1219 }
drhc81c11f2009-11-10 01:30:52 +00001220}
drh158b9cb2011-03-05 20:59:46 +00001221
1222/*
1223** Attempt to add, substract, or multiply the 64-bit signed value iB against
1224** the other 64-bit signed integer at *pA and store the result in *pA.
1225** Return 0 on success. Or if the operation would have resulted in an
1226** overflow, leave *pA unchanged and return 1.
1227*/
1228int sqlite3AddInt64(i64 *pA, i64 iB){
1229 i64 iA = *pA;
1230 testcase( iA==0 ); testcase( iA==1 );
1231 testcase( iB==-1 ); testcase( iB==0 );
1232 if( iB>=0 ){
1233 testcase( iA>0 && LARGEST_INT64 - iA == iB );
1234 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1235 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
drh158b9cb2011-03-05 20:59:46 +00001236 }else{
1237 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1238 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1239 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
drh158b9cb2011-03-05 20:59:46 +00001240 }
drh53a6eb32014-02-10 12:59:15 +00001241 *pA += iB;
drh158b9cb2011-03-05 20:59:46 +00001242 return 0;
1243}
1244int sqlite3SubInt64(i64 *pA, i64 iB){
1245 testcase( iB==SMALLEST_INT64+1 );
1246 if( iB==SMALLEST_INT64 ){
1247 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1248 if( (*pA)>=0 ) return 1;
1249 *pA -= iB;
1250 return 0;
1251 }else{
1252 return sqlite3AddInt64(pA, -iB);
1253 }
1254}
1255#define TWOPOWER32 (((i64)1)<<32)
1256#define TWOPOWER31 (((i64)1)<<31)
1257int sqlite3MulInt64(i64 *pA, i64 iB){
1258 i64 iA = *pA;
1259 i64 iA1, iA0, iB1, iB0, r;
1260
drh158b9cb2011-03-05 20:59:46 +00001261 iA1 = iA/TWOPOWER32;
1262 iA0 = iA % TWOPOWER32;
1263 iB1 = iB/TWOPOWER32;
1264 iB0 = iB % TWOPOWER32;
drh53a6eb32014-02-10 12:59:15 +00001265 if( iA1==0 ){
1266 if( iB1==0 ){
1267 *pA *= iB;
1268 return 0;
1269 }
1270 r = iA0*iB1;
1271 }else if( iB1==0 ){
1272 r = iA1*iB0;
1273 }else{
1274 /* If both iA1 and iB1 are non-zero, overflow will result */
1275 return 1;
1276 }
drh158b9cb2011-03-05 20:59:46 +00001277 testcase( r==(-TWOPOWER31)-1 );
1278 testcase( r==(-TWOPOWER31) );
1279 testcase( r==TWOPOWER31 );
1280 testcase( r==TWOPOWER31-1 );
1281 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1;
1282 r *= TWOPOWER32;
1283 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1;
1284 *pA = r;
1285 return 0;
1286}
drhd50ffc42011-03-08 02:38:28 +00001287
1288/*
1289** Compute the absolute value of a 32-bit signed integer, of possible. Or
1290** if the integer has a value of -2147483648, return +2147483647
1291*/
1292int sqlite3AbsInt32(int x){
1293 if( x>=0 ) return x;
drh87e79ae2011-03-08 13:06:41 +00001294 if( x==(int)0x80000000 ) return 0x7fffffff;
drhd50ffc42011-03-08 02:38:28 +00001295 return -x;
1296}
drh81cc5162011-05-17 20:36:21 +00001297
1298#ifdef SQLITE_ENABLE_8_3_NAMES
1299/*
drhb51bf432011-07-21 21:29:35 +00001300** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
drh81cc5162011-05-17 20:36:21 +00001301** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1302** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1303** three characters, then shorten the suffix on z[] to be the last three
1304** characters of the original suffix.
1305**
drhb51bf432011-07-21 21:29:35 +00001306** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1307** do the suffix shortening regardless of URI parameter.
