blob: 8432d897f99358888921c114af18c78620589d67 [file] [log] [blame]
drhc81c11f2009-11-10 01:30:52 +00001/*
2** 2001 September 15
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** Utility functions used throughout sqlite.
13**
14** This file contains functions for allocating memory, comparing
15** strings, and stuff like that.
16**
17*/
18#include "sqliteInt.h"
19#include <stdarg.h>
drh0ede9eb2015-01-10 16:49:23 +000020#if HAVE_ISNAN || SQLITE_HAVE_ISNAN
drhc81c11f2009-11-10 01:30:52 +000021# include <math.h>
22#endif
23
24/*
25** Routine needed to support the testcase() macro.
26*/
27#ifdef SQLITE_COVERAGE_TEST
28void sqlite3Coverage(int x){
drh68bf0672011-04-11 15:35:24 +000029 static unsigned dummy = 0;
30 dummy += (unsigned)x;
drhc81c11f2009-11-10 01:30:52 +000031}
32#endif
33
drhc007f612014-05-16 14:17:01 +000034/*
35** Give a callback to the test harness that can be used to simulate faults
36** in places where it is difficult or expensive to do so purely by means
37** of inputs.
38**
39** The intent of the integer argument is to let the fault simulator know
40** which of multiple sqlite3FaultSim() calls has been hit.
41**
42** Return whatever integer value the test callback returns, or return
43** SQLITE_OK if no test callback is installed.
44*/
drhd12602a2016-12-07 15:49:02 +000045#ifndef SQLITE_UNTESTABLE
drhc007f612014-05-16 14:17:01 +000046int sqlite3FaultSim(int iTest){
47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
48 return xCallback ? xCallback(iTest) : SQLITE_OK;
49}
50#endif
51
drh85c8f292010-01-13 17:39:53 +000052#ifndef SQLITE_OMIT_FLOATING_POINT
drhc81c11f2009-11-10 01:30:52 +000053/*
54** Return true if the floating point value is Not a Number (NaN).
55**
56** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
57** Otherwise, we have our own implementation that works on most systems.
58*/
59int sqlite3IsNaN(double x){
60 int rc; /* The value return */
drh0ede9eb2015-01-10 16:49:23 +000061#if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
drhc81c11f2009-11-10 01:30:52 +000062 /*
63 ** Systems that support the isnan() library function should probably
64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
65 ** found that many systems do not have a working isnan() function so
66 ** this implementation is provided as an alternative.
67 **
68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
69 ** On the other hand, the use of -ffast-math comes with the following
70 ** warning:
71 **
72 ** This option [-ffast-math] should never be turned on by any
73 ** -O option since it can result in incorrect output for programs
74 ** which depend on an exact implementation of IEEE or ISO
75 ** rules/specifications for math functions.
76 **
77 ** Under MSVC, this NaN test may fail if compiled with a floating-
78 ** point precision mode other than /fp:precise. From the MSDN
79 ** documentation:
80 **
81 ** The compiler [with /fp:precise] will properly handle comparisons
82 ** involving NaN. For example, x != x evaluates to true if x is NaN
83 ** ...
84 */
85#ifdef __FAST_MATH__
86# error SQLite will not work correctly with the -ffast-math option of GCC.
87#endif
88 volatile double y = x;
89 volatile double z = y;
90 rc = (y!=z);
drh0ede9eb2015-01-10 16:49:23 +000091#else /* if HAVE_ISNAN */
drhc81c11f2009-11-10 01:30:52 +000092 rc = isnan(x);
drh0ede9eb2015-01-10 16:49:23 +000093#endif /* HAVE_ISNAN */
drhc81c11f2009-11-10 01:30:52 +000094 testcase( rc );
95 return rc;
96}
drh85c8f292010-01-13 17:39:53 +000097#endif /* SQLITE_OMIT_FLOATING_POINT */
drhc81c11f2009-11-10 01:30:52 +000098
99/*
100** Compute a string length that is limited to what can be stored in
101** lower 30 bits of a 32-bit signed integer.
102**
103** The value returned will never be negative. Nor will it ever be greater
104** than the actual length of the string. For very long strings (greater
105** than 1GiB) the value returned might be less than the true string length.
106*/
107int sqlite3Strlen30(const char *z){
drhc81c11f2009-11-10 01:30:52 +0000108 if( z==0 ) return 0;
drh1116bf12015-06-30 03:18:33 +0000109 return 0x3fffffff & (int)strlen(z);
drhc81c11f2009-11-10 01:30:52 +0000110}
111
112/*
drhd7564862016-03-22 20:05:09 +0000113** Return the declared type of a column. Or return zDflt if the column
114** has no declared type.
115**
116** The column type is an extra string stored after the zero-terminator on
117** the column name if and only if the COLFLAG_HASTYPE flag is set.
drh94eaafa2016-02-29 15:53:11 +0000118*/
drhd7564862016-03-22 20:05:09 +0000119char *sqlite3ColumnType(Column *pCol, char *zDflt){
120 if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt;
121 return pCol->zName + strlen(pCol->zName) + 1;
drh94eaafa2016-02-29 15:53:11 +0000122}
123
124/*
drh80fbee02016-03-21 11:57:13 +0000125** Helper function for sqlite3Error() - called rarely. Broken out into
126** a separate routine to avoid unnecessary register saves on entry to
127** sqlite3Error().
drh13f40da2014-08-22 18:00:11 +0000128*/
drh8d2f41c2016-03-21 11:38:01 +0000129static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){
130 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
131 sqlite3SystemError(db, err_code);
132}
drh80fbee02016-03-21 11:57:13 +0000133
134/*
135** Set the current error code to err_code and clear any prior error message.
136** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
137** that would be appropriate.
138*/
drh13f40da2014-08-22 18:00:11 +0000139void sqlite3Error(sqlite3 *db, int err_code){
140 assert( db!=0 );
141 db->errCode = err_code;
drh8d2f41c2016-03-21 11:38:01 +0000142 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code);
drh13f40da2014-08-22 18:00:11 +0000143}
144
145/*
drh1b9f2142016-03-17 16:01:23 +0000146** Load the sqlite3.iSysErrno field if that is an appropriate thing
147** to do based on the SQLite error code in rc.
148*/
149void sqlite3SystemError(sqlite3 *db, int rc){
150 if( rc==SQLITE_IOERR_NOMEM ) return;
151 rc &= 0xff;
152 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
153 db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
154 }
155}
156
157/*
drhc81c11f2009-11-10 01:30:52 +0000158** Set the most recent error code and error string for the sqlite
159** handle "db". The error code is set to "err_code".
160**
161** If it is not NULL, string zFormat specifies the format of the
162** error string in the style of the printf functions: The following
163** format characters are allowed:
164**
165** %s Insert a string
166** %z A string that should be freed after use
167** %d Insert an integer
168** %T Insert a token
169** %S Insert the first element of a SrcList
170**
171** zFormat and any string tokens that follow it are assumed to be
172** encoded in UTF-8.
173**
174** To clear the most recent error for sqlite handle "db", sqlite3Error
175** should be called with err_code set to SQLITE_OK and zFormat set
176** to NULL.
177*/
drh13f40da2014-08-22 18:00:11 +0000178void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
drha3cc0072013-12-13 16:23:55 +0000179 assert( db!=0 );
180 db->errCode = err_code;
drh8d2f41c2016-03-21 11:38:01 +0000181 sqlite3SystemError(db, err_code);
drh13f40da2014-08-22 18:00:11 +0000182 if( zFormat==0 ){
183 sqlite3Error(db, err_code);
184 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
drha3cc0072013-12-13 16:23:55 +0000185 char *z;
186 va_list ap;
187 va_start(ap, zFormat);
188 z = sqlite3VMPrintf(db, zFormat, ap);
189 va_end(ap);
190 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
drhc81c11f2009-11-10 01:30:52 +0000191 }
192}
193
194/*
195** Add an error message to pParse->zErrMsg and increment pParse->nErr.
