blob: 3bd4222c8b075dd7f42de2a16b312767dc86672a [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh0fd61352014-02-07 02:29:45 +000012** The code in this file implements the function that runs the
13** bytecode of a prepared statement.
drh75897232000-05-29 14:26:00 +000014**
drhac82fcf2002-09-08 17:23:41 +000015** Various scripts scan this source file in order to generate HTML
16** documentation, headers files, or other derived files. The formatting
17** of the code in this file is, therefore, important. See other comments
18** in this file for details. If in doubt, do not deviate from existing
19** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000020*/
21#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000022#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000023
24/*
drh2b4ded92010-09-27 21:09:31 +000025** Invoke this macro on memory cells just prior to changing the
26** value of the cell. This macro verifies that shallow copies are
drh0fd61352014-02-07 02:29:45 +000027** not misused. A shallow copy of a string or blob just copies a
28** pointer to the string or blob, not the content. If the original
29** is changed while the copy is still in use, the string or blob might
30** be changed out from under the copy. This macro verifies that nothing
drhb6e8fd12014-03-06 01:56:33 +000031** like that ever happens.
drh2b4ded92010-09-27 21:09:31 +000032*/
33#ifdef SQLITE_DEBUG
drhe4c88c02012-01-04 12:57:45 +000034# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
drh2b4ded92010-09-27 21:09:31 +000035#else
36# define memAboutToChange(P,M)
37#endif
38
39/*
drh487ab3c2001-11-08 00:45:21 +000040** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000041** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000042** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000043** working correctly. This variable has no function other than to
44** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000045*/
drh0f7eb612006-08-08 13:51:43 +000046#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000047int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000048#endif
drh487ab3c2001-11-08 00:45:21 +000049
drhf6038712004-02-08 18:07:34 +000050/*
51** When this global variable is positive, it gets decremented once before
drhe4c88c02012-01-04 12:57:45 +000052** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53** field of the sqlite3 structure is set in order to simulate an interrupt.
drhf6038712004-02-08 18:07:34 +000054**
55** This facility is used for testing purposes only. It does not function
56** in an ordinary build.
57*/
drh0f7eb612006-08-08 13:51:43 +000058#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000059int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000060#endif
drh1350b032002-02-27 19:00:20 +000061
danielk19777e18c252004-05-25 11:47:24 +000062/*
drh6bf89572004-11-03 16:27:01 +000063** The next global variable is incremented each type the OP_Sort opcode
64** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000065** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000066** has no function other than to help verify the correct operation of the
67** library.
68*/
drh0f7eb612006-08-08 13:51:43 +000069#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000070int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000071#endif
drh6bf89572004-11-03 16:27:01 +000072
73/*
drhae7e1512007-05-02 16:51:59 +000074** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000075** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000076** use this information to make sure that the zero-blob functionality
77** is working correctly. This variable has no function other than to
78** help verify the correct operation of the library.
79*/
80#ifdef SQLITE_TEST
81int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +000082static void updateMaxBlobsize(Mem *p){
83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84 sqlite3_max_blobsize = p->n;
85 }
86}
drhae7e1512007-05-02 16:51:59 +000087#endif
88
89/*
drh0fd61352014-02-07 02:29:45 +000090** The next global variable is incremented each time the OP_Found opcode
dan0ff297e2009-09-25 17:03:14 +000091** is executed. This is used to test whether or not the foreign key
92** operation implemented using OP_FkIsZero is working. This variable
93** has no function other than to help verify the correct operation of the
94** library.
95*/
96#ifdef SQLITE_TEST
97int sqlite3_found_count = 0;
98#endif
99
100/*
drhb7654112008-01-12 12:48:07 +0000101** Test a register to see if it exceeds the current maximum blob size.
102** If it does, record the new maximum blob size.
103*/
drh678ccce2008-03-31 18:19:54 +0000104#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
drhca48c902008-01-18 14:08:24 +0000105# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000106#else
107# define UPDATE_MAX_BLOBSIZE(P)
108#endif
109
110/*
drh5655c542014-02-19 19:14:34 +0000111** Invoke the VDBE coverage callback, if that callback is defined. This
112** feature is used for test suite validation only and does not appear an
113** production builds.
114**
115** M is an integer, 2 or 3, that indices how many different ways the
116** branch can go. It is usually 2. "I" is the direction the branch
117** goes. 0 means falls through. 1 means branch is taken. 2 means the
118** second alternative branch is taken.
drh4336b0e2014-08-05 00:53:51 +0000119**
120** iSrcLine is the source code line (from the __LINE__ macro) that
121** generated the VDBE instruction. This instrumentation assumes that all
122** source code is in a single file (the amalgamation). Special values 1
123** and 2 for the iSrcLine parameter mean that this particular branch is
124** always taken or never taken, respectively.
drh688852a2014-02-17 22:40:43 +0000125*/
126#if !defined(SQLITE_VDBE_COVERAGE)
127# define VdbeBranchTaken(I,M)
128#else
drh5655c542014-02-19 19:14:34 +0000129# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
130 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
131 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
132 M = iSrcLine;
133 /* Assert the truth of VdbeCoverageAlwaysTaken() and
134 ** VdbeCoverageNeverTaken() */
135 assert( (M & I)==I );
136 }else{
137 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
138 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
139 iSrcLine,I,M);
140 }
141 }
drh688852a2014-02-17 22:40:43 +0000142#endif
143
144/*
drh9cbf3422008-01-17 16:22:13 +0000145** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000146** already. Return non-zero if a malloc() fails.
147*/
drhb21c8cd2007-08-21 19:33:56 +0000148#define Stringify(P, enc) \
drhbd9507c2014-08-23 17:21:37 +0000149 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
drhf4479502004-05-27 03:12:53 +0000150 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000151
152/*
danielk1977bd7e4602004-05-24 07:34:48 +0000153** An ephemeral string value (signified by the MEM_Ephem flag) contains
154** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000155** is responsible for deallocating that string. Because the register
156** does not control the string, it might be deleted without the register
157** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000158**
159** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000160** string that the register itself controls. In other words, it
drhc91b2fd2014-03-01 18:13:23 +0000161** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
danielk1977bd7e4602004-05-24 07:34:48 +0000162*/
drhb21c8cd2007-08-21 19:33:56 +0000163#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000164 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000165 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000166
dan689ab892011-08-12 15:02:00 +0000167/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
drh0fd61352014-02-07 02:29:45 +0000168#define isSorter(x) ((x)->pSorter!=0)
dan689ab892011-08-12 15:02:00 +0000169
danielk19771cc5ed82007-05-16 17:28:43 +0000170/*
drhdfe88ec2008-11-03 20:55:06 +0000171** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000172** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000173*/
drhdfe88ec2008-11-03 20:55:06 +0000174static VdbeCursor *allocateCursor(
175 Vdbe *p, /* The virtual machine */
176 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000177 int nField, /* Number of fields in the table or index */
drhe4c88c02012-01-04 12:57:45 +0000178 int iDb, /* Database the cursor belongs to, or -1 */
drh3e9ca092009-09-08 01:14:48 +0000179 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
danielk1977cd3e8f72008-03-25 09:47:35 +0000180){
181 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000182 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000183 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000184 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000185 **
186 ** * Sometimes cursor numbers are used for a couple of different
187 ** purposes in a vdbe program. The different uses might require
188 ** different sized allocations. Memory cells provide growable
189 ** allocations.
190 **
191 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
192 ** be freed lazily via the sqlite3_release_memory() API. This
193 ** minimizes the number of malloc calls made by the system.
194 **
195 ** Memory cells for cursors are allocated at the top of the address
196 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
197 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
198 */
199 Mem *pMem = &p->aMem[p->nMem-iCur];
200
danielk19775f096132008-03-28 15:44:09 +0000201 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000202 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000203 nByte =
drh5cc10232013-11-21 01:04:02 +0000204 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
205 (isBtreeCursor?sqlite3BtreeCursorSize():0);
danielk1977cd3e8f72008-03-25 09:47:35 +0000206
drh290c1942004-08-21 17:54:45 +0000207 assert( iCur<p->nCursor );
208 if( p->apCsr[iCur] ){
danielk1977be718892006-06-23 08:05:19 +0000209 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000210 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000211 }
drh322f2852014-09-19 00:43:39 +0000212 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
drhdfe88ec2008-11-03 20:55:06 +0000213 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhf25a5072009-11-18 23:01:25 +0000214 memset(pCx, 0, sizeof(VdbeCursor));
danielk197794eb6a12005-12-15 15:22:08 +0000215 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000216 pCx->nField = nField;
drhb53a5a92014-10-12 22:37:22 +0000217 pCx->aOffset = &pCx->aType[nField];
danielk1977cd3e8f72008-03-25 09:47:35 +0000218 if( isBtreeCursor ){
drhdfe88ec2008-11-03 20:55:06 +0000219 pCx->pCursor = (BtCursor*)
drh5cc10232013-11-21 01:04:02 +0000220 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
drhf25a5072009-11-18 23:01:25 +0000221 sqlite3BtreeCursorZero(pCx->pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000222 }
danielk197794eb6a12005-12-15 15:22:08 +0000223 }
drh4774b132004-06-12 20:12:51 +0000224 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000225}
226
danielk19773d1bfea2004-05-14 11:00:53 +0000227/*
drh29d72102006-02-09 22:13:41 +0000228** Try to convert a value into a numeric representation if we can
229** do so without loss of information. In other words, if the string
230** looks like a number, convert it into a number. If it does not
231** look like a number, leave it alone.
drhbd9507c2014-08-23 17:21:37 +0000232**
233** If the bTryForInt flag is true, then extra effort is made to give
234** an integer representation. Strings that look like floating point
235** values but which have no fractional component (example: '48.00')
236** will have a MEM_Int representation when bTryForInt is true.
237**
238** If bTryForInt is false, then if the input string contains a decimal
239** point or exponential notation, the result is only MEM_Real, even
240** if there is an exact integer representation of the quantity.
drh29d72102006-02-09 22:13:41 +0000241*/
drhbd9507c2014-08-23 17:21:37 +0000242static void applyNumericAffinity(Mem *pRec, int bTryForInt){
drh975b4c62014-07-26 16:47:23 +0000243 double rValue;
244 i64 iValue;
245 u8 enc = pRec->enc;
drh11a6eee2014-09-19 22:01:54 +0000246 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
drh975b4c62014-07-26 16:47:23 +0000247 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
248 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
249 pRec->u.i = iValue;
250 pRec->flags |= MEM_Int;
251 }else{
drh74eaba42014-09-18 17:52:15 +0000252 pRec->u.r = rValue;
drh975b4c62014-07-26 16:47:23 +0000253 pRec->flags |= MEM_Real;
drhbd9507c2014-08-23 17:21:37 +0000254 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000255 }
256}
257
258/*
drh8a512562005-11-14 22:29:05 +0000259** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000260**
drh8a512562005-11-14 22:29:05 +0000261** SQLITE_AFF_INTEGER:
262** SQLITE_AFF_REAL:
263** SQLITE_AFF_NUMERIC:
264** Try to convert pRec to an integer representation or a
265** floating-point representation if an integer representation
266** is not possible. Note that the integer representation is
267** always preferred, even if the affinity is REAL, because
268** an integer representation is more space efficient on disk.
269**
270** SQLITE_AFF_TEXT:
271** Convert pRec to a text representation.
272**
273** SQLITE_AFF_NONE:
274** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000275*/
drh17435752007-08-16 04:30:38 +0000276static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000277 Mem *pRec, /* The value to apply affinity to */
278 char affinity, /* The affinity to be applied */
279 u8 enc /* Use this text encoding */
280){
drh7ea31cc2014-09-18 14:36:00 +0000281 if( affinity>=SQLITE_AFF_NUMERIC ){
drh8a512562005-11-14 22:29:05 +0000282 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
283 || affinity==SQLITE_AFF_NUMERIC );
drhbd9507c2014-08-23 17:21:37 +0000284 if( (pRec->flags & MEM_Int)==0 ){
285 if( (pRec->flags & MEM_Real)==0 ){
drh11a6eee2014-09-19 22:01:54 +0000286 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
drhbd9507c2014-08-23 17:21:37 +0000287 }else{
288 sqlite3VdbeIntegerAffinity(pRec);
289 }
drh17c40292004-07-21 02:53:29 +0000290 }
drh7ea31cc2014-09-18 14:36:00 +0000291 }else if( affinity==SQLITE_AFF_TEXT ){
292 /* Only attempt the conversion to TEXT if there is an integer or real
293 ** representation (blob and NULL do not get converted) but no string
294 ** representation.
295 */
296 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
297 sqlite3VdbeMemStringify(pRec, enc, 1);
298 }
danielk19773d1bfea2004-05-14 11:00:53 +0000299 }
300}
301
danielk1977aee18ef2005-03-09 12:26:50 +0000302/*
drh29d72102006-02-09 22:13:41 +0000303** Try to convert the type of a function argument or a result column
304** into a numeric representation. Use either INTEGER or REAL whichever
305** is appropriate. But only do the conversion if it is possible without
306** loss of information and return the revised type of the argument.
drh29d72102006-02-09 22:13:41 +0000307*/
308int sqlite3_value_numeric_type(sqlite3_value *pVal){
drh1b27b8c2014-02-10 03:21:57 +0000309 int eType = sqlite3_value_type(pVal);
310 if( eType==SQLITE_TEXT ){
311 Mem *pMem = (Mem*)pVal;
drhbd9507c2014-08-23 17:21:37 +0000312 applyNumericAffinity(pMem, 0);
drh1b27b8c2014-02-10 03:21:57 +0000313 eType = sqlite3_value_type(pVal);
drhe5a8a1d2010-11-18 12:31:24 +0000314 }
drh1b27b8c2014-02-10 03:21:57 +0000315 return eType;
drh29d72102006-02-09 22:13:41 +0000316}
317
318/*
danielk1977aee18ef2005-03-09 12:26:50 +0000319** Exported version of applyAffinity(). This one works on sqlite3_value*,
320** not the internal Mem* type.
321*/
danielk19771e536952007-08-16 10:09:01 +0000322void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000323 sqlite3_value *pVal,
324 u8 affinity,
325 u8 enc
326){
drhb21c8cd2007-08-21 19:33:56 +0000327 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000328}
329
drh3d1d90a2014-03-24 15:00:15 +0000330/*
drhf1a89ed2014-08-23 17:41:15 +0000331** pMem currently only holds a string type (or maybe a BLOB that we can
332** interpret as a string if we want to). Compute its corresponding
drh74eaba42014-09-18 17:52:15 +0000333** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
drhf1a89ed2014-08-23 17:41:15 +0000334** accordingly.
335*/
336static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
337 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
338 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
drh74eaba42014-09-18 17:52:15 +0000339 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
drhf1a89ed2014-08-23 17:41:15 +0000340 return 0;
341 }
342 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
343 return MEM_Int;
344 }
345 return MEM_Real;
346}
347
348/*
drh3d1d90a2014-03-24 15:00:15 +0000349** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
350** none.
351**
352** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
drh74eaba42014-09-18 17:52:15 +0000353** But it does set pMem->u.r and pMem->u.i appropriately.
drh3d1d90a2014-03-24 15:00:15 +0000354*/
355static u16 numericType(Mem *pMem){
356 if( pMem->flags & (MEM_Int|MEM_Real) ){
357 return pMem->flags & (MEM_Int|MEM_Real);
358 }
359 if( pMem->flags & (MEM_Str|MEM_Blob) ){
drhf1a89ed2014-08-23 17:41:15 +0000360 return computeNumericType(pMem);
drh3d1d90a2014-03-24 15:00:15 +0000361 }
362 return 0;
363}
364
danielk1977b5402fb2005-01-12 07:15:04 +0000365#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000366/*
danielk1977ca6b2912004-05-21 10:49:47 +0000367** Write a nice string representation of the contents of cell pMem
368** into buffer zBuf, length nBuf.
369*/
drh74161702006-02-24 02:53:49 +0000370void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000371 char *zCsr = zBuf;
372 int f = pMem->flags;
373
drh57196282004-10-06 15:41:16 +0000374 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000375
danielk1977ca6b2912004-05-21 10:49:47 +0000376 if( f&MEM_Blob ){
377 int i;
378 char c;
379 if( f & MEM_Dyn ){
380 c = 'z';
381 assert( (f & (MEM_Static|MEM_Ephem))==0 );
382 }else if( f & MEM_Static ){
383 c = 't';
384 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
385 }else if( f & MEM_Ephem ){
386 c = 'e';
387 assert( (f & (MEM_Static|MEM_Dyn))==0 );
388 }else{
389 c = 's';
390 }
391
drh5bb3eb92007-05-04 13:15:55 +0000392 sqlite3_snprintf(100, zCsr, "%c", c);
drhea678832008-12-10 19:26:22 +0000393 zCsr += sqlite3Strlen30(zCsr);
drh5bb3eb92007-05-04 13:15:55 +0000394 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000395 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000396 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000397 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000398 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000399 }
400 for(i=0; i<16 && i<pMem->n; i++){
401 char z = pMem->z[i];
402 if( z<32 || z>126 ) *zCsr++ = '.';
403 else *zCsr++ = z;
404 }
405
drhe718efe2007-05-10 21:14:03 +0000406 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000407 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000408 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000409 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000410 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000411 }
danielk1977b1bc9532004-05-22 03:05:33 +0000412 *zCsr = '\0';
413 }else if( f & MEM_Str ){
414 int j, k;
415 zBuf[0] = ' ';
416 if( f & MEM_Dyn ){
417 zBuf[1] = 'z';
418 assert( (f & (MEM_Static|MEM_Ephem))==0 );
419 }else if( f & MEM_Static ){
420 zBuf[1] = 't';
421 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
422 }else if( f & MEM_Ephem ){
423 zBuf[1] = 'e';
424 assert( (f & (MEM_Static|MEM_Dyn))==0 );
425 }else{
426 zBuf[1] = 's';
427 }
428 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000429 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000430 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000431 zBuf[k++] = '[';
432 for(j=0; j<15 && j<pMem->n; j++){
433 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000434 if( c>=0x20 && c<0x7f ){
435 zBuf[k++] = c;
436 }else{
437 zBuf[k++] = '.';
438 }
439 }
440 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000441 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000442 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000443 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000444 }
danielk1977ca6b2912004-05-21 10:49:47 +0000445}
446#endif
447
drh5b6afba2008-01-05 16:29:28 +0000448#ifdef SQLITE_DEBUG
449/*
450** Print the value of a register for tracing purposes:
451*/
drh84e55a82013-11-13 17:58:23 +0000452static void memTracePrint(Mem *p){
drha5750cf2014-02-07 13:20:31 +0000453 if( p->flags & MEM_Undefined ){
drh84e55a82013-11-13 17:58:23 +0000454 printf(" undefined");
drh953f7612012-12-07 22:18:54 +0000455 }else if( p->flags & MEM_Null ){
drh84e55a82013-11-13 17:58:23 +0000456 printf(" NULL");
drh5b6afba2008-01-05 16:29:28 +0000457 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
drh84e55a82013-11-13 17:58:23 +0000458 printf(" si:%lld", p->u.i);
drh5b6afba2008-01-05 16:29:28 +0000459 }else if( p->flags & MEM_Int ){
drh84e55a82013-11-13 17:58:23 +0000460 printf(" i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000461#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000462 }else if( p->flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +0000463 printf(" r:%g", p->u.r);
drh0b3bf922009-06-15 20:45:34 +0000464#endif
drh733bf1b2009-04-22 00:47:00 +0000465 }else if( p->flags & MEM_RowSet ){
drh84e55a82013-11-13 17:58:23 +0000466 printf(" (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000467 }else{
468 char zBuf[200];
469 sqlite3VdbeMemPrettyPrint(p, zBuf);
drh84e55a82013-11-13 17:58:23 +0000470 printf(" %s", zBuf);
drh5b6afba2008-01-05 16:29:28 +0000471 }
472}
drh84e55a82013-11-13 17:58:23 +0000473static void registerTrace(int iReg, Mem *p){
474 printf("REG[%d] = ", iReg);
475 memTracePrint(p);
476 printf("\n");
drh5b6afba2008-01-05 16:29:28 +0000477}
478#endif
479
480#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000481# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
drh5b6afba2008-01-05 16:29:28 +0000482#else
483# define REGISTER_TRACE(R,M)
484#endif
485
danielk197784ac9d02004-05-18 09:58:06 +0000486
drh7b396862003-01-01 23:06:20 +0000487#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000488
489/*
490** hwtime.h contains inline assembler code for implementing
491** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000492*/
shane9bcbdad2008-05-29 20:22:37 +0000493#include "hwtime.h"
494
drh7b396862003-01-01 23:06:20 +0000495#endif
496
danielk1977fd7f0452008-12-17 17:30:26 +0000497#ifndef NDEBUG
498/*
499** This function is only called from within an assert() expression. It
500** checks that the sqlite3.nTransaction variable is correctly set to
501** the number of non-transaction savepoints currently in the
502** linked list starting at sqlite3.pSavepoint.
503**
504** Usage:
505**
506** assert( checkSavepointCount(db) );
507*/
508static int checkSavepointCount(sqlite3 *db){
509 int n = 0;
510 Savepoint *p;
511 for(p=db->pSavepoint; p; p=p->pNext) n++;
512 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
513 return 1;
514}
515#endif
516
drh27a348c2015-04-13 19:14:06 +0000517/*
518** Return the register of pOp->p2 after first preparing it to be
519** overwritten with an integer value.
520*/
521static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
522 Mem *pOut;
523 assert( pOp->p2>0 );
524 assert( pOp->p2<=(p->nMem-p->nCursor) );
525 pOut = &p->aMem[pOp->p2];
526 memAboutToChange(p, pOut);
527 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
528 pOut->flags = MEM_Int;
529 return pOut;
530}
531
drhb9755982010-07-24 16:34:37 +0000532
533/*
drh0fd61352014-02-07 02:29:45 +0000534** Execute as much of a VDBE program as we can.
535** This is the core of sqlite3_step().
drhb86ccfb2003-01-28 23:13:10 +0000536*/
danielk19774adee202004-05-08 08:23:19 +0000537int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000538 Vdbe *p /* The VDBE */
539){
drhbbe879d2009-11-14 18:04:35 +0000540 Op *aOp = p->aOp; /* Copy of p->aOp */
drhf56fa462015-04-13 21:39:54 +0000541 Op *pOp = aOp; /* Current operation */
drhb86ccfb2003-01-28 23:13:10 +0000542 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000543 sqlite3 *db = p->db; /* The database */
drhcdf011d2011-04-04 21:25:28 +0000544 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
drh8079a0d2006-01-12 17:20:50 +0000545 u8 encoding = ENC(db); /* The database encoding */
drhbf159fa2013-06-25 22:01:22 +0000546 int iCompare = 0; /* Result of last OP_Compare operation */
547 unsigned nVmStep = 0; /* Number of virtual machine steps */
drh49afe3a2013-07-10 03:05:14 +0000548#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
drh323df792013-08-05 19:11:29 +0000549 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
drh49afe3a2013-07-10 03:05:14 +0000550#endif
drha6c2ed92009-11-14 23:22:23 +0000551 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000552 Mem *pIn1 = 0; /* 1st input operand */
553 Mem *pIn2 = 0; /* 2nd input operand */
554 Mem *pIn3 = 0; /* 3rd input operand */
555 Mem *pOut = 0; /* Output operand */
shanebe217792009-03-05 04:20:31 +0000556 int *aPermute = 0; /* Permutation of columns for OP_Compare */
drh99a66922011-05-13 18:51:42 +0000557 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
drhb86ccfb2003-01-28 23:13:10 +0000558#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000559 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000560#endif
drh856c1032009-06-02 15:21:42 +0000561 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000562
drhca48c902008-01-18 14:08:24 +0000563 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
drhbdaec522011-04-04 00:14:43 +0000564 sqlite3VdbeEnter(p);
danielk19772e588c72005-12-09 14:25:08 +0000565 if( p->rc==SQLITE_NOMEM ){
566 /* This happens if a malloc() inside a call to sqlite3_column_text() or
567 ** sqlite3_column_text16() failed. */
568 goto no_mem;
569 }
drh3a840692003-01-29 22:58:26 +0000570 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
drh1713afb2013-06-28 01:24:57 +0000571 assert( p->bIsReader || p->readOnly!=0 );
drh3a840692003-01-29 22:58:26 +0000572 p->rc = SQLITE_OK;
drh95a7b3e2013-09-16 12:57:19 +0000573 p->iCurrentTime = 0;
drhb86ccfb2003-01-28 23:13:10 +0000574 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000575 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000576 db->busyHandler.nBusy = 0;
drh0fd61352014-02-07 02:29:45 +0000577 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh602c2372007-03-01 00:29:13 +0000578 sqlite3VdbeIOTraceSql(p);
drh0d1961e2013-07-25 16:27:51 +0000579#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
580 if( db->xProgress ){
581 assert( 0 < db->nProgressOps );
drh9b47ee32013-08-20 03:13:51 +0000582 nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
drh0d1961e2013-07-25 16:27:51 +0000583 if( nProgressLimit==0 ){
584 nProgressLimit = db->nProgressOps;
585 }else{
586 nProgressLimit %= (unsigned)db->nProgressOps;
587 }
588 }
589#endif
drh3c23a882007-01-09 14:01:13 +0000590#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000591 sqlite3BeginBenignMalloc();
drh84e55a82013-11-13 17:58:23 +0000592 if( p->pc==0
593 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
594 ){
drh3c23a882007-01-09 14:01:13 +0000595 int i;
drh84e55a82013-11-13 17:58:23 +0000596 int once = 1;
drh3c23a882007-01-09 14:01:13 +0000597 sqlite3VdbePrintSql(p);
drh84e55a82013-11-13 17:58:23 +0000598 if( p->db->flags & SQLITE_VdbeListing ){
599 printf("VDBE Program Listing:\n");
600 for(i=0; i<p->nOp; i++){
601 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
602 }
drh3c23a882007-01-09 14:01:13 +0000603 }
drh84e55a82013-11-13 17:58:23 +0000604 if( p->db->flags & SQLITE_VdbeEQP ){
605 for(i=0; i<p->nOp; i++){
606 if( aOp[i].opcode==OP_Explain ){
607 if( once ) printf("VDBE Query Plan:\n");
608 printf("%s\n", aOp[i].p4.z);
609 once = 0;
610 }
611 }
612 }
613 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
drh3c23a882007-01-09 14:01:13 +0000614 }
danielk19772d1d86f2008-06-20 14:59:51 +0000615 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000616#endif
drhf56fa462015-04-13 21:39:54 +0000617 for(pOp=&aOp[p->pc]; rc==SQLITE_OK; pOp++){
618 assert( pOp>=aOp && pOp<&aOp[p->nOp]);
drh17435752007-08-16 04:30:38 +0000619 if( db->mallocFailed ) goto no_mem;
drh7b396862003-01-01 23:06:20 +0000620#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000621 start = sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000622#endif
drhbf159fa2013-06-25 22:01:22 +0000623 nVmStep++;
dan6f9702e2014-11-01 20:38:06 +0000624#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
drhf56fa462015-04-13 21:39:54 +0000625 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
dan6f9702e2014-11-01 20:38:06 +0000626#endif
drh6e142f52000-06-08 13:36:40 +0000627
danielk19778b60e0f2005-01-12 09:10:39 +0000628 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000629 */
danielk19778b60e0f2005-01-12 09:10:39 +0000630#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000631 if( db->flags & SQLITE_VdbeTrace ){
drhf56fa462015-04-13 21:39:54 +0000632 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
drh75897232000-05-29 14:26:00 +0000633 }
drh3f7d4e42004-07-24 14:35:58 +0000634#endif
635
drh6e142f52000-06-08 13:36:40 +0000636
drhf6038712004-02-08 18:07:34 +0000637 /* Check to see if we need to simulate an interrupt. This only happens
638 ** if we have a special test build.
639 */
640#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000641 if( sqlite3_interrupt_count>0 ){
642 sqlite3_interrupt_count--;
643 if( sqlite3_interrupt_count==0 ){
644 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000645 }
646 }
647#endif
648
drh3c657212009-11-17 23:59:58 +0000649 /* Sanity checking on other operands */
650#ifdef SQLITE_DEBUG
drh27a348c2015-04-13 19:14:06 +0000651 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
drh3c657212009-11-17 23:59:58 +0000652 if( (pOp->opflags & OPFLG_IN1)!=0 ){
653 assert( pOp->p1>0 );
dan3bc9f742013-08-15 16:18:39 +0000654 assert( pOp->p1<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000655 assert( memIsValid(&aMem[pOp->p1]) );
drh75fd0542014-03-01 16:24:44 +0000656 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
drh3c657212009-11-17 23:59:58 +0000657 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
658 }
659 if( (pOp->opflags & OPFLG_IN2)!=0 ){
660 assert( pOp->p2>0 );
dan3bc9f742013-08-15 16:18:39 +0000661 assert( pOp->p2<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000662 assert( memIsValid(&aMem[pOp->p2]) );
drh75fd0542014-03-01 16:24:44 +0000663 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
drh3c657212009-11-17 23:59:58 +0000664 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
665 }
666 if( (pOp->opflags & OPFLG_IN3)!=0 ){
667 assert( pOp->p3>0 );
dan3bc9f742013-08-15 16:18:39 +0000668 assert( pOp->p3<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000669 assert( memIsValid(&aMem[pOp->p3]) );
drh75fd0542014-03-01 16:24:44 +0000670 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
drh3c657212009-11-17 23:59:58 +0000671 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
672 }
673 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
674 assert( pOp->p2>0 );
dan3bc9f742013-08-15 16:18:39 +0000675 assert( pOp->p2<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000676 memAboutToChange(p, &aMem[pOp->p2]);
drh3c657212009-11-17 23:59:58 +0000677 }
678 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
679 assert( pOp->p3>0 );
dan3bc9f742013-08-15 16:18:39 +0000680 assert( pOp->p3<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000681 memAboutToChange(p, &aMem[pOp->p3]);
drh3c657212009-11-17 23:59:58 +0000682 }
683#endif
drh93952eb2009-11-13 19:43:43 +0000684
drh75897232000-05-29 14:26:00 +0000685 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000686
drh5e00f6c2001-09-13 13:46:56 +0000687/*****************************************************************************
688** What follows is a massive switch statement where each case implements a
689** separate instruction in the virtual machine. If we follow the usual
690** indentation conventions, each case should be indented by 6 spaces. But
691** that is a lot of wasted space on the left margin. So the code within
692** the switch statement will break with convention and be flush-left. Another
693** big comment (similar to this one) will mark the point in the code where
694** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000695**
696** The formatting of each case is important. The makefile for SQLite
697** generates two C files "opcodes.h" and "opcodes.c" by scanning this
698** file looking for lines that begin with "case OP_". The opcodes.h files
699** will be filled with #defines that give unique integer values to each
700** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000701** each string is the symbolic name for the corresponding opcode. If the
702** case statement is followed by a comment of the form "/# same as ... #/"
703** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000704**
drh9cbf3422008-01-17 16:22:13 +0000705** Other keywords in the comment that follows each case are used to
706** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
drh27a348c2015-04-13 19:14:06 +0000707** Keywords include: in1, in2, in3, out2, out3. See
drh9cbf3422008-01-17 16:22:13 +0000708** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000709**
drhac82fcf2002-09-08 17:23:41 +0000710** Documentation about VDBE opcodes is generated by scanning this file
711** for lines of that contain "Opcode:". That line and all subsequent
712** comment lines are used in the generation of the opcode.html documentation
713** file.
714**
715** SUMMARY:
716**
717** Formatting is important to scripts that scan this file.
718** Do not deviate from the formatting style currently in use.
719**
drh5e00f6c2001-09-13 13:46:56 +0000720*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000721
drh9cbf3422008-01-17 16:22:13 +0000722/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000723**
724** An unconditional jump to address P2.
725** The next instruction executed will be
726** the one at index P2 from the beginning of
727** the program.
drhfe705102014-03-06 13:38:37 +0000728**
729** The P1 parameter is not actually used by this opcode. However, it
730** is sometimes set to 1 instead of 0 as a hint to the command-line shell
731** that this Goto is the bottom of a loop and that the lines from P2 down
732** to the current line should be indented for EXPLAIN output.
drh5e00f6c2001-09-13 13:46:56 +0000733*/
drh9cbf3422008-01-17 16:22:13 +0000734case OP_Goto: { /* jump */
drhf56fa462015-04-13 21:39:54 +0000735jump_to_p2_and_check_for_interrupt:
736 pOp = &aOp[pOp->p2 - 1];
drh49afe3a2013-07-10 03:05:14 +0000737
738 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
739 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
740 ** completion. Check to see if sqlite3_interrupt() has been called
741 ** or if the progress callback needs to be invoked.
742 **
743 ** This code uses unstructured "goto" statements and does not look clean.
744 ** But that is not due to sloppy coding habits. The code is written this
745 ** way for performance, to avoid having to run the interrupt and progress
746 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
747 ** faster according to "valgrind --tool=cachegrind" */
748check_for_interrupt:
drh0fd61352014-02-07 02:29:45 +0000749 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh49afe3a2013-07-10 03:05:14 +0000750#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
751 /* Call the progress callback if it is configured and the required number
752 ** of VDBE ops have been executed (either since this invocation of
753 ** sqlite3VdbeExec() or since last time the progress callback was called).
754 ** If the progress callback returns non-zero, exit the virtual machine with
755 ** a return code SQLITE_ABORT.
756 */
drh0d1961e2013-07-25 16:27:51 +0000757 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
drh400fcba2013-11-14 00:09:48 +0000758 assert( db->nProgressOps!=0 );
759 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
760 if( db->xProgress(db->pProgressArg) ){
drh49afe3a2013-07-10 03:05:14 +0000761 rc = SQLITE_INTERRUPT;
762 goto vdbe_error_halt;
763 }
drh49afe3a2013-07-10 03:05:14 +0000764 }
765#endif
766
drh5e00f6c2001-09-13 13:46:56 +0000767 break;
768}
drh75897232000-05-29 14:26:00 +0000769
drh2eb95372008-06-06 15:04:36 +0000770/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000771**
drh2eb95372008-06-06 15:04:36 +0000772** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000773** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000774*/
drhb8475df2011-12-09 16:21:19 +0000775case OP_Gosub: { /* jump */
dan3bc9f742013-08-15 16:18:39 +0000776 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
drh3c657212009-11-17 23:59:58 +0000777 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000778 assert( VdbeMemDynamic(pIn1)==0 );
drh2b4ded92010-09-27 21:09:31 +0000779 memAboutToChange(p, pIn1);
drh2eb95372008-06-06 15:04:36 +0000780 pIn1->flags = MEM_Int;
drhf56fa462015-04-13 21:39:54 +0000781 pIn1->u.i = (int)(pOp-aOp);
drh2eb95372008-06-06 15:04:36 +0000782 REGISTER_TRACE(pOp->p1, pIn1);
drhf56fa462015-04-13 21:39:54 +0000783
784 /* Most jump operations do a goto to this spot in order to update
785 ** the pOp pointer. */
786jump_to_p2:
787 pOp = &aOp[pOp->p2 - 1];
drh8c74a8c2002-08-25 19:20:40 +0000788 break;
789}
790
drh2eb95372008-06-06 15:04:36 +0000791/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000792**
drh81cf13e2014-02-07 18:27:53 +0000793** Jump to the next instruction after the address in register P1. After
794** the jump, register P1 becomes undefined.
drh8c74a8c2002-08-25 19:20:40 +0000795*/
drh2eb95372008-06-06 15:04:36 +0000796case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000797 pIn1 = &aMem[pOp->p1];
drh81cf13e2014-02-07 18:27:53 +0000798 assert( pIn1->flags==MEM_Int );
drhf56fa462015-04-13 21:39:54 +0000799 pOp = &aOp[pIn1->u.i];
drh81cf13e2014-02-07 18:27:53 +0000800 pIn1->flags = MEM_Undefined;
drh8c74a8c2002-08-25 19:20:40 +0000801 break;
802}
803
drhed71a832014-02-07 19:18:10 +0000804/* Opcode: InitCoroutine P1 P2 P3 * *
drh81cf13e2014-02-07 18:27:53 +0000805**
drh5dad9a32014-07-25 18:37:42 +0000806** Set up register P1 so that it will Yield to the coroutine
drhed71a832014-02-07 19:18:10 +0000807** located at address P3.
808**
drh5dad9a32014-07-25 18:37:42 +0000809** If P2!=0 then the coroutine implementation immediately follows
810** this opcode. So jump over the coroutine implementation to
drhed71a832014-02-07 19:18:10 +0000811** address P2.
drh5dad9a32014-07-25 18:37:42 +0000812**
813** See also: EndCoroutine
drh81cf13e2014-02-07 18:27:53 +0000814*/
815case OP_InitCoroutine: { /* jump */
drhed71a832014-02-07 19:18:10 +0000816 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
817 assert( pOp->p2>=0 && pOp->p2<p->nOp );
818 assert( pOp->p3>=0 && pOp->p3<p->nOp );
drh81cf13e2014-02-07 18:27:53 +0000819 pOut = &aMem[pOp->p1];
drhed71a832014-02-07 19:18:10 +0000820 assert( !VdbeMemDynamic(pOut) );
821 pOut->u.i = pOp->p3 - 1;
drh81cf13e2014-02-07 18:27:53 +0000822 pOut->flags = MEM_Int;
drhf56fa462015-04-13 21:39:54 +0000823 if( pOp->p2 ) goto jump_to_p2;
drh81cf13e2014-02-07 18:27:53 +0000824 break;
825}
826
827/* Opcode: EndCoroutine P1 * * * *
828**
drhbc5cf382014-08-06 01:08:07 +0000829** The instruction at the address in register P1 is a Yield.
drh5dad9a32014-07-25 18:37:42 +0000830** Jump to the P2 parameter of that Yield.
drh81cf13e2014-02-07 18:27:53 +0000831** After the jump, register P1 becomes undefined.
drh5dad9a32014-07-25 18:37:42 +0000832**
833** See also: InitCoroutine
drh81cf13e2014-02-07 18:27:53 +0000834*/
835case OP_EndCoroutine: { /* in1 */
836 VdbeOp *pCaller;
837 pIn1 = &aMem[pOp->p1];
838 assert( pIn1->flags==MEM_Int );
839 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
840 pCaller = &aOp[pIn1->u.i];
841 assert( pCaller->opcode==OP_Yield );
842 assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
drhf56fa462015-04-13 21:39:54 +0000843 pOp = &aOp[pCaller->p2 - 1];
drh81cf13e2014-02-07 18:27:53 +0000844 pIn1->flags = MEM_Undefined;
845 break;
846}
847
848/* Opcode: Yield P1 P2 * * *
drhe00ee6e2008-06-20 15:24:01 +0000849**
drh5dad9a32014-07-25 18:37:42 +0000850** Swap the program counter with the value in register P1. This
851** has the effect of yielding to a coroutine.
drh81cf13e2014-02-07 18:27:53 +0000852**
drh5dad9a32014-07-25 18:37:42 +0000853** If the coroutine that is launched by this instruction ends with
854** Yield or Return then continue to the next instruction. But if
855** the coroutine launched by this instruction ends with
856** EndCoroutine, then jump to P2 rather than continuing with the
857** next instruction.
858**
859** See also: InitCoroutine
drhe00ee6e2008-06-20 15:24:01 +0000860*/
drh81cf13e2014-02-07 18:27:53 +0000861case OP_Yield: { /* in1, jump */
drhe00ee6e2008-06-20 15:24:01 +0000862 int pcDest;
drh3c657212009-11-17 23:59:58 +0000863 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000864 assert( VdbeMemDynamic(pIn1)==0 );
drhe00ee6e2008-06-20 15:24:01 +0000865 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000866 pcDest = (int)pIn1->u.i;
drhf56fa462015-04-13 21:39:54 +0000867 pIn1->u.i = (int)(pOp - aOp);
drhe00ee6e2008-06-20 15:24:01 +0000868 REGISTER_TRACE(pOp->p1, pIn1);
drhf56fa462015-04-13 21:39:54 +0000869 pOp = &aOp[pcDest];
drhe00ee6e2008-06-20 15:24:01 +0000870 break;
871}
872
drhf9c8ce32013-11-05 13:33:55 +0000873/* Opcode: HaltIfNull P1 P2 P3 P4 P5
drh0fd61352014-02-07 02:29:45 +0000874** Synopsis: if r[P3]=null halt
drh5053a792009-02-20 03:02:23 +0000875**
drhef8662b2011-06-20 21:47:58 +0000876** Check the value in register P3. If it is NULL then Halt using
drh5053a792009-02-20 03:02:23 +0000877** parameter P1, P2, and P4 as if this were a Halt instruction. If the
878** value in register P3 is not NULL, then this routine is a no-op.
drhf9c8ce32013-11-05 13:33:55 +0000879** The P5 parameter should be 1.
drh5053a792009-02-20 03:02:23 +0000880*/
881case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000882 pIn3 = &aMem[pOp->p3];
drh5053a792009-02-20 03:02:23 +0000883 if( (pIn3->flags & MEM_Null)==0 ) break;
884 /* Fall through into OP_Halt */
885}
drhe00ee6e2008-06-20 15:24:01 +0000886
drhf9c8ce32013-11-05 13:33:55 +0000887/* Opcode: Halt P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +0000888**
drh3d4501e2008-12-04 20:40:10 +0000889** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000890** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000891**
drh92f02c32004-09-02 14:57:08 +0000892** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
893** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
894** For errors, it can be some other value. If P1!=0 then P2 will determine
895** whether or not to rollback the current transaction. Do not rollback
896** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
897** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000898** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000899**
drh66a51672008-01-03 00:01:23 +0000900** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000901**
drhf9c8ce32013-11-05 13:33:55 +0000902** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
903**
904** 0: (no change)
905** 1: NOT NULL contraint failed: P4
906** 2: UNIQUE constraint failed: P4
907** 3: CHECK constraint failed: P4
908** 4: FOREIGN KEY constraint failed: P4
909**
910** If P5 is not zero and P4 is NULL, then everything after the ":" is
911** omitted.
