blob: e76ed879ee3cd2deda608d7301477c3cc6465dbe [file] [log] [blame]
drhc81c11f2009-11-10 01:30:52 +00001/*
2** 2001 September 15
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** Utility functions used throughout sqlite.
13**
14** This file contains functions for allocating memory, comparing
15** strings, and stuff like that.
16**
17*/
18#include "sqliteInt.h"
19#include <stdarg.h>
20#ifdef SQLITE_HAVE_ISNAN
21# include <math.h>
22#endif
23
24/*
25** Routine needed to support the testcase() macro.
26*/
27#ifdef SQLITE_COVERAGE_TEST
28void sqlite3Coverage(int x){
29 static int dummy = 0;
30 dummy += x;
31}
32#endif
33
drh85c8f292010-01-13 17:39:53 +000034#ifndef SQLITE_OMIT_FLOATING_POINT
drhc81c11f2009-11-10 01:30:52 +000035/*
36** Return true if the floating point value is Not a Number (NaN).
37**
38** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
39** Otherwise, we have our own implementation that works on most systems.
40*/
41int sqlite3IsNaN(double x){
42 int rc; /* The value return */
43#if !defined(SQLITE_HAVE_ISNAN)
44 /*
45 ** Systems that support the isnan() library function should probably
46 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
47 ** found that many systems do not have a working isnan() function so
48 ** this implementation is provided as an alternative.
49 **
50 ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
51 ** On the other hand, the use of -ffast-math comes with the following
52 ** warning:
53 **
54 ** This option [-ffast-math] should never be turned on by any
55 ** -O option since it can result in incorrect output for programs
56 ** which depend on an exact implementation of IEEE or ISO
57 ** rules/specifications for math functions.
58 **
59 ** Under MSVC, this NaN test may fail if compiled with a floating-
60 ** point precision mode other than /fp:precise. From the MSDN
61 ** documentation:
62 **
63 ** The compiler [with /fp:precise] will properly handle comparisons
64 ** involving NaN. For example, x != x evaluates to true if x is NaN
65 ** ...
66 */
67#ifdef __FAST_MATH__
68# error SQLite will not work correctly with the -ffast-math option of GCC.
69#endif
70 volatile double y = x;
71 volatile double z = y;
72 rc = (y!=z);
73#else /* if defined(SQLITE_HAVE_ISNAN) */
74 rc = isnan(x);
75#endif /* SQLITE_HAVE_ISNAN */
76 testcase( rc );
77 return rc;
78}
drh85c8f292010-01-13 17:39:53 +000079#endif /* SQLITE_OMIT_FLOATING_POINT */
drhc81c11f2009-11-10 01:30:52 +000080
81/*
82** Compute a string length that is limited to what can be stored in
83** lower 30 bits of a 32-bit signed integer.
84**
85** The value returned will never be negative. Nor will it ever be greater
86** than the actual length of the string. For very long strings (greater
87** than 1GiB) the value returned might be less than the true string length.
88*/
89int sqlite3Strlen30(const char *z){
90 const char *z2 = z;
91 if( z==0 ) return 0;
92 while( *z2 ){ z2++; }
93 return 0x3fffffff & (int)(z2 - z);
94}
95
96/*
97** Set the most recent error code and error string for the sqlite
98** handle "db". The error code is set to "err_code".
99**
100** If it is not NULL, string zFormat specifies the format of the
101** error string in the style of the printf functions: The following
102** format characters are allowed:
103**
104** %s Insert a string
105** %z A string that should be freed after use
106** %d Insert an integer
107** %T Insert a token
108** %S Insert the first element of a SrcList
109**
110** zFormat and any string tokens that follow it are assumed to be
111** encoded in UTF-8.
112**
113** To clear the most recent error for sqlite handle "db", sqlite3Error
114** should be called with err_code set to SQLITE_OK and zFormat set
115** to NULL.
116*/
117void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
118 if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
119 db->errCode = err_code;
120 if( zFormat ){
121 char *z;
122 va_list ap;
123 va_start(ap, zFormat);
124 z = sqlite3VMPrintf(db, zFormat, ap);
125 va_end(ap);
126 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
127 }else{
128 sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
129 }
130 }
131}
132
133/*
134** Add an error message to pParse->zErrMsg and increment pParse->nErr.
