blob: 35734a7aaeba2c391adecc9fbf2eddeb70a67ed3 [file] [log] [blame]
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/**
18 * @file
19 *
20 * @brief Public kernel APIs.
21 */
22
23#ifndef _kernel__h_
24#define _kernel__h_
25
26#include <stddef.h>
27#include <stdint.h>
28#include <toolchain.h>
29#include <sections.h>
30#include <atomic.h>
31#include <errno.h>
32#include <misc/__assert.h>
33#include <misc/dlist.h>
34#include <misc/slist.h>
35
36#ifdef __cplusplus
37extern "C" {
38#endif
39
40#ifdef CONFIG_KERNEL_V2_DEBUG
41#define K_DEBUG(fmt, ...) printk("[%s] " fmt, __func__, ##__VA_ARGS__)
42#else
43#define K_DEBUG(fmt, ...)
44#endif
45
46#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
47#define K_PRIO_PREEMPT(x) (x)
48
49#define K_FOREVER (-1)
50#define K_NO_WAIT 0
51
52#define K_ANY NULL
53#define K_END NULL
54
55#define K_OBJ(name, size) char name[size] __aligned(4)
56
57#if CONFIG_NUM_COOP_PRIORITIES > 0
58#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
59#else
60#define K_HIGHEST_THREAD_PRIO 0
61#endif
62
63#if CONFIG_NUM_PREEMPT_PRIORITIES > 0
64#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
65#else
66#define K_LOWEST_THREAD_PRIO -1
67#endif
68
69#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
70#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
71
72typedef sys_dlist_t _wait_q_t;
73
74#ifdef CONFIG_DEBUG_TRACING_KERNEL_OBJECTS
75#define _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(type) struct type *__next
76#define _DEBUG_TRACING_KERNEL_OBJECTS_INIT .__next = NULL,
77#else
78#define _DEBUG_TRACING_KERNEL_OBJECTS_INIT
79#define _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(type)
80#endif
81
82#define k_thread tcs
83struct tcs;
84struct k_mutex;
85struct k_sem;
86struct k_event;
87struct k_msgq;
88struct k_mbox;
89struct k_pipe;
90struct k_fifo;
91struct k_lifo;
92struct k_stack;
93struct k_mem_map;
94struct k_mem_pool;
95struct k_timer;
96
97typedef struct tcs *k_tid_t;
98typedef struct k_mem_pool *k_mem_pool_t;
99
100/* threads/scheduler/execution contexts */
101
102enum execution_context_types {
103 K_ISR = 0,
104 K_COOP_THREAD,
105 K_PREEMPT_THREAD,
106};
107
108struct k_thread_config {
109 char *stack;
110 unsigned stack_size;
111 unsigned prio;
112};
113
114typedef void (*k_thread_entry_t)(void *p1, void *p2, void *p3);
115extern k_tid_t k_thread_spawn(char *stack, unsigned stack_size,
116 void (*entry)(void *, void *, void*),
117 void *p1, void *p2, void *p3,
118 int32_t prio, uint32_t options, int32_t delay);
119
120extern void k_sleep(int32_t duration);
121extern void k_busy_wait(uint32_t usec_to_wait);
122extern void k_yield(void);
123extern void k_wakeup(k_tid_t thread);
124extern k_tid_t k_current_get(void);
125extern k_tid_t k_current_get(void);
126extern int k_current_priority_get(void);
127extern int k_thread_cancel(k_tid_t thread);
128
129extern void k_thread_abort(k_tid_t thread);
130
131#define K_THREAD_GROUP_EXE 0x1
132#define K_THREAD_GROUP_SYS 0x2
133#define K_THREAD_GROUP_FPU 0x4
134
135/* XXX - doesn't work because CONFIG_ARCH is a string */
136#if 0
137/* arch-specific groups */
138#if CONFIG_ARCH == "x86"
139#define K_THREAD_GROUP_SSE 0x4
140#endif
141#endif
142
143#ifdef CONFIG_NANO_TIMEOUTS
144#define _THREAD_TIMEOUT_INIT(obj) \
145 (obj).nano_timeout = { \
146 .node = { {0}, {0} }, \
147 .tcs = NULL, \
148 .wait_q = NULL, \
149 .delta_ticks_from_prev = -1, \
150 },
151#else
152#define _THREAD_TIMEOUT_INIT(obj)
153#endif
154
155#ifdef CONFIG_ERRNO
156#define _THREAD_ERRNO_INIT(obj) (obj).errno_var = 0,
157#else
158#define _THREAD_ERRNO_INIT(obj)
159#endif
160
161struct k_thread_static_init {
162 uint32_t init_groups;
163 int init_prio;
164 void (*init_entry)(void *, void *, void *);
165 void *init_p1;
166 void *init_p2;
167 void *init_p3;
168 void (*init_abort)(void);
169 union {
170 char *init_stack;
171 struct k_thread *thread;
172 };
173 unsigned int init_stack_size;
174};
175
176#define K_THREAD_INITIALIZER(stack, stack_size, \
177 entry, p1, p2, p3, \
178 abort, prio, groups) \
179 { \
180 .init_groups = (groups), \
181 .init_prio = (prio), \
182 .init_entry = entry, \
183 .init_p1 = (void *)p1, \
184 .init_p2 = (void *)p2, \
185 .init_p3 = (void *)p3, \
186 .init_abort = abort, \
187 .init_stack = (stack), \
188 .init_stack_size = (stack_size), \
189 }
190
191/*
192 * Define thread initializer object and initialize it
193 * NOTE: For thread group functions thread initializers must be organized
194 * in array and thus should not have gaps between them.
195 * On x86 by default compiler aligns them by 32 byte boundary. To prevent
196 * this 32-bit alignment in specified here.
