blob: 577d552ac318f0bedb379f4f7f2cf162d5ecdfdd [file] [log] [blame]
drhc81c11f2009-11-10 01:30:52 +00001/*
2** 2001 September 15
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** Utility functions used throughout sqlite.
13**
14** This file contains functions for allocating memory, comparing
15** strings, and stuff like that.
16**
17*/
18#include "sqliteInt.h"
19#include <stdarg.h>
20#ifdef SQLITE_HAVE_ISNAN
21# include <math.h>
22#endif
23
24/*
25** Routine needed to support the testcase() macro.
26*/
27#ifdef SQLITE_COVERAGE_TEST
28void sqlite3Coverage(int x){
drh68bf0672011-04-11 15:35:24 +000029 static unsigned dummy = 0;
30 dummy += (unsigned)x;
drhc81c11f2009-11-10 01:30:52 +000031}
32#endif
33
drh85c8f292010-01-13 17:39:53 +000034#ifndef SQLITE_OMIT_FLOATING_POINT
drhc81c11f2009-11-10 01:30:52 +000035/*
36** Return true if the floating point value is Not a Number (NaN).
37**
38** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
39** Otherwise, we have our own implementation that works on most systems.
40*/
41int sqlite3IsNaN(double x){
42 int rc; /* The value return */
43#if !defined(SQLITE_HAVE_ISNAN)
44 /*
45 ** Systems that support the isnan() library function should probably
46 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
47 ** found that many systems do not have a working isnan() function so
48 ** this implementation is provided as an alternative.
49 **
50 ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
51 ** On the other hand, the use of -ffast-math comes with the following
52 ** warning:
53 **
54 ** This option [-ffast-math] should never be turned on by any
55 ** -O option since it can result in incorrect output for programs
56 ** which depend on an exact implementation of IEEE or ISO
57 ** rules/specifications for math functions.
58 **
59 ** Under MSVC, this NaN test may fail if compiled with a floating-
60 ** point precision mode other than /fp:precise. From the MSDN
61 ** documentation:
62 **
63 ** The compiler [with /fp:precise] will properly handle comparisons
64 ** involving NaN. For example, x != x evaluates to true if x is NaN
65 ** ...
66 */
67#ifdef __FAST_MATH__
68# error SQLite will not work correctly with the -ffast-math option of GCC.
69#endif
70 volatile double y = x;
71 volatile double z = y;
72 rc = (y!=z);
73#else /* if defined(SQLITE_HAVE_ISNAN) */
74 rc = isnan(x);
75#endif /* SQLITE_HAVE_ISNAN */
76 testcase( rc );
77 return rc;
78}
drh85c8f292010-01-13 17:39:53 +000079#endif /* SQLITE_OMIT_FLOATING_POINT */
drhc81c11f2009-11-10 01:30:52 +000080
81/*
82** Compute a string length that is limited to what can be stored in
83** lower 30 bits of a 32-bit signed integer.
84**
85** The value returned will never be negative. Nor will it ever be greater
86** than the actual length of the string. For very long strings (greater
87** than 1GiB) the value returned might be less than the true string length.
88*/
89int sqlite3Strlen30(const char *z){
90 const char *z2 = z;
91 if( z==0 ) return 0;
92 while( *z2 ){ z2++; }
93 return 0x3fffffff & (int)(z2 - z);
94}
95
96/*
97** Set the most recent error code and error string for the sqlite
98** handle "db". The error code is set to "err_code".
99**
100** If it is not NULL, string zFormat specifies the format of the
101** error string in the style of the printf functions: The following
102** format characters are allowed:
103**
104** %s Insert a string
105** %z A string that should be freed after use
106** %d Insert an integer
107** %T Insert a token
108** %S Insert the first element of a SrcList
109**
110** zFormat and any string tokens that follow it are assumed to be
111** encoded in UTF-8.
112**
113** To clear the most recent error for sqlite handle "db", sqlite3Error
114** should be called with err_code set to SQLITE_OK and zFormat set
115** to NULL.
116*/
117void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
drha3cc0072013-12-13 16:23:55 +0000118 assert( db!=0 );
119 db->errCode = err_code;
120 if( zFormat && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
121 char *z;
122 va_list ap;
123 va_start(ap, zFormat);
124 z = sqlite3VMPrintf(db, zFormat, ap);
125 va_end(ap);
126 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
127 }else if( db->pErr ){
128 sqlite3ValueSetNull(db->pErr);
drhc81c11f2009-11-10 01:30:52 +0000129 }
130}
131
132/*
133** Add an error message to pParse->zErrMsg and increment pParse->nErr.
134** The following formatting characters are allowed:
135**
136** %s Insert a string
137** %z A string that should be freed after use
138** %d Insert an integer
139** %T Insert a token
140** %S Insert the first element of a SrcList
141**
142** This function should be used to report any error that occurs whilst
143** compiling an SQL statement (i.e. within sqlite3_prepare()). The
144** last thing the sqlite3_prepare() function does is copy the error
145** stored by this function into the database handle using sqlite3Error().
146** Function sqlite3Error() should be used during statement execution
147** (sqlite3_step() etc.).
148*/
149void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
drha7564662010-02-22 19:32:31 +0000150 char *zMsg;
drhc81c11f2009-11-10 01:30:52 +0000151 va_list ap;
152 sqlite3 *db = pParse->db;
drhc81c11f2009-11-10 01:30:52 +0000153 va_start(ap, zFormat);
drha7564662010-02-22 19:32:31 +0000154 zMsg = sqlite3VMPrintf(db, zFormat, ap);
drhc81c11f2009-11-10 01:30:52 +0000155 va_end(ap);
drha7564662010-02-22 19:32:31 +0000156 if( db->suppressErr ){
157 sqlite3DbFree(db, zMsg);
158 }else{
159 pParse->nErr++;
160 sqlite3DbFree(db, pParse->zErrMsg);
161 pParse->zErrMsg = zMsg;
162 pParse->rc = SQLITE_ERROR;
drha7564662010-02-22 19:32:31 +0000163 }
drhc81c11f2009-11-10 01:30:52 +0000164}
165
166/*
167** Convert an SQL-style quoted string into a normal string by removing
168** the quote characters. The conversion is done in-place. If the
169** input does not begin with a quote character, then this routine
170** is a no-op.
