blob: 0f9f45c45656999ba989125c16bb52af61677c31 [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh0fd61352014-02-07 02:29:45 +000012** The code in this file implements the function that runs the
13** bytecode of a prepared statement.
drh75897232000-05-29 14:26:00 +000014**
drhac82fcf2002-09-08 17:23:41 +000015** Various scripts scan this source file in order to generate HTML
16** documentation, headers files, or other derived files. The formatting
17** of the code in this file is, therefore, important. See other comments
18** in this file for details. If in doubt, do not deviate from existing
19** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000020*/
21#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000022#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000023
24/*
drh2b4ded92010-09-27 21:09:31 +000025** Invoke this macro on memory cells just prior to changing the
26** value of the cell. This macro verifies that shallow copies are
drh0fd61352014-02-07 02:29:45 +000027** not misused. A shallow copy of a string or blob just copies a
28** pointer to the string or blob, not the content. If the original
29** is changed while the copy is still in use, the string or blob might
30** be changed out from under the copy. This macro verifies that nothing
drhb6e8fd12014-03-06 01:56:33 +000031** like that ever happens.
drh2b4ded92010-09-27 21:09:31 +000032*/
33#ifdef SQLITE_DEBUG
drhe4c88c02012-01-04 12:57:45 +000034# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
drh2b4ded92010-09-27 21:09:31 +000035#else
36# define memAboutToChange(P,M)
37#endif
38
39/*
drh487ab3c2001-11-08 00:45:21 +000040** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000041** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000042** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000043** working correctly. This variable has no function other than to
44** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000045*/
drh0f7eb612006-08-08 13:51:43 +000046#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000047int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000048#endif
drh487ab3c2001-11-08 00:45:21 +000049
drhf6038712004-02-08 18:07:34 +000050/*
51** When this global variable is positive, it gets decremented once before
drhe4c88c02012-01-04 12:57:45 +000052** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53** field of the sqlite3 structure is set in order to simulate an interrupt.
drhf6038712004-02-08 18:07:34 +000054**
55** This facility is used for testing purposes only. It does not function
56** in an ordinary build.
57*/
drh0f7eb612006-08-08 13:51:43 +000058#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000059int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000060#endif
drh1350b032002-02-27 19:00:20 +000061
danielk19777e18c252004-05-25 11:47:24 +000062/*
drh6bf89572004-11-03 16:27:01 +000063** The next global variable is incremented each type the OP_Sort opcode
64** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000065** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000066** has no function other than to help verify the correct operation of the
67** library.
68*/
drh0f7eb612006-08-08 13:51:43 +000069#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000070int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000071#endif
drh6bf89572004-11-03 16:27:01 +000072
73/*
drhae7e1512007-05-02 16:51:59 +000074** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000075** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000076** use this information to make sure that the zero-blob functionality
77** is working correctly. This variable has no function other than to
78** help verify the correct operation of the library.
79*/
80#ifdef SQLITE_TEST
81int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +000082static void updateMaxBlobsize(Mem *p){
83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84 sqlite3_max_blobsize = p->n;
85 }
86}
drhae7e1512007-05-02 16:51:59 +000087#endif
88
89/*
drh0fd61352014-02-07 02:29:45 +000090** The next global variable is incremented each time the OP_Found opcode
dan0ff297e2009-09-25 17:03:14 +000091** is executed. This is used to test whether or not the foreign key
92** operation implemented using OP_FkIsZero is working. This variable
93** has no function other than to help verify the correct operation of the
94** library.
95*/
96#ifdef SQLITE_TEST
97int sqlite3_found_count = 0;
98#endif
99
100/*
drhb7654112008-01-12 12:48:07 +0000101** Test a register to see if it exceeds the current maximum blob size.
102** If it does, record the new maximum blob size.
103*/
drh678ccce2008-03-31 18:19:54 +0000104#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
drhca48c902008-01-18 14:08:24 +0000105# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000106#else
107# define UPDATE_MAX_BLOBSIZE(P)
108#endif
109
110/*
drh5655c542014-02-19 19:14:34 +0000111** Invoke the VDBE coverage callback, if that callback is defined. This
112** feature is used for test suite validation only and does not appear an
113** production builds.
114**
115** M is an integer, 2 or 3, that indices how many different ways the
116** branch can go. It is usually 2. "I" is the direction the branch
117** goes. 0 means falls through. 1 means branch is taken. 2 means the
118** second alternative branch is taken.
drh4336b0e2014-08-05 00:53:51 +0000119**
120** iSrcLine is the source code line (from the __LINE__ macro) that
121** generated the VDBE instruction. This instrumentation assumes that all
122** source code is in a single file (the amalgamation). Special values 1
123** and 2 for the iSrcLine parameter mean that this particular branch is
124** always taken or never taken, respectively.
drh688852a2014-02-17 22:40:43 +0000125*/
126#if !defined(SQLITE_VDBE_COVERAGE)
127# define VdbeBranchTaken(I,M)
128#else
drh5655c542014-02-19 19:14:34 +0000129# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
130 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
131 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
132 M = iSrcLine;
133 /* Assert the truth of VdbeCoverageAlwaysTaken() and
134 ** VdbeCoverageNeverTaken() */
135 assert( (M & I)==I );
136 }else{
137 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
138 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
139 iSrcLine,I,M);
140 }
141 }
drh688852a2014-02-17 22:40:43 +0000142#endif
143
144/*
drh9cbf3422008-01-17 16:22:13 +0000145** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000146** already. Return non-zero if a malloc() fails.
147*/
drhb21c8cd2007-08-21 19:33:56 +0000148#define Stringify(P, enc) \
drhbd9507c2014-08-23 17:21:37 +0000149 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
drhf4479502004-05-27 03:12:53 +0000150 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000151
152/*
danielk1977bd7e4602004-05-24 07:34:48 +0000153** An ephemeral string value (signified by the MEM_Ephem flag) contains
154** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000155** is responsible for deallocating that string. Because the register
156** does not control the string, it might be deleted without the register
157** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000158**
159** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000160** string that the register itself controls. In other words, it
drhc91b2fd2014-03-01 18:13:23 +0000161** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
danielk1977bd7e4602004-05-24 07:34:48 +0000162*/
drhb21c8cd2007-08-21 19:33:56 +0000163#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000164 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000165 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000166
dan689ab892011-08-12 15:02:00 +0000167/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
drh0fd61352014-02-07 02:29:45 +0000168#define isSorter(x) ((x)->pSorter!=0)
dan689ab892011-08-12 15:02:00 +0000169
danielk19771cc5ed82007-05-16 17:28:43 +0000170/*
drhdfe88ec2008-11-03 20:55:06 +0000171** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000172** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000173*/
drhdfe88ec2008-11-03 20:55:06 +0000174static VdbeCursor *allocateCursor(
175 Vdbe *p, /* The virtual machine */
176 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000177 int nField, /* Number of fields in the table or index */
drhe4c88c02012-01-04 12:57:45 +0000178 int iDb, /* Database the cursor belongs to, or -1 */
drh3e9ca092009-09-08 01:14:48 +0000179 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
danielk1977cd3e8f72008-03-25 09:47:35 +0000180){
181 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000182 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000183 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000184 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000185 **
186 ** * Sometimes cursor numbers are used for a couple of different
187 ** purposes in a vdbe program. The different uses might require
188 ** different sized allocations. Memory cells provide growable
189 ** allocations.
190 **
191 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
192 ** be freed lazily via the sqlite3_release_memory() API. This
193 ** minimizes the number of malloc calls made by the system.
194 **
195 ** Memory cells for cursors are allocated at the top of the address
196 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
197 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
198 */
199 Mem *pMem = &p->aMem[p->nMem-iCur];
200
danielk19775f096132008-03-28 15:44:09 +0000201 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000202 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000203 nByte =
drh5cc10232013-11-21 01:04:02 +0000204 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
205 (isBtreeCursor?sqlite3BtreeCursorSize():0);
danielk1977cd3e8f72008-03-25 09:47:35 +0000206
drh290c1942004-08-21 17:54:45 +0000207 assert( iCur<p->nCursor );
208 if( p->apCsr[iCur] ){
danielk1977be718892006-06-23 08:05:19 +0000209 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000210 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000211 }
drh322f2852014-09-19 00:43:39 +0000212 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
drhdfe88ec2008-11-03 20:55:06 +0000213 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhf25a5072009-11-18 23:01:25 +0000214 memset(pCx, 0, sizeof(VdbeCursor));
danielk197794eb6a12005-12-15 15:22:08 +0000215 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000216 pCx->nField = nField;
drhb53a5a92014-10-12 22:37:22 +0000217 pCx->aOffset = &pCx->aType[nField];
danielk1977cd3e8f72008-03-25 09:47:35 +0000218 if( isBtreeCursor ){
drhdfe88ec2008-11-03 20:55:06 +0000219 pCx->pCursor = (BtCursor*)
drh5cc10232013-11-21 01:04:02 +0000220 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
drhf25a5072009-11-18 23:01:25 +0000221 sqlite3BtreeCursorZero(pCx->pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000222 }
danielk197794eb6a12005-12-15 15:22:08 +0000223 }
drh4774b132004-06-12 20:12:51 +0000224 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000225}
226
danielk19773d1bfea2004-05-14 11:00:53 +0000227/*
drh29d72102006-02-09 22:13:41 +0000228** Try to convert a value into a numeric representation if we can
229** do so without loss of information. In other words, if the string
230** looks like a number, convert it into a number. If it does not
231** look like a number, leave it alone.
drhbd9507c2014-08-23 17:21:37 +0000232**
233** If the bTryForInt flag is true, then extra effort is made to give
234** an integer representation. Strings that look like floating point
235** values but which have no fractional component (example: '48.00')
236** will have a MEM_Int representation when bTryForInt is true.
237**
238** If bTryForInt is false, then if the input string contains a decimal
239** point or exponential notation, the result is only MEM_Real, even
240** if there is an exact integer representation of the quantity.
drh29d72102006-02-09 22:13:41 +0000241*/
drhbd9507c2014-08-23 17:21:37 +0000242static void applyNumericAffinity(Mem *pRec, int bTryForInt){
drh975b4c62014-07-26 16:47:23 +0000243 double rValue;
244 i64 iValue;
245 u8 enc = pRec->enc;
drh11a6eee2014-09-19 22:01:54 +0000246 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
drh975b4c62014-07-26 16:47:23 +0000247 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
248 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
249 pRec->u.i = iValue;
250 pRec->flags |= MEM_Int;
251 }else{
drh74eaba42014-09-18 17:52:15 +0000252 pRec->u.r = rValue;
drh975b4c62014-07-26 16:47:23 +0000253 pRec->flags |= MEM_Real;
drhbd9507c2014-08-23 17:21:37 +0000254 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000255 }
256}
257
258/*
drh8a512562005-11-14 22:29:05 +0000259** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000260**
drh8a512562005-11-14 22:29:05 +0000261** SQLITE_AFF_INTEGER:
262** SQLITE_AFF_REAL:
263** SQLITE_AFF_NUMERIC:
264** Try to convert pRec to an integer representation or a
265** floating-point representation if an integer representation
266** is not possible. Note that the integer representation is
267** always preferred, even if the affinity is REAL, because
268** an integer representation is more space efficient on disk.
269**
270** SQLITE_AFF_TEXT:
271** Convert pRec to a text representation.
272**
273** SQLITE_AFF_NONE:
274** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000275*/
drh17435752007-08-16 04:30:38 +0000276static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000277 Mem *pRec, /* The value to apply affinity to */
278 char affinity, /* The affinity to be applied */
279 u8 enc /* Use this text encoding */
280){
drh7ea31cc2014-09-18 14:36:00 +0000281 if( affinity>=SQLITE_AFF_NUMERIC ){
drh8a512562005-11-14 22:29:05 +0000282 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
283 || affinity==SQLITE_AFF_NUMERIC );
drhbd9507c2014-08-23 17:21:37 +0000284 if( (pRec->flags & MEM_Int)==0 ){
285 if( (pRec->flags & MEM_Real)==0 ){
drh11a6eee2014-09-19 22:01:54 +0000286 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
drhbd9507c2014-08-23 17:21:37 +0000287 }else{
288 sqlite3VdbeIntegerAffinity(pRec);
289 }
drh17c40292004-07-21 02:53:29 +0000290 }
drh7ea31cc2014-09-18 14:36:00 +0000291 }else if( affinity==SQLITE_AFF_TEXT ){
292 /* Only attempt the conversion to TEXT if there is an integer or real
293 ** representation (blob and NULL do not get converted) but no string
294 ** representation.
295 */
296 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
297 sqlite3VdbeMemStringify(pRec, enc, 1);
298 }
danielk19773d1bfea2004-05-14 11:00:53 +0000299 }
300}
301
danielk1977aee18ef2005-03-09 12:26:50 +0000302/*
drh29d72102006-02-09 22:13:41 +0000303** Try to convert the type of a function argument or a result column
304** into a numeric representation. Use either INTEGER or REAL whichever
305** is appropriate. But only do the conversion if it is possible without
306** loss of information and return the revised type of the argument.
drh29d72102006-02-09 22:13:41 +0000307*/
308int sqlite3_value_numeric_type(sqlite3_value *pVal){
drh1b27b8c2014-02-10 03:21:57 +0000309 int eType = sqlite3_value_type(pVal);
310 if( eType==SQLITE_TEXT ){
311 Mem *pMem = (Mem*)pVal;
drhbd9507c2014-08-23 17:21:37 +0000312 applyNumericAffinity(pMem, 0);
drh1b27b8c2014-02-10 03:21:57 +0000313 eType = sqlite3_value_type(pVal);
drhe5a8a1d2010-11-18 12:31:24 +0000314 }
drh1b27b8c2014-02-10 03:21:57 +0000315 return eType;
drh29d72102006-02-09 22:13:41 +0000316}
317
318/*
danielk1977aee18ef2005-03-09 12:26:50 +0000319** Exported version of applyAffinity(). This one works on sqlite3_value*,
320** not the internal Mem* type.
321*/
danielk19771e536952007-08-16 10:09:01 +0000322void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000323 sqlite3_value *pVal,
324 u8 affinity,
325 u8 enc
326){
drhb21c8cd2007-08-21 19:33:56 +0000327 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000328}
329
drh3d1d90a2014-03-24 15:00:15 +0000330/*
drhf1a89ed2014-08-23 17:41:15 +0000331** pMem currently only holds a string type (or maybe a BLOB that we can
332** interpret as a string if we want to). Compute its corresponding
drh74eaba42014-09-18 17:52:15 +0000333** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
drhf1a89ed2014-08-23 17:41:15 +0000334** accordingly.
335*/
336static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
337 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
338 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
drh74eaba42014-09-18 17:52:15 +0000339 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
drhf1a89ed2014-08-23 17:41:15 +0000340 return 0;
341 }
342 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
343 return MEM_Int;
344 }
345 return MEM_Real;
346}
347
348/*
drh3d1d90a2014-03-24 15:00:15 +0000349** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
350** none.
351**
352** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
drh74eaba42014-09-18 17:52:15 +0000353** But it does set pMem->u.r and pMem->u.i appropriately.
drh3d1d90a2014-03-24 15:00:15 +0000354*/
355static u16 numericType(Mem *pMem){
356 if( pMem->flags & (MEM_Int|MEM_Real) ){
357 return pMem->flags & (MEM_Int|MEM_Real);
358 }
359 if( pMem->flags & (MEM_Str|MEM_Blob) ){
drhf1a89ed2014-08-23 17:41:15 +0000360 return computeNumericType(pMem);
drh3d1d90a2014-03-24 15:00:15 +0000361 }
362 return 0;
363}
364
danielk1977b5402fb2005-01-12 07:15:04 +0000365#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000366/*
danielk1977ca6b2912004-05-21 10:49:47 +0000367** Write a nice string representation of the contents of cell pMem
368** into buffer zBuf, length nBuf.
369*/
drh74161702006-02-24 02:53:49 +0000370void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000371 char *zCsr = zBuf;
372 int f = pMem->flags;
373
drh57196282004-10-06 15:41:16 +0000374 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000375
danielk1977ca6b2912004-05-21 10:49:47 +0000376 if( f&MEM_Blob ){
377 int i;
378 char c;
379 if( f & MEM_Dyn ){
380 c = 'z';
381 assert( (f & (MEM_Static|MEM_Ephem))==0 );
382 }else if( f & MEM_Static ){
383 c = 't';
384 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
385 }else if( f & MEM_Ephem ){
386 c = 'e';
387 assert( (f & (MEM_Static|MEM_Dyn))==0 );
388 }else{
389 c = 's';
390 }
391
drh5bb3eb92007-05-04 13:15:55 +0000392 sqlite3_snprintf(100, zCsr, "%c", c);
drhea678832008-12-10 19:26:22 +0000393 zCsr += sqlite3Strlen30(zCsr);
drh5bb3eb92007-05-04 13:15:55 +0000394 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000395 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000396 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000397 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000398 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000399 }
400 for(i=0; i<16 && i<pMem->n; i++){
401 char z = pMem->z[i];
402 if( z<32 || z>126 ) *zCsr++ = '.';
403 else *zCsr++ = z;
404 }
405
drhe718efe2007-05-10 21:14:03 +0000406 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000407 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000408 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000409 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000410 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000411 }
danielk1977b1bc9532004-05-22 03:05:33 +0000412 *zCsr = '\0';
413 }else if( f & MEM_Str ){
414 int j, k;
415 zBuf[0] = ' ';
416 if( f & MEM_Dyn ){
417 zBuf[1] = 'z';
418 assert( (f & (MEM_Static|MEM_Ephem))==0 );
419 }else if( f & MEM_Static ){
420 zBuf[1] = 't';
421 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
422 }else if( f & MEM_Ephem ){
423 zBuf[1] = 'e';
424 assert( (f & (MEM_Static|MEM_Dyn))==0 );
425 }else{
426 zBuf[1] = 's';
427 }
428 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000429 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000430 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000431 zBuf[k++] = '[';
432 for(j=0; j<15 && j<pMem->n; j++){
433 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000434 if( c>=0x20 && c<0x7f ){
435 zBuf[k++] = c;
436 }else{
437 zBuf[k++] = '.';
438 }
439 }
440 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000441 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000442 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000443 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000444 }
danielk1977ca6b2912004-05-21 10:49:47 +0000445}
446#endif
447
drh5b6afba2008-01-05 16:29:28 +0000448#ifdef SQLITE_DEBUG
449/*
450** Print the value of a register for tracing purposes:
451*/
drh84e55a82013-11-13 17:58:23 +0000452static void memTracePrint(Mem *p){
drha5750cf2014-02-07 13:20:31 +0000453 if( p->flags & MEM_Undefined ){
drh84e55a82013-11-13 17:58:23 +0000454 printf(" undefined");
drh953f7612012-12-07 22:18:54 +0000455 }else if( p->flags & MEM_Null ){
drh84e55a82013-11-13 17:58:23 +0000456 printf(" NULL");
drh5b6afba2008-01-05 16:29:28 +0000457 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
drh84e55a82013-11-13 17:58:23 +0000458 printf(" si:%lld", p->u.i);
drh5b6afba2008-01-05 16:29:28 +0000459 }else if( p->flags & MEM_Int ){
drh84e55a82013-11-13 17:58:23 +0000460 printf(" i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000461#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000462 }else if( p->flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +0000463 printf(" r:%g", p->u.r);
drh0b3bf922009-06-15 20:45:34 +0000464#endif
drh733bf1b2009-04-22 00:47:00 +0000465 }else if( p->flags & MEM_RowSet ){
drh84e55a82013-11-13 17:58:23 +0000466 printf(" (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000467 }else{
468 char zBuf[200];
469 sqlite3VdbeMemPrettyPrint(p, zBuf);
drh84e55a82013-11-13 17:58:23 +0000470 printf(" %s", zBuf);
drh5b6afba2008-01-05 16:29:28 +0000471 }
472}
drh84e55a82013-11-13 17:58:23 +0000473static void registerTrace(int iReg, Mem *p){
474 printf("REG[%d] = ", iReg);
475 memTracePrint(p);
476 printf("\n");
drh5b6afba2008-01-05 16:29:28 +0000477}
478#endif
479
480#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000481# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
drh5b6afba2008-01-05 16:29:28 +0000482#else
483# define REGISTER_TRACE(R,M)
484#endif
485
danielk197784ac9d02004-05-18 09:58:06 +0000486
drh7b396862003-01-01 23:06:20 +0000487#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000488
489/*
490** hwtime.h contains inline assembler code for implementing
491** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000492*/
shane9bcbdad2008-05-29 20:22:37 +0000493#include "hwtime.h"
494
drh7b396862003-01-01 23:06:20 +0000495#endif
496
danielk1977fd7f0452008-12-17 17:30:26 +0000497#ifndef NDEBUG
498/*
499** This function is only called from within an assert() expression. It
500** checks that the sqlite3.nTransaction variable is correctly set to
501** the number of non-transaction savepoints currently in the
502** linked list starting at sqlite3.pSavepoint.
503**
504** Usage:
505**
506** assert( checkSavepointCount(db) );
507*/
508static int checkSavepointCount(sqlite3 *db){
509 int n = 0;
510 Savepoint *p;
511 for(p=db->pSavepoint; p; p=p->pNext) n++;
512 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
513 return 1;
514}
515#endif
516
drhb9755982010-07-24 16:34:37 +0000517
518/*
drh0fd61352014-02-07 02:29:45 +0000519** Execute as much of a VDBE program as we can.
520** This is the core of sqlite3_step().
drhb86ccfb2003-01-28 23:13:10 +0000521*/
danielk19774adee202004-05-08 08:23:19 +0000522int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000523 Vdbe *p /* The VDBE */
524){
shaneh84f4b2f2010-02-26 01:46:54 +0000525 int pc=0; /* The program counter */
drhbbe879d2009-11-14 18:04:35 +0000526 Op *aOp = p->aOp; /* Copy of p->aOp */
drhb86ccfb2003-01-28 23:13:10 +0000527 Op *pOp; /* Current operation */
528 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000529 sqlite3 *db = p->db; /* The database */
drhcdf011d2011-04-04 21:25:28 +0000530 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
drh8079a0d2006-01-12 17:20:50 +0000531 u8 encoding = ENC(db); /* The database encoding */
drhbf159fa2013-06-25 22:01:22 +0000532 int iCompare = 0; /* Result of last OP_Compare operation */
533 unsigned nVmStep = 0; /* Number of virtual machine steps */
drh49afe3a2013-07-10 03:05:14 +0000534#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
drh323df792013-08-05 19:11:29 +0000535 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
drh49afe3a2013-07-10 03:05:14 +0000536#endif
drha6c2ed92009-11-14 23:22:23 +0000537 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000538 Mem *pIn1 = 0; /* 1st input operand */
539 Mem *pIn2 = 0; /* 2nd input operand */
540 Mem *pIn3 = 0; /* 3rd input operand */
541 Mem *pOut = 0; /* Output operand */
shanebe217792009-03-05 04:20:31 +0000542 int *aPermute = 0; /* Permutation of columns for OP_Compare */
drh99a66922011-05-13 18:51:42 +0000543 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
drhb86ccfb2003-01-28 23:13:10 +0000544#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000545 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000546#endif
drh856c1032009-06-02 15:21:42 +0000547 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000548
drhca48c902008-01-18 14:08:24 +0000549 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
drhbdaec522011-04-04 00:14:43 +0000550 sqlite3VdbeEnter(p);
danielk19772e588c72005-12-09 14:25:08 +0000551 if( p->rc==SQLITE_NOMEM ){
552 /* This happens if a malloc() inside a call to sqlite3_column_text() or
553 ** sqlite3_column_text16() failed. */
554 goto no_mem;
555 }
drh3a840692003-01-29 22:58:26 +0000556 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
drh1713afb2013-06-28 01:24:57 +0000557 assert( p->bIsReader || p->readOnly!=0 );
drh3a840692003-01-29 22:58:26 +0000558 p->rc = SQLITE_OK;
drh95a7b3e2013-09-16 12:57:19 +0000559 p->iCurrentTime = 0;
drhb86ccfb2003-01-28 23:13:10 +0000560 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000561 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000562 db->busyHandler.nBusy = 0;
drh0fd61352014-02-07 02:29:45 +0000563 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh602c2372007-03-01 00:29:13 +0000564 sqlite3VdbeIOTraceSql(p);
drh0d1961e2013-07-25 16:27:51 +0000565#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
566 if( db->xProgress ){
567 assert( 0 < db->nProgressOps );
drh9b47ee32013-08-20 03:13:51 +0000568 nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
drh0d1961e2013-07-25 16:27:51 +0000569 if( nProgressLimit==0 ){
570 nProgressLimit = db->nProgressOps;
571 }else{
572 nProgressLimit %= (unsigned)db->nProgressOps;
573 }
574 }
575#endif
drh3c23a882007-01-09 14:01:13 +0000576#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000577 sqlite3BeginBenignMalloc();
drh84e55a82013-11-13 17:58:23 +0000578 if( p->pc==0
579 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
580 ){
drh3c23a882007-01-09 14:01:13 +0000581 int i;
drh84e55a82013-11-13 17:58:23 +0000582 int once = 1;
drh3c23a882007-01-09 14:01:13 +0000583 sqlite3VdbePrintSql(p);
drh84e55a82013-11-13 17:58:23 +0000584 if( p->db->flags & SQLITE_VdbeListing ){
585 printf("VDBE Program Listing:\n");
586 for(i=0; i<p->nOp; i++){
587 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
588 }
drh3c23a882007-01-09 14:01:13 +0000589 }
drh84e55a82013-11-13 17:58:23 +0000590 if( p->db->flags & SQLITE_VdbeEQP ){
591 for(i=0; i<p->nOp; i++){
592 if( aOp[i].opcode==OP_Explain ){
593 if( once ) printf("VDBE Query Plan:\n");
594 printf("%s\n", aOp[i].p4.z);
595 once = 0;
596 }
597 }
598 }
599 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
drh3c23a882007-01-09 14:01:13 +0000600 }
danielk19772d1d86f2008-06-20 14:59:51 +0000601 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000602#endif
drhb86ccfb2003-01-28 23:13:10 +0000603 for(pc=p->pc; rc==SQLITE_OK; pc++){
drhcaec2f12003-01-07 02:47:47 +0000604 assert( pc>=0 && pc<p->nOp );
drh17435752007-08-16 04:30:38 +0000605 if( db->mallocFailed ) goto no_mem;
drh7b396862003-01-01 23:06:20 +0000606#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000607 start = sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000608#endif
drhbf159fa2013-06-25 22:01:22 +0000609 nVmStep++;
drhbbe879d2009-11-14 18:04:35 +0000610 pOp = &aOp[pc];
drh6e142f52000-06-08 13:36:40 +0000611
danielk19778b60e0f2005-01-12 09:10:39 +0000612 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000613 */
danielk19778b60e0f2005-01-12 09:10:39 +0000614#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000615 if( db->flags & SQLITE_VdbeTrace ){
616 sqlite3VdbePrintOp(stdout, pc, pOp);
drh75897232000-05-29 14:26:00 +0000617 }
drh3f7d4e42004-07-24 14:35:58 +0000618#endif
619
drh6e142f52000-06-08 13:36:40 +0000620
drhf6038712004-02-08 18:07:34 +0000621 /* Check to see if we need to simulate an interrupt. This only happens
622 ** if we have a special test build.