197 * k_thread_static_init structure sise needs to be kept 32-bit aligned as well
198 */
199#define K_THREAD_OBJ_DEFINE(name, stack_size, \
200 entry, p1, p2, p3, \
201 abort, prio, groups) \
202 extern void entry(void *, void *, void *); \
203 char __noinit __stack _k_thread_obj_##name[stack_size]; \
204 struct k_thread_static_init _k_thread_init_##name __aligned(4) \
205 __in_section(_k_task_list, private, task) = \
206 K_THREAD_INITIALIZER(_k_thread_obj_##name, stack_size, \
207 entry, p1, p2, p3, abort, prio, groups)
208
209#define K_THREAD_DEFINE(name, stack_size, entry, p1, p2, p3, \
210 abort, prio, groups) \
211 K_THREAD_OBJ_DEFINE(name, stack_size, entry, p1, p2, p3, \
212 abort, prio, groups); \
213 k_tid_t const name = (k_tid_t)_k_thread_obj_##name
214
215/* extern int k_thread_prio_get(k_tid_t thread); in sched.h */
216extern void k_thread_priority_set(k_tid_t thread, int prio);
217
218#if 0
219extern int k_thread_suspend(k_tid_t thread);
220extern int k_thread_resume(k_tid_t thread);
221extern int k_thread_entry_set(k_tid_t thread,
222 void (*entry)(void*, void*, void*);
223extern int k_thread_abort_handler_set(k_tid_t thread,
224 void (*handler)(void));
225#endif
226
227extern void k_sched_time_slice_set(int32_t slice, int prio);
228extern int k_workload_get(void);
229extern void k_workload_time_slice_set(int32_t slice);
230
231extern int k_am_in_isr(void);
232
233extern void k_thread_custom_data_set(void *value);
234extern void *k_thread_custom_data_get(void);
235
236/**
237 * kernel timing
238 */
239
240/* timeouts */
241
242struct _timeout;
243typedef void (*_timeout_func_t)(struct _timeout *t);
244
245struct _timeout {
246 sys_dlist_t node;
247 struct tcs *tcs;
248 sys_dlist_t *wait_q;
249 int32_t delta_ticks_from_prev;
250 _timeout_func_t func;
251};
252
253/* timers */
254
255struct k_timer {
256 /*
257 * _timeout structure must be first here if we want to use
258 * dynamic timer allocation. timeout.node is used in the double-linked
259 * list of free timers
260 */
261 struct _timeout timeout;
262
263 /* wait queue for the threads waiting on this timer */
264 _wait_q_t wait_q;
265
266 /* runs in ISR context */
267 void (*handler)(void *);
268 void *handler_arg;
269
270 /* runs in the context of the thread that calls k_timer_stop() */
271 void (*stop_handler)(void *);
272 void *stop_handler_arg;
273
274 /* timer period */
275 int32_t period;
276
277 /* user supplied data pointer returned to the thread*/
278 void *user_data;
279
280 /* user supplied data pointer */
281 void *user_data_internal;
282
283 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_timer);
284};
285
286#define K_TIMER_INITIALIZER(obj) \
287 { \
288 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
289 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
290 }
291
292#define K_TIMER_DEFINE(name) \
293 struct k_timer name = K_TIMER_INITIALIZER(name)
294
295extern void k_timer_init(struct k_timer *timer, void *data);
296extern struct k_timer *k_timer_alloc(void);
297extern void k_timer_free(struct k_timer *timer);
298extern void k_timer_start(struct k_timer *timer,
299 int32_t duration, int32_t period,
300 void (*handler)(void *), void *handler_arg,
301 void (*stop_handler)(void *), void *stop_handler_arg);
302extern void k_timer_restart(struct k_timer *timer, int32_t duration,
303 int32_t period);
304extern void k_timer_stop(struct k_timer *timer);
305extern int k_timer_test(struct k_timer *timer, void **data, int wait);
306extern int32_t k_timer_remaining_get(struct k_timer *timer);
307extern int64_t k_uptime_get(void);
308extern int64_t k_uptime_delta(int64_t *reftime);
309extern bool k_timer_pool_is_empty(void);
310
311extern uint32_t k_cycle_get_32(void);
312
313#if (CONFIG_NUM_DYNAMIC_TIMERS > 0)
314extern void _k_dyamic_timer_init(void);
315#else
316#define _k_dyamic_timer_init()
317#endif
318
319/**
320 * data transfers (basic)
321 */
322
323/* fifos */
324
325struct k_fifo {
326 _wait_q_t wait_q;
327 sys_slist_t data_q;
328
329 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_fifo);
330};
331
332extern void k_fifo_init(struct k_fifo *fifo);
333extern void k_fifo_put(struct k_fifo *fifo, void *data);
334extern void k_fifo_put_list(struct k_fifo *fifo, void *head, void *tail);
335extern void k_fifo_put_slist(struct k_fifo *fifo, sys_slist_t *list);
336extern void *k_fifo_get(struct k_fifo *fifo, int32_t timeout);
337
338#define K_FIFO_INITIALIZER(obj) \
339 { \
340 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
341 .data_q = SYS_DLIST_STATIC_INIT(&obj.data_q), \
342 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
343 }
344
345#define K_FIFO_DEFINE(name) \
Benjamin Walsh0bee91d2016-09-15 17:16:38 -0400346 struct k_fifo name = K_FIFO_INITIALIZER(name)
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400347
348/* lifos */
349
350struct k_lifo {
351 _wait_q_t wait_q;
352 void *list;
353
354 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_lifo);
355};
356
357extern void k_lifo_init(struct k_lifo *lifo);
358extern void k_lifo_put(struct k_lifo *lifo, void *data);
359extern void *k_lifo_get(struct k_lifo *lifo, int32_t timeout);
360
361#define K_LIFO_INITIALIZER(obj) \
362 { \
363 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
364 .list = NULL, \
365 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
366 }
367
368#define K_LIFO_DEFINE(name) \
Benjamin Walsh0bee91d2016-09-15 17:16:38 -0400369 struct k_lifo name = K_LIFO_INITIALIZER(name)