912**
drh9cfcf5d2002-01-29 18:41:24 +0000913** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000914** every program. So a jump past the last instruction of the program
915** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000916*/
drh9cbf3422008-01-17 16:22:13 +0000917case OP_Halt: {
drhf9c8ce32013-11-05 13:33:55 +0000918 const char *zType;
919 const char *zLogFmt;
drhf56fa462015-04-13 21:39:54 +0000920 VdbeFrame *pFrame;
921 int pcx;
drhf9c8ce32013-11-05 13:33:55 +0000922
drhf56fa462015-04-13 21:39:54 +0000923 pcx = (int)(pOp - aOp);
dan165921a2009-08-28 18:53:45 +0000924 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000925 /* Halt the sub-program. Return control to the parent frame. */
drhf56fa462015-04-13 21:39:54 +0000926 pFrame = p->pFrame;
dan165921a2009-08-28 18:53:45 +0000927 p->pFrame = pFrame->pParent;
928 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000929 sqlite3VdbeSetChanges(db, p->nChange);
drhf56fa462015-04-13 21:39:54 +0000930 pcx = sqlite3VdbeFrameRestore(pFrame);
drh99a66922011-05-13 18:51:42 +0000931 lastRowid = db->lastRowid;
dan165921a2009-08-28 18:53:45 +0000932 if( pOp->p2==OE_Ignore ){
drhf56fa462015-04-13 21:39:54 +0000933 /* Instruction pcx is the OP_Program that invoked the sub-program
dan2832ad42009-08-31 15:27:27 +0000934 ** currently being halted. If the p2 instruction of this OP_Halt
935 ** instruction is set to OE_Ignore, then the sub-program is throwing
936 ** an IGNORE exception. In this case jump to the address specified
937 ** as the p2 of the calling OP_Program. */
drhf56fa462015-04-13 21:39:54 +0000938 pcx = p->aOp[pcx].p2-1;
dan165921a2009-08-28 18:53:45 +0000939 }
drhbbe879d2009-11-14 18:04:35 +0000940 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000941 aMem = p->aMem;
drhf56fa462015-04-13 21:39:54 +0000942 pOp = &aOp[pcx];
dan165921a2009-08-28 18:53:45 +0000943 break;
944 }
drh92f02c32004-09-02 14:57:08 +0000945 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000946 p->errorAction = (u8)pOp->p2;
drhf56fa462015-04-13 21:39:54 +0000947 p->pc = pcx;
drhf9c8ce32013-11-05 13:33:55 +0000948 if( p->rc ){
drhd9b7ec92013-11-06 14:05:21 +0000949 if( pOp->p5 ){
950 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
951 "FOREIGN KEY" };
952 assert( pOp->p5>=1 && pOp->p5<=4 );
953 testcase( pOp->p5==1 );
954 testcase( pOp->p5==2 );
955 testcase( pOp->p5==3 );
956 testcase( pOp->p5==4 );
957 zType = azType[pOp->p5-1];
958 }else{
959 zType = 0;
960 }
drh4308e342013-11-11 16:55:52 +0000961 assert( zType!=0 || pOp->p4.z!=0 );
drhf9c8ce32013-11-05 13:33:55 +0000962 zLogFmt = "abort at %d in [%s]: %s";
963 if( zType && pOp->p4.z ){
964 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed: %s",
965 zType, pOp->p4.z);
966 }else if( pOp->p4.z ){
967 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
drhf9c8ce32013-11-05 13:33:55 +0000968 }else{
drh4308e342013-11-11 16:55:52 +0000969 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed", zType);
drhf9c8ce32013-11-05 13:33:55 +0000970 }
drhf56fa462015-04-13 21:39:54 +0000971 sqlite3_log(pOp->p1, zLogFmt, pcx, p->zSql, p->zErrMsg);
drh9cfcf5d2002-01-29 18:41:24 +0000972 }
drh92f02c32004-09-02 14:57:08 +0000973 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +0000974 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +0000975 if( rc==SQLITE_BUSY ){
drh900b31e2007-08-28 02:27:51 +0000976 p->rc = rc = SQLITE_BUSY;
977 }else{
drhd91c1a12013-02-09 13:58:25 +0000978 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
drh648e2642013-07-11 15:03:32 +0000979 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
drh900b31e2007-08-28 02:27:51 +0000980 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +0000981 }
drhf56fa462015-04-13 21:39:54 +0000982 pOp = &aOp[pcx];
drh900b31e2007-08-28 02:27:51 +0000983 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +0000984}
drhc61053b2000-06-04 12:58:36 +0000985
drh4c583122008-01-04 22:01:03 +0000986/* Opcode: Integer P1 P2 * * *
drh81316f82013-10-29 20:40:47 +0000987** Synopsis: r[P2]=P1
drh5e00f6c2001-09-13 13:46:56 +0000988**
drh9cbf3422008-01-17 16:22:13 +0000989** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +0000990*/
drh27a348c2015-04-13 19:14:06 +0000991case OP_Integer: { /* out2 */
992 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +0000993 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +0000994 break;
995}
996
drh4c583122008-01-04 22:01:03 +0000997/* Opcode: Int64 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +0000998** Synopsis: r[P2]=P4
drh29dda4a2005-07-21 18:23:20 +0000999**
drh66a51672008-01-03 00:01:23 +00001000** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +00001001** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +00001002*/
drh27a348c2015-04-13 19:14:06 +00001003case OP_Int64: { /* out2 */
1004 pOut = out2Prerelease(p, pOp);
danielk19772dca4ac2008-01-03 11:50:29 +00001005 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +00001006 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +00001007 break;
1008}
drh4f26d6c2004-05-26 23:25:30 +00001009
drh13573c72010-01-12 17:04:07 +00001010#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +00001011/* Opcode: Real * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001012** Synopsis: r[P2]=P4
drhf4479502004-05-27 03:12:53 +00001013**
drh4c583122008-01-04 22:01:03 +00001014** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +00001015** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +00001016*/
drh27a348c2015-04-13 19:14:06 +00001017case OP_Real: { /* same as TK_FLOAT, out2 */
1018 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001019 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +00001020 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh74eaba42014-09-18 17:52:15 +00001021 pOut->u.r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +00001022 break;
1023}
drh13573c72010-01-12 17:04:07 +00001024#endif
danielk1977cbb18d22004-05-28 11:37:27 +00001025
drh3c84ddf2008-01-09 02:15:38 +00001026/* Opcode: String8 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001027** Synopsis: r[P2]='P4'
danielk1977cbb18d22004-05-28 11:37:27 +00001028**
drh66a51672008-01-03 00:01:23 +00001029** P4 points to a nul terminated UTF-8 string. This opcode is transformed
drhf07cf6e2015-03-06 16:45:16 +00001030** into a String opcode before it is executed for the first time. During
drh0fd61352014-02-07 02:29:45 +00001031** this transformation, the length of string P4 is computed and stored
1032** as the P1 parameter.
danielk1977cbb18d22004-05-28 11:37:27 +00001033*/
drh27a348c2015-04-13 19:14:06 +00001034case OP_String8: { /* same as TK_STRING, out2 */
danielk19772dca4ac2008-01-03 11:50:29 +00001035 assert( pOp->p4.z!=0 );
drh27a348c2015-04-13 19:14:06 +00001036 pOut = out2Prerelease(p, pOp);
drhed2df7f2005-11-16 04:34:32 +00001037 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +00001038 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +00001039
1040#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +00001041 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +00001042 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1043 if( rc==SQLITE_TOOBIG ) goto too_big;
drh4c583122008-01-04 22:01:03 +00001044 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh17bcb102014-09-18 21:25:33 +00001045 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
drhc91b2fd2014-03-01 18:13:23 +00001046 assert( VdbeMemDynamic(pOut)==0 );
drh17bcb102014-09-18 21:25:33 +00001047 pOut->szMalloc = 0;
drh4c583122008-01-04 22:01:03 +00001048 pOut->flags |= MEM_Static;
drh66a51672008-01-03 00:01:23 +00001049 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +00001050 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +00001051 }
drh66a51672008-01-03 00:01:23 +00001052 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +00001053 pOp->p4.z = pOut->z;
1054 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +00001055 }
danielk197793758c82005-01-21 08:13:14 +00001056#endif
drhbb4957f2008-03-20 14:03:29 +00001057 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +00001058 goto too_big;
1059 }
1060 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +00001061}
drhf4479502004-05-27 03:12:53 +00001062
drhf07cf6e2015-03-06 16:45:16 +00001063/* Opcode: String P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00001064** Synopsis: r[P2]='P4' (len=P1)
drhf4479502004-05-27 03:12:53 +00001065**
drh9cbf3422008-01-17 16:22:13 +00001066** The string value P4 of length P1 (bytes) is stored in register P2.
drhf07cf6e2015-03-06 16:45:16 +00001067**
1068** If P5!=0 and the content of register P3 is greater than zero, then
drha9c18a92015-03-06 20:49:52 +00001069** the datatype of the register P2 is converted to BLOB. The content is
1070** the same sequence of bytes, it is merely interpreted as a BLOB instead
1071** of a string, as if it had been CAST.
drhf4479502004-05-27 03:12:53 +00001072*/
drh27a348c2015-04-13 19:14:06 +00001073case OP_String: { /* out2 */
danielk19772dca4ac2008-01-03 11:50:29 +00001074 assert( pOp->p4.z!=0 );
drh27a348c2015-04-13 19:14:06 +00001075 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001076 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1077 pOut->z = pOp->p4.z;
1078 pOut->n = pOp->p1;
1079 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001080 UPDATE_MAX_BLOBSIZE(pOut);
drhf07cf6e2015-03-06 16:45:16 +00001081 if( pOp->p5 ){
1082 assert( pOp->p3>0 );
1083 assert( pOp->p3<=(p->nMem-p->nCursor) );
1084 pIn3 = &aMem[pOp->p3];
1085 assert( pIn3->flags & MEM_Int );
1086 if( pIn3->u.i ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1087 }
danielk1977c572ef72004-05-27 09:28:41 +00001088 break;
1089}
1090
drh053a1282012-09-19 21:15:46 +00001091/* Opcode: Null P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001092** Synopsis: r[P2..P3]=NULL
drhf0863fe2005-06-12 21:35:51 +00001093**
drhb8475df2011-12-09 16:21:19 +00001094** Write a NULL into registers P2. If P3 greater than P2, then also write
drh053a1282012-09-19 21:15:46 +00001095** NULL into register P3 and every register in between P2 and P3. If P3
drhb8475df2011-12-09 16:21:19 +00001096** is less than P2 (typically P3 is zero) then only register P2 is
drh053a1282012-09-19 21:15:46 +00001097** set to NULL.
1098**
1099** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1100** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1101** OP_Ne or OP_Eq.
drhf0863fe2005-06-12 21:35:51 +00001102*/
drh27a348c2015-04-13 19:14:06 +00001103case OP_Null: { /* out2 */
drhb8475df2011-12-09 16:21:19 +00001104 int cnt;
drh053a1282012-09-19 21:15:46 +00001105 u16 nullFlag;
drh27a348c2015-04-13 19:14:06 +00001106 pOut = out2Prerelease(p, pOp);
drhb8475df2011-12-09 16:21:19 +00001107 cnt = pOp->p3-pOp->p2;
dan3bc9f742013-08-15 16:18:39 +00001108 assert( pOp->p3<=(p->nMem-p->nCursor) );
drh053a1282012-09-19 21:15:46 +00001109 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
drhb8475df2011-12-09 16:21:19 +00001110 while( cnt>0 ){
1111 pOut++;
1112 memAboutToChange(p, pOut);
drh0725cab2014-09-17 14:52:46 +00001113 sqlite3VdbeMemSetNull(pOut);
drh053a1282012-09-19 21:15:46 +00001114 pOut->flags = nullFlag;
drhb8475df2011-12-09 16:21:19 +00001115 cnt--;
1116 }
drhf0863fe2005-06-12 21:35:51 +00001117 break;
1118}
1119
drh05a86c52014-02-16 01:55:49 +00001120/* Opcode: SoftNull P1 * * * *
1121** Synopsis: r[P1]=NULL
1122**
1123** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1124** instruction, but do not free any string or blob memory associated with
1125** the register, so that if the value was a string or blob that was
1126** previously copied using OP_SCopy, the copies will continue to be valid.
1127*/
1128case OP_SoftNull: {
1129 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
1130 pOut = &aMem[pOp->p1];
1131 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
1132 break;
1133}
drhf0863fe2005-06-12 21:35:51 +00001134
drha5750cf2014-02-07 13:20:31 +00001135/* Opcode: Blob P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001136** Synopsis: r[P2]=P4 (len=P1)
danielk1977c572ef72004-05-27 09:28:41 +00001137**
drh9de221d2008-01-05 06:51:30 +00001138** P4 points to a blob of data P1 bytes long. Store this
drh710c4842010-08-30 01:17:20 +00001139** blob in register P2.
danielk1977c572ef72004-05-27 09:28:41 +00001140*/
drh27a348c2015-04-13 19:14:06 +00001141case OP_Blob: { /* out2 */
drhcbd2da92007-12-17 16:20:06 +00001142 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh27a348c2015-04-13 19:14:06 +00001143 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001144 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +00001145 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001146 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +00001147 break;
1148}
1149
drheaf52d82010-05-12 13:50:23 +00001150/* Opcode: Variable P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001151** Synopsis: r[P2]=parameter(P1,P4)
drh50457892003-09-06 01:10:47 +00001152**
drheaf52d82010-05-12 13:50:23 +00001153** Transfer the values of bound parameter P1 into register P2
drh08de1492009-02-20 03:55:05 +00001154**
drh0fd61352014-02-07 02:29:45 +00001155** If the parameter is named, then its name appears in P4.
drh08de1492009-02-20 03:55:05 +00001156** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +00001157*/
drh27a348c2015-04-13 19:14:06 +00001158case OP_Variable: { /* out2 */
drh856c1032009-06-02 15:21:42 +00001159 Mem *pVar; /* Value being transferred */
1160
drheaf52d82010-05-12 13:50:23 +00001161 assert( pOp->p1>0 && pOp->p1<=p->nVar );
drh04e9eea2011-06-01 19:16:06 +00001162 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
drheaf52d82010-05-12 13:50:23 +00001163 pVar = &p->aVar[pOp->p1 - 1];
1164 if( sqlite3VdbeMemTooBig(pVar) ){
1165 goto too_big;
drh023ae032007-05-08 12:12:16 +00001166 }
drh27a348c2015-04-13 19:14:06 +00001167 pOut = out2Prerelease(p, pOp);
drheaf52d82010-05-12 13:50:23 +00001168 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1169 UPDATE_MAX_BLOBSIZE(pOut);
danielk197793d46752004-05-23 13:30:58 +00001170 break;
1171}
danielk1977295ba552004-05-19 10:34:51 +00001172
drhb21e7c72008-06-22 12:37:57 +00001173/* Opcode: Move P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00001174** Synopsis: r[P2@P3]=r[P1@P3]
drh5e00f6c2001-09-13 13:46:56 +00001175**
drh079a3072014-03-19 14:10:55 +00001176** Move the P3 values in register P1..P1+P3-1 over into
1177** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
drhb21e7c72008-06-22 12:37:57 +00001178** left holding a NULL. It is an error for register ranges
drh079a3072014-03-19 14:10:55 +00001179** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1180** for P3 to be less than 1.
drh5e00f6c2001-09-13 13:46:56 +00001181*/
drhe1349cb2008-04-01 00:36:10 +00001182case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001183 int n; /* Number of registers left to copy */
1184 int p1; /* Register to copy from */
1185 int p2; /* Register to copy to */
1186
drhe09f43f2013-11-21 04:18:31 +00001187 n = pOp->p3;
drh856c1032009-06-02 15:21:42 +00001188 p1 = pOp->p1;
1189 p2 = pOp->p2;
drh079a3072014-03-19 14:10:55 +00001190 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001191 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001192
drha6c2ed92009-11-14 23:22:23 +00001193 pIn1 = &aMem[p1];
1194 pOut = &aMem[p2];
drhe09f43f2013-11-21 04:18:31 +00001195 do{
dan3bc9f742013-08-15 16:18:39 +00001196 assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
1197 assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00001198 assert( memIsValid(pIn1) );
1199 memAboutToChange(p, pOut);
drh17bcb102014-09-18 21:25:33 +00001200 sqlite3VdbeMemMove(pOut, pIn1);
drh52043d72011-08-03 16:40:15 +00001201#ifdef SQLITE_DEBUG
1202 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
1203 pOut->pScopyFrom += p1 - pOp->p2;
1204 }
1205#endif
drhb21e7c72008-06-22 12:37:57 +00001206 REGISTER_TRACE(p2++, pOut);
1207 pIn1++;
1208 pOut++;
drh079a3072014-03-19 14:10:55 +00001209 }while( --n );
drhe1349cb2008-04-01 00:36:10 +00001210 break;
1211}
1212
drhe8e4af72012-09-21 00:04:28 +00001213/* Opcode: Copy P1 P2 P3 * *
drh4eded602013-12-20 15:59:20 +00001214** Synopsis: r[P2@P3+1]=r[P1@P3+1]
drhb1fdb2a2008-01-05 04:06:03 +00001215**
drhe8e4af72012-09-21 00:04:28 +00001216** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
drhb1fdb2a2008-01-05 04:06:03 +00001217**
1218** This instruction makes a deep copy of the value. A duplicate
1219** is made of any string or blob constant. See also OP_SCopy.
1220*/
drhe8e4af72012-09-21 00:04:28 +00001221case OP_Copy: {
1222 int n;
1223
1224 n = pOp->p3;
drh3c657212009-11-17 23:59:58 +00001225 pIn1 = &aMem[pOp->p1];
1226 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001227 assert( pOut!=pIn1 );
drhe8e4af72012-09-21 00:04:28 +00001228 while( 1 ){
1229 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1230 Deephemeralize(pOut);
drh953f7612012-12-07 22:18:54 +00001231#ifdef SQLITE_DEBUG
1232 pOut->pScopyFrom = 0;
1233#endif
drhe8e4af72012-09-21 00:04:28 +00001234 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1235 if( (n--)==0 ) break;
1236 pOut++;
1237 pIn1++;
1238 }
drhe1349cb2008-04-01 00:36:10 +00001239 break;
1240}
1241
drhb1fdb2a2008-01-05 04:06:03 +00001242/* Opcode: SCopy P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001243** Synopsis: r[P2]=r[P1]
drhb1fdb2a2008-01-05 04:06:03 +00001244**
drh9cbf3422008-01-17 16:22:13 +00001245** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001246**
1247** This instruction makes a shallow copy of the value. If the value
1248** is a string or blob, then the copy is only a pointer to the
1249** original and hence if the original changes so will the copy.
1250** Worse, if the original is deallocated, the copy becomes invalid.
1251** Thus the program must guarantee that the original will not change
1252** during the lifetime of the copy. Use OP_Copy to make a complete
1253** copy.
1254*/
drh26198bb2013-10-31 11:15:09 +00001255case OP_SCopy: { /* out2 */
drh3c657212009-11-17 23:59:58 +00001256 pIn1 = &aMem[pOp->p1];
1257 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001258 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001259 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh2b4ded92010-09-27 21:09:31 +00001260#ifdef SQLITE_DEBUG
1261 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1262#endif
drh5e00f6c2001-09-13 13:46:56 +00001263 break;
1264}
drh75897232000-05-29 14:26:00 +00001265
drh9cbf3422008-01-17 16:22:13 +00001266/* Opcode: ResultRow P1 P2 * * *
drh4af5bee2013-10-30 02:37:50 +00001267** Synopsis: output=r[P1@P2]
drhd4e70eb2008-01-02 00:34:36 +00001268**
shane21e7feb2008-05-30 15:59:49 +00001269** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001270** results. This opcode causes the sqlite3_step() call to terminate
1271** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
drh4d87aae2014-02-20 19:42:00 +00001272** structure to provide access to the r(P1)..r(P1+P2-1) values as
drh0fd61352014-02-07 02:29:45 +00001273** the result row.
drhd4e70eb2008-01-02 00:34:36 +00001274*/
drh9cbf3422008-01-17 16:22:13 +00001275case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001276 Mem *pMem;
1277 int i;
1278 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001279 assert( pOp->p1>0 );
dan3bc9f742013-08-15 16:18:39 +00001280 assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 );
drhd4e70eb2008-01-02 00:34:36 +00001281
drhe6400b92013-11-13 23:48:46 +00001282#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1283 /* Run the progress counter just before returning.
1284 */
1285 if( db->xProgress!=0
1286 && nVmStep>=nProgressLimit
1287 && db->xProgress(db->pProgressArg)!=0
1288 ){
1289 rc = SQLITE_INTERRUPT;
1290 goto vdbe_error_halt;
1291 }
1292#endif
1293
dan32b09f22009-09-23 17:29:59 +00001294 /* If this statement has violated immediate foreign key constraints, do
1295 ** not return the number of rows modified. And do not RELEASE the statement
1296 ** transaction. It needs to be rolled back. */
1297 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1298 assert( db->flags&SQLITE_CountRows );
1299 assert( p->usesStmtJournal );
1300 break;
1301 }
1302
danielk1977bd434552009-03-18 10:33:00 +00001303 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1304 ** DML statements invoke this opcode to return the number of rows
1305 ** modified to the user. This is the only way that a VM that
1306 ** opens a statement transaction may invoke this opcode.
1307 **
1308 ** In case this is such a statement, close any statement transaction
1309 ** opened by this VM before returning control to the user. This is to
1310 ** ensure that statement-transactions are always nested, not overlapping.
1311 ** If the open statement-transaction is not closed here, then the user
1312 ** may step another VM that opens its own statement transaction. This
1313 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001314 **
1315 ** The statement transaction is never a top-level transaction. Hence
1316 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001317 */
1318 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001319 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1320 if( NEVER(rc!=SQLITE_OK) ){
danielk1977bd434552009-03-18 10:33:00 +00001321 break;
1322 }
1323
drhd4e70eb2008-01-02 00:34:36 +00001324 /* Invalidate all ephemeral cursor row caches */
1325 p->cacheCtr = (p->cacheCtr + 2)|1;
1326
1327 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001328 ** and have an assigned type. The results are de-ephemeralized as
drhb8a45bb2011-12-31 21:51:55 +00001329 ** a side effect.
drhd4e70eb2008-01-02 00:34:36 +00001330 */
drha6c2ed92009-11-14 23:22:23 +00001331 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001332 for(i=0; i<pOp->p2; i++){
drh2b4ded92010-09-27 21:09:31 +00001333 assert( memIsValid(&pMem[i]) );
drhebc16712010-09-28 00:25:58 +00001334 Deephemeralize(&pMem[i]);
drh746fd9c2010-09-28 06:00:47 +00001335 assert( (pMem[i].flags & MEM_Ephem)==0
1336 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
drhd4e70eb2008-01-02 00:34:36 +00001337 sqlite3VdbeMemNulTerminate(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001338 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001339 }
drh28039692008-03-17 16:54:01 +00001340 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001341
1342 /* Return SQLITE_ROW
1343 */
drhf56fa462015-04-13 21:39:54 +00001344 p->pc = (int)(pOp - aOp) + 1;
drhd4e70eb2008-01-02 00:34:36 +00001345 rc = SQLITE_ROW;
1346 goto vdbe_return;
1347}
1348
drh5b6afba2008-01-05 16:29:28 +00001349/* Opcode: Concat P1 P2 P3 * *
drh313619f2013-10-31 20:34:06 +00001350** Synopsis: r[P3]=r[P2]+r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001351**
drh5b6afba2008-01-05 16:29:28 +00001352** Add the text in register P1 onto the end of the text in
1353** register P2 and store the result in register P3.
1354** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001355**
1356** P3 = P2 || P1
1357**
1358** It is illegal for P1 and P3 to be the same register. Sometimes,
1359** if P3 is the same register as P2, the implementation is able
1360** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001361*/
drh5b6afba2008-01-05 16:29:28 +00001362case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001363 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001364
drh3c657212009-11-17 23:59:58 +00001365 pIn1 = &aMem[pOp->p1];
1366 pIn2 = &aMem[pOp->p2];
1367 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001368 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001369 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001370 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001371 break;
drh5e00f6c2001-09-13 13:46:56 +00001372 }
drha0c06522009-06-17 22:50:41 +00001373 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001374 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001375 Stringify(pIn2, encoding);
1376 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001377 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001378 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001379 }
drh9c1905f2008-12-10 22:32:56 +00001380 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001381 goto no_mem;
1382 }
drhc91b2fd2014-03-01 18:13:23 +00001383 MemSetTypeFlag(pOut, MEM_Str);
danielk1977a7a8e142008-02-13 18:25:27 +00001384 if( pOut!=pIn2 ){
1385 memcpy(pOut->z, pIn2->z, pIn2->n);
1386 }
1387 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
drh81316f82013-10-29 20:40:47 +00001388 pOut->z[nByte]=0;
danielk1977a7a8e142008-02-13 18:25:27 +00001389 pOut->z[nByte+1] = 0;
1390 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001391 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001392 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001393 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001394 break;
1395}
drh75897232000-05-29 14:26:00 +00001396
drh3c84ddf2008-01-09 02:15:38 +00001397/* Opcode: Add P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001398** Synopsis: r[P3]=r[P1]+r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001399**
drh60a713c2008-01-21 16:22:45 +00001400** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001401** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001402** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001403*/
drh3c84ddf2008-01-09 02:15:38 +00001404/* Opcode: Multiply P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001405** Synopsis: r[P3]=r[P1]*r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001406**
drh3c84ddf2008-01-09 02:15:38 +00001407**
shane21e7feb2008-05-30 15:59:49 +00001408** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001409** and store the result in register P3.
1410** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001411*/
drh3c84ddf2008-01-09 02:15:38 +00001412/* Opcode: Subtract P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001413** Synopsis: r[P3]=r[P2]-r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001414**
drh60a713c2008-01-21 16:22:45 +00001415** Subtract the value in register P1 from the value in register P2
1416** and store the result in register P3.
1417** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001418*/
drh9cbf3422008-01-17 16:22:13 +00001419/* Opcode: Divide P1 P2 P3 * *
drh40864a12013-11-15 18:58:37 +00001420** Synopsis: r[P3]=r[P2]/r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001421**
drh60a713c2008-01-21 16:22:45 +00001422** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001423** and store the result in register P3 (P3=P2/P1). If the value in
1424** register P1 is zero, then the result is NULL. If either input is
1425** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001426*/
drh9cbf3422008-01-17 16:22:13 +00001427/* Opcode: Remainder P1 P2 P3 * *
drh40864a12013-11-15 18:58:37 +00001428** Synopsis: r[P3]=r[P2]%r[P1]
drhbf4133c2001-10-13 02:59:08 +00001429**
drh40864a12013-11-15 18:58:37 +00001430** Compute the remainder after integer register P2 is divided by
1431** register P1 and store the result in register P3.
1432** If the value in register P1 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001433** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001434*/
drh5b6afba2008-01-05 16:29:28 +00001435case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1436case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1437case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1438case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1439case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drhbe707b32012-12-10 22:19:14 +00001440 char bIntint; /* Started out as two integer operands */
drh3d1d90a2014-03-24 15:00:15 +00001441 u16 flags; /* Combined MEM_* flags from both inputs */
1442 u16 type1; /* Numeric type of left operand */
1443 u16 type2; /* Numeric type of right operand */
drh856c1032009-06-02 15:21:42 +00001444 i64 iA; /* Integer value of left operand */
1445 i64 iB; /* Integer value of right operand */
1446 double rA; /* Real value of left operand */
1447 double rB; /* Real value of right operand */
1448
drh3c657212009-11-17 23:59:58 +00001449 pIn1 = &aMem[pOp->p1];
drh3d1d90a2014-03-24 15:00:15 +00001450 type1 = numericType(pIn1);
drh3c657212009-11-17 23:59:58 +00001451 pIn2 = &aMem[pOp->p2];
drh3d1d90a2014-03-24 15:00:15 +00001452 type2 = numericType(pIn2);
drh3c657212009-11-17 23:59:58 +00001453 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001454 flags = pIn1->flags | pIn2->flags;
drha05a7222008-01-19 03:35:58 +00001455 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
drh3d1d90a2014-03-24 15:00:15 +00001456 if( (type1 & type2 & MEM_Int)!=0 ){
drh856c1032009-06-02 15:21:42 +00001457 iA = pIn1->u.i;
1458 iB = pIn2->u.i;
drhbe707b32012-12-10 22:19:14 +00001459 bIntint = 1;
drh5e00f6c2001-09-13 13:46:56 +00001460 switch( pOp->opcode ){
drh158b9cb2011-03-05 20:59:46 +00001461 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1462 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1463 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
drhbf4133c2001-10-13 02:59:08 +00001464 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001465 if( iA==0 ) goto arithmetic_result_is_null;
drh158b9cb2011-03-05 20:59:46 +00001466 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
drh856c1032009-06-02 15:21:42 +00001467 iB /= iA;
drh75897232000-05-29 14:26:00 +00001468 break;
1469 }
drhbf4133c2001-10-13 02:59:08 +00001470 default: {
drh856c1032009-06-02 15:21:42 +00001471 if( iA==0 ) goto arithmetic_result_is_null;
1472 if( iA==-1 ) iA = 1;
1473 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001474 break;
1475 }
drh75897232000-05-29 14:26:00 +00001476 }
drh856c1032009-06-02 15:21:42 +00001477 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001478 MemSetTypeFlag(pOut, MEM_Int);
drh5e00f6c2001-09-13 13:46:56 +00001479 }else{
drhbe707b32012-12-10 22:19:14 +00001480 bIntint = 0;
drh158b9cb2011-03-05 20:59:46 +00001481fp_math:
drh856c1032009-06-02 15:21:42 +00001482 rA = sqlite3VdbeRealValue(pIn1);
1483 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001484 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001485 case OP_Add: rB += rA; break;
1486 case OP_Subtract: rB -= rA; break;
1487 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001488 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001489 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001490 if( rA==(double)0 ) goto arithmetic_result_is_null;
1491 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001492 break;
1493 }
drhbf4133c2001-10-13 02:59:08 +00001494 default: {
shane75ac1de2009-06-09 18:58:52 +00001495 iA = (i64)rA;
1496 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001497 if( iA==0 ) goto arithmetic_result_is_null;
1498 if( iA==-1 ) iA = 1;
1499 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001500 break;
1501 }
drh5e00f6c2001-09-13 13:46:56 +00001502 }
drhc5a7b512010-01-13 16:25:42 +00001503#ifdef SQLITE_OMIT_FLOATING_POINT
1504 pOut->u.i = rB;
1505 MemSetTypeFlag(pOut, MEM_Int);
1506#else
drh856c1032009-06-02 15:21:42 +00001507 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001508 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001509 }
drh74eaba42014-09-18 17:52:15 +00001510 pOut->u.r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001511 MemSetTypeFlag(pOut, MEM_Real);
drh3d1d90a2014-03-24 15:00:15 +00001512 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
drh5b6afba2008-01-05 16:29:28 +00001513 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001514 }
drhc5a7b512010-01-13 16:25:42 +00001515#endif
drh5e00f6c2001-09-13 13:46:56 +00001516 }
1517 break;
1518
drha05a7222008-01-19 03:35:58 +00001519arithmetic_result_is_null:
1520 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001521 break;
1522}
1523
drh7a957892012-02-02 17:35:43 +00001524/* Opcode: CollSeq P1 * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001525**
drh66a51672008-01-03 00:01:23 +00001526** P4 is a pointer to a CollSeq struct. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001527** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1528** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001529** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001530**
drh7a957892012-02-02 17:35:43 +00001531** If P1 is not zero, then it is a register that a subsequent min() or
1532** max() aggregate will set to 1 if the current row is not the minimum or
1533** maximum. The P1 register is initialized to 0 by this instruction.
1534**
danielk1977dc1bdc42004-06-11 10:51:27 +00001535** The interface used by the implementation of the aforementioned functions
1536** to retrieve the collation sequence set by this opcode is not available
drh0a0d0562015-03-12 05:08:34 +00001537** publicly. Only built-in functions have access to this feature.
danielk1977dc1bdc42004-06-11 10:51:27 +00001538*/
drh9cbf3422008-01-17 16:22:13 +00001539case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001540 assert( pOp->p4type==P4_COLLSEQ );
drh7a957892012-02-02 17:35:43 +00001541 if( pOp->p1 ){
1542 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1543 }
danielk1977dc1bdc42004-06-11 10:51:27 +00001544 break;
1545}
1546
drh98757152008-01-09 23:04:12 +00001547/* Opcode: Function P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00001548** Synopsis: r[P3]=func(r[P2@P5])
drh8e0a2f92002-02-23 23:45:45 +00001549**
drh66a51672008-01-03 00:01:23 +00001550** Invoke a user function (P4 is a pointer to a Function structure that
drh98757152008-01-09 23:04:12 +00001551** defines the function) with P5 arguments taken from register P2 and
drh9cbf3422008-01-17 16:22:13 +00001552** successors. The result of the function is stored in register P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001553** Register P3 must not be one of the function inputs.
danielk1977682f68b2004-06-05 10:22:17 +00001554**
drh13449892005-09-07 21:22:45 +00001555** P1 is a 32-bit bitmask indicating whether or not each argument to the
danielk1977682f68b2004-06-05 10:22:17 +00001556** function was determined to be constant at compile time. If the first
drh13449892005-09-07 21:22:45 +00001557** argument was constant then bit 0 of P1 is set. This is used to determine
danielk1977682f68b2004-06-05 10:22:17 +00001558** whether meta data associated with a user function argument using the
1559** sqlite3_set_auxdata() API may be safely retained until the next
1560** invocation of this opcode.
drh1350b032002-02-27 19:00:20 +00001561**
drh13449892005-09-07 21:22:45 +00001562** See also: AggStep and AggFinal
drh8e0a2f92002-02-23 23:45:45 +00001563*/
drh0bce8352002-02-28 00:41:10 +00001564case OP_Function: {
danielk197751ad0ec2004-05-24 12:39:02 +00001565 int i;
drh6810ce62004-01-31 19:22:56 +00001566 Mem *pArg;
danielk197722322fd2004-05-25 23:35:17 +00001567 sqlite3_context ctx;
danielk197751ad0ec2004-05-24 12:39:02 +00001568 sqlite3_value **apVal;
drh856c1032009-06-02 15:21:42 +00001569 int n;
drh1350b032002-02-27 19:00:20 +00001570
drh856c1032009-06-02 15:21:42 +00001571 n = pOp->p5;
danielk19776ddcca52004-05-24 23:48:25 +00001572 apVal = p->apArg;
danielk197751ad0ec2004-05-24 12:39:02 +00001573 assert( apVal || n==0 );
dan3bc9f742013-08-15 16:18:39 +00001574 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drh9bd038f2014-08-27 14:14:06 +00001575 ctx.pOut = &aMem[pOp->p3];
1576 memAboutToChange(p, ctx.pOut);
danielk197751ad0ec2004-05-24 12:39:02 +00001577
dan3bc9f742013-08-15 16:18:39 +00001578 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
danielk1977a7a8e142008-02-13 18:25:27 +00001579 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drha6c2ed92009-11-14 23:22:23 +00001580 pArg = &aMem[pOp->p2];
drh6810ce62004-01-31 19:22:56 +00001581 for(i=0; i<n; i++, pArg++){
drh2b4ded92010-09-27 21:09:31 +00001582 assert( memIsValid(pArg) );
danielk197751ad0ec2004-05-24 12:39:02 +00001583 apVal[i] = pArg;
drhebc16712010-09-28 00:25:58 +00001584 Deephemeralize(pArg);
drhab5cd702010-04-07 14:32:11 +00001585 REGISTER_TRACE(pOp->p2+i, pArg);
drh8e0a2f92002-02-23 23:45:45 +00001586 }
danielk197751ad0ec2004-05-24 12:39:02 +00001587
dan0c547792013-07-18 17:12:08 +00001588 assert( pOp->p4type==P4_FUNCDEF );
1589 ctx.pFunc = pOp->p4.pFunc;
drhf56fa462015-04-13 21:39:54 +00001590 ctx.iOp = (int)(pOp - aOp);
dan0c547792013-07-18 17:12:08 +00001591 ctx.pVdbe = p;
drh9bd038f2014-08-27 14:14:06 +00001592 MemSetTypeFlag(ctx.pOut, MEM_Null);
drh9b47ee32013-08-20 03:13:51 +00001593 ctx.fErrorOrAux = 0;
drhf6aff802014-10-08 14:28:31 +00001594 db->lastRowid = lastRowid;
drhee9ff672010-09-03 18:50:48 +00001595 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh3b130be2014-09-26 01:10:02 +00001596 lastRowid = db->lastRowid; /* Remember rowid changes made by xFunc */
danielk19777e18c252004-05-25 11:47:24 +00001597
drh90669c12006-01-20 15:45:36 +00001598 /* If the function returned an error, throw an exception */
drh9b47ee32013-08-20 03:13:51 +00001599 if( ctx.fErrorOrAux ){
1600 if( ctx.isError ){
drh9bd038f2014-08-27 14:14:06 +00001601 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(ctx.pOut));
drh9b47ee32013-08-20 03:13:51 +00001602 rc = ctx.isError;
1603 }
drhf56fa462015-04-13 21:39:54 +00001604 sqlite3VdbeDeleteAuxData(p, (int)(pOp - aOp), pOp->p1);
drh90669c12006-01-20 15:45:36 +00001605 }
1606
drh9cbf3422008-01-17 16:22:13 +00001607 /* Copy the result of the function into register P3 */
drh9bd038f2014-08-27 14:14:06 +00001608 sqlite3VdbeChangeEncoding(ctx.pOut, encoding);
1609 if( sqlite3VdbeMemTooBig(ctx.pOut) ){
drh023ae032007-05-08 12:12:16 +00001610 goto too_big;
1611 }
drh7b94e7f2011-04-04 12:29:20 +00001612
drh9bd038f2014-08-27 14:14:06 +00001613 REGISTER_TRACE(pOp->p3, ctx.pOut);
1614 UPDATE_MAX_BLOBSIZE(ctx.pOut);
drh8e0a2f92002-02-23 23:45:45 +00001615 break;
1616}
1617
drh98757152008-01-09 23:04:12 +00001618/* Opcode: BitAnd P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001619** Synopsis: r[P3]=r[P1]&r[P2]
drhbf4133c2001-10-13 02:59:08 +00001620**
drh98757152008-01-09 23:04:12 +00001621** Take the bit-wise AND of the values in register P1 and P2 and
1622** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001623** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001624*/
drh98757152008-01-09 23:04:12 +00001625/* Opcode: BitOr P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001626** Synopsis: r[P3]=r[P1]|r[P2]
drhbf4133c2001-10-13 02:59:08 +00001627**
drh98757152008-01-09 23:04:12 +00001628** Take the bit-wise OR of the values in register P1 and P2 and
1629** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001630** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001631*/
drh98757152008-01-09 23:04:12 +00001632/* Opcode: ShiftLeft P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001633** Synopsis: r[P3]=r[P2]<<r[P1]
drhbf4133c2001-10-13 02:59:08 +00001634**
drh98757152008-01-09 23:04:12 +00001635** Shift the integer value in register P2 to the left by the
drh710c4842010-08-30 01:17:20 +00001636** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001637** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001638** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001639*/
drh98757152008-01-09 23:04:12 +00001640/* Opcode: ShiftRight P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001641** Synopsis: r[P3]=r[P2]>>r[P1]
drhbf4133c2001-10-13 02:59:08 +00001642**
drh98757152008-01-09 23:04:12 +00001643** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001644** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001645** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001646** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001647*/
drh5b6afba2008-01-05 16:29:28 +00001648case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1649case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1650case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1651case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh158b9cb2011-03-05 20:59:46 +00001652 i64 iA;
1653 u64 uA;
1654 i64 iB;
1655 u8 op;
drh6810ce62004-01-31 19:22:56 +00001656
drh3c657212009-11-17 23:59:58 +00001657 pIn1 = &aMem[pOp->p1];
1658 pIn2 = &aMem[pOp->p2];
1659 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001660 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001661 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001662 break;
1663 }
drh158b9cb2011-03-05 20:59:46 +00001664 iA = sqlite3VdbeIntValue(pIn2);
1665 iB = sqlite3VdbeIntValue(pIn1);
1666 op = pOp->opcode;
1667 if( op==OP_BitAnd ){
1668 iA &= iB;
1669 }else if( op==OP_BitOr ){
1670 iA |= iB;
1671 }else if( iB!=0 ){
1672 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1673
1674 /* If shifting by a negative amount, shift in the other direction */
1675 if( iB<0 ){
1676 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1677 op = 2*OP_ShiftLeft + 1 - op;
1678 iB = iB>(-64) ? -iB : 64;
1679 }
1680
1681 if( iB>=64 ){
1682 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1683 }else{
1684 memcpy(&uA, &iA, sizeof(uA));
1685 if( op==OP_ShiftLeft ){
1686 uA <<= iB;
1687 }else{
1688 uA >>= iB;
1689 /* Sign-extend on a right shift of a negative number */
1690 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1691 }
1692 memcpy(&iA, &uA, sizeof(iA));
1693 }
drhbf4133c2001-10-13 02:59:08 +00001694 }
drh158b9cb2011-03-05 20:59:46 +00001695 pOut->u.i = iA;
danielk1977a7a8e142008-02-13 18:25:27 +00001696 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001697 break;
1698}
1699
drh8558cde2008-01-05 05:20:10 +00001700/* Opcode: AddImm P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001701** Synopsis: r[P1]=r[P1]+P2
drh5e00f6c2001-09-13 13:46:56 +00001702**
danielk19770cdc0222008-06-26 18:04:03 +00001703** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001704** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001705**
drh8558cde2008-01-05 05:20:10 +00001706** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001707*/
drh9cbf3422008-01-17 16:22:13 +00001708case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001709 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001710 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001711 sqlite3VdbeMemIntegerify(pIn1);
1712 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001713 break;
1714}
1715
drh9cbf3422008-01-17 16:22:13 +00001716/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001717**
drh9cbf3422008-01-17 16:22:13 +00001718** Force the value in register P1 to be an integer. If the value
1719** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001720** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001721** raise an SQLITE_MISMATCH exception.
