blob: 1828b016fb404a22168395207b9b69b2499d91e8 [file] [log] [blame]
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/**
18 * @file
19 *
20 * @brief Public kernel APIs.
21 */
22
23#ifndef _kernel__h_
24#define _kernel__h_
25
26#include <stddef.h>
27#include <stdint.h>
28#include <toolchain.h>
29#include <sections.h>
30#include <atomic.h>
31#include <errno.h>
32#include <misc/__assert.h>
33#include <misc/dlist.h>
34#include <misc/slist.h>
35
36#ifdef __cplusplus
37extern "C" {
38#endif
39
40#ifdef CONFIG_KERNEL_V2_DEBUG
41#define K_DEBUG(fmt, ...) printk("[%s] " fmt, __func__, ##__VA_ARGS__)
42#else
43#define K_DEBUG(fmt, ...)
44#endif
45
46#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
47#define K_PRIO_PREEMPT(x) (x)
48
49#define K_FOREVER (-1)
50#define K_NO_WAIT 0
51
52#define K_ANY NULL
53#define K_END NULL
54
55#define K_OBJ(name, size) char name[size] __aligned(4)
56
57#if CONFIG_NUM_COOP_PRIORITIES > 0
58#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
59#else
60#define K_HIGHEST_THREAD_PRIO 0
61#endif
62
63#if CONFIG_NUM_PREEMPT_PRIORITIES > 0
64#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
65#else
66#define K_LOWEST_THREAD_PRIO -1
67#endif
68
69#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
70#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
71
72typedef sys_dlist_t _wait_q_t;
73
74#ifdef CONFIG_DEBUG_TRACING_KERNEL_OBJECTS
75#define _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(type) struct type *__next
76#define _DEBUG_TRACING_KERNEL_OBJECTS_INIT .__next = NULL,
77#else
78#define _DEBUG_TRACING_KERNEL_OBJECTS_INIT
79#define _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(type)
80#endif
81
82#define k_thread tcs
83struct tcs;
84struct k_mutex;
85struct k_sem;
86struct k_event;
87struct k_msgq;
88struct k_mbox;
89struct k_pipe;
90struct k_fifo;
91struct k_lifo;
92struct k_stack;
93struct k_mem_map;
94struct k_mem_pool;
95struct k_timer;
96
97typedef struct tcs *k_tid_t;
98typedef struct k_mem_pool *k_mem_pool_t;
99
100/* threads/scheduler/execution contexts */
101
102enum execution_context_types {
103 K_ISR = 0,
104 K_COOP_THREAD,
105 K_PREEMPT_THREAD,
106};
107
108struct k_thread_config {
109 char *stack;
110 unsigned stack_size;
111 unsigned prio;
112};
113
114typedef void (*k_thread_entry_t)(void *p1, void *p2, void *p3);
115extern k_tid_t k_thread_spawn(char *stack, unsigned stack_size,
116 void (*entry)(void *, void *, void*),
117 void *p1, void *p2, void *p3,
118 int32_t prio, uint32_t options, int32_t delay);
119
120extern void k_sleep(int32_t duration);
121extern void k_busy_wait(uint32_t usec_to_wait);
122extern void k_yield(void);
123extern void k_wakeup(k_tid_t thread);
124extern k_tid_t k_current_get(void);
125extern k_tid_t k_current_get(void);
126extern int k_current_priority_get(void);
127extern int k_thread_cancel(k_tid_t thread);
128
129extern void k_thread_abort(k_tid_t thread);
130
131#define K_THREAD_GROUP_EXE 0x1
132#define K_THREAD_GROUP_SYS 0x2
133#define K_THREAD_GROUP_FPU 0x4
134
135/* XXX - doesn't work because CONFIG_ARCH is a string */
136#if 0
137/* arch-specific groups */
138#if CONFIG_ARCH == "x86"
139#define K_THREAD_GROUP_SSE 0x4
140#endif
141#endif
142
143#ifdef CONFIG_NANO_TIMEOUTS
144#define _THREAD_TIMEOUT_INIT(obj) \
145 (obj).nano_timeout = { \
146 .node = { {0}, {0} }, \
147 .tcs = NULL, \
148 .wait_q = NULL, \
149 .delta_ticks_from_prev = -1, \
150 },
151#else
152#define _THREAD_TIMEOUT_INIT(obj)
153#endif
154
155#ifdef CONFIG_ERRNO
156#define _THREAD_ERRNO_INIT(obj) (obj).errno_var = 0,
157#else
158#define _THREAD_ERRNO_INIT(obj)
159#endif
160
161struct k_thread_static_init {
162 uint32_t init_groups;
163 int init_prio;
164 void (*init_entry)(void *, void *, void *);
165 void *init_p1;
166 void *init_p2;
167 void *init_p3;
168 void (*init_abort)(void);
169 union {
170 char *init_stack;
171 struct k_thread *thread;
172 };
173 unsigned int init_stack_size;
174};
175
176#define K_THREAD_INITIALIZER(stack, stack_size, \
177 entry, p1, p2, p3, \
178 abort, prio, groups) \
179 { \
180 .init_groups = (groups), \
181 .init_prio = (prio), \
182 .init_entry = entry, \
183 .init_p1 = (void *)p1, \
184 .init_p2 = (void *)p2, \
185 .init_p3 = (void *)p3, \
186 .init_abort = abort, \
187 .init_stack = (stack), \
188 .init_stack_size = (stack_size), \
189 }
190
191/*
192 * Define thread initializer object and initialize it
193 * NOTE: For thread group functions thread initializers must be organized
194 * in array and thus should not have gaps between them.
195 * On x86 by default compiler aligns them by 32 byte boundary. To prevent
196 * this 32-bit alignment in specified here.