135** The following formatting characters are allowed:
136**
137** %s Insert a string
138** %z A string that should be freed after use
139** %d Insert an integer
140** %T Insert a token
141** %S Insert the first element of a SrcList
142**
143** This function should be used to report any error that occurs whilst
144** compiling an SQL statement (i.e. within sqlite3_prepare()). The
145** last thing the sqlite3_prepare() function does is copy the error
146** stored by this function into the database handle using sqlite3Error().
147** Function sqlite3Error() should be used during statement execution
148** (sqlite3_step() etc.).
149*/
150void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
drha7564662010-02-22 19:32:31 +0000151 char *zMsg;
drhc81c11f2009-11-10 01:30:52 +0000152 va_list ap;
153 sqlite3 *db = pParse->db;
drhc81c11f2009-11-10 01:30:52 +0000154 va_start(ap, zFormat);
drha7564662010-02-22 19:32:31 +0000155 zMsg = sqlite3VMPrintf(db, zFormat, ap);
drhc81c11f2009-11-10 01:30:52 +0000156 va_end(ap);
drha7564662010-02-22 19:32:31 +0000157 if( db->suppressErr ){
158 sqlite3DbFree(db, zMsg);
159 }else{
160 pParse->nErr++;
161 sqlite3DbFree(db, pParse->zErrMsg);
162 pParse->zErrMsg = zMsg;
163 pParse->rc = SQLITE_ERROR;
drha7564662010-02-22 19:32:31 +0000164 }
drhc81c11f2009-11-10 01:30:52 +0000165}
166
167/*
168** Convert an SQL-style quoted string into a normal string by removing
169** the quote characters. The conversion is done in-place. If the
170** input does not begin with a quote character, then this routine
171** is a no-op.
172**
173** The input string must be zero-terminated. A new zero-terminator
174** is added to the dequoted string.
175**
176** The return value is -1 if no dequoting occurs or the length of the
177** dequoted string, exclusive of the zero terminator, if dequoting does
178** occur.
179**
180** 2002-Feb-14: This routine is extended to remove MS-Access style
181** brackets from around identifers. For example: "[a-b-c]" becomes
182** "a-b-c".
183*/
184int sqlite3Dequote(char *z){
185 char quote;
186 int i, j;
187 if( z==0 ) return -1;
188 quote = z[0];
189 switch( quote ){
190 case '\'': break;
191 case '"': break;
192 case '`': break; /* For MySQL compatibility */
193 case '[': quote = ']'; break; /* For MS SqlServer compatibility */
194 default: return -1;
195 }
196 for(i=1, j=0; ALWAYS(z[i]); i++){
197 if( z[i]==quote ){
198 if( z[i+1]==quote ){
199 z[j++] = quote;
200 i++;
201 }else{
202 break;
203 }
204 }else{
205 z[j++] = z[i];
206 }
207 }
208 z[j] = 0;
209 return j;
210}
211
212/* Convenient short-hand */
213#define UpperToLower sqlite3UpperToLower
214
215/*
216** Some systems have stricmp(). Others have strcasecmp(). Because
217** there is no consistency, we will define our own.
218*/
219int sqlite3StrICmp(const char *zLeft, const char *zRight){
220 register unsigned char *a, *b;
221 a = (unsigned char *)zLeft;
222 b = (unsigned char *)zRight;
223 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
224 return UpperToLower[*a] - UpperToLower[*b];
225}
226int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
227 register unsigned char *a, *b;
228 a = (unsigned char *)zLeft;
229 b = (unsigned char *)zRight;
230 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
231 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
232}
233
234/*
235** Return TRUE if z is a pure numeric string. Return FALSE and leave
236** *realnum unchanged if the string contains any character which is not
237** part of a number.
238**
239** If the string is pure numeric, set *realnum to TRUE if the string
240** contains the '.' character or an "E+000" style exponentiation suffix.
241** Otherwise set *realnum to FALSE. Note that just becaue *realnum is
242** false does not mean that the number can be successfully converted into
243** an integer - it might be too big.
244**
245** An empty string is considered non-numeric.
