blob: f77584ac3675c17bd32536200acd429b8a51052e [file] [log] [blame]
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/**
18 * @file
19 *
20 * @brief Public kernel APIs.
21 */
22
23#ifndef _kernel__h_
24#define _kernel__h_
25
26#include <stddef.h>
27#include <stdint.h>
28#include <toolchain.h>
29#include <sections.h>
30#include <atomic.h>
31#include <errno.h>
32#include <misc/__assert.h>
33#include <misc/dlist.h>
34#include <misc/slist.h>
35
36#ifdef __cplusplus
37extern "C" {
38#endif
39
40#ifdef CONFIG_KERNEL_V2_DEBUG
41#define K_DEBUG(fmt, ...) printk("[%s] " fmt, __func__, ##__VA_ARGS__)
42#else
43#define K_DEBUG(fmt, ...)
44#endif
45
46#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
47#define K_PRIO_PREEMPT(x) (x)
48
49#define K_FOREVER (-1)
50#define K_NO_WAIT 0
51
52#define K_ANY NULL
53#define K_END NULL
54
55#define K_OBJ(name, size) char name[size] __aligned(4)
56
57#if CONFIG_NUM_COOP_PRIORITIES > 0
58#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
59#else
60#define K_HIGHEST_THREAD_PRIO 0
61#endif
62
63#if CONFIG_NUM_PREEMPT_PRIORITIES > 0
64#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
65#else
66#define K_LOWEST_THREAD_PRIO -1
67#endif
68
69#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
70#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
71
72typedef sys_dlist_t _wait_q_t;
73
74#ifdef CONFIG_DEBUG_TRACING_KERNEL_OBJECTS
75#define _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(type) struct type *__next
76#define _DEBUG_TRACING_KERNEL_OBJECTS_INIT .__next = NULL,
77#else
78#define _DEBUG_TRACING_KERNEL_OBJECTS_INIT
79#define _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(type)
80#endif
81
82#define k_thread tcs
83struct tcs;
84struct k_mutex;
85struct k_sem;
86struct k_event;
87struct k_msgq;
88struct k_mbox;
89struct k_pipe;
90struct k_fifo;
91struct k_lifo;
92struct k_stack;
93struct k_mem_map;
94struct k_mem_pool;
95struct k_timer;
96
97typedef struct tcs *k_tid_t;
98typedef struct k_mem_pool *k_mem_pool_t;
99
100/* threads/scheduler/execution contexts */
101
102enum execution_context_types {
103 K_ISR = 0,
104 K_COOP_THREAD,
105 K_PREEMPT_THREAD,
106};
107
108struct k_thread_config {
109 char *stack;
110 unsigned stack_size;
111 unsigned prio;
112};
113
114typedef void (*k_thread_entry_t)(void *p1, void *p2, void *p3);
115extern k_tid_t k_thread_spawn(char *stack, unsigned stack_size,
116 void (*entry)(void *, void *, void*),
117 void *p1, void *p2, void *p3,
118 int32_t prio, uint32_t options, int32_t delay);
119
120extern void k_sleep(int32_t duration);
121extern void k_busy_wait(uint32_t usec_to_wait);
122extern void k_yield(void);
123extern void k_wakeup(k_tid_t thread);
124extern k_tid_t k_current_get(void);
125extern k_tid_t k_current_get(void);
126extern int k_current_priority_get(void);
127extern int k_thread_cancel(k_tid_t thread);
128
129extern void k_thread_abort(k_tid_t thread);
130
131#define K_THREAD_GROUP_EXE 0x1
132#define K_THREAD_GROUP_SYS 0x2
133#define K_THREAD_GROUP_FPU 0x4
134
135/* XXX - doesn't work because CONFIG_ARCH is a string */
136#if 0
137/* arch-specific groups */
138#if CONFIG_ARCH == "x86"
139#define K_THREAD_GROUP_SSE 0x4
140#endif
141#endif
142
143#ifdef CONFIG_NANO_TIMEOUTS
144#define _THREAD_TIMEOUT_INIT(obj) \
145 (obj).nano_timeout = { \
146 .node = { {0}, {0} }, \
147 .tcs = NULL, \
148 .wait_q = NULL, \
149 .delta_ticks_from_prev = -1, \
150 },
151#else
152#define _THREAD_TIMEOUT_INIT(obj)
153#endif
154
155#ifdef CONFIG_ERRNO
156#define _THREAD_ERRNO_INIT(obj) (obj).errno_var = 0,
157#else
158#define _THREAD_ERRNO_INIT(obj)
159#endif
160
161struct k_thread_static_init {
162 uint32_t init_groups;
163 int init_prio;
164 void (*init_entry)(void *, void *, void *);
165 void *init_p1;
166 void *init_p2;
167 void *init_p3;
168 void (*init_abort)(void);
169 union {
170 char *init_stack;
171 struct k_thread *thread;
172 };
173 unsigned int init_stack_size;
174};
175
176#define K_THREAD_INITIALIZER(stack, stack_size, \
177 entry, p1, p2, p3, \
178 abort, prio, groups) \
179 { \
180 .init_groups = (groups), \
181 .init_prio = (prio), \
182 .init_entry = entry, \
183 .init_p1 = (void *)p1, \
184 .init_p2 = (void *)p2, \
185 .init_p3 = (void *)p3, \
186 .init_abort = abort, \
187 .init_stack = (stack), \
188 .init_stack_size = (stack_size), \
189 }
190
191/*
192 * Define thread initializer object and initialize it
193 * NOTE: For thread group functions thread initializers must be organized
194 * in array and thus should not have gaps between them.
195 * On x86 by default compiler aligns them by 32 byte boundary. To prevent
196 * this 32-bit alignment in specified here.