1308**
drh81cc5162011-05-17 20:36:21 +00001309** Examples:
1310**
1311** test.db-journal => test.nal
1312** test.db-wal => test.wal
1313** test.db-shm => test.shm
drhf5808602011-12-16 00:33:04 +00001314** test.db-mj7f3319fa => test.9fa
drh81cc5162011-05-17 20:36:21 +00001315*/
1316void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
drhb51bf432011-07-21 21:29:35 +00001317#if SQLITE_ENABLE_8_3_NAMES<2
drh7d39e172012-01-02 12:41:53 +00001318 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
drhb51bf432011-07-21 21:29:35 +00001319#endif
1320 {
drh81cc5162011-05-17 20:36:21 +00001321 int i, sz;
1322 sz = sqlite3Strlen30(z);
drhc83f2d42011-05-18 02:41:10 +00001323 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
drhc02a43a2012-01-10 23:18:38 +00001324 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
drh81cc5162011-05-17 20:36:21 +00001325 }
1326}
1327#endif
drhbf539c42013-10-05 18:16:02 +00001328
1329/*
1330** Find (an approximate) sum of two LogEst values. This computation is
1331** not a simple "+" operator because LogEst is stored as a logarithmic
1332** value.
1333**
1334*/
1335LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1336 static const unsigned char x[] = {
1337 10, 10, /* 0,1 */
1338 9, 9, /* 2,3 */
1339 8, 8, /* 4,5 */
1340 7, 7, 7, /* 6,7,8 */
1341 6, 6, 6, /* 9,10,11 */
1342 5, 5, 5, /* 12-14 */
1343 4, 4, 4, 4, /* 15-18 */
1344 3, 3, 3, 3, 3, 3, /* 19-24 */
1345 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1346 };
1347 if( a>=b ){
1348 if( a>b+49 ) return a;
1349 if( a>b+31 ) return a+1;
1350 return a+x[a-b];
1351 }else{
1352 if( b>a+49 ) return b;
1353 if( b>a+31 ) return b+1;
1354 return b+x[b-a];
1355 }
1356}
1357
1358/*
drh224155d2014-04-30 13:19:09 +00001359** Convert an integer into a LogEst. In other words, compute an
1360** approximation for 10*log2(x).
drhbf539c42013-10-05 18:16:02 +00001361*/
1362LogEst sqlite3LogEst(u64 x){
1363 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1364 LogEst y = 40;
1365 if( x<8 ){
1366 if( x<2 ) return 0;
1367 while( x<8 ){ y -= 10; x <<= 1; }
1368 }else{
1369 while( x>255 ){ y += 40; x >>= 4; }
1370 while( x>15 ){ y += 10; x >>= 1; }
1371 }
1372 return a[x&7] + y - 10;
1373}
1374
1375#ifndef SQLITE_OMIT_VIRTUALTABLE
1376/*
1377** Convert a double into a LogEst
1378** In other words, compute an approximation for 10*log2(x).
1379*/
1380LogEst sqlite3LogEstFromDouble(double x){
1381 u64 a;
1382 LogEst e;
1383 assert( sizeof(x)==8 && sizeof(a)==8 );
1384 if( x<=1 ) return 0;
1385 if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1386 memcpy(&a, &x, 8);
1387 e = (a>>52) - 1022;
1388 return e*10;
1389}
1390#endif /* SQLITE_OMIT_VIRTUALTABLE */
1391
1392/*
1393** Convert a LogEst into an integer.
1394*/
1395u64 sqlite3LogEstToInt(LogEst x){
1396 u64 n;
1397 if( x<10 ) return 1;
1398 n = x%10;
1399 x /= 10;
1400 if( n>=5 ) n -= 2;
1401 else if( n>=1 ) n -= 1;
drh47676fe2013-12-05 16:41:55 +00001402 if( x>=3 ){
1403 return x>60 ? (u64)LARGEST_INT64 : (n+8)<<(x-3);
1404 }
drhbf539c42013-10-05 18:16:02 +00001405 return (n+8)>>(3-x);
1406}