197 * k_thread_static_init structure sise needs to be kept 32-bit aligned as well
198 */
199#define K_THREAD_OBJ_DEFINE(name, stack_size, \
200 entry, p1, p2, p3, \
201 abort, prio, groups) \
202 extern void entry(void *, void *, void *); \
203 char __noinit __stack _k_thread_obj_##name[stack_size]; \
204 struct k_thread_static_init _k_thread_init_##name __aligned(4) \
205 __in_section(_k_task_list, private, task) = \
206 K_THREAD_INITIALIZER(_k_thread_obj_##name, stack_size, \
207 entry, p1, p2, p3, abort, prio, groups)
208
209#define K_THREAD_DEFINE(name, stack_size, entry, p1, p2, p3, \
210 abort, prio, groups) \
211 K_THREAD_OBJ_DEFINE(name, stack_size, entry, p1, p2, p3, \
212 abort, prio, groups); \
213 k_tid_t const name = (k_tid_t)_k_thread_obj_##name
214
215/* extern int k_thread_prio_get(k_tid_t thread); in sched.h */
216extern void k_thread_priority_set(k_tid_t thread, int prio);
217
218#if 0
219extern int k_thread_suspend(k_tid_t thread);
220extern int k_thread_resume(k_tid_t thread);
221extern int k_thread_entry_set(k_tid_t thread,
222 void (*entry)(void*, void*, void*);
223extern int k_thread_abort_handler_set(k_tid_t thread,
224 void (*handler)(void));
225#endif
226
227extern void k_sched_time_slice_set(int32_t slice, int prio);
228extern int k_workload_get(void);
229extern void k_workload_time_slice_set(int32_t slice);
230
231extern int k_am_in_isr(void);
232
233extern void k_thread_custom_data_set(void *value);
234extern void *k_thread_custom_data_get(void);
235
236/**
237 * kernel timing
238 */
239
240/* timeouts */
241
242struct _timeout;
243typedef void (*_timeout_func_t)(struct _timeout *t);
244
245struct _timeout {
246 sys_dlist_t node;
247 struct tcs *tcs;
248 sys_dlist_t *wait_q;
249 int32_t delta_ticks_from_prev;
250 _timeout_func_t func;
251};
252
253/* timers */
254
255struct k_timer {
256 /*
257 * _timeout structure must be first here if we want to use
258 * dynamic timer allocation. timeout.node is used in the double-linked
259 * list of free timers
260 */
261 struct _timeout timeout;
262
263 /* wait queue for the threads waiting on this timer */
264 _wait_q_t wait_q;
265
266 /* runs in ISR context */
267 void (*handler)(void *);
268 void *handler_arg;
269
270 /* runs in the context of the thread that calls k_timer_stop() */
271 void (*stop_handler)(void *);
272 void *stop_handler_arg;
273
274 /* timer period */
275 int32_t period;
276
277 /* user supplied data pointer returned to the thread*/
278 void *user_data;
279
280 /* user supplied data pointer */
281 void *user_data_internal;
282
283 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_timer);
284};
285
286#define K_TIMER_INITIALIZER(obj) \
287 { \
288 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
289 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
290 }
291
292#define K_TIMER_DEFINE(name) \
293 struct k_timer name = K_TIMER_INITIALIZER(name)
294
295extern void k_timer_init(struct k_timer *timer, void *data);
Andy Ross8d8b2ac2016-09-23 10:08:54 -0700296
297#if (CONFIG_NUM_DYNAMIC_TIMERS > 0)
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400298extern struct k_timer *k_timer_alloc(void);
299extern void k_timer_free(struct k_timer *timer);
Andy Ross8d8b2ac2016-09-23 10:08:54 -0700300#endif
301
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400302extern void k_timer_start(struct k_timer *timer,
303 int32_t duration, int32_t period,
304 void (*handler)(void *), void *handler_arg,
305 void (*stop_handler)(void *), void *stop_handler_arg);
306extern void k_timer_restart(struct k_timer *timer, int32_t duration,
307 int32_t period);
308extern void k_timer_stop(struct k_timer *timer);
309extern int k_timer_test(struct k_timer *timer, void **data, int wait);
310extern int32_t k_timer_remaining_get(struct k_timer *timer);
311extern int64_t k_uptime_get(void);
312extern int64_t k_uptime_delta(int64_t *reftime);
313extern bool k_timer_pool_is_empty(void);
314
315extern uint32_t k_cycle_get_32(void);
316
317#if (CONFIG_NUM_DYNAMIC_TIMERS > 0)
318extern void _k_dyamic_timer_init(void);
319#else
320#define _k_dyamic_timer_init()
321#endif
322
323/**
324 * data transfers (basic)
325 */
326
327/* fifos */
328
329struct k_fifo {
330 _wait_q_t wait_q;
331 sys_slist_t data_q;
332
333 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_fifo);
334};
335
336extern void k_fifo_init(struct k_fifo *fifo);
337extern void k_fifo_put(struct k_fifo *fifo, void *data);
338extern void k_fifo_put_list(struct k_fifo *fifo, void *head, void *tail);
339extern void k_fifo_put_slist(struct k_fifo *fifo, sys_slist_t *list);
340extern void *k_fifo_get(struct k_fifo *fifo, int32_t timeout);
341
342#define K_FIFO_INITIALIZER(obj) \
343 { \
344 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
345 .data_q = SYS_DLIST_STATIC_INIT(&obj.data_q), \
346 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
347 }
348
349#define K_FIFO_DEFINE(name) \
Benjamin Walsh0bee91d2016-09-15 17:16:38 -0400350 struct k_fifo name = K_FIFO_INITIALIZER(name)
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400351
352/* lifos */
353
354struct k_lifo {
355 _wait_q_t wait_q;
356 void *list;
357
358 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_lifo);
359};
360
361extern void k_lifo_init(struct k_lifo *lifo);
362extern void k_lifo_put(struct k_lifo *lifo, void *data);
363extern void *k_lifo_get(struct k_lifo *lifo, int32_t timeout);
364
365#define K_LIFO_INITIALIZER(obj) \
366 { \
367 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
368 .list = NULL, \
369 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
370 }
371