197 * k_thread_static_init structure sise needs to be kept 32-bit aligned as well
198 */
199#define K_THREAD_OBJ_DEFINE(name, stack_size, \
200 entry, p1, p2, p3, \
201 abort, prio, groups) \
202 extern void entry(void *, void *, void *); \
203 char __noinit __stack _k_thread_obj_##name[stack_size]; \
204 struct k_thread_static_init _k_thread_init_##name __aligned(4) \
205 __in_section(_k_task_list, private, task) = \
206 K_THREAD_INITIALIZER(_k_thread_obj_##name, stack_size, \
207 entry, p1, p2, p3, abort, prio, groups)
208
209#define K_THREAD_DEFINE(name, stack_size, entry, p1, p2, p3, \
210 abort, prio, groups) \
211 K_THREAD_OBJ_DEFINE(name, stack_size, entry, p1, p2, p3, \
212 abort, prio, groups); \
213 k_tid_t const name = (k_tid_t)_k_thread_obj_##name
214
215/* extern int k_thread_prio_get(k_tid_t thread); in sched.h */
216extern void k_thread_priority_set(k_tid_t thread, int prio);
217
218#if 0
219extern int k_thread_suspend(k_tid_t thread);
220extern int k_thread_resume(k_tid_t thread);
221extern int k_thread_entry_set(k_tid_t thread,
222 void (*entry)(void*, void*, void*);
223extern int k_thread_abort_handler_set(k_tid_t thread,
224 void (*handler)(void));
225#endif
226
227extern void k_sched_time_slice_set(int32_t slice, int prio);
228extern int k_workload_get(void);
229extern void k_workload_time_slice_set(int32_t slice);
230
231extern int k_am_in_isr(void);
232
233extern void k_thread_custom_data_set(void *value);
234extern void *k_thread_custom_data_get(void);
235
236/**
237 * kernel timing
238 */
239
Benjamin Walsha9604bd2016-09-21 11:05:56 -0400240#include <sys_clock.h>
241
242/* private internal time manipulation (users should never play with ticks) */
243
244static int64_t __ticks_to_ms(int64_t ticks)
245{
246 return (MSEC_PER_SEC * (uint64_t)ticks) / sys_clock_ticks_per_sec;
247}
248
249
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400250/* timeouts */
251
252struct _timeout;
253typedef void (*_timeout_func_t)(struct _timeout *t);
254
255struct _timeout {
256 sys_dlist_t node;
257 struct tcs *tcs;
258 sys_dlist_t *wait_q;
259 int32_t delta_ticks_from_prev;
260 _timeout_func_t func;
261};
262
263/* timers */
264
265struct k_timer {
266 /*
267 * _timeout structure must be first here if we want to use
268 * dynamic timer allocation. timeout.node is used in the double-linked
269 * list of free timers
270 */
271 struct _timeout timeout;
272
273 /* wait queue for the threads waiting on this timer */
274 _wait_q_t wait_q;
275
276 /* runs in ISR context */
277 void (*handler)(void *);
278 void *handler_arg;
279
280 /* runs in the context of the thread that calls k_timer_stop() */
281 void (*stop_handler)(void *);
282 void *stop_handler_arg;
283
284 /* timer period */
285 int32_t period;
286
287 /* user supplied data pointer returned to the thread*/
288 void *user_data;
289
290 /* user supplied data pointer */
291 void *user_data_internal;
292
293 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_timer);
294};
295
296#define K_TIMER_INITIALIZER(obj) \
297 { \
298 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
299 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
300 }
301
302#define K_TIMER_DEFINE(name) \
303 struct k_timer name = K_TIMER_INITIALIZER(name)
304
305extern void k_timer_init(struct k_timer *timer, void *data);
Andy Ross8d8b2ac2016-09-23 10:08:54 -0700306
307#if (CONFIG_NUM_DYNAMIC_TIMERS > 0)
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400308extern struct k_timer *k_timer_alloc(void);
309extern void k_timer_free(struct k_timer *timer);
Andy Ross8d8b2ac2016-09-23 10:08:54 -0700310#endif
311
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400312extern void k_timer_start(struct k_timer *timer,
313 int32_t duration, int32_t period,
314 void (*handler)(void *), void *handler_arg,
315 void (*stop_handler)(void *), void *stop_handler_arg);
316extern void k_timer_restart(struct k_timer *timer, int32_t duration,
317 int32_t period);
318extern void k_timer_stop(struct k_timer *timer);
319extern int k_timer_test(struct k_timer *timer, void **data, int wait);
320extern int32_t k_timer_remaining_get(struct k_timer *timer);
321extern int64_t k_uptime_get(void);
322extern int64_t k_uptime_delta(int64_t *reftime);
323extern bool k_timer_pool_is_empty(void);
324
325extern uint32_t k_cycle_get_32(void);
326
327#if (CONFIG_NUM_DYNAMIC_TIMERS > 0)
328extern void _k_dyamic_timer_init(void);
329#else
330#define _k_dyamic_timer_init()
331#endif
332
333/**
334 * data transfers (basic)
335 */
336
337/* fifos */
338
339struct k_fifo {
340 _wait_q_t wait_q;
341 sys_slist_t data_q;
342
343 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_fifo);
344};
345
346extern void k_fifo_init(struct k_fifo *fifo);
347extern void k_fifo_put(struct k_fifo *fifo, void *data);
348extern void k_fifo_put_list(struct k_fifo *fifo, void *head, void *tail);
349extern void k_fifo_put_slist(struct k_fifo *fifo, sys_slist_t *list);
350extern void *k_fifo_get(struct k_fifo *fifo, int32_t timeout);
351
352#define K_FIFO_INITIALIZER(obj) \
353 { \
354 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
355 .data_q = SYS_DLIST_STATIC_INIT(&obj.data_q), \
356 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
357 }
358
359#define K_FIFO_DEFINE(name) \
Benjamin Walsh0bee91d2016-09-15 17:16:38 -0400360 struct k_fifo name = K_FIFO_INITIALIZER(name)
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400361
362/* lifos */
363
364struct k_lifo {
365 _wait_q_t wait_q;
366 void *list;
367
368 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_lifo);
369};
370
371extern void k_lifo_init(struct k_lifo *lifo);
372extern void k_lifo_put(struct k_lifo *lifo, void *data);
