blob: fb86d7d118d856dc4ab38469fd1d964f2a6b7acf [file] [log] [blame]
drhc81c11f2009-11-10 01:30:52 +00001/*
2** 2001 September 15
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** Utility functions used throughout sqlite.
13**
14** This file contains functions for allocating memory, comparing
15** strings, and stuff like that.
16**
17*/
18#include "sqliteInt.h"
19#include <stdarg.h>
drhef9f7192020-01-17 19:14:08 +000020#ifndef SQLITE_OMIT_FLOATING_POINT
drh7e6dc5d2019-05-10 12:14:51 +000021#include <math.h>
drhef9f7192020-01-17 19:14:08 +000022#endif
drhc81c11f2009-11-10 01:30:52 +000023
24/*
25** Routine needed to support the testcase() macro.
26*/
27#ifdef SQLITE_COVERAGE_TEST
28void sqlite3Coverage(int x){
drh68bf0672011-04-11 15:35:24 +000029 static unsigned dummy = 0;
30 dummy += (unsigned)x;
drhc81c11f2009-11-10 01:30:52 +000031}
32#endif
33
drhc007f612014-05-16 14:17:01 +000034/*
drhce059e52019-04-05 17:22:50 +000035** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
36** or to bypass normal error detection during testing in order to let
37** execute proceed futher downstream.
drhc007f612014-05-16 14:17:01 +000038**
drhce059e52019-04-05 17:22:50 +000039** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The
40** sqlite3FaultSim() function only returns non-zero during testing.
drhc007f612014-05-16 14:17:01 +000041**
drhce059e52019-04-05 17:22:50 +000042** During testing, if the test harness has set a fault-sim callback using
43** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
44** each call to sqlite3FaultSim() is relayed to that application-supplied
45** callback and the integer return value form the application-supplied
46** callback is returned by sqlite3FaultSim().
47**
48** The integer argument to sqlite3FaultSim() is a code to identify which
49** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
50** should have a unique code. To prevent legacy testing applications from
51** breaking, the codes should not be changed or reused.
drhc007f612014-05-16 14:17:01 +000052*/
drhd12602a2016-12-07 15:49:02 +000053#ifndef SQLITE_UNTESTABLE
drhc007f612014-05-16 14:17:01 +000054int sqlite3FaultSim(int iTest){
55 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
56 return xCallback ? xCallback(iTest) : SQLITE_OK;
57}
58#endif
59
drh85c8f292010-01-13 17:39:53 +000060#ifndef SQLITE_OMIT_FLOATING_POINT
drhc81c11f2009-11-10 01:30:52 +000061/*
62** Return true if the floating point value is Not a Number (NaN).
drhc81c11f2009-11-10 01:30:52 +000063*/
64int sqlite3IsNaN(double x){
drh05921222019-05-30 00:46:37 +000065 u64 y;
66 memcpy(&y,&x,sizeof(y));
67 return IsNaN(y);
drhc81c11f2009-11-10 01:30:52 +000068}
drh85c8f292010-01-13 17:39:53 +000069#endif /* SQLITE_OMIT_FLOATING_POINT */
drhc81c11f2009-11-10 01:30:52 +000070
71/*
72** Compute a string length that is limited to what can be stored in
73** lower 30 bits of a 32-bit signed integer.
74**
75** The value returned will never be negative. Nor will it ever be greater
76** than the actual length of the string. For very long strings (greater
77** than 1GiB) the value returned might be less than the true string length.
78*/
79int sqlite3Strlen30(const char *z){
drhc81c11f2009-11-10 01:30:52 +000080 if( z==0 ) return 0;
drh1116bf12015-06-30 03:18:33 +000081 return 0x3fffffff & (int)strlen(z);
drhc81c11f2009-11-10 01:30:52 +000082}
83
84/*
drhd7564862016-03-22 20:05:09 +000085** Return the declared type of a column. Or return zDflt if the column
86** has no declared type.
87**
88** The column type is an extra string stored after the zero-terminator on
89** the column name if and only if the COLFLAG_HASTYPE flag is set.
drh94eaafa2016-02-29 15:53:11 +000090*/
drhd7564862016-03-22 20:05:09 +000091char *sqlite3ColumnType(Column *pCol, char *zDflt){
92 if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt;
93 return pCol->zName + strlen(pCol->zName) + 1;
drh94eaafa2016-02-29 15:53:11 +000094}
95
96/*
drh80fbee02016-03-21 11:57:13 +000097** Helper function for sqlite3Error() - called rarely. Broken out into
98** a separate routine to avoid unnecessary register saves on entry to
99** sqlite3Error().
drh13f40da2014-08-22 18:00:11 +0000100*/
drh8d2f41c2016-03-21 11:38:01 +0000101static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){
102 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
103 sqlite3SystemError(db, err_code);
104}
drh80fbee02016-03-21 11:57:13 +0000105
106/*
107** Set the current error code to err_code and clear any prior error message.
108** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
109** that would be appropriate.
110*/
drh13f40da2014-08-22 18:00:11 +0000111void sqlite3Error(sqlite3 *db, int err_code){
112 assert( db!=0 );
113 db->errCode = err_code;
drh8d2f41c2016-03-21 11:38:01 +0000114 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code);
drh13f40da2014-08-22 18:00:11 +0000115}
116
117/*
drh1b9f2142016-03-17 16:01:23 +0000118** Load the sqlite3.iSysErrno field if that is an appropriate thing
119** to do based on the SQLite error code in rc.
120*/
121void sqlite3SystemError(sqlite3 *db, int rc){
122 if( rc==SQLITE_IOERR_NOMEM ) return;
123 rc &= 0xff;
124 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
125 db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
126 }
127}
128
129/*
drhc81c11f2009-11-10 01:30:52 +0000130** Set the most recent error code and error string for the sqlite
131** handle "db". The error code is set to "err_code".
132**
133** If it is not NULL, string zFormat specifies the format of the
134** error string in the style of the printf functions: The following
135** format characters are allowed:
136**
137** %s Insert a string
138** %z A string that should be freed after use
139** %d Insert an integer
140** %T Insert a token
141** %S Insert the first element of a SrcList
142**
143** zFormat and any string tokens that follow it are assumed to be
144** encoded in UTF-8.
145**
146** To clear the most recent error for sqlite handle "db", sqlite3Error
147** should be called with err_code set to SQLITE_OK and zFormat set
148** to NULL.
149*/
drh13f40da2014-08-22 18:00:11 +0000150void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
drha3cc0072013-12-13 16:23:55 +0000151 assert( db!=0 );
152 db->errCode = err_code;
drh8d2f41c2016-03-21 11:38:01 +0000153 sqlite3SystemError(db, err_code);
drh13f40da2014-08-22 18:00:11 +0000154 if( zFormat==0 ){
155 sqlite3Error(db, err_code);
156 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
drha3cc0072013-12-13 16:23:55 +0000157 char *z;
158 va_list ap;
159 va_start(ap, zFormat);
160 z = sqlite3VMPrintf(db, zFormat, ap);
161 va_end(ap);
162 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
drhc81c11f2009-11-10 01:30:52 +0000163 }
164}
165
166/*
167** Add an error message to pParse->zErrMsg and increment pParse->nErr.
168** The following formatting characters are allowed:
169**
170** %s Insert a string
171** %z A string that should be freed after use
172** %d Insert an integer
173** %T Insert a token
174** %S Insert the first element of a SrcList
175**
drh13f40da2014-08-22 18:00:11 +0000176** This function should be used to report any error that occurs while
drhc81c11f2009-11-10 01:30:52 +0000177** compiling an SQL statement (i.e. within sqlite3_prepare()). The
178** last thing the sqlite3_prepare() function does is copy the error
179** stored by this function into the database handle using sqlite3Error().
drh13f40da2014-08-22 18:00:11 +0000180** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
181** during statement execution (sqlite3_step() etc.).
drhc81c11f2009-11-10 01:30:52 +0000182*/
183void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
drha7564662010-02-22 19:32:31 +0000184 char *zMsg;
drhc81c11f2009-11-10 01:30:52 +0000185 va_list ap;
186 sqlite3 *db = pParse->db;
drhc81c11f2009-11-10 01:30:52 +0000187 va_start(ap, zFormat);
drha7564662010-02-22 19:32:31 +0000188 zMsg = sqlite3VMPrintf(db, zFormat, ap);
drhc81c11f2009-11-10 01:30:52 +0000189 va_end(ap);
drha7564662010-02-22 19:32:31 +0000190 if( db->suppressErr ){
191 sqlite3DbFree(db, zMsg);
192 }else{
193 pParse->nErr++;
194 sqlite3DbFree(db, pParse->zErrMsg);
195 pParse->zErrMsg = zMsg;
196 pParse->rc = SQLITE_ERROR;
drh46a31cd2019-11-09 14:38:58 +0000197 pParse->pWith = 0;
drha7564662010-02-22 19:32:31 +0000198 }
drhc81c11f2009-11-10 01:30:52 +0000199}
200
201/*
drhc3dcdba2019-04-09 21:32:46 +0000202** If database connection db is currently parsing SQL, then transfer
203** error code errCode to that parser if the parser has not already
204** encountered some other kind of error.
205*/
206int sqlite3ErrorToParser(sqlite3 *db, int errCode){
207 Parse *pParse;
208 if( db==0 || (pParse = db->pParse)==0 ) return errCode;
209 pParse->rc = errCode;
210 pParse->nErr++;
211 return errCode;
212}
213
214/*
drhc81c11f2009-11-10 01:30:52 +0000215** Convert an SQL-style quoted string into a normal string by removing
216** the quote characters. The conversion is done in-place. If the
217** input does not begin with a quote character, then this routine
218** is a no-op.