196** The following formatting characters are allowed:
197**
198** %s Insert a string
199** %z A string that should be freed after use
200** %d Insert an integer
201** %T Insert a token
202** %S Insert the first element of a SrcList
203**
drh13f40da2014-08-22 18:00:11 +0000204** This function should be used to report any error that occurs while
drhc81c11f2009-11-10 01:30:52 +0000205** compiling an SQL statement (i.e. within sqlite3_prepare()). The
206** last thing the sqlite3_prepare() function does is copy the error
207** stored by this function into the database handle using sqlite3Error().
drh13f40da2014-08-22 18:00:11 +0000208** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
209** during statement execution (sqlite3_step() etc.).
drhc81c11f2009-11-10 01:30:52 +0000210*/
211void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
drha7564662010-02-22 19:32:31 +0000212 char *zMsg;
drhc81c11f2009-11-10 01:30:52 +0000213 va_list ap;
214 sqlite3 *db = pParse->db;
drhc81c11f2009-11-10 01:30:52 +0000215 va_start(ap, zFormat);
drha7564662010-02-22 19:32:31 +0000216 zMsg = sqlite3VMPrintf(db, zFormat, ap);
drhc81c11f2009-11-10 01:30:52 +0000217 va_end(ap);
drha7564662010-02-22 19:32:31 +0000218 if( db->suppressErr ){
219 sqlite3DbFree(db, zMsg);
220 }else{
221 pParse->nErr++;
222 sqlite3DbFree(db, pParse->zErrMsg);
223 pParse->zErrMsg = zMsg;
224 pParse->rc = SQLITE_ERROR;
drha7564662010-02-22 19:32:31 +0000225 }
drhc81c11f2009-11-10 01:30:52 +0000226}
227
228/*
229** Convert an SQL-style quoted string into a normal string by removing
230** the quote characters. The conversion is done in-place. If the
231** input does not begin with a quote character, then this routine
232** is a no-op.
233**
234** The input string must be zero-terminated. A new zero-terminator
235** is added to the dequoted string.
236**
237** The return value is -1 if no dequoting occurs or the length of the
238** dequoted string, exclusive of the zero terminator, if dequoting does
239** occur.
240**
drh51d35b02019-01-11 13:32:23 +0000241** 2002-02-14: This routine is extended to remove MS-Access style
peter.d.reid60ec9142014-09-06 16:39:46 +0000242** brackets from around identifiers. For example: "[a-b-c]" becomes
drhc81c11f2009-11-10 01:30:52 +0000243** "a-b-c".
244*/
drh244b9d62016-04-11 19:01:08 +0000245void sqlite3Dequote(char *z){
drhc81c11f2009-11-10 01:30:52 +0000246 char quote;
247 int i, j;
drh244b9d62016-04-11 19:01:08 +0000248 if( z==0 ) return;
drhc81c11f2009-11-10 01:30:52 +0000249 quote = z[0];
drh244b9d62016-04-11 19:01:08 +0000250 if( !sqlite3Isquote(quote) ) return;
251 if( quote=='[' ) quote = ']';
drh9ccd8652013-09-13 16:36:46 +0000252 for(i=1, j=0;; i++){
253 assert( z[i] );
drhc81c11f2009-11-10 01:30:52 +0000254 if( z[i]==quote ){
255 if( z[i+1]==quote ){
256 z[j++] = quote;
257 i++;
258 }else{
259 break;
260 }
261 }else{
262 z[j++] = z[i];
263 }
264 }
265 z[j] = 0;
drhc81c11f2009-11-10 01:30:52 +0000266}
drh51d35b02019-01-11 13:32:23 +0000267void sqlite3DequoteExpr(Expr *p){
268 assert( sqlite3Isquote(p->u.zToken[0]) );
269 p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
270 sqlite3Dequote(p->u.zToken);
271}
drhc81c11f2009-11-10 01:30:52 +0000272
drh40aced52016-01-22 17:48:09 +0000273/*
274** Generate a Token object from a string
275*/
276void sqlite3TokenInit(Token *p, char *z){
277 p->z = z;
278 p->n = sqlite3Strlen30(z);
279}
280
drhc81c11f2009-11-10 01:30:52 +0000281/* Convenient short-hand */
282#define UpperToLower sqlite3UpperToLower
283
284/*
285** Some systems have stricmp(). Others have strcasecmp(). Because
286** there is no consistency, we will define our own.
drh9f129f42010-08-31 15:27:32 +0000287**
drh0299b402012-03-19 17:42:46 +0000288** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
289** sqlite3_strnicmp() APIs allow applications and extensions to compare
290** the contents of two buffers containing UTF-8 strings in a
291** case-independent fashion, using the same definition of "case
292** independence" that SQLite uses internally when comparing identifiers.
drhc81c11f2009-11-10 01:30:52 +0000293*/
drh3fa97302012-02-22 16:58:36 +0000294int sqlite3_stricmp(const char *zLeft, const char *zRight){
drh9ca95732014-10-24 00:35:58 +0000295 if( zLeft==0 ){
296 return zRight ? -1 : 0;
297 }else if( zRight==0 ){
298 return 1;
299 }
drh80738d92016-02-15 00:34:16 +0000300 return sqlite3StrICmp(zLeft, zRight);
301}
302int sqlite3StrICmp(const char *zLeft, const char *zRight){
303 unsigned char *a, *b;
304 int c;
drhc81c11f2009-11-10 01:30:52 +0000305 a = (unsigned char *)zLeft;
306 b = (unsigned char *)zRight;
drh80738d92016-02-15 00:34:16 +0000307 for(;;){
308 c = (int)UpperToLower[*a] - (int)UpperToLower[*b];
309 if( c || *a==0 ) break;
310 a++;
311 b++;
312 }
313 return c;
drhc81c11f2009-11-10 01:30:52 +0000314}
315int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
316 register unsigned char *a, *b;
drh9ca95732014-10-24 00:35:58 +0000317 if( zLeft==0 ){
318 return zRight ? -1 : 0;
319 }else if( zRight==0 ){
320 return 1;
321 }
drhc81c11f2009-11-10 01:30:52 +0000322 a = (unsigned char *)zLeft;
323 b = (unsigned char *)zRight;
324 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
325 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
326}
327
328/*
drh02a43f62017-12-26 14:46:20 +0000329** Compute 10 to the E-th power. Examples: E==1 results in 10.
330** E==2 results in 100. E==50 results in 1.0e50.
331**
332** This routine only works for values of E between 1 and 341.
333*/
334static LONGDOUBLE_TYPE sqlite3Pow10(int E){
drh3dc97272018-01-17 21:14:17 +0000335#if defined(_MSC_VER)
336 static const LONGDOUBLE_TYPE x[] = {
337 1.0e+001,
338 1.0e+002,
339 1.0e+004,
340 1.0e+008,
341 1.0e+016,
342 1.0e+032,
343 1.0e+064,
344 1.0e+128,
345 1.0e+256
346 };
347 LONGDOUBLE_TYPE r = 1.0;
348 int i;
349 assert( E>=0 && E<=307 );
350 for(i=0; E!=0; i++, E >>=1){
351 if( E & 1 ) r *= x[i];
352 }
353 return r;
354#else
drh02a43f62017-12-26 14:46:20 +0000355 LONGDOUBLE_TYPE x = 10.0;
356 LONGDOUBLE_TYPE r = 1.0;
357 while(1){
358 if( E & 1 ) r *= x;
359 E >>= 1;
360 if( E==0 ) break;
361 x *= x;
362 }
363 return r;
drh3dc97272018-01-17 21:14:17 +0000364#endif
drh02a43f62017-12-26 14:46:20 +0000365}
366
367/*
drh9339da12010-09-30 00:50:49 +0000368** The string z[] is an text representation of a real number.
drh025586a2010-09-30 17:33:11 +0000369** Convert this string to a double and write it into *pResult.
drhc81c11f2009-11-10 01:30:52 +0000370**
drh9339da12010-09-30 00:50:49 +0000371** The string z[] is length bytes in length (bytes, not characters) and
372** uses the encoding enc. The string is not necessarily zero-terminated.
drhc81c11f2009-11-10 01:30:52 +0000373**
drh9339da12010-09-30 00:50:49 +0000374** Return TRUE if the result is a valid real number (or integer) and FALSE
drh025586a2010-09-30 17:33:11 +0000375** if the string is empty or contains extraneous text. Valid numbers
376** are in one of these formats:
377**
378** [+-]digits[E[+-]digits]
379** [+-]digits.[digits][E[+-]digits]
380** [+-].digits[E[+-]digits]
381**
382** Leading and trailing whitespace is ignored for the purpose of determining
383** validity.
