blob: 23338879c5cc2f798e98000f1dd4a3346ebdcb43 [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh0fd61352014-02-07 02:29:45 +000012** The code in this file implements the function that runs the
13** bytecode of a prepared statement.
drh75897232000-05-29 14:26:00 +000014**
drhac82fcf2002-09-08 17:23:41 +000015** Various scripts scan this source file in order to generate HTML
16** documentation, headers files, or other derived files. The formatting
17** of the code in this file is, therefore, important. See other comments
18** in this file for details. If in doubt, do not deviate from existing
19** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000020*/
21#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000022#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000023
24/*
drh2b4ded92010-09-27 21:09:31 +000025** Invoke this macro on memory cells just prior to changing the
26** value of the cell. This macro verifies that shallow copies are
drh0fd61352014-02-07 02:29:45 +000027** not misused. A shallow copy of a string or blob just copies a
28** pointer to the string or blob, not the content. If the original
29** is changed while the copy is still in use, the string or blob might
30** be changed out from under the copy. This macro verifies that nothing
drhb6e8fd12014-03-06 01:56:33 +000031** like that ever happens.
drh2b4ded92010-09-27 21:09:31 +000032*/
33#ifdef SQLITE_DEBUG
drhe4c88c02012-01-04 12:57:45 +000034# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
drh2b4ded92010-09-27 21:09:31 +000035#else
36# define memAboutToChange(P,M)
37#endif
38
39/*
drh487ab3c2001-11-08 00:45:21 +000040** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000041** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000042** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000043** working correctly. This variable has no function other than to
44** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000045*/
drh0f7eb612006-08-08 13:51:43 +000046#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000047int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000048#endif
drh487ab3c2001-11-08 00:45:21 +000049
drhf6038712004-02-08 18:07:34 +000050/*
51** When this global variable is positive, it gets decremented once before
drhe4c88c02012-01-04 12:57:45 +000052** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53** field of the sqlite3 structure is set in order to simulate an interrupt.
drhf6038712004-02-08 18:07:34 +000054**
55** This facility is used for testing purposes only. It does not function
56** in an ordinary build.
57*/
drh0f7eb612006-08-08 13:51:43 +000058#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000059int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000060#endif
drh1350b032002-02-27 19:00:20 +000061
danielk19777e18c252004-05-25 11:47:24 +000062/*
drh6bf89572004-11-03 16:27:01 +000063** The next global variable is incremented each type the OP_Sort opcode
64** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000065** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000066** has no function other than to help verify the correct operation of the
67** library.
68*/
drh0f7eb612006-08-08 13:51:43 +000069#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000070int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000071#endif
drh6bf89572004-11-03 16:27:01 +000072
73/*
drhae7e1512007-05-02 16:51:59 +000074** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000075** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000076** use this information to make sure that the zero-blob functionality
77** is working correctly. This variable has no function other than to
78** help verify the correct operation of the library.
79*/
80#ifdef SQLITE_TEST
81int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +000082static void updateMaxBlobsize(Mem *p){
83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84 sqlite3_max_blobsize = p->n;
85 }
86}
drhae7e1512007-05-02 16:51:59 +000087#endif
88
89/*
drh0fd61352014-02-07 02:29:45 +000090** The next global variable is incremented each time the OP_Found opcode
dan0ff297e2009-09-25 17:03:14 +000091** is executed. This is used to test whether or not the foreign key
92** operation implemented using OP_FkIsZero is working. This variable
93** has no function other than to help verify the correct operation of the
94** library.
95*/
96#ifdef SQLITE_TEST
97int sqlite3_found_count = 0;
98#endif
99
100/*
drhb7654112008-01-12 12:48:07 +0000101** Test a register to see if it exceeds the current maximum blob size.
102** If it does, record the new maximum blob size.
103*/
drh678ccce2008-03-31 18:19:54 +0000104#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
drhca48c902008-01-18 14:08:24 +0000105# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000106#else
107# define UPDATE_MAX_BLOBSIZE(P)
108#endif
109
110/*
drh5655c542014-02-19 19:14:34 +0000111** Invoke the VDBE coverage callback, if that callback is defined. This
112** feature is used for test suite validation only and does not appear an
113** production builds.
114**
115** M is an integer, 2 or 3, that indices how many different ways the
116** branch can go. It is usually 2. "I" is the direction the branch
117** goes. 0 means falls through. 1 means branch is taken. 2 means the
118** second alternative branch is taken.
drh4336b0e2014-08-05 00:53:51 +0000119**
120** iSrcLine is the source code line (from the __LINE__ macro) that
121** generated the VDBE instruction. This instrumentation assumes that all
122** source code is in a single file (the amalgamation). Special values 1
123** and 2 for the iSrcLine parameter mean that this particular branch is
124** always taken or never taken, respectively.
drh688852a2014-02-17 22:40:43 +0000125*/
126#if !defined(SQLITE_VDBE_COVERAGE)
127# define VdbeBranchTaken(I,M)
128#else
drh5655c542014-02-19 19:14:34 +0000129# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
130 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
131 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
132 M = iSrcLine;
133 /* Assert the truth of VdbeCoverageAlwaysTaken() and
134 ** VdbeCoverageNeverTaken() */
135 assert( (M & I)==I );
136 }else{
137 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
138 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
139 iSrcLine,I,M);
140 }
141 }
drh688852a2014-02-17 22:40:43 +0000142#endif
143
144/*
drh9cbf3422008-01-17 16:22:13 +0000145** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000146** already. Return non-zero if a malloc() fails.
147*/
drhb21c8cd2007-08-21 19:33:56 +0000148#define Stringify(P, enc) \
drhbd9507c2014-08-23 17:21:37 +0000149 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
drhf4479502004-05-27 03:12:53 +0000150 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000151
152/*
danielk1977bd7e4602004-05-24 07:34:48 +0000153** An ephemeral string value (signified by the MEM_Ephem flag) contains
154** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000155** is responsible for deallocating that string. Because the register
156** does not control the string, it might be deleted without the register
157** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000158**
159** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000160** string that the register itself controls. In other words, it
drhc91b2fd2014-03-01 18:13:23 +0000161** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
danielk1977bd7e4602004-05-24 07:34:48 +0000162*/
drhb21c8cd2007-08-21 19:33:56 +0000163#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000164 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000165 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000166
dan689ab892011-08-12 15:02:00 +0000167/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
drh0fd61352014-02-07 02:29:45 +0000168#define isSorter(x) ((x)->pSorter!=0)
dan689ab892011-08-12 15:02:00 +0000169
danielk19771cc5ed82007-05-16 17:28:43 +0000170/*
drhdfe88ec2008-11-03 20:55:06 +0000171** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000172** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000173*/
drhdfe88ec2008-11-03 20:55:06 +0000174static VdbeCursor *allocateCursor(
175 Vdbe *p, /* The virtual machine */
176 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000177 int nField, /* Number of fields in the table or index */
drhe4c88c02012-01-04 12:57:45 +0000178 int iDb, /* Database the cursor belongs to, or -1 */
drh3e9ca092009-09-08 01:14:48 +0000179 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
danielk1977cd3e8f72008-03-25 09:47:35 +0000180){
181 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000182 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000183 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000184 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000185 **
186 ** * Sometimes cursor numbers are used for a couple of different
187 ** purposes in a vdbe program. The different uses might require
188 ** different sized allocations. Memory cells provide growable
189 ** allocations.
190 **
191 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
192 ** be freed lazily via the sqlite3_release_memory() API. This
193 ** minimizes the number of malloc calls made by the system.
194 **
195 ** Memory cells for cursors are allocated at the top of the address
196 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
197 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
198 */
199 Mem *pMem = &p->aMem[p->nMem-iCur];
200
danielk19775f096132008-03-28 15:44:09 +0000201 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000202 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000203 nByte =
drh5cc10232013-11-21 01:04:02 +0000204 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
205 (isBtreeCursor?sqlite3BtreeCursorSize():0);
danielk1977cd3e8f72008-03-25 09:47:35 +0000206
drh290c1942004-08-21 17:54:45 +0000207 assert( iCur<p->nCursor );
208 if( p->apCsr[iCur] ){
danielk1977be718892006-06-23 08:05:19 +0000209 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000210 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000211 }
drh322f2852014-09-19 00:43:39 +0000212 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
drhdfe88ec2008-11-03 20:55:06 +0000213 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhf25a5072009-11-18 23:01:25 +0000214 memset(pCx, 0, sizeof(VdbeCursor));
danielk197794eb6a12005-12-15 15:22:08 +0000215 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000216 pCx->nField = nField;
drhb53a5a92014-10-12 22:37:22 +0000217 pCx->aOffset = &pCx->aType[nField];
danielk1977cd3e8f72008-03-25 09:47:35 +0000218 if( isBtreeCursor ){
drhdfe88ec2008-11-03 20:55:06 +0000219 pCx->pCursor = (BtCursor*)
drh5cc10232013-11-21 01:04:02 +0000220 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
drhf25a5072009-11-18 23:01:25 +0000221 sqlite3BtreeCursorZero(pCx->pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000222 }
danielk197794eb6a12005-12-15 15:22:08 +0000223 }
drh4774b132004-06-12 20:12:51 +0000224 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000225}
226
danielk19773d1bfea2004-05-14 11:00:53 +0000227/*
drh29d72102006-02-09 22:13:41 +0000228** Try to convert a value into a numeric representation if we can
229** do so without loss of information. In other words, if the string
230** looks like a number, convert it into a number. If it does not
231** look like a number, leave it alone.
drhbd9507c2014-08-23 17:21:37 +0000232**
233** If the bTryForInt flag is true, then extra effort is made to give
234** an integer representation. Strings that look like floating point
235** values but which have no fractional component (example: '48.00')
236** will have a MEM_Int representation when bTryForInt is true.
237**
238** If bTryForInt is false, then if the input string contains a decimal
239** point or exponential notation, the result is only MEM_Real, even
240** if there is an exact integer representation of the quantity.
drh29d72102006-02-09 22:13:41 +0000241*/
drhbd9507c2014-08-23 17:21:37 +0000242static void applyNumericAffinity(Mem *pRec, int bTryForInt){
drh975b4c62014-07-26 16:47:23 +0000243 double rValue;
244 i64 iValue;
245 u8 enc = pRec->enc;
drh11a6eee2014-09-19 22:01:54 +0000246 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
drh975b4c62014-07-26 16:47:23 +0000247 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
248 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
249 pRec->u.i = iValue;
250 pRec->flags |= MEM_Int;
251 }else{
drh74eaba42014-09-18 17:52:15 +0000252 pRec->u.r = rValue;
drh975b4c62014-07-26 16:47:23 +0000253 pRec->flags |= MEM_Real;
drhbd9507c2014-08-23 17:21:37 +0000254 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000255 }
256}
257
258/*
drh8a512562005-11-14 22:29:05 +0000259** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000260**
drh8a512562005-11-14 22:29:05 +0000261** SQLITE_AFF_INTEGER:
262** SQLITE_AFF_REAL:
263** SQLITE_AFF_NUMERIC:
264** Try to convert pRec to an integer representation or a
265** floating-point representation if an integer representation
266** is not possible. Note that the integer representation is
267** always preferred, even if the affinity is REAL, because
268** an integer representation is more space efficient on disk.
269**
270** SQLITE_AFF_TEXT:
271** Convert pRec to a text representation.
272**
drh05883a32015-06-02 15:32:08 +0000273** SQLITE_AFF_BLOB:
drh8a512562005-11-14 22:29:05 +0000274** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000275*/
drh17435752007-08-16 04:30:38 +0000276static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000277 Mem *pRec, /* The value to apply affinity to */
278 char affinity, /* The affinity to be applied */
279 u8 enc /* Use this text encoding */
280){
drh7ea31cc2014-09-18 14:36:00 +0000281 if( affinity>=SQLITE_AFF_NUMERIC ){
drh8a512562005-11-14 22:29:05 +0000282 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
283 || affinity==SQLITE_AFF_NUMERIC );
drhbd9507c2014-08-23 17:21:37 +0000284 if( (pRec->flags & MEM_Int)==0 ){
285 if( (pRec->flags & MEM_Real)==0 ){
drh11a6eee2014-09-19 22:01:54 +0000286 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
drhbd9507c2014-08-23 17:21:37 +0000287 }else{
288 sqlite3VdbeIntegerAffinity(pRec);
289 }
drh17c40292004-07-21 02:53:29 +0000290 }
drh7ea31cc2014-09-18 14:36:00 +0000291 }else if( affinity==SQLITE_AFF_TEXT ){
292 /* Only attempt the conversion to TEXT if there is an integer or real
293 ** representation (blob and NULL do not get converted) but no string
294 ** representation.
295 */
296 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
297 sqlite3VdbeMemStringify(pRec, enc, 1);
298 }
dandde548c2015-05-19 19:44:25 +0000299 pRec->flags &= ~(MEM_Real|MEM_Int);
danielk19773d1bfea2004-05-14 11:00:53 +0000300 }
301}
302
danielk1977aee18ef2005-03-09 12:26:50 +0000303/*
drh29d72102006-02-09 22:13:41 +0000304** Try to convert the type of a function argument or a result column
305** into a numeric representation. Use either INTEGER or REAL whichever
306** is appropriate. But only do the conversion if it is possible without
307** loss of information and return the revised type of the argument.
drh29d72102006-02-09 22:13:41 +0000308*/
309int sqlite3_value_numeric_type(sqlite3_value *pVal){
drh1b27b8c2014-02-10 03:21:57 +0000310 int eType = sqlite3_value_type(pVal);
311 if( eType==SQLITE_TEXT ){
312 Mem *pMem = (Mem*)pVal;
drhbd9507c2014-08-23 17:21:37 +0000313 applyNumericAffinity(pMem, 0);
drh1b27b8c2014-02-10 03:21:57 +0000314 eType = sqlite3_value_type(pVal);
drhe5a8a1d2010-11-18 12:31:24 +0000315 }
drh1b27b8c2014-02-10 03:21:57 +0000316 return eType;
drh29d72102006-02-09 22:13:41 +0000317}
318
319/*
danielk1977aee18ef2005-03-09 12:26:50 +0000320** Exported version of applyAffinity(). This one works on sqlite3_value*,
321** not the internal Mem* type.
322*/
danielk19771e536952007-08-16 10:09:01 +0000323void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000324 sqlite3_value *pVal,
325 u8 affinity,
326 u8 enc
327){
drhb21c8cd2007-08-21 19:33:56 +0000328 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000329}
330
drh3d1d90a2014-03-24 15:00:15 +0000331/*
drhf1a89ed2014-08-23 17:41:15 +0000332** pMem currently only holds a string type (or maybe a BLOB that we can
333** interpret as a string if we want to). Compute its corresponding
drh74eaba42014-09-18 17:52:15 +0000334** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
drhf1a89ed2014-08-23 17:41:15 +0000335** accordingly.
336*/
337static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
338 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
339 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
drh74eaba42014-09-18 17:52:15 +0000340 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
drhf1a89ed2014-08-23 17:41:15 +0000341 return 0;
342 }
343 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
344 return MEM_Int;
345 }
346 return MEM_Real;
347}
348
349/*
drh3d1d90a2014-03-24 15:00:15 +0000350** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
351** none.
352**
353** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
drh74eaba42014-09-18 17:52:15 +0000354** But it does set pMem->u.r and pMem->u.i appropriately.
drh3d1d90a2014-03-24 15:00:15 +0000355*/
356static u16 numericType(Mem *pMem){
357 if( pMem->flags & (MEM_Int|MEM_Real) ){
358 return pMem->flags & (MEM_Int|MEM_Real);
359 }
360 if( pMem->flags & (MEM_Str|MEM_Blob) ){
drhf1a89ed2014-08-23 17:41:15 +0000361 return computeNumericType(pMem);
drh3d1d90a2014-03-24 15:00:15 +0000362 }
363 return 0;
364}
365
danielk1977b5402fb2005-01-12 07:15:04 +0000366#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000367/*
danielk1977ca6b2912004-05-21 10:49:47 +0000368** Write a nice string representation of the contents of cell pMem
369** into buffer zBuf, length nBuf.
370*/
drh74161702006-02-24 02:53:49 +0000371void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000372 char *zCsr = zBuf;
373 int f = pMem->flags;
374
drh57196282004-10-06 15:41:16 +0000375 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000376
danielk1977ca6b2912004-05-21 10:49:47 +0000377 if( f&MEM_Blob ){
378 int i;
379 char c;
380 if( f & MEM_Dyn ){
381 c = 'z';
382 assert( (f & (MEM_Static|MEM_Ephem))==0 );
383 }else if( f & MEM_Static ){
384 c = 't';
385 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
386 }else if( f & MEM_Ephem ){
387 c = 'e';
388 assert( (f & (MEM_Static|MEM_Dyn))==0 );
389 }else{
390 c = 's';
391 }
392
drh5bb3eb92007-05-04 13:15:55 +0000393 sqlite3_snprintf(100, zCsr, "%c", c);
drhea678832008-12-10 19:26:22 +0000394 zCsr += sqlite3Strlen30(zCsr);
drh5bb3eb92007-05-04 13:15:55 +0000395 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000396 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000397 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000398 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000399 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000400 }
401 for(i=0; i<16 && i<pMem->n; i++){
402 char z = pMem->z[i];
403 if( z<32 || z>126 ) *zCsr++ = '.';
404 else *zCsr++ = z;
405 }
406
drhe718efe2007-05-10 21:14:03 +0000407 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000408 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000409 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000410 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000411 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000412 }
danielk1977b1bc9532004-05-22 03:05:33 +0000413 *zCsr = '\0';
414 }else if( f & MEM_Str ){
415 int j, k;
416 zBuf[0] = ' ';
417 if( f & MEM_Dyn ){
418 zBuf[1] = 'z';
419 assert( (f & (MEM_Static|MEM_Ephem))==0 );
420 }else if( f & MEM_Static ){
421 zBuf[1] = 't';
422 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
423 }else if( f & MEM_Ephem ){
424 zBuf[1] = 'e';
425 assert( (f & (MEM_Static|MEM_Dyn))==0 );
426 }else{
427 zBuf[1] = 's';
428 }
429 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000430 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000431 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000432 zBuf[k++] = '[';
433 for(j=0; j<15 && j<pMem->n; j++){
434 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000435 if( c>=0x20 && c<0x7f ){
436 zBuf[k++] = c;
437 }else{
438 zBuf[k++] = '.';
439 }
440 }
441 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000442 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000443 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000444 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000445 }
danielk1977ca6b2912004-05-21 10:49:47 +0000446}
447#endif
448
drh5b6afba2008-01-05 16:29:28 +0000449#ifdef SQLITE_DEBUG
450/*
451** Print the value of a register for tracing purposes:
452*/
drh84e55a82013-11-13 17:58:23 +0000453static void memTracePrint(Mem *p){
drha5750cf2014-02-07 13:20:31 +0000454 if( p->flags & MEM_Undefined ){
drh84e55a82013-11-13 17:58:23 +0000455 printf(" undefined");
drh953f7612012-12-07 22:18:54 +0000456 }else if( p->flags & MEM_Null ){
drh84e55a82013-11-13 17:58:23 +0000457 printf(" NULL");
drh5b6afba2008-01-05 16:29:28 +0000458 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
drh84e55a82013-11-13 17:58:23 +0000459 printf(" si:%lld", p->u.i);
drh5b6afba2008-01-05 16:29:28 +0000460 }else if( p->flags & MEM_Int ){
drh84e55a82013-11-13 17:58:23 +0000461 printf(" i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000462#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000463 }else if( p->flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +0000464 printf(" r:%g", p->u.r);
drh0b3bf922009-06-15 20:45:34 +0000465#endif
drh733bf1b2009-04-22 00:47:00 +0000466 }else if( p->flags & MEM_RowSet ){
drh84e55a82013-11-13 17:58:23 +0000467 printf(" (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000468 }else{
469 char zBuf[200];
470 sqlite3VdbeMemPrettyPrint(p, zBuf);
drh84e55a82013-11-13 17:58:23 +0000471 printf(" %s", zBuf);
drh5b6afba2008-01-05 16:29:28 +0000472 }
473}
drh84e55a82013-11-13 17:58:23 +0000474static void registerTrace(int iReg, Mem *p){
475 printf("REG[%d] = ", iReg);
476 memTracePrint(p);
477 printf("\n");
drh5b6afba2008-01-05 16:29:28 +0000478}
479#endif
480
481#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000482# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
drh5b6afba2008-01-05 16:29:28 +0000483#else
484# define REGISTER_TRACE(R,M)
485#endif
486
danielk197784ac9d02004-05-18 09:58:06 +0000487
drh7b396862003-01-01 23:06:20 +0000488#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000489
490/*
491** hwtime.h contains inline assembler code for implementing
492** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000493*/
shane9bcbdad2008-05-29 20:22:37 +0000494#include "hwtime.h"
495
drh7b396862003-01-01 23:06:20 +0000496#endif
497
danielk1977fd7f0452008-12-17 17:30:26 +0000498#ifndef NDEBUG
499/*
500** This function is only called from within an assert() expression. It
501** checks that the sqlite3.nTransaction variable is correctly set to
502** the number of non-transaction savepoints currently in the
503** linked list starting at sqlite3.pSavepoint.
504**
505** Usage:
506**
507** assert( checkSavepointCount(db) );
508*/
509static int checkSavepointCount(sqlite3 *db){
510 int n = 0;
511 Savepoint *p;
512 for(p=db->pSavepoint; p; p=p->pNext) n++;
513 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
514 return 1;
515}
516#endif
517
drh27a348c2015-04-13 19:14:06 +0000518/*
519** Return the register of pOp->p2 after first preparing it to be
520** overwritten with an integer value.
521*/
522static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
523 Mem *pOut;
524 assert( pOp->p2>0 );
525 assert( pOp->p2<=(p->nMem-p->nCursor) );
526 pOut = &p->aMem[pOp->p2];
527 memAboutToChange(p, pOut);
528 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
529 pOut->flags = MEM_Int;
530 return pOut;
531}
532
drhb9755982010-07-24 16:34:37 +0000533
534/*
drh0fd61352014-02-07 02:29:45 +0000535** Execute as much of a VDBE program as we can.
536** This is the core of sqlite3_step().
drhb86ccfb2003-01-28 23:13:10 +0000537*/
danielk19774adee202004-05-08 08:23:19 +0000538int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000539 Vdbe *p /* The VDBE */
540){
drhbbe879d2009-11-14 18:04:35 +0000541 Op *aOp = p->aOp; /* Copy of p->aOp */
drhf56fa462015-04-13 21:39:54 +0000542 Op *pOp = aOp; /* Current operation */
drh6dc41482015-04-16 17:31:02 +0000543#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
544 Op *pOrigOp; /* Value of pOp at the top of the loop */
545#endif
drhb86ccfb2003-01-28 23:13:10 +0000546 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000547 sqlite3 *db = p->db; /* The database */
drhcdf011d2011-04-04 21:25:28 +0000548 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
drh8079a0d2006-01-12 17:20:50 +0000549 u8 encoding = ENC(db); /* The database encoding */
drhbf159fa2013-06-25 22:01:22 +0000550 int iCompare = 0; /* Result of last OP_Compare operation */
551 unsigned nVmStep = 0; /* Number of virtual machine steps */
drh49afe3a2013-07-10 03:05:14 +0000552#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
drh323df792013-08-05 19:11:29 +0000553 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
drh49afe3a2013-07-10 03:05:14 +0000554#endif
drha6c2ed92009-11-14 23:22:23 +0000555 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000556 Mem *pIn1 = 0; /* 1st input operand */
557 Mem *pIn2 = 0; /* 2nd input operand */
558 Mem *pIn3 = 0; /* 3rd input operand */
559 Mem *pOut = 0; /* Output operand */
shanebe217792009-03-05 04:20:31 +0000560 int *aPermute = 0; /* Permutation of columns for OP_Compare */
drh99a66922011-05-13 18:51:42 +0000561 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
drhb86ccfb2003-01-28 23:13:10 +0000562#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000563 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000564#endif
drh856c1032009-06-02 15:21:42 +0000565 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000566
drhca48c902008-01-18 14:08:24 +0000567 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
drhbdaec522011-04-04 00:14:43 +0000568 sqlite3VdbeEnter(p);
danielk19772e588c72005-12-09 14:25:08 +0000569 if( p->rc==SQLITE_NOMEM ){
570 /* This happens if a malloc() inside a call to sqlite3_column_text() or
571 ** sqlite3_column_text16() failed. */
572 goto no_mem;
573 }
drhcbd8db32015-08-20 17:18:32 +0000574 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
drh1713afb2013-06-28 01:24:57 +0000575 assert( p->bIsReader || p->readOnly!=0 );
drh3a840692003-01-29 22:58:26 +0000576 p->rc = SQLITE_OK;
drh95a7b3e2013-09-16 12:57:19 +0000577 p->iCurrentTime = 0;
drhb86ccfb2003-01-28 23:13:10 +0000578 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000579 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000580 db->busyHandler.nBusy = 0;
drh0fd61352014-02-07 02:29:45 +0000581 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh602c2372007-03-01 00:29:13 +0000582 sqlite3VdbeIOTraceSql(p);
drh0d1961e2013-07-25 16:27:51 +0000583#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
584 if( db->xProgress ){
drh6cbbdb02015-06-24 14:36:27 +0000585 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
drh0d1961e2013-07-25 16:27:51 +0000586 assert( 0 < db->nProgressOps );
drh6cbbdb02015-06-24 14:36:27 +0000587 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
drh0d1961e2013-07-25 16:27:51 +0000588 }
589#endif
drh3c23a882007-01-09 14:01:13 +0000590#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000591 sqlite3BeginBenignMalloc();
drh84e55a82013-11-13 17:58:23 +0000592 if( p->pc==0
593 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
594 ){
drh3c23a882007-01-09 14:01:13 +0000595 int i;
drh84e55a82013-11-13 17:58:23 +0000596 int once = 1;
drh3c23a882007-01-09 14:01:13 +0000597 sqlite3VdbePrintSql(p);
drh84e55a82013-11-13 17:58:23 +0000598 if( p->db->flags & SQLITE_VdbeListing ){
599 printf("VDBE Program Listing:\n");
600 for(i=0; i<p->nOp; i++){
601 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
602 }
drh3c23a882007-01-09 14:01:13 +0000603 }
drh84e55a82013-11-13 17:58:23 +0000604 if( p->db->flags & SQLITE_VdbeEQP ){
605 for(i=0; i<p->nOp; i++){
606 if( aOp[i].opcode==OP_Explain ){
607 if( once ) printf("VDBE Query Plan:\n");
608 printf("%s\n", aOp[i].p4.z);
609 once = 0;
610 }
611 }
612 }
613 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
drh3c23a882007-01-09 14:01:13 +0000614 }
danielk19772d1d86f2008-06-20 14:59:51 +0000615 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000616#endif
drhf56fa462015-04-13 21:39:54 +0000617 for(pOp=&aOp[p->pc]; rc==SQLITE_OK; pOp++){
618 assert( pOp>=aOp && pOp<&aOp[p->nOp]);
drh17435752007-08-16 04:30:38 +0000619 if( db->mallocFailed ) goto no_mem;
drh7b396862003-01-01 23:06:20 +0000620#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000621 start = sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000622#endif
drhbf159fa2013-06-25 22:01:22 +0000623 nVmStep++;
dan6f9702e2014-11-01 20:38:06 +0000624#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
drhf56fa462015-04-13 21:39:54 +0000625 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
dan6f9702e2014-11-01 20:38:06 +0000626#endif
drh6e142f52000-06-08 13:36:40 +0000627
danielk19778b60e0f2005-01-12 09:10:39 +0000628 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000629 */
danielk19778b60e0f2005-01-12 09:10:39 +0000630#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000631 if( db->flags & SQLITE_VdbeTrace ){
drhf56fa462015-04-13 21:39:54 +0000632 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
drh75897232000-05-29 14:26:00 +0000633 }
drh3f7d4e42004-07-24 14:35:58 +0000634#endif
635
drh6e142f52000-06-08 13:36:40 +0000636
drhf6038712004-02-08 18:07:34 +0000637 /* Check to see if we need to simulate an interrupt. This only happens
638 ** if we have a special test build.
639 */
640#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000641 if( sqlite3_interrupt_count>0 ){
642 sqlite3_interrupt_count--;
643 if( sqlite3_interrupt_count==0 ){
644 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000645 }
646 }
647#endif
648
drh3c657212009-11-17 23:59:58 +0000649 /* Sanity checking on other operands */
650#ifdef SQLITE_DEBUG
drh27a348c2015-04-13 19:14:06 +0000651 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
drh3c657212009-11-17 23:59:58 +0000652 if( (pOp->opflags & OPFLG_IN1)!=0 ){
653 assert( pOp->p1>0 );
dan3bc9f742013-08-15 16:18:39 +0000654 assert( pOp->p1<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000655 assert( memIsValid(&aMem[pOp->p1]) );
drh75fd0542014-03-01 16:24:44 +0000656 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
drh3c657212009-11-17 23:59:58 +0000657 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
658 }
659 if( (pOp->opflags & OPFLG_IN2)!=0 ){
660 assert( pOp->p2>0 );
dan3bc9f742013-08-15 16:18:39 +0000661 assert( pOp->p2<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000662 assert( memIsValid(&aMem[pOp->p2]) );
drh75fd0542014-03-01 16:24:44 +0000663 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
drh3c657212009-11-17 23:59:58 +0000664 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
665 }
666 if( (pOp->opflags & OPFLG_IN3)!=0 ){
667 assert( pOp->p3>0 );
dan3bc9f742013-08-15 16:18:39 +0000668 assert( pOp->p3<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000669 assert( memIsValid(&aMem[pOp->p3]) );
drh75fd0542014-03-01 16:24:44 +0000670 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
drh3c657212009-11-17 23:59:58 +0000671 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
672 }
673 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
674 assert( pOp->p2>0 );
dan3bc9f742013-08-15 16:18:39 +0000675 assert( pOp->p2<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000676 memAboutToChange(p, &aMem[pOp->p2]);
drh3c657212009-11-17 23:59:58 +0000677 }
678 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
679 assert( pOp->p3>0 );
dan3bc9f742013-08-15 16:18:39 +0000680 assert( pOp->p3<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000681 memAboutToChange(p, &aMem[pOp->p3]);
drh3c657212009-11-17 23:59:58 +0000682 }
683#endif
drh6dc41482015-04-16 17:31:02 +0000684#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
685 pOrigOp = pOp;
686#endif
drh93952eb2009-11-13 19:43:43 +0000687
drh75897232000-05-29 14:26:00 +0000688 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000689
drh5e00f6c2001-09-13 13:46:56 +0000690/*****************************************************************************
691** What follows is a massive switch statement where each case implements a
692** separate instruction in the virtual machine. If we follow the usual
693** indentation conventions, each case should be indented by 6 spaces. But
694** that is a lot of wasted space on the left margin. So the code within
695** the switch statement will break with convention and be flush-left. Another
696** big comment (similar to this one) will mark the point in the code where
697** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000698**
699** The formatting of each case is important. The makefile for SQLite
700** generates two C files "opcodes.h" and "opcodes.c" by scanning this
701** file looking for lines that begin with "case OP_". The opcodes.h files
702** will be filled with #defines that give unique integer values to each
703** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000704** each string is the symbolic name for the corresponding opcode. If the
705** case statement is followed by a comment of the form "/# same as ... #/"
706** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000707**
drh9cbf3422008-01-17 16:22:13 +0000708** Other keywords in the comment that follows each case are used to
709** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
drh27a348c2015-04-13 19:14:06 +0000710** Keywords include: in1, in2, in3, out2, out3. See
drh9cbf3422008-01-17 16:22:13 +0000711** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000712**
drhac82fcf2002-09-08 17:23:41 +0000713** Documentation about VDBE opcodes is generated by scanning this file
714** for lines of that contain "Opcode:". That line and all subsequent
715** comment lines are used in the generation of the opcode.html documentation
716** file.
717**
718** SUMMARY:
719**
720** Formatting is important to scripts that scan this file.
721** Do not deviate from the formatting style currently in use.
722**
drh5e00f6c2001-09-13 13:46:56 +0000723*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000724
drh9cbf3422008-01-17 16:22:13 +0000725/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000726**
727** An unconditional jump to address P2.
728** The next instruction executed will be
729** the one at index P2 from the beginning of
730** the program.
drhfe705102014-03-06 13:38:37 +0000731**
732** The P1 parameter is not actually used by this opcode. However, it
733** is sometimes set to 1 instead of 0 as a hint to the command-line shell
734** that this Goto is the bottom of a loop and that the lines from P2 down
735** to the current line should be indented for EXPLAIN output.
drh5e00f6c2001-09-13 13:46:56 +0000736*/
drh9cbf3422008-01-17 16:22:13 +0000737case OP_Goto: { /* jump */
drhf56fa462015-04-13 21:39:54 +0000738jump_to_p2_and_check_for_interrupt:
739 pOp = &aOp[pOp->p2 - 1];
drh49afe3a2013-07-10 03:05:14 +0000740
741 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
742 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
743 ** completion. Check to see if sqlite3_interrupt() has been called
744 ** or if the progress callback needs to be invoked.
745 **
746 ** This code uses unstructured "goto" statements and does not look clean.
747 ** But that is not due to sloppy coding habits. The code is written this
748 ** way for performance, to avoid having to run the interrupt and progress
749 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
750 ** faster according to "valgrind --tool=cachegrind" */
751check_for_interrupt:
drh0fd61352014-02-07 02:29:45 +0000752 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh49afe3a2013-07-10 03:05:14 +0000753#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
754 /* Call the progress callback if it is configured and the required number
755 ** of VDBE ops have been executed (either since this invocation of
756 ** sqlite3VdbeExec() or since last time the progress callback was called).
757 ** If the progress callback returns non-zero, exit the virtual machine with
758 ** a return code SQLITE_ABORT.
759 */
drh0d1961e2013-07-25 16:27:51 +0000760 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
drh400fcba2013-11-14 00:09:48 +0000761 assert( db->nProgressOps!=0 );
762 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
763 if( db->xProgress(db->pProgressArg) ){
drh49afe3a2013-07-10 03:05:14 +0000764 rc = SQLITE_INTERRUPT;
765 goto vdbe_error_halt;
766 }
drh49afe3a2013-07-10 03:05:14 +0000767 }
768#endif
769
drh5e00f6c2001-09-13 13:46:56 +0000770 break;
771}
drh75897232000-05-29 14:26:00 +0000772
drh2eb95372008-06-06 15:04:36 +0000773/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000774**
drh2eb95372008-06-06 15:04:36 +0000775** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000776** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000777*/
drhb8475df2011-12-09 16:21:19 +0000778case OP_Gosub: { /* jump */
dan3bc9f742013-08-15 16:18:39 +0000779 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
drh3c657212009-11-17 23:59:58 +0000780 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000781 assert( VdbeMemDynamic(pIn1)==0 );
drh2b4ded92010-09-27 21:09:31 +0000782 memAboutToChange(p, pIn1);
drh2eb95372008-06-06 15:04:36 +0000783 pIn1->flags = MEM_Int;
drhf56fa462015-04-13 21:39:54 +0000784 pIn1->u.i = (int)(pOp-aOp);
drh2eb95372008-06-06 15:04:36 +0000785 REGISTER_TRACE(pOp->p1, pIn1);
drhf56fa462015-04-13 21:39:54 +0000786
787 /* Most jump operations do a goto to this spot in order to update
788 ** the pOp pointer. */
789jump_to_p2:
790 pOp = &aOp[pOp->p2 - 1];
drh8c74a8c2002-08-25 19:20:40 +0000791 break;
792}
793
drh2eb95372008-06-06 15:04:36 +0000794/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000795**
drh81cf13e2014-02-07 18:27:53 +0000796** Jump to the next instruction after the address in register P1. After
797** the jump, register P1 becomes undefined.
drh8c74a8c2002-08-25 19:20:40 +0000798*/
drh2eb95372008-06-06 15:04:36 +0000799case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000800 pIn1 = &aMem[pOp->p1];
drh81cf13e2014-02-07 18:27:53 +0000801 assert( pIn1->flags==MEM_Int );
drhf56fa462015-04-13 21:39:54 +0000802 pOp = &aOp[pIn1->u.i];
drh81cf13e2014-02-07 18:27:53 +0000803 pIn1->flags = MEM_Undefined;
drh8c74a8c2002-08-25 19:20:40 +0000804 break;
805}
806
drhed71a832014-02-07 19:18:10 +0000807/* Opcode: InitCoroutine P1 P2 P3 * *
drh81cf13e2014-02-07 18:27:53 +0000808**
drh5dad9a32014-07-25 18:37:42 +0000809** Set up register P1 so that it will Yield to the coroutine
drhed71a832014-02-07 19:18:10 +0000810** located at address P3.
811**
drh5dad9a32014-07-25 18:37:42 +0000812** If P2!=0 then the coroutine implementation immediately follows
813** this opcode. So jump over the coroutine implementation to
drhed71a832014-02-07 19:18:10 +0000814** address P2.
drh5dad9a32014-07-25 18:37:42 +0000815**
816** See also: EndCoroutine
drh81cf13e2014-02-07 18:27:53 +0000817*/
818case OP_InitCoroutine: { /* jump */
drhed71a832014-02-07 19:18:10 +0000819 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
820 assert( pOp->p2>=0 && pOp->p2<p->nOp );
821 assert( pOp->p3>=0 && pOp->p3<p->nOp );
drh81cf13e2014-02-07 18:27:53 +0000822 pOut = &aMem[pOp->p1];
drhed71a832014-02-07 19:18:10 +0000823 assert( !VdbeMemDynamic(pOut) );
824 pOut->u.i = pOp->p3 - 1;
drh81cf13e2014-02-07 18:27:53 +0000825 pOut->flags = MEM_Int;
drhf56fa462015-04-13 21:39:54 +0000826 if( pOp->p2 ) goto jump_to_p2;
drh81cf13e2014-02-07 18:27:53 +0000827 break;
828}
829
830/* Opcode: EndCoroutine P1 * * * *
831**
drhbc5cf382014-08-06 01:08:07 +0000832** The instruction at the address in register P1 is a Yield.
drh5dad9a32014-07-25 18:37:42 +0000833** Jump to the P2 parameter of that Yield.
drh81cf13e2014-02-07 18:27:53 +0000834** After the jump, register P1 becomes undefined.
drh5dad9a32014-07-25 18:37:42 +0000835**
836** See also: InitCoroutine
drh81cf13e2014-02-07 18:27:53 +0000837*/
838case OP_EndCoroutine: { /* in1 */
839 VdbeOp *pCaller;
840 pIn1 = &aMem[pOp->p1];
841 assert( pIn1->flags==MEM_Int );
842 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
843 pCaller = &aOp[pIn1->u.i];
844 assert( pCaller->opcode==OP_Yield );
845 assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
drhf56fa462015-04-13 21:39:54 +0000846 pOp = &aOp[pCaller->p2 - 1];
drh81cf13e2014-02-07 18:27:53 +0000847 pIn1->flags = MEM_Undefined;
848 break;
849}
850
851/* Opcode: Yield P1 P2 * * *
drhe00ee6e2008-06-20 15:24:01 +0000852**
drh5dad9a32014-07-25 18:37:42 +0000853** Swap the program counter with the value in register P1. This
854** has the effect of yielding to a coroutine.
drh81cf13e2014-02-07 18:27:53 +0000855**
drh5dad9a32014-07-25 18:37:42 +0000856** If the coroutine that is launched by this instruction ends with
857** Yield or Return then continue to the next instruction. But if
858** the coroutine launched by this instruction ends with
859** EndCoroutine, then jump to P2 rather than continuing with the
860** next instruction.
861**
862** See also: InitCoroutine
drhe00ee6e2008-06-20 15:24:01 +0000863*/
drh81cf13e2014-02-07 18:27:53 +0000864case OP_Yield: { /* in1, jump */
drhe00ee6e2008-06-20 15:24:01 +0000865 int pcDest;
drh3c657212009-11-17 23:59:58 +0000866 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000867 assert( VdbeMemDynamic(pIn1)==0 );
drhe00ee6e2008-06-20 15:24:01 +0000868 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000869 pcDest = (int)pIn1->u.i;
drhf56fa462015-04-13 21:39:54 +0000870 pIn1->u.i = (int)(pOp - aOp);
drhe00ee6e2008-06-20 15:24:01 +0000871 REGISTER_TRACE(pOp->p1, pIn1);
drhf56fa462015-04-13 21:39:54 +0000872 pOp = &aOp[pcDest];
drhe00ee6e2008-06-20 15:24:01 +0000873 break;
874}
875
drhf9c8ce32013-11-05 13:33:55 +0000876/* Opcode: HaltIfNull P1 P2 P3 P4 P5
drh0fd61352014-02-07 02:29:45 +0000877** Synopsis: if r[P3]=null halt
drh5053a792009-02-20 03:02:23 +0000878**
drhef8662b2011-06-20 21:47:58 +0000879** Check the value in register P3. If it is NULL then Halt using
drh5053a792009-02-20 03:02:23 +0000880** parameter P1, P2, and P4 as if this were a Halt instruction. If the
881** value in register P3 is not NULL, then this routine is a no-op.
drhf9c8ce32013-11-05 13:33:55 +0000882** The P5 parameter should be 1.
drh5053a792009-02-20 03:02:23 +0000883*/
884case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000885 pIn3 = &aMem[pOp->p3];
drh5053a792009-02-20 03:02:23 +0000886 if( (pIn3->flags & MEM_Null)==0 ) break;
887 /* Fall through into OP_Halt */
888}
drhe00ee6e2008-06-20 15:24:01 +0000889
drhf9c8ce32013-11-05 13:33:55 +0000890/* Opcode: Halt P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +0000891**
drh3d4501e2008-12-04 20:40:10 +0000892** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000893** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000894**
drh92f02c32004-09-02 14:57:08 +0000895** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
896** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
897** For errors, it can be some other value. If P1!=0 then P2 will determine
898** whether or not to rollback the current transaction. Do not rollback
899** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
900** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000901** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000902**
drh66a51672008-01-03 00:01:23 +0000903** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000904**
drhf9c8ce32013-11-05 13:33:55 +0000905** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
906**
907** 0: (no change)
908** 1: NOT NULL contraint failed: P4
909** 2: UNIQUE constraint failed: P4
910** 3: CHECK constraint failed: P4
911** 4: FOREIGN KEY constraint failed: P4
912**
913** If P5 is not zero and P4 is NULL, then everything after the ":" is
914** omitted.