1722*/
drh9cbf3422008-01-17 16:22:13 +00001723case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001724 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001725 if( (pIn1->flags & MEM_Int)==0 ){
drh83b301b2013-11-20 00:59:02 +00001726 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
drh688852a2014-02-17 22:40:43 +00001727 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
drh83b301b2013-11-20 00:59:02 +00001728 if( (pIn1->flags & MEM_Int)==0 ){
1729 if( pOp->p2==0 ){
1730 rc = SQLITE_MISMATCH;
1731 goto abort_due_to_error;
1732 }else{
drhf56fa462015-04-13 21:39:54 +00001733 goto jump_to_p2;
drh83b301b2013-11-20 00:59:02 +00001734 }
drh8aff1012001-12-22 14:49:24 +00001735 }
drh8aff1012001-12-22 14:49:24 +00001736 }
drh83b301b2013-11-20 00:59:02 +00001737 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001738 break;
1739}
1740
drh13573c72010-01-12 17:04:07 +00001741#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001742/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001743**
drh2133d822008-01-03 18:44:59 +00001744** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001745**
drh8a512562005-11-14 22:29:05 +00001746** This opcode is used when extracting information from a column that
1747** has REAL affinity. Such column values may still be stored as
1748** integers, for space efficiency, but after extraction we want them
1749** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001750*/
drh9cbf3422008-01-17 16:22:13 +00001751case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001752 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001753 if( pIn1->flags & MEM_Int ){
1754 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001755 }
drh487e2622005-06-25 18:42:14 +00001756 break;
1757}
drh13573c72010-01-12 17:04:07 +00001758#endif
drh487e2622005-06-25 18:42:14 +00001759
drh8df447f2005-11-01 15:48:24 +00001760#ifndef SQLITE_OMIT_CAST
drh4169e432014-08-25 20:11:52 +00001761/* Opcode: Cast P1 P2 * * *
mistachkina1dc42a2014-08-27 17:53:40 +00001762** Synopsis: affinity(r[P1])
drh487e2622005-06-25 18:42:14 +00001763**
drh4169e432014-08-25 20:11:52 +00001764** Force the value in register P1 to be the type defined by P2.
1765**
1766** <ul>
1767** <li value="97"> TEXT
1768** <li value="98"> BLOB
1769** <li value="99"> NUMERIC
1770** <li value="100"> INTEGER
1771** <li value="101"> REAL
1772** </ul>
drh487e2622005-06-25 18:42:14 +00001773**
1774** A NULL value is not changed by this routine. It remains NULL.
1775*/
drh4169e432014-08-25 20:11:52 +00001776case OP_Cast: { /* in1 */
drh7ea31cc2014-09-18 14:36:00 +00001777 assert( pOp->p2>=SQLITE_AFF_NONE && pOp->p2<=SQLITE_AFF_REAL );
drh05bbb2e2014-08-25 22:37:19 +00001778 testcase( pOp->p2==SQLITE_AFF_TEXT );
1779 testcase( pOp->p2==SQLITE_AFF_NONE );
1780 testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1781 testcase( pOp->p2==SQLITE_AFF_INTEGER );
1782 testcase( pOp->p2==SQLITE_AFF_REAL );
drh3c657212009-11-17 23:59:58 +00001783 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001784 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001785 rc = ExpandBlob(pIn1);
drh4169e432014-08-25 20:11:52 +00001786 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
drhb7654112008-01-12 12:48:07 +00001787 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001788 break;
1789}
drh8a512562005-11-14 22:29:05 +00001790#endif /* SQLITE_OMIT_CAST */
1791
drh35573352008-01-08 23:54:25 +00001792/* Opcode: Lt P1 P2 P3 P4 P5
drh72dbffd2013-11-15 03:21:43 +00001793** Synopsis: if r[P1]<r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001794**
drh35573352008-01-08 23:54:25 +00001795** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1796** jump to address P2.
drhf5905aa2002-05-26 20:54:33 +00001797**
drh35573352008-01-08 23:54:25 +00001798** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1799** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
drh710c4842010-08-30 01:17:20 +00001800** bit is clear then fall through if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001801**
drh35573352008-01-08 23:54:25 +00001802** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001803** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001804** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001805** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001806** affinity is used. Note that the affinity conversions are stored
1807** back into the input registers P1 and P3. So this opcode can cause
1808** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001809**
1810** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001811** the values are compared. If both values are blobs then memcmp() is
1812** used to determine the results of the comparison. If both values
1813** are text, then the appropriate collating function specified in
1814** P4 is used to do the comparison. If P4 is not specified then
1815** memcmp() is used to compare text string. If both values are
1816** numeric, then a numeric comparison is used. If the two values
1817** are of different types, then numbers are considered less than
1818** strings and strings are considered less than blobs.
drhc9b84a12002-06-20 11:36:48 +00001819**
drh35573352008-01-08 23:54:25 +00001820** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1821** store a boolean result (either 0, or 1, or NULL) in register P2.
drh053a1282012-09-19 21:15:46 +00001822**
1823** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1824** equal to one another, provided that they do not have their MEM_Cleared
1825** bit set.
drh5e00f6c2001-09-13 13:46:56 +00001826*/
drh9cbf3422008-01-17 16:22:13 +00001827/* Opcode: Ne P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001828** Synopsis: if r[P1]!=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001829**
drh35573352008-01-08 23:54:25 +00001830** This works just like the Lt opcode except that the jump is taken if
1831** the operands in registers P1 and P3 are not equal. See the Lt opcode for
drh53db1452004-05-20 13:54:53 +00001832** additional information.
drh6a2fe092009-09-23 02:29:36 +00001833**
1834** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1835** true or false and is never NULL. If both operands are NULL then the result
1836** of comparison is false. If either operand is NULL then the result is true.
drhef8662b2011-06-20 21:47:58 +00001837** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001838** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001839*/
drh9cbf3422008-01-17 16:22:13 +00001840/* Opcode: Eq P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001841** Synopsis: if r[P1]==r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001842**
drh35573352008-01-08 23:54:25 +00001843** This works just like the Lt opcode except that the jump is taken if
1844** the operands in registers P1 and P3 are equal.
1845** See the Lt opcode for additional information.
drh6a2fe092009-09-23 02:29:36 +00001846**
1847** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1848** true or false and is never NULL. If both operands are NULL then the result
1849** of comparison is true. If either operand is NULL then the result is false.
drhef8662b2011-06-20 21:47:58 +00001850** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001851** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001852*/
drh9cbf3422008-01-17 16:22:13 +00001853/* Opcode: Le P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001854** Synopsis: if r[P1]<=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001855**
drh35573352008-01-08 23:54:25 +00001856** This works just like the Lt opcode except that the jump is taken if
1857** the content of register P3 is less than or equal to the content of
1858** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001859*/
drh9cbf3422008-01-17 16:22:13 +00001860/* Opcode: Gt P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001861** Synopsis: if r[P1]>r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001862**
drh35573352008-01-08 23:54:25 +00001863** This works just like the Lt opcode except that the jump is taken if
1864** the content of register P3 is greater than the content of
1865** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001866*/
drh9cbf3422008-01-17 16:22:13 +00001867/* Opcode: Ge P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001868** Synopsis: if r[P1]>=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001869**
drh35573352008-01-08 23:54:25 +00001870** This works just like the Lt opcode except that the jump is taken if
1871** the content of register P3 is greater than or equal to the content of
1872** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001873*/
drh9cbf3422008-01-17 16:22:13 +00001874case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1875case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1876case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1877case OP_Le: /* same as TK_LE, jump, in1, in3 */
1878case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1879case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh6a2fe092009-09-23 02:29:36 +00001880 int res; /* Result of the comparison of pIn1 against pIn3 */
1881 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00001882 u16 flags1; /* Copy of initial value of pIn1->flags */
1883 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00001884
drh3c657212009-11-17 23:59:58 +00001885 pIn1 = &aMem[pOp->p1];
1886 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00001887 flags1 = pIn1->flags;
1888 flags3 = pIn3->flags;
drhc3f1d5f2011-05-30 23:42:16 +00001889 if( (flags1 | flags3)&MEM_Null ){
drh6a2fe092009-09-23 02:29:36 +00001890 /* One or both operands are NULL */
1891 if( pOp->p5 & SQLITE_NULLEQ ){
1892 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1893 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1894 ** or not both operands are null.
1895 */
1896 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
drh053a1282012-09-19 21:15:46 +00001897 assert( (flags1 & MEM_Cleared)==0 );
drh3d77dee2014-02-19 14:20:49 +00001898 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
drh053a1282012-09-19 21:15:46 +00001899 if( (flags1&MEM_Null)!=0
1900 && (flags3&MEM_Null)!=0
1901 && (flags3&MEM_Cleared)==0
1902 ){
1903 res = 0; /* Results are equal */
1904 }else{
1905 res = 1; /* Results are not equal */
1906 }
drh6a2fe092009-09-23 02:29:36 +00001907 }else{
1908 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1909 ** then the result is always NULL.
1910 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1911 */
drh688852a2014-02-17 22:40:43 +00001912 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001913 pOut = &aMem[pOp->p2];
drh6a2fe092009-09-23 02:29:36 +00001914 MemSetTypeFlag(pOut, MEM_Null);
1915 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00001916 }else{
drhf4345e42014-02-18 11:31:59 +00001917 VdbeBranchTaken(2,3);
drh688852a2014-02-17 22:40:43 +00001918 if( pOp->p5 & SQLITE_JUMPIFNULL ){
drhf56fa462015-04-13 21:39:54 +00001919 goto jump_to_p2;
drh688852a2014-02-17 22:40:43 +00001920 }
drh6a2fe092009-09-23 02:29:36 +00001921 }
1922 break;
danielk1977a37cdde2004-05-16 11:15:36 +00001923 }
drh6a2fe092009-09-23 02:29:36 +00001924 }else{
1925 /* Neither operand is NULL. Do a comparison. */
1926 affinity = pOp->p5 & SQLITE_AFF_MASK;
drh24a09622014-09-18 16:28:59 +00001927 if( affinity>=SQLITE_AFF_NUMERIC ){
drhe7a34662014-09-19 22:44:20 +00001928 if( (pIn1->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drh24a09622014-09-18 16:28:59 +00001929 applyNumericAffinity(pIn1,0);
1930 }
drhe7a34662014-09-19 22:44:20 +00001931 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drh24a09622014-09-18 16:28:59 +00001932 applyNumericAffinity(pIn3,0);
1933 }
1934 }else if( affinity==SQLITE_AFF_TEXT ){
1935 if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00001936 testcase( pIn1->flags & MEM_Int );
1937 testcase( pIn1->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00001938 sqlite3VdbeMemStringify(pIn1, encoding, 1);
drhbc8a6b32015-03-31 11:42:23 +00001939 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
1940 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
drh24a09622014-09-18 16:28:59 +00001941 }
1942 if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00001943 testcase( pIn3->flags & MEM_Int );
1944 testcase( pIn3->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00001945 sqlite3VdbeMemStringify(pIn3, encoding, 1);
drhbc8a6b32015-03-31 11:42:23 +00001946 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
1947 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
drh24a09622014-09-18 16:28:59 +00001948 }
drh6a2fe092009-09-23 02:29:36 +00001949 }
drh6a2fe092009-09-23 02:29:36 +00001950 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
drhca5506b2014-09-17 23:37:38 +00001951 if( pIn1->flags & MEM_Zero ){
1952 sqlite3VdbeMemExpandBlob(pIn1);
1953 flags1 &= ~MEM_Zero;
1954 }
1955 if( pIn3->flags & MEM_Zero ){
1956 sqlite3VdbeMemExpandBlob(pIn3);
1957 flags3 &= ~MEM_Zero;
1958 }
drh24a09622014-09-18 16:28:59 +00001959 if( db->mallocFailed ) goto no_mem;
drh6a2fe092009-09-23 02:29:36 +00001960 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00001961 }
danielk1977a37cdde2004-05-16 11:15:36 +00001962 switch( pOp->opcode ){
1963 case OP_Eq: res = res==0; break;
1964 case OP_Ne: res = res!=0; break;
1965 case OP_Lt: res = res<0; break;
1966 case OP_Le: res = res<=0; break;
1967 case OP_Gt: res = res>0; break;
1968 default: res = res>=0; break;
1969 }
1970
drhf56fa462015-04-13 21:39:54 +00001971 /* Undo any changes made by applyAffinity() to the input registers. */
1972 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1973 pIn1->flags = flags1;
1974 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
1975 pIn3->flags = flags3;
1976
drh35573352008-01-08 23:54:25 +00001977 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001978 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00001979 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00001980 MemSetTypeFlag(pOut, MEM_Int);
drh35573352008-01-08 23:54:25 +00001981 pOut->u.i = res;
1982 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00001983 }else{
drhf4345e42014-02-18 11:31:59 +00001984 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
drh688852a2014-02-17 22:40:43 +00001985 if( res ){
drhf56fa462015-04-13 21:39:54 +00001986 goto jump_to_p2;
drh688852a2014-02-17 22:40:43 +00001987 }
danielk1977a37cdde2004-05-16 11:15:36 +00001988 }
1989 break;
1990}
drhc9b84a12002-06-20 11:36:48 +00001991
drh0acb7e42008-06-25 00:12:41 +00001992/* Opcode: Permutation * * * P4 *
1993**
shanebe217792009-03-05 04:20:31 +00001994** Set the permutation used by the OP_Compare operator to be the array
drh0acb7e42008-06-25 00:12:41 +00001995** of integers in P4.
1996**
drh953f7612012-12-07 22:18:54 +00001997** The permutation is only valid until the next OP_Compare that has
1998** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
1999** occur immediately prior to the OP_Compare.
drh0acb7e42008-06-25 00:12:41 +00002000*/
2001case OP_Permutation: {
2002 assert( pOp->p4type==P4_INTARRAY );
2003 assert( pOp->p4.ai );
2004 aPermute = pOp->p4.ai;
2005 break;
2006}
2007
drh953f7612012-12-07 22:18:54 +00002008/* Opcode: Compare P1 P2 P3 P4 P5
drh079a3072014-03-19 14:10:55 +00002009** Synopsis: r[P1@P3] <-> r[P2@P3]
drh16ee60f2008-06-20 18:13:25 +00002010**
drh710c4842010-08-30 01:17:20 +00002011** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2012** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
drh16ee60f2008-06-20 18:13:25 +00002013** the comparison for use by the next OP_Jump instruct.
2014**
drh0ca10df2012-12-08 13:26:23 +00002015** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2016** determined by the most recent OP_Permutation operator. If the
2017** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2018** order.
2019**
drh0acb7e42008-06-25 00:12:41 +00002020** P4 is a KeyInfo structure that defines collating sequences and sort
2021** orders for the comparison. The permutation applies to registers
2022** only. The KeyInfo elements are used sequentially.
2023**
2024** The comparison is a sort comparison, so NULLs compare equal,
2025** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00002026** and strings are less than blobs.
2027*/
2028case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00002029 int n;
2030 int i;
2031 int p1;
2032 int p2;
2033 const KeyInfo *pKeyInfo;
2034 int idx;
2035 CollSeq *pColl; /* Collating sequence to use on this term */
2036 int bRev; /* True for DESCENDING sort order */
2037
drh953f7612012-12-07 22:18:54 +00002038 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
drh856c1032009-06-02 15:21:42 +00002039 n = pOp->p3;
2040 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00002041 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00002042 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00002043 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00002044 p2 = pOp->p2;
drh6a2fe092009-09-23 02:29:36 +00002045#if SQLITE_DEBUG
2046 if( aPermute ){
2047 int k, mx = 0;
2048 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
dan3bc9f742013-08-15 16:18:39 +00002049 assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 );
2050 assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002051 }else{
dan3bc9f742013-08-15 16:18:39 +00002052 assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 );
2053 assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002054 }
2055#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00002056 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00002057 idx = aPermute ? aPermute[i] : i;
drh2b4ded92010-09-27 21:09:31 +00002058 assert( memIsValid(&aMem[p1+idx]) );
2059 assert( memIsValid(&aMem[p2+idx]) );
drha6c2ed92009-11-14 23:22:23 +00002060 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2061 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drh93a960a2008-07-10 00:32:42 +00002062 assert( i<pKeyInfo->nField );
2063 pColl = pKeyInfo->aColl[i];
2064 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00002065 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00002066 if( iCompare ){
2067 if( bRev ) iCompare = -iCompare;
2068 break;
2069 }
drh16ee60f2008-06-20 18:13:25 +00002070 }
drh0acb7e42008-06-25 00:12:41 +00002071 aPermute = 0;
drh16ee60f2008-06-20 18:13:25 +00002072 break;
2073}
2074
2075/* Opcode: Jump P1 P2 P3 * *
2076**
2077** Jump to the instruction at address P1, P2, or P3 depending on whether
2078** in the most recent OP_Compare instruction the P1 vector was less than
2079** equal to, or greater than the P2 vector, respectively.
2080*/
drh0acb7e42008-06-25 00:12:41 +00002081case OP_Jump: { /* jump */
2082 if( iCompare<0 ){
drhf56fa462015-04-13 21:39:54 +00002083 VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
drh0acb7e42008-06-25 00:12:41 +00002084 }else if( iCompare==0 ){
drhf56fa462015-04-13 21:39:54 +00002085 VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
drh16ee60f2008-06-20 18:13:25 +00002086 }else{
drhf56fa462015-04-13 21:39:54 +00002087 VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
drh16ee60f2008-06-20 18:13:25 +00002088 }
2089 break;
2090}
2091
drh5b6afba2008-01-05 16:29:28 +00002092/* Opcode: And P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002093** Synopsis: r[P3]=(r[P1] && r[P2])
drh5e00f6c2001-09-13 13:46:56 +00002094**
drh5b6afba2008-01-05 16:29:28 +00002095** Take the logical AND of the values in registers P1 and P2 and
2096** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00002097**
drh5b6afba2008-01-05 16:29:28 +00002098** If either P1 or P2 is 0 (false) then the result is 0 even if
2099** the other input is NULL. A NULL and true or two NULLs give
2100** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00002101*/
drh5b6afba2008-01-05 16:29:28 +00002102/* Opcode: Or P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002103** Synopsis: r[P3]=(r[P1] || r[P2])
drh5b6afba2008-01-05 16:29:28 +00002104**
2105** Take the logical OR of the values in register P1 and P2 and
2106** store the answer in register P3.
2107**
2108** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2109** even if the other input is NULL. A NULL and false or two NULLs
2110** give a NULL output.
2111*/
2112case OP_And: /* same as TK_AND, in1, in2, out3 */
2113case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00002114 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2115 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00002116
drh3c657212009-11-17 23:59:58 +00002117 pIn1 = &aMem[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00002118 if( pIn1->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002119 v1 = 2;
drh5e00f6c2001-09-13 13:46:56 +00002120 }else{
drh5b6afba2008-01-05 16:29:28 +00002121 v1 = sqlite3VdbeIntValue(pIn1)!=0;
drhbb113512002-05-27 01:04:51 +00002122 }
drh3c657212009-11-17 23:59:58 +00002123 pIn2 = &aMem[pOp->p2];
drh5b6afba2008-01-05 16:29:28 +00002124 if( pIn2->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002125 v2 = 2;
2126 }else{
drh5b6afba2008-01-05 16:29:28 +00002127 v2 = sqlite3VdbeIntValue(pIn2)!=0;
drhbb113512002-05-27 01:04:51 +00002128 }
2129 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00002130 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00002131 v1 = and_logic[v1*3+v2];
2132 }else{
drh5b6afba2008-01-05 16:29:28 +00002133 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00002134 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00002135 }
drh3c657212009-11-17 23:59:58 +00002136 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00002137 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00002138 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00002139 }else{
drh5b6afba2008-01-05 16:29:28 +00002140 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00002141 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00002142 }
drh5e00f6c2001-09-13 13:46:56 +00002143 break;
2144}
2145
drhe99fa2a2008-12-15 15:27:51 +00002146/* Opcode: Not P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002147** Synopsis: r[P2]= !r[P1]
drh5e00f6c2001-09-13 13:46:56 +00002148**
drhe99fa2a2008-12-15 15:27:51 +00002149** Interpret the value in register P1 as a boolean value. Store the
2150** boolean complement in register P2. If the value in register P1 is
2151** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00002152*/
drh93952eb2009-11-13 19:43:43 +00002153case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002154 pIn1 = &aMem[pOp->p1];
2155 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002156 sqlite3VdbeMemSetNull(pOut);
2157 if( (pIn1->flags & MEM_Null)==0 ){
2158 pOut->flags = MEM_Int;
2159 pOut->u.i = !sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002160 }
drh5e00f6c2001-09-13 13:46:56 +00002161 break;
2162}
2163
drhe99fa2a2008-12-15 15:27:51 +00002164/* Opcode: BitNot P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002165** Synopsis: r[P1]= ~r[P1]
drhbf4133c2001-10-13 02:59:08 +00002166**
drhe99fa2a2008-12-15 15:27:51 +00002167** Interpret the content of register P1 as an integer. Store the
2168** ones-complement of the P1 value into register P2. If P1 holds
2169** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00002170*/
drh93952eb2009-11-13 19:43:43 +00002171case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002172 pIn1 = &aMem[pOp->p1];
2173 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002174 sqlite3VdbeMemSetNull(pOut);
2175 if( (pIn1->flags & MEM_Null)==0 ){
2176 pOut->flags = MEM_Int;
2177 pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002178 }
drhbf4133c2001-10-13 02:59:08 +00002179 break;
2180}
2181
drh48f2d3b2011-09-16 01:34:43 +00002182/* Opcode: Once P1 P2 * * *
2183**
drh5dad9a32014-07-25 18:37:42 +00002184** Check the "once" flag number P1. If it is set, jump to instruction P2.
2185** Otherwise, set the flag and fall through to the next instruction.
2186** In other words, this opcode causes all following opcodes up through P2
2187** (but not including P2) to run just once and to be skipped on subsequent
2188** times through the loop.
2189**
2190** All "once" flags are initially cleared whenever a prepared statement
2191** first begins to run.
drh48f2d3b2011-09-16 01:34:43 +00002192*/
dan1d8cb212011-12-09 13:24:16 +00002193case OP_Once: { /* jump */
2194 assert( pOp->p1<p->nOnceFlag );
drh688852a2014-02-17 22:40:43 +00002195 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2);
dan1d8cb212011-12-09 13:24:16 +00002196 if( p->aOnceFlag[pOp->p1] ){
drhf56fa462015-04-13 21:39:54 +00002197 goto jump_to_p2;
dan1d8cb212011-12-09 13:24:16 +00002198 }else{
2199 p->aOnceFlag[pOp->p1] = 1;
2200 }
2201 break;
2202}
2203
drh3c84ddf2008-01-09 02:15:38 +00002204/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00002205**
drhef8662b2011-06-20 21:47:58 +00002206** Jump to P2 if the value in register P1 is true. The value
drh3c84ddf2008-01-09 02:15:38 +00002207** is considered true if it is numeric and non-zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002208** in P1 is NULL then take the jump if and only if P3 is non-zero.
drh5e00f6c2001-09-13 13:46:56 +00002209*/
drh3c84ddf2008-01-09 02:15:38 +00002210/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00002211**
drhef8662b2011-06-20 21:47:58 +00002212** Jump to P2 if the value in register P1 is False. The value
drhb8475df2011-12-09 16:21:19 +00002213** is considered false if it has a numeric value of zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002214** in P1 is NULL then take the jump if and only if P3 is non-zero.
drhf5905aa2002-05-26 20:54:33 +00002215*/
drh9cbf3422008-01-17 16:22:13 +00002216case OP_If: /* jump, in1 */
2217case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00002218 int c;
drh3c657212009-11-17 23:59:58 +00002219 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00002220 if( pIn1->flags & MEM_Null ){
2221 c = pOp->p3;
drhf5905aa2002-05-26 20:54:33 +00002222 }else{
drhba0232a2005-06-06 17:27:19 +00002223#ifdef SQLITE_OMIT_FLOATING_POINT
shanefbd60f82009-02-04 03:59:25 +00002224 c = sqlite3VdbeIntValue(pIn1)!=0;
drhba0232a2005-06-06 17:27:19 +00002225#else
drh3c84ddf2008-01-09 02:15:38 +00002226 c = sqlite3VdbeRealValue(pIn1)!=0.0;
drhba0232a2005-06-06 17:27:19 +00002227#endif
drhf5905aa2002-05-26 20:54:33 +00002228 if( pOp->opcode==OP_IfNot ) c = !c;
2229 }
drh688852a2014-02-17 22:40:43 +00002230 VdbeBranchTaken(c!=0, 2);
drh3c84ddf2008-01-09 02:15:38 +00002231 if( c ){
drhf56fa462015-04-13 21:39:54 +00002232 goto jump_to_p2;
drh3c84ddf2008-01-09 02:15:38 +00002233 }
drh5e00f6c2001-09-13 13:46:56 +00002234 break;
2235}
2236
drh830ecf92009-06-18 00:41:55 +00002237/* Opcode: IsNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002238** Synopsis: if r[P1]==NULL goto P2
drh477df4b2008-01-05 18:48:24 +00002239**
drh830ecf92009-06-18 00:41:55 +00002240** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002241*/
drh9cbf3422008-01-17 16:22:13 +00002242case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002243 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002244 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
drh830ecf92009-06-18 00:41:55 +00002245 if( (pIn1->flags & MEM_Null)!=0 ){
drhf56fa462015-04-13 21:39:54 +00002246 goto jump_to_p2;
drh830ecf92009-06-18 00:41:55 +00002247 }
drh477df4b2008-01-05 18:48:24 +00002248 break;
2249}
2250
drh98757152008-01-09 23:04:12 +00002251/* Opcode: NotNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002252** Synopsis: if r[P1]!=NULL goto P2
drh5e00f6c2001-09-13 13:46:56 +00002253**
drh6a288a32008-01-07 19:20:24 +00002254** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002255*/
drh9cbf3422008-01-17 16:22:13 +00002256case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002257 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002258 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
drh6a288a32008-01-07 19:20:24 +00002259 if( (pIn1->flags & MEM_Null)==0 ){
drhf56fa462015-04-13 21:39:54 +00002260 goto jump_to_p2;
drh6a288a32008-01-07 19:20:24 +00002261 }
drh5e00f6c2001-09-13 13:46:56 +00002262 break;
2263}
2264
drh3e9ca092009-09-08 01:14:48 +00002265/* Opcode: Column P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00002266** Synopsis: r[P3]=PX
danielk1977192ac1d2004-05-10 07:17:30 +00002267**
danielk1977cfcdaef2004-05-12 07:33:33 +00002268** Interpret the data that cursor P1 points to as a structure built using
2269** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002270** information about the format of the data.) Extract the P2-th column
2271** from this record. If there are less that (P2+1)
2272** values in the record, extract a NULL.
2273**
drh9cbf3422008-01-17 16:22:13 +00002274** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002275**
danielk19771f4aa332008-01-03 09:51:55 +00002276** If the column contains fewer than P2 fields, then extract a NULL. Or,
2277** if the P4 argument is a P4_MEM use the value of the P4 argument as
2278** the result.
drh3e9ca092009-09-08 01:14:48 +00002279**
2280** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2281** then the cache of the cursor is reset prior to extracting the column.
2282** The first OP_Column against a pseudo-table after the value of the content
2283** register has changed should have this bit set.
drha748fdc2012-03-28 01:34:47 +00002284**
drhdda5c082012-03-28 13:41:10 +00002285** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2286** the result is guaranteed to only be used as the argument of a length()
2287** or typeof() function, respectively. The loading of large blobs can be
2288** skipped for length() and all content loading can be skipped for typeof().
danielk1977192ac1d2004-05-10 07:17:30 +00002289*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002290case OP_Column: {
drh856c1032009-06-02 15:21:42 +00002291 i64 payloadSize64; /* Number of bytes in the record */
drh856c1032009-06-02 15:21:42 +00002292 int p2; /* column number to retrieve */
2293 VdbeCursor *pC; /* The VDBE cursor */
drhd3194f52004-05-27 19:59:32 +00002294 BtCursor *pCrsr; /* The BTree cursor */
drhd3194f52004-05-27 19:59:32 +00002295 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk1977cfcdaef2004-05-12 07:33:33 +00002296 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002297 int i; /* Loop counter */
drhd4e70eb2008-01-02 00:34:36 +00002298 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002299 Mem sMem; /* For storing the record being decoded */
drh399af1d2013-11-20 17:25:55 +00002300 const u8 *zData; /* Part of the record being decoded */
2301 const u8 *zHdr; /* Next unparsed byte of the header */
2302 const u8 *zEndHdr; /* Pointer to first byte after the header */
drh35cd6432009-06-05 14:17:21 +00002303 u32 offset; /* Offset into the data */
drh6658cd92010-02-05 14:12:53 +00002304 u32 szField; /* Number of bytes in the content of a field */
drh501932c2013-11-21 21:59:53 +00002305 u32 avail; /* Number of bytes of available data */
drh5a077b72011-08-29 02:16:18 +00002306 u32 t; /* A type code from the record header */
drh0c8f7602014-09-19 16:56:45 +00002307 u16 fx; /* pDest->flags value */
drh3e9ca092009-09-08 01:14:48 +00002308 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002309
drh399af1d2013-11-20 17:25:55 +00002310 p2 = pOp->p2;
dan3bc9f742013-08-15 16:18:39 +00002311 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00002312 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00002313 memAboutToChange(p, pDest);
drhc8606e42013-11-20 19:28:03 +00002314 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2315 pC = p->apCsr[pOp->p1];
drha5759672012-10-30 14:39:12 +00002316 assert( pC!=0 );
drhc8606e42013-11-20 19:28:03 +00002317 assert( p2<pC->nField );
drhb53a5a92014-10-12 22:37:22 +00002318 aOffset = pC->aOffset;
danielk19770817d0d2007-02-14 09:19:36 +00002319#ifndef SQLITE_OMIT_VIRTUALTABLE
drh380d6852013-11-20 20:58:00 +00002320 assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */
danielk19770817d0d2007-02-14 09:19:36 +00002321#endif
shane36840fd2009-06-26 16:32:13 +00002322 pCrsr = pC->pCursor;
drh380d6852013-11-20 20:58:00 +00002323 assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */
2324 assert( pCrsr!=0 || pC->nullRow ); /* pC->nullRow on PseudoTables */
drh399af1d2013-11-20 17:25:55 +00002325
2326 /* If the cursor cache is stale, bring it up-to-date */
2327 rc = sqlite3VdbeCursorMoveto(pC);
2328 if( rc ) goto abort_due_to_error;
drh6cf4a7d2014-10-13 13:00:58 +00002329 if( pC->cacheStatus!=p->cacheCtr ){
drhc8606e42013-11-20 19:28:03 +00002330 if( pC->nullRow ){
2331 if( pCrsr==0 ){
2332 assert( pC->pseudoTableReg>0 );
2333 pReg = &aMem[pC->pseudoTableReg];
drhc8606e42013-11-20 19:28:03 +00002334 assert( pReg->flags & MEM_Blob );
2335 assert( memIsValid(pReg) );
2336 pC->payloadSize = pC->szRow = avail = pReg->n;
2337 pC->aRow = (u8*)pReg->z;
2338 }else{
drh6b5631e2014-11-05 15:57:39 +00002339 sqlite3VdbeMemSetNull(pDest);
drh399af1d2013-11-20 17:25:55 +00002340 goto op_column_out;
2341 }
danielk197784ac9d02004-05-18 09:58:06 +00002342 }else{
drhc8606e42013-11-20 19:28:03 +00002343 assert( pCrsr );
drh14da87f2013-11-20 21:51:33 +00002344 if( pC->isTable==0 ){
drh399af1d2013-11-20 17:25:55 +00002345 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2346 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2347 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
2348 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2349 ** payload size, so it is impossible for payloadSize64 to be
2350 ** larger than 32 bits. */
2351 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
2352 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
2353 pC->payloadSize = (u32)payloadSize64;
drhd3194f52004-05-27 19:59:32 +00002354 }else{
drh399af1d2013-11-20 17:25:55 +00002355 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2356 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
2357 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
2358 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
drh9188b382004-05-14 21:12:22 +00002359 }
drh399af1d2013-11-20 17:25:55 +00002360 assert( avail<=65536 ); /* Maximum page size is 64KiB */
2361 if( pC->payloadSize <= (u32)avail ){
2362 pC->szRow = pC->payloadSize;
drhe61cffc2004-06-12 18:12:15 +00002363 }else{
drh399af1d2013-11-20 17:25:55 +00002364 pC->szRow = avail;
2365 }
2366 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2367 goto too_big;
drhe61cffc2004-06-12 18:12:15 +00002368 }
drhd3194f52004-05-27 19:59:32 +00002369 }
drh399af1d2013-11-20 17:25:55 +00002370 pC->cacheStatus = p->cacheCtr;
2371 pC->iHdrOffset = getVarint32(pC->aRow, offset);
2372 pC->nHdrParsed = 0;
2373 aOffset[0] = offset;
drh35cd6432009-06-05 14:17:21 +00002374
2375 /* Make sure a corrupt database has not given us an oversize header.
2376 ** Do this now to avoid an oversize memory allocation.
2377 **
2378 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2379 ** types use so much data space that there can only be 4096 and 32 of
2380 ** them, respectively. So the maximum header length results from a
2381 ** 3-byte type for each of the maximum of 32768 columns plus three
2382 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2383 */
drh399af1d2013-11-20 17:25:55 +00002384 if( offset > 98307 || offset > pC->payloadSize ){
drh35cd6432009-06-05 14:17:21 +00002385 rc = SQLITE_CORRUPT_BKPT;
drhc8606e42013-11-20 19:28:03 +00002386 goto op_column_error;
drh35cd6432009-06-05 14:17:21 +00002387 }
drhc81aa2e2014-10-11 23:31:52 +00002388
2389 if( avail<offset ){
2390 /* pC->aRow does not have to hold the entire row, but it does at least
2391 ** need to cover the header of the record. If pC->aRow does not contain
2392 ** the complete header, then set it to zero, forcing the header to be
2393 ** dynamically allocated. */
2394 pC->aRow = 0;
2395 pC->szRow = 0;
2396 }
2397
2398 /* The following goto is an optimization. It can be omitted and
2399 ** everything will still work. But OP_Column is measurably faster
2400 ** by skipping the subsequent conditional, which is always true.
2401 */
2402 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
2403 goto op_column_read_header;
drh399af1d2013-11-20 17:25:55 +00002404 }
drh35cd6432009-06-05 14:17:21 +00002405
drh399af1d2013-11-20 17:25:55 +00002406 /* Make sure at least the first p2+1 entries of the header have been
drh0c8f7602014-09-19 16:56:45 +00002407 ** parsed and valid information is in aOffset[] and pC->aType[].
drh399af1d2013-11-20 17:25:55 +00002408 */
drhc8606e42013-11-20 19:28:03 +00002409 if( pC->nHdrParsed<=p2 ){
drh380d6852013-11-20 20:58:00 +00002410 /* If there is more header available for parsing in the record, try
2411 ** to extract additional fields up through the p2+1-th field
drhd3194f52004-05-27 19:59:32 +00002412 */
drhc81aa2e2014-10-11 23:31:52 +00002413 op_column_read_header:
drhc8606e42013-11-20 19:28:03 +00002414 if( pC->iHdrOffset<aOffset[0] ){
2415 /* Make sure zData points to enough of the record to cover the header. */
2416 if( pC->aRow==0 ){
2417 memset(&sMem, 0, sizeof(sMem));
drh14da87f2013-11-20 21:51:33 +00002418 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0],
2419 !pC->isTable, &sMem);
drhc8606e42013-11-20 19:28:03 +00002420 if( rc!=SQLITE_OK ){
2421 goto op_column_error;
2422 }
2423 zData = (u8*)sMem.z;
2424 }else{
2425 zData = pC->aRow;
2426 }
2427
drh0c8f7602014-09-19 16:56:45 +00002428 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
drhc8606e42013-11-20 19:28:03 +00002429 i = pC->nHdrParsed;
2430 offset = aOffset[i];
2431 zHdr = zData + pC->iHdrOffset;
2432 zEndHdr = zData + aOffset[0];
2433 assert( i<=p2 && zHdr<zEndHdr );
2434 do{
2435 if( zHdr[0]<0x80 ){
2436 t = zHdr[0];
2437 zHdr++;
2438 }else{
2439 zHdr += sqlite3GetVarint32(zHdr, &t);
2440 }
drh0c8f7602014-09-19 16:56:45 +00002441 pC->aType[i] = t;
drhc8606e42013-11-20 19:28:03 +00002442 szField = sqlite3VdbeSerialTypeLen(t);
2443 offset += szField;
2444 if( offset<szField ){ /* True if offset overflows */
2445 zHdr = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
2446 break;
2447 }
2448 i++;
2449 aOffset[i] = offset;
2450 }while( i<=p2 && zHdr<zEndHdr );
2451 pC->nHdrParsed = i;
2452 pC->iHdrOffset = (u32)(zHdr - zData);
2453 if( pC->aRow==0 ){
2454 sqlite3VdbeMemRelease(&sMem);
2455 sMem.flags = MEM_Null;
2456 }
2457
drh8dd83622014-10-13 23:39:02 +00002458 /* The record is corrupt if any of the following are true:
2459 ** (1) the bytes of the header extend past the declared header size
2460 ** (zHdr>zEndHdr)
2461 ** (2) the entire header was used but not all data was used
2462 ** (zHdr==zEndHdr && offset!=pC->payloadSize)
2463 ** (3) the end of the data extends beyond the end of the record.
2464 ** (offset > pC->payloadSize)
drhc8606e42013-11-20 19:28:03 +00002465 */
drh8dd83622014-10-13 23:39:02 +00002466 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset!=pC->payloadSize))
drhc8606e42013-11-20 19:28:03 +00002467 || (offset > pC->payloadSize)
drhc8606e42013-11-20 19:28:03 +00002468 ){
2469 rc = SQLITE_CORRUPT_BKPT;
2470 goto op_column_error;
2471 }
2472 }
2473
drh380d6852013-11-20 20:58:00 +00002474 /* If after trying to extra new entries from the header, nHdrParsed is
2475 ** still not up to p2, that means that the record has fewer than p2
2476 ** columns. So the result will be either the default value or a NULL.
2477 */
drhc8606e42013-11-20 19:28:03 +00002478 if( pC->nHdrParsed<=p2 ){
2479 if( pOp->p4type==P4_MEM ){
2480 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2481 }else{
drh22e8d832014-10-29 00:58:38 +00002482 sqlite3VdbeMemSetNull(pDest);
drhc8606e42013-11-20 19:28:03 +00002483 }
danielk19773c9cc8d2005-01-17 03:40:08 +00002484 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002485 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002486 }
danielk1977192ac1d2004-05-10 07:17:30 +00002487
drh380d6852013-11-20 20:58:00 +00002488 /* Extract the content for the p2+1-th column. Control can only
drh0c8f7602014-09-19 16:56:45 +00002489 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
drh380d6852013-11-20 20:58:00 +00002490 ** all valid.
drh9188b382004-05-14 21:12:22 +00002491 */
drhc8606e42013-11-20 19:28:03 +00002492 assert( p2<pC->nHdrParsed );
2493 assert( rc==SQLITE_OK );
drh75fd0542014-03-01 16:24:44 +00002494 assert( sqlite3VdbeCheckMemInvariants(pDest) );
drh0725cab2014-09-17 14:52:46 +00002495 if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
drh0c8f7602014-09-19 16:56:45 +00002496 t = pC->aType[p2];
drhc8606e42013-11-20 19:28:03 +00002497 if( pC->szRow>=aOffset[p2+1] ){
drh380d6852013-11-20 20:58:00 +00002498 /* This is the common case where the desired content fits on the original
2499 ** page - where the content is not on an overflow page */
drh0c8f7602014-09-19 16:56:45 +00002500 sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest);
danielk197736963fd2005-02-19 08:18:05 +00002501 }else{
drh58c96082013-12-23 11:33:32 +00002502 /* This branch happens only when content is on overflow pages */
drh380d6852013-11-20 20:58:00 +00002503 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2504 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2505 || (len = sqlite3VdbeSerialTypeLen(t))==0
drhc8606e42013-11-20 19:28:03 +00002506 ){
drh2a2a6962014-09-16 18:22:44 +00002507 /* Content is irrelevant for
2508 ** 1. the typeof() function,
2509 ** 2. the length(X) function if X is a blob, and
2510 ** 3. if the content length is zero.