623 */
624#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000625 if( sqlite3_interrupt_count>0 ){
626 sqlite3_interrupt_count--;
627 if( sqlite3_interrupt_count==0 ){
628 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000629 }
630 }
631#endif
632
drhb5b407e2012-08-29 10:28:43 +0000633 /* On any opcode with the "out2-prerelease" tag, free any
drh3c657212009-11-17 23:59:58 +0000634 ** external allocations out of mem[p2] and set mem[p2] to be
635 ** an undefined integer. Opcodes will either fill in the integer
636 ** value or convert mem[p2] to a different type.
drh4c583122008-01-04 22:01:03 +0000637 */
drha6c2ed92009-11-14 23:22:23 +0000638 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
drh3c657212009-11-17 23:59:58 +0000639 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
640 assert( pOp->p2>0 );
dan3bc9f742013-08-15 16:18:39 +0000641 assert( pOp->p2<=(p->nMem-p->nCursor) );
drh3c657212009-11-17 23:59:58 +0000642 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +0000643 memAboutToChange(p, pOut);
drh0725cab2014-09-17 14:52:46 +0000644 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
drh3c657212009-11-17 23:59:58 +0000645 pOut->flags = MEM_Int;
drh4c583122008-01-04 22:01:03 +0000646 }
drh3c657212009-11-17 23:59:58 +0000647
648 /* Sanity checking on other operands */
649#ifdef SQLITE_DEBUG
650 if( (pOp->opflags & OPFLG_IN1)!=0 ){
651 assert( pOp->p1>0 );
dan3bc9f742013-08-15 16:18:39 +0000652 assert( pOp->p1<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000653 assert( memIsValid(&aMem[pOp->p1]) );
drh75fd0542014-03-01 16:24:44 +0000654 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
drh3c657212009-11-17 23:59:58 +0000655 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
656 }
657 if( (pOp->opflags & OPFLG_IN2)!=0 ){
658 assert( pOp->p2>0 );
dan3bc9f742013-08-15 16:18:39 +0000659 assert( pOp->p2<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000660 assert( memIsValid(&aMem[pOp->p2]) );
drh75fd0542014-03-01 16:24:44 +0000661 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
drh3c657212009-11-17 23:59:58 +0000662 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
663 }
664 if( (pOp->opflags & OPFLG_IN3)!=0 ){
665 assert( pOp->p3>0 );
dan3bc9f742013-08-15 16:18:39 +0000666 assert( pOp->p3<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000667 assert( memIsValid(&aMem[pOp->p3]) );
drh75fd0542014-03-01 16:24:44 +0000668 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
drh3c657212009-11-17 23:59:58 +0000669 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
670 }
671 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
672 assert( pOp->p2>0 );
dan3bc9f742013-08-15 16:18:39 +0000673 assert( pOp->p2<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000674 memAboutToChange(p, &aMem[pOp->p2]);
drh3c657212009-11-17 23:59:58 +0000675 }
676 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
677 assert( pOp->p3>0 );
dan3bc9f742013-08-15 16:18:39 +0000678 assert( pOp->p3<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000679 memAboutToChange(p, &aMem[pOp->p3]);
drh3c657212009-11-17 23:59:58 +0000680 }
681#endif
drh93952eb2009-11-13 19:43:43 +0000682
drh75897232000-05-29 14:26:00 +0000683 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000684
drh5e00f6c2001-09-13 13:46:56 +0000685/*****************************************************************************
686** What follows is a massive switch statement where each case implements a
687** separate instruction in the virtual machine. If we follow the usual
688** indentation conventions, each case should be indented by 6 spaces. But
689** that is a lot of wasted space on the left margin. So the code within
690** the switch statement will break with convention and be flush-left. Another
691** big comment (similar to this one) will mark the point in the code where
692** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000693**
694** The formatting of each case is important. The makefile for SQLite
695** generates two C files "opcodes.h" and "opcodes.c" by scanning this
696** file looking for lines that begin with "case OP_". The opcodes.h files
697** will be filled with #defines that give unique integer values to each
698** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000699** each string is the symbolic name for the corresponding opcode. If the
700** case statement is followed by a comment of the form "/# same as ... #/"
701** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000702**
drh9cbf3422008-01-17 16:22:13 +0000703** Other keywords in the comment that follows each case are used to
704** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
705** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
706** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000707**
drhac82fcf2002-09-08 17:23:41 +0000708** Documentation about VDBE opcodes is generated by scanning this file
709** for lines of that contain "Opcode:". That line and all subsequent
710** comment lines are used in the generation of the opcode.html documentation
711** file.
712**
713** SUMMARY:
714**
715** Formatting is important to scripts that scan this file.
716** Do not deviate from the formatting style currently in use.
717**
drh5e00f6c2001-09-13 13:46:56 +0000718*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000719
drh9cbf3422008-01-17 16:22:13 +0000720/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000721**
722** An unconditional jump to address P2.
723** The next instruction executed will be
724** the one at index P2 from the beginning of
725** the program.
drhfe705102014-03-06 13:38:37 +0000726**
727** The P1 parameter is not actually used by this opcode. However, it
728** is sometimes set to 1 instead of 0 as a hint to the command-line shell
729** that this Goto is the bottom of a loop and that the lines from P2 down
730** to the current line should be indented for EXPLAIN output.
drh5e00f6c2001-09-13 13:46:56 +0000731*/
drh9cbf3422008-01-17 16:22:13 +0000732case OP_Goto: { /* jump */
drh5e00f6c2001-09-13 13:46:56 +0000733 pc = pOp->p2 - 1;
drh49afe3a2013-07-10 03:05:14 +0000734
735 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
736 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
737 ** completion. Check to see if sqlite3_interrupt() has been called
738 ** or if the progress callback needs to be invoked.
739 **
740 ** This code uses unstructured "goto" statements and does not look clean.
741 ** But that is not due to sloppy coding habits. The code is written this
742 ** way for performance, to avoid having to run the interrupt and progress
743 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
744 ** faster according to "valgrind --tool=cachegrind" */
745check_for_interrupt:
drh0fd61352014-02-07 02:29:45 +0000746 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh49afe3a2013-07-10 03:05:14 +0000747#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
748 /* Call the progress callback if it is configured and the required number
749 ** of VDBE ops have been executed (either since this invocation of
750 ** sqlite3VdbeExec() or since last time the progress callback was called).
751 ** If the progress callback returns non-zero, exit the virtual machine with
752 ** a return code SQLITE_ABORT.
753 */
drh0d1961e2013-07-25 16:27:51 +0000754 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
drh400fcba2013-11-14 00:09:48 +0000755 assert( db->nProgressOps!=0 );
756 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
757 if( db->xProgress(db->pProgressArg) ){
drh49afe3a2013-07-10 03:05:14 +0000758 rc = SQLITE_INTERRUPT;
759 goto vdbe_error_halt;
760 }
drh49afe3a2013-07-10 03:05:14 +0000761 }
762#endif
763
drh5e00f6c2001-09-13 13:46:56 +0000764 break;
765}
drh75897232000-05-29 14:26:00 +0000766
drh2eb95372008-06-06 15:04:36 +0000767/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000768**
drh2eb95372008-06-06 15:04:36 +0000769** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000770** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000771*/
drhb8475df2011-12-09 16:21:19 +0000772case OP_Gosub: { /* jump */
dan3bc9f742013-08-15 16:18:39 +0000773 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
drh3c657212009-11-17 23:59:58 +0000774 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000775 assert( VdbeMemDynamic(pIn1)==0 );
drh2b4ded92010-09-27 21:09:31 +0000776 memAboutToChange(p, pIn1);
drh2eb95372008-06-06 15:04:36 +0000777 pIn1->flags = MEM_Int;
778 pIn1->u.i = pc;
779 REGISTER_TRACE(pOp->p1, pIn1);
drh8c74a8c2002-08-25 19:20:40 +0000780 pc = pOp->p2 - 1;
781 break;
782}
783
drh2eb95372008-06-06 15:04:36 +0000784/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000785**
drh81cf13e2014-02-07 18:27:53 +0000786** Jump to the next instruction after the address in register P1. After
787** the jump, register P1 becomes undefined.
drh8c74a8c2002-08-25 19:20:40 +0000788*/
drh2eb95372008-06-06 15:04:36 +0000789case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000790 pIn1 = &aMem[pOp->p1];
drh81cf13e2014-02-07 18:27:53 +0000791 assert( pIn1->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +0000792 pc = (int)pIn1->u.i;
drh81cf13e2014-02-07 18:27:53 +0000793 pIn1->flags = MEM_Undefined;
drh8c74a8c2002-08-25 19:20:40 +0000794 break;
795}
796
drhed71a832014-02-07 19:18:10 +0000797/* Opcode: InitCoroutine P1 P2 P3 * *
drh81cf13e2014-02-07 18:27:53 +0000798**
drh5dad9a32014-07-25 18:37:42 +0000799** Set up register P1 so that it will Yield to the coroutine
drhed71a832014-02-07 19:18:10 +0000800** located at address P3.
801**
drh5dad9a32014-07-25 18:37:42 +0000802** If P2!=0 then the coroutine implementation immediately follows
803** this opcode. So jump over the coroutine implementation to
drhed71a832014-02-07 19:18:10 +0000804** address P2.
drh5dad9a32014-07-25 18:37:42 +0000805**
806** See also: EndCoroutine
drh81cf13e2014-02-07 18:27:53 +0000807*/
808case OP_InitCoroutine: { /* jump */
drhed71a832014-02-07 19:18:10 +0000809 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
810 assert( pOp->p2>=0 && pOp->p2<p->nOp );
811 assert( pOp->p3>=0 && pOp->p3<p->nOp );
drh81cf13e2014-02-07 18:27:53 +0000812 pOut = &aMem[pOp->p1];
drhed71a832014-02-07 19:18:10 +0000813 assert( !VdbeMemDynamic(pOut) );
814 pOut->u.i = pOp->p3 - 1;
drh81cf13e2014-02-07 18:27:53 +0000815 pOut->flags = MEM_Int;
drhed71a832014-02-07 19:18:10 +0000816 if( pOp->p2 ) pc = pOp->p2 - 1;
drh81cf13e2014-02-07 18:27:53 +0000817 break;
818}
819
820/* Opcode: EndCoroutine P1 * * * *
821**
drhbc5cf382014-08-06 01:08:07 +0000822** The instruction at the address in register P1 is a Yield.
drh5dad9a32014-07-25 18:37:42 +0000823** Jump to the P2 parameter of that Yield.
drh81cf13e2014-02-07 18:27:53 +0000824** After the jump, register P1 becomes undefined.
drh5dad9a32014-07-25 18:37:42 +0000825**
826** See also: InitCoroutine
drh81cf13e2014-02-07 18:27:53 +0000827*/
828case OP_EndCoroutine: { /* in1 */
829 VdbeOp *pCaller;
830 pIn1 = &aMem[pOp->p1];
831 assert( pIn1->flags==MEM_Int );
832 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
833 pCaller = &aOp[pIn1->u.i];
834 assert( pCaller->opcode==OP_Yield );
835 assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
836 pc = pCaller->p2 - 1;
837 pIn1->flags = MEM_Undefined;
838 break;
839}
840
841/* Opcode: Yield P1 P2 * * *
drhe00ee6e2008-06-20 15:24:01 +0000842**
drh5dad9a32014-07-25 18:37:42 +0000843** Swap the program counter with the value in register P1. This
844** has the effect of yielding to a coroutine.
drh81cf13e2014-02-07 18:27:53 +0000845**
drh5dad9a32014-07-25 18:37:42 +0000846** If the coroutine that is launched by this instruction ends with
847** Yield or Return then continue to the next instruction. But if
848** the coroutine launched by this instruction ends with
849** EndCoroutine, then jump to P2 rather than continuing with the
850** next instruction.
851**
852** See also: InitCoroutine
drhe00ee6e2008-06-20 15:24:01 +0000853*/
drh81cf13e2014-02-07 18:27:53 +0000854case OP_Yield: { /* in1, jump */
drhe00ee6e2008-06-20 15:24:01 +0000855 int pcDest;
drh3c657212009-11-17 23:59:58 +0000856 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000857 assert( VdbeMemDynamic(pIn1)==0 );
drhe00ee6e2008-06-20 15:24:01 +0000858 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000859 pcDest = (int)pIn1->u.i;
drhe00ee6e2008-06-20 15:24:01 +0000860 pIn1->u.i = pc;
861 REGISTER_TRACE(pOp->p1, pIn1);
862 pc = pcDest;
863 break;
864}
865
drhf9c8ce32013-11-05 13:33:55 +0000866/* Opcode: HaltIfNull P1 P2 P3 P4 P5
drh0fd61352014-02-07 02:29:45 +0000867** Synopsis: if r[P3]=null halt
drh5053a792009-02-20 03:02:23 +0000868**
drhef8662b2011-06-20 21:47:58 +0000869** Check the value in register P3. If it is NULL then Halt using
drh5053a792009-02-20 03:02:23 +0000870** parameter P1, P2, and P4 as if this were a Halt instruction. If the
871** value in register P3 is not NULL, then this routine is a no-op.
drhf9c8ce32013-11-05 13:33:55 +0000872** The P5 parameter should be 1.
drh5053a792009-02-20 03:02:23 +0000873*/
874case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000875 pIn3 = &aMem[pOp->p3];
drh5053a792009-02-20 03:02:23 +0000876 if( (pIn3->flags & MEM_Null)==0 ) break;
877 /* Fall through into OP_Halt */
878}
drhe00ee6e2008-06-20 15:24:01 +0000879
drhf9c8ce32013-11-05 13:33:55 +0000880/* Opcode: Halt P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +0000881**
drh3d4501e2008-12-04 20:40:10 +0000882** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000883** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000884**
drh92f02c32004-09-02 14:57:08 +0000885** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
886** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
887** For errors, it can be some other value. If P1!=0 then P2 will determine
888** whether or not to rollback the current transaction. Do not rollback
889** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
890** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000891** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000892**
drh66a51672008-01-03 00:01:23 +0000893** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000894**
drhf9c8ce32013-11-05 13:33:55 +0000895** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
896**
897** 0: (no change)
898** 1: NOT NULL contraint failed: P4
899** 2: UNIQUE constraint failed: P4
900** 3: CHECK constraint failed: P4
901** 4: FOREIGN KEY constraint failed: P4
902**
903** If P5 is not zero and P4 is NULL, then everything after the ":" is
904** omitted.
905**
drh9cfcf5d2002-01-29 18:41:24 +0000906** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000907** every program. So a jump past the last instruction of the program
908** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000909*/
drh9cbf3422008-01-17 16:22:13 +0000910case OP_Halt: {
drhf9c8ce32013-11-05 13:33:55 +0000911 const char *zType;
912 const char *zLogFmt;
913
dan165921a2009-08-28 18:53:45 +0000914 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000915 /* Halt the sub-program. Return control to the parent frame. */
dan165921a2009-08-28 18:53:45 +0000916 VdbeFrame *pFrame = p->pFrame;
917 p->pFrame = pFrame->pParent;
918 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000919 sqlite3VdbeSetChanges(db, p->nChange);
dan165921a2009-08-28 18:53:45 +0000920 pc = sqlite3VdbeFrameRestore(pFrame);
drh99a66922011-05-13 18:51:42 +0000921 lastRowid = db->lastRowid;
dan165921a2009-08-28 18:53:45 +0000922 if( pOp->p2==OE_Ignore ){
dan2832ad42009-08-31 15:27:27 +0000923 /* Instruction pc is the OP_Program that invoked the sub-program
924 ** currently being halted. If the p2 instruction of this OP_Halt
925 ** instruction is set to OE_Ignore, then the sub-program is throwing
926 ** an IGNORE exception. In this case jump to the address specified
927 ** as the p2 of the calling OP_Program. */
dan76d462e2009-08-30 11:42:51 +0000928 pc = p->aOp[pc].p2-1;
dan165921a2009-08-28 18:53:45 +0000929 }
drhbbe879d2009-11-14 18:04:35 +0000930 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000931 aMem = p->aMem;
dan165921a2009-08-28 18:53:45 +0000932 break;
933 }
drh92f02c32004-09-02 14:57:08 +0000934 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000935 p->errorAction = (u8)pOp->p2;
dan165921a2009-08-28 18:53:45 +0000936 p->pc = pc;
drhf9c8ce32013-11-05 13:33:55 +0000937 if( p->rc ){
drhd9b7ec92013-11-06 14:05:21 +0000938 if( pOp->p5 ){
939 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
940 "FOREIGN KEY" };
941 assert( pOp->p5>=1 && pOp->p5<=4 );
942 testcase( pOp->p5==1 );
943 testcase( pOp->p5==2 );
944 testcase( pOp->p5==3 );
945 testcase( pOp->p5==4 );
946 zType = azType[pOp->p5-1];
947 }else{
948 zType = 0;
949 }
drh4308e342013-11-11 16:55:52 +0000950 assert( zType!=0 || pOp->p4.z!=0 );
drhf9c8ce32013-11-05 13:33:55 +0000951 zLogFmt = "abort at %d in [%s]: %s";
952 if( zType && pOp->p4.z ){
953 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed: %s",
954 zType, pOp->p4.z);
955 }else if( pOp->p4.z ){
956 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
drhf9c8ce32013-11-05 13:33:55 +0000957 }else{
drh4308e342013-11-11 16:55:52 +0000958 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed", zType);
drhf9c8ce32013-11-05 13:33:55 +0000959 }
960 sqlite3_log(pOp->p1, zLogFmt, pc, p->zSql, p->zErrMsg);
drh9cfcf5d2002-01-29 18:41:24 +0000961 }
drh92f02c32004-09-02 14:57:08 +0000962 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +0000963 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +0000964 if( rc==SQLITE_BUSY ){
drh900b31e2007-08-28 02:27:51 +0000965 p->rc = rc = SQLITE_BUSY;
966 }else{
drhd91c1a12013-02-09 13:58:25 +0000967 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
drh648e2642013-07-11 15:03:32 +0000968 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
drh900b31e2007-08-28 02:27:51 +0000969 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +0000970 }
drh900b31e2007-08-28 02:27:51 +0000971 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +0000972}
drhc61053b2000-06-04 12:58:36 +0000973
drh4c583122008-01-04 22:01:03 +0000974/* Opcode: Integer P1 P2 * * *
drh81316f82013-10-29 20:40:47 +0000975** Synopsis: r[P2]=P1
drh5e00f6c2001-09-13 13:46:56 +0000976**
drh9cbf3422008-01-17 16:22:13 +0000977** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +0000978*/
drh4c583122008-01-04 22:01:03 +0000979case OP_Integer: { /* out2-prerelease */
drh4c583122008-01-04 22:01:03 +0000980 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +0000981 break;
982}
983
drh4c583122008-01-04 22:01:03 +0000984/* Opcode: Int64 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +0000985** Synopsis: r[P2]=P4
drh29dda4a2005-07-21 18:23:20 +0000986**
drh66a51672008-01-03 00:01:23 +0000987** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +0000988** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +0000989*/
drh4c583122008-01-04 22:01:03 +0000990case OP_Int64: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000991 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +0000992 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +0000993 break;
994}
drh4f26d6c2004-05-26 23:25:30 +0000995
drh13573c72010-01-12 17:04:07 +0000996#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +0000997/* Opcode: Real * P2 * P4 *
drh81316f82013-10-29 20:40:47 +0000998** Synopsis: r[P2]=P4
drhf4479502004-05-27 03:12:53 +0000999**
drh4c583122008-01-04 22:01:03 +00001000** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +00001001** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +00001002*/
drh4c583122008-01-04 22:01:03 +00001003case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
1004 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +00001005 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh74eaba42014-09-18 17:52:15 +00001006 pOut->u.r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +00001007 break;
1008}
drh13573c72010-01-12 17:04:07 +00001009#endif
danielk1977cbb18d22004-05-28 11:37:27 +00001010
drh3c84ddf2008-01-09 02:15:38 +00001011/* Opcode: String8 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001012** Synopsis: r[P2]='P4'
danielk1977cbb18d22004-05-28 11:37:27 +00001013**
drh66a51672008-01-03 00:01:23 +00001014** P4 points to a nul terminated UTF-8 string. This opcode is transformed
drhbc5cf382014-08-06 01:08:07 +00001015** into a String before it is executed for the first time. During
drh0fd61352014-02-07 02:29:45 +00001016** this transformation, the length of string P4 is computed and stored
1017** as the P1 parameter.
danielk1977cbb18d22004-05-28 11:37:27 +00001018*/
drh4c583122008-01-04 22:01:03 +00001019case OP_String8: { /* same as TK_STRING, out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +00001020 assert( pOp->p4.z!=0 );
drhed2df7f2005-11-16 04:34:32 +00001021 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +00001022 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +00001023
1024#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +00001025 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +00001026 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1027 if( rc==SQLITE_TOOBIG ) goto too_big;
drh4c583122008-01-04 22:01:03 +00001028 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh17bcb102014-09-18 21:25:33 +00001029 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
drhc91b2fd2014-03-01 18:13:23 +00001030 assert( VdbeMemDynamic(pOut)==0 );
drh17bcb102014-09-18 21:25:33 +00001031 pOut->szMalloc = 0;
drh4c583122008-01-04 22:01:03 +00001032 pOut->flags |= MEM_Static;
drh66a51672008-01-03 00:01:23 +00001033 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +00001034 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +00001035 }
drh66a51672008-01-03 00:01:23 +00001036 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +00001037 pOp->p4.z = pOut->z;
1038 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +00001039 }
danielk197793758c82005-01-21 08:13:14 +00001040#endif
drhbb4957f2008-03-20 14:03:29 +00001041 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +00001042 goto too_big;
1043 }
1044 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +00001045}
drhf4479502004-05-27 03:12:53 +00001046
drh4c583122008-01-04 22:01:03 +00001047/* Opcode: String P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001048** Synopsis: r[P2]='P4' (len=P1)
drhf4479502004-05-27 03:12:53 +00001049**
drh9cbf3422008-01-17 16:22:13 +00001050** The string value P4 of length P1 (bytes) is stored in register P2.
drhf4479502004-05-27 03:12:53 +00001051*/
drh4c583122008-01-04 22:01:03 +00001052case OP_String: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +00001053 assert( pOp->p4.z!=0 );
drh4c583122008-01-04 22:01:03 +00001054 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1055 pOut->z = pOp->p4.z;
1056 pOut->n = pOp->p1;
1057 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001058 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977c572ef72004-05-27 09:28:41 +00001059 break;
1060}
1061
drh053a1282012-09-19 21:15:46 +00001062/* Opcode: Null P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001063** Synopsis: r[P2..P3]=NULL
drhf0863fe2005-06-12 21:35:51 +00001064**
drhb8475df2011-12-09 16:21:19 +00001065** Write a NULL into registers P2. If P3 greater than P2, then also write
drh053a1282012-09-19 21:15:46 +00001066** NULL into register P3 and every register in between P2 and P3. If P3
drhb8475df2011-12-09 16:21:19 +00001067** is less than P2 (typically P3 is zero) then only register P2 is
drh053a1282012-09-19 21:15:46 +00001068** set to NULL.
1069**
1070** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1071** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1072** OP_Ne or OP_Eq.
drhf0863fe2005-06-12 21:35:51 +00001073*/
drh4c583122008-01-04 22:01:03 +00001074case OP_Null: { /* out2-prerelease */
drhb8475df2011-12-09 16:21:19 +00001075 int cnt;
drh053a1282012-09-19 21:15:46 +00001076 u16 nullFlag;
drhb8475df2011-12-09 16:21:19 +00001077 cnt = pOp->p3-pOp->p2;
dan3bc9f742013-08-15 16:18:39 +00001078 assert( pOp->p3<=(p->nMem-p->nCursor) );
drh053a1282012-09-19 21:15:46 +00001079 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
drhb8475df2011-12-09 16:21:19 +00001080 while( cnt>0 ){
1081 pOut++;
1082 memAboutToChange(p, pOut);
drh0725cab2014-09-17 14:52:46 +00001083 sqlite3VdbeMemSetNull(pOut);
drh053a1282012-09-19 21:15:46 +00001084 pOut->flags = nullFlag;
drhb8475df2011-12-09 16:21:19 +00001085 cnt--;
1086 }
drhf0863fe2005-06-12 21:35:51 +00001087 break;
1088}
1089
drh05a86c52014-02-16 01:55:49 +00001090/* Opcode: SoftNull P1 * * * *
1091** Synopsis: r[P1]=NULL
1092**
1093** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1094** instruction, but do not free any string or blob memory associated with
1095** the register, so that if the value was a string or blob that was
1096** previously copied using OP_SCopy, the copies will continue to be valid.
1097*/
1098case OP_SoftNull: {
1099 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
1100 pOut = &aMem[pOp->p1];
1101 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
1102 break;
1103}
drhf0863fe2005-06-12 21:35:51 +00001104
drha5750cf2014-02-07 13:20:31 +00001105/* Opcode: Blob P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001106** Synopsis: r[P2]=P4 (len=P1)
danielk1977c572ef72004-05-27 09:28:41 +00001107**
drh9de221d2008-01-05 06:51:30 +00001108** P4 points to a blob of data P1 bytes long. Store this
drh710c4842010-08-30 01:17:20 +00001109** blob in register P2.
danielk1977c572ef72004-05-27 09:28:41 +00001110*/
drh4c583122008-01-04 22:01:03 +00001111case OP_Blob: { /* out2-prerelease */
drhcbd2da92007-12-17 16:20:06 +00001112 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh4c583122008-01-04 22:01:03 +00001113 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +00001114 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001115 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +00001116 break;
1117}
1118
drheaf52d82010-05-12 13:50:23 +00001119/* Opcode: Variable P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001120** Synopsis: r[P2]=parameter(P1,P4)
drh50457892003-09-06 01:10:47 +00001121**
drheaf52d82010-05-12 13:50:23 +00001122** Transfer the values of bound parameter P1 into register P2
drh08de1492009-02-20 03:55:05 +00001123**
drh0fd61352014-02-07 02:29:45 +00001124** If the parameter is named, then its name appears in P4.
drh08de1492009-02-20 03:55:05 +00001125** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +00001126*/
drheaf52d82010-05-12 13:50:23 +00001127case OP_Variable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00001128 Mem *pVar; /* Value being transferred */
1129
drheaf52d82010-05-12 13:50:23 +00001130 assert( pOp->p1>0 && pOp->p1<=p->nVar );
drh04e9eea2011-06-01 19:16:06 +00001131 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
drheaf52d82010-05-12 13:50:23 +00001132 pVar = &p->aVar[pOp->p1 - 1];
1133 if( sqlite3VdbeMemTooBig(pVar) ){
1134 goto too_big;
drh023ae032007-05-08 12:12:16 +00001135 }
drheaf52d82010-05-12 13:50:23 +00001136 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1137 UPDATE_MAX_BLOBSIZE(pOut);
danielk197793d46752004-05-23 13:30:58 +00001138 break;
1139}
danielk1977295ba552004-05-19 10:34:51 +00001140
drhb21e7c72008-06-22 12:37:57 +00001141/* Opcode: Move P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00001142** Synopsis: r[P2@P3]=r[P1@P3]
drh5e00f6c2001-09-13 13:46:56 +00001143**
drh079a3072014-03-19 14:10:55 +00001144** Move the P3 values in register P1..P1+P3-1 over into
1145** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
drhb21e7c72008-06-22 12:37:57 +00001146** left holding a NULL. It is an error for register ranges
drh079a3072014-03-19 14:10:55 +00001147** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1148** for P3 to be less than 1.
drh5e00f6c2001-09-13 13:46:56 +00001149*/
drhe1349cb2008-04-01 00:36:10 +00001150case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001151 int n; /* Number of registers left to copy */
1152 int p1; /* Register to copy from */
1153 int p2; /* Register to copy to */
1154
drhe09f43f2013-11-21 04:18:31 +00001155 n = pOp->p3;
drh856c1032009-06-02 15:21:42 +00001156 p1 = pOp->p1;
1157 p2 = pOp->p2;
drh079a3072014-03-19 14:10:55 +00001158 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001159 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001160
drha6c2ed92009-11-14 23:22:23 +00001161 pIn1 = &aMem[p1];
1162 pOut = &aMem[p2];
drhe09f43f2013-11-21 04:18:31 +00001163 do{
dan3bc9f742013-08-15 16:18:39 +00001164 assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
1165 assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00001166 assert( memIsValid(pIn1) );
1167 memAboutToChange(p, pOut);
drh17bcb102014-09-18 21:25:33 +00001168 sqlite3VdbeMemMove(pOut, pIn1);
drh52043d72011-08-03 16:40:15 +00001169#ifdef SQLITE_DEBUG
1170 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
1171 pOut->pScopyFrom += p1 - pOp->p2;
1172 }
1173#endif
drhb21e7c72008-06-22 12:37:57 +00001174 REGISTER_TRACE(p2++, pOut);
1175 pIn1++;
1176 pOut++;
drh079a3072014-03-19 14:10:55 +00001177 }while( --n );
drhe1349cb2008-04-01 00:36:10 +00001178 break;
1179}
1180
drhe8e4af72012-09-21 00:04:28 +00001181/* Opcode: Copy P1 P2 P3 * *
drh4eded602013-12-20 15:59:20 +00001182** Synopsis: r[P2@P3+1]=r[P1@P3+1]
drhb1fdb2a2008-01-05 04:06:03 +00001183**
drhe8e4af72012-09-21 00:04:28 +00001184** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
drhb1fdb2a2008-01-05 04:06:03 +00001185**
1186** This instruction makes a deep copy of the value. A duplicate
1187** is made of any string or blob constant. See also OP_SCopy.