219**
220** The input string must be zero-terminated. A new zero-terminator
221** is added to the dequoted string.
222**
223** The return value is -1 if no dequoting occurs or the length of the
224** dequoted string, exclusive of the zero terminator, if dequoting does
225** occur.
226**
drh51d35b02019-01-11 13:32:23 +0000227** 2002-02-14: This routine is extended to remove MS-Access style
peter.d.reid60ec9142014-09-06 16:39:46 +0000228** brackets from around identifiers. For example: "[a-b-c]" becomes
drhc81c11f2009-11-10 01:30:52 +0000229** "a-b-c".
230*/
drh244b9d62016-04-11 19:01:08 +0000231void sqlite3Dequote(char *z){
drhc81c11f2009-11-10 01:30:52 +0000232 char quote;
233 int i, j;
drh244b9d62016-04-11 19:01:08 +0000234 if( z==0 ) return;
drhc81c11f2009-11-10 01:30:52 +0000235 quote = z[0];
drh244b9d62016-04-11 19:01:08 +0000236 if( !sqlite3Isquote(quote) ) return;
237 if( quote=='[' ) quote = ']';
drh9ccd8652013-09-13 16:36:46 +0000238 for(i=1, j=0;; i++){
239 assert( z[i] );
drhc81c11f2009-11-10 01:30:52 +0000240 if( z[i]==quote ){
241 if( z[i+1]==quote ){
242 z[j++] = quote;
243 i++;
244 }else{
245 break;
246 }
247 }else{
248 z[j++] = z[i];
249 }
250 }
251 z[j] = 0;
drhc81c11f2009-11-10 01:30:52 +0000252}
drh51d35b02019-01-11 13:32:23 +0000253void sqlite3DequoteExpr(Expr *p){
254 assert( sqlite3Isquote(p->u.zToken[0]) );
255 p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
256 sqlite3Dequote(p->u.zToken);
257}
drhc81c11f2009-11-10 01:30:52 +0000258
drh40aced52016-01-22 17:48:09 +0000259/*
260** Generate a Token object from a string
261*/
262void sqlite3TokenInit(Token *p, char *z){
263 p->z = z;
264 p->n = sqlite3Strlen30(z);
265}
266
drhc81c11f2009-11-10 01:30:52 +0000267/* Convenient short-hand */
268#define UpperToLower sqlite3UpperToLower
269
270/*
271** Some systems have stricmp(). Others have strcasecmp(). Because
272** there is no consistency, we will define our own.
drh9f129f42010-08-31 15:27:32 +0000273**
drh0299b402012-03-19 17:42:46 +0000274** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
275** sqlite3_strnicmp() APIs allow applications and extensions to compare
276** the contents of two buffers containing UTF-8 strings in a
277** case-independent fashion, using the same definition of "case
278** independence" that SQLite uses internally when comparing identifiers.
drhc81c11f2009-11-10 01:30:52 +0000279*/
drh3fa97302012-02-22 16:58:36 +0000280int sqlite3_stricmp(const char *zLeft, const char *zRight){
drh9ca95732014-10-24 00:35:58 +0000281 if( zLeft==0 ){
282 return zRight ? -1 : 0;
283 }else if( zRight==0 ){
284 return 1;
285 }
drh80738d92016-02-15 00:34:16 +0000286 return sqlite3StrICmp(zLeft, zRight);
287}
288int sqlite3StrICmp(const char *zLeft, const char *zRight){
289 unsigned char *a, *b;
drh7e427332019-04-17 11:34:44 +0000290 int c, x;
drhc81c11f2009-11-10 01:30:52 +0000291 a = (unsigned char *)zLeft;
292 b = (unsigned char *)zRight;
drh80738d92016-02-15 00:34:16 +0000293 for(;;){
drh7e427332019-04-17 11:34:44 +0000294 c = *a;
295 x = *b;
296 if( c==x ){
297 if( c==0 ) break;
298 }else{
299 c = (int)UpperToLower[c] - (int)UpperToLower[x];
300 if( c ) break;
301 }
drh80738d92016-02-15 00:34:16 +0000302 a++;
303 b++;
304 }
305 return c;
drhc81c11f2009-11-10 01:30:52 +0000306}
307int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
308 register unsigned char *a, *b;
drh9ca95732014-10-24 00:35:58 +0000309 if( zLeft==0 ){
310 return zRight ? -1 : 0;
311 }else if( zRight==0 ){
312 return 1;
313 }
drhc81c11f2009-11-10 01:30:52 +0000314 a = (unsigned char *)zLeft;
315 b = (unsigned char *)zRight;
316 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
317 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
318}
319
320/*
drhd44390c2020-04-06 18:16:31 +0000321** Compute an 8-bit hash on a string that is insensitive to case differences
322*/
323u8 sqlite3StrIHash(const char *z){
324 u8 h = 0;
325 if( z==0 ) return 0;
326 while( z[0] ){
327 h += UpperToLower[(unsigned char)z[0]];
328 z++;
329 }
330 return h;
331}
332
333/*
drh02a43f62017-12-26 14:46:20 +0000334** Compute 10 to the E-th power. Examples: E==1 results in 10.
335** E==2 results in 100. E==50 results in 1.0e50.
336**
337** This routine only works for values of E between 1 and 341.
338*/
339static LONGDOUBLE_TYPE sqlite3Pow10(int E){
drh3dc97272018-01-17 21:14:17 +0000340#if defined(_MSC_VER)
341 static const LONGDOUBLE_TYPE x[] = {
drh38a59af2019-05-25 17:41:07 +0000342 1.0e+001L,
343 1.0e+002L,
344 1.0e+004L,
345 1.0e+008L,
346 1.0e+016L,
347 1.0e+032L,
348 1.0e+064L,
349 1.0e+128L,
350 1.0e+256L
drh3dc97272018-01-17 21:14:17 +0000351 };
352 LONGDOUBLE_TYPE r = 1.0;
353 int i;
354 assert( E>=0 && E<=307 );
355 for(i=0; E!=0; i++, E >>=1){
356 if( E & 1 ) r *= x[i];
357 }
358 return r;
359#else
drh02a43f62017-12-26 14:46:20 +0000360 LONGDOUBLE_TYPE x = 10.0;
361 LONGDOUBLE_TYPE r = 1.0;
362 while(1){
363 if( E & 1 ) r *= x;
364 E >>= 1;
365 if( E==0 ) break;
366 x *= x;
367 }
368 return r;
drh3dc97272018-01-17 21:14:17 +0000369#endif
drh02a43f62017-12-26 14:46:20 +0000370}
371
372/*
drh9339da12010-09-30 00:50:49 +0000373** The string z[] is an text representation of a real number.
drh025586a2010-09-30 17:33:11 +0000374** Convert this string to a double and write it into *pResult.
drhc81c11f2009-11-10 01:30:52 +0000375**
drh9339da12010-09-30 00:50:49 +0000376** The string z[] is length bytes in length (bytes, not characters) and
377** uses the encoding enc. The string is not necessarily zero-terminated.
drhc81c11f2009-11-10 01:30:52 +0000378**
drh9339da12010-09-30 00:50:49 +0000379** Return TRUE if the result is a valid real number (or integer) and FALSE
drh8a3884e2019-05-29 21:18:27 +0000380** if the string is empty or contains extraneous text. More specifically
381** return
382** 1 => The input string is a pure integer
383** 2 or more => The input has a decimal point or eNNN clause
drh9a278222019-06-07 22:26:08 +0000384** 0 or less => The input string is not a valid number
385** -1 => Not a valid number, but has a valid prefix which
386** includes a decimal point and/or an eNNN clause
drh8a3884e2019-05-29 21:18:27 +0000387**
388** Valid numbers are in one of these formats:
drh025586a2010-09-30 17:33:11 +0000389**
390** [+-]digits[E[+-]digits]
391** [+-]digits.[digits][E[+-]digits]
392** [+-].digits[E[+-]digits]
393**
394** Leading and trailing whitespace is ignored for the purpose of determining
395** validity.