915**
drh9cfcf5d2002-01-29 18:41:24 +0000916** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000917** every program. So a jump past the last instruction of the program
918** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000919*/
drh9cbf3422008-01-17 16:22:13 +0000920case OP_Halt: {
drhf9c8ce32013-11-05 13:33:55 +0000921 const char *zType;
922 const char *zLogFmt;
drhf56fa462015-04-13 21:39:54 +0000923 VdbeFrame *pFrame;
924 int pcx;
drhf9c8ce32013-11-05 13:33:55 +0000925
drhf56fa462015-04-13 21:39:54 +0000926 pcx = (int)(pOp - aOp);
dan165921a2009-08-28 18:53:45 +0000927 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000928 /* Halt the sub-program. Return control to the parent frame. */
drhf56fa462015-04-13 21:39:54 +0000929 pFrame = p->pFrame;
dan165921a2009-08-28 18:53:45 +0000930 p->pFrame = pFrame->pParent;
931 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000932 sqlite3VdbeSetChanges(db, p->nChange);
drhf56fa462015-04-13 21:39:54 +0000933 pcx = sqlite3VdbeFrameRestore(pFrame);
drh99a66922011-05-13 18:51:42 +0000934 lastRowid = db->lastRowid;
dan165921a2009-08-28 18:53:45 +0000935 if( pOp->p2==OE_Ignore ){
drhf56fa462015-04-13 21:39:54 +0000936 /* Instruction pcx is the OP_Program that invoked the sub-program
dan2832ad42009-08-31 15:27:27 +0000937 ** currently being halted. If the p2 instruction of this OP_Halt
938 ** instruction is set to OE_Ignore, then the sub-program is throwing
939 ** an IGNORE exception. In this case jump to the address specified
940 ** as the p2 of the calling OP_Program. */
drhf56fa462015-04-13 21:39:54 +0000941 pcx = p->aOp[pcx].p2-1;
dan165921a2009-08-28 18:53:45 +0000942 }
drhbbe879d2009-11-14 18:04:35 +0000943 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000944 aMem = p->aMem;
drhf56fa462015-04-13 21:39:54 +0000945 pOp = &aOp[pcx];
dan165921a2009-08-28 18:53:45 +0000946 break;
947 }
drh92f02c32004-09-02 14:57:08 +0000948 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000949 p->errorAction = (u8)pOp->p2;
drhf56fa462015-04-13 21:39:54 +0000950 p->pc = pcx;
drhf9c8ce32013-11-05 13:33:55 +0000951 if( p->rc ){
drhd9b7ec92013-11-06 14:05:21 +0000952 if( pOp->p5 ){
953 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
954 "FOREIGN KEY" };
955 assert( pOp->p5>=1 && pOp->p5<=4 );
956 testcase( pOp->p5==1 );
957 testcase( pOp->p5==2 );
958 testcase( pOp->p5==3 );
959 testcase( pOp->p5==4 );
960 zType = azType[pOp->p5-1];
961 }else{
962 zType = 0;
963 }
drh4308e342013-11-11 16:55:52 +0000964 assert( zType!=0 || pOp->p4.z!=0 );
drhf9c8ce32013-11-05 13:33:55 +0000965 zLogFmt = "abort at %d in [%s]: %s";
966 if( zType && pOp->p4.z ){
drh22c17b82015-05-15 04:13:15 +0000967 sqlite3VdbeError(p, "%s constraint failed: %s", zType, pOp->p4.z);
drhf9c8ce32013-11-05 13:33:55 +0000968 }else if( pOp->p4.z ){
drh22c17b82015-05-15 04:13:15 +0000969 sqlite3VdbeError(p, "%s", pOp->p4.z);
drhf9c8ce32013-11-05 13:33:55 +0000970 }else{
drh22c17b82015-05-15 04:13:15 +0000971 sqlite3VdbeError(p, "%s constraint failed", zType);
drhf9c8ce32013-11-05 13:33:55 +0000972 }
drhf56fa462015-04-13 21:39:54 +0000973 sqlite3_log(pOp->p1, zLogFmt, pcx, p->zSql, p->zErrMsg);
drh9cfcf5d2002-01-29 18:41:24 +0000974 }
drh92f02c32004-09-02 14:57:08 +0000975 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +0000976 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +0000977 if( rc==SQLITE_BUSY ){
drh900b31e2007-08-28 02:27:51 +0000978 p->rc = rc = SQLITE_BUSY;
979 }else{
drhd91c1a12013-02-09 13:58:25 +0000980 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
drh648e2642013-07-11 15:03:32 +0000981 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
drh900b31e2007-08-28 02:27:51 +0000982 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +0000983 }
drh900b31e2007-08-28 02:27:51 +0000984 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +0000985}
drhc61053b2000-06-04 12:58:36 +0000986
drh4c583122008-01-04 22:01:03 +0000987/* Opcode: Integer P1 P2 * * *
drh81316f82013-10-29 20:40:47 +0000988** Synopsis: r[P2]=P1
drh5e00f6c2001-09-13 13:46:56 +0000989**
drh9cbf3422008-01-17 16:22:13 +0000990** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +0000991*/
drh27a348c2015-04-13 19:14:06 +0000992case OP_Integer: { /* out2 */
993 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +0000994 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +0000995 break;
996}
997
drh4c583122008-01-04 22:01:03 +0000998/* Opcode: Int64 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +0000999** Synopsis: r[P2]=P4
drh29dda4a2005-07-21 18:23:20 +00001000**
drh66a51672008-01-03 00:01:23 +00001001** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +00001002** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +00001003*/
drh27a348c2015-04-13 19:14:06 +00001004case OP_Int64: { /* out2 */
1005 pOut = out2Prerelease(p, pOp);
danielk19772dca4ac2008-01-03 11:50:29 +00001006 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +00001007 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +00001008 break;
1009}
drh4f26d6c2004-05-26 23:25:30 +00001010
drh13573c72010-01-12 17:04:07 +00001011#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +00001012/* Opcode: Real * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001013** Synopsis: r[P2]=P4
drhf4479502004-05-27 03:12:53 +00001014**
drh4c583122008-01-04 22:01:03 +00001015** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +00001016** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +00001017*/
drh27a348c2015-04-13 19:14:06 +00001018case OP_Real: { /* same as TK_FLOAT, out2 */
1019 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001020 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +00001021 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh74eaba42014-09-18 17:52:15 +00001022 pOut->u.r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +00001023 break;
1024}
drh13573c72010-01-12 17:04:07 +00001025#endif
danielk1977cbb18d22004-05-28 11:37:27 +00001026
drh3c84ddf2008-01-09 02:15:38 +00001027/* Opcode: String8 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001028** Synopsis: r[P2]='P4'
danielk1977cbb18d22004-05-28 11:37:27 +00001029**
drh66a51672008-01-03 00:01:23 +00001030** P4 points to a nul terminated UTF-8 string. This opcode is transformed
drhf07cf6e2015-03-06 16:45:16 +00001031** into a String opcode before it is executed for the first time. During
drh0fd61352014-02-07 02:29:45 +00001032** this transformation, the length of string P4 is computed and stored
1033** as the P1 parameter.
danielk1977cbb18d22004-05-28 11:37:27 +00001034*/
drh27a348c2015-04-13 19:14:06 +00001035case OP_String8: { /* same as TK_STRING, out2 */
danielk19772dca4ac2008-01-03 11:50:29 +00001036 assert( pOp->p4.z!=0 );
drh27a348c2015-04-13 19:14:06 +00001037 pOut = out2Prerelease(p, pOp);
drhed2df7f2005-11-16 04:34:32 +00001038 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +00001039 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +00001040
1041#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +00001042 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +00001043 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1044 if( rc==SQLITE_TOOBIG ) goto too_big;
drh4c583122008-01-04 22:01:03 +00001045 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh17bcb102014-09-18 21:25:33 +00001046 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
drhc91b2fd2014-03-01 18:13:23 +00001047 assert( VdbeMemDynamic(pOut)==0 );
drh17bcb102014-09-18 21:25:33 +00001048 pOut->szMalloc = 0;
drh4c583122008-01-04 22:01:03 +00001049 pOut->flags |= MEM_Static;
drh66a51672008-01-03 00:01:23 +00001050 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +00001051 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +00001052 }
drh66a51672008-01-03 00:01:23 +00001053 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +00001054 pOp->p4.z = pOut->z;
1055 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +00001056 }
danielk197793758c82005-01-21 08:13:14 +00001057#endif
drhbb4957f2008-03-20 14:03:29 +00001058 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +00001059 goto too_big;
1060 }
1061 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +00001062}
drhf4479502004-05-27 03:12:53 +00001063
drhf07cf6e2015-03-06 16:45:16 +00001064/* Opcode: String P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00001065** Synopsis: r[P2]='P4' (len=P1)
drhf4479502004-05-27 03:12:53 +00001066**
drh9cbf3422008-01-17 16:22:13 +00001067** The string value P4 of length P1 (bytes) is stored in register P2.
drhf07cf6e2015-03-06 16:45:16 +00001068**
1069** If P5!=0 and the content of register P3 is greater than zero, then
drha9c18a92015-03-06 20:49:52 +00001070** the datatype of the register P2 is converted to BLOB. The content is
1071** the same sequence of bytes, it is merely interpreted as a BLOB instead
1072** of a string, as if it had been CAST.
drhf4479502004-05-27 03:12:53 +00001073*/
drh27a348c2015-04-13 19:14:06 +00001074case OP_String: { /* out2 */
danielk19772dca4ac2008-01-03 11:50:29 +00001075 assert( pOp->p4.z!=0 );
drh27a348c2015-04-13 19:14:06 +00001076 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001077 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1078 pOut->z = pOp->p4.z;
1079 pOut->n = pOp->p1;
1080 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001081 UPDATE_MAX_BLOBSIZE(pOut);
drhf07cf6e2015-03-06 16:45:16 +00001082 if( pOp->p5 ){
1083 assert( pOp->p3>0 );
1084 assert( pOp->p3<=(p->nMem-p->nCursor) );
1085 pIn3 = &aMem[pOp->p3];
1086 assert( pIn3->flags & MEM_Int );
1087 if( pIn3->u.i ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1088 }
danielk1977c572ef72004-05-27 09:28:41 +00001089 break;
1090}
1091
drh053a1282012-09-19 21:15:46 +00001092/* Opcode: Null P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001093** Synopsis: r[P2..P3]=NULL
drhf0863fe2005-06-12 21:35:51 +00001094**
drhb8475df2011-12-09 16:21:19 +00001095** Write a NULL into registers P2. If P3 greater than P2, then also write
drh053a1282012-09-19 21:15:46 +00001096** NULL into register P3 and every register in between P2 and P3. If P3
drhb8475df2011-12-09 16:21:19 +00001097** is less than P2 (typically P3 is zero) then only register P2 is
drh053a1282012-09-19 21:15:46 +00001098** set to NULL.
1099**
1100** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1101** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1102** OP_Ne or OP_Eq.
drhf0863fe2005-06-12 21:35:51 +00001103*/
drh27a348c2015-04-13 19:14:06 +00001104case OP_Null: { /* out2 */
drhb8475df2011-12-09 16:21:19 +00001105 int cnt;
drh053a1282012-09-19 21:15:46 +00001106 u16 nullFlag;
drh27a348c2015-04-13 19:14:06 +00001107 pOut = out2Prerelease(p, pOp);
drhb8475df2011-12-09 16:21:19 +00001108 cnt = pOp->p3-pOp->p2;
dan3bc9f742013-08-15 16:18:39 +00001109 assert( pOp->p3<=(p->nMem-p->nCursor) );
drh053a1282012-09-19 21:15:46 +00001110 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
drhb8475df2011-12-09 16:21:19 +00001111 while( cnt>0 ){
1112 pOut++;
1113 memAboutToChange(p, pOut);
drh0725cab2014-09-17 14:52:46 +00001114 sqlite3VdbeMemSetNull(pOut);
drh053a1282012-09-19 21:15:46 +00001115 pOut->flags = nullFlag;
drhb8475df2011-12-09 16:21:19 +00001116 cnt--;
1117 }
drhf0863fe2005-06-12 21:35:51 +00001118 break;
1119}
1120
drh05a86c52014-02-16 01:55:49 +00001121/* Opcode: SoftNull P1 * * * *
1122** Synopsis: r[P1]=NULL
1123**
1124** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1125** instruction, but do not free any string or blob memory associated with
1126** the register, so that if the value was a string or blob that was
1127** previously copied using OP_SCopy, the copies will continue to be valid.
1128*/
1129case OP_SoftNull: {
1130 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
1131 pOut = &aMem[pOp->p1];
1132 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
1133 break;
1134}
drhf0863fe2005-06-12 21:35:51 +00001135
drha5750cf2014-02-07 13:20:31 +00001136/* Opcode: Blob P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001137** Synopsis: r[P2]=P4 (len=P1)
danielk1977c572ef72004-05-27 09:28:41 +00001138**
drh9de221d2008-01-05 06:51:30 +00001139** P4 points to a blob of data P1 bytes long. Store this
drh710c4842010-08-30 01:17:20 +00001140** blob in register P2.
danielk1977c572ef72004-05-27 09:28:41 +00001141*/
drh27a348c2015-04-13 19:14:06 +00001142case OP_Blob: { /* out2 */
drhcbd2da92007-12-17 16:20:06 +00001143 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh27a348c2015-04-13 19:14:06 +00001144 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001145 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +00001146 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001147 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +00001148 break;
1149}
1150
drheaf52d82010-05-12 13:50:23 +00001151/* Opcode: Variable P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001152** Synopsis: r[P2]=parameter(P1,P4)
drh50457892003-09-06 01:10:47 +00001153**
drheaf52d82010-05-12 13:50:23 +00001154** Transfer the values of bound parameter P1 into register P2
drh08de1492009-02-20 03:55:05 +00001155**
drh0fd61352014-02-07 02:29:45 +00001156** If the parameter is named, then its name appears in P4.
drh08de1492009-02-20 03:55:05 +00001157** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +00001158*/
drh27a348c2015-04-13 19:14:06 +00001159case OP_Variable: { /* out2 */
drh856c1032009-06-02 15:21:42 +00001160 Mem *pVar; /* Value being transferred */
1161
drheaf52d82010-05-12 13:50:23 +00001162 assert( pOp->p1>0 && pOp->p1<=p->nVar );
drh04e9eea2011-06-01 19:16:06 +00001163 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
drheaf52d82010-05-12 13:50:23 +00001164 pVar = &p->aVar[pOp->p1 - 1];
1165 if( sqlite3VdbeMemTooBig(pVar) ){
1166 goto too_big;
drh023ae032007-05-08 12:12:16 +00001167 }
drh27a348c2015-04-13 19:14:06 +00001168 pOut = out2Prerelease(p, pOp);
drheaf52d82010-05-12 13:50:23 +00001169 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1170 UPDATE_MAX_BLOBSIZE(pOut);
danielk197793d46752004-05-23 13:30:58 +00001171 break;
1172}
danielk1977295ba552004-05-19 10:34:51 +00001173
drhb21e7c72008-06-22 12:37:57 +00001174/* Opcode: Move P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00001175** Synopsis: r[P2@P3]=r[P1@P3]
drh5e00f6c2001-09-13 13:46:56 +00001176**
drh079a3072014-03-19 14:10:55 +00001177** Move the P3 values in register P1..P1+P3-1 over into
1178** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
drhb21e7c72008-06-22 12:37:57 +00001179** left holding a NULL. It is an error for register ranges
drh079a3072014-03-19 14:10:55 +00001180** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1181** for P3 to be less than 1.
drh5e00f6c2001-09-13 13:46:56 +00001182*/
drhe1349cb2008-04-01 00:36:10 +00001183case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001184 int n; /* Number of registers left to copy */
1185 int p1; /* Register to copy from */
1186 int p2; /* Register to copy to */
1187
drhe09f43f2013-11-21 04:18:31 +00001188 n = pOp->p3;
drh856c1032009-06-02 15:21:42 +00001189 p1 = pOp->p1;
1190 p2 = pOp->p2;
drh079a3072014-03-19 14:10:55 +00001191 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001192 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001193
drha6c2ed92009-11-14 23:22:23 +00001194 pIn1 = &aMem[p1];
1195 pOut = &aMem[p2];
drhe09f43f2013-11-21 04:18:31 +00001196 do{
dan3bc9f742013-08-15 16:18:39 +00001197 assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
1198 assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00001199 assert( memIsValid(pIn1) );
1200 memAboutToChange(p, pOut);
drh17bcb102014-09-18 21:25:33 +00001201 sqlite3VdbeMemMove(pOut, pIn1);
drh52043d72011-08-03 16:40:15 +00001202#ifdef SQLITE_DEBUG
drhbd6789e2015-04-28 14:00:02 +00001203 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
drh5fb71252015-04-28 12:44:55 +00001204 pOut->pScopyFrom += pOp->p2 - p1;
drh52043d72011-08-03 16:40:15 +00001205 }
1206#endif
drhbd6789e2015-04-28 14:00:02 +00001207 Deephemeralize(pOut);
drhb21e7c72008-06-22 12:37:57 +00001208 REGISTER_TRACE(p2++, pOut);
1209 pIn1++;
1210 pOut++;
drh079a3072014-03-19 14:10:55 +00001211 }while( --n );
drhe1349cb2008-04-01 00:36:10 +00001212 break;
1213}
1214
drhe8e4af72012-09-21 00:04:28 +00001215/* Opcode: Copy P1 P2 P3 * *
drh4eded602013-12-20 15:59:20 +00001216** Synopsis: r[P2@P3+1]=r[P1@P3+1]
drhb1fdb2a2008-01-05 04:06:03 +00001217**
drhe8e4af72012-09-21 00:04:28 +00001218** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
drhb1fdb2a2008-01-05 04:06:03 +00001219**
1220** This instruction makes a deep copy of the value. A duplicate
1221** is made of any string or blob constant. See also OP_SCopy.
1222*/
drhe8e4af72012-09-21 00:04:28 +00001223case OP_Copy: {
1224 int n;
1225
1226 n = pOp->p3;
drh3c657212009-11-17 23:59:58 +00001227 pIn1 = &aMem[pOp->p1];
1228 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001229 assert( pOut!=pIn1 );
drhe8e4af72012-09-21 00:04:28 +00001230 while( 1 ){
1231 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1232 Deephemeralize(pOut);
drh953f7612012-12-07 22:18:54 +00001233#ifdef SQLITE_DEBUG
1234 pOut->pScopyFrom = 0;
1235#endif
drhe8e4af72012-09-21 00:04:28 +00001236 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1237 if( (n--)==0 ) break;
1238 pOut++;
1239 pIn1++;
1240 }
drhe1349cb2008-04-01 00:36:10 +00001241 break;
1242}
1243
drhb1fdb2a2008-01-05 04:06:03 +00001244/* Opcode: SCopy P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001245** Synopsis: r[P2]=r[P1]
drhb1fdb2a2008-01-05 04:06:03 +00001246**
drh9cbf3422008-01-17 16:22:13 +00001247** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001248**
1249** This instruction makes a shallow copy of the value. If the value
1250** is a string or blob, then the copy is only a pointer to the
1251** original and hence if the original changes so will the copy.
1252** Worse, if the original is deallocated, the copy becomes invalid.
1253** Thus the program must guarantee that the original will not change
1254** during the lifetime of the copy. Use OP_Copy to make a complete
1255** copy.
1256*/
drh26198bb2013-10-31 11:15:09 +00001257case OP_SCopy: { /* out2 */
drh3c657212009-11-17 23:59:58 +00001258 pIn1 = &aMem[pOp->p1];
1259 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001260 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001261 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh2b4ded92010-09-27 21:09:31 +00001262#ifdef SQLITE_DEBUG
1263 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1264#endif
drh5e00f6c2001-09-13 13:46:56 +00001265 break;
1266}
drh75897232000-05-29 14:26:00 +00001267
drh9cbf3422008-01-17 16:22:13 +00001268/* Opcode: ResultRow P1 P2 * * *
drh4af5bee2013-10-30 02:37:50 +00001269** Synopsis: output=r[P1@P2]
drhd4e70eb2008-01-02 00:34:36 +00001270**
shane21e7feb2008-05-30 15:59:49 +00001271** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001272** results. This opcode causes the sqlite3_step() call to terminate
1273** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
drh4d87aae2014-02-20 19:42:00 +00001274** structure to provide access to the r(P1)..r(P1+P2-1) values as
drh0fd61352014-02-07 02:29:45 +00001275** the result row.
drhd4e70eb2008-01-02 00:34:36 +00001276*/
drh9cbf3422008-01-17 16:22:13 +00001277case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001278 Mem *pMem;
1279 int i;
1280 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001281 assert( pOp->p1>0 );
dan3bc9f742013-08-15 16:18:39 +00001282 assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 );
drhd4e70eb2008-01-02 00:34:36 +00001283
drhe6400b92013-11-13 23:48:46 +00001284#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1285 /* Run the progress counter just before returning.
1286 */
1287 if( db->xProgress!=0
1288 && nVmStep>=nProgressLimit
1289 && db->xProgress(db->pProgressArg)!=0
1290 ){
1291 rc = SQLITE_INTERRUPT;
1292 goto vdbe_error_halt;
1293 }
1294#endif
1295
dan32b09f22009-09-23 17:29:59 +00001296 /* If this statement has violated immediate foreign key constraints, do
1297 ** not return the number of rows modified. And do not RELEASE the statement
1298 ** transaction. It needs to be rolled back. */
1299 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1300 assert( db->flags&SQLITE_CountRows );
1301 assert( p->usesStmtJournal );
1302 break;
1303 }
1304
danielk1977bd434552009-03-18 10:33:00 +00001305 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1306 ** DML statements invoke this opcode to return the number of rows
1307 ** modified to the user. This is the only way that a VM that
1308 ** opens a statement transaction may invoke this opcode.
1309 **
1310 ** In case this is such a statement, close any statement transaction
1311 ** opened by this VM before returning control to the user. This is to
1312 ** ensure that statement-transactions are always nested, not overlapping.
1313 ** If the open statement-transaction is not closed here, then the user
1314 ** may step another VM that opens its own statement transaction. This
1315 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001316 **
1317 ** The statement transaction is never a top-level transaction. Hence
1318 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001319 */
1320 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001321 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1322 if( NEVER(rc!=SQLITE_OK) ){
danielk1977bd434552009-03-18 10:33:00 +00001323 break;
1324 }
1325
drhd4e70eb2008-01-02 00:34:36 +00001326 /* Invalidate all ephemeral cursor row caches */
1327 p->cacheCtr = (p->cacheCtr + 2)|1;
1328
1329 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001330 ** and have an assigned type. The results are de-ephemeralized as
drhb8a45bb2011-12-31 21:51:55 +00001331 ** a side effect.
drhd4e70eb2008-01-02 00:34:36 +00001332 */
drha6c2ed92009-11-14 23:22:23 +00001333 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001334 for(i=0; i<pOp->p2; i++){
drh2b4ded92010-09-27 21:09:31 +00001335 assert( memIsValid(&pMem[i]) );
drhebc16712010-09-28 00:25:58 +00001336 Deephemeralize(&pMem[i]);
drh746fd9c2010-09-28 06:00:47 +00001337 assert( (pMem[i].flags & MEM_Ephem)==0
1338 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
drhd4e70eb2008-01-02 00:34:36 +00001339 sqlite3VdbeMemNulTerminate(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001340 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001341 }
drh28039692008-03-17 16:54:01 +00001342 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001343
1344 /* Return SQLITE_ROW
1345 */
drhf56fa462015-04-13 21:39:54 +00001346 p->pc = (int)(pOp - aOp) + 1;
drhd4e70eb2008-01-02 00:34:36 +00001347 rc = SQLITE_ROW;
1348 goto vdbe_return;
1349}
1350
drh5b6afba2008-01-05 16:29:28 +00001351/* Opcode: Concat P1 P2 P3 * *
drh313619f2013-10-31 20:34:06 +00001352** Synopsis: r[P3]=r[P2]+r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001353**
drh5b6afba2008-01-05 16:29:28 +00001354** Add the text in register P1 onto the end of the text in
1355** register P2 and store the result in register P3.
1356** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001357**
1358** P3 = P2 || P1
1359**
1360** It is illegal for P1 and P3 to be the same register. Sometimes,
1361** if P3 is the same register as P2, the implementation is able
1362** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001363*/
drh5b6afba2008-01-05 16:29:28 +00001364case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001365 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001366
drh3c657212009-11-17 23:59:58 +00001367 pIn1 = &aMem[pOp->p1];
1368 pIn2 = &aMem[pOp->p2];
1369 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001370 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001371 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001372 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001373 break;
drh5e00f6c2001-09-13 13:46:56 +00001374 }
drha0c06522009-06-17 22:50:41 +00001375 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001376 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001377 Stringify(pIn2, encoding);
1378 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001379 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001380 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001381 }
drh9c1905f2008-12-10 22:32:56 +00001382 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001383 goto no_mem;
1384 }
drhc91b2fd2014-03-01 18:13:23 +00001385 MemSetTypeFlag(pOut, MEM_Str);
danielk1977a7a8e142008-02-13 18:25:27 +00001386 if( pOut!=pIn2 ){
1387 memcpy(pOut->z, pIn2->z, pIn2->n);
1388 }
1389 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
drh81316f82013-10-29 20:40:47 +00001390 pOut->z[nByte]=0;
danielk1977a7a8e142008-02-13 18:25:27 +00001391 pOut->z[nByte+1] = 0;
1392 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001393 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001394 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001395 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001396 break;
1397}
drh75897232000-05-29 14:26:00 +00001398
drh3c84ddf2008-01-09 02:15:38 +00001399/* Opcode: Add P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001400** Synopsis: r[P3]=r[P1]+r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001401**
drh60a713c2008-01-21 16:22:45 +00001402** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001403** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001404** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001405*/
drh3c84ddf2008-01-09 02:15:38 +00001406/* Opcode: Multiply P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001407** Synopsis: r[P3]=r[P1]*r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001408**
drh3c84ddf2008-01-09 02:15:38 +00001409**
shane21e7feb2008-05-30 15:59:49 +00001410** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001411** and store the result in register P3.
1412** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001413*/
drh3c84ddf2008-01-09 02:15:38 +00001414/* Opcode: Subtract P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001415** Synopsis: r[P3]=r[P2]-r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001416**
drh60a713c2008-01-21 16:22:45 +00001417** Subtract the value in register P1 from the value in register P2
1418** and store the result in register P3.
1419** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001420*/
drh9cbf3422008-01-17 16:22:13 +00001421/* Opcode: Divide P1 P2 P3 * *
drh40864a12013-11-15 18:58:37 +00001422** Synopsis: r[P3]=r[P2]/r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001423**
drh60a713c2008-01-21 16:22:45 +00001424** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001425** and store the result in register P3 (P3=P2/P1). If the value in
1426** register P1 is zero, then the result is NULL. If either input is
1427** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001428*/
drh9cbf3422008-01-17 16:22:13 +00001429/* Opcode: Remainder P1 P2 P3 * *
drh40864a12013-11-15 18:58:37 +00001430** Synopsis: r[P3]=r[P2]%r[P1]
drhbf4133c2001-10-13 02:59:08 +00001431**
drh40864a12013-11-15 18:58:37 +00001432** Compute the remainder after integer register P2 is divided by
1433** register P1 and store the result in register P3.
1434** If the value in register P1 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001435** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001436*/
drh5b6afba2008-01-05 16:29:28 +00001437case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1438case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1439case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1440case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1441case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drhbe707b32012-12-10 22:19:14 +00001442 char bIntint; /* Started out as two integer operands */
drh3d1d90a2014-03-24 15:00:15 +00001443 u16 flags; /* Combined MEM_* flags from both inputs */
1444 u16 type1; /* Numeric type of left operand */
1445 u16 type2; /* Numeric type of right operand */
drh856c1032009-06-02 15:21:42 +00001446 i64 iA; /* Integer value of left operand */
1447 i64 iB; /* Integer value of right operand */
1448 double rA; /* Real value of left operand */
1449 double rB; /* Real value of right operand */
1450
drh3c657212009-11-17 23:59:58 +00001451 pIn1 = &aMem[pOp->p1];
drh3d1d90a2014-03-24 15:00:15 +00001452 type1 = numericType(pIn1);
drh3c657212009-11-17 23:59:58 +00001453 pIn2 = &aMem[pOp->p2];
drh3d1d90a2014-03-24 15:00:15 +00001454 type2 = numericType(pIn2);
drh3c657212009-11-17 23:59:58 +00001455 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001456 flags = pIn1->flags | pIn2->flags;
drha05a7222008-01-19 03:35:58 +00001457 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
drh3d1d90a2014-03-24 15:00:15 +00001458 if( (type1 & type2 & MEM_Int)!=0 ){
drh856c1032009-06-02 15:21:42 +00001459 iA = pIn1->u.i;
1460 iB = pIn2->u.i;
drhbe707b32012-12-10 22:19:14 +00001461 bIntint = 1;
drh5e00f6c2001-09-13 13:46:56 +00001462 switch( pOp->opcode ){
drh158b9cb2011-03-05 20:59:46 +00001463 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1464 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1465 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
drhbf4133c2001-10-13 02:59:08 +00001466 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001467 if( iA==0 ) goto arithmetic_result_is_null;
drh158b9cb2011-03-05 20:59:46 +00001468 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
drh856c1032009-06-02 15:21:42 +00001469 iB /= iA;
drh75897232000-05-29 14:26:00 +00001470 break;
1471 }
drhbf4133c2001-10-13 02:59:08 +00001472 default: {
drh856c1032009-06-02 15:21:42 +00001473 if( iA==0 ) goto arithmetic_result_is_null;
1474 if( iA==-1 ) iA = 1;
1475 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001476 break;
1477 }
drh75897232000-05-29 14:26:00 +00001478 }
drh856c1032009-06-02 15:21:42 +00001479 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001480 MemSetTypeFlag(pOut, MEM_Int);
drh5e00f6c2001-09-13 13:46:56 +00001481 }else{
drhbe707b32012-12-10 22:19:14 +00001482 bIntint = 0;
drh158b9cb2011-03-05 20:59:46 +00001483fp_math:
drh856c1032009-06-02 15:21:42 +00001484 rA = sqlite3VdbeRealValue(pIn1);
1485 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001486 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001487 case OP_Add: rB += rA; break;
1488 case OP_Subtract: rB -= rA; break;
1489 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001490 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001491 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001492 if( rA==(double)0 ) goto arithmetic_result_is_null;
1493 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001494 break;
1495 }
drhbf4133c2001-10-13 02:59:08 +00001496 default: {
shane75ac1de2009-06-09 18:58:52 +00001497 iA = (i64)rA;
1498 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001499 if( iA==0 ) goto arithmetic_result_is_null;
1500 if( iA==-1 ) iA = 1;
1501 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001502 break;
1503 }
drh5e00f6c2001-09-13 13:46:56 +00001504 }
drhc5a7b512010-01-13 16:25:42 +00001505#ifdef SQLITE_OMIT_FLOATING_POINT
1506 pOut->u.i = rB;
1507 MemSetTypeFlag(pOut, MEM_Int);
1508#else
drh856c1032009-06-02 15:21:42 +00001509 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001510 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001511 }
drh74eaba42014-09-18 17:52:15 +00001512 pOut->u.r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001513 MemSetTypeFlag(pOut, MEM_Real);
drh3d1d90a2014-03-24 15:00:15 +00001514 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
drh5b6afba2008-01-05 16:29:28 +00001515 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001516 }
drhc5a7b512010-01-13 16:25:42 +00001517#endif
drh5e00f6c2001-09-13 13:46:56 +00001518 }
1519 break;
1520
drha05a7222008-01-19 03:35:58 +00001521arithmetic_result_is_null:
1522 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001523 break;
1524}
1525
drh7a957892012-02-02 17:35:43 +00001526/* Opcode: CollSeq P1 * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001527**
drh66a51672008-01-03 00:01:23 +00001528** P4 is a pointer to a CollSeq struct. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001529** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1530** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001531** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001532**
drh7a957892012-02-02 17:35:43 +00001533** If P1 is not zero, then it is a register that a subsequent min() or
1534** max() aggregate will set to 1 if the current row is not the minimum or
1535** maximum. The P1 register is initialized to 0 by this instruction.
1536**
danielk1977dc1bdc42004-06-11 10:51:27 +00001537** The interface used by the implementation of the aforementioned functions
1538** to retrieve the collation sequence set by this opcode is not available
drh0a0d0562015-03-12 05:08:34 +00001539** publicly. Only built-in functions have access to this feature.
danielk1977dc1bdc42004-06-11 10:51:27 +00001540*/
drh9cbf3422008-01-17 16:22:13 +00001541case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001542 assert( pOp->p4type==P4_COLLSEQ );
drh7a957892012-02-02 17:35:43 +00001543 if( pOp->p1 ){
1544 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1545 }
danielk1977dc1bdc42004-06-11 10:51:27 +00001546 break;
1547}
1548
drh9c7c9132015-06-26 18:16:52 +00001549/* Opcode: Function0 P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00001550** Synopsis: r[P3]=func(r[P2@P5])
drh8e0a2f92002-02-23 23:45:45 +00001551**
drhe2d9e7c2015-06-26 18:47:53 +00001552** Invoke a user function (P4 is a pointer to a FuncDef object that
drh98757152008-01-09 23:04:12 +00001553** defines the function) with P5 arguments taken from register P2 and
drh9cbf3422008-01-17 16:22:13 +00001554** successors. The result of the function is stored in register P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001555** Register P3 must not be one of the function inputs.
danielk1977682f68b2004-06-05 10:22:17 +00001556**
drh13449892005-09-07 21:22:45 +00001557** P1 is a 32-bit bitmask indicating whether or not each argument to the
danielk1977682f68b2004-06-05 10:22:17 +00001558** function was determined to be constant at compile time. If the first
drh13449892005-09-07 21:22:45 +00001559** argument was constant then bit 0 of P1 is set. This is used to determine
danielk1977682f68b2004-06-05 10:22:17 +00001560** whether meta data associated with a user function argument using the
1561** sqlite3_set_auxdata() API may be safely retained until the next
1562** invocation of this opcode.
drh1350b032002-02-27 19:00:20 +00001563**
drh9c7c9132015-06-26 18:16:52 +00001564** See also: Function, AggStep, AggFinal
drh8e0a2f92002-02-23 23:45:45 +00001565*/
drh9c7c9132015-06-26 18:16:52 +00001566/* Opcode: Function P1 P2 P3 P4 P5
1567** Synopsis: r[P3]=func(r[P2@P5])
1568**
1569** Invoke a user function (P4 is a pointer to an sqlite3_context object that
1570** contains a pointer to the function to be run) with P5 arguments taken
1571** from register P2 and successors. The result of the function is stored
1572** in register P3. Register P3 must not be one of the function inputs.
1573**
1574** P1 is a 32-bit bitmask indicating whether or not each argument to the
1575** function was determined to be constant at compile time. If the first
1576** argument was constant then bit 0 of P1 is set. This is used to determine
1577** whether meta data associated with a user function argument using the
1578** sqlite3_set_auxdata() API may be safely retained until the next
1579** invocation of this opcode.
1580**
1581** SQL functions are initially coded as OP_Function0 with P4 pointing
drhe2d9e7c2015-06-26 18:47:53 +00001582** to a FuncDef object. But on first evaluation, the P4 operand is
drh9c7c9132015-06-26 18:16:52 +00001583** automatically converted into an sqlite3_context object and the operation
1584** changed to this OP_Function opcode. In this way, the initialization of
1585** the sqlite3_context object occurs only once, rather than once for each
1586** evaluation of the function.
1587**
1588** See also: Function0, AggStep, AggFinal
1589*/
1590case OP_Function0: {
drh856c1032009-06-02 15:21:42 +00001591 int n;
drh9c7c9132015-06-26 18:16:52 +00001592 sqlite3_context *pCtx;
danielk197751ad0ec2004-05-24 12:39:02 +00001593
dan0c547792013-07-18 17:12:08 +00001594 assert( pOp->p4type==P4_FUNCDEF );
drh9c7c9132015-06-26 18:16:52 +00001595 n = pOp->p5;
1596 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
1597 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
1598 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
1599 pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
1600 if( pCtx==0 ) goto no_mem;
1601 pCtx->pOut = 0;
1602 pCtx->pFunc = pOp->p4.pFunc;
1603 pCtx->iOp = (int)(pOp - aOp);
1604 pCtx->pVdbe = p;
1605 pCtx->argc = n;
1606 pOp->p4type = P4_FUNCCTX;
1607 pOp->p4.pCtx = pCtx;
1608 pOp->opcode = OP_Function;
1609 /* Fall through into OP_Function */
1610}
1611case OP_Function: {
1612 int i;
1613 sqlite3_context *pCtx;
1614
1615 assert( pOp->p4type==P4_FUNCCTX );
1616 pCtx = pOp->p4.pCtx;
1617
1618 /* If this function is inside of a trigger, the register array in aMem[]
1619 ** might change from one evaluation to the next. The next block of code
1620 ** checks to see if the register array has changed, and if so it
1621 ** reinitializes the relavant parts of the sqlite3_context object */
drhe2d9e7c2015-06-26 18:47:53 +00001622 pOut = &aMem[pOp->p3];
1623 if( pCtx->pOut != pOut ){
1624 pCtx->pOut = pOut;
drh9c7c9132015-06-26 18:16:52 +00001625 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
1626 }
1627
1628 memAboutToChange(p, pCtx->pOut);
1629#ifdef SQLITE_DEBUG
1630 for(i=0; i<pCtx->argc; i++){
1631 assert( memIsValid(pCtx->argv[i]) );
1632 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
1633 }
1634#endif
1635 MemSetTypeFlag(pCtx->pOut, MEM_Null);
1636 pCtx->fErrorOrAux = 0;
drhf6aff802014-10-08 14:28:31 +00001637 db->lastRowid = lastRowid;
drh9c7c9132015-06-26 18:16:52 +00001638 (*pCtx->pFunc->xFunc)(pCtx, pCtx->argc, pCtx->argv); /* IMP: R-24505-23230 */
drh3b130be2014-09-26 01:10:02 +00001639 lastRowid = db->lastRowid; /* Remember rowid changes made by xFunc */
danielk19777e18c252004-05-25 11:47:24 +00001640
drh90669c12006-01-20 15:45:36 +00001641 /* If the function returned an error, throw an exception */
drh9c7c9132015-06-26 18:16:52 +00001642 if( pCtx->fErrorOrAux ){
1643 if( pCtx->isError ){
1644 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
1645 rc = pCtx->isError;
drh9b47ee32013-08-20 03:13:51 +00001646 }
drhe2d9e7c2015-06-26 18:47:53 +00001647 sqlite3VdbeDeleteAuxData(p, pCtx->iOp, pOp->p1);
drh90669c12006-01-20 15:45:36 +00001648 }
1649
drh9cbf3422008-01-17 16:22:13 +00001650 /* Copy the result of the function into register P3 */
drhe2d9e7c2015-06-26 18:47:53 +00001651 if( pOut->flags & (MEM_Str|MEM_Blob) ){
1652 sqlite3VdbeChangeEncoding(pCtx->pOut, encoding);
1653 if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big;
drh023ae032007-05-08 12:12:16 +00001654 }
drh7b94e7f2011-04-04 12:29:20 +00001655
drh9c7c9132015-06-26 18:16:52 +00001656 REGISTER_TRACE(pOp->p3, pCtx->pOut);
1657 UPDATE_MAX_BLOBSIZE(pCtx->pOut);
drh8e0a2f92002-02-23 23:45:45 +00001658 break;
1659}
1660
drh98757152008-01-09 23:04:12 +00001661/* Opcode: BitAnd P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001662** Synopsis: r[P3]=r[P1]&r[P2]
drhbf4133c2001-10-13 02:59:08 +00001663**
drh98757152008-01-09 23:04:12 +00001664** Take the bit-wise AND of the values in register P1 and P2 and
1665** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001666** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001667*/
drh98757152008-01-09 23:04:12 +00001668/* Opcode: BitOr P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001669** Synopsis: r[P3]=r[P1]|r[P2]
drhbf4133c2001-10-13 02:59:08 +00001670**
drh98757152008-01-09 23:04:12 +00001671** Take the bit-wise OR of the values in register P1 and P2 and
1672** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001673** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001674*/
drh98757152008-01-09 23:04:12 +00001675/* Opcode: ShiftLeft P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001676** Synopsis: r[P3]=r[P2]<<r[P1]
drhbf4133c2001-10-13 02:59:08 +00001677**
drh98757152008-01-09 23:04:12 +00001678** Shift the integer value in register P2 to the left by the
drh710c4842010-08-30 01:17:20 +00001679** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001680** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001681** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001682*/
drh98757152008-01-09 23:04:12 +00001683/* Opcode: ShiftRight P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001684** Synopsis: r[P3]=r[P2]>>r[P1]
drhbf4133c2001-10-13 02:59:08 +00001685**
drh98757152008-01-09 23:04:12 +00001686** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001687** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001688** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001689** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001690*/
drh5b6afba2008-01-05 16:29:28 +00001691case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1692case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1693case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1694case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh158b9cb2011-03-05 20:59:46 +00001695 i64 iA;
1696 u64 uA;
1697 i64 iB;
1698 u8 op;
drh6810ce62004-01-31 19:22:56 +00001699
drh3c657212009-11-17 23:59:58 +00001700 pIn1 = &aMem[pOp->p1];
1701 pIn2 = &aMem[pOp->p2];
1702 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001703 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001704 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001705 break;
1706 }
drh158b9cb2011-03-05 20:59:46 +00001707 iA = sqlite3VdbeIntValue(pIn2);
1708 iB = sqlite3VdbeIntValue(pIn1);
1709 op = pOp->opcode;
1710 if( op==OP_BitAnd ){
1711 iA &= iB;
1712 }else if( op==OP_BitOr ){
1713 iA |= iB;
1714 }else if( iB!=0 ){
1715 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1716
1717 /* If shifting by a negative amount, shift in the other direction */
1718 if( iB<0 ){
1719 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1720 op = 2*OP_ShiftLeft + 1 - op;
1721 iB = iB>(-64) ? -iB : 64;
1722 }
1723
1724 if( iB>=64 ){
1725 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1726 }else{
1727 memcpy(&uA, &iA, sizeof(uA));
1728 if( op==OP_ShiftLeft ){
1729 uA <<= iB;
1730 }else{
1731 uA >>= iB;
1732 /* Sign-extend on a right shift of a negative number */
1733 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1734 }
1735 memcpy(&iA, &uA, sizeof(iA));
1736 }
drhbf4133c2001-10-13 02:59:08 +00001737 }
drh158b9cb2011-03-05 20:59:46 +00001738 pOut->u.i = iA;
danielk1977a7a8e142008-02-13 18:25:27 +00001739 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001740 break;
1741}
1742
drh8558cde2008-01-05 05:20:10 +00001743/* Opcode: AddImm P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001744** Synopsis: r[P1]=r[P1]+P2
drh5e00f6c2001-09-13 13:46:56 +00001745**
danielk19770cdc0222008-06-26 18:04:03 +00001746** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001747** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001748**
drh8558cde2008-01-05 05:20:10 +00001749** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001750*/
drh9cbf3422008-01-17 16:22:13 +00001751case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001752 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001753 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001754 sqlite3VdbeMemIntegerify(pIn1);
1755 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001756 break;
1757}
1758
drh9cbf3422008-01-17 16:22:13 +00001759/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001760**
drh9cbf3422008-01-17 16:22:13 +00001761** Force the value in register P1 to be an integer. If the value
1762** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001763** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001764** raise an SQLITE_MISMATCH exception.