384**
385** If some prefix of the input string is a valid number, this routine
386** returns FALSE but it still converts the prefix and writes the result
387** into *pResult.
drhc81c11f2009-11-10 01:30:52 +0000388*/
drh9339da12010-09-30 00:50:49 +0000389int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
drhc81c11f2009-11-10 01:30:52 +0000390#ifndef SQLITE_OMIT_FLOATING_POINT
drh0e5fba72013-03-20 12:04:29 +0000391 int incr;
drh9339da12010-09-30 00:50:49 +0000392 const char *zEnd = z + length;
drhc81c11f2009-11-10 01:30:52 +0000393 /* sign * significand * (10 ^ (esign * exponent)) */
drh025586a2010-09-30 17:33:11 +0000394 int sign = 1; /* sign of significand */
395 i64 s = 0; /* significand */
396 int d = 0; /* adjust exponent for shifting decimal point */
397 int esign = 1; /* sign of exponent */
398 int e = 0; /* exponent */
399 int eValid = 1; /* True exponent is either not used or is well-formed */
drhc81c11f2009-11-10 01:30:52 +0000400 double result;
401 int nDigits = 0;
drhad975d52016-04-27 15:24:13 +0000402 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */
drhc81c11f2009-11-10 01:30:52 +0000403
drh0e5fba72013-03-20 12:04:29 +0000404 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
drh025586a2010-09-30 17:33:11 +0000405 *pResult = 0.0; /* Default return value, in case of an error */
406
drh0e5fba72013-03-20 12:04:29 +0000407 if( enc==SQLITE_UTF8 ){
408 incr = 1;
409 }else{
410 int i;
411 incr = 2;
412 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
413 for(i=3-enc; i<length && z[i]==0; i+=2){}
414 nonNum = i<length;
drhad975d52016-04-27 15:24:13 +0000415 zEnd = &z[i^1];
drh0e5fba72013-03-20 12:04:29 +0000416 z += (enc&1);
417 }
drh9339da12010-09-30 00:50:49 +0000418
drhc81c11f2009-11-10 01:30:52 +0000419 /* skip leading spaces */
drh9339da12010-09-30 00:50:49 +0000420 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
drh025586a2010-09-30 17:33:11 +0000421 if( z>=zEnd ) return 0;
drh9339da12010-09-30 00:50:49 +0000422
drhc81c11f2009-11-10 01:30:52 +0000423 /* get sign of significand */
424 if( *z=='-' ){
425 sign = -1;
drh9339da12010-09-30 00:50:49 +0000426 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000427 }else if( *z=='+' ){
drh9339da12010-09-30 00:50:49 +0000428 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000429 }
drh9339da12010-09-30 00:50:49 +0000430
drhc81c11f2009-11-10 01:30:52 +0000431 /* copy max significant digits to significand */
drh9339da12010-09-30 00:50:49 +0000432 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
drhc81c11f2009-11-10 01:30:52 +0000433 s = s*10 + (*z - '0');
drh12f84e52017-11-06 09:34:45 +0000434 z+=incr; nDigits++;
drhc81c11f2009-11-10 01:30:52 +0000435 }
drh9339da12010-09-30 00:50:49 +0000436
drhc81c11f2009-11-10 01:30:52 +0000437 /* skip non-significant significand digits
438 ** (increase exponent by d to shift decimal left) */
drh12f84e52017-11-06 09:34:45 +0000439 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; nDigits++; d++; }
drh9339da12010-09-30 00:50:49 +0000440 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000441
442 /* if decimal point is present */
443 if( *z=='.' ){
drh9339da12010-09-30 00:50:49 +0000444 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000445 /* copy digits from after decimal to significand
446 ** (decrease exponent by d to shift decimal right) */
drh15af62a2016-04-26 23:14:45 +0000447 while( z<zEnd && sqlite3Isdigit(*z) ){
448 if( s<((LARGEST_INT64-9)/10) ){
449 s = s*10 + (*z - '0');
450 d--;
451 }
drh12f84e52017-11-06 09:34:45 +0000452 z+=incr; nDigits++;
drhc81c11f2009-11-10 01:30:52 +0000453 }
drhc81c11f2009-11-10 01:30:52 +0000454 }
drh9339da12010-09-30 00:50:49 +0000455 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000456
457 /* if exponent is present */
458 if( *z=='e' || *z=='E' ){
drh9339da12010-09-30 00:50:49 +0000459 z+=incr;
drh025586a2010-09-30 17:33:11 +0000460 eValid = 0;
drhad975d52016-04-27 15:24:13 +0000461
462 /* This branch is needed to avoid a (harmless) buffer overread. The
463 ** special comment alerts the mutation tester that the correct answer
464 ** is obtained even if the branch is omitted */
465 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/
466
drhc81c11f2009-11-10 01:30:52 +0000467 /* get sign of exponent */
468 if( *z=='-' ){
469 esign = -1;
drh9339da12010-09-30 00:50:49 +0000470 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000471 }else if( *z=='+' ){
drh9339da12010-09-30 00:50:49 +0000472 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000473 }
474 /* copy digits to exponent */
drh9339da12010-09-30 00:50:49 +0000475 while( z<zEnd && sqlite3Isdigit(*z) ){
drh57db4a72011-10-17 20:41:46 +0000476 e = e<10000 ? (e*10 + (*z - '0')) : 10000;
drh9339da12010-09-30 00:50:49 +0000477 z+=incr;
drh025586a2010-09-30 17:33:11 +0000478 eValid = 1;
drhc81c11f2009-11-10 01:30:52 +0000479 }
480 }
481
drh025586a2010-09-30 17:33:11 +0000482 /* skip trailing spaces */
drhc6daa012016-04-27 02:35:03 +0000483 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
drh025586a2010-09-30 17:33:11 +0000484
drh9339da12010-09-30 00:50:49 +0000485do_atof_calc:
drhc81c11f2009-11-10 01:30:52 +0000486 /* adjust exponent by d, and update sign */
487 e = (e*esign) + d;
488 if( e<0 ) {
489 esign = -1;
490 e *= -1;
491 } else {
492 esign = 1;
493 }
494
drhad975d52016-04-27 15:24:13 +0000495 if( s==0 ) {
496 /* In the IEEE 754 standard, zero is signed. */
drhc6daa012016-04-27 02:35:03 +0000497 result = sign<0 ? -(double)0 : (double)0;
drhc81c11f2009-11-10 01:30:52 +0000498 } else {
drhad975d52016-04-27 15:24:13 +0000499 /* Attempt to reduce exponent.
500 **
501 ** Branches that are not required for the correct answer but which only
502 ** help to obtain the correct answer faster are marked with special
503 ** comments, as a hint to the mutation tester.
504 */
505 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/
506 if( esign>0 ){
507 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/
508 s *= 10;
509 }else{
510 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/
511 s /= 10;
512 }
513 e--;
drhc81c11f2009-11-10 01:30:52 +0000514 }
515
516 /* adjust the sign of significand */
517 s = sign<0 ? -s : s;
518
drhad975d52016-04-27 15:24:13 +0000519 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/
520 result = (double)s;
521 }else{
drhc81c11f2009-11-10 01:30:52 +0000522 /* attempt to handle extremely small/large numbers better */
drhad975d52016-04-27 15:24:13 +0000523 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/
524 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/
drh02a43f62017-12-26 14:46:20 +0000525 LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308);
drhad975d52016-04-27 15:24:13 +0000526 if( esign<0 ){
527 result = s / scale;
528 result /= 1.0e+308;
529 }else{
530 result = s * scale;
531 result *= 1.0e+308;
532 }
533 }else{ assert( e>=342 );
534 if( esign<0 ){
535 result = 0.0*s;
536 }else{
drhb9772e72017-09-12 13:27:43 +0000537#ifdef INFINITY
drh3ba18ad2017-09-12 15:05:34 +0000538 result = INFINITY*s;
drhb9772e72017-09-12 13:27:43 +0000539#else
drhad975d52016-04-27 15:24:13 +0000540 result = 1e308*1e308*s; /* Infinity */
drhb9772e72017-09-12 13:27:43 +0000541#endif
drhad975d52016-04-27 15:24:13 +0000542 }
drh2458a2e2011-10-17 12:14:26 +0000543 }
drhc81c11f2009-11-10 01:30:52 +0000544 }else{
drh02a43f62017-12-26 14:46:20 +0000545 LONGDOUBLE_TYPE scale = sqlite3Pow10(e);
drhc81c11f2009-11-10 01:30:52 +0000546 if( esign<0 ){
547 result = s / scale;
548 }else{
549 result = s * scale;
550 }
551 }
drhc81c11f2009-11-10 01:30:52 +0000552 }
553 }
554
555 /* store the result */
556 *pResult = result;
557
drh025586a2010-09-30 17:33:11 +0000558 /* return true if number and no extra non-whitespace chracters after */
drhad975d52016-04-27 15:24:13 +0000559 return z==zEnd && nDigits>0 && eValid && nonNum==0;
drhc81c11f2009-11-10 01:30:52 +0000560#else
shaneh5f1d6b62010-09-30 16:51:25 +0000561 return !sqlite3Atoi64(z, pResult, length, enc);
drhc81c11f2009-11-10 01:30:52 +0000562#endif /* SQLITE_OMIT_FLOATING_POINT */
563}
564
565/*
566** Compare the 19-character string zNum against the text representation
567** value 2^63: 9223372036854775808. Return negative, zero, or positive
568** if zNum is less than, equal to, or greater than the string.
shaneh5f1d6b62010-09-30 16:51:25 +0000569** Note that zNum must contain exactly 19 characters.
drhc81c11f2009-11-10 01:30:52 +0000570**
571** Unlike memcmp() this routine is guaranteed to return the difference
572** in the values of the last digit if the only difference is in the
573** last digit. So, for example,
574**
drh9339da12010-09-30 00:50:49 +0000575** compare2pow63("9223372036854775800", 1)
drhc81c11f2009-11-10 01:30:52 +0000576**
577** will return -8.
