blob: 428dfd046c361ddb0b8dab320eb704d691bf4885 [file] [log] [blame]
drhc81c11f2009-11-10 01:30:52 +00001/*
2** 2001 September 15
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** Utility functions used throughout sqlite.
13**
14** This file contains functions for allocating memory, comparing
15** strings, and stuff like that.
16**
17*/
18#include "sqliteInt.h"
19#include <stdarg.h>
drh0ede9eb2015-01-10 16:49:23 +000020#if HAVE_ISNAN || SQLITE_HAVE_ISNAN
drhc81c11f2009-11-10 01:30:52 +000021# include <math.h>
22#endif
23
24/*
25** Routine needed to support the testcase() macro.
26*/
27#ifdef SQLITE_COVERAGE_TEST
28void sqlite3Coverage(int x){
drh68bf0672011-04-11 15:35:24 +000029 static unsigned dummy = 0;
30 dummy += (unsigned)x;
drhc81c11f2009-11-10 01:30:52 +000031}
32#endif
33
drhc007f612014-05-16 14:17:01 +000034/*
35** Give a callback to the test harness that can be used to simulate faults
36** in places where it is difficult or expensive to do so purely by means
37** of inputs.
38**
39** The intent of the integer argument is to let the fault simulator know
40** which of multiple sqlite3FaultSim() calls has been hit.
41**
42** Return whatever integer value the test callback returns, or return
43** SQLITE_OK if no test callback is installed.
44*/
45#ifndef SQLITE_OMIT_BUILTIN_TEST
46int sqlite3FaultSim(int iTest){
47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
48 return xCallback ? xCallback(iTest) : SQLITE_OK;
49}
50#endif
51
drh85c8f292010-01-13 17:39:53 +000052#ifndef SQLITE_OMIT_FLOATING_POINT
drhc81c11f2009-11-10 01:30:52 +000053/*
54** Return true if the floating point value is Not a Number (NaN).
55**
56** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
57** Otherwise, we have our own implementation that works on most systems.
58*/
59int sqlite3IsNaN(double x){
60 int rc; /* The value return */
drh0ede9eb2015-01-10 16:49:23 +000061#if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
drhc81c11f2009-11-10 01:30:52 +000062 /*
63 ** Systems that support the isnan() library function should probably
64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
65 ** found that many systems do not have a working isnan() function so
66 ** this implementation is provided as an alternative.
67 **
68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
69 ** On the other hand, the use of -ffast-math comes with the following
70 ** warning:
71 **
72 ** This option [-ffast-math] should never be turned on by any
73 ** -O option since it can result in incorrect output for programs
74 ** which depend on an exact implementation of IEEE or ISO
75 ** rules/specifications for math functions.
76 **
77 ** Under MSVC, this NaN test may fail if compiled with a floating-
78 ** point precision mode other than /fp:precise. From the MSDN
79 ** documentation:
80 **
81 ** The compiler [with /fp:precise] will properly handle comparisons
82 ** involving NaN. For example, x != x evaluates to true if x is NaN
83 ** ...
84 */
85#ifdef __FAST_MATH__
86# error SQLite will not work correctly with the -ffast-math option of GCC.
87#endif
88 volatile double y = x;
89 volatile double z = y;
90 rc = (y!=z);
drh0ede9eb2015-01-10 16:49:23 +000091#else /* if HAVE_ISNAN */
drhc81c11f2009-11-10 01:30:52 +000092 rc = isnan(x);
drh0ede9eb2015-01-10 16:49:23 +000093#endif /* HAVE_ISNAN */
drhc81c11f2009-11-10 01:30:52 +000094 testcase( rc );
95 return rc;
96}
drh85c8f292010-01-13 17:39:53 +000097#endif /* SQLITE_OMIT_FLOATING_POINT */
drhc81c11f2009-11-10 01:30:52 +000098
99/*
100** Compute a string length that is limited to what can be stored in
101** lower 30 bits of a 32-bit signed integer.
102**
103** The value returned will never be negative. Nor will it ever be greater
104** than the actual length of the string. For very long strings (greater
105** than 1GiB) the value returned might be less than the true string length.
106*/
107int sqlite3Strlen30(const char *z){
drhc81c11f2009-11-10 01:30:52 +0000108 if( z==0 ) return 0;
drh1116bf12015-06-30 03:18:33 +0000109 return 0x3fffffff & (int)strlen(z);
drhc81c11f2009-11-10 01:30:52 +0000110}
111
112/*
drh94eaafa2016-02-29 15:53:11 +0000113** The string z[] is followed immediately by another string. Return
114** a poiner to that other string.
115*/
116const char *sqlite3StrNext(const char *z){
117 return z + strlen(z) + 1;
118}
119
120/*
drh80fbee02016-03-21 11:57:13 +0000121** Helper function for sqlite3Error() - called rarely. Broken out into
122** a separate routine to avoid unnecessary register saves on entry to
123** sqlite3Error().
drh13f40da2014-08-22 18:00:11 +0000124*/
drh8d2f41c2016-03-21 11:38:01 +0000125static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){
126 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
127 sqlite3SystemError(db, err_code);
128}
drh80fbee02016-03-21 11:57:13 +0000129
130/*
131** Set the current error code to err_code and clear any prior error message.
132** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
133** that would be appropriate.
134*/
drh13f40da2014-08-22 18:00:11 +0000135void sqlite3Error(sqlite3 *db, int err_code){
136 assert( db!=0 );
137 db->errCode = err_code;
drh8d2f41c2016-03-21 11:38:01 +0000138 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code);
drh13f40da2014-08-22 18:00:11 +0000139}
140
141/*
drh1b9f2142016-03-17 16:01:23 +0000142** Load the sqlite3.iSysErrno field if that is an appropriate thing
143** to do based on the SQLite error code in rc.
144*/
145void sqlite3SystemError(sqlite3 *db, int rc){
146 if( rc==SQLITE_IOERR_NOMEM ) return;
147 rc &= 0xff;
148 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
149 db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
150 }
151}
152
153/*
drhc81c11f2009-11-10 01:30:52 +0000154** Set the most recent error code and error string for the sqlite
155** handle "db". The error code is set to "err_code".
156**
157** If it is not NULL, string zFormat specifies the format of the
158** error string in the style of the printf functions: The following
159** format characters are allowed:
160**
161** %s Insert a string
162** %z A string that should be freed after use
163** %d Insert an integer
164** %T Insert a token
165** %S Insert the first element of a SrcList
166**
167** zFormat and any string tokens that follow it are assumed to be
168** encoded in UTF-8.
169**
170** To clear the most recent error for sqlite handle "db", sqlite3Error
171** should be called with err_code set to SQLITE_OK and zFormat set
172** to NULL.
173*/
drh13f40da2014-08-22 18:00:11 +0000174void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
drha3cc0072013-12-13 16:23:55 +0000175 assert( db!=0 );
176 db->errCode = err_code;
drh8d2f41c2016-03-21 11:38:01 +0000177 sqlite3SystemError(db, err_code);
drh13f40da2014-08-22 18:00:11 +0000178 if( zFormat==0 ){
179 sqlite3Error(db, err_code);
180 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
drha3cc0072013-12-13 16:23:55 +0000181 char *z;
182 va_list ap;
183 va_start(ap, zFormat);
184 z = sqlite3VMPrintf(db, zFormat, ap);
185 va_end(ap);
186 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
drhc81c11f2009-11-10 01:30:52 +0000187 }
188}
189
190/*
191** Add an error message to pParse->zErrMsg and increment pParse->nErr.