373extern void *k_lifo_get(struct k_lifo *lifo, int32_t timeout);
374
375#define K_LIFO_INITIALIZER(obj) \
376 { \
377 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
378 .list = NULL, \
379 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
380 }
381
382#define K_LIFO_DEFINE(name) \
Benjamin Walsh0bee91d2016-09-15 17:16:38 -0400383 struct k_lifo name = K_LIFO_INITIALIZER(name)
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400384
385/* stacks */
386
387struct k_stack {
388 _wait_q_t wait_q;
389 uint32_t *base, *next, *top;
390
391 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_stack);
392};
393
394extern void k_stack_init(struct k_stack *stack, int num_entries);
395extern void k_stack_init_with_buffer(struct k_stack *stack, int num_entries,
396 uint32_t *buffer);
397extern void k_stack_push(struct k_stack *stack, uint32_t data);
398extern int k_stack_pop(struct k_stack *stack, uint32_t *data, int32_t timeout);
399
400#define K_STACK_INITIALIZER(obj, stack_num_entries, stack_buffer) \
401 { \
402 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
403 .base = stack_buffer, \
404 .next = stack_buffer, \
405 .top = stack_buffer + stack_num_entries, \
406 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
407 }
408
409#define K_STACK_DEFINE(name, stack_num_entries) \
410 uint32_t __noinit _k_stack_buf_##name[stack_num_entries]; \
Benjamin Walsh0bee91d2016-09-15 17:16:38 -0400411 struct k_stack name = \
412 K_STACK_INITIALIZER(name, stack_num_entries, \
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400413 _k_stack_buf_##name); \
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400414
415#define K_STACK_SIZE(stack_num_entries) \
416 (sizeof(struct k_stack) + (stack_num_entries * sizeof(uint32_t)))
417
418/**
419 * workqueues
420 */
421
422struct k_work;
423
424typedef void (*k_work_handler_t)(struct k_work *);
425
426/**
427 * A workqueue is a fiber that executes @ref k_work items that are
428 * queued to it. This is useful for drivers which need to schedule
429 * execution of code which might sleep from ISR context. The actual
430 * fiber identifier is not stored in the structure in order to save
431 * space.
432 */
433struct k_work_q {
434 struct k_fifo fifo;
435};
436
437/**
438 * @brief Work flags.
439 */
440enum {
441 K_WORK_STATE_IDLE, /* Work item idle state */
442};
443
444/**
445 * @brief An item which can be scheduled on a @ref k_work_q.
446 */
447struct k_work {
448 void *_reserved; /* Used by k_fifo implementation. */
449 k_work_handler_t handler;
450 atomic_t flags[1];
451};
452
453/**
454 * @brief Statically initialize work item
455 */
456#define K_WORK_INITIALIZER(work_handler) \
457 { \
458 ._reserved = NULL, \
459 .handler = work_handler, \
460 .flags = { 1 } \
461 }
462
463/**
464 * @brief Dynamically initialize work item
465 */
466static inline void k_work_init(struct k_work *work, k_work_handler_t handler)
467{
468 atomic_set_bit(work->flags, K_WORK_STATE_IDLE);
469 work->handler = handler;
470}
471
472/**
473 * @brief Submit a work item to a workqueue.
474 */
475static inline void k_work_submit_to_queue(struct k_work_q *work_q,
476 struct k_work *work)
477{
478 if (!atomic_test_and_clear_bit(work->flags, K_WORK_STATE_IDLE)) {
479 __ASSERT_NO_MSG(0);
480 } else {
481 k_fifo_put(&work_q->fifo, work);
482 }
483}
484
485/**
486 * @brief Start a new workqueue. This routine can be called from either
487 * fiber or task context.
488 */
489extern void k_work_q_start(struct k_work_q *work_q,
490 const struct k_thread_config *config);
491
492#if defined(CONFIG_NANO_TIMEOUTS)
493
494 /*
495 * @brief An item which can be scheduled on a @ref k_work_q with a
496 * delay.
497 */
498struct k_delayed_work {
499 struct k_work work;
500 struct _timeout timeout;
501 struct k_work_q *work_q;
502};
503
504/**
505 * @brief Initialize delayed work
506 */
507void k_delayed_work_init(struct k_delayed_work *work,
508 k_work_handler_t handler);
509
510/**
511 * @brief Submit a delayed work item to a workqueue.
512 *
513 * This procedure schedules a work item to be processed after a delay.
514 * Once the delay has passed, the work item is submitted to the work queue:
515 * at this point, it is no longer possible to cancel it. Once the work item's
516 * handler is about to be executed, the work is considered complete and can be
517 * resubmitted.
518 *
519 * Care must be taken if the handler blocks or yield as there is no implicit
520 * mutual exclusion mechanism. Such usage is not recommended and if necessary,
521 * it should be explicitly done between the submitter and the handler.
522 *
523 * @param work_q to schedule the work item
524 * @param work Delayed work item
525 * @param ticks Ticks to wait before scheduling the work item
526 *
527 * @return 0 in case of success or negative value in case of error.
528 */
529int k_delayed_work_submit_to_queue(struct k_work_q *work_q,
530 struct k_delayed_work *work,
531 int32_t ticks);
532
533/**
534 * @brief Cancel a delayed work item
535 *
536 * This procedure cancels a scheduled work item. If the work has been completed
537 * or is idle, this will do nothing. The only case where this can fail is when
538 * the work has been submitted to the work queue, but the handler has not run
539 * yet.
540 *
541 * @param work Delayed work item to be canceled
542 *
543 * @return 0 in case of success or negative value in case of error.
544 */
545int k_delayed_work_cancel(struct k_delayed_work *work);
546
547#endif /* CONFIG_NANO_TIMEOUTS */
548
549#if defined(CONFIG_SYSTEM_WORKQUEUE)
550
551extern struct k_work_q k_sys_work_q;
552
553/*
554 * @brief Submit a work item to the system workqueue.