171**
172** The input string must be zero-terminated. A new zero-terminator
173** is added to the dequoted string.
174**
175** The return value is -1 if no dequoting occurs or the length of the
176** dequoted string, exclusive of the zero terminator, if dequoting does
177** occur.
178**
179** 2002-Feb-14: This routine is extended to remove MS-Access style
180** brackets from around identifers. For example: "[a-b-c]" becomes
181** "a-b-c".
182*/
183int sqlite3Dequote(char *z){
184 char quote;
185 int i, j;
186 if( z==0 ) return -1;
187 quote = z[0];
188 switch( quote ){
189 case '\'': break;
190 case '"': break;
191 case '`': break; /* For MySQL compatibility */
192 case '[': quote = ']'; break; /* For MS SqlServer compatibility */
193 default: return -1;
194 }
drh9ccd8652013-09-13 16:36:46 +0000195 for(i=1, j=0;; i++){
196 assert( z[i] );
drhc81c11f2009-11-10 01:30:52 +0000197 if( z[i]==quote ){
198 if( z[i+1]==quote ){
199 z[j++] = quote;
200 i++;
201 }else{
202 break;
203 }
204 }else{
205 z[j++] = z[i];
206 }
207 }
208 z[j] = 0;
209 return j;
210}
211
212/* Convenient short-hand */
213#define UpperToLower sqlite3UpperToLower
214
215/*
216** Some systems have stricmp(). Others have strcasecmp(). Because
217** there is no consistency, we will define our own.
drh9f129f42010-08-31 15:27:32 +0000218**
drh0299b402012-03-19 17:42:46 +0000219** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
220** sqlite3_strnicmp() APIs allow applications and extensions to compare
221** the contents of two buffers containing UTF-8 strings in a
222** case-independent fashion, using the same definition of "case
223** independence" that SQLite uses internally when comparing identifiers.
drhc81c11f2009-11-10 01:30:52 +0000224*/
drh3fa97302012-02-22 16:58:36 +0000225int sqlite3_stricmp(const char *zLeft, const char *zRight){
drhc81c11f2009-11-10 01:30:52 +0000226 register unsigned char *a, *b;
227 a = (unsigned char *)zLeft;
228 b = (unsigned char *)zRight;
229 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
230 return UpperToLower[*a] - UpperToLower[*b];
231}
232int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
233 register unsigned char *a, *b;
234 a = (unsigned char *)zLeft;
235 b = (unsigned char *)zRight;
236 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
237 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
238}
239
240/*
drh9339da12010-09-30 00:50:49 +0000241** The string z[] is an text representation of a real number.
drh025586a2010-09-30 17:33:11 +0000242** Convert this string to a double and write it into *pResult.
drhc81c11f2009-11-10 01:30:52 +0000243**
drh9339da12010-09-30 00:50:49 +0000244** The string z[] is length bytes in length (bytes, not characters) and
245** uses the encoding enc. The string is not necessarily zero-terminated.
drhc81c11f2009-11-10 01:30:52 +0000246**
drh9339da12010-09-30 00:50:49 +0000247** Return TRUE if the result is a valid real number (or integer) and FALSE
drh025586a2010-09-30 17:33:11 +0000248** if the string is empty or contains extraneous text. Valid numbers
249** are in one of these formats:
250**
251** [+-]digits[E[+-]digits]
252** [+-]digits.[digits][E[+-]digits]
253** [+-].digits[E[+-]digits]
254**
255** Leading and trailing whitespace is ignored for the purpose of determining
256** validity.
257**
258** If some prefix of the input string is a valid number, this routine
259** returns FALSE but it still converts the prefix and writes the result
260** into *pResult.
drhc81c11f2009-11-10 01:30:52 +0000261*/
drh9339da12010-09-30 00:50:49 +0000262int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
drhc81c11f2009-11-10 01:30:52 +0000263#ifndef SQLITE_OMIT_FLOATING_POINT
drh0e5fba72013-03-20 12:04:29 +0000264 int incr;
drh9339da12010-09-30 00:50:49 +0000265 const char *zEnd = z + length;
drhc81c11f2009-11-10 01:30:52 +0000266 /* sign * significand * (10 ^ (esign * exponent)) */
drh025586a2010-09-30 17:33:11 +0000267 int sign = 1; /* sign of significand */
268 i64 s = 0; /* significand */
269 int d = 0; /* adjust exponent for shifting decimal point */
270 int esign = 1; /* sign of exponent */
271 int e = 0; /* exponent */
272 int eValid = 1; /* True exponent is either not used or is well-formed */
drhc81c11f2009-11-10 01:30:52 +0000273 double result;
274 int nDigits = 0;
drh0e5fba72013-03-20 12:04:29 +0000275 int nonNum = 0;
drhc81c11f2009-11-10 01:30:52 +0000276
drh0e5fba72013-03-20 12:04:29 +0000277 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
drh025586a2010-09-30 17:33:11 +0000278 *pResult = 0.0; /* Default return value, in case of an error */
279
drh0e5fba72013-03-20 12:04:29 +0000280 if( enc==SQLITE_UTF8 ){
281 incr = 1;
282 }else{
283 int i;
284 incr = 2;
285 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
286 for(i=3-enc; i<length && z[i]==0; i+=2){}
287 nonNum = i<length;
288 zEnd = z+i+enc-3;
289 z += (enc&1);
290 }
drh9339da12010-09-30 00:50:49 +0000291
drhc81c11f2009-11-10 01:30:52 +0000292 /* skip leading spaces */
drh9339da12010-09-30 00:50:49 +0000293 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
drh025586a2010-09-30 17:33:11 +0000294 if( z>=zEnd ) return 0;
drh9339da12010-09-30 00:50:49 +0000295
drhc81c11f2009-11-10 01:30:52 +0000296 /* get sign of significand */
297 if( *z=='-' ){
298 sign = -1;
drh9339da12010-09-30 00:50:49 +0000299 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000300 }else if( *z=='+' ){
drh9339da12010-09-30 00:50:49 +0000301 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000302 }
drh9339da12010-09-30 00:50:49 +0000303