246*/
247int sqlite3IsNumber(const char *z, int *realnum, u8 enc){
248 int incr = (enc==SQLITE_UTF8?1:2);
249 if( enc==SQLITE_UTF16BE ) z++;
250 if( *z=='-' || *z=='+' ) z += incr;
251 if( !sqlite3Isdigit(*z) ){
252 return 0;
253 }
254 z += incr;
255 *realnum = 0;
256 while( sqlite3Isdigit(*z) ){ z += incr; }
drh44dbca82010-01-13 04:22:20 +0000257#ifndef SQLITE_OMIT_FLOATING_POINT
drhc81c11f2009-11-10 01:30:52 +0000258 if( *z=='.' ){
259 z += incr;
260 if( !sqlite3Isdigit(*z) ) return 0;
261 while( sqlite3Isdigit(*z) ){ z += incr; }
262 *realnum = 1;
263 }
264 if( *z=='e' || *z=='E' ){
265 z += incr;
266 if( *z=='+' || *z=='-' ) z += incr;
267 if( !sqlite3Isdigit(*z) ) return 0;
268 while( sqlite3Isdigit(*z) ){ z += incr; }
269 *realnum = 1;
270 }
drh44dbca82010-01-13 04:22:20 +0000271#endif
drhc81c11f2009-11-10 01:30:52 +0000272 return *z==0;
273}
274
275/*
276** The string z[] is an ASCII representation of a real number.
277** Convert this string to a double.
278**
279** This routine assumes that z[] really is a valid number. If it
280** is not, the result is undefined.
281**
282** This routine is used instead of the library atof() function because
283** the library atof() might want to use "," as the decimal point instead
284** of "." depending on how locale is set. But that would cause problems
285** for SQL. So this routine always uses "." regardless of locale.
286*/
287int sqlite3AtoF(const char *z, double *pResult){
288#ifndef SQLITE_OMIT_FLOATING_POINT
289 const char *zBegin = z;
290 /* sign * significand * (10 ^ (esign * exponent)) */
291 int sign = 1; /* sign of significand */
292 i64 s = 0; /* significand */
293 int d = 0; /* adjust exponent for shifting decimal point */
294 int esign = 1; /* sign of exponent */
295 int e = 0; /* exponent */
296 double result;
297 int nDigits = 0;
298
299 /* skip leading spaces */
300 while( sqlite3Isspace(*z) ) z++;
301 /* get sign of significand */
302 if( *z=='-' ){
303 sign = -1;
304 z++;
305 }else if( *z=='+' ){
306 z++;
307 }
308 /* skip leading zeroes */
309 while( z[0]=='0' ) z++, nDigits++;
310
311 /* copy max significant digits to significand */
312 while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
313 s = s*10 + (*z - '0');
314 z++, nDigits++;
315 }
316 /* skip non-significant significand digits
317 ** (increase exponent by d to shift decimal left) */
318 while( sqlite3Isdigit(*z) ) z++, nDigits++, d++;
319
320 /* if decimal point is present */
321 if( *z=='.' ){
322 z++;
323 /* copy digits from after decimal to significand
324 ** (decrease exponent by d to shift decimal right) */
325 while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
326 s = s*10 + (*z - '0');
327 z++, nDigits++, d--;
328 }
329 /* skip non-significant digits */
330 while( sqlite3Isdigit(*z) ) z++, nDigits++;
331 }
332
333 /* if exponent is present */
334 if( *z=='e' || *z=='E' ){
335 z++;
336 /* get sign of exponent */
337 if( *z=='-' ){
338 esign = -1;
339 z++;
340 }else if( *z=='+' ){
341 z++;
342 }
343 /* copy digits to exponent */
344 while( sqlite3Isdigit(*z) ){
345 e = e*10 + (*z - '0');
346 z++;
347 }
348 }
349
350 /* adjust exponent by d, and update sign */
351 e = (e*esign) + d;
352 if( e<0 ) {
353 esign = -1;
354 e *= -1;
355 } else {
356 esign = 1;
357 }
358
359 /* if 0 significand */
360 if( !s ) {
361 /* In the IEEE 754 standard, zero is signed.
362 ** Add the sign if we've seen at least one digit */
363 result = (sign<0 && nDigits) ? -(double)0 : (double)0;
364 } else {
365 /* attempt to reduce exponent */
366 if( esign>0 ){
367 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
368 }else{
369 while( !(s%10) && e>0 ) e--,s/=10;
370 }
371
372 /* adjust the sign of significand */
373 s = sign<0 ? -s : s;
374
375 /* if exponent, scale significand as appropriate
376 ** and store in result. */
377 if( e ){
378 double scale = 1.0;
379 /* attempt to handle extremely small/large numbers better */
380 if( e>307 && e<342 ){
381 while( e%308 ) { scale *= 1.0e+1; e -= 1; }
382 if( esign<0 ){
383 result = s / scale;
384 result /= 1.0e+308;
385 }else{
386 result = s * scale;
387 result *= 1.0e+308;
388 }
389 }else{
390 /* 1.0e+22 is the largest power of 10 than can be
391 ** represented exactly. */
392 while( e%22 ) { scale *= 1.0e+1; e -= 1; }
393 while( e>0 ) { scale *= 1.0e+22; e -= 22; }
394 if( esign<0 ){
395 result = s / scale;
396 }else{
397 result = s * scale;
398 }
399 }
400 } else {
401 result = (double)s;
402 }
403 }
404
405 /* store the result */
406 *pResult = result;
407
408 /* return number of characters used */
409 return (int)(z - zBegin);
410#else
411 return sqlite3Atoi64(z, pResult);
412#endif /* SQLITE_OMIT_FLOATING_POINT */
413}
414
415/*
416** Compare the 19-character string zNum against the text representation
417** value 2^63: 9223372036854775808. Return negative, zero, or positive
418** if zNum is less than, equal to, or greater than the string.