2511 ** So we might as well use bogus content rather than reading
2512 ** content from disk. NULL will work for the value for strings
2513 ** and blobs and whatever is in the payloadSize64 variable
2514 ** will work for everything else. */
2515 sqlite3VdbeSerialGet(t<=13 ? (u8*)&payloadSize64 : 0, t, pDest);
danielk1977aee18ef2005-03-09 12:26:50 +00002516 }else{
drh14da87f2013-11-20 21:51:33 +00002517 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
drh2a2a6962014-09-16 18:22:44 +00002518 pDest);
drhc8606e42013-11-20 19:28:03 +00002519 if( rc!=SQLITE_OK ){
2520 goto op_column_error;
2521 }
drh2a2a6962014-09-16 18:22:44 +00002522 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2523 pDest->flags &= ~MEM_Ephem;
danielk1977aee18ef2005-03-09 12:26:50 +00002524 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002525 }
drhc8606e42013-11-20 19:28:03 +00002526 pDest->enc = encoding;
drhd3194f52004-05-27 19:59:32 +00002527
danielk19773c9cc8d2005-01-17 03:40:08 +00002528op_column_out:
drh7b5ebca2014-09-19 15:28:33 +00002529 /* If the column value is an ephemeral string, go ahead and persist
2530 ** that string in case the cursor moves before the column value is
2531 ** used. The following code does the equivalent of Deephemeralize()
2532 ** but does it faster. */
2533 if( (pDest->flags & MEM_Ephem)!=0 && pDest->z ){
drh0c8f7602014-09-19 16:56:45 +00002534 fx = pDest->flags & (MEM_Str|MEM_Blob);
2535 assert( fx!=0 );
drh7b5ebca2014-09-19 15:28:33 +00002536 zData = (const u8*)pDest->z;
2537 len = pDest->n;
2538 if( sqlite3VdbeMemClearAndResize(pDest, len+2) ) goto no_mem;
2539 memcpy(pDest->z, zData, len);
2540 pDest->z[len] = 0;
2541 pDest->z[len+1] = 0;
drh0c8f7602014-09-19 16:56:45 +00002542 pDest->flags = fx|MEM_Term;
drh7b5ebca2014-09-19 15:28:33 +00002543 }
drhc8606e42013-11-20 19:28:03 +00002544op_column_error:
drhb7654112008-01-12 12:48:07 +00002545 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002546 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002547 break;
2548}
2549
danielk1977751de562008-04-18 09:01:15 +00002550/* Opcode: Affinity P1 P2 * P4 *
drhf63552b2013-10-30 00:25:03 +00002551** Synopsis: affinity(r[P1@P2])
danielk1977751de562008-04-18 09:01:15 +00002552**
2553** Apply affinities to a range of P2 registers starting with P1.
2554**
2555** P4 is a string that is P2 characters long. The nth character of the
2556** string indicates the column affinity that should be used for the nth
2557** memory cell in the range.
2558*/
2559case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002560 const char *zAffinity; /* The affinity to be applied */
2561 char cAff; /* A single character of affinity */
danielk1977751de562008-04-18 09:01:15 +00002562
drh856c1032009-06-02 15:21:42 +00002563 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002564 assert( zAffinity!=0 );
2565 assert( zAffinity[pOp->p2]==0 );
2566 pIn1 = &aMem[pOp->p1];
2567 while( (cAff = *(zAffinity++))!=0 ){
dan3bc9f742013-08-15 16:18:39 +00002568 assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00002569 assert( memIsValid(pIn1) );
drh039fc322009-11-17 18:31:47 +00002570 applyAffinity(pIn1, cAff, encoding);
2571 pIn1++;
danielk1977751de562008-04-18 09:01:15 +00002572 }
2573 break;
2574}
2575
drh1db639c2008-01-17 02:36:28 +00002576/* Opcode: MakeRecord P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00002577** Synopsis: r[P3]=mkrec(r[P1@P2])
drh7a224de2004-06-02 01:22:02 +00002578**
drh710c4842010-08-30 01:17:20 +00002579** Convert P2 registers beginning with P1 into the [record format]
2580** use as a data record in a database table or as a key
2581** in an index. The OP_Column opcode can decode the record later.
drh7a224de2004-06-02 01:22:02 +00002582**
danielk1977751de562008-04-18 09:01:15 +00002583** P4 may be a string that is P2 characters long. The nth character of the
drh7a224de2004-06-02 01:22:02 +00002584** string indicates the column affinity that should be used for the nth
drh9cbf3422008-01-17 16:22:13 +00002585** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002586**
drh8a512562005-11-14 22:29:05 +00002587** The mapping from character to affinity is given by the SQLITE_AFF_
2588** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002589**
drh66a51672008-01-03 00:01:23 +00002590** If P4 is NULL then all index fields have the affinity NONE.
drh7f057c92005-06-24 03:53:06 +00002591*/
drh1db639c2008-01-17 02:36:28 +00002592case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002593 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2594 Mem *pRec; /* The new record */
2595 u64 nData; /* Number of bytes of data space */
2596 int nHdr; /* Number of bytes of header space */
2597 i64 nByte; /* Data space required for this record */
drh4a335072015-04-11 02:08:48 +00002598 i64 nZero; /* Number of zero bytes at the end of the record */
drh856c1032009-06-02 15:21:42 +00002599 int nVarint; /* Number of bytes in a varint */
2600 u32 serial_type; /* Type field */
2601 Mem *pData0; /* First field to be combined into the record */
2602 Mem *pLast; /* Last field of the record */
2603 int nField; /* Number of fields in the record */
2604 char *zAffinity; /* The affinity string for the record */
2605 int file_format; /* File format to use for encoding */
drh59bf00c2013-12-08 23:33:28 +00002606 int i; /* Space used in zNewRecord[] header */
2607 int j; /* Space used in zNewRecord[] content */
drh856c1032009-06-02 15:21:42 +00002608 int len; /* Length of a field */
2609
drhf3218fe2004-05-28 08:21:02 +00002610 /* Assuming the record contains N fields, the record format looks
2611 ** like this:
2612 **
drh7a224de2004-06-02 01:22:02 +00002613 ** ------------------------------------------------------------------------
2614 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2615 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002616 **
drh9cbf3422008-01-17 16:22:13 +00002617 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
peter.d.reid60ec9142014-09-06 16:39:46 +00002618 ** and so forth.
drhf3218fe2004-05-28 08:21:02 +00002619 **
2620 ** Each type field is a varint representing the serial type of the
2621 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002622 ** hdr-size field is also a varint which is the offset from the beginning
2623 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002624 */
drh856c1032009-06-02 15:21:42 +00002625 nData = 0; /* Number of bytes of data space */
2626 nHdr = 0; /* Number of bytes of header space */
drh856c1032009-06-02 15:21:42 +00002627 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002628 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002629 zAffinity = pOp->p4.z;
dan3bc9f742013-08-15 16:18:39 +00002630 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 );
drha6c2ed92009-11-14 23:22:23 +00002631 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002632 nField = pOp->p2;
2633 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002634 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002635
drh2b4ded92010-09-27 21:09:31 +00002636 /* Identify the output register */
2637 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2638 pOut = &aMem[pOp->p3];
2639 memAboutToChange(p, pOut);
2640
drh3e6c0602013-12-10 20:53:01 +00002641 /* Apply the requested affinity to all inputs
2642 */
2643 assert( pData0<=pLast );
2644 if( zAffinity ){
2645 pRec = pData0;
2646 do{
drh57bf4a82014-02-17 14:59:22 +00002647 applyAffinity(pRec++, *(zAffinity++), encoding);
2648 assert( zAffinity[0]==0 || pRec<=pLast );
2649 }while( zAffinity[0] );
drh3e6c0602013-12-10 20:53:01 +00002650 }
2651
drhf3218fe2004-05-28 08:21:02 +00002652 /* Loop through the elements that will make up the record to figure
2653 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002654 */
drh038b7bc2013-12-09 23:17:22 +00002655 pRec = pLast;
drh59bf00c2013-12-08 23:33:28 +00002656 do{
drh2b4ded92010-09-27 21:09:31 +00002657 assert( memIsValid(pRec) );
drhfacf47a2014-10-13 20:12:47 +00002658 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format);
drhae7e1512007-05-02 16:51:59 +00002659 len = sqlite3VdbeSerialTypeLen(serial_type);
drh038b7bc2013-12-09 23:17:22 +00002660 if( pRec->flags & MEM_Zero ){
2661 if( nData ){
2662 sqlite3VdbeMemExpandBlob(pRec);
2663 }else{
2664 nZero += pRec->u.nZero;
2665 len -= pRec->u.nZero;
2666 }
2667 }
drhae7e1512007-05-02 16:51:59 +00002668 nData += len;
drh59bf00c2013-12-08 23:33:28 +00002669 testcase( serial_type==127 );
2670 testcase( serial_type==128 );
drh2a242872013-12-08 22:59:29 +00002671 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
drh038b7bc2013-12-09 23:17:22 +00002672 }while( (--pRec)>=pData0 );
danielk19773d1bfea2004-05-14 11:00:53 +00002673
drh654858d2014-11-20 02:18:14 +00002674 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2675 ** which determines the total number of bytes in the header. The varint
2676 ** value is the size of the header in bytes including the size varint
2677 ** itself. */
drh59bf00c2013-12-08 23:33:28 +00002678 testcase( nHdr==126 );
2679 testcase( nHdr==127 );
drh2a242872013-12-08 22:59:29 +00002680 if( nHdr<=126 ){
2681 /* The common case */
2682 nHdr += 1;
2683 }else{
2684 /* Rare case of a really large header */
2685 nVarint = sqlite3VarintLen(nHdr);
2686 nHdr += nVarint;
2687 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
drhcb9882a2005-03-17 03:15:40 +00002688 }
drh038b7bc2013-12-09 23:17:22 +00002689 nByte = nHdr+nData;
drh4a335072015-04-11 02:08:48 +00002690 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002691 goto too_big;
2692 }
drhf3218fe2004-05-28 08:21:02 +00002693
danielk1977a7a8e142008-02-13 18:25:27 +00002694 /* Make sure the output register has a buffer large enough to store
2695 ** the new record. The output register (pOp->p3) is not allowed to
2696 ** be one of the input registers (because the following call to
drh322f2852014-09-19 00:43:39 +00002697 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
danielk1977a7a8e142008-02-13 18:25:27 +00002698 */
drh322f2852014-09-19 00:43:39 +00002699 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002700 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002701 }
danielk1977a7a8e142008-02-13 18:25:27 +00002702 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002703
2704 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002705 i = putVarint32(zNewRecord, nHdr);
drh59bf00c2013-12-08 23:33:28 +00002706 j = nHdr;
2707 assert( pData0<=pLast );
2708 pRec = pData0;
2709 do{
drhfacf47a2014-10-13 20:12:47 +00002710 serial_type = pRec->uTemp;
drh654858d2014-11-20 02:18:14 +00002711 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2712 ** additional varints, one per column. */
drh038b7bc2013-12-09 23:17:22 +00002713 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
drh654858d2014-11-20 02:18:14 +00002714 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2715 ** immediately follow the header. */
drha9ab4812013-12-11 11:00:44 +00002716 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
drh59bf00c2013-12-08 23:33:28 +00002717 }while( (++pRec)<=pLast );
2718 assert( i==nHdr );
2719 assert( j==nByte );
drhf3218fe2004-05-28 08:21:02 +00002720
dan3bc9f742013-08-15 16:18:39 +00002721 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drh9c1905f2008-12-10 22:32:56 +00002722 pOut->n = (int)nByte;
drhc91b2fd2014-03-01 18:13:23 +00002723 pOut->flags = MEM_Blob;
drhfdf972a2007-05-02 13:30:27 +00002724 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002725 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002726 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002727 }
drh477df4b2008-01-05 18:48:24 +00002728 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
drh1013c932008-01-06 00:25:21 +00002729 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002730 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002731 break;
2732}
2733
danielk1977a5533162009-02-24 10:01:51 +00002734/* Opcode: Count P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002735** Synopsis: r[P2]=count()
danielk1977a5533162009-02-24 10:01:51 +00002736**
2737** Store the number of entries (an integer value) in the table or index
2738** opened by cursor P1 in register P2
2739*/
2740#ifndef SQLITE_OMIT_BTREECOUNT
drh27a348c2015-04-13 19:14:06 +00002741case OP_Count: { /* out2 */
danielk1977a5533162009-02-24 10:01:51 +00002742 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002743 BtCursor *pCrsr;
2744
2745 pCrsr = p->apCsr[pOp->p1]->pCursor;
drh3da046d2013-11-11 03:24:11 +00002746 assert( pCrsr );
drh2dc06482013-12-11 00:59:10 +00002747 nEntry = 0; /* Not needed. Only used to silence a warning. */
drh3da046d2013-11-11 03:24:11 +00002748 rc = sqlite3BtreeCount(pCrsr, &nEntry);
drh27a348c2015-04-13 19:14:06 +00002749 pOut = out2Prerelease(p, pOp);
danielk1977a5533162009-02-24 10:01:51 +00002750 pOut->u.i = nEntry;
2751 break;
2752}
2753#endif
2754
danielk1977fd7f0452008-12-17 17:30:26 +00002755/* Opcode: Savepoint P1 * * P4 *
2756**
2757** Open, release or rollback the savepoint named by parameter P4, depending
2758** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2759** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2760*/
2761case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002762 int p1; /* Value of P1 operand */
2763 char *zName; /* Name of savepoint */
2764 int nName;
2765 Savepoint *pNew;
2766 Savepoint *pSavepoint;
2767 Savepoint *pTmp;
2768 int iSavepoint;
2769 int ii;
2770
2771 p1 = pOp->p1;
2772 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002773
2774 /* Assert that the p1 parameter is valid. Also that if there is no open
2775 ** transaction, then there cannot be any savepoints.
2776 */
2777 assert( db->pSavepoint==0 || db->autoCommit==0 );
2778 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2779 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2780 assert( checkSavepointCount(db) );
danc0537fe2013-06-28 19:41:43 +00002781 assert( p->bIsReader );
danielk1977fd7f0452008-12-17 17:30:26 +00002782
2783 if( p1==SAVEPOINT_BEGIN ){
drh4f7d3a52013-06-27 23:54:02 +00002784 if( db->nVdbeWrite>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002785 /* A new savepoint cannot be created if there are active write
2786 ** statements (i.e. open read/write incremental blob handles).
2787 */
2788 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
2789 "SQL statements in progress");
2790 rc = SQLITE_BUSY;
2791 }else{
drh856c1032009-06-02 15:21:42 +00002792 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002793
drhbe07ec52011-06-03 12:15:26 +00002794#ifndef SQLITE_OMIT_VIRTUALTABLE
dand9495cd2011-04-27 12:08:04 +00002795 /* This call is Ok even if this savepoint is actually a transaction
2796 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2797 ** If this is a transaction savepoint being opened, it is guaranteed
2798 ** that the db->aVTrans[] array is empty. */
2799 assert( db->autoCommit==0 || db->nVTrans==0 );
drha24bc9c2011-05-24 00:35:56 +00002800 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2801 db->nStatement+db->nSavepoint);
dand9495cd2011-04-27 12:08:04 +00002802 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh305ebab2011-05-26 14:19:14 +00002803#endif
dand9495cd2011-04-27 12:08:04 +00002804
danielk1977fd7f0452008-12-17 17:30:26 +00002805 /* Create a new savepoint structure. */
2806 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2807 if( pNew ){
2808 pNew->zName = (char *)&pNew[1];
2809 memcpy(pNew->zName, zName, nName+1);
2810
2811 /* If there is no open transaction, then mark this as a special
2812 ** "transaction savepoint". */
2813 if( db->autoCommit ){
2814 db->autoCommit = 0;
2815 db->isTransactionSavepoint = 1;
2816 }else{
2817 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002818 }
danielk1977fd7f0452008-12-17 17:30:26 +00002819
2820 /* Link the new savepoint into the database handle's list. */
2821 pNew->pNext = db->pSavepoint;
2822 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002823 pNew->nDeferredCons = db->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00002824 pNew->nDeferredImmCons = db->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002825 }
2826 }
2827 }else{
drh856c1032009-06-02 15:21:42 +00002828 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00002829
2830 /* Find the named savepoint. If there is no such savepoint, then an
2831 ** an error is returned to the user. */
2832 for(
drh856c1032009-06-02 15:21:42 +00002833 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002834 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00002835 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00002836 ){
2837 iSavepoint++;
2838 }
2839 if( !pSavepoint ){
2840 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
2841 rc = SQLITE_ERROR;
drh4f7d3a52013-06-27 23:54:02 +00002842 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
danielk1977fd7f0452008-12-17 17:30:26 +00002843 /* It is not possible to release (commit) a savepoint if there are
drh0f198a72012-02-13 16:43:16 +00002844 ** active write statements.
danielk1977fd7f0452008-12-17 17:30:26 +00002845 */
2846 sqlite3SetString(&p->zErrMsg, db,
drh0f198a72012-02-13 16:43:16 +00002847 "cannot release savepoint - SQL statements in progress"
danielk1977fd7f0452008-12-17 17:30:26 +00002848 );
2849 rc = SQLITE_BUSY;
2850 }else{
2851
2852 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00002853 ** and this is a RELEASE command, then the current transaction
2854 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00002855 */
2856 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2857 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00002858 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002859 goto vdbe_return;
2860 }
danielk1977fd7f0452008-12-17 17:30:26 +00002861 db->autoCommit = 1;
2862 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
drhf56fa462015-04-13 21:39:54 +00002863 p->pc = (int)(pOp - aOp);
danielk1977fd7f0452008-12-17 17:30:26 +00002864 db->autoCommit = 0;
2865 p->rc = rc = SQLITE_BUSY;
2866 goto vdbe_return;
2867 }
danielk197734cf35d2008-12-18 18:31:38 +00002868 db->isTransactionSavepoint = 0;
2869 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00002870 }else{
drh47b7fc72014-11-11 01:33:57 +00002871 int isSchemaChange;
danielk1977fd7f0452008-12-17 17:30:26 +00002872 iSavepoint = db->nSavepoint - iSavepoint - 1;
drh31f10052012-03-31 17:17:26 +00002873 if( p1==SAVEPOINT_ROLLBACK ){
drh47b7fc72014-11-11 01:33:57 +00002874 isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
drh31f10052012-03-31 17:17:26 +00002875 for(ii=0; ii<db->nDb; ii++){
drh77b1dee2014-11-17 17:13:06 +00002876 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
2877 SQLITE_ABORT_ROLLBACK,
drh47b7fc72014-11-11 01:33:57 +00002878 isSchemaChange==0);
dan80231042014-11-12 14:56:02 +00002879 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh31f10052012-03-31 17:17:26 +00002880 }
drh47b7fc72014-11-11 01:33:57 +00002881 }else{
2882 isSchemaChange = 0;
drh0f198a72012-02-13 16:43:16 +00002883 }
2884 for(ii=0; ii<db->nDb; ii++){
danielk1977fd7f0452008-12-17 17:30:26 +00002885 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2886 if( rc!=SQLITE_OK ){
2887 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00002888 }
danielk1977fd7f0452008-12-17 17:30:26 +00002889 }
drh47b7fc72014-11-11 01:33:57 +00002890 if( isSchemaChange ){
danielk1977fd7f0452008-12-17 17:30:26 +00002891 sqlite3ExpirePreparedStatements(db);
drh81028a42012-05-15 18:28:27 +00002892 sqlite3ResetAllSchemasOfConnection(db);
danc311fee2010-08-31 16:25:19 +00002893 db->flags = (db->flags | SQLITE_InternChanges);
danielk1977fd7f0452008-12-17 17:30:26 +00002894 }
2895 }
2896
2897 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2898 ** savepoints nested inside of the savepoint being operated on. */
2899 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00002900 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002901 db->pSavepoint = pTmp->pNext;
2902 sqlite3DbFree(db, pTmp);
2903 db->nSavepoint--;
2904 }
2905
dan1da40a32009-09-19 17:00:31 +00002906 /* If it is a RELEASE, then destroy the savepoint being operated on
2907 ** too. If it is a ROLLBACK TO, then set the number of deferred
2908 ** constraint violations present in the database to the value stored
2909 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00002910 if( p1==SAVEPOINT_RELEASE ){
2911 assert( pSavepoint==db->pSavepoint );
2912 db->pSavepoint = pSavepoint->pNext;
2913 sqlite3DbFree(db, pSavepoint);
2914 if( !isTransaction ){
2915 db->nSavepoint--;
2916 }
dan1da40a32009-09-19 17:00:31 +00002917 }else{
2918 db->nDeferredCons = pSavepoint->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00002919 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002920 }
dand9495cd2011-04-27 12:08:04 +00002921
2922 if( !isTransaction ){
2923 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2924 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2925 }
danielk1977fd7f0452008-12-17 17:30:26 +00002926 }
2927 }
2928
2929 break;
2930}
2931
drh98757152008-01-09 23:04:12 +00002932/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00002933**
2934** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00002935** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00002936** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2937** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00002938**
2939** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00002940*/
drh9cbf3422008-01-17 16:22:13 +00002941case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00002942 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00002943 int iRollback;
drh856c1032009-06-02 15:21:42 +00002944 int turnOnAC;
danielk19771d850a72004-05-31 08:26:49 +00002945
drh856c1032009-06-02 15:21:42 +00002946 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00002947 iRollback = pOp->p2;
drh856c1032009-06-02 15:21:42 +00002948 turnOnAC = desiredAutoCommit && !db->autoCommit;
drhad4a4b82008-11-05 16:37:34 +00002949 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00002950 assert( desiredAutoCommit==1 || iRollback==0 );
drh4f7d3a52013-06-27 23:54:02 +00002951 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
danc0537fe2013-06-28 19:41:43 +00002952 assert( p->bIsReader );
danielk197746c43ed2004-06-30 06:30:25 +00002953
drh0f198a72012-02-13 16:43:16 +00002954#if 0
drh4f7d3a52013-06-27 23:54:02 +00002955 if( turnOnAC && iRollback && db->nVdbeActive>1 ){
drhad4a4b82008-11-05 16:37:34 +00002956 /* If this instruction implements a ROLLBACK and other VMs are
danielk197746c43ed2004-06-30 06:30:25 +00002957 ** still running, and a transaction is active, return an error indicating
2958 ** that the other VMs must complete first.
2959 */
drhad4a4b82008-11-05 16:37:34 +00002960 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2961 "SQL statements in progress");
drh99dfe5e2008-10-30 15:03:15 +00002962 rc = SQLITE_BUSY;
drh0f198a72012-02-13 16:43:16 +00002963 }else
2964#endif
drh4f7d3a52013-06-27 23:54:02 +00002965 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){
drhad4a4b82008-11-05 16:37:34 +00002966 /* If this instruction implements a COMMIT and other VMs are writing
2967 ** return an error indicating that the other VMs must complete first.
2968 */
2969 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
2970 "SQL statements in progress");
2971 rc = SQLITE_BUSY;
2972 }else if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00002973 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00002974 assert( desiredAutoCommit==1 );
drh21021a52012-02-13 17:01:51 +00002975 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977f3f06bb2005-12-16 15:24:28 +00002976 db->autoCommit = 1;
dan32b09f22009-09-23 17:29:59 +00002977 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002978 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002979 }else{
shane7d3846a2008-12-11 02:58:26 +00002980 db->autoCommit = (u8)desiredAutoCommit;
danielk1977f3f06bb2005-12-16 15:24:28 +00002981 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
drhf56fa462015-04-13 21:39:54 +00002982 p->pc = (int)(pOp - aOp);
drh9c1905f2008-12-10 22:32:56 +00002983 db->autoCommit = (u8)(1-desiredAutoCommit);
drh900b31e2007-08-28 02:27:51 +00002984 p->rc = rc = SQLITE_BUSY;
2985 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002986 }
danielk19771d850a72004-05-31 08:26:49 +00002987 }
danielk1977bd434552009-03-18 10:33:00 +00002988 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00002989 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00002990 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00002991 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00002992 }else{
drh900b31e2007-08-28 02:27:51 +00002993 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00002994 }
drh900b31e2007-08-28 02:27:51 +00002995 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00002996 }else{
drhf089aa42008-07-08 19:34:06 +00002997 sqlite3SetString(&p->zErrMsg, db,
drhad4a4b82008-11-05 16:37:34 +00002998 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00002999 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00003000 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00003001
3002 rc = SQLITE_ERROR;
drh663fc632002-02-02 18:49:19 +00003003 }
3004 break;
3005}
3006
drhb22f7c82014-02-06 23:56:27 +00003007/* Opcode: Transaction P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003008**
drh05a86c52014-02-16 01:55:49 +00003009** Begin a transaction on database P1 if a transaction is not already
3010** active.
3011** If P2 is non-zero, then a write-transaction is started, or if a
3012** read-transaction is already active, it is upgraded to a write-transaction.
3013** If P2 is zero, then a read-transaction is started.
drh5e00f6c2001-09-13 13:46:56 +00003014**
drh001bbcb2003-03-19 03:14:00 +00003015** P1 is the index of the database file on which the transaction is
3016** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00003017** file used for temporary tables. Indices of 2 or more are used for
3018** attached databases.
drhcabb0812002-09-14 13:47:32 +00003019**
dane0af83a2009-09-08 19:15:01 +00003020** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3021** true (this flag is set if the Vdbe may modify more than one row and may
3022** throw an ABORT exception), a statement transaction may also be opened.
3023** More specifically, a statement transaction is opened iff the database
3024** connection is currently not in autocommit mode, or if there are other
drha4510172012-02-02 15:50:17 +00003025** active statements. A statement transaction allows the changes made by this
dane0af83a2009-09-08 19:15:01 +00003026** VDBE to be rolled back after an error without having to roll back the
3027** entire transaction. If no error is encountered, the statement transaction
3028** will automatically commit when the VDBE halts.
3029**
drhb22f7c82014-02-06 23:56:27 +00003030** If P5!=0 then this opcode also checks the schema cookie against P3
3031** and the schema generation counter against P4.
3032** The cookie changes its value whenever the database schema changes.
3033** This operation is used to detect when that the cookie has changed
drh05a86c52014-02-16 01:55:49 +00003034** and that the current process needs to reread the schema. If the schema
3035** cookie in P3 differs from the schema cookie in the database header or
3036** if the schema generation counter in P4 differs from the current
3037** generation counter, then an SQLITE_SCHEMA error is raised and execution
3038** halts. The sqlite3_step() wrapper function might then reprepare the
3039** statement and rerun it from the beginning.
drh5e00f6c2001-09-13 13:46:56 +00003040*/
drh9cbf3422008-01-17 16:22:13 +00003041case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00003042 Btree *pBt;
drhb22f7c82014-02-06 23:56:27 +00003043 int iMeta;
3044 int iGen;
danielk19771d850a72004-05-31 08:26:49 +00003045
drh1713afb2013-06-28 01:24:57 +00003046 assert( p->bIsReader );
drh9e92a472013-06-27 17:40:30 +00003047 assert( p->readOnly==0 || pOp->p2==0 );
drh653b82a2009-06-22 11:10:47 +00003048 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003049 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh13447bf2013-07-10 13:33:49 +00003050 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3051 rc = SQLITE_READONLY;
3052 goto abort_due_to_error;
3053 }
drh653b82a2009-06-22 11:10:47 +00003054 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00003055
danielk197724162fe2004-06-04 06:22:00 +00003056 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00003057 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
danielk197724162fe2004-06-04 06:22:00 +00003058 if( rc==SQLITE_BUSY ){
drhf56fa462015-04-13 21:39:54 +00003059 p->pc = (int)(pOp - aOp);
drh900b31e2007-08-28 02:27:51 +00003060 p->rc = rc = SQLITE_BUSY;
drh900b31e2007-08-28 02:27:51 +00003061 goto vdbe_return;
danielk197724162fe2004-06-04 06:22:00 +00003062 }
drh9e9f1bd2009-10-13 15:36:51 +00003063 if( rc!=SQLITE_OK ){
danielk197724162fe2004-06-04 06:22:00 +00003064 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00003065 }
dane0af83a2009-09-08 19:15:01 +00003066
3067 if( pOp->p2 && p->usesStmtJournal
danc0537fe2013-06-28 19:41:43 +00003068 && (db->autoCommit==0 || db->nVdbeRead>1)
dane0af83a2009-09-08 19:15:01 +00003069 ){
3070 assert( sqlite3BtreeIsInTrans(pBt) );
3071 if( p->iStatement==0 ){
3072 assert( db->nStatement>=0 && db->nSavepoint>=0 );
3073 db->nStatement++;
3074 p->iStatement = db->nSavepoint + db->nStatement;
3075 }
dana311b802011-04-26 19:21:34 +00003076
drh346506f2011-05-25 01:16:42 +00003077 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
dana311b802011-04-26 19:21:34 +00003078 if( rc==SQLITE_OK ){
3079 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3080 }
dan1da40a32009-09-19 17:00:31 +00003081
3082 /* Store the current value of the database handles deferred constraint
3083 ** counter. If the statement transaction needs to be rolled back,
3084 ** the value of this counter needs to be restored too. */
3085 p->nStmtDefCons = db->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00003086 p->nStmtDefImmCons = db->nDeferredImmCons;
dane0af83a2009-09-08 19:15:01 +00003087 }
drhb22f7c82014-02-06 23:56:27 +00003088
drh51a74d42015-02-28 01:04:27 +00003089 /* Gather the schema version number for checking:
3090 ** IMPLEMENTATION-OF: R-32195-19465 The schema version is used by SQLite
3091 ** each time a query is executed to ensure that the internal cache of the
3092 ** schema used when compiling the SQL query matches the schema of the
3093 ** database against which the compiled query is actually executed.
3094 */
drhb22f7c82014-02-06 23:56:27 +00003095 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3096 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3097 }else{
3098 iGen = iMeta = 0;
3099 }
3100 assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3101 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3102 sqlite3DbFree(db, p->zErrMsg);
3103 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3104 /* If the schema-cookie from the database file matches the cookie
3105 ** stored with the in-memory representation of the schema, do
3106 ** not reload the schema from the database file.
3107 **
3108 ** If virtual-tables are in use, this is not just an optimization.
3109 ** Often, v-tables store their data in other SQLite tables, which
3110 ** are queried from within xNext() and other v-table methods using
3111 ** prepared queries. If such a query is out-of-date, we do not want to
3112 ** discard the database schema, as the user code implementing the
3113 ** v-table would have to be ready for the sqlite3_vtab structure itself
3114 ** to be invalidated whenever sqlite3_step() is called from within
3115 ** a v-table method.
3116 */
3117 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3118 sqlite3ResetOneSchema(db, pOp->p1);
3119 }
3120 p->expired = 1;
3121 rc = SQLITE_SCHEMA;
drhb86ccfb2003-01-28 23:13:10 +00003122 }
drh5e00f6c2001-09-13 13:46:56 +00003123 break;
3124}
3125
drhb1fdb2a2008-01-05 04:06:03 +00003126/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003127**
drh9cbf3422008-01-17 16:22:13 +00003128** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00003129** P3==1 is the schema version. P3==2 is the database format.
3130** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00003131** the main database file and P1==1 is the database file used to store
3132** temporary tables.
drh4a324312001-12-21 14:30:42 +00003133**
drh50e5dad2001-09-15 00:57:28 +00003134** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00003135** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00003136** executing this instruction.
3137*/
drh27a348c2015-04-13 19:14:06 +00003138case OP_ReadCookie: { /* out2 */
drhf328bc82004-05-10 23:29:49 +00003139 int iMeta;
drh856c1032009-06-02 15:21:42 +00003140 int iDb;
3141 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00003142
drh1713afb2013-06-28 01:24:57 +00003143 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00003144 iDb = pOp->p1;
3145 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00003146 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00003147 assert( iDb>=0 && iDb<db->nDb );
3148 assert( db->aDb[iDb].pBt!=0 );
drha7ab6d82014-07-21 15:44:39 +00003149 assert( DbMaskTest(p->btreeMask, iDb) );
danielk19770d19f7a2009-06-03 11:25:07 +00003150
danielk1977602b4662009-07-02 07:47:33 +00003151 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh27a348c2015-04-13 19:14:06 +00003152 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00003153 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00003154 break;
3155}
3156
drh98757152008-01-09 23:04:12 +00003157/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003158**
drh98757152008-01-09 23:04:12 +00003159** Write the content of register P3 (interpreted as an integer)
danielk19770d19f7a2009-06-03 11:25:07 +00003160** into cookie number P2 of database P1. P2==1 is the schema version.
3161** P2==2 is the database format. P2==3 is the recommended pager cache
3162** size, and so forth. P1==0 is the main database file and P1==1 is the
3163** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00003164**
3165** A transaction must be started before executing this opcode.
3166*/
drh9cbf3422008-01-17 16:22:13 +00003167case OP_SetCookie: { /* in3 */
drh3f7d4e42004-07-24 14:35:58 +00003168 Db *pDb;
drh4a324312001-12-21 14:30:42 +00003169 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00003170 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003171 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00003172 assert( p->readOnly==0 );
drh3f7d4e42004-07-24 14:35:58 +00003173 pDb = &db->aDb[pOp->p1];
3174 assert( pDb->pBt!=0 );
drh21206082011-04-04 18:22:02 +00003175 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drh3c657212009-11-17 23:59:58 +00003176 pIn3 = &aMem[pOp->p3];
drh98757152008-01-09 23:04:12 +00003177 sqlite3VdbeMemIntegerify(pIn3);
drha3b321d2004-05-11 09:31:31 +00003178 /* See note about index shifting on OP_ReadCookie */
danielk19770d19f7a2009-06-03 11:25:07 +00003179 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
3180 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00003181 /* When the schema cookie changes, record the new cookie internally */
drh9c1905f2008-12-10 22:32:56 +00003182 pDb->pSchema->schema_cookie = (int)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00003183 db->flags |= SQLITE_InternChanges;
danielk19770d19f7a2009-06-03 11:25:07 +00003184 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00003185 /* Record changes in the file format */
drh9c1905f2008-12-10 22:32:56 +00003186 pDb->pSchema->file_format = (u8)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00003187 }
drhfd426c62006-01-30 15:34:22 +00003188 if( pOp->p1==1 ){
3189 /* Invalidate all prepared statements whenever the TEMP database
3190 ** schema is changed. Ticket #1644 */
3191 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00003192 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00003193 }
drh50e5dad2001-09-15 00:57:28 +00003194 break;
3195}
3196
drh98757152008-01-09 23:04:12 +00003197/* Opcode: OpenRead P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003198** Synopsis: root=P2 iDb=P3
drh5e00f6c2001-09-13 13:46:56 +00003199**
drhecdc7532001-09-23 02:35:53 +00003200** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00003201** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00003202** P3==0 means the main database, P3==1 means the database used for
3203** temporary tables, and P3>1 means used the corresponding attached
3204** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00003205** values need not be contiguous but all P1 values should be small integers.
3206** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00003207**
drh98757152008-01-09 23:04:12 +00003208** If P5!=0 then use the content of register P2 as the root page, not
3209** the value of P2 itself.
drh5edc3122001-09-13 21:53:09 +00003210**
drhb19a2bc2001-09-16 00:13:26 +00003211** There will be a read lock on the database whenever there is an
3212** open cursor. If the database was unlocked prior to this instruction
3213** then a read lock is acquired as part of this instruction. A read
3214** lock allows other processes to read the database but prohibits
3215** any other process from modifying the database. The read lock is
3216** released when all cursors are closed. If this instruction attempts
3217** to get a read lock but fails, the script terminates with an
3218** SQLITE_BUSY error code.
3219**
danielk1977d336e222009-02-20 10:58:41 +00003220** The P4 value may be either an integer (P4_INT32) or a pointer to
3221** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3222** structure, then said structure defines the content and collating
3223** sequence of the index being opened. Otherwise, if P4 is an integer
3224** value, it is set to the number of columns in the table.
drhf57b3392001-10-08 13:22:32 +00003225**
drh35263192014-07-22 20:02:19 +00003226** See also: OpenWrite, ReopenIdx
3227*/
3228/* Opcode: ReopenIdx P1 P2 P3 P4 P5
3229** Synopsis: root=P2 iDb=P3
3230**
3231** The ReopenIdx opcode works exactly like ReadOpen except that it first
3232** checks to see if the cursor on P1 is already open with a root page
3233** number of P2 and if it is this opcode becomes a no-op. In other words,
3234** if the cursor is already open, do not reopen it.
3235**
3236** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3237** a P4_KEYINFO object. Furthermore, the P3 value must be the same as
3238** every other ReopenIdx or OpenRead for the same cursor number.
3239**
3240** See the OpenRead opcode documentation for additional information.
drh5e00f6c2001-09-13 13:46:56 +00003241*/
drh98757152008-01-09 23:04:12 +00003242/* Opcode: OpenWrite P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003243** Synopsis: root=P2 iDb=P3
drhecdc7532001-09-23 02:35:53 +00003244**
3245** Open a read/write cursor named P1 on the table or index whose root
drh98757152008-01-09 23:04:12 +00003246** page is P2. Or if P5!=0 use the content of register P2 to find the
3247** root page.
drhecdc7532001-09-23 02:35:53 +00003248**
danielk1977d336e222009-02-20 10:58:41 +00003249** The P4 value may be either an integer (P4_INT32) or a pointer to
3250** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3251** structure, then said structure defines the content and collating
3252** sequence of the index being opened. Otherwise, if P4 is an integer
drh35cd6432009-06-05 14:17:21 +00003253** value, it is set to the number of columns in the table, or to the
3254** largest index of any column of the table that is actually used.
jplyon5a564222003-06-02 06:15:58 +00003255**
drh001bbcb2003-03-19 03:14:00 +00003256** This instruction works just like OpenRead except that it opens the cursor
drhecdc7532001-09-23 02:35:53 +00003257** in read/write mode. For a given table, there can be one or more read-only
3258** cursors or a single read/write cursor but not both.
drhf57b3392001-10-08 13:22:32 +00003259**
drh001bbcb2003-03-19 03:14:00 +00003260** See also OpenRead.
drhecdc7532001-09-23 02:35:53 +00003261*/
drh35263192014-07-22 20:02:19 +00003262case OP_ReopenIdx: {
drh1fa509a2015-03-20 16:34:49 +00003263 int nField;
3264 KeyInfo *pKeyInfo;
3265 int p2;
3266 int iDb;
3267 int wrFlag;
3268 Btree *pX;
drh35263192014-07-22 20:02:19 +00003269 VdbeCursor *pCur;
drh1fa509a2015-03-20 16:34:49 +00003270 Db *pDb;
drh35263192014-07-22 20:02:19 +00003271
drhe0997b32015-03-20 14:57:50 +00003272 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
drh35263192014-07-22 20:02:19 +00003273 assert( pOp->p4type==P4_KEYINFO );
3274 pCur = p->apCsr[pOp->p1];
drhe8f2c9d2014-08-06 17:49:13 +00003275 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
drh35263192014-07-22 20:02:19 +00003276 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
drhe0997b32015-03-20 14:57:50 +00003277 goto open_cursor_set_hints;
drh35263192014-07-22 20:02:19 +00003278 }
3279 /* If the cursor is not currently open or is open on a different
3280 ** index, then fall through into OP_OpenRead to force a reopen */
drh9cbf3422008-01-17 16:22:13 +00003281case OP_OpenRead:
drh1fa509a2015-03-20 16:34:49 +00003282case OP_OpenWrite:
drh856c1032009-06-02 15:21:42 +00003283
drhe0997b32015-03-20 14:57:50 +00003284 assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR|OPFLAG_SEEKEQ))==pOp->p5 );
3285 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
drh1713afb2013-06-28 01:24:57 +00003286 assert( p->bIsReader );
drh35263192014-07-22 20:02:19 +00003287 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3288 || p->readOnly==0 );
dan428c2182012-08-06 18:50:11 +00003289
danfa401de2009-10-16 14:55:03 +00003290 if( p->expired ){
drh47b7fc72014-11-11 01:33:57 +00003291 rc = SQLITE_ABORT_ROLLBACK;
danfa401de2009-10-16 14:55:03 +00003292 break;
3293 }
3294
drh856c1032009-06-02 15:21:42 +00003295 nField = 0;
3296 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00003297 p2 = pOp->p2;
3298 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00003299 assert( iDb>=0 && iDb<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003300 assert( DbMaskTest(p->btreeMask, iDb) );
drhd946db02005-12-29 19:23:06 +00003301 pDb = &db->aDb[iDb];
3302 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00003303 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00003304 if( pOp->opcode==OP_OpenWrite ){
3305 wrFlag = 1;
drh21206082011-04-04 18:22:02 +00003306 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
danielk1977da184232006-01-05 11:34:32 +00003307 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3308 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00003309 }
3310 }else{
3311 wrFlag = 0;
3312 }
dan428c2182012-08-06 18:50:11 +00003313 if( pOp->p5 & OPFLAG_P2ISREG ){
drh9cbf3422008-01-17 16:22:13 +00003314 assert( p2>0 );
dan3bc9f742013-08-15 16:18:39 +00003315 assert( p2<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00003316 pIn2 = &aMem[p2];
drh2b4ded92010-09-27 21:09:31 +00003317 assert( memIsValid(pIn2) );
3318 assert( (pIn2->flags & MEM_Int)!=0 );
drh9cbf3422008-01-17 16:22:13 +00003319 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003320 p2 = (int)pIn2->u.i;
drh9a65f2c2009-06-22 19:05:40 +00003321 /* The p2 value always comes from a prior OP_CreateTable opcode and
3322 ** that opcode will always set the p2 value to 2 or more or else fail.