drhc81c11f2009-11-10 01:30:52 +0000304 /* skip leading zeroes */
drh9339da12010-09-30 00:50:49 +0000305 while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;
drhc81c11f2009-11-10 01:30:52 +0000306
307 /* copy max significant digits to significand */
drh9339da12010-09-30 00:50:49 +0000308 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
drhc81c11f2009-11-10 01:30:52 +0000309 s = s*10 + (*z - '0');
drh9339da12010-09-30 00:50:49 +0000310 z+=incr, nDigits++;
drhc81c11f2009-11-10 01:30:52 +0000311 }
drh9339da12010-09-30 00:50:49 +0000312
drhc81c11f2009-11-10 01:30:52 +0000313 /* skip non-significant significand digits
314 ** (increase exponent by d to shift decimal left) */
drh9339da12010-09-30 00:50:49 +0000315 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++;
316 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000317
318 /* if decimal point is present */
319 if( *z=='.' ){
drh9339da12010-09-30 00:50:49 +0000320 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000321 /* copy digits from after decimal to significand
322 ** (decrease exponent by d to shift decimal right) */
drh9339da12010-09-30 00:50:49 +0000323 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
drhc81c11f2009-11-10 01:30:52 +0000324 s = s*10 + (*z - '0');
drh9339da12010-09-30 00:50:49 +0000325 z+=incr, nDigits++, d--;
drhc81c11f2009-11-10 01:30:52 +0000326 }
327 /* skip non-significant digits */
drh9339da12010-09-30 00:50:49 +0000328 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++;
drhc81c11f2009-11-10 01:30:52 +0000329 }
drh9339da12010-09-30 00:50:49 +0000330 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000331
332 /* if exponent is present */
333 if( *z=='e' || *z=='E' ){
drh9339da12010-09-30 00:50:49 +0000334 z+=incr;
drh025586a2010-09-30 17:33:11 +0000335 eValid = 0;
drh9339da12010-09-30 00:50:49 +0000336 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000337 /* get sign of exponent */
338 if( *z=='-' ){
339 esign = -1;
drh9339da12010-09-30 00:50:49 +0000340 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000341 }else if( *z=='+' ){
drh9339da12010-09-30 00:50:49 +0000342 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000343 }
344 /* copy digits to exponent */
drh9339da12010-09-30 00:50:49 +0000345 while( z<zEnd && sqlite3Isdigit(*z) ){
drh57db4a72011-10-17 20:41:46 +0000346 e = e<10000 ? (e*10 + (*z - '0')) : 10000;
drh9339da12010-09-30 00:50:49 +0000347 z+=incr;
drh025586a2010-09-30 17:33:11 +0000348 eValid = 1;
drhc81c11f2009-11-10 01:30:52 +0000349 }
350 }
351
drh025586a2010-09-30 17:33:11 +0000352 /* skip trailing spaces */
353 if( nDigits && eValid ){
354 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
355 }
356
drh9339da12010-09-30 00:50:49 +0000357do_atof_calc:
drhc81c11f2009-11-10 01:30:52 +0000358 /* adjust exponent by d, and update sign */
359 e = (e*esign) + d;
360 if( e<0 ) {
361 esign = -1;
362 e *= -1;
363 } else {
364 esign = 1;
365 }
366
367 /* if 0 significand */
368 if( !s ) {
369 /* In the IEEE 754 standard, zero is signed.
370 ** Add the sign if we've seen at least one digit */
371 result = (sign<0 && nDigits) ? -(double)0 : (double)0;
372 } else {
373 /* attempt to reduce exponent */
374 if( esign>0 ){
375 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
376 }else{
377 while( !(s%10) && e>0 ) e--,s/=10;
378 }
379
380 /* adjust the sign of significand */
381 s = sign<0 ? -s : s;
382
383 /* if exponent, scale significand as appropriate
384 ** and store in result. */
385 if( e ){
drh89f15082012-06-19 00:45:16 +0000386 LONGDOUBLE_TYPE scale = 1.0;
drhc81c11f2009-11-10 01:30:52 +0000387 /* attempt to handle extremely small/large numbers better */
388 if( e>307 && e<342 ){
389 while( e%308 ) { scale *= 1.0e+1; e -= 1; }
390 if( esign<0 ){
391 result = s / scale;
392 result /= 1.0e+308;
393 }else{
394 result = s * scale;
395 result *= 1.0e+308;
396 }
drh2458a2e2011-10-17 12:14:26 +0000397 }else if( e>=342 ){
398 if( esign<0 ){
399 result = 0.0*s;
400 }else{
401 result = 1e308*1e308*s; /* Infinity */
402 }
drhc81c11f2009-11-10 01:30:52 +0000403 }else{
404 /* 1.0e+22 is the largest power of 10 than can be
405 ** represented exactly. */
406 while( e%22 ) { scale *= 1.0e+1; e -= 1; }
407 while( e>0 ) { scale *= 1.0e+22; e -= 22; }
408 if( esign<0 ){
409 result = s / scale;
410 }else{
411 result = s * scale;
412 }
413 }
414 } else {
415 result = (double)s;
416 }
417 }
418
419 /* store the result */
420 *pResult = result;
421
drh025586a2010-09-30 17:33:11 +0000422 /* return true if number and no extra non-whitespace chracters after */
drh0e5fba72013-03-20 12:04:29 +0000423 return z>=zEnd && nDigits>0 && eValid && nonNum==0;
drhc81c11f2009-11-10 01:30:52 +0000424#else
shaneh5f1d6b62010-09-30 16:51:25 +0000425 return !sqlite3Atoi64(z, pResult, length, enc);
drhc81c11f2009-11-10 01:30:52 +0000426#endif /* SQLITE_OMIT_FLOATING_POINT */
427}
428
429/*
430** Compare the 19-character string zNum against the text representation
431** value 2^63: 9223372036854775808. Return negative, zero, or positive
432** if zNum is less than, equal to, or greater than the string.
shaneh5f1d6b62010-09-30 16:51:25 +0000433** Note that zNum must contain exactly 19 characters.
drhc81c11f2009-11-10 01:30:52 +0000434**
435** Unlike memcmp() this routine is guaranteed to return the difference
436** in the values of the last digit if the only difference is in the
437** last digit. So, for example,
438**
drh9339da12010-09-30 00:50:49 +0000439** compare2pow63("9223372036854775800", 1)
drhc81c11f2009-11-10 01:30:52 +0000440**
441** will return -8.