192** The following formatting characters are allowed:
193**
194** %s Insert a string
195** %z A string that should be freed after use
196** %d Insert an integer
197** %T Insert a token
198** %S Insert the first element of a SrcList
199**
drh13f40da2014-08-22 18:00:11 +0000200** This function should be used to report any error that occurs while
drhc81c11f2009-11-10 01:30:52 +0000201** compiling an SQL statement (i.e. within sqlite3_prepare()). The
202** last thing the sqlite3_prepare() function does is copy the error
203** stored by this function into the database handle using sqlite3Error().
drh13f40da2014-08-22 18:00:11 +0000204** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
205** during statement execution (sqlite3_step() etc.).
drhc81c11f2009-11-10 01:30:52 +0000206*/
207void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
drha7564662010-02-22 19:32:31 +0000208 char *zMsg;
drhc81c11f2009-11-10 01:30:52 +0000209 va_list ap;
210 sqlite3 *db = pParse->db;
drhc81c11f2009-11-10 01:30:52 +0000211 va_start(ap, zFormat);
drha7564662010-02-22 19:32:31 +0000212 zMsg = sqlite3VMPrintf(db, zFormat, ap);
drhc81c11f2009-11-10 01:30:52 +0000213 va_end(ap);
drha7564662010-02-22 19:32:31 +0000214 if( db->suppressErr ){
215 sqlite3DbFree(db, zMsg);
216 }else{
217 pParse->nErr++;
218 sqlite3DbFree(db, pParse->zErrMsg);
219 pParse->zErrMsg = zMsg;
220 pParse->rc = SQLITE_ERROR;
drha7564662010-02-22 19:32:31 +0000221 }
drhc81c11f2009-11-10 01:30:52 +0000222}
223
224/*
225** Convert an SQL-style quoted string into a normal string by removing
226** the quote characters. The conversion is done in-place. If the
227** input does not begin with a quote character, then this routine
228** is a no-op.
229**
230** The input string must be zero-terminated. A new zero-terminator
231** is added to the dequoted string.
232**
233** The return value is -1 if no dequoting occurs or the length of the
234** dequoted string, exclusive of the zero terminator, if dequoting does
235** occur.
236**
237** 2002-Feb-14: This routine is extended to remove MS-Access style
peter.d.reid60ec9142014-09-06 16:39:46 +0000238** brackets from around identifiers. For example: "[a-b-c]" becomes
drhc81c11f2009-11-10 01:30:52 +0000239** "a-b-c".
240*/
241int sqlite3Dequote(char *z){
242 char quote;
243 int i, j;
244 if( z==0 ) return -1;
245 quote = z[0];
246 switch( quote ){
247 case '\'': break;
248 case '"': break;
249 case '`': break; /* For MySQL compatibility */
250 case '[': quote = ']'; break; /* For MS SqlServer compatibility */
251 default: return -1;
252 }
drh9ccd8652013-09-13 16:36:46 +0000253 for(i=1, j=0;; i++){
254 assert( z[i] );
drhc81c11f2009-11-10 01:30:52 +0000255 if( z[i]==quote ){
256 if( z[i+1]==quote ){
257 z[j++] = quote;
258 i++;
259 }else{
260 break;
261 }
262 }else{
263 z[j++] = z[i];
264 }
265 }
266 z[j] = 0;
267 return j;
268}
269
drh40aced52016-01-22 17:48:09 +0000270/*
271** Generate a Token object from a string
272*/
273void sqlite3TokenInit(Token *p, char *z){
274 p->z = z;
275 p->n = sqlite3Strlen30(z);
276}
277
drhc81c11f2009-11-10 01:30:52 +0000278/* Convenient short-hand */
279#define UpperToLower sqlite3UpperToLower
280
281/*
282** Some systems have stricmp(). Others have strcasecmp(). Because
283** there is no consistency, we will define our own.
drh9f129f42010-08-31 15:27:32 +0000284**
drh0299b402012-03-19 17:42:46 +0000285** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
286** sqlite3_strnicmp() APIs allow applications and extensions to compare
287** the contents of two buffers containing UTF-8 strings in a
288** case-independent fashion, using the same definition of "case
289** independence" that SQLite uses internally when comparing identifiers.
drhc81c11f2009-11-10 01:30:52 +0000290*/
drh3fa97302012-02-22 16:58:36 +0000291int sqlite3_stricmp(const char *zLeft, const char *zRight){
drh9ca95732014-10-24 00:35:58 +0000292 if( zLeft==0 ){
293 return zRight ? -1 : 0;
294 }else if( zRight==0 ){
295 return 1;
296 }
drh80738d92016-02-15 00:34:16 +0000297 return sqlite3StrICmp(zLeft, zRight);
298}
299int sqlite3StrICmp(const char *zLeft, const char *zRight){
300 unsigned char *a, *b;
301 int c;
drhc81c11f2009-11-10 01:30:52 +0000302 a = (unsigned char *)zLeft;
303 b = (unsigned char *)zRight;
drh80738d92016-02-15 00:34:16 +0000304 for(;;){
305 c = (int)UpperToLower[*a] - (int)UpperToLower[*b];
306 if( c || *a==0 ) break;
307 a++;
308 b++;
309 }
310 return c;
drhc81c11f2009-11-10 01:30:52 +0000311}
312int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
313 register unsigned char *a, *b;
drh9ca95732014-10-24 00:35:58 +0000314 if( zLeft==0 ){
315 return zRight ? -1 : 0;
316 }else if( zRight==0 ){
317 return 1;
318 }
drhc81c11f2009-11-10 01:30:52 +0000319 a = (unsigned char *)zLeft;
320 b = (unsigned char *)zRight;
321 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
322 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
323}
324
325/*
drh9339da12010-09-30 00:50:49 +0000326** The string z[] is an text representation of a real number.
drh025586a2010-09-30 17:33:11 +0000327** Convert this string to a double and write it into *pResult.
drhc81c11f2009-11-10 01:30:52 +0000328**
drh9339da12010-09-30 00:50:49 +0000329** The string z[] is length bytes in length (bytes, not characters) and
330** uses the encoding enc. The string is not necessarily zero-terminated.
drhc81c11f2009-11-10 01:30:52 +0000331**
drh9339da12010-09-30 00:50:49 +0000332** Return TRUE if the result is a valid real number (or integer) and FALSE
drh025586a2010-09-30 17:33:11 +0000333** if the string is empty or contains extraneous text. Valid numbers
334** are in one of these formats:
335**
336** [+-]digits[E[+-]digits]
337** [+-]digits.[digits][E[+-]digits]
338** [+-].digits[E[+-]digits]
339**
340** Leading and trailing whitespace is ignored for the purpose of determining
341** validity.