1765*/
drh9cbf3422008-01-17 16:22:13 +00001766case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001767 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001768 if( (pIn1->flags & MEM_Int)==0 ){
drh83b301b2013-11-20 00:59:02 +00001769 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
drh688852a2014-02-17 22:40:43 +00001770 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
drh83b301b2013-11-20 00:59:02 +00001771 if( (pIn1->flags & MEM_Int)==0 ){
1772 if( pOp->p2==0 ){
1773 rc = SQLITE_MISMATCH;
1774 goto abort_due_to_error;
1775 }else{
drhf56fa462015-04-13 21:39:54 +00001776 goto jump_to_p2;
drh83b301b2013-11-20 00:59:02 +00001777 }
drh8aff1012001-12-22 14:49:24 +00001778 }
drh8aff1012001-12-22 14:49:24 +00001779 }
drh83b301b2013-11-20 00:59:02 +00001780 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001781 break;
1782}
1783
drh13573c72010-01-12 17:04:07 +00001784#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001785/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001786**
drh2133d822008-01-03 18:44:59 +00001787** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001788**
drh8a512562005-11-14 22:29:05 +00001789** This opcode is used when extracting information from a column that
1790** has REAL affinity. Such column values may still be stored as
1791** integers, for space efficiency, but after extraction we want them
1792** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001793*/
drh9cbf3422008-01-17 16:22:13 +00001794case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001795 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001796 if( pIn1->flags & MEM_Int ){
1797 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001798 }
drh487e2622005-06-25 18:42:14 +00001799 break;
1800}
drh13573c72010-01-12 17:04:07 +00001801#endif
drh487e2622005-06-25 18:42:14 +00001802
drh8df447f2005-11-01 15:48:24 +00001803#ifndef SQLITE_OMIT_CAST
drh4169e432014-08-25 20:11:52 +00001804/* Opcode: Cast P1 P2 * * *
mistachkina1dc42a2014-08-27 17:53:40 +00001805** Synopsis: affinity(r[P1])
drh487e2622005-06-25 18:42:14 +00001806**
drh4169e432014-08-25 20:11:52 +00001807** Force the value in register P1 to be the type defined by P2.
1808**
1809** <ul>
1810** <li value="97"> TEXT
1811** <li value="98"> BLOB
1812** <li value="99"> NUMERIC
1813** <li value="100"> INTEGER
1814** <li value="101"> REAL
1815** </ul>
drh487e2622005-06-25 18:42:14 +00001816**
1817** A NULL value is not changed by this routine. It remains NULL.
1818*/
drh4169e432014-08-25 20:11:52 +00001819case OP_Cast: { /* in1 */
drh05883a32015-06-02 15:32:08 +00001820 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
drh05bbb2e2014-08-25 22:37:19 +00001821 testcase( pOp->p2==SQLITE_AFF_TEXT );
drh05883a32015-06-02 15:32:08 +00001822 testcase( pOp->p2==SQLITE_AFF_BLOB );
drh05bbb2e2014-08-25 22:37:19 +00001823 testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1824 testcase( pOp->p2==SQLITE_AFF_INTEGER );
1825 testcase( pOp->p2==SQLITE_AFF_REAL );
drh3c657212009-11-17 23:59:58 +00001826 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001827 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001828 rc = ExpandBlob(pIn1);
drh4169e432014-08-25 20:11:52 +00001829 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
drhb7654112008-01-12 12:48:07 +00001830 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001831 break;
1832}
drh8a512562005-11-14 22:29:05 +00001833#endif /* SQLITE_OMIT_CAST */
1834
drh35573352008-01-08 23:54:25 +00001835/* Opcode: Lt P1 P2 P3 P4 P5
drh72dbffd2013-11-15 03:21:43 +00001836** Synopsis: if r[P1]<r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001837**
drh35573352008-01-08 23:54:25 +00001838** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1839** jump to address P2.
drhf5905aa2002-05-26 20:54:33 +00001840**
drh35573352008-01-08 23:54:25 +00001841** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1842** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
drh710c4842010-08-30 01:17:20 +00001843** bit is clear then fall through if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001844**
drh35573352008-01-08 23:54:25 +00001845** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001846** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001847** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001848** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001849** affinity is used. Note that the affinity conversions are stored
1850** back into the input registers P1 and P3. So this opcode can cause
1851** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001852**
1853** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001854** the values are compared. If both values are blobs then memcmp() is
1855** used to determine the results of the comparison. If both values
1856** are text, then the appropriate collating function specified in
1857** P4 is used to do the comparison. If P4 is not specified then
1858** memcmp() is used to compare text string. If both values are
1859** numeric, then a numeric comparison is used. If the two values
1860** are of different types, then numbers are considered less than
1861** strings and strings are considered less than blobs.
drhc9b84a12002-06-20 11:36:48 +00001862**
drh35573352008-01-08 23:54:25 +00001863** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1864** store a boolean result (either 0, or 1, or NULL) in register P2.
drh053a1282012-09-19 21:15:46 +00001865**
1866** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1867** equal to one another, provided that they do not have their MEM_Cleared
1868** bit set.
drh5e00f6c2001-09-13 13:46:56 +00001869*/
drh9cbf3422008-01-17 16:22:13 +00001870/* Opcode: Ne P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001871** Synopsis: if r[P1]!=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001872**
drh35573352008-01-08 23:54:25 +00001873** This works just like the Lt opcode except that the jump is taken if
1874** the operands in registers P1 and P3 are not equal. See the Lt opcode for
drh53db1452004-05-20 13:54:53 +00001875** additional information.
drh6a2fe092009-09-23 02:29:36 +00001876**
1877** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1878** true or false and is never NULL. If both operands are NULL then the result
1879** of comparison is false. If either operand is NULL then the result is true.
drhef8662b2011-06-20 21:47:58 +00001880** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001881** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001882*/
drh9cbf3422008-01-17 16:22:13 +00001883/* Opcode: Eq P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001884** Synopsis: if r[P1]==r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001885**
drh35573352008-01-08 23:54:25 +00001886** This works just like the Lt opcode except that the jump is taken if
1887** the operands in registers P1 and P3 are equal.
1888** See the Lt opcode for additional information.
drh6a2fe092009-09-23 02:29:36 +00001889**
1890** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1891** true or false and is never NULL. If both operands are NULL then the result
1892** of comparison is true. If either operand is NULL then the result is false.
drhef8662b2011-06-20 21:47:58 +00001893** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001894** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001895*/
drh9cbf3422008-01-17 16:22:13 +00001896/* Opcode: Le P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001897** Synopsis: if r[P1]<=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001898**
drh35573352008-01-08 23:54:25 +00001899** This works just like the Lt opcode except that the jump is taken if
1900** the content of register P3 is less than or equal to the content of
1901** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001902*/
drh9cbf3422008-01-17 16:22:13 +00001903/* Opcode: Gt P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001904** Synopsis: if r[P1]>r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001905**
drh35573352008-01-08 23:54:25 +00001906** This works just like the Lt opcode except that the jump is taken if
1907** the content of register P3 is greater than the content of
1908** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001909*/
drh9cbf3422008-01-17 16:22:13 +00001910/* Opcode: Ge P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001911** Synopsis: if r[P1]>=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001912**
drh35573352008-01-08 23:54:25 +00001913** This works just like the Lt opcode except that the jump is taken if
1914** the content of register P3 is greater than or equal to the content of
1915** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001916*/
drh9cbf3422008-01-17 16:22:13 +00001917case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1918case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1919case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1920case OP_Le: /* same as TK_LE, jump, in1, in3 */
1921case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1922case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh6a2fe092009-09-23 02:29:36 +00001923 int res; /* Result of the comparison of pIn1 against pIn3 */
1924 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00001925 u16 flags1; /* Copy of initial value of pIn1->flags */
1926 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00001927
drh3c657212009-11-17 23:59:58 +00001928 pIn1 = &aMem[pOp->p1];
1929 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00001930 flags1 = pIn1->flags;
1931 flags3 = pIn3->flags;
drhc3f1d5f2011-05-30 23:42:16 +00001932 if( (flags1 | flags3)&MEM_Null ){
drh6a2fe092009-09-23 02:29:36 +00001933 /* One or both operands are NULL */
1934 if( pOp->p5 & SQLITE_NULLEQ ){
1935 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1936 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1937 ** or not both operands are null.
1938 */
1939 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
drh053a1282012-09-19 21:15:46 +00001940 assert( (flags1 & MEM_Cleared)==0 );
drh3d77dee2014-02-19 14:20:49 +00001941 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
drh053a1282012-09-19 21:15:46 +00001942 if( (flags1&MEM_Null)!=0
1943 && (flags3&MEM_Null)!=0
1944 && (flags3&MEM_Cleared)==0
1945 ){
1946 res = 0; /* Results are equal */
1947 }else{
1948 res = 1; /* Results are not equal */
1949 }
drh6a2fe092009-09-23 02:29:36 +00001950 }else{
1951 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1952 ** then the result is always NULL.
1953 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1954 */
drh688852a2014-02-17 22:40:43 +00001955 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001956 pOut = &aMem[pOp->p2];
drh6a2fe092009-09-23 02:29:36 +00001957 MemSetTypeFlag(pOut, MEM_Null);
1958 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00001959 }else{
drhf4345e42014-02-18 11:31:59 +00001960 VdbeBranchTaken(2,3);
drh688852a2014-02-17 22:40:43 +00001961 if( pOp->p5 & SQLITE_JUMPIFNULL ){
drhf56fa462015-04-13 21:39:54 +00001962 goto jump_to_p2;
drh688852a2014-02-17 22:40:43 +00001963 }
drh6a2fe092009-09-23 02:29:36 +00001964 }
1965 break;
danielk1977a37cdde2004-05-16 11:15:36 +00001966 }
drh6a2fe092009-09-23 02:29:36 +00001967 }else{
1968 /* Neither operand is NULL. Do a comparison. */
1969 affinity = pOp->p5 & SQLITE_AFF_MASK;
drh24a09622014-09-18 16:28:59 +00001970 if( affinity>=SQLITE_AFF_NUMERIC ){
drhe7a34662014-09-19 22:44:20 +00001971 if( (pIn1->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drh24a09622014-09-18 16:28:59 +00001972 applyNumericAffinity(pIn1,0);
1973 }
drhe7a34662014-09-19 22:44:20 +00001974 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drh24a09622014-09-18 16:28:59 +00001975 applyNumericAffinity(pIn3,0);
1976 }
1977 }else if( affinity==SQLITE_AFF_TEXT ){
1978 if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00001979 testcase( pIn1->flags & MEM_Int );
1980 testcase( pIn1->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00001981 sqlite3VdbeMemStringify(pIn1, encoding, 1);
drhbc8a6b32015-03-31 11:42:23 +00001982 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
1983 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
drh24a09622014-09-18 16:28:59 +00001984 }
1985 if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00001986 testcase( pIn3->flags & MEM_Int );
1987 testcase( pIn3->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00001988 sqlite3VdbeMemStringify(pIn3, encoding, 1);
drhbc8a6b32015-03-31 11:42:23 +00001989 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
1990 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
drh24a09622014-09-18 16:28:59 +00001991 }
drh6a2fe092009-09-23 02:29:36 +00001992 }
drh6a2fe092009-09-23 02:29:36 +00001993 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
drhca5506b2014-09-17 23:37:38 +00001994 if( pIn1->flags & MEM_Zero ){
1995 sqlite3VdbeMemExpandBlob(pIn1);
1996 flags1 &= ~MEM_Zero;
1997 }
1998 if( pIn3->flags & MEM_Zero ){
1999 sqlite3VdbeMemExpandBlob(pIn3);
2000 flags3 &= ~MEM_Zero;
2001 }
drh24a09622014-09-18 16:28:59 +00002002 if( db->mallocFailed ) goto no_mem;
drh6a2fe092009-09-23 02:29:36 +00002003 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00002004 }
danielk1977a37cdde2004-05-16 11:15:36 +00002005 switch( pOp->opcode ){
2006 case OP_Eq: res = res==0; break;
2007 case OP_Ne: res = res!=0; break;
2008 case OP_Lt: res = res<0; break;
2009 case OP_Le: res = res<=0; break;
2010 case OP_Gt: res = res>0; break;
2011 default: res = res>=0; break;
2012 }
2013
drhf56fa462015-04-13 21:39:54 +00002014 /* Undo any changes made by applyAffinity() to the input registers. */
2015 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2016 pIn1->flags = flags1;
2017 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2018 pIn3->flags = flags3;
2019
drh35573352008-01-08 23:54:25 +00002020 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00002021 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00002022 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00002023 MemSetTypeFlag(pOut, MEM_Int);
drh35573352008-01-08 23:54:25 +00002024 pOut->u.i = res;
2025 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00002026 }else{
drhf4345e42014-02-18 11:31:59 +00002027 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
drh688852a2014-02-17 22:40:43 +00002028 if( res ){
drhf56fa462015-04-13 21:39:54 +00002029 goto jump_to_p2;
drh688852a2014-02-17 22:40:43 +00002030 }
danielk1977a37cdde2004-05-16 11:15:36 +00002031 }
2032 break;
2033}
drhc9b84a12002-06-20 11:36:48 +00002034
drh0acb7e42008-06-25 00:12:41 +00002035/* Opcode: Permutation * * * P4 *
2036**
shanebe217792009-03-05 04:20:31 +00002037** Set the permutation used by the OP_Compare operator to be the array
drh0acb7e42008-06-25 00:12:41 +00002038** of integers in P4.
2039**
drh953f7612012-12-07 22:18:54 +00002040** The permutation is only valid until the next OP_Compare that has
2041** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2042** occur immediately prior to the OP_Compare.
drh0acb7e42008-06-25 00:12:41 +00002043*/
2044case OP_Permutation: {
2045 assert( pOp->p4type==P4_INTARRAY );
2046 assert( pOp->p4.ai );
2047 aPermute = pOp->p4.ai;
2048 break;
2049}
2050
drh953f7612012-12-07 22:18:54 +00002051/* Opcode: Compare P1 P2 P3 P4 P5
drh079a3072014-03-19 14:10:55 +00002052** Synopsis: r[P1@P3] <-> r[P2@P3]
drh16ee60f2008-06-20 18:13:25 +00002053**
drh710c4842010-08-30 01:17:20 +00002054** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2055** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
drh16ee60f2008-06-20 18:13:25 +00002056** the comparison for use by the next OP_Jump instruct.
2057**
drh0ca10df2012-12-08 13:26:23 +00002058** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2059** determined by the most recent OP_Permutation operator. If the
2060** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2061** order.
2062**
drh0acb7e42008-06-25 00:12:41 +00002063** P4 is a KeyInfo structure that defines collating sequences and sort
2064** orders for the comparison. The permutation applies to registers
2065** only. The KeyInfo elements are used sequentially.
2066**
2067** The comparison is a sort comparison, so NULLs compare equal,
2068** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00002069** and strings are less than blobs.
2070*/
2071case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00002072 int n;
2073 int i;
2074 int p1;
2075 int p2;
2076 const KeyInfo *pKeyInfo;
2077 int idx;
2078 CollSeq *pColl; /* Collating sequence to use on this term */
2079 int bRev; /* True for DESCENDING sort order */
2080
drh953f7612012-12-07 22:18:54 +00002081 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
drh856c1032009-06-02 15:21:42 +00002082 n = pOp->p3;
2083 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00002084 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00002085 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00002086 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00002087 p2 = pOp->p2;
drh6a2fe092009-09-23 02:29:36 +00002088#if SQLITE_DEBUG
2089 if( aPermute ){
2090 int k, mx = 0;
2091 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
dan3bc9f742013-08-15 16:18:39 +00002092 assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 );
2093 assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002094 }else{
dan3bc9f742013-08-15 16:18:39 +00002095 assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 );
2096 assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002097 }
2098#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00002099 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00002100 idx = aPermute ? aPermute[i] : i;
drh2b4ded92010-09-27 21:09:31 +00002101 assert( memIsValid(&aMem[p1+idx]) );
2102 assert( memIsValid(&aMem[p2+idx]) );
drha6c2ed92009-11-14 23:22:23 +00002103 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2104 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drh93a960a2008-07-10 00:32:42 +00002105 assert( i<pKeyInfo->nField );
2106 pColl = pKeyInfo->aColl[i];
2107 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00002108 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00002109 if( iCompare ){
2110 if( bRev ) iCompare = -iCompare;
2111 break;
2112 }
drh16ee60f2008-06-20 18:13:25 +00002113 }
drh0acb7e42008-06-25 00:12:41 +00002114 aPermute = 0;
drh16ee60f2008-06-20 18:13:25 +00002115 break;
2116}
2117
2118/* Opcode: Jump P1 P2 P3 * *
2119**
2120** Jump to the instruction at address P1, P2, or P3 depending on whether
2121** in the most recent OP_Compare instruction the P1 vector was less than
2122** equal to, or greater than the P2 vector, respectively.
2123*/
drh0acb7e42008-06-25 00:12:41 +00002124case OP_Jump: { /* jump */
2125 if( iCompare<0 ){
drhf56fa462015-04-13 21:39:54 +00002126 VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
drh0acb7e42008-06-25 00:12:41 +00002127 }else if( iCompare==0 ){
drhf56fa462015-04-13 21:39:54 +00002128 VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
drh16ee60f2008-06-20 18:13:25 +00002129 }else{
drhf56fa462015-04-13 21:39:54 +00002130 VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
drh16ee60f2008-06-20 18:13:25 +00002131 }
2132 break;
2133}
2134
drh5b6afba2008-01-05 16:29:28 +00002135/* Opcode: And P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002136** Synopsis: r[P3]=(r[P1] && r[P2])
drh5e00f6c2001-09-13 13:46:56 +00002137**
drh5b6afba2008-01-05 16:29:28 +00002138** Take the logical AND of the values in registers P1 and P2 and
2139** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00002140**
drh5b6afba2008-01-05 16:29:28 +00002141** If either P1 or P2 is 0 (false) then the result is 0 even if
2142** the other input is NULL. A NULL and true or two NULLs give
2143** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00002144*/
drh5b6afba2008-01-05 16:29:28 +00002145/* Opcode: Or P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002146** Synopsis: r[P3]=(r[P1] || r[P2])
drh5b6afba2008-01-05 16:29:28 +00002147**
2148** Take the logical OR of the values in register P1 and P2 and
2149** store the answer in register P3.
2150**
2151** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2152** even if the other input is NULL. A NULL and false or two NULLs
2153** give a NULL output.
2154*/
2155case OP_And: /* same as TK_AND, in1, in2, out3 */
2156case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00002157 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2158 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00002159
drh3c657212009-11-17 23:59:58 +00002160 pIn1 = &aMem[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00002161 if( pIn1->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002162 v1 = 2;
drh5e00f6c2001-09-13 13:46:56 +00002163 }else{
drh5b6afba2008-01-05 16:29:28 +00002164 v1 = sqlite3VdbeIntValue(pIn1)!=0;
drhbb113512002-05-27 01:04:51 +00002165 }
drh3c657212009-11-17 23:59:58 +00002166 pIn2 = &aMem[pOp->p2];
drh5b6afba2008-01-05 16:29:28 +00002167 if( pIn2->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002168 v2 = 2;
2169 }else{
drh5b6afba2008-01-05 16:29:28 +00002170 v2 = sqlite3VdbeIntValue(pIn2)!=0;
drhbb113512002-05-27 01:04:51 +00002171 }
2172 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00002173 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00002174 v1 = and_logic[v1*3+v2];
2175 }else{
drh5b6afba2008-01-05 16:29:28 +00002176 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00002177 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00002178 }
drh3c657212009-11-17 23:59:58 +00002179 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00002180 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00002181 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00002182 }else{
drh5b6afba2008-01-05 16:29:28 +00002183 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00002184 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00002185 }
drh5e00f6c2001-09-13 13:46:56 +00002186 break;
2187}
2188
drhe99fa2a2008-12-15 15:27:51 +00002189/* Opcode: Not P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002190** Synopsis: r[P2]= !r[P1]
drh5e00f6c2001-09-13 13:46:56 +00002191**
drhe99fa2a2008-12-15 15:27:51 +00002192** Interpret the value in register P1 as a boolean value. Store the
2193** boolean complement in register P2. If the value in register P1 is
2194** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00002195*/
drh93952eb2009-11-13 19:43:43 +00002196case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002197 pIn1 = &aMem[pOp->p1];
2198 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002199 sqlite3VdbeMemSetNull(pOut);
2200 if( (pIn1->flags & MEM_Null)==0 ){
2201 pOut->flags = MEM_Int;
2202 pOut->u.i = !sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002203 }
drh5e00f6c2001-09-13 13:46:56 +00002204 break;
2205}
2206
drhe99fa2a2008-12-15 15:27:51 +00002207/* Opcode: BitNot P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002208** Synopsis: r[P1]= ~r[P1]
drhbf4133c2001-10-13 02:59:08 +00002209**
drhe99fa2a2008-12-15 15:27:51 +00002210** Interpret the content of register P1 as an integer. Store the
2211** ones-complement of the P1 value into register P2. If P1 holds
2212** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00002213*/
drh93952eb2009-11-13 19:43:43 +00002214case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002215 pIn1 = &aMem[pOp->p1];
2216 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002217 sqlite3VdbeMemSetNull(pOut);
2218 if( (pIn1->flags & MEM_Null)==0 ){
2219 pOut->flags = MEM_Int;
2220 pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002221 }
drhbf4133c2001-10-13 02:59:08 +00002222 break;
2223}
2224
drh48f2d3b2011-09-16 01:34:43 +00002225/* Opcode: Once P1 P2 * * *
2226**
drh5dad9a32014-07-25 18:37:42 +00002227** Check the "once" flag number P1. If it is set, jump to instruction P2.
2228** Otherwise, set the flag and fall through to the next instruction.
2229** In other words, this opcode causes all following opcodes up through P2
2230** (but not including P2) to run just once and to be skipped on subsequent
2231** times through the loop.
2232**
2233** All "once" flags are initially cleared whenever a prepared statement
2234** first begins to run.
drh48f2d3b2011-09-16 01:34:43 +00002235*/
dan1d8cb212011-12-09 13:24:16 +00002236case OP_Once: { /* jump */
2237 assert( pOp->p1<p->nOnceFlag );
drh688852a2014-02-17 22:40:43 +00002238 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2);
dan1d8cb212011-12-09 13:24:16 +00002239 if( p->aOnceFlag[pOp->p1] ){
drhf56fa462015-04-13 21:39:54 +00002240 goto jump_to_p2;
dan1d8cb212011-12-09 13:24:16 +00002241 }else{
2242 p->aOnceFlag[pOp->p1] = 1;
2243 }
2244 break;
2245}
2246
drh3c84ddf2008-01-09 02:15:38 +00002247/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00002248**
drhef8662b2011-06-20 21:47:58 +00002249** Jump to P2 if the value in register P1 is true. The value
drh3c84ddf2008-01-09 02:15:38 +00002250** is considered true if it is numeric and non-zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002251** in P1 is NULL then take the jump if and only if P3 is non-zero.
drh5e00f6c2001-09-13 13:46:56 +00002252*/
drh3c84ddf2008-01-09 02:15:38 +00002253/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00002254**
drhef8662b2011-06-20 21:47:58 +00002255** Jump to P2 if the value in register P1 is False. The value
drhb8475df2011-12-09 16:21:19 +00002256** is considered false if it has a numeric value of zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002257** in P1 is NULL then take the jump if and only if P3 is non-zero.
drhf5905aa2002-05-26 20:54:33 +00002258*/
drh9cbf3422008-01-17 16:22:13 +00002259case OP_If: /* jump, in1 */
2260case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00002261 int c;
drh3c657212009-11-17 23:59:58 +00002262 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00002263 if( pIn1->flags & MEM_Null ){
2264 c = pOp->p3;
drhf5905aa2002-05-26 20:54:33 +00002265 }else{
drhba0232a2005-06-06 17:27:19 +00002266#ifdef SQLITE_OMIT_FLOATING_POINT
shanefbd60f82009-02-04 03:59:25 +00002267 c = sqlite3VdbeIntValue(pIn1)!=0;
drhba0232a2005-06-06 17:27:19 +00002268#else
drh3c84ddf2008-01-09 02:15:38 +00002269 c = sqlite3VdbeRealValue(pIn1)!=0.0;
drhba0232a2005-06-06 17:27:19 +00002270#endif
drhf5905aa2002-05-26 20:54:33 +00002271 if( pOp->opcode==OP_IfNot ) c = !c;
2272 }
drh688852a2014-02-17 22:40:43 +00002273 VdbeBranchTaken(c!=0, 2);
drh3c84ddf2008-01-09 02:15:38 +00002274 if( c ){
drhf56fa462015-04-13 21:39:54 +00002275 goto jump_to_p2;
drh3c84ddf2008-01-09 02:15:38 +00002276 }
drh5e00f6c2001-09-13 13:46:56 +00002277 break;
2278}
2279
drh830ecf92009-06-18 00:41:55 +00002280/* Opcode: IsNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002281** Synopsis: if r[P1]==NULL goto P2
drh477df4b2008-01-05 18:48:24 +00002282**
drh830ecf92009-06-18 00:41:55 +00002283** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002284*/
drh9cbf3422008-01-17 16:22:13 +00002285case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002286 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002287 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
drh830ecf92009-06-18 00:41:55 +00002288 if( (pIn1->flags & MEM_Null)!=0 ){
drhf56fa462015-04-13 21:39:54 +00002289 goto jump_to_p2;
drh830ecf92009-06-18 00:41:55 +00002290 }
drh477df4b2008-01-05 18:48:24 +00002291 break;
2292}
2293
drh98757152008-01-09 23:04:12 +00002294/* Opcode: NotNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002295** Synopsis: if r[P1]!=NULL goto P2
drh5e00f6c2001-09-13 13:46:56 +00002296**
drh6a288a32008-01-07 19:20:24 +00002297** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002298*/
drh9cbf3422008-01-17 16:22:13 +00002299case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002300 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002301 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
drh6a288a32008-01-07 19:20:24 +00002302 if( (pIn1->flags & MEM_Null)==0 ){
drhf56fa462015-04-13 21:39:54 +00002303 goto jump_to_p2;
drh6a288a32008-01-07 19:20:24 +00002304 }
drh5e00f6c2001-09-13 13:46:56 +00002305 break;
2306}
2307
drh3e9ca092009-09-08 01:14:48 +00002308/* Opcode: Column P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00002309** Synopsis: r[P3]=PX
danielk1977192ac1d2004-05-10 07:17:30 +00002310**
danielk1977cfcdaef2004-05-12 07:33:33 +00002311** Interpret the data that cursor P1 points to as a structure built using
2312** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002313** information about the format of the data.) Extract the P2-th column
2314** from this record. If there are less that (P2+1)
2315** values in the record, extract a NULL.
2316**
drh9cbf3422008-01-17 16:22:13 +00002317** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002318**
danielk19771f4aa332008-01-03 09:51:55 +00002319** If the column contains fewer than P2 fields, then extract a NULL. Or,
2320** if the P4 argument is a P4_MEM use the value of the P4 argument as
2321** the result.
drh3e9ca092009-09-08 01:14:48 +00002322**
2323** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2324** then the cache of the cursor is reset prior to extracting the column.
2325** The first OP_Column against a pseudo-table after the value of the content
2326** register has changed should have this bit set.
drha748fdc2012-03-28 01:34:47 +00002327**
drhdda5c082012-03-28 13:41:10 +00002328** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2329** the result is guaranteed to only be used as the argument of a length()
2330** or typeof() function, respectively. The loading of large blobs can be
2331** skipped for length() and all content loading can be skipped for typeof().
danielk1977192ac1d2004-05-10 07:17:30 +00002332*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002333case OP_Column: {
drh856c1032009-06-02 15:21:42 +00002334 i64 payloadSize64; /* Number of bytes in the record */
drh856c1032009-06-02 15:21:42 +00002335 int p2; /* column number to retrieve */
2336 VdbeCursor *pC; /* The VDBE cursor */
drhd3194f52004-05-27 19:59:32 +00002337 BtCursor *pCrsr; /* The BTree cursor */
drhd3194f52004-05-27 19:59:32 +00002338 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk1977cfcdaef2004-05-12 07:33:33 +00002339 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002340 int i; /* Loop counter */
drhd4e70eb2008-01-02 00:34:36 +00002341 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002342 Mem sMem; /* For storing the record being decoded */
drh399af1d2013-11-20 17:25:55 +00002343 const u8 *zData; /* Part of the record being decoded */
2344 const u8 *zHdr; /* Next unparsed byte of the header */
2345 const u8 *zEndHdr; /* Pointer to first byte after the header */
drh35cd6432009-06-05 14:17:21 +00002346 u32 offset; /* Offset into the data */
drh6658cd92010-02-05 14:12:53 +00002347 u32 szField; /* Number of bytes in the content of a field */
drh501932c2013-11-21 21:59:53 +00002348 u32 avail; /* Number of bytes of available data */
drh5a077b72011-08-29 02:16:18 +00002349 u32 t; /* A type code from the record header */
drh0c8f7602014-09-19 16:56:45 +00002350 u16 fx; /* pDest->flags value */
drh3e9ca092009-09-08 01:14:48 +00002351 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002352
drh399af1d2013-11-20 17:25:55 +00002353 p2 = pOp->p2;
dan3bc9f742013-08-15 16:18:39 +00002354 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00002355 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00002356 memAboutToChange(p, pDest);
drhc8606e42013-11-20 19:28:03 +00002357 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2358 pC = p->apCsr[pOp->p1];
drha5759672012-10-30 14:39:12 +00002359 assert( pC!=0 );
drhc8606e42013-11-20 19:28:03 +00002360 assert( p2<pC->nField );
drhb53a5a92014-10-12 22:37:22 +00002361 aOffset = pC->aOffset;
danielk19770817d0d2007-02-14 09:19:36 +00002362#ifndef SQLITE_OMIT_VIRTUALTABLE
drh380d6852013-11-20 20:58:00 +00002363 assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */
danielk19770817d0d2007-02-14 09:19:36 +00002364#endif
shane36840fd2009-06-26 16:32:13 +00002365 pCrsr = pC->pCursor;
drh380d6852013-11-20 20:58:00 +00002366 assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */
2367 assert( pCrsr!=0 || pC->nullRow ); /* pC->nullRow on PseudoTables */
drh399af1d2013-11-20 17:25:55 +00002368
2369 /* If the cursor cache is stale, bring it up-to-date */
2370 rc = sqlite3VdbeCursorMoveto(pC);
2371 if( rc ) goto abort_due_to_error;
drh6cf4a7d2014-10-13 13:00:58 +00002372 if( pC->cacheStatus!=p->cacheCtr ){
drhc8606e42013-11-20 19:28:03 +00002373 if( pC->nullRow ){
2374 if( pCrsr==0 ){
2375 assert( pC->pseudoTableReg>0 );
2376 pReg = &aMem[pC->pseudoTableReg];
drhc8606e42013-11-20 19:28:03 +00002377 assert( pReg->flags & MEM_Blob );
2378 assert( memIsValid(pReg) );
2379 pC->payloadSize = pC->szRow = avail = pReg->n;
2380 pC->aRow = (u8*)pReg->z;
2381 }else{
drh6b5631e2014-11-05 15:57:39 +00002382 sqlite3VdbeMemSetNull(pDest);
drh399af1d2013-11-20 17:25:55 +00002383 goto op_column_out;
2384 }
danielk197784ac9d02004-05-18 09:58:06 +00002385 }else{
drhc8606e42013-11-20 19:28:03 +00002386 assert( pCrsr );
drh14da87f2013-11-20 21:51:33 +00002387 if( pC->isTable==0 ){
drh399af1d2013-11-20 17:25:55 +00002388 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2389 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2390 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
2391 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2392 ** payload size, so it is impossible for payloadSize64 to be
2393 ** larger than 32 bits. */
2394 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
2395 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
2396 pC->payloadSize = (u32)payloadSize64;
drhd3194f52004-05-27 19:59:32 +00002397 }else{
drh399af1d2013-11-20 17:25:55 +00002398 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2399 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
2400 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
2401 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
drh9188b382004-05-14 21:12:22 +00002402 }
drh399af1d2013-11-20 17:25:55 +00002403 assert( avail<=65536 ); /* Maximum page size is 64KiB */
2404 if( pC->payloadSize <= (u32)avail ){
2405 pC->szRow = pC->payloadSize;
drhe61cffc2004-06-12 18:12:15 +00002406 }else{
drh399af1d2013-11-20 17:25:55 +00002407 pC->szRow = avail;
2408 }
2409 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2410 goto too_big;
drhe61cffc2004-06-12 18:12:15 +00002411 }
drhd3194f52004-05-27 19:59:32 +00002412 }
drh399af1d2013-11-20 17:25:55 +00002413 pC->cacheStatus = p->cacheCtr;
2414 pC->iHdrOffset = getVarint32(pC->aRow, offset);
2415 pC->nHdrParsed = 0;
2416 aOffset[0] = offset;
drh35cd6432009-06-05 14:17:21 +00002417
2418 /* Make sure a corrupt database has not given us an oversize header.
2419 ** Do this now to avoid an oversize memory allocation.
2420 **
2421 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2422 ** types use so much data space that there can only be 4096 and 32 of
2423 ** them, respectively. So the maximum header length results from a
2424 ** 3-byte type for each of the maximum of 32768 columns plus three
2425 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2426 */
drh399af1d2013-11-20 17:25:55 +00002427 if( offset > 98307 || offset > pC->payloadSize ){
drh35cd6432009-06-05 14:17:21 +00002428 rc = SQLITE_CORRUPT_BKPT;
drhc8606e42013-11-20 19:28:03 +00002429 goto op_column_error;
drh35cd6432009-06-05 14:17:21 +00002430 }
drhc81aa2e2014-10-11 23:31:52 +00002431
2432 if( avail<offset ){
2433 /* pC->aRow does not have to hold the entire row, but it does at least
2434 ** need to cover the header of the record. If pC->aRow does not contain
2435 ** the complete header, then set it to zero, forcing the header to be
2436 ** dynamically allocated. */
2437 pC->aRow = 0;
2438 pC->szRow = 0;
2439 }
2440
2441 /* The following goto is an optimization. It can be omitted and
2442 ** everything will still work. But OP_Column is measurably faster
2443 ** by skipping the subsequent conditional, which is always true.
2444 */
2445 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
2446 goto op_column_read_header;
drh399af1d2013-11-20 17:25:55 +00002447 }
drh35cd6432009-06-05 14:17:21 +00002448
drh399af1d2013-11-20 17:25:55 +00002449 /* Make sure at least the first p2+1 entries of the header have been
drh0c8f7602014-09-19 16:56:45 +00002450 ** parsed and valid information is in aOffset[] and pC->aType[].
drh399af1d2013-11-20 17:25:55 +00002451 */
drhc8606e42013-11-20 19:28:03 +00002452 if( pC->nHdrParsed<=p2 ){
drh380d6852013-11-20 20:58:00 +00002453 /* If there is more header available for parsing in the record, try
2454 ** to extract additional fields up through the p2+1-th field
drhd3194f52004-05-27 19:59:32 +00002455 */
drhc81aa2e2014-10-11 23:31:52 +00002456 op_column_read_header:
drhc8606e42013-11-20 19:28:03 +00002457 if( pC->iHdrOffset<aOffset[0] ){
2458 /* Make sure zData points to enough of the record to cover the header. */
2459 if( pC->aRow==0 ){
2460 memset(&sMem, 0, sizeof(sMem));
drh14da87f2013-11-20 21:51:33 +00002461 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0],
2462 !pC->isTable, &sMem);
drhc8606e42013-11-20 19:28:03 +00002463 if( rc!=SQLITE_OK ){
2464 goto op_column_error;
2465 }
2466 zData = (u8*)sMem.z;
2467 }else{
2468 zData = pC->aRow;
2469 }
2470
drh0c8f7602014-09-19 16:56:45 +00002471 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
drhc8606e42013-11-20 19:28:03 +00002472 i = pC->nHdrParsed;
2473 offset = aOffset[i];
2474 zHdr = zData + pC->iHdrOffset;
2475 zEndHdr = zData + aOffset[0];
2476 assert( i<=p2 && zHdr<zEndHdr );
2477 do{
2478 if( zHdr[0]<0x80 ){
2479 t = zHdr[0];
2480 zHdr++;
2481 }else{
2482 zHdr += sqlite3GetVarint32(zHdr, &t);
2483 }
drh0c8f7602014-09-19 16:56:45 +00002484 pC->aType[i] = t;
drhc8606e42013-11-20 19:28:03 +00002485 szField = sqlite3VdbeSerialTypeLen(t);
2486 offset += szField;
2487 if( offset<szField ){ /* True if offset overflows */
2488 zHdr = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
2489 break;
2490 }
2491 i++;
2492 aOffset[i] = offset;
2493 }while( i<=p2 && zHdr<zEndHdr );
2494 pC->nHdrParsed = i;
2495 pC->iHdrOffset = (u32)(zHdr - zData);
2496 if( pC->aRow==0 ){
2497 sqlite3VdbeMemRelease(&sMem);
2498 sMem.flags = MEM_Null;
2499 }
2500
drh8dd83622014-10-13 23:39:02 +00002501 /* The record is corrupt if any of the following are true:
2502 ** (1) the bytes of the header extend past the declared header size
2503 ** (zHdr>zEndHdr)
2504 ** (2) the entire header was used but not all data was used
2505 ** (zHdr==zEndHdr && offset!=pC->payloadSize)
2506 ** (3) the end of the data extends beyond the end of the record.
2507 ** (offset > pC->payloadSize)
drhc8606e42013-11-20 19:28:03 +00002508 */
drh8dd83622014-10-13 23:39:02 +00002509 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset!=pC->payloadSize))
drhc8606e42013-11-20 19:28:03 +00002510 || (offset > pC->payloadSize)
drhc8606e42013-11-20 19:28:03 +00002511 ){
2512 rc = SQLITE_CORRUPT_BKPT;
2513 goto op_column_error;
2514 }
2515 }
2516
drhf2db3382015-04-30 20:33:25 +00002517 /* If after trying to extract new entries from the header, nHdrParsed is
drh380d6852013-11-20 20:58:00 +00002518 ** still not up to p2, that means that the record has fewer than p2
2519 ** columns. So the result will be either the default value or a NULL.
2520 */
drhc8606e42013-11-20 19:28:03 +00002521 if( pC->nHdrParsed<=p2 ){
2522 if( pOp->p4type==P4_MEM ){
2523 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2524 }else{
drh22e8d832014-10-29 00:58:38 +00002525 sqlite3VdbeMemSetNull(pDest);
drhc8606e42013-11-20 19:28:03 +00002526 }
danielk19773c9cc8d2005-01-17 03:40:08 +00002527 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002528 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002529 }
danielk1977192ac1d2004-05-10 07:17:30 +00002530
drh380d6852013-11-20 20:58:00 +00002531 /* Extract the content for the p2+1-th column. Control can only
drh0c8f7602014-09-19 16:56:45 +00002532 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
drh380d6852013-11-20 20:58:00 +00002533 ** all valid.
drh9188b382004-05-14 21:12:22 +00002534 */
drhc8606e42013-11-20 19:28:03 +00002535 assert( p2<pC->nHdrParsed );
2536 assert( rc==SQLITE_OK );
drh75fd0542014-03-01 16:24:44 +00002537 assert( sqlite3VdbeCheckMemInvariants(pDest) );
drh0725cab2014-09-17 14:52:46 +00002538 if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
drh0c8f7602014-09-19 16:56:45 +00002539 t = pC->aType[p2];
drhc8606e42013-11-20 19:28:03 +00002540 if( pC->szRow>=aOffset[p2+1] ){
drh380d6852013-11-20 20:58:00 +00002541 /* This is the common case where the desired content fits on the original
2542 ** page - where the content is not on an overflow page */
drh0c8f7602014-09-19 16:56:45 +00002543 sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest);
danielk197736963fd2005-02-19 08:18:05 +00002544 }else{
drh58c96082013-12-23 11:33:32 +00002545 /* This branch happens only when content is on overflow pages */
drh380d6852013-11-20 20:58:00 +00002546 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2547 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2548 || (len = sqlite3VdbeSerialTypeLen(t))==0
drhc8606e42013-11-20 19:28:03 +00002549 ){
drh2a2a6962014-09-16 18:22:44 +00002550 /* Content is irrelevant for
2551 ** 1. the typeof() function,
2552 ** 2. the length(X) function if X is a blob, and
2553 ** 3. if the content length is zero.