442*/
drh9339da12010-09-30 00:50:49 +0000443static int compare2pow63(const char *zNum, int incr){
444 int c = 0;
445 int i;
446 /* 012345678901234567 */
447 const char *pow63 = "922337203685477580";
448 for(i=0; c==0 && i<18; i++){
449 c = (zNum[i*incr]-pow63[i])*10;
450 }
drhc81c11f2009-11-10 01:30:52 +0000451 if( c==0 ){
drh9339da12010-09-30 00:50:49 +0000452 c = zNum[18*incr] - '8';
drh44dbca82010-01-13 04:22:20 +0000453 testcase( c==(-1) );
454 testcase( c==0 );
455 testcase( c==(+1) );
drhc81c11f2009-11-10 01:30:52 +0000456 }
457 return c;
458}
459
460
461/*
drh158b9cb2011-03-05 20:59:46 +0000462** Convert zNum to a 64-bit signed integer.
463**
464** If the zNum value is representable as a 64-bit twos-complement
465** integer, then write that value into *pNum and return 0.
466**
drha256c1a2013-12-01 01:18:29 +0000467** If zNum is exactly 9223372036854775808, return 2. This special
468** case is broken out because while 9223372036854775808 cannot be a
469** signed 64-bit integer, its negative -9223372036854775808 can be.
drh158b9cb2011-03-05 20:59:46 +0000470**
471** If zNum is too big for a 64-bit integer and is not
drha256c1a2013-12-01 01:18:29 +0000472** 9223372036854775808 or if zNum contains any non-numeric text,
drh0e5fba72013-03-20 12:04:29 +0000473** then return 1.
drhc81c11f2009-11-10 01:30:52 +0000474**
drh9339da12010-09-30 00:50:49 +0000475** length is the number of bytes in the string (bytes, not characters).
476** The string is not necessarily zero-terminated. The encoding is
477** given by enc.
drhc81c11f2009-11-10 01:30:52 +0000478*/
drh9339da12010-09-30 00:50:49 +0000479int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
drh0e5fba72013-03-20 12:04:29 +0000480 int incr;
drh158b9cb2011-03-05 20:59:46 +0000481 u64 u = 0;
shaneh5f1d6b62010-09-30 16:51:25 +0000482 int neg = 0; /* assume positive */
drh9339da12010-09-30 00:50:49 +0000483 int i;
484 int c = 0;
drh0e5fba72013-03-20 12:04:29 +0000485 int nonNum = 0;
drhc81c11f2009-11-10 01:30:52 +0000486 const char *zStart;
drh9339da12010-09-30 00:50:49 +0000487 const char *zEnd = zNum + length;
drh0e5fba72013-03-20 12:04:29 +0000488 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
489 if( enc==SQLITE_UTF8 ){
490 incr = 1;
491 }else{
492 incr = 2;
493 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
494 for(i=3-enc; i<length && zNum[i]==0; i+=2){}
495 nonNum = i<length;
496 zEnd = zNum+i+enc-3;
497 zNum += (enc&1);
498 }
drh9339da12010-09-30 00:50:49 +0000499 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
drh158b9cb2011-03-05 20:59:46 +0000500 if( zNum<zEnd ){
501 if( *zNum=='-' ){
502 neg = 1;
503 zNum+=incr;
504 }else if( *zNum=='+' ){
505 zNum+=incr;
506 }
drhc81c11f2009-11-10 01:30:52 +0000507 }
508 zStart = zNum;
drh9339da12010-09-30 00:50:49 +0000509 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
510 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
drh158b9cb2011-03-05 20:59:46 +0000511 u = u*10 + c - '0';
drhc81c11f2009-11-10 01:30:52 +0000512 }
drh158b9cb2011-03-05 20:59:46 +0000513 if( u>LARGEST_INT64 ){
drhde1a8b82013-11-26 15:45:02 +0000514 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
drh158b9cb2011-03-05 20:59:46 +0000515 }else if( neg ){
516 *pNum = -(i64)u;
517 }else{
518 *pNum = (i64)u;
519 }
drh44dbca82010-01-13 04:22:20 +0000520 testcase( i==18 );
521 testcase( i==19 );
522 testcase( i==20 );
drh12886632013-03-28 11:40:14 +0000523 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr || nonNum ){
drhc81c11f2009-11-10 01:30:52 +0000524 /* zNum is empty or contains non-numeric text or is longer
shaneh5f1d6b62010-09-30 16:51:25 +0000525 ** than 19 digits (thus guaranteeing that it is too large) */
526 return 1;
drh9339da12010-09-30 00:50:49 +0000527 }else if( i<19*incr ){
drhc81c11f2009-11-10 01:30:52 +0000528 /* Less than 19 digits, so we know that it fits in 64 bits */
drh158b9cb2011-03-05 20:59:46 +0000529 assert( u<=LARGEST_INT64 );
shaneh5f1d6b62010-09-30 16:51:25 +0000530 return 0;
drhc81c11f2009-11-10 01:30:52 +0000531 }else{
drh158b9cb2011-03-05 20:59:46 +0000532 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
533 c = compare2pow63(zNum, incr);
534 if( c<0 ){
535 /* zNum is less than 9223372036854775808 so it fits */
536 assert( u<=LARGEST_INT64 );
537 return 0;
538 }else if( c>0 ){
539 /* zNum is greater than 9223372036854775808 so it overflows */
540 return 1;
541 }else{
542 /* zNum is exactly 9223372036854775808. Fits if negative. The
543 ** special case 2 overflow if positive */
544 assert( u-1==LARGEST_INT64 );
drh158b9cb2011-03-05 20:59:46 +0000545 return neg ? 0 : 2;
546 }
drhc81c11f2009-11-10 01:30:52 +0000547 }
548}
549
550/*
551** If zNum represents an integer that will fit in 32-bits, then set
552** *pValue to that integer and return true. Otherwise return false.
553**
554** Any non-numeric characters that following zNum are ignored.
555** This is different from sqlite3Atoi64() which requires the
556** input number to be zero-terminated.