1188*/
drhe8e4af72012-09-21 00:04:28 +00001189case OP_Copy: {
1190 int n;
1191
1192 n = pOp->p3;
drh3c657212009-11-17 23:59:58 +00001193 pIn1 = &aMem[pOp->p1];
1194 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001195 assert( pOut!=pIn1 );
drhe8e4af72012-09-21 00:04:28 +00001196 while( 1 ){
1197 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1198 Deephemeralize(pOut);
drh953f7612012-12-07 22:18:54 +00001199#ifdef SQLITE_DEBUG
1200 pOut->pScopyFrom = 0;
1201#endif
drhe8e4af72012-09-21 00:04:28 +00001202 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1203 if( (n--)==0 ) break;
1204 pOut++;
1205 pIn1++;
1206 }
drhe1349cb2008-04-01 00:36:10 +00001207 break;
1208}
1209
drhb1fdb2a2008-01-05 04:06:03 +00001210/* Opcode: SCopy P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001211** Synopsis: r[P2]=r[P1]
drhb1fdb2a2008-01-05 04:06:03 +00001212**
drh9cbf3422008-01-17 16:22:13 +00001213** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001214**
1215** This instruction makes a shallow copy of the value. If the value
1216** is a string or blob, then the copy is only a pointer to the
1217** original and hence if the original changes so will the copy.
1218** Worse, if the original is deallocated, the copy becomes invalid.
1219** Thus the program must guarantee that the original will not change
1220** during the lifetime of the copy. Use OP_Copy to make a complete
1221** copy.
1222*/
drh26198bb2013-10-31 11:15:09 +00001223case OP_SCopy: { /* out2 */
drh3c657212009-11-17 23:59:58 +00001224 pIn1 = &aMem[pOp->p1];
1225 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001226 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001227 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh2b4ded92010-09-27 21:09:31 +00001228#ifdef SQLITE_DEBUG
1229 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1230#endif
drh5e00f6c2001-09-13 13:46:56 +00001231 break;
1232}
drh75897232000-05-29 14:26:00 +00001233
drh9cbf3422008-01-17 16:22:13 +00001234/* Opcode: ResultRow P1 P2 * * *
drh4af5bee2013-10-30 02:37:50 +00001235** Synopsis: output=r[P1@P2]
drhd4e70eb2008-01-02 00:34:36 +00001236**
shane21e7feb2008-05-30 15:59:49 +00001237** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001238** results. This opcode causes the sqlite3_step() call to terminate
1239** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
drh4d87aae2014-02-20 19:42:00 +00001240** structure to provide access to the r(P1)..r(P1+P2-1) values as
drh0fd61352014-02-07 02:29:45 +00001241** the result row.
drhd4e70eb2008-01-02 00:34:36 +00001242*/
drh9cbf3422008-01-17 16:22:13 +00001243case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001244 Mem *pMem;
1245 int i;
1246 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001247 assert( pOp->p1>0 );
dan3bc9f742013-08-15 16:18:39 +00001248 assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 );
drhd4e70eb2008-01-02 00:34:36 +00001249
drhe6400b92013-11-13 23:48:46 +00001250#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1251 /* Run the progress counter just before returning.
1252 */
1253 if( db->xProgress!=0
1254 && nVmStep>=nProgressLimit
1255 && db->xProgress(db->pProgressArg)!=0
1256 ){
1257 rc = SQLITE_INTERRUPT;
1258 goto vdbe_error_halt;
1259 }
1260#endif
1261
dan32b09f22009-09-23 17:29:59 +00001262 /* If this statement has violated immediate foreign key constraints, do
1263 ** not return the number of rows modified. And do not RELEASE the statement
1264 ** transaction. It needs to be rolled back. */
1265 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1266 assert( db->flags&SQLITE_CountRows );
1267 assert( p->usesStmtJournal );
1268 break;
1269 }
1270
danielk1977bd434552009-03-18 10:33:00 +00001271 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1272 ** DML statements invoke this opcode to return the number of rows
1273 ** modified to the user. This is the only way that a VM that
1274 ** opens a statement transaction may invoke this opcode.
1275 **
1276 ** In case this is such a statement, close any statement transaction
1277 ** opened by this VM before returning control to the user. This is to
1278 ** ensure that statement-transactions are always nested, not overlapping.
1279 ** If the open statement-transaction is not closed here, then the user
1280 ** may step another VM that opens its own statement transaction. This
1281 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001282 **
1283 ** The statement transaction is never a top-level transaction. Hence
1284 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001285 */
1286 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001287 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1288 if( NEVER(rc!=SQLITE_OK) ){
danielk1977bd434552009-03-18 10:33:00 +00001289 break;
1290 }
1291
drhd4e70eb2008-01-02 00:34:36 +00001292 /* Invalidate all ephemeral cursor row caches */
1293 p->cacheCtr = (p->cacheCtr + 2)|1;
1294
1295 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001296 ** and have an assigned type. The results are de-ephemeralized as
drhb8a45bb2011-12-31 21:51:55 +00001297 ** a side effect.
drhd4e70eb2008-01-02 00:34:36 +00001298 */
drha6c2ed92009-11-14 23:22:23 +00001299 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001300 for(i=0; i<pOp->p2; i++){
drh2b4ded92010-09-27 21:09:31 +00001301 assert( memIsValid(&pMem[i]) );
drhebc16712010-09-28 00:25:58 +00001302 Deephemeralize(&pMem[i]);
drh746fd9c2010-09-28 06:00:47 +00001303 assert( (pMem[i].flags & MEM_Ephem)==0
1304 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
drhd4e70eb2008-01-02 00:34:36 +00001305 sqlite3VdbeMemNulTerminate(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001306 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001307 }
drh28039692008-03-17 16:54:01 +00001308 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001309
1310 /* Return SQLITE_ROW
1311 */
drhd4e70eb2008-01-02 00:34:36 +00001312 p->pc = pc + 1;
drhd4e70eb2008-01-02 00:34:36 +00001313 rc = SQLITE_ROW;
1314 goto vdbe_return;
1315}
1316
drh5b6afba2008-01-05 16:29:28 +00001317/* Opcode: Concat P1 P2 P3 * *
drh313619f2013-10-31 20:34:06 +00001318** Synopsis: r[P3]=r[P2]+r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001319**
drh5b6afba2008-01-05 16:29:28 +00001320** Add the text in register P1 onto the end of the text in
1321** register P2 and store the result in register P3.
1322** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001323**
1324** P3 = P2 || P1
1325**
1326** It is illegal for P1 and P3 to be the same register. Sometimes,
1327** if P3 is the same register as P2, the implementation is able
1328** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001329*/
drh5b6afba2008-01-05 16:29:28 +00001330case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001331 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001332
drh3c657212009-11-17 23:59:58 +00001333 pIn1 = &aMem[pOp->p1];
1334 pIn2 = &aMem[pOp->p2];
1335 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001336 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001337 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001338 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001339 break;
drh5e00f6c2001-09-13 13:46:56 +00001340 }
drha0c06522009-06-17 22:50:41 +00001341 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001342 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001343 Stringify(pIn2, encoding);
1344 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001345 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001346 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001347 }
drh9c1905f2008-12-10 22:32:56 +00001348 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001349 goto no_mem;
1350 }
drhc91b2fd2014-03-01 18:13:23 +00001351 MemSetTypeFlag(pOut, MEM_Str);
danielk1977a7a8e142008-02-13 18:25:27 +00001352 if( pOut!=pIn2 ){
1353 memcpy(pOut->z, pIn2->z, pIn2->n);
1354 }
1355 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
drh81316f82013-10-29 20:40:47 +00001356 pOut->z[nByte]=0;
danielk1977a7a8e142008-02-13 18:25:27 +00001357 pOut->z[nByte+1] = 0;
1358 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001359 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001360 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001361 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001362 break;
1363}
drh75897232000-05-29 14:26:00 +00001364
drh3c84ddf2008-01-09 02:15:38 +00001365/* Opcode: Add P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001366** Synopsis: r[P3]=r[P1]+r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001367**
drh60a713c2008-01-21 16:22:45 +00001368** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001369** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001370** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001371*/
drh3c84ddf2008-01-09 02:15:38 +00001372/* Opcode: Multiply P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001373** Synopsis: r[P3]=r[P1]*r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001374**
drh3c84ddf2008-01-09 02:15:38 +00001375**
shane21e7feb2008-05-30 15:59:49 +00001376** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001377** and store the result in register P3.
1378** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001379*/
drh3c84ddf2008-01-09 02:15:38 +00001380/* Opcode: Subtract P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001381** Synopsis: r[P3]=r[P2]-r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001382**
drh60a713c2008-01-21 16:22:45 +00001383** Subtract the value in register P1 from the value in register P2
1384** and store the result in register P3.
1385** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001386*/
drh9cbf3422008-01-17 16:22:13 +00001387/* Opcode: Divide P1 P2 P3 * *
drh40864a12013-11-15 18:58:37 +00001388** Synopsis: r[P3]=r[P2]/r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001389**
drh60a713c2008-01-21 16:22:45 +00001390** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001391** and store the result in register P3 (P3=P2/P1). If the value in
1392** register P1 is zero, then the result is NULL. If either input is
1393** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001394*/
drh9cbf3422008-01-17 16:22:13 +00001395/* Opcode: Remainder P1 P2 P3 * *
drh40864a12013-11-15 18:58:37 +00001396** Synopsis: r[P3]=r[P2]%r[P1]
drhbf4133c2001-10-13 02:59:08 +00001397**
drh40864a12013-11-15 18:58:37 +00001398** Compute the remainder after integer register P2 is divided by
1399** register P1 and store the result in register P3.
1400** If the value in register P1 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001401** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001402*/
drh5b6afba2008-01-05 16:29:28 +00001403case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1404case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1405case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1406case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1407case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drhbe707b32012-12-10 22:19:14 +00001408 char bIntint; /* Started out as two integer operands */
drh3d1d90a2014-03-24 15:00:15 +00001409 u16 flags; /* Combined MEM_* flags from both inputs */
1410 u16 type1; /* Numeric type of left operand */
1411 u16 type2; /* Numeric type of right operand */
drh856c1032009-06-02 15:21:42 +00001412 i64 iA; /* Integer value of left operand */
1413 i64 iB; /* Integer value of right operand */
1414 double rA; /* Real value of left operand */
1415 double rB; /* Real value of right operand */
1416
drh3c657212009-11-17 23:59:58 +00001417 pIn1 = &aMem[pOp->p1];
drh3d1d90a2014-03-24 15:00:15 +00001418 type1 = numericType(pIn1);
drh3c657212009-11-17 23:59:58 +00001419 pIn2 = &aMem[pOp->p2];
drh3d1d90a2014-03-24 15:00:15 +00001420 type2 = numericType(pIn2);
drh3c657212009-11-17 23:59:58 +00001421 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001422 flags = pIn1->flags | pIn2->flags;
drha05a7222008-01-19 03:35:58 +00001423 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
drh3d1d90a2014-03-24 15:00:15 +00001424 if( (type1 & type2 & MEM_Int)!=0 ){
drh856c1032009-06-02 15:21:42 +00001425 iA = pIn1->u.i;
1426 iB = pIn2->u.i;
drhbe707b32012-12-10 22:19:14 +00001427 bIntint = 1;
drh5e00f6c2001-09-13 13:46:56 +00001428 switch( pOp->opcode ){
drh158b9cb2011-03-05 20:59:46 +00001429 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1430 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1431 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
drhbf4133c2001-10-13 02:59:08 +00001432 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001433 if( iA==0 ) goto arithmetic_result_is_null;
drh158b9cb2011-03-05 20:59:46 +00001434 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
drh856c1032009-06-02 15:21:42 +00001435 iB /= iA;
drh75897232000-05-29 14:26:00 +00001436 break;
1437 }
drhbf4133c2001-10-13 02:59:08 +00001438 default: {
drh856c1032009-06-02 15:21:42 +00001439 if( iA==0 ) goto arithmetic_result_is_null;
1440 if( iA==-1 ) iA = 1;
1441 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001442 break;
1443 }
drh75897232000-05-29 14:26:00 +00001444 }
drh856c1032009-06-02 15:21:42 +00001445 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001446 MemSetTypeFlag(pOut, MEM_Int);
drh5e00f6c2001-09-13 13:46:56 +00001447 }else{
drhbe707b32012-12-10 22:19:14 +00001448 bIntint = 0;
drh158b9cb2011-03-05 20:59:46 +00001449fp_math:
drh856c1032009-06-02 15:21:42 +00001450 rA = sqlite3VdbeRealValue(pIn1);
1451 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001452 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001453 case OP_Add: rB += rA; break;
1454 case OP_Subtract: rB -= rA; break;
1455 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001456 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001457 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001458 if( rA==(double)0 ) goto arithmetic_result_is_null;
1459 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001460 break;
1461 }
drhbf4133c2001-10-13 02:59:08 +00001462 default: {
shane75ac1de2009-06-09 18:58:52 +00001463 iA = (i64)rA;
1464 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001465 if( iA==0 ) goto arithmetic_result_is_null;
1466 if( iA==-1 ) iA = 1;
1467 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001468 break;
1469 }
drh5e00f6c2001-09-13 13:46:56 +00001470 }
drhc5a7b512010-01-13 16:25:42 +00001471#ifdef SQLITE_OMIT_FLOATING_POINT
1472 pOut->u.i = rB;
1473 MemSetTypeFlag(pOut, MEM_Int);
1474#else
drh856c1032009-06-02 15:21:42 +00001475 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001476 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001477 }
drh74eaba42014-09-18 17:52:15 +00001478 pOut->u.r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001479 MemSetTypeFlag(pOut, MEM_Real);
drh3d1d90a2014-03-24 15:00:15 +00001480 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
drh5b6afba2008-01-05 16:29:28 +00001481 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001482 }
drhc5a7b512010-01-13 16:25:42 +00001483#endif
drh5e00f6c2001-09-13 13:46:56 +00001484 }
1485 break;
1486
drha05a7222008-01-19 03:35:58 +00001487arithmetic_result_is_null:
1488 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001489 break;
1490}
1491
drh7a957892012-02-02 17:35:43 +00001492/* Opcode: CollSeq P1 * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001493**
drh66a51672008-01-03 00:01:23 +00001494** P4 is a pointer to a CollSeq struct. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001495** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1496** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001497** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001498**
drh7a957892012-02-02 17:35:43 +00001499** If P1 is not zero, then it is a register that a subsequent min() or
1500** max() aggregate will set to 1 if the current row is not the minimum or
1501** maximum. The P1 register is initialized to 0 by this instruction.
1502**
danielk1977dc1bdc42004-06-11 10:51:27 +00001503** The interface used by the implementation of the aforementioned functions
1504** to retrieve the collation sequence set by this opcode is not available
1505** publicly, only to user functions defined in func.c.
1506*/
drh9cbf3422008-01-17 16:22:13 +00001507case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001508 assert( pOp->p4type==P4_COLLSEQ );
drh7a957892012-02-02 17:35:43 +00001509 if( pOp->p1 ){
1510 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1511 }
danielk1977dc1bdc42004-06-11 10:51:27 +00001512 break;
1513}
1514
drh98757152008-01-09 23:04:12 +00001515/* Opcode: Function P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00001516** Synopsis: r[P3]=func(r[P2@P5])
drh8e0a2f92002-02-23 23:45:45 +00001517**
drh66a51672008-01-03 00:01:23 +00001518** Invoke a user function (P4 is a pointer to a Function structure that
drh98757152008-01-09 23:04:12 +00001519** defines the function) with P5 arguments taken from register P2 and
drh9cbf3422008-01-17 16:22:13 +00001520** successors. The result of the function is stored in register P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001521** Register P3 must not be one of the function inputs.
danielk1977682f68b2004-06-05 10:22:17 +00001522**
drh13449892005-09-07 21:22:45 +00001523** P1 is a 32-bit bitmask indicating whether or not each argument to the
danielk1977682f68b2004-06-05 10:22:17 +00001524** function was determined to be constant at compile time. If the first
drh13449892005-09-07 21:22:45 +00001525** argument was constant then bit 0 of P1 is set. This is used to determine
danielk1977682f68b2004-06-05 10:22:17 +00001526** whether meta data associated with a user function argument using the
1527** sqlite3_set_auxdata() API may be safely retained until the next
1528** invocation of this opcode.
drh1350b032002-02-27 19:00:20 +00001529**
drh13449892005-09-07 21:22:45 +00001530** See also: AggStep and AggFinal
drh8e0a2f92002-02-23 23:45:45 +00001531*/
drh0bce8352002-02-28 00:41:10 +00001532case OP_Function: {
danielk197751ad0ec2004-05-24 12:39:02 +00001533 int i;
drh6810ce62004-01-31 19:22:56 +00001534 Mem *pArg;
danielk197722322fd2004-05-25 23:35:17 +00001535 sqlite3_context ctx;
danielk197751ad0ec2004-05-24 12:39:02 +00001536 sqlite3_value **apVal;
drh856c1032009-06-02 15:21:42 +00001537 int n;
drh1350b032002-02-27 19:00:20 +00001538
drh856c1032009-06-02 15:21:42 +00001539 n = pOp->p5;
danielk19776ddcca52004-05-24 23:48:25 +00001540 apVal = p->apArg;
danielk197751ad0ec2004-05-24 12:39:02 +00001541 assert( apVal || n==0 );
dan3bc9f742013-08-15 16:18:39 +00001542 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drh9bd038f2014-08-27 14:14:06 +00001543 ctx.pOut = &aMem[pOp->p3];
1544 memAboutToChange(p, ctx.pOut);
danielk197751ad0ec2004-05-24 12:39:02 +00001545
dan3bc9f742013-08-15 16:18:39 +00001546 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
danielk1977a7a8e142008-02-13 18:25:27 +00001547 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drha6c2ed92009-11-14 23:22:23 +00001548 pArg = &aMem[pOp->p2];
drh6810ce62004-01-31 19:22:56 +00001549 for(i=0; i<n; i++, pArg++){
drh2b4ded92010-09-27 21:09:31 +00001550 assert( memIsValid(pArg) );
danielk197751ad0ec2004-05-24 12:39:02 +00001551 apVal[i] = pArg;
drhebc16712010-09-28 00:25:58 +00001552 Deephemeralize(pArg);
drhab5cd702010-04-07 14:32:11 +00001553 REGISTER_TRACE(pOp->p2+i, pArg);
drh8e0a2f92002-02-23 23:45:45 +00001554 }
danielk197751ad0ec2004-05-24 12:39:02 +00001555
dan0c547792013-07-18 17:12:08 +00001556 assert( pOp->p4type==P4_FUNCDEF );
1557 ctx.pFunc = pOp->p4.pFunc;
dan0c547792013-07-18 17:12:08 +00001558 ctx.iOp = pc;
1559 ctx.pVdbe = p;
drh9bd038f2014-08-27 14:14:06 +00001560 MemSetTypeFlag(ctx.pOut, MEM_Null);
drh9b47ee32013-08-20 03:13:51 +00001561 ctx.fErrorOrAux = 0;
drhf6aff802014-10-08 14:28:31 +00001562 db->lastRowid = lastRowid;
drhee9ff672010-09-03 18:50:48 +00001563 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh3b130be2014-09-26 01:10:02 +00001564 lastRowid = db->lastRowid; /* Remember rowid changes made by xFunc */
danielk19777e18c252004-05-25 11:47:24 +00001565
drh90669c12006-01-20 15:45:36 +00001566 /* If the function returned an error, throw an exception */
drh9b47ee32013-08-20 03:13:51 +00001567 if( ctx.fErrorOrAux ){
1568 if( ctx.isError ){
drh9bd038f2014-08-27 14:14:06 +00001569 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(ctx.pOut));
drh9b47ee32013-08-20 03:13:51 +00001570 rc = ctx.isError;
1571 }
1572 sqlite3VdbeDeleteAuxData(p, pc, pOp->p1);
drh90669c12006-01-20 15:45:36 +00001573 }
1574
drh9cbf3422008-01-17 16:22:13 +00001575 /* Copy the result of the function into register P3 */
drh9bd038f2014-08-27 14:14:06 +00001576 sqlite3VdbeChangeEncoding(ctx.pOut, encoding);
1577 if( sqlite3VdbeMemTooBig(ctx.pOut) ){
drh023ae032007-05-08 12:12:16 +00001578 goto too_big;
1579 }
drh7b94e7f2011-04-04 12:29:20 +00001580
drh9bd038f2014-08-27 14:14:06 +00001581 REGISTER_TRACE(pOp->p3, ctx.pOut);
1582 UPDATE_MAX_BLOBSIZE(ctx.pOut);
drh8e0a2f92002-02-23 23:45:45 +00001583 break;
1584}
1585
drh98757152008-01-09 23:04:12 +00001586/* Opcode: BitAnd P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001587** Synopsis: r[P3]=r[P1]&r[P2]
drhbf4133c2001-10-13 02:59:08 +00001588**
drh98757152008-01-09 23:04:12 +00001589** Take the bit-wise AND of the values in register P1 and P2 and
1590** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001591** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001592*/
drh98757152008-01-09 23:04:12 +00001593/* Opcode: BitOr P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001594** Synopsis: r[P3]=r[P1]|r[P2]
drhbf4133c2001-10-13 02:59:08 +00001595**
drh98757152008-01-09 23:04:12 +00001596** Take the bit-wise OR of the values in register P1 and P2 and
1597** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001598** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001599*/
drh98757152008-01-09 23:04:12 +00001600/* Opcode: ShiftLeft P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001601** Synopsis: r[P3]=r[P2]<<r[P1]
drhbf4133c2001-10-13 02:59:08 +00001602**
drh98757152008-01-09 23:04:12 +00001603** Shift the integer value in register P2 to the left by the
drh710c4842010-08-30 01:17:20 +00001604** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001605** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001606** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001607*/
drh98757152008-01-09 23:04:12 +00001608/* Opcode: ShiftRight P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001609** Synopsis: r[P3]=r[P2]>>r[P1]
drhbf4133c2001-10-13 02:59:08 +00001610**
drh98757152008-01-09 23:04:12 +00001611** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001612** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001613** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001614** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001615*/
drh5b6afba2008-01-05 16:29:28 +00001616case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1617case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1618case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1619case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh158b9cb2011-03-05 20:59:46 +00001620 i64 iA;
1621 u64 uA;
1622 i64 iB;
1623 u8 op;
drh6810ce62004-01-31 19:22:56 +00001624
drh3c657212009-11-17 23:59:58 +00001625 pIn1 = &aMem[pOp->p1];
1626 pIn2 = &aMem[pOp->p2];
1627 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001628 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001629 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001630 break;
1631 }
drh158b9cb2011-03-05 20:59:46 +00001632 iA = sqlite3VdbeIntValue(pIn2);
1633 iB = sqlite3VdbeIntValue(pIn1);
1634 op = pOp->opcode;
1635 if( op==OP_BitAnd ){
1636 iA &= iB;
1637 }else if( op==OP_BitOr ){
1638 iA |= iB;
1639 }else if( iB!=0 ){
1640 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1641
1642 /* If shifting by a negative amount, shift in the other direction */
1643 if( iB<0 ){
1644 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1645 op = 2*OP_ShiftLeft + 1 - op;
1646 iB = iB>(-64) ? -iB : 64;
1647 }
1648
1649 if( iB>=64 ){
1650 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1651 }else{
1652 memcpy(&uA, &iA, sizeof(uA));
1653 if( op==OP_ShiftLeft ){
1654 uA <<= iB;
1655 }else{
1656 uA >>= iB;
1657 /* Sign-extend on a right shift of a negative number */
1658 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1659 }
1660 memcpy(&iA, &uA, sizeof(iA));
1661 }
drhbf4133c2001-10-13 02:59:08 +00001662 }
drh158b9cb2011-03-05 20:59:46 +00001663 pOut->u.i = iA;
danielk1977a7a8e142008-02-13 18:25:27 +00001664 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001665 break;
1666}
1667
drh8558cde2008-01-05 05:20:10 +00001668/* Opcode: AddImm P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001669** Synopsis: r[P1]=r[P1]+P2
drh5e00f6c2001-09-13 13:46:56 +00001670**
danielk19770cdc0222008-06-26 18:04:03 +00001671** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001672** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001673**
drh8558cde2008-01-05 05:20:10 +00001674** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001675*/
drh9cbf3422008-01-17 16:22:13 +00001676case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001677 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001678 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001679 sqlite3VdbeMemIntegerify(pIn1);
1680 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001681 break;
1682}
1683
drh9cbf3422008-01-17 16:22:13 +00001684/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001685**
drh9cbf3422008-01-17 16:22:13 +00001686** Force the value in register P1 to be an integer. If the value
1687** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001688** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001689** raise an SQLITE_MISMATCH exception.
1690*/
drh9cbf3422008-01-17 16:22:13 +00001691case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001692 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001693 if( (pIn1->flags & MEM_Int)==0 ){
drh83b301b2013-11-20 00:59:02 +00001694 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
drh688852a2014-02-17 22:40:43 +00001695 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
drh83b301b2013-11-20 00:59:02 +00001696 if( (pIn1->flags & MEM_Int)==0 ){
1697 if( pOp->p2==0 ){
1698 rc = SQLITE_MISMATCH;
1699 goto abort_due_to_error;
1700 }else{
1701 pc = pOp->p2 - 1;
1702 break;
1703 }
drh8aff1012001-12-22 14:49:24 +00001704 }
drh8aff1012001-12-22 14:49:24 +00001705 }
drh83b301b2013-11-20 00:59:02 +00001706 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001707 break;
1708}
1709
drh13573c72010-01-12 17:04:07 +00001710#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001711/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001712**
drh2133d822008-01-03 18:44:59 +00001713** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001714**
drh8a512562005-11-14 22:29:05 +00001715** This opcode is used when extracting information from a column that
1716** has REAL affinity. Such column values may still be stored as
1717** integers, for space efficiency, but after extraction we want them
1718** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001719*/
drh9cbf3422008-01-17 16:22:13 +00001720case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001721 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001722 if( pIn1->flags & MEM_Int ){
1723 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001724 }
drh487e2622005-06-25 18:42:14 +00001725 break;
1726}
drh13573c72010-01-12 17:04:07 +00001727#endif
drh487e2622005-06-25 18:42:14 +00001728
drh8df447f2005-11-01 15:48:24 +00001729#ifndef SQLITE_OMIT_CAST
drh4169e432014-08-25 20:11:52 +00001730/* Opcode: Cast P1 P2 * * *
mistachkina1dc42a2014-08-27 17:53:40 +00001731** Synopsis: affinity(r[P1])
drh487e2622005-06-25 18:42:14 +00001732**
drh4169e432014-08-25 20:11:52 +00001733** Force the value in register P1 to be the type defined by P2.