342**
343** If some prefix of the input string is a valid number, this routine
344** returns FALSE but it still converts the prefix and writes the result
345** into *pResult.
drhc81c11f2009-11-10 01:30:52 +0000346*/
drh9339da12010-09-30 00:50:49 +0000347int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
drhc81c11f2009-11-10 01:30:52 +0000348#ifndef SQLITE_OMIT_FLOATING_POINT
drh0e5fba72013-03-20 12:04:29 +0000349 int incr;
drh9339da12010-09-30 00:50:49 +0000350 const char *zEnd = z + length;
drhc81c11f2009-11-10 01:30:52 +0000351 /* sign * significand * (10 ^ (esign * exponent)) */
drh025586a2010-09-30 17:33:11 +0000352 int sign = 1; /* sign of significand */
353 i64 s = 0; /* significand */
354 int d = 0; /* adjust exponent for shifting decimal point */
355 int esign = 1; /* sign of exponent */
356 int e = 0; /* exponent */
357 int eValid = 1; /* True exponent is either not used or is well-formed */
drhc81c11f2009-11-10 01:30:52 +0000358 double result;
359 int nDigits = 0;
drh0e5fba72013-03-20 12:04:29 +0000360 int nonNum = 0;
drhc81c11f2009-11-10 01:30:52 +0000361
drh0e5fba72013-03-20 12:04:29 +0000362 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
drh025586a2010-09-30 17:33:11 +0000363 *pResult = 0.0; /* Default return value, in case of an error */
364
drh0e5fba72013-03-20 12:04:29 +0000365 if( enc==SQLITE_UTF8 ){
366 incr = 1;
367 }else{
368 int i;
369 incr = 2;
370 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
371 for(i=3-enc; i<length && z[i]==0; i+=2){}
372 nonNum = i<length;
373 zEnd = z+i+enc-3;
374 z += (enc&1);
375 }
drh9339da12010-09-30 00:50:49 +0000376
drhc81c11f2009-11-10 01:30:52 +0000377 /* skip leading spaces */
drh9339da12010-09-30 00:50:49 +0000378 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
drh025586a2010-09-30 17:33:11 +0000379 if( z>=zEnd ) return 0;
drh9339da12010-09-30 00:50:49 +0000380
drhc81c11f2009-11-10 01:30:52 +0000381 /* get sign of significand */
382 if( *z=='-' ){
383 sign = -1;
drh9339da12010-09-30 00:50:49 +0000384 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000385 }else if( *z=='+' ){
drh9339da12010-09-30 00:50:49 +0000386 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000387 }
drh9339da12010-09-30 00:50:49 +0000388
drhc81c11f2009-11-10 01:30:52 +0000389 /* skip leading zeroes */
drh9339da12010-09-30 00:50:49 +0000390 while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;
drhc81c11f2009-11-10 01:30:52 +0000391
392 /* copy max significant digits to significand */
drh9339da12010-09-30 00:50:49 +0000393 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
drhc81c11f2009-11-10 01:30:52 +0000394 s = s*10 + (*z - '0');
drh9339da12010-09-30 00:50:49 +0000395 z+=incr, nDigits++;
drhc81c11f2009-11-10 01:30:52 +0000396 }
drh9339da12010-09-30 00:50:49 +0000397
drhc81c11f2009-11-10 01:30:52 +0000398 /* skip non-significant significand digits
399 ** (increase exponent by d to shift decimal left) */
drh9339da12010-09-30 00:50:49 +0000400 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++;
401 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000402
403 /* if decimal point is present */
404 if( *z=='.' ){
drh9339da12010-09-30 00:50:49 +0000405 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000406 /* copy digits from after decimal to significand
407 ** (decrease exponent by d to shift decimal right) */
drh9339da12010-09-30 00:50:49 +0000408 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
drhc81c11f2009-11-10 01:30:52 +0000409 s = s*10 + (*z - '0');
drh9339da12010-09-30 00:50:49 +0000410 z+=incr, nDigits++, d--;
drhc81c11f2009-11-10 01:30:52 +0000411 }
412 /* skip non-significant digits */
drh9339da12010-09-30 00:50:49 +0000413 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++;
drhc81c11f2009-11-10 01:30:52 +0000414 }
drh9339da12010-09-30 00:50:49 +0000415 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000416
417 /* if exponent is present */
418 if( *z=='e' || *z=='E' ){
drh9339da12010-09-30 00:50:49 +0000419 z+=incr;
drh025586a2010-09-30 17:33:11 +0000420 eValid = 0;
drh9339da12010-09-30 00:50:49 +0000421 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000422 /* get sign of exponent */
423 if( *z=='-' ){
424 esign = -1;
drh9339da12010-09-30 00:50:49 +0000425 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000426 }else if( *z=='+' ){
drh9339da12010-09-30 00:50:49 +0000427 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000428 }
429 /* copy digits to exponent */
drh9339da12010-09-30 00:50:49 +0000430 while( z<zEnd && sqlite3Isdigit(*z) ){
drh57db4a72011-10-17 20:41:46 +0000431 e = e<10000 ? (e*10 + (*z - '0')) : 10000;
drh9339da12010-09-30 00:50:49 +0000432 z+=incr;
drh025586a2010-09-30 17:33:11 +0000433 eValid = 1;
drhc81c11f2009-11-10 01:30:52 +0000434 }
435 }
436
drh025586a2010-09-30 17:33:11 +0000437 /* skip trailing spaces */
438 if( nDigits && eValid ){
439 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
440 }
441
drh9339da12010-09-30 00:50:49 +0000442do_atof_calc:
drhc81c11f2009-11-10 01:30:52 +0000443 /* adjust exponent by d, and update sign */
444 e = (e*esign) + d;
445 if( e<0 ) {
446 esign = -1;
447 e *= -1;
448 } else {
449 esign = 1;
450 }
451
452 /* if 0 significand */
453 if( !s ) {
454 /* In the IEEE 754 standard, zero is signed.
455 ** Add the sign if we've seen at least one digit */
456 result = (sign<0 && nDigits) ? -(double)0 : (double)0;
457 } else {
458 /* attempt to reduce exponent */
459 if( esign>0 ){
460 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
461 }else{
462 while( !(s%10) && e>0 ) e--,s/=10;
463 }
464
465 /* adjust the sign of significand */
466 s = sign<0 ? -s : s;
467
468 /* if exponent, scale significand as appropriate
469 ** and store in result. */
470 if( e ){
drh89f15082012-06-19 00:45:16 +0000471 LONGDOUBLE_TYPE scale = 1.0;
drhc81c11f2009-11-10 01:30:52 +0000472 /* attempt to handle extremely small/large numbers better */
473 if( e>307 && e<342 ){
474 while( e%308 ) { scale *= 1.0e+1; e -= 1; }
475 if( esign<0 ){
476 result = s / scale;
477 result /= 1.0e+308;
478 }else{
479 result = s * scale;
480 result *= 1.0e+308;
481 }
drh2458a2e2011-10-17 12:14:26 +0000482 }else if( e>=342 ){
483 if( esign<0 ){
484 result = 0.0*s;
485 }else{
486 result = 1e308*1e308*s; /* Infinity */
487 }
drhc81c11f2009-11-10 01:30:52 +0000488 }else{
489 /* 1.0e+22 is the largest power of 10 than can be
490 ** represented exactly. */
491 while( e%22 ) { scale *= 1.0e+1; e -= 1; }
492 while( e>0 ) { scale *= 1.0e+22; e -= 22; }
493 if( esign<0 ){
494 result = s / scale;
495 }else{
496 result = s * scale;
497 }
498 }
499 } else {
500 result = (double)s;
501 }
502 }
503
504 /* store the result */
505 *pResult = result;
506
drh025586a2010-09-30 17:33:11 +0000507 /* return true if number and no extra non-whitespace chracters after */
drh0e5fba72013-03-20 12:04:29 +0000508 return z>=zEnd && nDigits>0 && eValid && nonNum==0;
drhc81c11f2009-11-10 01:30:52 +0000509#else
shaneh5f1d6b62010-09-30 16:51:25 +0000510 return !sqlite3Atoi64(z, pResult, length, enc);
drhc81c11f2009-11-10 01:30:52 +0000511#endif /* SQLITE_OMIT_FLOATING_POINT */
512}
513
514/*
515** Compare the 19-character string zNum against the text representation
516** value 2^63: 9223372036854775808. Return negative, zero, or positive
517** if zNum is less than, equal to, or greater than the string.
shaneh5f1d6b62010-09-30 16:51:25 +0000518** Note that zNum must contain exactly 19 characters.
drhc81c11f2009-11-10 01:30:52 +0000519**
520** Unlike memcmp() this routine is guaranteed to return the difference
521** in the values of the last digit if the only difference is in the
522** last digit. So, for example,
523**
drh9339da12010-09-30 00:50:49 +0000524** compare2pow63("9223372036854775800", 1)
drhc81c11f2009-11-10 01:30:52 +0000525**
526** will return -8.