2554 ** So we might as well use bogus content rather than reading
2555 ** content from disk. NULL will work for the value for strings
2556 ** and blobs and whatever is in the payloadSize64 variable
2557 ** will work for everything else. */
2558 sqlite3VdbeSerialGet(t<=13 ? (u8*)&payloadSize64 : 0, t, pDest);
danielk1977aee18ef2005-03-09 12:26:50 +00002559 }else{
drh14da87f2013-11-20 21:51:33 +00002560 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
drh2a2a6962014-09-16 18:22:44 +00002561 pDest);
drhc8606e42013-11-20 19:28:03 +00002562 if( rc!=SQLITE_OK ){
2563 goto op_column_error;
2564 }
drh2a2a6962014-09-16 18:22:44 +00002565 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2566 pDest->flags &= ~MEM_Ephem;
danielk1977aee18ef2005-03-09 12:26:50 +00002567 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002568 }
drhc8606e42013-11-20 19:28:03 +00002569 pDest->enc = encoding;
drhd3194f52004-05-27 19:59:32 +00002570
danielk19773c9cc8d2005-01-17 03:40:08 +00002571op_column_out:
drh7b5ebca2014-09-19 15:28:33 +00002572 /* If the column value is an ephemeral string, go ahead and persist
2573 ** that string in case the cursor moves before the column value is
2574 ** used. The following code does the equivalent of Deephemeralize()
2575 ** but does it faster. */
2576 if( (pDest->flags & MEM_Ephem)!=0 && pDest->z ){
drh0c8f7602014-09-19 16:56:45 +00002577 fx = pDest->flags & (MEM_Str|MEM_Blob);
2578 assert( fx!=0 );
drh7b5ebca2014-09-19 15:28:33 +00002579 zData = (const u8*)pDest->z;
2580 len = pDest->n;
2581 if( sqlite3VdbeMemClearAndResize(pDest, len+2) ) goto no_mem;
2582 memcpy(pDest->z, zData, len);
2583 pDest->z[len] = 0;
2584 pDest->z[len+1] = 0;
drh0c8f7602014-09-19 16:56:45 +00002585 pDest->flags = fx|MEM_Term;
drh7b5ebca2014-09-19 15:28:33 +00002586 }
drhc8606e42013-11-20 19:28:03 +00002587op_column_error:
drhb7654112008-01-12 12:48:07 +00002588 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002589 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002590 break;
2591}
2592
danielk1977751de562008-04-18 09:01:15 +00002593/* Opcode: Affinity P1 P2 * P4 *
drhf63552b2013-10-30 00:25:03 +00002594** Synopsis: affinity(r[P1@P2])
danielk1977751de562008-04-18 09:01:15 +00002595**
2596** Apply affinities to a range of P2 registers starting with P1.
2597**
2598** P4 is a string that is P2 characters long. The nth character of the
2599** string indicates the column affinity that should be used for the nth
2600** memory cell in the range.
2601*/
2602case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002603 const char *zAffinity; /* The affinity to be applied */
2604 char cAff; /* A single character of affinity */
danielk1977751de562008-04-18 09:01:15 +00002605
drh856c1032009-06-02 15:21:42 +00002606 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002607 assert( zAffinity!=0 );
2608 assert( zAffinity[pOp->p2]==0 );
2609 pIn1 = &aMem[pOp->p1];
2610 while( (cAff = *(zAffinity++))!=0 ){
dan3bc9f742013-08-15 16:18:39 +00002611 assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00002612 assert( memIsValid(pIn1) );
drh039fc322009-11-17 18:31:47 +00002613 applyAffinity(pIn1, cAff, encoding);
2614 pIn1++;
danielk1977751de562008-04-18 09:01:15 +00002615 }
2616 break;
2617}
2618
drh1db639c2008-01-17 02:36:28 +00002619/* Opcode: MakeRecord P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00002620** Synopsis: r[P3]=mkrec(r[P1@P2])
drh7a224de2004-06-02 01:22:02 +00002621**
drh710c4842010-08-30 01:17:20 +00002622** Convert P2 registers beginning with P1 into the [record format]
2623** use as a data record in a database table or as a key
2624** in an index. The OP_Column opcode can decode the record later.
drh7a224de2004-06-02 01:22:02 +00002625**
danielk1977751de562008-04-18 09:01:15 +00002626** P4 may be a string that is P2 characters long. The nth character of the
drh7a224de2004-06-02 01:22:02 +00002627** string indicates the column affinity that should be used for the nth
drh9cbf3422008-01-17 16:22:13 +00002628** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002629**
drh8a512562005-11-14 22:29:05 +00002630** The mapping from character to affinity is given by the SQLITE_AFF_
2631** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002632**
drh05883a32015-06-02 15:32:08 +00002633** If P4 is NULL then all index fields have the affinity BLOB.
drh7f057c92005-06-24 03:53:06 +00002634*/
drh1db639c2008-01-17 02:36:28 +00002635case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002636 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2637 Mem *pRec; /* The new record */
2638 u64 nData; /* Number of bytes of data space */
2639 int nHdr; /* Number of bytes of header space */
2640 i64 nByte; /* Data space required for this record */
drh4a335072015-04-11 02:08:48 +00002641 i64 nZero; /* Number of zero bytes at the end of the record */
drh856c1032009-06-02 15:21:42 +00002642 int nVarint; /* Number of bytes in a varint */
2643 u32 serial_type; /* Type field */
2644 Mem *pData0; /* First field to be combined into the record */
2645 Mem *pLast; /* Last field of the record */
2646 int nField; /* Number of fields in the record */
2647 char *zAffinity; /* The affinity string for the record */
2648 int file_format; /* File format to use for encoding */
drh59bf00c2013-12-08 23:33:28 +00002649 int i; /* Space used in zNewRecord[] header */
2650 int j; /* Space used in zNewRecord[] content */
drh856c1032009-06-02 15:21:42 +00002651 int len; /* Length of a field */
2652
drhf3218fe2004-05-28 08:21:02 +00002653 /* Assuming the record contains N fields, the record format looks
2654 ** like this:
2655 **
drh7a224de2004-06-02 01:22:02 +00002656 ** ------------------------------------------------------------------------
2657 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2658 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002659 **
drh9cbf3422008-01-17 16:22:13 +00002660 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
peter.d.reid60ec9142014-09-06 16:39:46 +00002661 ** and so forth.
drhf3218fe2004-05-28 08:21:02 +00002662 **
2663 ** Each type field is a varint representing the serial type of the
2664 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002665 ** hdr-size field is also a varint which is the offset from the beginning
2666 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002667 */
drh856c1032009-06-02 15:21:42 +00002668 nData = 0; /* Number of bytes of data space */
2669 nHdr = 0; /* Number of bytes of header space */
drh856c1032009-06-02 15:21:42 +00002670 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002671 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002672 zAffinity = pOp->p4.z;
dan3bc9f742013-08-15 16:18:39 +00002673 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 );
drha6c2ed92009-11-14 23:22:23 +00002674 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002675 nField = pOp->p2;
2676 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002677 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002678
drh2b4ded92010-09-27 21:09:31 +00002679 /* Identify the output register */
2680 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2681 pOut = &aMem[pOp->p3];
2682 memAboutToChange(p, pOut);
2683
drh3e6c0602013-12-10 20:53:01 +00002684 /* Apply the requested affinity to all inputs
2685 */
2686 assert( pData0<=pLast );
2687 if( zAffinity ){
2688 pRec = pData0;
2689 do{
drh57bf4a82014-02-17 14:59:22 +00002690 applyAffinity(pRec++, *(zAffinity++), encoding);
2691 assert( zAffinity[0]==0 || pRec<=pLast );
2692 }while( zAffinity[0] );
drh3e6c0602013-12-10 20:53:01 +00002693 }
2694
drhf3218fe2004-05-28 08:21:02 +00002695 /* Loop through the elements that will make up the record to figure
2696 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002697 */
drh038b7bc2013-12-09 23:17:22 +00002698 pRec = pLast;
drh59bf00c2013-12-08 23:33:28 +00002699 do{
drh2b4ded92010-09-27 21:09:31 +00002700 assert( memIsValid(pRec) );
drhfacf47a2014-10-13 20:12:47 +00002701 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format);
drhae7e1512007-05-02 16:51:59 +00002702 len = sqlite3VdbeSerialTypeLen(serial_type);
drh038b7bc2013-12-09 23:17:22 +00002703 if( pRec->flags & MEM_Zero ){
2704 if( nData ){
drh53e66c32015-07-24 15:49:23 +00002705 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
drh038b7bc2013-12-09 23:17:22 +00002706 }else{
2707 nZero += pRec->u.nZero;
2708 len -= pRec->u.nZero;
2709 }
2710 }
drhae7e1512007-05-02 16:51:59 +00002711 nData += len;
drh59bf00c2013-12-08 23:33:28 +00002712 testcase( serial_type==127 );
2713 testcase( serial_type==128 );
drh2a242872013-12-08 22:59:29 +00002714 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
drh038b7bc2013-12-09 23:17:22 +00002715 }while( (--pRec)>=pData0 );
danielk19773d1bfea2004-05-14 11:00:53 +00002716
drh654858d2014-11-20 02:18:14 +00002717 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2718 ** which determines the total number of bytes in the header. The varint
2719 ** value is the size of the header in bytes including the size varint
2720 ** itself. */
drh59bf00c2013-12-08 23:33:28 +00002721 testcase( nHdr==126 );
2722 testcase( nHdr==127 );
drh2a242872013-12-08 22:59:29 +00002723 if( nHdr<=126 ){
2724 /* The common case */
2725 nHdr += 1;
2726 }else{
2727 /* Rare case of a really large header */
2728 nVarint = sqlite3VarintLen(nHdr);
2729 nHdr += nVarint;
2730 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
drhcb9882a2005-03-17 03:15:40 +00002731 }
drh038b7bc2013-12-09 23:17:22 +00002732 nByte = nHdr+nData;
drh4a335072015-04-11 02:08:48 +00002733 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002734 goto too_big;
2735 }
drhf3218fe2004-05-28 08:21:02 +00002736
danielk1977a7a8e142008-02-13 18:25:27 +00002737 /* Make sure the output register has a buffer large enough to store
2738 ** the new record. The output register (pOp->p3) is not allowed to
2739 ** be one of the input registers (because the following call to
drh322f2852014-09-19 00:43:39 +00002740 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
danielk1977a7a8e142008-02-13 18:25:27 +00002741 */
drh322f2852014-09-19 00:43:39 +00002742 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002743 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002744 }
danielk1977a7a8e142008-02-13 18:25:27 +00002745 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002746
2747 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002748 i = putVarint32(zNewRecord, nHdr);
drh59bf00c2013-12-08 23:33:28 +00002749 j = nHdr;
2750 assert( pData0<=pLast );
2751 pRec = pData0;
2752 do{
drhfacf47a2014-10-13 20:12:47 +00002753 serial_type = pRec->uTemp;
drh654858d2014-11-20 02:18:14 +00002754 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2755 ** additional varints, one per column. */
drh038b7bc2013-12-09 23:17:22 +00002756 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
drh654858d2014-11-20 02:18:14 +00002757 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2758 ** immediately follow the header. */
drha9ab4812013-12-11 11:00:44 +00002759 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
drh59bf00c2013-12-08 23:33:28 +00002760 }while( (++pRec)<=pLast );
2761 assert( i==nHdr );
2762 assert( j==nByte );
drhf3218fe2004-05-28 08:21:02 +00002763
dan3bc9f742013-08-15 16:18:39 +00002764 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drh9c1905f2008-12-10 22:32:56 +00002765 pOut->n = (int)nByte;
drhc91b2fd2014-03-01 18:13:23 +00002766 pOut->flags = MEM_Blob;
drhfdf972a2007-05-02 13:30:27 +00002767 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002768 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002769 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002770 }
drh477df4b2008-01-05 18:48:24 +00002771 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
drh1013c932008-01-06 00:25:21 +00002772 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002773 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002774 break;
2775}
2776
danielk1977a5533162009-02-24 10:01:51 +00002777/* Opcode: Count P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002778** Synopsis: r[P2]=count()
danielk1977a5533162009-02-24 10:01:51 +00002779**
2780** Store the number of entries (an integer value) in the table or index
2781** opened by cursor P1 in register P2
2782*/
2783#ifndef SQLITE_OMIT_BTREECOUNT
drh27a348c2015-04-13 19:14:06 +00002784case OP_Count: { /* out2 */
danielk1977a5533162009-02-24 10:01:51 +00002785 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002786 BtCursor *pCrsr;
2787
2788 pCrsr = p->apCsr[pOp->p1]->pCursor;
drh3da046d2013-11-11 03:24:11 +00002789 assert( pCrsr );
drh2dc06482013-12-11 00:59:10 +00002790 nEntry = 0; /* Not needed. Only used to silence a warning. */
drh3da046d2013-11-11 03:24:11 +00002791 rc = sqlite3BtreeCount(pCrsr, &nEntry);
drh27a348c2015-04-13 19:14:06 +00002792 pOut = out2Prerelease(p, pOp);
danielk1977a5533162009-02-24 10:01:51 +00002793 pOut->u.i = nEntry;
2794 break;
2795}
2796#endif
2797
danielk1977fd7f0452008-12-17 17:30:26 +00002798/* Opcode: Savepoint P1 * * P4 *
2799**
2800** Open, release or rollback the savepoint named by parameter P4, depending
2801** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2802** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2803*/
2804case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002805 int p1; /* Value of P1 operand */
2806 char *zName; /* Name of savepoint */
2807 int nName;
2808 Savepoint *pNew;
2809 Savepoint *pSavepoint;
2810 Savepoint *pTmp;
2811 int iSavepoint;
2812 int ii;
2813
2814 p1 = pOp->p1;
2815 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002816
2817 /* Assert that the p1 parameter is valid. Also that if there is no open
2818 ** transaction, then there cannot be any savepoints.
2819 */
2820 assert( db->pSavepoint==0 || db->autoCommit==0 );
2821 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2822 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2823 assert( checkSavepointCount(db) );
danc0537fe2013-06-28 19:41:43 +00002824 assert( p->bIsReader );
danielk1977fd7f0452008-12-17 17:30:26 +00002825
2826 if( p1==SAVEPOINT_BEGIN ){
drh4f7d3a52013-06-27 23:54:02 +00002827 if( db->nVdbeWrite>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002828 /* A new savepoint cannot be created if there are active write
2829 ** statements (i.e. open read/write incremental blob handles).
2830 */
drh22c17b82015-05-15 04:13:15 +00002831 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
danielk1977fd7f0452008-12-17 17:30:26 +00002832 rc = SQLITE_BUSY;
2833 }else{
drh856c1032009-06-02 15:21:42 +00002834 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002835
drhbe07ec52011-06-03 12:15:26 +00002836#ifndef SQLITE_OMIT_VIRTUALTABLE
dand9495cd2011-04-27 12:08:04 +00002837 /* This call is Ok even if this savepoint is actually a transaction
2838 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2839 ** If this is a transaction savepoint being opened, it is guaranteed
2840 ** that the db->aVTrans[] array is empty. */
2841 assert( db->autoCommit==0 || db->nVTrans==0 );
drha24bc9c2011-05-24 00:35:56 +00002842 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2843 db->nStatement+db->nSavepoint);
dand9495cd2011-04-27 12:08:04 +00002844 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh305ebab2011-05-26 14:19:14 +00002845#endif
dand9495cd2011-04-27 12:08:04 +00002846
danielk1977fd7f0452008-12-17 17:30:26 +00002847 /* Create a new savepoint structure. */
2848 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2849 if( pNew ){
2850 pNew->zName = (char *)&pNew[1];
2851 memcpy(pNew->zName, zName, nName+1);
2852
2853 /* If there is no open transaction, then mark this as a special
2854 ** "transaction savepoint". */
2855 if( db->autoCommit ){
2856 db->autoCommit = 0;
2857 db->isTransactionSavepoint = 1;
2858 }else{
2859 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002860 }
danielk1977fd7f0452008-12-17 17:30:26 +00002861
2862 /* Link the new savepoint into the database handle's list. */
2863 pNew->pNext = db->pSavepoint;
2864 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002865 pNew->nDeferredCons = db->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00002866 pNew->nDeferredImmCons = db->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002867 }
2868 }
2869 }else{
drh856c1032009-06-02 15:21:42 +00002870 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00002871
2872 /* Find the named savepoint. If there is no such savepoint, then an
2873 ** an error is returned to the user. */
2874 for(
drh856c1032009-06-02 15:21:42 +00002875 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002876 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00002877 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00002878 ){
2879 iSavepoint++;
2880 }
2881 if( !pSavepoint ){
drh22c17b82015-05-15 04:13:15 +00002882 sqlite3VdbeError(p, "no such savepoint: %s", zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002883 rc = SQLITE_ERROR;
drh4f7d3a52013-06-27 23:54:02 +00002884 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
danielk1977fd7f0452008-12-17 17:30:26 +00002885 /* It is not possible to release (commit) a savepoint if there are
drh0f198a72012-02-13 16:43:16 +00002886 ** active write statements.
danielk1977fd7f0452008-12-17 17:30:26 +00002887 */
drh22c17b82015-05-15 04:13:15 +00002888 sqlite3VdbeError(p, "cannot release savepoint - "
2889 "SQL statements in progress");
danielk1977fd7f0452008-12-17 17:30:26 +00002890 rc = SQLITE_BUSY;
2891 }else{
2892
2893 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00002894 ** and this is a RELEASE command, then the current transaction
2895 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00002896 */
2897 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2898 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00002899 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002900 goto vdbe_return;
2901 }
danielk1977fd7f0452008-12-17 17:30:26 +00002902 db->autoCommit = 1;
2903 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
drhf56fa462015-04-13 21:39:54 +00002904 p->pc = (int)(pOp - aOp);
danielk1977fd7f0452008-12-17 17:30:26 +00002905 db->autoCommit = 0;
2906 p->rc = rc = SQLITE_BUSY;
2907 goto vdbe_return;
2908 }
danielk197734cf35d2008-12-18 18:31:38 +00002909 db->isTransactionSavepoint = 0;
2910 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00002911 }else{
drh47b7fc72014-11-11 01:33:57 +00002912 int isSchemaChange;
danielk1977fd7f0452008-12-17 17:30:26 +00002913 iSavepoint = db->nSavepoint - iSavepoint - 1;
drh31f10052012-03-31 17:17:26 +00002914 if( p1==SAVEPOINT_ROLLBACK ){
drh47b7fc72014-11-11 01:33:57 +00002915 isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
drh31f10052012-03-31 17:17:26 +00002916 for(ii=0; ii<db->nDb; ii++){
drh77b1dee2014-11-17 17:13:06 +00002917 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
2918 SQLITE_ABORT_ROLLBACK,
drh47b7fc72014-11-11 01:33:57 +00002919 isSchemaChange==0);
dan80231042014-11-12 14:56:02 +00002920 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh31f10052012-03-31 17:17:26 +00002921 }
drh47b7fc72014-11-11 01:33:57 +00002922 }else{
2923 isSchemaChange = 0;
drh0f198a72012-02-13 16:43:16 +00002924 }
2925 for(ii=0; ii<db->nDb; ii++){
danielk1977fd7f0452008-12-17 17:30:26 +00002926 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2927 if( rc!=SQLITE_OK ){
2928 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00002929 }
danielk1977fd7f0452008-12-17 17:30:26 +00002930 }
drh47b7fc72014-11-11 01:33:57 +00002931 if( isSchemaChange ){
danielk1977fd7f0452008-12-17 17:30:26 +00002932 sqlite3ExpirePreparedStatements(db);
drh81028a42012-05-15 18:28:27 +00002933 sqlite3ResetAllSchemasOfConnection(db);
danc311fee2010-08-31 16:25:19 +00002934 db->flags = (db->flags | SQLITE_InternChanges);
danielk1977fd7f0452008-12-17 17:30:26 +00002935 }
2936 }
2937
2938 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2939 ** savepoints nested inside of the savepoint being operated on. */
2940 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00002941 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002942 db->pSavepoint = pTmp->pNext;
2943 sqlite3DbFree(db, pTmp);
2944 db->nSavepoint--;
2945 }
2946
dan1da40a32009-09-19 17:00:31 +00002947 /* If it is a RELEASE, then destroy the savepoint being operated on
2948 ** too. If it is a ROLLBACK TO, then set the number of deferred
2949 ** constraint violations present in the database to the value stored
2950 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00002951 if( p1==SAVEPOINT_RELEASE ){
2952 assert( pSavepoint==db->pSavepoint );
2953 db->pSavepoint = pSavepoint->pNext;
2954 sqlite3DbFree(db, pSavepoint);
2955 if( !isTransaction ){
2956 db->nSavepoint--;
2957 }
dan1da40a32009-09-19 17:00:31 +00002958 }else{
2959 db->nDeferredCons = pSavepoint->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00002960 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002961 }
dand9495cd2011-04-27 12:08:04 +00002962
danea8562e2015-04-18 16:25:54 +00002963 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
dand9495cd2011-04-27 12:08:04 +00002964 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2965 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2966 }
danielk1977fd7f0452008-12-17 17:30:26 +00002967 }
2968 }
2969
2970 break;
2971}
2972
drh98757152008-01-09 23:04:12 +00002973/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00002974**
2975** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00002976** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00002977** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2978** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00002979**
2980** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00002981*/
drh9cbf3422008-01-17 16:22:13 +00002982case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00002983 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00002984 int iRollback;
drh856c1032009-06-02 15:21:42 +00002985 int turnOnAC;
danielk19771d850a72004-05-31 08:26:49 +00002986
drh856c1032009-06-02 15:21:42 +00002987 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00002988 iRollback = pOp->p2;
drh856c1032009-06-02 15:21:42 +00002989 turnOnAC = desiredAutoCommit && !db->autoCommit;
drhad4a4b82008-11-05 16:37:34 +00002990 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00002991 assert( desiredAutoCommit==1 || iRollback==0 );
drh4f7d3a52013-06-27 23:54:02 +00002992 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
danc0537fe2013-06-28 19:41:43 +00002993 assert( p->bIsReader );
danielk197746c43ed2004-06-30 06:30:25 +00002994
drh4f7d3a52013-06-27 23:54:02 +00002995 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){
drhad4a4b82008-11-05 16:37:34 +00002996 /* If this instruction implements a COMMIT and other VMs are writing
2997 ** return an error indicating that the other VMs must complete first.
2998 */
drh22c17b82015-05-15 04:13:15 +00002999 sqlite3VdbeError(p, "cannot commit transaction - "
3000 "SQL statements in progress");
drhad4a4b82008-11-05 16:37:34 +00003001 rc = SQLITE_BUSY;
3002 }else if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00003003 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00003004 assert( desiredAutoCommit==1 );
drh21021a52012-02-13 17:01:51 +00003005 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977f3f06bb2005-12-16 15:24:28 +00003006 db->autoCommit = 1;
dan32b09f22009-09-23 17:29:59 +00003007 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00003008 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00003009 }else{
shane7d3846a2008-12-11 02:58:26 +00003010 db->autoCommit = (u8)desiredAutoCommit;
drh8ff25872015-07-31 18:59:56 +00003011 }
3012 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3013 p->pc = (int)(pOp - aOp);
3014 db->autoCommit = (u8)(1-desiredAutoCommit);
3015 p->rc = rc = SQLITE_BUSY;
3016 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00003017 }
danielk1977bd434552009-03-18 10:33:00 +00003018 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00003019 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00003020 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00003021 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00003022 }else{
drh900b31e2007-08-28 02:27:51 +00003023 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00003024 }
drh900b31e2007-08-28 02:27:51 +00003025 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00003026 }else{
drh22c17b82015-05-15 04:13:15 +00003027 sqlite3VdbeError(p,
drhad4a4b82008-11-05 16:37:34 +00003028 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00003029 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00003030 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00003031
3032 rc = SQLITE_ERROR;
drh663fc632002-02-02 18:49:19 +00003033 }
3034 break;
3035}
3036
drhb22f7c82014-02-06 23:56:27 +00003037/* Opcode: Transaction P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003038**
drh05a86c52014-02-16 01:55:49 +00003039** Begin a transaction on database P1 if a transaction is not already
3040** active.
3041** If P2 is non-zero, then a write-transaction is started, or if a
3042** read-transaction is already active, it is upgraded to a write-transaction.
3043** If P2 is zero, then a read-transaction is started.
drh5e00f6c2001-09-13 13:46:56 +00003044**
drh001bbcb2003-03-19 03:14:00 +00003045** P1 is the index of the database file on which the transaction is
3046** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00003047** file used for temporary tables. Indices of 2 or more are used for
3048** attached databases.
drhcabb0812002-09-14 13:47:32 +00003049**
dane0af83a2009-09-08 19:15:01 +00003050** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3051** true (this flag is set if the Vdbe may modify more than one row and may
3052** throw an ABORT exception), a statement transaction may also be opened.
3053** More specifically, a statement transaction is opened iff the database
3054** connection is currently not in autocommit mode, or if there are other
drha4510172012-02-02 15:50:17 +00003055** active statements. A statement transaction allows the changes made by this
dane0af83a2009-09-08 19:15:01 +00003056** VDBE to be rolled back after an error without having to roll back the
3057** entire transaction. If no error is encountered, the statement transaction
3058** will automatically commit when the VDBE halts.
3059**
drhb22f7c82014-02-06 23:56:27 +00003060** If P5!=0 then this opcode also checks the schema cookie against P3
3061** and the schema generation counter against P4.
3062** The cookie changes its value whenever the database schema changes.
3063** This operation is used to detect when that the cookie has changed
drh05a86c52014-02-16 01:55:49 +00003064** and that the current process needs to reread the schema. If the schema
3065** cookie in P3 differs from the schema cookie in the database header or
3066** if the schema generation counter in P4 differs from the current
3067** generation counter, then an SQLITE_SCHEMA error is raised and execution
3068** halts. The sqlite3_step() wrapper function might then reprepare the
3069** statement and rerun it from the beginning.
drh5e00f6c2001-09-13 13:46:56 +00003070*/
drh9cbf3422008-01-17 16:22:13 +00003071case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00003072 Btree *pBt;
drhb22f7c82014-02-06 23:56:27 +00003073 int iMeta;
3074 int iGen;
danielk19771d850a72004-05-31 08:26:49 +00003075
drh1713afb2013-06-28 01:24:57 +00003076 assert( p->bIsReader );
drh9e92a472013-06-27 17:40:30 +00003077 assert( p->readOnly==0 || pOp->p2==0 );
drh653b82a2009-06-22 11:10:47 +00003078 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003079 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh13447bf2013-07-10 13:33:49 +00003080 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3081 rc = SQLITE_READONLY;
3082 goto abort_due_to_error;
3083 }
drh653b82a2009-06-22 11:10:47 +00003084 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00003085
danielk197724162fe2004-06-04 06:22:00 +00003086 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00003087 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
drhcbd8db32015-08-20 17:18:32 +00003088 testcase( rc==SQLITE_BUSY_SNAPSHOT );
3089 testcase( rc==SQLITE_BUSY_RECOVERY );
3090 if( (rc&0xff)==SQLITE_BUSY ){
drhf56fa462015-04-13 21:39:54 +00003091 p->pc = (int)(pOp - aOp);
drhcbd8db32015-08-20 17:18:32 +00003092 p->rc = rc;
drh900b31e2007-08-28 02:27:51 +00003093 goto vdbe_return;
danielk197724162fe2004-06-04 06:22:00 +00003094 }
drh9e9f1bd2009-10-13 15:36:51 +00003095 if( rc!=SQLITE_OK ){
danielk197724162fe2004-06-04 06:22:00 +00003096 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00003097 }
dane0af83a2009-09-08 19:15:01 +00003098
3099 if( pOp->p2 && p->usesStmtJournal
danc0537fe2013-06-28 19:41:43 +00003100 && (db->autoCommit==0 || db->nVdbeRead>1)
dane0af83a2009-09-08 19:15:01 +00003101 ){
3102 assert( sqlite3BtreeIsInTrans(pBt) );
3103 if( p->iStatement==0 ){
3104 assert( db->nStatement>=0 && db->nSavepoint>=0 );
3105 db->nStatement++;
3106 p->iStatement = db->nSavepoint + db->nStatement;
3107 }
dana311b802011-04-26 19:21:34 +00003108
drh346506f2011-05-25 01:16:42 +00003109 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
dana311b802011-04-26 19:21:34 +00003110 if( rc==SQLITE_OK ){
3111 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3112 }
dan1da40a32009-09-19 17:00:31 +00003113
3114 /* Store the current value of the database handles deferred constraint
3115 ** counter. If the statement transaction needs to be rolled back,
3116 ** the value of this counter needs to be restored too. */
3117 p->nStmtDefCons = db->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00003118 p->nStmtDefImmCons = db->nDeferredImmCons;
dane0af83a2009-09-08 19:15:01 +00003119 }
drhb22f7c82014-02-06 23:56:27 +00003120
drh51a74d42015-02-28 01:04:27 +00003121 /* Gather the schema version number for checking:
3122 ** IMPLEMENTATION-OF: R-32195-19465 The schema version is used by SQLite
3123 ** each time a query is executed to ensure that the internal cache of the
3124 ** schema used when compiling the SQL query matches the schema of the
3125 ** database against which the compiled query is actually executed.
3126 */
drhb22f7c82014-02-06 23:56:27 +00003127 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3128 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3129 }else{
3130 iGen = iMeta = 0;
3131 }
3132 assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3133 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3134 sqlite3DbFree(db, p->zErrMsg);
3135 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3136 /* If the schema-cookie from the database file matches the cookie
3137 ** stored with the in-memory representation of the schema, do
3138 ** not reload the schema from the database file.
3139 **
3140 ** If virtual-tables are in use, this is not just an optimization.
3141 ** Often, v-tables store their data in other SQLite tables, which
3142 ** are queried from within xNext() and other v-table methods using
3143 ** prepared queries. If such a query is out-of-date, we do not want to
3144 ** discard the database schema, as the user code implementing the
3145 ** v-table would have to be ready for the sqlite3_vtab structure itself
3146 ** to be invalidated whenever sqlite3_step() is called from within
3147 ** a v-table method.
3148 */
3149 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3150 sqlite3ResetOneSchema(db, pOp->p1);
3151 }
3152 p->expired = 1;
3153 rc = SQLITE_SCHEMA;
drhb86ccfb2003-01-28 23:13:10 +00003154 }
drh5e00f6c2001-09-13 13:46:56 +00003155 break;
3156}
3157
drhb1fdb2a2008-01-05 04:06:03 +00003158/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003159**
drh9cbf3422008-01-17 16:22:13 +00003160** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00003161** P3==1 is the schema version. P3==2 is the database format.
3162** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00003163** the main database file and P1==1 is the database file used to store
3164** temporary tables.
drh4a324312001-12-21 14:30:42 +00003165**
drh50e5dad2001-09-15 00:57:28 +00003166** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00003167** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00003168** executing this instruction.
3169*/
drh27a348c2015-04-13 19:14:06 +00003170case OP_ReadCookie: { /* out2 */
drhf328bc82004-05-10 23:29:49 +00003171 int iMeta;
drh856c1032009-06-02 15:21:42 +00003172 int iDb;
3173 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00003174
drh1713afb2013-06-28 01:24:57 +00003175 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00003176 iDb = pOp->p1;
3177 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00003178 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00003179 assert( iDb>=0 && iDb<db->nDb );
3180 assert( db->aDb[iDb].pBt!=0 );
drha7ab6d82014-07-21 15:44:39 +00003181 assert( DbMaskTest(p->btreeMask, iDb) );
danielk19770d19f7a2009-06-03 11:25:07 +00003182
danielk1977602b4662009-07-02 07:47:33 +00003183 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh27a348c2015-04-13 19:14:06 +00003184 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00003185 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00003186 break;
3187}
3188
drh98757152008-01-09 23:04:12 +00003189/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003190**
drh98757152008-01-09 23:04:12 +00003191** Write the content of register P3 (interpreted as an integer)
danielk19770d19f7a2009-06-03 11:25:07 +00003192** into cookie number P2 of database P1. P2==1 is the schema version.
3193** P2==2 is the database format. P2==3 is the recommended pager cache
3194** size, and so forth. P1==0 is the main database file and P1==1 is the
3195** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00003196**
3197** A transaction must be started before executing this opcode.
3198*/
drh9cbf3422008-01-17 16:22:13 +00003199case OP_SetCookie: { /* in3 */
drh3f7d4e42004-07-24 14:35:58 +00003200 Db *pDb;
drh4a324312001-12-21 14:30:42 +00003201 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00003202 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003203 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00003204 assert( p->readOnly==0 );
drh3f7d4e42004-07-24 14:35:58 +00003205 pDb = &db->aDb[pOp->p1];
3206 assert( pDb->pBt!=0 );
drh21206082011-04-04 18:22:02 +00003207 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drh3c657212009-11-17 23:59:58 +00003208 pIn3 = &aMem[pOp->p3];
drh98757152008-01-09 23:04:12 +00003209 sqlite3VdbeMemIntegerify(pIn3);
drha3b321d2004-05-11 09:31:31 +00003210 /* See note about index shifting on OP_ReadCookie */
danielk19770d19f7a2009-06-03 11:25:07 +00003211 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
3212 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00003213 /* When the schema cookie changes, record the new cookie internally */
drh9c1905f2008-12-10 22:32:56 +00003214 pDb->pSchema->schema_cookie = (int)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00003215 db->flags |= SQLITE_InternChanges;
danielk19770d19f7a2009-06-03 11:25:07 +00003216 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00003217 /* Record changes in the file format */
drh9c1905f2008-12-10 22:32:56 +00003218 pDb->pSchema->file_format = (u8)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00003219 }
drhfd426c62006-01-30 15:34:22 +00003220 if( pOp->p1==1 ){
3221 /* Invalidate all prepared statements whenever the TEMP database
3222 ** schema is changed. Ticket #1644 */
3223 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00003224 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00003225 }
drh50e5dad2001-09-15 00:57:28 +00003226 break;
3227}
3228
drh98757152008-01-09 23:04:12 +00003229/* Opcode: OpenRead P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003230** Synopsis: root=P2 iDb=P3
drh5e00f6c2001-09-13 13:46:56 +00003231**
drhecdc7532001-09-23 02:35:53 +00003232** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00003233** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00003234** P3==0 means the main database, P3==1 means the database used for
3235** temporary tables, and P3>1 means used the corresponding attached
3236** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00003237** values need not be contiguous but all P1 values should be small integers.
3238** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00003239**
drh98757152008-01-09 23:04:12 +00003240** If P5!=0 then use the content of register P2 as the root page, not
3241** the value of P2 itself.
drh5edc3122001-09-13 21:53:09 +00003242**
drhb19a2bc2001-09-16 00:13:26 +00003243** There will be a read lock on the database whenever there is an
3244** open cursor. If the database was unlocked prior to this instruction
3245** then a read lock is acquired as part of this instruction. A read
3246** lock allows other processes to read the database but prohibits
3247** any other process from modifying the database. The read lock is
3248** released when all cursors are closed. If this instruction attempts
3249** to get a read lock but fails, the script terminates with an
3250** SQLITE_BUSY error code.
3251**
danielk1977d336e222009-02-20 10:58:41 +00003252** The P4 value may be either an integer (P4_INT32) or a pointer to
3253** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3254** structure, then said structure defines the content and collating
3255** sequence of the index being opened. Otherwise, if P4 is an integer
3256** value, it is set to the number of columns in the table.
drhf57b3392001-10-08 13:22:32 +00003257**
drh35263192014-07-22 20:02:19 +00003258** See also: OpenWrite, ReopenIdx
3259*/
3260/* Opcode: ReopenIdx P1 P2 P3 P4 P5
3261** Synopsis: root=P2 iDb=P3
3262**
3263** The ReopenIdx opcode works exactly like ReadOpen except that it first
3264** checks to see if the cursor on P1 is already open with a root page
3265** number of P2 and if it is this opcode becomes a no-op. In other words,
3266** if the cursor is already open, do not reopen it.
3267**
3268** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3269** a P4_KEYINFO object. Furthermore, the P3 value must be the same as
3270** every other ReopenIdx or OpenRead for the same cursor number.
3271**
3272** See the OpenRead opcode documentation for additional information.
drh5e00f6c2001-09-13 13:46:56 +00003273*/
drh98757152008-01-09 23:04:12 +00003274/* Opcode: OpenWrite P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003275** Synopsis: root=P2 iDb=P3
drhecdc7532001-09-23 02:35:53 +00003276**
3277** Open a read/write cursor named P1 on the table or index whose root
drh98757152008-01-09 23:04:12 +00003278** page is P2. Or if P5!=0 use the content of register P2 to find the
3279** root page.
drhecdc7532001-09-23 02:35:53 +00003280**
danielk1977d336e222009-02-20 10:58:41 +00003281** The P4 value may be either an integer (P4_INT32) or a pointer to
3282** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3283** structure, then said structure defines the content and collating
3284** sequence of the index being opened. Otherwise, if P4 is an integer
drh35cd6432009-06-05 14:17:21 +00003285** value, it is set to the number of columns in the table, or to the
3286** largest index of any column of the table that is actually used.
jplyon5a564222003-06-02 06:15:58 +00003287**
drh001bbcb2003-03-19 03:14:00 +00003288** This instruction works just like OpenRead except that it opens the cursor
drhecdc7532001-09-23 02:35:53 +00003289** in read/write mode. For a given table, there can be one or more read-only
3290** cursors or a single read/write cursor but not both.
drhf57b3392001-10-08 13:22:32 +00003291**
drh001bbcb2003-03-19 03:14:00 +00003292** See also OpenRead.
drhecdc7532001-09-23 02:35:53 +00003293*/
drh35263192014-07-22 20:02:19 +00003294case OP_ReopenIdx: {
drh1fa509a2015-03-20 16:34:49 +00003295 int nField;
3296 KeyInfo *pKeyInfo;
3297 int p2;
3298 int iDb;
3299 int wrFlag;
3300 Btree *pX;
drh35263192014-07-22 20:02:19 +00003301 VdbeCursor *pCur;
drh1fa509a2015-03-20 16:34:49 +00003302 Db *pDb;
drh35263192014-07-22 20:02:19 +00003303
drhe0997b32015-03-20 14:57:50 +00003304 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
drh35263192014-07-22 20:02:19 +00003305 assert( pOp->p4type==P4_KEYINFO );
3306 pCur = p->apCsr[pOp->p1];
drhe8f2c9d2014-08-06 17:49:13 +00003307 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
drh35263192014-07-22 20:02:19 +00003308 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
drhe0997b32015-03-20 14:57:50 +00003309 goto open_cursor_set_hints;
drh35263192014-07-22 20:02:19 +00003310 }
3311 /* If the cursor is not currently open or is open on a different
3312 ** index, then fall through into OP_OpenRead to force a reopen */
drh9cbf3422008-01-17 16:22:13 +00003313case OP_OpenRead:
drh1fa509a2015-03-20 16:34:49 +00003314case OP_OpenWrite:
drh856c1032009-06-02 15:21:42 +00003315
drhe0997b32015-03-20 14:57:50 +00003316 assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR|OPFLAG_SEEKEQ))==pOp->p5 );
3317 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
drh1713afb2013-06-28 01:24:57 +00003318 assert( p->bIsReader );
drh35263192014-07-22 20:02:19 +00003319 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3320 || p->readOnly==0 );
dan428c2182012-08-06 18:50:11 +00003321
danfa401de2009-10-16 14:55:03 +00003322 if( p->expired ){
drh47b7fc72014-11-11 01:33:57 +00003323 rc = SQLITE_ABORT_ROLLBACK;
danfa401de2009-10-16 14:55:03 +00003324 break;
3325 }
3326
drh856c1032009-06-02 15:21:42 +00003327 nField = 0;
3328 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00003329 p2 = pOp->p2;
3330 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00003331 assert( iDb>=0 && iDb<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003332 assert( DbMaskTest(p->btreeMask, iDb) );
drhd946db02005-12-29 19:23:06 +00003333 pDb = &db->aDb[iDb];
3334 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00003335 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00003336 if( pOp->opcode==OP_OpenWrite ){
3337 wrFlag = 1;
drh21206082011-04-04 18:22:02 +00003338 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
danielk1977da184232006-01-05 11:34:32 +00003339 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3340 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00003341 }
3342 }else{
3343 wrFlag = 0;
3344 }
dan428c2182012-08-06 18:50:11 +00003345 if( pOp->p5 & OPFLAG_P2ISREG ){
drh9cbf3422008-01-17 16:22:13 +00003346 assert( p2>0 );
dan3bc9f742013-08-15 16:18:39 +00003347 assert( p2<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00003348 pIn2 = &aMem[p2];
drh2b4ded92010-09-27 21:09:31 +00003349 assert( memIsValid(pIn2) );
3350 assert( (pIn2->flags & MEM_Int)!=0 );
drh9cbf3422008-01-17 16:22:13 +00003351 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003352 p2 = (int)pIn2->u.i;
drh9a65f2c2009-06-22 19:05:40 +00003353 /* The p2 value always comes from a prior OP_CreateTable opcode and
3354 ** that opcode will always set the p2 value to 2 or more or else fail.