1734**
1735** <ul>
1736** <li value="97"> TEXT
1737** <li value="98"> BLOB
1738** <li value="99"> NUMERIC
1739** <li value="100"> INTEGER
1740** <li value="101"> REAL
1741** </ul>
drh487e2622005-06-25 18:42:14 +00001742**
1743** A NULL value is not changed by this routine. It remains NULL.
1744*/
drh4169e432014-08-25 20:11:52 +00001745case OP_Cast: { /* in1 */
drh7ea31cc2014-09-18 14:36:00 +00001746 assert( pOp->p2>=SQLITE_AFF_NONE && pOp->p2<=SQLITE_AFF_REAL );
drh05bbb2e2014-08-25 22:37:19 +00001747 testcase( pOp->p2==SQLITE_AFF_TEXT );
1748 testcase( pOp->p2==SQLITE_AFF_NONE );
1749 testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1750 testcase( pOp->p2==SQLITE_AFF_INTEGER );
1751 testcase( pOp->p2==SQLITE_AFF_REAL );
drh3c657212009-11-17 23:59:58 +00001752 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001753 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001754 rc = ExpandBlob(pIn1);
drh4169e432014-08-25 20:11:52 +00001755 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
drhb7654112008-01-12 12:48:07 +00001756 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001757 break;
1758}
drh8a512562005-11-14 22:29:05 +00001759#endif /* SQLITE_OMIT_CAST */
1760
drh35573352008-01-08 23:54:25 +00001761/* Opcode: Lt P1 P2 P3 P4 P5
drh72dbffd2013-11-15 03:21:43 +00001762** Synopsis: if r[P1]<r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001763**
drh35573352008-01-08 23:54:25 +00001764** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1765** jump to address P2.
drhf5905aa2002-05-26 20:54:33 +00001766**
drh35573352008-01-08 23:54:25 +00001767** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1768** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
drh710c4842010-08-30 01:17:20 +00001769** bit is clear then fall through if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001770**
drh35573352008-01-08 23:54:25 +00001771** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001772** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001773** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001774** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001775** affinity is used. Note that the affinity conversions are stored
1776** back into the input registers P1 and P3. So this opcode can cause
1777** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001778**
1779** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001780** the values are compared. If both values are blobs then memcmp() is
1781** used to determine the results of the comparison. If both values
1782** are text, then the appropriate collating function specified in
1783** P4 is used to do the comparison. If P4 is not specified then
1784** memcmp() is used to compare text string. If both values are
1785** numeric, then a numeric comparison is used. If the two values
1786** are of different types, then numbers are considered less than
1787** strings and strings are considered less than blobs.
drhc9b84a12002-06-20 11:36:48 +00001788**
drh35573352008-01-08 23:54:25 +00001789** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1790** store a boolean result (either 0, or 1, or NULL) in register P2.
drh053a1282012-09-19 21:15:46 +00001791**
1792** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1793** equal to one another, provided that they do not have their MEM_Cleared
1794** bit set.
drh5e00f6c2001-09-13 13:46:56 +00001795*/
drh9cbf3422008-01-17 16:22:13 +00001796/* Opcode: Ne P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001797** Synopsis: if r[P1]!=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001798**
drh35573352008-01-08 23:54:25 +00001799** This works just like the Lt opcode except that the jump is taken if
1800** the operands in registers P1 and P3 are not equal. See the Lt opcode for
drh53db1452004-05-20 13:54:53 +00001801** additional information.
drh6a2fe092009-09-23 02:29:36 +00001802**
1803** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1804** true or false and is never NULL. If both operands are NULL then the result
1805** of comparison is false. If either operand is NULL then the result is true.
drhef8662b2011-06-20 21:47:58 +00001806** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001807** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001808*/
drh9cbf3422008-01-17 16:22:13 +00001809/* Opcode: Eq P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001810** Synopsis: if r[P1]==r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001811**
drh35573352008-01-08 23:54:25 +00001812** This works just like the Lt opcode except that the jump is taken if
1813** the operands in registers P1 and P3 are equal.
1814** See the Lt opcode for additional information.
drh6a2fe092009-09-23 02:29:36 +00001815**
1816** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1817** true or false and is never NULL. If both operands are NULL then the result
1818** of comparison is true. If either operand is NULL then the result is false.
drhef8662b2011-06-20 21:47:58 +00001819** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001820** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001821*/
drh9cbf3422008-01-17 16:22:13 +00001822/* Opcode: Le P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001823** Synopsis: if r[P1]<=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001824**
drh35573352008-01-08 23:54:25 +00001825** This works just like the Lt opcode except that the jump is taken if
1826** the content of register P3 is less than or equal to the content of
1827** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001828*/
drh9cbf3422008-01-17 16:22:13 +00001829/* Opcode: Gt P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001830** Synopsis: if r[P1]>r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001831**
drh35573352008-01-08 23:54:25 +00001832** This works just like the Lt opcode except that the jump is taken if
1833** the content of register P3 is greater than the content of
1834** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001835*/
drh9cbf3422008-01-17 16:22:13 +00001836/* Opcode: Ge P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001837** Synopsis: if r[P1]>=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001838**
drh35573352008-01-08 23:54:25 +00001839** This works just like the Lt opcode except that the jump is taken if
1840** the content of register P3 is greater than or equal to the content of
1841** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001842*/
drh9cbf3422008-01-17 16:22:13 +00001843case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1844case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1845case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1846case OP_Le: /* same as TK_LE, jump, in1, in3 */
1847case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1848case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh6a2fe092009-09-23 02:29:36 +00001849 int res; /* Result of the comparison of pIn1 against pIn3 */
1850 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00001851 u16 flags1; /* Copy of initial value of pIn1->flags */
1852 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00001853
drh3c657212009-11-17 23:59:58 +00001854 pIn1 = &aMem[pOp->p1];
1855 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00001856 flags1 = pIn1->flags;
1857 flags3 = pIn3->flags;
drhc3f1d5f2011-05-30 23:42:16 +00001858 if( (flags1 | flags3)&MEM_Null ){
drh6a2fe092009-09-23 02:29:36 +00001859 /* One or both operands are NULL */
1860 if( pOp->p5 & SQLITE_NULLEQ ){
1861 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1862 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1863 ** or not both operands are null.
1864 */
1865 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
drh053a1282012-09-19 21:15:46 +00001866 assert( (flags1 & MEM_Cleared)==0 );
drh3d77dee2014-02-19 14:20:49 +00001867 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
drh053a1282012-09-19 21:15:46 +00001868 if( (flags1&MEM_Null)!=0
1869 && (flags3&MEM_Null)!=0
1870 && (flags3&MEM_Cleared)==0
1871 ){
1872 res = 0; /* Results are equal */
1873 }else{
1874 res = 1; /* Results are not equal */
1875 }
drh6a2fe092009-09-23 02:29:36 +00001876 }else{
1877 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1878 ** then the result is always NULL.
1879 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1880 */
drh688852a2014-02-17 22:40:43 +00001881 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001882 pOut = &aMem[pOp->p2];
drh6a2fe092009-09-23 02:29:36 +00001883 MemSetTypeFlag(pOut, MEM_Null);
1884 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00001885 }else{
drhf4345e42014-02-18 11:31:59 +00001886 VdbeBranchTaken(2,3);
drh688852a2014-02-17 22:40:43 +00001887 if( pOp->p5 & SQLITE_JUMPIFNULL ){
1888 pc = pOp->p2-1;
1889 }
drh6a2fe092009-09-23 02:29:36 +00001890 }
1891 break;
danielk1977a37cdde2004-05-16 11:15:36 +00001892 }
drh6a2fe092009-09-23 02:29:36 +00001893 }else{
1894 /* Neither operand is NULL. Do a comparison. */
1895 affinity = pOp->p5 & SQLITE_AFF_MASK;
drh24a09622014-09-18 16:28:59 +00001896 if( affinity>=SQLITE_AFF_NUMERIC ){
drhe7a34662014-09-19 22:44:20 +00001897 if( (pIn1->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drh24a09622014-09-18 16:28:59 +00001898 applyNumericAffinity(pIn1,0);
1899 }
drhe7a34662014-09-19 22:44:20 +00001900 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drh24a09622014-09-18 16:28:59 +00001901 applyNumericAffinity(pIn3,0);
1902 }
1903 }else if( affinity==SQLITE_AFF_TEXT ){
1904 if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00001905 testcase( pIn1->flags & MEM_Int );
1906 testcase( pIn1->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00001907 sqlite3VdbeMemStringify(pIn1, encoding, 1);
1908 }
1909 if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00001910 testcase( pIn3->flags & MEM_Int );
1911 testcase( pIn3->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00001912 sqlite3VdbeMemStringify(pIn3, encoding, 1);
1913 }
drh6a2fe092009-09-23 02:29:36 +00001914 }
drh6a2fe092009-09-23 02:29:36 +00001915 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
drhca5506b2014-09-17 23:37:38 +00001916 if( pIn1->flags & MEM_Zero ){
1917 sqlite3VdbeMemExpandBlob(pIn1);
1918 flags1 &= ~MEM_Zero;
1919 }
1920 if( pIn3->flags & MEM_Zero ){
1921 sqlite3VdbeMemExpandBlob(pIn3);
1922 flags3 &= ~MEM_Zero;
1923 }
drh24a09622014-09-18 16:28:59 +00001924 if( db->mallocFailed ) goto no_mem;
drh6a2fe092009-09-23 02:29:36 +00001925 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00001926 }
danielk1977a37cdde2004-05-16 11:15:36 +00001927 switch( pOp->opcode ){
1928 case OP_Eq: res = res==0; break;
1929 case OP_Ne: res = res!=0; break;
1930 case OP_Lt: res = res<0; break;
1931 case OP_Le: res = res<=0; break;
1932 case OP_Gt: res = res>0; break;
1933 default: res = res>=0; break;
1934 }
1935
drh35573352008-01-08 23:54:25 +00001936 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001937 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00001938 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00001939 MemSetTypeFlag(pOut, MEM_Int);
drh35573352008-01-08 23:54:25 +00001940 pOut->u.i = res;
1941 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00001942 }else{
drhf4345e42014-02-18 11:31:59 +00001943 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
drh688852a2014-02-17 22:40:43 +00001944 if( res ){
1945 pc = pOp->p2-1;
1946 }
danielk1977a37cdde2004-05-16 11:15:36 +00001947 }
danb7dca7d2010-03-05 16:32:12 +00001948 /* Undo any changes made by applyAffinity() to the input registers. */
drhca5506b2014-09-17 23:37:38 +00001949 pIn1->flags = flags1;
1950 pIn3->flags = flags3;
danielk1977a37cdde2004-05-16 11:15:36 +00001951 break;
1952}
drhc9b84a12002-06-20 11:36:48 +00001953
drh0acb7e42008-06-25 00:12:41 +00001954/* Opcode: Permutation * * * P4 *
1955**
shanebe217792009-03-05 04:20:31 +00001956** Set the permutation used by the OP_Compare operator to be the array
drh0acb7e42008-06-25 00:12:41 +00001957** of integers in P4.
1958**
drh953f7612012-12-07 22:18:54 +00001959** The permutation is only valid until the next OP_Compare that has
1960** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
1961** occur immediately prior to the OP_Compare.
drh0acb7e42008-06-25 00:12:41 +00001962*/
1963case OP_Permutation: {
1964 assert( pOp->p4type==P4_INTARRAY );
1965 assert( pOp->p4.ai );
1966 aPermute = pOp->p4.ai;
1967 break;
1968}
1969
drh953f7612012-12-07 22:18:54 +00001970/* Opcode: Compare P1 P2 P3 P4 P5
drh079a3072014-03-19 14:10:55 +00001971** Synopsis: r[P1@P3] <-> r[P2@P3]
drh16ee60f2008-06-20 18:13:25 +00001972**
drh710c4842010-08-30 01:17:20 +00001973** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
1974** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
drh16ee60f2008-06-20 18:13:25 +00001975** the comparison for use by the next OP_Jump instruct.
1976**
drh0ca10df2012-12-08 13:26:23 +00001977** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
1978** determined by the most recent OP_Permutation operator. If the
1979** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
1980** order.
1981**
drh0acb7e42008-06-25 00:12:41 +00001982** P4 is a KeyInfo structure that defines collating sequences and sort
1983** orders for the comparison. The permutation applies to registers
1984** only. The KeyInfo elements are used sequentially.
1985**
1986** The comparison is a sort comparison, so NULLs compare equal,
1987** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00001988** and strings are less than blobs.
1989*/
1990case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00001991 int n;
1992 int i;
1993 int p1;
1994 int p2;
1995 const KeyInfo *pKeyInfo;
1996 int idx;
1997 CollSeq *pColl; /* Collating sequence to use on this term */
1998 int bRev; /* True for DESCENDING sort order */
1999
drh953f7612012-12-07 22:18:54 +00002000 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
drh856c1032009-06-02 15:21:42 +00002001 n = pOp->p3;
2002 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00002003 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00002004 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00002005 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00002006 p2 = pOp->p2;
drh6a2fe092009-09-23 02:29:36 +00002007#if SQLITE_DEBUG
2008 if( aPermute ){
2009 int k, mx = 0;
2010 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
dan3bc9f742013-08-15 16:18:39 +00002011 assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 );
2012 assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002013 }else{
dan3bc9f742013-08-15 16:18:39 +00002014 assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 );
2015 assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002016 }
2017#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00002018 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00002019 idx = aPermute ? aPermute[i] : i;
drh2b4ded92010-09-27 21:09:31 +00002020 assert( memIsValid(&aMem[p1+idx]) );
2021 assert( memIsValid(&aMem[p2+idx]) );
drha6c2ed92009-11-14 23:22:23 +00002022 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2023 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drh93a960a2008-07-10 00:32:42 +00002024 assert( i<pKeyInfo->nField );
2025 pColl = pKeyInfo->aColl[i];
2026 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00002027 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00002028 if( iCompare ){
2029 if( bRev ) iCompare = -iCompare;
2030 break;
2031 }
drh16ee60f2008-06-20 18:13:25 +00002032 }
drh0acb7e42008-06-25 00:12:41 +00002033 aPermute = 0;
drh16ee60f2008-06-20 18:13:25 +00002034 break;
2035}
2036
2037/* Opcode: Jump P1 P2 P3 * *
2038**
2039** Jump to the instruction at address P1, P2, or P3 depending on whether
2040** in the most recent OP_Compare instruction the P1 vector was less than
2041** equal to, or greater than the P2 vector, respectively.
2042*/
drh0acb7e42008-06-25 00:12:41 +00002043case OP_Jump: { /* jump */
2044 if( iCompare<0 ){
drh688852a2014-02-17 22:40:43 +00002045 pc = pOp->p1 - 1; VdbeBranchTaken(0,3);
drh0acb7e42008-06-25 00:12:41 +00002046 }else if( iCompare==0 ){
drh688852a2014-02-17 22:40:43 +00002047 pc = pOp->p2 - 1; VdbeBranchTaken(1,3);
drh16ee60f2008-06-20 18:13:25 +00002048 }else{
drh688852a2014-02-17 22:40:43 +00002049 pc = pOp->p3 - 1; VdbeBranchTaken(2,3);
drh16ee60f2008-06-20 18:13:25 +00002050 }
2051 break;
2052}
2053
drh5b6afba2008-01-05 16:29:28 +00002054/* Opcode: And P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002055** Synopsis: r[P3]=(r[P1] && r[P2])
drh5e00f6c2001-09-13 13:46:56 +00002056**
drh5b6afba2008-01-05 16:29:28 +00002057** Take the logical AND of the values in registers P1 and P2 and
2058** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00002059**
drh5b6afba2008-01-05 16:29:28 +00002060** If either P1 or P2 is 0 (false) then the result is 0 even if
2061** the other input is NULL. A NULL and true or two NULLs give
2062** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00002063*/
drh5b6afba2008-01-05 16:29:28 +00002064/* Opcode: Or P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002065** Synopsis: r[P3]=(r[P1] || r[P2])
drh5b6afba2008-01-05 16:29:28 +00002066**
2067** Take the logical OR of the values in register P1 and P2 and
2068** store the answer in register P3.
2069**
2070** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2071** even if the other input is NULL. A NULL and false or two NULLs
2072** give a NULL output.
2073*/
2074case OP_And: /* same as TK_AND, in1, in2, out3 */
2075case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00002076 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2077 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00002078
drh3c657212009-11-17 23:59:58 +00002079 pIn1 = &aMem[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00002080 if( pIn1->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002081 v1 = 2;
drh5e00f6c2001-09-13 13:46:56 +00002082 }else{
drh5b6afba2008-01-05 16:29:28 +00002083 v1 = sqlite3VdbeIntValue(pIn1)!=0;
drhbb113512002-05-27 01:04:51 +00002084 }
drh3c657212009-11-17 23:59:58 +00002085 pIn2 = &aMem[pOp->p2];
drh5b6afba2008-01-05 16:29:28 +00002086 if( pIn2->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002087 v2 = 2;
2088 }else{
drh5b6afba2008-01-05 16:29:28 +00002089 v2 = sqlite3VdbeIntValue(pIn2)!=0;
drhbb113512002-05-27 01:04:51 +00002090 }
2091 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00002092 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00002093 v1 = and_logic[v1*3+v2];
2094 }else{
drh5b6afba2008-01-05 16:29:28 +00002095 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00002096 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00002097 }
drh3c657212009-11-17 23:59:58 +00002098 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00002099 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00002100 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00002101 }else{
drh5b6afba2008-01-05 16:29:28 +00002102 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00002103 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00002104 }
drh5e00f6c2001-09-13 13:46:56 +00002105 break;
2106}
2107
drhe99fa2a2008-12-15 15:27:51 +00002108/* Opcode: Not P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002109** Synopsis: r[P2]= !r[P1]
drh5e00f6c2001-09-13 13:46:56 +00002110**
drhe99fa2a2008-12-15 15:27:51 +00002111** Interpret the value in register P1 as a boolean value. Store the
2112** boolean complement in register P2. If the value in register P1 is
2113** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00002114*/
drh93952eb2009-11-13 19:43:43 +00002115case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002116 pIn1 = &aMem[pOp->p1];
2117 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002118 sqlite3VdbeMemSetNull(pOut);
2119 if( (pIn1->flags & MEM_Null)==0 ){
2120 pOut->flags = MEM_Int;
2121 pOut->u.i = !sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002122 }
drh5e00f6c2001-09-13 13:46:56 +00002123 break;
2124}
2125
drhe99fa2a2008-12-15 15:27:51 +00002126/* Opcode: BitNot P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002127** Synopsis: r[P1]= ~r[P1]
drhbf4133c2001-10-13 02:59:08 +00002128**
drhe99fa2a2008-12-15 15:27:51 +00002129** Interpret the content of register P1 as an integer. Store the
2130** ones-complement of the P1 value into register P2. If P1 holds
2131** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00002132*/
drh93952eb2009-11-13 19:43:43 +00002133case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002134 pIn1 = &aMem[pOp->p1];
2135 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002136 sqlite3VdbeMemSetNull(pOut);
2137 if( (pIn1->flags & MEM_Null)==0 ){
2138 pOut->flags = MEM_Int;
2139 pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002140 }
drhbf4133c2001-10-13 02:59:08 +00002141 break;
2142}
2143
drh48f2d3b2011-09-16 01:34:43 +00002144/* Opcode: Once P1 P2 * * *
2145**
drh5dad9a32014-07-25 18:37:42 +00002146** Check the "once" flag number P1. If it is set, jump to instruction P2.
2147** Otherwise, set the flag and fall through to the next instruction.
2148** In other words, this opcode causes all following opcodes up through P2
2149** (but not including P2) to run just once and to be skipped on subsequent
2150** times through the loop.
2151**
2152** All "once" flags are initially cleared whenever a prepared statement
2153** first begins to run.
drh48f2d3b2011-09-16 01:34:43 +00002154*/
dan1d8cb212011-12-09 13:24:16 +00002155case OP_Once: { /* jump */
2156 assert( pOp->p1<p->nOnceFlag );
drh688852a2014-02-17 22:40:43 +00002157 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2);
dan1d8cb212011-12-09 13:24:16 +00002158 if( p->aOnceFlag[pOp->p1] ){
2159 pc = pOp->p2-1;
2160 }else{
2161 p->aOnceFlag[pOp->p1] = 1;
2162 }
2163 break;
2164}
2165
drh3c84ddf2008-01-09 02:15:38 +00002166/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00002167**
drhef8662b2011-06-20 21:47:58 +00002168** Jump to P2 if the value in register P1 is true. The value
drh3c84ddf2008-01-09 02:15:38 +00002169** is considered true if it is numeric and non-zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002170** in P1 is NULL then take the jump if and only if P3 is non-zero.
drh5e00f6c2001-09-13 13:46:56 +00002171*/
drh3c84ddf2008-01-09 02:15:38 +00002172/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00002173**
drhef8662b2011-06-20 21:47:58 +00002174** Jump to P2 if the value in register P1 is False. The value
drhb8475df2011-12-09 16:21:19 +00002175** is considered false if it has a numeric value of zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002176** in P1 is NULL then take the jump if and only if P3 is non-zero.
drhf5905aa2002-05-26 20:54:33 +00002177*/
drh9cbf3422008-01-17 16:22:13 +00002178case OP_If: /* jump, in1 */
2179case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00002180 int c;
drh3c657212009-11-17 23:59:58 +00002181 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00002182 if( pIn1->flags & MEM_Null ){
2183 c = pOp->p3;
drhf5905aa2002-05-26 20:54:33 +00002184 }else{
drhba0232a2005-06-06 17:27:19 +00002185#ifdef SQLITE_OMIT_FLOATING_POINT
shanefbd60f82009-02-04 03:59:25 +00002186 c = sqlite3VdbeIntValue(pIn1)!=0;
drhba0232a2005-06-06 17:27:19 +00002187#else
drh3c84ddf2008-01-09 02:15:38 +00002188 c = sqlite3VdbeRealValue(pIn1)!=0.0;
drhba0232a2005-06-06 17:27:19 +00002189#endif
drhf5905aa2002-05-26 20:54:33 +00002190 if( pOp->opcode==OP_IfNot ) c = !c;
2191 }
drh688852a2014-02-17 22:40:43 +00002192 VdbeBranchTaken(c!=0, 2);
drh3c84ddf2008-01-09 02:15:38 +00002193 if( c ){
2194 pc = pOp->p2-1;
2195 }
drh5e00f6c2001-09-13 13:46:56 +00002196 break;
2197}
2198
drh830ecf92009-06-18 00:41:55 +00002199/* Opcode: IsNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002200** Synopsis: if r[P1]==NULL goto P2
drh477df4b2008-01-05 18:48:24 +00002201**
drh830ecf92009-06-18 00:41:55 +00002202** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002203*/
drh9cbf3422008-01-17 16:22:13 +00002204case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002205 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002206 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
drh830ecf92009-06-18 00:41:55 +00002207 if( (pIn1->flags & MEM_Null)!=0 ){
2208 pc = pOp->p2 - 1;
2209 }
drh477df4b2008-01-05 18:48:24 +00002210 break;
2211}
2212
drh98757152008-01-09 23:04:12 +00002213/* Opcode: NotNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002214** Synopsis: if r[P1]!=NULL goto P2
drh5e00f6c2001-09-13 13:46:56 +00002215**
drh6a288a32008-01-07 19:20:24 +00002216** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002217*/
drh9cbf3422008-01-17 16:22:13 +00002218case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002219 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002220 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
drh6a288a32008-01-07 19:20:24 +00002221 if( (pIn1->flags & MEM_Null)==0 ){
2222 pc = pOp->p2 - 1;
2223 }
drh5e00f6c2001-09-13 13:46:56 +00002224 break;
2225}
2226
drh3e9ca092009-09-08 01:14:48 +00002227/* Opcode: Column P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00002228** Synopsis: r[P3]=PX
danielk1977192ac1d2004-05-10 07:17:30 +00002229**
danielk1977cfcdaef2004-05-12 07:33:33 +00002230** Interpret the data that cursor P1 points to as a structure built using
2231** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002232** information about the format of the data.) Extract the P2-th column
2233** from this record. If there are less that (P2+1)
2234** values in the record, extract a NULL.
2235**
drh9cbf3422008-01-17 16:22:13 +00002236** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002237**
danielk19771f4aa332008-01-03 09:51:55 +00002238** If the column contains fewer than P2 fields, then extract a NULL. Or,
2239** if the P4 argument is a P4_MEM use the value of the P4 argument as
2240** the result.
drh3e9ca092009-09-08 01:14:48 +00002241**
2242** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2243** then the cache of the cursor is reset prior to extracting the column.