527*/
drh9339da12010-09-30 00:50:49 +0000528static int compare2pow63(const char *zNum, int incr){
529 int c = 0;
530 int i;
531 /* 012345678901234567 */
532 const char *pow63 = "922337203685477580";
533 for(i=0; c==0 && i<18; i++){
534 c = (zNum[i*incr]-pow63[i])*10;
535 }
drhc81c11f2009-11-10 01:30:52 +0000536 if( c==0 ){
drh9339da12010-09-30 00:50:49 +0000537 c = zNum[18*incr] - '8';
drh44dbca82010-01-13 04:22:20 +0000538 testcase( c==(-1) );
539 testcase( c==0 );
540 testcase( c==(+1) );
drhc81c11f2009-11-10 01:30:52 +0000541 }
542 return c;
543}
544
drhc81c11f2009-11-10 01:30:52 +0000545/*
drh9296c182014-07-23 13:40:49 +0000546** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
547** routine does *not* accept hexadecimal notation.
drh158b9cb2011-03-05 20:59:46 +0000548**
549** If the zNum value is representable as a 64-bit twos-complement
550** integer, then write that value into *pNum and return 0.
551**
drha256c1a2013-12-01 01:18:29 +0000552** If zNum is exactly 9223372036854775808, return 2. This special
553** case is broken out because while 9223372036854775808 cannot be a
554** signed 64-bit integer, its negative -9223372036854775808 can be.
drh158b9cb2011-03-05 20:59:46 +0000555**
556** If zNum is too big for a 64-bit integer and is not
drha256c1a2013-12-01 01:18:29 +0000557** 9223372036854775808 or if zNum contains any non-numeric text,
drh0e5fba72013-03-20 12:04:29 +0000558** then return 1.
drhc81c11f2009-11-10 01:30:52 +0000559**
drh9339da12010-09-30 00:50:49 +0000560** length is the number of bytes in the string (bytes, not characters).
561** The string is not necessarily zero-terminated. The encoding is
562** given by enc.
drhc81c11f2009-11-10 01:30:52 +0000563*/
drh9339da12010-09-30 00:50:49 +0000564int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
drh0e5fba72013-03-20 12:04:29 +0000565 int incr;
drh158b9cb2011-03-05 20:59:46 +0000566 u64 u = 0;
shaneh5f1d6b62010-09-30 16:51:25 +0000567 int neg = 0; /* assume positive */
drh9339da12010-09-30 00:50:49 +0000568 int i;
569 int c = 0;
drh0e5fba72013-03-20 12:04:29 +0000570 int nonNum = 0;
drhc81c11f2009-11-10 01:30:52 +0000571 const char *zStart;
drh9339da12010-09-30 00:50:49 +0000572 const char *zEnd = zNum + length;
drh0e5fba72013-03-20 12:04:29 +0000573 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
574 if( enc==SQLITE_UTF8 ){
575 incr = 1;
576 }else{
577 incr = 2;
578 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
579 for(i=3-enc; i<length && zNum[i]==0; i+=2){}
580 nonNum = i<length;
581 zEnd = zNum+i+enc-3;
582 zNum += (enc&1);
583 }
drh9339da12010-09-30 00:50:49 +0000584 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
drh158b9cb2011-03-05 20:59:46 +0000585 if( zNum<zEnd ){
586 if( *zNum=='-' ){
587 neg = 1;
588 zNum+=incr;
589 }else if( *zNum=='+' ){
590 zNum+=incr;
591 }
drhc81c11f2009-11-10 01:30:52 +0000592 }
593 zStart = zNum;
drh9339da12010-09-30 00:50:49 +0000594 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
595 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
drh158b9cb2011-03-05 20:59:46 +0000596 u = u*10 + c - '0';
drhc81c11f2009-11-10 01:30:52 +0000597 }
drh158b9cb2011-03-05 20:59:46 +0000598 if( u>LARGEST_INT64 ){
drhde1a8b82013-11-26 15:45:02 +0000599 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
drh158b9cb2011-03-05 20:59:46 +0000600 }else if( neg ){
601 *pNum = -(i64)u;
602 }else{
603 *pNum = (i64)u;
604 }
drh44dbca82010-01-13 04:22:20 +0000605 testcase( i==18 );
606 testcase( i==19 );
607 testcase( i==20 );
drh62aaa6c2015-11-21 17:27:42 +0000608 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum)
609 || i>19*incr || nonNum ){
drhc81c11f2009-11-10 01:30:52 +0000610 /* zNum is empty or contains non-numeric text or is longer
shaneh5f1d6b62010-09-30 16:51:25 +0000611 ** than 19 digits (thus guaranteeing that it is too large) */
612 return 1;
drh9339da12010-09-30 00:50:49 +0000613 }else if( i<19*incr ){
drhc81c11f2009-11-10 01:30:52 +0000614 /* Less than 19 digits, so we know that it fits in 64 bits */
drh158b9cb2011-03-05 20:59:46 +0000615 assert( u<=LARGEST_INT64 );
shaneh5f1d6b62010-09-30 16:51:25 +0000616 return 0;
drhc81c11f2009-11-10 01:30:52 +0000617 }else{
drh158b9cb2011-03-05 20:59:46 +0000618 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
619 c = compare2pow63(zNum, incr);
620 if( c<0 ){
621 /* zNum is less than 9223372036854775808 so it fits */
622 assert( u<=LARGEST_INT64 );
623 return 0;
624 }else if( c>0 ){
625 /* zNum is greater than 9223372036854775808 so it overflows */
626 return 1;
627 }else{
628 /* zNum is exactly 9223372036854775808. Fits if negative. The
629 ** special case 2 overflow if positive */
630 assert( u-1==LARGEST_INT64 );
drh158b9cb2011-03-05 20:59:46 +0000631 return neg ? 0 : 2;
632 }
drhc81c11f2009-11-10 01:30:52 +0000633 }
634}
635
636/*
drh9296c182014-07-23 13:40:49 +0000637** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
638** into a 64-bit signed integer. This routine accepts hexadecimal literals,
639** whereas sqlite3Atoi64() does not.
640**
641** Returns:
642**
643** 0 Successful transformation. Fits in a 64-bit signed integer.
644** 1 Integer too large for a 64-bit signed integer or is malformed
645** 2 Special case of 9223372036854775808
646*/
647int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
648#ifndef SQLITE_OMIT_HEX_INTEGER
649 if( z[0]=='0'
650 && (z[1]=='x' || z[1]=='X')
651 && sqlite3Isxdigit(z[2])
652 ){
653 u64 u = 0;
654 int i, k;
655 for(i=2; z[i]=='0'; i++){}
656 for(k=i; sqlite3Isxdigit(z[k]); k++){
657 u = u*16 + sqlite3HexToInt(z[k]);
658 }
659 memcpy(pOut, &u, 8);
660 return (z[k]==0 && k-i<=16) ? 0 : 1;
661 }else
662#endif /* SQLITE_OMIT_HEX_INTEGER */
663 {
664 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
665 }
666}
667
668/*
drhc81c11f2009-11-10 01:30:52 +0000669** If zNum represents an integer that will fit in 32-bits, then set
670** *pValue to that integer and return true. Otherwise return false.