557*/
558int sqlite3GetInt32(const char *zNum, int *pValue){
559 sqlite_int64 v = 0;
560 int i, c;
561 int neg = 0;
562 if( zNum[0]=='-' ){
563 neg = 1;
564 zNum++;
565 }else if( zNum[0]=='+' ){
566 zNum++;
567 }
568 while( zNum[0]=='0' ) zNum++;
569 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
570 v = v*10 + c;
571 }
572
573 /* The longest decimal representation of a 32 bit integer is 10 digits:
574 **
575 ** 1234567890
576 ** 2^31 -> 2147483648
577 */
drh44dbca82010-01-13 04:22:20 +0000578 testcase( i==10 );
drhc81c11f2009-11-10 01:30:52 +0000579 if( i>10 ){
580 return 0;
581 }
drh44dbca82010-01-13 04:22:20 +0000582 testcase( v-neg==2147483647 );
drhc81c11f2009-11-10 01:30:52 +0000583 if( v-neg>2147483647 ){
584 return 0;
585 }
586 if( neg ){
587 v = -v;
588 }
589 *pValue = (int)v;
590 return 1;
591}
592
593/*
drh60ac3f42010-11-23 18:59:27 +0000594** Return a 32-bit integer value extracted from a string. If the
595** string is not an integer, just return 0.
596*/
597int sqlite3Atoi(const char *z){
598 int x = 0;
599 if( z ) sqlite3GetInt32(z, &x);
600 return x;
601}
602
603/*
drhc81c11f2009-11-10 01:30:52 +0000604** The variable-length integer encoding is as follows:
605**
606** KEY:
607** A = 0xxxxxxx 7 bits of data and one flag bit
608** B = 1xxxxxxx 7 bits of data and one flag bit
609** C = xxxxxxxx 8 bits of data
610**
611** 7 bits - A
612** 14 bits - BA
613** 21 bits - BBA
614** 28 bits - BBBA
615** 35 bits - BBBBA
616** 42 bits - BBBBBA
617** 49 bits - BBBBBBA
618** 56 bits - BBBBBBBA
619** 64 bits - BBBBBBBBC
620*/
621
622/*
623** Write a 64-bit variable-length integer to memory starting at p[0].
624** The length of data write will be between 1 and 9 bytes. The number
625** of bytes written is returned.
626**
627** A variable-length integer consists of the lower 7 bits of each byte
628** for all bytes that have the 8th bit set and one byte with the 8th
629** bit clear. Except, if we get to the 9th byte, it stores the full
630** 8 bits and is the last byte.
631*/
632int sqlite3PutVarint(unsigned char *p, u64 v){
633 int i, j, n;
634 u8 buf[10];
635 if( v & (((u64)0xff000000)<<32) ){
636 p[8] = (u8)v;
637 v >>= 8;
638 for(i=7; i>=0; i--){
639 p[i] = (u8)((v & 0x7f) | 0x80);
640 v >>= 7;
641 }
642 return 9;
643 }
644 n = 0;
645 do{
646 buf[n++] = (u8)((v & 0x7f) | 0x80);
647 v >>= 7;
648 }while( v!=0 );
649 buf[0] &= 0x7f;
650 assert( n<=9 );
651 for(i=0, j=n-1; j>=0; j--, i++){
652 p[i] = buf[j];
653 }
654 return n;
655}
656
657/*
658** This routine is a faster version of sqlite3PutVarint() that only
659** works for 32-bit positive integers and which is optimized for
660** the common case of small integers. A MACRO version, putVarint32,
661** is provided which inlines the single-byte case. All code should use
662** the MACRO version as this function assumes the single-byte case has
663** already been handled.
664*/
665int sqlite3PutVarint32(unsigned char *p, u32 v){
666#ifndef putVarint32
667 if( (v & ~0x7f)==0 ){
668 p[0] = v;
669 return 1;
670 }
671#endif
672 if( (v & ~0x3fff)==0 ){
673 p[0] = (u8)((v>>7) | 0x80);
674 p[1] = (u8)(v & 0x7f);
675 return 2;
676 }
677 return sqlite3PutVarint(p, v);
678}
679
680/*
drh0b2864c2010-03-03 15:18:38 +0000681** Bitmasks used by sqlite3GetVarint(). These precomputed constants
682** are defined here rather than simply putting the constant expressions
683** inline in order to work around bugs in the RVT compiler.
684**
685** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
686**
687** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
688*/
689#define SLOT_2_0 0x001fc07f
690#define SLOT_4_2_0 0xf01fc07f
691
692
693/*
drhc81c11f2009-11-10 01:30:52 +0000694** Read a 64-bit variable-length integer from memory starting at p[0].
695** Return the number of bytes read. The value is stored in *v.
696*/
697u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
698 u32 a,b,s;
699
700 a = *p;
701 /* a: p0 (unmasked) */
702 if (!(a&0x80))
703 {
704 *v = a;
705 return 1;
706 }
707
708 p++;
709 b = *p;
710 /* b: p1 (unmasked) */
711 if (!(b&0x80))
712 {
713 a &= 0x7f;
714 a = a<<7;
715 a |= b;
716 *v = a;
717 return 2;
718 }
719
drh0b2864c2010-03-03 15:18:38 +0000720 /* Verify that constants are precomputed correctly */
721 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
shaneh1da207e2010-03-09 14:41:12 +0000722 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
drh0b2864c2010-03-03 15:18:38 +0000723
drhc81c11f2009-11-10 01:30:52 +0000724 p++;
725 a = a<<14;
726 a |= *p;
727 /* a: p0<<14 | p2 (unmasked) */
728 if (!(a&0x80))
729 {
drh0b2864c2010-03-03 15:18:38 +0000730 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000731 b &= 0x7f;
732 b = b<<7;
733 a |= b;
734 *v = a;
735 return 3;
736 }
737
738 /* CSE1 from below */
drh0b2864c2010-03-03 15:18:38 +0000739 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000740 p++;
741 b = b<<14;
742 b |= *p;
743 /* b: p1<<14 | p3 (unmasked) */
744 if (!(b&0x80))
745 {
drh0b2864c2010-03-03 15:18:38 +0000746 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000747 /* moved CSE1 up */
748 /* a &= (0x7f<<14)|(0x7f); */
749 a = a<<7;
750 a |= b;
751 *v = a;
752 return 4;
753 }
754
755 /* a: p0<<14 | p2 (masked) */
756 /* b: p1<<14 | p3 (unmasked) */
757 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
758 /* moved CSE1 up */
759 /* a &= (0x7f<<14)|(0x7f); */
drh0b2864c2010-03-03 15:18:38 +0000760 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000761 s = a;