396**
397** If some prefix of the input string is a valid number, this routine
398** returns FALSE but it still converts the prefix and writes the result
399** into *pResult.
drhc81c11f2009-11-10 01:30:52 +0000400*/
mistachkin6dcf9a42019-10-10 23:58:16 +0000401#if defined(_MSC_VER)
402#pragma warning(disable : 4756)
403#endif
drh9339da12010-09-30 00:50:49 +0000404int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
drhc81c11f2009-11-10 01:30:52 +0000405#ifndef SQLITE_OMIT_FLOATING_POINT
drh0e5fba72013-03-20 12:04:29 +0000406 int incr;
drhe3a4f2c2019-12-13 23:38:57 +0000407 const char *zEnd;
drhc81c11f2009-11-10 01:30:52 +0000408 /* sign * significand * (10 ^ (esign * exponent)) */
drh025586a2010-09-30 17:33:11 +0000409 int sign = 1; /* sign of significand */
410 i64 s = 0; /* significand */
411 int d = 0; /* adjust exponent for shifting decimal point */
412 int esign = 1; /* sign of exponent */
413 int e = 0; /* exponent */
414 int eValid = 1; /* True exponent is either not used or is well-formed */
drhc81c11f2009-11-10 01:30:52 +0000415 double result;
drhc2b893a2019-05-25 18:17:53 +0000416 int nDigit = 0; /* Number of digits processed */
drh8a3884e2019-05-29 21:18:27 +0000417 int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */
drhc81c11f2009-11-10 01:30:52 +0000418
drh0e5fba72013-03-20 12:04:29 +0000419 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
drh025586a2010-09-30 17:33:11 +0000420 *pResult = 0.0; /* Default return value, in case of an error */
drhe3a4f2c2019-12-13 23:38:57 +0000421 if( length==0 ) return 0;
drh025586a2010-09-30 17:33:11 +0000422
drh0e5fba72013-03-20 12:04:29 +0000423 if( enc==SQLITE_UTF8 ){
424 incr = 1;
drhe3a4f2c2019-12-13 23:38:57 +0000425 zEnd = z + length;
drh0e5fba72013-03-20 12:04:29 +0000426 }else{
427 int i;
428 incr = 2;
drh87969b22020-01-08 12:17:46 +0000429 length &= ~1;
drh0e5fba72013-03-20 12:04:29 +0000430 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
drh84422db2019-05-30 13:47:10 +0000431 testcase( enc==SQLITE_UTF16LE );
432 testcase( enc==SQLITE_UTF16BE );
drh0e5fba72013-03-20 12:04:29 +0000433 for(i=3-enc; i<length && z[i]==0; i+=2){}
drh8a3884e2019-05-29 21:18:27 +0000434 if( i<length ) eType = -100;
drhad975d52016-04-27 15:24:13 +0000435 zEnd = &z[i^1];
drh0e5fba72013-03-20 12:04:29 +0000436 z += (enc&1);
437 }
drh9339da12010-09-30 00:50:49 +0000438
drhc81c11f2009-11-10 01:30:52 +0000439 /* skip leading spaces */
drh9339da12010-09-30 00:50:49 +0000440 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
drh025586a2010-09-30 17:33:11 +0000441 if( z>=zEnd ) return 0;
drh9339da12010-09-30 00:50:49 +0000442
drhc81c11f2009-11-10 01:30:52 +0000443 /* get sign of significand */
444 if( *z=='-' ){
445 sign = -1;
drh9339da12010-09-30 00:50:49 +0000446 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000447 }else if( *z=='+' ){
drh9339da12010-09-30 00:50:49 +0000448 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000449 }
drh9339da12010-09-30 00:50:49 +0000450
drhc81c11f2009-11-10 01:30:52 +0000451 /* copy max significant digits to significand */
drhc2b893a2019-05-25 18:17:53 +0000452 while( z<zEnd && sqlite3Isdigit(*z) ){
drhc81c11f2009-11-10 01:30:52 +0000453 s = s*10 + (*z - '0');
drhc2b893a2019-05-25 18:17:53 +0000454 z+=incr; nDigit++;
455 if( s>=((LARGEST_INT64-9)/10) ){
456 /* skip non-significant significand digits
457 ** (increase exponent by d to shift decimal left) */
458 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; }
459 }
drhc81c11f2009-11-10 01:30:52 +0000460 }
drh9339da12010-09-30 00:50:49 +0000461 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000462
463 /* if decimal point is present */
464 if( *z=='.' ){
drh9339da12010-09-30 00:50:49 +0000465 z+=incr;
drh8a3884e2019-05-29 21:18:27 +0000466 eType++;
drhc81c11f2009-11-10 01:30:52 +0000467 /* copy digits from after decimal to significand
468 ** (decrease exponent by d to shift decimal right) */
drh15af62a2016-04-26 23:14:45 +0000469 while( z<zEnd && sqlite3Isdigit(*z) ){
470 if( s<((LARGEST_INT64-9)/10) ){
471 s = s*10 + (*z - '0');
472 d--;
drhc2b893a2019-05-25 18:17:53 +0000473 nDigit++;
drh15af62a2016-04-26 23:14:45 +0000474 }
drhc2b893a2019-05-25 18:17:53 +0000475 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000476 }
drhc81c11f2009-11-10 01:30:52 +0000477 }
drh9339da12010-09-30 00:50:49 +0000478 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000479
480 /* if exponent is present */
481 if( *z=='e' || *z=='E' ){
drh9339da12010-09-30 00:50:49 +0000482 z+=incr;
drh025586a2010-09-30 17:33:11 +0000483 eValid = 0;
drh8a3884e2019-05-29 21:18:27 +0000484 eType++;
drhad975d52016-04-27 15:24:13 +0000485
486 /* This branch is needed to avoid a (harmless) buffer overread. The
487 ** special comment alerts the mutation tester that the correct answer
488 ** is obtained even if the branch is omitted */
489 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/
490
drhc81c11f2009-11-10 01:30:52 +0000491 /* get sign of exponent */
492 if( *z=='-' ){
493 esign = -1;
drh9339da12010-09-30 00:50:49 +0000494 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000495 }else if( *z=='+' ){
drh9339da12010-09-30 00:50:49 +0000496 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000497 }
498 /* copy digits to exponent */
drh9339da12010-09-30 00:50:49 +0000499 while( z<zEnd && sqlite3Isdigit(*z) ){
drh57db4a72011-10-17 20:41:46 +0000500 e = e<10000 ? (e*10 + (*z - '0')) : 10000;
drh9339da12010-09-30 00:50:49 +0000501 z+=incr;
drh025586a2010-09-30 17:33:11 +0000502 eValid = 1;
drhc81c11f2009-11-10 01:30:52 +0000503 }
504 }
505
drh025586a2010-09-30 17:33:11 +0000506 /* skip trailing spaces */
drhc6daa012016-04-27 02:35:03 +0000507 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
drh025586a2010-09-30 17:33:11 +0000508
drh9339da12010-09-30 00:50:49 +0000509do_atof_calc:
drhc81c11f2009-11-10 01:30:52 +0000510 /* adjust exponent by d, and update sign */
511 e = (e*esign) + d;
512 if( e<0 ) {
513 esign = -1;
514 e *= -1;
515 } else {
516 esign = 1;
517 }
518
drhad975d52016-04-27 15:24:13 +0000519 if( s==0 ) {
520 /* In the IEEE 754 standard, zero is signed. */
drhc6daa012016-04-27 02:35:03 +0000521 result = sign<0 ? -(double)0 : (double)0;
drhc81c11f2009-11-10 01:30:52 +0000522 } else {
drhad975d52016-04-27 15:24:13 +0000523 /* Attempt to reduce exponent.
524 **
525 ** Branches that are not required for the correct answer but which only
526 ** help to obtain the correct answer faster are marked with special
527 ** comments, as a hint to the mutation tester.
528 */
529 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/
530 if( esign>0 ){
531 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/
532 s *= 10;
533 }else{
534 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/
535 s /= 10;
536 }
537 e--;
drhc81c11f2009-11-10 01:30:52 +0000538 }
539
540 /* adjust the sign of significand */
541 s = sign<0 ? -s : s;
542
drhad975d52016-04-27 15:24:13 +0000543 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/
544 result = (double)s;
545 }else{
drhc81c11f2009-11-10 01:30:52 +0000546 /* attempt to handle extremely small/large numbers better */
drhad975d52016-04-27 15:24:13 +0000547 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/
548 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/
drh02a43f62017-12-26 14:46:20 +0000549 LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308);
drhad975d52016-04-27 15:24:13 +0000550 if( esign<0 ){
551 result = s / scale;
552 result /= 1.0e+308;
553 }else{
554 result = s * scale;
555 result *= 1.0e+308;
556 }
557 }else{ assert( e>=342 );
558 if( esign<0 ){
559 result = 0.0*s;
560 }else{
drhb9772e72017-09-12 13:27:43 +0000561#ifdef INFINITY
drh3ba18ad2017-09-12 15:05:34 +0000562 result = INFINITY*s;
drhb9772e72017-09-12 13:27:43 +0000563#else
drhad975d52016-04-27 15:24:13 +0000564 result = 1e308*1e308*s; /* Infinity */
drhb9772e72017-09-12 13:27:43 +0000565#endif
drhad975d52016-04-27 15:24:13 +0000566 }
drh2458a2e2011-10-17 12:14:26 +0000567 }
drhc81c11f2009-11-10 01:30:52 +0000568 }else{
drh02a43f62017-12-26 14:46:20 +0000569 LONGDOUBLE_TYPE scale = sqlite3Pow10(e);
drhc81c11f2009-11-10 01:30:52 +0000570 if( esign<0 ){
571 result = s / scale;
572 }else{
573 result = s * scale;
574 }
575 }
drhc81c11f2009-11-10 01:30:52 +0000576 }
577 }
578
579 /* store the result */
580 *pResult = result;
581
drh025586a2010-09-30 17:33:11 +0000582 /* return true if number and no extra non-whitespace chracters after */
drh9a278222019-06-07 22:26:08 +0000583 if( z==zEnd && nDigit>0 && eValid && eType>0 ){
584 return eType;
drh378a7d32019-06-10 23:45:10 +0000585 }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
drh9a278222019-06-07 22:26:08 +0000586 return -1;
587 }else{
588 return 0;
589 }
drhc81c11f2009-11-10 01:30:52 +0000590#else
shaneh5f1d6b62010-09-30 16:51:25 +0000591 return !sqlite3Atoi64(z, pResult, length, enc);
drhc81c11f2009-11-10 01:30:52 +0000592#endif /* SQLITE_OMIT_FLOATING_POINT */
593}
mistachkin6dcf9a42019-10-10 23:58:16 +0000594#if defined(_MSC_VER)
595#pragma warning(default : 4756)
596#endif
drhc81c11f2009-11-10 01:30:52 +0000597
598/*
drh82b0f102020-07-21 18:25:19 +0000599** Render an signed 64-bit integer as text. Store the result in zOut[].