3355 ** If there were a failure, the prepared statement would have halted
3356 ** before reaching this instruction. */
drh27731d72009-06-22 12:05:10 +00003357 if( NEVER(p2<2) ) {
shanedcc50b72008-11-13 18:29:50 +00003358 rc = SQLITE_CORRUPT_BKPT;
3359 goto abort_due_to_error;
3360 }
drh5edc3122001-09-13 21:53:09 +00003361 }
danielk1977d336e222009-02-20 10:58:41 +00003362 if( pOp->p4type==P4_KEYINFO ){
3363 pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003364 assert( pKeyInfo->enc==ENC(db) );
3365 assert( pKeyInfo->db==db );
drhad124322013-10-23 13:30:58 +00003366 nField = pKeyInfo->nField+pKeyInfo->nXField;
danielk1977d336e222009-02-20 10:58:41 +00003367 }else if( pOp->p4type==P4_INT32 ){
3368 nField = pOp->p4.i;
3369 }
drh653b82a2009-06-22 11:10:47 +00003370 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003371 assert( nField>=0 );
3372 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
drh653b82a2009-06-22 11:10:47 +00003373 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
drh4774b132004-06-12 20:12:51 +00003374 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003375 pCur->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003376 pCur->isOrdered = 1;
drh35263192014-07-22 20:02:19 +00003377 pCur->pgnoRoot = p2;
danielk1977d336e222009-02-20 10:58:41 +00003378 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3379 pCur->pKeyInfo = pKeyInfo;
drh14da87f2013-11-20 21:51:33 +00003380 /* Set the VdbeCursor.isTable variable. Previous versions of
danielk1977172114a2009-07-07 15:47:12 +00003381 ** SQLite used to check if the root-page flags were sane at this point
3382 ** and report database corruption if they were not, but this check has
3383 ** since moved into the btree layer. */
3384 pCur->isTable = pOp->p4type!=P4_KEYINFO;
drhe0997b32015-03-20 14:57:50 +00003385
3386open_cursor_set_hints:
3387 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3388 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3389 sqlite3BtreeCursorHints(pCur->pCursor,
3390 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
drh5e00f6c2001-09-13 13:46:56 +00003391 break;
3392}
3393
drh2a5d9902011-08-26 00:34:45 +00003394/* Opcode: OpenEphemeral P1 P2 * P4 P5
drh81316f82013-10-29 20:40:47 +00003395** Synopsis: nColumn=P2
drh5e00f6c2001-09-13 13:46:56 +00003396**
drhb9bb7c12006-06-11 23:41:55 +00003397** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003398** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003399** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003400** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003401**
drh25d3adb2010-04-05 15:11:08 +00003402** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003403** The cursor points to a BTree table if P4==0 and to a BTree index
3404** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003405** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003406**
drh2a5d9902011-08-26 00:34:45 +00003407** The P5 parameter can be a mask of the BTREE_* flags defined
3408** in btree.h. These flags control aspects of the operation of
3409** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3410** added automatically.
drh5e00f6c2001-09-13 13:46:56 +00003411*/
drha21a64d2010-04-06 22:33:55 +00003412/* Opcode: OpenAutoindex P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00003413** Synopsis: nColumn=P2
drha21a64d2010-04-06 22:33:55 +00003414**
3415** This opcode works the same as OP_OpenEphemeral. It has a
3416** different name to distinguish its use. Tables created using
3417** by this opcode will be used for automatically created transient
3418** indices in joins.
3419*/
3420case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003421case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003422 VdbeCursor *pCx;
drh41e13e12013-11-07 14:09:39 +00003423 KeyInfo *pKeyInfo;
3424
drhd4187c72010-08-30 22:15:45 +00003425 static const int vfsFlags =
drh33f4e022007-09-03 15:19:34 +00003426 SQLITE_OPEN_READWRITE |
3427 SQLITE_OPEN_CREATE |
3428 SQLITE_OPEN_EXCLUSIVE |
3429 SQLITE_OPEN_DELETEONCLOSE |
3430 SQLITE_OPEN_TRANSIENT_DB;
drh653b82a2009-06-22 11:10:47 +00003431 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003432 assert( pOp->p2>=0 );
drh653b82a2009-06-22 11:10:47 +00003433 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
drh4774b132004-06-12 20:12:51 +00003434 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003435 pCx->nullRow = 1;
drh079a3072014-03-19 14:10:55 +00003436 pCx->isEphemeral = 1;
dan689ab892011-08-12 15:02:00 +00003437 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3438 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
drh5e00f6c2001-09-13 13:46:56 +00003439 if( rc==SQLITE_OK ){
danielk197740b38dc2004-06-26 08:38:24 +00003440 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
drh5e00f6c2001-09-13 13:46:56 +00003441 }
3442 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003443 /* If a transient index is required, create it by calling
drhd4187c72010-08-30 22:15:45 +00003444 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
danielk19774adee202004-05-08 08:23:19 +00003445 ** opening it. If a transient table is required, just use the
drhd4187c72010-08-30 22:15:45 +00003446 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003447 */
drh41e13e12013-11-07 14:09:39 +00003448 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
drhc6b52df2002-01-04 03:09:29 +00003449 int pgno;
drh66a51672008-01-03 00:01:23 +00003450 assert( pOp->p4type==P4_KEYINFO );
drhe1b4f0f2011-06-29 17:11:39 +00003451 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
drhc6b52df2002-01-04 03:09:29 +00003452 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003453 assert( pgno==MASTER_ROOT+1 );
drh41e13e12013-11-07 14:09:39 +00003454 assert( pKeyInfo->db==db );
3455 assert( pKeyInfo->enc==ENC(db) );
3456 pCx->pKeyInfo = pKeyInfo;
3457 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor);
drhc6b52df2002-01-04 03:09:29 +00003458 }
drhf0863fe2005-06-12 21:35:51 +00003459 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003460 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00003461 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
drhf0863fe2005-06-12 21:35:51 +00003462 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003463 }
drh5e00f6c2001-09-13 13:46:56 +00003464 }
drhd4187c72010-08-30 22:15:45 +00003465 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
dan5134d132011-09-02 10:31:11 +00003466 break;
3467}
3468
danfad9f9a2014-04-01 18:41:51 +00003469/* Opcode: SorterOpen P1 P2 P3 P4 *
dan5134d132011-09-02 10:31:11 +00003470**
3471** This opcode works like OP_OpenEphemeral except that it opens
3472** a transient index that is specifically designed to sort large
3473** tables using an external merge-sort algorithm.
danfad9f9a2014-04-01 18:41:51 +00003474**
3475** If argument P3 is non-zero, then it indicates that the sorter may
3476** assume that a stable sort considering the first P3 fields of each
3477** key is sufficient to produce the required results.
dan5134d132011-09-02 10:31:11 +00003478*/
drhca892a72011-09-03 00:17:51 +00003479case OP_SorterOpen: {
dan5134d132011-09-02 10:31:11 +00003480 VdbeCursor *pCx;
drh3a949872012-09-18 13:20:13 +00003481
drh399af1d2013-11-20 17:25:55 +00003482 assert( pOp->p1>=0 );
3483 assert( pOp->p2>=0 );
dan5134d132011-09-02 10:31:11 +00003484 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3485 if( pCx==0 ) goto no_mem;
3486 pCx->pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003487 assert( pCx->pKeyInfo->db==db );
3488 assert( pCx->pKeyInfo->enc==ENC(db) );
danfad9f9a2014-04-01 18:41:51 +00003489 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
drh5e00f6c2001-09-13 13:46:56 +00003490 break;
3491}
3492
dan78d58432014-03-25 15:04:07 +00003493/* Opcode: SequenceTest P1 P2 * * *
3494** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3495**
3496** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3497** to P2. Regardless of whether or not the jump is taken, increment the
3498** the sequence value.
3499*/
3500case OP_SequenceTest: {
3501 VdbeCursor *pC;
3502 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3503 pC = p->apCsr[pOp->p1];
3504 assert( pC->pSorter );
3505 if( (pC->seqCount++)==0 ){
drhf56fa462015-04-13 21:39:54 +00003506 goto jump_to_p2;
dan78d58432014-03-25 15:04:07 +00003507 }
3508 break;
3509}
3510
drh5f612292014-02-08 23:20:32 +00003511/* Opcode: OpenPseudo P1 P2 P3 * *
drh60830e32014-02-10 15:56:34 +00003512** Synopsis: P3 columns in r[P2]
drh70ce3f02003-04-15 19:22:22 +00003513**
3514** Open a new cursor that points to a fake table that contains a single
drh5f612292014-02-08 23:20:32 +00003515** row of data. The content of that one row is the content of memory
3516** register P2. In other words, cursor P1 becomes an alias for the
3517** MEM_Blob content contained in register P2.
drh70ce3f02003-04-15 19:22:22 +00003518**
drh2d8d7ce2010-02-15 15:17:05 +00003519** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00003520** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003521** individual columns using the OP_Column opcode. The OP_Column opcode
3522** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003523**
3524** P3 is the number of fields in the records that will be stored by
3525** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003526*/
drh9cbf3422008-01-17 16:22:13 +00003527case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003528 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003529
drh653b82a2009-06-22 11:10:47 +00003530 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003531 assert( pOp->p3>=0 );
drh653b82a2009-06-22 11:10:47 +00003532 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
drh4774b132004-06-12 20:12:51 +00003533 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003534 pCx->nullRow = 1;
drh3e9ca092009-09-08 01:14:48 +00003535 pCx->pseudoTableReg = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003536 pCx->isTable = 1;
drh5f612292014-02-08 23:20:32 +00003537 assert( pOp->p5==0 );
drh70ce3f02003-04-15 19:22:22 +00003538 break;
3539}
3540
drh98757152008-01-09 23:04:12 +00003541/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003542**
3543** Close a cursor previously opened as P1. If P1 is not
3544** currently open, this instruction is a no-op.
3545*/
drh9cbf3422008-01-17 16:22:13 +00003546case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003547 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3548 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3549 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003550 break;
3551}
3552
drh97bae792015-06-05 15:59:57 +00003553#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3554/* Opcode: ColumnsUsed P1 * * P4 *
3555**
3556** This opcode (which only exists if SQLite was compiled with
3557** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3558** table or index for cursor P1 are used. P4 is a 64-bit integer
3559** (P4_INT64) in which the first 63 bits are one for each of the
3560** first 63 columns of the table or index that are actually used
3561** by the cursor. The high-order bit is set if any column after
3562** the 64th is used.
3563*/
3564case OP_ColumnsUsed: {
3565 VdbeCursor *pC;
3566 pC = p->apCsr[pOp->p1];
3567 assert( pC->pCursor );
3568 pC->maskUsed = *(u64*)pOp->p4.pI64;
3569 break;
3570}
3571#endif
3572
drh8af3f772014-07-25 18:01:06 +00003573/* Opcode: SeekGE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003574** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003575**
danielk1977b790c6c2008-04-18 10:25:24 +00003576** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003577** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003578** to an SQL index, then P3 is the first in an array of P4 registers
3579** that are used as an unpacked index key.
3580**
3581** Reposition cursor P1 so that it points to the smallest entry that
3582** is greater than or equal to the key value. If there are no records
3583** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003584**
drh8af3f772014-07-25 18:01:06 +00003585** This opcode leaves the cursor configured to move in forward order,
drhbc5cf382014-08-06 01:08:07 +00003586** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003587** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003588**
drh935850e2014-05-24 17:15:15 +00003589** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003590*/
drh8af3f772014-07-25 18:01:06 +00003591/* Opcode: SeekGT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003592** Synopsis: key=r[P3@P4]
drh7cf6e4d2004-05-19 14:56:55 +00003593**
danielk1977b790c6c2008-04-18 10:25:24 +00003594** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003595** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003596** to an SQL index, then P3 is the first in an array of P4 registers
3597** that are used as an unpacked index key.
3598**
3599** Reposition cursor P1 so that it points to the smallest entry that
3600** is greater than the key value. If there are no records greater than
3601** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003602**
drh8af3f772014-07-25 18:01:06 +00003603** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00003604** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003605** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003606**
drh935850e2014-05-24 17:15:15 +00003607** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003608*/
drh8af3f772014-07-25 18:01:06 +00003609/* Opcode: SeekLT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003610** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00003611**
danielk1977b790c6c2008-04-18 10:25:24 +00003612** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003613** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003614** to an SQL index, then P3 is the first in an array of P4 registers
3615** that are used as an unpacked index key.
3616**
3617** Reposition cursor P1 so that it points to the largest entry that
3618** is less than the key value. If there are no records less than
3619** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003620**
drh8af3f772014-07-25 18:01:06 +00003621** This opcode leaves the cursor configured to move in reverse order,
3622** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003623** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003624**
drh935850e2014-05-24 17:15:15 +00003625** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003626*/
drh8af3f772014-07-25 18:01:06 +00003627/* Opcode: SeekLE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003628** Synopsis: key=r[P3@P4]
danielk19773d1bfea2004-05-14 11:00:53 +00003629**
danielk1977b790c6c2008-04-18 10:25:24 +00003630** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003631** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003632** to an SQL index, then P3 is the first in an array of P4 registers
3633** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003634**
danielk1977b790c6c2008-04-18 10:25:24 +00003635** Reposition cursor P1 so that it points to the largest entry that
3636** is less than or equal to the key value. If there are no records
3637** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003638**
drh8af3f772014-07-25 18:01:06 +00003639** This opcode leaves the cursor configured to move in reverse order,
3640** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003641** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003642**
drh935850e2014-05-24 17:15:15 +00003643** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003644*/
drh4a1d3652014-02-14 15:13:36 +00003645case OP_SeekLT: /* jump, in3 */
3646case OP_SeekLE: /* jump, in3 */
3647case OP_SeekGE: /* jump, in3 */
3648case OP_SeekGT: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003649 int res;
3650 int oc;
drhdfe88ec2008-11-03 20:55:06 +00003651 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003652 UnpackedRecord r;
3653 int nField;
3654 i64 iKey; /* The rowid we are to seek to */
drh80ff32f2001-11-04 18:32:46 +00003655
drh653b82a2009-06-22 11:10:47 +00003656 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003657 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003658 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003659 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003660 assert( pC->pseudoTableReg==0 );
drh4a1d3652014-02-14 15:13:36 +00003661 assert( OP_SeekLE == OP_SeekLT+1 );
3662 assert( OP_SeekGE == OP_SeekLT+2 );
3663 assert( OP_SeekGT == OP_SeekLT+3 );
drhd4187c72010-08-30 22:15:45 +00003664 assert( pC->isOrdered );
drh3da046d2013-11-11 03:24:11 +00003665 assert( pC->pCursor!=0 );
3666 oc = pOp->opcode;
3667 pC->nullRow = 0;
drh8af3f772014-07-25 18:01:06 +00003668#ifdef SQLITE_DEBUG
3669 pC->seekOp = pOp->opcode;
3670#endif
drhe0997b32015-03-20 14:57:50 +00003671
3672 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3673 ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3674 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3675 */
3676#ifdef SQLITE_DEBUG
3677 if( sqlite3BtreeCursorHasHint(pC->pCursor, BTREE_SEEK_EQ) ){
3678 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3679 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3680 assert( pOp[1].p1==pOp[0].p1 );
3681 assert( pOp[1].p2==pOp[0].p2 );
3682 assert( pOp[1].p3==pOp[0].p3 );
3683 assert( pOp[1].p4.i==pOp[0].p4.i );
3684 }
3685#endif
3686
drh3da046d2013-11-11 03:24:11 +00003687 if( pC->isTable ){
3688 /* The input value in P3 might be of any type: integer, real, string,
3689 ** blob, or NULL. But it needs to be an integer before we can do
peter.d.reid60ec9142014-09-06 16:39:46 +00003690 ** the seek, so convert it. */
drh3da046d2013-11-11 03:24:11 +00003691 pIn3 = &aMem[pOp->p3];
drh11a6eee2014-09-19 22:01:54 +00003692 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drhbd9507c2014-08-23 17:21:37 +00003693 applyNumericAffinity(pIn3, 0);
3694 }
drh3da046d2013-11-11 03:24:11 +00003695 iKey = sqlite3VdbeIntValue(pIn3);
drh959403f2008-12-12 17:56:16 +00003696
drh3da046d2013-11-11 03:24:11 +00003697 /* If the P3 value could not be converted into an integer without
3698 ** loss of information, then special processing is required... */
3699 if( (pIn3->flags & MEM_Int)==0 ){
3700 if( (pIn3->flags & MEM_Real)==0 ){
3701 /* If the P3 value cannot be converted into any kind of a number,
3702 ** then the seek is not possible, so jump to P2 */
drhf56fa462015-04-13 21:39:54 +00003703 VdbeBranchTaken(1,2); goto jump_to_p2;
drh3da046d2013-11-11 03:24:11 +00003704 break;
3705 }
drh959403f2008-12-12 17:56:16 +00003706
danaa1776f2013-11-26 18:22:59 +00003707 /* If the approximation iKey is larger than the actual real search
3708 ** term, substitute >= for > and < for <=. e.g. if the search term
3709 ** is 4.9 and the integer approximation 5:
3710 **
3711 ** (x > 4.9) -> (x >= 5)
3712 ** (x <= 4.9) -> (x < 5)
3713 */
drh74eaba42014-09-18 17:52:15 +00003714 if( pIn3->u.r<(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003715 assert( OP_SeekGE==(OP_SeekGT-1) );
3716 assert( OP_SeekLT==(OP_SeekLE-1) );
3717 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3718 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
danaa1776f2013-11-26 18:22:59 +00003719 }
3720
3721 /* If the approximation iKey is smaller than the actual real search
3722 ** term, substitute <= for < and > for >=. */
drh74eaba42014-09-18 17:52:15 +00003723 else if( pIn3->u.r>(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003724 assert( OP_SeekLE==(OP_SeekLT+1) );
3725 assert( OP_SeekGT==(OP_SeekGE+1) );
3726 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3727 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
drh8721ce42001-11-07 14:22:00 +00003728 }
drh3da046d2013-11-11 03:24:11 +00003729 }
3730 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
drhb53a5a92014-10-12 22:37:22 +00003731 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00003732 if( rc!=SQLITE_OK ){
3733 goto abort_due_to_error;
drh1af3fdb2004-07-18 21:33:01 +00003734 }
drhaa736092009-06-22 00:55:30 +00003735 }else{
drh3da046d2013-11-11 03:24:11 +00003736 nField = pOp->p4.i;
3737 assert( pOp->p4type==P4_INT32 );
3738 assert( nField>0 );
3739 r.pKeyInfo = pC->pKeyInfo;
3740 r.nField = (u16)nField;
3741
3742 /* The next line of code computes as follows, only faster:
drh4a1d3652014-02-14 15:13:36 +00003743 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
dan1fed5da2014-02-25 21:01:25 +00003744 ** r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00003745 ** }else{
dan1fed5da2014-02-25 21:01:25 +00003746 ** r.default_rc = +1;
drh3da046d2013-11-11 03:24:11 +00003747 ** }
danielk1977f7b9d662008-06-23 18:49:43 +00003748 */
dan1fed5da2014-02-25 21:01:25 +00003749 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3750 assert( oc!=OP_SeekGT || r.default_rc==-1 );
3751 assert( oc!=OP_SeekLE || r.default_rc==-1 );
3752 assert( oc!=OP_SeekGE || r.default_rc==+1 );
3753 assert( oc!=OP_SeekLT || r.default_rc==+1 );
drh3da046d2013-11-11 03:24:11 +00003754
3755 r.aMem = &aMem[pOp->p3];
3756#ifdef SQLITE_DEBUG
3757 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3758#endif
3759 ExpandBlob(r.aMem);
3760 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
3761 if( rc!=SQLITE_OK ){
3762 goto abort_due_to_error;
3763 }
drh3da046d2013-11-11 03:24:11 +00003764 }
3765 pC->deferredMoveto = 0;
3766 pC->cacheStatus = CACHE_STALE;
3767#ifdef SQLITE_TEST
3768 sqlite3_search_count++;
3769#endif
drh4a1d3652014-02-14 15:13:36 +00003770 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
3771 if( res<0 || (res==0 && oc==OP_SeekGT) ){
drhe39a7322014-02-03 14:04:11 +00003772 res = 0;
drh3da046d2013-11-11 03:24:11 +00003773 rc = sqlite3BtreeNext(pC->pCursor, &res);
3774 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00003775 }else{
3776 res = 0;
3777 }
3778 }else{
drh4a1d3652014-02-14 15:13:36 +00003779 assert( oc==OP_SeekLT || oc==OP_SeekLE );
3780 if( res>0 || (res==0 && oc==OP_SeekLT) ){
drhe39a7322014-02-03 14:04:11 +00003781 res = 0;
drh3da046d2013-11-11 03:24:11 +00003782 rc = sqlite3BtreePrevious(pC->pCursor, &res);
3783 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00003784 }else{
3785 /* res might be negative because the table is empty. Check to
3786 ** see if this is the case.
3787 */
3788 res = sqlite3BtreeEof(pC->pCursor);
3789 }
3790 }
3791 assert( pOp->p2>0 );
drh688852a2014-02-17 22:40:43 +00003792 VdbeBranchTaken(res!=0,2);
drh3da046d2013-11-11 03:24:11 +00003793 if( res ){
drhf56fa462015-04-13 21:39:54 +00003794 goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00003795 }
drh5e00f6c2001-09-13 13:46:56 +00003796 break;
3797}
3798
drh959403f2008-12-12 17:56:16 +00003799/* Opcode: Seek P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00003800** Synopsis: intkey=r[P2]
drh959403f2008-12-12 17:56:16 +00003801**
3802** P1 is an open table cursor and P2 is a rowid integer. Arrange
3803** for P1 to move so that it points to the rowid given by P2.
3804**
3805** This is actually a deferred seek. Nothing actually happens until
3806** the cursor is used to read a record. That way, if no reads
3807** occur, no unnecessary I/O happens.
3808*/
3809case OP_Seek: { /* in2 */
drh959403f2008-12-12 17:56:16 +00003810 VdbeCursor *pC;
3811
drh653b82a2009-06-22 11:10:47 +00003812 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3813 pC = p->apCsr[pOp->p1];
drh959403f2008-12-12 17:56:16 +00003814 assert( pC!=0 );
drh3da046d2013-11-11 03:24:11 +00003815 assert( pC->pCursor!=0 );
3816 assert( pC->isTable );
3817 pC->nullRow = 0;
3818 pIn2 = &aMem[pOp->p2];
3819 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
drh3da046d2013-11-11 03:24:11 +00003820 pC->deferredMoveto = 1;
drh959403f2008-12-12 17:56:16 +00003821 break;
3822}
3823
3824
drh8cff69d2009-11-12 19:59:44 +00003825/* Opcode: Found P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003826** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003827**
drh8cff69d2009-11-12 19:59:44 +00003828** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3829** P4>0 then register P3 is the first of P4 registers that form an unpacked
3830** record.
3831**
3832** Cursor P1 is on an index btree. If the record identified by P3 and P4
3833** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00003834** P1 is left pointing at the matching entry.
drh6f225d02013-10-26 13:36:51 +00003835**
drhcefc87f2014-08-01 01:40:33 +00003836** This operation leaves the cursor in a state where it can be
3837** advanced in the forward direction. The Next instruction will work,
3838** but not the Prev instruction.
drh8af3f772014-07-25 18:01:06 +00003839**
drh6f225d02013-10-26 13:36:51 +00003840** See also: NotFound, NoConflict, NotExists. SeekGe
drh5e00f6c2001-09-13 13:46:56 +00003841*/
drh8cff69d2009-11-12 19:59:44 +00003842/* Opcode: NotFound P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003843** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003844**
drh8cff69d2009-11-12 19:59:44 +00003845** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3846** P4>0 then register P3 is the first of P4 registers that form an unpacked
3847** record.
3848**
3849** Cursor P1 is on an index btree. If the record identified by P3 and P4
3850** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3851** does contain an entry whose prefix matches the P3/P4 record then control
3852** falls through to the next instruction and P1 is left pointing at the
3853** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003854**
drh8af3f772014-07-25 18:01:06 +00003855** This operation leaves the cursor in a state where it cannot be
3856** advanced in either direction. In other words, the Next and Prev
3857** opcodes do not work after this operation.
3858**
drh6f225d02013-10-26 13:36:51 +00003859** See also: Found, NotExists, NoConflict
drh5e00f6c2001-09-13 13:46:56 +00003860*/
drh6f225d02013-10-26 13:36:51 +00003861/* Opcode: NoConflict P1 P2 P3 P4 *
drh4af5bee2013-10-30 02:37:50 +00003862** Synopsis: key=r[P3@P4]
drh6f225d02013-10-26 13:36:51 +00003863**
3864** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3865** P4>0 then register P3 is the first of P4 registers that form an unpacked
3866** record.
3867**
3868** Cursor P1 is on an index btree. If the record identified by P3 and P4
3869** contains any NULL value, jump immediately to P2. If all terms of the
3870** record are not-NULL then a check is done to determine if any row in the
3871** P1 index btree has a matching key prefix. If there are no matches, jump
3872** immediately to P2. If there is a match, fall through and leave the P1
3873** cursor pointing to the matching row.
3874**
3875** This opcode is similar to OP_NotFound with the exceptions that the
3876** branch is always taken if any part of the search key input is NULL.
3877**
drh8af3f772014-07-25 18:01:06 +00003878** This operation leaves the cursor in a state where it cannot be
3879** advanced in either direction. In other words, the Next and Prev
3880** opcodes do not work after this operation.
3881**
drh6f225d02013-10-26 13:36:51 +00003882** See also: NotFound, Found, NotExists
3883*/
3884case OP_NoConflict: /* jump, in3 */
drh9cbf3422008-01-17 16:22:13 +00003885case OP_NotFound: /* jump, in3 */
3886case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003887 int alreadyExists;
drhf56fa462015-04-13 21:39:54 +00003888 int takeJump;
drh6f225d02013-10-26 13:36:51 +00003889 int ii;
drhdfe88ec2008-11-03 20:55:06 +00003890 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003891 int res;
dan03e9cfc2011-09-05 14:20:27 +00003892 char *pFree;
drh856c1032009-06-02 15:21:42 +00003893 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00003894 UnpackedRecord r;
drhb4139222013-11-06 14:36:08 +00003895 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
drh856c1032009-06-02 15:21:42 +00003896
dan0ff297e2009-09-25 17:03:14 +00003897#ifdef SQLITE_TEST
drh6f225d02013-10-26 13:36:51 +00003898 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
dan0ff297e2009-09-25 17:03:14 +00003899#endif
3900
drhaa736092009-06-22 00:55:30 +00003901 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00003902 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00003903 pC = p->apCsr[pOp->p1];
3904 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00003905#ifdef SQLITE_DEBUG
drhcefc87f2014-08-01 01:40:33 +00003906 pC->seekOp = pOp->opcode;
drh8af3f772014-07-25 18:01:06 +00003907#endif
drh3c657212009-11-17 23:59:58 +00003908 pIn3 = &aMem[pOp->p3];
drh3da046d2013-11-11 03:24:11 +00003909 assert( pC->pCursor!=0 );
3910 assert( pC->isTable==0 );
drhf56fa462015-04-13 21:39:54 +00003911 pFree = 0;
drh3da046d2013-11-11 03:24:11 +00003912 if( pOp->p4.i>0 ){
3913 r.pKeyInfo = pC->pKeyInfo;
3914 r.nField = (u16)pOp->p4.i;
3915 r.aMem = pIn3;
drh826af372014-02-08 19:12:21 +00003916 for(ii=0; ii<r.nField; ii++){
3917 assert( memIsValid(&r.aMem[ii]) );
3918 ExpandBlob(&r.aMem[ii]);
drh2b4ded92010-09-27 21:09:31 +00003919#ifdef SQLITE_DEBUG
drh826af372014-02-08 19:12:21 +00003920 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
drh2b4ded92010-09-27 21:09:31 +00003921#endif
drh826af372014-02-08 19:12:21 +00003922 }
drh3da046d2013-11-11 03:24:11 +00003923 pIdxKey = &r;
3924 }else{
3925 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3926 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
danb391b942014-11-07 14:41:11 +00003927 );
drh3da046d2013-11-11 03:24:11 +00003928 if( pIdxKey==0 ) goto no_mem;
3929 assert( pIn3->flags & MEM_Blob );
danb391b942014-11-07 14:41:11 +00003930 ExpandBlob(pIn3);
drh3da046d2013-11-11 03:24:11 +00003931 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
drh3da046d2013-11-11 03:24:11 +00003932 }
dan1fed5da2014-02-25 21:01:25 +00003933 pIdxKey->default_rc = 0;
drhf56fa462015-04-13 21:39:54 +00003934 takeJump = 0;
drh3da046d2013-11-11 03:24:11 +00003935 if( pOp->opcode==OP_NoConflict ){
3936 /* For the OP_NoConflict opcode, take the jump if any of the
3937 ** input fields are NULL, since any key with a NULL will not
3938 ** conflict */
mistachkin7bb6e8e2015-01-12 18:52:41 +00003939 for(ii=0; ii<pIdxKey->nField; ii++){
3940 if( pIdxKey->aMem[ii].flags & MEM_Null ){
drhf56fa462015-04-13 21:39:54 +00003941 takeJump = 1;
drh3da046d2013-11-11 03:24:11 +00003942 break;
drh6f225d02013-10-26 13:36:51 +00003943 }
3944 }
drh5e00f6c2001-09-13 13:46:56 +00003945 }
drh3da046d2013-11-11 03:24:11 +00003946 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
drhf56fa462015-04-13 21:39:54 +00003947 sqlite3DbFree(db, pFree);
drh3da046d2013-11-11 03:24:11 +00003948 if( rc!=SQLITE_OK ){
3949 break;
3950 }
drh1fd522f2013-11-21 00:10:35 +00003951 pC->seekResult = res;
drh3da046d2013-11-11 03:24:11 +00003952 alreadyExists = (res==0);
3953 pC->nullRow = 1-alreadyExists;
3954 pC->deferredMoveto = 0;
3955 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003956 if( pOp->opcode==OP_Found ){
drh688852a2014-02-17 22:40:43 +00003957 VdbeBranchTaken(alreadyExists!=0,2);
drhf56fa462015-04-13 21:39:54 +00003958 if( alreadyExists ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00003959 }else{
drhf56fa462015-04-13 21:39:54 +00003960 VdbeBranchTaken(takeJump||alreadyExists==0,2);
3961 if( takeJump || !alreadyExists ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00003962 }
drh5e00f6c2001-09-13 13:46:56 +00003963 break;
3964}
3965
drh9cbf3422008-01-17 16:22:13 +00003966/* Opcode: NotExists P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00003967** Synopsis: intkey=r[P3]
drh6b125452002-01-28 15:53:03 +00003968**
drh261c02d2013-10-25 14:46:15 +00003969** P1 is the index of a cursor open on an SQL table btree (with integer
3970** keys). P3 is an integer rowid. If P1 does not contain a record with
danc6157e12015-09-14 09:23:47 +00003971** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
3972** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
3973** leave the cursor pointing at that record and fall through to the next
3974** instruction.
drh6b125452002-01-28 15:53:03 +00003975**
drh261c02d2013-10-25 14:46:15 +00003976** The OP_NotFound opcode performs the same operation on index btrees
3977** (with arbitrary multi-value keys).
drh6b125452002-01-28 15:53:03 +00003978**
drh8af3f772014-07-25 18:01:06 +00003979** This opcode leaves the cursor in a state where it cannot be advanced
3980** in either direction. In other words, the Next and Prev opcodes will
3981** not work following this opcode.
3982**
drh11e85272013-10-26 15:40:48 +00003983** See also: Found, NotFound, NoConflict
drh6b125452002-01-28 15:53:03 +00003984*/
drh9cbf3422008-01-17 16:22:13 +00003985case OP_NotExists: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00003986 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00003987 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00003988 int res;
3989 u64 iKey;
3990
drh3c657212009-11-17 23:59:58 +00003991 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003992 assert( pIn3->flags & MEM_Int );
3993 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3994 pC = p->apCsr[pOp->p1];
3995 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00003996#ifdef SQLITE_DEBUG
3997 pC->seekOp = 0;
3998#endif
drhaa736092009-06-22 00:55:30 +00003999 assert( pC->isTable );
drh3e9ca092009-09-08 01:14:48 +00004000 assert( pC->pseudoTableReg==0 );
drhaa736092009-06-22 00:55:30 +00004001 pCrsr = pC->pCursor;
drh3da046d2013-11-11 03:24:11 +00004002 assert( pCrsr!=0 );
4003 res = 0;
4004 iKey = pIn3->u.i;
4005 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drhb79d5522015-09-14 19:26:37 +00004006 assert( rc==SQLITE_OK || res==0 );
drhb53a5a92014-10-12 22:37:22 +00004007 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00004008 pC->nullRow = 0;
4009 pC->cacheStatus = CACHE_STALE;
4010 pC->deferredMoveto = 0;
drh688852a2014-02-17 22:40:43 +00004011 VdbeBranchTaken(res!=0,2);
drh1fd522f2013-11-21 00:10:35 +00004012 pC->seekResult = res;
danc6157e12015-09-14 09:23:47 +00004013 if( res!=0 ){
drhb79d5522015-09-14 19:26:37 +00004014 assert( rc==SQLITE_OK );
4015 if( pOp->p2==0 ){
4016 rc = SQLITE_CORRUPT_BKPT;
4017 }else{
4018 goto jump_to_p2;
4019 }
danc6157e12015-09-14 09:23:47 +00004020 }
drh6b125452002-01-28 15:53:03 +00004021 break;
4022}
4023
drh4c583122008-01-04 22:01:03 +00004024/* Opcode: Sequence P1 P2 * * *
drh079a3072014-03-19 14:10:55 +00004025** Synopsis: r[P2]=cursor[P1].ctr++
drh4db38a72005-09-01 12:16:28 +00004026**
drh4c583122008-01-04 22:01:03 +00004027** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00004028** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00004029** The sequence number on the cursor is incremented after this
4030** instruction.
drh4db38a72005-09-01 12:16:28 +00004031*/
drh27a348c2015-04-13 19:14:06 +00004032case OP_Sequence: { /* out2 */
drh653b82a2009-06-22 11:10:47 +00004033 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4034 assert( p->apCsr[pOp->p1]!=0 );
drh27a348c2015-04-13 19:14:06 +00004035 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00004036 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00004037 break;
4038}
4039
4040
drh98757152008-01-09 23:04:12 +00004041/* Opcode: NewRowid P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004042** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00004043**
drhf0863fe2005-06-12 21:35:51 +00004044** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00004045** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00004046** table that cursor P1 points to. The new record number is written
4047** written to register P2.
drh205f48e2004-11-05 00:43:11 +00004048**
dan76d462e2009-08-30 11:42:51 +00004049** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4050** the largest previously generated record number. No new record numbers are
4051** allowed to be less than this value. When this value reaches its maximum,
drhef8662b2011-06-20 21:47:58 +00004052** an SQLITE_FULL error is generated. The P3 register is updated with the '
dan76d462e2009-08-30 11:42:51 +00004053** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00004054** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00004055*/
drh27a348c2015-04-13 19:14:06 +00004056case OP_NewRowid: { /* out2 */
drhaa736092009-06-22 00:55:30 +00004057 i64 v; /* The new rowid */
4058 VdbeCursor *pC; /* Cursor of table to get the new rowid */
4059 int res; /* Result of an sqlite3BtreeLast() */
4060 int cnt; /* Counter to limit the number of searches */
4061 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00004062 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00004063
drh856c1032009-06-02 15:21:42 +00004064 v = 0;
4065 res = 0;
drh27a348c2015-04-13 19:14:06 +00004066 pOut = out2Prerelease(p, pOp);
drhaa736092009-06-22 00:55:30 +00004067 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4068 pC = p->apCsr[pOp->p1];
4069 assert( pC!=0 );
drh98ef0f62015-06-30 01:25:52 +00004070 assert( pC->pCursor!=0 );
4071 {
drh5cf8e8c2002-02-19 22:42:05 +00004072 /* The next rowid or record number (different terms for the same
4073 ** thing) is obtained in a two-step algorithm.
4074 **
4075 ** First we attempt to find the largest existing rowid and add one
4076 ** to that. But if the largest existing rowid is already the maximum
4077 ** positive integer, we have to fall through to the second
4078 ** probabilistic algorithm
4079 **
4080 ** The second algorithm is to select a rowid at random and see if
4081 ** it already exists in the table. If it does not exist, we have
4082 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00004083 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00004084 */
drhaa736092009-06-22 00:55:30 +00004085 assert( pC->isTable );
drhfe2093d2005-01-20 22:48:47 +00004086
drh75f86a42005-02-17 00:03:06 +00004087#ifdef SQLITE_32BIT_ROWID
4088# define MAX_ROWID 0x7fffffff
4089#else
drhfe2093d2005-01-20 22:48:47 +00004090 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4091 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
4092 ** to provide the constant while making all compilers happy.
4093 */
danielk197764202cf2008-11-17 15:31:47 +00004094# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00004095#endif
drhfe2093d2005-01-20 22:48:47 +00004096
drh5cf8e8c2002-02-19 22:42:05 +00004097 if( !pC->useRandomRowid ){
drhe0670b62014-02-12 21:31:12 +00004098 rc = sqlite3BtreeLast(pC->pCursor, &res);
4099 if( rc!=SQLITE_OK ){
4100 goto abort_due_to_error;
4101 }
4102 if( res ){
4103 v = 1; /* IMP: R-61914-48074 */
4104 }else{
4105 assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
4106 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4107 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
4108 if( v>=MAX_ROWID ){
4109 pC->useRandomRowid = 1;
drh5cf8e8c2002-02-19 22:42:05 +00004110 }else{
drhe0670b62014-02-12 21:31:12 +00004111 v++; /* IMP: R-29538-34987 */
drh5cf8e8c2002-02-19 22:42:05 +00004112 }
drh3fc190c2001-09-14 03:24:23 +00004113 }
drhe0670b62014-02-12 21:31:12 +00004114 }
drh205f48e2004-11-05 00:43:11 +00004115
4116#ifndef SQLITE_OMIT_AUTOINCREMENT
drhe0670b62014-02-12 21:31:12 +00004117 if( pOp->p3 ){
4118 /* Assert that P3 is a valid memory cell. */
4119 assert( pOp->p3>0 );
4120 if( p->pFrame ){
4121 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00004122 /* Assert that P3 is a valid memory cell. */
drhe0670b62014-02-12 21:31:12 +00004123 assert( pOp->p3<=pFrame->nMem );
4124 pMem = &pFrame->aMem[pOp->p3];
4125 }else{
4126 /* Assert that P3 is a valid memory cell. */
4127 assert( pOp->p3<=(p->nMem-p->nCursor) );
4128 pMem = &aMem[pOp->p3];
4129 memAboutToChange(p, pMem);
drh205f48e2004-11-05 00:43:11 +00004130 }
drhe0670b62014-02-12 21:31:12 +00004131 assert( memIsValid(pMem) );
drh205f48e2004-11-05 00:43:11 +00004132
drhe0670b62014-02-12 21:31:12 +00004133 REGISTER_TRACE(pOp->p3, pMem);
4134 sqlite3VdbeMemIntegerify(pMem);
4135 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
4136 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4137 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
4138 goto abort_due_to_error;
4139 }
4140 if( v<pMem->u.i+1 ){
4141 v = pMem->u.i + 1;
4142 }
4143 pMem->u.i = v;
drh5cf8e8c2002-02-19 22:42:05 +00004144 }
drhe0670b62014-02-12 21:31:12 +00004145#endif
drh5cf8e8c2002-02-19 22:42:05 +00004146 if( pC->useRandomRowid ){
drh748a52c2010-09-01 11:50:08 +00004147 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
drhc79c7612010-01-01 18:57:48 +00004148 ** largest possible integer (9223372036854775807) then the database
drh748a52c2010-09-01 11:50:08 +00004149 ** engine starts picking positive candidate ROWIDs at random until
4150 ** it finds one that is not previously used. */
drhaa736092009-06-22 00:55:30 +00004151 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
4152 ** an AUTOINCREMENT table. */
drh5cf8e8c2002-02-19 22:42:05 +00004153 cnt = 0;
drh2c4dc632014-09-25 12:31:28 +00004154 do{
4155 sqlite3_randomness(sizeof(v), &v);
drhd8633462014-09-25 17:42:41 +00004156 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
drh2c4dc632014-09-25 12:31:28 +00004157 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
drh748a52c2010-09-01 11:50:08 +00004158 0, &res))==SQLITE_OK)
shanehc4d340a2010-09-01 02:37:56 +00004159 && (res==0)
drh2c4dc632014-09-25 12:31:28 +00004160 && (++cnt<100));
drhaa736092009-06-22 00:55:30 +00004161 if( rc==SQLITE_OK && res==0 ){
drhc79c7612010-01-01 18:57:48 +00004162 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00004163 goto abort_due_to_error;
4164 }
drh748a52c2010-09-01 11:50:08 +00004165 assert( v>0 ); /* EV: R-40812-03570 */
drh1eaa2692001-09-18 02:02:23 +00004166 }
drha11846b2004-01-07 18:52:56 +00004167 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004168 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004169 }
drh4c583122008-01-04 22:01:03 +00004170 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004171 break;
4172}
4173
danielk19771f4aa332008-01-03 09:51:55 +00004174/* Opcode: Insert P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004175** Synopsis: intkey=r[P3] data=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004176**
jplyon5a564222003-06-02 06:15:58 +00004177** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00004178** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00004179** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00004180** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00004181** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00004182**
danielk19771f4aa332008-01-03 09:51:55 +00004183** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4184** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00004185** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00004186** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00004187**
drh3e9ca092009-09-08 01:14:48 +00004188** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4189** the last seek operation (OP_NotExists) was a success, then this
4190** operation will not attempt to find the appropriate row before doing
4191** the insert but will instead overwrite the row that the cursor is
4192** currently pointing to. Presumably, the prior OP_NotExists opcode
4193** has already positioned the cursor correctly. This is an optimization
4194** that boosts performance by avoiding redundant seeks.
4195**
4196** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4197** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4198** is part of an INSERT operation. The difference is only important to
4199** the update hook.
4200**
drh66a51672008-01-03 00:01:23 +00004201** Parameter P4 may point to a string containing the table-name, or
danielk19771f6eec52006-06-16 06:17:47 +00004202** may be NULL. If it is not NULL, then the update-hook
4203** (sqlite3.xUpdateCallback) is invoked following a successful insert.
4204**
drh93aed5a2008-01-16 17:46:38 +00004205** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4206** allocated, then ownership of P2 is transferred to the pseudo-cursor
4207** and register P2 becomes ephemeral. If the cursor is changed, the
4208** value of register P2 will then change. Make sure this does not
4209** cause any problems.)
4210**
drhf0863fe2005-06-12 21:35:51 +00004211** This instruction only works on tables. The equivalent instruction
4212** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00004213*/
drhe05c9292009-10-29 13:48:10 +00004214/* Opcode: InsertInt P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004215** Synopsis: intkey=P3 data=r[P2]
drhe05c9292009-10-29 13:48:10 +00004216**
4217** This works exactly like OP_Insert except that the key is the
4218** integer value P3, not the value of the integer stored in register P3.