372#define K_LIFO_DEFINE(name) \
Benjamin Walsh0bee91d2016-09-15 17:16:38 -0400373 struct k_lifo name = K_LIFO_INITIALIZER(name)
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400374
375/* stacks */
376
377struct k_stack {
378 _wait_q_t wait_q;
379 uint32_t *base, *next, *top;
380
381 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_stack);
382};
383
384extern void k_stack_init(struct k_stack *stack, int num_entries);
385extern void k_stack_init_with_buffer(struct k_stack *stack, int num_entries,
386 uint32_t *buffer);
387extern void k_stack_push(struct k_stack *stack, uint32_t data);
388extern int k_stack_pop(struct k_stack *stack, uint32_t *data, int32_t timeout);
389
390#define K_STACK_INITIALIZER(obj, stack_num_entries, stack_buffer) \
391 { \
392 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
393 .base = stack_buffer, \
394 .next = stack_buffer, \
395 .top = stack_buffer + stack_num_entries, \
396 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
397 }
398
399#define K_STACK_DEFINE(name, stack_num_entries) \
400 uint32_t __noinit _k_stack_buf_##name[stack_num_entries]; \
Benjamin Walsh0bee91d2016-09-15 17:16:38 -0400401 struct k_stack name = \
402 K_STACK_INITIALIZER(name, stack_num_entries, \
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400403 _k_stack_buf_##name); \
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400404
405#define K_STACK_SIZE(stack_num_entries) \
406 (sizeof(struct k_stack) + (stack_num_entries * sizeof(uint32_t)))
407
408/**
409 * workqueues
410 */
411
412struct k_work;
413
414typedef void (*k_work_handler_t)(struct k_work *);
415
416/**
417 * A workqueue is a fiber that executes @ref k_work items that are
418 * queued to it. This is useful for drivers which need to schedule
419 * execution of code which might sleep from ISR context. The actual
420 * fiber identifier is not stored in the structure in order to save
421 * space.
422 */
423struct k_work_q {
424 struct k_fifo fifo;
425};
426
427/**
428 * @brief Work flags.
429 */
430enum {
431 K_WORK_STATE_IDLE, /* Work item idle state */
432};
433
434/**
435 * @brief An item which can be scheduled on a @ref k_work_q.
436 */
437struct k_work {
438 void *_reserved; /* Used by k_fifo implementation. */
439 k_work_handler_t handler;
440 atomic_t flags[1];
441};
442
443/**
444 * @brief Statically initialize work item
445 */
446#define K_WORK_INITIALIZER(work_handler) \
447 { \
448 ._reserved = NULL, \
449 .handler = work_handler, \
450 .flags = { 1 } \
451 }
452
453/**
454 * @brief Dynamically initialize work item
455 */
456static inline void k_work_init(struct k_work *work, k_work_handler_t handler)
457{
458 atomic_set_bit(work->flags, K_WORK_STATE_IDLE);
459 work->handler = handler;
460}
461
462/**
463 * @brief Submit a work item to a workqueue.
464 */
465static inline void k_work_submit_to_queue(struct k_work_q *work_q,
466 struct k_work *work)
467{
468 if (!atomic_test_and_clear_bit(work->flags, K_WORK_STATE_IDLE)) {
469 __ASSERT_NO_MSG(0);
470 } else {
471 k_fifo_put(&work_q->fifo, work);
472 }
473}
474
475/**
476 * @brief Start a new workqueue. This routine can be called from either
477 * fiber or task context.
478 */
479extern void k_work_q_start(struct k_work_q *work_q,
480 const struct k_thread_config *config);
481
482#if defined(CONFIG_NANO_TIMEOUTS)
483
484 /*
485 * @brief An item which can be scheduled on a @ref k_work_q with a
486 * delay.
487 */
488struct k_delayed_work {
489 struct k_work work;
490 struct _timeout timeout;
491 struct k_work_q *work_q;
492};
493
494/**
495 * @brief Initialize delayed work
496 */
497void k_delayed_work_init(struct k_delayed_work *work,
498 k_work_handler_t handler);
499
500/**
501 * @brief Submit a delayed work item to a workqueue.
502 *
503 * This procedure schedules a work item to be processed after a delay.
504 * Once the delay has passed, the work item is submitted to the work queue:
505 * at this point, it is no longer possible to cancel it. Once the work item's
506 * handler is about to be executed, the work is considered complete and can be
507 * resubmitted.
508 *
509 * Care must be taken if the handler blocks or yield as there is no implicit
510 * mutual exclusion mechanism. Such usage is not recommended and if necessary,
511 * it should be explicitly done between the submitter and the handler.
512 *
513 * @param work_q to schedule the work item
514 * @param work Delayed work item
515 * @param ticks Ticks to wait before scheduling the work item
516 *
517 * @return 0 in case of success or negative value in case of error.
518 */
519int k_delayed_work_submit_to_queue(struct k_work_q *work_q,
520 struct k_delayed_work *work,
521 int32_t ticks);
522
523/**
524 * @brief Cancel a delayed work item
525 *
526 * This procedure cancels a scheduled work item. If the work has been completed
527 * or is idle, this will do nothing. The only case where this can fail is when
528 * the work has been submitted to the work queue, but the handler has not run
529 * yet.
530 *
531 * @param work Delayed work item to be canceled
532 *
533 * @return 0 in case of success or negative value in case of error.
534 */
535int k_delayed_work_cancel(struct k_delayed_work *work);
536
537#endif /* CONFIG_NANO_TIMEOUTS */
538
539#if defined(CONFIG_SYSTEM_WORKQUEUE)
540
541extern struct k_work_q k_sys_work_q;
542
543/*
544 * @brief Submit a work item to the system workqueue.
545 *
546 * @ref k_work_submit_to_queue
547 *
548 * When using the system workqueue it is not recommended to block or yield
549 * on the handler since its fiber is shared system wide it may cause
550 * unexpected behavior.