600**
601** The caller must ensure that zOut[] is at least 21 bytes in size.
602*/
603void sqlite3Int64ToText(i64 v, char *zOut){
604 int i;
605 u64 x;
606 char zTemp[22];
607 if( v<0 ){
drh8deae5a2020-07-29 12:23:20 +0000608 x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v;
drh82b0f102020-07-21 18:25:19 +0000609 }else{
610 x = v;
611 }
612 i = sizeof(zTemp)-2;
613 zTemp[sizeof(zTemp)-1] = 0;
614 do{
615 zTemp[i--] = (x%10) + '0';
616 x = x/10;
617 }while( x );
618 if( v<0 ) zTemp[i--] = '-';
619 memcpy(zOut, &zTemp[i+1], sizeof(zTemp)-1-i);
620}
621
622/*
drhc81c11f2009-11-10 01:30:52 +0000623** Compare the 19-character string zNum against the text representation
624** value 2^63: 9223372036854775808. Return negative, zero, or positive
625** if zNum is less than, equal to, or greater than the string.
shaneh5f1d6b62010-09-30 16:51:25 +0000626** Note that zNum must contain exactly 19 characters.
drhc81c11f2009-11-10 01:30:52 +0000627**
628** Unlike memcmp() this routine is guaranteed to return the difference
629** in the values of the last digit if the only difference is in the
630** last digit. So, for example,
631**
drh9339da12010-09-30 00:50:49 +0000632** compare2pow63("9223372036854775800", 1)
drhc81c11f2009-11-10 01:30:52 +0000633**
634** will return -8.
635*/
drh9339da12010-09-30 00:50:49 +0000636static int compare2pow63(const char *zNum, int incr){
637 int c = 0;
638 int i;
639 /* 012345678901234567 */
640 const char *pow63 = "922337203685477580";
641 for(i=0; c==0 && i<18; i++){
642 c = (zNum[i*incr]-pow63[i])*10;
643 }
drhc81c11f2009-11-10 01:30:52 +0000644 if( c==0 ){
drh9339da12010-09-30 00:50:49 +0000645 c = zNum[18*incr] - '8';
drh44dbca82010-01-13 04:22:20 +0000646 testcase( c==(-1) );
647 testcase( c==0 );
648 testcase( c==(+1) );
drhc81c11f2009-11-10 01:30:52 +0000649 }
650 return c;
651}
652
drhc81c11f2009-11-10 01:30:52 +0000653/*
drh9296c182014-07-23 13:40:49 +0000654** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
655** routine does *not* accept hexadecimal notation.
drh158b9cb2011-03-05 20:59:46 +0000656**
drh84d4f1a2017-09-20 10:47:10 +0000657** Returns:
drh158b9cb2011-03-05 20:59:46 +0000658**
drh9a278222019-06-07 22:26:08 +0000659** -1 Not even a prefix of the input text looks like an integer
drh84d4f1a2017-09-20 10:47:10 +0000660** 0 Successful transformation. Fits in a 64-bit signed integer.
drh4eb57ce2018-01-26 18:37:34 +0000661** 1 Excess non-space text after the integer value
drh84d4f1a2017-09-20 10:47:10 +0000662** 2 Integer too large for a 64-bit signed integer or is malformed
663** 3 Special case of 9223372036854775808
drhc81c11f2009-11-10 01:30:52 +0000664**
drh9339da12010-09-30 00:50:49 +0000665** length is the number of bytes in the string (bytes, not characters).
666** The string is not necessarily zero-terminated. The encoding is
667** given by enc.
drhc81c11f2009-11-10 01:30:52 +0000668*/
drh9339da12010-09-30 00:50:49 +0000669int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
drh0e5fba72013-03-20 12:04:29 +0000670 int incr;
drh158b9cb2011-03-05 20:59:46 +0000671 u64 u = 0;
shaneh5f1d6b62010-09-30 16:51:25 +0000672 int neg = 0; /* assume positive */
drh9339da12010-09-30 00:50:49 +0000673 int i;
674 int c = 0;
drh609d5842016-04-28 00:32:16 +0000675 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */
drh84d4f1a2017-09-20 10:47:10 +0000676 int rc; /* Baseline return code */
drhc81c11f2009-11-10 01:30:52 +0000677 const char *zStart;
drh9339da12010-09-30 00:50:49 +0000678 const char *zEnd = zNum + length;
drh0e5fba72013-03-20 12:04:29 +0000679 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
680 if( enc==SQLITE_UTF8 ){
681 incr = 1;
682 }else{
683 incr = 2;
drh359941b2020-08-27 16:28:30 +0000684 length &= ~1;
drh0e5fba72013-03-20 12:04:29 +0000685 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
686 for(i=3-enc; i<length && zNum[i]==0; i+=2){}
687 nonNum = i<length;
drh609d5842016-04-28 00:32:16 +0000688 zEnd = &zNum[i^1];
drh0e5fba72013-03-20 12:04:29 +0000689 zNum += (enc&1);
690 }
drh9339da12010-09-30 00:50:49 +0000691 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
drh158b9cb2011-03-05 20:59:46 +0000692 if( zNum<zEnd ){
693 if( *zNum=='-' ){
694 neg = 1;
695 zNum+=incr;
696 }else if( *zNum=='+' ){
697 zNum+=incr;
698 }
drhc81c11f2009-11-10 01:30:52 +0000699 }
700 zStart = zNum;
drh9339da12010-09-30 00:50:49 +0000701 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
702 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
drh158b9cb2011-03-05 20:59:46 +0000703 u = u*10 + c - '0';
drhc81c11f2009-11-10 01:30:52 +0000704 }
drh4eb57ce2018-01-26 18:37:34 +0000705 testcase( i==18*incr );
706 testcase( i==19*incr );
707 testcase( i==20*incr );
drh1822ebf2018-01-27 14:25:27 +0000708 if( u>LARGEST_INT64 ){
709 /* This test and assignment is needed only to suppress UB warnings
710 ** from clang and -fsanitize=undefined. This test and assignment make
711 ** the code a little larger and slower, and no harm comes from omitting
712 ** them, but we must appaise the undefined-behavior pharisees. */
713 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
714 }else if( neg ){
drh158b9cb2011-03-05 20:59:46 +0000715 *pNum = -(i64)u;
716 }else{
717 *pNum = (i64)u;
718 }
drh4eb57ce2018-01-26 18:37:34 +0000719 rc = 0;
drh9a278222019-06-07 22:26:08 +0000720 if( i==0 && zStart==zNum ){ /* No digits */
721 rc = -1;
722 }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */
drh84d4f1a2017-09-20 10:47:10 +0000723 rc = 1;
drh4eb57ce2018-01-26 18:37:34 +0000724 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */
725 int jj = i;
726 do{
727 if( !sqlite3Isspace(zNum[jj]) ){
728 rc = 1; /* Extra non-space text after the integer */
729 break;
730 }
731 jj += incr;
732 }while( &zNum[jj]<zEnd );
drh84d4f1a2017-09-20 10:47:10 +0000733 }
drh4eb57ce2018-01-26 18:37:34 +0000734 if( i<19*incr ){
drhc81c11f2009-11-10 01:30:52 +0000735 /* Less than 19 digits, so we know that it fits in 64 bits */
drh158b9cb2011-03-05 20:59:46 +0000736 assert( u<=LARGEST_INT64 );
drh84d4f1a2017-09-20 10:47:10 +0000737 return rc;
drhc81c11f2009-11-10 01:30:52 +0000738 }else{
drh158b9cb2011-03-05 20:59:46 +0000739 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
drh4eb57ce2018-01-26 18:37:34 +0000740 c = i>19*incr ? 1 : compare2pow63(zNum, incr);
drh158b9cb2011-03-05 20:59:46 +0000741 if( c<0 ){
742 /* zNum is less than 9223372036854775808 so it fits */
743 assert( u<=LARGEST_INT64 );
drh84d4f1a2017-09-20 10:47:10 +0000744 return rc;
drh158b9cb2011-03-05 20:59:46 +0000745 }else{
drh4eb57ce2018-01-26 18:37:34 +0000746 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
747 if( c>0 ){
748 /* zNum is greater than 9223372036854775808 so it overflows */
749 return 2;
750 }else{
751 /* zNum is exactly 9223372036854775808. Fits if negative. The
752 ** special case 2 overflow if positive */
753 assert( u-1==LARGEST_INT64 );
754 return neg ? rc : 3;
755 }
drh158b9cb2011-03-05 20:59:46 +0000756 }
drhc81c11f2009-11-10 01:30:52 +0000757 }
758}
759
760/*
drh9296c182014-07-23 13:40:49 +0000761** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
762** into a 64-bit signed integer. This routine accepts hexadecimal literals,
763** whereas sqlite3Atoi64() does not.