762 /* s: p0<<14 | p2 (masked) */
763
764 p++;
765 a = a<<14;
766 a |= *p;
767 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
768 if (!(a&0x80))
769 {
770 /* we can skip these cause they were (effectively) done above in calc'ing s */
771 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
772 /* b &= (0x7f<<14)|(0x7f); */
773 b = b<<7;
774 a |= b;
775 s = s>>18;
776 *v = ((u64)s)<<32 | a;
777 return 5;
778 }
779
780 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
781 s = s<<7;
782 s |= b;
783 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
784
785 p++;
786 b = b<<14;
787 b |= *p;
788 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
789 if (!(b&0x80))
790 {
791 /* we can skip this cause it was (effectively) done above in calc'ing s */
792 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
drh0b2864c2010-03-03 15:18:38 +0000793 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000794 a = a<<7;
795 a |= b;
796 s = s>>18;
797 *v = ((u64)s)<<32 | a;
798 return 6;
799 }
800
801 p++;
802 a = a<<14;
803 a |= *p;
804 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
805 if (!(a&0x80))
806 {
drh0b2864c2010-03-03 15:18:38 +0000807 a &= SLOT_4_2_0;
808 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000809 b = b<<7;
810 a |= b;
811 s = s>>11;
812 *v = ((u64)s)<<32 | a;
813 return 7;
814 }
815
816 /* CSE2 from below */
drh0b2864c2010-03-03 15:18:38 +0000817 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000818 p++;
819 b = b<<14;
820 b |= *p;
821 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
822 if (!(b&0x80))
823 {
drh0b2864c2010-03-03 15:18:38 +0000824 b &= SLOT_4_2_0;
drhc81c11f2009-11-10 01:30:52 +0000825 /* moved CSE2 up */
826 /* a &= (0x7f<<14)|(0x7f); */
827 a = a<<7;
828 a |= b;
829 s = s>>4;
830 *v = ((u64)s)<<32 | a;
831 return 8;
832 }
833
834 p++;
835 a = a<<15;
836 a |= *p;
837 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
838
839 /* moved CSE2 up */
840 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
drh0b2864c2010-03-03 15:18:38 +0000841 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000842 b = b<<8;
843 a |= b;
844
845 s = s<<4;
846 b = p[-4];
847 b &= 0x7f;
848 b = b>>3;
849 s |= b;
850
851 *v = ((u64)s)<<32 | a;
852
853 return 9;
854}
855
856/*
857** Read a 32-bit variable-length integer from memory starting at p[0].
858** Return the number of bytes read. The value is stored in *v.
859**
860** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
861** integer, then set *v to 0xffffffff.
862**
863** A MACRO version, getVarint32, is provided which inlines the
864** single-byte case. All code should use the MACRO version as
865** this function assumes the single-byte case has already been handled.
866*/
867u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
868 u32 a,b;
869
870 /* The 1-byte case. Overwhelmingly the most common. Handled inline
871 ** by the getVarin32() macro */
872 a = *p;
873 /* a: p0 (unmasked) */
874#ifndef getVarint32
875 if (!(a&0x80))
876 {
877 /* Values between 0 and 127 */
878 *v = a;
879 return 1;
880 }
881#endif
882
883 /* The 2-byte case */
884 p++;
885 b = *p;
886 /* b: p1 (unmasked) */
887 if (!(b&0x80))
888 {
889 /* Values between 128 and 16383 */
890 a &= 0x7f;
891 a = a<<7;
892 *v = a | b;
893 return 2;
894 }
895
896 /* The 3-byte case */
897 p++;
898 a = a<<14;
899 a |= *p;
900 /* a: p0<<14 | p2 (unmasked) */
901 if (!(a&0x80))
902 {
903 /* Values between 16384 and 2097151 */
904 a &= (0x7f<<14)|(0x7f);
905 b &= 0x7f;
906 b = b<<7;
907 *v = a | b;
908 return 3;
909 }
910
911 /* A 32-bit varint is used to store size information in btrees.
912 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
913 ** A 3-byte varint is sufficient, for example, to record the size
914 ** of a 1048569-byte BLOB or string.
915 **
916 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
917 ** rare larger cases can be handled by the slower 64-bit varint
918 ** routine.
919 */
920#if 1
921 {
922 u64 v64;
923 u8 n;
924
925 p -= 2;
926 n = sqlite3GetVarint(p, &v64);
927 assert( n>3 && n<=9 );
928 if( (v64 & SQLITE_MAX_U32)!=v64 ){
929 *v = 0xffffffff;
930 }else{
931 *v = (u32)v64;
932 }
933 return n;
934 }
935
936#else
937 /* For following code (kept for historical record only) shows an
938 ** unrolling for the 3- and 4-byte varint cases. This code is
939 ** slightly faster, but it is also larger and much harder to test.
940 */
941 p++;
942 b = b<<14;
943 b |= *p;
944 /* b: p1<<14 | p3 (unmasked) */
945 if (!(b&0x80))
946 {
947 /* Values between 2097152 and 268435455 */
948 b &= (0x7f<<14)|(0x7f);
949 a &= (0x7f<<14)|(0x7f);
950 a = a<<7;
951 *v = a | b;
952 return 4;
953 }
954
955 p++;
956 a = a<<14;
957 a |= *p;
958 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
959 if (!(a&0x80))
960 {
dan3bbe7612010-03-03 16:02:05 +0000961 /* Values between 268435456 and 34359738367 */
962 a &= SLOT_4_2_0;
963 b &= SLOT_4_2_0;
drhc81c11f2009-11-10 01:30:52 +0000964 b = b<<7;
965 *v = a | b;
966 return 5;
967 }
968
969 /* We can only reach this point when reading a corrupt database
970 ** file. In that case we are not in any hurry. Use the (relatively
971 ** slow) general-purpose sqlite3GetVarint() routine to extract the
972 ** value. */
973 {
974 u64 v64;
975 u8 n;
976
977 p -= 4;
978 n = sqlite3GetVarint(p, &v64);
979 assert( n>5 && n<=9 );
980 *v = (u32)v64;
981 return n;
982 }
983#endif
984}
985
986/*
987** Return the number of bytes that will be needed to store the given
988** 64-bit integer.