2244** The first OP_Column against a pseudo-table after the value of the content
2245** register has changed should have this bit set.
drha748fdc2012-03-28 01:34:47 +00002246**
drhdda5c082012-03-28 13:41:10 +00002247** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2248** the result is guaranteed to only be used as the argument of a length()
2249** or typeof() function, respectively. The loading of large blobs can be
2250** skipped for length() and all content loading can be skipped for typeof().
danielk1977192ac1d2004-05-10 07:17:30 +00002251*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002252case OP_Column: {
drh856c1032009-06-02 15:21:42 +00002253 i64 payloadSize64; /* Number of bytes in the record */
drh856c1032009-06-02 15:21:42 +00002254 int p2; /* column number to retrieve */
2255 VdbeCursor *pC; /* The VDBE cursor */
drhd3194f52004-05-27 19:59:32 +00002256 BtCursor *pCrsr; /* The BTree cursor */
drhd3194f52004-05-27 19:59:32 +00002257 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk1977cfcdaef2004-05-12 07:33:33 +00002258 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002259 int i; /* Loop counter */
drhd4e70eb2008-01-02 00:34:36 +00002260 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002261 Mem sMem; /* For storing the record being decoded */
drh399af1d2013-11-20 17:25:55 +00002262 const u8 *zData; /* Part of the record being decoded */
2263 const u8 *zHdr; /* Next unparsed byte of the header */
2264 const u8 *zEndHdr; /* Pointer to first byte after the header */
drh35cd6432009-06-05 14:17:21 +00002265 u32 offset; /* Offset into the data */
drh6658cd92010-02-05 14:12:53 +00002266 u32 szField; /* Number of bytes in the content of a field */
drh501932c2013-11-21 21:59:53 +00002267 u32 avail; /* Number of bytes of available data */
drh5a077b72011-08-29 02:16:18 +00002268 u32 t; /* A type code from the record header */
drh0c8f7602014-09-19 16:56:45 +00002269 u16 fx; /* pDest->flags value */
drh3e9ca092009-09-08 01:14:48 +00002270 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002271
drh399af1d2013-11-20 17:25:55 +00002272 p2 = pOp->p2;
dan3bc9f742013-08-15 16:18:39 +00002273 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00002274 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00002275 memAboutToChange(p, pDest);
drhc8606e42013-11-20 19:28:03 +00002276 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2277 pC = p->apCsr[pOp->p1];
drha5759672012-10-30 14:39:12 +00002278 assert( pC!=0 );
drhc8606e42013-11-20 19:28:03 +00002279 assert( p2<pC->nField );
drhb53a5a92014-10-12 22:37:22 +00002280 aOffset = pC->aOffset;
danielk19770817d0d2007-02-14 09:19:36 +00002281#ifndef SQLITE_OMIT_VIRTUALTABLE
drh380d6852013-11-20 20:58:00 +00002282 assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */
danielk19770817d0d2007-02-14 09:19:36 +00002283#endif
shane36840fd2009-06-26 16:32:13 +00002284 pCrsr = pC->pCursor;
drh380d6852013-11-20 20:58:00 +00002285 assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */
2286 assert( pCrsr!=0 || pC->nullRow ); /* pC->nullRow on PseudoTables */
drh399af1d2013-11-20 17:25:55 +00002287
2288 /* If the cursor cache is stale, bring it up-to-date */
2289 rc = sqlite3VdbeCursorMoveto(pC);
2290 if( rc ) goto abort_due_to_error;
drh6cf4a7d2014-10-13 13:00:58 +00002291 if( pC->cacheStatus!=p->cacheCtr ){
drhc8606e42013-11-20 19:28:03 +00002292 if( pC->nullRow ){
2293 if( pCrsr==0 ){
2294 assert( pC->pseudoTableReg>0 );
2295 pReg = &aMem[pC->pseudoTableReg];
drhc8606e42013-11-20 19:28:03 +00002296 assert( pReg->flags & MEM_Blob );
2297 assert( memIsValid(pReg) );
2298 pC->payloadSize = pC->szRow = avail = pReg->n;
2299 pC->aRow = (u8*)pReg->z;
2300 }else{
2301 MemSetTypeFlag(pDest, MEM_Null);
drh399af1d2013-11-20 17:25:55 +00002302 goto op_column_out;
2303 }
danielk197784ac9d02004-05-18 09:58:06 +00002304 }else{
drhc8606e42013-11-20 19:28:03 +00002305 assert( pCrsr );
drh14da87f2013-11-20 21:51:33 +00002306 if( pC->isTable==0 ){
drh399af1d2013-11-20 17:25:55 +00002307 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2308 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2309 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
2310 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2311 ** payload size, so it is impossible for payloadSize64 to be
2312 ** larger than 32 bits. */
2313 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
2314 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
2315 pC->payloadSize = (u32)payloadSize64;
drhd3194f52004-05-27 19:59:32 +00002316 }else{
drh399af1d2013-11-20 17:25:55 +00002317 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2318 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
2319 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
2320 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
drh9188b382004-05-14 21:12:22 +00002321 }
drh399af1d2013-11-20 17:25:55 +00002322 assert( avail<=65536 ); /* Maximum page size is 64KiB */
2323 if( pC->payloadSize <= (u32)avail ){
2324 pC->szRow = pC->payloadSize;
drhe61cffc2004-06-12 18:12:15 +00002325 }else{
drh399af1d2013-11-20 17:25:55 +00002326 pC->szRow = avail;
2327 }
2328 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2329 goto too_big;
drhe61cffc2004-06-12 18:12:15 +00002330 }
drhd3194f52004-05-27 19:59:32 +00002331 }
drh399af1d2013-11-20 17:25:55 +00002332 pC->cacheStatus = p->cacheCtr;
2333 pC->iHdrOffset = getVarint32(pC->aRow, offset);
2334 pC->nHdrParsed = 0;
2335 aOffset[0] = offset;
drh35cd6432009-06-05 14:17:21 +00002336
2337 /* Make sure a corrupt database has not given us an oversize header.
2338 ** Do this now to avoid an oversize memory allocation.
2339 **
2340 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2341 ** types use so much data space that there can only be 4096 and 32 of
2342 ** them, respectively. So the maximum header length results from a
2343 ** 3-byte type for each of the maximum of 32768 columns plus three
2344 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2345 */
drh399af1d2013-11-20 17:25:55 +00002346 if( offset > 98307 || offset > pC->payloadSize ){
drh35cd6432009-06-05 14:17:21 +00002347 rc = SQLITE_CORRUPT_BKPT;
drhc8606e42013-11-20 19:28:03 +00002348 goto op_column_error;
drh35cd6432009-06-05 14:17:21 +00002349 }
drhc81aa2e2014-10-11 23:31:52 +00002350
2351 if( avail<offset ){
2352 /* pC->aRow does not have to hold the entire row, but it does at least
2353 ** need to cover the header of the record. If pC->aRow does not contain
2354 ** the complete header, then set it to zero, forcing the header to be
2355 ** dynamically allocated. */
2356 pC->aRow = 0;
2357 pC->szRow = 0;
2358 }
2359
2360 /* The following goto is an optimization. It can be omitted and
2361 ** everything will still work. But OP_Column is measurably faster
2362 ** by skipping the subsequent conditional, which is always true.
2363 */
2364 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
2365 goto op_column_read_header;
drh399af1d2013-11-20 17:25:55 +00002366 }
drh35cd6432009-06-05 14:17:21 +00002367
drh399af1d2013-11-20 17:25:55 +00002368 /* Make sure at least the first p2+1 entries of the header have been
drh0c8f7602014-09-19 16:56:45 +00002369 ** parsed and valid information is in aOffset[] and pC->aType[].
drh399af1d2013-11-20 17:25:55 +00002370 */
drhc8606e42013-11-20 19:28:03 +00002371 if( pC->nHdrParsed<=p2 ){
drh380d6852013-11-20 20:58:00 +00002372 /* If there is more header available for parsing in the record, try
2373 ** to extract additional fields up through the p2+1-th field
drhd3194f52004-05-27 19:59:32 +00002374 */
drhc81aa2e2014-10-11 23:31:52 +00002375 op_column_read_header:
drhc8606e42013-11-20 19:28:03 +00002376 if( pC->iHdrOffset<aOffset[0] ){
2377 /* Make sure zData points to enough of the record to cover the header. */
2378 if( pC->aRow==0 ){
2379 memset(&sMem, 0, sizeof(sMem));
drh14da87f2013-11-20 21:51:33 +00002380 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0],
2381 !pC->isTable, &sMem);
drhc8606e42013-11-20 19:28:03 +00002382 if( rc!=SQLITE_OK ){
2383 goto op_column_error;
2384 }
2385 zData = (u8*)sMem.z;
2386 }else{
2387 zData = pC->aRow;
2388 }
2389
drh0c8f7602014-09-19 16:56:45 +00002390 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
drhc8606e42013-11-20 19:28:03 +00002391 i = pC->nHdrParsed;
2392 offset = aOffset[i];
2393 zHdr = zData + pC->iHdrOffset;
2394 zEndHdr = zData + aOffset[0];
2395 assert( i<=p2 && zHdr<zEndHdr );
2396 do{
2397 if( zHdr[0]<0x80 ){
2398 t = zHdr[0];
2399 zHdr++;
2400 }else{
2401 zHdr += sqlite3GetVarint32(zHdr, &t);
2402 }
drh0c8f7602014-09-19 16:56:45 +00002403 pC->aType[i] = t;
drhc8606e42013-11-20 19:28:03 +00002404 szField = sqlite3VdbeSerialTypeLen(t);
2405 offset += szField;
2406 if( offset<szField ){ /* True if offset overflows */
2407 zHdr = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
2408 break;
2409 }
2410 i++;
2411 aOffset[i] = offset;
2412 }while( i<=p2 && zHdr<zEndHdr );
2413 pC->nHdrParsed = i;
2414 pC->iHdrOffset = (u32)(zHdr - zData);
2415 if( pC->aRow==0 ){
2416 sqlite3VdbeMemRelease(&sMem);
2417 sMem.flags = MEM_Null;
2418 }
2419
drh8dd83622014-10-13 23:39:02 +00002420 /* The record is corrupt if any of the following are true:
2421 ** (1) the bytes of the header extend past the declared header size
2422 ** (zHdr>zEndHdr)
2423 ** (2) the entire header was used but not all data was used
2424 ** (zHdr==zEndHdr && offset!=pC->payloadSize)
2425 ** (3) the end of the data extends beyond the end of the record.
2426 ** (offset > pC->payloadSize)
drhc8606e42013-11-20 19:28:03 +00002427 */
drh8dd83622014-10-13 23:39:02 +00002428 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset!=pC->payloadSize))
drhc8606e42013-11-20 19:28:03 +00002429 || (offset > pC->payloadSize)
drhc8606e42013-11-20 19:28:03 +00002430 ){
2431 rc = SQLITE_CORRUPT_BKPT;
2432 goto op_column_error;
2433 }
2434 }
2435
drh380d6852013-11-20 20:58:00 +00002436 /* If after trying to extra new entries from the header, nHdrParsed is
2437 ** still not up to p2, that means that the record has fewer than p2
2438 ** columns. So the result will be either the default value or a NULL.
2439 */
drhc8606e42013-11-20 19:28:03 +00002440 if( pC->nHdrParsed<=p2 ){
2441 if( pOp->p4type==P4_MEM ){
2442 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2443 }else{
2444 MemSetTypeFlag(pDest, MEM_Null);
2445 }
danielk19773c9cc8d2005-01-17 03:40:08 +00002446 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002447 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002448 }
danielk1977192ac1d2004-05-10 07:17:30 +00002449
drh380d6852013-11-20 20:58:00 +00002450 /* Extract the content for the p2+1-th column. Control can only
drh0c8f7602014-09-19 16:56:45 +00002451 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
drh380d6852013-11-20 20:58:00 +00002452 ** all valid.
drh9188b382004-05-14 21:12:22 +00002453 */
drhc8606e42013-11-20 19:28:03 +00002454 assert( p2<pC->nHdrParsed );
2455 assert( rc==SQLITE_OK );
drh75fd0542014-03-01 16:24:44 +00002456 assert( sqlite3VdbeCheckMemInvariants(pDest) );
drh0725cab2014-09-17 14:52:46 +00002457 if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
drh0c8f7602014-09-19 16:56:45 +00002458 t = pC->aType[p2];
drhc8606e42013-11-20 19:28:03 +00002459 if( pC->szRow>=aOffset[p2+1] ){
drh380d6852013-11-20 20:58:00 +00002460 /* This is the common case where the desired content fits on the original
2461 ** page - where the content is not on an overflow page */
drh0c8f7602014-09-19 16:56:45 +00002462 sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest);
danielk197736963fd2005-02-19 08:18:05 +00002463 }else{
drh58c96082013-12-23 11:33:32 +00002464 /* This branch happens only when content is on overflow pages */
drh380d6852013-11-20 20:58:00 +00002465 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2466 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2467 || (len = sqlite3VdbeSerialTypeLen(t))==0
drhc8606e42013-11-20 19:28:03 +00002468 ){
drh2a2a6962014-09-16 18:22:44 +00002469 /* Content is irrelevant for
2470 ** 1. the typeof() function,
2471 ** 2. the length(X) function if X is a blob, and
2472 ** 3. if the content length is zero.
2473 ** So we might as well use bogus content rather than reading
2474 ** content from disk. NULL will work for the value for strings
2475 ** and blobs and whatever is in the payloadSize64 variable
2476 ** will work for everything else. */
2477 sqlite3VdbeSerialGet(t<=13 ? (u8*)&payloadSize64 : 0, t, pDest);
danielk1977aee18ef2005-03-09 12:26:50 +00002478 }else{
drh14da87f2013-11-20 21:51:33 +00002479 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
drh2a2a6962014-09-16 18:22:44 +00002480 pDest);
drhc8606e42013-11-20 19:28:03 +00002481 if( rc!=SQLITE_OK ){
2482 goto op_column_error;
2483 }
drh2a2a6962014-09-16 18:22:44 +00002484 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2485 pDest->flags &= ~MEM_Ephem;
danielk1977aee18ef2005-03-09 12:26:50 +00002486 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002487 }
drhc8606e42013-11-20 19:28:03 +00002488 pDest->enc = encoding;
drhd3194f52004-05-27 19:59:32 +00002489
danielk19773c9cc8d2005-01-17 03:40:08 +00002490op_column_out:
drh7b5ebca2014-09-19 15:28:33 +00002491 /* If the column value is an ephemeral string, go ahead and persist
2492 ** that string in case the cursor moves before the column value is
2493 ** used. The following code does the equivalent of Deephemeralize()
2494 ** but does it faster. */
2495 if( (pDest->flags & MEM_Ephem)!=0 && pDest->z ){
drh0c8f7602014-09-19 16:56:45 +00002496 fx = pDest->flags & (MEM_Str|MEM_Blob);
2497 assert( fx!=0 );
drh7b5ebca2014-09-19 15:28:33 +00002498 zData = (const u8*)pDest->z;
2499 len = pDest->n;
2500 if( sqlite3VdbeMemClearAndResize(pDest, len+2) ) goto no_mem;
2501 memcpy(pDest->z, zData, len);
2502 pDest->z[len] = 0;
2503 pDest->z[len+1] = 0;
drh0c8f7602014-09-19 16:56:45 +00002504 pDest->flags = fx|MEM_Term;
drh7b5ebca2014-09-19 15:28:33 +00002505 }
drhc8606e42013-11-20 19:28:03 +00002506op_column_error:
drhb7654112008-01-12 12:48:07 +00002507 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002508 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002509 break;
2510}
2511
danielk1977751de562008-04-18 09:01:15 +00002512/* Opcode: Affinity P1 P2 * P4 *
drhf63552b2013-10-30 00:25:03 +00002513** Synopsis: affinity(r[P1@P2])
danielk1977751de562008-04-18 09:01:15 +00002514**
2515** Apply affinities to a range of P2 registers starting with P1.
2516**
2517** P4 is a string that is P2 characters long. The nth character of the
2518** string indicates the column affinity that should be used for the nth
2519** memory cell in the range.
2520*/
2521case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002522 const char *zAffinity; /* The affinity to be applied */
2523 char cAff; /* A single character of affinity */
danielk1977751de562008-04-18 09:01:15 +00002524
drh856c1032009-06-02 15:21:42 +00002525 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002526 assert( zAffinity!=0 );
2527 assert( zAffinity[pOp->p2]==0 );
2528 pIn1 = &aMem[pOp->p1];
2529 while( (cAff = *(zAffinity++))!=0 ){
dan3bc9f742013-08-15 16:18:39 +00002530 assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00002531 assert( memIsValid(pIn1) );
drh039fc322009-11-17 18:31:47 +00002532 applyAffinity(pIn1, cAff, encoding);
2533 pIn1++;
danielk1977751de562008-04-18 09:01:15 +00002534 }
2535 break;
2536}
2537
drh1db639c2008-01-17 02:36:28 +00002538/* Opcode: MakeRecord P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00002539** Synopsis: r[P3]=mkrec(r[P1@P2])
drh7a224de2004-06-02 01:22:02 +00002540**
drh710c4842010-08-30 01:17:20 +00002541** Convert P2 registers beginning with P1 into the [record format]
2542** use as a data record in a database table or as a key
2543** in an index. The OP_Column opcode can decode the record later.
drh7a224de2004-06-02 01:22:02 +00002544**
danielk1977751de562008-04-18 09:01:15 +00002545** P4 may be a string that is P2 characters long. The nth character of the
drh7a224de2004-06-02 01:22:02 +00002546** string indicates the column affinity that should be used for the nth
drh9cbf3422008-01-17 16:22:13 +00002547** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002548**
drh8a512562005-11-14 22:29:05 +00002549** The mapping from character to affinity is given by the SQLITE_AFF_
2550** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002551**
drh66a51672008-01-03 00:01:23 +00002552** If P4 is NULL then all index fields have the affinity NONE.
drh7f057c92005-06-24 03:53:06 +00002553*/
drh1db639c2008-01-17 02:36:28 +00002554case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002555 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2556 Mem *pRec; /* The new record */
2557 u64 nData; /* Number of bytes of data space */
2558 int nHdr; /* Number of bytes of header space */
2559 i64 nByte; /* Data space required for this record */
2560 int nZero; /* Number of zero bytes at the end of the record */
2561 int nVarint; /* Number of bytes in a varint */
2562 u32 serial_type; /* Type field */
2563 Mem *pData0; /* First field to be combined into the record */
2564 Mem *pLast; /* Last field of the record */
2565 int nField; /* Number of fields in the record */
2566 char *zAffinity; /* The affinity string for the record */
2567 int file_format; /* File format to use for encoding */
drh59bf00c2013-12-08 23:33:28 +00002568 int i; /* Space used in zNewRecord[] header */
2569 int j; /* Space used in zNewRecord[] content */
drh856c1032009-06-02 15:21:42 +00002570 int len; /* Length of a field */
2571
drhf3218fe2004-05-28 08:21:02 +00002572 /* Assuming the record contains N fields, the record format looks
2573 ** like this:
2574 **
drh7a224de2004-06-02 01:22:02 +00002575 ** ------------------------------------------------------------------------
2576 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2577 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002578 **
drh9cbf3422008-01-17 16:22:13 +00002579 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
peter.d.reid60ec9142014-09-06 16:39:46 +00002580 ** and so forth.
drhf3218fe2004-05-28 08:21:02 +00002581 **
2582 ** Each type field is a varint representing the serial type of the
2583 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002584 ** hdr-size field is also a varint which is the offset from the beginning
2585 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002586 */
drh856c1032009-06-02 15:21:42 +00002587 nData = 0; /* Number of bytes of data space */
2588 nHdr = 0; /* Number of bytes of header space */
drh856c1032009-06-02 15:21:42 +00002589 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002590 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002591 zAffinity = pOp->p4.z;
dan3bc9f742013-08-15 16:18:39 +00002592 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 );
drha6c2ed92009-11-14 23:22:23 +00002593 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002594 nField = pOp->p2;
2595 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002596 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002597
drh2b4ded92010-09-27 21:09:31 +00002598 /* Identify the output register */
2599 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2600 pOut = &aMem[pOp->p3];
2601 memAboutToChange(p, pOut);
2602
drh3e6c0602013-12-10 20:53:01 +00002603 /* Apply the requested affinity to all inputs
2604 */
2605 assert( pData0<=pLast );
2606 if( zAffinity ){
2607 pRec = pData0;
2608 do{
drh57bf4a82014-02-17 14:59:22 +00002609 applyAffinity(pRec++, *(zAffinity++), encoding);
2610 assert( zAffinity[0]==0 || pRec<=pLast );
2611 }while( zAffinity[0] );
drh3e6c0602013-12-10 20:53:01 +00002612 }
2613
drhf3218fe2004-05-28 08:21:02 +00002614 /* Loop through the elements that will make up the record to figure
2615 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002616 */
drh038b7bc2013-12-09 23:17:22 +00002617 pRec = pLast;
drh59bf00c2013-12-08 23:33:28 +00002618 do{
drh2b4ded92010-09-27 21:09:31 +00002619 assert( memIsValid(pRec) );
drhfacf47a2014-10-13 20:12:47 +00002620 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format);
drhae7e1512007-05-02 16:51:59 +00002621 len = sqlite3VdbeSerialTypeLen(serial_type);
drh038b7bc2013-12-09 23:17:22 +00002622 if( pRec->flags & MEM_Zero ){
2623 if( nData ){
2624 sqlite3VdbeMemExpandBlob(pRec);
2625 }else{
2626 nZero += pRec->u.nZero;
2627 len -= pRec->u.nZero;
2628 }
2629 }
drhae7e1512007-05-02 16:51:59 +00002630 nData += len;
drh59bf00c2013-12-08 23:33:28 +00002631 testcase( serial_type==127 );
2632 testcase( serial_type==128 );
drh2a242872013-12-08 22:59:29 +00002633 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
drh038b7bc2013-12-09 23:17:22 +00002634 }while( (--pRec)>=pData0 );
danielk19773d1bfea2004-05-14 11:00:53 +00002635
drhf3218fe2004-05-28 08:21:02 +00002636 /* Add the initial header varint and total the size */
drh59bf00c2013-12-08 23:33:28 +00002637 testcase( nHdr==126 );
2638 testcase( nHdr==127 );
drh2a242872013-12-08 22:59:29 +00002639 if( nHdr<=126 ){
2640 /* The common case */
2641 nHdr += 1;
2642 }else{
2643 /* Rare case of a really large header */
2644 nVarint = sqlite3VarintLen(nHdr);
2645 nHdr += nVarint;
2646 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
drhcb9882a2005-03-17 03:15:40 +00002647 }
drh038b7bc2013-12-09 23:17:22 +00002648 nByte = nHdr+nData;
drhbb4957f2008-03-20 14:03:29 +00002649 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002650 goto too_big;
2651 }
drhf3218fe2004-05-28 08:21:02 +00002652
danielk1977a7a8e142008-02-13 18:25:27 +00002653 /* Make sure the output register has a buffer large enough to store
2654 ** the new record. The output register (pOp->p3) is not allowed to
2655 ** be one of the input registers (because the following call to
drh322f2852014-09-19 00:43:39 +00002656 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
danielk1977a7a8e142008-02-13 18:25:27 +00002657 */
drh322f2852014-09-19 00:43:39 +00002658 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002659 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002660 }
danielk1977a7a8e142008-02-13 18:25:27 +00002661 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002662
2663 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002664 i = putVarint32(zNewRecord, nHdr);
drh59bf00c2013-12-08 23:33:28 +00002665 j = nHdr;
2666 assert( pData0<=pLast );
2667 pRec = pData0;
2668 do{
drhfacf47a2014-10-13 20:12:47 +00002669 serial_type = pRec->uTemp;
drh038b7bc2013-12-09 23:17:22 +00002670 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
drha9ab4812013-12-11 11:00:44 +00002671 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
drh59bf00c2013-12-08 23:33:28 +00002672 }while( (++pRec)<=pLast );
2673 assert( i==nHdr );
2674 assert( j==nByte );
drhf3218fe2004-05-28 08:21:02 +00002675
dan3bc9f742013-08-15 16:18:39 +00002676 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drh9c1905f2008-12-10 22:32:56 +00002677 pOut->n = (int)nByte;
drhc91b2fd2014-03-01 18:13:23 +00002678 pOut->flags = MEM_Blob;
drhfdf972a2007-05-02 13:30:27 +00002679 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002680 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002681 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002682 }
drh477df4b2008-01-05 18:48:24 +00002683 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
drh1013c932008-01-06 00:25:21 +00002684 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002685 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002686 break;
2687}
2688
danielk1977a5533162009-02-24 10:01:51 +00002689/* Opcode: Count P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002690** Synopsis: r[P2]=count()
danielk1977a5533162009-02-24 10:01:51 +00002691**
2692** Store the number of entries (an integer value) in the table or index
2693** opened by cursor P1 in register P2
2694*/
2695#ifndef SQLITE_OMIT_BTREECOUNT
2696case OP_Count: { /* out2-prerelease */
2697 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002698 BtCursor *pCrsr;
2699
2700 pCrsr = p->apCsr[pOp->p1]->pCursor;
drh3da046d2013-11-11 03:24:11 +00002701 assert( pCrsr );
drh2dc06482013-12-11 00:59:10 +00002702 nEntry = 0; /* Not needed. Only used to silence a warning. */
drh3da046d2013-11-11 03:24:11 +00002703 rc = sqlite3BtreeCount(pCrsr, &nEntry);
danielk1977a5533162009-02-24 10:01:51 +00002704 pOut->u.i = nEntry;
2705 break;
2706}
2707#endif
2708
danielk1977fd7f0452008-12-17 17:30:26 +00002709/* Opcode: Savepoint P1 * * P4 *
2710**
2711** Open, release or rollback the savepoint named by parameter P4, depending
2712** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2713** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2714*/
2715case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002716 int p1; /* Value of P1 operand */
2717 char *zName; /* Name of savepoint */
2718 int nName;
2719 Savepoint *pNew;
2720 Savepoint *pSavepoint;
2721 Savepoint *pTmp;
2722 int iSavepoint;
2723 int ii;
2724
2725 p1 = pOp->p1;
2726 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002727
2728 /* Assert that the p1 parameter is valid. Also that if there is no open
2729 ** transaction, then there cannot be any savepoints.
2730 */
2731 assert( db->pSavepoint==0 || db->autoCommit==0 );
2732 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2733 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2734 assert( checkSavepointCount(db) );
danc0537fe2013-06-28 19:41:43 +00002735 assert( p->bIsReader );
danielk1977fd7f0452008-12-17 17:30:26 +00002736
2737 if( p1==SAVEPOINT_BEGIN ){
drh4f7d3a52013-06-27 23:54:02 +00002738 if( db->nVdbeWrite>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002739 /* A new savepoint cannot be created if there are active write
2740 ** statements (i.e. open read/write incremental blob handles).