764**
765** Returns:
766**
767** 0 Successful transformation. Fits in a 64-bit signed integer.
drh84d4f1a2017-09-20 10:47:10 +0000768** 1 Excess text after the integer value
769** 2 Integer too large for a 64-bit signed integer or is malformed
770** 3 Special case of 9223372036854775808
drh9296c182014-07-23 13:40:49 +0000771*/
772int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
773#ifndef SQLITE_OMIT_HEX_INTEGER
774 if( z[0]=='0'
775 && (z[1]=='x' || z[1]=='X')
drh9296c182014-07-23 13:40:49 +0000776 ){
777 u64 u = 0;
778 int i, k;
779 for(i=2; z[i]=='0'; i++){}
780 for(k=i; sqlite3Isxdigit(z[k]); k++){
781 u = u*16 + sqlite3HexToInt(z[k]);
782 }
783 memcpy(pOut, &u, 8);
drh84d4f1a2017-09-20 10:47:10 +0000784 return (z[k]==0 && k-i<=16) ? 0 : 2;
drh9296c182014-07-23 13:40:49 +0000785 }else
786#endif /* SQLITE_OMIT_HEX_INTEGER */
787 {
788 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
789 }
790}
791
792/*
drhc81c11f2009-11-10 01:30:52 +0000793** If zNum represents an integer that will fit in 32-bits, then set
794** *pValue to that integer and return true. Otherwise return false.
795**
drh9296c182014-07-23 13:40:49 +0000796** This routine accepts both decimal and hexadecimal notation for integers.
797**
drhc81c11f2009-11-10 01:30:52 +0000798** Any non-numeric characters that following zNum are ignored.
799** This is different from sqlite3Atoi64() which requires the
800** input number to be zero-terminated.
801*/
802int sqlite3GetInt32(const char *zNum, int *pValue){
803 sqlite_int64 v = 0;
804 int i, c;
805 int neg = 0;
806 if( zNum[0]=='-' ){
807 neg = 1;
808 zNum++;
809 }else if( zNum[0]=='+' ){
810 zNum++;
811 }
drh28e048c2014-07-23 01:26:51 +0000812#ifndef SQLITE_OMIT_HEX_INTEGER
813 else if( zNum[0]=='0'
814 && (zNum[1]=='x' || zNum[1]=='X')
815 && sqlite3Isxdigit(zNum[2])
816 ){
817 u32 u = 0;
818 zNum += 2;
819 while( zNum[0]=='0' ) zNum++;
820 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
821 u = u*16 + sqlite3HexToInt(zNum[i]);
822 }
823 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
824 memcpy(pValue, &u, 4);
825 return 1;
826 }else{
827 return 0;
828 }
829 }
830#endif
drh313e6fd2017-05-03 17:44:28 +0000831 if( !sqlite3Isdigit(zNum[0]) ) return 0;
drh935f2e72015-04-18 04:45:00 +0000832 while( zNum[0]=='0' ) zNum++;
drhc81c11f2009-11-10 01:30:52 +0000833 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
834 v = v*10 + c;
835 }
836
837 /* The longest decimal representation of a 32 bit integer is 10 digits:
838 **
839 ** 1234567890
840 ** 2^31 -> 2147483648
841 */
drh44dbca82010-01-13 04:22:20 +0000842 testcase( i==10 );
drhc81c11f2009-11-10 01:30:52 +0000843 if( i>10 ){
844 return 0;
845 }
drh44dbca82010-01-13 04:22:20 +0000846 testcase( v-neg==2147483647 );
drhc81c11f2009-11-10 01:30:52 +0000847 if( v-neg>2147483647 ){
848 return 0;
849 }
850 if( neg ){
851 v = -v;
852 }
853 *pValue = (int)v;
854 return 1;
855}
856
857/*
drh60ac3f42010-11-23 18:59:27 +0000858** Return a 32-bit integer value extracted from a string. If the
859** string is not an integer, just return 0.
860*/
861int sqlite3Atoi(const char *z){
862 int x = 0;
drh48bf2d72020-07-30 17:14:55 +0000863 sqlite3GetInt32(z, &x);
drh60ac3f42010-11-23 18:59:27 +0000864 return x;
865}
866
867/*
drhabc38152020-07-22 13:38:04 +0000868** Try to convert z into an unsigned 32-bit integer. Return true on
869** success and false if there is an error.
870**
871** Only decimal notation is accepted.
872*/
873int sqlite3GetUInt32(const char *z, u32 *pI){
874 u64 v = 0;
875 int i;
876 for(i=0; sqlite3Isdigit(z[i]); i++){
877 v = v*10 + z[i] - '0';
drh69306bf2020-07-22 20:12:10 +0000878 if( v>4294967296LL ){ *pI = 0; return 0; }
drhabc38152020-07-22 13:38:04 +0000879 }
drh69306bf2020-07-22 20:12:10 +0000880 if( i==0 || z[i]!=0 ){ *pI = 0; return 0; }
drhabc38152020-07-22 13:38:04 +0000881 *pI = (u32)v;
882 return 1;
883}
884
885/*
drhc81c11f2009-11-10 01:30:52 +0000886** The variable-length integer encoding is as follows:
887**
888** KEY:
889** A = 0xxxxxxx 7 bits of data and one flag bit
890** B = 1xxxxxxx 7 bits of data and one flag bit
891** C = xxxxxxxx 8 bits of data
892**
893** 7 bits - A
894** 14 bits - BA
895** 21 bits - BBA
896** 28 bits - BBBA
897** 35 bits - BBBBA
898** 42 bits - BBBBBA
899** 49 bits - BBBBBBA
900** 56 bits - BBBBBBBA
901** 64 bits - BBBBBBBBC
902*/
903
904/*
905** Write a 64-bit variable-length integer to memory starting at p[0].
906** The length of data write will be between 1 and 9 bytes. The number
907** of bytes written is returned.
908**
909** A variable-length integer consists of the lower 7 bits of each byte
910** for all bytes that have the 8th bit set and one byte with the 8th
911** bit clear. Except, if we get to the 9th byte, it stores the full
912** 8 bits and is the last byte.
913*/
drh2f2b2b82014-08-22 18:48:25 +0000914static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
drhc81c11f2009-11-10 01:30:52 +0000915 int i, j, n;
916 u8 buf[10];
917 if( v & (((u64)0xff000000)<<32) ){
918 p[8] = (u8)v;
919 v >>= 8;
920 for(i=7; i>=0; i--){
921 p[i] = (u8)((v & 0x7f) | 0x80);
922 v >>= 7;
923 }
924 return 9;
925 }
926 n = 0;
927 do{
928 buf[n++] = (u8)((v & 0x7f) | 0x80);
929 v >>= 7;
930 }while( v!=0 );
931 buf[0] &= 0x7f;
932 assert( n<=9 );
933 for(i=0, j=n-1; j>=0; j--, i++){
934 p[i] = buf[j];
935 }
936 return n;
937}
drh2f2b2b82014-08-22 18:48:25 +0000938int sqlite3PutVarint(unsigned char *p, u64 v){
939 if( v<=0x7f ){
940 p[0] = v&0x7f;
drhc81c11f2009-11-10 01:30:52 +0000941 return 1;
942 }
drh2f2b2b82014-08-22 18:48:25 +0000943 if( v<=0x3fff ){
944 p[0] = ((v>>7)&0x7f)|0x80;
945 p[1] = v&0x7f;
drhc81c11f2009-11-10 01:30:52 +0000946 return 2;
947 }
drh2f2b2b82014-08-22 18:48:25 +0000948 return putVarint64(p,v);
drhc81c11f2009-11-10 01:30:52 +0000949}
950
951/*
drh0b2864c2010-03-03 15:18:38 +0000952** Bitmasks used by sqlite3GetVarint(). These precomputed constants
953** are defined here rather than simply putting the constant expressions
954** inline in order to work around bugs in the RVT compiler.
955**
956** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
957**
958** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
959*/
960#define SLOT_2_0 0x001fc07f
961#define SLOT_4_2_0 0xf01fc07f
962
963
964/*
drhc81c11f2009-11-10 01:30:52 +0000965** Read a 64-bit variable-length integer from memory starting at p[0].
966** Return the number of bytes read. The value is stored in *v.