419**
420** Unlike memcmp() this routine is guaranteed to return the difference
421** in the values of the last digit if the only difference is in the
422** last digit. So, for example,
423**
424** compare2pow63("9223372036854775800")
425**
426** will return -8.
427*/
428static int compare2pow63(const char *zNum){
429 int c;
430 c = memcmp(zNum,"922337203685477580",18)*10;
431 if( c==0 ){
432 c = zNum[18] - '8';
drh44dbca82010-01-13 04:22:20 +0000433 testcase( c==(-1) );
434 testcase( c==0 );
435 testcase( c==(+1) );
drhc81c11f2009-11-10 01:30:52 +0000436 }
437 return c;
438}
439
440
441/*
442** Return TRUE if zNum is a 64-bit signed integer and write
443** the value of the integer into *pNum. If zNum is not an integer
444** or is an integer that is too large to be expressed with 64 bits,
445** then return false.
446**
447** When this routine was originally written it dealt with only
448** 32-bit numbers. At that time, it was much faster than the
449** atoi() library routine in RedHat 7.2.
450*/
451int sqlite3Atoi64(const char *zNum, i64 *pNum){
452 i64 v = 0;
453 int neg;
454 int i, c;
455 const char *zStart;
456 while( sqlite3Isspace(*zNum) ) zNum++;
457 if( *zNum=='-' ){
458 neg = 1;
459 zNum++;
460 }else if( *zNum=='+' ){
461 neg = 0;
462 zNum++;
463 }else{
464 neg = 0;
465 }
466 zStart = zNum;
467 while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */
468 for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
469 v = v*10 + c - '0';
470 }
471 *pNum = neg ? -v : v;
drh44dbca82010-01-13 04:22:20 +0000472 testcase( i==18 );
473 testcase( i==19 );
474 testcase( i==20 );
drhc81c11f2009-11-10 01:30:52 +0000475 if( c!=0 || (i==0 && zStart==zNum) || i>19 ){
476 /* zNum is empty or contains non-numeric text or is longer
477 ** than 19 digits (thus guaranting that it is too large) */
478 return 0;
479 }else if( i<19 ){
480 /* Less than 19 digits, so we know that it fits in 64 bits */
481 return 1;
482 }else{
483 /* 19-digit numbers must be no larger than 9223372036854775807 if positive
484 ** or 9223372036854775808 if negative. Note that 9223372036854665808
485 ** is 2^63. */
486 return compare2pow63(zNum)<neg;
487 }
488}
489
490/*
491** The string zNum represents an unsigned integer. The zNum string
492** consists of one or more digit characters and is terminated by
493** a zero character. Any stray characters in zNum result in undefined
494** behavior.
495**
496** If the unsigned integer that zNum represents will fit in a
497** 64-bit signed integer, return TRUE. Otherwise return FALSE.
498**
499** If the negFlag parameter is true, that means that zNum really represents
500** a negative number. (The leading "-" is omitted from zNum.) This
501** parameter is needed to determine a boundary case. A string
502** of "9223373036854775808" returns false if negFlag is false or true
503** if negFlag is true.
504**
505** Leading zeros are ignored.