578*/
drh9339da12010-09-30 00:50:49 +0000579static int compare2pow63(const char *zNum, int incr){
580 int c = 0;
581 int i;
582 /* 012345678901234567 */
583 const char *pow63 = "922337203685477580";
584 for(i=0; c==0 && i<18; i++){
585 c = (zNum[i*incr]-pow63[i])*10;
586 }
drhc81c11f2009-11-10 01:30:52 +0000587 if( c==0 ){
drh9339da12010-09-30 00:50:49 +0000588 c = zNum[18*incr] - '8';
drh44dbca82010-01-13 04:22:20 +0000589 testcase( c==(-1) );
590 testcase( c==0 );
591 testcase( c==(+1) );
drhc81c11f2009-11-10 01:30:52 +0000592 }
593 return c;
594}
595
drhc81c11f2009-11-10 01:30:52 +0000596/*
drh9296c182014-07-23 13:40:49 +0000597** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
598** routine does *not* accept hexadecimal notation.
drh158b9cb2011-03-05 20:59:46 +0000599**
drh84d4f1a2017-09-20 10:47:10 +0000600** Returns:
drh158b9cb2011-03-05 20:59:46 +0000601**
drh84d4f1a2017-09-20 10:47:10 +0000602** 0 Successful transformation. Fits in a 64-bit signed integer.
drh4eb57ce2018-01-26 18:37:34 +0000603** 1 Excess non-space text after the integer value
drh84d4f1a2017-09-20 10:47:10 +0000604** 2 Integer too large for a 64-bit signed integer or is malformed
605** 3 Special case of 9223372036854775808
drhc81c11f2009-11-10 01:30:52 +0000606**
drh9339da12010-09-30 00:50:49 +0000607** length is the number of bytes in the string (bytes, not characters).
608** The string is not necessarily zero-terminated. The encoding is
609** given by enc.
drhc81c11f2009-11-10 01:30:52 +0000610*/
drh9339da12010-09-30 00:50:49 +0000611int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
drh0e5fba72013-03-20 12:04:29 +0000612 int incr;
drh158b9cb2011-03-05 20:59:46 +0000613 u64 u = 0;
shaneh5f1d6b62010-09-30 16:51:25 +0000614 int neg = 0; /* assume positive */
drh9339da12010-09-30 00:50:49 +0000615 int i;
616 int c = 0;
drh609d5842016-04-28 00:32:16 +0000617 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */
drh84d4f1a2017-09-20 10:47:10 +0000618 int rc; /* Baseline return code */
drhc81c11f2009-11-10 01:30:52 +0000619 const char *zStart;
drh9339da12010-09-30 00:50:49 +0000620 const char *zEnd = zNum + length;
drh0e5fba72013-03-20 12:04:29 +0000621 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
622 if( enc==SQLITE_UTF8 ){
623 incr = 1;
624 }else{
625 incr = 2;
626 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
627 for(i=3-enc; i<length && zNum[i]==0; i+=2){}
628 nonNum = i<length;
drh609d5842016-04-28 00:32:16 +0000629 zEnd = &zNum[i^1];
drh0e5fba72013-03-20 12:04:29 +0000630 zNum += (enc&1);
631 }
drh9339da12010-09-30 00:50:49 +0000632 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
drh158b9cb2011-03-05 20:59:46 +0000633 if( zNum<zEnd ){
634 if( *zNum=='-' ){
635 neg = 1;
636 zNum+=incr;
637 }else if( *zNum=='+' ){
638 zNum+=incr;
639 }
drhc81c11f2009-11-10 01:30:52 +0000640 }
641 zStart = zNum;
drh9339da12010-09-30 00:50:49 +0000642 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
643 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
drh158b9cb2011-03-05 20:59:46 +0000644 u = u*10 + c - '0';
drhc81c11f2009-11-10 01:30:52 +0000645 }
drh4eb57ce2018-01-26 18:37:34 +0000646 testcase( i==18*incr );
647 testcase( i==19*incr );
648 testcase( i==20*incr );
drh1822ebf2018-01-27 14:25:27 +0000649 if( u>LARGEST_INT64 ){
650 /* This test and assignment is needed only to suppress UB warnings
651 ** from clang and -fsanitize=undefined. This test and assignment make
652 ** the code a little larger and slower, and no harm comes from omitting
653 ** them, but we must appaise the undefined-behavior pharisees. */
654 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
655 }else if( neg ){
drh158b9cb2011-03-05 20:59:46 +0000656 *pNum = -(i64)u;
657 }else{
658 *pNum = (i64)u;
659 }
drh4eb57ce2018-01-26 18:37:34 +0000660 rc = 0;
661 if( (i==0 && zStart==zNum) /* No digits */
drh609d5842016-04-28 00:32:16 +0000662 || nonNum /* UTF16 with high-order bytes non-zero */
663 ){
drh84d4f1a2017-09-20 10:47:10 +0000664 rc = 1;
drh4eb57ce2018-01-26 18:37:34 +0000665 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */
666 int jj = i;
667 do{
668 if( !sqlite3Isspace(zNum[jj]) ){
669 rc = 1; /* Extra non-space text after the integer */
670 break;
671 }
672 jj += incr;
673 }while( &zNum[jj]<zEnd );
drh84d4f1a2017-09-20 10:47:10 +0000674 }
drh4eb57ce2018-01-26 18:37:34 +0000675 if( i<19*incr ){
drhc81c11f2009-11-10 01:30:52 +0000676 /* Less than 19 digits, so we know that it fits in 64 bits */
drh158b9cb2011-03-05 20:59:46 +0000677 assert( u<=LARGEST_INT64 );
drh84d4f1a2017-09-20 10:47:10 +0000678 return rc;
drhc81c11f2009-11-10 01:30:52 +0000679 }else{
drh158b9cb2011-03-05 20:59:46 +0000680 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
drh4eb57ce2018-01-26 18:37:34 +0000681 c = i>19*incr ? 1 : compare2pow63(zNum, incr);
drh158b9cb2011-03-05 20:59:46 +0000682 if( c<0 ){
683 /* zNum is less than 9223372036854775808 so it fits */
684 assert( u<=LARGEST_INT64 );
drh84d4f1a2017-09-20 10:47:10 +0000685 return rc;
drh158b9cb2011-03-05 20:59:46 +0000686 }else{
drh4eb57ce2018-01-26 18:37:34 +0000687 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
688 if( c>0 ){
689 /* zNum is greater than 9223372036854775808 so it overflows */
690 return 2;
691 }else{
692 /* zNum is exactly 9223372036854775808. Fits if negative. The
693 ** special case 2 overflow if positive */
694 assert( u-1==LARGEST_INT64 );
695 return neg ? rc : 3;
696 }
drh158b9cb2011-03-05 20:59:46 +0000697 }
drhc81c11f2009-11-10 01:30:52 +0000698 }
699}
700
701/*
drh9296c182014-07-23 13:40:49 +0000702** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
703** into a 64-bit signed integer. This routine accepts hexadecimal literals,
704** whereas sqlite3Atoi64() does not.
705**
706** Returns:
707**
708** 0 Successful transformation. Fits in a 64-bit signed integer.
drh84d4f1a2017-09-20 10:47:10 +0000709** 1 Excess text after the integer value
710** 2 Integer too large for a 64-bit signed integer or is malformed
711** 3 Special case of 9223372036854775808
drh9296c182014-07-23 13:40:49 +0000712*/
713int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
714#ifndef SQLITE_OMIT_HEX_INTEGER
715 if( z[0]=='0'
716 && (z[1]=='x' || z[1]=='X')
drh9296c182014-07-23 13:40:49 +0000717 ){
718 u64 u = 0;
719 int i, k;
720 for(i=2; z[i]=='0'; i++){}
721 for(k=i; sqlite3Isxdigit(z[k]); k++){
722 u = u*16 + sqlite3HexToInt(z[k]);
723 }
724 memcpy(pOut, &u, 8);
drh84d4f1a2017-09-20 10:47:10 +0000725 return (z[k]==0 && k-i<=16) ? 0 : 2;
drh9296c182014-07-23 13:40:49 +0000726 }else
727#endif /* SQLITE_OMIT_HEX_INTEGER */
728 {
729 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
730 }
731}
732
733/*
drhc81c11f2009-11-10 01:30:52 +0000734** If zNum represents an integer that will fit in 32-bits, then set
735** *pValue to that integer and return true. Otherwise return false.