555 *
556 * @ref k_work_submit_to_queue
557 *
558 * When using the system workqueue it is not recommended to block or yield
559 * on the handler since its fiber is shared system wide it may cause
560 * unexpected behavior.
561 */
562static inline void k_work_submit(struct k_work *work)
563{
564 k_work_submit_to_queue(&k_sys_work_q, work);
565}
566
567#if defined(CONFIG_NANO_TIMEOUTS)
568/*
569 * @brief Submit a delayed work item to the system workqueue.
570 *
571 * @ref k_delayed_work_submit_to_queue
572 *
573 * When using the system workqueue it is not recommended to block or yield
574 * on the handler since its fiber is shared system wide it may cause
575 * unexpected behavior.
576 */
577static inline int k_delayed_work_submit(struct k_delayed_work *work,
578 int ticks)
579{
580 return k_delayed_work_submit_to_queue(&k_sys_work_q, work, ticks);
581}
582
583#endif /* CONFIG_NANO_TIMEOUTS */
584#endif /* CONFIG_SYSTEM_WORKQUEUE */
585
586/**
587 * synchronization
588 */
589
590/* mutexes */
591
592struct k_mutex {
593 _wait_q_t wait_q;
594 struct tcs *owner;
595 uint32_t lock_count;
596 int owner_orig_prio;
597#ifdef CONFIG_OBJECT_MONITOR
598 int num_lock_state_changes;
599 int num_conflicts;
600#endif
601
602 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mutex);
603};
604
605#ifdef CONFIG_OBJECT_MONITOR
606#define _MUTEX_INIT_OBJECT_MONITOR \
607 .num_lock_state_changes = 0, .num_conflicts = 0,
608#else
609#define _MUTEX_INIT_OBJECT_MONITOR
610#endif
611
612#define K_MUTEX_INITIALIZER(obj) \
613 { \
614 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
615 .owner = NULL, \
616 .lock_count = 0, \
617 .owner_orig_prio = K_LOWEST_THREAD_PRIO, \
618 _MUTEX_INIT_OBJECT_MONITOR \
619 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
620 }
621
622#define K_MUTEX_DEFINE(name) \
623 struct k_mutex name = K_MUTEX_INITIALIZER(name)
624
625extern void k_mutex_init(struct k_mutex *mutex);
626extern int k_mutex_lock(struct k_mutex *mutex, int32_t timeout);
627extern void k_mutex_unlock(struct k_mutex *mutex);
628
629/* semaphores */
630
631struct k_sem {
632 _wait_q_t wait_q;
633 unsigned int count;
634 unsigned int limit;
635
636 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_sem);
637};
638
639extern void k_sem_init(struct k_sem *sem, unsigned int initial_count,
640 unsigned int limit);
641extern int k_sem_take(struct k_sem *sem, int32_t timeout);
642extern void k_sem_give(struct k_sem *sem);
643
Benjamin Walsh70c68b92016-09-21 10:37:34 -0400644static inline void k_sem_reset(struct k_sem *sem)
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400645{
646 sem->count = 0;
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400647}
648
Tomasz Bursztyka276086d2016-09-21 16:03:21 +0200649static inline unsigned int k_sem_count_get(struct k_sem *sem)
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400650{
651 return sem->count;
652}
653
Peter Mitsis45403672016-09-09 14:24:06 -0400654#ifdef CONFIG_SEMAPHORE_GROUPS
655/**
656 * @brief Take the first available semaphore
657 *
658 * Given a list of semaphore pointers, this routine will attempt to take one
659 * of them, waiting up to a maximum of @a timeout ms to do so. The taken
660 * semaphore is identified by @a sem (set to NULL on error).
661 *
662 * Be aware that the more semaphores specified in the group, the more stack
663 * space is required by the waiting thread.
664 *
665 * @param sem_array Array of semaphore pointers terminated by a K_END entry
666 * @param sem Identifies the semaphore that was taken
667 * @param timeout Maximum number of milliseconds to wait
668 *
669 * @retval 0 A semaphore was successfully taken
670 * @retval -EBUSY No semaphore was available (@a timeout = K_NO_WAIT)
671 * @retval -EAGAIN Time out occurred while waiting for semaphore
672 */
673
674extern int k_sem_group_take(struct k_sem *sem_array[], struct k_sem **sem,
675 int32_t timeout);
676
677/**
678 * @brief Give all the semaphores in the group
679 *
680 * This routine will give each semaphore in the array of semaphore pointers.
681 *
682 * @param sem_array Array of semaphore pointers terminated by a K_END entry
683 *
684 * @return N/A
685 */
686extern void k_sem_group_give(struct k_sem *sem_array[]);
687
688/**
689 * @brief Reset the count to zero on each semaphore in the array
690 *
691 * This routine resets the count of each semaphore in the group to zero.
692 * Note that it does NOT have any impact on any thread that might have
693 * been previously pending on any of the semaphores.
694 *
695 * @param sem_array Array of semaphore pointers terminated by a K_END entry
696 *
697 * @return N/A
698 */
699extern void k_sem_group_reset(struct k_sem *sem_array[]);
700#endif
Benjamin Walsh456c6da2016-09-02 18:55:39 -0400701
702#define K_SEM_INITIALIZER(obj, initial_count, count_limit) \
703 { \
704 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
705 .count = initial_count, \
706 .limit = count_limit, \
707 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
708 }
709
710#define K_SEM_DEFINE(name, initial_count, count_limit) \
711 struct k_sem name = \
712 K_SEM_INITIALIZER(name, initial_count, count_limit)
713
714/* events */
715
716#define K_EVT_DEFAULT NULL
717#define K_EVT_IGNORE ((void *)(-1))
718
719typedef int (*k_event_handler_t)(struct k_event *);
720
721struct k_event {
722 k_event_handler_t handler;
723 atomic_t send_count;
724 struct k_work work_item;
725 struct k_sem sem;
726
727 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_event);
728};
729
730extern void _k_event_deliver(struct k_work *work);
731
732#define K_EVENT_INITIALIZER(obj, event_handler) \
733 { \
734 .handler = (k_event_handler_t)event_handler, \
735 .send_count = ATOMIC_INIT(0), \
736 .work_item = K_WORK_INITIALIZER(_k_event_deliver), \
737 .sem = K_SEM_INITIALIZER(obj.sem, 0, 1), \
738 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
739 }
740
741#define K_EVENT_DEFINE(name, event_handler) \
742 struct k_event name \
743 __in_section(_k_event_list, event, name) = \
744 K_EVENT_INITIALIZER(name, event_handler)
745
746extern void k_event_init(struct k_event *event, k_event_handler_t handler);
747extern int k_event_recv(struct k_event *event, int32_t timeout);
748extern void k_event_send(struct k_event *event);
749
750/**
751 * data transfers (complex)
752 */
753
754/* message queues */
755
756struct k_msgq {
757 _wait_q_t wait_q;
758 uint32_t msg_size;
759 uint32_t max_msgs;
760 char *buffer_start;
761 char *buffer_end;
762 char *read_ptr;
763 char *write_ptr;
764 uint32_t used_msgs;
765
766 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_msgq);
767};
768
769#define K_MSGQ_INITIALIZER(obj, q_depth, q_width, q_buffer) \
770 { \
771 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
772 .max_msgs = q_depth, \
773 .msg_size = q_width, \
774 .buffer_start = q_buffer, \
775 .buffer_end = q_buffer + (q_depth * q_width), \
776 .read_ptr = q_buffer, \
777 .write_ptr = q_buffer, \
778 .used_msgs = 0, \
779 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
780 }
781
782#define K_MSGQ_DEFINE(name, q_depth, q_width) \
783 static char __noinit _k_fifo_buf_##name[(q_depth) * (q_width)]; \
784 struct k_msgq name = \
785 K_MSGQ_INITIALIZER(name, q_depth, q_width, _k_fifo_buf_##name)
786
787#define K_MSGQ_SIZE(q_depth, q_width) \
788 ((sizeof(struct k_msgq)) + ((q_width) * (q_depth)))
789
790void k_msgq_init(struct k_msgq *q, uint32_t msg_size, uint32_t max_msgs,
791 char *buffer);
792extern int k_msgq_put(struct k_msgq *q, void *data, int32_t timeout);
793extern int k_msgq_get(struct k_msgq *q, void *data, int32_t timeout);
794extern void k_msgq_purge(struct k_msgq *q);
795
796static inline int k_msgq_num_used_get(struct k_msgq *q)
797{
798 return q->used_msgs;
799}
800
801struct k_mem_block {
802 k_mem_pool_t pool_id;
803 void *addr_in_pool;
804 void *data;
805 uint32_t req_size;
806};
807
808/* mailboxes */
809
810struct k_mbox_msg {
811 /** internal use only - needed for legacy API support */
812 uint32_t _mailbox;
813 /** size of message (in bytes) */
814 uint32_t size;
815 /** application-defined information value */
816 uint32_t info;
817 /** sender's message data buffer */
818 void *tx_data;
819 /** internal use only - needed for legacy API support */
820 void *_rx_data;
821 /** message data block descriptor */
822 struct k_mem_block tx_block;
823 /** source thread id */
824 k_tid_t rx_source_thread;
825 /** target thread id */
826 k_tid_t tx_target_thread;
827 /** internal use only - thread waiting on send (may be a dummy) */
828 k_tid_t _syncing_thread;
829#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
830 /** internal use only - semaphore used during asynchronous send */
831 struct k_sem *_async_sem;
832#endif
833};
834
835struct k_mbox {
836 _wait_q_t tx_msg_queue;
837 _wait_q_t rx_msg_queue;
838
839 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mbox);
840};
841
842#define K_MBOX_INITIALIZER(obj) \
843 { \
844 .tx_msg_queue = SYS_DLIST_STATIC_INIT(&obj.tx_msg_queue), \
845 .rx_msg_queue = SYS_DLIST_STATIC_INIT(&obj.rx_msg_queue), \
846 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
847 }
848
849#define K_MBOX_DEFINE(name) \
850 struct k_mbox name = \
851 K_MBOX_INITIALIZER(name) \
852
853#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
854extern void _k_mbox_init(void);
855#else
856#define _k_mbox_init()
857#endif
858
859extern void k_mbox_init(struct k_mbox *mbox);
860
861extern int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *msg,
862 int32_t timeout);
863extern void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *msg,
864 struct k_sem *sem);
865
866extern int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *msg,
867 void *buffer, int32_t timeout);
868extern void k_mbox_data_get(struct k_mbox_msg *msg, void *buffer);
869extern int k_mbox_data_block_get(struct k_mbox_msg *msg, k_mem_pool_t pool,
870 struct k_mem_block *block, int32_t timeout);
871
872/* pipes */
873
874struct k_pipe {
875 unsigned char *buffer; /* Pipe buffer: may be NULL */
876 size_t size; /* Buffer size */
877 size_t bytes_used; /* # bytes used in buffer */
878 size_t read_index; /* Where in buffer to read from */
879 size_t write_index; /* Where in buffer to write */
880
881 struct {
882 _wait_q_t readers; /* Reader wait queue */
883 _wait_q_t writers; /* Writer wait queue */
884 } wait_q;
885
886 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_pipe);
887};
888
889#define K_PIPE_INITIALIZER(obj, pipe_buffer_size, pipe_buffer) \
890 { \
891 .buffer = pipe_buffer, \
892 .size = pipe_buffer_size, \
893 .bytes_used = 0, \
894 .read_index = 0, \
895 .write_index = 0, \
896 .wait_q.writers = SYS_DLIST_STATIC_INIT(&obj.wait_q.writers), \
897 .wait_q.readers = SYS_DLIST_STATIC_INIT(&obj.wait_q.readers), \
898 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
899 }
900
901#define K_PIPE_DEFINE(name, pipe_buffer_size) \
902 static unsigned char __noinit _k_pipe_buf_##name[pipe_buffer_size]; \
903 struct k_pipe name = \
904 K_PIPE_INITIALIZER(name, pipe_buffer_size, _k_pipe_buf_##name)
905
906#define K_PIPE_SIZE(buffer_size) (sizeof(struct k_pipe) + buffer_size)
907
908#if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0)
909extern void _k_pipes_init(void);
910#else
911#define _k_pipes_init() do { } while (0)
912#endif
913
914/**
915 * @brief Runtime initialization of a pipe
916 *
917 * @param pipe Pointer to pipe to initialize
918 * @param buffer Pointer to buffer to use for pipe's ring buffer
919 * @param size Size of the pipe's ring buffer
920 *
921 * @return N/A
922 */
923extern void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer,
924 size_t size);
925
926/**
927 * @brief Put a message into the specified pipe
928 *
929 * This routine synchronously adds a message into the pipe specified by
930 * @a pipe. It will wait up to @a timeout for the pipe to accept
931 * @a num_bytes_to_write bytes of data. If by @a timeout, the pipe could not
932 * accept @a min_bytes bytes of data, it fails. Fewer than @a min_bytes will
933 * only ever be written to the pipe if K_NO_WAIT < @a timeout < K_FOREVER.
934 *
935 * @param pipe Pointer to the pipe
936 * @param buffer Data to put into the pipe
937 * @param num_bytes_to_write Desired number of bytes to put into the pipe
938 * @param num_bytes_written Number of bytes the pipe accepted
939 * @param min_bytes Minimum number of bytes accepted for success
940 * @param timeout Maximum number of milliseconds to wait
941 *
942 * @retval 0 At least @a min_bytes were sent
943 * @retval -EIO Request can not be satisfied (@a timeout is K_NO_WAIT)
944 * @retval -EAGAIN Fewer than @a min_bytes were sent
945 */
946extern int k_pipe_put(struct k_pipe *pipe, void *buffer,
947 size_t num_bytes_to_write, size_t *num_bytes_written,
948 size_t min_bytes, int32_t timeout);
949
950/**
951 * @brief Get a message from the specified pipe
952 *
953 * This routine synchronously retrieves a message from the pipe specified by
954 * @a pipe. It will wait up to @a timeout to retrieve @a num_bytes_to_read
955 * bytes of data from the pipe. If by @a timeout, the pipe could not retrieve
956 * @a min_bytes bytes of data, it fails. Fewer than @a min_bytes will
957 * only ever be retrieved from the pipe if K_NO_WAIT < @a timeout < K_FOREVER.
958 *
959 * @param pipe Pointer to the pipe
960 * @param buffer Location to place retrieved data
961 * @param num_bytes_to_read Desired number of bytes to retrieve from the pipe
962 * @param num_bytes_read Number of bytes retrieved from the pipe
963 * @param min_bytes Minimum number of bytes retrieved for success
964 * @param timeout Maximum number of milliseconds to wait
965 *
966 * @retval 0 At least @a min_bytes were transferred
967 * @retval -EIO Request can not be satisfied (@a timeout is K_NO_WAIT)
968 * @retval -EAGAIN Fewer than @a min_bytes were retrieved
969 */
970extern int k_pipe_get(struct k_pipe *pipe, void *buffer,
971 size_t num_bytes_to_read, size_t *num_bytes_read,
972 size_t min_bytes, int32_t timeout);
973
974/**
975 * @brief Send a message to the specified pipe
976 *
977 * This routine asynchronously sends a message from the pipe specified by
978 * @a pipe. Once all @a size bytes have been accepted by the pipe, it will
979 * free the memory block @a block and give the semaphore @a sem (if specified).
980 * Up to CONFIG_NUM_PIPE_ASYNC_MSGS asynchronous pipe messages can be in-flight
981 * at any given time.
982 *
983 * @param pipe Pointer to the pipe
984 * @param block Memory block containing data to send
985 * @param size Number of data bytes in memory block to send
986 * @param sem Semaphore to signal upon completion (else NULL)
987 *
988 * @retval N/A
989 */
990extern void k_pipe_block_put(struct k_pipe *pipe, struct k_mem_block *block,
991 size_t size, struct k_sem *sem);
992
993/**
994 * memory management
995 */
996
997/* memory maps */
998
999struct k_mem_map {
1000 _wait_q_t wait_q;
1001 int num_blocks;
1002 int block_size;
1003 char *buffer;
1004 char *free_list;
1005 int num_used;
1006
1007 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mem_map);
1008};
1009
1010#define K_MEM_MAP_INITIALIZER(obj, map_num_blocks, map_block_size, \
1011 map_buffer) \
1012 { \
1013 .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \
1014 .num_blocks = map_num_blocks, \
1015 .block_size = map_block_size, \
1016 .buffer = map_buffer, \
1017 .free_list = NULL, \
1018 .num_used = 0, \
1019 _DEBUG_TRACING_KERNEL_OBJECTS_INIT \
1020 }
1021
1022#define K_MEM_MAP_DEFINE(name, map_num_blocks, map_block_size) \
1023 char _k_mem_map_buf_##name[(map_num_blocks) * (map_block_size)]; \
1024 struct k_mem_map name \
1025 __in_section(_k_mem_map_ptr, private, mem_map) = \
1026 K_MEM_MAP_INITIALIZER(name, map_num_blocks, \
1027 map_block_size, _k_mem_map_buf_##name)
1028
1029#define K_MEM_MAP_SIZE(map_num_blocks, map_block_size) \
1030 (sizeof(struct k_mem_map) + ((map_num_blocks) * (map_block_size)))
1031
1032extern void _k_mem_map_init(void);
1033
1034extern void k_mem_map_init(struct k_mem_map *map, int num_blocks,
1035 int block_size, void *buffer);
1036extern int k_mem_map_alloc(struct k_mem_map *map, void **mem, int32_t timeout);
1037extern void k_mem_map_free(struct k_mem_map *map, void **mem);
1038
1039static inline int k_mem_map_num_used_get(struct k_mem_map *map)
1040{
1041 return map->num_used;
1042}
1043
1044/* memory pools */
1045
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001046/*
1047 * Memory pool requires a buffer and two arrays of structures for the
1048 * memory block accounting:
1049 * A set of arrays of k_mem_pool_quad_block structures where each keeps a
1050 * status of four blocks of memory.
1051 */
1052struct k_mem_pool_quad_block {
1053 char *mem_blocks; /* pointer to the first of four memory blocks */
1054 uint32_t mem_status; /* four bits. If bit is set, memory block is
1055 allocated */
1056};
1057/*
1058 * Memory pool mechanism uses one array of k_mem_pool_quad_block for accounting
1059 * blocks of one size. Block sizes go from maximal to minimal. Next memory
1060 * block size is 4 times less than the previous one and thus requires 4 times
1061 * bigger array of k_mem_pool_quad_block structures to keep track of the
1062 * memory blocks.
1063 */
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001064
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001065/*
1066 * The array of k_mem_pool_block_set keeps the information of each array of
1067 * k_mem_pool_quad_block structures
1068 */
1069struct k_mem_pool_block_set {
1070 int block_size; /* memory block size */
1071 int nr_of_entries; /* nr of quad block structures in the array */
1072 struct k_mem_pool_quad_block *quad_block;
1073 int count;
1074};
1075
1076/* Memory pool descriptor */
1077struct k_mem_pool {
1078 int max_block_size;
1079 int min_block_size;
1080 int nr_of_maxblocks;
1081 int nr_of_block_sets;
1082 struct k_mem_pool_block_set *block_set;
1083 char *bufblock;
1084 _wait_q_t wait_q;
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001085 _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mem_pool);
1086};
1087
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001088#ifdef CONFIG_ARM
1089#define _SECTION_TYPE_SIGN "%"
1090#else
1091#define _SECTION_TYPE_SIGN "@"
1092#endif
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001093
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001094/*
1095 * Static memory pool initialization
1096 */
1097/*
1098 * Use .altmacro to be able to recalculate values and pass them as string
1099 * arguments when calling assembler macros resursively
1100 */
1101__asm__(".altmacro\n\t");
1102
1103/*
1104 * Recursively calls a macro
1105 * The followig global symbols need to be initialized:
1106 * __memory_pool_max_block_size - maximal size of the memory block
1107 * __memory_pool_min_block_size - minimal size of the memory block
1108 * Notes:
1109 * Global symbols are used due the fact that assembler macro allows only
1110 * one argument be passed with the % conversion
1111 * Some assemblers do not get division operation ("/"). To avoid it >> 2
1112 * is used instead of / 4.
1113 * n_max argument needs to go first in the invoked macro, as some
1114 * assemblers concatenate \name and %(\n_max * 4) arguments
1115 * if \name goes first
1116 */
1117__asm__(".macro __do_recurse macro_name, name, n_max\n\t"
1118 ".ifge __memory_pool_max_block_size >> 2 -"
1119 " __memory_pool_min_block_size\n\t\t"
1120 "__memory_pool_max_block_size = __memory_pool_max_block_size >> 2\n\t\t"
1121 "\\macro_name %(\\n_max * 4) \\name\n\t"
1122 ".endif\n\t"
1123 ".endm\n");
1124
1125/*
1126 * Build quad blocks
1127 * Macro allocates space in memory for the array of k_mem_pool_quad_block
1128 * structures and recursively calls itself for the next array, 4 times
1129 * larger.
1130 * The followig global symbols need to be initialized:
1131 * __memory_pool_max_block_size - maximal size of the memory block
1132 * __memory_pool_min_block_size - minimal size of the memory block
1133 * __memory_pool_quad_block_size - sizeof(struct k_mem_pool_quad_block)
1134 */
1135__asm__(".macro _build_quad_blocks n_max, name\n\t"
1136 "_mem_pool_quad_blocks_\\name\\()_\\n_max:\n\t"
1137 ".skip __memory_pool_quad_block_size * \\n_max >> 2\n\t"
1138 ".if \\n_max % 4\n\t\t"
1139 ".skip __memory_pool_quad_block_size\n\t"
1140 ".endif\n\t"
1141 "__do_recurse _build_quad_blocks \\name \\n_max\n\t"
1142 ".endm\n");
1143
1144/*
1145 * Build block sets and initialize them
1146 * Macro initializes the k_mem_pool_block_set structure and
1147 * recursively calls itself for the next one.
1148 * The followig global symbols need to be initialized:
1149 * __memory_pool_max_block_size - maximal size of the memory block
1150 * __memory_pool_min_block_size - minimal size of the memory block
1151 * __memory_pool_block_set_count, the number of the elements in the
1152 * block set array must be set to 0. Macro calculates it's real
1153 * value.
1154 * Since the macro initializes pointers to an array of k_mem_pool_quad_block
1155 * structures, _build_quad_blocks must be called prior it.
1156 */
1157__asm__(".macro _build_block_set n_max, name\n\t"
1158 ".int __memory_pool_max_block_size\n\t" /* block_size */
1159 ".if \\n_max % 4\n\t\t"
1160 ".int \\n_max >> 2 + 1\n\t" /* nr_of_entries */
1161 ".else\n\t\t"
1162 ".int \\n_max >> 2\n\t"
1163 ".endif\n\t"
1164 ".int _mem_pool_quad_blocks_\\name\\()_\\n_max\n\t" /* quad_block */
1165 ".int 0\n\t" /* count */
1166 "__memory_pool_block_set_count = __memory_pool_block_set_count + 1\n\t"
1167 "__do_recurse _build_block_set \\name \\n_max\n\t"
1168 ".endm\n");
1169
1170/*
1171 * Build a memory pool structure and initialize it
1172 * Macro uses __memory_pool_block_set_count global symbol,
1173 * block set addresses and buffer address, it may be called only after
1174 * _build_block_set
1175 */
1176__asm__(".macro _build_mem_pool name, min_size, max_size, n_max\n\t"
1177 ".pushsection ._k_memory_pool,\"aw\","
1178 _SECTION_TYPE_SIGN "progbits\n\t"
1179 ".globl \\name\n\t"
1180 "\\name:\n\t"
1181 ".int \\max_size\n\t" /* max_block_size */
1182 ".int \\min_size\n\t" /* min_block_size */
1183 ".int \\n_max\n\t" /* nr_of_maxblocks */
1184 ".int __memory_pool_block_set_count\n\t" /* nr_of_block_sets */
1185 ".int _mem_pool_block_sets_\\name\n\t" /* block_set */
1186 ".int _mem_pool_buffer_\\name\n\t" /* bufblock */
1187 ".int 0\n\t" /* wait_q->head */
1188 ".int 0\n\t" /* wait_q->next */
1189 ".popsection\n\t"
1190 ".endm\n");
1191
1192#define _MEMORY_POOL_QUAD_BLOCK_DEFINE(name, min_size, max_size, n_max) \
1193 __asm__(".pushsection ._k_memory_pool.struct,\"aw\"," \
1194 _SECTION_TYPE_SIGN "progbits\n\t"); \
1195 __asm__("__memory_pool_min_block_size = " STRINGIFY(min_size) "\n\t"); \
1196 __asm__("__memory_pool_max_block_size = " STRINGIFY(max_size) "\n\t"); \
1197 __asm__("_build_quad_blocks " STRINGIFY(n_max) " " \
1198 STRINGIFY(name) "\n\t"); \
1199 __asm__(".popsection\n\t")
1200
1201#define _MEMORY_POOL_BLOCK_SETS_DEFINE(name, min_size, max_size, n_max) \
1202 __asm__("__memory_pool_block_set_count = 0\n\t"); \
1203 __asm__("__memory_pool_max_block_size = " STRINGIFY(max_size) "\n\t"); \
1204 __asm__(".pushsection ._k_memory_pool.struct,\"aw\"," \
1205 _SECTION_TYPE_SIGN "progbits\n\t"); \
1206 __asm__("_mem_pool_block_sets_" STRINGIFY(name) ":\n\t"); \
1207 __asm__("_build_block_set " STRINGIFY(n_max) " " \
1208 STRINGIFY(name) "\n\t"); \
1209 __asm__("_mem_pool_block_set_count_" STRINGIFY(name) ":\n\t"); \
1210 __asm__(".int __memory_pool_block_set_count\n\t"); \
1211 __asm__(".popsection\n\t"); \
1212 extern uint32_t _mem_pool_block_set_count_##name; \
1213 extern struct k_mem_pool_block_set _mem_pool_block_sets_##name[]
1214
1215#define _MEMORY_POOL_BUFFER_DEFINE(name, max_size, n_max) \
1216 char __noinit _mem_pool_buffer_##name[(max_size) * (n_max)]
1217
1218#define K_MEMORY_POOL_DEFINE(name, min_size, max_size, n_max) \
1219 _MEMORY_POOL_QUAD_BLOCK_DEFINE(name, min_size, max_size, n_max); \
1220 _MEMORY_POOL_BLOCK_SETS_DEFINE(name, min_size, max_size, n_max); \
1221 _MEMORY_POOL_BUFFER_DEFINE(name, max_size, n_max); \
1222 __asm__("_build_mem_pool " STRINGIFY(name) " " STRINGIFY(min_size) " " \
1223 STRINGIFY(max_size) " " STRINGIFY(n_max) "\n\t"); \
1224 extern struct k_mem_pool name
1225
1226/*
1227 * Dummy function that assigns the value of sizeof(struct k_mem_pool_quad_block)
1228 * to __memory_pool_quad_block_size absolute symbol.
1229 * This function does not get called, but compiler calculates the value and
1230 * assigns it to the absolute symbol, that, in turn is used by assembler macros.
1231 */
1232static void __attribute__ ((used)) __k_mem_pool_quad_block_size_define(void)
1233{
1234 __asm__(".globl __memory_pool_quad_block_size\n\t"
1235 "__memory_pool_quad_block_size = %c0\n\t"
1236 :
1237 : "n"(sizeof(struct k_mem_pool_quad_block)));
1238}
1239
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001240#define K_MEM_POOL_SIZE(max_block_size, num_max_blocks) \
1241 (sizeof(struct k_mem_pool) + ((max_block_size) * (num_max_blocks)))
1242
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001243extern int k_mem_pool_alloc(struct k_mem_pool *pool, struct k_mem_block *block,
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001244 int size, int32_t timeout);
1245extern void k_mem_pool_free(struct k_mem_block *block);
Dmitriy Korovkin3c426882016-09-01 18:14:17 -04001246extern void k_mem_pool_defrag(struct k_mem_pool *pool);
Benjamin Walsh456c6da2016-09-02 18:55:39 -04001247extern void *k_malloc(uint32_t size);
1248extern void k_free(void *p);
1249
1250/*
1251 * legacy.h must be before arch/cpu.h to allow the ioapic/loapic drivers to
1252 * hook into the device subsystem, which itself uses nanokernel semaphores,
1253 * and thus currently requires the definition of nano_sem.
1254 */
1255#include <legacy.h>
1256#include <arch/cpu.h>
1257
1258/*
1259 * private APIs that are utilized by one or more public APIs
1260 */
1261
1262extern struct k_thread_static_init _k_task_list_start[];
1263extern struct k_thread_static_init _k_task_list_end[];
1264
1265#define _FOREACH_STATIC_THREAD(thread_init) \
1266 for (struct k_thread_static_init *thread_init = _k_task_list_start; \
1267 thread_init < _k_task_list_end; thread_init++)
1268
1269extern int _is_thread_essential(void);
1270static inline int is_in_any_group(struct k_thread_static_init *thread_init,
1271 uint32_t groups)
1272{
1273 return !!(thread_init->init_groups & groups);
1274}
1275extern void _init_static_threads(void);
1276
1277#ifdef __cplusplus
1278}
1279#endif
1280
1281#endif /* _kernel__h_ */