506*/
507int sqlite3FitsIn64Bits(const char *zNum, int negFlag){
508 int i;
509 int neg = 0;
510
511 assert( zNum[0]>='0' && zNum[0]<='9' ); /* zNum is an unsigned number */
512
513 if( negFlag ) neg = 1-neg;
514 while( *zNum=='0' ){
515 zNum++; /* Skip leading zeros. Ticket #2454 */
516 }
517 for(i=0; zNum[i]; i++){ assert( zNum[i]>='0' && zNum[i]<='9' ); }
drh44dbca82010-01-13 04:22:20 +0000518 testcase( i==18 );
519 testcase( i==19 );
520 testcase( i==20 );
drhc81c11f2009-11-10 01:30:52 +0000521 if( i<19 ){
522 /* Guaranteed to fit if less than 19 digits */
523 return 1;
524 }else if( i>19 ){
525 /* Guaranteed to be too big if greater than 19 digits */
526 return 0;
527 }else{
528 /* Compare against 2^63. */
529 return compare2pow63(zNum)<neg;
530 }
531}
532
533/*
534** If zNum represents an integer that will fit in 32-bits, then set
535** *pValue to that integer and return true. Otherwise return false.
536**
537** Any non-numeric characters that following zNum are ignored.
538** This is different from sqlite3Atoi64() which requires the
539** input number to be zero-terminated.
540*/
541int sqlite3GetInt32(const char *zNum, int *pValue){
542 sqlite_int64 v = 0;
543 int i, c;
544 int neg = 0;
545 if( zNum[0]=='-' ){
546 neg = 1;
547 zNum++;
548 }else if( zNum[0]=='+' ){
549 zNum++;
550 }
551 while( zNum[0]=='0' ) zNum++;
552 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
553 v = v*10 + c;
554 }
555
556 /* The longest decimal representation of a 32 bit integer is 10 digits:
557 **
558 ** 1234567890
559 ** 2^31 -> 2147483648
560 */
drh44dbca82010-01-13 04:22:20 +0000561 testcase( i==10 );
drhc81c11f2009-11-10 01:30:52 +0000562 if( i>10 ){
563 return 0;
564 }
drh44dbca82010-01-13 04:22:20 +0000565 testcase( v-neg==2147483647 );
drhc81c11f2009-11-10 01:30:52 +0000566 if( v-neg>2147483647 ){
567 return 0;
568 }
569 if( neg ){
570 v = -v;
571 }
572 *pValue = (int)v;
573 return 1;
574}
575
576/*
577** The variable-length integer encoding is as follows:
578**
579** KEY:
580** A = 0xxxxxxx 7 bits of data and one flag bit
581** B = 1xxxxxxx 7 bits of data and one flag bit
582** C = xxxxxxxx 8 bits of data
583**
584** 7 bits - A
585** 14 bits - BA
586** 21 bits - BBA
587** 28 bits - BBBA
588** 35 bits - BBBBA
589** 42 bits - BBBBBA
590** 49 bits - BBBBBBA
591** 56 bits - BBBBBBBA
592** 64 bits - BBBBBBBBC
593*/
594
595/*
596** Write a 64-bit variable-length integer to memory starting at p[0].
597** The length of data write will be between 1 and 9 bytes. The number
598** of bytes written is returned.
599**
600** A variable-length integer consists of the lower 7 bits of each byte
601** for all bytes that have the 8th bit set and one byte with the 8th
602** bit clear. Except, if we get to the 9th byte, it stores the full
603** 8 bits and is the last byte.
604*/
605int sqlite3PutVarint(unsigned char *p, u64 v){
606 int i, j, n;
607 u8 buf[10];
608 if( v & (((u64)0xff000000)<<32) ){
609 p[8] = (u8)v;
610 v >>= 8;
611 for(i=7; i>=0; i--){
612 p[i] = (u8)((v & 0x7f) | 0x80);
613 v >>= 7;
614 }
615 return 9;
616 }
617 n = 0;
618 do{
619 buf[n++] = (u8)((v & 0x7f) | 0x80);
620 v >>= 7;
621 }while( v!=0 );
622 buf[0] &= 0x7f;
623 assert( n<=9 );
624 for(i=0, j=n-1; j>=0; j--, i++){
625 p[i] = buf[j];
626 }
627 return n;
628}
629
630/*
631** This routine is a faster version of sqlite3PutVarint() that only
632** works for 32-bit positive integers and which is optimized for
633** the common case of small integers. A MACRO version, putVarint32,
634** is provided which inlines the single-byte case. All code should use
635** the MACRO version as this function assumes the single-byte case has
636** already been handled.