967*/
968u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
969 u32 a,b,s;
970
drh698c86f2019-04-17 12:07:08 +0000971 if( ((signed char*)p)[0]>=0 ){
972 *v = *p;
drhc81c11f2009-11-10 01:30:52 +0000973 return 1;
974 }
drh698c86f2019-04-17 12:07:08 +0000975 if( ((signed char*)p)[1]>=0 ){
976 *v = ((u32)(p[0]&0x7f)<<7) | p[1];
drhc81c11f2009-11-10 01:30:52 +0000977 return 2;
978 }
979
drh0b2864c2010-03-03 15:18:38 +0000980 /* Verify that constants are precomputed correctly */
981 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
shaneh1da207e2010-03-09 14:41:12 +0000982 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
drh0b2864c2010-03-03 15:18:38 +0000983
drh698c86f2019-04-17 12:07:08 +0000984 a = ((u32)p[0])<<14;
985 b = p[1];
986 p += 2;
drhc81c11f2009-11-10 01:30:52 +0000987 a |= *p;
988 /* a: p0<<14 | p2 (unmasked) */
989 if (!(a&0x80))
990 {
drh0b2864c2010-03-03 15:18:38 +0000991 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000992 b &= 0x7f;
993 b = b<<7;
994 a |= b;
995 *v = a;
996 return 3;
997 }
998
999 /* CSE1 from below */
drh0b2864c2010-03-03 15:18:38 +00001000 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001001 p++;
1002 b = b<<14;
1003 b |= *p;
1004 /* b: p1<<14 | p3 (unmasked) */
1005 if (!(b&0x80))
1006 {
drh0b2864c2010-03-03 15:18:38 +00001007 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001008 /* moved CSE1 up */
1009 /* a &= (0x7f<<14)|(0x7f); */
1010 a = a<<7;
1011 a |= b;
1012 *v = a;
1013 return 4;
1014 }
1015
1016 /* a: p0<<14 | p2 (masked) */
1017 /* b: p1<<14 | p3 (unmasked) */
1018 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1019 /* moved CSE1 up */
1020 /* a &= (0x7f<<14)|(0x7f); */
drh0b2864c2010-03-03 15:18:38 +00001021 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001022 s = a;
1023 /* s: p0<<14 | p2 (masked) */
1024
1025 p++;
1026 a = a<<14;
1027 a |= *p;
1028 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1029 if (!(a&0x80))
1030 {
drh62aaa6c2015-11-21 17:27:42 +00001031 /* we can skip these cause they were (effectively) done above
1032 ** while calculating s */
drhc81c11f2009-11-10 01:30:52 +00001033 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1034 /* b &= (0x7f<<14)|(0x7f); */
1035 b = b<<7;
1036 a |= b;
1037 s = s>>18;
1038 *v = ((u64)s)<<32 | a;
1039 return 5;
1040 }
1041
1042 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1043 s = s<<7;
1044 s |= b;
1045 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1046
1047 p++;
1048 b = b<<14;
1049 b |= *p;
1050 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
1051 if (!(b&0x80))
1052 {
1053 /* we can skip this cause it was (effectively) done above in calc'ing s */
1054 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
drh0b2864c2010-03-03 15:18:38 +00001055 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001056 a = a<<7;
1057 a |= b;
1058 s = s>>18;
1059 *v = ((u64)s)<<32 | a;
1060 return 6;
1061 }
1062
1063 p++;
1064 a = a<<14;
1065 a |= *p;
1066 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1067 if (!(a&0x80))
1068 {
drh0b2864c2010-03-03 15:18:38 +00001069 a &= SLOT_4_2_0;
1070 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001071 b = b<<7;
1072 a |= b;
1073 s = s>>11;
1074 *v = ((u64)s)<<32 | a;
1075 return 7;
1076 }
1077
1078 /* CSE2 from below */
drh0b2864c2010-03-03 15:18:38 +00001079 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001080 p++;
1081 b = b<<14;
1082 b |= *p;
1083 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1084 if (!(b&0x80))
1085 {
drh0b2864c2010-03-03 15:18:38 +00001086 b &= SLOT_4_2_0;
drhc81c11f2009-11-10 01:30:52 +00001087 /* moved CSE2 up */
1088 /* a &= (0x7f<<14)|(0x7f); */
1089 a = a<<7;
1090 a |= b;
1091 s = s>>4;
1092 *v = ((u64)s)<<32 | a;
1093 return 8;
1094 }
1095
1096 p++;
1097 a = a<<15;
1098 a |= *p;
1099 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1100
1101 /* moved CSE2 up */
1102 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
drh0b2864c2010-03-03 15:18:38 +00001103 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001104 b = b<<8;
1105 a |= b;
1106
1107 s = s<<4;
1108 b = p[-4];
1109 b &= 0x7f;
1110 b = b>>3;
1111 s |= b;
1112
1113 *v = ((u64)s)<<32 | a;
1114
1115 return 9;
1116}
1117
1118/*
1119** Read a 32-bit variable-length integer from memory starting at p[0].
1120** Return the number of bytes read. The value is stored in *v.
1121**
1122** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1123** integer, then set *v to 0xffffffff.
1124**
1125** A MACRO version, getVarint32, is provided which inlines the
1126** single-byte case. All code should use the MACRO version as
1127** this function assumes the single-byte case has already been handled.
1128*/
1129u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1130 u32 a,b;
1131
1132 /* The 1-byte case. Overwhelmingly the most common. Handled inline
1133 ** by the getVarin32() macro */
1134 a = *p;
1135 /* a: p0 (unmasked) */
1136#ifndef getVarint32
1137 if (!(a&0x80))
1138 {
1139 /* Values between 0 and 127 */
1140 *v = a;
1141 return 1;
1142 }
1143#endif
1144
1145 /* The 2-byte case */
1146 p++;
1147 b = *p;
1148 /* b: p1 (unmasked) */
1149 if (!(b&0x80))
1150 {
1151 /* Values between 128 and 16383 */
1152 a &= 0x7f;
1153 a = a<<7;
1154 *v = a | b;
1155 return 2;
1156 }
1157
1158 /* The 3-byte case */
1159 p++;
1160 a = a<<14;
1161 a |= *p;
1162 /* a: p0<<14 | p2 (unmasked) */
1163 if (!(a&0x80))
1164 {
1165 /* Values between 16384 and 2097151 */
1166 a &= (0x7f<<14)|(0x7f);
1167 b &= 0x7f;
1168 b = b<<7;
1169 *v = a | b;
1170 return 3;
1171 }
1172
1173 /* A 32-bit varint is used to store size information in btrees.
1174 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1175 ** A 3-byte varint is sufficient, for example, to record the size
1176 ** of a 1048569-byte BLOB or string.
1177 **
1178 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
1179 ** rare larger cases can be handled by the slower 64-bit varint
1180 ** routine.
1181 */
1182#if 1
1183 {
1184 u64 v64;
1185 u8 n;
1186
drh15cedda2020-07-02 17:05:11 +00001187 n = sqlite3GetVarint(p-2, &v64);
drhc81c11f2009-11-10 01:30:52 +00001188 assert( n>3 && n<=9 );
1189 if( (v64 & SQLITE_MAX_U32)!=v64 ){
1190 *v = 0xffffffff;
1191 }else{
1192 *v = (u32)v64;
1193 }
1194 return n;
1195 }
1196
1197#else
1198 /* For following code (kept for historical record only) shows an
1199 ** unrolling for the 3- and 4-byte varint cases. This code is
1200 ** slightly faster, but it is also larger and much harder to test.
1201 */
1202 p++;
1203 b = b<<14;
1204 b |= *p;
1205 /* b: p1<<14 | p3 (unmasked) */
1206 if (!(b&0x80))
1207 {
1208 /* Values between 2097152 and 268435455 */
1209 b &= (0x7f<<14)|(0x7f);
1210 a &= (0x7f<<14)|(0x7f);
1211 a = a<<7;
1212 *v = a | b;
1213 return 4;
1214 }
1215
1216 p++;
1217 a = a<<14;
1218 a |= *p;
1219 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1220 if (!(a&0x80))
1221 {
dan3bbe7612010-03-03 16:02:05 +00001222 /* Values between 268435456 and 34359738367 */
1223 a &= SLOT_4_2_0;
1224 b &= SLOT_4_2_0;
drhc81c11f2009-11-10 01:30:52 +00001225 b = b<<7;
1226 *v = a | b;
1227 return 5;
1228 }
1229
1230 /* We can only reach this point when reading a corrupt database
1231 ** file. In that case we are not in any hurry. Use the (relatively
1232 ** slow) general-purpose sqlite3GetVarint() routine to extract the
1233 ** value. */
1234 {
1235 u64 v64;
1236 u8 n;
1237
1238 p -= 4;
1239 n = sqlite3GetVarint(p, &v64);
1240 assert( n>5 && n<=9 );
1241 *v = (u32)v64;
1242 return n;
1243 }
1244#endif
1245}
1246
1247/*
1248** Return the number of bytes that will be needed to store the given
1249** 64-bit integer.
1250*/
1251int sqlite3VarintLen(u64 v){
drh59a53642015-09-01 22:29:07 +00001252 int i;
drh6f17c092016-03-04 21:18:09 +00001253 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
drhc81c11f2009-11-10 01:30:52 +00001254 return i;
1255}
1256
1257
1258/*
1259** Read or write a four-byte big-endian integer value.
1260*/
1261u32 sqlite3Get4byte(const u8 *p){
drh5372e4d2015-06-30 12:47:09 +00001262#if SQLITE_BYTEORDER==4321
1263 u32 x;
1264 memcpy(&x,p,4);
1265 return x;
drhdc5ece82017-02-15 15:09:09 +00001266#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
drh5372e4d2015-06-30 12:47:09 +00001267 u32 x;
1268 memcpy(&x,p,4);
1269 return __builtin_bswap32(x);
drha39284b2017-02-09 17:12:22 +00001270#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
mistachkin647ca462015-06-30 17:28:40 +00001271 u32 x;
1272 memcpy(&x,p,4);
1273 return _byteswap_ulong(x);
drh5372e4d2015-06-30 12:47:09 +00001274#else
drh693e6712014-01-24 22:58:00 +00001275 testcase( p[0]&0x80 );
1276 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
drh5372e4d2015-06-30 12:47:09 +00001277#endif
drhc81c11f2009-11-10 01:30:52 +00001278}
1279void sqlite3Put4byte(unsigned char *p, u32 v){
drh5372e4d2015-06-30 12:47:09 +00001280#if SQLITE_BYTEORDER==4321
1281 memcpy(p,&v,4);
drhdc5ece82017-02-15 15:09:09 +00001282#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
drh5372e4d2015-06-30 12:47:09 +00001283 u32 x = __builtin_bswap32(v);
1284 memcpy(p,&x,4);
drha39284b2017-02-09 17:12:22 +00001285#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
mistachkin647ca462015-06-30 17:28:40 +00001286 u32 x = _byteswap_ulong(v);
1287 memcpy(p,&x,4);
drh5372e4d2015-06-30 12:47:09 +00001288#else
drhc81c11f2009-11-10 01:30:52 +00001289 p[0] = (u8)(v>>24);
1290 p[1] = (u8)(v>>16);
1291 p[2] = (u8)(v>>8);
1292 p[3] = (u8)v;
drh5372e4d2015-06-30 12:47:09 +00001293#endif
drhc81c11f2009-11-10 01:30:52 +00001294}
1295
drh9296c182014-07-23 13:40:49 +00001296
1297
1298/*
1299** Translate a single byte of Hex into an integer.