2741 */
2742 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
2743 "SQL statements in progress");
2744 rc = SQLITE_BUSY;
2745 }else{
drh856c1032009-06-02 15:21:42 +00002746 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002747
drhbe07ec52011-06-03 12:15:26 +00002748#ifndef SQLITE_OMIT_VIRTUALTABLE
dand9495cd2011-04-27 12:08:04 +00002749 /* This call is Ok even if this savepoint is actually a transaction
2750 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2751 ** If this is a transaction savepoint being opened, it is guaranteed
2752 ** that the db->aVTrans[] array is empty. */
2753 assert( db->autoCommit==0 || db->nVTrans==0 );
drha24bc9c2011-05-24 00:35:56 +00002754 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2755 db->nStatement+db->nSavepoint);
dand9495cd2011-04-27 12:08:04 +00002756 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh305ebab2011-05-26 14:19:14 +00002757#endif
dand9495cd2011-04-27 12:08:04 +00002758
danielk1977fd7f0452008-12-17 17:30:26 +00002759 /* Create a new savepoint structure. */
2760 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2761 if( pNew ){
2762 pNew->zName = (char *)&pNew[1];
2763 memcpy(pNew->zName, zName, nName+1);
2764
2765 /* If there is no open transaction, then mark this as a special
2766 ** "transaction savepoint". */
2767 if( db->autoCommit ){
2768 db->autoCommit = 0;
2769 db->isTransactionSavepoint = 1;
2770 }else{
2771 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002772 }
danielk1977fd7f0452008-12-17 17:30:26 +00002773
2774 /* Link the new savepoint into the database handle's list. */
2775 pNew->pNext = db->pSavepoint;
2776 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002777 pNew->nDeferredCons = db->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00002778 pNew->nDeferredImmCons = db->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002779 }
2780 }
2781 }else{
drh856c1032009-06-02 15:21:42 +00002782 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00002783
2784 /* Find the named savepoint. If there is no such savepoint, then an
2785 ** an error is returned to the user. */
2786 for(
drh856c1032009-06-02 15:21:42 +00002787 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002788 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00002789 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00002790 ){
2791 iSavepoint++;
2792 }
2793 if( !pSavepoint ){
2794 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
2795 rc = SQLITE_ERROR;
drh4f7d3a52013-06-27 23:54:02 +00002796 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
danielk1977fd7f0452008-12-17 17:30:26 +00002797 /* It is not possible to release (commit) a savepoint if there are
drh0f198a72012-02-13 16:43:16 +00002798 ** active write statements.
danielk1977fd7f0452008-12-17 17:30:26 +00002799 */
2800 sqlite3SetString(&p->zErrMsg, db,
drh0f198a72012-02-13 16:43:16 +00002801 "cannot release savepoint - SQL statements in progress"
danielk1977fd7f0452008-12-17 17:30:26 +00002802 );
2803 rc = SQLITE_BUSY;
2804 }else{
2805
2806 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00002807 ** and this is a RELEASE command, then the current transaction
2808 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00002809 */
2810 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2811 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00002812 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002813 goto vdbe_return;
2814 }
danielk1977fd7f0452008-12-17 17:30:26 +00002815 db->autoCommit = 1;
2816 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2817 p->pc = pc;
2818 db->autoCommit = 0;
2819 p->rc = rc = SQLITE_BUSY;
2820 goto vdbe_return;
2821 }
danielk197734cf35d2008-12-18 18:31:38 +00002822 db->isTransactionSavepoint = 0;
2823 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00002824 }else{
danielk1977fd7f0452008-12-17 17:30:26 +00002825 iSavepoint = db->nSavepoint - iSavepoint - 1;
drh31f10052012-03-31 17:17:26 +00002826 if( p1==SAVEPOINT_ROLLBACK ){
2827 for(ii=0; ii<db->nDb; ii++){
2828 sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT);
2829 }
drh0f198a72012-02-13 16:43:16 +00002830 }
2831 for(ii=0; ii<db->nDb; ii++){
danielk1977fd7f0452008-12-17 17:30:26 +00002832 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2833 if( rc!=SQLITE_OK ){
2834 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00002835 }
danielk1977fd7f0452008-12-17 17:30:26 +00002836 }
drh9f0bbf92009-01-02 21:08:09 +00002837 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002838 sqlite3ExpirePreparedStatements(db);
drh81028a42012-05-15 18:28:27 +00002839 sqlite3ResetAllSchemasOfConnection(db);
danc311fee2010-08-31 16:25:19 +00002840 db->flags = (db->flags | SQLITE_InternChanges);
danielk1977fd7f0452008-12-17 17:30:26 +00002841 }
2842 }
2843
2844 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2845 ** savepoints nested inside of the savepoint being operated on. */
2846 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00002847 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002848 db->pSavepoint = pTmp->pNext;
2849 sqlite3DbFree(db, pTmp);
2850 db->nSavepoint--;
2851 }
2852
dan1da40a32009-09-19 17:00:31 +00002853 /* If it is a RELEASE, then destroy the savepoint being operated on
2854 ** too. If it is a ROLLBACK TO, then set the number of deferred
2855 ** constraint violations present in the database to the value stored
2856 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00002857 if( p1==SAVEPOINT_RELEASE ){
2858 assert( pSavepoint==db->pSavepoint );
2859 db->pSavepoint = pSavepoint->pNext;
2860 sqlite3DbFree(db, pSavepoint);
2861 if( !isTransaction ){
2862 db->nSavepoint--;
2863 }
dan1da40a32009-09-19 17:00:31 +00002864 }else{
2865 db->nDeferredCons = pSavepoint->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00002866 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002867 }
dand9495cd2011-04-27 12:08:04 +00002868
2869 if( !isTransaction ){
2870 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2871 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2872 }
danielk1977fd7f0452008-12-17 17:30:26 +00002873 }
2874 }
2875
2876 break;
2877}
2878
drh98757152008-01-09 23:04:12 +00002879/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00002880**
2881** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00002882** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00002883** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2884** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00002885**
2886** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00002887*/
drh9cbf3422008-01-17 16:22:13 +00002888case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00002889 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00002890 int iRollback;
drh856c1032009-06-02 15:21:42 +00002891 int turnOnAC;
danielk19771d850a72004-05-31 08:26:49 +00002892
drh856c1032009-06-02 15:21:42 +00002893 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00002894 iRollback = pOp->p2;
drh856c1032009-06-02 15:21:42 +00002895 turnOnAC = desiredAutoCommit && !db->autoCommit;
drhad4a4b82008-11-05 16:37:34 +00002896 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00002897 assert( desiredAutoCommit==1 || iRollback==0 );
drh4f7d3a52013-06-27 23:54:02 +00002898 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
danc0537fe2013-06-28 19:41:43 +00002899 assert( p->bIsReader );
danielk197746c43ed2004-06-30 06:30:25 +00002900
drh0f198a72012-02-13 16:43:16 +00002901#if 0
drh4f7d3a52013-06-27 23:54:02 +00002902 if( turnOnAC && iRollback && db->nVdbeActive>1 ){
drhad4a4b82008-11-05 16:37:34 +00002903 /* If this instruction implements a ROLLBACK and other VMs are
danielk197746c43ed2004-06-30 06:30:25 +00002904 ** still running, and a transaction is active, return an error indicating
2905 ** that the other VMs must complete first.
2906 */
drhad4a4b82008-11-05 16:37:34 +00002907 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2908 "SQL statements in progress");
drh99dfe5e2008-10-30 15:03:15 +00002909 rc = SQLITE_BUSY;
drh0f198a72012-02-13 16:43:16 +00002910 }else
2911#endif
drh4f7d3a52013-06-27 23:54:02 +00002912 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){
drhad4a4b82008-11-05 16:37:34 +00002913 /* If this instruction implements a COMMIT and other VMs are writing
2914 ** return an error indicating that the other VMs must complete first.
2915 */
2916 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
2917 "SQL statements in progress");
2918 rc = SQLITE_BUSY;
2919 }else if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00002920 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00002921 assert( desiredAutoCommit==1 );
drh21021a52012-02-13 17:01:51 +00002922 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977f3f06bb2005-12-16 15:24:28 +00002923 db->autoCommit = 1;
dan32b09f22009-09-23 17:29:59 +00002924 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002925 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002926 }else{
shane7d3846a2008-12-11 02:58:26 +00002927 db->autoCommit = (u8)desiredAutoCommit;
danielk1977f3f06bb2005-12-16 15:24:28 +00002928 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
danielk1977f3f06bb2005-12-16 15:24:28 +00002929 p->pc = pc;
drh9c1905f2008-12-10 22:32:56 +00002930 db->autoCommit = (u8)(1-desiredAutoCommit);
drh900b31e2007-08-28 02:27:51 +00002931 p->rc = rc = SQLITE_BUSY;
2932 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002933 }
danielk19771d850a72004-05-31 08:26:49 +00002934 }
danielk1977bd434552009-03-18 10:33:00 +00002935 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00002936 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00002937 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00002938 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00002939 }else{
drh900b31e2007-08-28 02:27:51 +00002940 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00002941 }
drh900b31e2007-08-28 02:27:51 +00002942 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00002943 }else{
drhf089aa42008-07-08 19:34:06 +00002944 sqlite3SetString(&p->zErrMsg, db,
drhad4a4b82008-11-05 16:37:34 +00002945 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00002946 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00002947 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00002948
2949 rc = SQLITE_ERROR;
drh663fc632002-02-02 18:49:19 +00002950 }
2951 break;
2952}
2953
drhb22f7c82014-02-06 23:56:27 +00002954/* Opcode: Transaction P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00002955**
drh05a86c52014-02-16 01:55:49 +00002956** Begin a transaction on database P1 if a transaction is not already
2957** active.
2958** If P2 is non-zero, then a write-transaction is started, or if a
2959** read-transaction is already active, it is upgraded to a write-transaction.
2960** If P2 is zero, then a read-transaction is started.
drh5e00f6c2001-09-13 13:46:56 +00002961**
drh001bbcb2003-03-19 03:14:00 +00002962** P1 is the index of the database file on which the transaction is
2963** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00002964** file used for temporary tables. Indices of 2 or more are used for
2965** attached databases.
drhcabb0812002-09-14 13:47:32 +00002966**
dane0af83a2009-09-08 19:15:01 +00002967** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2968** true (this flag is set if the Vdbe may modify more than one row and may
2969** throw an ABORT exception), a statement transaction may also be opened.
2970** More specifically, a statement transaction is opened iff the database
2971** connection is currently not in autocommit mode, or if there are other
drha4510172012-02-02 15:50:17 +00002972** active statements. A statement transaction allows the changes made by this
dane0af83a2009-09-08 19:15:01 +00002973** VDBE to be rolled back after an error without having to roll back the
2974** entire transaction. If no error is encountered, the statement transaction
2975** will automatically commit when the VDBE halts.
2976**
drhb22f7c82014-02-06 23:56:27 +00002977** If P5!=0 then this opcode also checks the schema cookie against P3
2978** and the schema generation counter against P4.
2979** The cookie changes its value whenever the database schema changes.
2980** This operation is used to detect when that the cookie has changed
drh05a86c52014-02-16 01:55:49 +00002981** and that the current process needs to reread the schema. If the schema
2982** cookie in P3 differs from the schema cookie in the database header or
2983** if the schema generation counter in P4 differs from the current
2984** generation counter, then an SQLITE_SCHEMA error is raised and execution
2985** halts. The sqlite3_step() wrapper function might then reprepare the
2986** statement and rerun it from the beginning.
drh5e00f6c2001-09-13 13:46:56 +00002987*/
drh9cbf3422008-01-17 16:22:13 +00002988case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00002989 Btree *pBt;
drhb22f7c82014-02-06 23:56:27 +00002990 int iMeta;
2991 int iGen;
danielk19771d850a72004-05-31 08:26:49 +00002992
drh1713afb2013-06-28 01:24:57 +00002993 assert( p->bIsReader );
drh9e92a472013-06-27 17:40:30 +00002994 assert( p->readOnly==0 || pOp->p2==0 );
drh653b82a2009-06-22 11:10:47 +00002995 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00002996 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh13447bf2013-07-10 13:33:49 +00002997 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
2998 rc = SQLITE_READONLY;
2999 goto abort_due_to_error;
3000 }
drh653b82a2009-06-22 11:10:47 +00003001 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00003002
danielk197724162fe2004-06-04 06:22:00 +00003003 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00003004 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
danielk197724162fe2004-06-04 06:22:00 +00003005 if( rc==SQLITE_BUSY ){
danielk19772a764eb2004-06-12 01:43:26 +00003006 p->pc = pc;
drh900b31e2007-08-28 02:27:51 +00003007 p->rc = rc = SQLITE_BUSY;
drh900b31e2007-08-28 02:27:51 +00003008 goto vdbe_return;
danielk197724162fe2004-06-04 06:22:00 +00003009 }
drh9e9f1bd2009-10-13 15:36:51 +00003010 if( rc!=SQLITE_OK ){
danielk197724162fe2004-06-04 06:22:00 +00003011 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00003012 }
dane0af83a2009-09-08 19:15:01 +00003013
3014 if( pOp->p2 && p->usesStmtJournal
danc0537fe2013-06-28 19:41:43 +00003015 && (db->autoCommit==0 || db->nVdbeRead>1)
dane0af83a2009-09-08 19:15:01 +00003016 ){
3017 assert( sqlite3BtreeIsInTrans(pBt) );
3018 if( p->iStatement==0 ){
3019 assert( db->nStatement>=0 && db->nSavepoint>=0 );
3020 db->nStatement++;
3021 p->iStatement = db->nSavepoint + db->nStatement;
3022 }
dana311b802011-04-26 19:21:34 +00003023
drh346506f2011-05-25 01:16:42 +00003024 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
dana311b802011-04-26 19:21:34 +00003025 if( rc==SQLITE_OK ){
3026 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3027 }
dan1da40a32009-09-19 17:00:31 +00003028
3029 /* Store the current value of the database handles deferred constraint
3030 ** counter. If the statement transaction needs to be rolled back,
3031 ** the value of this counter needs to be restored too. */
3032 p->nStmtDefCons = db->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00003033 p->nStmtDefImmCons = db->nDeferredImmCons;
dane0af83a2009-09-08 19:15:01 +00003034 }
drhb22f7c82014-02-06 23:56:27 +00003035
3036 /* Gather the schema version number for checking */
3037 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3038 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3039 }else{
3040 iGen = iMeta = 0;
3041 }
3042 assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3043 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3044 sqlite3DbFree(db, p->zErrMsg);
3045 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3046 /* If the schema-cookie from the database file matches the cookie
3047 ** stored with the in-memory representation of the schema, do
3048 ** not reload the schema from the database file.
3049 **
3050 ** If virtual-tables are in use, this is not just an optimization.
3051 ** Often, v-tables store their data in other SQLite tables, which
3052 ** are queried from within xNext() and other v-table methods using
3053 ** prepared queries. If such a query is out-of-date, we do not want to
3054 ** discard the database schema, as the user code implementing the
3055 ** v-table would have to be ready for the sqlite3_vtab structure itself
3056 ** to be invalidated whenever sqlite3_step() is called from within
3057 ** a v-table method.
3058 */
3059 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3060 sqlite3ResetOneSchema(db, pOp->p1);
3061 }
3062 p->expired = 1;
3063 rc = SQLITE_SCHEMA;
drhb86ccfb2003-01-28 23:13:10 +00003064 }
drh5e00f6c2001-09-13 13:46:56 +00003065 break;
3066}
3067
drhb1fdb2a2008-01-05 04:06:03 +00003068/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003069**
drh9cbf3422008-01-17 16:22:13 +00003070** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00003071** P3==1 is the schema version. P3==2 is the database format.
3072** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00003073** the main database file and P1==1 is the database file used to store
3074** temporary tables.
drh4a324312001-12-21 14:30:42 +00003075**
drh50e5dad2001-09-15 00:57:28 +00003076** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00003077** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00003078** executing this instruction.
3079*/
drh4c583122008-01-04 22:01:03 +00003080case OP_ReadCookie: { /* out2-prerelease */
drhf328bc82004-05-10 23:29:49 +00003081 int iMeta;
drh856c1032009-06-02 15:21:42 +00003082 int iDb;
3083 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00003084
drh1713afb2013-06-28 01:24:57 +00003085 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00003086 iDb = pOp->p1;
3087 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00003088 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00003089 assert( iDb>=0 && iDb<db->nDb );
3090 assert( db->aDb[iDb].pBt!=0 );
drha7ab6d82014-07-21 15:44:39 +00003091 assert( DbMaskTest(p->btreeMask, iDb) );
danielk19770d19f7a2009-06-03 11:25:07 +00003092
danielk1977602b4662009-07-02 07:47:33 +00003093 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh4c583122008-01-04 22:01:03 +00003094 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00003095 break;
3096}
3097
drh98757152008-01-09 23:04:12 +00003098/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003099**
drh98757152008-01-09 23:04:12 +00003100** Write the content of register P3 (interpreted as an integer)
danielk19770d19f7a2009-06-03 11:25:07 +00003101** into cookie number P2 of database P1. P2==1 is the schema version.
3102** P2==2 is the database format. P2==3 is the recommended pager cache
3103** size, and so forth. P1==0 is the main database file and P1==1 is the
3104** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00003105**
3106** A transaction must be started before executing this opcode.
3107*/
drh9cbf3422008-01-17 16:22:13 +00003108case OP_SetCookie: { /* in3 */
drh3f7d4e42004-07-24 14:35:58 +00003109 Db *pDb;
drh4a324312001-12-21 14:30:42 +00003110 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00003111 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003112 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00003113 assert( p->readOnly==0 );
drh3f7d4e42004-07-24 14:35:58 +00003114 pDb = &db->aDb[pOp->p1];
3115 assert( pDb->pBt!=0 );
drh21206082011-04-04 18:22:02 +00003116 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drh3c657212009-11-17 23:59:58 +00003117 pIn3 = &aMem[pOp->p3];
drh98757152008-01-09 23:04:12 +00003118 sqlite3VdbeMemIntegerify(pIn3);
drha3b321d2004-05-11 09:31:31 +00003119 /* See note about index shifting on OP_ReadCookie */
danielk19770d19f7a2009-06-03 11:25:07 +00003120 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
3121 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00003122 /* When the schema cookie changes, record the new cookie internally */
drh9c1905f2008-12-10 22:32:56 +00003123 pDb->pSchema->schema_cookie = (int)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00003124 db->flags |= SQLITE_InternChanges;
danielk19770d19f7a2009-06-03 11:25:07 +00003125 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00003126 /* Record changes in the file format */
drh9c1905f2008-12-10 22:32:56 +00003127 pDb->pSchema->file_format = (u8)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00003128 }
drhfd426c62006-01-30 15:34:22 +00003129 if( pOp->p1==1 ){
3130 /* Invalidate all prepared statements whenever the TEMP database
3131 ** schema is changed. Ticket #1644 */
3132 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00003133 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00003134 }
drh50e5dad2001-09-15 00:57:28 +00003135 break;
3136}
3137
drh98757152008-01-09 23:04:12 +00003138/* Opcode: OpenRead P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003139** Synopsis: root=P2 iDb=P3
drh5e00f6c2001-09-13 13:46:56 +00003140**
drhecdc7532001-09-23 02:35:53 +00003141** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00003142** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00003143** P3==0 means the main database, P3==1 means the database used for
3144** temporary tables, and P3>1 means used the corresponding attached
3145** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00003146** values need not be contiguous but all P1 values should be small integers.
3147** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00003148**
drh98757152008-01-09 23:04:12 +00003149** If P5!=0 then use the content of register P2 as the root page, not
3150** the value of P2 itself.
drh5edc3122001-09-13 21:53:09 +00003151**
drhb19a2bc2001-09-16 00:13:26 +00003152** There will be a read lock on the database whenever there is an
3153** open cursor. If the database was unlocked prior to this instruction
3154** then a read lock is acquired as part of this instruction. A read
3155** lock allows other processes to read the database but prohibits
3156** any other process from modifying the database. The read lock is
3157** released when all cursors are closed. If this instruction attempts
3158** to get a read lock but fails, the script terminates with an
3159** SQLITE_BUSY error code.
3160**
danielk1977d336e222009-02-20 10:58:41 +00003161** The P4 value may be either an integer (P4_INT32) or a pointer to
3162** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3163** structure, then said structure defines the content and collating
3164** sequence of the index being opened. Otherwise, if P4 is an integer
3165** value, it is set to the number of columns in the table.
drhf57b3392001-10-08 13:22:32 +00003166**
drh35263192014-07-22 20:02:19 +00003167** See also: OpenWrite, ReopenIdx
3168*/
3169/* Opcode: ReopenIdx P1 P2 P3 P4 P5
3170** Synopsis: root=P2 iDb=P3
3171**
3172** The ReopenIdx opcode works exactly like ReadOpen except that it first
3173** checks to see if the cursor on P1 is already open with a root page
3174** number of P2 and if it is this opcode becomes a no-op. In other words,
3175** if the cursor is already open, do not reopen it.
3176**
3177** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3178** a P4_KEYINFO object. Furthermore, the P3 value must be the same as
3179** every other ReopenIdx or OpenRead for the same cursor number.
3180**
3181** See the OpenRead opcode documentation for additional information.
drh5e00f6c2001-09-13 13:46:56 +00003182*/
drh98757152008-01-09 23:04:12 +00003183/* Opcode: OpenWrite P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003184** Synopsis: root=P2 iDb=P3
drhecdc7532001-09-23 02:35:53 +00003185**
3186** Open a read/write cursor named P1 on the table or index whose root
drh98757152008-01-09 23:04:12 +00003187** page is P2. Or if P5!=0 use the content of register P2 to find the
3188** root page.
drhecdc7532001-09-23 02:35:53 +00003189**
danielk1977d336e222009-02-20 10:58:41 +00003190** The P4 value may be either an integer (P4_INT32) or a pointer to
3191** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3192** structure, then said structure defines the content and collating
3193** sequence of the index being opened. Otherwise, if P4 is an integer
drh35cd6432009-06-05 14:17:21 +00003194** value, it is set to the number of columns in the table, or to the
3195** largest index of any column of the table that is actually used.
jplyon5a564222003-06-02 06:15:58 +00003196**
drh001bbcb2003-03-19 03:14:00 +00003197** This instruction works just like OpenRead except that it opens the cursor
drhecdc7532001-09-23 02:35:53 +00003198** in read/write mode. For a given table, there can be one or more read-only
3199** cursors or a single read/write cursor but not both.
drhf57b3392001-10-08 13:22:32 +00003200**
drh001bbcb2003-03-19 03:14:00 +00003201** See also OpenRead.
drhecdc7532001-09-23 02:35:53 +00003202*/
drh35263192014-07-22 20:02:19 +00003203case OP_ReopenIdx: {
3204 VdbeCursor *pCur;
3205
3206 assert( pOp->p5==0 );
3207 assert( pOp->p4type==P4_KEYINFO );
3208 pCur = p->apCsr[pOp->p1];
drhe8f2c9d2014-08-06 17:49:13 +00003209 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
drh35263192014-07-22 20:02:19 +00003210 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
3211 break;
3212 }
3213 /* If the cursor is not currently open or is open on a different
3214 ** index, then fall through into OP_OpenRead to force a reopen */
3215}
drh9cbf3422008-01-17 16:22:13 +00003216case OP_OpenRead:
3217case OP_OpenWrite: {
drh856c1032009-06-02 15:21:42 +00003218 int nField;
3219 KeyInfo *pKeyInfo;
drh856c1032009-06-02 15:21:42 +00003220 int p2;
3221 int iDb;
drhf57b3392001-10-08 13:22:32 +00003222 int wrFlag;
3223 Btree *pX;
drhdfe88ec2008-11-03 20:55:06 +00003224 VdbeCursor *pCur;
drhd946db02005-12-29 19:23:06 +00003225 Db *pDb;
drh856c1032009-06-02 15:21:42 +00003226
dan428c2182012-08-06 18:50:11 +00003227 assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
3228 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
drh1713afb2013-06-28 01:24:57 +00003229 assert( p->bIsReader );
drh35263192014-07-22 20:02:19 +00003230 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3231 || p->readOnly==0 );
dan428c2182012-08-06 18:50:11 +00003232
danfa401de2009-10-16 14:55:03 +00003233 if( p->expired ){
3234 rc = SQLITE_ABORT;
3235 break;
3236 }
3237
drh856c1032009-06-02 15:21:42 +00003238 nField = 0;
3239 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00003240 p2 = pOp->p2;
3241 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00003242 assert( iDb>=0 && iDb<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003243 assert( DbMaskTest(p->btreeMask, iDb) );
drhd946db02005-12-29 19:23:06 +00003244 pDb = &db->aDb[iDb];
3245 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00003246 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00003247 if( pOp->opcode==OP_OpenWrite ){
3248 wrFlag = 1;
drh21206082011-04-04 18:22:02 +00003249 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
danielk1977da184232006-01-05 11:34:32 +00003250 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3251 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00003252 }
3253 }else{
3254 wrFlag = 0;
3255 }
dan428c2182012-08-06 18:50:11 +00003256 if( pOp->p5 & OPFLAG_P2ISREG ){
drh9cbf3422008-01-17 16:22:13 +00003257 assert( p2>0 );
dan3bc9f742013-08-15 16:18:39 +00003258 assert( p2<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00003259 pIn2 = &aMem[p2];
drh2b4ded92010-09-27 21:09:31 +00003260 assert( memIsValid(pIn2) );
3261 assert( (pIn2->flags & MEM_Int)!=0 );
drh9cbf3422008-01-17 16:22:13 +00003262 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003263 p2 = (int)pIn2->u.i;
drh9a65f2c2009-06-22 19:05:40 +00003264 /* The p2 value always comes from a prior OP_CreateTable opcode and
3265 ** that opcode will always set the p2 value to 2 or more or else fail.
3266 ** If there were a failure, the prepared statement would have halted
3267 ** before reaching this instruction. */
drh27731d72009-06-22 12:05:10 +00003268 if( NEVER(p2<2) ) {
shanedcc50b72008-11-13 18:29:50 +00003269 rc = SQLITE_CORRUPT_BKPT;
3270 goto abort_due_to_error;
3271 }
drh5edc3122001-09-13 21:53:09 +00003272 }
danielk1977d336e222009-02-20 10:58:41 +00003273 if( pOp->p4type==P4_KEYINFO ){
3274 pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003275 assert( pKeyInfo->enc==ENC(db) );
3276 assert( pKeyInfo->db==db );
drhad124322013-10-23 13:30:58 +00003277 nField = pKeyInfo->nField+pKeyInfo->nXField;
danielk1977d336e222009-02-20 10:58:41 +00003278 }else if( pOp->p4type==P4_INT32 ){
3279 nField = pOp->p4.i;
3280 }
drh653b82a2009-06-22 11:10:47 +00003281 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003282 assert( nField>=0 );
3283 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
drh653b82a2009-06-22 11:10:47 +00003284 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
drh4774b132004-06-12 20:12:51 +00003285 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003286 pCur->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003287 pCur->isOrdered = 1;
drh35263192014-07-22 20:02:19 +00003288 pCur->pgnoRoot = p2;
danielk1977d336e222009-02-20 10:58:41 +00003289 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3290 pCur->pKeyInfo = pKeyInfo;
dan428c2182012-08-06 18:50:11 +00003291 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3292 sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));
danielk1977d336e222009-02-20 10:58:41 +00003293
drh14da87f2013-11-20 21:51:33 +00003294 /* Set the VdbeCursor.isTable variable. Previous versions of
danielk1977172114a2009-07-07 15:47:12 +00003295 ** SQLite used to check if the root-page flags were sane at this point
3296 ** and report database corruption if they were not, but this check has
3297 ** since moved into the btree layer. */
3298 pCur->isTable = pOp->p4type!=P4_KEYINFO;
drh5e00f6c2001-09-13 13:46:56 +00003299 break;
3300}
3301
drh2a5d9902011-08-26 00:34:45 +00003302/* Opcode: OpenEphemeral P1 P2 * P4 P5
drh81316f82013-10-29 20:40:47 +00003303** Synopsis: nColumn=P2
drh5e00f6c2001-09-13 13:46:56 +00003304**
drhb9bb7c12006-06-11 23:41:55 +00003305** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003306** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003307** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003308** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003309**
drh25d3adb2010-04-05 15:11:08 +00003310** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003311** The cursor points to a BTree table if P4==0 and to a BTree index
3312** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003313** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003314**
drh2a5d9902011-08-26 00:34:45 +00003315** The P5 parameter can be a mask of the BTREE_* flags defined
3316** in btree.h. These flags control aspects of the operation of
3317** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3318** added automatically.
drh5e00f6c2001-09-13 13:46:56 +00003319*/
drha21a64d2010-04-06 22:33:55 +00003320/* Opcode: OpenAutoindex P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00003321** Synopsis: nColumn=P2
drha21a64d2010-04-06 22:33:55 +00003322**
3323** This opcode works the same as OP_OpenEphemeral. It has a
3324** different name to distinguish its use. Tables created using
3325** by this opcode will be used for automatically created transient
3326** indices in joins.