4219*/
4220case OP_Insert:
4221case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00004222 Mem *pData; /* MEM cell holding data for the record to be inserted */
4223 Mem *pKey; /* MEM cell holding key for the record */
4224 i64 iKey; /* The integer ROWID or key for the record to be inserted */
4225 VdbeCursor *pC; /* Cursor to table into which insert is written */
4226 int nZero; /* Number of zero-bytes to append */
drh1fd522f2013-11-21 00:10:35 +00004227 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
drh3e9ca092009-09-08 01:14:48 +00004228 const char *zDb; /* database name - used by the update hook */
4229 const char *zTbl; /* Table name - used by the opdate hook */
4230 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
drh856c1032009-06-02 15:21:42 +00004231
drha6c2ed92009-11-14 23:22:23 +00004232 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00004233 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh2b4ded92010-09-27 21:09:31 +00004234 assert( memIsValid(pData) );
drh653b82a2009-06-22 11:10:47 +00004235 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00004236 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00004237 assert( pC->pCursor!=0 );
4238 assert( pC->pseudoTableReg==0 );
drha05a7222008-01-19 03:35:58 +00004239 assert( pC->isTable );
drh5b6afba2008-01-05 16:29:28 +00004240 REGISTER_TRACE(pOp->p2, pData);
danielk19775f8d8a82004-05-11 00:28:42 +00004241
drhe05c9292009-10-29 13:48:10 +00004242 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00004243 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00004244 assert( pKey->flags & MEM_Int );
drh2b4ded92010-09-27 21:09:31 +00004245 assert( memIsValid(pKey) );
drhe05c9292009-10-29 13:48:10 +00004246 REGISTER_TRACE(pOp->p3, pKey);
4247 iKey = pKey->u.i;
4248 }else{
4249 assert( pOp->opcode==OP_InsertInt );
4250 iKey = pOp->p3;
4251 }
4252
drha05a7222008-01-19 03:35:58 +00004253 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh99a66922011-05-13 18:51:42 +00004254 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
drha05a7222008-01-19 03:35:58 +00004255 if( pData->flags & MEM_Null ){
4256 pData->z = 0;
4257 pData->n = 0;
4258 }else{
4259 assert( pData->flags & (MEM_Blob|MEM_Str) );
4260 }
drh3e9ca092009-09-08 01:14:48 +00004261 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4262 if( pData->flags & MEM_Zero ){
4263 nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00004264 }else{
drh3e9ca092009-09-08 01:14:48 +00004265 nZero = 0;
drha05a7222008-01-19 03:35:58 +00004266 }
drh3e9ca092009-09-08 01:14:48 +00004267 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
4268 pData->z, pData->n, nZero,
drhebf10b12013-11-25 17:38:26 +00004269 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
drh3e9ca092009-09-08 01:14:48 +00004270 );
drha05a7222008-01-19 03:35:58 +00004271 pC->deferredMoveto = 0;
4272 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004273
drha05a7222008-01-19 03:35:58 +00004274 /* Invoke the update-hook if required. */
4275 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
drh856c1032009-06-02 15:21:42 +00004276 zDb = db->aDb[pC->iDb].zName;
4277 zTbl = pOp->p4.z;
4278 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
drha05a7222008-01-19 03:35:58 +00004279 assert( pC->isTable );
4280 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4281 assert( pC->iDb>=0 );
4282 }
drh5e00f6c2001-09-13 13:46:56 +00004283 break;
4284}
4285
danf0ee1d32015-09-12 19:26:11 +00004286/* Opcode: Delete P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004287**
drh5edc3122001-09-13 21:53:09 +00004288** Delete the record at which the P1 cursor is currently pointing.
4289**
danf0ee1d32015-09-12 19:26:11 +00004290** If the P5 parameter is non-zero, the cursor will be left pointing at
4291** either the next or the previous record in the table. If it is left
4292** pointing at the next record, then the next Next instruction will be a
4293** no-op. As a result, in this case it is OK to delete a record from within a
4294** Next loop. If P5 is zero, then the cursor is left in an undefined state.
drhc8d30ac2002-04-12 10:08:59 +00004295**
rdcb0c374f2004-02-20 22:53:38 +00004296** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
danielk1977b28af712004-06-21 06:50:26 +00004297** incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00004298**
drh91fd4d42008-01-19 20:11:25 +00004299** P1 must not be pseudo-table. It has to be a real table with
4300** multiple rows.
4301**
4302** If P4 is not NULL, then it is the name of the table that P1 is
4303** pointing to. The update hook will be invoked, if it exists.
4304** If P4 is not NULL then the P1 cursor must have been positioned
4305** using OP_NotFound prior to invoking this opcode.
drh5e00f6c2001-09-13 13:46:56 +00004306*/
drh9cbf3422008-01-17 16:22:13 +00004307case OP_Delete: {
drhdfe88ec2008-11-03 20:55:06 +00004308 VdbeCursor *pC;
drhb79d5522015-09-14 19:26:37 +00004309 u8 hasUpdateCallback;
drh91fd4d42008-01-19 20:11:25 +00004310
drh653b82a2009-06-22 11:10:47 +00004311 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4312 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004313 assert( pC!=0 );
drh91fd4d42008-01-19 20:11:25 +00004314 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
danc6157e12015-09-14 09:23:47 +00004315 assert( pC->deferredMoveto==0 );
danf0ee1d32015-09-12 19:26:11 +00004316
drhb79d5522015-09-14 19:26:37 +00004317 hasUpdateCallback = db->xUpdateCallback && pOp->p4.z && pC->isTable;
4318 if( pOp->p5 && hasUpdateCallback ){
danf0ee1d32015-09-12 19:26:11 +00004319 sqlite3BtreeKeySize(pC->pCursor, &pC->movetoTarget);
4320 }
drh9a65f2c2009-06-22 19:05:40 +00004321
drhb53a5a92014-10-12 22:37:22 +00004322#ifdef SQLITE_DEBUG
4323 /* The seek operation that positioned the cursor prior to OP_Delete will
4324 ** have also set the pC->movetoTarget field to the rowid of the row that
4325 ** is being deleted */
danf0ee1d32015-09-12 19:26:11 +00004326 if( pOp->p4.z && pC->isTable && pOp->p5==0 ){
drhb53a5a92014-10-12 22:37:22 +00004327 i64 iKey = 0;
4328 sqlite3BtreeKeySize(pC->pCursor, &iKey);
4329 assert( pC->movetoTarget==iKey );
4330 }
4331#endif
4332
danf0ee1d32015-09-12 19:26:11 +00004333 rc = sqlite3BtreeDelete(pC->pCursor, pOp->p5);
drh91fd4d42008-01-19 20:11:25 +00004334 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004335
drh91fd4d42008-01-19 20:11:25 +00004336 /* Invoke the update-hook if required. */
drhb79d5522015-09-14 19:26:37 +00004337 if( rc==SQLITE_OK && hasUpdateCallback ){
drh2c77be02013-11-27 21:07:03 +00004338 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
drhb53a5a92014-10-12 22:37:22 +00004339 db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);
drh91fd4d42008-01-19 20:11:25 +00004340 assert( pC->iDb>=0 );
drh5e00f6c2001-09-13 13:46:56 +00004341 }
danielk1977b28af712004-06-21 06:50:26 +00004342 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
rdcb0c374f2004-02-20 22:53:38 +00004343 break;
4344}
drhb7f1d9a2009-09-08 02:27:58 +00004345/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00004346**
drhb7f1d9a2009-09-08 02:27:58 +00004347** The value of the change counter is copied to the database handle
4348** change counter (returned by subsequent calls to sqlite3_changes()).
4349** Then the VMs internal change counter resets to 0.
4350** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00004351*/
drh9cbf3422008-01-17 16:22:13 +00004352case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00004353 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00004354 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00004355 break;
4356}
4357
drh1153c7b2013-11-01 22:02:56 +00004358/* Opcode: SorterCompare P1 P2 P3 P4
drhac502322014-07-30 13:56:48 +00004359** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
dan5134d132011-09-02 10:31:11 +00004360**
drh1153c7b2013-11-01 22:02:56 +00004361** P1 is a sorter cursor. This instruction compares a prefix of the
drhbc5cf382014-08-06 01:08:07 +00004362** record blob in register P3 against a prefix of the entry that
drhac502322014-07-30 13:56:48 +00004363** the sorter cursor currently points to. Only the first P4 fields
4364** of r[P3] and the sorter record are compared.
drh1153c7b2013-11-01 22:02:56 +00004365**
4366** If either P3 or the sorter contains a NULL in one of their significant
4367** fields (not counting the P4 fields at the end which are ignored) then
4368** the comparison is assumed to be equal.
4369**
4370** Fall through to next instruction if the two records compare equal to
4371** each other. Jump to P2 if they are different.
dan5134d132011-09-02 10:31:11 +00004372*/
4373case OP_SorterCompare: {
4374 VdbeCursor *pC;
4375 int res;
drhac502322014-07-30 13:56:48 +00004376 int nKeyCol;
dan5134d132011-09-02 10:31:11 +00004377
4378 pC = p->apCsr[pOp->p1];
4379 assert( isSorter(pC) );
drh1153c7b2013-11-01 22:02:56 +00004380 assert( pOp->p4type==P4_INT32 );
dan5134d132011-09-02 10:31:11 +00004381 pIn3 = &aMem[pOp->p3];
drhac502322014-07-30 13:56:48 +00004382 nKeyCol = pOp->p4.i;
drh958d2612014-04-18 13:40:07 +00004383 res = 0;
drhac502322014-07-30 13:56:48 +00004384 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
drh688852a2014-02-17 22:40:43 +00004385 VdbeBranchTaken(res!=0,2);
drhf56fa462015-04-13 21:39:54 +00004386 if( res ) goto jump_to_p2;
dan5134d132011-09-02 10:31:11 +00004387 break;
4388};
4389
drh6cf4a7d2014-10-13 13:00:58 +00004390/* Opcode: SorterData P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004391** Synopsis: r[P2]=data
dan5134d132011-09-02 10:31:11 +00004392**
4393** Write into register P2 the current sorter data for sorter cursor P1.
drh6cf4a7d2014-10-13 13:00:58 +00004394** Then clear the column header cache on cursor P3.
4395**
4396** This opcode is normally use to move a record out of the sorter and into
4397** a register that is the source for a pseudo-table cursor created using
4398** OpenPseudo. That pseudo-table cursor is the one that is identified by
4399** parameter P3. Clearing the P3 column cache as part of this opcode saves
4400** us from having to issue a separate NullRow instruction to clear that cache.
dan5134d132011-09-02 10:31:11 +00004401*/
4402case OP_SorterData: {
4403 VdbeCursor *pC;
drh3a949872012-09-18 13:20:13 +00004404
dan5134d132011-09-02 10:31:11 +00004405 pOut = &aMem[pOp->p2];
4406 pC = p->apCsr[pOp->p1];
drh14da87f2013-11-20 21:51:33 +00004407 assert( isSorter(pC) );
dan5134d132011-09-02 10:31:11 +00004408 rc = sqlite3VdbeSorterRowkey(pC, pOut);
dan38524132014-05-01 20:26:48 +00004409 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
drh6cf4a7d2014-10-13 13:00:58 +00004410 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4411 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
dan5134d132011-09-02 10:31:11 +00004412 break;
4413}
4414
drh98757152008-01-09 23:04:12 +00004415/* Opcode: RowData P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004416** Synopsis: r[P2]=data
drh70ce3f02003-04-15 19:22:22 +00004417**
drh98757152008-01-09 23:04:12 +00004418** Write into register P2 the complete row data for cursor P1.
4419** There is no interpretation of the data.
4420** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004421** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00004422**
drhde4fcfd2008-01-19 23:50:26 +00004423** If the P1 cursor must be pointing to a valid row (not a NULL row)
4424** of a real table, not a pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00004425*/
drh98757152008-01-09 23:04:12 +00004426/* Opcode: RowKey P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004427** Synopsis: r[P2]=key
drh143f3c42004-01-07 20:37:52 +00004428**
drh98757152008-01-09 23:04:12 +00004429** Write into register P2 the complete row key for cursor P1.
4430** There is no interpretation of the data.
drh0fd61352014-02-07 02:29:45 +00004431** The key is copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004432** it is found in the database file.
drh143f3c42004-01-07 20:37:52 +00004433**
drhde4fcfd2008-01-19 23:50:26 +00004434** If the P1 cursor must be pointing to a valid row (not a NULL row)
4435** of a real table, not a pseudo-table.
drh143f3c42004-01-07 20:37:52 +00004436*/
danielk1977a7a8e142008-02-13 18:25:27 +00004437case OP_RowKey:
4438case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00004439 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00004440 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00004441 u32 n;
drh856c1032009-06-02 15:21:42 +00004442 i64 n64;
drh70ce3f02003-04-15 19:22:22 +00004443
drha6c2ed92009-11-14 23:22:23 +00004444 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004445 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00004446
drhf0863fe2005-06-12 21:35:51 +00004447 /* Note that RowKey and RowData are really exactly the same instruction */
drh653b82a2009-06-22 11:10:47 +00004448 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4449 pC = p->apCsr[pOp->p1];
drh14da87f2013-11-20 21:51:33 +00004450 assert( isSorter(pC)==0 );
drhc6aff302011-09-01 15:32:47 +00004451 assert( pC->isTable || pOp->opcode!=OP_RowData );
drh14da87f2013-11-20 21:51:33 +00004452 assert( pC->isTable==0 || pOp->opcode==OP_RowData );
drh4774b132004-06-12 20:12:51 +00004453 assert( pC!=0 );
drhde4fcfd2008-01-19 23:50:26 +00004454 assert( pC->nullRow==0 );
drh3e9ca092009-09-08 01:14:48 +00004455 assert( pC->pseudoTableReg==0 );
drhde4fcfd2008-01-19 23:50:26 +00004456 assert( pC->pCursor!=0 );
4457 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004458
4459 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4460 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
drhc22284f2014-10-13 16:02:20 +00004461 ** the cursor. If this where not the case, on of the following assert()s
4462 ** would fail. Should this ever change (because of changes in the code
4463 ** generator) then the fix would be to insert a call to
4464 ** sqlite3VdbeCursorMoveto().
drh9a65f2c2009-06-22 19:05:40 +00004465 */
4466 assert( pC->deferredMoveto==0 );
drhc22284f2014-10-13 16:02:20 +00004467 assert( sqlite3BtreeCursorIsValid(pCrsr) );
4468#if 0 /* Not required due to the previous to assert() statements */
drhde4fcfd2008-01-19 23:50:26 +00004469 rc = sqlite3VdbeCursorMoveto(pC);
drhc22284f2014-10-13 16:02:20 +00004470 if( rc!=SQLITE_OK ) goto abort_due_to_error;
4471#endif
drh9a65f2c2009-06-22 19:05:40 +00004472
drh14da87f2013-11-20 21:51:33 +00004473 if( pC->isTable==0 ){
drhde4fcfd2008-01-19 23:50:26 +00004474 assert( !pC->isTable );
drhb07028f2011-10-14 21:49:18 +00004475 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
drhc27ae612009-07-14 18:35:44 +00004476 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhbb4957f2008-03-20 14:03:29 +00004477 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhde4fcfd2008-01-19 23:50:26 +00004478 goto too_big;
drh70ce3f02003-04-15 19:22:22 +00004479 }
drhbfb19dc2009-06-05 16:46:53 +00004480 n = (u32)n64;
drhde4fcfd2008-01-19 23:50:26 +00004481 }else{
drhb07028f2011-10-14 21:49:18 +00004482 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
drhea8ffdf2009-07-22 00:35:23 +00004483 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
shane75ac1de2009-06-09 18:58:52 +00004484 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00004485 goto too_big;
4486 }
drhde4fcfd2008-01-19 23:50:26 +00004487 }
drh722246e2014-10-07 23:02:24 +00004488 testcase( n==0 );
4489 if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
danielk1977a7a8e142008-02-13 18:25:27 +00004490 goto no_mem;
drhde4fcfd2008-01-19 23:50:26 +00004491 }
danielk1977a7a8e142008-02-13 18:25:27 +00004492 pOut->n = n;
4493 MemSetTypeFlag(pOut, MEM_Blob);
drh14da87f2013-11-20 21:51:33 +00004494 if( pC->isTable==0 ){
drhde4fcfd2008-01-19 23:50:26 +00004495 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4496 }else{
4497 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
drh5e00f6c2001-09-13 13:46:56 +00004498 }
danielk197796cb76f2008-01-04 13:24:28 +00004499 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
drhb7654112008-01-12 12:48:07 +00004500 UPDATE_MAX_BLOBSIZE(pOut);
drhee0ec8e2013-10-31 17:38:01 +00004501 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00004502 break;
4503}
4504
drh2133d822008-01-03 18:44:59 +00004505/* Opcode: Rowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004506** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00004507**
drh2133d822008-01-03 18:44:59 +00004508** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004509** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004510**
4511** P1 can be either an ordinary table or a virtual table. There used to
4512** be a separate OP_VRowid opcode for use with virtual tables, but this
4513** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004514*/
drh27a348c2015-04-13 19:14:06 +00004515case OP_Rowid: { /* out2 */
drhdfe88ec2008-11-03 20:55:06 +00004516 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004517 i64 v;
drh856c1032009-06-02 15:21:42 +00004518 sqlite3_vtab *pVtab;
4519 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004520
drh27a348c2015-04-13 19:14:06 +00004521 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00004522 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4523 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004524 assert( pC!=0 );
drh21172c42012-10-30 00:29:07 +00004525 assert( pC->pseudoTableReg==0 || pC->nullRow );
drh044925b2009-04-22 17:15:02 +00004526 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004527 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004528 break;
4529 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004530 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004531#ifndef SQLITE_OMIT_VIRTUALTABLE
4532 }else if( pC->pVtabCursor ){
drh044925b2009-04-22 17:15:02 +00004533 pVtab = pC->pVtabCursor->pVtab;
4534 pModule = pVtab->pModule;
4535 assert( pModule->xRowid );
drh044925b2009-04-22 17:15:02 +00004536 rc = pModule->xRowid(pC->pVtabCursor, &v);
dan016f7812013-08-21 17:35:48 +00004537 sqlite3VtabImportErrmsg(p, pVtab);
drh044925b2009-04-22 17:15:02 +00004538#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004539 }else{
drh6be240e2009-07-14 02:33:02 +00004540 assert( pC->pCursor!=0 );
drhc22284f2014-10-13 16:02:20 +00004541 rc = sqlite3VdbeCursorRestore(pC);
drh61495262009-04-22 15:32:59 +00004542 if( rc ) goto abort_due_to_error;
dan2b8669a2014-11-17 19:42:48 +00004543 if( pC->nullRow ){
4544 pOut->flags = MEM_Null;
4545 break;
4546 }
drhb53a5a92014-10-12 22:37:22 +00004547 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
drhc22284f2014-10-13 16:02:20 +00004548 assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */
drh5e00f6c2001-09-13 13:46:56 +00004549 }
drh4c583122008-01-04 22:01:03 +00004550 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004551 break;
4552}
4553
drh9cbf3422008-01-17 16:22:13 +00004554/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004555**
4556** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004557** that occur while the cursor is on the null row will always
4558** write a NULL.
drh17f71932002-02-21 12:01:27 +00004559*/
drh9cbf3422008-01-17 16:22:13 +00004560case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004561 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004562
drh653b82a2009-06-22 11:10:47 +00004563 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4564 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004565 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004566 pC->nullRow = 1;
drh399af1d2013-11-20 17:25:55 +00004567 pC->cacheStatus = CACHE_STALE;
danielk1977be51a652008-10-08 17:58:48 +00004568 if( pC->pCursor ){
4569 sqlite3BtreeClearCursor(pC->pCursor);
4570 }
drh17f71932002-02-21 12:01:27 +00004571 break;
4572}
4573
danb18e60b2015-04-01 16:18:00 +00004574/* Opcode: Last P1 P2 P3 * *
drh9562b552002-02-19 15:00:07 +00004575**
drh8af3f772014-07-25 18:01:06 +00004576** The next use of the Rowid or Column or Prev instruction for P1
drh9562b552002-02-19 15:00:07 +00004577** will refer to the last entry in the database table or index.
4578** If the table or index is empty and P2>0, then jump immediately to P2.
4579** If P2 is 0 or if the table or index is not empty, fall through
4580** to the following instruction.
drh8af3f772014-07-25 18:01:06 +00004581**
4582** This opcode leaves the cursor configured to move in reverse order,
4583** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004584** configured to use Prev, not Next.
drh9562b552002-02-19 15:00:07 +00004585*/
drh9cbf3422008-01-17 16:22:13 +00004586case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004587 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004588 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004589 int res;
drh9562b552002-02-19 15:00:07 +00004590
drh653b82a2009-06-22 11:10:47 +00004591 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4592 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004593 assert( pC!=0 );
drha05a7222008-01-19 03:35:58 +00004594 pCrsr = pC->pCursor;
drh7abc5402011-10-22 21:00:46 +00004595 res = 0;
drh3da046d2013-11-11 03:24:11 +00004596 assert( pCrsr!=0 );
4597 rc = sqlite3BtreeLast(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004598 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004599 pC->deferredMoveto = 0;
4600 pC->cacheStatus = CACHE_STALE;
danb18e60b2015-04-01 16:18:00 +00004601 pC->seekResult = pOp->p3;
drh8af3f772014-07-25 18:01:06 +00004602#ifdef SQLITE_DEBUG
4603 pC->seekOp = OP_Last;
4604#endif
drh688852a2014-02-17 22:40:43 +00004605 if( pOp->p2>0 ){
4606 VdbeBranchTaken(res!=0,2);
drhf56fa462015-04-13 21:39:54 +00004607 if( res ) goto jump_to_p2;
drh9562b552002-02-19 15:00:07 +00004608 }
4609 break;
4610}
4611
drh0342b1f2005-09-01 03:07:44 +00004612
drh9cbf3422008-01-17 16:22:13 +00004613/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004614**
4615** This opcode does exactly the same thing as OP_Rewind except that
4616** it increments an undocumented global variable used for testing.
4617**
4618** Sorting is accomplished by writing records into a sorting index,
4619** then rewinding that index and playing it back from beginning to
4620** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4621** rewinding so that the global variable will be incremented and
4622** regression tests can determine whether or not the optimizer is
4623** correctly optimizing out sorts.
4624*/
drhc6aff302011-09-01 15:32:47 +00004625case OP_SorterSort: /* jump */
drh9cbf3422008-01-17 16:22:13 +00004626case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00004627#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00004628 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00004629 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00004630#endif
drh9b47ee32013-08-20 03:13:51 +00004631 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
drh0342b1f2005-09-01 03:07:44 +00004632 /* Fall through into OP_Rewind */
4633}
drh9cbf3422008-01-17 16:22:13 +00004634/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004635**
drhf0863fe2005-06-12 21:35:51 +00004636** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00004637** will refer to the first entry in the database table or index.
dan04489b62014-10-31 20:11:32 +00004638** If the table or index is empty, jump immediately to P2.
4639** If the table or index is not empty, fall through to the following
4640** instruction.
drh8af3f772014-07-25 18:01:06 +00004641**
4642** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00004643** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004644** configured to use Next, not Prev.
drh5e00f6c2001-09-13 13:46:56 +00004645*/
drh9cbf3422008-01-17 16:22:13 +00004646case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004647 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004648 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00004649 int res;
drh5e00f6c2001-09-13 13:46:56 +00004650
drh653b82a2009-06-22 11:10:47 +00004651 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4652 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004653 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00004654 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
dan2411dea2010-07-03 05:56:09 +00004655 res = 1;
drh8af3f772014-07-25 18:01:06 +00004656#ifdef SQLITE_DEBUG
4657 pC->seekOp = OP_Rewind;
4658#endif
dan689ab892011-08-12 15:02:00 +00004659 if( isSorter(pC) ){
drh958d2612014-04-18 13:40:07 +00004660 rc = sqlite3VdbeSorterRewind(pC, &res);
dana205a482011-08-27 18:48:57 +00004661 }else{
4662 pCrsr = pC->pCursor;
4663 assert( pCrsr );
danielk19774adee202004-05-08 08:23:19 +00004664 rc = sqlite3BtreeFirst(pCrsr, &res);
drha11846b2004-01-07 18:52:56 +00004665 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004666 pC->cacheStatus = CACHE_STALE;
drhf4dada72004-05-11 09:57:35 +00004667 }
drh9c1905f2008-12-10 22:32:56 +00004668 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004669 assert( pOp->p2>0 && pOp->p2<p->nOp );
drh688852a2014-02-17 22:40:43 +00004670 VdbeBranchTaken(res!=0,2);
drhf56fa462015-04-13 21:39:54 +00004671 if( res ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00004672 break;
4673}
4674
drh0fd61352014-02-07 02:29:45 +00004675/* Opcode: Next P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004676**
4677** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00004678** table or index. If there are no more key/value pairs then fall through
4679** to the following instruction. But if the cursor advance was successful,
4680** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00004681**
drh5dad9a32014-07-25 18:37:42 +00004682** The Next opcode is only valid following an SeekGT, SeekGE, or
4683** OP_Rewind opcode used to position the cursor. Next is not allowed
4684** to follow SeekLT, SeekLE, or OP_Last.
drh8af3f772014-07-25 18:01:06 +00004685**
drhf93cd942013-11-21 03:12:25 +00004686** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
4687** been opened prior to this opcode or the program will segfault.
drh60a713c2008-01-21 16:22:45 +00004688**
drhe39a7322014-02-03 14:04:11 +00004689** The P3 value is a hint to the btree implementation. If P3==1, that
4690** means P1 is an SQL index and that this instruction could have been
4691** omitted if that index had been unique. P3 is usually 0. P3 is
4692** always either 0 or 1.
4693**
dana205a482011-08-27 18:48:57 +00004694** P4 is always of type P4_ADVANCE. The function pointer points to
4695** sqlite3BtreeNext().
4696**
drhafc266a2010-03-31 17:47:44 +00004697** If P5 is positive and the jump is taken, then event counter
4698** number P5-1 in the prepared statement is incremented.
4699**
drhf93cd942013-11-21 03:12:25 +00004700** See also: Prev, NextIfOpen
4701*/
drh0fd61352014-02-07 02:29:45 +00004702/* Opcode: NextIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00004703**
drh5dad9a32014-07-25 18:37:42 +00004704** This opcode works just like Next except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00004705** open it behaves a no-op.
drh8721ce42001-11-07 14:22:00 +00004706*/
drh0fd61352014-02-07 02:29:45 +00004707/* Opcode: Prev P1 P2 P3 P4 P5
drhc045ec52002-12-04 20:01:06 +00004708**
4709** Back up cursor P1 so that it points to the previous key/data pair in its
4710** table or index. If there is no previous key/value pairs then fall through
4711** to the following instruction. But if the cursor backup was successful,
4712** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00004713**
drh8af3f772014-07-25 18:01:06 +00004714**
drh5dad9a32014-07-25 18:37:42 +00004715** The Prev opcode is only valid following an SeekLT, SeekLE, or
4716** OP_Last opcode used to position the cursor. Prev is not allowed
4717** to follow SeekGT, SeekGE, or OP_Rewind.
drh8af3f772014-07-25 18:01:06 +00004718**
drhf93cd942013-11-21 03:12:25 +00004719** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
4720** not open then the behavior is undefined.
drhafc266a2010-03-31 17:47:44 +00004721**
drhe39a7322014-02-03 14:04:11 +00004722** The P3 value is a hint to the btree implementation. If P3==1, that
4723** means P1 is an SQL index and that this instruction could have been
4724** omitted if that index had been unique. P3 is usually 0. P3 is
4725** always either 0 or 1.
4726**
dana205a482011-08-27 18:48:57 +00004727** P4 is always of type P4_ADVANCE. The function pointer points to
4728** sqlite3BtreePrevious().
4729**
drhafc266a2010-03-31 17:47:44 +00004730** If P5 is positive and the jump is taken, then event counter
4731** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00004732*/
drh0fd61352014-02-07 02:29:45 +00004733/* Opcode: PrevIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00004734**
drh5dad9a32014-07-25 18:37:42 +00004735** This opcode works just like Prev except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00004736** open it behaves a no-op.
4737*/
4738case OP_SorterNext: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004739 VdbeCursor *pC;
drha3460582008-07-11 21:02:53 +00004740 int res;
drh8721ce42001-11-07 14:22:00 +00004741
drhf93cd942013-11-21 03:12:25 +00004742 pC = p->apCsr[pOp->p1];
4743 assert( isSorter(pC) );
drh323913c2014-03-23 16:29:23 +00004744 res = 0;
drhf93cd942013-11-21 03:12:25 +00004745 rc = sqlite3VdbeSorterNext(db, pC, &res);
4746 goto next_tail;
4747case OP_PrevIfOpen: /* jump */
4748case OP_NextIfOpen: /* jump */
4749 if( p->apCsr[pOp->p1]==0 ) break;
4750 /* Fall through */
4751case OP_Prev: /* jump */
4752case OP_Next: /* jump */
drh70ce3f02003-04-15 19:22:22 +00004753 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh9b47ee32013-08-20 03:13:51 +00004754 assert( pOp->p5<ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00004755 pC = p->apCsr[pOp->p1];
drhe39a7322014-02-03 14:04:11 +00004756 res = pOp->p3;
drhf93cd942013-11-21 03:12:25 +00004757 assert( pC!=0 );
4758 assert( pC->deferredMoveto==0 );
4759 assert( pC->pCursor );
drhe39a7322014-02-03 14:04:11 +00004760 assert( res==0 || (res==1 && pC->isTable==0) );
4761 testcase( res==1 );
drhf93cd942013-11-21 03:12:25 +00004762 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4763 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4764 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
4765 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
drh8af3f772014-07-25 18:01:06 +00004766
4767 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
4768 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
4769 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
4770 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
drhcefc87f2014-08-01 01:40:33 +00004771 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
drh8af3f772014-07-25 18:01:06 +00004772 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
4773 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
4774 || pC->seekOp==OP_Last );
4775
drhf93cd942013-11-21 03:12:25 +00004776 rc = pOp->p4.xAdvance(pC->pCursor, &res);
4777next_tail:
drha3460582008-07-11 21:02:53 +00004778 pC->cacheStatus = CACHE_STALE;
drh688852a2014-02-17 22:40:43 +00004779 VdbeBranchTaken(res==0,2);
drha3460582008-07-11 21:02:53 +00004780 if( res==0 ){
drhf93cd942013-11-21 03:12:25 +00004781 pC->nullRow = 0;
drh9b47ee32013-08-20 03:13:51 +00004782 p->aCounter[pOp->p5]++;
drh0f7eb612006-08-08 13:51:43 +00004783#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00004784 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00004785#endif
drhf56fa462015-04-13 21:39:54 +00004786 goto jump_to_p2_and_check_for_interrupt;
drhf93cd942013-11-21 03:12:25 +00004787 }else{
4788 pC->nullRow = 1;
drh8721ce42001-11-07 14:22:00 +00004789 }
drh49afe3a2013-07-10 03:05:14 +00004790 goto check_for_interrupt;
drh8721ce42001-11-07 14:22:00 +00004791}
4792
danielk1977de630352009-05-04 11:42:29 +00004793/* Opcode: IdxInsert P1 P2 P3 * P5
drh81316f82013-10-29 20:40:47 +00004794** Synopsis: key=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004795**
drhef8662b2011-06-20 21:47:58 +00004796** Register P2 holds an SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00004797** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00004798** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00004799**
drhaa9b8962008-01-08 02:57:55 +00004800** P3 is a flag that provides a hint to the b-tree layer that this
drhe4d90812007-03-29 05:51:49 +00004801** insert is likely to be an append.
4802**
mistachkin21a919f2014-02-07 03:28:02 +00004803** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
4804** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
4805** then the change counter is unchanged.
drh0fd61352014-02-07 02:29:45 +00004806**
mistachkin21a919f2014-02-07 03:28:02 +00004807** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
4808** just done a seek to the spot where the new entry is to be inserted.
4809** This flag avoids doing an extra seek.
drh0fd61352014-02-07 02:29:45 +00004810**
drhf0863fe2005-06-12 21:35:51 +00004811** This instruction only works for indices. The equivalent instruction
4812** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00004813*/
drhca892a72011-09-03 00:17:51 +00004814case OP_SorterInsert: /* in2 */
drh9cbf3422008-01-17 16:22:13 +00004815case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00004816 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004817 int nKey;
4818 const char *zKey;
4819
drh653b82a2009-06-22 11:10:47 +00004820 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4821 pC = p->apCsr[pOp->p1];
4822 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00004823 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
drh3c657212009-11-17 23:59:58 +00004824 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00004825 assert( pIn2->flags & MEM_Blob );
drh6546af12013-11-04 15:23:25 +00004826 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drhabb78fb2015-06-26 19:43:55 +00004827 assert( pC->pCursor!=0 );
drh3da046d2013-11-11 03:24:11 +00004828 assert( pC->isTable==0 );
4829 rc = ExpandBlob(pIn2);
4830 if( rc==SQLITE_OK ){
drhabb78fb2015-06-26 19:43:55 +00004831 if( pOp->opcode==OP_SorterInsert ){
drh958d2612014-04-18 13:40:07 +00004832 rc = sqlite3VdbeSorterWrite(pC, pIn2);
drh3da046d2013-11-11 03:24:11 +00004833 }else{
4834 nKey = pIn2->n;
4835 zKey = pIn2->z;
drhabb78fb2015-06-26 19:43:55 +00004836 rc = sqlite3BtreeInsert(pC->pCursor, zKey, nKey, "", 0, 0, pOp->p3,
drh3da046d2013-11-11 03:24:11 +00004837 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4838 );
4839 assert( pC->deferredMoveto==0 );
4840 pC->cacheStatus = CACHE_STALE;
danielk1977d908f5a2007-05-11 07:08:28 +00004841 }
drh5e00f6c2001-09-13 13:46:56 +00004842 }
drh5e00f6c2001-09-13 13:46:56 +00004843 break;
4844}
4845
drh4308e342013-11-11 16:55:52 +00004846/* Opcode: IdxDelete P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00004847** Synopsis: key=r[P2@P3]
drh5e00f6c2001-09-13 13:46:56 +00004848**
drhe14006d2008-03-25 17:23:32 +00004849** The content of P3 registers starting at register P2 form
4850** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00004851** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00004852*/
drhe14006d2008-03-25 17:23:32 +00004853case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00004854 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004855 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00004856 int res;
4857 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00004858
drhe14006d2008-03-25 17:23:32 +00004859 assert( pOp->p3>0 );
dan3bc9f742013-08-15 16:18:39 +00004860 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
drh653b82a2009-06-22 11:10:47 +00004861 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4862 pC = p->apCsr[pOp->p1];
4863 assert( pC!=0 );
4864 pCrsr = pC->pCursor;
drh3da046d2013-11-11 03:24:11 +00004865 assert( pCrsr!=0 );
drh4308e342013-11-11 16:55:52 +00004866 assert( pOp->p5==0 );
drh3da046d2013-11-11 03:24:11 +00004867 r.pKeyInfo = pC->pKeyInfo;
4868 r.nField = (u16)pOp->p3;
dan1fed5da2014-02-25 21:01:25 +00004869 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00004870 r.aMem = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004871#ifdef SQLITE_DEBUG
drh3da046d2013-11-11 03:24:11 +00004872 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
drh2b4ded92010-09-27 21:09:31 +00004873#endif
drh3da046d2013-11-11 03:24:11 +00004874 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
4875 if( rc==SQLITE_OK && res==0 ){
danf0ee1d32015-09-12 19:26:11 +00004876 rc = sqlite3BtreeDelete(pCrsr, 0);
drh5e00f6c2001-09-13 13:46:56 +00004877 }
drh3da046d2013-11-11 03:24:11 +00004878 assert( pC->deferredMoveto==0 );
4879 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004880 break;
4881}
4882
drh2133d822008-01-03 18:44:59 +00004883/* Opcode: IdxRowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004884** Synopsis: r[P2]=rowid
drh8721ce42001-11-07 14:22:00 +00004885**
drh2133d822008-01-03 18:44:59 +00004886** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00004887** the end of the index key pointed to by cursor P1. This integer should be
4888** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00004889**
drh9437bd22009-02-01 00:29:56 +00004890** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00004891*/
drh27a348c2015-04-13 19:14:06 +00004892case OP_IdxRowid: { /* out2 */
drh8721ce42001-11-07 14:22:00 +00004893 BtCursor *pCrsr;
drhdfe88ec2008-11-03 20:55:06 +00004894 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004895 i64 rowid;
drh8721ce42001-11-07 14:22:00 +00004896
drh27a348c2015-04-13 19:14:06 +00004897 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00004898 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4899 pC = p->apCsr[pOp->p1];
4900 assert( pC!=0 );
4901 pCrsr = pC->pCursor;
drh3da046d2013-11-11 03:24:11 +00004902 assert( pCrsr!=0 );
drh3c657212009-11-17 23:59:58 +00004903 pOut->flags = MEM_Null;
drh3da046d2013-11-11 03:24:11 +00004904 assert( pC->isTable==0 );
drhc22284f2014-10-13 16:02:20 +00004905 assert( pC->deferredMoveto==0 );
4906
4907 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
4908 ** out from under the cursor. That will never happend for an IdxRowid
4909 ** opcode, hence the NEVER() arround the check of the return value.
4910 */
4911 rc = sqlite3VdbeCursorRestore(pC);
4912 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4913
drh3da046d2013-11-11 03:24:11 +00004914 if( !pC->nullRow ){
drh2dc06482013-12-11 00:59:10 +00004915 rowid = 0; /* Not needed. Only used to silence a warning. */
drhd3b74202014-09-17 16:41:15 +00004916 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
drh3da046d2013-11-11 03:24:11 +00004917 if( rc!=SQLITE_OK ){
4918 goto abort_due_to_error;
danielk19773d1bfea2004-05-14 11:00:53 +00004919 }
drh3da046d2013-11-11 03:24:11 +00004920 pOut->u.i = rowid;
4921 pOut->flags = MEM_Int;
drh8721ce42001-11-07 14:22:00 +00004922 }
4923 break;
4924}
4925
danielk197761dd5832008-04-18 11:31:12 +00004926/* Opcode: IdxGE P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00004927** Synopsis: key=r[P3@P4]
drh8721ce42001-11-07 14:22:00 +00004928**
danielk197761dd5832008-04-18 11:31:12 +00004929** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00004930** key that omits the PRIMARY KEY. Compare this key value against the index
4931** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
4932** fields at the end.
drhf3218fe2004-05-28 08:21:02 +00004933**
danielk197761dd5832008-04-18 11:31:12 +00004934** If the P1 index entry is greater than or equal to the key value
4935** then jump to P2. Otherwise fall through to the next instruction.
drh4a1d3652014-02-14 15:13:36 +00004936*/
4937/* Opcode: IdxGT P1 P2 P3 P4 P5
4938** Synopsis: key=r[P3@P4]
drh772ae622004-05-19 13:13:08 +00004939**
drh4a1d3652014-02-14 15:13:36 +00004940** The P4 register values beginning with P3 form an unpacked index
4941** key that omits the PRIMARY KEY. Compare this key value against the index
4942** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
4943** fields at the end.
4944**
4945** If the P1 index entry is greater than the key value
4946** then jump to P2. Otherwise fall through to the next instruction.
drh8721ce42001-11-07 14:22:00 +00004947*/
drh3bb9b932010-08-06 02:10:00 +00004948/* Opcode: IdxLT P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00004949** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00004950**
danielk197761dd5832008-04-18 11:31:12 +00004951** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00004952** key that omits the PRIMARY KEY or ROWID. Compare this key value against
4953** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
4954** ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004955**
danielk197761dd5832008-04-18 11:31:12 +00004956** If the P1 index entry is less than the key value then jump to P2.
4957** Otherwise fall through to the next instruction.
drhc045ec52002-12-04 20:01:06 +00004958*/
drh4a1d3652014-02-14 15:13:36 +00004959/* Opcode: IdxLE P1 P2 P3 P4 P5
4960** Synopsis: key=r[P3@P4]
4961**
4962** The P4 register values beginning with P3 form an unpacked index
4963** key that omits the PRIMARY KEY or ROWID. Compare this key value against
4964** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
4965** ROWID on the P1 index.
4966**
4967** If the P1 index entry is less than or equal to the key value then jump
4968** to P2. Otherwise fall through to the next instruction.
4969*/
4970case OP_IdxLE: /* jump */
4971case OP_IdxGT: /* jump */
drh93952eb2009-11-13 19:43:43 +00004972case OP_IdxLT: /* jump */
drh4a1d3652014-02-14 15:13:36 +00004973case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004974 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004975 int res;
4976 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00004977
drh653b82a2009-06-22 11:10:47 +00004978 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4979 pC = p->apCsr[pOp->p1];
4980 assert( pC!=0 );
drhd4187c72010-08-30 22:15:45 +00004981 assert( pC->isOrdered );
drh3da046d2013-11-11 03:24:11 +00004982 assert( pC->pCursor!=0);
4983 assert( pC->deferredMoveto==0 );
4984 assert( pOp->p5==0 || pOp->p5==1 );
4985 assert( pOp->p4type==P4_INT32 );
4986 r.pKeyInfo = pC->pKeyInfo;
4987 r.nField = (u16)pOp->p4.i;
drh4a1d3652014-02-14 15:13:36 +00004988 if( pOp->opcode<OP_IdxLT ){
4989 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
dan1fed5da2014-02-25 21:01:25 +00004990 r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00004991 }else{
drh4a1d3652014-02-14 15:13:36 +00004992 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
dan1fed5da2014-02-25 21:01:25 +00004993 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00004994 }
4995 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00004996#ifdef SQLITE_DEBUG
drh3da046d2013-11-11 03:24:11 +00004997 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
drh2b4ded92010-09-27 21:09:31 +00004998#endif
drh2dc06482013-12-11 00:59:10 +00004999 res = 0; /* Not needed. Only used to silence a warning. */
drhd3b74202014-09-17 16:41:15 +00005000 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
drh4a1d3652014-02-14 15:13:36 +00005001 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5002 if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5003 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
drh3da046d2013-11-11 03:24:11 +00005004 res = -res;
5005 }else{
drh4a1d3652014-02-14 15:13:36 +00005006 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
drh3da046d2013-11-11 03:24:11 +00005007 res++;
5008 }
drh688852a2014-02-17 22:40:43 +00005009 VdbeBranchTaken(res>0,2);
drhf56fa462015-04-13 21:39:54 +00005010 if( res>0 ) goto jump_to_p2;
drh8721ce42001-11-07 14:22:00 +00005011 break;
5012}
5013
drh98757152008-01-09 23:04:12 +00005014/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00005015**
5016** Delete an entire database table or index whose root page in the database
5017** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00005018**
drh98757152008-01-09 23:04:12 +00005019** The table being destroyed is in the main database file if P3==0. If
5020** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00005021** that is used to store tables create using CREATE TEMPORARY TABLE.