671**
drh9296c182014-07-23 13:40:49 +0000672** This routine accepts both decimal and hexadecimal notation for integers.
673**
drhc81c11f2009-11-10 01:30:52 +0000674** Any non-numeric characters that following zNum are ignored.
675** This is different from sqlite3Atoi64() which requires the
676** input number to be zero-terminated.
677*/
678int sqlite3GetInt32(const char *zNum, int *pValue){
679 sqlite_int64 v = 0;
680 int i, c;
681 int neg = 0;
682 if( zNum[0]=='-' ){
683 neg = 1;
684 zNum++;
685 }else if( zNum[0]=='+' ){
686 zNum++;
687 }
drh28e048c2014-07-23 01:26:51 +0000688#ifndef SQLITE_OMIT_HEX_INTEGER
689 else if( zNum[0]=='0'
690 && (zNum[1]=='x' || zNum[1]=='X')
691 && sqlite3Isxdigit(zNum[2])
692 ){
693 u32 u = 0;
694 zNum += 2;
695 while( zNum[0]=='0' ) zNum++;
696 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
697 u = u*16 + sqlite3HexToInt(zNum[i]);
698 }
699 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
700 memcpy(pValue, &u, 4);
701 return 1;
702 }else{
703 return 0;
704 }
705 }
706#endif
drh935f2e72015-04-18 04:45:00 +0000707 while( zNum[0]=='0' ) zNum++;
drhc81c11f2009-11-10 01:30:52 +0000708 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
709 v = v*10 + c;
710 }
711
712 /* The longest decimal representation of a 32 bit integer is 10 digits:
713 **
714 ** 1234567890
715 ** 2^31 -> 2147483648
716 */
drh44dbca82010-01-13 04:22:20 +0000717 testcase( i==10 );
drhc81c11f2009-11-10 01:30:52 +0000718 if( i>10 ){
719 return 0;
720 }
drh44dbca82010-01-13 04:22:20 +0000721 testcase( v-neg==2147483647 );
drhc81c11f2009-11-10 01:30:52 +0000722 if( v-neg>2147483647 ){
723 return 0;
724 }
725 if( neg ){
726 v = -v;
727 }
728 *pValue = (int)v;
729 return 1;
730}
731
732/*
drh60ac3f42010-11-23 18:59:27 +0000733** Return a 32-bit integer value extracted from a string. If the
734** string is not an integer, just return 0.
735*/
736int sqlite3Atoi(const char *z){
737 int x = 0;
738 if( z ) sqlite3GetInt32(z, &x);
739 return x;
740}
741
742/*
drhc81c11f2009-11-10 01:30:52 +0000743** The variable-length integer encoding is as follows:
744**
745** KEY:
746** A = 0xxxxxxx 7 bits of data and one flag bit
747** B = 1xxxxxxx 7 bits of data and one flag bit
748** C = xxxxxxxx 8 bits of data
749**
750** 7 bits - A
751** 14 bits - BA
752** 21 bits - BBA
753** 28 bits - BBBA
754** 35 bits - BBBBA
755** 42 bits - BBBBBA
756** 49 bits - BBBBBBA
757** 56 bits - BBBBBBBA
758** 64 bits - BBBBBBBBC
759*/
760
761/*
762** Write a 64-bit variable-length integer to memory starting at p[0].
763** The length of data write will be between 1 and 9 bytes. The number
764** of bytes written is returned.
765**
766** A variable-length integer consists of the lower 7 bits of each byte
767** for all bytes that have the 8th bit set and one byte with the 8th
768** bit clear. Except, if we get to the 9th byte, it stores the full
769** 8 bits and is the last byte.
770*/
drh2f2b2b82014-08-22 18:48:25 +0000771static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
drhc81c11f2009-11-10 01:30:52 +0000772 int i, j, n;
773 u8 buf[10];
774 if( v & (((u64)0xff000000)<<32) ){
775 p[8] = (u8)v;
776 v >>= 8;
777 for(i=7; i>=0; i--){
778 p[i] = (u8)((v & 0x7f) | 0x80);
779 v >>= 7;
780 }
781 return 9;
782 }
783 n = 0;
784 do{
785 buf[n++] = (u8)((v & 0x7f) | 0x80);
786 v >>= 7;
787 }while( v!=0 );
788 buf[0] &= 0x7f;
789 assert( n<=9 );
790 for(i=0, j=n-1; j>=0; j--, i++){
791 p[i] = buf[j];
792 }
793 return n;
794}
drh2f2b2b82014-08-22 18:48:25 +0000795int sqlite3PutVarint(unsigned char *p, u64 v){
796 if( v<=0x7f ){
797 p[0] = v&0x7f;
drhc81c11f2009-11-10 01:30:52 +0000798 return 1;
799 }
drh2f2b2b82014-08-22 18:48:25 +0000800 if( v<=0x3fff ){
801 p[0] = ((v>>7)&0x7f)|0x80;
802 p[1] = v&0x7f;
drhc81c11f2009-11-10 01:30:52 +0000803 return 2;
804 }
drh2f2b2b82014-08-22 18:48:25 +0000805 return putVarint64(p,v);
drhc81c11f2009-11-10 01:30:52 +0000806}
807
808/*
drh0b2864c2010-03-03 15:18:38 +0000809** Bitmasks used by sqlite3GetVarint(). These precomputed constants
810** are defined here rather than simply putting the constant expressions
811** inline in order to work around bugs in the RVT compiler.
812**
813** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
814**
815** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
816*/
817#define SLOT_2_0 0x001fc07f
818#define SLOT_4_2_0 0xf01fc07f
819
820
821/*
drhc81c11f2009-11-10 01:30:52 +0000822** Read a 64-bit variable-length integer from memory starting at p[0].
823** Return the number of bytes read. The value is stored in *v.