3327*/
3328case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003329case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003330 VdbeCursor *pCx;
drh41e13e12013-11-07 14:09:39 +00003331 KeyInfo *pKeyInfo;
3332
drhd4187c72010-08-30 22:15:45 +00003333 static const int vfsFlags =
drh33f4e022007-09-03 15:19:34 +00003334 SQLITE_OPEN_READWRITE |
3335 SQLITE_OPEN_CREATE |
3336 SQLITE_OPEN_EXCLUSIVE |
3337 SQLITE_OPEN_DELETEONCLOSE |
3338 SQLITE_OPEN_TRANSIENT_DB;
drh653b82a2009-06-22 11:10:47 +00003339 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003340 assert( pOp->p2>=0 );
drh653b82a2009-06-22 11:10:47 +00003341 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
drh4774b132004-06-12 20:12:51 +00003342 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003343 pCx->nullRow = 1;
drh079a3072014-03-19 14:10:55 +00003344 pCx->isEphemeral = 1;
dan689ab892011-08-12 15:02:00 +00003345 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3346 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
drh5e00f6c2001-09-13 13:46:56 +00003347 if( rc==SQLITE_OK ){
danielk197740b38dc2004-06-26 08:38:24 +00003348 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
drh5e00f6c2001-09-13 13:46:56 +00003349 }
3350 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003351 /* If a transient index is required, create it by calling
drhd4187c72010-08-30 22:15:45 +00003352 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
danielk19774adee202004-05-08 08:23:19 +00003353 ** opening it. If a transient table is required, just use the
drhd4187c72010-08-30 22:15:45 +00003354 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003355 */
drh41e13e12013-11-07 14:09:39 +00003356 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
drhc6b52df2002-01-04 03:09:29 +00003357 int pgno;
drh66a51672008-01-03 00:01:23 +00003358 assert( pOp->p4type==P4_KEYINFO );
drhe1b4f0f2011-06-29 17:11:39 +00003359 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
drhc6b52df2002-01-04 03:09:29 +00003360 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003361 assert( pgno==MASTER_ROOT+1 );
drh41e13e12013-11-07 14:09:39 +00003362 assert( pKeyInfo->db==db );
3363 assert( pKeyInfo->enc==ENC(db) );
3364 pCx->pKeyInfo = pKeyInfo;
3365 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor);
drhc6b52df2002-01-04 03:09:29 +00003366 }
drhf0863fe2005-06-12 21:35:51 +00003367 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003368 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00003369 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
drhf0863fe2005-06-12 21:35:51 +00003370 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003371 }
drh5e00f6c2001-09-13 13:46:56 +00003372 }
drhd4187c72010-08-30 22:15:45 +00003373 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
dan5134d132011-09-02 10:31:11 +00003374 break;
3375}
3376
danfad9f9a2014-04-01 18:41:51 +00003377/* Opcode: SorterOpen P1 P2 P3 P4 *
dan5134d132011-09-02 10:31:11 +00003378**
3379** This opcode works like OP_OpenEphemeral except that it opens
3380** a transient index that is specifically designed to sort large
3381** tables using an external merge-sort algorithm.
danfad9f9a2014-04-01 18:41:51 +00003382**
3383** If argument P3 is non-zero, then it indicates that the sorter may
3384** assume that a stable sort considering the first P3 fields of each
3385** key is sufficient to produce the required results.
dan5134d132011-09-02 10:31:11 +00003386*/
drhca892a72011-09-03 00:17:51 +00003387case OP_SorterOpen: {
dan5134d132011-09-02 10:31:11 +00003388 VdbeCursor *pCx;
drh3a949872012-09-18 13:20:13 +00003389
drh399af1d2013-11-20 17:25:55 +00003390 assert( pOp->p1>=0 );
3391 assert( pOp->p2>=0 );
dan5134d132011-09-02 10:31:11 +00003392 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3393 if( pCx==0 ) goto no_mem;
3394 pCx->pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003395 assert( pCx->pKeyInfo->db==db );
3396 assert( pCx->pKeyInfo->enc==ENC(db) );
danfad9f9a2014-04-01 18:41:51 +00003397 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
drh5e00f6c2001-09-13 13:46:56 +00003398 break;
3399}
3400
dan78d58432014-03-25 15:04:07 +00003401/* Opcode: SequenceTest P1 P2 * * *
3402** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3403**
3404** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3405** to P2. Regardless of whether or not the jump is taken, increment the
3406** the sequence value.
3407*/
3408case OP_SequenceTest: {
3409 VdbeCursor *pC;
3410 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3411 pC = p->apCsr[pOp->p1];
3412 assert( pC->pSorter );
3413 if( (pC->seqCount++)==0 ){
3414 pc = pOp->p2 - 1;
3415 }
3416 break;
3417}
3418
drh5f612292014-02-08 23:20:32 +00003419/* Opcode: OpenPseudo P1 P2 P3 * *
drh60830e32014-02-10 15:56:34 +00003420** Synopsis: P3 columns in r[P2]
drh70ce3f02003-04-15 19:22:22 +00003421**
3422** Open a new cursor that points to a fake table that contains a single
drh5f612292014-02-08 23:20:32 +00003423** row of data. The content of that one row is the content of memory
3424** register P2. In other words, cursor P1 becomes an alias for the
3425** MEM_Blob content contained in register P2.
drh70ce3f02003-04-15 19:22:22 +00003426**
drh2d8d7ce2010-02-15 15:17:05 +00003427** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00003428** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003429** individual columns using the OP_Column opcode. The OP_Column opcode
3430** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003431**
3432** P3 is the number of fields in the records that will be stored by
3433** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003434*/
drh9cbf3422008-01-17 16:22:13 +00003435case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003436 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003437
drh653b82a2009-06-22 11:10:47 +00003438 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003439 assert( pOp->p3>=0 );
drh653b82a2009-06-22 11:10:47 +00003440 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
drh4774b132004-06-12 20:12:51 +00003441 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003442 pCx->nullRow = 1;
drh3e9ca092009-09-08 01:14:48 +00003443 pCx->pseudoTableReg = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003444 pCx->isTable = 1;
drh5f612292014-02-08 23:20:32 +00003445 assert( pOp->p5==0 );
drh70ce3f02003-04-15 19:22:22 +00003446 break;
3447}
3448
drh98757152008-01-09 23:04:12 +00003449/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003450**
3451** Close a cursor previously opened as P1. If P1 is not
3452** currently open, this instruction is a no-op.
3453*/
drh9cbf3422008-01-17 16:22:13 +00003454case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003455 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3456 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3457 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003458 break;
3459}
3460
drh8af3f772014-07-25 18:01:06 +00003461/* Opcode: SeekGE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003462** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003463**
danielk1977b790c6c2008-04-18 10:25:24 +00003464** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003465** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003466** to an SQL index, then P3 is the first in an array of P4 registers
3467** that are used as an unpacked index key.
3468**
3469** Reposition cursor P1 so that it points to the smallest entry that
3470** is greater than or equal to the key value. If there are no records
3471** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003472**
drh8af3f772014-07-25 18:01:06 +00003473** This opcode leaves the cursor configured to move in forward order,
drhbc5cf382014-08-06 01:08:07 +00003474** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003475** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003476**
drh935850e2014-05-24 17:15:15 +00003477** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003478*/
drh8af3f772014-07-25 18:01:06 +00003479/* Opcode: SeekGT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003480** Synopsis: key=r[P3@P4]
drh7cf6e4d2004-05-19 14:56:55 +00003481**
danielk1977b790c6c2008-04-18 10:25:24 +00003482** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003483** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003484** to an SQL index, then P3 is the first in an array of P4 registers
3485** that are used as an unpacked index key.
3486**
3487** Reposition cursor P1 so that it points to the smallest entry that
3488** is greater than the key value. If there are no records greater than
3489** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003490**
drh8af3f772014-07-25 18:01:06 +00003491** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00003492** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003493** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003494**
drh935850e2014-05-24 17:15:15 +00003495** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003496*/
drh8af3f772014-07-25 18:01:06 +00003497/* Opcode: SeekLT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003498** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00003499**
danielk1977b790c6c2008-04-18 10:25:24 +00003500** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003501** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003502** to an SQL index, then P3 is the first in an array of P4 registers
3503** that are used as an unpacked index key.
3504**
3505** Reposition cursor P1 so that it points to the largest entry that
3506** is less than the key value. If there are no records less than
3507** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003508**
drh8af3f772014-07-25 18:01:06 +00003509** This opcode leaves the cursor configured to move in reverse order,
3510** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003511** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003512**
drh935850e2014-05-24 17:15:15 +00003513** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003514*/
drh8af3f772014-07-25 18:01:06 +00003515/* Opcode: SeekLE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003516** Synopsis: key=r[P3@P4]
danielk19773d1bfea2004-05-14 11:00:53 +00003517**
danielk1977b790c6c2008-04-18 10:25:24 +00003518** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003519** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003520** to an SQL index, then P3 is the first in an array of P4 registers
3521** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003522**
danielk1977b790c6c2008-04-18 10:25:24 +00003523** Reposition cursor P1 so that it points to the largest entry that
3524** is less than or equal to the key value. If there are no records
3525** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003526**
drh8af3f772014-07-25 18:01:06 +00003527** This opcode leaves the cursor configured to move in reverse order,
3528** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003529** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003530**
drh935850e2014-05-24 17:15:15 +00003531** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003532*/
drh4a1d3652014-02-14 15:13:36 +00003533case OP_SeekLT: /* jump, in3 */
3534case OP_SeekLE: /* jump, in3 */
3535case OP_SeekGE: /* jump, in3 */
3536case OP_SeekGT: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003537 int res;
3538 int oc;
drhdfe88ec2008-11-03 20:55:06 +00003539 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003540 UnpackedRecord r;
3541 int nField;
3542 i64 iKey; /* The rowid we are to seek to */
drh80ff32f2001-11-04 18:32:46 +00003543
drh653b82a2009-06-22 11:10:47 +00003544 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003545 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003546 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003547 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003548 assert( pC->pseudoTableReg==0 );
drh4a1d3652014-02-14 15:13:36 +00003549 assert( OP_SeekLE == OP_SeekLT+1 );
3550 assert( OP_SeekGE == OP_SeekLT+2 );
3551 assert( OP_SeekGT == OP_SeekLT+3 );
drhd4187c72010-08-30 22:15:45 +00003552 assert( pC->isOrdered );
drh3da046d2013-11-11 03:24:11 +00003553 assert( pC->pCursor!=0 );
3554 oc = pOp->opcode;
3555 pC->nullRow = 0;
drh8af3f772014-07-25 18:01:06 +00003556#ifdef SQLITE_DEBUG
3557 pC->seekOp = pOp->opcode;
3558#endif
drh3da046d2013-11-11 03:24:11 +00003559 if( pC->isTable ){
3560 /* The input value in P3 might be of any type: integer, real, string,
3561 ** blob, or NULL. But it needs to be an integer before we can do
peter.d.reid60ec9142014-09-06 16:39:46 +00003562 ** the seek, so convert it. */
drh3da046d2013-11-11 03:24:11 +00003563 pIn3 = &aMem[pOp->p3];
drh11a6eee2014-09-19 22:01:54 +00003564 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drhbd9507c2014-08-23 17:21:37 +00003565 applyNumericAffinity(pIn3, 0);
3566 }
drh3da046d2013-11-11 03:24:11 +00003567 iKey = sqlite3VdbeIntValue(pIn3);
drh959403f2008-12-12 17:56:16 +00003568
drh3da046d2013-11-11 03:24:11 +00003569 /* If the P3 value could not be converted into an integer without
3570 ** loss of information, then special processing is required... */
3571 if( (pIn3->flags & MEM_Int)==0 ){
3572 if( (pIn3->flags & MEM_Real)==0 ){
3573 /* If the P3 value cannot be converted into any kind of a number,
3574 ** then the seek is not possible, so jump to P2 */
drh688852a2014-02-17 22:40:43 +00003575 pc = pOp->p2 - 1; VdbeBranchTaken(1,2);
drh3da046d2013-11-11 03:24:11 +00003576 break;
3577 }
drh959403f2008-12-12 17:56:16 +00003578
danaa1776f2013-11-26 18:22:59 +00003579 /* If the approximation iKey is larger than the actual real search
3580 ** term, substitute >= for > and < for <=. e.g. if the search term
3581 ** is 4.9 and the integer approximation 5:
3582 **
3583 ** (x > 4.9) -> (x >= 5)
3584 ** (x <= 4.9) -> (x < 5)
3585 */
drh74eaba42014-09-18 17:52:15 +00003586 if( pIn3->u.r<(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003587 assert( OP_SeekGE==(OP_SeekGT-1) );
3588 assert( OP_SeekLT==(OP_SeekLE-1) );
3589 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3590 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
danaa1776f2013-11-26 18:22:59 +00003591 }
3592
3593 /* If the approximation iKey is smaller than the actual real search
3594 ** term, substitute <= for < and > for >=. */
drh74eaba42014-09-18 17:52:15 +00003595 else if( pIn3->u.r>(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003596 assert( OP_SeekLE==(OP_SeekLT+1) );
3597 assert( OP_SeekGT==(OP_SeekGE+1) );
3598 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3599 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
drh8721ce42001-11-07 14:22:00 +00003600 }
drh3da046d2013-11-11 03:24:11 +00003601 }
3602 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
drhb53a5a92014-10-12 22:37:22 +00003603 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00003604 if( rc!=SQLITE_OK ){
3605 goto abort_due_to_error;
drh1af3fdb2004-07-18 21:33:01 +00003606 }
drhaa736092009-06-22 00:55:30 +00003607 }else{
drh3da046d2013-11-11 03:24:11 +00003608 nField = pOp->p4.i;
3609 assert( pOp->p4type==P4_INT32 );
3610 assert( nField>0 );
3611 r.pKeyInfo = pC->pKeyInfo;
3612 r.nField = (u16)nField;
3613
3614 /* The next line of code computes as follows, only faster:
drh4a1d3652014-02-14 15:13:36 +00003615 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
dan1fed5da2014-02-25 21:01:25 +00003616 ** r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00003617 ** }else{
dan1fed5da2014-02-25 21:01:25 +00003618 ** r.default_rc = +1;
drh3da046d2013-11-11 03:24:11 +00003619 ** }
danielk1977f7b9d662008-06-23 18:49:43 +00003620 */
dan1fed5da2014-02-25 21:01:25 +00003621 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3622 assert( oc!=OP_SeekGT || r.default_rc==-1 );
3623 assert( oc!=OP_SeekLE || r.default_rc==-1 );
3624 assert( oc!=OP_SeekGE || r.default_rc==+1 );
3625 assert( oc!=OP_SeekLT || r.default_rc==+1 );
drh3da046d2013-11-11 03:24:11 +00003626
3627 r.aMem = &aMem[pOp->p3];
3628#ifdef SQLITE_DEBUG
3629 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3630#endif
3631 ExpandBlob(r.aMem);
3632 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
3633 if( rc!=SQLITE_OK ){
3634 goto abort_due_to_error;
3635 }
drh3da046d2013-11-11 03:24:11 +00003636 }
3637 pC->deferredMoveto = 0;
3638 pC->cacheStatus = CACHE_STALE;
3639#ifdef SQLITE_TEST
3640 sqlite3_search_count++;
3641#endif
drh4a1d3652014-02-14 15:13:36 +00003642 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
3643 if( res<0 || (res==0 && oc==OP_SeekGT) ){
drhe39a7322014-02-03 14:04:11 +00003644 res = 0;
drh3da046d2013-11-11 03:24:11 +00003645 rc = sqlite3BtreeNext(pC->pCursor, &res);
3646 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00003647 }else{
3648 res = 0;
3649 }
3650 }else{
drh4a1d3652014-02-14 15:13:36 +00003651 assert( oc==OP_SeekLT || oc==OP_SeekLE );
3652 if( res>0 || (res==0 && oc==OP_SeekLT) ){
drhe39a7322014-02-03 14:04:11 +00003653 res = 0;
drh3da046d2013-11-11 03:24:11 +00003654 rc = sqlite3BtreePrevious(pC->pCursor, &res);
3655 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00003656 }else{
3657 /* res might be negative because the table is empty. Check to
3658 ** see if this is the case.
3659 */
3660 res = sqlite3BtreeEof(pC->pCursor);
3661 }
3662 }
3663 assert( pOp->p2>0 );
drh688852a2014-02-17 22:40:43 +00003664 VdbeBranchTaken(res!=0,2);
drh3da046d2013-11-11 03:24:11 +00003665 if( res ){
danielk1977f7b9d662008-06-23 18:49:43 +00003666 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00003667 }
drh5e00f6c2001-09-13 13:46:56 +00003668 break;
3669}
3670
drh959403f2008-12-12 17:56:16 +00003671/* Opcode: Seek P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00003672** Synopsis: intkey=r[P2]
drh959403f2008-12-12 17:56:16 +00003673**
3674** P1 is an open table cursor and P2 is a rowid integer. Arrange
3675** for P1 to move so that it points to the rowid given by P2.
3676**
3677** This is actually a deferred seek. Nothing actually happens until
3678** the cursor is used to read a record. That way, if no reads
3679** occur, no unnecessary I/O happens.
3680*/
3681case OP_Seek: { /* in2 */
drh959403f2008-12-12 17:56:16 +00003682 VdbeCursor *pC;
3683
drh653b82a2009-06-22 11:10:47 +00003684 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3685 pC = p->apCsr[pOp->p1];
drh959403f2008-12-12 17:56:16 +00003686 assert( pC!=0 );
drh3da046d2013-11-11 03:24:11 +00003687 assert( pC->pCursor!=0 );
3688 assert( pC->isTable );
3689 pC->nullRow = 0;
3690 pIn2 = &aMem[pOp->p2];
3691 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
drh3da046d2013-11-11 03:24:11 +00003692 pC->deferredMoveto = 1;
drh959403f2008-12-12 17:56:16 +00003693 break;
3694}
3695
3696
drh8cff69d2009-11-12 19:59:44 +00003697/* Opcode: Found P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003698** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003699**
drh8cff69d2009-11-12 19:59:44 +00003700** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3701** P4>0 then register P3 is the first of P4 registers that form an unpacked
3702** record.
3703**
3704** Cursor P1 is on an index btree. If the record identified by P3 and P4
3705** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00003706** P1 is left pointing at the matching entry.
drh6f225d02013-10-26 13:36:51 +00003707**
drhcefc87f2014-08-01 01:40:33 +00003708** This operation leaves the cursor in a state where it can be
3709** advanced in the forward direction. The Next instruction will work,
3710** but not the Prev instruction.
drh8af3f772014-07-25 18:01:06 +00003711**
drh6f225d02013-10-26 13:36:51 +00003712** See also: NotFound, NoConflict, NotExists. SeekGe
drh5e00f6c2001-09-13 13:46:56 +00003713*/
drh8cff69d2009-11-12 19:59:44 +00003714/* Opcode: NotFound P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003715** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003716**
drh8cff69d2009-11-12 19:59:44 +00003717** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3718** P4>0 then register P3 is the first of P4 registers that form an unpacked
3719** record.
3720**
3721** Cursor P1 is on an index btree. If the record identified by P3 and P4
3722** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3723** does contain an entry whose prefix matches the P3/P4 record then control
3724** falls through to the next instruction and P1 is left pointing at the
3725** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003726**
drh8af3f772014-07-25 18:01:06 +00003727** This operation leaves the cursor in a state where it cannot be
3728** advanced in either direction. In other words, the Next and Prev
3729** opcodes do not work after this operation.
3730**
drh6f225d02013-10-26 13:36:51 +00003731** See also: Found, NotExists, NoConflict
drh5e00f6c2001-09-13 13:46:56 +00003732*/
drh6f225d02013-10-26 13:36:51 +00003733/* Opcode: NoConflict P1 P2 P3 P4 *
drh4af5bee2013-10-30 02:37:50 +00003734** Synopsis: key=r[P3@P4]
drh6f225d02013-10-26 13:36:51 +00003735**
3736** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3737** P4>0 then register P3 is the first of P4 registers that form an unpacked
3738** record.
3739**
3740** Cursor P1 is on an index btree. If the record identified by P3 and P4
3741** contains any NULL value, jump immediately to P2. If all terms of the
3742** record are not-NULL then a check is done to determine if any row in the
3743** P1 index btree has a matching key prefix. If there are no matches, jump
3744** immediately to P2. If there is a match, fall through and leave the P1
3745** cursor pointing to the matching row.
3746**
3747** This opcode is similar to OP_NotFound with the exceptions that the
3748** branch is always taken if any part of the search key input is NULL.
3749**
drh8af3f772014-07-25 18:01:06 +00003750** This operation leaves the cursor in a state where it cannot be
3751** advanced in either direction. In other words, the Next and Prev
3752** opcodes do not work after this operation.
3753**
drh6f225d02013-10-26 13:36:51 +00003754** See also: NotFound, Found, NotExists
3755*/
3756case OP_NoConflict: /* jump, in3 */
drh9cbf3422008-01-17 16:22:13 +00003757case OP_NotFound: /* jump, in3 */
3758case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003759 int alreadyExists;
drh6f225d02013-10-26 13:36:51 +00003760 int ii;
drhdfe88ec2008-11-03 20:55:06 +00003761 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003762 int res;
dan03e9cfc2011-09-05 14:20:27 +00003763 char *pFree;
drh856c1032009-06-02 15:21:42 +00003764 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00003765 UnpackedRecord r;
drhb4139222013-11-06 14:36:08 +00003766 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
drh856c1032009-06-02 15:21:42 +00003767
dan0ff297e2009-09-25 17:03:14 +00003768#ifdef SQLITE_TEST
drh6f225d02013-10-26 13:36:51 +00003769 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
dan0ff297e2009-09-25 17:03:14 +00003770#endif
3771
drhaa736092009-06-22 00:55:30 +00003772 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00003773 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00003774 pC = p->apCsr[pOp->p1];
3775 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00003776#ifdef SQLITE_DEBUG
drhcefc87f2014-08-01 01:40:33 +00003777 pC->seekOp = pOp->opcode;
drh8af3f772014-07-25 18:01:06 +00003778#endif
drh3c657212009-11-17 23:59:58 +00003779 pIn3 = &aMem[pOp->p3];
drh3da046d2013-11-11 03:24:11 +00003780 assert( pC->pCursor!=0 );
3781 assert( pC->isTable==0 );
drha9ab4812013-12-11 11:00:44 +00003782 pFree = 0; /* Not needed. Only used to suppress a compiler warning. */
drh3da046d2013-11-11 03:24:11 +00003783 if( pOp->p4.i>0 ){
3784 r.pKeyInfo = pC->pKeyInfo;
3785 r.nField = (u16)pOp->p4.i;
3786 r.aMem = pIn3;
drh826af372014-02-08 19:12:21 +00003787 for(ii=0; ii<r.nField; ii++){
3788 assert( memIsValid(&r.aMem[ii]) );
3789 ExpandBlob(&r.aMem[ii]);
drh2b4ded92010-09-27 21:09:31 +00003790#ifdef SQLITE_DEBUG
drh826af372014-02-08 19:12:21 +00003791 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
drh2b4ded92010-09-27 21:09:31 +00003792#endif
drh826af372014-02-08 19:12:21 +00003793 }
drh3da046d2013-11-11 03:24:11 +00003794 pIdxKey = &r;
3795 }else{
3796 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3797 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
3798 );
3799 if( pIdxKey==0 ) goto no_mem;
3800 assert( pIn3->flags & MEM_Blob );
3801 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
3802 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
drh3da046d2013-11-11 03:24:11 +00003803 }
dan1fed5da2014-02-25 21:01:25 +00003804 pIdxKey->default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00003805 if( pOp->opcode==OP_NoConflict ){
3806 /* For the OP_NoConflict opcode, take the jump if any of the
3807 ** input fields are NULL, since any key with a NULL will not
3808 ** conflict */
3809 for(ii=0; ii<r.nField; ii++){
3810 if( r.aMem[ii].flags & MEM_Null ){
drh688852a2014-02-17 22:40:43 +00003811 pc = pOp->p2 - 1; VdbeBranchTaken(1,2);
drh3da046d2013-11-11 03:24:11 +00003812 break;
drh6f225d02013-10-26 13:36:51 +00003813 }
3814 }
drh5e00f6c2001-09-13 13:46:56 +00003815 }
drh3da046d2013-11-11 03:24:11 +00003816 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
3817 if( pOp->p4.i==0 ){
3818 sqlite3DbFree(db, pFree);
3819 }
3820 if( rc!=SQLITE_OK ){
3821 break;
3822 }
drh1fd522f2013-11-21 00:10:35 +00003823 pC->seekResult = res;
drh3da046d2013-11-11 03:24:11 +00003824 alreadyExists = (res==0);
3825 pC->nullRow = 1-alreadyExists;
3826 pC->deferredMoveto = 0;
3827 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003828 if( pOp->opcode==OP_Found ){
drh688852a2014-02-17 22:40:43 +00003829 VdbeBranchTaken(alreadyExists!=0,2);
drh5e00f6c2001-09-13 13:46:56 +00003830 if( alreadyExists ) pc = pOp->p2 - 1;
3831 }else{
drh688852a2014-02-17 22:40:43 +00003832 VdbeBranchTaken(alreadyExists==0,2);
drh5e00f6c2001-09-13 13:46:56 +00003833 if( !alreadyExists ) pc = pOp->p2 - 1;
3834 }
drh5e00f6c2001-09-13 13:46:56 +00003835 break;
3836}
3837
drh9cbf3422008-01-17 16:22:13 +00003838/* Opcode: NotExists P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00003839** Synopsis: intkey=r[P3]
drh6b125452002-01-28 15:53:03 +00003840**
drh261c02d2013-10-25 14:46:15 +00003841** P1 is the index of a cursor open on an SQL table btree (with integer
3842** keys). P3 is an integer rowid. If P1 does not contain a record with
3843** rowid P3 then jump immediately to P2. If P1 does contain a record
3844** with rowid P3 then leave the cursor pointing at that record and fall
3845** through to the next instruction.
drh6b125452002-01-28 15:53:03 +00003846**
drh261c02d2013-10-25 14:46:15 +00003847** The OP_NotFound opcode performs the same operation on index btrees
3848** (with arbitrary multi-value keys).
drh6b125452002-01-28 15:53:03 +00003849**
drh8af3f772014-07-25 18:01:06 +00003850** This opcode leaves the cursor in a state where it cannot be advanced
3851** in either direction. In other words, the Next and Prev opcodes will
3852** not work following this opcode.
3853**
drh11e85272013-10-26 15:40:48 +00003854** See also: Found, NotFound, NoConflict
drh6b125452002-01-28 15:53:03 +00003855*/
drh9cbf3422008-01-17 16:22:13 +00003856case OP_NotExists: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00003857 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00003858 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00003859 int res;
3860 u64 iKey;
3861
drh3c657212009-11-17 23:59:58 +00003862 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003863 assert( pIn3->flags & MEM_Int );
3864 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3865 pC = p->apCsr[pOp->p1];
3866 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00003867#ifdef SQLITE_DEBUG
3868 pC->seekOp = 0;
3869#endif
drhaa736092009-06-22 00:55:30 +00003870 assert( pC->isTable );
drh3e9ca092009-09-08 01:14:48 +00003871 assert( pC->pseudoTableReg==0 );
drhaa736092009-06-22 00:55:30 +00003872 pCrsr = pC->pCursor;
drh3da046d2013-11-11 03:24:11 +00003873 assert( pCrsr!=0 );
3874 res = 0;
3875 iKey = pIn3->u.i;
3876 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drhb53a5a92014-10-12 22:37:22 +00003877 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00003878 pC->nullRow = 0;
3879 pC->cacheStatus = CACHE_STALE;
3880 pC->deferredMoveto = 0;
drh688852a2014-02-17 22:40:43 +00003881 VdbeBranchTaken(res!=0,2);
drh3da046d2013-11-11 03:24:11 +00003882 if( res!=0 ){
danielk1977f7b9d662008-06-23 18:49:43 +00003883 pc = pOp->p2 - 1;
drh6b125452002-01-28 15:53:03 +00003884 }
drh1fd522f2013-11-21 00:10:35 +00003885 pC->seekResult = res;
drh6b125452002-01-28 15:53:03 +00003886 break;
3887}
3888
drh4c583122008-01-04 22:01:03 +00003889/* Opcode: Sequence P1 P2 * * *
drh079a3072014-03-19 14:10:55 +00003890** Synopsis: r[P2]=cursor[P1].ctr++
drh4db38a72005-09-01 12:16:28 +00003891**
drh4c583122008-01-04 22:01:03 +00003892** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00003893** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00003894** The sequence number on the cursor is incremented after this
3895** instruction.
drh4db38a72005-09-01 12:16:28 +00003896*/
drh4c583122008-01-04 22:01:03 +00003897case OP_Sequence: { /* out2-prerelease */
drh653b82a2009-06-22 11:10:47 +00003898 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3899 assert( p->apCsr[pOp->p1]!=0 );
3900 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00003901 break;
3902}
3903
3904
drh98757152008-01-09 23:04:12 +00003905/* Opcode: NewRowid P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00003906** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00003907**
drhf0863fe2005-06-12 21:35:51 +00003908** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00003909** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00003910** table that cursor P1 points to. The new record number is written
3911** written to register P2.
drh205f48e2004-11-05 00:43:11 +00003912**
dan76d462e2009-08-30 11:42:51 +00003913** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3914** the largest previously generated record number. No new record numbers are
3915** allowed to be less than this value. When this value reaches its maximum,
drhef8662b2011-06-20 21:47:58 +00003916** an SQLITE_FULL error is generated. The P3 register is updated with the '
dan76d462e2009-08-30 11:42:51 +00003917** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00003918** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00003919*/
drh4c583122008-01-04 22:01:03 +00003920case OP_NewRowid: { /* out2-prerelease */
drhaa736092009-06-22 00:55:30 +00003921 i64 v; /* The new rowid */
3922 VdbeCursor *pC; /* Cursor of table to get the new rowid */
3923 int res; /* Result of an sqlite3BtreeLast() */
3924 int cnt; /* Counter to limit the number of searches */
3925 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00003926 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00003927
drh856c1032009-06-02 15:21:42 +00003928 v = 0;
3929 res = 0;
drhaa736092009-06-22 00:55:30 +00003930 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3931 pC = p->apCsr[pOp->p1];
3932 assert( pC!=0 );
3933 if( NEVER(pC->pCursor==0) ){
drhf328bc82004-05-10 23:29:49 +00003934 /* The zero initialization above is all that is needed */
drh5e00f6c2001-09-13 13:46:56 +00003935 }else{
drh5cf8e8c2002-02-19 22:42:05 +00003936 /* The next rowid or record number (different terms for the same
3937 ** thing) is obtained in a two-step algorithm.