3323 ** If there were a failure, the prepared statement would have halted
3324 ** before reaching this instruction. */
drh27731d72009-06-22 12:05:10 +00003325 if( NEVER(p2<2) ) {
shanedcc50b72008-11-13 18:29:50 +00003326 rc = SQLITE_CORRUPT_BKPT;
3327 goto abort_due_to_error;
3328 }
drh5edc3122001-09-13 21:53:09 +00003329 }
danielk1977d336e222009-02-20 10:58:41 +00003330 if( pOp->p4type==P4_KEYINFO ){
3331 pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003332 assert( pKeyInfo->enc==ENC(db) );
3333 assert( pKeyInfo->db==db );
drhad124322013-10-23 13:30:58 +00003334 nField = pKeyInfo->nField+pKeyInfo->nXField;
danielk1977d336e222009-02-20 10:58:41 +00003335 }else if( pOp->p4type==P4_INT32 ){
3336 nField = pOp->p4.i;
3337 }
drh653b82a2009-06-22 11:10:47 +00003338 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003339 assert( nField>=0 );
3340 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
drh653b82a2009-06-22 11:10:47 +00003341 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
drh4774b132004-06-12 20:12:51 +00003342 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003343 pCur->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003344 pCur->isOrdered = 1;
drh35263192014-07-22 20:02:19 +00003345 pCur->pgnoRoot = p2;
danielk1977d336e222009-02-20 10:58:41 +00003346 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3347 pCur->pKeyInfo = pKeyInfo;
drh14da87f2013-11-20 21:51:33 +00003348 /* Set the VdbeCursor.isTable variable. Previous versions of
danielk1977172114a2009-07-07 15:47:12 +00003349 ** SQLite used to check if the root-page flags were sane at this point
3350 ** and report database corruption if they were not, but this check has
3351 ** since moved into the btree layer. */
3352 pCur->isTable = pOp->p4type!=P4_KEYINFO;
drhe0997b32015-03-20 14:57:50 +00003353
3354open_cursor_set_hints:
3355 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3356 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3357 sqlite3BtreeCursorHints(pCur->pCursor,
3358 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
drh5e00f6c2001-09-13 13:46:56 +00003359 break;
3360}
3361
drh2a5d9902011-08-26 00:34:45 +00003362/* Opcode: OpenEphemeral P1 P2 * P4 P5
drh81316f82013-10-29 20:40:47 +00003363** Synopsis: nColumn=P2
drh5e00f6c2001-09-13 13:46:56 +00003364**
drhb9bb7c12006-06-11 23:41:55 +00003365** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003366** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003367** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003368** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003369**
drh25d3adb2010-04-05 15:11:08 +00003370** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003371** The cursor points to a BTree table if P4==0 and to a BTree index
3372** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003373** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003374**
drh2a5d9902011-08-26 00:34:45 +00003375** The P5 parameter can be a mask of the BTREE_* flags defined
3376** in btree.h. These flags control aspects of the operation of
3377** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3378** added automatically.
drh5e00f6c2001-09-13 13:46:56 +00003379*/
drha21a64d2010-04-06 22:33:55 +00003380/* Opcode: OpenAutoindex P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00003381** Synopsis: nColumn=P2
drha21a64d2010-04-06 22:33:55 +00003382**
3383** This opcode works the same as OP_OpenEphemeral. It has a
3384** different name to distinguish its use. Tables created using
3385** by this opcode will be used for automatically created transient
3386** indices in joins.
3387*/
3388case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003389case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003390 VdbeCursor *pCx;
drh41e13e12013-11-07 14:09:39 +00003391 KeyInfo *pKeyInfo;
3392
drhd4187c72010-08-30 22:15:45 +00003393 static const int vfsFlags =
drh33f4e022007-09-03 15:19:34 +00003394 SQLITE_OPEN_READWRITE |
3395 SQLITE_OPEN_CREATE |
3396 SQLITE_OPEN_EXCLUSIVE |
3397 SQLITE_OPEN_DELETEONCLOSE |
3398 SQLITE_OPEN_TRANSIENT_DB;
drh653b82a2009-06-22 11:10:47 +00003399 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003400 assert( pOp->p2>=0 );
drh653b82a2009-06-22 11:10:47 +00003401 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
drh4774b132004-06-12 20:12:51 +00003402 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003403 pCx->nullRow = 1;
drh079a3072014-03-19 14:10:55 +00003404 pCx->isEphemeral = 1;
dan689ab892011-08-12 15:02:00 +00003405 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3406 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
drh5e00f6c2001-09-13 13:46:56 +00003407 if( rc==SQLITE_OK ){
danielk197740b38dc2004-06-26 08:38:24 +00003408 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
drh5e00f6c2001-09-13 13:46:56 +00003409 }
3410 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003411 /* If a transient index is required, create it by calling
drhd4187c72010-08-30 22:15:45 +00003412 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
danielk19774adee202004-05-08 08:23:19 +00003413 ** opening it. If a transient table is required, just use the
drhd4187c72010-08-30 22:15:45 +00003414 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003415 */
drh41e13e12013-11-07 14:09:39 +00003416 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
drhc6b52df2002-01-04 03:09:29 +00003417 int pgno;
drh66a51672008-01-03 00:01:23 +00003418 assert( pOp->p4type==P4_KEYINFO );
drhe1b4f0f2011-06-29 17:11:39 +00003419 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
drhc6b52df2002-01-04 03:09:29 +00003420 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003421 assert( pgno==MASTER_ROOT+1 );
drh41e13e12013-11-07 14:09:39 +00003422 assert( pKeyInfo->db==db );
3423 assert( pKeyInfo->enc==ENC(db) );
3424 pCx->pKeyInfo = pKeyInfo;
3425 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor);
drhc6b52df2002-01-04 03:09:29 +00003426 }
drhf0863fe2005-06-12 21:35:51 +00003427 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003428 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00003429 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
drhf0863fe2005-06-12 21:35:51 +00003430 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003431 }
drh5e00f6c2001-09-13 13:46:56 +00003432 }
drhd4187c72010-08-30 22:15:45 +00003433 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
dan5134d132011-09-02 10:31:11 +00003434 break;
3435}
3436
danfad9f9a2014-04-01 18:41:51 +00003437/* Opcode: SorterOpen P1 P2 P3 P4 *
dan5134d132011-09-02 10:31:11 +00003438**
3439** This opcode works like OP_OpenEphemeral except that it opens
3440** a transient index that is specifically designed to sort large
3441** tables using an external merge-sort algorithm.
danfad9f9a2014-04-01 18:41:51 +00003442**
3443** If argument P3 is non-zero, then it indicates that the sorter may
3444** assume that a stable sort considering the first P3 fields of each
3445** key is sufficient to produce the required results.
dan5134d132011-09-02 10:31:11 +00003446*/
drhca892a72011-09-03 00:17:51 +00003447case OP_SorterOpen: {
dan5134d132011-09-02 10:31:11 +00003448 VdbeCursor *pCx;
drh3a949872012-09-18 13:20:13 +00003449
drh399af1d2013-11-20 17:25:55 +00003450 assert( pOp->p1>=0 );
3451 assert( pOp->p2>=0 );
dan5134d132011-09-02 10:31:11 +00003452 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3453 if( pCx==0 ) goto no_mem;
3454 pCx->pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003455 assert( pCx->pKeyInfo->db==db );
3456 assert( pCx->pKeyInfo->enc==ENC(db) );
danfad9f9a2014-04-01 18:41:51 +00003457 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
drh5e00f6c2001-09-13 13:46:56 +00003458 break;
3459}
3460
dan78d58432014-03-25 15:04:07 +00003461/* Opcode: SequenceTest P1 P2 * * *
3462** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3463**
3464** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3465** to P2. Regardless of whether or not the jump is taken, increment the
3466** the sequence value.
3467*/
3468case OP_SequenceTest: {
3469 VdbeCursor *pC;
3470 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3471 pC = p->apCsr[pOp->p1];
3472 assert( pC->pSorter );
3473 if( (pC->seqCount++)==0 ){
drhf56fa462015-04-13 21:39:54 +00003474 goto jump_to_p2;
dan78d58432014-03-25 15:04:07 +00003475 }
3476 break;
3477}
3478
drh5f612292014-02-08 23:20:32 +00003479/* Opcode: OpenPseudo P1 P2 P3 * *
drh60830e32014-02-10 15:56:34 +00003480** Synopsis: P3 columns in r[P2]
drh70ce3f02003-04-15 19:22:22 +00003481**
3482** Open a new cursor that points to a fake table that contains a single
drh5f612292014-02-08 23:20:32 +00003483** row of data. The content of that one row is the content of memory
3484** register P2. In other words, cursor P1 becomes an alias for the
3485** MEM_Blob content contained in register P2.
drh70ce3f02003-04-15 19:22:22 +00003486**
drh2d8d7ce2010-02-15 15:17:05 +00003487** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00003488** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003489** individual columns using the OP_Column opcode. The OP_Column opcode
3490** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003491**
3492** P3 is the number of fields in the records that will be stored by
3493** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003494*/
drh9cbf3422008-01-17 16:22:13 +00003495case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003496 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003497
drh653b82a2009-06-22 11:10:47 +00003498 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003499 assert( pOp->p3>=0 );
drh653b82a2009-06-22 11:10:47 +00003500 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
drh4774b132004-06-12 20:12:51 +00003501 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003502 pCx->nullRow = 1;
drh3e9ca092009-09-08 01:14:48 +00003503 pCx->pseudoTableReg = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003504 pCx->isTable = 1;
drh5f612292014-02-08 23:20:32 +00003505 assert( pOp->p5==0 );
drh70ce3f02003-04-15 19:22:22 +00003506 break;
3507}
3508
drh98757152008-01-09 23:04:12 +00003509/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003510**
3511** Close a cursor previously opened as P1. If P1 is not
3512** currently open, this instruction is a no-op.
3513*/
drh9cbf3422008-01-17 16:22:13 +00003514case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003515 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3516 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3517 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003518 break;
3519}
3520
drh8af3f772014-07-25 18:01:06 +00003521/* Opcode: SeekGE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003522** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003523**
danielk1977b790c6c2008-04-18 10:25:24 +00003524** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003525** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003526** to an SQL index, then P3 is the first in an array of P4 registers
3527** that are used as an unpacked index key.
3528**
3529** Reposition cursor P1 so that it points to the smallest entry that
3530** is greater than or equal to the key value. If there are no records
3531** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003532**
drh8af3f772014-07-25 18:01:06 +00003533** This opcode leaves the cursor configured to move in forward order,
drhbc5cf382014-08-06 01:08:07 +00003534** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003535** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003536**
drh935850e2014-05-24 17:15:15 +00003537** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003538*/
drh8af3f772014-07-25 18:01:06 +00003539/* Opcode: SeekGT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003540** Synopsis: key=r[P3@P4]
drh7cf6e4d2004-05-19 14:56:55 +00003541**
danielk1977b790c6c2008-04-18 10:25:24 +00003542** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003543** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003544** to an SQL index, then P3 is the first in an array of P4 registers
3545** that are used as an unpacked index key.
3546**
3547** Reposition cursor P1 so that it points to the smallest entry that
3548** is greater than the key value. If there are no records greater than
3549** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003550**
drh8af3f772014-07-25 18:01:06 +00003551** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00003552** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003553** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003554**
drh935850e2014-05-24 17:15:15 +00003555** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003556*/
drh8af3f772014-07-25 18:01:06 +00003557/* Opcode: SeekLT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003558** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00003559**
danielk1977b790c6c2008-04-18 10:25:24 +00003560** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003561** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003562** to an SQL index, then P3 is the first in an array of P4 registers
3563** that are used as an unpacked index key.
3564**
3565** Reposition cursor P1 so that it points to the largest entry that
3566** is less than the key value. If there are no records less than
3567** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003568**
drh8af3f772014-07-25 18:01:06 +00003569** This opcode leaves the cursor configured to move in reverse order,
3570** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003571** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003572**
drh935850e2014-05-24 17:15:15 +00003573** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003574*/
drh8af3f772014-07-25 18:01:06 +00003575/* Opcode: SeekLE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003576** Synopsis: key=r[P3@P4]
danielk19773d1bfea2004-05-14 11:00:53 +00003577**
danielk1977b790c6c2008-04-18 10:25:24 +00003578** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003579** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003580** to an SQL index, then P3 is the first in an array of P4 registers
3581** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003582**
danielk1977b790c6c2008-04-18 10:25:24 +00003583** Reposition cursor P1 so that it points to the largest entry that
3584** is less than or equal to the key value. If there are no records
3585** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003586**
drh8af3f772014-07-25 18:01:06 +00003587** This opcode leaves the cursor configured to move in reverse order,
3588** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003589** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003590**
drh935850e2014-05-24 17:15:15 +00003591** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003592*/
drh4a1d3652014-02-14 15:13:36 +00003593case OP_SeekLT: /* jump, in3 */
3594case OP_SeekLE: /* jump, in3 */
3595case OP_SeekGE: /* jump, in3 */
3596case OP_SeekGT: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003597 int res;
3598 int oc;
drhdfe88ec2008-11-03 20:55:06 +00003599 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003600 UnpackedRecord r;
3601 int nField;
3602 i64 iKey; /* The rowid we are to seek to */
drh80ff32f2001-11-04 18:32:46 +00003603
drh653b82a2009-06-22 11:10:47 +00003604 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003605 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003606 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003607 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003608 assert( pC->pseudoTableReg==0 );
drh4a1d3652014-02-14 15:13:36 +00003609 assert( OP_SeekLE == OP_SeekLT+1 );
3610 assert( OP_SeekGE == OP_SeekLT+2 );
3611 assert( OP_SeekGT == OP_SeekLT+3 );
drhd4187c72010-08-30 22:15:45 +00003612 assert( pC->isOrdered );
drh3da046d2013-11-11 03:24:11 +00003613 assert( pC->pCursor!=0 );
3614 oc = pOp->opcode;
3615 pC->nullRow = 0;
drh8af3f772014-07-25 18:01:06 +00003616#ifdef SQLITE_DEBUG
3617 pC->seekOp = pOp->opcode;
3618#endif
drhe0997b32015-03-20 14:57:50 +00003619
3620 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3621 ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3622 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3623 */
3624#ifdef SQLITE_DEBUG
3625 if( sqlite3BtreeCursorHasHint(pC->pCursor, BTREE_SEEK_EQ) ){
3626 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3627 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3628 assert( pOp[1].p1==pOp[0].p1 );
3629 assert( pOp[1].p2==pOp[0].p2 );
3630 assert( pOp[1].p3==pOp[0].p3 );
3631 assert( pOp[1].p4.i==pOp[0].p4.i );
3632 }
3633#endif
3634
drh3da046d2013-11-11 03:24:11 +00003635 if( pC->isTable ){
3636 /* The input value in P3 might be of any type: integer, real, string,
3637 ** blob, or NULL. But it needs to be an integer before we can do
peter.d.reid60ec9142014-09-06 16:39:46 +00003638 ** the seek, so convert it. */
drh3da046d2013-11-11 03:24:11 +00003639 pIn3 = &aMem[pOp->p3];
drh11a6eee2014-09-19 22:01:54 +00003640 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drhbd9507c2014-08-23 17:21:37 +00003641 applyNumericAffinity(pIn3, 0);
3642 }
drh3da046d2013-11-11 03:24:11 +00003643 iKey = sqlite3VdbeIntValue(pIn3);
drh959403f2008-12-12 17:56:16 +00003644
drh3da046d2013-11-11 03:24:11 +00003645 /* If the P3 value could not be converted into an integer without
3646 ** loss of information, then special processing is required... */
3647 if( (pIn3->flags & MEM_Int)==0 ){
3648 if( (pIn3->flags & MEM_Real)==0 ){
3649 /* If the P3 value cannot be converted into any kind of a number,
3650 ** then the seek is not possible, so jump to P2 */
drhf56fa462015-04-13 21:39:54 +00003651 VdbeBranchTaken(1,2); goto jump_to_p2;
drh3da046d2013-11-11 03:24:11 +00003652 break;
3653 }
drh959403f2008-12-12 17:56:16 +00003654
danaa1776f2013-11-26 18:22:59 +00003655 /* If the approximation iKey is larger than the actual real search
3656 ** term, substitute >= for > and < for <=. e.g. if the search term
3657 ** is 4.9 and the integer approximation 5:
3658 **
3659 ** (x > 4.9) -> (x >= 5)
3660 ** (x <= 4.9) -> (x < 5)
3661 */
drh74eaba42014-09-18 17:52:15 +00003662 if( pIn3->u.r<(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003663 assert( OP_SeekGE==(OP_SeekGT-1) );
3664 assert( OP_SeekLT==(OP_SeekLE-1) );
3665 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3666 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
danaa1776f2013-11-26 18:22:59 +00003667 }
3668
3669 /* If the approximation iKey is smaller than the actual real search
3670 ** term, substitute <= for < and > for >=. */
drh74eaba42014-09-18 17:52:15 +00003671 else if( pIn3->u.r>(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003672 assert( OP_SeekLE==(OP_SeekLT+1) );
3673 assert( OP_SeekGT==(OP_SeekGE+1) );
3674 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3675 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
drh8721ce42001-11-07 14:22:00 +00003676 }
drh3da046d2013-11-11 03:24:11 +00003677 }
3678 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
drhb53a5a92014-10-12 22:37:22 +00003679 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00003680 if( rc!=SQLITE_OK ){
3681 goto abort_due_to_error;
drh1af3fdb2004-07-18 21:33:01 +00003682 }
drhaa736092009-06-22 00:55:30 +00003683 }else{
drh3da046d2013-11-11 03:24:11 +00003684 nField = pOp->p4.i;
3685 assert( pOp->p4type==P4_INT32 );
3686 assert( nField>0 );
3687 r.pKeyInfo = pC->pKeyInfo;
3688 r.nField = (u16)nField;
3689
3690 /* The next line of code computes as follows, only faster:
drh4a1d3652014-02-14 15:13:36 +00003691 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
dan1fed5da2014-02-25 21:01:25 +00003692 ** r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00003693 ** }else{
dan1fed5da2014-02-25 21:01:25 +00003694 ** r.default_rc = +1;
drh3da046d2013-11-11 03:24:11 +00003695 ** }
danielk1977f7b9d662008-06-23 18:49:43 +00003696 */
dan1fed5da2014-02-25 21:01:25 +00003697 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3698 assert( oc!=OP_SeekGT || r.default_rc==-1 );
3699 assert( oc!=OP_SeekLE || r.default_rc==-1 );
3700 assert( oc!=OP_SeekGE || r.default_rc==+1 );
3701 assert( oc!=OP_SeekLT || r.default_rc==+1 );
drh3da046d2013-11-11 03:24:11 +00003702
3703 r.aMem = &aMem[pOp->p3];
3704#ifdef SQLITE_DEBUG
3705 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3706#endif
3707 ExpandBlob(r.aMem);
3708 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
3709 if( rc!=SQLITE_OK ){
3710 goto abort_due_to_error;
3711 }
drh3da046d2013-11-11 03:24:11 +00003712 }
3713 pC->deferredMoveto = 0;
3714 pC->cacheStatus = CACHE_STALE;
3715#ifdef SQLITE_TEST
3716 sqlite3_search_count++;
3717#endif
drh4a1d3652014-02-14 15:13:36 +00003718 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
3719 if( res<0 || (res==0 && oc==OP_SeekGT) ){
drhe39a7322014-02-03 14:04:11 +00003720 res = 0;
drh3da046d2013-11-11 03:24:11 +00003721 rc = sqlite3BtreeNext(pC->pCursor, &res);
3722 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00003723 }else{
3724 res = 0;
3725 }
3726 }else{
drh4a1d3652014-02-14 15:13:36 +00003727 assert( oc==OP_SeekLT || oc==OP_SeekLE );
3728 if( res>0 || (res==0 && oc==OP_SeekLT) ){
drhe39a7322014-02-03 14:04:11 +00003729 res = 0;
drh3da046d2013-11-11 03:24:11 +00003730 rc = sqlite3BtreePrevious(pC->pCursor, &res);
3731 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00003732 }else{
3733 /* res might be negative because the table is empty. Check to
3734 ** see if this is the case.
3735 */
3736 res = sqlite3BtreeEof(pC->pCursor);
3737 }
3738 }
3739 assert( pOp->p2>0 );
drh688852a2014-02-17 22:40:43 +00003740 VdbeBranchTaken(res!=0,2);
drh3da046d2013-11-11 03:24:11 +00003741 if( res ){
drhf56fa462015-04-13 21:39:54 +00003742 goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00003743 }
drh5e00f6c2001-09-13 13:46:56 +00003744 break;
3745}
3746
drh959403f2008-12-12 17:56:16 +00003747/* Opcode: Seek P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00003748** Synopsis: intkey=r[P2]
drh959403f2008-12-12 17:56:16 +00003749**
3750** P1 is an open table cursor and P2 is a rowid integer. Arrange
3751** for P1 to move so that it points to the rowid given by P2.
3752**
3753** This is actually a deferred seek. Nothing actually happens until
3754** the cursor is used to read a record. That way, if no reads
3755** occur, no unnecessary I/O happens.
3756*/
3757case OP_Seek: { /* in2 */
drh959403f2008-12-12 17:56:16 +00003758 VdbeCursor *pC;
3759
drh653b82a2009-06-22 11:10:47 +00003760 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3761 pC = p->apCsr[pOp->p1];
drh959403f2008-12-12 17:56:16 +00003762 assert( pC!=0 );
drh3da046d2013-11-11 03:24:11 +00003763 assert( pC->pCursor!=0 );
3764 assert( pC->isTable );
3765 pC->nullRow = 0;
3766 pIn2 = &aMem[pOp->p2];
3767 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
drh3da046d2013-11-11 03:24:11 +00003768 pC->deferredMoveto = 1;
drh959403f2008-12-12 17:56:16 +00003769 break;
3770}
3771
3772
drh8cff69d2009-11-12 19:59:44 +00003773/* Opcode: Found P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003774** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003775**
drh8cff69d2009-11-12 19:59:44 +00003776** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3777** P4>0 then register P3 is the first of P4 registers that form an unpacked
3778** record.
3779**
3780** Cursor P1 is on an index btree. If the record identified by P3 and P4
3781** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00003782** P1 is left pointing at the matching entry.
drh6f225d02013-10-26 13:36:51 +00003783**
drhcefc87f2014-08-01 01:40:33 +00003784** This operation leaves the cursor in a state where it can be
3785** advanced in the forward direction. The Next instruction will work,
3786** but not the Prev instruction.
drh8af3f772014-07-25 18:01:06 +00003787**
drh6f225d02013-10-26 13:36:51 +00003788** See also: NotFound, NoConflict, NotExists. SeekGe
drh5e00f6c2001-09-13 13:46:56 +00003789*/
drh8cff69d2009-11-12 19:59:44 +00003790/* Opcode: NotFound P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003791** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003792**
drh8cff69d2009-11-12 19:59:44 +00003793** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3794** P4>0 then register P3 is the first of P4 registers that form an unpacked
3795** record.
3796**
3797** Cursor P1 is on an index btree. If the record identified by P3 and P4
3798** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3799** does contain an entry whose prefix matches the P3/P4 record then control
3800** falls through to the next instruction and P1 is left pointing at the
3801** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003802**
drh8af3f772014-07-25 18:01:06 +00003803** This operation leaves the cursor in a state where it cannot be
3804** advanced in either direction. In other words, the Next and Prev
3805** opcodes do not work after this operation.
3806**
drh6f225d02013-10-26 13:36:51 +00003807** See also: Found, NotExists, NoConflict
drh5e00f6c2001-09-13 13:46:56 +00003808*/
drh6f225d02013-10-26 13:36:51 +00003809/* Opcode: NoConflict P1 P2 P3 P4 *
drh4af5bee2013-10-30 02:37:50 +00003810** Synopsis: key=r[P3@P4]
drh6f225d02013-10-26 13:36:51 +00003811**
3812** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3813** P4>0 then register P3 is the first of P4 registers that form an unpacked
3814** record.
3815**
3816** Cursor P1 is on an index btree. If the record identified by P3 and P4
3817** contains any NULL value, jump immediately to P2. If all terms of the
3818** record are not-NULL then a check is done to determine if any row in the
3819** P1 index btree has a matching key prefix. If there are no matches, jump
3820** immediately to P2. If there is a match, fall through and leave the P1
3821** cursor pointing to the matching row.
3822**
3823** This opcode is similar to OP_NotFound with the exceptions that the
3824** branch is always taken if any part of the search key input is NULL.
3825**
drh8af3f772014-07-25 18:01:06 +00003826** This operation leaves the cursor in a state where it cannot be
3827** advanced in either direction. In other words, the Next and Prev
3828** opcodes do not work after this operation.
3829**
drh6f225d02013-10-26 13:36:51 +00003830** See also: NotFound, Found, NotExists
3831*/
3832case OP_NoConflict: /* jump, in3 */
drh9cbf3422008-01-17 16:22:13 +00003833case OP_NotFound: /* jump, in3 */
3834case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003835 int alreadyExists;
drhf56fa462015-04-13 21:39:54 +00003836 int takeJump;
drh6f225d02013-10-26 13:36:51 +00003837 int ii;
drhdfe88ec2008-11-03 20:55:06 +00003838 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003839 int res;
dan03e9cfc2011-09-05 14:20:27 +00003840 char *pFree;
drh856c1032009-06-02 15:21:42 +00003841 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00003842 UnpackedRecord r;
drhb4139222013-11-06 14:36:08 +00003843 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
drh856c1032009-06-02 15:21:42 +00003844
dan0ff297e2009-09-25 17:03:14 +00003845#ifdef SQLITE_TEST
drh6f225d02013-10-26 13:36:51 +00003846 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
dan0ff297e2009-09-25 17:03:14 +00003847#endif
3848
drhaa736092009-06-22 00:55:30 +00003849 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00003850 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00003851 pC = p->apCsr[pOp->p1];
3852 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00003853#ifdef SQLITE_DEBUG
drhcefc87f2014-08-01 01:40:33 +00003854 pC->seekOp = pOp->opcode;
drh8af3f772014-07-25 18:01:06 +00003855#endif
drh3c657212009-11-17 23:59:58 +00003856 pIn3 = &aMem[pOp->p3];
drh3da046d2013-11-11 03:24:11 +00003857 assert( pC->pCursor!=0 );
3858 assert( pC->isTable==0 );
drhf56fa462015-04-13 21:39:54 +00003859 pFree = 0;
drh3da046d2013-11-11 03:24:11 +00003860 if( pOp->p4.i>0 ){
3861 r.pKeyInfo = pC->pKeyInfo;
3862 r.nField = (u16)pOp->p4.i;
3863 r.aMem = pIn3;
drh826af372014-02-08 19:12:21 +00003864 for(ii=0; ii<r.nField; ii++){
3865 assert( memIsValid(&r.aMem[ii]) );
3866 ExpandBlob(&r.aMem[ii]);
drh2b4ded92010-09-27 21:09:31 +00003867#ifdef SQLITE_DEBUG
drh826af372014-02-08 19:12:21 +00003868 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
drh2b4ded92010-09-27 21:09:31 +00003869#endif
drh826af372014-02-08 19:12:21 +00003870 }
drh3da046d2013-11-11 03:24:11 +00003871 pIdxKey = &r;
3872 }else{
3873 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3874 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
danb391b942014-11-07 14:41:11 +00003875 );
drh3da046d2013-11-11 03:24:11 +00003876 if( pIdxKey==0 ) goto no_mem;
3877 assert( pIn3->flags & MEM_Blob );
danb391b942014-11-07 14:41:11 +00003878 ExpandBlob(pIn3);
drh3da046d2013-11-11 03:24:11 +00003879 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
drh3da046d2013-11-11 03:24:11 +00003880 }
dan1fed5da2014-02-25 21:01:25 +00003881 pIdxKey->default_rc = 0;
drhf56fa462015-04-13 21:39:54 +00003882 takeJump = 0;
drh3da046d2013-11-11 03:24:11 +00003883 if( pOp->opcode==OP_NoConflict ){
3884 /* For the OP_NoConflict opcode, take the jump if any of the
3885 ** input fields are NULL, since any key with a NULL will not
3886 ** conflict */
mistachkin7bb6e8e2015-01-12 18:52:41 +00003887 for(ii=0; ii<pIdxKey->nField; ii++){
3888 if( pIdxKey->aMem[ii].flags & MEM_Null ){
drhf56fa462015-04-13 21:39:54 +00003889 takeJump = 1;
drh3da046d2013-11-11 03:24:11 +00003890 break;
drh6f225d02013-10-26 13:36:51 +00003891 }
3892 }
drh5e00f6c2001-09-13 13:46:56 +00003893 }
drh3da046d2013-11-11 03:24:11 +00003894 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
drhf56fa462015-04-13 21:39:54 +00003895 sqlite3DbFree(db, pFree);
drh3da046d2013-11-11 03:24:11 +00003896 if( rc!=SQLITE_OK ){
3897 break;
3898 }
drh1fd522f2013-11-21 00:10:35 +00003899 pC->seekResult = res;
drh3da046d2013-11-11 03:24:11 +00003900 alreadyExists = (res==0);
3901 pC->nullRow = 1-alreadyExists;
3902 pC->deferredMoveto = 0;
3903 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003904 if( pOp->opcode==OP_Found ){
drh688852a2014-02-17 22:40:43 +00003905 VdbeBranchTaken(alreadyExists!=0,2);
drhf56fa462015-04-13 21:39:54 +00003906 if( alreadyExists ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00003907 }else{
drhf56fa462015-04-13 21:39:54 +00003908 VdbeBranchTaken(takeJump||alreadyExists==0,2);
3909 if( takeJump || !alreadyExists ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00003910 }
drh5e00f6c2001-09-13 13:46:56 +00003911 break;
3912}
3913
drh9cbf3422008-01-17 16:22:13 +00003914/* Opcode: NotExists P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00003915** Synopsis: intkey=r[P3]
drh6b125452002-01-28 15:53:03 +00003916**
drh261c02d2013-10-25 14:46:15 +00003917** P1 is the index of a cursor open on an SQL table btree (with integer
3918** keys). P3 is an integer rowid. If P1 does not contain a record with
3919** rowid P3 then jump immediately to P2. If P1 does contain a record
3920** with rowid P3 then leave the cursor pointing at that record and fall
3921** through to the next instruction.
drh6b125452002-01-28 15:53:03 +00003922**
drh261c02d2013-10-25 14:46:15 +00003923** The OP_NotFound opcode performs the same operation on index btrees
3924** (with arbitrary multi-value keys).
drh6b125452002-01-28 15:53:03 +00003925**
drh8af3f772014-07-25 18:01:06 +00003926** This opcode leaves the cursor in a state where it cannot be advanced
3927** in either direction. In other words, the Next and Prev opcodes will
3928** not work following this opcode.
3929**
drh11e85272013-10-26 15:40:48 +00003930** See also: Found, NotFound, NoConflict
drh6b125452002-01-28 15:53:03 +00003931*/
drh9cbf3422008-01-17 16:22:13 +00003932case OP_NotExists: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00003933 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00003934 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00003935 int res;
3936 u64 iKey;
3937
drh3c657212009-11-17 23:59:58 +00003938 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003939 assert( pIn3->flags & MEM_Int );
3940 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3941 pC = p->apCsr[pOp->p1];
3942 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00003943#ifdef SQLITE_DEBUG
3944 pC->seekOp = 0;
3945#endif
drhaa736092009-06-22 00:55:30 +00003946 assert( pC->isTable );
drh3e9ca092009-09-08 01:14:48 +00003947 assert( pC->pseudoTableReg==0 );
drhaa736092009-06-22 00:55:30 +00003948 pCrsr = pC->pCursor;
drh3da046d2013-11-11 03:24:11 +00003949 assert( pCrsr!=0 );
3950 res = 0;
3951 iKey = pIn3->u.i;
3952 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drhb53a5a92014-10-12 22:37:22 +00003953 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00003954 pC->nullRow = 0;
3955 pC->cacheStatus = CACHE_STALE;
3956 pC->deferredMoveto = 0;
drh688852a2014-02-17 22:40:43 +00003957 VdbeBranchTaken(res!=0,2);
drh1fd522f2013-11-21 00:10:35 +00003958 pC->seekResult = res;
drhf56fa462015-04-13 21:39:54 +00003959 if( res!=0 ) goto jump_to_p2;
drh6b125452002-01-28 15:53:03 +00003960 break;
3961}
3962
drh4c583122008-01-04 22:01:03 +00003963/* Opcode: Sequence P1 P2 * * *
drh079a3072014-03-19 14:10:55 +00003964** Synopsis: r[P2]=cursor[P1].ctr++
drh4db38a72005-09-01 12:16:28 +00003965**
drh4c583122008-01-04 22:01:03 +00003966** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00003967** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00003968** The sequence number on the cursor is incremented after this
3969** instruction.
drh4db38a72005-09-01 12:16:28 +00003970*/
drh27a348c2015-04-13 19:14:06 +00003971case OP_Sequence: { /* out2 */
drh653b82a2009-06-22 11:10:47 +00003972 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3973 assert( p->apCsr[pOp->p1]!=0 );
drh27a348c2015-04-13 19:14:06 +00003974 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00003975 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00003976 break;
3977}
3978
3979
drh98757152008-01-09 23:04:12 +00003980/* Opcode: NewRowid P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00003981** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00003982**
drhf0863fe2005-06-12 21:35:51 +00003983** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00003984** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00003985** table that cursor P1 points to. The new record number is written
3986** written to register P2.
drh205f48e2004-11-05 00:43:11 +00003987**
dan76d462e2009-08-30 11:42:51 +00003988** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3989** the largest previously generated record number. No new record numbers are
3990** allowed to be less than this value. When this value reaches its maximum,
drhef8662b2011-06-20 21:47:58 +00003991** an SQLITE_FULL error is generated. The P3 register is updated with the '
dan76d462e2009-08-30 11:42:51 +00003992** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00003993** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00003994*/
drh27a348c2015-04-13 19:14:06 +00003995case OP_NewRowid: { /* out2 */
drhaa736092009-06-22 00:55:30 +00003996 i64 v; /* The new rowid */
3997 VdbeCursor *pC; /* Cursor of table to get the new rowid */
3998 int res; /* Result of an sqlite3BtreeLast() */
3999 int cnt; /* Counter to limit the number of searches */
4000 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00004001 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00004002
drh856c1032009-06-02 15:21:42 +00004003 v = 0;
4004 res = 0;
drh27a348c2015-04-13 19:14:06 +00004005 pOut = out2Prerelease(p, pOp);
drhaa736092009-06-22 00:55:30 +00004006 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4007 pC = p->apCsr[pOp->p1];
4008 assert( pC!=0 );
4009 if( NEVER(pC->pCursor==0) ){
drhf328bc82004-05-10 23:29:49 +00004010 /* The zero initialization above is all that is needed */
drh5e00f6c2001-09-13 13:46:56 +00004011 }else{
drh5cf8e8c2002-02-19 22:42:05 +00004012 /* The next rowid or record number (different terms for the same
4013 ** thing) is obtained in a two-step algorithm.
4014 **
4015 ** First we attempt to find the largest existing rowid and add one
4016 ** to that. But if the largest existing rowid is already the maximum
4017 ** positive integer, we have to fall through to the second
4018 ** probabilistic algorithm
4019 **
4020 ** The second algorithm is to select a rowid at random and see if
4021 ** it already exists in the table. If it does not exist, we have
4022 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00004023 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00004024 */
drhaa736092009-06-22 00:55:30 +00004025 assert( pC->isTable );
drhfe2093d2005-01-20 22:48:47 +00004026
drh75f86a42005-02-17 00:03:06 +00004027#ifdef SQLITE_32BIT_ROWID
4028# define MAX_ROWID 0x7fffffff
4029#else
drhfe2093d2005-01-20 22:48:47 +00004030 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4031 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
4032 ** to provide the constant while making all compilers happy.
4033 */
danielk197764202cf2008-11-17 15:31:47 +00004034# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00004035#endif
drhfe2093d2005-01-20 22:48:47 +00004036
drh5cf8e8c2002-02-19 22:42:05 +00004037 if( !pC->useRandomRowid ){
drhe0670b62014-02-12 21:31:12 +00004038 rc = sqlite3BtreeLast(pC->pCursor, &res);
4039 if( rc!=SQLITE_OK ){
4040 goto abort_due_to_error;
4041 }
4042 if( res ){
4043 v = 1; /* IMP: R-61914-48074 */
4044 }else{
4045 assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
4046 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4047 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
4048 if( v>=MAX_ROWID ){
4049 pC->useRandomRowid = 1;
drh5cf8e8c2002-02-19 22:42:05 +00004050 }else{
drhe0670b62014-02-12 21:31:12 +00004051 v++; /* IMP: R-29538-34987 */
drh5cf8e8c2002-02-19 22:42:05 +00004052 }
drh3fc190c2001-09-14 03:24:23 +00004053 }
drhe0670b62014-02-12 21:31:12 +00004054 }
drh205f48e2004-11-05 00:43:11 +00004055
4056#ifndef SQLITE_OMIT_AUTOINCREMENT
drhe0670b62014-02-12 21:31:12 +00004057 if( pOp->p3 ){
4058 /* Assert that P3 is a valid memory cell. */
4059 assert( pOp->p3>0 );
4060 if( p->pFrame ){
4061 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00004062 /* Assert that P3 is a valid memory cell. */
drhe0670b62014-02-12 21:31:12 +00004063 assert( pOp->p3<=pFrame->nMem );
4064 pMem = &pFrame->aMem[pOp->p3];
4065 }else{
4066 /* Assert that P3 is a valid memory cell. */
4067 assert( pOp->p3<=(p->nMem-p->nCursor) );
4068 pMem = &aMem[pOp->p3];
4069 memAboutToChange(p, pMem);
drh205f48e2004-11-05 00:43:11 +00004070 }
drhe0670b62014-02-12 21:31:12 +00004071 assert( memIsValid(pMem) );
drh205f48e2004-11-05 00:43:11 +00004072
drhe0670b62014-02-12 21:31:12 +00004073 REGISTER_TRACE(pOp->p3, pMem);
4074 sqlite3VdbeMemIntegerify(pMem);
4075 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
4076 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4077 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
4078 goto abort_due_to_error;
4079 }
4080 if( v<pMem->u.i+1 ){
4081 v = pMem->u.i + 1;
4082 }
4083 pMem->u.i = v;
drh5cf8e8c2002-02-19 22:42:05 +00004084 }
drhe0670b62014-02-12 21:31:12 +00004085#endif
drh5cf8e8c2002-02-19 22:42:05 +00004086 if( pC->useRandomRowid ){
drh748a52c2010-09-01 11:50:08 +00004087 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
drhc79c7612010-01-01 18:57:48 +00004088 ** largest possible integer (9223372036854775807) then the database
drh748a52c2010-09-01 11:50:08 +00004089 ** engine starts picking positive candidate ROWIDs at random until
4090 ** it finds one that is not previously used. */
drhaa736092009-06-22 00:55:30 +00004091 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
4092 ** an AUTOINCREMENT table. */
drh5cf8e8c2002-02-19 22:42:05 +00004093 cnt = 0;
drh2c4dc632014-09-25 12:31:28 +00004094 do{
4095 sqlite3_randomness(sizeof(v), &v);
drhd8633462014-09-25 17:42:41 +00004096 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
drh2c4dc632014-09-25 12:31:28 +00004097 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
drh748a52c2010-09-01 11:50:08 +00004098 0, &res))==SQLITE_OK)
shanehc4d340a2010-09-01 02:37:56 +00004099 && (res==0)
drh2c4dc632014-09-25 12:31:28 +00004100 && (++cnt<100));
drhaa736092009-06-22 00:55:30 +00004101 if( rc==SQLITE_OK && res==0 ){
drhc79c7612010-01-01 18:57:48 +00004102 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00004103 goto abort_due_to_error;
4104 }
drh748a52c2010-09-01 11:50:08 +00004105 assert( v>0 ); /* EV: R-40812-03570 */
drh1eaa2692001-09-18 02:02:23 +00004106 }
drha11846b2004-01-07 18:52:56 +00004107 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004108 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004109 }
drh4c583122008-01-04 22:01:03 +00004110 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004111 break;
4112}
4113
danielk19771f4aa332008-01-03 09:51:55 +00004114/* Opcode: Insert P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004115** Synopsis: intkey=r[P3] data=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004116**
jplyon5a564222003-06-02 06:15:58 +00004117** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00004118** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00004119** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00004120** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00004121** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00004122**
danielk19771f4aa332008-01-03 09:51:55 +00004123** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4124** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00004125** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00004126** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00004127**
drh3e9ca092009-09-08 01:14:48 +00004128** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4129** the last seek operation (OP_NotExists) was a success, then this
4130** operation will not attempt to find the appropriate row before doing
4131** the insert but will instead overwrite the row that the cursor is
4132** currently pointing to. Presumably, the prior OP_NotExists opcode
4133** has already positioned the cursor correctly. This is an optimization
4134** that boosts performance by avoiding redundant seeks.
4135**
4136** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4137** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4138** is part of an INSERT operation. The difference is only important to
4139** the update hook.
4140**
drh66a51672008-01-03 00:01:23 +00004141** Parameter P4 may point to a string containing the table-name, or
danielk19771f6eec52006-06-16 06:17:47 +00004142** may be NULL. If it is not NULL, then the update-hook
4143** (sqlite3.xUpdateCallback) is invoked following a successful insert.
4144**
drh93aed5a2008-01-16 17:46:38 +00004145** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4146** allocated, then ownership of P2 is transferred to the pseudo-cursor
4147** and register P2 becomes ephemeral. If the cursor is changed, the
4148** value of register P2 will then change. Make sure this does not
4149** cause any problems.)
4150**
drhf0863fe2005-06-12 21:35:51 +00004151** This instruction only works on tables. The equivalent instruction
4152** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00004153*/
drhe05c9292009-10-29 13:48:10 +00004154/* Opcode: InsertInt P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004155** Synopsis: intkey=P3 data=r[P2]
drhe05c9292009-10-29 13:48:10 +00004156**
4157** This works exactly like OP_Insert except that the key is the
4158** integer value P3, not the value of the integer stored in register P3.