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400370
371/* stacks */
372
373struct k_stack {
374 _wait_q_t wait_q;
375 uint32_t *base, *next, *top;
376
377 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_stack);
378};
379
380extern void k_stack_init(struct k_stack *stack, int num_entries);
381extern void k_stack_init_with_buffer(struct k_stack *stack, int num_entries,
382 uint32_t *buffer);
383extern void k_stack_push(struct k_stack *stack, uint32_t data);
384extern int k_stack_pop(struct k_stack *stack, uint32_t *data, int32_t timeout);
385
386#define K_STACK_INITIALIZER(obj, stack_num_entries, stack_buffer) \
387 { \
388 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
389 .base = stack_buffer, \
390 .next = stack_buffer, \
391 .top = stack_buffer + stack_num_entries, \
392 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
393 }
394
395#define K_STACK_DEFINE(name, stack_num_entries) \
396 uint32_t __noinit _k_stack_buf_##name[stack_num_entries]; \
Benjamin Walsh0bee91d2016-09-15 17:16:38 -0400397 struct k_stack name = \
398 K_STACK_INITIALIZER(name, stack_num_entries, \
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400399 _k_stack_buf_##name); \
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400400
401#define K_STACK_SIZE(stack_num_entries) \
402 (sizeof(struct k_stack) + (stack_num_entries * sizeof(uint32_t)))
403
404/**
405 * workqueues
406 */
407
408struct k_work;
409
410typedef void (*k_work_handler_t)(struct k_work *);
411
412/**
413 * A workqueue is a fiber that executes @ref k_work items that are
414 * queued to it. This is useful for drivers which need to schedule
415 * execution of code which might sleep from ISR context. The actual
416 * fiber identifier is not stored in the structure in order to save
417 * space.
418 */
419struct k_work_q {
420 struct k_fifo fifo;
421};
422
423/**
424 * @brief Work flags.
425 */
426enum {
427 K_WORK_STATE_IDLE, /* Work item idle state */
428};
429
430/**
431 * @brief An item which can be scheduled on a @ref k_work_q.
432 */
433struct k_work {
434 void *_reserved; /* Used by k_fifo implementation. */
435 k_work_handler_t handler;
436 atomic_t flags[1];
437};
438
439/**
440 * @brief Statically initialize work item
441 */
442#define K_WORK_INITIALIZER(work_handler) \
443 { \
444 ._reserved = NULL, \
445 .handler = work_handler, \
446 .flags = { 1 } \
447 }
448
449/**
450 * @brief Dynamically initialize work item
451 */
452static inline void k_work_init(struct k_work *work, k_work_handler_t handler)
453{
454 atomic_set_bit(work->flags, K_WORK_STATE_IDLE);
455 work->handler = handler;
456}
457
458/**
459 * @brief Submit a work item to a workqueue.
460 */
461static inline void k_work_submit_to_queue(struct k_work_q *work_q,
462 struct k_work *work)
463{
464 if (!atomic_test_and_clear_bit(work->flags, K_WORK_STATE_IDLE)) {
465 __ASSERT_NO_MSG(0);
466 } else {
467 k_fifo_put(&work_q->fifo, work);
468 }
469}
470
471/**
472 * @brief Start a new workqueue. This routine can be called from either
473 * fiber or task context.
474 */
475extern void k_work_q_start(struct k_work_q *work_q,
476 const struct k_thread_config *config);
477
478#if defined(CONFIG_NANO_TIMEOUTS)
479
480 /*
481 * @brief An item which can be scheduled on a @ref k_work_q with a
482 * delay.
483 */
484struct k_delayed_work {
485 struct k_work work;
486 struct _timeout timeout;
487 struct k_work_q *work_q;
488};
489
490/**
491 * @brief Initialize delayed work
492 */
493void k_delayed_work_init(struct k_delayed_work *work,
494 k_work_handler_t handler);
495
496/**
497 * @brief Submit a delayed work item to a workqueue.
498 *
499 * This procedure schedules a work item to be processed after a delay.
500 * Once the delay has passed, the work item is submitted to the work queue:
501 * at this point, it is no longer possible to cancel it. Once the work item's
502 * handler is about to be executed, the work is considered complete and can be
503 * resubmitted.
504 *
505 * Care must be taken if the handler blocks or yield as there is no implicit
506 * mutual exclusion mechanism. Such usage is not recommended and if necessary,
507 * it should be explicitly done between the submitter and the handler.
508 *
509 * @param work_q to schedule the work item
510 * @param work Delayed work item
511 * @param ticks Ticks to wait before scheduling the work item
512 *
513 * @return 0 in case of success or negative value in case of error.
514 */
515int k_delayed_work_submit_to_queue(struct k_work_q *work_q,
516 struct k_delayed_work *work,
517 int32_t ticks);
518
519/**
520 * @brief Cancel a delayed work item
521 *
522 * This procedure cancels a scheduled work item. If the work has been completed
523 * or is idle, this will do nothing. The only case where this can fail is when
524 * the work has been submitted to the work queue, but the handler has not run
525 * yet.
526 *
527 * @param work Delayed work item to be canceled
528 *
529 * @return 0 in case of success or negative value in case of error.
530 */
531int k_delayed_work_cancel(struct k_delayed_work *work);
532
533#endif /* CONFIG_NANO_TIMEOUTS */
534
535#if defined(CONFIG_SYSTEM_WORKQUEUE)
536
537extern struct k_work_q k_sys_work_q;
538
539/*
540 * @brief Submit a work item to the system workqueue.
541 *
542 * @ref k_work_submit_to_queue
543 *
544 * When using the system workqueue it is not recommended to block or yield
545 * on the handler since its fiber is shared system wide it may cause
546 * unexpected behavior.