736**
drh9296c182014-07-23 13:40:49 +0000737** This routine accepts both decimal and hexadecimal notation for integers.
738**
drhc81c11f2009-11-10 01:30:52 +0000739** Any non-numeric characters that following zNum are ignored.
740** This is different from sqlite3Atoi64() which requires the
741** input number to be zero-terminated.
742*/
743int sqlite3GetInt32(const char *zNum, int *pValue){
744 sqlite_int64 v = 0;
745 int i, c;
746 int neg = 0;
747 if( zNum[0]=='-' ){
748 neg = 1;
749 zNum++;
750 }else if( zNum[0]=='+' ){
751 zNum++;
752 }
drh28e048c2014-07-23 01:26:51 +0000753#ifndef SQLITE_OMIT_HEX_INTEGER
754 else if( zNum[0]=='0'
755 && (zNum[1]=='x' || zNum[1]=='X')
756 && sqlite3Isxdigit(zNum[2])
757 ){
758 u32 u = 0;
759 zNum += 2;
760 while( zNum[0]=='0' ) zNum++;
761 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
762 u = u*16 + sqlite3HexToInt(zNum[i]);
763 }
764 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
765 memcpy(pValue, &u, 4);
766 return 1;
767 }else{
768 return 0;
769 }
770 }
771#endif
drh313e6fd2017-05-03 17:44:28 +0000772 if( !sqlite3Isdigit(zNum[0]) ) return 0;
drh935f2e72015-04-18 04:45:00 +0000773 while( zNum[0]=='0' ) zNum++;
drhc81c11f2009-11-10 01:30:52 +0000774 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
775 v = v*10 + c;
776 }
777
778 /* The longest decimal representation of a 32 bit integer is 10 digits:
779 **
780 ** 1234567890
781 ** 2^31 -> 2147483648
782 */
drh44dbca82010-01-13 04:22:20 +0000783 testcase( i==10 );
drhc81c11f2009-11-10 01:30:52 +0000784 if( i>10 ){
785 return 0;
786 }
drh44dbca82010-01-13 04:22:20 +0000787 testcase( v-neg==2147483647 );
drhc81c11f2009-11-10 01:30:52 +0000788 if( v-neg>2147483647 ){
789 return 0;
790 }
791 if( neg ){
792 v = -v;
793 }
794 *pValue = (int)v;
795 return 1;
796}
797
798/*
drh60ac3f42010-11-23 18:59:27 +0000799** Return a 32-bit integer value extracted from a string. If the
800** string is not an integer, just return 0.
801*/
802int sqlite3Atoi(const char *z){
803 int x = 0;
804 if( z ) sqlite3GetInt32(z, &x);
805 return x;
806}
807
808/*
drhc81c11f2009-11-10 01:30:52 +0000809** The variable-length integer encoding is as follows:
810**
811** KEY:
812** A = 0xxxxxxx 7 bits of data and one flag bit
813** B = 1xxxxxxx 7 bits of data and one flag bit
814** C = xxxxxxxx 8 bits of data
815**
816** 7 bits - A
817** 14 bits - BA
818** 21 bits - BBA
819** 28 bits - BBBA
820** 35 bits - BBBBA
821** 42 bits - BBBBBA
822** 49 bits - BBBBBBA
823** 56 bits - BBBBBBBA
824** 64 bits - BBBBBBBBC
825*/
826
827/*
828** Write a 64-bit variable-length integer to memory starting at p[0].
829** The length of data write will be between 1 and 9 bytes. The number
830** of bytes written is returned.
831**
832** A variable-length integer consists of the lower 7 bits of each byte
833** for all bytes that have the 8th bit set and one byte with the 8th
834** bit clear. Except, if we get to the 9th byte, it stores the full
835** 8 bits and is the last byte.
836*/
drh2f2b2b82014-08-22 18:48:25 +0000837static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
drhc81c11f2009-11-10 01:30:52 +0000838 int i, j, n;
839 u8 buf[10];
840 if( v & (((u64)0xff000000)<<32) ){
841 p[8] = (u8)v;
842 v >>= 8;
843 for(i=7; i>=0; i--){
844 p[i] = (u8)((v & 0x7f) | 0x80);
845 v >>= 7;
846 }
847 return 9;
848 }
849 n = 0;
850 do{
851 buf[n++] = (u8)((v & 0x7f) | 0x80);
852 v >>= 7;
853 }while( v!=0 );
854 buf[0] &= 0x7f;
855 assert( n<=9 );
856 for(i=0, j=n-1; j>=0; j--, i++){
857 p[i] = buf[j];
858 }
859 return n;
860}
drh2f2b2b82014-08-22 18:48:25 +0000861int sqlite3PutVarint(unsigned char *p, u64 v){
862 if( v<=0x7f ){
863 p[0] = v&0x7f;
drhc81c11f2009-11-10 01:30:52 +0000864 return 1;
865 }
drh2f2b2b82014-08-22 18:48:25 +0000866 if( v<=0x3fff ){
867 p[0] = ((v>>7)&0x7f)|0x80;
868 p[1] = v&0x7f;
drhc81c11f2009-11-10 01:30:52 +0000869 return 2;
870 }
drh2f2b2b82014-08-22 18:48:25 +0000871 return putVarint64(p,v);
drhc81c11f2009-11-10 01:30:52 +0000872}
873
874/*
drh0b2864c2010-03-03 15:18:38 +0000875** Bitmasks used by sqlite3GetVarint(). These precomputed constants
876** are defined here rather than simply putting the constant expressions
877** inline in order to work around bugs in the RVT compiler.
878**
879** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
880**
881** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
882*/
883#define SLOT_2_0 0x001fc07f
884#define SLOT_4_2_0 0xf01fc07f
885
886
887/*
drhc81c11f2009-11-10 01:30:52 +0000888** Read a 64-bit variable-length integer from memory starting at p[0].
889** Return the number of bytes read. The value is stored in *v.
890*/
891u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
892 u32 a,b,s;
893
894 a = *p;
895 /* a: p0 (unmasked) */
896 if (!(a&0x80))
897 {
898 *v = a;
899 return 1;
900 }
901
902 p++;
903 b = *p;
904 /* b: p1 (unmasked) */
905 if (!(b&0x80))
906 {
907 a &= 0x7f;
908 a = a<<7;
909 a |= b;
910 *v = a;
911 return 2;
912 }
913
drh0b2864c2010-03-03 15:18:38 +0000914 /* Verify that constants are precomputed correctly */
915 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
shaneh1da207e2010-03-09 14:41:12 +0000916 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
drh0b2864c2010-03-03 15:18:38 +0000917
drhc81c11f2009-11-10 01:30:52 +0000918 p++;
919 a = a<<14;
920 a |= *p;
921 /* a: p0<<14 | p2 (unmasked) */
922 if (!(a&0x80))
923 {
drh0b2864c2010-03-03 15:18:38 +0000924 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000925 b &= 0x7f;
926 b = b<<7;
927 a |= b;
928 *v = a;
929 return 3;
930 }
931
932 /* CSE1 from below */
drh0b2864c2010-03-03 15:18:38 +0000933 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000934 p++;
935 b = b<<14;
936 b |= *p;
937 /* b: p1<<14 | p3 (unmasked) */
938 if (!(b&0x80))
939 {
drh0b2864c2010-03-03 15:18:38 +0000940 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000941 /* moved CSE1 up */
942 /* a &= (0x7f<<14)|(0x7f); */
943 a = a<<7;
944 a |= b;
945 *v = a;
946 return 4;
947 }
948
949 /* a: p0<<14 | p2 (masked) */
950 /* b: p1<<14 | p3 (unmasked) */
951 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
952 /* moved CSE1 up */
953 /* a &= (0x7f<<14)|(0x7f); */
drh0b2864c2010-03-03 15:18:38 +0000954 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000955 s = a;
956 /* s: p0<<14 | p2 (masked) */
957
958 p++;
959 a = a<<14;
960 a |= *p;
961 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
962 if (!(a&0x80))
963 {
drh62aaa6c2015-11-21 17:27:42 +0000964 /* we can skip these cause they were (effectively) done above
965 ** while calculating s */
drhc81c11f2009-11-10 01:30:52 +0000966 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
967 /* b &= (0x7f<<14)|(0x7f); */
968 b = b<<7;
969 a |= b;
970 s = s>>18;
971 *v = ((u64)s)<<32 | a;
972 return 5;
973 }
974
975 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
976 s = s<<7;
977 s |= b;
978 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
979
980 p++;
981 b = b<<14;
982 b |= *p;
983 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
984 if (!(b&0x80))
985 {
986 /* we can skip this cause it was (effectively) done above in calc'ing s */
987 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
drh0b2864c2010-03-03 15:18:38 +0000988 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000989 a = a<<7;
990 a |= b;
991 s = s>>18;
992 *v = ((u64)s)<<32 | a;
993 return 6;
994 }
995
996 p++;
997 a = a<<14;
998 a |= *p;
999 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1000 if (!(a&0x80))
1001 {
drh0b2864c2010-03-03 15:18:38 +00001002 a &= SLOT_4_2_0;
1003 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001004 b = b<<7;
1005 a |= b;
1006 s = s>>11;
1007 *v = ((u64)s)<<32 | a;
1008 return 7;
1009 }
1010
1011 /* CSE2 from below */
drh0b2864c2010-03-03 15:18:38 +00001012 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001013 p++;
1014 b = b<<14;
1015 b |= *p;
1016 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1017 if (!(b&0x80))
1018 {
drh0b2864c2010-03-03 15:18:38 +00001019 b &= SLOT_4_2_0;
drhc81c11f2009-11-10 01:30:52 +00001020 /* moved CSE2 up */
1021 /* a &= (0x7f<<14)|(0x7f); */
1022 a = a<<7;
1023 a |= b;
1024 s = s>>4;
1025 *v = ((u64)s)<<32 | a;
1026 return 8;
1027 }
1028
1029 p++;
1030 a = a<<15;
1031 a |= *p;
1032 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1033
1034 /* moved CSE2 up */
1035 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
drh0b2864c2010-03-03 15:18:38 +00001036 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001037 b = b<<8;
1038 a |= b;
1039
1040 s = s<<4;
1041 b = p[-4];
1042 b &= 0x7f;
1043 b = b>>3;
1044 s |= b;
1045
1046 *v = ((u64)s)<<32 | a;
1047
1048 return 9;
1049}
1050
1051/*
1052** Read a 32-bit variable-length integer from memory starting at p[0].