989*/
990int sqlite3VarintLen(u64 v){
991 int i = 0;
992 do{
993 i++;
994 v >>= 7;
995 }while( v!=0 && ALWAYS(i<9) );
996 return i;
997}
998
999
1000/*
1001** Read or write a four-byte big-endian integer value.
1002*/
1003u32 sqlite3Get4byte(const u8 *p){
drh693e6712014-01-24 22:58:00 +00001004 testcase( p[0]&0x80 );
1005 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
drhc81c11f2009-11-10 01:30:52 +00001006}
1007void sqlite3Put4byte(unsigned char *p, u32 v){
1008 p[0] = (u8)(v>>24);
1009 p[1] = (u8)(v>>16);
1010 p[2] = (u8)(v>>8);
1011 p[3] = (u8)v;
1012}
1013
1014
1015
drhc81c11f2009-11-10 01:30:52 +00001016/*
1017** Translate a single byte of Hex into an integer.
1018** This routine only works if h really is a valid hexadecimal
1019** character: 0..9a..fA..F
1020*/
dancd74b612011-04-22 19:37:32 +00001021u8 sqlite3HexToInt(int h){
drhc81c11f2009-11-10 01:30:52 +00001022 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
1023#ifdef SQLITE_ASCII
1024 h += 9*(1&(h>>6));
1025#endif
1026#ifdef SQLITE_EBCDIC
1027 h += 9*(1&~(h>>4));
1028#endif
1029 return (u8)(h & 0xf);
1030}
drhc81c11f2009-11-10 01:30:52 +00001031
1032#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1033/*
1034** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1035** value. Return a pointer to its binary value. Space to hold the
1036** binary value has been obtained from malloc and must be freed by
1037** the calling routine.
1038*/
1039void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1040 char *zBlob;
1041 int i;
1042
1043 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
1044 n--;
1045 if( zBlob ){
1046 for(i=0; i<n; i+=2){
dancd74b612011-04-22 19:37:32 +00001047 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
drhc81c11f2009-11-10 01:30:52 +00001048 }
1049 zBlob[i/2] = 0;
1050 }
1051 return zBlob;
1052}
1053#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1054
drh413c3d32010-02-23 20:11:56 +00001055/*
1056** Log an error that is an API call on a connection pointer that should
1057** not have been used. The "type" of connection pointer is given as the
1058** argument. The zType is a word like "NULL" or "closed" or "invalid".
1059*/
1060static void logBadConnection(const char *zType){
1061 sqlite3_log(SQLITE_MISUSE,
1062 "API call with %s database connection pointer",
1063 zType
1064 );
1065}
drhc81c11f2009-11-10 01:30:52 +00001066
1067/*
drhc81c11f2009-11-10 01:30:52 +00001068** Check to make sure we have a valid db pointer. This test is not
1069** foolproof but it does provide some measure of protection against
1070** misuse of the interface such as passing in db pointers that are
1071** NULL or which have been previously closed. If this routine returns
1072** 1 it means that the db pointer is valid and 0 if it should not be
1073** dereferenced for any reason. The calling function should invoke
1074** SQLITE_MISUSE immediately.
1075**
1076** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1077** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1078** open properly and is not fit for general use but which can be
1079** used as an argument to sqlite3_errmsg() or sqlite3_close().
1080*/
1081int sqlite3SafetyCheckOk(sqlite3 *db){
1082 u32 magic;
drh413c3d32010-02-23 20:11:56 +00001083 if( db==0 ){
1084 logBadConnection("NULL");
1085 return 0;
1086 }
drhc81c11f2009-11-10 01:30:52 +00001087 magic = db->magic;
drh9978c972010-02-23 17:36:32 +00001088 if( magic!=SQLITE_MAGIC_OPEN ){
drhe294da02010-02-25 23:44:15 +00001089 if( sqlite3SafetyCheckSickOrOk(db) ){
1090 testcase( sqlite3GlobalConfig.xLog!=0 );
drh413c3d32010-02-23 20:11:56 +00001091 logBadConnection("unopened");
1092 }
drhc81c11f2009-11-10 01:30:52 +00001093 return 0;
1094 }else{
1095 return 1;
1096 }
1097}
1098int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1099 u32 magic;
1100 magic = db->magic;
1101 if( magic!=SQLITE_MAGIC_SICK &&
1102 magic!=SQLITE_MAGIC_OPEN &&
drh413c3d32010-02-23 20:11:56 +00001103 magic!=SQLITE_MAGIC_BUSY ){
drhe294da02010-02-25 23:44:15 +00001104 testcase( sqlite3GlobalConfig.xLog!=0 );
drhaf46dc12010-02-24 21:44:07 +00001105 logBadConnection("invalid");
drh413c3d32010-02-23 20:11:56 +00001106 return 0;
1107 }else{
1108 return 1;
1109 }
drhc81c11f2009-11-10 01:30:52 +00001110}
drh158b9cb2011-03-05 20:59:46 +00001111
1112/*
1113** Attempt to add, substract, or multiply the 64-bit signed value iB against
1114** the other 64-bit signed integer at *pA and store the result in *pA.
1115** Return 0 on success. Or if the operation would have resulted in an
1116** overflow, leave *pA unchanged and return 1.