551 */
552static inline void k_work_submit(struct k_work *work)
553{
554 k_work_submit_to_queue(&k_sys_work_q, work);
555}
556
557#if defined(CONFIG_NANO_TIMEOUTS)
558/*
559 * @brief Submit a delayed work item to the system workqueue.
560 *
561 * @ref k_delayed_work_submit_to_queue
562 *
563 * When using the system workqueue it is not recommended to block or yield
564 * on the handler since its fiber is shared system wide it may cause
565 * unexpected behavior.
566 */
567static inline int k_delayed_work_submit(struct k_delayed_work *work,
568 int ticks)
569{
570 return k_delayed_work_submit_to_queue(&k_sys_work_q, work, ticks);
571}
572
573#endif /* CONFIG_NANO_TIMEOUTS */
574#endif /* CONFIG_SYSTEM_WORKQUEUE */
575
576/**
577 * synchronization
578 */
579
580/* mutexes */
581
582struct k_mutex {
583 _wait_q_t wait_q;
584 struct tcs *owner;
585 uint32_t lock_count;
586 int owner_orig_prio;
587#ifdef CONFIG_OBJECT_MONITOR
588 int num_lock_state_changes;
589 int num_conflicts;
590#endif
591
592 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mutex);
593};
594
595#ifdef CONFIG_OBJECT_MONITOR
596#define _MUTEX_INIT_OBJECT_MONITOR \
597 .num_lock_state_changes = 0, .num_conflicts = 0,
598#else
599#define _MUTEX_INIT_OBJECT_MONITOR
600#endif
601
602#define K_MUTEX_INITIALIZER(obj) \
603 { \
604 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
605 .owner = NULL, \
606 .lock_count = 0, \
607 .owner_orig_prio = K_LOWEST_THREAD_PRIO, \
608 _MUTEX_INIT_OBJECT_MONITOR \
609 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
610 }
611
612#define K_MUTEX_DEFINE(name) \
613 struct k_mutex name = K_MUTEX_INITIALIZER(name)
614
615extern void k_mutex_init(struct k_mutex *mutex);
616extern int k_mutex_lock(struct k_mutex *mutex, int32_t timeout);
617extern void k_mutex_unlock(struct k_mutex *mutex);
618
619/* semaphores */
620
621struct k_sem {
622 _wait_q_t wait_q;
623 unsigned int count;
624 unsigned int limit;
625
626 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_sem);
627};
628
629extern void k_sem_init(struct k_sem *sem, unsigned int initial_count,
630 unsigned int limit);
631extern int k_sem_take(struct k_sem *sem, int32_t timeout);
632extern void k_sem_give(struct k_sem *sem);
633
Benjamin Walsh70c68b92016-09-21 10:37:34 -0400634static inline void k_sem_reset(struct k_sem *sem)
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400635{
636 sem->count = 0;
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400637}
638
Tomasz Bursztyka276086d2016-09-21 16:03:21 +0200639static inline unsigned int k_sem_count_get(struct k_sem *sem)
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400640{
641 return sem->count;
642}
643
Peter Mitsis45403672016-09-09 14:24:06 -0400644#ifdef CONFIG_SEMAPHORE_GROUPS
645/**
646 * @brief Take the first available semaphore
647 *
648 * Given a list of semaphore pointers, this routine will attempt to take one
649 * of them, waiting up to a maximum of @a timeout ms to do so. The taken
650 * semaphore is identified by @a sem (set to NULL on error).
651 *
652 * Be aware that the more semaphores specified in the group, the more stack
653 * space is required by the waiting thread.
654 *
655 * @param sem_array Array of semaphore pointers terminated by a K_END entry
656 * @param sem Identifies the semaphore that was taken
657 * @param timeout Maximum number of milliseconds to wait
658 *
659 * @retval 0 A semaphore was successfully taken
660 * @retval -EBUSY No semaphore was available (@a timeout = K_NO_WAIT)
661 * @retval -EAGAIN Time out occurred while waiting for semaphore
662 */
663
664extern int k_sem_group_take(struct k_sem *sem_array[], struct k_sem **sem,
665 int32_t timeout);
666
667/**
668 * @brief Give all the semaphores in the group
669 *
670 * This routine will give each semaphore in the array of semaphore pointers.
671 *
672 * @param sem_array Array of semaphore pointers terminated by a K_END entry
673 *
674 * @return N/A
675 */
676extern void k_sem_group_give(struct k_sem *sem_array[]);
677
678/**
679 * @brief Reset the count to zero on each semaphore in the array
680 *
681 * This routine resets the count of each semaphore in the group to zero.
682 * Note that it does NOT have any impact on any thread that might have
683 * been previously pending on any of the semaphores.
684 *
685 * @param sem_array Array of semaphore pointers terminated by a K_END entry
686 *
687 * @return N/A
688 */
689extern void k_sem_group_reset(struct k_sem *sem_array[]);
690#endif
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400691
692#define K_SEM_INITIALIZER(obj, initial_count, count_limit) \
693 { \
694 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
695 .count = initial_count, \
696 .limit = count_limit, \
697 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
698 }
699
700#define K_SEM_DEFINE(name, initial_count, count_limit) \
701 struct k_sem name = \
702 K_SEM_INITIALIZER(name, initial_count, count_limit)
703
704/* events */
705
706#define K_EVT_DEFAULT NULL
707#define K_EVT_IGNORE ((void *)(-1))
708
709typedef int (*k_event_handler_t)(struct k_event *);
710
711struct k_event {
712 k_event_handler_t handler;
713 atomic_t send_count;
714 struct k_work work_item;
715 struct k_sem sem;
716
717 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_event);
718};
719
720extern void _k_event_deliver(struct k_work *work);
721
722#define K_EVENT_INITIALIZER(obj, event_handler) \
723 { \
724 .handler = (k_event_handler_t)event_handler, \
725 .send_count = ATOMIC_INIT(0), \
726 .work_item = K_WORK_INITIALIZER(_k_event_deliver), \
727 .sem = K_SEM_INITIALIZER(obj.sem, 0, 1), \
728 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
729 }
730
731#define K_EVENT_DEFINE(name, event_handler) \
732 struct k_event name \
733 __in_section(_k_event_list, event, name) = \
734 K_EVENT_INITIALIZER(name, event_handler)
735
736extern void k_event_init(struct k_event *event, k_event_handler_t handler);
737extern int k_event_recv(struct k_event *event, int32_t timeout);
738extern void k_event_send(struct k_event *event);
739
740/**
741 * data transfers (complex)
742 */
743
744/* message queues */
745
746struct k_msgq {
747 _wait_q_t wait_q;
748 uint32_t msg_size;
749 uint32_t max_msgs;
750 char *buffer_start;
751 char *buffer_end;
752 char *read_ptr;
753 char *write_ptr;
754 uint32_t used_msgs;
755
756 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_msgq);
757};
758
759#define K_MSGQ_INITIALIZER(obj, q_depth, q_width, q_buffer) \
760 { \
761 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
762 .max_msgs = q_depth, \
763 .msg_size = q_width, \
764 .buffer_start = q_buffer, \
765 .buffer_end = q_buffer + (q_depth * q_width), \
766 .read_ptr = q_buffer, \
767 .write_ptr = q_buffer, \
768 .used_msgs = 0, \
769 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
770 }
771
772#define K_MSGQ_DEFINE(name, q_depth, q_width) \
773 static char __noinit _k_fifo_buf_##name[(q_depth) * (q_width)]; \
774 struct k_msgq name = \
775 K_MSGQ_INITIALIZER(name, q_depth, q_width, _k_fifo_buf_##name)
776
777#define K_MSGQ_SIZE(q_depth, q_width) \
778 ((sizeof(struct k_msgq)) + ((q_width) * (q_depth)))
779
780void k_msgq_init(struct k_msgq *q, uint32_t msg_size, uint32_t max_msgs,
781 char *buffer);
782extern int k_msgq_put(struct k_msgq *q, void *data, int32_t timeout);
783extern int k_msgq_get(struct k_msgq *q, void *data, int32_t timeout);
784extern void k_msgq_purge(struct k_msgq *q);
785
786static inline int k_msgq_num_used_get(struct k_msgq *q)
787{
788 return q->used_msgs;
789}
790
791struct k_mem_block {
792 k_mem_pool_t pool_id;
793 void *addr_in_pool;
794 void *data;
795 uint32_t req_size;
796};
797
798/* mailboxes */
799
800struct k_mbox_msg {
801 /** internal use only - needed for legacy API support */
802 uint32_t _mailbox;
803 /** size of message (in bytes) */
804 uint32_t size;
805 /** application-defined information value */
806 uint32_t info;
807 /** sender's message data buffer */
808 void *tx_data;
809 /** internal use only - needed for legacy API support */
810 void *_rx_data;
811 /** message data block descriptor */
812 struct k_mem_block tx_block;
813 /** source thread id */
814 k_tid_t rx_source_thread;
815 /** target thread id */
816 k_tid_t tx_target_thread;
817 /** internal use only - thread waiting on send (may be a dummy) */
818 k_tid_t _syncing_thread;
819#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
820 /** internal use only - semaphore used during asynchronous send */
821 struct k_sem *_async_sem;
822#endif
823};
824
825struct k_mbox {
826 _wait_q_t tx_msg_queue;
827 _wait_q_t rx_msg_queue;
828
829 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mbox);
830};
831
832#define K_MBOX_INITIALIZER(obj) \
833 { \
834 .tx_msg_queue = SYS_DLIST_STATIC_INIT(&obj.tx_msg_queue), \
835 .rx_msg_queue = SYS_DLIST_STATIC_INIT(&obj.rx_msg_queue), \
836 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
837 }
838
839#define K_MBOX_DEFINE(name) \
840 struct k_mbox name = \
841 K_MBOX_INITIALIZER(name) \
842
843#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
844extern void _k_mbox_init(void);
845#else
846#define _k_mbox_init()
847#endif
848
849extern void k_mbox_init(struct k_mbox *mbox);
850
851extern int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *msg,
852 int32_t timeout);
853extern void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *msg,
854 struct k_sem *sem);
855
856extern int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *msg,
857 void *buffer, int32_t timeout);
858extern void k_mbox_data_get(struct k_mbox_msg *msg, void *buffer);
859extern int k_mbox_data_block_get(struct k_mbox_msg *msg, k_mem_pool_t pool,
860 struct k_mem_block *block, int32_t timeout);
861
862/* pipes */
863
864struct k_pipe {
865 unsigned char *buffer; /* Pipe buffer: may be NULL */
866 size_t size; /* Buffer size */
867 size_t bytes_used; /* # bytes used in buffer */
868 size_t read_index; /* Where in buffer to read from */
869 size_t write_index; /* Where in buffer to write */
870
871 struct {
872 _wait_q_t readers; /* Reader wait queue */
873 _wait_q_t writers; /* Writer wait queue */
874 } wait_q;
875
876 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_pipe);
877};
878
879#define K_PIPE_INITIALIZER(obj, pipe_buffer_size, pipe_buffer) \
880 { \
881 .buffer = pipe_buffer, \
882 .size = pipe_buffer_size, \
883 .bytes_used = 0, \
884 .read_index = 0, \
885 .write_index = 0, \
886 .wait_q.writers = SYS_DLIST_STATIC_INIT(&obj.wait_q.writers), \
887 .wait_q.readers = SYS_DLIST_STATIC_INIT(&obj.wait_q.readers), \
888 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
889 }
890
891#define K_PIPE_DEFINE(name, pipe_buffer_size) \
892 static unsigned char __noinit _k_pipe_buf_##name[pipe_buffer_size]; \
893 struct k_pipe name = \
894 K_PIPE_INITIALIZER(name, pipe_buffer_size, _k_pipe_buf_##name)
895
896#define K_PIPE_SIZE(buffer_size) (sizeof(struct k_pipe) + buffer_size)
897
898#if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0)
899extern void _k_pipes_init(void);
900#else
901#define _k_pipes_init() do { } while (0)
902#endif
903
904/**
905 * @brief Runtime initialization of a pipe
906 *
907 * @param pipe Pointer to pipe to initialize
908 * @param buffer Pointer to buffer to use for pipe's ring buffer
909 * @param size Size of the pipe's ring buffer
910 *
911 * @return N/A
912 */
913extern void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer,
914 size_t size);
915
916/**
917 * @brief Put a message into the specified pipe
918 *
919 * This routine synchronously adds a message into the pipe specified by
920 * @a pipe. It will wait up to @a timeout for the pipe to accept
921 * @a num_bytes_to_write bytes of data. If by @a timeout, the pipe could not
922 * accept @a min_bytes bytes of data, it fails. Fewer than @a min_bytes will
923 * only ever be written to the pipe if K_NO_WAIT < @a timeout < K_FOREVER.
924 *
925 * @param pipe Pointer to the pipe
926 * @param buffer Data to put into the pipe
927 * @param num_bytes_to_write Desired number of bytes to put into the pipe
928 * @param num_bytes_written Number of bytes the pipe accepted
929 * @param min_bytes Minimum number of bytes accepted for success
930 * @param timeout Maximum number of milliseconds to wait
931 *
932 * @retval 0 At least @a min_bytes were sent
933 * @retval -EIO Request can not be satisfied (@a timeout is K_NO_WAIT)
934 * @retval -EAGAIN Fewer than @a min_bytes were sent
935 */
936extern int k_pipe_put(struct k_pipe *pipe, void *buffer,
937 size_t num_bytes_to_write, size_t *num_bytes_written,
938 size_t min_bytes, int32_t timeout);
939
940/**
941 * @brief Get a message from the specified pipe
942 *
943 * This routine synchronously retrieves a message from the pipe specified by
944 * @a pipe. It will wait up to @a timeout to retrieve @a num_bytes_to_read
945 * bytes of data from the pipe. If by @a timeout, the pipe could not retrieve
946 * @a min_bytes bytes of data, it fails. Fewer than @a min_bytes will
947 * only ever be retrieved from the pipe if K_NO_WAIT < @a timeout < K_FOREVER.
948 *
949 * @param pipe Pointer to the pipe
950 * @param buffer Location to place retrieved data
951 * @param num_bytes_to_read Desired number of bytes to retrieve from the pipe
952 * @param num_bytes_read Number of bytes retrieved from the pipe
953 * @param min_bytes Minimum number of bytes retrieved for success
954 * @param timeout Maximum number of milliseconds to wait
955 *
956 * @retval 0 At least @a min_bytes were transferred
957 * @retval -EIO Request can not be satisfied (@a timeout is K_NO_WAIT)
958 * @retval -EAGAIN Fewer than @a min_bytes were retrieved
959 */
960extern int k_pipe_get(struct k_pipe *pipe, void *buffer,
961 size_t num_bytes_to_read, size_t *num_bytes_read,
962 size_t min_bytes, int32_t timeout);
963
964/**
965 * @brief Send a message to the specified pipe
966 *
967 * This routine asynchronously sends a message from the pipe specified by
968 * @a pipe. Once all @a size bytes have been accepted by the pipe, it will
969 * free the memory block @a block and give the semaphore @a sem (if specified).
970 * Up to CONFIG_NUM_PIPE_ASYNC_MSGS asynchronous pipe messages can be in-flight
971 * at any given time.
972 *
973 * @param pipe Pointer to the pipe
974 * @param block Memory block containing data to send
975 * @param size Number of data bytes in memory block to send
976 * @param sem Semaphore to signal upon completion (else NULL)
977 *
978 * @retval N/A
979 */
980extern void k_pipe_block_put(struct k_pipe *pipe, struct k_mem_block *block,
981 size_t size, struct k_sem *sem);
982
983/**
984 * memory management
985 */
986
987/* memory maps */
988
989struct k_mem_map {
990 _wait_q_t wait_q;
991 int num_blocks;
992 int block_size;
993 char *buffer;
994 char *free_list;
995 int num_used;
996
997 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mem_map);
998};
999
1000#define K_MEM_MAP_INITIALIZER(obj, map_num_blocks, map_block_size, \
1001 map_buffer) \
1002 { \
1003 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
1004 .num_blocks = map_num_blocks, \
1005 .block_size = map_block_size, \
1006 .buffer = map_buffer, \
1007 .free_list = NULL, \
1008 .num_used = 0, \
1009 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
1010 }
1011
1012#define K_MEM_MAP_DEFINE(name, map_num_blocks, map_block_size) \
1013 char _k_mem_map_buf_##name[(map_num_blocks) * (map_block_size)]; \
1014 struct k_mem_map name \
1015 __in_section(_k_mem_map_ptr, private, mem_map) = \
1016 K_MEM_MAP_INITIALIZER(name, map_num_blocks, \
1017 map_block_size, _k_mem_map_buf_##name)
1018
1019#define K_MEM_MAP_SIZE(map_num_blocks, map_block_size) \
1020 (sizeof(struct k_mem_map) + ((map_num_blocks) * (map_block_size)))
1021
1022extern void _k_mem_map_init(void);
1023
1024extern void k_mem_map_init(struct k_mem_map *map, int num_blocks,
1025 int block_size, void *buffer);
1026extern int k_mem_map_alloc(struct k_mem_map *map, void **mem, int32_t timeout);
1027extern void k_mem_map_free(struct k_mem_map *map, void **mem);
1028
1029static inline int k_mem_map_num_used_get(struct k_mem_map *map)
1030{
1031 return map->num_used;
1032}
1033
1034/* memory pools */
1035
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001036/*
1037 * Memory pool requires a buffer and two arrays of structures for the
1038 * memory block accounting:
1039 * A set of arrays of k_mem_pool_quad_block structures where each keeps a
1040 * status of four blocks of memory.
1041 */
1042struct k_mem_pool_quad_block {
1043 char *mem_blocks; /* pointer to the first of four memory blocks */
1044 uint32_t mem_status; /* four bits. If bit is set, memory block is
1045 allocated */
1046};
1047/*
1048 * Memory pool mechanism uses one array of k_mem_pool_quad_block for accounting
1049 * blocks of one size. Block sizes go from maximal to minimal. Next memory
1050 * block size is 4 times less than the previous one and thus requires 4 times
1051 * bigger array of k_mem_pool_quad_block structures to keep track of the
1052 * memory blocks.
1053 */
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001054
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001055/*
1056 * The array of k_mem_pool_block_set keeps the information of each array of
1057 * k_mem_pool_quad_block structures
1058 */
1059struct k_mem_pool_block_set {
1060 int block_size; /* memory block size */
1061 int nr_of_entries; /* nr of quad block structures in the array */
1062 struct k_mem_pool_quad_block *quad_block;
1063 int count;
1064};
1065
1066/* Memory pool descriptor */
1067struct k_mem_pool {
1068 int max_block_size;
1069 int min_block_size;
1070 int nr_of_maxblocks;
1071 int nr_of_block_sets;
1072 struct k_mem_pool_block_set *block_set;
1073 char *bufblock;
1074 _wait_q_t wait_q;
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001075 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mem_pool);
1076};
1077
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001078#ifdef CONFIG_ARM
1079#define _SECTION_TYPE_SIGN "%"
1080#else
1081#define _SECTION_TYPE_SIGN "@"
1082#endif
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001083
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001084/*
1085 * Static memory pool initialization
1086 */
1087/*
1088 * Use .altmacro to be able to recalculate values and pass them as string
1089 * arguments when calling assembler macros resursively
1090 */
1091__asm__(".altmacro\n\t");
1092
1093/*
1094 * Recursively calls a macro
1095 * The followig global symbols need to be initialized:
1096 * __memory_pool_max_block_size - maximal size of the memory block
1097 * __memory_pool_min_block_size - minimal size of the memory block
1098 * Notes:
1099 * Global symbols are used due the fact that assembler macro allows only
1100 * one argument be passed with the % conversion
1101 * Some assemblers do not get division operation ("/"). To avoid it >> 2
1102 * is used instead of / 4.
1103 * n_max argument needs to go first in the invoked macro, as some
1104 * assemblers concatenate \name and %(\n_max * 4) arguments
1105 * if \name goes first
1106 */
1107__asm__(".macro __do_recurse macro_name, name, n_max\n\t"
1108 ".ifge __memory_pool_max_block_size >> 2 -"
1109 " __memory_pool_min_block_size\n\t\t"
1110 "__memory_pool_max_block_size = __memory_pool_max_block_size >> 2\n\t\t"
1111 "\\macro_name %(\\n_max * 4) \\name\n\t"
1112 ".endif\n\t"
1113 ".endm\n");
1114
1115/*
1116 * Build quad blocks
1117 * Macro allocates space in memory for the array of k_mem_pool_quad_block
1118 * structures and recursively calls itself for the next array, 4 times
1119 * larger.
1120 * The followig global symbols need to be initialized:
1121 * __memory_pool_max_block_size - maximal size of the memory block
1122 * __memory_pool_min_block_size - minimal size of the memory block
1123 * __memory_pool_quad_block_size - sizeof(struct k_mem_pool_quad_block)
1124 */
1125__asm__(".macro _build_quad_blocks n_max, name\n\t"
1126 "_mem_pool_quad_blocks_\\name\\()_\\n_max:\n\t"
1127 ".skip __memory_pool_quad_block_size * \\n_max >> 2\n\t"
1128 ".if \\n_max % 4\n\t\t"
1129 ".skip __memory_pool_quad_block_size\n\t"
1130 ".endif\n\t"
1131 "__do_recurse _build_quad_blocks \\name \\n_max\n\t"
1132 ".endm\n");
1133
1134/*
1135 * Build block sets and initialize them
1136 * Macro initializes the k_mem_pool_block_set structure and
1137 * recursively calls itself for the next one.
1138 * The followig global symbols need to be initialized:
1139 * __memory_pool_max_block_size - maximal size of the memory block
1140 * __memory_pool_min_block_size - minimal size of the memory block
1141 * __memory_pool_block_set_count, the number of the elements in the
1142 * block set array must be set to 0. Macro calculates it's real
1143 * value.
1144 * Since the macro initializes pointers to an array of k_mem_pool_quad_block
1145 * structures, _build_quad_blocks must be called prior it.
1146 */
1147__asm__(".macro _build_block_set n_max, name\n\t"
1148 ".int __memory_pool_max_block_size\n\t" /* block_size */
1149 ".if \\n_max % 4\n\t\t"
1150 ".int \\n_max >> 2 + 1\n\t" /* nr_of_entries */
1151 ".else\n\t\t"
1152 ".int \\n_max >> 2\n\t"
1153 ".endif\n\t"
1154 ".int _mem_pool_quad_blocks_\\name\\()_\\n_max\n\t" /* quad_block */
1155 ".int 0\n\t" /* count */
1156 "__memory_pool_block_set_count = __memory_pool_block_set_count + 1\n\t"
1157 "__do_recurse _build_block_set \\name \\n_max\n\t"
1158 ".endm\n");
1159
1160/*
1161 * Build a memory pool structure and initialize it
1162 * Macro uses __memory_pool_block_set_count global symbol,
1163 * block set addresses and buffer address, it may be called only after
1164 * _build_block_set
1165 */
1166__asm__(".macro _build_mem_pool name, min_size, max_size, n_max\n\t"
1167 ".pushsection ._k_memory_pool,\"aw\","
1168 _SECTION_TYPE_SIGN "progbits\n\t"
1169 ".globl \\name\n\t"
1170 "\\name:\n\t"
1171 ".int \\max_size\n\t" /* max_block_size */
1172 ".int \\min_size\n\t" /* min_block_size */
1173 ".int \\n_max\n\t" /* nr_of_maxblocks */
1174 ".int __memory_pool_block_set_count\n\t" /* nr_of_block_sets */
1175 ".int _mem_pool_block_sets_\\name\n\t" /* block_set */
1176 ".int _mem_pool_buffer_\\name\n\t" /* bufblock */
1177 ".int 0\n\t" /* wait_q->head */
1178 ".int 0\n\t" /* wait_q->next */
1179 ".popsection\n\t"
1180 ".endm\n");
1181
1182#define _MEMORY_POOL_QUAD_BLOCK_DEFINE(name, min_size, max_size, n_max) \
1183 __asm__(".pushsection ._k_memory_pool.struct,\"aw\"," \
1184 _SECTION_TYPE_SIGN "progbits\n\t"); \
1185 __asm__("__memory_pool_min_block_size = " STRINGIFY(min_size) "\n\t"); \
1186 __asm__("__memory_pool_max_block_size = " STRINGIFY(max_size) "\n\t"); \
1187 __asm__("_build_quad_blocks " STRINGIFY(n_max) " " \
1188 STRINGIFY(name) "\n\t"); \
1189 __asm__(".popsection\n\t")
1190
1191#define _MEMORY_POOL_BLOCK_SETS_DEFINE(name, min_size, max_size, n_max) \
1192 __asm__("__memory_pool_block_set_count = 0\n\t"); \
1193 __asm__("__memory_pool_max_block_size = " STRINGIFY(max_size) "\n\t"); \
1194 __asm__(".pushsection ._k_memory_pool.struct,\"aw\"," \
1195 _SECTION_TYPE_SIGN "progbits\n\t"); \
1196 __asm__("_mem_pool_block_sets_" STRINGIFY(name) ":\n\t"); \
1197 __asm__("_build_block_set " STRINGIFY(n_max) " " \
1198 STRINGIFY(name) "\n\t"); \
1199 __asm__("_mem_pool_block_set_count_" STRINGIFY(name) ":\n\t"); \
1200 __asm__(".int __memory_pool_block_set_count\n\t"); \
1201 __asm__(".popsection\n\t"); \
1202 extern uint32_t _mem_pool_block_set_count_##name; \
1203 extern struct k_mem_pool_block_set _mem_pool_block_sets_##name[]
1204
1205#define _MEMORY_POOL_BUFFER_DEFINE(name, max_size, n_max) \
1206 char __noinit _mem_pool_buffer_##name[(max_size) * (n_max)]
1207
1208#define K_MEMORY_POOL_DEFINE(name, min_size, max_size, n_max) \
1209 _MEMORY_POOL_QUAD_BLOCK_DEFINE(name, min_size, max_size, n_max); \
1210 _MEMORY_POOL_BLOCK_SETS_DEFINE(name, min_size, max_size, n_max); \
1211 _MEMORY_POOL_BUFFER_DEFINE(name, max_size, n_max); \
1212 __asm__("_build_mem_pool " STRINGIFY(name) " " STRINGIFY(min_size) " " \
1213 STRINGIFY(max_size) " " STRINGIFY(n_max) "\n\t"); \
1214 extern struct k_mem_pool name
1215
1216/*
1217 * Dummy function that assigns the value of sizeof(struct k_mem_pool_quad_block)
1218 * to __memory_pool_quad_block_size absolute symbol.
1219 * This function does not get called, but compiler calculates the value and
1220 * assigns it to the absolute symbol, that, in turn is used by assembler macros.
1221 */
1222static void __attribute__ ((used)) __k_mem_pool_quad_block_size_define(void)
1223{
1224 __asm__(".globl __memory_pool_quad_block_size\n\t"
1225 "__memory_pool_quad_block_size = %c0\n\t"
1226 :
1227 : "n"(sizeof(struct k_mem_pool_quad_block)));
1228}
1229
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001230#define K_MEM_POOL_SIZE(max_block_size, num_max_blocks) \
1231 (sizeof(struct k_mem_pool) + ((max_block_size) * (num_max_blocks)))
1232
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001233extern int k_mem_pool_alloc(struct k_mem_pool *pool, struct k_mem_block *block,
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001234 int size, int32_t timeout);
1235extern void k_mem_pool_free(struct k_mem_block *block);
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001236extern void k_mem_pool_defrag(struct k_mem_pool *pool);
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001237extern void *k_malloc(uint32_t size);
1238extern void k_free(void *p);
1239
1240/*
1241 * legacy.h must be before arch/cpu.h to allow the ioapic/loapic drivers to
1242 * hook into the device subsystem, which itself uses nanokernel semaphores,
1243 * and thus currently requires the definition of nano_sem.
1244 */
1245#include <legacy.h>
1246#include <arch/cpu.h>
1247
1248/*
1249 * private APIs that are utilized by one or more public APIs
1250 */
1251
1252extern struct k_thread_static_init _k_task_list_start[];
1253extern struct k_thread_static_init _k_task_list_end[];
1254
1255#define _FOREACH_STATIC_THREAD(thread_init) \
1256 for (struct k_thread_static_init *thread_init = _k_task_list_start; \
1257 thread_init < _k_task_list_end; thread_init++)
1258
1259extern int _is_thread_essential(void);
1260static inline int is_in_any_group(struct k_thread_static_init *thread_init,
1261 uint32_t groups)
1262{
1263 return !!(thread_init->init_groups & groups);
1264}
1265extern void _init_static_threads(void);
1266
1267#ifdef __cplusplus
1268}
1269#endif
1270
1271#endif /* _kernel__h_ */