1300** This routine only works if h really is a valid hexadecimal
1301** character: 0..9a..fA..F
1302*/
1303u8 sqlite3HexToInt(int h){
1304 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
1305#ifdef SQLITE_ASCII
1306 h += 9*(1&(h>>6));
1307#endif
1308#ifdef SQLITE_EBCDIC
1309 h += 9*(1&~(h>>4));
1310#endif
1311 return (u8)(h & 0xf);
1312}
1313
drhb48c0d52020-02-07 01:12:53 +00001314#if !defined(SQLITE_OMIT_BLOB_LITERAL)
drhc81c11f2009-11-10 01:30:52 +00001315/*
1316** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1317** value. Return a pointer to its binary value. Space to hold the
1318** binary value has been obtained from malloc and must be freed by
1319** the calling routine.
1320*/
1321void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1322 char *zBlob;
1323 int i;
1324
drh575fad62016-02-05 13:38:36 +00001325 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
drhc81c11f2009-11-10 01:30:52 +00001326 n--;
1327 if( zBlob ){
1328 for(i=0; i<n; i+=2){
dancd74b612011-04-22 19:37:32 +00001329 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
drhc81c11f2009-11-10 01:30:52 +00001330 }
1331 zBlob[i/2] = 0;
1332 }
1333 return zBlob;
1334}
drhb48c0d52020-02-07 01:12:53 +00001335#endif /* !SQLITE_OMIT_BLOB_LITERAL */
drhc81c11f2009-11-10 01:30:52 +00001336
drh413c3d32010-02-23 20:11:56 +00001337/*
1338** Log an error that is an API call on a connection pointer that should
1339** not have been used. The "type" of connection pointer is given as the
1340** argument. The zType is a word like "NULL" or "closed" or "invalid".
1341*/
1342static void logBadConnection(const char *zType){
1343 sqlite3_log(SQLITE_MISUSE,
1344 "API call with %s database connection pointer",
1345 zType
1346 );
1347}
drhc81c11f2009-11-10 01:30:52 +00001348
1349/*
drhc81c11f2009-11-10 01:30:52 +00001350** Check to make sure we have a valid db pointer. This test is not
1351** foolproof but it does provide some measure of protection against
1352** misuse of the interface such as passing in db pointers that are
1353** NULL or which have been previously closed. If this routine returns
1354** 1 it means that the db pointer is valid and 0 if it should not be
1355** dereferenced for any reason. The calling function should invoke
1356** SQLITE_MISUSE immediately.
1357**
1358** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1359** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1360** open properly and is not fit for general use but which can be
1361** used as an argument to sqlite3_errmsg() or sqlite3_close().
1362*/
1363int sqlite3SafetyCheckOk(sqlite3 *db){
1364 u32 magic;
drh413c3d32010-02-23 20:11:56 +00001365 if( db==0 ){
1366 logBadConnection("NULL");
1367 return 0;
1368 }
drhc81c11f2009-11-10 01:30:52 +00001369 magic = db->magic;
drh9978c972010-02-23 17:36:32 +00001370 if( magic!=SQLITE_MAGIC_OPEN ){
drhe294da02010-02-25 23:44:15 +00001371 if( sqlite3SafetyCheckSickOrOk(db) ){
1372 testcase( sqlite3GlobalConfig.xLog!=0 );
drh413c3d32010-02-23 20:11:56 +00001373 logBadConnection("unopened");
1374 }
drhc81c11f2009-11-10 01:30:52 +00001375 return 0;
1376 }else{
1377 return 1;
1378 }
1379}
1380int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1381 u32 magic;
1382 magic = db->magic;
1383 if( magic!=SQLITE_MAGIC_SICK &&
1384 magic!=SQLITE_MAGIC_OPEN &&
drh413c3d32010-02-23 20:11:56 +00001385 magic!=SQLITE_MAGIC_BUSY ){
drhe294da02010-02-25 23:44:15 +00001386 testcase( sqlite3GlobalConfig.xLog!=0 );
drhaf46dc12010-02-24 21:44:07 +00001387 logBadConnection("invalid");
drh413c3d32010-02-23 20:11:56 +00001388 return 0;
1389 }else{
1390 return 1;
1391 }
drhc81c11f2009-11-10 01:30:52 +00001392}
drh158b9cb2011-03-05 20:59:46 +00001393
1394/*
1395** Attempt to add, substract, or multiply the 64-bit signed value iB against
1396** the other 64-bit signed integer at *pA and store the result in *pA.
1397** Return 0 on success. Or if the operation would have resulted in an
1398** overflow, leave *pA unchanged and return 1.
1399*/
1400int sqlite3AddInt64(i64 *pA, i64 iB){
drhb9772e72017-09-12 13:27:43 +00001401#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
drh4a477612017-01-03 17:33:43 +00001402 return __builtin_add_overflow(*pA, iB, pA);
1403#else
drh158b9cb2011-03-05 20:59:46 +00001404 i64 iA = *pA;
1405 testcase( iA==0 ); testcase( iA==1 );
1406 testcase( iB==-1 ); testcase( iB==0 );
1407 if( iB>=0 ){
1408 testcase( iA>0 && LARGEST_INT64 - iA == iB );
1409 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1410 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
drh158b9cb2011-03-05 20:59:46 +00001411 }else{
1412 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1413 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1414 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
drh158b9cb2011-03-05 20:59:46 +00001415 }
drh53a6eb32014-02-10 12:59:15 +00001416 *pA += iB;
drh158b9cb2011-03-05 20:59:46 +00001417 return 0;
drh4a477612017-01-03 17:33:43 +00001418#endif
drh158b9cb2011-03-05 20:59:46 +00001419}
1420int sqlite3SubInt64(i64 *pA, i64 iB){
drhb9772e72017-09-12 13:27:43 +00001421#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
drh4a477612017-01-03 17:33:43 +00001422 return __builtin_sub_overflow(*pA, iB, pA);
1423#else
drh158b9cb2011-03-05 20:59:46 +00001424 testcase( iB==SMALLEST_INT64+1 );
1425 if( iB==SMALLEST_INT64 ){
1426 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1427 if( (*pA)>=0 ) return 1;
1428 *pA -= iB;
1429 return 0;
1430 }else{
1431 return sqlite3AddInt64(pA, -iB);
1432 }
drh4a477612017-01-03 17:33:43 +00001433#endif
drh158b9cb2011-03-05 20:59:46 +00001434}
drh158b9cb2011-03-05 20:59:46 +00001435int sqlite3MulInt64(i64 *pA, i64 iB){
drhb9772e72017-09-12 13:27:43 +00001436#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
drh4a477612017-01-03 17:33:43 +00001437 return __builtin_mul_overflow(*pA, iB, pA);
1438#else
drh158b9cb2011-03-05 20:59:46 +00001439 i64 iA = *pA;
drh09952c62016-09-20 22:04:05 +00001440 if( iB>0 ){
1441 if( iA>LARGEST_INT64/iB ) return 1;
1442 if( iA<SMALLEST_INT64/iB ) return 1;
1443 }else if( iB<0 ){
1444 if( iA>0 ){
1445 if( iB<SMALLEST_INT64/iA ) return 1;
1446 }else if( iA<0 ){
1447 if( iB==SMALLEST_INT64 ) return 1;
1448 if( iA==SMALLEST_INT64 ) return 1;
1449 if( -iA>LARGEST_INT64/-iB ) return 1;
drh53a6eb32014-02-10 12:59:15 +00001450 }
drh53a6eb32014-02-10 12:59:15 +00001451 }
drh09952c62016-09-20 22:04:05 +00001452 *pA = iA*iB;
drh158b9cb2011-03-05 20:59:46 +00001453 return 0;
drh4a477612017-01-03 17:33:43 +00001454#endif
drh158b9cb2011-03-05 20:59:46 +00001455}
drhd50ffc42011-03-08 02:38:28 +00001456
1457/*
1458** Compute the absolute value of a 32-bit signed integer, of possible. Or
1459** if the integer has a value of -2147483648, return +2147483647
1460*/
1461int sqlite3AbsInt32(int x){
1462 if( x>=0 ) return x;
drh87e79ae2011-03-08 13:06:41 +00001463 if( x==(int)0x80000000 ) return 0x7fffffff;
drhd50ffc42011-03-08 02:38:28 +00001464 return -x;
1465}
drh81cc5162011-05-17 20:36:21 +00001466
1467#ifdef SQLITE_ENABLE_8_3_NAMES
1468/*
drhb51bf432011-07-21 21:29:35 +00001469** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
drh81cc5162011-05-17 20:36:21 +00001470** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1471** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1472** three characters, then shorten the suffix on z[] to be the last three
1473** characters of the original suffix.
1474**
drhb51bf432011-07-21 21:29:35 +00001475** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1476** do the suffix shortening regardless of URI parameter.