1053** Return the number of bytes read. The value is stored in *v.
1054**
1055** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1056** integer, then set *v to 0xffffffff.
1057**
1058** A MACRO version, getVarint32, is provided which inlines the
1059** single-byte case. All code should use the MACRO version as
1060** this function assumes the single-byte case has already been handled.
1061*/
1062u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1063 u32 a,b;
1064
1065 /* The 1-byte case. Overwhelmingly the most common. Handled inline
1066 ** by the getVarin32() macro */
1067 a = *p;
1068 /* a: p0 (unmasked) */
1069#ifndef getVarint32
1070 if (!(a&0x80))
1071 {
1072 /* Values between 0 and 127 */
1073 *v = a;
1074 return 1;
1075 }
1076#endif
1077
1078 /* The 2-byte case */
1079 p++;
1080 b = *p;
1081 /* b: p1 (unmasked) */
1082 if (!(b&0x80))
1083 {
1084 /* Values between 128 and 16383 */
1085 a &= 0x7f;
1086 a = a<<7;
1087 *v = a | b;
1088 return 2;
1089 }
1090
1091 /* The 3-byte case */
1092 p++;
1093 a = a<<14;
1094 a |= *p;
1095 /* a: p0<<14 | p2 (unmasked) */
1096 if (!(a&0x80))
1097 {
1098 /* Values between 16384 and 2097151 */
1099 a &= (0x7f<<14)|(0x7f);
1100 b &= 0x7f;
1101 b = b<<7;
1102 *v = a | b;
1103 return 3;
1104 }
1105
1106 /* A 32-bit varint is used to store size information in btrees.
1107 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1108 ** A 3-byte varint is sufficient, for example, to record the size
1109 ** of a 1048569-byte BLOB or string.
1110 **
1111 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
1112 ** rare larger cases can be handled by the slower 64-bit varint
1113 ** routine.
1114 */
1115#if 1
1116 {
1117 u64 v64;
1118 u8 n;
1119
1120 p -= 2;
1121 n = sqlite3GetVarint(p, &v64);
1122 assert( n>3 && n<=9 );
1123 if( (v64 & SQLITE_MAX_U32)!=v64 ){
1124 *v = 0xffffffff;
1125 }else{
1126 *v = (u32)v64;
1127 }
1128 return n;
1129 }
1130
1131#else
1132 /* For following code (kept for historical record only) shows an
1133 ** unrolling for the 3- and 4-byte varint cases. This code is
1134 ** slightly faster, but it is also larger and much harder to test.
1135 */
1136 p++;
1137 b = b<<14;
1138 b |= *p;
1139 /* b: p1<<14 | p3 (unmasked) */
1140 if (!(b&0x80))
1141 {
1142 /* Values between 2097152 and 268435455 */
1143 b &= (0x7f<<14)|(0x7f);
1144 a &= (0x7f<<14)|(0x7f);
1145 a = a<<7;
1146 *v = a | b;
1147 return 4;
1148 }
1149
1150 p++;
1151 a = a<<14;
1152 a |= *p;
1153 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1154 if (!(a&0x80))
1155 {
dan3bbe7612010-03-03 16:02:05 +00001156 /* Values between 268435456 and 34359738367 */
1157 a &= SLOT_4_2_0;
1158 b &= SLOT_4_2_0;
drhc81c11f2009-11-10 01:30:52 +00001159 b = b<<7;
1160 *v = a | b;
1161 return 5;
1162 }
1163
1164 /* We can only reach this point when reading a corrupt database
1165 ** file. In that case we are not in any hurry. Use the (relatively
1166 ** slow) general-purpose sqlite3GetVarint() routine to extract the
1167 ** value. */
1168 {
1169 u64 v64;
1170 u8 n;
1171
1172 p -= 4;
1173 n = sqlite3GetVarint(p, &v64);
1174 assert( n>5 && n<=9 );
1175 *v = (u32)v64;
1176 return n;
1177 }
1178#endif
1179}
1180
1181/*
1182** Return the number of bytes that will be needed to store the given
1183** 64-bit integer.
1184*/
1185int sqlite3VarintLen(u64 v){
drh59a53642015-09-01 22:29:07 +00001186 int i;
drh6f17c092016-03-04 21:18:09 +00001187 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
drhc81c11f2009-11-10 01:30:52 +00001188 return i;
1189}
1190
1191
1192/*
1193** Read or write a four-byte big-endian integer value.
1194*/
1195u32 sqlite3Get4byte(const u8 *p){
drh5372e4d2015-06-30 12:47:09 +00001196#if SQLITE_BYTEORDER==4321
1197 u32 x;
1198 memcpy(&x,p,4);
1199 return x;
drhdc5ece82017-02-15 15:09:09 +00001200#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
drh5372e4d2015-06-30 12:47:09 +00001201 u32 x;
1202 memcpy(&x,p,4);
1203 return __builtin_bswap32(x);
drha39284b2017-02-09 17:12:22 +00001204#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
mistachkin647ca462015-06-30 17:28:40 +00001205 u32 x;
1206 memcpy(&x,p,4);
1207 return _byteswap_ulong(x);
drh5372e4d2015-06-30 12:47:09 +00001208#else
drh693e6712014-01-24 22:58:00 +00001209 testcase( p[0]&0x80 );
1210 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
drh5372e4d2015-06-30 12:47:09 +00001211#endif
drhc81c11f2009-11-10 01:30:52 +00001212}
1213void sqlite3Put4byte(unsigned char *p, u32 v){
drh5372e4d2015-06-30 12:47:09 +00001214#if SQLITE_BYTEORDER==4321
1215 memcpy(p,&v,4);
drhdc5ece82017-02-15 15:09:09 +00001216#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
drh5372e4d2015-06-30 12:47:09 +00001217 u32 x = __builtin_bswap32(v);
1218 memcpy(p,&x,4);
drha39284b2017-02-09 17:12:22 +00001219#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
mistachkin647ca462015-06-30 17:28:40 +00001220 u32 x = _byteswap_ulong(v);
1221 memcpy(p,&x,4);
drh5372e4d2015-06-30 12:47:09 +00001222#else
drhc81c11f2009-11-10 01:30:52 +00001223 p[0] = (u8)(v>>24);
1224 p[1] = (u8)(v>>16);
1225 p[2] = (u8)(v>>8);
1226 p[3] = (u8)v;
drh5372e4d2015-06-30 12:47:09 +00001227#endif
drhc81c11f2009-11-10 01:30:52 +00001228}
1229
drh9296c182014-07-23 13:40:49 +00001230
1231
1232/*
1233** Translate a single byte of Hex into an integer.