5022**
drh205f48e2004-11-05 00:43:11 +00005023** If AUTOVACUUM is enabled then it is possible that another root page
5024** might be moved into the newly deleted root page in order to keep all
5025** root pages contiguous at the beginning of the database. The former
5026** value of the root page that moved - its value before the move occurred -
drh9cbf3422008-01-17 16:22:13 +00005027** is stored in register P2. If no page
drh98757152008-01-09 23:04:12 +00005028** movement was required (because the table being dropped was already
5029** the last one in the database) then a zero is stored in register P2.
5030** If AUTOVACUUM is disabled then a zero is stored in register P2.
drh205f48e2004-11-05 00:43:11 +00005031**
drhb19a2bc2001-09-16 00:13:26 +00005032** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00005033*/
drh27a348c2015-04-13 19:14:06 +00005034case OP_Destroy: { /* out2 */
danielk1977a0bf2652004-11-04 14:30:04 +00005035 int iMoved;
drh856c1032009-06-02 15:21:42 +00005036 int iDb;
drh3a949872012-09-18 13:20:13 +00005037
drh9e92a472013-06-27 17:40:30 +00005038 assert( p->readOnly==0 );
drh27a348c2015-04-13 19:14:06 +00005039 pOut = out2Prerelease(p, pOp);
drh3c657212009-11-17 23:59:58 +00005040 pOut->flags = MEM_Null;
drh086723a2015-03-24 12:51:52 +00005041 if( db->nVdbeRead > db->nVDestroy+1 ){
danielk1977e6efa742004-11-10 11:55:10 +00005042 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00005043 p->errorAction = OE_Abort;
danielk1977e6efa742004-11-10 11:55:10 +00005044 }else{
drh856c1032009-06-02 15:21:42 +00005045 iDb = pOp->p3;
drha7ab6d82014-07-21 15:44:39 +00005046 assert( DbMaskTest(p->btreeMask, iDb) );
drh2dc06482013-12-11 00:59:10 +00005047 iMoved = 0; /* Not needed. Only to silence a warning. */
drh98757152008-01-09 23:04:12 +00005048 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00005049 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00005050 pOut->u.i = iMoved;
drh3765df42006-06-28 18:18:09 +00005051#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977e6efa742004-11-10 11:55:10 +00005052 if( rc==SQLITE_OK && iMoved!=0 ){
drhcdf011d2011-04-04 21:25:28 +00005053 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5054 /* All OP_Destroy operations occur on the same btree */
5055 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5056 resetSchemaOnFault = iDb+1;
danielk1977e6efa742004-11-10 11:55:10 +00005057 }
drh3765df42006-06-28 18:18:09 +00005058#endif
danielk1977a0bf2652004-11-04 14:30:04 +00005059 }
drh5e00f6c2001-09-13 13:46:56 +00005060 break;
5061}
5062
danielk1977c7af4842008-10-27 13:59:33 +00005063/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00005064**
5065** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00005066** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00005067** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00005068**
drhf57b3392001-10-08 13:22:32 +00005069** The table being clear is in the main database file if P2==0. If
5070** P2==1 then the table to be clear is in the auxiliary database file
5071** that is used to store tables create using CREATE TEMPORARY TABLE.
5072**
shanebe217792009-03-05 04:20:31 +00005073** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00005074** intkey table (an SQL table, not an index). In this case the row change
5075** count is incremented by the number of rows in the table being cleared.
5076** If P3 is greater than zero, then the value stored in register P3 is
5077** also incremented by the number of rows in the table being cleared.
5078**
drhb19a2bc2001-09-16 00:13:26 +00005079** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00005080*/
drh9cbf3422008-01-17 16:22:13 +00005081case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00005082 int nChange;
5083
5084 nChange = 0;
drh9e92a472013-06-27 17:40:30 +00005085 assert( p->readOnly==0 );
drha7ab6d82014-07-21 15:44:39 +00005086 assert( DbMaskTest(p->btreeMask, pOp->p2) );
danielk1977c7af4842008-10-27 13:59:33 +00005087 rc = sqlite3BtreeClearTable(
5088 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5089 );
5090 if( pOp->p3 ){
5091 p->nChange += nChange;
5092 if( pOp->p3>0 ){
drh2b4ded92010-09-27 21:09:31 +00005093 assert( memIsValid(&aMem[pOp->p3]) );
5094 memAboutToChange(p, &aMem[pOp->p3]);
drha6c2ed92009-11-14 23:22:23 +00005095 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00005096 }
5097 }
drh5edc3122001-09-13 21:53:09 +00005098 break;
5099}
5100
drh65ea12c2014-03-19 17:41:36 +00005101/* Opcode: ResetSorter P1 * * * *
drh079a3072014-03-19 14:10:55 +00005102**
drh65ea12c2014-03-19 17:41:36 +00005103** Delete all contents from the ephemeral table or sorter
5104** that is open on cursor P1.
drh079a3072014-03-19 14:10:55 +00005105**
drh65ea12c2014-03-19 17:41:36 +00005106** This opcode only works for cursors used for sorting and
5107** opened with OP_OpenEphemeral or OP_SorterOpen.
drh079a3072014-03-19 14:10:55 +00005108*/
drh65ea12c2014-03-19 17:41:36 +00005109case OP_ResetSorter: {
drh079a3072014-03-19 14:10:55 +00005110 VdbeCursor *pC;
5111
5112 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5113 pC = p->apCsr[pOp->p1];
5114 assert( pC!=0 );
drh65ea12c2014-03-19 17:41:36 +00005115 if( pC->pSorter ){
5116 sqlite3VdbeSorterReset(db, pC->pSorter);
5117 }else{
5118 assert( pC->isEphemeral );
5119 rc = sqlite3BtreeClearTableOfCursor(pC->pCursor);
5120 }
drh079a3072014-03-19 14:10:55 +00005121 break;
5122}
5123
drh4c583122008-01-04 22:01:03 +00005124/* Opcode: CreateTable P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005125** Synopsis: r[P2]=root iDb=P1
drh5b2fd562001-09-13 15:21:31 +00005126**
drh4c583122008-01-04 22:01:03 +00005127** Allocate a new table in the main database file if P1==0 or in the
5128** auxiliary database file if P1==1 or in an attached database if
5129** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00005130** register P2
drh5b2fd562001-09-13 15:21:31 +00005131**
drhc6b52df2002-01-04 03:09:29 +00005132** The difference between a table and an index is this: A table must
5133** have a 4-byte integer key and can have arbitrary data. An index
5134** has an arbitrary key but no data.
5135**
drhb19a2bc2001-09-16 00:13:26 +00005136** See also: CreateIndex
drh5b2fd562001-09-13 15:21:31 +00005137*/
drh4c583122008-01-04 22:01:03 +00005138/* Opcode: CreateIndex P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005139** Synopsis: r[P2]=root iDb=P1
drhf57b3392001-10-08 13:22:32 +00005140**
drh4c583122008-01-04 22:01:03 +00005141** Allocate a new index in the main database file if P1==0 or in the
5142** auxiliary database file if P1==1 or in an attached database if
5143** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00005144** register P2.
drhf57b3392001-10-08 13:22:32 +00005145**
drhc6b52df2002-01-04 03:09:29 +00005146** See documentation on OP_CreateTable for additional information.
drhf57b3392001-10-08 13:22:32 +00005147*/
drh27a348c2015-04-13 19:14:06 +00005148case OP_CreateIndex: /* out2 */
5149case OP_CreateTable: { /* out2 */
drh856c1032009-06-02 15:21:42 +00005150 int pgno;
drhf328bc82004-05-10 23:29:49 +00005151 int flags;
drh234c39d2004-07-24 03:30:47 +00005152 Db *pDb;
drh856c1032009-06-02 15:21:42 +00005153
drh27a348c2015-04-13 19:14:06 +00005154 pOut = out2Prerelease(p, pOp);
drh856c1032009-06-02 15:21:42 +00005155 pgno = 0;
drh234c39d2004-07-24 03:30:47 +00005156 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005157 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00005158 assert( p->readOnly==0 );
drh234c39d2004-07-24 03:30:47 +00005159 pDb = &db->aDb[pOp->p1];
5160 assert( pDb->pBt!=0 );
drhc6b52df2002-01-04 03:09:29 +00005161 if( pOp->opcode==OP_CreateTable ){
danielk197794076252004-05-14 12:16:11 +00005162 /* flags = BTREE_INTKEY; */
drhd4187c72010-08-30 22:15:45 +00005163 flags = BTREE_INTKEY;
drhc6b52df2002-01-04 03:09:29 +00005164 }else{
drhd4187c72010-08-30 22:15:45 +00005165 flags = BTREE_BLOBKEY;
drhc6b52df2002-01-04 03:09:29 +00005166 }
drh234c39d2004-07-24 03:30:47 +00005167 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
drh88a003e2008-12-11 16:17:03 +00005168 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00005169 break;
5170}
5171
drh22645842011-03-24 01:34:03 +00005172/* Opcode: ParseSchema P1 * * P4 *
drh234c39d2004-07-24 03:30:47 +00005173**
5174** Read and parse all entries from the SQLITE_MASTER table of database P1
drh22645842011-03-24 01:34:03 +00005175** that match the WHERE clause P4.
drh234c39d2004-07-24 03:30:47 +00005176**
5177** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00005178** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00005179*/
drh9cbf3422008-01-17 16:22:13 +00005180case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00005181 int iDb;
5182 const char *zMaster;
5183 char *zSql;
5184 InitData initData;
5185
drhbdaec522011-04-04 00:14:43 +00005186 /* Any prepared statement that invokes this opcode will hold mutexes
5187 ** on every btree. This is a prerequisite for invoking
5188 ** sqlite3InitCallback().
5189 */
5190#ifdef SQLITE_DEBUG
5191 for(iDb=0; iDb<db->nDb; iDb++){
5192 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5193 }
5194#endif
drhbdaec522011-04-04 00:14:43 +00005195
drh856c1032009-06-02 15:21:42 +00005196 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00005197 assert( iDb>=0 && iDb<db->nDb );
dan6c154872011-04-02 09:44:43 +00005198 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
drhbdaec522011-04-04 00:14:43 +00005199 /* Used to be a conditional */ {
drh856c1032009-06-02 15:21:42 +00005200 zMaster = SCHEMA_TABLE(iDb);
danielk1977a8bbef82009-03-23 17:11:26 +00005201 initData.db = db;
5202 initData.iDb = pOp->p1;
5203 initData.pzErrMsg = &p->zErrMsg;
5204 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00005205 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
danielk1977a8bbef82009-03-23 17:11:26 +00005206 db->aDb[iDb].zName, zMaster, pOp->p4.z);
5207 if( zSql==0 ){
5208 rc = SQLITE_NOMEM;
5209 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00005210 assert( db->init.busy==0 );
5211 db->init.busy = 1;
5212 initData.rc = SQLITE_OK;
5213 assert( !db->mallocFailed );
5214 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5215 if( rc==SQLITE_OK ) rc = initData.rc;
5216 sqlite3DbFree(db, zSql);
5217 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00005218 }
drh3c23a882007-01-09 14:01:13 +00005219 }
drh81028a42012-05-15 18:28:27 +00005220 if( rc ) sqlite3ResetAllSchemasOfConnection(db);
danielk1977261919c2005-12-06 12:52:59 +00005221 if( rc==SQLITE_NOMEM ){
danielk1977261919c2005-12-06 12:52:59 +00005222 goto no_mem;
5223 }
drh234c39d2004-07-24 03:30:47 +00005224 break;
5225}
5226
drh8bfdf722009-06-19 14:06:03 +00005227#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00005228/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00005229**
5230** Read the sqlite_stat1 table for database P1 and load the content
5231** of that table into the internal index hash table. This will cause
5232** the analysis to be used when preparing all subsequent queries.
5233*/
drh9cbf3422008-01-17 16:22:13 +00005234case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00005235 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5236 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh497e4462005-07-23 03:18:40 +00005237 break;
5238}
drh8bfdf722009-06-19 14:06:03 +00005239#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00005240
drh98757152008-01-09 23:04:12 +00005241/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005242**
5243** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005244** the table named P4 in database P1. This is called after a table
drh5dad9a32014-07-25 18:37:42 +00005245** is dropped from disk (using the Destroy opcode) in order to keep
5246** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005247** schema consistent with what is on disk.
5248*/
drh9cbf3422008-01-17 16:22:13 +00005249case OP_DropTable: {
danielk19772dca4ac2008-01-03 11:50:29 +00005250 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005251 break;
5252}
5253
drh98757152008-01-09 23:04:12 +00005254/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005255**
5256** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005257** the index named P4 in database P1. This is called after an index
drh5dad9a32014-07-25 18:37:42 +00005258** is dropped from disk (using the Destroy opcode)
5259** in order to keep the internal representation of the
drh956bc922004-07-24 17:38:29 +00005260** schema consistent with what is on disk.
5261*/
drh9cbf3422008-01-17 16:22:13 +00005262case OP_DropIndex: {
danielk19772dca4ac2008-01-03 11:50:29 +00005263 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005264 break;
5265}
5266
drh98757152008-01-09 23:04:12 +00005267/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005268**
5269** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005270** the trigger named P4 in database P1. This is called after a trigger
drh5dad9a32014-07-25 18:37:42 +00005271** is dropped from disk (using the Destroy opcode) in order to keep
5272** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005273** schema consistent with what is on disk.
5274*/
drh9cbf3422008-01-17 16:22:13 +00005275case OP_DropTrigger: {
danielk19772dca4ac2008-01-03 11:50:29 +00005276 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005277 break;
5278}
5279
drh234c39d2004-07-24 03:30:47 +00005280
drhb7f91642004-10-31 02:22:47 +00005281#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98757152008-01-09 23:04:12 +00005282/* Opcode: IntegrityCk P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00005283**
drh98757152008-01-09 23:04:12 +00005284** Do an analysis of the currently open database. Store in
5285** register P1 the text of an error message describing any problems.
5286** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00005287**
drh98757152008-01-09 23:04:12 +00005288** The register P3 contains the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00005289** At most reg(P3) errors will be reported.
5290** In other words, the analysis stops as soon as reg(P1) errors are
5291** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00005292**
drh79069752004-05-22 21:30:40 +00005293** The root page numbers of all tables in the database are integer
drh60a713c2008-01-21 16:22:45 +00005294** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
drh98757152008-01-09 23:04:12 +00005295** total.
drh21504322002-06-25 13:16:02 +00005296**
drh98757152008-01-09 23:04:12 +00005297** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00005298** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00005299**
drh1dcdbc02007-01-27 02:24:54 +00005300** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00005301*/
drhaaab5722002-02-19 13:39:21 +00005302case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00005303 int nRoot; /* Number of tables to check. (Number of root pages.) */
5304 int *aRoot; /* Array of rootpage numbers for tables to be checked */
5305 int j; /* Loop counter */
5306 int nErr; /* Number of errors reported */
5307 char *z; /* Text of the error report */
5308 Mem *pnErr; /* Register keeping track of errors remaining */
drh9e92a472013-06-27 17:40:30 +00005309
drh1713afb2013-06-28 01:24:57 +00005310 assert( p->bIsReader );
drh98757152008-01-09 23:04:12 +00005311 nRoot = pOp->p2;
drh79069752004-05-22 21:30:40 +00005312 assert( nRoot>0 );
drh633e6d52008-07-28 19:34:53 +00005313 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
drhcaec2f12003-01-07 02:47:47 +00005314 if( aRoot==0 ) goto no_mem;
dan3bc9f742013-08-15 16:18:39 +00005315 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005316 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00005317 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00005318 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00005319 pIn1 = &aMem[pOp->p1];
drh79069752004-05-22 21:30:40 +00005320 for(j=0; j<nRoot; j++){
drh9c1905f2008-12-10 22:32:56 +00005321 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
drh1dd397f2002-02-03 03:34:07 +00005322 }
5323 aRoot[j] = 0;
drh98757152008-01-09 23:04:12 +00005324 assert( pOp->p5<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005325 assert( DbMaskTest(p->btreeMask, pOp->p5) );
drh98757152008-01-09 23:04:12 +00005326 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
drh9c1905f2008-12-10 22:32:56 +00005327 (int)pnErr->u.i, &nErr);
drhc890fec2008-08-01 20:10:08 +00005328 sqlite3DbFree(db, aRoot);
drh3c024d62007-03-30 11:23:45 +00005329 pnErr->u.i -= nErr;
drha05a7222008-01-19 03:35:58 +00005330 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00005331 if( nErr==0 ){
5332 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00005333 }else if( z==0 ){
5334 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00005335 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00005336 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00005337 }
drhb7654112008-01-12 12:48:07 +00005338 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00005339 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00005340 break;
5341}
drhb7f91642004-10-31 02:22:47 +00005342#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00005343
drh3d4501e2008-12-04 20:40:10 +00005344/* Opcode: RowSetAdd P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005345** Synopsis: rowset(P1)=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00005346**
drh3d4501e2008-12-04 20:40:10 +00005347** Insert the integer value held by register P2 into a boolean index
5348** held in register P1.
5349**
5350** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00005351*/
drh93952eb2009-11-13 19:43:43 +00005352case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00005353 pIn1 = &aMem[pOp->p1];
5354 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00005355 assert( (pIn2->flags & MEM_Int)!=0 );
5356 if( (pIn1->flags & MEM_RowSet)==0 ){
5357 sqlite3VdbeMemSetRowSet(pIn1);
5358 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00005359 }
drh93952eb2009-11-13 19:43:43 +00005360 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00005361 break;
5362}
5363
5364/* Opcode: RowSetRead P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00005365** Synopsis: r[P3]=rowset(P1)
drh3d4501e2008-12-04 20:40:10 +00005366**
5367** Extract the smallest value from boolean index P1 and put that value into
5368** register P3. Or, if boolean index P1 is initially empty, leave P3
5369** unchanged and jump to instruction P2.
5370*/
drh93952eb2009-11-13 19:43:43 +00005371case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00005372 i64 val;
drh49afe3a2013-07-10 03:05:14 +00005373
drh3c657212009-11-17 23:59:58 +00005374 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00005375 if( (pIn1->flags & MEM_RowSet)==0
5376 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00005377 ){
5378 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00005379 sqlite3VdbeMemSetNull(pIn1);
drh688852a2014-02-17 22:40:43 +00005380 VdbeBranchTaken(1,2);
drhf56fa462015-04-13 21:39:54 +00005381 goto jump_to_p2_and_check_for_interrupt;
drh3d4501e2008-12-04 20:40:10 +00005382 }else{
5383 /* A value was pulled from the index */
drh688852a2014-02-17 22:40:43 +00005384 VdbeBranchTaken(0,2);
drhf56fa462015-04-13 21:39:54 +00005385 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh17435752007-08-16 04:30:38 +00005386 }
drh49afe3a2013-07-10 03:05:14 +00005387 goto check_for_interrupt;
drh5e00f6c2001-09-13 13:46:56 +00005388}
5389
drh1b26c7c2009-04-22 02:15:47 +00005390/* Opcode: RowSetTest P1 P2 P3 P4
drh81316f82013-10-29 20:40:47 +00005391** Synopsis: if r[P3] in rowset(P1) goto P2
danielk19771d461462009-04-21 09:02:45 +00005392**
drhade97602009-04-21 15:05:18 +00005393** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00005394** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00005395** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00005396** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00005397** next opcode.
danielk19771d461462009-04-21 09:02:45 +00005398**
drh1b26c7c2009-04-22 02:15:47 +00005399** The RowSet object is optimized for the case where successive sets
danielk19771d461462009-04-21 09:02:45 +00005400** of integers, where each set contains no duplicates. Each set
5401** of values is identified by a unique P4 value. The first set
drh1b26c7c2009-04-22 02:15:47 +00005402** must have P4==0, the final set P4=-1. P4 must be either -1 or
5403** non-negative. For non-negative values of P4 only the lower 4
5404** bits are significant.
danielk19771d461462009-04-21 09:02:45 +00005405**
5406** This allows optimizations: (a) when P4==0 there is no need to test
drh1b26c7c2009-04-22 02:15:47 +00005407** the rowset object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00005408** (b) when P4==-1 there is no need to insert the value, as it will
5409** never be tested for, and (c) when a value that is part of set X is
5410** inserted, there is no need to search to see if the same value was
5411** previously inserted as part of set X (only if it was previously
5412** inserted as part of some other set).
5413*/
drh1b26c7c2009-04-22 02:15:47 +00005414case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00005415 int iSet;
5416 int exists;
5417
drh3c657212009-11-17 23:59:58 +00005418 pIn1 = &aMem[pOp->p1];
5419 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005420 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00005421 assert( pIn3->flags&MEM_Int );
5422
drh1b26c7c2009-04-22 02:15:47 +00005423 /* If there is anything other than a rowset object in memory cell P1,
5424 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00005425 */
drh733bf1b2009-04-22 00:47:00 +00005426 if( (pIn1->flags & MEM_RowSet)==0 ){
5427 sqlite3VdbeMemSetRowSet(pIn1);
5428 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00005429 }
5430
5431 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00005432 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00005433 if( iSet ){
drhd83cad22014-04-10 02:24:48 +00005434 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
drh688852a2014-02-17 22:40:43 +00005435 VdbeBranchTaken(exists!=0,2);
drhf56fa462015-04-13 21:39:54 +00005436 if( exists ) goto jump_to_p2;
danielk19771d461462009-04-21 09:02:45 +00005437 }
5438 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00005439 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005440 }
5441 break;
5442}
5443
drh5e00f6c2001-09-13 13:46:56 +00005444
danielk197793758c82005-01-21 08:13:14 +00005445#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00005446
drh0fd61352014-02-07 02:29:45 +00005447/* Opcode: Program P1 P2 P3 P4 P5
dan165921a2009-08-28 18:53:45 +00005448**
dan76d462e2009-08-30 11:42:51 +00005449** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00005450**
dan76d462e2009-08-30 11:42:51 +00005451** P1 contains the address of the memory cell that contains the first memory
5452** cell in an array of values used as arguments to the sub-program. P2
5453** contains the address to jump to if the sub-program throws an IGNORE
5454** exception using the RAISE() function. Register P3 contains the address
5455** of a memory cell in this (the parent) VM that is used to allocate the
5456** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00005457**
5458** P4 is a pointer to the VM containing the trigger program.
drh0fd61352014-02-07 02:29:45 +00005459**
5460** If P5 is non-zero, then recursive program invocation is enabled.
dan165921a2009-08-28 18:53:45 +00005461*/
dan76d462e2009-08-30 11:42:51 +00005462case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00005463 int nMem; /* Number of memory registers for sub-program */
5464 int nByte; /* Bytes of runtime space required for sub-program */
5465 Mem *pRt; /* Register to allocate runtime space */
5466 Mem *pMem; /* Used to iterate through memory cells */
5467 Mem *pEnd; /* Last memory cell in new array */
5468 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5469 SubProgram *pProgram; /* Sub-program to execute */
5470 void *t; /* Token identifying trigger */
5471
5472 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00005473 pRt = &aMem[pOp->p3];
dan165921a2009-08-28 18:53:45 +00005474 assert( pProgram->nOp>0 );
5475
dan1da40a32009-09-19 17:00:31 +00005476 /* If the p5 flag is clear, then recursive invocation of triggers is
5477 ** disabled for backwards compatibility (p5 is set if this sub-program
5478 ** is really a trigger, not a foreign key action, and the flag set
5479 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00005480 **
5481 ** It is recursive invocation of triggers, at the SQL level, that is
5482 ** disabled. In some cases a single trigger may generate more than one
5483 ** SubProgram (if the trigger may be executed with more than one different
5484 ** ON CONFLICT algorithm). SubProgram structures associated with a
5485 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00005486 ** variable. */
5487 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00005488 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00005489 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5490 if( pFrame ) break;
5491 }
5492
danf5894502009-10-07 18:41:19 +00005493 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00005494 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00005495 sqlite3VdbeError(p, "too many levels of trigger recursion");
dan165921a2009-08-28 18:53:45 +00005496 break;
5497 }
5498
5499 /* Register pRt is used to store the memory required to save the state
5500 ** of the current program, and the memory required at runtime to execute
5501 ** the trigger program. If this trigger has been fired before, then pRt
5502 ** is already allocated. Otherwise, it must be initialized. */
5503 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00005504 /* SubProgram.nMem is set to the number of memory cells used by the
5505 ** program stored in SubProgram.aOp. As well as these, one memory
5506 ** cell is required for each cursor used by the program. Set local
5507 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5508 */
dan65a7cd12009-09-01 12:16:01 +00005509 nMem = pProgram->nMem + pProgram->nCsr;
5510 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00005511 + nMem * sizeof(Mem)
dan1d8cb212011-12-09 13:24:16 +00005512 + pProgram->nCsr * sizeof(VdbeCursor *)
5513 + pProgram->nOnce * sizeof(u8);
dan165921a2009-08-28 18:53:45 +00005514 pFrame = sqlite3DbMallocZero(db, nByte);
5515 if( !pFrame ){
5516 goto no_mem;
5517 }
5518 sqlite3VdbeMemRelease(pRt);
5519 pRt->flags = MEM_Frame;
5520 pRt->u.pFrame = pFrame;
5521
5522 pFrame->v = p;
5523 pFrame->nChildMem = nMem;
5524 pFrame->nChildCsr = pProgram->nCsr;
drhf56fa462015-04-13 21:39:54 +00005525 pFrame->pc = (int)(pOp - aOp);
dan165921a2009-08-28 18:53:45 +00005526 pFrame->aMem = p->aMem;
5527 pFrame->nMem = p->nMem;
5528 pFrame->apCsr = p->apCsr;
5529 pFrame->nCursor = p->nCursor;
5530 pFrame->aOp = p->aOp;
5531 pFrame->nOp = p->nOp;
5532 pFrame->token = pProgram->token;
dan1d8cb212011-12-09 13:24:16 +00005533 pFrame->aOnceFlag = p->aOnceFlag;
5534 pFrame->nOnceFlag = p->nOnceFlag;
dane2f771b2014-11-03 15:33:17 +00005535#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00005536 pFrame->anExec = p->anExec;
dane2f771b2014-11-03 15:33:17 +00005537#endif
dan165921a2009-08-28 18:53:45 +00005538
5539 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5540 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
drha5750cf2014-02-07 13:20:31 +00005541 pMem->flags = MEM_Undefined;
dan165921a2009-08-28 18:53:45 +00005542 pMem->db = db;
5543 }
5544 }else{
5545 pFrame = pRt->u.pFrame;
5546 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5547 assert( pProgram->nCsr==pFrame->nChildCsr );
drhf56fa462015-04-13 21:39:54 +00005548 assert( (int)(pOp - aOp)==pFrame->pc );
dan165921a2009-08-28 18:53:45 +00005549 }
5550
5551 p->nFrame++;
5552 pFrame->pParent = p->pFrame;
drh99a66922011-05-13 18:51:42 +00005553 pFrame->lastRowid = lastRowid;
dan76d462e2009-08-30 11:42:51 +00005554 pFrame->nChange = p->nChange;
danc3da6672014-10-28 18:24:16 +00005555 pFrame->nDbChange = p->db->nChange;
dan2832ad42009-08-31 15:27:27 +00005556 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00005557 p->pFrame = pFrame;
drha6c2ed92009-11-14 23:22:23 +00005558 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
dan165921a2009-08-28 18:53:45 +00005559 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00005560 p->nCursor = (u16)pFrame->nChildCsr;
drha6c2ed92009-11-14 23:22:23 +00005561 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
drhbbe879d2009-11-14 18:04:35 +00005562 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00005563 p->nOp = pProgram->nOp;
dan1d8cb212011-12-09 13:24:16 +00005564 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5565 p->nOnceFlag = pProgram->nOnce;
dane2f771b2014-11-03 15:33:17 +00005566#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00005567 p->anExec = 0;
dane2f771b2014-11-03 15:33:17 +00005568#endif
drhf56fa462015-04-13 21:39:54 +00005569 pOp = &aOp[-1];
dan1d8cb212011-12-09 13:24:16 +00005570 memset(p->aOnceFlag, 0, p->nOnceFlag);
dan165921a2009-08-28 18:53:45 +00005571
5572 break;
5573}
5574
dan76d462e2009-08-30 11:42:51 +00005575/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00005576**
dan76d462e2009-08-30 11:42:51 +00005577** This opcode is only ever present in sub-programs called via the
5578** OP_Program instruction. Copy a value currently stored in a memory
5579** cell of the calling (parent) frame to cell P2 in the current frames
5580** address space. This is used by trigger programs to access the new.*
5581** and old.* values.
dan165921a2009-08-28 18:53:45 +00005582**
dan76d462e2009-08-30 11:42:51 +00005583** The address of the cell in the parent frame is determined by adding
5584** the value of the P1 argument to the value of the P1 argument to the
5585** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00005586*/
drh27a348c2015-04-13 19:14:06 +00005587case OP_Param: { /* out2 */
dan65a7cd12009-09-01 12:16:01 +00005588 VdbeFrame *pFrame;
5589 Mem *pIn;
drh27a348c2015-04-13 19:14:06 +00005590 pOut = out2Prerelease(p, pOp);
dan65a7cd12009-09-01 12:16:01 +00005591 pFrame = p->pFrame;
5592 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00005593 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5594 break;
5595}
5596
danielk197793758c82005-01-21 08:13:14 +00005597#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00005598
dan1da40a32009-09-19 17:00:31 +00005599#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00005600/* Opcode: FkCounter P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005601** Synopsis: fkctr[P1]+=P2
dan1da40a32009-09-19 17:00:31 +00005602**
dan0ff297e2009-09-25 17:03:14 +00005603** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5604** If P1 is non-zero, the database constraint counter is incremented
5605** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00005606** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00005607*/
dan32b09f22009-09-23 17:29:59 +00005608case OP_FkCounter: {
drh648e2642013-07-11 15:03:32 +00005609 if( db->flags & SQLITE_DeferFKs ){
5610 db->nDeferredImmCons += pOp->p2;
5611 }else if( pOp->p1 ){
dan0ff297e2009-09-25 17:03:14 +00005612 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00005613 }else{
dan0ff297e2009-09-25 17:03:14 +00005614 p->nFkConstraint += pOp->p2;
5615 }
5616 break;
5617}
5618
5619/* Opcode: FkIfZero P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005620** Synopsis: if fkctr[P1]==0 goto P2
dan0ff297e2009-09-25 17:03:14 +00005621**
5622** This opcode tests if a foreign key constraint-counter is currently zero.
5623** If so, jump to instruction P2. Otherwise, fall through to the next
5624** instruction.
5625**
5626** If P1 is non-zero, then the jump is taken if the database constraint-counter
5627** is zero (the one that counts deferred constraint violations). If P1 is
5628** zero, the jump is taken if the statement constraint-counter is zero
5629** (immediate foreign key constraint violations).
5630*/
5631case OP_FkIfZero: { /* jump */
5632 if( pOp->p1 ){
drh688852a2014-02-17 22:40:43 +00005633 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
drhf56fa462015-04-13 21:39:54 +00005634 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
dan0ff297e2009-09-25 17:03:14 +00005635 }else{
drh688852a2014-02-17 22:40:43 +00005636 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
drhf56fa462015-04-13 21:39:54 +00005637 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
dan32b09f22009-09-23 17:29:59 +00005638 }
dan1da40a32009-09-19 17:00:31 +00005639 break;
5640}
5641#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5642
drh205f48e2004-11-05 00:43:11 +00005643#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00005644/* Opcode: MemMax P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005645** Synopsis: r[P1]=max(r[P1],r[P2])
drh205f48e2004-11-05 00:43:11 +00005646**
dan76d462e2009-08-30 11:42:51 +00005647** P1 is a register in the root frame of this VM (the root frame is
5648** different from the current frame if this instruction is being executed
5649** within a sub-program). Set the value of register P1 to the maximum of
5650** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00005651**
5652** This instruction throws an error if the memory cell is not initially
5653** an integer.
5654*/
dan76d462e2009-08-30 11:42:51 +00005655case OP_MemMax: { /* in2 */
dan76d462e2009-08-30 11:42:51 +00005656 VdbeFrame *pFrame;
5657 if( p->pFrame ){
5658 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5659 pIn1 = &pFrame->aMem[pOp->p1];
5660 }else{
drha6c2ed92009-11-14 23:22:23 +00005661 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00005662 }
drhec86c722011-12-09 17:27:51 +00005663 assert( memIsValid(pIn1) );
drh98757152008-01-09 23:04:12 +00005664 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00005665 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00005666 sqlite3VdbeMemIntegerify(pIn2);
5667 if( pIn1->u.i<pIn2->u.i){
5668 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00005669 }
5670 break;
5671}
5672#endif /* SQLITE_OMIT_AUTOINCREMENT */
5673
drh98757152008-01-09 23:04:12 +00005674/* Opcode: IfPos P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005675** Synopsis: if r[P1]>0 goto P2
danielk1977a2dc3b12005-02-05 12:48:48 +00005676**
drh16897072015-03-07 00:57:37 +00005677** Register P1 must contain an integer.
5678** If the value of register P1 is 1 or greater, jump to P2 and
5679** add the literal value P3 to register P1.
drh6f58f702006-01-08 05:26:41 +00005680**
drh16897072015-03-07 00:57:37 +00005681** If the initial value of register P1 is less than 1, then the
5682** value is unchanged and control passes through to the next instruction.
danielk1977a2dc3b12005-02-05 12:48:48 +00005683*/
drh9cbf3422008-01-17 16:22:13 +00005684case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005685 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005686 assert( pIn1->flags&MEM_Int );
drh688852a2014-02-17 22:40:43 +00005687 VdbeBranchTaken( pIn1->u.i>0, 2);
drhf56fa462015-04-13 21:39:54 +00005688 if( pIn1->u.i>0 ) goto jump_to_p2;
drhec7429a2005-10-06 16:53:14 +00005689 break;
5690}
5691
drh4336b0e2014-08-05 00:53:51 +00005692/* Opcode: IfNeg P1 P2 P3 * *
5693** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2
drh15007a92006-01-08 18:10:17 +00005694**
drhbc5cf382014-08-06 01:08:07 +00005695** Register P1 must contain an integer. Add literal P3 to the value in
drh4336b0e2014-08-05 00:53:51 +00005696** register P1 then if the value of register P1 is less than zero, jump to P2.
drh15007a92006-01-08 18:10:17 +00005697*/
drh9cbf3422008-01-17 16:22:13 +00005698case OP_IfNeg: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005699 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005700 assert( pIn1->flags&MEM_Int );
drh4336b0e2014-08-05 00:53:51 +00005701 pIn1->u.i += pOp->p3;
drh688852a2014-02-17 22:40:43 +00005702 VdbeBranchTaken(pIn1->u.i<0, 2);
drhf56fa462015-04-13 21:39:54 +00005703 if( pIn1->u.i<0 ) goto jump_to_p2;
drh15007a92006-01-08 18:10:17 +00005704 break;
5705}
5706
drh16897072015-03-07 00:57:37 +00005707/* Opcode: IfNotZero P1 P2 P3 * *
5708** Synopsis: if r[P1]!=0 then r[P1]+=P3, goto P2
drhec7429a2005-10-06 16:53:14 +00005709**
drh16897072015-03-07 00:57:37 +00005710** Register P1 must contain an integer. If the content of register P1 is
5711** initially nonzero, then add P3 to P1 and jump to P2. If register P1 is
5712** initially zero, leave it unchanged and fall through.
drhec7429a2005-10-06 16:53:14 +00005713*/
drh16897072015-03-07 00:57:37 +00005714case OP_IfNotZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005715 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005716 assert( pIn1->flags&MEM_Int );
drh16897072015-03-07 00:57:37 +00005717 VdbeBranchTaken(pIn1->u.i<0, 2);
5718 if( pIn1->u.i ){
5719 pIn1->u.i += pOp->p3;
drhf56fa462015-04-13 21:39:54 +00005720 goto jump_to_p2;
drh16897072015-03-07 00:57:37 +00005721 }
5722 break;
5723}
5724
5725/* Opcode: DecrJumpZero P1 P2 * * *
5726** Synopsis: if (--r[P1])==0 goto P2
5727**
5728** Register P1 must hold an integer. Decrement the value in register P1
5729** then jump to P2 if the new value is exactly zero.
5730*/
5731case OP_DecrJumpZero: { /* jump, in1 */
5732 pIn1 = &aMem[pOp->p1];
5733 assert( pIn1->flags&MEM_Int );
5734 pIn1->u.i--;
drh688852a2014-02-17 22:40:43 +00005735 VdbeBranchTaken(pIn1->u.i==0, 2);
drhf56fa462015-04-13 21:39:54 +00005736 if( pIn1->u.i==0 ) goto jump_to_p2;
drha2a49dc2008-01-02 14:28:13 +00005737 break;
5738}
5739
drh16897072015-03-07 00:57:37 +00005740
5741/* Opcode: JumpZeroIncr P1 P2 * * *
5742** Synopsis: if (r[P1]++)==0 ) goto P2
5743**
5744** The register P1 must contain an integer. If register P1 is initially
5745** zero, then jump to P2. Increment register P1 regardless of whether or
5746** not the jump is taken.
5747*/
5748case OP_JumpZeroIncr: { /* jump, in1 */
5749 pIn1 = &aMem[pOp->p1];
5750 assert( pIn1->flags&MEM_Int );
5751 VdbeBranchTaken(pIn1->u.i==0, 2);
drhf56fa462015-04-13 21:39:54 +00005752 if( (pIn1->u.i++)==0 ) goto jump_to_p2;
drh16897072015-03-07 00:57:37 +00005753 break;
5754}
5755
drhe2d9e7c2015-06-26 18:47:53 +00005756/* Opcode: AggStep0 * P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005757** Synopsis: accum=r[P3] step(r[P2@P5])
drhe5095352002-02-24 03:25:14 +00005758**
drh0bce8352002-02-28 00:41:10 +00005759** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00005760** function has P5 arguments. P4 is a pointer to the FuncDef
drhe2d9e7c2015-06-26 18:47:53 +00005761** structure that specifies the function. Register P3 is the
5762** accumulator.
drhe5095352002-02-24 03:25:14 +00005763**
drh98757152008-01-09 23:04:12 +00005764** The P5 arguments are taken from register P2 and its
5765** successors.
drhe5095352002-02-24 03:25:14 +00005766*/
drhe2d9e7c2015-06-26 18:47:53 +00005767/* Opcode: AggStep * P2 P3 P4 P5
5768** Synopsis: accum=r[P3] step(r[P2@P5])
5769**
5770** Execute the step function for an aggregate. The
5771** function has P5 arguments. P4 is a pointer to an sqlite3_context
5772** object that is used to run the function. Register P3 is
5773** as the accumulator.
5774**
5775** The P5 arguments are taken from register P2 and its
5776** successors.
5777**
5778** This opcode is initially coded as OP_AggStep0. On first evaluation,
5779** the FuncDef stored in P4 is converted into an sqlite3_context and
5780** the opcode is changed. In this way, the initialization of the
5781** sqlite3_context only happens once, instead of on each call to the
5782** step function.
5783*/
drh9c7c9132015-06-26 18:16:52 +00005784case OP_AggStep0: {
drh856c1032009-06-02 15:21:42 +00005785 int n;
drh9c7c9132015-06-26 18:16:52 +00005786 sqlite3_context *pCtx;
drhe5095352002-02-24 03:25:14 +00005787
drh9c7c9132015-06-26 18:16:52 +00005788 assert( pOp->p4type==P4_FUNCDEF );
drh856c1032009-06-02 15:21:42 +00005789 n = pOp->p5;
dan3bc9f742013-08-15 16:18:39 +00005790 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drh9c7c9132015-06-26 18:16:52 +00005791 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
5792 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
5793 pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
5794 if( pCtx==0 ) goto no_mem;
5795 pCtx->pMem = 0;
5796 pCtx->pFunc = pOp->p4.pFunc;
5797 pCtx->iOp = (int)(pOp - aOp);
5798 pCtx->pVdbe = p;
5799 pCtx->argc = n;
5800 pOp->p4type = P4_FUNCCTX;
5801 pOp->p4.pCtx = pCtx;
5802 pOp->opcode = OP_AggStep;
5803 /* Fall through into OP_AggStep */
5804}
5805case OP_AggStep: {
5806 int i;
5807 sqlite3_context *pCtx;
5808 Mem *pMem;
5809 Mem t;
5810
5811 assert( pOp->p4type==P4_FUNCCTX );
5812 pCtx = pOp->p4.pCtx;
5813 pMem = &aMem[pOp->p3];
5814
5815 /* If this function is inside of a trigger, the register array in aMem[]
5816 ** might change from one evaluation to the next. The next block of code
5817 ** checks to see if the register array has changed, and if so it
5818 ** reinitializes the relavant parts of the sqlite3_context object */
5819 if( pCtx->pMem != pMem ){
5820 pCtx->pMem = pMem;
5821 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
5822 }
5823
5824#ifdef SQLITE_DEBUG
5825 for(i=0; i<pCtx->argc; i++){
5826 assert( memIsValid(pCtx->argv[i]) );
5827 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
5828 }
5829#endif
5830
drhabfcea22005-09-06 20:36:48 +00005831 pMem->n++;
drhd3b74202014-09-17 16:41:15 +00005832 sqlite3VdbeMemInit(&t, db, MEM_Null);
drh9c7c9132015-06-26 18:16:52 +00005833 pCtx->pOut = &t;
5834 pCtx->fErrorOrAux = 0;
5835 pCtx->skipFlag = 0;
5836 (pCtx->pFunc->xStep)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
5837 if( pCtx->fErrorOrAux ){
5838 if( pCtx->isError ){
5839 sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
5840 rc = pCtx->isError;
5841 }
5842 sqlite3VdbeMemRelease(&t);
5843 }else{
5844 assert( t.flags==MEM_Null );
drh1350b032002-02-27 19:00:20 +00005845 }
drh9c7c9132015-06-26 18:16:52 +00005846 if( pCtx->skipFlag ){
drh7a957892012-02-02 17:35:43 +00005847 assert( pOp[-1].opcode==OP_CollSeq );
5848 i = pOp[-1].p1;
5849 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5850 }
drh5e00f6c2001-09-13 13:46:56 +00005851 break;
5852}
5853
drh98757152008-01-09 23:04:12 +00005854/* Opcode: AggFinal P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00005855** Synopsis: accum=r[P1] N=P2
drh5e00f6c2001-09-13 13:46:56 +00005856**
drh13449892005-09-07 21:22:45 +00005857** Execute the finalizer function for an aggregate. P1 is
5858** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00005859**
5860** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00005861** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00005862** argument is not used by this opcode. It is only there to disambiguate
5863** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00005864** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00005865** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00005866*/
drh9cbf3422008-01-17 16:22:13 +00005867case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00005868 Mem *pMem;
dan3bc9f742013-08-15 16:18:39 +00005869 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005870 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00005871 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00005872 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00005873 if( rc ){
drh22c17b82015-05-15 04:13:15 +00005874 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
drh90669c12006-01-20 15:45:36 +00005875 }
drh2dca8682008-03-21 17:13:13 +00005876 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00005877 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00005878 if( sqlite3VdbeMemTooBig(pMem) ){
5879 goto too_big;
5880 }
drh5e00f6c2001-09-13 13:46:56 +00005881 break;
5882}
5883
dan5cf53532010-05-01 16:40:20 +00005884#ifndef SQLITE_OMIT_WAL
dancdc1f042010-11-18 12:11:05 +00005885/* Opcode: Checkpoint P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00005886**
5887** Checkpoint database P1. This is a no-op if P1 is not currently in
drha25165f2014-12-04 04:50:59 +00005888** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
5889** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
drh30aa3b92011-02-07 23:56:01 +00005890** SQLITE_BUSY or not, respectively. Write the number of pages in the
5891** WAL after the checkpoint into mem[P3+1] and the number of pages
5892** in the WAL that have been checkpointed after the checkpoint
5893** completes into mem[P3+2]. However on an error, mem[P3+1] and
5894** mem[P3+2] are initialized to -1.
dan7c246102010-04-12 19:00:29 +00005895*/
5896case OP_Checkpoint: {
drh30aa3b92011-02-07 23:56:01 +00005897 int i; /* Loop counter */
5898 int aRes[3]; /* Results */
5899 Mem *pMem; /* Write results here */
5900
drh9e92a472013-06-27 17:40:30 +00005901 assert( p->readOnly==0 );
drh30aa3b92011-02-07 23:56:01 +00005902 aRes[0] = 0;
5903 aRes[1] = aRes[2] = -1;
dancdc1f042010-11-18 12:11:05 +00005904 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5905 || pOp->p2==SQLITE_CHECKPOINT_FULL
5906 || pOp->p2==SQLITE_CHECKPOINT_RESTART
danf26a1542014-12-02 19:04:54 +00005907 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
dancdc1f042010-11-18 12:11:05 +00005908 );
drh30aa3b92011-02-07 23:56:01 +00005909 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
dancdc1f042010-11-18 12:11:05 +00005910 if( rc==SQLITE_BUSY ){
5911 rc = SQLITE_OK;
drh30aa3b92011-02-07 23:56:01 +00005912 aRes[0] = 1;
dancdc1f042010-11-18 12:11:05 +00005913 }
drh30aa3b92011-02-07 23:56:01 +00005914 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5915 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5916 }
dan7c246102010-04-12 19:00:29 +00005917 break;
5918};
dan5cf53532010-05-01 16:40:20 +00005919#endif
drh5e00f6c2001-09-13 13:46:56 +00005920
drhcac29a62010-07-02 19:36:52 +00005921#ifndef SQLITE_OMIT_PRAGMA
drh0fd61352014-02-07 02:29:45 +00005922/* Opcode: JournalMode P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00005923**
5924** Change the journal mode of database P1 to P3. P3 must be one of the
5925** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5926** modes (delete, truncate, persist, off and memory), this is a simple
5927** operation. No IO is required.