824*/
825u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
826 u32 a,b,s;
827
828 a = *p;
829 /* a: p0 (unmasked) */
830 if (!(a&0x80))
831 {
832 *v = a;
833 return 1;
834 }
835
836 p++;
837 b = *p;
838 /* b: p1 (unmasked) */
839 if (!(b&0x80))
840 {
841 a &= 0x7f;
842 a = a<<7;
843 a |= b;
844 *v = a;
845 return 2;
846 }
847
drh0b2864c2010-03-03 15:18:38 +0000848 /* Verify that constants are precomputed correctly */
849 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
shaneh1da207e2010-03-09 14:41:12 +0000850 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
drh0b2864c2010-03-03 15:18:38 +0000851
drhc81c11f2009-11-10 01:30:52 +0000852 p++;
853 a = a<<14;
854 a |= *p;
855 /* a: p0<<14 | p2 (unmasked) */
856 if (!(a&0x80))
857 {
drh0b2864c2010-03-03 15:18:38 +0000858 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000859 b &= 0x7f;
860 b = b<<7;
861 a |= b;
862 *v = a;
863 return 3;
864 }
865
866 /* CSE1 from below */
drh0b2864c2010-03-03 15:18:38 +0000867 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000868 p++;
869 b = b<<14;
870 b |= *p;
871 /* b: p1<<14 | p3 (unmasked) */
872 if (!(b&0x80))
873 {
drh0b2864c2010-03-03 15:18:38 +0000874 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000875 /* moved CSE1 up */
876 /* a &= (0x7f<<14)|(0x7f); */
877 a = a<<7;
878 a |= b;
879 *v = a;
880 return 4;
881 }
882
883 /* a: p0<<14 | p2 (masked) */
884 /* b: p1<<14 | p3 (unmasked) */
885 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
886 /* moved CSE1 up */
887 /* a &= (0x7f<<14)|(0x7f); */
drh0b2864c2010-03-03 15:18:38 +0000888 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000889 s = a;
890 /* s: p0<<14 | p2 (masked) */
891
892 p++;
893 a = a<<14;
894 a |= *p;
895 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
896 if (!(a&0x80))
897 {
drh62aaa6c2015-11-21 17:27:42 +0000898 /* we can skip these cause they were (effectively) done above
899 ** while calculating s */
drhc81c11f2009-11-10 01:30:52 +0000900 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
901 /* b &= (0x7f<<14)|(0x7f); */
902 b = b<<7;
903 a |= b;
904 s = s>>18;
905 *v = ((u64)s)<<32 | a;
906 return 5;
907 }
908
909 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
910 s = s<<7;
911 s |= b;
912 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
913
914 p++;
915 b = b<<14;
916 b |= *p;
917 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
918 if (!(b&0x80))
919 {
920 /* we can skip this cause it was (effectively) done above in calc'ing s */
921 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
drh0b2864c2010-03-03 15:18:38 +0000922 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000923 a = a<<7;
924 a |= b;
925 s = s>>18;
926 *v = ((u64)s)<<32 | a;
927 return 6;
928 }
929
930 p++;
931 a = a<<14;
932 a |= *p;
933 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
934 if (!(a&0x80))
935 {
drh0b2864c2010-03-03 15:18:38 +0000936 a &= SLOT_4_2_0;
937 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000938 b = b<<7;
939 a |= b;
940 s = s>>11;
941 *v = ((u64)s)<<32 | a;
942 return 7;
943 }
944
945 /* CSE2 from below */
drh0b2864c2010-03-03 15:18:38 +0000946 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000947 p++;
948 b = b<<14;
949 b |= *p;
950 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
951 if (!(b&0x80))
952 {
drh0b2864c2010-03-03 15:18:38 +0000953 b &= SLOT_4_2_0;
drhc81c11f2009-11-10 01:30:52 +0000954 /* moved CSE2 up */
955 /* a &= (0x7f<<14)|(0x7f); */
956 a = a<<7;
957 a |= b;
958 s = s>>4;
959 *v = ((u64)s)<<32 | a;
960 return 8;
961 }
962
963 p++;
964 a = a<<15;
965 a |= *p;
966 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
967
968 /* moved CSE2 up */
969 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
drh0b2864c2010-03-03 15:18:38 +0000970 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000971 b = b<<8;
972 a |= b;
973
974 s = s<<4;
975 b = p[-4];
976 b &= 0x7f;
977 b = b>>3;
978 s |= b;
979
980 *v = ((u64)s)<<32 | a;
981
982 return 9;
983}
984
985/*
986** Read a 32-bit variable-length integer from memory starting at p[0].
987** Return the number of bytes read. The value is stored in *v.
988**
989** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
990** integer, then set *v to 0xffffffff.
991**
992** A MACRO version, getVarint32, is provided which inlines the
993** single-byte case. All code should use the MACRO version as
994** this function assumes the single-byte case has already been handled.
995*/
996u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
997 u32 a,b;
998
999 /* The 1-byte case. Overwhelmingly the most common. Handled inline
1000 ** by the getVarin32() macro */
1001 a = *p;
1002 /* a: p0 (unmasked) */
1003#ifndef getVarint32
1004 if (!(a&0x80))
1005 {
1006 /* Values between 0 and 127 */
1007 *v = a;
1008 return 1;
1009 }
1010#endif
1011
1012 /* The 2-byte case */
1013 p++;
1014 b = *p;
1015 /* b: p1 (unmasked) */
1016 if (!(b&0x80))
1017 {
1018 /* Values between 128 and 16383 */
1019 a &= 0x7f;
1020 a = a<<7;
1021 *v = a | b;
1022 return 2;
1023 }
1024
1025 /* The 3-byte case */
1026 p++;
1027 a = a<<14;
1028 a |= *p;
1029 /* a: p0<<14 | p2 (unmasked) */
1030 if (!(a&0x80))
1031 {
1032 /* Values between 16384 and 2097151 */
1033 a &= (0x7f<<14)|(0x7f);
1034 b &= 0x7f;
1035 b = b<<7;
1036 *v = a | b;
1037 return 3;
1038 }
1039
1040 /* A 32-bit varint is used to store size information in btrees.
1041 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1042 ** A 3-byte varint is sufficient, for example, to record the size
1043 ** of a 1048569-byte BLOB or string.
1044 **
1045 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
1046 ** rare larger cases can be handled by the slower 64-bit varint
1047 ** routine.
1048 */
1049#if 1
1050 {
1051 u64 v64;
1052 u8 n;
1053
1054 p -= 2;
1055 n = sqlite3GetVarint(p, &v64);
1056 assert( n>3 && n<=9 );
1057 if( (v64 & SQLITE_MAX_U32)!=v64 ){
1058 *v = 0xffffffff;
1059 }else{
1060 *v = (u32)v64;
1061 }
1062 return n;
1063 }
1064
1065#else
1066 /* For following code (kept for historical record only) shows an
1067 ** unrolling for the 3- and 4-byte varint cases. This code is
1068 ** slightly faster, but it is also larger and much harder to test.
1069 */
1070 p++;
1071 b = b<<14;
1072 b |= *p;
1073 /* b: p1<<14 | p3 (unmasked) */
1074 if (!(b&0x80))
1075 {
1076 /* Values between 2097152 and 268435455 */
1077 b &= (0x7f<<14)|(0x7f);
1078 a &= (0x7f<<14)|(0x7f);
1079 a = a<<7;
1080 *v = a | b;
1081 return 4;
1082 }
1083
1084 p++;
1085 a = a<<14;
1086 a |= *p;
1087 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1088 if (!(a&0x80))
1089 {
dan3bbe7612010-03-03 16:02:05 +00001090 /* Values between 268435456 and 34359738367 */
1091 a &= SLOT_4_2_0;
1092 b &= SLOT_4_2_0;
drhc81c11f2009-11-10 01:30:52 +00001093 b = b<<7;
1094 *v = a | b;
1095 return 5;
1096 }
1097
1098 /* We can only reach this point when reading a corrupt database
1099 ** file. In that case we are not in any hurry. Use the (relatively
1100 ** slow) general-purpose sqlite3GetVarint() routine to extract the
1101 ** value. */
1102 {
1103 u64 v64;
1104 u8 n;
1105
1106 p -= 4;
1107 n = sqlite3GetVarint(p, &v64);
1108 assert( n>5 && n<=9 );
1109 *v = (u32)v64;
1110 return n;
1111 }
1112#endif
1113}
1114
1115/*
1116** Return the number of bytes that will be needed to store the given
1117** 64-bit integer.
1118*/
1119int sqlite3VarintLen(u64 v){
drh59a53642015-09-01 22:29:07 +00001120 int i;
drh6f17c092016-03-04 21:18:09 +00001121 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
drhc81c11f2009-11-10 01:30:52 +00001122 return i;
1123}
1124
1125
1126/*
1127** Read or write a four-byte big-endian integer value.