1234** This routine only works if h really is a valid hexadecimal
1235** character: 0..9a..fA..F
1236*/
1237u8 sqlite3HexToInt(int h){
1238 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
1239#ifdef SQLITE_ASCII
1240 h += 9*(1&(h>>6));
1241#endif
1242#ifdef SQLITE_EBCDIC
1243 h += 9*(1&~(h>>4));
1244#endif
1245 return (u8)(h & 0xf);
1246}
1247
drhc81c11f2009-11-10 01:30:52 +00001248#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1249/*
1250** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1251** value. Return a pointer to its binary value. Space to hold the
1252** binary value has been obtained from malloc and must be freed by
1253** the calling routine.
1254*/
1255void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1256 char *zBlob;
1257 int i;
1258
drh575fad62016-02-05 13:38:36 +00001259 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
drhc81c11f2009-11-10 01:30:52 +00001260 n--;
1261 if( zBlob ){
1262 for(i=0; i<n; i+=2){
dancd74b612011-04-22 19:37:32 +00001263 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
drhc81c11f2009-11-10 01:30:52 +00001264 }
1265 zBlob[i/2] = 0;
1266 }
1267 return zBlob;
1268}
1269#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1270
drh413c3d32010-02-23 20:11:56 +00001271/*
1272** Log an error that is an API call on a connection pointer that should
1273** not have been used. The "type" of connection pointer is given as the
1274** argument. The zType is a word like "NULL" or "closed" or "invalid".
1275*/
1276static void logBadConnection(const char *zType){
1277 sqlite3_log(SQLITE_MISUSE,
1278 "API call with %s database connection pointer",
1279 zType
1280 );
1281}
drhc81c11f2009-11-10 01:30:52 +00001282
1283/*
drhc81c11f2009-11-10 01:30:52 +00001284** Check to make sure we have a valid db pointer. This test is not
1285** foolproof but it does provide some measure of protection against
1286** misuse of the interface such as passing in db pointers that are
1287** NULL or which have been previously closed. If this routine returns
1288** 1 it means that the db pointer is valid and 0 if it should not be
1289** dereferenced for any reason. The calling function should invoke
1290** SQLITE_MISUSE immediately.
1291**
1292** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1293** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1294** open properly and is not fit for general use but which can be
1295** used as an argument to sqlite3_errmsg() or sqlite3_close().
1296*/
1297int sqlite3SafetyCheckOk(sqlite3 *db){
1298 u32 magic;
drh413c3d32010-02-23 20:11:56 +00001299 if( db==0 ){
1300 logBadConnection("NULL");
1301 return 0;
1302 }
drhc81c11f2009-11-10 01:30:52 +00001303 magic = db->magic;
drh9978c972010-02-23 17:36:32 +00001304 if( magic!=SQLITE_MAGIC_OPEN ){
drhe294da02010-02-25 23:44:15 +00001305 if( sqlite3SafetyCheckSickOrOk(db) ){
1306 testcase( sqlite3GlobalConfig.xLog!=0 );
drh413c3d32010-02-23 20:11:56 +00001307 logBadConnection("unopened");
1308 }
drhc81c11f2009-11-10 01:30:52 +00001309 return 0;
1310 }else{
1311 return 1;
1312 }
1313}
1314int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1315 u32 magic;
1316 magic = db->magic;
1317 if( magic!=SQLITE_MAGIC_SICK &&
1318 magic!=SQLITE_MAGIC_OPEN &&
drh413c3d32010-02-23 20:11:56 +00001319 magic!=SQLITE_MAGIC_BUSY ){
drhe294da02010-02-25 23:44:15 +00001320 testcase( sqlite3GlobalConfig.xLog!=0 );
drhaf46dc12010-02-24 21:44:07 +00001321 logBadConnection("invalid");
drh413c3d32010-02-23 20:11:56 +00001322 return 0;
1323 }else{
1324 return 1;
1325 }
drhc81c11f2009-11-10 01:30:52 +00001326}
drh158b9cb2011-03-05 20:59:46 +00001327
1328/*
1329** Attempt to add, substract, or multiply the 64-bit signed value iB against
1330** the other 64-bit signed integer at *pA and store the result in *pA.
1331** Return 0 on success. Or if the operation would have resulted in an
1332** overflow, leave *pA unchanged and return 1.
1333*/
1334int sqlite3AddInt64(i64 *pA, i64 iB){
drhb9772e72017-09-12 13:27:43 +00001335#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
drh4a477612017-01-03 17:33:43 +00001336 return __builtin_add_overflow(*pA, iB, pA);
1337#else
drh158b9cb2011-03-05 20:59:46 +00001338 i64 iA = *pA;
1339 testcase( iA==0 ); testcase( iA==1 );
1340 testcase( iB==-1 ); testcase( iB==0 );
1341 if( iB>=0 ){
1342 testcase( iA>0 && LARGEST_INT64 - iA == iB );
1343 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1344 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
drh158b9cb2011-03-05 20:59:46 +00001345 }else{
1346 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1347 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1348 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
drh158b9cb2011-03-05 20:59:46 +00001349 }
drh53a6eb32014-02-10 12:59:15 +00001350 *pA += iB;
drh158b9cb2011-03-05 20:59:46 +00001351 return 0;
drh4a477612017-01-03 17:33:43 +00001352#endif
drh158b9cb2011-03-05 20:59:46 +00001353}
1354int sqlite3SubInt64(i64 *pA, i64 iB){
drhb9772e72017-09-12 13:27:43 +00001355#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
drh4a477612017-01-03 17:33:43 +00001356 return __builtin_sub_overflow(*pA, iB, pA);
1357#else
drh158b9cb2011-03-05 20:59:46 +00001358 testcase( iB==SMALLEST_INT64+1 );
1359 if( iB==SMALLEST_INT64 ){
1360 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1361 if( (*pA)>=0 ) return 1;
1362 *pA -= iB;
1363 return 0;
1364 }else{
1365 return sqlite3AddInt64(pA, -iB);
1366 }
drh4a477612017-01-03 17:33:43 +00001367#endif
drh158b9cb2011-03-05 20:59:46 +00001368}
drh158b9cb2011-03-05 20:59:46 +00001369int sqlite3MulInt64(i64 *pA, i64 iB){
drhb9772e72017-09-12 13:27:43 +00001370#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
drh4a477612017-01-03 17:33:43 +00001371 return __builtin_mul_overflow(*pA, iB, pA);
1372#else
drh158b9cb2011-03-05 20:59:46 +00001373 i64 iA = *pA;
drh09952c62016-09-20 22:04:05 +00001374 if( iB>0 ){
1375 if( iA>LARGEST_INT64/iB ) return 1;
1376 if( iA<SMALLEST_INT64/iB ) return 1;
1377 }else if( iB<0 ){
1378 if( iA>0 ){
1379 if( iB<SMALLEST_INT64/iA ) return 1;
1380 }else if( iA<0 ){
1381 if( iB==SMALLEST_INT64 ) return 1;
1382 if( iA==SMALLEST_INT64 ) return 1;
1383 if( -iA>LARGEST_INT64/-iB ) return 1;
drh53a6eb32014-02-10 12:59:15 +00001384 }
drh53a6eb32014-02-10 12:59:15 +00001385 }
drh09952c62016-09-20 22:04:05 +00001386 *pA = iA*iB;
drh158b9cb2011-03-05 20:59:46 +00001387 return 0;
drh4a477612017-01-03 17:33:43 +00001388#endif
drh158b9cb2011-03-05 20:59:46 +00001389}
drhd50ffc42011-03-08 02:38:28 +00001390
1391/*
1392** Compute the absolute value of a 32-bit signed integer, of possible. Or
1393** if the integer has a value of -2147483648, return +2147483647
1394*/
1395int sqlite3AbsInt32(int x){
1396 if( x>=0 ) return x;
drh87e79ae2011-03-08 13:06:41 +00001397 if( x==(int)0x80000000 ) return 0x7fffffff;
drhd50ffc42011-03-08 02:38:28 +00001398 return -x;
1399}
drh81cc5162011-05-17 20:36:21 +00001400
1401#ifdef SQLITE_ENABLE_8_3_NAMES
1402/*
drhb51bf432011-07-21 21:29:35 +00001403** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
drh81cc5162011-05-17 20:36:21 +00001404** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1405** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1406** three characters, then shorten the suffix on z[] to be the last three
1407** characters of the original suffix.
1408**
drhb51bf432011-07-21 21:29:35 +00001409** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1410** do the suffix shortening regardless of URI parameter.