1117*/
1118int sqlite3AddInt64(i64 *pA, i64 iB){
1119 i64 iA = *pA;
1120 testcase( iA==0 ); testcase( iA==1 );
1121 testcase( iB==-1 ); testcase( iB==0 );
1122 if( iB>=0 ){
1123 testcase( iA>0 && LARGEST_INT64 - iA == iB );
1124 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1125 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
drh158b9cb2011-03-05 20:59:46 +00001126 }else{
1127 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1128 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1129 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
drh158b9cb2011-03-05 20:59:46 +00001130 }
drh53a6eb32014-02-10 12:59:15 +00001131 *pA += iB;
drh158b9cb2011-03-05 20:59:46 +00001132 return 0;
1133}
1134int sqlite3SubInt64(i64 *pA, i64 iB){
1135 testcase( iB==SMALLEST_INT64+1 );
1136 if( iB==SMALLEST_INT64 ){
1137 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1138 if( (*pA)>=0 ) return 1;
1139 *pA -= iB;
1140 return 0;
1141 }else{
1142 return sqlite3AddInt64(pA, -iB);
1143 }
1144}
1145#define TWOPOWER32 (((i64)1)<<32)
1146#define TWOPOWER31 (((i64)1)<<31)
1147int sqlite3MulInt64(i64 *pA, i64 iB){
1148 i64 iA = *pA;
1149 i64 iA1, iA0, iB1, iB0, r;
1150
drh158b9cb2011-03-05 20:59:46 +00001151 iA1 = iA/TWOPOWER32;
1152 iA0 = iA % TWOPOWER32;
1153 iB1 = iB/TWOPOWER32;
1154 iB0 = iB % TWOPOWER32;
drh53a6eb32014-02-10 12:59:15 +00001155 if( iA1==0 ){
1156 if( iB1==0 ){
1157 *pA *= iB;
1158 return 0;
1159 }
1160 r = iA0*iB1;
1161 }else if( iB1==0 ){
1162 r = iA1*iB0;
1163 }else{
1164 /* If both iA1 and iB1 are non-zero, overflow will result */
1165 return 1;
1166 }
drh158b9cb2011-03-05 20:59:46 +00001167 testcase( r==(-TWOPOWER31)-1 );
1168 testcase( r==(-TWOPOWER31) );
1169 testcase( r==TWOPOWER31 );
1170 testcase( r==TWOPOWER31-1 );
1171 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1;
1172 r *= TWOPOWER32;
1173 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1;
1174 *pA = r;
1175 return 0;
1176}
drhd50ffc42011-03-08 02:38:28 +00001177
1178/*
1179** Compute the absolute value of a 32-bit signed integer, of possible. Or
1180** if the integer has a value of -2147483648, return +2147483647
1181*/
1182int sqlite3AbsInt32(int x){
1183 if( x>=0 ) return x;
drh87e79ae2011-03-08 13:06:41 +00001184 if( x==(int)0x80000000 ) return 0x7fffffff;
drhd50ffc42011-03-08 02:38:28 +00001185 return -x;
1186}
drh81cc5162011-05-17 20:36:21 +00001187
1188#ifdef SQLITE_ENABLE_8_3_NAMES
1189/*
drhb51bf432011-07-21 21:29:35 +00001190** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
drh81cc5162011-05-17 20:36:21 +00001191** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1192** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1193** three characters, then shorten the suffix on z[] to be the last three
1194** characters of the original suffix.
1195**
drhb51bf432011-07-21 21:29:35 +00001196** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1197** do the suffix shortening regardless of URI parameter.
1198**
drh81cc5162011-05-17 20:36:21 +00001199** Examples:
1200**
1201** test.db-journal => test.nal
1202** test.db-wal => test.wal
1203** test.db-shm => test.shm
drhf5808602011-12-16 00:33:04 +00001204** test.db-mj7f3319fa => test.9fa
drh81cc5162011-05-17 20:36:21 +00001205*/
1206void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
drhb51bf432011-07-21 21:29:35 +00001207#if SQLITE_ENABLE_8_3_NAMES<2
drh7d39e172012-01-02 12:41:53 +00001208 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
drhb51bf432011-07-21 21:29:35 +00001209#endif
1210 {
drh81cc5162011-05-17 20:36:21 +00001211 int i, sz;
1212 sz = sqlite3Strlen30(z);
drhc83f2d42011-05-18 02:41:10 +00001213 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
drhc02a43a2012-01-10 23:18:38 +00001214 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
drh81cc5162011-05-17 20:36:21 +00001215 }
1216}
1217#endif
drhbf539c42013-10-05 18:16:02 +00001218
1219/*
1220** Find (an approximate) sum of two LogEst values. This computation is
1221** not a simple "+" operator because LogEst is stored as a logarithmic
1222** value.
1223**
1224*/
1225LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1226 static const unsigned char x[] = {
1227 10, 10, /* 0,1 */
1228 9, 9, /* 2,3 */
1229 8, 8, /* 4,5 */
1230 7, 7, 7, /* 6,7,8 */
1231 6, 6, 6, /* 9,10,11 */
1232 5, 5, 5, /* 12-14 */
1233 4, 4, 4, 4, /* 15-18 */
1234 3, 3, 3, 3, 3, 3, /* 19-24 */
1235 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1236 };
1237 if( a>=b ){
1238 if( a>b+49 ) return a;
1239 if( a>b+31 ) return a+1;
1240 return a+x[a-b];
1241 }else{
1242 if( b>a+49 ) return b;
1243 if( b>a+31 ) return b+1;
1244 return b+x[b-a];
1245 }
1246}
1247
1248/*
drh224155d2014-04-30 13:19:09 +00001249** Convert an integer into a LogEst. In other words, compute an
1250** approximation for 10*log2(x).
drhbf539c42013-10-05 18:16:02 +00001251*/
1252LogEst sqlite3LogEst(u64 x){
1253 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1254 LogEst y = 40;
1255 if( x<8 ){
1256 if( x<2 ) return 0;
1257 while( x<8 ){ y -= 10; x <<= 1; }
1258 }else{
1259 while( x>255 ){ y += 40; x >>= 4; }
1260 while( x>15 ){ y += 10; x >>= 1; }
1261 }
1262 return a[x&7] + y - 10;
1263}
1264
1265#ifndef SQLITE_OMIT_VIRTUALTABLE
1266/*
1267** Convert a double into a LogEst
1268** In other words, compute an approximation for 10*log2(x).
1269*/
1270LogEst sqlite3LogEstFromDouble(double x){
1271 u64 a;
1272 LogEst e;
1273 assert( sizeof(x)==8 && sizeof(a)==8 );
1274 if( x<=1 ) return 0;
1275 if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1276 memcpy(&a, &x, 8);
1277 e = (a>>52) - 1022;
1278 return e*10;
1279}
1280#endif /* SQLITE_OMIT_VIRTUALTABLE */
1281
1282/*
1283** Convert a LogEst into an integer.
1284*/
1285u64 sqlite3LogEstToInt(LogEst x){
1286 u64 n;
1287 if( x<10 ) return 1;
1288 n = x%10;
1289 x /= 10;
1290 if( n>=5 ) n -= 2;
1291 else if( n>=1 ) n -= 1;
drh47676fe2013-12-05 16:41:55 +00001292 if( x>=3 ){
1293 return x>60 ? (u64)LARGEST_INT64 : (n+8)<<(x-3);
1294 }
drhbf539c42013-10-05 18:16:02 +00001295 return (n+8)>>(3-x);
1296}