1128*/
1129u32 sqlite3Get4byte(const u8 *p){
drh5372e4d2015-06-30 12:47:09 +00001130#if SQLITE_BYTEORDER==4321
1131 u32 x;
1132 memcpy(&x,p,4);
1133 return x;
mistachkin60e08072015-07-29 21:47:39 +00001134#elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
1135 && defined(__GNUC__) && GCC_VERSION>=4003000
drh5372e4d2015-06-30 12:47:09 +00001136 u32 x;
1137 memcpy(&x,p,4);
1138 return __builtin_bswap32(x);
mistachkin60e08072015-07-29 21:47:39 +00001139#elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
1140 && defined(_MSC_VER) && _MSC_VER>=1300
mistachkin647ca462015-06-30 17:28:40 +00001141 u32 x;
1142 memcpy(&x,p,4);
1143 return _byteswap_ulong(x);
drh5372e4d2015-06-30 12:47:09 +00001144#else
drh693e6712014-01-24 22:58:00 +00001145 testcase( p[0]&0x80 );
1146 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
drh5372e4d2015-06-30 12:47:09 +00001147#endif
drhc81c11f2009-11-10 01:30:52 +00001148}
1149void sqlite3Put4byte(unsigned char *p, u32 v){
drh5372e4d2015-06-30 12:47:09 +00001150#if SQLITE_BYTEORDER==4321
1151 memcpy(p,&v,4);
drh469753d2016-02-19 13:20:02 +00001152#elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
1153 && defined(__GNUC__) && GCC_VERSION>=4003000
drh5372e4d2015-06-30 12:47:09 +00001154 u32 x = __builtin_bswap32(v);
1155 memcpy(p,&x,4);
drh469753d2016-02-19 13:20:02 +00001156#elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
1157 && defined(_MSC_VER) && _MSC_VER>=1300
mistachkin647ca462015-06-30 17:28:40 +00001158 u32 x = _byteswap_ulong(v);
1159 memcpy(p,&x,4);
drh5372e4d2015-06-30 12:47:09 +00001160#else
drhc81c11f2009-11-10 01:30:52 +00001161 p[0] = (u8)(v>>24);
1162 p[1] = (u8)(v>>16);
1163 p[2] = (u8)(v>>8);
1164 p[3] = (u8)v;
drh5372e4d2015-06-30 12:47:09 +00001165#endif
drhc81c11f2009-11-10 01:30:52 +00001166}
1167
drh9296c182014-07-23 13:40:49 +00001168
1169
1170/*
1171** Translate a single byte of Hex into an integer.
1172** This routine only works if h really is a valid hexadecimal
1173** character: 0..9a..fA..F
1174*/
1175u8 sqlite3HexToInt(int h){
1176 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
1177#ifdef SQLITE_ASCII
1178 h += 9*(1&(h>>6));
1179#endif
1180#ifdef SQLITE_EBCDIC
1181 h += 9*(1&~(h>>4));
1182#endif
1183 return (u8)(h & 0xf);
1184}
1185
drhc81c11f2009-11-10 01:30:52 +00001186#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1187/*
1188** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1189** value. Return a pointer to its binary value. Space to hold the
1190** binary value has been obtained from malloc and must be freed by
1191** the calling routine.
1192*/
1193void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1194 char *zBlob;
1195 int i;
1196
drh575fad62016-02-05 13:38:36 +00001197 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
drhc81c11f2009-11-10 01:30:52 +00001198 n--;
1199 if( zBlob ){
1200 for(i=0; i<n; i+=2){
dancd74b612011-04-22 19:37:32 +00001201 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
drhc81c11f2009-11-10 01:30:52 +00001202 }
1203 zBlob[i/2] = 0;
1204 }
1205 return zBlob;
1206}
1207#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1208
drh413c3d32010-02-23 20:11:56 +00001209/*
1210** Log an error that is an API call on a connection pointer that should
1211** not have been used. The "type" of connection pointer is given as the
1212** argument. The zType is a word like "NULL" or "closed" or "invalid".
1213*/
1214static void logBadConnection(const char *zType){
1215 sqlite3_log(SQLITE_MISUSE,
1216 "API call with %s database connection pointer",
1217 zType
1218 );
1219}
drhc81c11f2009-11-10 01:30:52 +00001220
1221/*
drhc81c11f2009-11-10 01:30:52 +00001222** Check to make sure we have a valid db pointer. This test is not
1223** foolproof but it does provide some measure of protection against
1224** misuse of the interface such as passing in db pointers that are
1225** NULL or which have been previously closed. If this routine returns
1226** 1 it means that the db pointer is valid and 0 if it should not be
1227** dereferenced for any reason. The calling function should invoke
1228** SQLITE_MISUSE immediately.
1229**
1230** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1231** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1232** open properly and is not fit for general use but which can be
1233** used as an argument to sqlite3_errmsg() or sqlite3_close().
1234*/
1235int sqlite3SafetyCheckOk(sqlite3 *db){
1236 u32 magic;
drh413c3d32010-02-23 20:11:56 +00001237 if( db==0 ){
1238 logBadConnection("NULL");
1239 return 0;
1240 }
drhc81c11f2009-11-10 01:30:52 +00001241 magic = db->magic;
drh9978c972010-02-23 17:36:32 +00001242 if( magic!=SQLITE_MAGIC_OPEN ){
drhe294da02010-02-25 23:44:15 +00001243 if( sqlite3SafetyCheckSickOrOk(db) ){
1244 testcase( sqlite3GlobalConfig.xLog!=0 );
drh413c3d32010-02-23 20:11:56 +00001245 logBadConnection("unopened");
1246 }
drhc81c11f2009-11-10 01:30:52 +00001247 return 0;
1248 }else{
1249 return 1;
1250 }
1251}
1252int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1253 u32 magic;
1254 magic = db->magic;
1255 if( magic!=SQLITE_MAGIC_SICK &&
1256 magic!=SQLITE_MAGIC_OPEN &&
drh413c3d32010-02-23 20:11:56 +00001257 magic!=SQLITE_MAGIC_BUSY ){
drhe294da02010-02-25 23:44:15 +00001258 testcase( sqlite3GlobalConfig.xLog!=0 );
drhaf46dc12010-02-24 21:44:07 +00001259 logBadConnection("invalid");
drh413c3d32010-02-23 20:11:56 +00001260 return 0;
1261 }else{
1262 return 1;
1263 }
drhc81c11f2009-11-10 01:30:52 +00001264}
drh158b9cb2011-03-05 20:59:46 +00001265
1266/*
1267** Attempt to add, substract, or multiply the 64-bit signed value iB against
1268** the other 64-bit signed integer at *pA and store the result in *pA.
1269** Return 0 on success. Or if the operation would have resulted in an
1270** overflow, leave *pA unchanged and return 1.