1411**
drh81cc5162011-05-17 20:36:21 +00001412** Examples:
1413**
1414** test.db-journal => test.nal
1415** test.db-wal => test.wal
1416** test.db-shm => test.shm
drhf5808602011-12-16 00:33:04 +00001417** test.db-mj7f3319fa => test.9fa
drh81cc5162011-05-17 20:36:21 +00001418*/
1419void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
drhb51bf432011-07-21 21:29:35 +00001420#if SQLITE_ENABLE_8_3_NAMES<2
drh7d39e172012-01-02 12:41:53 +00001421 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
drhb51bf432011-07-21 21:29:35 +00001422#endif
1423 {
drh81cc5162011-05-17 20:36:21 +00001424 int i, sz;
1425 sz = sqlite3Strlen30(z);
drhc83f2d42011-05-18 02:41:10 +00001426 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
drhc02a43a2012-01-10 23:18:38 +00001427 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
drh81cc5162011-05-17 20:36:21 +00001428 }
1429}
1430#endif
drhbf539c42013-10-05 18:16:02 +00001431
1432/*
1433** Find (an approximate) sum of two LogEst values. This computation is
1434** not a simple "+" operator because LogEst is stored as a logarithmic
1435** value.
1436**
1437*/
1438LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1439 static const unsigned char x[] = {
1440 10, 10, /* 0,1 */
1441 9, 9, /* 2,3 */
1442 8, 8, /* 4,5 */
1443 7, 7, 7, /* 6,7,8 */
1444 6, 6, 6, /* 9,10,11 */
1445 5, 5, 5, /* 12-14 */
1446 4, 4, 4, 4, /* 15-18 */
1447 3, 3, 3, 3, 3, 3, /* 19-24 */
1448 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1449 };
1450 if( a>=b ){
1451 if( a>b+49 ) return a;
1452 if( a>b+31 ) return a+1;
1453 return a+x[a-b];
1454 }else{
1455 if( b>a+49 ) return b;
1456 if( b>a+31 ) return b+1;
1457 return b+x[b-a];
1458 }
1459}
1460
1461/*
drh224155d2014-04-30 13:19:09 +00001462** Convert an integer into a LogEst. In other words, compute an
1463** approximation for 10*log2(x).
drhbf539c42013-10-05 18:16:02 +00001464*/
1465LogEst sqlite3LogEst(u64 x){
1466 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1467 LogEst y = 40;
1468 if( x<8 ){
1469 if( x<2 ) return 0;
1470 while( x<8 ){ y -= 10; x <<= 1; }
1471 }else{
drhceb4b1d2017-08-17 20:53:07 +00001472#if GCC_VERSION>=5004000
1473 int i = 60 - __builtin_clzll(x);
1474 y += i*10;
1475 x >>= i;
1476#else
drh75ab50c2016-04-28 14:15:12 +00001477 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/
drhbf539c42013-10-05 18:16:02 +00001478 while( x>15 ){ y += 10; x >>= 1; }
drhceb4b1d2017-08-17 20:53:07 +00001479#endif
drhbf539c42013-10-05 18:16:02 +00001480 }
1481 return a[x&7] + y - 10;
1482}
1483
1484#ifndef SQLITE_OMIT_VIRTUALTABLE
1485/*
1486** Convert a double into a LogEst
1487** In other words, compute an approximation for 10*log2(x).
1488*/
1489LogEst sqlite3LogEstFromDouble(double x){
1490 u64 a;
1491 LogEst e;
1492 assert( sizeof(x)==8 && sizeof(a)==8 );
1493 if( x<=1 ) return 0;
1494 if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1495 memcpy(&a, &x, 8);
1496 e = (a>>52) - 1022;
1497 return e*10;
1498}
1499#endif /* SQLITE_OMIT_VIRTUALTABLE */
1500
drh14bfd992016-03-05 14:00:09 +00001501#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
drhd566c952016-02-25 21:19:03 +00001502 defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \
1503 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
drhbf539c42013-10-05 18:16:02 +00001504/*
1505** Convert a LogEst into an integer.
drhd566c952016-02-25 21:19:03 +00001506**
1507** Note that this routine is only used when one or more of various
1508** non-standard compile-time options is enabled.
drhbf539c42013-10-05 18:16:02 +00001509*/
1510u64 sqlite3LogEstToInt(LogEst x){
1511 u64 n;
drhbf539c42013-10-05 18:16:02 +00001512 n = x%10;
1513 x /= 10;
1514 if( n>=5 ) n -= 2;
1515 else if( n>=1 ) n -= 1;
drhecdf20d2016-03-10 14:28:24 +00001516#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1517 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1518 if( x>60 ) return (u64)LARGEST_INT64;
1519#else
1520 /* If only SQLITE_ENABLE_STAT3_OR_STAT4 is on, then the largest input
1521 ** possible to this routine is 310, resulting in a maximum x of 31 */
1522 assert( x<=60 );
1523#endif
1524 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
drhbf539c42013-10-05 18:16:02 +00001525}
drhd566c952016-02-25 21:19:03 +00001526#endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */
drh9bf755c2016-12-23 03:59:31 +00001527
1528/*
1529** Add a new name/number pair to a VList. This might require that the
1530** VList object be reallocated, so return the new VList. If an OOM
drhce1bbe52016-12-23 13:52:45 +00001531** error occurs, the original VList returned and the
drh9bf755c2016-12-23 03:59:31 +00001532** db->mallocFailed flag is set.
1533**
1534** A VList is really just an array of integers. To destroy a VList,
1535** simply pass it to sqlite3DbFree().
1536**
1537** The first integer is the number of integers allocated for the whole
1538** VList. The second integer is the number of integers actually used.
1539** Each name/number pair is encoded by subsequent groups of 3 or more
1540** integers.
1541**
drhce1bbe52016-12-23 13:52:45 +00001542** Each name/number pair starts with two integers which are the numeric
drh9bf755c2016-12-23 03:59:31 +00001543** value for the pair and the size of the name/number pair, respectively.
1544** The text name overlays one or more following integers. The text name
1545** is always zero-terminated.
drhce1bbe52016-12-23 13:52:45 +00001546**
1547** Conceptually:
1548**
1549** struct VList {
1550** int nAlloc; // Number of allocated slots
1551** int nUsed; // Number of used slots
1552** struct VListEntry {
1553** int iValue; // Value for this entry
1554** int nSlot; // Slots used by this entry
1555** // ... variable name goes here
1556** } a[0];
1557** }
1558**
1559** During code generation, pointers to the variable names within the
1560** VList are taken. When that happens, nAlloc is set to zero as an
1561** indication that the VList may never again be enlarged, since the
1562** accompanying realloc() would invalidate the pointers.
drh9bf755c2016-12-23 03:59:31 +00001563*/
1564VList *sqlite3VListAdd(
1565 sqlite3 *db, /* The database connection used for malloc() */
1566 VList *pIn, /* The input VList. Might be NULL */
1567 const char *zName, /* Name of symbol to add */
1568 int nName, /* Bytes of text in zName */
1569 int iVal /* Value to associate with zName */
1570){
1571 int nInt; /* number of sizeof(int) objects needed for zName */
drhce1bbe52016-12-23 13:52:45 +00001572 char *z; /* Pointer to where zName will be stored */
1573 int i; /* Index in pIn[] where zName is stored */
drh9bf755c2016-12-23 03:59:31 +00001574
1575 nInt = nName/4 + 3;
drhce1bbe52016-12-23 13:52:45 +00001576 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */
drh9bf755c2016-12-23 03:59:31 +00001577 if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1578 /* Enlarge the allocation */
1579 int nAlloc = (pIn ? pIn[0]*2 : 10) + nInt;
1580 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
drhce1bbe52016-12-23 13:52:45 +00001581 if( pOut==0 ) return pIn;
drh9bf755c2016-12-23 03:59:31 +00001582 if( pIn==0 ) pOut[1] = 2;
1583 pIn = pOut;
1584 pIn[0] = nAlloc;
1585 }
1586 i = pIn[1];
1587 pIn[i] = iVal;
1588 pIn[i+1] = nInt;
1589 z = (char*)&pIn[i+2];
1590 pIn[1] = i+nInt;
1591 assert( pIn[1]<=pIn[0] );
1592 memcpy(z, zName, nName);
1593 z[nName] = 0;
1594 return pIn;
1595}
1596
1597/*
1598** Return a pointer to the name of a variable in the given VList that
1599** has the value iVal. Or return a NULL if there is no such variable in
1600** the list
1601*/
1602const char *sqlite3VListNumToName(VList *pIn, int iVal){
1603 int i, mx;
1604 if( pIn==0 ) return 0;
1605 mx = pIn[1];
1606 i = 2;
1607 do{
1608 if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1609 i += pIn[i+1];
1610 }while( i<mx );
1611 return 0;
1612}
1613
1614/*
1615** Return the number of the variable named zName, if it is in VList.
1616** or return 0 if there is no such variable.
1617*/
1618int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1619 int i, mx;
1620 if( pIn==0 ) return 0;
1621 mx = pIn[1];
1622 i = 2;
1623 do{
1624 const char *z = (const char*)&pIn[i+2];
1625 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1626 i += pIn[i+1];
1627 }while( i<mx );
1628 return 0;
1629}