637*/
638int sqlite3PutVarint32(unsigned char *p, u32 v){
639#ifndef putVarint32
640 if( (v & ~0x7f)==0 ){
641 p[0] = v;
642 return 1;
643 }
644#endif
645 if( (v & ~0x3fff)==0 ){
646 p[0] = (u8)((v>>7) | 0x80);
647 p[1] = (u8)(v & 0x7f);
648 return 2;
649 }
650 return sqlite3PutVarint(p, v);
651}
652
653/*
drh0b2864c2010-03-03 15:18:38 +0000654** Bitmasks used by sqlite3GetVarint(). These precomputed constants
655** are defined here rather than simply putting the constant expressions
656** inline in order to work around bugs in the RVT compiler.
657**
658** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
659**
660** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
661*/
662#define SLOT_2_0 0x001fc07f
663#define SLOT_4_2_0 0xf01fc07f
664
665
666/*
drhc81c11f2009-11-10 01:30:52 +0000667** Read a 64-bit variable-length integer from memory starting at p[0].
668** Return the number of bytes read. The value is stored in *v.
669*/
670u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
671 u32 a,b,s;
672
673 a = *p;
674 /* a: p0 (unmasked) */
675 if (!(a&0x80))
676 {
677 *v = a;
678 return 1;
679 }
680
681 p++;
682 b = *p;
683 /* b: p1 (unmasked) */
684 if (!(b&0x80))
685 {
686 a &= 0x7f;
687 a = a<<7;
688 a |= b;
689 *v = a;
690 return 2;
691 }
692
drh0b2864c2010-03-03 15:18:38 +0000693 /* Verify that constants are precomputed correctly */
694 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
695 assert( SLOT_4_2_0 == ((0xf<<28) | (0x7f<<14) | (0x7f)) );
696
drhc81c11f2009-11-10 01:30:52 +0000697 p++;
698 a = a<<14;
699 a |= *p;
700 /* a: p0<<14 | p2 (unmasked) */
701 if (!(a&0x80))
702 {
drh0b2864c2010-03-03 15:18:38 +0000703 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000704 b &= 0x7f;
705 b = b<<7;
706 a |= b;
707 *v = a;
708 return 3;
709 }
710
711 /* CSE1 from below */
drh0b2864c2010-03-03 15:18:38 +0000712 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000713 p++;
714 b = b<<14;
715 b |= *p;
716 /* b: p1<<14 | p3 (unmasked) */
717 if (!(b&0x80))
718 {
drh0b2864c2010-03-03 15:18:38 +0000719 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000720 /* moved CSE1 up */
721 /* a &= (0x7f<<14)|(0x7f); */
722 a = a<<7;
723 a |= b;
724 *v = a;
725 return 4;
726 }
727
728 /* a: p0<<14 | p2 (masked) */
729 /* b: p1<<14 | p3 (unmasked) */
730 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
731 /* moved CSE1 up */
732 /* a &= (0x7f<<14)|(0x7f); */
drh0b2864c2010-03-03 15:18:38 +0000733 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000734 s = a;
735 /* s: p0<<14 | p2 (masked) */
736
737 p++;
738 a = a<<14;
739 a |= *p;
740 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
741 if (!(a&0x80))
742 {
743 /* we can skip these cause they were (effectively) done above in calc'ing s */
744 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
745 /* b &= (0x7f<<14)|(0x7f); */
746 b = b<<7;
747 a |= b;
748 s = s>>18;
749 *v = ((u64)s)<<32 | a;
750 return 5;
751 }
752
753 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
754 s = s<<7;
755 s |= b;
756 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
757
758 p++;
759 b = b<<14;
760 b |= *p;
761 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
762 if (!(b&0x80))
763 {
764 /* we can skip this cause it was (effectively) done above in calc'ing s */
765 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
drh0b2864c2010-03-03 15:18:38 +0000766 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000767 a = a<<7;
768 a |= b;
769 s = s>>18;
770 *v = ((u64)s)<<32 | a;
771 return 6;
772 }
773
774 p++;
775 a = a<<14;
776 a |= *p;
777 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
778 if (!(a&0x80))
779 {
drh0b2864c2010-03-03 15:18:38 +0000780 a &= SLOT_4_2_0;
781 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000782 b = b<<7;
783 a |= b;
784 s = s>>11;
785 *v = ((u64)s)<<32 | a;
786 return 7;
787 }
788
789 /* CSE2 from below */
drh0b2864c2010-03-03 15:18:38 +0000790 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000791 p++;
792 b = b<<14;
793 b |= *p;
794 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
795 if (!(b&0x80))
796 {
drh0b2864c2010-03-03 15:18:38 +0000797 b &= SLOT_4_2_0;
drhc81c11f2009-11-10 01:30:52 +0000798 /* moved CSE2 up */
799 /* a &= (0x7f<<14)|(0x7f); */
800 a = a<<7;
801 a |= b;
802 s = s>>4;
803 *v = ((u64)s)<<32 | a;
804 return 8;
805 }
806
807 p++;
808 a = a<<15;
809 a |= *p;
810 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
811
812 /* moved CSE2 up */
813 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
drh0b2864c2010-03-03 15:18:38 +0000814 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000815 b = b<<8;
816 a |= b;
817
818 s = s<<4;
819 b = p[-4];
820 b &= 0x7f;
821 b = b>>3;
822 s |= b;
823
824 *v = ((u64)s)<<32 | a;
825
826 return 9;
827}
828
829/*
830** Read a 32-bit variable-length integer from memory starting at p[0].