1477**
drh81cc5162011-05-17 20:36:21 +00001478** Examples:
1479**
1480** test.db-journal => test.nal
1481** test.db-wal => test.wal
1482** test.db-shm => test.shm
drhf5808602011-12-16 00:33:04 +00001483** test.db-mj7f3319fa => test.9fa
drh81cc5162011-05-17 20:36:21 +00001484*/
1485void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
drhb51bf432011-07-21 21:29:35 +00001486#if SQLITE_ENABLE_8_3_NAMES<2
drh7d39e172012-01-02 12:41:53 +00001487 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
drhb51bf432011-07-21 21:29:35 +00001488#endif
1489 {
drh81cc5162011-05-17 20:36:21 +00001490 int i, sz;
1491 sz = sqlite3Strlen30(z);
drhc83f2d42011-05-18 02:41:10 +00001492 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
drhc02a43a2012-01-10 23:18:38 +00001493 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
drh81cc5162011-05-17 20:36:21 +00001494 }
1495}
1496#endif
drhbf539c42013-10-05 18:16:02 +00001497
1498/*
1499** Find (an approximate) sum of two LogEst values. This computation is
1500** not a simple "+" operator because LogEst is stored as a logarithmic
1501** value.
1502**
1503*/
1504LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1505 static const unsigned char x[] = {
1506 10, 10, /* 0,1 */
1507 9, 9, /* 2,3 */
1508 8, 8, /* 4,5 */
1509 7, 7, 7, /* 6,7,8 */
1510 6, 6, 6, /* 9,10,11 */
1511 5, 5, 5, /* 12-14 */
1512 4, 4, 4, 4, /* 15-18 */
1513 3, 3, 3, 3, 3, 3, /* 19-24 */
1514 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1515 };
1516 if( a>=b ){
1517 if( a>b+49 ) return a;
1518 if( a>b+31 ) return a+1;
1519 return a+x[a-b];
1520 }else{
1521 if( b>a+49 ) return b;
1522 if( b>a+31 ) return b+1;
1523 return b+x[b-a];
1524 }
1525}
1526
1527/*
drh224155d2014-04-30 13:19:09 +00001528** Convert an integer into a LogEst. In other words, compute an
1529** approximation for 10*log2(x).
drhbf539c42013-10-05 18:16:02 +00001530*/
1531LogEst sqlite3LogEst(u64 x){
1532 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1533 LogEst y = 40;
1534 if( x<8 ){
1535 if( x<2 ) return 0;
1536 while( x<8 ){ y -= 10; x <<= 1; }
1537 }else{
drhceb4b1d2017-08-17 20:53:07 +00001538#if GCC_VERSION>=5004000
1539 int i = 60 - __builtin_clzll(x);
1540 y += i*10;
1541 x >>= i;
1542#else
drh75ab50c2016-04-28 14:15:12 +00001543 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/
drhbf539c42013-10-05 18:16:02 +00001544 while( x>15 ){ y += 10; x >>= 1; }
drhceb4b1d2017-08-17 20:53:07 +00001545#endif
drhbf539c42013-10-05 18:16:02 +00001546 }
1547 return a[x&7] + y - 10;
1548}
1549
1550#ifndef SQLITE_OMIT_VIRTUALTABLE
1551/*
1552** Convert a double into a LogEst
1553** In other words, compute an approximation for 10*log2(x).
1554*/
1555LogEst sqlite3LogEstFromDouble(double x){
1556 u64 a;
1557 LogEst e;
1558 assert( sizeof(x)==8 && sizeof(a)==8 );
1559 if( x<=1 ) return 0;
1560 if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1561 memcpy(&a, &x, 8);
1562 e = (a>>52) - 1022;
1563 return e*10;
1564}
1565#endif /* SQLITE_OMIT_VIRTUALTABLE */
1566
drh14bfd992016-03-05 14:00:09 +00001567#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
drh175b8f02019-08-08 15:24:17 +00001568 defined(SQLITE_ENABLE_STAT4) || \
drhd566c952016-02-25 21:19:03 +00001569 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
drhbf539c42013-10-05 18:16:02 +00001570/*
1571** Convert a LogEst into an integer.
drhd566c952016-02-25 21:19:03 +00001572**
1573** Note that this routine is only used when one or more of various
1574** non-standard compile-time options is enabled.
drhbf539c42013-10-05 18:16:02 +00001575*/
1576u64 sqlite3LogEstToInt(LogEst x){
1577 u64 n;
drhbf539c42013-10-05 18:16:02 +00001578 n = x%10;
1579 x /= 10;
1580 if( n>=5 ) n -= 2;
1581 else if( n>=1 ) n -= 1;
drhecdf20d2016-03-10 14:28:24 +00001582#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1583 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1584 if( x>60 ) return (u64)LARGEST_INT64;
1585#else
drh175b8f02019-08-08 15:24:17 +00001586 /* If only SQLITE_ENABLE_STAT4 is on, then the largest input
drhecdf20d2016-03-10 14:28:24 +00001587 ** possible to this routine is 310, resulting in a maximum x of 31 */
1588 assert( x<=60 );
1589#endif
1590 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
drhbf539c42013-10-05 18:16:02 +00001591}
drhd566c952016-02-25 21:19:03 +00001592#endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */
drh9bf755c2016-12-23 03:59:31 +00001593
1594/*
1595** Add a new name/number pair to a VList. This might require that the
1596** VList object be reallocated, so return the new VList. If an OOM
drhce1bbe52016-12-23 13:52:45 +00001597** error occurs, the original VList returned and the
drh9bf755c2016-12-23 03:59:31 +00001598** db->mallocFailed flag is set.
1599**
1600** A VList is really just an array of integers. To destroy a VList,
1601** simply pass it to sqlite3DbFree().
1602**
1603** The first integer is the number of integers allocated for the whole
1604** VList. The second integer is the number of integers actually used.
1605** Each name/number pair is encoded by subsequent groups of 3 or more
1606** integers.
1607**
drhce1bbe52016-12-23 13:52:45 +00001608** Each name/number pair starts with two integers which are the numeric
drh9bf755c2016-12-23 03:59:31 +00001609** value for the pair and the size of the name/number pair, respectively.
1610** The text name overlays one or more following integers. The text name
1611** is always zero-terminated.
drhce1bbe52016-12-23 13:52:45 +00001612**
1613** Conceptually:
1614**
1615** struct VList {
1616** int nAlloc; // Number of allocated slots
1617** int nUsed; // Number of used slots
1618** struct VListEntry {
1619** int iValue; // Value for this entry
1620** int nSlot; // Slots used by this entry
1621** // ... variable name goes here
1622** } a[0];
1623** }
1624**
1625** During code generation, pointers to the variable names within the
1626** VList are taken. When that happens, nAlloc is set to zero as an
1627** indication that the VList may never again be enlarged, since the
1628** accompanying realloc() would invalidate the pointers.
drh9bf755c2016-12-23 03:59:31 +00001629*/
1630VList *sqlite3VListAdd(
1631 sqlite3 *db, /* The database connection used for malloc() */
1632 VList *pIn, /* The input VList. Might be NULL */
1633 const char *zName, /* Name of symbol to add */
1634 int nName, /* Bytes of text in zName */
1635 int iVal /* Value to associate with zName */
1636){
1637 int nInt; /* number of sizeof(int) objects needed for zName */
drhce1bbe52016-12-23 13:52:45 +00001638 char *z; /* Pointer to where zName will be stored */
1639 int i; /* Index in pIn[] where zName is stored */
drh9bf755c2016-12-23 03:59:31 +00001640
1641 nInt = nName/4 + 3;
drhce1bbe52016-12-23 13:52:45 +00001642 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */
drh9bf755c2016-12-23 03:59:31 +00001643 if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1644 /* Enlarge the allocation */
drh0aa32312019-04-13 04:01:12 +00001645 sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt;
drh9bf755c2016-12-23 03:59:31 +00001646 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
drhce1bbe52016-12-23 13:52:45 +00001647 if( pOut==0 ) return pIn;
drh9bf755c2016-12-23 03:59:31 +00001648 if( pIn==0 ) pOut[1] = 2;
1649 pIn = pOut;
1650 pIn[0] = nAlloc;
1651 }
1652 i = pIn[1];
1653 pIn[i] = iVal;
1654 pIn[i+1] = nInt;
1655 z = (char*)&pIn[i+2];
1656 pIn[1] = i+nInt;
1657 assert( pIn[1]<=pIn[0] );
1658 memcpy(z, zName, nName);
1659 z[nName] = 0;
1660 return pIn;
1661}
1662
1663/*
1664** Return a pointer to the name of a variable in the given VList that
1665** has the value iVal. Or return a NULL if there is no such variable in
1666** the list
1667*/
1668const char *sqlite3VListNumToName(VList *pIn, int iVal){
1669 int i, mx;
1670 if( pIn==0 ) return 0;
1671 mx = pIn[1];
1672 i = 2;
1673 do{
1674 if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1675 i += pIn[i+1];
1676 }while( i<mx );
1677 return 0;
1678}
1679
1680/*
1681** Return the number of the variable named zName, if it is in VList.
1682** or return 0 if there is no such variable.
1683*/
1684int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1685 int i, mx;
1686 if( pIn==0 ) return 0;
1687 mx = pIn[1];
1688 i = 2;
1689 do{
1690 const char *z = (const char*)&pIn[i+2];
1691 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1692 i += pIn[i+1];
1693 }while( i<mx );
1694 return 0;
1695}