4159*/
4160case OP_Insert:
4161case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00004162 Mem *pData; /* MEM cell holding data for the record to be inserted */
4163 Mem *pKey; /* MEM cell holding key for the record */
4164 i64 iKey; /* The integer ROWID or key for the record to be inserted */
4165 VdbeCursor *pC; /* Cursor to table into which insert is written */
4166 int nZero; /* Number of zero-bytes to append */
drh1fd522f2013-11-21 00:10:35 +00004167 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
drh3e9ca092009-09-08 01:14:48 +00004168 const char *zDb; /* database name - used by the update hook */
4169 const char *zTbl; /* Table name - used by the opdate hook */
4170 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
drh856c1032009-06-02 15:21:42 +00004171
drha6c2ed92009-11-14 23:22:23 +00004172 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00004173 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh2b4ded92010-09-27 21:09:31 +00004174 assert( memIsValid(pData) );
drh653b82a2009-06-22 11:10:47 +00004175 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00004176 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00004177 assert( pC->pCursor!=0 );
4178 assert( pC->pseudoTableReg==0 );
drha05a7222008-01-19 03:35:58 +00004179 assert( pC->isTable );
drh5b6afba2008-01-05 16:29:28 +00004180 REGISTER_TRACE(pOp->p2, pData);
danielk19775f8d8a82004-05-11 00:28:42 +00004181
drhe05c9292009-10-29 13:48:10 +00004182 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00004183 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00004184 assert( pKey->flags & MEM_Int );
drh2b4ded92010-09-27 21:09:31 +00004185 assert( memIsValid(pKey) );
drhe05c9292009-10-29 13:48:10 +00004186 REGISTER_TRACE(pOp->p3, pKey);
4187 iKey = pKey->u.i;
4188 }else{
4189 assert( pOp->opcode==OP_InsertInt );
4190 iKey = pOp->p3;
4191 }
4192
drha05a7222008-01-19 03:35:58 +00004193 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh99a66922011-05-13 18:51:42 +00004194 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
drha05a7222008-01-19 03:35:58 +00004195 if( pData->flags & MEM_Null ){
4196 pData->z = 0;
4197 pData->n = 0;
4198 }else{
4199 assert( pData->flags & (MEM_Blob|MEM_Str) );
4200 }
drh3e9ca092009-09-08 01:14:48 +00004201 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4202 if( pData->flags & MEM_Zero ){
4203 nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00004204 }else{
drh3e9ca092009-09-08 01:14:48 +00004205 nZero = 0;
drha05a7222008-01-19 03:35:58 +00004206 }
drh3e9ca092009-09-08 01:14:48 +00004207 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
4208 pData->z, pData->n, nZero,
drhebf10b12013-11-25 17:38:26 +00004209 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
drh3e9ca092009-09-08 01:14:48 +00004210 );
drha05a7222008-01-19 03:35:58 +00004211 pC->deferredMoveto = 0;
4212 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004213
drha05a7222008-01-19 03:35:58 +00004214 /* Invoke the update-hook if required. */
4215 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
drh856c1032009-06-02 15:21:42 +00004216 zDb = db->aDb[pC->iDb].zName;
4217 zTbl = pOp->p4.z;
4218 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
drha05a7222008-01-19 03:35:58 +00004219 assert( pC->isTable );
4220 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4221 assert( pC->iDb>=0 );
4222 }
drh5e00f6c2001-09-13 13:46:56 +00004223 break;
4224}
4225
drh98757152008-01-09 23:04:12 +00004226/* Opcode: Delete P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00004227**
drh5edc3122001-09-13 21:53:09 +00004228** Delete the record at which the P1 cursor is currently pointing.
4229**
4230** The cursor will be left pointing at either the next or the previous
4231** record in the table. If it is left pointing at the next record, then
drhb19a2bc2001-09-16 00:13:26 +00004232** the next Next instruction will be a no-op. Hence it is OK to delete
drhbc5cf382014-08-06 01:08:07 +00004233** a record from within a Next loop.
drhc8d30ac2002-04-12 10:08:59 +00004234**
rdcb0c374f2004-02-20 22:53:38 +00004235** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
danielk1977b28af712004-06-21 06:50:26 +00004236** incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00004237**
drh91fd4d42008-01-19 20:11:25 +00004238** P1 must not be pseudo-table. It has to be a real table with
4239** multiple rows.
4240**
4241** If P4 is not NULL, then it is the name of the table that P1 is
4242** pointing to. The update hook will be invoked, if it exists.
4243** If P4 is not NULL then the P1 cursor must have been positioned
4244** using OP_NotFound prior to invoking this opcode.
drh5e00f6c2001-09-13 13:46:56 +00004245*/
drh9cbf3422008-01-17 16:22:13 +00004246case OP_Delete: {
drhdfe88ec2008-11-03 20:55:06 +00004247 VdbeCursor *pC;
drh91fd4d42008-01-19 20:11:25 +00004248
drh653b82a2009-06-22 11:10:47 +00004249 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4250 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004251 assert( pC!=0 );
drh91fd4d42008-01-19 20:11:25 +00004252 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
drh9a65f2c2009-06-22 19:05:40 +00004253 assert( pC->deferredMoveto==0 );
drh9a65f2c2009-06-22 19:05:40 +00004254
drhb53a5a92014-10-12 22:37:22 +00004255#ifdef SQLITE_DEBUG
4256 /* The seek operation that positioned the cursor prior to OP_Delete will
4257 ** have also set the pC->movetoTarget field to the rowid of the row that
4258 ** is being deleted */
4259 if( pOp->p4.z && pC->isTable ){
4260 i64 iKey = 0;
4261 sqlite3BtreeKeySize(pC->pCursor, &iKey);
4262 assert( pC->movetoTarget==iKey );
4263 }
4264#endif
4265
drh91fd4d42008-01-19 20:11:25 +00004266 rc = sqlite3BtreeDelete(pC->pCursor);
drh91fd4d42008-01-19 20:11:25 +00004267 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004268
drh91fd4d42008-01-19 20:11:25 +00004269 /* Invoke the update-hook if required. */
drhbbbb0e82013-11-26 23:27:07 +00004270 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){
drh2c77be02013-11-27 21:07:03 +00004271 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
drhb53a5a92014-10-12 22:37:22 +00004272 db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);
drh91fd4d42008-01-19 20:11:25 +00004273 assert( pC->iDb>=0 );
drh5e00f6c2001-09-13 13:46:56 +00004274 }
danielk1977b28af712004-06-21 06:50:26 +00004275 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
rdcb0c374f2004-02-20 22:53:38 +00004276 break;
4277}
drhb7f1d9a2009-09-08 02:27:58 +00004278/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00004279**
drhb7f1d9a2009-09-08 02:27:58 +00004280** The value of the change counter is copied to the database handle
4281** change counter (returned by subsequent calls to sqlite3_changes()).
4282** Then the VMs internal change counter resets to 0.
4283** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00004284*/
drh9cbf3422008-01-17 16:22:13 +00004285case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00004286 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00004287 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00004288 break;
4289}
4290
drh1153c7b2013-11-01 22:02:56 +00004291/* Opcode: SorterCompare P1 P2 P3 P4
drhac502322014-07-30 13:56:48 +00004292** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
dan5134d132011-09-02 10:31:11 +00004293**
drh1153c7b2013-11-01 22:02:56 +00004294** P1 is a sorter cursor. This instruction compares a prefix of the
drhbc5cf382014-08-06 01:08:07 +00004295** record blob in register P3 against a prefix of the entry that
drhac502322014-07-30 13:56:48 +00004296** the sorter cursor currently points to. Only the first P4 fields
4297** of r[P3] and the sorter record are compared.
drh1153c7b2013-11-01 22:02:56 +00004298**
4299** If either P3 or the sorter contains a NULL in one of their significant
4300** fields (not counting the P4 fields at the end which are ignored) then
4301** the comparison is assumed to be equal.
4302**
4303** Fall through to next instruction if the two records compare equal to
4304** each other. Jump to P2 if they are different.
dan5134d132011-09-02 10:31:11 +00004305*/
4306case OP_SorterCompare: {
4307 VdbeCursor *pC;
4308 int res;
drhac502322014-07-30 13:56:48 +00004309 int nKeyCol;
dan5134d132011-09-02 10:31:11 +00004310
4311 pC = p->apCsr[pOp->p1];
4312 assert( isSorter(pC) );
drh1153c7b2013-11-01 22:02:56 +00004313 assert( pOp->p4type==P4_INT32 );
dan5134d132011-09-02 10:31:11 +00004314 pIn3 = &aMem[pOp->p3];
drhac502322014-07-30 13:56:48 +00004315 nKeyCol = pOp->p4.i;
drh958d2612014-04-18 13:40:07 +00004316 res = 0;
drhac502322014-07-30 13:56:48 +00004317 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
drh688852a2014-02-17 22:40:43 +00004318 VdbeBranchTaken(res!=0,2);
drhf56fa462015-04-13 21:39:54 +00004319 if( res ) goto jump_to_p2;
dan5134d132011-09-02 10:31:11 +00004320 break;
4321};
4322
drh6cf4a7d2014-10-13 13:00:58 +00004323/* Opcode: SorterData P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004324** Synopsis: r[P2]=data
dan5134d132011-09-02 10:31:11 +00004325**
4326** Write into register P2 the current sorter data for sorter cursor P1.
drh6cf4a7d2014-10-13 13:00:58 +00004327** Then clear the column header cache on cursor P3.
4328**
4329** This opcode is normally use to move a record out of the sorter and into
4330** a register that is the source for a pseudo-table cursor created using
4331** OpenPseudo. That pseudo-table cursor is the one that is identified by
4332** parameter P3. Clearing the P3 column cache as part of this opcode saves
4333** us from having to issue a separate NullRow instruction to clear that cache.
dan5134d132011-09-02 10:31:11 +00004334*/
4335case OP_SorterData: {
4336 VdbeCursor *pC;
drh3a949872012-09-18 13:20:13 +00004337
dan5134d132011-09-02 10:31:11 +00004338 pOut = &aMem[pOp->p2];
4339 pC = p->apCsr[pOp->p1];
drh14da87f2013-11-20 21:51:33 +00004340 assert( isSorter(pC) );
dan5134d132011-09-02 10:31:11 +00004341 rc = sqlite3VdbeSorterRowkey(pC, pOut);
dan38524132014-05-01 20:26:48 +00004342 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
drh6cf4a7d2014-10-13 13:00:58 +00004343 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4344 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
dan5134d132011-09-02 10:31:11 +00004345 break;
4346}
4347
drh98757152008-01-09 23:04:12 +00004348/* Opcode: RowData P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004349** Synopsis: r[P2]=data
drh70ce3f02003-04-15 19:22:22 +00004350**
drh98757152008-01-09 23:04:12 +00004351** Write into register P2 the complete row data for cursor P1.
4352** There is no interpretation of the data.
4353** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004354** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00004355**
drhde4fcfd2008-01-19 23:50:26 +00004356** If the P1 cursor must be pointing to a valid row (not a NULL row)
4357** of a real table, not a pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00004358*/
drh98757152008-01-09 23:04:12 +00004359/* Opcode: RowKey P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004360** Synopsis: r[P2]=key
drh143f3c42004-01-07 20:37:52 +00004361**
drh98757152008-01-09 23:04:12 +00004362** Write into register P2 the complete row key for cursor P1.
4363** There is no interpretation of the data.
drh0fd61352014-02-07 02:29:45 +00004364** The key is copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004365** it is found in the database file.
drh143f3c42004-01-07 20:37:52 +00004366**
drhde4fcfd2008-01-19 23:50:26 +00004367** If the P1 cursor must be pointing to a valid row (not a NULL row)
4368** of a real table, not a pseudo-table.
drh143f3c42004-01-07 20:37:52 +00004369*/
danielk1977a7a8e142008-02-13 18:25:27 +00004370case OP_RowKey:
4371case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00004372 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00004373 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00004374 u32 n;
drh856c1032009-06-02 15:21:42 +00004375 i64 n64;
drh70ce3f02003-04-15 19:22:22 +00004376
drha6c2ed92009-11-14 23:22:23 +00004377 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004378 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00004379
drhf0863fe2005-06-12 21:35:51 +00004380 /* Note that RowKey and RowData are really exactly the same instruction */
drh653b82a2009-06-22 11:10:47 +00004381 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4382 pC = p->apCsr[pOp->p1];
drh14da87f2013-11-20 21:51:33 +00004383 assert( isSorter(pC)==0 );
drhc6aff302011-09-01 15:32:47 +00004384 assert( pC->isTable || pOp->opcode!=OP_RowData );
drh14da87f2013-11-20 21:51:33 +00004385 assert( pC->isTable==0 || pOp->opcode==OP_RowData );
drh4774b132004-06-12 20:12:51 +00004386 assert( pC!=0 );
drhde4fcfd2008-01-19 23:50:26 +00004387 assert( pC->nullRow==0 );
drh3e9ca092009-09-08 01:14:48 +00004388 assert( pC->pseudoTableReg==0 );
drhde4fcfd2008-01-19 23:50:26 +00004389 assert( pC->pCursor!=0 );
4390 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004391
4392 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4393 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
drhc22284f2014-10-13 16:02:20 +00004394 ** the cursor. If this where not the case, on of the following assert()s
4395 ** would fail. Should this ever change (because of changes in the code
4396 ** generator) then the fix would be to insert a call to
4397 ** sqlite3VdbeCursorMoveto().
drh9a65f2c2009-06-22 19:05:40 +00004398 */
4399 assert( pC->deferredMoveto==0 );
drhc22284f2014-10-13 16:02:20 +00004400 assert( sqlite3BtreeCursorIsValid(pCrsr) );
4401#if 0 /* Not required due to the previous to assert() statements */
drhde4fcfd2008-01-19 23:50:26 +00004402 rc = sqlite3VdbeCursorMoveto(pC);
drhc22284f2014-10-13 16:02:20 +00004403 if( rc!=SQLITE_OK ) goto abort_due_to_error;
4404#endif
drh9a65f2c2009-06-22 19:05:40 +00004405
drh14da87f2013-11-20 21:51:33 +00004406 if( pC->isTable==0 ){
drhde4fcfd2008-01-19 23:50:26 +00004407 assert( !pC->isTable );
drhb07028f2011-10-14 21:49:18 +00004408 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
drhc27ae612009-07-14 18:35:44 +00004409 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhbb4957f2008-03-20 14:03:29 +00004410 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhde4fcfd2008-01-19 23:50:26 +00004411 goto too_big;
drh70ce3f02003-04-15 19:22:22 +00004412 }
drhbfb19dc2009-06-05 16:46:53 +00004413 n = (u32)n64;
drhde4fcfd2008-01-19 23:50:26 +00004414 }else{
drhb07028f2011-10-14 21:49:18 +00004415 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
drhea8ffdf2009-07-22 00:35:23 +00004416 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
shane75ac1de2009-06-09 18:58:52 +00004417 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00004418 goto too_big;
4419 }
drhde4fcfd2008-01-19 23:50:26 +00004420 }
drh722246e2014-10-07 23:02:24 +00004421 testcase( n==0 );
4422 if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
danielk1977a7a8e142008-02-13 18:25:27 +00004423 goto no_mem;
drhde4fcfd2008-01-19 23:50:26 +00004424 }
danielk1977a7a8e142008-02-13 18:25:27 +00004425 pOut->n = n;
4426 MemSetTypeFlag(pOut, MEM_Blob);
drh14da87f2013-11-20 21:51:33 +00004427 if( pC->isTable==0 ){
drhde4fcfd2008-01-19 23:50:26 +00004428 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4429 }else{
4430 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
drh5e00f6c2001-09-13 13:46:56 +00004431 }
danielk197796cb76f2008-01-04 13:24:28 +00004432 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
drhb7654112008-01-12 12:48:07 +00004433 UPDATE_MAX_BLOBSIZE(pOut);
drhee0ec8e2013-10-31 17:38:01 +00004434 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00004435 break;
4436}
4437
drh2133d822008-01-03 18:44:59 +00004438/* Opcode: Rowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004439** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00004440**
drh2133d822008-01-03 18:44:59 +00004441** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004442** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004443**
4444** P1 can be either an ordinary table or a virtual table. There used to
4445** be a separate OP_VRowid opcode for use with virtual tables, but this
4446** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004447*/
drh27a348c2015-04-13 19:14:06 +00004448case OP_Rowid: { /* out2 */
drhdfe88ec2008-11-03 20:55:06 +00004449 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004450 i64 v;
drh856c1032009-06-02 15:21:42 +00004451 sqlite3_vtab *pVtab;
4452 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004453
drh27a348c2015-04-13 19:14:06 +00004454 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00004455 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4456 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004457 assert( pC!=0 );
drh21172c42012-10-30 00:29:07 +00004458 assert( pC->pseudoTableReg==0 || pC->nullRow );
drh044925b2009-04-22 17:15:02 +00004459 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004460 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004461 break;
4462 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004463 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004464#ifndef SQLITE_OMIT_VIRTUALTABLE
4465 }else if( pC->pVtabCursor ){
drh044925b2009-04-22 17:15:02 +00004466 pVtab = pC->pVtabCursor->pVtab;
4467 pModule = pVtab->pModule;
4468 assert( pModule->xRowid );
drh044925b2009-04-22 17:15:02 +00004469 rc = pModule->xRowid(pC->pVtabCursor, &v);
dan016f7812013-08-21 17:35:48 +00004470 sqlite3VtabImportErrmsg(p, pVtab);
drh044925b2009-04-22 17:15:02 +00004471#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004472 }else{
drh6be240e2009-07-14 02:33:02 +00004473 assert( pC->pCursor!=0 );
drhc22284f2014-10-13 16:02:20 +00004474 rc = sqlite3VdbeCursorRestore(pC);
drh61495262009-04-22 15:32:59 +00004475 if( rc ) goto abort_due_to_error;
dan2b8669a2014-11-17 19:42:48 +00004476 if( pC->nullRow ){
4477 pOut->flags = MEM_Null;
4478 break;
4479 }
drhb53a5a92014-10-12 22:37:22 +00004480 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
drhc22284f2014-10-13 16:02:20 +00004481 assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */
drh5e00f6c2001-09-13 13:46:56 +00004482 }
drh4c583122008-01-04 22:01:03 +00004483 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004484 break;
4485}
4486
drh9cbf3422008-01-17 16:22:13 +00004487/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004488**
4489** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004490** that occur while the cursor is on the null row will always
4491** write a NULL.
drh17f71932002-02-21 12:01:27 +00004492*/
drh9cbf3422008-01-17 16:22:13 +00004493case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004494 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004495
drh653b82a2009-06-22 11:10:47 +00004496 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4497 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004498 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004499 pC->nullRow = 1;
drh399af1d2013-11-20 17:25:55 +00004500 pC->cacheStatus = CACHE_STALE;
danielk1977be51a652008-10-08 17:58:48 +00004501 if( pC->pCursor ){
4502 sqlite3BtreeClearCursor(pC->pCursor);
4503 }
drh17f71932002-02-21 12:01:27 +00004504 break;
4505}
4506
danb18e60b2015-04-01 16:18:00 +00004507/* Opcode: Last P1 P2 P3 * *
drh9562b552002-02-19 15:00:07 +00004508**
drh8af3f772014-07-25 18:01:06 +00004509** The next use of the Rowid or Column or Prev instruction for P1
drh9562b552002-02-19 15:00:07 +00004510** will refer to the last entry in the database table or index.
4511** If the table or index is empty and P2>0, then jump immediately to P2.
4512** If P2 is 0 or if the table or index is not empty, fall through
4513** to the following instruction.
drh8af3f772014-07-25 18:01:06 +00004514**
4515** This opcode leaves the cursor configured to move in reverse order,
4516** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004517** configured to use Prev, not Next.
drh9562b552002-02-19 15:00:07 +00004518*/
drh9cbf3422008-01-17 16:22:13 +00004519case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004520 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004521 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004522 int res;
drh9562b552002-02-19 15:00:07 +00004523
drh653b82a2009-06-22 11:10:47 +00004524 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4525 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004526 assert( pC!=0 );
drha05a7222008-01-19 03:35:58 +00004527 pCrsr = pC->pCursor;
drh7abc5402011-10-22 21:00:46 +00004528 res = 0;
drh3da046d2013-11-11 03:24:11 +00004529 assert( pCrsr!=0 );
4530 rc = sqlite3BtreeLast(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004531 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004532 pC->deferredMoveto = 0;
4533 pC->cacheStatus = CACHE_STALE;
danb18e60b2015-04-01 16:18:00 +00004534 pC->seekResult = pOp->p3;
drh8af3f772014-07-25 18:01:06 +00004535#ifdef SQLITE_DEBUG
4536 pC->seekOp = OP_Last;
4537#endif
drh688852a2014-02-17 22:40:43 +00004538 if( pOp->p2>0 ){
4539 VdbeBranchTaken(res!=0,2);
drhf56fa462015-04-13 21:39:54 +00004540 if( res ) goto jump_to_p2;
drh9562b552002-02-19 15:00:07 +00004541 }
4542 break;
4543}
4544
drh0342b1f2005-09-01 03:07:44 +00004545
drh9cbf3422008-01-17 16:22:13 +00004546/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004547**
4548** This opcode does exactly the same thing as OP_Rewind except that
4549** it increments an undocumented global variable used for testing.
4550**
4551** Sorting is accomplished by writing records into a sorting index,
4552** then rewinding that index and playing it back from beginning to
4553** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4554** rewinding so that the global variable will be incremented and
4555** regression tests can determine whether or not the optimizer is
4556** correctly optimizing out sorts.
4557*/
drhc6aff302011-09-01 15:32:47 +00004558case OP_SorterSort: /* jump */
drh9cbf3422008-01-17 16:22:13 +00004559case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00004560#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00004561 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00004562 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00004563#endif
drh9b47ee32013-08-20 03:13:51 +00004564 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
drh0342b1f2005-09-01 03:07:44 +00004565 /* Fall through into OP_Rewind */
4566}
drh9cbf3422008-01-17 16:22:13 +00004567/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004568**
drhf0863fe2005-06-12 21:35:51 +00004569** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00004570** will refer to the first entry in the database table or index.
dan04489b62014-10-31 20:11:32 +00004571** If the table or index is empty, jump immediately to P2.
4572** If the table or index is not empty, fall through to the following
4573** instruction.
drh8af3f772014-07-25 18:01:06 +00004574**
4575** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00004576** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004577** configured to use Next, not Prev.
drh5e00f6c2001-09-13 13:46:56 +00004578*/
drh9cbf3422008-01-17 16:22:13 +00004579case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004580 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004581 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00004582 int res;
drh5e00f6c2001-09-13 13:46:56 +00004583
drh653b82a2009-06-22 11:10:47 +00004584 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4585 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004586 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00004587 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
dan2411dea2010-07-03 05:56:09 +00004588 res = 1;
drh8af3f772014-07-25 18:01:06 +00004589#ifdef SQLITE_DEBUG
4590 pC->seekOp = OP_Rewind;
4591#endif
dan689ab892011-08-12 15:02:00 +00004592 if( isSorter(pC) ){
drh958d2612014-04-18 13:40:07 +00004593 rc = sqlite3VdbeSorterRewind(pC, &res);
dana205a482011-08-27 18:48:57 +00004594 }else{
4595 pCrsr = pC->pCursor;
4596 assert( pCrsr );
danielk19774adee202004-05-08 08:23:19 +00004597 rc = sqlite3BtreeFirst(pCrsr, &res);
drha11846b2004-01-07 18:52:56 +00004598 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004599 pC->cacheStatus = CACHE_STALE;
drhf4dada72004-05-11 09:57:35 +00004600 }
drh9c1905f2008-12-10 22:32:56 +00004601 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004602 assert( pOp->p2>0 && pOp->p2<p->nOp );
drh688852a2014-02-17 22:40:43 +00004603 VdbeBranchTaken(res!=0,2);
drhf56fa462015-04-13 21:39:54 +00004604 if( res ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00004605 break;
4606}
4607
drh0fd61352014-02-07 02:29:45 +00004608/* Opcode: Next P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004609**
4610** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00004611** table or index. If there are no more key/value pairs then fall through
4612** to the following instruction. But if the cursor advance was successful,
4613** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00004614**
drh5dad9a32014-07-25 18:37:42 +00004615** The Next opcode is only valid following an SeekGT, SeekGE, or
4616** OP_Rewind opcode used to position the cursor. Next is not allowed
4617** to follow SeekLT, SeekLE, or OP_Last.
drh8af3f772014-07-25 18:01:06 +00004618**
drhf93cd942013-11-21 03:12:25 +00004619** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
4620** been opened prior to this opcode or the program will segfault.
drh60a713c2008-01-21 16:22:45 +00004621**
drhe39a7322014-02-03 14:04:11 +00004622** The P3 value is a hint to the btree implementation. If P3==1, that
4623** means P1 is an SQL index and that this instruction could have been
4624** omitted if that index had been unique. P3 is usually 0. P3 is
4625** always either 0 or 1.
4626**
dana205a482011-08-27 18:48:57 +00004627** P4 is always of type P4_ADVANCE. The function pointer points to
4628** sqlite3BtreeNext().
4629**
drhafc266a2010-03-31 17:47:44 +00004630** If P5 is positive and the jump is taken, then event counter
4631** number P5-1 in the prepared statement is incremented.
4632**
drhf93cd942013-11-21 03:12:25 +00004633** See also: Prev, NextIfOpen
4634*/
drh0fd61352014-02-07 02:29:45 +00004635/* Opcode: NextIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00004636**
drh5dad9a32014-07-25 18:37:42 +00004637** This opcode works just like Next except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00004638** open it behaves a no-op.
drh8721ce42001-11-07 14:22:00 +00004639*/
drh0fd61352014-02-07 02:29:45 +00004640/* Opcode: Prev P1 P2 P3 P4 P5
drhc045ec52002-12-04 20:01:06 +00004641**
4642** Back up cursor P1 so that it points to the previous key/data pair in its
4643** table or index. If there is no previous key/value pairs then fall through
4644** to the following instruction. But if the cursor backup was successful,
4645** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00004646**
drh8af3f772014-07-25 18:01:06 +00004647**
drh5dad9a32014-07-25 18:37:42 +00004648** The Prev opcode is only valid following an SeekLT, SeekLE, or
4649** OP_Last opcode used to position the cursor. Prev is not allowed
4650** to follow SeekGT, SeekGE, or OP_Rewind.
drh8af3f772014-07-25 18:01:06 +00004651**
drhf93cd942013-11-21 03:12:25 +00004652** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
4653** not open then the behavior is undefined.
drhafc266a2010-03-31 17:47:44 +00004654**
drhe39a7322014-02-03 14:04:11 +00004655** The P3 value is a hint to the btree implementation. If P3==1, that
4656** means P1 is an SQL index and that this instruction could have been
4657** omitted if that index had been unique. P3 is usually 0. P3 is
4658** always either 0 or 1.
4659**
dana205a482011-08-27 18:48:57 +00004660** P4 is always of type P4_ADVANCE. The function pointer points to
4661** sqlite3BtreePrevious().
4662**
drhafc266a2010-03-31 17:47:44 +00004663** If P5 is positive and the jump is taken, then event counter
4664** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00004665*/
drh0fd61352014-02-07 02:29:45 +00004666/* Opcode: PrevIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00004667**
drh5dad9a32014-07-25 18:37:42 +00004668** This opcode works just like Prev except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00004669** open it behaves a no-op.
4670*/
4671case OP_SorterNext: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004672 VdbeCursor *pC;
drha3460582008-07-11 21:02:53 +00004673 int res;
drh8721ce42001-11-07 14:22:00 +00004674
drhf93cd942013-11-21 03:12:25 +00004675 pC = p->apCsr[pOp->p1];
4676 assert( isSorter(pC) );
drh323913c2014-03-23 16:29:23 +00004677 res = 0;
drhf93cd942013-11-21 03:12:25 +00004678 rc = sqlite3VdbeSorterNext(db, pC, &res);
4679 goto next_tail;
4680case OP_PrevIfOpen: /* jump */
4681case OP_NextIfOpen: /* jump */
4682 if( p->apCsr[pOp->p1]==0 ) break;
4683 /* Fall through */
4684case OP_Prev: /* jump */
4685case OP_Next: /* jump */
drh70ce3f02003-04-15 19:22:22 +00004686 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh9b47ee32013-08-20 03:13:51 +00004687 assert( pOp->p5<ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00004688 pC = p->apCsr[pOp->p1];
drhe39a7322014-02-03 14:04:11 +00004689 res = pOp->p3;
drhf93cd942013-11-21 03:12:25 +00004690 assert( pC!=0 );
4691 assert( pC->deferredMoveto==0 );
4692 assert( pC->pCursor );
drhe39a7322014-02-03 14:04:11 +00004693 assert( res==0 || (res==1 && pC->isTable==0) );
4694 testcase( res==1 );
drhf93cd942013-11-21 03:12:25 +00004695 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4696 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4697 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
4698 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
drh8af3f772014-07-25 18:01:06 +00004699
4700 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
4701 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
4702 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
4703 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
drhcefc87f2014-08-01 01:40:33 +00004704 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
drh8af3f772014-07-25 18:01:06 +00004705 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
4706 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
4707 || pC->seekOp==OP_Last );
4708
drhf93cd942013-11-21 03:12:25 +00004709 rc = pOp->p4.xAdvance(pC->pCursor, &res);
4710next_tail:
drha3460582008-07-11 21:02:53 +00004711 pC->cacheStatus = CACHE_STALE;
drh688852a2014-02-17 22:40:43 +00004712 VdbeBranchTaken(res==0,2);
drha3460582008-07-11 21:02:53 +00004713 if( res==0 ){
drhf93cd942013-11-21 03:12:25 +00004714 pC->nullRow = 0;
drh9b47ee32013-08-20 03:13:51 +00004715 p->aCounter[pOp->p5]++;
drh0f7eb612006-08-08 13:51:43 +00004716#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00004717 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00004718#endif
drhf56fa462015-04-13 21:39:54 +00004719 goto jump_to_p2_and_check_for_interrupt;
drhf93cd942013-11-21 03:12:25 +00004720 }else{
4721 pC->nullRow = 1;
drh8721ce42001-11-07 14:22:00 +00004722 }
drh49afe3a2013-07-10 03:05:14 +00004723 goto check_for_interrupt;
drh8721ce42001-11-07 14:22:00 +00004724}
4725
danielk1977de630352009-05-04 11:42:29 +00004726/* Opcode: IdxInsert P1 P2 P3 * P5
drh81316f82013-10-29 20:40:47 +00004727** Synopsis: key=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004728**
drhef8662b2011-06-20 21:47:58 +00004729** Register P2 holds an SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00004730** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00004731** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00004732**
drhaa9b8962008-01-08 02:57:55 +00004733** P3 is a flag that provides a hint to the b-tree layer that this
drhe4d90812007-03-29 05:51:49 +00004734** insert is likely to be an append.
4735**
mistachkin21a919f2014-02-07 03:28:02 +00004736** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
4737** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
4738** then the change counter is unchanged.
drh0fd61352014-02-07 02:29:45 +00004739**
mistachkin21a919f2014-02-07 03:28:02 +00004740** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
4741** just done a seek to the spot where the new entry is to be inserted.
4742** This flag avoids doing an extra seek.
drh0fd61352014-02-07 02:29:45 +00004743**
drhf0863fe2005-06-12 21:35:51 +00004744** This instruction only works for indices. The equivalent instruction
4745** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00004746*/
drhca892a72011-09-03 00:17:51 +00004747case OP_SorterInsert: /* in2 */
drh9cbf3422008-01-17 16:22:13 +00004748case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00004749 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004750 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004751 int nKey;
4752 const char *zKey;
4753
drh653b82a2009-06-22 11:10:47 +00004754 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4755 pC = p->apCsr[pOp->p1];
4756 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00004757 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
drh3c657212009-11-17 23:59:58 +00004758 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00004759 assert( pIn2->flags & MEM_Blob );
drh653b82a2009-06-22 11:10:47 +00004760 pCrsr = pC->pCursor;
drh6546af12013-11-04 15:23:25 +00004761 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh3da046d2013-11-11 03:24:11 +00004762 assert( pCrsr!=0 );
4763 assert( pC->isTable==0 );
4764 rc = ExpandBlob(pIn2);
4765 if( rc==SQLITE_OK ){
4766 if( isSorter(pC) ){
drh958d2612014-04-18 13:40:07 +00004767 rc = sqlite3VdbeSorterWrite(pC, pIn2);
drh3da046d2013-11-11 03:24:11 +00004768 }else{
4769 nKey = pIn2->n;
4770 zKey = pIn2->z;
4771 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4772 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4773 );
4774 assert( pC->deferredMoveto==0 );
4775 pC->cacheStatus = CACHE_STALE;
danielk1977d908f5a2007-05-11 07:08:28 +00004776 }
drh5e00f6c2001-09-13 13:46:56 +00004777 }
drh5e00f6c2001-09-13 13:46:56 +00004778 break;
4779}
4780
drh4308e342013-11-11 16:55:52 +00004781/* Opcode: IdxDelete P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00004782** Synopsis: key=r[P2@P3]
drh5e00f6c2001-09-13 13:46:56 +00004783**
drhe14006d2008-03-25 17:23:32 +00004784** The content of P3 registers starting at register P2 form
4785** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00004786** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00004787*/
drhe14006d2008-03-25 17:23:32 +00004788case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00004789 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004790 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00004791 int res;
4792 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00004793
drhe14006d2008-03-25 17:23:32 +00004794 assert( pOp->p3>0 );
dan3bc9f742013-08-15 16:18:39 +00004795 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
drh653b82a2009-06-22 11:10:47 +00004796 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4797 pC = p->apCsr[pOp->p1];
4798 assert( pC!=0 );
4799 pCrsr = pC->pCursor;
drh3da046d2013-11-11 03:24:11 +00004800 assert( pCrsr!=0 );
drh4308e342013-11-11 16:55:52 +00004801 assert( pOp->p5==0 );
drh3da046d2013-11-11 03:24:11 +00004802 r.pKeyInfo = pC->pKeyInfo;
4803 r.nField = (u16)pOp->p3;
dan1fed5da2014-02-25 21:01:25 +00004804 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00004805 r.aMem = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004806#ifdef SQLITE_DEBUG
drh3da046d2013-11-11 03:24:11 +00004807 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
drh2b4ded92010-09-27 21:09:31 +00004808#endif
drh3da046d2013-11-11 03:24:11 +00004809 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
4810 if( rc==SQLITE_OK && res==0 ){
4811 rc = sqlite3BtreeDelete(pCrsr);
drh5e00f6c2001-09-13 13:46:56 +00004812 }
drh3da046d2013-11-11 03:24:11 +00004813 assert( pC->deferredMoveto==0 );
4814 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004815 break;
4816}
4817
drh2133d822008-01-03 18:44:59 +00004818/* Opcode: IdxRowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004819** Synopsis: r[P2]=rowid
drh8721ce42001-11-07 14:22:00 +00004820**
drh2133d822008-01-03 18:44:59 +00004821** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00004822** the end of the index key pointed to by cursor P1. This integer should be
4823** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00004824**
drh9437bd22009-02-01 00:29:56 +00004825** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00004826*/
drh27a348c2015-04-13 19:14:06 +00004827case OP_IdxRowid: { /* out2 */
drh8721ce42001-11-07 14:22:00 +00004828 BtCursor *pCrsr;
drhdfe88ec2008-11-03 20:55:06 +00004829 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004830 i64 rowid;
drh8721ce42001-11-07 14:22:00 +00004831
drh27a348c2015-04-13 19:14:06 +00004832 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00004833 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4834 pC = p->apCsr[pOp->p1];
4835 assert( pC!=0 );
4836 pCrsr = pC->pCursor;
drh3da046d2013-11-11 03:24:11 +00004837 assert( pCrsr!=0 );
drh3c657212009-11-17 23:59:58 +00004838 pOut->flags = MEM_Null;
drh3da046d2013-11-11 03:24:11 +00004839 assert( pC->isTable==0 );
drhc22284f2014-10-13 16:02:20 +00004840 assert( pC->deferredMoveto==0 );
4841
4842 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
4843 ** out from under the cursor. That will never happend for an IdxRowid
4844 ** opcode, hence the NEVER() arround the check of the return value.
4845 */
4846 rc = sqlite3VdbeCursorRestore(pC);
4847 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4848
drh3da046d2013-11-11 03:24:11 +00004849 if( !pC->nullRow ){
drh2dc06482013-12-11 00:59:10 +00004850 rowid = 0; /* Not needed. Only used to silence a warning. */
drhd3b74202014-09-17 16:41:15 +00004851 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
drh3da046d2013-11-11 03:24:11 +00004852 if( rc!=SQLITE_OK ){
4853 goto abort_due_to_error;
danielk19773d1bfea2004-05-14 11:00:53 +00004854 }
drh3da046d2013-11-11 03:24:11 +00004855 pOut->u.i = rowid;
4856 pOut->flags = MEM_Int;
drh8721ce42001-11-07 14:22:00 +00004857 }
4858 break;
4859}
4860
danielk197761dd5832008-04-18 11:31:12 +00004861/* Opcode: IdxGE P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00004862** Synopsis: key=r[P3@P4]
drh8721ce42001-11-07 14:22:00 +00004863**
danielk197761dd5832008-04-18 11:31:12 +00004864** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00004865** key that omits the PRIMARY KEY. Compare this key value against the index
4866** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
4867** fields at the end.
drhf3218fe2004-05-28 08:21:02 +00004868**
danielk197761dd5832008-04-18 11:31:12 +00004869** If the P1 index entry is greater than or equal to the key value
4870** then jump to P2. Otherwise fall through to the next instruction.
drh4a1d3652014-02-14 15:13:36 +00004871*/
4872/* Opcode: IdxGT P1 P2 P3 P4 P5
4873** Synopsis: key=r[P3@P4]
drh772ae622004-05-19 13:13:08 +00004874**
drh4a1d3652014-02-14 15:13:36 +00004875** The P4 register values beginning with P3 form an unpacked index
4876** key that omits the PRIMARY KEY. Compare this key value against the index
4877** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
4878** fields at the end.
4879**
4880** If the P1 index entry is greater than the key value
4881** then jump to P2. Otherwise fall through to the next instruction.
drh8721ce42001-11-07 14:22:00 +00004882*/
drh3bb9b932010-08-06 02:10:00 +00004883/* Opcode: IdxLT P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00004884** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00004885**
danielk197761dd5832008-04-18 11:31:12 +00004886** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00004887** key that omits the PRIMARY KEY or ROWID. Compare this key value against
4888** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
4889** ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004890**
danielk197761dd5832008-04-18 11:31:12 +00004891** If the P1 index entry is less than the key value then jump to P2.
4892** Otherwise fall through to the next instruction.
drhc045ec52002-12-04 20:01:06 +00004893*/
drh4a1d3652014-02-14 15:13:36 +00004894/* Opcode: IdxLE P1 P2 P3 P4 P5
4895** Synopsis: key=r[P3@P4]
4896**
4897** The P4 register values beginning with P3 form an unpacked index
4898** key that omits the PRIMARY KEY or ROWID. Compare this key value against
4899** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
4900** ROWID on the P1 index.
4901**
4902** If the P1 index entry is less than or equal to the key value then jump
4903** to P2. Otherwise fall through to the next instruction.
4904*/
4905case OP_IdxLE: /* jump */
4906case OP_IdxGT: /* jump */
drh93952eb2009-11-13 19:43:43 +00004907case OP_IdxLT: /* jump */
drh4a1d3652014-02-14 15:13:36 +00004908case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004909 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004910 int res;
4911 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00004912
drh653b82a2009-06-22 11:10:47 +00004913 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4914 pC = p->apCsr[pOp->p1];
4915 assert( pC!=0 );
drhd4187c72010-08-30 22:15:45 +00004916 assert( pC->isOrdered );
drh3da046d2013-11-11 03:24:11 +00004917 assert( pC->pCursor!=0);
4918 assert( pC->deferredMoveto==0 );
4919 assert( pOp->p5==0 || pOp->p5==1 );
4920 assert( pOp->p4type==P4_INT32 );
4921 r.pKeyInfo = pC->pKeyInfo;
4922 r.nField = (u16)pOp->p4.i;
drh4a1d3652014-02-14 15:13:36 +00004923 if( pOp->opcode<OP_IdxLT ){
4924 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
dan1fed5da2014-02-25 21:01:25 +00004925 r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00004926 }else{
drh4a1d3652014-02-14 15:13:36 +00004927 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
dan1fed5da2014-02-25 21:01:25 +00004928 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00004929 }
4930 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00004931#ifdef SQLITE_DEBUG
drh3da046d2013-11-11 03:24:11 +00004932 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
drh2b4ded92010-09-27 21:09:31 +00004933#endif
drh2dc06482013-12-11 00:59:10 +00004934 res = 0; /* Not needed. Only used to silence a warning. */
drhd3b74202014-09-17 16:41:15 +00004935 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
drh4a1d3652014-02-14 15:13:36 +00004936 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
4937 if( (pOp->opcode&1)==(OP_IdxLT&1) ){
4938 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
drh3da046d2013-11-11 03:24:11 +00004939 res = -res;
4940 }else{
drh4a1d3652014-02-14 15:13:36 +00004941 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
drh3da046d2013-11-11 03:24:11 +00004942 res++;
4943 }
drh688852a2014-02-17 22:40:43 +00004944 VdbeBranchTaken(res>0,2);
drhf56fa462015-04-13 21:39:54 +00004945 if( res>0 ) goto jump_to_p2;
drh8721ce42001-11-07 14:22:00 +00004946 break;
4947}
4948
drh98757152008-01-09 23:04:12 +00004949/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004950**
4951** Delete an entire database table or index whose root page in the database
4952** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00004953**
drh98757152008-01-09 23:04:12 +00004954** The table being destroyed is in the main database file if P3==0. If
4955** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00004956** that is used to store tables create using CREATE TEMPORARY TABLE.
4957**
drh205f48e2004-11-05 00:43:11 +00004958** If AUTOVACUUM is enabled then it is possible that another root page
4959** might be moved into the newly deleted root page in order to keep all
4960** root pages contiguous at the beginning of the database. The former
4961** value of the root page that moved - its value before the move occurred -
drh9cbf3422008-01-17 16:22:13 +00004962** is stored in register P2. If no page
drh98757152008-01-09 23:04:12 +00004963** movement was required (because the table being dropped was already
4964** the last one in the database) then a zero is stored in register P2.
4965** If AUTOVACUUM is disabled then a zero is stored in register P2.
drh205f48e2004-11-05 00:43:11 +00004966**
drhb19a2bc2001-09-16 00:13:26 +00004967** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00004968*/
drh27a348c2015-04-13 19:14:06 +00004969case OP_Destroy: { /* out2 */
danielk1977a0bf2652004-11-04 14:30:04 +00004970 int iMoved;
drh856c1032009-06-02 15:21:42 +00004971 int iDb;
drh3a949872012-09-18 13:20:13 +00004972
drh9e92a472013-06-27 17:40:30 +00004973 assert( p->readOnly==0 );
drh27a348c2015-04-13 19:14:06 +00004974 pOut = out2Prerelease(p, pOp);
drh3c657212009-11-17 23:59:58 +00004975 pOut->flags = MEM_Null;
drh086723a2015-03-24 12:51:52 +00004976 if( db->nVdbeRead > db->nVDestroy+1 ){
danielk1977e6efa742004-11-10 11:55:10 +00004977 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00004978 p->errorAction = OE_Abort;
danielk1977e6efa742004-11-10 11:55:10 +00004979 }else{
drh856c1032009-06-02 15:21:42 +00004980 iDb = pOp->p3;
drha7ab6d82014-07-21 15:44:39 +00004981 assert( DbMaskTest(p->btreeMask, iDb) );
drh2dc06482013-12-11 00:59:10 +00004982 iMoved = 0; /* Not needed. Only to silence a warning. */
drh98757152008-01-09 23:04:12 +00004983 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00004984 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00004985 pOut->u.i = iMoved;
drh3765df42006-06-28 18:18:09 +00004986#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977e6efa742004-11-10 11:55:10 +00004987 if( rc==SQLITE_OK && iMoved!=0 ){
drhcdf011d2011-04-04 21:25:28 +00004988 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
4989 /* All OP_Destroy operations occur on the same btree */
4990 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
4991 resetSchemaOnFault = iDb+1;
danielk1977e6efa742004-11-10 11:55:10 +00004992 }
drh3765df42006-06-28 18:18:09 +00004993#endif
danielk1977a0bf2652004-11-04 14:30:04 +00004994 }
drh5e00f6c2001-09-13 13:46:56 +00004995 break;
4996}
4997
danielk1977c7af4842008-10-27 13:59:33 +00004998/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00004999**
5000** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00005001** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00005002** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00005003**
drhf57b3392001-10-08 13:22:32 +00005004** The table being clear is in the main database file if P2==0. If
5005** P2==1 then the table to be clear is in the auxiliary database file
5006** that is used to store tables create using CREATE TEMPORARY TABLE.
5007**
shanebe217792009-03-05 04:20:31 +00005008** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00005009** intkey table (an SQL table, not an index). In this case the row change
5010** count is incremented by the number of rows in the table being cleared.
5011** If P3 is greater than zero, then the value stored in register P3 is
5012** also incremented by the number of rows in the table being cleared.
5013**
drhb19a2bc2001-09-16 00:13:26 +00005014** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00005015*/
drh9cbf3422008-01-17 16:22:13 +00005016case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00005017 int nChange;
5018
5019 nChange = 0;
drh9e92a472013-06-27 17:40:30 +00005020 assert( p->readOnly==0 );
drha7ab6d82014-07-21 15:44:39 +00005021 assert( DbMaskTest(p->btreeMask, pOp->p2) );
danielk1977c7af4842008-10-27 13:59:33 +00005022 rc = sqlite3BtreeClearTable(
5023 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5024 );
5025 if( pOp->p3 ){
5026 p->nChange += nChange;
5027 if( pOp->p3>0 ){
drh2b4ded92010-09-27 21:09:31 +00005028 assert( memIsValid(&aMem[pOp->p3]) );
5029 memAboutToChange(p, &aMem[pOp->p3]);
drha6c2ed92009-11-14 23:22:23 +00005030 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00005031 }
5032 }
drh5edc3122001-09-13 21:53:09 +00005033 break;
5034}
5035
drh65ea12c2014-03-19 17:41:36 +00005036/* Opcode: ResetSorter P1 * * * *
drh079a3072014-03-19 14:10:55 +00005037**
drh65ea12c2014-03-19 17:41:36 +00005038** Delete all contents from the ephemeral table or sorter
5039** that is open on cursor P1.
drh079a3072014-03-19 14:10:55 +00005040**
drh65ea12c2014-03-19 17:41:36 +00005041** This opcode only works for cursors used for sorting and
5042** opened with OP_OpenEphemeral or OP_SorterOpen.
drh079a3072014-03-19 14:10:55 +00005043*/
drh65ea12c2014-03-19 17:41:36 +00005044case OP_ResetSorter: {
drh079a3072014-03-19 14:10:55 +00005045 VdbeCursor *pC;
5046
5047 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5048 pC = p->apCsr[pOp->p1];
5049 assert( pC!=0 );
drh65ea12c2014-03-19 17:41:36 +00005050 if( pC->pSorter ){
5051 sqlite3VdbeSorterReset(db, pC->pSorter);
5052 }else{
5053 assert( pC->isEphemeral );
5054 rc = sqlite3BtreeClearTableOfCursor(pC->pCursor);
5055 }
drh079a3072014-03-19 14:10:55 +00005056 break;
5057}
5058
drh4c583122008-01-04 22:01:03 +00005059/* Opcode: CreateTable P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005060** Synopsis: r[P2]=root iDb=P1
drh5b2fd562001-09-13 15:21:31 +00005061**
drh4c583122008-01-04 22:01:03 +00005062** Allocate a new table in the main database file if P1==0 or in the
5063** auxiliary database file if P1==1 or in an attached database if
5064** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00005065** register P2
drh5b2fd562001-09-13 15:21:31 +00005066**
drhc6b52df2002-01-04 03:09:29 +00005067** The difference between a table and an index is this: A table must
5068** have a 4-byte integer key and can have arbitrary data. An index
5069** has an arbitrary key but no data.
5070**
drhb19a2bc2001-09-16 00:13:26 +00005071** See also: CreateIndex
drh5b2fd562001-09-13 15:21:31 +00005072*/
drh4c583122008-01-04 22:01:03 +00005073/* Opcode: CreateIndex P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005074** Synopsis: r[P2]=root iDb=P1
drhf57b3392001-10-08 13:22:32 +00005075**
drh4c583122008-01-04 22:01:03 +00005076** Allocate a new index in the main database file if P1==0 or in the
5077** auxiliary database file if P1==1 or in an attached database if
5078** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00005079** register P2.
drhf57b3392001-10-08 13:22:32 +00005080**
drhc6b52df2002-01-04 03:09:29 +00005081** See documentation on OP_CreateTable for additional information.
drhf57b3392001-10-08 13:22:32 +00005082*/
drh27a348c2015-04-13 19:14:06 +00005083case OP_CreateIndex: /* out2 */
5084case OP_CreateTable: { /* out2 */
drh856c1032009-06-02 15:21:42 +00005085 int pgno;
drhf328bc82004-05-10 23:29:49 +00005086 int flags;
drh234c39d2004-07-24 03:30:47 +00005087 Db *pDb;
drh856c1032009-06-02 15:21:42 +00005088
drh27a348c2015-04-13 19:14:06 +00005089 pOut = out2Prerelease(p, pOp);
drh856c1032009-06-02 15:21:42 +00005090 pgno = 0;
drh234c39d2004-07-24 03:30:47 +00005091 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005092 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00005093 assert( p->readOnly==0 );
drh234c39d2004-07-24 03:30:47 +00005094 pDb = &db->aDb[pOp->p1];
5095 assert( pDb->pBt!=0 );
drhc6b52df2002-01-04 03:09:29 +00005096 if( pOp->opcode==OP_CreateTable ){
danielk197794076252004-05-14 12:16:11 +00005097 /* flags = BTREE_INTKEY; */
drhd4187c72010-08-30 22:15:45 +00005098 flags = BTREE_INTKEY;
drhc6b52df2002-01-04 03:09:29 +00005099 }else{
drhd4187c72010-08-30 22:15:45 +00005100 flags = BTREE_BLOBKEY;
drhc6b52df2002-01-04 03:09:29 +00005101 }
drh234c39d2004-07-24 03:30:47 +00005102 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
drh88a003e2008-12-11 16:17:03 +00005103 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00005104 break;
5105}
5106
drh22645842011-03-24 01:34:03 +00005107/* Opcode: ParseSchema P1 * * P4 *
drh234c39d2004-07-24 03:30:47 +00005108**
5109** Read and parse all entries from the SQLITE_MASTER table of database P1
drh22645842011-03-24 01:34:03 +00005110** that match the WHERE clause P4.
drh234c39d2004-07-24 03:30:47 +00005111**
5112** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00005113** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00005114*/
drh9cbf3422008-01-17 16:22:13 +00005115case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00005116 int iDb;
5117 const char *zMaster;
5118 char *zSql;
5119 InitData initData;
5120
drhbdaec522011-04-04 00:14:43 +00005121 /* Any prepared statement that invokes this opcode will hold mutexes
5122 ** on every btree. This is a prerequisite for invoking
5123 ** sqlite3InitCallback().
5124 */
5125#ifdef SQLITE_DEBUG
5126 for(iDb=0; iDb<db->nDb; iDb++){
5127 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5128 }
5129#endif
drhbdaec522011-04-04 00:14:43 +00005130
drh856c1032009-06-02 15:21:42 +00005131 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00005132 assert( iDb>=0 && iDb<db->nDb );
dan6c154872011-04-02 09:44:43 +00005133 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
drhbdaec522011-04-04 00:14:43 +00005134 /* Used to be a conditional */ {
drh856c1032009-06-02 15:21:42 +00005135 zMaster = SCHEMA_TABLE(iDb);
danielk1977a8bbef82009-03-23 17:11:26 +00005136 initData.db = db;
5137 initData.iDb = pOp->p1;
5138 initData.pzErrMsg = &p->zErrMsg;
5139 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00005140 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
danielk1977a8bbef82009-03-23 17:11:26 +00005141 db->aDb[iDb].zName, zMaster, pOp->p4.z);
5142 if( zSql==0 ){
5143 rc = SQLITE_NOMEM;
5144 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00005145 assert( db->init.busy==0 );
5146 db->init.busy = 1;
5147 initData.rc = SQLITE_OK;
5148 assert( !db->mallocFailed );
5149 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5150 if( rc==SQLITE_OK ) rc = initData.rc;
5151 sqlite3DbFree(db, zSql);
5152 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00005153 }
drh3c23a882007-01-09 14:01:13 +00005154 }
drh81028a42012-05-15 18:28:27 +00005155 if( rc ) sqlite3ResetAllSchemasOfConnection(db);
danielk1977261919c2005-12-06 12:52:59 +00005156 if( rc==SQLITE_NOMEM ){
danielk1977261919c2005-12-06 12:52:59 +00005157 goto no_mem;
5158 }
drh234c39d2004-07-24 03:30:47 +00005159 break;
5160}
5161
drh8bfdf722009-06-19 14:06:03 +00005162#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00005163/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00005164**
5165** Read the sqlite_stat1 table for database P1 and load the content
5166** of that table into the internal index hash table. This will cause
5167** the analysis to be used when preparing all subsequent queries.
5168*/
drh9cbf3422008-01-17 16:22:13 +00005169case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00005170 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5171 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh497e4462005-07-23 03:18:40 +00005172 break;
5173}
drh8bfdf722009-06-19 14:06:03 +00005174#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00005175
drh98757152008-01-09 23:04:12 +00005176/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005177**
5178** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005179** the table named P4 in database P1. This is called after a table
drh5dad9a32014-07-25 18:37:42 +00005180** is dropped from disk (using the Destroy opcode) in order to keep
5181** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005182** schema consistent with what is on disk.
5183*/
drh9cbf3422008-01-17 16:22:13 +00005184case OP_DropTable: {
danielk19772dca4ac2008-01-03 11:50:29 +00005185 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005186 break;
5187}
5188
drh98757152008-01-09 23:04:12 +00005189/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005190**
5191** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005192** the index named P4 in database P1. This is called after an index
drh5dad9a32014-07-25 18:37:42 +00005193** is dropped from disk (using the Destroy opcode)
5194** in order to keep the internal representation of the
drh956bc922004-07-24 17:38:29 +00005195** schema consistent with what is on disk.
5196*/
drh9cbf3422008-01-17 16:22:13 +00005197case OP_DropIndex: {
danielk19772dca4ac2008-01-03 11:50:29 +00005198 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005199 break;
5200}
5201
drh98757152008-01-09 23:04:12 +00005202/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005203**
5204** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005205** the trigger named P4 in database P1. This is called after a trigger
drh5dad9a32014-07-25 18:37:42 +00005206** is dropped from disk (using the Destroy opcode) in order to keep
5207** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005208** schema consistent with what is on disk.
5209*/
drh9cbf3422008-01-17 16:22:13 +00005210case OP_DropTrigger: {
danielk19772dca4ac2008-01-03 11:50:29 +00005211 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005212 break;
5213}
5214
drh234c39d2004-07-24 03:30:47 +00005215
drhb7f91642004-10-31 02:22:47 +00005216#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98757152008-01-09 23:04:12 +00005217/* Opcode: IntegrityCk P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00005218**
drh98757152008-01-09 23:04:12 +00005219** Do an analysis of the currently open database. Store in
5220** register P1 the text of an error message describing any problems.
5221** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00005222**
drh98757152008-01-09 23:04:12 +00005223** The register P3 contains the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00005224** At most reg(P3) errors will be reported.
5225** In other words, the analysis stops as soon as reg(P1) errors are
5226** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00005227**
drh79069752004-05-22 21:30:40 +00005228** The root page numbers of all tables in the database are integer
drh60a713c2008-01-21 16:22:45 +00005229** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
drh98757152008-01-09 23:04:12 +00005230** total.
drh21504322002-06-25 13:16:02 +00005231**
drh98757152008-01-09 23:04:12 +00005232** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00005233** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00005234**
drh1dcdbc02007-01-27 02:24:54 +00005235** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00005236*/
drhaaab5722002-02-19 13:39:21 +00005237case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00005238 int nRoot; /* Number of tables to check. (Number of root pages.) */
5239 int *aRoot; /* Array of rootpage numbers for tables to be checked */
5240 int j; /* Loop counter */
5241 int nErr; /* Number of errors reported */
5242 char *z; /* Text of the error report */
5243 Mem *pnErr; /* Register keeping track of errors remaining */
drh9e92a472013-06-27 17:40:30 +00005244
drh1713afb2013-06-28 01:24:57 +00005245 assert( p->bIsReader );
drh98757152008-01-09 23:04:12 +00005246 nRoot = pOp->p2;
drh79069752004-05-22 21:30:40 +00005247 assert( nRoot>0 );
drh633e6d52008-07-28 19:34:53 +00005248 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
drhcaec2f12003-01-07 02:47:47 +00005249 if( aRoot==0 ) goto no_mem;
dan3bc9f742013-08-15 16:18:39 +00005250 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005251 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00005252 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00005253 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00005254 pIn1 = &aMem[pOp->p1];
drh79069752004-05-22 21:30:40 +00005255 for(j=0; j<nRoot; j++){
drh9c1905f2008-12-10 22:32:56 +00005256 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
drh1dd397f2002-02-03 03:34:07 +00005257 }
5258 aRoot[j] = 0;
drh98757152008-01-09 23:04:12 +00005259 assert( pOp->p5<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005260 assert( DbMaskTest(p->btreeMask, pOp->p5) );
drh98757152008-01-09 23:04:12 +00005261 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
drh9c1905f2008-12-10 22:32:56 +00005262 (int)pnErr->u.i, &nErr);
drhc890fec2008-08-01 20:10:08 +00005263 sqlite3DbFree(db, aRoot);
drh3c024d62007-03-30 11:23:45 +00005264 pnErr->u.i -= nErr;
drha05a7222008-01-19 03:35:58 +00005265 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00005266 if( nErr==0 ){
5267 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00005268 }else if( z==0 ){
5269 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00005270 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00005271 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00005272 }
drhb7654112008-01-12 12:48:07 +00005273 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00005274 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00005275 break;
5276}
drhb7f91642004-10-31 02:22:47 +00005277#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00005278
drh3d4501e2008-12-04 20:40:10 +00005279/* Opcode: RowSetAdd P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005280** Synopsis: rowset(P1)=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00005281**
drh3d4501e2008-12-04 20:40:10 +00005282** Insert the integer value held by register P2 into a boolean index
5283** held in register P1.
5284**
5285** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00005286*/
drh93952eb2009-11-13 19:43:43 +00005287case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00005288 pIn1 = &aMem[pOp->p1];
5289 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00005290 assert( (pIn2->flags & MEM_Int)!=0 );
5291 if( (pIn1->flags & MEM_RowSet)==0 ){
5292 sqlite3VdbeMemSetRowSet(pIn1);
5293 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00005294 }
drh93952eb2009-11-13 19:43:43 +00005295 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00005296 break;
5297}
5298
5299/* Opcode: RowSetRead P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00005300** Synopsis: r[P3]=rowset(P1)
drh3d4501e2008-12-04 20:40:10 +00005301**
5302** Extract the smallest value from boolean index P1 and put that value into
5303** register P3. Or, if boolean index P1 is initially empty, leave P3
5304** unchanged and jump to instruction P2.
5305*/
drh93952eb2009-11-13 19:43:43 +00005306case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00005307 i64 val;
drh49afe3a2013-07-10 03:05:14 +00005308
drh3c657212009-11-17 23:59:58 +00005309 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00005310 if( (pIn1->flags & MEM_RowSet)==0
5311 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00005312 ){
5313 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00005314 sqlite3VdbeMemSetNull(pIn1);
drh688852a2014-02-17 22:40:43 +00005315 VdbeBranchTaken(1,2);
drhf56fa462015-04-13 21:39:54 +00005316 goto jump_to_p2_and_check_for_interrupt;
drh3d4501e2008-12-04 20:40:10 +00005317 }else{
5318 /* A value was pulled from the index */
drh688852a2014-02-17 22:40:43 +00005319 VdbeBranchTaken(0,2);
drhf56fa462015-04-13 21:39:54 +00005320 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh17435752007-08-16 04:30:38 +00005321 }
drh49afe3a2013-07-10 03:05:14 +00005322 goto check_for_interrupt;
drh5e00f6c2001-09-13 13:46:56 +00005323}
5324
drh1b26c7c2009-04-22 02:15:47 +00005325/* Opcode: RowSetTest P1 P2 P3 P4
drh81316f82013-10-29 20:40:47 +00005326** Synopsis: if r[P3] in rowset(P1) goto P2
danielk19771d461462009-04-21 09:02:45 +00005327**
drhade97602009-04-21 15:05:18 +00005328** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00005329** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00005330** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00005331** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00005332** next opcode.
danielk19771d461462009-04-21 09:02:45 +00005333**
drh1b26c7c2009-04-22 02:15:47 +00005334** The RowSet object is optimized for the case where successive sets
danielk19771d461462009-04-21 09:02:45 +00005335** of integers, where each set contains no duplicates. Each set
5336** of values is identified by a unique P4 value. The first set
drh1b26c7c2009-04-22 02:15:47 +00005337** must have P4==0, the final set P4=-1. P4 must be either -1 or
5338** non-negative. For non-negative values of P4 only the lower 4
5339** bits are significant.
danielk19771d461462009-04-21 09:02:45 +00005340**
5341** This allows optimizations: (a) when P4==0 there is no need to test
drh1b26c7c2009-04-22 02:15:47 +00005342** the rowset object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00005343** (b) when P4==-1 there is no need to insert the value, as it will
5344** never be tested for, and (c) when a value that is part of set X is
5345** inserted, there is no need to search to see if the same value was
5346** previously inserted as part of set X (only if it was previously
5347** inserted as part of some other set).
5348*/
drh1b26c7c2009-04-22 02:15:47 +00005349case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00005350 int iSet;
5351 int exists;
5352
drh3c657212009-11-17 23:59:58 +00005353 pIn1 = &aMem[pOp->p1];
5354 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005355 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00005356 assert( pIn3->flags&MEM_Int );
5357
drh1b26c7c2009-04-22 02:15:47 +00005358 /* If there is anything other than a rowset object in memory cell P1,
5359 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00005360 */
drh733bf1b2009-04-22 00:47:00 +00005361 if( (pIn1->flags & MEM_RowSet)==0 ){
5362 sqlite3VdbeMemSetRowSet(pIn1);
5363 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00005364 }
5365
5366 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00005367 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00005368 if( iSet ){
drhd83cad22014-04-10 02:24:48 +00005369 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
drh688852a2014-02-17 22:40:43 +00005370 VdbeBranchTaken(exists!=0,2);
drhf56fa462015-04-13 21:39:54 +00005371 if( exists ) goto jump_to_p2;
danielk19771d461462009-04-21 09:02:45 +00005372 }
5373 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00005374 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005375 }
5376 break;
5377}
5378
drh5e00f6c2001-09-13 13:46:56 +00005379
danielk197793758c82005-01-21 08:13:14 +00005380#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00005381
drh0fd61352014-02-07 02:29:45 +00005382/* Opcode: Program P1 P2 P3 P4 P5
dan165921a2009-08-28 18:53:45 +00005383**
dan76d462e2009-08-30 11:42:51 +00005384** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00005385**
dan76d462e2009-08-30 11:42:51 +00005386** P1 contains the address of the memory cell that contains the first memory
5387** cell in an array of values used as arguments to the sub-program. P2
5388** contains the address to jump to if the sub-program throws an IGNORE
5389** exception using the RAISE() function. Register P3 contains the address
5390** of a memory cell in this (the parent) VM that is used to allocate the
5391** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00005392**
5393** P4 is a pointer to the VM containing the trigger program.
drh0fd61352014-02-07 02:29:45 +00005394**
5395** If P5 is non-zero, then recursive program invocation is enabled.
dan165921a2009-08-28 18:53:45 +00005396*/
dan76d462e2009-08-30 11:42:51 +00005397case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00005398 int nMem; /* Number of memory registers for sub-program */
5399 int nByte; /* Bytes of runtime space required for sub-program */
5400 Mem *pRt; /* Register to allocate runtime space */
5401 Mem *pMem; /* Used to iterate through memory cells */
5402 Mem *pEnd; /* Last memory cell in new array */
5403 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5404 SubProgram *pProgram; /* Sub-program to execute */
5405 void *t; /* Token identifying trigger */
5406
5407 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00005408 pRt = &aMem[pOp->p3];
dan165921a2009-08-28 18:53:45 +00005409 assert( pProgram->nOp>0 );
5410
dan1da40a32009-09-19 17:00:31 +00005411 /* If the p5 flag is clear, then recursive invocation of triggers is
5412 ** disabled for backwards compatibility (p5 is set if this sub-program
5413 ** is really a trigger, not a foreign key action, and the flag set
5414 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00005415 **
5416 ** It is recursive invocation of triggers, at the SQL level, that is
5417 ** disabled. In some cases a single trigger may generate more than one
5418 ** SubProgram (if the trigger may be executed with more than one different
5419 ** ON CONFLICT algorithm). SubProgram structures associated with a
5420 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00005421 ** variable. */
5422 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00005423 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00005424 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5425 if( pFrame ) break;
5426 }
5427
danf5894502009-10-07 18:41:19 +00005428 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00005429 rc = SQLITE_ERROR;
5430 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
5431 break;
5432 }
5433
5434 /* Register pRt is used to store the memory required to save the state
5435 ** of the current program, and the memory required at runtime to execute
5436 ** the trigger program. If this trigger has been fired before, then pRt
5437 ** is already allocated. Otherwise, it must be initialized. */
5438 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00005439 /* SubProgram.nMem is set to the number of memory cells used by the
5440 ** program stored in SubProgram.aOp. As well as these, one memory
5441 ** cell is required for each cursor used by the program. Set local
5442 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5443 */
dan65a7cd12009-09-01 12:16:01 +00005444 nMem = pProgram->nMem + pProgram->nCsr;
5445 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00005446 + nMem * sizeof(Mem)
dan1d8cb212011-12-09 13:24:16 +00005447 + pProgram->nCsr * sizeof(VdbeCursor *)
5448 + pProgram->nOnce * sizeof(u8);
dan165921a2009-08-28 18:53:45 +00005449 pFrame = sqlite3DbMallocZero(db, nByte);
5450 if( !pFrame ){
5451 goto no_mem;
5452 }
5453 sqlite3VdbeMemRelease(pRt);
5454 pRt->flags = MEM_Frame;
5455 pRt->u.pFrame = pFrame;
5456
5457 pFrame->v = p;
5458 pFrame->nChildMem = nMem;
5459 pFrame->nChildCsr = pProgram->nCsr;
drhf56fa462015-04-13 21:39:54 +00005460 pFrame->pc = (int)(pOp - aOp);
dan165921a2009-08-28 18:53:45 +00005461 pFrame->aMem = p->aMem;
5462 pFrame->nMem = p->nMem;
5463 pFrame->apCsr = p->apCsr;
5464 pFrame->nCursor = p->nCursor;
5465 pFrame->aOp = p->aOp;
5466 pFrame->nOp = p->nOp;
5467 pFrame->token = pProgram->token;
dan1d8cb212011-12-09 13:24:16 +00005468 pFrame->aOnceFlag = p->aOnceFlag;
5469 pFrame->nOnceFlag = p->nOnceFlag;
dane2f771b2014-11-03 15:33:17 +00005470#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00005471 pFrame->anExec = p->anExec;
dane2f771b2014-11-03 15:33:17 +00005472#endif
dan165921a2009-08-28 18:53:45 +00005473
5474 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5475 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
drha5750cf2014-02-07 13:20:31 +00005476 pMem->flags = MEM_Undefined;
dan165921a2009-08-28 18:53:45 +00005477 pMem->db = db;
5478 }
5479 }else{
5480 pFrame = pRt->u.pFrame;
5481 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5482 assert( pProgram->nCsr==pFrame->nChildCsr );
drhf56fa462015-04-13 21:39:54 +00005483 assert( (int)(pOp - aOp)==pFrame->pc );
dan165921a2009-08-28 18:53:45 +00005484 }
5485
5486 p->nFrame++;
5487 pFrame->pParent = p->pFrame;
drh99a66922011-05-13 18:51:42 +00005488 pFrame->lastRowid = lastRowid;
dan76d462e2009-08-30 11:42:51 +00005489 pFrame->nChange = p->nChange;
danc3da6672014-10-28 18:24:16 +00005490 pFrame->nDbChange = p->db->nChange;
dan2832ad42009-08-31 15:27:27 +00005491 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00005492 p->pFrame = pFrame;
drha6c2ed92009-11-14 23:22:23 +00005493 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
dan165921a2009-08-28 18:53:45 +00005494 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00005495 p->nCursor = (u16)pFrame->nChildCsr;
drha6c2ed92009-11-14 23:22:23 +00005496 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
drhbbe879d2009-11-14 18:04:35 +00005497 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00005498 p->nOp = pProgram->nOp;
dan1d8cb212011-12-09 13:24:16 +00005499 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5500 p->nOnceFlag = pProgram->nOnce;
dane2f771b2014-11-03 15:33:17 +00005501#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00005502 p->anExec = 0;
dane2f771b2014-11-03 15:33:17 +00005503#endif
drhf56fa462015-04-13 21:39:54 +00005504 pOp = &aOp[-1];
dan1d8cb212011-12-09 13:24:16 +00005505 memset(p->aOnceFlag, 0, p->nOnceFlag);
dan165921a2009-08-28 18:53:45 +00005506
5507 break;
5508}
5509
dan76d462e2009-08-30 11:42:51 +00005510/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00005511**
dan76d462e2009-08-30 11:42:51 +00005512** This opcode is only ever present in sub-programs called via the
5513** OP_Program instruction. Copy a value currently stored in a memory
5514** cell of the calling (parent) frame to cell P2 in the current frames
5515** address space. This is used by trigger programs to access the new.*
5516** and old.* values.
dan165921a2009-08-28 18:53:45 +00005517**
dan76d462e2009-08-30 11:42:51 +00005518** The address of the cell in the parent frame is determined by adding
5519** the value of the P1 argument to the value of the P1 argument to the
5520** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00005521*/
drh27a348c2015-04-13 19:14:06 +00005522case OP_Param: { /* out2 */
dan65a7cd12009-09-01 12:16:01 +00005523 VdbeFrame *pFrame;
5524 Mem *pIn;
drh27a348c2015-04-13 19:14:06 +00005525 pOut = out2Prerelease(p, pOp);
dan65a7cd12009-09-01 12:16:01 +00005526 pFrame = p->pFrame;
5527 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00005528 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5529 break;
5530}
5531
danielk197793758c82005-01-21 08:13:14 +00005532#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00005533
dan1da40a32009-09-19 17:00:31 +00005534#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00005535/* Opcode: FkCounter P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005536** Synopsis: fkctr[P1]+=P2
dan1da40a32009-09-19 17:00:31 +00005537**
dan0ff297e2009-09-25 17:03:14 +00005538** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5539** If P1 is non-zero, the database constraint counter is incremented
5540** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00005541** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00005542*/
dan32b09f22009-09-23 17:29:59 +00005543case OP_FkCounter: {
drh648e2642013-07-11 15:03:32 +00005544 if( db->flags & SQLITE_DeferFKs ){
5545 db->nDeferredImmCons += pOp->p2;
5546 }else if( pOp->p1 ){
dan0ff297e2009-09-25 17:03:14 +00005547 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00005548 }else{
dan0ff297e2009-09-25 17:03:14 +00005549 p->nFkConstraint += pOp->p2;
5550 }
5551 break;
5552}
5553
5554/* Opcode: FkIfZero P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005555** Synopsis: if fkctr[P1]==0 goto P2
dan0ff297e2009-09-25 17:03:14 +00005556**
5557** This opcode tests if a foreign key constraint-counter is currently zero.
5558** If so, jump to instruction P2. Otherwise, fall through to the next
5559** instruction.
5560**
5561** If P1 is non-zero, then the jump is taken if the database constraint-counter
5562** is zero (the one that counts deferred constraint violations). If P1 is
5563** zero, the jump is taken if the statement constraint-counter is zero
5564** (immediate foreign key constraint violations).
5565*/
5566case OP_FkIfZero: { /* jump */
5567 if( pOp->p1 ){
drh688852a2014-02-17 22:40:43 +00005568 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
drhf56fa462015-04-13 21:39:54 +00005569 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
dan0ff297e2009-09-25 17:03:14 +00005570 }else{
drh688852a2014-02-17 22:40:43 +00005571 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
drhf56fa462015-04-13 21:39:54 +00005572 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
dan32b09f22009-09-23 17:29:59 +00005573 }
dan1da40a32009-09-19 17:00:31 +00005574 break;
5575}
5576#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5577
drh205f48e2004-11-05 00:43:11 +00005578#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00005579/* Opcode: MemMax P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005580** Synopsis: r[P1]=max(r[P1],r[P2])
drh205f48e2004-11-05 00:43:11 +00005581**
dan76d462e2009-08-30 11:42:51 +00005582** P1 is a register in the root frame of this VM (the root frame is
5583** different from the current frame if this instruction is being executed
5584** within a sub-program). Set the value of register P1 to the maximum of
5585** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00005586**
5587** This instruction throws an error if the memory cell is not initially
5588** an integer.
5589*/
dan76d462e2009-08-30 11:42:51 +00005590case OP_MemMax: { /* in2 */
dan76d462e2009-08-30 11:42:51 +00005591 VdbeFrame *pFrame;
5592 if( p->pFrame ){
5593 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5594 pIn1 = &pFrame->aMem[pOp->p1];
5595 }else{
drha6c2ed92009-11-14 23:22:23 +00005596 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00005597 }
drhec86c722011-12-09 17:27:51 +00005598 assert( memIsValid(pIn1) );
drh98757152008-01-09 23:04:12 +00005599 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00005600 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00005601 sqlite3VdbeMemIntegerify(pIn2);
5602 if( pIn1->u.i<pIn2->u.i){
5603 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00005604 }
5605 break;
5606}
5607#endif /* SQLITE_OMIT_AUTOINCREMENT */
5608
drh98757152008-01-09 23:04:12 +00005609/* Opcode: IfPos P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005610** Synopsis: if r[P1]>0 goto P2
danielk1977a2dc3b12005-02-05 12:48:48 +00005611**
drh16897072015-03-07 00:57:37 +00005612** Register P1 must contain an integer.
5613** If the value of register P1 is 1 or greater, jump to P2 and
5614** add the literal value P3 to register P1.
drh6f58f702006-01-08 05:26:41 +00005615**
drh16897072015-03-07 00:57:37 +00005616** If the initial value of register P1 is less than 1, then the
5617** value is unchanged and control passes through to the next instruction.
danielk1977a2dc3b12005-02-05 12:48:48 +00005618*/
drh9cbf3422008-01-17 16:22:13 +00005619case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005620 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005621 assert( pIn1->flags&MEM_Int );
drh688852a2014-02-17 22:40:43 +00005622 VdbeBranchTaken( pIn1->u.i>0, 2);
drhf56fa462015-04-13 21:39:54 +00005623 if( pIn1->u.i>0 ) goto jump_to_p2;
drhec7429a2005-10-06 16:53:14 +00005624 break;
5625}
5626
drh4336b0e2014-08-05 00:53:51 +00005627/* Opcode: IfNeg P1 P2 P3 * *
5628** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2
drh15007a92006-01-08 18:10:17 +00005629**
drhbc5cf382014-08-06 01:08:07 +00005630** Register P1 must contain an integer. Add literal P3 to the value in
drh4336b0e2014-08-05 00:53:51 +00005631** register P1 then if the value of register P1 is less than zero, jump to P2.
drh15007a92006-01-08 18:10:17 +00005632*/
drh9cbf3422008-01-17 16:22:13 +00005633case OP_IfNeg: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005634 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005635 assert( pIn1->flags&MEM_Int );
drh4336b0e2014-08-05 00:53:51 +00005636 pIn1->u.i += pOp->p3;
drh688852a2014-02-17 22:40:43 +00005637 VdbeBranchTaken(pIn1->u.i<0, 2);
drhf56fa462015-04-13 21:39:54 +00005638 if( pIn1->u.i<0 ) goto jump_to_p2;
drh15007a92006-01-08 18:10:17 +00005639 break;
5640}
5641
drh16897072015-03-07 00:57:37 +00005642/* Opcode: IfNotZero P1 P2 P3 * *
5643** Synopsis: if r[P1]!=0 then r[P1]+=P3, goto P2
drhec7429a2005-10-06 16:53:14 +00005644**
drh16897072015-03-07 00:57:37 +00005645** Register P1 must contain an integer. If the content of register P1 is
5646** initially nonzero, then add P3 to P1 and jump to P2. If register P1 is
5647** initially zero, leave it unchanged and fall through.
drhec7429a2005-10-06 16:53:14 +00005648*/
drh16897072015-03-07 00:57:37 +00005649case OP_IfNotZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005650 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005651 assert( pIn1->flags&MEM_Int );
drh16897072015-03-07 00:57:37 +00005652 VdbeBranchTaken(pIn1->u.i<0, 2);
5653 if( pIn1->u.i ){
5654 pIn1->u.i += pOp->p3;
drhf56fa462015-04-13 21:39:54 +00005655 goto jump_to_p2;
drh16897072015-03-07 00:57:37 +00005656 }
5657 break;
5658}
5659
5660/* Opcode: DecrJumpZero P1 P2 * * *
5661** Synopsis: if (--r[P1])==0 goto P2
5662**
5663** Register P1 must hold an integer. Decrement the value in register P1
5664** then jump to P2 if the new value is exactly zero.
5665*/
5666case OP_DecrJumpZero: { /* jump, in1 */
5667 pIn1 = &aMem[pOp->p1];
5668 assert( pIn1->flags&MEM_Int );
5669 pIn1->u.i--;
drh688852a2014-02-17 22:40:43 +00005670 VdbeBranchTaken(pIn1->u.i==0, 2);
drhf56fa462015-04-13 21:39:54 +00005671 if( pIn1->u.i==0 ) goto jump_to_p2;
drha2a49dc2008-01-02 14:28:13 +00005672 break;
5673}
5674
drh16897072015-03-07 00:57:37 +00005675
5676/* Opcode: JumpZeroIncr P1 P2 * * *
5677** Synopsis: if (r[P1]++)==0 ) goto P2
5678**
5679** The register P1 must contain an integer. If register P1 is initially
5680** zero, then jump to P2. Increment register P1 regardless of whether or
5681** not the jump is taken.
5682*/
5683case OP_JumpZeroIncr: { /* jump, in1 */
5684 pIn1 = &aMem[pOp->p1];
5685 assert( pIn1->flags&MEM_Int );
5686 VdbeBranchTaken(pIn1->u.i==0, 2);
drhf56fa462015-04-13 21:39:54 +00005687 if( (pIn1->u.i++)==0 ) goto jump_to_p2;
drh16897072015-03-07 00:57:37 +00005688 break;
5689}
5690
drh98757152008-01-09 23:04:12 +00005691/* Opcode: AggStep * P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005692** Synopsis: accum=r[P3] step(r[P2@P5])
drhe5095352002-02-24 03:25:14 +00005693**
drh0bce8352002-02-28 00:41:10 +00005694** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00005695** function has P5 arguments. P4 is a pointer to the FuncDef
5696** structure that specifies the function. Use register
5697** P3 as the accumulator.
drhe5095352002-02-24 03:25:14 +00005698**
drh98757152008-01-09 23:04:12 +00005699** The P5 arguments are taken from register P2 and its
5700** successors.
drhe5095352002-02-24 03:25:14 +00005701*/
drh9cbf3422008-01-17 16:22:13 +00005702case OP_AggStep: {
drh856c1032009-06-02 15:21:42 +00005703 int n;
drhe5095352002-02-24 03:25:14 +00005704 int i;
drhc54a6172009-06-02 16:06:03 +00005705 Mem *pMem;
5706 Mem *pRec;
drh9bd038f2014-08-27 14:14:06 +00005707 Mem t;
danielk197722322fd2004-05-25 23:35:17 +00005708 sqlite3_context ctx;
danielk19776ddcca52004-05-24 23:48:25 +00005709 sqlite3_value **apVal;
drhe5095352002-02-24 03:25:14 +00005710
drh856c1032009-06-02 15:21:42 +00005711 n = pOp->p5;
drh6810ce62004-01-31 19:22:56 +00005712 assert( n>=0 );
drha6c2ed92009-11-14 23:22:23 +00005713 pRec = &aMem[pOp->p2];
danielk19776ddcca52004-05-24 23:48:25 +00005714 apVal = p->apArg;
5715 assert( apVal || n==0 );
drh6810ce62004-01-31 19:22:56 +00005716 for(i=0; i<n; i++, pRec++){
drh2b4ded92010-09-27 21:09:31 +00005717 assert( memIsValid(pRec) );
danielk1977c572ef72004-05-27 09:28:41 +00005718 apVal[i] = pRec;
drh2b4ded92010-09-27 21:09:31 +00005719 memAboutToChange(p, pRec);
drhe5095352002-02-24 03:25:14 +00005720 }
danielk19772dca4ac2008-01-03 11:50:29 +00005721 ctx.pFunc = pOp->p4.pFunc;
dan3bc9f742013-08-15 16:18:39 +00005722 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005723 ctx.pMem = pMem = &aMem[pOp->p3];
drhabfcea22005-09-06 20:36:48 +00005724 pMem->n++;
drhd3b74202014-09-17 16:41:15 +00005725 sqlite3VdbeMemInit(&t, db, MEM_Null);
drh9bd038f2014-08-27 14:14:06 +00005726 ctx.pOut = &t;
drh1350b032002-02-27 19:00:20 +00005727 ctx.isError = 0;
drha15cc472014-09-25 13:17:30 +00005728 ctx.pVdbe = p;
drhf56fa462015-04-13 21:39:54 +00005729 ctx.iOp = (int)(pOp - aOp);
drh7a957892012-02-02 17:35:43 +00005730 ctx.skipFlag = 0;
drhee9ff672010-09-03 18:50:48 +00005731 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh1350b032002-02-27 19:00:20 +00005732 if( ctx.isError ){
drh9bd038f2014-08-27 14:14:06 +00005733 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&t));
drh69544ec2008-02-06 14:11:34 +00005734 rc = ctx.isError;
drh1350b032002-02-27 19:00:20 +00005735 }
drh7a957892012-02-02 17:35:43 +00005736 if( ctx.skipFlag ){
5737 assert( pOp[-1].opcode==OP_CollSeq );
5738 i = pOp[-1].p1;
5739 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5740 }
drh9bd038f2014-08-27 14:14:06 +00005741 sqlite3VdbeMemRelease(&t);
drh5e00f6c2001-09-13 13:46:56 +00005742 break;
5743}
5744
drh98757152008-01-09 23:04:12 +00005745/* Opcode: AggFinal P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00005746** Synopsis: accum=r[P1] N=P2
drh5e00f6c2001-09-13 13:46:56 +00005747**
drh13449892005-09-07 21:22:45 +00005748** Execute the finalizer function for an aggregate. P1 is
5749** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00005750**
5751** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00005752** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00005753** argument is not used by this opcode. It is only there to disambiguate
5754** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00005755** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00005756** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00005757*/
drh9cbf3422008-01-17 16:22:13 +00005758case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00005759 Mem *pMem;
dan3bc9f742013-08-15 16:18:39 +00005760 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005761 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00005762 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00005763 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00005764 if( rc ){
drhf089aa42008-07-08 19:34:06 +00005765 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
drh90669c12006-01-20 15:45:36 +00005766 }
drh2dca8682008-03-21 17:13:13 +00005767 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00005768 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00005769 if( sqlite3VdbeMemTooBig(pMem) ){
5770 goto too_big;
5771 }
drh5e00f6c2001-09-13 13:46:56 +00005772 break;
5773}
5774
dan5cf53532010-05-01 16:40:20 +00005775#ifndef SQLITE_OMIT_WAL
dancdc1f042010-11-18 12:11:05 +00005776/* Opcode: Checkpoint P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00005777**
5778** Checkpoint database P1. This is a no-op if P1 is not currently in
drha25165f2014-12-04 04:50:59 +00005779** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
5780** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
drh30aa3b92011-02-07 23:56:01 +00005781** SQLITE_BUSY or not, respectively. Write the number of pages in the
5782** WAL after the checkpoint into mem[P3+1] and the number of pages
5783** in the WAL that have been checkpointed after the checkpoint
5784** completes into mem[P3+2]. However on an error, mem[P3+1] and
5785** mem[P3+2] are initialized to -1.
dan7c246102010-04-12 19:00:29 +00005786*/
5787case OP_Checkpoint: {
drh30aa3b92011-02-07 23:56:01 +00005788 int i; /* Loop counter */
5789 int aRes[3]; /* Results */
5790 Mem *pMem; /* Write results here */
5791
drh9e92a472013-06-27 17:40:30 +00005792 assert( p->readOnly==0 );
drh30aa3b92011-02-07 23:56:01 +00005793 aRes[0] = 0;
5794 aRes[1] = aRes[2] = -1;
dancdc1f042010-11-18 12:11:05 +00005795 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5796 || pOp->p2==SQLITE_CHECKPOINT_FULL
5797 || pOp->p2==SQLITE_CHECKPOINT_RESTART
danf26a1542014-12-02 19:04:54 +00005798 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
dancdc1f042010-11-18 12:11:05 +00005799 );
drh30aa3b92011-02-07 23:56:01 +00005800 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
dancdc1f042010-11-18 12:11:05 +00005801 if( rc==SQLITE_BUSY ){
5802 rc = SQLITE_OK;
drh30aa3b92011-02-07 23:56:01 +00005803 aRes[0] = 1;
dancdc1f042010-11-18 12:11:05 +00005804 }
drh30aa3b92011-02-07 23:56:01 +00005805 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5806 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5807 }
dan7c246102010-04-12 19:00:29 +00005808 break;
5809};
dan5cf53532010-05-01 16:40:20 +00005810#endif
drh5e00f6c2001-09-13 13:46:56 +00005811
drhcac29a62010-07-02 19:36:52 +00005812#ifndef SQLITE_OMIT_PRAGMA
drh0fd61352014-02-07 02:29:45 +00005813/* Opcode: JournalMode P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00005814**
5815** Change the journal mode of database P1 to P3. P3 must be one of the
5816** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5817** modes (delete, truncate, persist, off and memory), this is a simple
5818** operation. No IO is required.
5819**
5820** If changing into or out of WAL mode the procedure is more complicated.
5821**
5822** Write a string containing the final journal-mode to register P2.
5823*/
drh27a348c2015-04-13 19:14:06 +00005824case OP_JournalMode: { /* out2 */
dane04dc882010-04-20 18:53:15 +00005825 Btree *pBt; /* Btree to change journal mode of */
5826 Pager *pPager; /* Pager associated with pBt */
drhd80b2332010-05-01 00:59:37 +00005827 int eNew; /* New journal mode */
5828 int eOld; /* The old journal mode */
mistachkin59ee77c2012-09-13 15:26:44 +00005829#ifndef SQLITE_OMIT_WAL
drhd80b2332010-05-01 00:59:37 +00005830 const char *zFilename; /* Name of database file for pPager */
mistachkin59ee77c2012-09-13 15:26:44 +00005831#endif
dane04dc882010-04-20 18:53:15 +00005832
drh27a348c2015-04-13 19:14:06 +00005833 pOut = out2Prerelease(p, pOp);
drhd80b2332010-05-01 00:59:37 +00005834 eNew = pOp->p3;
dane04dc882010-04-20 18:53:15 +00005835 assert( eNew==PAGER_JOURNALMODE_DELETE
5836 || eNew==PAGER_JOURNALMODE_TRUNCATE
5837 || eNew==PAGER_JOURNALMODE_PERSIST
5838 || eNew==PAGER_JOURNALMODE_OFF
5839 || eNew==PAGER_JOURNALMODE_MEMORY
5840 || eNew==PAGER_JOURNALMODE_WAL
5841 || eNew==PAGER_JOURNALMODE_QUERY
5842 );
5843 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drh9e92a472013-06-27 17:40:30 +00005844 assert( p->readOnly==0 );
drh3ebaee92010-05-06 21:37:22 +00005845
dane04dc882010-04-20 18:53:15 +00005846 pBt = db->aDb[pOp->p1].pBt;
5847 pPager = sqlite3BtreePager(pBt);
drh0b9b4302010-06-11 17:01:24 +00005848 eOld = sqlite3PagerGetJournalMode(pPager);
5849 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5850 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
dan5cf53532010-05-01 16:40:20 +00005851
5852#ifndef SQLITE_OMIT_WAL
drhd4e0bb02012-05-27 01:19:04 +00005853 zFilename = sqlite3PagerFilename(pPager, 1);
dane04dc882010-04-20 18:53:15 +00005854
drhd80b2332010-05-01 00:59:37 +00005855 /* Do not allow a transition to journal_mode=WAL for a database
drh6e1f4822010-07-13 23:41:40 +00005856 ** in temporary storage or if the VFS does not support shared memory
drhd80b2332010-05-01 00:59:37 +00005857 */
5858 if( eNew==PAGER_JOURNALMODE_WAL
drh057fc812011-10-17 23:15:31 +00005859 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
drh6e1f4822010-07-13 23:41:40 +00005860 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
dane180c292010-04-26 17:42:56 +00005861 ){
drh0b9b4302010-06-11 17:01:24 +00005862 eNew = eOld;
dane180c292010-04-26 17:42:56 +00005863 }
5864
drh0b9b4302010-06-11 17:01:24 +00005865 if( (eNew!=eOld)
5866 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5867 ){
danc0537fe2013-06-28 19:41:43 +00005868 if( !db->autoCommit || db->nVdbeRead>1 ){
drh0b9b4302010-06-11 17:01:24 +00005869 rc = SQLITE_ERROR;
5870 sqlite3SetString(&p->zErrMsg, db,
5871 "cannot change %s wal mode from within a transaction",
5872 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5873 );
5874 break;
5875 }else{
5876
5877 if( eOld==PAGER_JOURNALMODE_WAL ){
5878 /* If leaving WAL mode, close the log file. If successful, the call
5879 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5880 ** file. An EXCLUSIVE lock may still be held on the database file
5881 ** after a successful return.
dane04dc882010-04-20 18:53:15 +00005882 */
drh0b9b4302010-06-11 17:01:24 +00005883 rc = sqlite3PagerCloseWal(pPager);
drhab9b7442010-05-10 11:20:05 +00005884 if( rc==SQLITE_OK ){
drh0b9b4302010-06-11 17:01:24 +00005885 sqlite3PagerSetJournalMode(pPager, eNew);
drh89c3f2f2010-05-15 01:09:38 +00005886 }
drh242c4f72010-06-22 14:49:39 +00005887 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5888 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5889 ** as an intermediate */
5890 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
drh0b9b4302010-06-11 17:01:24 +00005891 }
5892
5893 /* Open a transaction on the database file. Regardless of the journal
5894 ** mode, this transaction always uses a rollback journal.
5895 */
5896 assert( sqlite3BtreeIsInTrans(pBt)==0 );
5897 if( rc==SQLITE_OK ){
dan731bf5b2010-06-17 16:44:21 +00005898 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
dane04dc882010-04-20 18:53:15 +00005899 }
5900 }
5901 }
dan5cf53532010-05-01 16:40:20 +00005902#endif /* ifndef SQLITE_OMIT_WAL */
dane04dc882010-04-20 18:53:15 +00005903
dand956efe2010-06-18 16:13:45 +00005904 if( rc ){
dand956efe2010-06-18 16:13:45 +00005905 eNew = eOld;
5906 }
drh0b9b4302010-06-11 17:01:24 +00005907 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
dan731bf5b2010-06-17 16:44:21 +00005908
dane04dc882010-04-20 18:53:15 +00005909 pOut = &aMem[pOp->p2];
5910 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
danb9780022010-04-21 18:37:57 +00005911 pOut->z = (char *)sqlite3JournalModename(eNew);
dane04dc882010-04-20 18:53:15 +00005912 pOut->n = sqlite3Strlen30(pOut->z);
5913 pOut->enc = SQLITE_UTF8;
5914 sqlite3VdbeChangeEncoding(pOut, encoding);
5915 break;
drhcac29a62010-07-02 19:36:52 +00005916};
5917#endif /* SQLITE_OMIT_PRAGMA */
dane04dc882010-04-20 18:53:15 +00005918
drhfdbcdee2007-03-27 14:44:50 +00005919#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh98757152008-01-09 23:04:12 +00005920/* Opcode: Vacuum * * * * *
drh6f8c91c2003-12-07 00:24:35 +00005921**
5922** Vacuum the entire database. This opcode will cause other virtual
5923** machines to be created and run. It may not be called from within
5924** a transaction.
5925*/
drh9cbf3422008-01-17 16:22:13 +00005926case OP_Vacuum: {
drh9e92a472013-06-27 17:40:30 +00005927 assert( p->readOnly==0 );
danielk19774adee202004-05-08 08:23:19 +00005928 rc = sqlite3RunVacuum(&p->zErrMsg, db);
drh6f8c91c2003-12-07 00:24:35 +00005929 break;
5930}
drh154d4b22006-09-21 11:02:16 +00005931#endif
drh6f8c91c2003-12-07 00:24:35 +00005932
danielk1977dddbcdc2007-04-26 14:42:34 +00005933#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00005934/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00005935**
5936** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00005937** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00005938** P2. Otherwise, fall through to the next instruction.
5939*/
drh9cbf3422008-01-17 16:22:13 +00005940case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00005941 Btree *pBt;
5942
5943 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005944 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00005945 assert( p->readOnly==0 );
drhca5557f2007-05-04 18:30:40 +00005946 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00005947 rc = sqlite3BtreeIncrVacuum(pBt);
drh688852a2014-02-17 22:40:43 +00005948 VdbeBranchTaken(rc==SQLITE_DONE,2);
danielk1977dddbcdc2007-04-26 14:42:34 +00005949 if( rc==SQLITE_DONE ){
danielk1977dddbcdc2007-04-26 14:42:34 +00005950 rc = SQLITE_OK;
drhf56fa462015-04-13 21:39:54 +00005951 goto jump_to_p2;
danielk1977dddbcdc2007-04-26 14:42:34 +00005952 }
5953 break;
5954}
5955#endif
5956
drh98757152008-01-09 23:04:12 +00005957/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00005958**
drh25df48d2014-07-22 14:58:12 +00005959** Cause precompiled statements to expire. When an expired statement
5960** is executed using sqlite3_step() it will either automatically
5961** reprepare itself (if it was originally created using sqlite3_prepare_v2())
5962** or it will fail with SQLITE_SCHEMA.
danielk1977a21c6b62005-01-24 10:25:59 +00005963**
5964** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
drh25df48d2014-07-22 14:58:12 +00005965** then only the currently executing statement is expired.
danielk1977a21c6b62005-01-24 10:25:59 +00005966*/
drh9cbf3422008-01-17 16:22:13 +00005967case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00005968 if( !pOp->p1 ){
5969 sqlite3ExpirePreparedStatements(db);
5970 }else{
5971 p->expired = 1;
5972 }
5973 break;
5974}
5975
danielk1977c00da102006-01-07 13:21:04 +00005976#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00005977/* Opcode: TableLock P1 P2 P3 P4 *
drh81316f82013-10-29 20:40:47 +00005978** Synopsis: iDb=P1 root=P2 write=P3
danielk1977c00da102006-01-07 13:21:04 +00005979**
5980** Obtain a lock on a particular table. This instruction is only used when
5981** the shared-cache feature is enabled.
5982**
danielk197796d48e92009-06-29 06:00:37 +00005983** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00005984** on which the lock is acquired. A readlock is obtained if P3==0 or
5985** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00005986**
5987** P2 contains the root-page of the table to lock.
5988**
drh66a51672008-01-03 00:01:23 +00005989** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00005990** used to generate an error message if the lock cannot be obtained.
5991*/
drh9cbf3422008-01-17 16:22:13 +00005992case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00005993 u8 isWriteLock = (u8)pOp->p3;
5994 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5995 int p1 = pOp->p1;
5996 assert( p1>=0 && p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005997 assert( DbMaskTest(p->btreeMask, p1) );
danielk1977e0d9e6f2009-07-03 16:25:06 +00005998 assert( isWriteLock==0 || isWriteLock==1 );
5999 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
6000 if( (rc&0xFF)==SQLITE_LOCKED ){
6001 const char *z = pOp->p4.z;
6002 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
6003 }
danielk1977c00da102006-01-07 13:21:04 +00006004 }
6005 break;
6006}
drhb9bb7c12006-06-11 23:41:55 +00006007#endif /* SQLITE_OMIT_SHARED_CACHE */
6008
6009#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006010/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00006011**
danielk19773e3a84d2008-08-01 17:37:40 +00006012** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6013** xBegin method for that table.
6014**
6015** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00006016** within a callback to a virtual table xSync() method. If it is, the error
6017** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00006018*/
drh9cbf3422008-01-17 16:22:13 +00006019case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00006020 VTable *pVTab;
6021 pVTab = pOp->p4.pVtab;
6022 rc = sqlite3VtabBegin(db, pVTab);
dan016f7812013-08-21 17:35:48 +00006023 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
danielk1977f9e7dda2006-06-16 16:08:53 +00006024 break;
6025}
6026#endif /* SQLITE_OMIT_VIRTUALTABLE */
6027
6028#ifndef SQLITE_OMIT_VIRTUALTABLE
dan73779452015-03-19 18:56:17 +00006029/* Opcode: VCreate P1 P2 * * *
danielk1977f9e7dda2006-06-16 16:08:53 +00006030**
dan73779452015-03-19 18:56:17 +00006031** P2 is a register that holds the name of a virtual table in database
6032** P1. Call the xCreate method for that table.
danielk1977f9e7dda2006-06-16 16:08:53 +00006033*/
drh9cbf3422008-01-17 16:22:13 +00006034case OP_VCreate: {
dan73779452015-03-19 18:56:17 +00006035 Mem sMem; /* For storing the record being decoded */
drh47464062015-03-21 12:22:16 +00006036 const char *zTab; /* Name of the virtual table */
6037
dan73779452015-03-19 18:56:17 +00006038 memset(&sMem, 0, sizeof(sMem));
6039 sMem.db = db;
drh47464062015-03-21 12:22:16 +00006040 /* Because P2 is always a static string, it is impossible for the
6041 ** sqlite3VdbeMemCopy() to fail */
6042 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6043 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
dan73779452015-03-19 18:56:17 +00006044 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
drh47464062015-03-21 12:22:16 +00006045 assert( rc==SQLITE_OK );
6046 zTab = (const char*)sqlite3_value_text(&sMem);
6047 assert( zTab || db->mallocFailed );
6048 if( zTab ){
6049 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
dan73779452015-03-19 18:56:17 +00006050 }
6051 sqlite3VdbeMemRelease(&sMem);
drhb9bb7c12006-06-11 23:41:55 +00006052 break;
6053}
6054#endif /* SQLITE_OMIT_VIRTUALTABLE */
6055
6056#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006057/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00006058**
drh66a51672008-01-03 00:01:23 +00006059** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00006060** of that table.
drhb9bb7c12006-06-11 23:41:55 +00006061*/
drh9cbf3422008-01-17 16:22:13 +00006062case OP_VDestroy: {
drh086723a2015-03-24 12:51:52 +00006063 db->nVDestroy++;
danielk19772dca4ac2008-01-03 11:50:29 +00006064 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
drh086723a2015-03-24 12:51:52 +00006065 db->nVDestroy--;
drhb9bb7c12006-06-11 23:41:55 +00006066 break;
6067}
6068#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00006069
drh9eff6162006-06-12 21:59:13 +00006070#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006071/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00006072**
drh66a51672008-01-03 00:01:23 +00006073** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00006074** P1 is a cursor number. This opcode opens a cursor to the virtual
6075** table and stores that cursor in P1.
6076*/
drh9cbf3422008-01-17 16:22:13 +00006077case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00006078 VdbeCursor *pCur;
6079 sqlite3_vtab_cursor *pVtabCursor;
6080 sqlite3_vtab *pVtab;
drhf496a7d2015-03-24 14:05:50 +00006081 const sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006082
drh1713afb2013-06-28 01:24:57 +00006083 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00006084 pCur = 0;
6085 pVtabCursor = 0;
danielk1977595a5232009-07-24 17:58:53 +00006086 pVtab = pOp->p4.pVtab->pVtab;
drhf496a7d2015-03-24 14:05:50 +00006087 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6088 rc = SQLITE_LOCKED;
6089 break;
6090 }
6091 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006092 rc = pModule->xOpen(pVtab, &pVtabCursor);
dan016f7812013-08-21 17:35:48 +00006093 sqlite3VtabImportErrmsg(p, pVtab);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006094 if( SQLITE_OK==rc ){
shane21e7feb2008-05-30 15:59:49 +00006095 /* Initialize sqlite3_vtab_cursor base class */
danielk1977b7a7b9a2006-06-13 10:24:42 +00006096 pVtabCursor->pVtab = pVtab;
6097
mistachkin48864df2013-03-21 21:20:32 +00006098 /* Initialize vdbe cursor object */
danielk1977d336e222009-02-20 10:58:41 +00006099 pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
danielk1977be718892006-06-23 08:05:19 +00006100 if( pCur ){
6101 pCur->pVtabCursor = pVtabCursor;
drha68d6282015-03-24 13:32:53 +00006102 pVtab->nRef++;
danielk1977b7a2f2e2006-06-23 11:34:54 +00006103 }else{
drh17435752007-08-16 04:30:38 +00006104 db->mallocFailed = 1;
danielk1977b7a2f2e2006-06-23 11:34:54 +00006105 pModule->xClose(pVtabCursor);
danielk1977be718892006-06-23 08:05:19 +00006106 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00006107 }
drh9eff6162006-06-12 21:59:13 +00006108 break;
6109}
6110#endif /* SQLITE_OMIT_VIRTUALTABLE */
6111
6112#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00006113/* Opcode: VFilter P1 P2 P3 P4 *
drh831116d2014-04-03 14:31:00 +00006114** Synopsis: iplan=r[P3] zplan='P4'
drh9eff6162006-06-12 21:59:13 +00006115**
6116** P1 is a cursor opened using VOpen. P2 is an address to jump to if
6117** the filtered result set is empty.
6118**
drh66a51672008-01-03 00:01:23 +00006119** P4 is either NULL or a string that was generated by the xBestIndex
6120** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00006121** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00006122**
drh9eff6162006-06-12 21:59:13 +00006123** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00006124** by P1. The integer query plan parameter to xFilter is stored in register
6125** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00006126** xFilter method. Registers P3+2..P3+1+argc are the argc
6127** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00006128** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00006129**
danielk19776dbee812008-01-03 18:39:41 +00006130** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00006131*/
drh9cbf3422008-01-17 16:22:13 +00006132case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00006133 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00006134 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006135 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00006136 Mem *pQuery;
6137 Mem *pArgc;
drh4dc754d2008-07-23 18:17:32 +00006138 sqlite3_vtab_cursor *pVtabCursor;
6139 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00006140 VdbeCursor *pCur;
6141 int res;
6142 int i;
6143 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006144
drha6c2ed92009-11-14 23:22:23 +00006145 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00006146 pArgc = &pQuery[1];
6147 pCur = p->apCsr[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00006148 assert( memIsValid(pQuery) );
drh5b6afba2008-01-05 16:29:28 +00006149 REGISTER_TRACE(pOp->p3, pQuery);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006150 assert( pCur->pVtabCursor );
drh4dc754d2008-07-23 18:17:32 +00006151 pVtabCursor = pCur->pVtabCursor;
6152 pVtab = pVtabCursor->pVtab;
6153 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006154
drh9cbf3422008-01-17 16:22:13 +00006155 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00006156 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00006157 nArg = (int)pArgc->u.i;
6158 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006159
drh644a5292006-12-20 14:53:38 +00006160 /* Invoke the xFilter method */
drhf56fa462015-04-13 21:39:54 +00006161 res = 0;
6162 apArg = p->apArg;
6163 for(i = 0; i<nArg; i++){
6164 apArg[i] = &pArgc[i+1];
6165 }
6166 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
6167 sqlite3VtabImportErrmsg(p, pVtab);
6168 if( rc==SQLITE_OK ){
6169 res = pModule->xEof(pVtabCursor);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006170 }
drh1d454a32008-01-31 19:34:51 +00006171 pCur->nullRow = 0;
drhf56fa462015-04-13 21:39:54 +00006172 VdbeBranchTaken(res!=0,2);
6173 if( res ) goto jump_to_p2;
drh9eff6162006-06-12 21:59:13 +00006174 break;
6175}
6176#endif /* SQLITE_OMIT_VIRTUALTABLE */
6177
6178#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006179/* Opcode: VColumn P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00006180** Synopsis: r[P3]=vcolumn(P2)
drh9eff6162006-06-12 21:59:13 +00006181**
drh2133d822008-01-03 18:44:59 +00006182** Store the value of the P2-th column of
6183** the row of the virtual-table that the
6184** P1 cursor is pointing to into register P3.
drh9eff6162006-06-12 21:59:13 +00006185*/
6186case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00006187 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006188 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00006189 Mem *pDest;
6190 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006191
drhdfe88ec2008-11-03 20:55:06 +00006192 VdbeCursor *pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00006193 assert( pCur->pVtabCursor );
dan3bc9f742013-08-15 16:18:39 +00006194 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00006195 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00006196 memAboutToChange(p, pDest);
drh2945b4a2008-01-31 15:53:45 +00006197 if( pCur->nullRow ){
6198 sqlite3VdbeMemSetNull(pDest);
6199 break;
6200 }
danielk19773e3a84d2008-08-01 17:37:40 +00006201 pVtab = pCur->pVtabCursor->pVtab;
6202 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006203 assert( pModule->xColumn );
6204 memset(&sContext, 0, sizeof(sContext));
drh9bd038f2014-08-27 14:14:06 +00006205 sContext.pOut = pDest;
6206 MemSetTypeFlag(pDest, MEM_Null);
drhde4fcfd2008-01-19 23:50:26 +00006207 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
dan016f7812013-08-21 17:35:48 +00006208 sqlite3VtabImportErrmsg(p, pVtab);
drh4c8555f2009-06-25 01:47:11 +00006209 if( sContext.isError ){
6210 rc = sContext.isError;
6211 }
drh9bd038f2014-08-27 14:14:06 +00006212 sqlite3VdbeChangeEncoding(pDest, encoding);
drh5ff44372009-11-24 16:26:17 +00006213 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00006214 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006215
drhde4fcfd2008-01-19 23:50:26 +00006216 if( sqlite3VdbeMemTooBig(pDest) ){
6217 goto too_big;
6218 }
drh9eff6162006-06-12 21:59:13 +00006219 break;
6220}
6221#endif /* SQLITE_OMIT_VIRTUALTABLE */
6222
6223#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006224/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00006225**
6226** Advance virtual table P1 to the next row in its result set and
6227** jump to instruction P2. Or, if the virtual table has reached
6228** the end of its result set, then fall through to the next instruction.
6229*/
drh9cbf3422008-01-17 16:22:13 +00006230case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00006231 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006232 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00006233 int res;
drh856c1032009-06-02 15:21:42 +00006234 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006235
drhc54a6172009-06-02 16:06:03 +00006236 res = 0;
drh856c1032009-06-02 15:21:42 +00006237 pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00006238 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00006239 if( pCur->nullRow ){
6240 break;
6241 }
danielk19773e3a84d2008-08-01 17:37:40 +00006242 pVtab = pCur->pVtabCursor->pVtab;
6243 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006244 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00006245
drhde4fcfd2008-01-19 23:50:26 +00006246 /* Invoke the xNext() method of the module. There is no way for the
6247 ** underlying implementation to return an error if one occurs during
6248 ** xNext(). Instead, if an error occurs, true is returned (indicating that
6249 ** data is available) and the error code returned when xColumn or
6250 ** some other method is next invoked on the save virtual table cursor.
6251 */
drhde4fcfd2008-01-19 23:50:26 +00006252 rc = pModule->xNext(pCur->pVtabCursor);
dan016f7812013-08-21 17:35:48 +00006253 sqlite3VtabImportErrmsg(p, pVtab);
drhde4fcfd2008-01-19 23:50:26 +00006254 if( rc==SQLITE_OK ){
6255 res = pModule->xEof(pCur->pVtabCursor);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006256 }
drh688852a2014-02-17 22:40:43 +00006257 VdbeBranchTaken(!res,2);
drhde4fcfd2008-01-19 23:50:26 +00006258 if( !res ){
6259 /* If there is data, jump to P2 */
drhf56fa462015-04-13 21:39:54 +00006260 goto jump_to_p2_and_check_for_interrupt;
drhde4fcfd2008-01-19 23:50:26 +00006261 }
drh49afe3a2013-07-10 03:05:14 +00006262 goto check_for_interrupt;
drh9eff6162006-06-12 21:59:13 +00006263}
6264#endif /* SQLITE_OMIT_VIRTUALTABLE */
6265
danielk1977182c4ba2007-06-27 15:53:34 +00006266#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006267/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00006268**
drh66a51672008-01-03 00:01:23 +00006269** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00006270** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00006271** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00006272*/
drh9cbf3422008-01-17 16:22:13 +00006273case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00006274 sqlite3_vtab *pVtab;
6275 Mem *pName;
6276
danielk1977595a5232009-07-24 17:58:53 +00006277 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00006278 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00006279 assert( pVtab->pModule->xRename );
drh2b4ded92010-09-27 21:09:31 +00006280 assert( memIsValid(pName) );
drh9e92a472013-06-27 17:40:30 +00006281 assert( p->readOnly==0 );
drh5b6afba2008-01-05 16:29:28 +00006282 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00006283 assert( pName->flags & MEM_Str );
drh98655a62011-10-18 22:07:47 +00006284 testcase( pName->enc==SQLITE_UTF8 );
6285 testcase( pName->enc==SQLITE_UTF16BE );
6286 testcase( pName->enc==SQLITE_UTF16LE );
6287 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
6288 if( rc==SQLITE_OK ){
6289 rc = pVtab->pModule->xRename(pVtab, pName->z);
dan016f7812013-08-21 17:35:48 +00006290 sqlite3VtabImportErrmsg(p, pVtab);
drh98655a62011-10-18 22:07:47 +00006291 p->expired = 0;
6292 }
danielk1977182c4ba2007-06-27 15:53:34 +00006293 break;
6294}
6295#endif
drh4cbdda92006-06-14 19:00:20 +00006296
6297#ifndef SQLITE_OMIT_VIRTUALTABLE
drh0fd61352014-02-07 02:29:45 +00006298/* Opcode: VUpdate P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00006299** Synopsis: data=r[P3@P2]
danielk1977399918f2006-06-14 13:03:23 +00006300**
drh66a51672008-01-03 00:01:23 +00006301** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00006302** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00006303** are contiguous memory cells starting at P3 to pass to the xUpdate
6304** invocation. The value in register (P3+P2-1) corresponds to the
6305** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00006306**
6307** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00006308** The argv[0] element (which corresponds to memory cell P3)
6309** is the rowid of a row to delete. If argv[0] is NULL then no
6310** deletion occurs. The argv[1] element is the rowid of the new
6311** row. This can be NULL to have the virtual table select the new
6312** rowid for itself. The subsequent elements in the array are
6313** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00006314**
6315** If P2==1 then no insert is performed. argv[0] is the rowid of
6316** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00006317**
6318** P1 is a boolean flag. If it is set to true and the xUpdate call
6319** is successful, then the value returned by sqlite3_last_insert_rowid()
6320** is set to the value of the rowid for the row just inserted.
drh0fd61352014-02-07 02:29:45 +00006321**
6322** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6323** apply in the case of a constraint failure on an insert or update.
danielk1977399918f2006-06-14 13:03:23 +00006324*/
drh9cbf3422008-01-17 16:22:13 +00006325case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00006326 sqlite3_vtab *pVtab;
drhf496a7d2015-03-24 14:05:50 +00006327 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00006328 int nArg;
6329 int i;
6330 sqlite_int64 rowid;
6331 Mem **apArg;
6332 Mem *pX;
6333
danb061d052011-04-25 18:49:57 +00006334 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
6335 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6336 );
drh9e92a472013-06-27 17:40:30 +00006337 assert( p->readOnly==0 );
danielk1977595a5232009-07-24 17:58:53 +00006338 pVtab = pOp->p4.pVtab->pVtab;
drhf496a7d2015-03-24 14:05:50 +00006339 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6340 rc = SQLITE_LOCKED;
6341 break;
6342 }
6343 pModule = pVtab->pModule;
drh856c1032009-06-02 15:21:42 +00006344 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00006345 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00006346 if( ALWAYS(pModule->xUpdate) ){
danb061d052011-04-25 18:49:57 +00006347 u8 vtabOnConflict = db->vtabOnConflict;
drh856c1032009-06-02 15:21:42 +00006348 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00006349 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00006350 for(i=0; i<nArg; i++){
drh2b4ded92010-09-27 21:09:31 +00006351 assert( memIsValid(pX) );
6352 memAboutToChange(p, pX);
drh9c419382006-06-16 21:13:21 +00006353 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00006354 pX++;
danielk1977399918f2006-06-14 13:03:23 +00006355 }
danb061d052011-04-25 18:49:57 +00006356 db->vtabOnConflict = pOp->p5;
danielk19771f6eec52006-06-16 06:17:47 +00006357 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
danb061d052011-04-25 18:49:57 +00006358 db->vtabOnConflict = vtabOnConflict;
dan016f7812013-08-21 17:35:48 +00006359 sqlite3VtabImportErrmsg(p, pVtab);
drh35f6b932009-06-23 14:15:04 +00006360 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00006361 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
drh99a66922011-05-13 18:51:42 +00006362 db->lastRowid = lastRowid = rowid;
danielk19771f6eec52006-06-16 06:17:47 +00006363 }
drhd91c1a12013-02-09 13:58:25 +00006364 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
danb061d052011-04-25 18:49:57 +00006365 if( pOp->p5==OE_Ignore ){
6366 rc = SQLITE_OK;
6367 }else{
6368 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6369 }
6370 }else{
6371 p->nChange++;
6372 }
danielk1977399918f2006-06-14 13:03:23 +00006373 }
drh4cbdda92006-06-14 19:00:20 +00006374 break;
danielk1977399918f2006-06-14 13:03:23 +00006375}
6376#endif /* SQLITE_OMIT_VIRTUALTABLE */
6377
danielk197759a93792008-05-15 17:48:20 +00006378#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6379/* Opcode: Pagecount P1 P2 * * *
6380**
6381** Write the current number of pages in database P1 to memory cell P2.
6382*/
drh27a348c2015-04-13 19:14:06 +00006383case OP_Pagecount: { /* out2 */
6384 pOut = out2Prerelease(p, pOp);
drhb1299152010-03-30 22:58:33 +00006385 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00006386 break;
6387}
6388#endif
6389
drh60ac3f42010-11-23 18:59:27 +00006390
6391#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6392/* Opcode: MaxPgcnt P1 P2 P3 * *
6393**
6394** Try to set the maximum page count for database P1 to the value in P3.
drhc84e0332010-11-23 20:25:08 +00006395** Do not let the maximum page count fall below the current page count and
6396** do not change the maximum page count value if P3==0.
6397**
drh60ac3f42010-11-23 18:59:27 +00006398** Store the maximum page count after the change in register P2.
6399*/
drh27a348c2015-04-13 19:14:06 +00006400case OP_MaxPgcnt: { /* out2 */
drhc84e0332010-11-23 20:25:08 +00006401 unsigned int newMax;
drh60ac3f42010-11-23 18:59:27 +00006402 Btree *pBt;
6403
drh27a348c2015-04-13 19:14:06 +00006404 pOut = out2Prerelease(p, pOp);
drh60ac3f42010-11-23 18:59:27 +00006405 pBt = db->aDb[pOp->p1].pBt;
drhc84e0332010-11-23 20:25:08 +00006406 newMax = 0;
6407 if( pOp->p3 ){
6408 newMax = sqlite3BtreeLastPage(pBt);
drh6ea28d62010-11-26 16:49:59 +00006409 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
drhc84e0332010-11-23 20:25:08 +00006410 }
6411 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
drh60ac3f42010-11-23 18:59:27 +00006412 break;
6413}
6414#endif
6415
6416
drhaceb31b2014-02-08 01:40:27 +00006417/* Opcode: Init * P2 * P4 *
6418** Synopsis: Start at P2
6419**
6420** Programs contain a single instance of this opcode as the very first
6421** opcode.
drh949f9cd2008-01-12 21:35:57 +00006422**
6423** If tracing is enabled (by the sqlite3_trace()) interface, then
6424** the UTF-8 string contained in P4 is emitted on the trace callback.
drhaceb31b2014-02-08 01:40:27 +00006425** Or if P4 is blank, use the string returned by sqlite3_sql().
6426**
6427** If P2 is not zero, jump to instruction P2.
drh949f9cd2008-01-12 21:35:57 +00006428*/
drhaceb31b2014-02-08 01:40:27 +00006429case OP_Init: { /* jump */
drh856c1032009-06-02 15:21:42 +00006430 char *zTrace;
drhc3f1d5f2011-05-30 23:42:16 +00006431 char *z;
drh856c1032009-06-02 15:21:42 +00006432
drhaceb31b2014-02-08 01:40:27 +00006433#ifndef SQLITE_OMIT_TRACE
drh37f58e92012-09-04 21:34:26 +00006434 if( db->xTrace
6435 && !p->doingRerun
6436 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6437 ){
drhc3f1d5f2011-05-30 23:42:16 +00006438 z = sqlite3VdbeExpandSql(p, zTrace);
6439 db->xTrace(db->pTraceArg, z);
6440 sqlite3DbFree(db, z);
drh949f9cd2008-01-12 21:35:57 +00006441 }
drh8f8b2312013-10-18 20:03:43 +00006442#ifdef SQLITE_USE_FCNTL_TRACE
6443 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
6444 if( zTrace ){
6445 int i;
6446 for(i=0; i<db->nDb; i++){
drha7ab6d82014-07-21 15:44:39 +00006447 if( DbMaskTest(p->btreeMask, i)==0 ) continue;
drh8f8b2312013-10-18 20:03:43 +00006448 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
6449 }
6450 }
6451#endif /* SQLITE_USE_FCNTL_TRACE */
drhc3f1d5f2011-05-30 23:42:16 +00006452#ifdef SQLITE_DEBUG
6453 if( (db->flags & SQLITE_SqlTrace)!=0
6454 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6455 ){
6456 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6457 }
6458#endif /* SQLITE_DEBUG */
drhaceb31b2014-02-08 01:40:27 +00006459#endif /* SQLITE_OMIT_TRACE */
drhf56fa462015-04-13 21:39:54 +00006460 if( pOp->p2 ) goto jump_to_p2;
drh949f9cd2008-01-12 21:35:57 +00006461 break;
6462}
drh949f9cd2008-01-12 21:35:57 +00006463
drh91fd4d42008-01-19 20:11:25 +00006464
6465/* Opcode: Noop * * * * *
6466**
6467** Do nothing. This instruction is often useful as a jump
6468** destination.
drh5e00f6c2001-09-13 13:46:56 +00006469*/
drh91fd4d42008-01-19 20:11:25 +00006470/*
6471** The magic Explain opcode are only inserted when explain==2 (which
6472** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6473** This opcode records information from the optimizer. It is the
6474** the same as a no-op. This opcodesnever appears in a real VM program.
6475*/
6476default: { /* This is really OP_Noop and OP_Explain */
drh13573c72010-01-12 17:04:07 +00006477 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh5e00f6c2001-09-13 13:46:56 +00006478 break;
6479}
6480
6481/*****************************************************************************
6482** The cases of the switch statement above this line should all be indented
6483** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6484** readability. From this point on down, the normal indentation rules are
6485** restored.
6486*****************************************************************************/
6487 }
drh6e142f52000-06-08 13:36:40 +00006488
drh7b396862003-01-01 23:06:20 +00006489#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00006490 {
drha01c7c72014-04-25 12:35:31 +00006491 u64 endTime = sqlite3Hwtime();
6492 if( endTime>start ) pOp->cycles += endTime - start;
drh8178a752003-01-05 21:41:40 +00006493 pOp->cnt++;
drh8178a752003-01-05 21:41:40 +00006494 }
drh7b396862003-01-01 23:06:20 +00006495#endif
6496
drh6e142f52000-06-08 13:36:40 +00006497 /* The following code adds nothing to the actual functionality
6498 ** of the program. It is only here for testing and debugging.
6499 ** On the other hand, it does burn CPU cycles every time through
6500 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6501 */
6502#ifndef NDEBUG
drhf56fa462015-04-13 21:39:54 +00006503 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp] );
drhae7e1512007-05-02 16:51:59 +00006504
drhcf1023c2007-05-08 20:59:49 +00006505#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +00006506 if( db->flags & SQLITE_VdbeTrace ){
6507 if( rc!=0 ) printf("rc=%d\n",rc);
drh27a348c2015-04-13 19:14:06 +00006508 if( pOp->opflags & (OPFLG_OUT2) ){
drh84e55a82013-11-13 17:58:23 +00006509 registerTrace(pOp->p2, &aMem[pOp->p2]);
drh75897232000-05-29 14:26:00 +00006510 }
drh3c657212009-11-17 23:59:58 +00006511 if( pOp->opflags & OPFLG_OUT3 ){
drh84e55a82013-11-13 17:58:23 +00006512 registerTrace(pOp->p3, &aMem[pOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00006513 }
drh75897232000-05-29 14:26:00 +00006514 }
danielk1977b5402fb2005-01-12 07:15:04 +00006515#endif /* SQLITE_DEBUG */
6516#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00006517 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00006518
drha05a7222008-01-19 03:35:58 +00006519 /* If we reach this point, it means that execution is finished with
6520 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00006521 */
drha05a7222008-01-19 03:35:58 +00006522vdbe_error_halt:
6523 assert( rc );
6524 p->rc = rc;
drha64fa912010-03-04 00:53:32 +00006525 testcase( sqlite3GlobalConfig.xLog!=0 );
6526 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
drhf56fa462015-04-13 21:39:54 +00006527 (int)(pOp - aOp), p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00006528 sqlite3VdbeHalt(p);
danielk19777eaabcd2008-07-07 14:56:56 +00006529 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6530 rc = SQLITE_ERROR;
drhcdf011d2011-04-04 21:25:28 +00006531 if( resetSchemaOnFault>0 ){
drh81028a42012-05-15 18:28:27 +00006532 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
drhbdaec522011-04-04 00:14:43 +00006533 }
drh900b31e2007-08-28 02:27:51 +00006534
6535 /* This is the only way out of this procedure. We have to
6536 ** release the mutexes on btrees that were acquired at the
6537 ** top. */
6538vdbe_return:
drh99a66922011-05-13 18:51:42 +00006539 db->lastRowid = lastRowid;
drh77dfd5b2013-08-19 11:15:48 +00006540 testcase( nVmStep>0 );
drh9b47ee32013-08-20 03:13:51 +00006541 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
drhbdaec522011-04-04 00:14:43 +00006542 sqlite3VdbeLeave(p);
drhb86ccfb2003-01-28 23:13:10 +00006543 return rc;
6544
drh023ae032007-05-08 12:12:16 +00006545 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6546 ** is encountered.
6547 */
6548too_big:
drhf089aa42008-07-08 19:34:06 +00006549 sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00006550 rc = SQLITE_TOOBIG;
drha05a7222008-01-19 03:35:58 +00006551 goto vdbe_error_halt;
drh023ae032007-05-08 12:12:16 +00006552
drh98640a32007-06-07 19:08:32 +00006553 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00006554 */
6555no_mem:
drh17435752007-08-16 04:30:38 +00006556 db->mallocFailed = 1;
drhf089aa42008-07-08 19:34:06 +00006557 sqlite3SetString(&p->zErrMsg, db, "out of memory");
drhb86ccfb2003-01-28 23:13:10 +00006558 rc = SQLITE_NOMEM;
drha05a7222008-01-19 03:35:58 +00006559 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006560
drhb86ccfb2003-01-28 23:13:10 +00006561 /* Jump to here for any other kind of fatal error. The "rc" variable
6562 ** should hold the error number.
6563 */
6564abort_due_to_error:
drha05a7222008-01-19 03:35:58 +00006565 assert( p->zErrMsg==0 );
6566 if( db->mallocFailed ) rc = SQLITE_NOMEM;
danielk19777eaabcd2008-07-07 14:56:56 +00006567 if( rc!=SQLITE_IOERR_NOMEM ){
drhf089aa42008-07-08 19:34:06 +00006568 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
danielk19777eaabcd2008-07-07 14:56:56 +00006569 }
drha05a7222008-01-19 03:35:58 +00006570 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006571
danielk19776f8a5032004-05-10 10:34:51 +00006572 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00006573 ** flag.
6574 */
6575abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00006576 assert( db->u1.isInterrupted );
drh7e8b8482008-01-23 03:03:05 +00006577 rc = SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00006578 p->rc = rc;
drhf089aa42008-07-08 19:34:06 +00006579 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
drha05a7222008-01-19 03:35:58 +00006580 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006581}