831** Return the number of bytes read. The value is stored in *v.
832**
833** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
834** integer, then set *v to 0xffffffff.
835**
836** A MACRO version, getVarint32, is provided which inlines the
837** single-byte case. All code should use the MACRO version as
838** this function assumes the single-byte case has already been handled.
839*/
840u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
841 u32 a,b;
842
843 /* The 1-byte case. Overwhelmingly the most common. Handled inline
844 ** by the getVarin32() macro */
845 a = *p;
846 /* a: p0 (unmasked) */
847#ifndef getVarint32
848 if (!(a&0x80))
849 {
850 /* Values between 0 and 127 */
851 *v = a;
852 return 1;
853 }
854#endif
855
856 /* The 2-byte case */
857 p++;
858 b = *p;
859 /* b: p1 (unmasked) */
860 if (!(b&0x80))
861 {
862 /* Values between 128 and 16383 */
863 a &= 0x7f;
864 a = a<<7;
865 *v = a | b;
866 return 2;
867 }
868
869 /* The 3-byte case */
870 p++;
871 a = a<<14;
872 a |= *p;
873 /* a: p0<<14 | p2 (unmasked) */
874 if (!(a&0x80))
875 {
876 /* Values between 16384 and 2097151 */
877 a &= (0x7f<<14)|(0x7f);
878 b &= 0x7f;
879 b = b<<7;
880 *v = a | b;
881 return 3;
882 }
883
884 /* A 32-bit varint is used to store size information in btrees.
885 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
886 ** A 3-byte varint is sufficient, for example, to record the size
887 ** of a 1048569-byte BLOB or string.
888 **
889 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
890 ** rare larger cases can be handled by the slower 64-bit varint
891 ** routine.
892 */
893#if 1
894 {
895 u64 v64;
896 u8 n;
897
898 p -= 2;
899 n = sqlite3GetVarint(p, &v64);
900 assert( n>3 && n<=9 );
901 if( (v64 & SQLITE_MAX_U32)!=v64 ){
902 *v = 0xffffffff;
903 }else{
904 *v = (u32)v64;
905 }
906 return n;
907 }
908
909#else
910 /* For following code (kept for historical record only) shows an
911 ** unrolling for the 3- and 4-byte varint cases. This code is
912 ** slightly faster, but it is also larger and much harder to test.
913 */
914 p++;
915 b = b<<14;
916 b |= *p;
917 /* b: p1<<14 | p3 (unmasked) */
918 if (!(b&0x80))
919 {
920 /* Values between 2097152 and 268435455 */
921 b &= (0x7f<<14)|(0x7f);
922 a &= (0x7f<<14)|(0x7f);
923 a = a<<7;
924 *v = a | b;
925 return 4;
926 }
927
928 p++;
929 a = a<<14;
930 a |= *p;
931 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
932 if (!(a&0x80))
933 {
934 /* Walues between 268435456 and 34359738367 */
935 a &= (0x1f<<28)|(0x7f<<14)|(0x7f);
936 b &= (0x1f<<28)|(0x7f<<14)|(0x7f);
937 b = b<<7;
938 *v = a | b;
939 return 5;
940 }
941
942 /* We can only reach this point when reading a corrupt database
943 ** file. In that case we are not in any hurry. Use the (relatively
944 ** slow) general-purpose sqlite3GetVarint() routine to extract the
945 ** value. */
946 {
947 u64 v64;
948 u8 n;
949
950 p -= 4;
951 n = sqlite3GetVarint(p, &v64);
952 assert( n>5 && n<=9 );
953 *v = (u32)v64;
954 return n;
955 }
956#endif
957}
958
959/*
960** Return the number of bytes that will be needed to store the given
961** 64-bit integer.