547 */
548static inline void k_work_submit(struct k_work *work)
549{
550 k_work_submit_to_queue(&k_sys_work_q, work);
551}
552
553#if defined(CONFIG_NANO_TIMEOUTS)
554/*
555 * @brief Submit a delayed work item to the system workqueue.
556 *
557 * @ref k_delayed_work_submit_to_queue
558 *
559 * When using the system workqueue it is not recommended to block or yield
560 * on the handler since its fiber is shared system wide it may cause
561 * unexpected behavior.
562 */
563static inline int k_delayed_work_submit(struct k_delayed_work *work,
564 int ticks)
565{
566 return k_delayed_work_submit_to_queue(&k_sys_work_q, work, ticks);
567}
568
569#endif /* CONFIG_NANO_TIMEOUTS */
570#endif /* CONFIG_SYSTEM_WORKQUEUE */
571
572/**
573 * synchronization
574 */
575
576/* mutexes */
577
578struct k_mutex {
579 _wait_q_t wait_q;
580 struct tcs *owner;
581 uint32_t lock_count;
582 int owner_orig_prio;
583#ifdef CONFIG_OBJECT_MONITOR
584 int num_lock_state_changes;
585 int num_conflicts;
586#endif
587
588 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mutex);
589};
590
591#ifdef CONFIG_OBJECT_MONITOR
592#define _MUTEX_INIT_OBJECT_MONITOR \
593 .num_lock_state_changes = 0, .num_conflicts = 0,
594#else
595#define _MUTEX_INIT_OBJECT_MONITOR
596#endif
597
598#define K_MUTEX_INITIALIZER(obj) \
599 { \
600 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
601 .owner = NULL, \
602 .lock_count = 0, \
603 .owner_orig_prio = K_LOWEST_THREAD_PRIO, \
604 _MUTEX_INIT_OBJECT_MONITOR \
605 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
606 }
607
608#define K_MUTEX_DEFINE(name) \
609 struct k_mutex name = K_MUTEX_INITIALIZER(name)
610
611extern void k_mutex_init(struct k_mutex *mutex);
612extern int k_mutex_lock(struct k_mutex *mutex, int32_t timeout);
613extern void k_mutex_unlock(struct k_mutex *mutex);
614
615/* semaphores */
616
617struct k_sem {
618 _wait_q_t wait_q;
619 unsigned int count;
620 unsigned int limit;
621
622 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_sem);
623};
624
625extern void k_sem_init(struct k_sem *sem, unsigned int initial_count,
626 unsigned int limit);
627extern int k_sem_take(struct k_sem *sem, int32_t timeout);
628extern void k_sem_give(struct k_sem *sem);
629
630static inline int k_sem_reset(struct k_sem *sem)
631{
632 sem->count = 0;
633
634 return 0;
635}
636
Tomasz Bursztyka276086d2016-09-21 16:03:21 +0200637static inline unsigned int k_sem_count_get(struct k_sem *sem)
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400638{
639 return sem->count;
640}
641
Peter Mitsis45403672016-09-09 14:24:06 -0400642#ifdef CONFIG_SEMAPHORE_GROUPS
643/**
644 * @brief Take the first available semaphore
645 *
646 * Given a list of semaphore pointers, this routine will attempt to take one
647 * of them, waiting up to a maximum of @a timeout ms to do so. The taken
648 * semaphore is identified by @a sem (set to NULL on error).
649 *
650 * Be aware that the more semaphores specified in the group, the more stack
651 * space is required by the waiting thread.
652 *
653 * @param sem_array Array of semaphore pointers terminated by a K_END entry
654 * @param sem Identifies the semaphore that was taken
655 * @param timeout Maximum number of milliseconds to wait
656 *
657 * @retval 0 A semaphore was successfully taken
658 * @retval -EBUSY No semaphore was available (@a timeout = K_NO_WAIT)
659 * @retval -EAGAIN Time out occurred while waiting for semaphore
660 */
661
662extern int k_sem_group_take(struct k_sem *sem_array[], struct k_sem **sem,
663 int32_t timeout);
664
665/**
666 * @brief Give all the semaphores in the group
667 *
668 * This routine will give each semaphore in the array of semaphore pointers.
669 *
670 * @param sem_array Array of semaphore pointers terminated by a K_END entry
671 *
672 * @return N/A
673 */
674extern void k_sem_group_give(struct k_sem *sem_array[]);
675
676/**
677 * @brief Reset the count to zero on each semaphore in the array
678 *
679 * This routine resets the count of each semaphore in the group to zero.
680 * Note that it does NOT have any impact on any thread that might have
681 * been previously pending on any of the semaphores.
682 *
683 * @param sem_array Array of semaphore pointers terminated by a K_END entry
684 *
685 * @return N/A
686 */
687extern void k_sem_group_reset(struct k_sem *sem_array[]);
688#endif
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400689
690#define K_SEM_INITIALIZER(obj, initial_count, count_limit) \
691 { \
692 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
693 .count = initial_count, \
694 .limit = count_limit, \
695 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
696 }
697
698#define K_SEM_DEFINE(name, initial_count, count_limit) \
699 struct k_sem name = \
700 K_SEM_INITIALIZER(name, initial_count, count_limit)
701
702/* events */
703
704#define K_EVT_DEFAULT NULL
705#define K_EVT_IGNORE ((void *)(-1))
706
707typedef int (*k_event_handler_t)(struct k_event *);
708
709struct k_event {
710 k_event_handler_t handler;
711 atomic_t send_count;
712 struct k_work work_item;
713 struct k_sem sem;
714
715 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_event);
716};
717
718extern void _k_event_deliver(struct k_work *work);
719
720#define K_EVENT_INITIALIZER(obj, event_handler) \
721 { \
722 .handler = (k_event_handler_t)event_handler, \
723 .send_count = ATOMIC_INIT(0), \
724 .work_item = K_WORK_INITIALIZER(_k_event_deliver), \
725 .sem = K_SEM_INITIALIZER(obj.sem, 0, 1), \
726 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
727 }
728
729#define K_EVENT_DEFINE(name, event_handler) \
730 struct k_event name \
731 __in_section(_k_event_list, event, name) = \
732 K_EVENT_INITIALIZER(name, event_handler)
733
734extern void k_event_init(struct k_event *event, k_event_handler_t handler);
735extern int k_event_recv(struct k_event *event, int32_t timeout);
736extern void k_event_send(struct k_event *event);
737
738/**
739 * data transfers (complex)
740 */
741
742/* message queues */
743
744struct k_msgq {
745 _wait_q_t wait_q;
746 uint32_t msg_size;
747 uint32_t max_msgs;
748 char *buffer_start;
749 char *buffer_end;
750 char *read_ptr;
751 char *write_ptr;
752 uint32_t used_msgs;
753
754 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_msgq);
755};
756
757#define K_MSGQ_INITIALIZER(obj, q_depth, q_width, q_buffer) \
758 { \
759 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
760 .max_msgs = q_depth, \
761 .msg_size = q_width, \
762 .buffer_start = q_buffer, \
763 .buffer_end = q_buffer + (q_depth * q_width), \
764 .read_ptr = q_buffer, \
765 .write_ptr = q_buffer, \
766 .used_msgs = 0, \
767 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
768 }
769
770#define K_MSGQ_DEFINE(name, q_depth, q_width) \
771 static char __noinit _k_fifo_buf_##name[(q_depth) * (q_width)]; \
772 struct k_msgq name = \
773 K_MSGQ_INITIALIZER(name, q_depth, q_width, _k_fifo_buf_##name)
774
775#define K_MSGQ_SIZE(q_depth, q_width) \
776 ((sizeof(struct k_msgq)) + ((q_width) * (q_depth)))
777
778void k_msgq_init(struct k_msgq *q, uint32_t msg_size, uint32_t max_msgs,
779 char *buffer);
780extern int k_msgq_put(struct k_msgq *q, void *data, int32_t timeout);
781extern int k_msgq_get(struct k_msgq *q, void *data, int32_t timeout);
782extern void k_msgq_purge(struct k_msgq *q);
783
784static inline int k_msgq_num_used_get(struct k_msgq *q)
785{
786 return q->used_msgs;
787}
788
789struct k_mem_block {
790 k_mem_pool_t pool_id;
791 void *addr_in_pool;
792 void *data;
793 uint32_t req_size;
794};
795
796/* mailboxes */
797
798struct k_mbox_msg {
799 /** internal use only - needed for legacy API support */
800 uint32_t _mailbox;
801 /** size of message (in bytes) */
802 uint32_t size;
803 /** application-defined information value */
804 uint32_t info;
805 /** sender's message data buffer */
806 void *tx_data;
807 /** internal use only - needed for legacy API support */
808 void *_rx_data;
809 /** message data block descriptor */
810 struct k_mem_block tx_block;
811 /** source thread id */
812 k_tid_t rx_source_thread;
813 /** target thread id */
814 k_tid_t tx_target_thread;
815 /** internal use only - thread waiting on send (may be a dummy) */
816 k_tid_t _syncing_thread;
817#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
818 /** internal use only - semaphore used during asynchronous send */
819 struct k_sem *_async_sem;
820#endif
821};
822
823struct k_mbox {
824 _wait_q_t tx_msg_queue;
825 _wait_q_t rx_msg_queue;
826
827 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mbox);
828};
829
830#define K_MBOX_INITIALIZER(obj) \
831 { \
832 .tx_msg_queue = SYS_DLIST_STATIC_INIT(&obj.tx_msg_queue), \
833 .rx_msg_queue = SYS_DLIST_STATIC_INIT(&obj.rx_msg_queue), \
834 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
835 }
836
837#define K_MBOX_DEFINE(name) \
838 struct k_mbox name = \
839 K_MBOX_INITIALIZER(name) \
840
841#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
842extern void _k_mbox_init(void);
843#else
844#define _k_mbox_init()
845#endif
846
847extern void k_mbox_init(struct k_mbox *mbox);
848
849extern int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *msg,
850 int32_t timeout);
851extern void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *msg,
852 struct k_sem *sem);
853
854extern int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *msg,
855 void *buffer, int32_t timeout);
856extern void k_mbox_data_get(struct k_mbox_msg *msg, void *buffer);
857extern int k_mbox_data_block_get(struct k_mbox_msg *msg, k_mem_pool_t pool,
858 struct k_mem_block *block, int32_t timeout);
859
860/* pipes */
861
862struct k_pipe {
863 unsigned char *buffer; /* Pipe buffer: may be NULL */
864 size_t size; /* Buffer size */
865 size_t bytes_used; /* # bytes used in buffer */
866 size_t read_index; /* Where in buffer to read from */
867 size_t write_index; /* Where in buffer to write */
868
869 struct {
870 _wait_q_t readers; /* Reader wait queue */
871 _wait_q_t writers; /* Writer wait queue */
872 } wait_q;
873
874 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_pipe);
875};
876
877#define K_PIPE_INITIALIZER(obj, pipe_buffer_size, pipe_buffer) \
878 { \
879 .buffer = pipe_buffer, \
880 .size = pipe_buffer_size, \
881 .bytes_used = 0, \
882 .read_index = 0, \
883 .write_index = 0, \
884 .wait_q.writers = SYS_DLIST_STATIC_INIT(&obj.wait_q.writers), \
885 .wait_q.readers = SYS_DLIST_STATIC_INIT(&obj.wait_q.readers), \
886 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
887 }
888
889#define K_PIPE_DEFINE(name, pipe_buffer_size) \
890 static unsigned char __noinit _k_pipe_buf_##name[pipe_buffer_size]; \
891 struct k_pipe name = \
892 K_PIPE_INITIALIZER(name, pipe_buffer_size, _k_pipe_buf_##name)
893
894#define K_PIPE_SIZE(buffer_size) (sizeof(struct k_pipe) + buffer_size)
895
896#if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0)
897extern void _k_pipes_init(void);
898#else
899#define _k_pipes_init() do { } while (0)
900#endif
901
902/**
903 * @brief Runtime initialization of a pipe
904 *
905 * @param pipe Pointer to pipe to initialize
906 * @param buffer Pointer to buffer to use for pipe's ring buffer
907 * @param size Size of the pipe's ring buffer
908 *
909 * @return N/A
910 */
911extern void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer,
912 size_t size);
913
914/**
915 * @brief Put a message into the specified pipe
916 *
917 * This routine synchronously adds a message into the pipe specified by
918 * @a pipe. It will wait up to @a timeout for the pipe to accept
919 * @a num_bytes_to_write bytes of data. If by @a timeout, the pipe could not
920 * accept @a min_bytes bytes of data, it fails. Fewer than @a min_bytes will
921 * only ever be written to the pipe if K_NO_WAIT < @a timeout < K_FOREVER.
922 *
923 * @param pipe Pointer to the pipe
924 * @param buffer Data to put into the pipe
925 * @param num_bytes_to_write Desired number of bytes to put into the pipe
926 * @param num_bytes_written Number of bytes the pipe accepted
927 * @param min_bytes Minimum number of bytes accepted for success
928 * @param timeout Maximum number of milliseconds to wait
929 *
930 * @retval 0 At least @a min_bytes were sent
931 * @retval -EIO Request can not be satisfied (@a timeout is K_NO_WAIT)
932 * @retval -EAGAIN Fewer than @a min_bytes were sent
933 */
934extern int k_pipe_put(struct k_pipe *pipe, void *buffer,
935 size_t num_bytes_to_write, size_t *num_bytes_written,
936 size_t min_bytes, int32_t timeout);
937
938/**
939 * @brief Get a message from the specified pipe
940 *
941 * This routine synchronously retrieves a message from the pipe specified by
942 * @a pipe. It will wait up to @a timeout to retrieve @a num_bytes_to_read
943 * bytes of data from the pipe. If by @a timeout, the pipe could not retrieve
944 * @a min_bytes bytes of data, it fails. Fewer than @a min_bytes will
945 * only ever be retrieved from the pipe if K_NO_WAIT < @a timeout < K_FOREVER.
946 *
947 * @param pipe Pointer to the pipe
948 * @param buffer Location to place retrieved data
949 * @param num_bytes_to_read Desired number of bytes to retrieve from the pipe
950 * @param num_bytes_read Number of bytes retrieved from the pipe
951 * @param min_bytes Minimum number of bytes retrieved for success
952 * @param timeout Maximum number of milliseconds to wait
953 *
954 * @retval 0 At least @a min_bytes were transferred
955 * @retval -EIO Request can not be satisfied (@a timeout is K_NO_WAIT)
956 * @retval -EAGAIN Fewer than @a min_bytes were retrieved
957 */
958extern int k_pipe_get(struct k_pipe *pipe, void *buffer,
959 size_t num_bytes_to_read, size_t *num_bytes_read,
960 size_t min_bytes, int32_t timeout);
961
962/**
963 * @brief Send a message to the specified pipe
964 *
965 * This routine asynchronously sends a message from the pipe specified by
966 * @a pipe. Once all @a size bytes have been accepted by the pipe, it will
967 * free the memory block @a block and give the semaphore @a sem (if specified).
968 * Up to CONFIG_NUM_PIPE_ASYNC_MSGS asynchronous pipe messages can be in-flight
969 * at any given time.
970 *
971 * @param pipe Pointer to the pipe
972 * @param block Memory block containing data to send
973 * @param size Number of data bytes in memory block to send
974 * @param sem Semaphore to signal upon completion (else NULL)
975 *
976 * @retval N/A
977 */
978extern void k_pipe_block_put(struct k_pipe *pipe, struct k_mem_block *block,
979 size_t size, struct k_sem *sem);
980
981/**
982 * memory management
983 */
984
985/* memory maps */
986
987struct k_mem_map {
988 _wait_q_t wait_q;
989 int num_blocks;
990 int block_size;
991 char *buffer;
992 char *free_list;
993 int num_used;
994
995 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mem_map);
996};
997
998#define K_MEM_MAP_INITIALIZER(obj, map_num_blocks, map_block_size, \
999 map_buffer) \
1000 { \
1001 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
1002 .num_blocks = map_num_blocks, \
1003 .block_size = map_block_size, \
1004 .buffer = map_buffer, \
1005 .free_list = NULL, \
1006 .num_used = 0, \
1007 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
1008 }
1009
1010#define K_MEM_MAP_DEFINE(name, map_num_blocks, map_block_size) \
1011 char _k_mem_map_buf_##name[(map_num_blocks) * (map_block_size)]; \
1012 struct k_mem_map name \
1013 __in_section(_k_mem_map_ptr, private, mem_map) = \
1014 K_MEM_MAP_INITIALIZER(name, map_num_blocks, \
1015 map_block_size, _k_mem_map_buf_##name)
1016
1017#define K_MEM_MAP_SIZE(map_num_blocks, map_block_size) \
1018 (sizeof(struct k_mem_map) + ((map_num_blocks) * (map_block_size)))
1019
1020extern void _k_mem_map_init(void);
1021
1022extern void k_mem_map_init(struct k_mem_map *map, int num_blocks,
1023 int block_size, void *buffer);
1024extern int k_mem_map_alloc(struct k_mem_map *map, void **mem, int32_t timeout);
1025extern void k_mem_map_free(struct k_mem_map *map, void **mem);
1026
1027static inline int k_mem_map_num_used_get(struct k_mem_map *map)
1028{
1029 return map->num_used;
1030}
1031
1032/* memory pools */
1033
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001034/*
1035 * Memory pool requires a buffer and two arrays of structures for the
1036 * memory block accounting:
1037 * A set of arrays of k_mem_pool_quad_block structures where each keeps a
1038 * status of four blocks of memory.
1039 */
1040struct k_mem_pool_quad_block {
1041 char *mem_blocks; /* pointer to the first of four memory blocks */
1042 uint32_t mem_status; /* four bits. If bit is set, memory block is
1043 allocated */
1044};
1045/*
1046 * Memory pool mechanism uses one array of k_mem_pool_quad_block for accounting
1047 * blocks of one size. Block sizes go from maximal to minimal. Next memory
1048 * block size is 4 times less than the previous one and thus requires 4 times
1049 * bigger array of k_mem_pool_quad_block structures to keep track of the
1050 * memory blocks.
1051 */
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001052
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001053/*
1054 * The array of k_mem_pool_block_set keeps the information of each array of
1055 * k_mem_pool_quad_block structures
1056 */
1057struct k_mem_pool_block_set {
1058 int block_size; /* memory block size */
1059 int nr_of_entries; /* nr of quad block structures in the array */
1060 struct k_mem_pool_quad_block *quad_block;
1061 int count;
1062};
1063
1064/* Memory pool descriptor */
1065struct k_mem_pool {
1066 int max_block_size;
1067 int min_block_size;
1068 int nr_of_maxblocks;
1069 int nr_of_block_sets;
1070 struct k_mem_pool_block_set *block_set;
1071 char *bufblock;
1072 _wait_q_t wait_q;
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001073 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mem_pool);
1074};
1075
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001076#ifdef CONFIG_ARM
1077#define _SECTION_TYPE_SIGN "%"
1078#else
1079#define _SECTION_TYPE_SIGN "@"
1080#endif
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001081
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001082/*
1083 * Static memory pool initialization
1084 */
1085/*
1086 * Use .altmacro to be able to recalculate values and pass them as string
1087 * arguments when calling assembler macros resursively
1088 */
1089__asm__(".altmacro\n\t");
1090
1091/*
1092 * Recursively calls a macro
1093 * The followig global symbols need to be initialized:
1094 * __memory_pool_max_block_size - maximal size of the memory block
1095 * __memory_pool_min_block_size - minimal size of the memory block
1096 * Notes:
1097 * Global symbols are used due the fact that assembler macro allows only
1098 * one argument be passed with the % conversion
1099 * Some assemblers do not get division operation ("/"). To avoid it >> 2
1100 * is used instead of / 4.
1101 * n_max argument needs to go first in the invoked macro, as some
1102 * assemblers concatenate \name and %(\n_max * 4) arguments
1103 * if \name goes first
1104 */
1105__asm__(".macro __do_recurse macro_name, name, n_max\n\t"
1106 ".ifge __memory_pool_max_block_size >> 2 -"
1107 " __memory_pool_min_block_size\n\t\t"
1108 "__memory_pool_max_block_size = __memory_pool_max_block_size >> 2\n\t\t"
1109 "\\macro_name %(\\n_max * 4) \\name\n\t"
1110 ".endif\n\t"
1111 ".endm\n");
1112
1113/*
1114 * Build quad blocks
1115 * Macro allocates space in memory for the array of k_mem_pool_quad_block
1116 * structures and recursively calls itself for the next array, 4 times
1117 * larger.
1118 * The followig global symbols need to be initialized:
1119 * __memory_pool_max_block_size - maximal size of the memory block
1120 * __memory_pool_min_block_size - minimal size of the memory block
1121 * __memory_pool_quad_block_size - sizeof(struct k_mem_pool_quad_block)
1122 */
1123__asm__(".macro _build_quad_blocks n_max, name\n\t"
1124 "_mem_pool_quad_blocks_\\name\\()_\\n_max:\n\t"
1125 ".skip __memory_pool_quad_block_size * \\n_max >> 2\n\t"
1126 ".if \\n_max % 4\n\t\t"
1127 ".skip __memory_pool_quad_block_size\n\t"
1128 ".endif\n\t"
1129 "__do_recurse _build_quad_blocks \\name \\n_max\n\t"
1130 ".endm\n");
1131
1132/*
1133 * Build block sets and initialize them
1134 * Macro initializes the k_mem_pool_block_set structure and
1135 * recursively calls itself for the next one.
1136 * The followig global symbols need to be initialized:
1137 * __memory_pool_max_block_size - maximal size of the memory block
1138 * __memory_pool_min_block_size - minimal size of the memory block
1139 * __memory_pool_block_set_count, the number of the elements in the
1140 * block set array must be set to 0. Macro calculates it's real
1141 * value.
1142 * Since the macro initializes pointers to an array of k_mem_pool_quad_block
1143 * structures, _build_quad_blocks must be called prior it.
1144 */
1145__asm__(".macro _build_block_set n_max, name\n\t"
1146 ".int __memory_pool_max_block_size\n\t" /* block_size */
1147 ".if \\n_max % 4\n\t\t"
1148 ".int \\n_max >> 2 + 1\n\t" /* nr_of_entries */
1149 ".else\n\t\t"
1150 ".int \\n_max >> 2\n\t"
1151 ".endif\n\t"
1152 ".int _mem_pool_quad_blocks_\\name\\()_\\n_max\n\t" /* quad_block */
1153 ".int 0\n\t" /* count */
1154 "__memory_pool_block_set_count = __memory_pool_block_set_count + 1\n\t"
1155 "__do_recurse _build_block_set \\name \\n_max\n\t"
1156 ".endm\n");
1157
1158/*
1159 * Build a memory pool structure and initialize it
1160 * Macro uses __memory_pool_block_set_count global symbol,
1161 * block set addresses and buffer address, it may be called only after
1162 * _build_block_set
1163 */
1164__asm__(".macro _build_mem_pool name, min_size, max_size, n_max\n\t"
1165 ".pushsection ._k_memory_pool,\"aw\","
1166 _SECTION_TYPE_SIGN "progbits\n\t"
1167 ".globl \\name\n\t"
1168 "\\name:\n\t"
1169 ".int \\max_size\n\t" /* max_block_size */
1170 ".int \\min_size\n\t" /* min_block_size */
1171 ".int \\n_max\n\t" /* nr_of_maxblocks */
1172 ".int __memory_pool_block_set_count\n\t" /* nr_of_block_sets */
1173 ".int _mem_pool_block_sets_\\name\n\t" /* block_set */
1174 ".int _mem_pool_buffer_\\name\n\t" /* bufblock */
1175 ".int 0\n\t" /* wait_q->head */
1176 ".int 0\n\t" /* wait_q->next */
1177 ".popsection\n\t"
1178 ".endm\n");
1179
1180#define _MEMORY_POOL_QUAD_BLOCK_DEFINE(name, min_size, max_size, n_max) \
1181 __asm__(".pushsection ._k_memory_pool.struct,\"aw\"," \
1182 _SECTION_TYPE_SIGN "progbits\n\t"); \
1183 __asm__("__memory_pool_min_block_size = " STRINGIFY(min_size) "\n\t"); \
1184 __asm__("__memory_pool_max_block_size = " STRINGIFY(max_size) "\n\t"); \
1185 __asm__("_build_quad_blocks " STRINGIFY(n_max) " " \
1186 STRINGIFY(name) "\n\t"); \
1187 __asm__(".popsection\n\t")
1188
1189#define _MEMORY_POOL_BLOCK_SETS_DEFINE(name, min_size, max_size, n_max) \
1190 __asm__("__memory_pool_block_set_count = 0\n\t"); \
1191 __asm__("__memory_pool_max_block_size = " STRINGIFY(max_size) "\n\t"); \
1192 __asm__(".pushsection ._k_memory_pool.struct,\"aw\"," \
1193 _SECTION_TYPE_SIGN "progbits\n\t"); \
1194 __asm__("_mem_pool_block_sets_" STRINGIFY(name) ":\n\t"); \
1195 __asm__("_build_block_set " STRINGIFY(n_max) " " \
1196 STRINGIFY(name) "\n\t"); \
1197 __asm__("_mem_pool_block_set_count_" STRINGIFY(name) ":\n\t"); \
1198 __asm__(".int __memory_pool_block_set_count\n\t"); \
1199 __asm__(".popsection\n\t"); \
1200 extern uint32_t _mem_pool_block_set_count_##name; \
1201 extern struct k_mem_pool_block_set _mem_pool_block_sets_##name[]
1202
1203#define _MEMORY_POOL_BUFFER_DEFINE(name, max_size, n_max) \
1204 char __noinit _mem_pool_buffer_##name[(max_size) * (n_max)]
1205
1206#define K_MEMORY_POOL_DEFINE(name, min_size, max_size, n_max) \
1207 _MEMORY_POOL_QUAD_BLOCK_DEFINE(name, min_size, max_size, n_max); \
1208 _MEMORY_POOL_BLOCK_SETS_DEFINE(name, min_size, max_size, n_max); \
1209 _MEMORY_POOL_BUFFER_DEFINE(name, max_size, n_max); \
1210 __asm__("_build_mem_pool " STRINGIFY(name) " " STRINGIFY(min_size) " " \
1211 STRINGIFY(max_size) " " STRINGIFY(n_max) "\n\t"); \
1212 extern struct k_mem_pool name
1213
1214/*
1215 * Dummy function that assigns the value of sizeof(struct k_mem_pool_quad_block)
1216 * to __memory_pool_quad_block_size absolute symbol.
1217 * This function does not get called, but compiler calculates the value and
1218 * assigns it to the absolute symbol, that, in turn is used by assembler macros.
1219 */
1220static void __attribute__ ((used)) __k_mem_pool_quad_block_size_define(void)
1221{
1222 __asm__(".globl __memory_pool_quad_block_size\n\t"
1223 "__memory_pool_quad_block_size = %c0\n\t"
1224 :
1225 : "n"(sizeof(struct k_mem_pool_quad_block)));
1226}
1227
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001228#define K_MEM_POOL_SIZE(max_block_size, num_max_blocks) \
1229 (sizeof(struct k_mem_pool) + ((max_block_size) * (num_max_blocks)))
1230
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001231extern int k_mem_pool_alloc(struct k_mem_pool *pool, struct k_mem_block *block,
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001232 int size, int32_t timeout);
1233extern void k_mem_pool_free(struct k_mem_block *block);
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001234extern void k_mem_pool_defrag(struct k_mem_pool *pool);
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001235extern void *k_malloc(uint32_t size);
1236extern void k_free(void *p);
1237
1238/*
1239 * legacy.h must be before arch/cpu.h to allow the ioapic/loapic drivers to
1240 * hook into the device subsystem, which itself uses nanokernel semaphores,
1241 * and thus currently requires the definition of nano_sem.
1242 */
1243#include <legacy.h>
1244#include <arch/cpu.h>
1245
1246/*
1247 * private APIs that are utilized by one or more public APIs
1248 */
1249
1250extern struct k_thread_static_init _k_task_list_start[];
1251extern struct k_thread_static_init _k_task_list_end[];
1252
1253#define _FOREACH_STATIC_THREAD(thread_init) \
1254 for (struct k_thread_static_init *thread_init = _k_task_list_start; \
1255 thread_init < _k_task_list_end; thread_init++)
1256
1257extern int _is_thread_essential(void);
1258static inline int is_in_any_group(struct k_thread_static_init *thread_init,
1259 uint32_t groups)
1260{
1261 return !!(thread_init->init_groups & groups);
1262}
1263extern void _init_static_threads(void);
1264
1265#ifdef __cplusplus
1266}
1267#endif
1268
1269#endif /* _kernel__h_ */