1271*/
1272int sqlite3AddInt64(i64 *pA, i64 iB){
1273 i64 iA = *pA;
1274 testcase( iA==0 ); testcase( iA==1 );
1275 testcase( iB==-1 ); testcase( iB==0 );
1276 if( iB>=0 ){
1277 testcase( iA>0 && LARGEST_INT64 - iA == iB );
1278 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1279 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
drh158b9cb2011-03-05 20:59:46 +00001280 }else{
1281 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1282 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1283 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
drh158b9cb2011-03-05 20:59:46 +00001284 }
drh53a6eb32014-02-10 12:59:15 +00001285 *pA += iB;
drh158b9cb2011-03-05 20:59:46 +00001286 return 0;
1287}
1288int sqlite3SubInt64(i64 *pA, i64 iB){
1289 testcase( iB==SMALLEST_INT64+1 );
1290 if( iB==SMALLEST_INT64 ){
1291 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1292 if( (*pA)>=0 ) return 1;
1293 *pA -= iB;
1294 return 0;
1295 }else{
1296 return sqlite3AddInt64(pA, -iB);
1297 }
1298}
1299#define TWOPOWER32 (((i64)1)<<32)
1300#define TWOPOWER31 (((i64)1)<<31)
1301int sqlite3MulInt64(i64 *pA, i64 iB){
1302 i64 iA = *pA;
1303 i64 iA1, iA0, iB1, iB0, r;
1304
drh158b9cb2011-03-05 20:59:46 +00001305 iA1 = iA/TWOPOWER32;
1306 iA0 = iA % TWOPOWER32;
1307 iB1 = iB/TWOPOWER32;
1308 iB0 = iB % TWOPOWER32;
drh53a6eb32014-02-10 12:59:15 +00001309 if( iA1==0 ){
1310 if( iB1==0 ){
1311 *pA *= iB;
1312 return 0;
1313 }
1314 r = iA0*iB1;
1315 }else if( iB1==0 ){
1316 r = iA1*iB0;
1317 }else{
1318 /* If both iA1 and iB1 are non-zero, overflow will result */
1319 return 1;
1320 }
drh158b9cb2011-03-05 20:59:46 +00001321 testcase( r==(-TWOPOWER31)-1 );
1322 testcase( r==(-TWOPOWER31) );
1323 testcase( r==TWOPOWER31 );
1324 testcase( r==TWOPOWER31-1 );
1325 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1;
1326 r *= TWOPOWER32;
1327 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1;
1328 *pA = r;
1329 return 0;
1330}
drhd50ffc42011-03-08 02:38:28 +00001331
1332/*
1333** Compute the absolute value of a 32-bit signed integer, of possible. Or
1334** if the integer has a value of -2147483648, return +2147483647
1335*/
1336int sqlite3AbsInt32(int x){
1337 if( x>=0 ) return x;
drh87e79ae2011-03-08 13:06:41 +00001338 if( x==(int)0x80000000 ) return 0x7fffffff;
drhd50ffc42011-03-08 02:38:28 +00001339 return -x;
1340}
drh81cc5162011-05-17 20:36:21 +00001341
1342#ifdef SQLITE_ENABLE_8_3_NAMES
1343/*
drhb51bf432011-07-21 21:29:35 +00001344** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
drh81cc5162011-05-17 20:36:21 +00001345** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1346** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1347** three characters, then shorten the suffix on z[] to be the last three
1348** characters of the original suffix.
1349**
drhb51bf432011-07-21 21:29:35 +00001350** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1351** do the suffix shortening regardless of URI parameter.
1352**
drh81cc5162011-05-17 20:36:21 +00001353** Examples:
1354**
1355** test.db-journal => test.nal
1356** test.db-wal => test.wal
1357** test.db-shm => test.shm
drhf5808602011-12-16 00:33:04 +00001358** test.db-mj7f3319fa => test.9fa
drh81cc5162011-05-17 20:36:21 +00001359*/
1360void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
drhb51bf432011-07-21 21:29:35 +00001361#if SQLITE_ENABLE_8_3_NAMES<2
drh7d39e172012-01-02 12:41:53 +00001362 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
drhb51bf432011-07-21 21:29:35 +00001363#endif
1364 {
drh81cc5162011-05-17 20:36:21 +00001365 int i, sz;
1366 sz = sqlite3Strlen30(z);
drhc83f2d42011-05-18 02:41:10 +00001367 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
drhc02a43a2012-01-10 23:18:38 +00001368 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
drh81cc5162011-05-17 20:36:21 +00001369 }
1370}
1371#endif
drhbf539c42013-10-05 18:16:02 +00001372
1373/*
1374** Find (an approximate) sum of two LogEst values. This computation is
1375** not a simple "+" operator because LogEst is stored as a logarithmic
1376** value.
1377**
1378*/
1379LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1380 static const unsigned char x[] = {
1381 10, 10, /* 0,1 */
1382 9, 9, /* 2,3 */
1383 8, 8, /* 4,5 */
1384 7, 7, 7, /* 6,7,8 */
1385 6, 6, 6, /* 9,10,11 */
1386 5, 5, 5, /* 12-14 */
1387 4, 4, 4, 4, /* 15-18 */
1388 3, 3, 3, 3, 3, 3, /* 19-24 */
1389 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1390 };
1391 if( a>=b ){
1392 if( a>b+49 ) return a;
1393 if( a>b+31 ) return a+1;
1394 return a+x[a-b];
1395 }else{
1396 if( b>a+49 ) return b;
1397 if( b>a+31 ) return b+1;
1398 return b+x[b-a];
1399 }
1400}
1401
1402/*
drh224155d2014-04-30 13:19:09 +00001403** Convert an integer into a LogEst. In other words, compute an
1404** approximation for 10*log2(x).
drhbf539c42013-10-05 18:16:02 +00001405*/
1406LogEst sqlite3LogEst(u64 x){
1407 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1408 LogEst y = 40;
1409 if( x<8 ){
1410 if( x<2 ) return 0;
1411 while( x<8 ){ y -= 10; x <<= 1; }
1412 }else{
1413 while( x>255 ){ y += 40; x >>= 4; }
1414 while( x>15 ){ y += 10; x >>= 1; }
1415 }
1416 return a[x&7] + y - 10;
1417}
1418
1419#ifndef SQLITE_OMIT_VIRTUALTABLE
1420/*
1421** Convert a double into a LogEst
1422** In other words, compute an approximation for 10*log2(x).
1423*/
1424LogEst sqlite3LogEstFromDouble(double x){
1425 u64 a;
1426 LogEst e;
1427 assert( sizeof(x)==8 && sizeof(a)==8 );
1428 if( x<=1 ) return 0;
1429 if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1430 memcpy(&a, &x, 8);
1431 e = (a>>52) - 1022;
1432 return e*10;
1433}
1434#endif /* SQLITE_OMIT_VIRTUALTABLE */
1435
drh14bfd992016-03-05 14:00:09 +00001436#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
drhd566c952016-02-25 21:19:03 +00001437 defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \
1438 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
drhbf539c42013-10-05 18:16:02 +00001439/*
1440** Convert a LogEst into an integer.
drhd566c952016-02-25 21:19:03 +00001441**
1442** Note that this routine is only used when one or more of various
1443** non-standard compile-time options is enabled.
drhbf539c42013-10-05 18:16:02 +00001444*/
1445u64 sqlite3LogEstToInt(LogEst x){
1446 u64 n;
1447 if( x<10 ) return 1;
1448 n = x%10;
1449 x /= 10;
1450 if( n>=5 ) n -= 2;
1451 else if( n>=1 ) n -= 1;
drhecdf20d2016-03-10 14:28:24 +00001452#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1453 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1454 if( x>60 ) return (u64)LARGEST_INT64;
1455#else
1456 /* If only SQLITE_ENABLE_STAT3_OR_STAT4 is on, then the largest input
1457 ** possible to this routine is 310, resulting in a maximum x of 31 */
1458 assert( x<=60 );
1459#endif
1460 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
drhbf539c42013-10-05 18:16:02 +00001461}
drhd566c952016-02-25 21:19:03 +00001462#endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */