blob: 8cdaa85a0f170fb2474b526839825272fc6c4d0f [file] [log] [blame]
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/**
18 * @file
19 *
20 * @brief Public kernel APIs.
21 */
22
23#ifndef _kernel__h_
24#define _kernel__h_
25
26#include <stddef.h>
27#include <stdint.h>
28#include <toolchain.h>
29#include <sections.h>
30#include <atomic.h>
31#include <errno.h>
32#include <misc/__assert.h>
33#include <misc/dlist.h>
34#include <misc/slist.h>
35
36#ifdef __cplusplus
37extern "C" {
38#endif
39
40#ifdef CONFIG_KERNEL_V2_DEBUG
41#define K_DEBUG(fmt, ...) printk("[%s] " fmt, __func__, ##__VA_ARGS__)
42#else
43#define K_DEBUG(fmt, ...)
44#endif
45
46#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
47#define K_PRIO_PREEMPT(x) (x)
48
49#define K_FOREVER (-1)
50#define K_NO_WAIT 0
51
52#define K_ANY NULL
53#define K_END NULL
54
55#define K_OBJ(name, size) char name[size] __aligned(4)
56
57#if CONFIG_NUM_COOP_PRIORITIES > 0
58#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
59#else
60#define K_HIGHEST_THREAD_PRIO 0
61#endif
62
63#if CONFIG_NUM_PREEMPT_PRIORITIES > 0
64#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
65#else
66#define K_LOWEST_THREAD_PRIO -1
67#endif
68
69#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
70#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
71
72typedef sys_dlist_t _wait_q_t;
73
74#ifdef CONFIG_DEBUG_TRACING_KERNEL_OBJECTS
75#define _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(type) struct type *__next
76#define _DEBUG_TRACING_KERNEL_OBJECTS_INIT .__next = NULL,
77#else
78#define _DEBUG_TRACING_KERNEL_OBJECTS_INIT
79#define _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(type)
80#endif
81
82#define k_thread tcs
83struct tcs;
84struct k_mutex;
85struct k_sem;
86struct k_event;
87struct k_msgq;
88struct k_mbox;
89struct k_pipe;
90struct k_fifo;
91struct k_lifo;
92struct k_stack;
93struct k_mem_map;
94struct k_mem_pool;
95struct k_timer;
96
97typedef struct tcs *k_tid_t;
98typedef struct k_mem_pool *k_mem_pool_t;
99
100/* threads/scheduler/execution contexts */
101
102enum execution_context_types {
103 K_ISR = 0,
104 K_COOP_THREAD,
105 K_PREEMPT_THREAD,
106};
107
108struct k_thread_config {
109 char *stack;
110 unsigned stack_size;
111 unsigned prio;
112};
113
114typedef void (*k_thread_entry_t)(void *p1, void *p2, void *p3);
115extern k_tid_t k_thread_spawn(char *stack, unsigned stack_size,
116 void (*entry)(void *, void *, void*),
117 void *p1, void *p2, void *p3,
118 int32_t prio, uint32_t options, int32_t delay);
119
120extern void k_sleep(int32_t duration);
121extern void k_busy_wait(uint32_t usec_to_wait);
122extern void k_yield(void);
123extern void k_wakeup(k_tid_t thread);
124extern k_tid_t k_current_get(void);
125extern k_tid_t k_current_get(void);
126extern int k_current_priority_get(void);
127extern int k_thread_cancel(k_tid_t thread);
128
129extern void k_thread_abort(k_tid_t thread);
130
131#define K_THREAD_GROUP_EXE 0x1
132#define K_THREAD_GROUP_SYS 0x2
133#define K_THREAD_GROUP_FPU 0x4
134
135/* XXX - doesn't work because CONFIG_ARCH is a string */
136#if 0
137/* arch-specific groups */
138#if CONFIG_ARCH == "x86"
139#define K_THREAD_GROUP_SSE 0x4
140#endif
141#endif
142
143#ifdef CONFIG_NANO_TIMEOUTS
144#define _THREAD_TIMEOUT_INIT(obj) \
145 (obj).nano_timeout = { \
146 .node = { {0}, {0} }, \
147 .tcs = NULL, \
148 .wait_q = NULL, \
149 .delta_ticks_from_prev = -1, \
150 },
151#else
152#define _THREAD_TIMEOUT_INIT(obj)
153#endif
154
155#ifdef CONFIG_ERRNO
156#define _THREAD_ERRNO_INIT(obj) (obj).errno_var = 0,
157#else
158#define _THREAD_ERRNO_INIT(obj)
159#endif
160
161struct k_thread_static_init {
162 uint32_t init_groups;
163 int init_prio;
164 void (*init_entry)(void *, void *, void *);
165 void *init_p1;
166 void *init_p2;
167 void *init_p3;
168 void (*init_abort)(void);
169 union {
170 char *init_stack;
171 struct k_thread *thread;
172 };
173 unsigned int init_stack_size;
174};
175
176#define K_THREAD_INITIALIZER(stack, stack_size, \
177 entry, p1, p2, p3, \
178 abort, prio, groups) \
179 { \
180 .init_groups = (groups), \
181 .init_prio = (prio), \
182 .init_entry = entry, \
183 .init_p1 = (void *)p1, \
184 .init_p2 = (void *)p2, \
185 .init_p3 = (void *)p3, \
186 .init_abort = abort, \
187 .init_stack = (stack), \
188 .init_stack_size = (stack_size), \
189 }
190
191/*
192 * Define thread initializer object and initialize it
193 * NOTE: For thread group functions thread initializers must be organized
194 * in array and thus should not have gaps between them.
195 * On x86 by default compiler aligns them by 32 byte boundary. To prevent
196 * this 32-bit alignment in specified here.
197 * k_thread_static_init structure sise needs to be kept 32-bit aligned as well
198 */
199#define K_THREAD_OBJ_DEFINE(name, stack_size, \
200 entry, p1, p2, p3, \
201 abort, prio, groups) \
202 extern void entry(void *, void *, void *); \
203 char __noinit __stack _k_thread_obj_##name[stack_size]; \
204 struct k_thread_static_init _k_thread_init_##name __aligned(4) \
205 __in_section(_k_task_list, private, task) = \
206 K_THREAD_INITIALIZER(_k_thread_obj_##name, stack_size, \
207 entry, p1, p2, p3, abort, prio, groups)
208
209#define K_THREAD_DEFINE(name, stack_size, entry, p1, p2, p3, \
210 abort, prio, groups) \
211 K_THREAD_OBJ_DEFINE(name, stack_size, entry, p1, p2, p3, \
212 abort, prio, groups); \
213 k_tid_t const name = (k_tid_t)_k_thread_obj_##name
214
215/* extern int k_thread_prio_get(k_tid_t thread); in sched.h */
216extern void k_thread_priority_set(k_tid_t thread, int prio);
217
218#if 0
219extern int k_thread_suspend(k_tid_t thread);
220extern int k_thread_resume(k_tid_t thread);
221extern int k_thread_entry_set(k_tid_t thread,
222 void (*entry)(void*, void*, void*);
223extern int k_thread_abort_handler_set(k_tid_t thread,
224 void (*handler)(void));
225#endif
226
227extern void k_sched_time_slice_set(int32_t slice, int prio);
228extern int k_workload_get(void);
229extern void k_workload_time_slice_set(int32_t slice);
230
231extern int k_am_in_isr(void);
232
233extern void k_thread_custom_data_set(void *value);
234extern void *k_thread_custom_data_get(void);
235
236/**
237 * kernel timing
238 */
239
Benjamin Walsha9604bd2016-09-21 11:05:56 -0400240#include <sys_clock.h>
241
242/* private internal time manipulation (users should never play with ticks) */
243
244static int64_t __ticks_to_ms(int64_t ticks)
245{
246 return (MSEC_PER_SEC * (uint64_t)ticks) / sys_clock_ticks_per_sec;
247}
248
249
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400250/* timeouts */
251
252struct _timeout;
253typedef void (*_timeout_func_t)(struct _timeout *t);
254
255struct _timeout {
256 sys_dlist_t node;
257 struct tcs *tcs;
258 sys_dlist_t *wait_q;
259 int32_t delta_ticks_from_prev;
260 _timeout_func_t func;
261};
262
263/* timers */
264
265struct k_timer {
266 /*
267 * _timeout structure must be first here if we want to use
268 * dynamic timer allocation. timeout.node is used in the double-linked
269 * list of free timers
270 */
271 struct _timeout timeout;
272
273 /* wait queue for the threads waiting on this timer */
274 _wait_q_t wait_q;
275
276 /* runs in ISR context */
277 void (*handler)(void *);
278 void *handler_arg;
279
280 /* runs in the context of the thread that calls k_timer_stop() */
281 void (*stop_handler)(void *);
282 void *stop_handler_arg;
283
284 /* timer period */
285 int32_t period;
286
287 /* user supplied data pointer returned to the thread*/
288 void *user_data;
289
290 /* user supplied data pointer */
291 void *user_data_internal;
292
293 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_timer);
294};
295
296#define K_TIMER_INITIALIZER(obj) \
297 { \
298 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
299 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
300 }
301
302#define K_TIMER_DEFINE(name) \
303 struct k_timer name = K_TIMER_INITIALIZER(name)
304
305extern void k_timer_init(struct k_timer *timer, void *data);
Andy Ross8d8b2ac2016-09-23 10:08:54 -0700306
307#if (CONFIG_NUM_DYNAMIC_TIMERS > 0)
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400308extern struct k_timer *k_timer_alloc(void);
309extern void k_timer_free(struct k_timer *timer);
Andy Ross8d8b2ac2016-09-23 10:08:54 -0700310#endif
311
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400312extern void k_timer_start(struct k_timer *timer,
313 int32_t duration, int32_t period,
314 void (*handler)(void *), void *handler_arg,
315 void (*stop_handler)(void *), void *stop_handler_arg);
316extern void k_timer_restart(struct k_timer *timer, int32_t duration,
317 int32_t period);
318extern void k_timer_stop(struct k_timer *timer);
319extern int k_timer_test(struct k_timer *timer, void **data, int wait);
320extern int32_t k_timer_remaining_get(struct k_timer *timer);
Benjamin Walshba5ddc12016-09-21 16:01:22 -0400321
322
323/**
324 * @brief Get the time elapsed since the system booted (uptime)
325 *
326 * @return The current uptime of the system in ms
327 */
328
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400329extern int64_t k_uptime_get(void);
Benjamin Walshba5ddc12016-09-21 16:01:22 -0400330
331/**
332 * @brief Get the lower 32-bit of time elapsed since the system booted (uptime)
333 *
334 * This function is potentially less onerous in both the time it takes to
335 * execute, the interrupt latency it introduces and the amount of 64-bit math
336 * it requires than k_uptime_get(), but it only provides an uptime value of
337 * 32-bits. The user must handle possible rollovers/spillovers.
338 *
339 * At a rate of increment of 1000 per second, it rolls over approximately every
340 * 50 days.
341 *
342 * @return The current uptime of the system in ms
343 */
344
345extern uint32_t k_uptime_get_32(void);
346
347/**
348 * @brief Get the difference between a reference time and the current uptime
349 *
350 * @param reftime A pointer to a reference time. It is updated with the current
351 * uptime upon return.
352 *
353 * @return The delta between the reference time and the current uptime.
354 */
355
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400356extern int64_t k_uptime_delta(int64_t *reftime);
Benjamin Walshba5ddc12016-09-21 16:01:22 -0400357
358/**
359 * @brief Get the difference between a reference time and the current uptime
360 *
361 * The 32-bit version of k_uptime_delta(). It has the same perks and issues as
362 * k_uptime_get_32().
363 *
364 * @param reftime A pointer to a reference time. It is updated with the current
365 * uptime upon return.
366 *
367 * @return The delta between the reference time and the current uptime.
368 */
369
370extern uint32_t k_uptime_delta_32(int64_t *reftime);
371
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400372extern bool k_timer_pool_is_empty(void);
373
374extern uint32_t k_cycle_get_32(void);
375
376#if (CONFIG_NUM_DYNAMIC_TIMERS > 0)
377extern void _k_dyamic_timer_init(void);
378#else
379#define _k_dyamic_timer_init()
380#endif
381
382/**
383 * data transfers (basic)
384 */
385
386/* fifos */
387
388struct k_fifo {
389 _wait_q_t wait_q;
390 sys_slist_t data_q;
391
392 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_fifo);
393};
394
395extern void k_fifo_init(struct k_fifo *fifo);
396extern void k_fifo_put(struct k_fifo *fifo, void *data);
397extern void k_fifo_put_list(struct k_fifo *fifo, void *head, void *tail);
398extern void k_fifo_put_slist(struct k_fifo *fifo, sys_slist_t *list);
399extern void *k_fifo_get(struct k_fifo *fifo, int32_t timeout);
400
401#define K_FIFO_INITIALIZER(obj) \
402 { \
403 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
404 .data_q = SYS_DLIST_STATIC_INIT(&obj.data_q), \
405 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
406 }
407
408#define K_FIFO_DEFINE(name) \
Benjamin Walsh0bee91d2016-09-15 17:16:38 -0400409 struct k_fifo name = K_FIFO_INITIALIZER(name)
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400410
411/* lifos */
412
413struct k_lifo {
414 _wait_q_t wait_q;
415 void *list;
416
417 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_lifo);
418};
419
420extern void k_lifo_init(struct k_lifo *lifo);
421extern void k_lifo_put(struct k_lifo *lifo, void *data);
422extern void *k_lifo_get(struct k_lifo *lifo, int32_t timeout);
423
424#define K_LIFO_INITIALIZER(obj) \
425 { \
426 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
427 .list = NULL, \
428 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
429 }
430
431#define K_LIFO_DEFINE(name) \
Benjamin Walsh0bee91d2016-09-15 17:16:38 -0400432 struct k_lifo name = K_LIFO_INITIALIZER(name)
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400433
434/* stacks */
435
436struct k_stack {
437 _wait_q_t wait_q;
438 uint32_t *base, *next, *top;
439
440 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_stack);
441};
442
443extern void k_stack_init(struct k_stack *stack, int num_entries);
444extern void k_stack_init_with_buffer(struct k_stack *stack, int num_entries,
445 uint32_t *buffer);
446extern void k_stack_push(struct k_stack *stack, uint32_t data);
447extern int k_stack_pop(struct k_stack *stack, uint32_t *data, int32_t timeout);
448
449#define K_STACK_INITIALIZER(obj, stack_num_entries, stack_buffer) \
450 { \
451 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
452 .base = stack_buffer, \
453 .next = stack_buffer, \
454 .top = stack_buffer + stack_num_entries, \
455 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
456 }
457
458#define K_STACK_DEFINE(name, stack_num_entries) \
459 uint32_t __noinit _k_stack_buf_##name[stack_num_entries]; \
Benjamin Walsh0bee91d2016-09-15 17:16:38 -0400460 struct k_stack name = \
461 K_STACK_INITIALIZER(name, stack_num_entries, \
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400462 _k_stack_buf_##name); \
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400463
464#define K_STACK_SIZE(stack_num_entries) \
465 (sizeof(struct k_stack) + (stack_num_entries * sizeof(uint32_t)))
466
467/**
468 * workqueues
469 */
470
471struct k_work;
472
473typedef void (*k_work_handler_t)(struct k_work *);
474
475/**
476 * A workqueue is a fiber that executes @ref k_work items that are
477 * queued to it. This is useful for drivers which need to schedule
478 * execution of code which might sleep from ISR context. The actual
479 * fiber identifier is not stored in the structure in order to save
480 * space.
481 */
482struct k_work_q {
483 struct k_fifo fifo;
484};
485
486/**
487 * @brief Work flags.
488 */
489enum {
490 K_WORK_STATE_IDLE, /* Work item idle state */
491};
492
493/**
494 * @brief An item which can be scheduled on a @ref k_work_q.
495 */
496struct k_work {
497 void *_reserved; /* Used by k_fifo implementation. */
498 k_work_handler_t handler;
499 atomic_t flags[1];
500};
501
502/**
503 * @brief Statically initialize work item
504 */
505#define K_WORK_INITIALIZER(work_handler) \
506 { \
507 ._reserved = NULL, \
508 .handler = work_handler, \
509 .flags = { 1 } \
510 }
511
512/**
513 * @brief Dynamically initialize work item
514 */
515static inline void k_work_init(struct k_work *work, k_work_handler_t handler)
516{
517 atomic_set_bit(work->flags, K_WORK_STATE_IDLE);
518 work->handler = handler;
519}
520
521/**
522 * @brief Submit a work item to a workqueue.
523 */
524static inline void k_work_submit_to_queue(struct k_work_q *work_q,
525 struct k_work *work)
526{
527 if (!atomic_test_and_clear_bit(work->flags, K_WORK_STATE_IDLE)) {
528 __ASSERT_NO_MSG(0);
529 } else {
530 k_fifo_put(&work_q->fifo, work);
531 }
532}
533
534/**
535 * @brief Start a new workqueue. This routine can be called from either
536 * fiber or task context.
537 */
538extern void k_work_q_start(struct k_work_q *work_q,
539 const struct k_thread_config *config);
540
541#if defined(CONFIG_NANO_TIMEOUTS)
542
543 /*
544 * @brief An item which can be scheduled on a @ref k_work_q with a
545 * delay.
546 */
547struct k_delayed_work {
548 struct k_work work;
549 struct _timeout timeout;
550 struct k_work_q *work_q;
551};
552
553/**
554 * @brief Initialize delayed work
555 */
556void k_delayed_work_init(struct k_delayed_work *work,
557 k_work_handler_t handler);
558
559/**
560 * @brief Submit a delayed work item to a workqueue.
561 *
562 * This procedure schedules a work item to be processed after a delay.
563 * Once the delay has passed, the work item is submitted to the work queue:
564 * at this point, it is no longer possible to cancel it. Once the work item's
565 * handler is about to be executed, the work is considered complete and can be
566 * resubmitted.
567 *
568 * Care must be taken if the handler blocks or yield as there is no implicit
569 * mutual exclusion mechanism. Such usage is not recommended and if necessary,
570 * it should be explicitly done between the submitter and the handler.
571 *
572 * @param work_q to schedule the work item
573 * @param work Delayed work item
574 * @param ticks Ticks to wait before scheduling the work item
575 *
576 * @return 0 in case of success or negative value in case of error.
577 */
578int k_delayed_work_submit_to_queue(struct k_work_q *work_q,
579 struct k_delayed_work *work,
580 int32_t ticks);
581
582/**
583 * @brief Cancel a delayed work item
584 *
585 * This procedure cancels a scheduled work item. If the work has been completed
586 * or is idle, this will do nothing. The only case where this can fail is when
587 * the work has been submitted to the work queue, but the handler has not run
588 * yet.
589 *
590 * @param work Delayed work item to be canceled
591 *
592 * @return 0 in case of success or negative value in case of error.
593 */
594int k_delayed_work_cancel(struct k_delayed_work *work);
595
596#endif /* CONFIG_NANO_TIMEOUTS */
597
598#if defined(CONFIG_SYSTEM_WORKQUEUE)
599
600extern struct k_work_q k_sys_work_q;
601
602/*
603 * @brief Submit a work item to the system workqueue.
604 *
605 * @ref k_work_submit_to_queue
606 *
607 * When using the system workqueue it is not recommended to block or yield
608 * on the handler since its fiber is shared system wide it may cause
609 * unexpected behavior.
610 */
611static inline void k_work_submit(struct k_work *work)
612{
613 k_work_submit_to_queue(&k_sys_work_q, work);
614}
615
616#if defined(CONFIG_NANO_TIMEOUTS)
617/*
618 * @brief Submit a delayed work item to the system workqueue.
619 *
620 * @ref k_delayed_work_submit_to_queue
621 *
622 * When using the system workqueue it is not recommended to block or yield
623 * on the handler since its fiber is shared system wide it may cause
624 * unexpected behavior.
625 */
626static inline int k_delayed_work_submit(struct k_delayed_work *work,
627 int ticks)
628{
629 return k_delayed_work_submit_to_queue(&k_sys_work_q, work, ticks);
630}
631
632#endif /* CONFIG_NANO_TIMEOUTS */
633#endif /* CONFIG_SYSTEM_WORKQUEUE */
634
635/**
636 * synchronization
637 */
638
639/* mutexes */
640
641struct k_mutex {
642 _wait_q_t wait_q;
643 struct tcs *owner;
644 uint32_t lock_count;
645 int owner_orig_prio;
646#ifdef CONFIG_OBJECT_MONITOR
647 int num_lock_state_changes;
648 int num_conflicts;
649#endif
650
651 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mutex);
652};
653
654#ifdef CONFIG_OBJECT_MONITOR
655#define _MUTEX_INIT_OBJECT_MONITOR \
656 .num_lock_state_changes = 0, .num_conflicts = 0,
657#else
658#define _MUTEX_INIT_OBJECT_MONITOR
659#endif
660
661#define K_MUTEX_INITIALIZER(obj) \
662 { \
663 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
664 .owner = NULL, \
665 .lock_count = 0, \
666 .owner_orig_prio = K_LOWEST_THREAD_PRIO, \
667 _MUTEX_INIT_OBJECT_MONITOR \
668 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
669 }
670
671#define K_MUTEX_DEFINE(name) \
672 struct k_mutex name = K_MUTEX_INITIALIZER(name)
673
674extern void k_mutex_init(struct k_mutex *mutex);
675extern int k_mutex_lock(struct k_mutex *mutex, int32_t timeout);
676extern void k_mutex_unlock(struct k_mutex *mutex);
677
678/* semaphores */
679
680struct k_sem {
681 _wait_q_t wait_q;
682 unsigned int count;
683 unsigned int limit;
684
685 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_sem);
686};
687
688extern void k_sem_init(struct k_sem *sem, unsigned int initial_count,
689 unsigned int limit);
690extern int k_sem_take(struct k_sem *sem, int32_t timeout);
691extern void k_sem_give(struct k_sem *sem);
692
Benjamin Walsh70c68b92016-09-21 10:37:34 -0400693static inline void k_sem_reset(struct k_sem *sem)
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400694{
695 sem->count = 0;
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400696}
697
Tomasz Bursztyka276086d2016-09-21 16:03:21 +0200698static inline unsigned int k_sem_count_get(struct k_sem *sem)
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400699{
700 return sem->count;
701}
702
Peter Mitsis45403672016-09-09 14:24:06 -0400703#ifdef CONFIG_SEMAPHORE_GROUPS
704/**
705 * @brief Take the first available semaphore
706 *
707 * Given a list of semaphore pointers, this routine will attempt to take one
708 * of them, waiting up to a maximum of @a timeout ms to do so. The taken
709 * semaphore is identified by @a sem (set to NULL on error).
710 *
711 * Be aware that the more semaphores specified in the group, the more stack
712 * space is required by the waiting thread.
713 *
714 * @param sem_array Array of semaphore pointers terminated by a K_END entry
715 * @param sem Identifies the semaphore that was taken
716 * @param timeout Maximum number of milliseconds to wait
717 *
718 * @retval 0 A semaphore was successfully taken
719 * @retval -EBUSY No semaphore was available (@a timeout = K_NO_WAIT)
720 * @retval -EAGAIN Time out occurred while waiting for semaphore
721 */
722
723extern int k_sem_group_take(struct k_sem *sem_array[], struct k_sem **sem,
724 int32_t timeout);
725
726/**
727 * @brief Give all the semaphores in the group
728 *
729 * This routine will give each semaphore in the array of semaphore pointers.
730 *
731 * @param sem_array Array of semaphore pointers terminated by a K_END entry
732 *
733 * @return N/A
734 */
735extern void k_sem_group_give(struct k_sem *sem_array[]);
736
737/**
738 * @brief Reset the count to zero on each semaphore in the array
739 *
740 * This routine resets the count of each semaphore in the group to zero.
741 * Note that it does NOT have any impact on any thread that might have
742 * been previously pending on any of the semaphores.
743 *
744 * @param sem_array Array of semaphore pointers terminated by a K_END entry
745 *
746 * @return N/A
747 */
748extern void k_sem_group_reset(struct k_sem *sem_array[]);
749#endif
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400750
751#define K_SEM_INITIALIZER(obj, initial_count, count_limit) \
752 { \
753 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
754 .count = initial_count, \
755 .limit = count_limit, \
756 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
757 }
758
759#define K_SEM_DEFINE(name, initial_count, count_limit) \
760 struct k_sem name = \
761 K_SEM_INITIALIZER(name, initial_count, count_limit)
762
763/* events */
764
765#define K_EVT_DEFAULT NULL
766#define K_EVT_IGNORE ((void *)(-1))
767
768typedef int (*k_event_handler_t)(struct k_event *);
769
770struct k_event {
771 k_event_handler_t handler;
772 atomic_t send_count;
773 struct k_work work_item;
774 struct k_sem sem;
775
776 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_event);
777};
778
779extern void _k_event_deliver(struct k_work *work);
780
781#define K_EVENT_INITIALIZER(obj, event_handler) \
782 { \
783 .handler = (k_event_handler_t)event_handler, \
784 .send_count = ATOMIC_INIT(0), \
785 .work_item = K_WORK_INITIALIZER(_k_event_deliver), \
786 .sem = K_SEM_INITIALIZER(obj.sem, 0, 1), \
787 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
788 }
789
790#define K_EVENT_DEFINE(name, event_handler) \
791 struct k_event name \
792 __in_section(_k_event_list, event, name) = \
793 K_EVENT_INITIALIZER(name, event_handler)
794
795extern void k_event_init(struct k_event *event, k_event_handler_t handler);
796extern int k_event_recv(struct k_event *event, int32_t timeout);
797extern void k_event_send(struct k_event *event);
798
799/**
800 * data transfers (complex)
801 */
802
803/* message queues */
804
805struct k_msgq {
806 _wait_q_t wait_q;
807 uint32_t msg_size;
808 uint32_t max_msgs;
809 char *buffer_start;
810 char *buffer_end;
811 char *read_ptr;
812 char *write_ptr;
813 uint32_t used_msgs;
814
815 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_msgq);
816};
817
818#define K_MSGQ_INITIALIZER(obj, q_depth, q_width, q_buffer) \
819 { \
820 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
821 .max_msgs = q_depth, \
822 .msg_size = q_width, \
823 .buffer_start = q_buffer, \
824 .buffer_end = q_buffer + (q_depth * q_width), \
825 .read_ptr = q_buffer, \
826 .write_ptr = q_buffer, \
827 .used_msgs = 0, \
828 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
829 }
830
831#define K_MSGQ_DEFINE(name, q_depth, q_width) \
832 static char __noinit _k_fifo_buf_##name[(q_depth) * (q_width)]; \
833 struct k_msgq name = \
834 K_MSGQ_INITIALIZER(name, q_depth, q_width, _k_fifo_buf_##name)
835
836#define K_MSGQ_SIZE(q_depth, q_width) \
837 ((sizeof(struct k_msgq)) + ((q_width) * (q_depth)))
838
839void k_msgq_init(struct k_msgq *q, uint32_t msg_size, uint32_t max_msgs,
840 char *buffer);
841extern int k_msgq_put(struct k_msgq *q, void *data, int32_t timeout);
842extern int k_msgq_get(struct k_msgq *q, void *data, int32_t timeout);
843extern void k_msgq_purge(struct k_msgq *q);
844
845static inline int k_msgq_num_used_get(struct k_msgq *q)
846{
847 return q->used_msgs;
848}
849
850struct k_mem_block {
851 k_mem_pool_t pool_id;
852 void *addr_in_pool;
853 void *data;
854 uint32_t req_size;
855};
856
857/* mailboxes */
858
859struct k_mbox_msg {
860 /** internal use only - needed for legacy API support */
861 uint32_t _mailbox;
862 /** size of message (in bytes) */
863 uint32_t size;
864 /** application-defined information value */
865 uint32_t info;
866 /** sender's message data buffer */
867 void *tx_data;
868 /** internal use only - needed for legacy API support */
869 void *_rx_data;
870 /** message data block descriptor */
871 struct k_mem_block tx_block;
872 /** source thread id */
873 k_tid_t rx_source_thread;
874 /** target thread id */
875 k_tid_t tx_target_thread;
876 /** internal use only - thread waiting on send (may be a dummy) */
877 k_tid_t _syncing_thread;
878#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
879 /** internal use only - semaphore used during asynchronous send */
880 struct k_sem *_async_sem;
881#endif
882};
883
884struct k_mbox {
885 _wait_q_t tx_msg_queue;
886 _wait_q_t rx_msg_queue;
887
888 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mbox);
889};
890
891#define K_MBOX_INITIALIZER(obj) \
892 { \
893 .tx_msg_queue = SYS_DLIST_STATIC_INIT(&obj.tx_msg_queue), \
894 .rx_msg_queue = SYS_DLIST_STATIC_INIT(&obj.rx_msg_queue), \
895 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
896 }
897
898#define K_MBOX_DEFINE(name) \
899 struct k_mbox name = \
900 K_MBOX_INITIALIZER(name) \
901
902#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
903extern void _k_mbox_init(void);
904#else
905#define _k_mbox_init()
906#endif
907
908extern void k_mbox_init(struct k_mbox *mbox);
909
910extern int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *msg,
911 int32_t timeout);
912extern void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *msg,
913 struct k_sem *sem);
914
915extern int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *msg,
916 void *buffer, int32_t timeout);
917extern void k_mbox_data_get(struct k_mbox_msg *msg, void *buffer);
918extern int k_mbox_data_block_get(struct k_mbox_msg *msg, k_mem_pool_t pool,
919 struct k_mem_block *block, int32_t timeout);
920
921/* pipes */
922
923struct k_pipe {
924 unsigned char *buffer; /* Pipe buffer: may be NULL */
925 size_t size; /* Buffer size */
926 size_t bytes_used; /* # bytes used in buffer */
927 size_t read_index; /* Where in buffer to read from */
928 size_t write_index; /* Where in buffer to write */
929
930 struct {
931 _wait_q_t readers; /* Reader wait queue */
932 _wait_q_t writers; /* Writer wait queue */
933 } wait_q;
934
935 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_pipe);
936};
937
938#define K_PIPE_INITIALIZER(obj, pipe_buffer_size, pipe_buffer) \
939 { \
940 .buffer = pipe_buffer, \
941 .size = pipe_buffer_size, \
942 .bytes_used = 0, \
943 .read_index = 0, \
944 .write_index = 0, \
945 .wait_q.writers = SYS_DLIST_STATIC_INIT(&obj.wait_q.writers), \
946 .wait_q.readers = SYS_DLIST_STATIC_INIT(&obj.wait_q.readers), \
947 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
948 }
949
950#define K_PIPE_DEFINE(name, pipe_buffer_size) \
951 static unsigned char __noinit _k_pipe_buf_##name[pipe_buffer_size]; \
952 struct k_pipe name = \
953 K_PIPE_INITIALIZER(name, pipe_buffer_size, _k_pipe_buf_##name)
954
955#define K_PIPE_SIZE(buffer_size) (sizeof(struct k_pipe) + buffer_size)
956
957#if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0)
958extern void _k_pipes_init(void);
959#else
960#define _k_pipes_init() do { } while (0)
961#endif
962
963/**
964 * @brief Runtime initialization of a pipe
965 *
966 * @param pipe Pointer to pipe to initialize
967 * @param buffer Pointer to buffer to use for pipe's ring buffer
968 * @param size Size of the pipe's ring buffer
969 *
970 * @return N/A
971 */
972extern void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer,
973 size_t size);
974
975/**
976 * @brief Put a message into the specified pipe
977 *
978 * This routine synchronously adds a message into the pipe specified by
979 * @a pipe. It will wait up to @a timeout for the pipe to accept
980 * @a num_bytes_to_write bytes of data. If by @a timeout, the pipe could not
981 * accept @a min_bytes bytes of data, it fails. Fewer than @a min_bytes will
982 * only ever be written to the pipe if K_NO_WAIT < @a timeout < K_FOREVER.
983 *
984 * @param pipe Pointer to the pipe
985 * @param buffer Data to put into the pipe
986 * @param num_bytes_to_write Desired number of bytes to put into the pipe
987 * @param num_bytes_written Number of bytes the pipe accepted
988 * @param min_bytes Minimum number of bytes accepted for success
989 * @param timeout Maximum number of milliseconds to wait
990 *
991 * @retval 0 At least @a min_bytes were sent
992 * @retval -EIO Request can not be satisfied (@a timeout is K_NO_WAIT)
993 * @retval -EAGAIN Fewer than @a min_bytes were sent
994 */
995extern int k_pipe_put(struct k_pipe *pipe, void *buffer,
996 size_t num_bytes_to_write, size_t *num_bytes_written,
997 size_t min_bytes, int32_t timeout);
998
999/**
1000 * @brief Get a message from the specified pipe
1001 *
1002 * This routine synchronously retrieves a message from the pipe specified by
1003 * @a pipe. It will wait up to @a timeout to retrieve @a num_bytes_to_read
1004 * bytes of data from the pipe. If by @a timeout, the pipe could not retrieve
1005 * @a min_bytes bytes of data, it fails. Fewer than @a min_bytes will
1006 * only ever be retrieved from the pipe if K_NO_WAIT < @a timeout < K_FOREVER.
1007 *
1008 * @param pipe Pointer to the pipe
1009 * @param buffer Location to place retrieved data
1010 * @param num_bytes_to_read Desired number of bytes to retrieve from the pipe
1011 * @param num_bytes_read Number of bytes retrieved from the pipe
1012 * @param min_bytes Minimum number of bytes retrieved for success
1013 * @param timeout Maximum number of milliseconds to wait
1014 *
1015 * @retval 0 At least @a min_bytes were transferred
1016 * @retval -EIO Request can not be satisfied (@a timeout is K_NO_WAIT)
1017 * @retval -EAGAIN Fewer than @a min_bytes were retrieved
1018 */
1019extern int k_pipe_get(struct k_pipe *pipe, void *buffer,
1020 size_t num_bytes_to_read, size_t *num_bytes_read,
1021 size_t min_bytes, int32_t timeout);
1022
1023/**
1024 * @brief Send a message to the specified pipe
1025 *
1026 * This routine asynchronously sends a message from the pipe specified by
1027 * @a pipe. Once all @a size bytes have been accepted by the pipe, it will
1028 * free the memory block @a block and give the semaphore @a sem (if specified).
1029 * Up to CONFIG_NUM_PIPE_ASYNC_MSGS asynchronous pipe messages can be in-flight
1030 * at any given time.
1031 *
1032 * @param pipe Pointer to the pipe
1033 * @param block Memory block containing data to send
1034 * @param size Number of data bytes in memory block to send
1035 * @param sem Semaphore to signal upon completion (else NULL)
1036 *
1037 * @retval N/A
1038 */
1039extern void k_pipe_block_put(struct k_pipe *pipe, struct k_mem_block *block,
1040 size_t size, struct k_sem *sem);
1041
1042/**
1043 * memory management
1044 */
1045
1046/* memory maps */
1047
1048struct k_mem_map {
1049 _wait_q_t wait_q;
1050 int num_blocks;
1051 int block_size;
1052 char *buffer;
1053 char *free_list;
1054 int num_used;
1055
1056 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mem_map);
1057};
1058
1059#define K_MEM_MAP_INITIALIZER(obj, map_num_blocks, map_block_size, \
1060 map_buffer) \
1061 { \
1062 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
1063 .num_blocks = map_num_blocks, \
1064 .block_size = map_block_size, \
1065 .buffer = map_buffer, \
1066 .free_list = NULL, \
1067 .num_used = 0, \
1068 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
1069 }
1070
1071#define K_MEM_MAP_DEFINE(name, map_num_blocks, map_block_size) \
1072 char _k_mem_map_buf_##name[(map_num_blocks) * (map_block_size)]; \
1073 struct k_mem_map name \
1074 __in_section(_k_mem_map_ptr, private, mem_map) = \
1075 K_MEM_MAP_INITIALIZER(name, map_num_blocks, \
1076 map_block_size, _k_mem_map_buf_##name)
1077
1078#define K_MEM_MAP_SIZE(map_num_blocks, map_block_size) \
1079 (sizeof(struct k_mem_map) + ((map_num_blocks) * (map_block_size)))
1080
1081extern void _k_mem_map_init(void);
1082
1083extern void k_mem_map_init(struct k_mem_map *map, int num_blocks,
1084 int block_size, void *buffer);
1085extern int k_mem_map_alloc(struct k_mem_map *map, void **mem, int32_t timeout);
1086extern void k_mem_map_free(struct k_mem_map *map, void **mem);
1087
1088static inline int k_mem_map_num_used_get(struct k_mem_map *map)
1089{
1090 return map->num_used;
1091}
1092
1093/* memory pools */
1094
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001095/*
1096 * Memory pool requires a buffer and two arrays of structures for the
1097 * memory block accounting:
1098 * A set of arrays of k_mem_pool_quad_block structures where each keeps a
1099 * status of four blocks of memory.
1100 */
1101struct k_mem_pool_quad_block {
1102 char *mem_blocks; /* pointer to the first of four memory blocks */
1103 uint32_t mem_status; /* four bits. If bit is set, memory block is
1104 allocated */
1105};
1106/*
1107 * Memory pool mechanism uses one array of k_mem_pool_quad_block for accounting
1108 * blocks of one size. Block sizes go from maximal to minimal. Next memory
1109 * block size is 4 times less than the previous one and thus requires 4 times
1110 * bigger array of k_mem_pool_quad_block structures to keep track of the
1111 * memory blocks.
1112 */
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001113
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001114/*
1115 * The array of k_mem_pool_block_set keeps the information of each array of
1116 * k_mem_pool_quad_block structures
1117 */
1118struct k_mem_pool_block_set {
1119 int block_size; /* memory block size */
1120 int nr_of_entries; /* nr of quad block structures in the array */
1121 struct k_mem_pool_quad_block *quad_block;
1122 int count;
1123};
1124
1125/* Memory pool descriptor */
1126struct k_mem_pool {
1127 int max_block_size;
1128 int min_block_size;
1129 int nr_of_maxblocks;
1130 int nr_of_block_sets;
1131 struct k_mem_pool_block_set *block_set;
1132 char *bufblock;
1133 _wait_q_t wait_q;
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001134 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mem_pool);
1135};
1136
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001137#ifdef CONFIG_ARM
1138#define _SECTION_TYPE_SIGN "%"
1139#else
1140#define _SECTION_TYPE_SIGN "@"
1141#endif
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001142
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001143/*
1144 * Static memory pool initialization
1145 */
1146/*
1147 * Use .altmacro to be able to recalculate values and pass them as string
1148 * arguments when calling assembler macros resursively
1149 */
1150__asm__(".altmacro\n\t");
1151
1152/*
1153 * Recursively calls a macro
1154 * The followig global symbols need to be initialized:
1155 * __memory_pool_max_block_size - maximal size of the memory block
1156 * __memory_pool_min_block_size - minimal size of the memory block
1157 * Notes:
1158 * Global symbols are used due the fact that assembler macro allows only
1159 * one argument be passed with the % conversion
1160 * Some assemblers do not get division operation ("/"). To avoid it >> 2
1161 * is used instead of / 4.
1162 * n_max argument needs to go first in the invoked macro, as some
1163 * assemblers concatenate \name and %(\n_max * 4) arguments
1164 * if \name goes first
1165 */
1166__asm__(".macro __do_recurse macro_name, name, n_max\n\t"
1167 ".ifge __memory_pool_max_block_size >> 2 -"
1168 " __memory_pool_min_block_size\n\t\t"
1169 "__memory_pool_max_block_size = __memory_pool_max_block_size >> 2\n\t\t"
1170 "\\macro_name %(\\n_max * 4) \\name\n\t"
1171 ".endif\n\t"
1172 ".endm\n");
1173
1174/*
1175 * Build quad blocks
1176 * Macro allocates space in memory for the array of k_mem_pool_quad_block
1177 * structures and recursively calls itself for the next array, 4 times
1178 * larger.
1179 * The followig global symbols need to be initialized:
1180 * __memory_pool_max_block_size - maximal size of the memory block
1181 * __memory_pool_min_block_size - minimal size of the memory block
1182 * __memory_pool_quad_block_size - sizeof(struct k_mem_pool_quad_block)
1183 */
1184__asm__(".macro _build_quad_blocks n_max, name\n\t"
1185 "_mem_pool_quad_blocks_\\name\\()_\\n_max:\n\t"
1186 ".skip __memory_pool_quad_block_size * \\n_max >> 2\n\t"
1187 ".if \\n_max % 4\n\t\t"
1188 ".skip __memory_pool_quad_block_size\n\t"
1189 ".endif\n\t"
1190 "__do_recurse _build_quad_blocks \\name \\n_max\n\t"
1191 ".endm\n");
1192
1193/*
1194 * Build block sets and initialize them
1195 * Macro initializes the k_mem_pool_block_set structure and
1196 * recursively calls itself for the next one.
1197 * The followig global symbols need to be initialized:
1198 * __memory_pool_max_block_size - maximal size of the memory block
1199 * __memory_pool_min_block_size - minimal size of the memory block
1200 * __memory_pool_block_set_count, the number of the elements in the
1201 * block set array must be set to 0. Macro calculates it's real
1202 * value.
1203 * Since the macro initializes pointers to an array of k_mem_pool_quad_block
1204 * structures, _build_quad_blocks must be called prior it.
1205 */
1206__asm__(".macro _build_block_set n_max, name\n\t"
1207 ".int __memory_pool_max_block_size\n\t" /* block_size */
1208 ".if \\n_max % 4\n\t\t"
1209 ".int \\n_max >> 2 + 1\n\t" /* nr_of_entries */
1210 ".else\n\t\t"
1211 ".int \\n_max >> 2\n\t"
1212 ".endif\n\t"
1213 ".int _mem_pool_quad_blocks_\\name\\()_\\n_max\n\t" /* quad_block */
1214 ".int 0\n\t" /* count */
1215 "__memory_pool_block_set_count = __memory_pool_block_set_count + 1\n\t"
1216 "__do_recurse _build_block_set \\name \\n_max\n\t"
1217 ".endm\n");
1218
1219/*
1220 * Build a memory pool structure and initialize it
1221 * Macro uses __memory_pool_block_set_count global symbol,
1222 * block set addresses and buffer address, it may be called only after
1223 * _build_block_set
1224 */
1225__asm__(".macro _build_mem_pool name, min_size, max_size, n_max\n\t"
1226 ".pushsection ._k_memory_pool,\"aw\","
1227 _SECTION_TYPE_SIGN "progbits\n\t"
1228 ".globl \\name\n\t"
1229 "\\name:\n\t"
1230 ".int \\max_size\n\t" /* max_block_size */
1231 ".int \\min_size\n\t" /* min_block_size */
1232 ".int \\n_max\n\t" /* nr_of_maxblocks */
1233 ".int __memory_pool_block_set_count\n\t" /* nr_of_block_sets */
1234 ".int _mem_pool_block_sets_\\name\n\t" /* block_set */
1235 ".int _mem_pool_buffer_\\name\n\t" /* bufblock */
1236 ".int 0\n\t" /* wait_q->head */
1237 ".int 0\n\t" /* wait_q->next */
1238 ".popsection\n\t"
1239 ".endm\n");
1240
1241#define _MEMORY_POOL_QUAD_BLOCK_DEFINE(name, min_size, max_size, n_max) \
1242 __asm__(".pushsection ._k_memory_pool.struct,\"aw\"," \
1243 _SECTION_TYPE_SIGN "progbits\n\t"); \
1244 __asm__("__memory_pool_min_block_size = " STRINGIFY(min_size) "\n\t"); \
1245 __asm__("__memory_pool_max_block_size = " STRINGIFY(max_size) "\n\t"); \
1246 __asm__("_build_quad_blocks " STRINGIFY(n_max) " " \
1247 STRINGIFY(name) "\n\t"); \
1248 __asm__(".popsection\n\t")
1249
1250#define _MEMORY_POOL_BLOCK_SETS_DEFINE(name, min_size, max_size, n_max) \
1251 __asm__("__memory_pool_block_set_count = 0\n\t"); \
1252 __asm__("__memory_pool_max_block_size = " STRINGIFY(max_size) "\n\t"); \
1253 __asm__(".pushsection ._k_memory_pool.struct,\"aw\"," \
1254 _SECTION_TYPE_SIGN "progbits\n\t"); \
1255 __asm__("_mem_pool_block_sets_" STRINGIFY(name) ":\n\t"); \
1256 __asm__("_build_block_set " STRINGIFY(n_max) " " \
1257 STRINGIFY(name) "\n\t"); \
1258 __asm__("_mem_pool_block_set_count_" STRINGIFY(name) ":\n\t"); \
1259 __asm__(".int __memory_pool_block_set_count\n\t"); \
1260 __asm__(".popsection\n\t"); \
1261 extern uint32_t _mem_pool_block_set_count_##name; \
1262 extern struct k_mem_pool_block_set _mem_pool_block_sets_##name[]
1263
1264#define _MEMORY_POOL_BUFFER_DEFINE(name, max_size, n_max) \
1265 char __noinit _mem_pool_buffer_##name[(max_size) * (n_max)]
1266
1267#define K_MEMORY_POOL_DEFINE(name, min_size, max_size, n_max) \
1268 _MEMORY_POOL_QUAD_BLOCK_DEFINE(name, min_size, max_size, n_max); \
1269 _MEMORY_POOL_BLOCK_SETS_DEFINE(name, min_size, max_size, n_max); \
1270 _MEMORY_POOL_BUFFER_DEFINE(name, max_size, n_max); \
1271 __asm__("_build_mem_pool " STRINGIFY(name) " " STRINGIFY(min_size) " " \
1272 STRINGIFY(max_size) " " STRINGIFY(n_max) "\n\t"); \
1273 extern struct k_mem_pool name
1274
1275/*
1276 * Dummy function that assigns the value of sizeof(struct k_mem_pool_quad_block)
1277 * to __memory_pool_quad_block_size absolute symbol.
1278 * This function does not get called, but compiler calculates the value and
1279 * assigns it to the absolute symbol, that, in turn is used by assembler macros.
1280 */
1281static void __attribute__ ((used)) __k_mem_pool_quad_block_size_define(void)
1282{
1283 __asm__(".globl __memory_pool_quad_block_size\n\t"
1284 "__memory_pool_quad_block_size = %c0\n\t"
1285 :
1286 : "n"(sizeof(struct k_mem_pool_quad_block)));
1287}
1288
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001289#define K_MEM_POOL_SIZE(max_block_size, num_max_blocks) \
1290 (sizeof(struct k_mem_pool) + ((max_block_size) * (num_max_blocks)))
1291
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001292extern int k_mem_pool_alloc(struct k_mem_pool *pool, struct k_mem_block *block,
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001293 int size, int32_t timeout);
1294extern void k_mem_pool_free(struct k_mem_block *block);
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001295extern void k_mem_pool_defrag(struct k_mem_pool *pool);
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001296extern void *k_malloc(uint32_t size);
1297extern void k_free(void *p);
1298
1299/*
1300 * legacy.h must be before arch/cpu.h to allow the ioapic/loapic drivers to
1301 * hook into the device subsystem, which itself uses nanokernel semaphores,
1302 * and thus currently requires the definition of nano_sem.
1303 */
1304#include <legacy.h>
1305#include <arch/cpu.h>
1306
1307/*
1308 * private APIs that are utilized by one or more public APIs
1309 */
1310
1311extern struct k_thread_static_init _k_task_list_start[];
1312extern struct k_thread_static_init _k_task_list_end[];
1313
1314#define _FOREACH_STATIC_THREAD(thread_init) \
1315 for (struct k_thread_static_init *thread_init = _k_task_list_start; \
1316 thread_init < _k_task_list_end; thread_init++)
1317
1318extern int _is_thread_essential(void);
1319static inline int is_in_any_group(struct k_thread_static_init *thread_init,
1320 uint32_t groups)
1321{
1322 return !!(thread_init->init_groups & groups);
1323}
1324extern void _init_static_threads(void);
1325
1326#ifdef __cplusplus
1327}
1328#endif
1329
1330#endif /* _kernel__h_ */