5928**
5929** If changing into or out of WAL mode the procedure is more complicated.
5930**
5931** Write a string containing the final journal-mode to register P2.
5932*/
drh27a348c2015-04-13 19:14:06 +00005933case OP_JournalMode: { /* out2 */
dane04dc882010-04-20 18:53:15 +00005934 Btree *pBt; /* Btree to change journal mode of */
5935 Pager *pPager; /* Pager associated with pBt */
drhd80b2332010-05-01 00:59:37 +00005936 int eNew; /* New journal mode */
5937 int eOld; /* The old journal mode */
mistachkin59ee77c2012-09-13 15:26:44 +00005938#ifndef SQLITE_OMIT_WAL
drhd80b2332010-05-01 00:59:37 +00005939 const char *zFilename; /* Name of database file for pPager */
mistachkin59ee77c2012-09-13 15:26:44 +00005940#endif
dane04dc882010-04-20 18:53:15 +00005941
drh27a348c2015-04-13 19:14:06 +00005942 pOut = out2Prerelease(p, pOp);
drhd80b2332010-05-01 00:59:37 +00005943 eNew = pOp->p3;
dane04dc882010-04-20 18:53:15 +00005944 assert( eNew==PAGER_JOURNALMODE_DELETE
5945 || eNew==PAGER_JOURNALMODE_TRUNCATE
5946 || eNew==PAGER_JOURNALMODE_PERSIST
5947 || eNew==PAGER_JOURNALMODE_OFF
5948 || eNew==PAGER_JOURNALMODE_MEMORY
5949 || eNew==PAGER_JOURNALMODE_WAL
5950 || eNew==PAGER_JOURNALMODE_QUERY
5951 );
5952 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drh9e92a472013-06-27 17:40:30 +00005953 assert( p->readOnly==0 );
drh3ebaee92010-05-06 21:37:22 +00005954
dane04dc882010-04-20 18:53:15 +00005955 pBt = db->aDb[pOp->p1].pBt;
5956 pPager = sqlite3BtreePager(pBt);
drh0b9b4302010-06-11 17:01:24 +00005957 eOld = sqlite3PagerGetJournalMode(pPager);
5958 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5959 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
dan5cf53532010-05-01 16:40:20 +00005960
5961#ifndef SQLITE_OMIT_WAL
drhd4e0bb02012-05-27 01:19:04 +00005962 zFilename = sqlite3PagerFilename(pPager, 1);
dane04dc882010-04-20 18:53:15 +00005963
drhd80b2332010-05-01 00:59:37 +00005964 /* Do not allow a transition to journal_mode=WAL for a database
drh6e1f4822010-07-13 23:41:40 +00005965 ** in temporary storage or if the VFS does not support shared memory
drhd80b2332010-05-01 00:59:37 +00005966 */
5967 if( eNew==PAGER_JOURNALMODE_WAL
drh057fc812011-10-17 23:15:31 +00005968 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
drh6e1f4822010-07-13 23:41:40 +00005969 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
dane180c292010-04-26 17:42:56 +00005970 ){
drh0b9b4302010-06-11 17:01:24 +00005971 eNew = eOld;
dane180c292010-04-26 17:42:56 +00005972 }
5973
drh0b9b4302010-06-11 17:01:24 +00005974 if( (eNew!=eOld)
5975 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5976 ){
danc0537fe2013-06-28 19:41:43 +00005977 if( !db->autoCommit || db->nVdbeRead>1 ){
drh0b9b4302010-06-11 17:01:24 +00005978 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00005979 sqlite3VdbeError(p,
drh0b9b4302010-06-11 17:01:24 +00005980 "cannot change %s wal mode from within a transaction",
5981 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5982 );
5983 break;
5984 }else{
5985
5986 if( eOld==PAGER_JOURNALMODE_WAL ){
5987 /* If leaving WAL mode, close the log file. If successful, the call
5988 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5989 ** file. An EXCLUSIVE lock may still be held on the database file
5990 ** after a successful return.
dane04dc882010-04-20 18:53:15 +00005991 */
drh0b9b4302010-06-11 17:01:24 +00005992 rc = sqlite3PagerCloseWal(pPager);
drhab9b7442010-05-10 11:20:05 +00005993 if( rc==SQLITE_OK ){
drh0b9b4302010-06-11 17:01:24 +00005994 sqlite3PagerSetJournalMode(pPager, eNew);
drh89c3f2f2010-05-15 01:09:38 +00005995 }
drh242c4f72010-06-22 14:49:39 +00005996 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5997 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5998 ** as an intermediate */
5999 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
drh0b9b4302010-06-11 17:01:24 +00006000 }
6001
6002 /* Open a transaction on the database file. Regardless of the journal
6003 ** mode, this transaction always uses a rollback journal.
6004 */
6005 assert( sqlite3BtreeIsInTrans(pBt)==0 );
6006 if( rc==SQLITE_OK ){
dan731bf5b2010-06-17 16:44:21 +00006007 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
dane04dc882010-04-20 18:53:15 +00006008 }
6009 }
6010 }
dan5cf53532010-05-01 16:40:20 +00006011#endif /* ifndef SQLITE_OMIT_WAL */
dane04dc882010-04-20 18:53:15 +00006012
dand956efe2010-06-18 16:13:45 +00006013 if( rc ){
dand956efe2010-06-18 16:13:45 +00006014 eNew = eOld;
6015 }
drh0b9b4302010-06-11 17:01:24 +00006016 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
dan731bf5b2010-06-17 16:44:21 +00006017
dane04dc882010-04-20 18:53:15 +00006018 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
danb9780022010-04-21 18:37:57 +00006019 pOut->z = (char *)sqlite3JournalModename(eNew);
dane04dc882010-04-20 18:53:15 +00006020 pOut->n = sqlite3Strlen30(pOut->z);
6021 pOut->enc = SQLITE_UTF8;
6022 sqlite3VdbeChangeEncoding(pOut, encoding);
6023 break;
drhcac29a62010-07-02 19:36:52 +00006024};
6025#endif /* SQLITE_OMIT_PRAGMA */
dane04dc882010-04-20 18:53:15 +00006026
drhfdbcdee2007-03-27 14:44:50 +00006027#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh98757152008-01-09 23:04:12 +00006028/* Opcode: Vacuum * * * * *
drh6f8c91c2003-12-07 00:24:35 +00006029**
6030** Vacuum the entire database. This opcode will cause other virtual
6031** machines to be created and run. It may not be called from within
6032** a transaction.
6033*/
drh9cbf3422008-01-17 16:22:13 +00006034case OP_Vacuum: {
drh9e92a472013-06-27 17:40:30 +00006035 assert( p->readOnly==0 );
danielk19774adee202004-05-08 08:23:19 +00006036 rc = sqlite3RunVacuum(&p->zErrMsg, db);
drh6f8c91c2003-12-07 00:24:35 +00006037 break;
6038}
drh154d4b22006-09-21 11:02:16 +00006039#endif
drh6f8c91c2003-12-07 00:24:35 +00006040
danielk1977dddbcdc2007-04-26 14:42:34 +00006041#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00006042/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00006043**
6044** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00006045** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00006046** P2. Otherwise, fall through to the next instruction.
6047*/
drh9cbf3422008-01-17 16:22:13 +00006048case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00006049 Btree *pBt;
6050
6051 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00006052 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00006053 assert( p->readOnly==0 );
drhca5557f2007-05-04 18:30:40 +00006054 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00006055 rc = sqlite3BtreeIncrVacuum(pBt);
drh688852a2014-02-17 22:40:43 +00006056 VdbeBranchTaken(rc==SQLITE_DONE,2);
danielk1977dddbcdc2007-04-26 14:42:34 +00006057 if( rc==SQLITE_DONE ){
danielk1977dddbcdc2007-04-26 14:42:34 +00006058 rc = SQLITE_OK;
drhf56fa462015-04-13 21:39:54 +00006059 goto jump_to_p2;
danielk1977dddbcdc2007-04-26 14:42:34 +00006060 }
6061 break;
6062}
6063#endif
6064
drh98757152008-01-09 23:04:12 +00006065/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00006066**
drh25df48d2014-07-22 14:58:12 +00006067** Cause precompiled statements to expire. When an expired statement
6068** is executed using sqlite3_step() it will either automatically
6069** reprepare itself (if it was originally created using sqlite3_prepare_v2())
6070** or it will fail with SQLITE_SCHEMA.
danielk1977a21c6b62005-01-24 10:25:59 +00006071**
6072** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
drh25df48d2014-07-22 14:58:12 +00006073** then only the currently executing statement is expired.
danielk1977a21c6b62005-01-24 10:25:59 +00006074*/
drh9cbf3422008-01-17 16:22:13 +00006075case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00006076 if( !pOp->p1 ){
6077 sqlite3ExpirePreparedStatements(db);
6078 }else{
6079 p->expired = 1;
6080 }
6081 break;
6082}
6083
danielk1977c00da102006-01-07 13:21:04 +00006084#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00006085/* Opcode: TableLock P1 P2 P3 P4 *
drh81316f82013-10-29 20:40:47 +00006086** Synopsis: iDb=P1 root=P2 write=P3
danielk1977c00da102006-01-07 13:21:04 +00006087**
6088** Obtain a lock on a particular table. This instruction is only used when
6089** the shared-cache feature is enabled.
6090**
danielk197796d48e92009-06-29 06:00:37 +00006091** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00006092** on which the lock is acquired. A readlock is obtained if P3==0 or
6093** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00006094**
6095** P2 contains the root-page of the table to lock.
6096**
drh66a51672008-01-03 00:01:23 +00006097** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00006098** used to generate an error message if the lock cannot be obtained.
6099*/
drh9cbf3422008-01-17 16:22:13 +00006100case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00006101 u8 isWriteLock = (u8)pOp->p3;
6102 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
6103 int p1 = pOp->p1;
6104 assert( p1>=0 && p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00006105 assert( DbMaskTest(p->btreeMask, p1) );
danielk1977e0d9e6f2009-07-03 16:25:06 +00006106 assert( isWriteLock==0 || isWriteLock==1 );
6107 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
6108 if( (rc&0xFF)==SQLITE_LOCKED ){
6109 const char *z = pOp->p4.z;
drh22c17b82015-05-15 04:13:15 +00006110 sqlite3VdbeError(p, "database table is locked: %s", z);
danielk1977e0d9e6f2009-07-03 16:25:06 +00006111 }
danielk1977c00da102006-01-07 13:21:04 +00006112 }
6113 break;
6114}
drhb9bb7c12006-06-11 23:41:55 +00006115#endif /* SQLITE_OMIT_SHARED_CACHE */
6116
6117#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006118/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00006119**
danielk19773e3a84d2008-08-01 17:37:40 +00006120** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6121** xBegin method for that table.
6122**
6123** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00006124** within a callback to a virtual table xSync() method. If it is, the error
6125** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00006126*/
drh9cbf3422008-01-17 16:22:13 +00006127case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00006128 VTable *pVTab;
6129 pVTab = pOp->p4.pVtab;
6130 rc = sqlite3VtabBegin(db, pVTab);
dan016f7812013-08-21 17:35:48 +00006131 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
danielk1977f9e7dda2006-06-16 16:08:53 +00006132 break;
6133}
6134#endif /* SQLITE_OMIT_VIRTUALTABLE */
6135
6136#ifndef SQLITE_OMIT_VIRTUALTABLE
dan73779452015-03-19 18:56:17 +00006137/* Opcode: VCreate P1 P2 * * *
danielk1977f9e7dda2006-06-16 16:08:53 +00006138**
dan73779452015-03-19 18:56:17 +00006139** P2 is a register that holds the name of a virtual table in database
6140** P1. Call the xCreate method for that table.
danielk1977f9e7dda2006-06-16 16:08:53 +00006141*/
drh9cbf3422008-01-17 16:22:13 +00006142case OP_VCreate: {
dan73779452015-03-19 18:56:17 +00006143 Mem sMem; /* For storing the record being decoded */
drh47464062015-03-21 12:22:16 +00006144 const char *zTab; /* Name of the virtual table */
6145
dan73779452015-03-19 18:56:17 +00006146 memset(&sMem, 0, sizeof(sMem));
6147 sMem.db = db;
drh47464062015-03-21 12:22:16 +00006148 /* Because P2 is always a static string, it is impossible for the
6149 ** sqlite3VdbeMemCopy() to fail */
6150 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6151 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
dan73779452015-03-19 18:56:17 +00006152 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
drh47464062015-03-21 12:22:16 +00006153 assert( rc==SQLITE_OK );
6154 zTab = (const char*)sqlite3_value_text(&sMem);
6155 assert( zTab || db->mallocFailed );
6156 if( zTab ){
6157 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
dan73779452015-03-19 18:56:17 +00006158 }
6159 sqlite3VdbeMemRelease(&sMem);
drhb9bb7c12006-06-11 23:41:55 +00006160 break;
6161}
6162#endif /* SQLITE_OMIT_VIRTUALTABLE */
6163
6164#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006165/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00006166**
drh66a51672008-01-03 00:01:23 +00006167** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00006168** of that table.
drhb9bb7c12006-06-11 23:41:55 +00006169*/
drh9cbf3422008-01-17 16:22:13 +00006170case OP_VDestroy: {
drh086723a2015-03-24 12:51:52 +00006171 db->nVDestroy++;
danielk19772dca4ac2008-01-03 11:50:29 +00006172 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
drh086723a2015-03-24 12:51:52 +00006173 db->nVDestroy--;
drhb9bb7c12006-06-11 23:41:55 +00006174 break;
6175}
6176#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00006177
drh9eff6162006-06-12 21:59:13 +00006178#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006179/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00006180**
drh66a51672008-01-03 00:01:23 +00006181** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00006182** P1 is a cursor number. This opcode opens a cursor to the virtual
6183** table and stores that cursor in P1.
6184*/
drh9cbf3422008-01-17 16:22:13 +00006185case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00006186 VdbeCursor *pCur;
6187 sqlite3_vtab_cursor *pVtabCursor;
6188 sqlite3_vtab *pVtab;
drhf496a7d2015-03-24 14:05:50 +00006189 const sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006190
drh1713afb2013-06-28 01:24:57 +00006191 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00006192 pCur = 0;
6193 pVtabCursor = 0;
danielk1977595a5232009-07-24 17:58:53 +00006194 pVtab = pOp->p4.pVtab->pVtab;
drhf496a7d2015-03-24 14:05:50 +00006195 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6196 rc = SQLITE_LOCKED;
6197 break;
6198 }
6199 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006200 rc = pModule->xOpen(pVtab, &pVtabCursor);
dan016f7812013-08-21 17:35:48 +00006201 sqlite3VtabImportErrmsg(p, pVtab);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006202 if( SQLITE_OK==rc ){
shane21e7feb2008-05-30 15:59:49 +00006203 /* Initialize sqlite3_vtab_cursor base class */
danielk1977b7a7b9a2006-06-13 10:24:42 +00006204 pVtabCursor->pVtab = pVtab;
6205
mistachkin48864df2013-03-21 21:20:32 +00006206 /* Initialize vdbe cursor object */
danielk1977d336e222009-02-20 10:58:41 +00006207 pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
danielk1977be718892006-06-23 08:05:19 +00006208 if( pCur ){
6209 pCur->pVtabCursor = pVtabCursor;
drha68d6282015-03-24 13:32:53 +00006210 pVtab->nRef++;
danielk1977b7a2f2e2006-06-23 11:34:54 +00006211 }else{
dan995f8b92015-04-27 19:53:55 +00006212 assert( db->mallocFailed );
danielk1977b7a2f2e2006-06-23 11:34:54 +00006213 pModule->xClose(pVtabCursor);
dan995f8b92015-04-27 19:53:55 +00006214 goto no_mem;
danielk1977be718892006-06-23 08:05:19 +00006215 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00006216 }
drh9eff6162006-06-12 21:59:13 +00006217 break;
6218}
6219#endif /* SQLITE_OMIT_VIRTUALTABLE */
6220
6221#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00006222/* Opcode: VFilter P1 P2 P3 P4 *
drh831116d2014-04-03 14:31:00 +00006223** Synopsis: iplan=r[P3] zplan='P4'
drh9eff6162006-06-12 21:59:13 +00006224**
6225** P1 is a cursor opened using VOpen. P2 is an address to jump to if
6226** the filtered result set is empty.
6227**
drh66a51672008-01-03 00:01:23 +00006228** P4 is either NULL or a string that was generated by the xBestIndex
6229** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00006230** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00006231**
drh9eff6162006-06-12 21:59:13 +00006232** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00006233** by P1. The integer query plan parameter to xFilter is stored in register
6234** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00006235** xFilter method. Registers P3+2..P3+1+argc are the argc
6236** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00006237** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00006238**
danielk19776dbee812008-01-03 18:39:41 +00006239** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00006240*/
drh9cbf3422008-01-17 16:22:13 +00006241case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00006242 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00006243 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006244 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00006245 Mem *pQuery;
6246 Mem *pArgc;
drh4dc754d2008-07-23 18:17:32 +00006247 sqlite3_vtab_cursor *pVtabCursor;
6248 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00006249 VdbeCursor *pCur;
6250 int res;
6251 int i;
6252 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006253
drha6c2ed92009-11-14 23:22:23 +00006254 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00006255 pArgc = &pQuery[1];
6256 pCur = p->apCsr[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00006257 assert( memIsValid(pQuery) );
drh5b6afba2008-01-05 16:29:28 +00006258 REGISTER_TRACE(pOp->p3, pQuery);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006259 assert( pCur->pVtabCursor );
drh4dc754d2008-07-23 18:17:32 +00006260 pVtabCursor = pCur->pVtabCursor;
6261 pVtab = pVtabCursor->pVtab;
6262 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006263
drh9cbf3422008-01-17 16:22:13 +00006264 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00006265 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00006266 nArg = (int)pArgc->u.i;
6267 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006268
drh644a5292006-12-20 14:53:38 +00006269 /* Invoke the xFilter method */
drhf56fa462015-04-13 21:39:54 +00006270 res = 0;
6271 apArg = p->apArg;
6272 for(i = 0; i<nArg; i++){
6273 apArg[i] = &pArgc[i+1];
6274 }
6275 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
6276 sqlite3VtabImportErrmsg(p, pVtab);
6277 if( rc==SQLITE_OK ){
6278 res = pModule->xEof(pVtabCursor);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006279 }
drh1d454a32008-01-31 19:34:51 +00006280 pCur->nullRow = 0;
drhf56fa462015-04-13 21:39:54 +00006281 VdbeBranchTaken(res!=0,2);
6282 if( res ) goto jump_to_p2;
drh9eff6162006-06-12 21:59:13 +00006283 break;
6284}
6285#endif /* SQLITE_OMIT_VIRTUALTABLE */
6286
6287#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006288/* Opcode: VColumn P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00006289** Synopsis: r[P3]=vcolumn(P2)
drh9eff6162006-06-12 21:59:13 +00006290**
drh2133d822008-01-03 18:44:59 +00006291** Store the value of the P2-th column of
6292** the row of the virtual-table that the
6293** P1 cursor is pointing to into register P3.
drh9eff6162006-06-12 21:59:13 +00006294*/
6295case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00006296 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006297 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00006298 Mem *pDest;
6299 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006300
drhdfe88ec2008-11-03 20:55:06 +00006301 VdbeCursor *pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00006302 assert( pCur->pVtabCursor );
dan3bc9f742013-08-15 16:18:39 +00006303 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00006304 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00006305 memAboutToChange(p, pDest);
drh2945b4a2008-01-31 15:53:45 +00006306 if( pCur->nullRow ){
6307 sqlite3VdbeMemSetNull(pDest);
6308 break;
6309 }
danielk19773e3a84d2008-08-01 17:37:40 +00006310 pVtab = pCur->pVtabCursor->pVtab;
6311 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006312 assert( pModule->xColumn );
6313 memset(&sContext, 0, sizeof(sContext));
drh9bd038f2014-08-27 14:14:06 +00006314 sContext.pOut = pDest;
6315 MemSetTypeFlag(pDest, MEM_Null);
drhde4fcfd2008-01-19 23:50:26 +00006316 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
dan016f7812013-08-21 17:35:48 +00006317 sqlite3VtabImportErrmsg(p, pVtab);
drh4c8555f2009-06-25 01:47:11 +00006318 if( sContext.isError ){
6319 rc = sContext.isError;
6320 }
drh9bd038f2014-08-27 14:14:06 +00006321 sqlite3VdbeChangeEncoding(pDest, encoding);
drh5ff44372009-11-24 16:26:17 +00006322 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00006323 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006324
drhde4fcfd2008-01-19 23:50:26 +00006325 if( sqlite3VdbeMemTooBig(pDest) ){
6326 goto too_big;
6327 }
drh9eff6162006-06-12 21:59:13 +00006328 break;
6329}
6330#endif /* SQLITE_OMIT_VIRTUALTABLE */
6331
6332#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006333/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00006334**
6335** Advance virtual table P1 to the next row in its result set and
6336** jump to instruction P2. Or, if the virtual table has reached
6337** the end of its result set, then fall through to the next instruction.
6338*/
drh9cbf3422008-01-17 16:22:13 +00006339case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00006340 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006341 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00006342 int res;
drh856c1032009-06-02 15:21:42 +00006343 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006344
drhc54a6172009-06-02 16:06:03 +00006345 res = 0;
drh856c1032009-06-02 15:21:42 +00006346 pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00006347 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00006348 if( pCur->nullRow ){
6349 break;
6350 }
danielk19773e3a84d2008-08-01 17:37:40 +00006351 pVtab = pCur->pVtabCursor->pVtab;
6352 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006353 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00006354
drhde4fcfd2008-01-19 23:50:26 +00006355 /* Invoke the xNext() method of the module. There is no way for the
6356 ** underlying implementation to return an error if one occurs during
6357 ** xNext(). Instead, if an error occurs, true is returned (indicating that
6358 ** data is available) and the error code returned when xColumn or
6359 ** some other method is next invoked on the save virtual table cursor.
6360 */
drhde4fcfd2008-01-19 23:50:26 +00006361 rc = pModule->xNext(pCur->pVtabCursor);
dan016f7812013-08-21 17:35:48 +00006362 sqlite3VtabImportErrmsg(p, pVtab);
drhde4fcfd2008-01-19 23:50:26 +00006363 if( rc==SQLITE_OK ){
6364 res = pModule->xEof(pCur->pVtabCursor);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006365 }
drh688852a2014-02-17 22:40:43 +00006366 VdbeBranchTaken(!res,2);
drhde4fcfd2008-01-19 23:50:26 +00006367 if( !res ){
6368 /* If there is data, jump to P2 */
drhf56fa462015-04-13 21:39:54 +00006369 goto jump_to_p2_and_check_for_interrupt;
drhde4fcfd2008-01-19 23:50:26 +00006370 }
drh49afe3a2013-07-10 03:05:14 +00006371 goto check_for_interrupt;
drh9eff6162006-06-12 21:59:13 +00006372}
6373#endif /* SQLITE_OMIT_VIRTUALTABLE */
6374
danielk1977182c4ba2007-06-27 15:53:34 +00006375#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006376/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00006377**
drh66a51672008-01-03 00:01:23 +00006378** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00006379** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00006380** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00006381*/
drh9cbf3422008-01-17 16:22:13 +00006382case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00006383 sqlite3_vtab *pVtab;
6384 Mem *pName;
6385
danielk1977595a5232009-07-24 17:58:53 +00006386 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00006387 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00006388 assert( pVtab->pModule->xRename );
drh2b4ded92010-09-27 21:09:31 +00006389 assert( memIsValid(pName) );
drh9e92a472013-06-27 17:40:30 +00006390 assert( p->readOnly==0 );
drh5b6afba2008-01-05 16:29:28 +00006391 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00006392 assert( pName->flags & MEM_Str );
drh98655a62011-10-18 22:07:47 +00006393 testcase( pName->enc==SQLITE_UTF8 );
6394 testcase( pName->enc==SQLITE_UTF16BE );
6395 testcase( pName->enc==SQLITE_UTF16LE );
6396 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
6397 if( rc==SQLITE_OK ){
6398 rc = pVtab->pModule->xRename(pVtab, pName->z);
dan016f7812013-08-21 17:35:48 +00006399 sqlite3VtabImportErrmsg(p, pVtab);
drh98655a62011-10-18 22:07:47 +00006400 p->expired = 0;
6401 }
danielk1977182c4ba2007-06-27 15:53:34 +00006402 break;
6403}
6404#endif
drh4cbdda92006-06-14 19:00:20 +00006405
6406#ifndef SQLITE_OMIT_VIRTUALTABLE
drh0fd61352014-02-07 02:29:45 +00006407/* Opcode: VUpdate P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00006408** Synopsis: data=r[P3@P2]
danielk1977399918f2006-06-14 13:03:23 +00006409**
drh66a51672008-01-03 00:01:23 +00006410** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00006411** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00006412** are contiguous memory cells starting at P3 to pass to the xUpdate
6413** invocation. The value in register (P3+P2-1) corresponds to the
6414** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00006415**
6416** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00006417** The argv[0] element (which corresponds to memory cell P3)
6418** is the rowid of a row to delete. If argv[0] is NULL then no
6419** deletion occurs. The argv[1] element is the rowid of the new
6420** row. This can be NULL to have the virtual table select the new
6421** rowid for itself. The subsequent elements in the array are
6422** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00006423**
6424** If P2==1 then no insert is performed. argv[0] is the rowid of
6425** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00006426**
6427** P1 is a boolean flag. If it is set to true and the xUpdate call
6428** is successful, then the value returned by sqlite3_last_insert_rowid()
6429** is set to the value of the rowid for the row just inserted.
drh0fd61352014-02-07 02:29:45 +00006430**
6431** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6432** apply in the case of a constraint failure on an insert or update.
danielk1977399918f2006-06-14 13:03:23 +00006433*/
drh9cbf3422008-01-17 16:22:13 +00006434case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00006435 sqlite3_vtab *pVtab;
drhf496a7d2015-03-24 14:05:50 +00006436 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00006437 int nArg;
6438 int i;
6439 sqlite_int64 rowid;
6440 Mem **apArg;
6441 Mem *pX;
6442
danb061d052011-04-25 18:49:57 +00006443 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
6444 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6445 );
drh9e92a472013-06-27 17:40:30 +00006446 assert( p->readOnly==0 );
danielk1977595a5232009-07-24 17:58:53 +00006447 pVtab = pOp->p4.pVtab->pVtab;
drhf496a7d2015-03-24 14:05:50 +00006448 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6449 rc = SQLITE_LOCKED;
6450 break;
6451 }
6452 pModule = pVtab->pModule;
drh856c1032009-06-02 15:21:42 +00006453 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00006454 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00006455 if( ALWAYS(pModule->xUpdate) ){
danb061d052011-04-25 18:49:57 +00006456 u8 vtabOnConflict = db->vtabOnConflict;
drh856c1032009-06-02 15:21:42 +00006457 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00006458 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00006459 for(i=0; i<nArg; i++){
drh2b4ded92010-09-27 21:09:31 +00006460 assert( memIsValid(pX) );
6461 memAboutToChange(p, pX);
drh9c419382006-06-16 21:13:21 +00006462 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00006463 pX++;
danielk1977399918f2006-06-14 13:03:23 +00006464 }
danb061d052011-04-25 18:49:57 +00006465 db->vtabOnConflict = pOp->p5;
danielk19771f6eec52006-06-16 06:17:47 +00006466 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
danb061d052011-04-25 18:49:57 +00006467 db->vtabOnConflict = vtabOnConflict;
dan016f7812013-08-21 17:35:48 +00006468 sqlite3VtabImportErrmsg(p, pVtab);
drh35f6b932009-06-23 14:15:04 +00006469 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00006470 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
drh99a66922011-05-13 18:51:42 +00006471 db->lastRowid = lastRowid = rowid;
danielk19771f6eec52006-06-16 06:17:47 +00006472 }
drhd91c1a12013-02-09 13:58:25 +00006473 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
danb061d052011-04-25 18:49:57 +00006474 if( pOp->p5==OE_Ignore ){
6475 rc = SQLITE_OK;
6476 }else{
6477 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6478 }
6479 }else{
6480 p->nChange++;
6481 }
danielk1977399918f2006-06-14 13:03:23 +00006482 }
drh4cbdda92006-06-14 19:00:20 +00006483 break;
danielk1977399918f2006-06-14 13:03:23 +00006484}
6485#endif /* SQLITE_OMIT_VIRTUALTABLE */
6486
danielk197759a93792008-05-15 17:48:20 +00006487#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6488/* Opcode: Pagecount P1 P2 * * *
6489**
6490** Write the current number of pages in database P1 to memory cell P2.
6491*/
drh27a348c2015-04-13 19:14:06 +00006492case OP_Pagecount: { /* out2 */
6493 pOut = out2Prerelease(p, pOp);
drhb1299152010-03-30 22:58:33 +00006494 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00006495 break;
6496}
6497#endif
6498
drh60ac3f42010-11-23 18:59:27 +00006499
6500#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6501/* Opcode: MaxPgcnt P1 P2 P3 * *
6502**
6503** Try to set the maximum page count for database P1 to the value in P3.
drhc84e0332010-11-23 20:25:08 +00006504** Do not let the maximum page count fall below the current page count and
6505** do not change the maximum page count value if P3==0.
6506**
drh60ac3f42010-11-23 18:59:27 +00006507** Store the maximum page count after the change in register P2.
6508*/
drh27a348c2015-04-13 19:14:06 +00006509case OP_MaxPgcnt: { /* out2 */
drhc84e0332010-11-23 20:25:08 +00006510 unsigned int newMax;
drh60ac3f42010-11-23 18:59:27 +00006511 Btree *pBt;
6512
drh27a348c2015-04-13 19:14:06 +00006513 pOut = out2Prerelease(p, pOp);
drh60ac3f42010-11-23 18:59:27 +00006514 pBt = db->aDb[pOp->p1].pBt;
drhc84e0332010-11-23 20:25:08 +00006515 newMax = 0;
6516 if( pOp->p3 ){
6517 newMax = sqlite3BtreeLastPage(pBt);
drh6ea28d62010-11-26 16:49:59 +00006518 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
drhc84e0332010-11-23 20:25:08 +00006519 }
6520 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
drh60ac3f42010-11-23 18:59:27 +00006521 break;
6522}
6523#endif
6524
6525
drhaceb31b2014-02-08 01:40:27 +00006526/* Opcode: Init * P2 * P4 *
6527** Synopsis: Start at P2
6528**
6529** Programs contain a single instance of this opcode as the very first
6530** opcode.
drh949f9cd2008-01-12 21:35:57 +00006531**
6532** If tracing is enabled (by the sqlite3_trace()) interface, then
6533** the UTF-8 string contained in P4 is emitted on the trace callback.
drhaceb31b2014-02-08 01:40:27 +00006534** Or if P4 is blank, use the string returned by sqlite3_sql().
6535**
6536** If P2 is not zero, jump to instruction P2.
drh949f9cd2008-01-12 21:35:57 +00006537*/
drhaceb31b2014-02-08 01:40:27 +00006538case OP_Init: { /* jump */
drh856c1032009-06-02 15:21:42 +00006539 char *zTrace;
drhc3f1d5f2011-05-30 23:42:16 +00006540 char *z;
drh856c1032009-06-02 15:21:42 +00006541
drhaceb31b2014-02-08 01:40:27 +00006542#ifndef SQLITE_OMIT_TRACE
drh37f58e92012-09-04 21:34:26 +00006543 if( db->xTrace
6544 && !p->doingRerun
6545 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6546 ){
drhc3f1d5f2011-05-30 23:42:16 +00006547 z = sqlite3VdbeExpandSql(p, zTrace);
6548 db->xTrace(db->pTraceArg, z);
6549 sqlite3DbFree(db, z);
drh949f9cd2008-01-12 21:35:57 +00006550 }
drh8f8b2312013-10-18 20:03:43 +00006551#ifdef SQLITE_USE_FCNTL_TRACE
6552 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
6553 if( zTrace ){
6554 int i;
6555 for(i=0; i<db->nDb; i++){
drha7ab6d82014-07-21 15:44:39 +00006556 if( DbMaskTest(p->btreeMask, i)==0 ) continue;
drh8f8b2312013-10-18 20:03:43 +00006557 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
6558 }
6559 }
6560#endif /* SQLITE_USE_FCNTL_TRACE */
drhc3f1d5f2011-05-30 23:42:16 +00006561#ifdef SQLITE_DEBUG
6562 if( (db->flags & SQLITE_SqlTrace)!=0
6563 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6564 ){
6565 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6566 }
6567#endif /* SQLITE_DEBUG */
drhaceb31b2014-02-08 01:40:27 +00006568#endif /* SQLITE_OMIT_TRACE */
drhf56fa462015-04-13 21:39:54 +00006569 if( pOp->p2 ) goto jump_to_p2;
drh949f9cd2008-01-12 21:35:57 +00006570 break;
6571}
drh949f9cd2008-01-12 21:35:57 +00006572
drh91fd4d42008-01-19 20:11:25 +00006573
6574/* Opcode: Noop * * * * *
6575**
6576** Do nothing. This instruction is often useful as a jump
6577** destination.
drh5e00f6c2001-09-13 13:46:56 +00006578*/
drh91fd4d42008-01-19 20:11:25 +00006579/*
6580** The magic Explain opcode are only inserted when explain==2 (which
6581** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6582** This opcode records information from the optimizer. It is the
6583** the same as a no-op. This opcodesnever appears in a real VM program.
6584*/
6585default: { /* This is really OP_Noop and OP_Explain */
drh13573c72010-01-12 17:04:07 +00006586 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh5e00f6c2001-09-13 13:46:56 +00006587 break;
6588}
6589
6590/*****************************************************************************
6591** The cases of the switch statement above this line should all be indented
6592** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6593** readability. From this point on down, the normal indentation rules are
6594** restored.
6595*****************************************************************************/
6596 }
drh6e142f52000-06-08 13:36:40 +00006597
drh7b396862003-01-01 23:06:20 +00006598#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00006599 {
drha01c7c72014-04-25 12:35:31 +00006600 u64 endTime = sqlite3Hwtime();
drh6dc41482015-04-16 17:31:02 +00006601 if( endTime>start ) pOrigOp->cycles += endTime - start;
6602 pOrigOp->cnt++;
drh8178a752003-01-05 21:41:40 +00006603 }
drh7b396862003-01-01 23:06:20 +00006604#endif
6605
drh6e142f52000-06-08 13:36:40 +00006606 /* The following code adds nothing to the actual functionality
6607 ** of the program. It is only here for testing and debugging.
6608 ** On the other hand, it does burn CPU cycles every time through
6609 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6610 */
6611#ifndef NDEBUG
drh6dc41482015-04-16 17:31:02 +00006612 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
drhae7e1512007-05-02 16:51:59 +00006613
drhcf1023c2007-05-08 20:59:49 +00006614#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +00006615 if( db->flags & SQLITE_VdbeTrace ){
6616 if( rc!=0 ) printf("rc=%d\n",rc);
drh6dc41482015-04-16 17:31:02 +00006617 if( pOrigOp->opflags & (OPFLG_OUT2) ){
6618 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
drh75897232000-05-29 14:26:00 +00006619 }
drh6dc41482015-04-16 17:31:02 +00006620 if( pOrigOp->opflags & OPFLG_OUT3 ){
6621 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00006622 }
drh75897232000-05-29 14:26:00 +00006623 }
danielk1977b5402fb2005-01-12 07:15:04 +00006624#endif /* SQLITE_DEBUG */
6625#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00006626 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00006627
drha05a7222008-01-19 03:35:58 +00006628 /* If we reach this point, it means that execution is finished with
6629 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00006630 */
drha05a7222008-01-19 03:35:58 +00006631vdbe_error_halt:
6632 assert( rc );
6633 p->rc = rc;
drha64fa912010-03-04 00:53:32 +00006634 testcase( sqlite3GlobalConfig.xLog!=0 );
6635 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
drhf56fa462015-04-13 21:39:54 +00006636 (int)(pOp - aOp), p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00006637 sqlite3VdbeHalt(p);
danielk19777eaabcd2008-07-07 14:56:56 +00006638 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6639 rc = SQLITE_ERROR;
drhcdf011d2011-04-04 21:25:28 +00006640 if( resetSchemaOnFault>0 ){
drh81028a42012-05-15 18:28:27 +00006641 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
drhbdaec522011-04-04 00:14:43 +00006642 }
drh900b31e2007-08-28 02:27:51 +00006643
6644 /* This is the only way out of this procedure. We have to
6645 ** release the mutexes on btrees that were acquired at the
6646 ** top. */
6647vdbe_return:
drh99a66922011-05-13 18:51:42 +00006648 db->lastRowid = lastRowid;
drh77dfd5b2013-08-19 11:15:48 +00006649 testcase( nVmStep>0 );
drh9b47ee32013-08-20 03:13:51 +00006650 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
drhbdaec522011-04-04 00:14:43 +00006651 sqlite3VdbeLeave(p);
drhb86ccfb2003-01-28 23:13:10 +00006652 return rc;
6653
drh023ae032007-05-08 12:12:16 +00006654 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6655 ** is encountered.
6656 */
6657too_big:
drh22c17b82015-05-15 04:13:15 +00006658 sqlite3VdbeError(p, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00006659 rc = SQLITE_TOOBIG;
drha05a7222008-01-19 03:35:58 +00006660 goto vdbe_error_halt;
drh023ae032007-05-08 12:12:16 +00006661
drh98640a32007-06-07 19:08:32 +00006662 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00006663 */
6664no_mem:
drh17435752007-08-16 04:30:38 +00006665 db->mallocFailed = 1;
drh22c17b82015-05-15 04:13:15 +00006666 sqlite3VdbeError(p, "out of memory");
drhb86ccfb2003-01-28 23:13:10 +00006667 rc = SQLITE_NOMEM;
drha05a7222008-01-19 03:35:58 +00006668 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006669
drhb86ccfb2003-01-28 23:13:10 +00006670 /* Jump to here for any other kind of fatal error. The "rc" variable
6671 ** should hold the error number.
6672 */
6673abort_due_to_error:
drha05a7222008-01-19 03:35:58 +00006674 assert( p->zErrMsg==0 );
6675 if( db->mallocFailed ) rc = SQLITE_NOMEM;
danielk19777eaabcd2008-07-07 14:56:56 +00006676 if( rc!=SQLITE_IOERR_NOMEM ){
drh22c17b82015-05-15 04:13:15 +00006677 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
danielk19777eaabcd2008-07-07 14:56:56 +00006678 }
drha05a7222008-01-19 03:35:58 +00006679 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006680
danielk19776f8a5032004-05-10 10:34:51 +00006681 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00006682 ** flag.
6683 */
6684abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00006685 assert( db->u1.isInterrupted );
drh7e8b8482008-01-23 03:03:05 +00006686 rc = SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00006687 p->rc = rc;
drh22c17b82015-05-15 04:13:15 +00006688 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
drha05a7222008-01-19 03:35:58 +00006689 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006690}