962*/
963int sqlite3VarintLen(u64 v){
964 int i = 0;
965 do{
966 i++;
967 v >>= 7;
968 }while( v!=0 && ALWAYS(i<9) );
969 return i;
970}
971
972
973/*
974** Read or write a four-byte big-endian integer value.
975*/
976u32 sqlite3Get4byte(const u8 *p){
977 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
978}
979void sqlite3Put4byte(unsigned char *p, u32 v){
980 p[0] = (u8)(v>>24);
981 p[1] = (u8)(v>>16);
982 p[2] = (u8)(v>>8);
983 p[3] = (u8)v;
984}
985
986
987
988#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
989/*
990** Translate a single byte of Hex into an integer.
991** This routine only works if h really is a valid hexadecimal
992** character: 0..9a..fA..F
993*/
994static u8 hexToInt(int h){
995 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
996#ifdef SQLITE_ASCII
997 h += 9*(1&(h>>6));
998#endif
999#ifdef SQLITE_EBCDIC
1000 h += 9*(1&~(h>>4));
1001#endif
1002 return (u8)(h & 0xf);
1003}
1004#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1005
1006#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1007/*
1008** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1009** value. Return a pointer to its binary value. Space to hold the
1010** binary value has been obtained from malloc and must be freed by
1011** the calling routine.
1012*/
1013void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1014 char *zBlob;
1015 int i;
1016
1017 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
1018 n--;
1019 if( zBlob ){
1020 for(i=0; i<n; i+=2){
1021 zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]);
1022 }
1023 zBlob[i/2] = 0;
1024 }
1025 return zBlob;
1026}
1027#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1028
drh413c3d32010-02-23 20:11:56 +00001029/*
1030** Log an error that is an API call on a connection pointer that should
1031** not have been used. The "type" of connection pointer is given as the
1032** argument. The zType is a word like "NULL" or "closed" or "invalid".
1033*/
1034static void logBadConnection(const char *zType){
1035 sqlite3_log(SQLITE_MISUSE,
1036 "API call with %s database connection pointer",
1037 zType
1038 );
1039}
drhc81c11f2009-11-10 01:30:52 +00001040
1041/*
drhc81c11f2009-11-10 01:30:52 +00001042** Check to make sure we have a valid db pointer. This test is not
1043** foolproof but it does provide some measure of protection against
1044** misuse of the interface such as passing in db pointers that are
1045** NULL or which have been previously closed. If this routine returns
1046** 1 it means that the db pointer is valid and 0 if it should not be
1047** dereferenced for any reason. The calling function should invoke
1048** SQLITE_MISUSE immediately.
1049**
1050** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1051** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1052** open properly and is not fit for general use but which can be
1053** used as an argument to sqlite3_errmsg() or sqlite3_close().
1054*/
1055int sqlite3SafetyCheckOk(sqlite3 *db){
1056 u32 magic;
drh413c3d32010-02-23 20:11:56 +00001057 if( db==0 ){
1058 logBadConnection("NULL");
1059 return 0;
1060 }
drhc81c11f2009-11-10 01:30:52 +00001061 magic = db->magic;
drh9978c972010-02-23 17:36:32 +00001062 if( magic!=SQLITE_MAGIC_OPEN ){
drhe294da02010-02-25 23:44:15 +00001063 if( sqlite3SafetyCheckSickOrOk(db) ){
1064 testcase( sqlite3GlobalConfig.xLog!=0 );
drh413c3d32010-02-23 20:11:56 +00001065 logBadConnection("unopened");
1066 }
drhc81c11f2009-11-10 01:30:52 +00001067 return 0;
1068 }else{
1069 return 1;
1070 }
1071}
1072int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1073 u32 magic;
1074 magic = db->magic;
1075 if( magic!=SQLITE_MAGIC_SICK &&
1076 magic!=SQLITE_MAGIC_OPEN &&
drh413c3d32010-02-23 20:11:56 +00001077 magic!=SQLITE_MAGIC_BUSY ){
drhe294da02010-02-25 23:44:15 +00001078 testcase( sqlite3GlobalConfig.xLog!=0 );
drhaf46dc12010-02-24 21:44:07 +00001079 logBadConnection("invalid");
drh413c3d32010-02-23 20:11:56 +00001080 return 0;
1081 }else{
1082 return 1;
1083 }
drhc81c11f2009-11-10 01:30:52 +00001084}