3938 **
3939 ** First we attempt to find the largest existing rowid and add one
3940 ** to that. But if the largest existing rowid is already the maximum
3941 ** positive integer, we have to fall through to the second
3942 ** probabilistic algorithm
3943 **
3944 ** The second algorithm is to select a rowid at random and see if
3945 ** it already exists in the table. If it does not exist, we have
3946 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00003947 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00003948 */
drhaa736092009-06-22 00:55:30 +00003949 assert( pC->isTable );
drhfe2093d2005-01-20 22:48:47 +00003950
drh75f86a42005-02-17 00:03:06 +00003951#ifdef SQLITE_32BIT_ROWID
3952# define MAX_ROWID 0x7fffffff
3953#else
drhfe2093d2005-01-20 22:48:47 +00003954 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3955 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3956 ** to provide the constant while making all compilers happy.
3957 */
danielk197764202cf2008-11-17 15:31:47 +00003958# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00003959#endif
drhfe2093d2005-01-20 22:48:47 +00003960
drh5cf8e8c2002-02-19 22:42:05 +00003961 if( !pC->useRandomRowid ){
drhe0670b62014-02-12 21:31:12 +00003962 rc = sqlite3BtreeLast(pC->pCursor, &res);
3963 if( rc!=SQLITE_OK ){
3964 goto abort_due_to_error;
3965 }
3966 if( res ){
3967 v = 1; /* IMP: R-61914-48074 */
3968 }else{
3969 assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
3970 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
3971 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
3972 if( v>=MAX_ROWID ){
3973 pC->useRandomRowid = 1;
drh5cf8e8c2002-02-19 22:42:05 +00003974 }else{
drhe0670b62014-02-12 21:31:12 +00003975 v++; /* IMP: R-29538-34987 */
drh5cf8e8c2002-02-19 22:42:05 +00003976 }
drh3fc190c2001-09-14 03:24:23 +00003977 }
drhe0670b62014-02-12 21:31:12 +00003978 }
drh205f48e2004-11-05 00:43:11 +00003979
3980#ifndef SQLITE_OMIT_AUTOINCREMENT
drhe0670b62014-02-12 21:31:12 +00003981 if( pOp->p3 ){
3982 /* Assert that P3 is a valid memory cell. */
3983 assert( pOp->p3>0 );
3984 if( p->pFrame ){
3985 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00003986 /* Assert that P3 is a valid memory cell. */
drhe0670b62014-02-12 21:31:12 +00003987 assert( pOp->p3<=pFrame->nMem );
3988 pMem = &pFrame->aMem[pOp->p3];
3989 }else{
3990 /* Assert that P3 is a valid memory cell. */
3991 assert( pOp->p3<=(p->nMem-p->nCursor) );
3992 pMem = &aMem[pOp->p3];
3993 memAboutToChange(p, pMem);
drh205f48e2004-11-05 00:43:11 +00003994 }
drhe0670b62014-02-12 21:31:12 +00003995 assert( memIsValid(pMem) );
drh205f48e2004-11-05 00:43:11 +00003996
drhe0670b62014-02-12 21:31:12 +00003997 REGISTER_TRACE(pOp->p3, pMem);
3998 sqlite3VdbeMemIntegerify(pMem);
3999 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
4000 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4001 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
4002 goto abort_due_to_error;
4003 }
4004 if( v<pMem->u.i+1 ){
4005 v = pMem->u.i + 1;
4006 }
4007 pMem->u.i = v;
drh5cf8e8c2002-02-19 22:42:05 +00004008 }
drhe0670b62014-02-12 21:31:12 +00004009#endif
drh5cf8e8c2002-02-19 22:42:05 +00004010 if( pC->useRandomRowid ){
drh748a52c2010-09-01 11:50:08 +00004011 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
drhc79c7612010-01-01 18:57:48 +00004012 ** largest possible integer (9223372036854775807) then the database
drh748a52c2010-09-01 11:50:08 +00004013 ** engine starts picking positive candidate ROWIDs at random until
4014 ** it finds one that is not previously used. */
drhaa736092009-06-22 00:55:30 +00004015 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
4016 ** an AUTOINCREMENT table. */
drh5cf8e8c2002-02-19 22:42:05 +00004017 cnt = 0;
drh2c4dc632014-09-25 12:31:28 +00004018 do{
4019 sqlite3_randomness(sizeof(v), &v);
drhd8633462014-09-25 17:42:41 +00004020 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
drh2c4dc632014-09-25 12:31:28 +00004021 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
drh748a52c2010-09-01 11:50:08 +00004022 0, &res))==SQLITE_OK)
shanehc4d340a2010-09-01 02:37:56 +00004023 && (res==0)
drh2c4dc632014-09-25 12:31:28 +00004024 && (++cnt<100));
drhaa736092009-06-22 00:55:30 +00004025 if( rc==SQLITE_OK && res==0 ){
drhc79c7612010-01-01 18:57:48 +00004026 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00004027 goto abort_due_to_error;
4028 }
drh748a52c2010-09-01 11:50:08 +00004029 assert( v>0 ); /* EV: R-40812-03570 */
drh1eaa2692001-09-18 02:02:23 +00004030 }
drha11846b2004-01-07 18:52:56 +00004031 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004032 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004033 }
drh4c583122008-01-04 22:01:03 +00004034 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004035 break;
4036}
4037
danielk19771f4aa332008-01-03 09:51:55 +00004038/* Opcode: Insert P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004039** Synopsis: intkey=r[P3] data=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004040**
jplyon5a564222003-06-02 06:15:58 +00004041** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00004042** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00004043** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00004044** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00004045** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00004046**
danielk19771f4aa332008-01-03 09:51:55 +00004047** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4048** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00004049** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00004050** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00004051**
drh3e9ca092009-09-08 01:14:48 +00004052** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4053** the last seek operation (OP_NotExists) was a success, then this
4054** operation will not attempt to find the appropriate row before doing
4055** the insert but will instead overwrite the row that the cursor is
4056** currently pointing to. Presumably, the prior OP_NotExists opcode
4057** has already positioned the cursor correctly. This is an optimization
4058** that boosts performance by avoiding redundant seeks.
4059**
4060** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4061** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4062** is part of an INSERT operation. The difference is only important to
4063** the update hook.
4064**
drh66a51672008-01-03 00:01:23 +00004065** Parameter P4 may point to a string containing the table-name, or
danielk19771f6eec52006-06-16 06:17:47 +00004066** may be NULL. If it is not NULL, then the update-hook
4067** (sqlite3.xUpdateCallback) is invoked following a successful insert.
4068**
drh93aed5a2008-01-16 17:46:38 +00004069** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4070** allocated, then ownership of P2 is transferred to the pseudo-cursor
4071** and register P2 becomes ephemeral. If the cursor is changed, the
4072** value of register P2 will then change. Make sure this does not
4073** cause any problems.)
4074**
drhf0863fe2005-06-12 21:35:51 +00004075** This instruction only works on tables. The equivalent instruction
4076** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00004077*/
drhe05c9292009-10-29 13:48:10 +00004078/* Opcode: InsertInt P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004079** Synopsis: intkey=P3 data=r[P2]
drhe05c9292009-10-29 13:48:10 +00004080**
4081** This works exactly like OP_Insert except that the key is the
4082** integer value P3, not the value of the integer stored in register P3.
4083*/
4084case OP_Insert:
4085case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00004086 Mem *pData; /* MEM cell holding data for the record to be inserted */
4087 Mem *pKey; /* MEM cell holding key for the record */
4088 i64 iKey; /* The integer ROWID or key for the record to be inserted */
4089 VdbeCursor *pC; /* Cursor to table into which insert is written */
4090 int nZero; /* Number of zero-bytes to append */
drh1fd522f2013-11-21 00:10:35 +00004091 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
drh3e9ca092009-09-08 01:14:48 +00004092 const char *zDb; /* database name - used by the update hook */
4093 const char *zTbl; /* Table name - used by the opdate hook */
4094 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
drh856c1032009-06-02 15:21:42 +00004095
drha6c2ed92009-11-14 23:22:23 +00004096 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00004097 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh2b4ded92010-09-27 21:09:31 +00004098 assert( memIsValid(pData) );
drh653b82a2009-06-22 11:10:47 +00004099 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00004100 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00004101 assert( pC->pCursor!=0 );
4102 assert( pC->pseudoTableReg==0 );
drha05a7222008-01-19 03:35:58 +00004103 assert( pC->isTable );
drh5b6afba2008-01-05 16:29:28 +00004104 REGISTER_TRACE(pOp->p2, pData);
danielk19775f8d8a82004-05-11 00:28:42 +00004105
drhe05c9292009-10-29 13:48:10 +00004106 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00004107 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00004108 assert( pKey->flags & MEM_Int );
drh2b4ded92010-09-27 21:09:31 +00004109 assert( memIsValid(pKey) );
drhe05c9292009-10-29 13:48:10 +00004110 REGISTER_TRACE(pOp->p3, pKey);
4111 iKey = pKey->u.i;
4112 }else{
4113 assert( pOp->opcode==OP_InsertInt );
4114 iKey = pOp->p3;
4115 }
4116
drha05a7222008-01-19 03:35:58 +00004117 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh99a66922011-05-13 18:51:42 +00004118 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
drha05a7222008-01-19 03:35:58 +00004119 if( pData->flags & MEM_Null ){
4120 pData->z = 0;
4121 pData->n = 0;
4122 }else{
4123 assert( pData->flags & (MEM_Blob|MEM_Str) );
4124 }
drh3e9ca092009-09-08 01:14:48 +00004125 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4126 if( pData->flags & MEM_Zero ){
4127 nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00004128 }else{
drh3e9ca092009-09-08 01:14:48 +00004129 nZero = 0;
drha05a7222008-01-19 03:35:58 +00004130 }
drh3e9ca092009-09-08 01:14:48 +00004131 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
4132 pData->z, pData->n, nZero,
drhebf10b12013-11-25 17:38:26 +00004133 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
drh3e9ca092009-09-08 01:14:48 +00004134 );
drha05a7222008-01-19 03:35:58 +00004135 pC->deferredMoveto = 0;
4136 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004137
drha05a7222008-01-19 03:35:58 +00004138 /* Invoke the update-hook if required. */
4139 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
drh856c1032009-06-02 15:21:42 +00004140 zDb = db->aDb[pC->iDb].zName;
4141 zTbl = pOp->p4.z;
4142 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
drha05a7222008-01-19 03:35:58 +00004143 assert( pC->isTable );
4144 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4145 assert( pC->iDb>=0 );
4146 }
drh5e00f6c2001-09-13 13:46:56 +00004147 break;
4148}
4149
drh98757152008-01-09 23:04:12 +00004150/* Opcode: Delete P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00004151**
drh5edc3122001-09-13 21:53:09 +00004152** Delete the record at which the P1 cursor is currently pointing.
4153**
4154** The cursor will be left pointing at either the next or the previous
4155** record in the table. If it is left pointing at the next record, then
drhb19a2bc2001-09-16 00:13:26 +00004156** the next Next instruction will be a no-op. Hence it is OK to delete
drhbc5cf382014-08-06 01:08:07 +00004157** a record from within a Next loop.
drhc8d30ac2002-04-12 10:08:59 +00004158**
rdcb0c374f2004-02-20 22:53:38 +00004159** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
danielk1977b28af712004-06-21 06:50:26 +00004160** incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00004161**
drh91fd4d42008-01-19 20:11:25 +00004162** P1 must not be pseudo-table. It has to be a real table with
4163** multiple rows.
4164**
4165** If P4 is not NULL, then it is the name of the table that P1 is
4166** pointing to. The update hook will be invoked, if it exists.
4167** If P4 is not NULL then the P1 cursor must have been positioned
4168** using OP_NotFound prior to invoking this opcode.
drh5e00f6c2001-09-13 13:46:56 +00004169*/
drh9cbf3422008-01-17 16:22:13 +00004170case OP_Delete: {
drhdfe88ec2008-11-03 20:55:06 +00004171 VdbeCursor *pC;
drh91fd4d42008-01-19 20:11:25 +00004172
drh653b82a2009-06-22 11:10:47 +00004173 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4174 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004175 assert( pC!=0 );
drh91fd4d42008-01-19 20:11:25 +00004176 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
drh9a65f2c2009-06-22 19:05:40 +00004177 assert( pC->deferredMoveto==0 );
drh9a65f2c2009-06-22 19:05:40 +00004178
drhb53a5a92014-10-12 22:37:22 +00004179#ifdef SQLITE_DEBUG
4180 /* The seek operation that positioned the cursor prior to OP_Delete will
4181 ** have also set the pC->movetoTarget field to the rowid of the row that
4182 ** is being deleted */
4183 if( pOp->p4.z && pC->isTable ){
4184 i64 iKey = 0;
4185 sqlite3BtreeKeySize(pC->pCursor, &iKey);
4186 assert( pC->movetoTarget==iKey );
4187 }
4188#endif
4189
drh91fd4d42008-01-19 20:11:25 +00004190 rc = sqlite3BtreeDelete(pC->pCursor);
drh91fd4d42008-01-19 20:11:25 +00004191 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004192
drh91fd4d42008-01-19 20:11:25 +00004193 /* Invoke the update-hook if required. */
drhbbbb0e82013-11-26 23:27:07 +00004194 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){
drh2c77be02013-11-27 21:07:03 +00004195 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
drhb53a5a92014-10-12 22:37:22 +00004196 db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);
drh91fd4d42008-01-19 20:11:25 +00004197 assert( pC->iDb>=0 );
drh5e00f6c2001-09-13 13:46:56 +00004198 }
danielk1977b28af712004-06-21 06:50:26 +00004199 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
rdcb0c374f2004-02-20 22:53:38 +00004200 break;
4201}
drhb7f1d9a2009-09-08 02:27:58 +00004202/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00004203**
drhb7f1d9a2009-09-08 02:27:58 +00004204** The value of the change counter is copied to the database handle
4205** change counter (returned by subsequent calls to sqlite3_changes()).
4206** Then the VMs internal change counter resets to 0.
4207** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00004208*/
drh9cbf3422008-01-17 16:22:13 +00004209case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00004210 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00004211 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00004212 break;
4213}
4214
drh1153c7b2013-11-01 22:02:56 +00004215/* Opcode: SorterCompare P1 P2 P3 P4
drhac502322014-07-30 13:56:48 +00004216** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
dan5134d132011-09-02 10:31:11 +00004217**
drh1153c7b2013-11-01 22:02:56 +00004218** P1 is a sorter cursor. This instruction compares a prefix of the
drhbc5cf382014-08-06 01:08:07 +00004219** record blob in register P3 against a prefix of the entry that
drhac502322014-07-30 13:56:48 +00004220** the sorter cursor currently points to. Only the first P4 fields
4221** of r[P3] and the sorter record are compared.
drh1153c7b2013-11-01 22:02:56 +00004222**
4223** If either P3 or the sorter contains a NULL in one of their significant
4224** fields (not counting the P4 fields at the end which are ignored) then
4225** the comparison is assumed to be equal.
4226**
4227** Fall through to next instruction if the two records compare equal to
4228** each other. Jump to P2 if they are different.
dan5134d132011-09-02 10:31:11 +00004229*/
4230case OP_SorterCompare: {
4231 VdbeCursor *pC;
4232 int res;
drhac502322014-07-30 13:56:48 +00004233 int nKeyCol;
dan5134d132011-09-02 10:31:11 +00004234
4235 pC = p->apCsr[pOp->p1];
4236 assert( isSorter(pC) );
drh1153c7b2013-11-01 22:02:56 +00004237 assert( pOp->p4type==P4_INT32 );
dan5134d132011-09-02 10:31:11 +00004238 pIn3 = &aMem[pOp->p3];
drhac502322014-07-30 13:56:48 +00004239 nKeyCol = pOp->p4.i;
drh958d2612014-04-18 13:40:07 +00004240 res = 0;
drhac502322014-07-30 13:56:48 +00004241 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
drh688852a2014-02-17 22:40:43 +00004242 VdbeBranchTaken(res!=0,2);
dan5134d132011-09-02 10:31:11 +00004243 if( res ){
4244 pc = pOp->p2-1;
4245 }
4246 break;
4247};
4248
drh6cf4a7d2014-10-13 13:00:58 +00004249/* Opcode: SorterData P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004250** Synopsis: r[P2]=data
dan5134d132011-09-02 10:31:11 +00004251**
4252** Write into register P2 the current sorter data for sorter cursor P1.
drh6cf4a7d2014-10-13 13:00:58 +00004253** Then clear the column header cache on cursor P3.
4254**
4255** This opcode is normally use to move a record out of the sorter and into
4256** a register that is the source for a pseudo-table cursor created using
4257** OpenPseudo. That pseudo-table cursor is the one that is identified by
4258** parameter P3. Clearing the P3 column cache as part of this opcode saves
4259** us from having to issue a separate NullRow instruction to clear that cache.
dan5134d132011-09-02 10:31:11 +00004260*/
4261case OP_SorterData: {
4262 VdbeCursor *pC;
drh3a949872012-09-18 13:20:13 +00004263
dan5134d132011-09-02 10:31:11 +00004264 pOut = &aMem[pOp->p2];
4265 pC = p->apCsr[pOp->p1];
drh14da87f2013-11-20 21:51:33 +00004266 assert( isSorter(pC) );
dan5134d132011-09-02 10:31:11 +00004267 rc = sqlite3VdbeSorterRowkey(pC, pOut);
dan38524132014-05-01 20:26:48 +00004268 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
drh6cf4a7d2014-10-13 13:00:58 +00004269 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4270 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
dan5134d132011-09-02 10:31:11 +00004271 break;
4272}
4273
drh98757152008-01-09 23:04:12 +00004274/* Opcode: RowData P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004275** Synopsis: r[P2]=data
drh70ce3f02003-04-15 19:22:22 +00004276**
drh98757152008-01-09 23:04:12 +00004277** Write into register P2 the complete row data for cursor P1.
4278** There is no interpretation of the data.
4279** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004280** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00004281**
drhde4fcfd2008-01-19 23:50:26 +00004282** If the P1 cursor must be pointing to a valid row (not a NULL row)
4283** of a real table, not a pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00004284*/
drh98757152008-01-09 23:04:12 +00004285/* Opcode: RowKey P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004286** Synopsis: r[P2]=key
drh143f3c42004-01-07 20:37:52 +00004287**
drh98757152008-01-09 23:04:12 +00004288** Write into register P2 the complete row key for cursor P1.
4289** There is no interpretation of the data.
drh0fd61352014-02-07 02:29:45 +00004290** The key is copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004291** it is found in the database file.
drh143f3c42004-01-07 20:37:52 +00004292**
drhde4fcfd2008-01-19 23:50:26 +00004293** If the P1 cursor must be pointing to a valid row (not a NULL row)
4294** of a real table, not a pseudo-table.
drh143f3c42004-01-07 20:37:52 +00004295*/
danielk1977a7a8e142008-02-13 18:25:27 +00004296case OP_RowKey:
4297case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00004298 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00004299 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00004300 u32 n;
drh856c1032009-06-02 15:21:42 +00004301 i64 n64;
drh70ce3f02003-04-15 19:22:22 +00004302
drha6c2ed92009-11-14 23:22:23 +00004303 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004304 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00004305
drhf0863fe2005-06-12 21:35:51 +00004306 /* Note that RowKey and RowData are really exactly the same instruction */
drh653b82a2009-06-22 11:10:47 +00004307 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4308 pC = p->apCsr[pOp->p1];
drh14da87f2013-11-20 21:51:33 +00004309 assert( isSorter(pC)==0 );
drhc6aff302011-09-01 15:32:47 +00004310 assert( pC->isTable || pOp->opcode!=OP_RowData );
drh14da87f2013-11-20 21:51:33 +00004311 assert( pC->isTable==0 || pOp->opcode==OP_RowData );
drh4774b132004-06-12 20:12:51 +00004312 assert( pC!=0 );
drhde4fcfd2008-01-19 23:50:26 +00004313 assert( pC->nullRow==0 );
drh3e9ca092009-09-08 01:14:48 +00004314 assert( pC->pseudoTableReg==0 );
drhde4fcfd2008-01-19 23:50:26 +00004315 assert( pC->pCursor!=0 );
4316 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004317
4318 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4319 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
drhc22284f2014-10-13 16:02:20 +00004320 ** the cursor. If this where not the case, on of the following assert()s
4321 ** would fail. Should this ever change (because of changes in the code
4322 ** generator) then the fix would be to insert a call to
4323 ** sqlite3VdbeCursorMoveto().
drh9a65f2c2009-06-22 19:05:40 +00004324 */
4325 assert( pC->deferredMoveto==0 );
drhc22284f2014-10-13 16:02:20 +00004326 assert( sqlite3BtreeCursorIsValid(pCrsr) );
4327#if 0 /* Not required due to the previous to assert() statements */
drhde4fcfd2008-01-19 23:50:26 +00004328 rc = sqlite3VdbeCursorMoveto(pC);
drhc22284f2014-10-13 16:02:20 +00004329 if( rc!=SQLITE_OK ) goto abort_due_to_error;
4330#endif
drh9a65f2c2009-06-22 19:05:40 +00004331
drh14da87f2013-11-20 21:51:33 +00004332 if( pC->isTable==0 ){
drhde4fcfd2008-01-19 23:50:26 +00004333 assert( !pC->isTable );
drhb07028f2011-10-14 21:49:18 +00004334 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
drhc27ae612009-07-14 18:35:44 +00004335 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhbb4957f2008-03-20 14:03:29 +00004336 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhde4fcfd2008-01-19 23:50:26 +00004337 goto too_big;
drh70ce3f02003-04-15 19:22:22 +00004338 }
drhbfb19dc2009-06-05 16:46:53 +00004339 n = (u32)n64;
drhde4fcfd2008-01-19 23:50:26 +00004340 }else{
drhb07028f2011-10-14 21:49:18 +00004341 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
drhea8ffdf2009-07-22 00:35:23 +00004342 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
shane75ac1de2009-06-09 18:58:52 +00004343 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00004344 goto too_big;
4345 }
drhde4fcfd2008-01-19 23:50:26 +00004346 }
drh722246e2014-10-07 23:02:24 +00004347 testcase( n==0 );
4348 if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
danielk1977a7a8e142008-02-13 18:25:27 +00004349 goto no_mem;
drhde4fcfd2008-01-19 23:50:26 +00004350 }
danielk1977a7a8e142008-02-13 18:25:27 +00004351 pOut->n = n;
4352 MemSetTypeFlag(pOut, MEM_Blob);
drh14da87f2013-11-20 21:51:33 +00004353 if( pC->isTable==0 ){
drhde4fcfd2008-01-19 23:50:26 +00004354 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4355 }else{
4356 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
drh5e00f6c2001-09-13 13:46:56 +00004357 }
danielk197796cb76f2008-01-04 13:24:28 +00004358 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
drhb7654112008-01-12 12:48:07 +00004359 UPDATE_MAX_BLOBSIZE(pOut);
drhee0ec8e2013-10-31 17:38:01 +00004360 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00004361 break;
4362}
4363
drh2133d822008-01-03 18:44:59 +00004364/* Opcode: Rowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004365** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00004366**
drh2133d822008-01-03 18:44:59 +00004367** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004368** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004369**
4370** P1 can be either an ordinary table or a virtual table. There used to
4371** be a separate OP_VRowid opcode for use with virtual tables, but this
4372** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004373*/
drh4c583122008-01-04 22:01:03 +00004374case OP_Rowid: { /* out2-prerelease */
drhdfe88ec2008-11-03 20:55:06 +00004375 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004376 i64 v;
drh856c1032009-06-02 15:21:42 +00004377 sqlite3_vtab *pVtab;
4378 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004379
drh653b82a2009-06-22 11:10:47 +00004380 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4381 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004382 assert( pC!=0 );
drh21172c42012-10-30 00:29:07 +00004383 assert( pC->pseudoTableReg==0 || pC->nullRow );
drh044925b2009-04-22 17:15:02 +00004384 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004385 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004386 break;
4387 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004388 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004389#ifndef SQLITE_OMIT_VIRTUALTABLE
4390 }else if( pC->pVtabCursor ){
drh044925b2009-04-22 17:15:02 +00004391 pVtab = pC->pVtabCursor->pVtab;
4392 pModule = pVtab->pModule;
4393 assert( pModule->xRowid );
drh044925b2009-04-22 17:15:02 +00004394 rc = pModule->xRowid(pC->pVtabCursor, &v);
dan016f7812013-08-21 17:35:48 +00004395 sqlite3VtabImportErrmsg(p, pVtab);
drh044925b2009-04-22 17:15:02 +00004396#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004397 }else{
drh6be240e2009-07-14 02:33:02 +00004398 assert( pC->pCursor!=0 );
drhc22284f2014-10-13 16:02:20 +00004399 rc = sqlite3VdbeCursorRestore(pC);
drh61495262009-04-22 15:32:59 +00004400 if( rc ) goto abort_due_to_error;
drhb53a5a92014-10-12 22:37:22 +00004401 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
drhc22284f2014-10-13 16:02:20 +00004402 assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */
drh5e00f6c2001-09-13 13:46:56 +00004403 }
drh4c583122008-01-04 22:01:03 +00004404 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004405 break;
4406}
4407
drh9cbf3422008-01-17 16:22:13 +00004408/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004409**
4410** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004411** that occur while the cursor is on the null row will always
4412** write a NULL.
drh17f71932002-02-21 12:01:27 +00004413*/
drh9cbf3422008-01-17 16:22:13 +00004414case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004415 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004416
drh653b82a2009-06-22 11:10:47 +00004417 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4418 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004419 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004420 pC->nullRow = 1;
drh399af1d2013-11-20 17:25:55 +00004421 pC->cacheStatus = CACHE_STALE;
danielk1977be51a652008-10-08 17:58:48 +00004422 if( pC->pCursor ){
4423 sqlite3BtreeClearCursor(pC->pCursor);
4424 }
drh17f71932002-02-21 12:01:27 +00004425 break;
4426}
4427
drh9cbf3422008-01-17 16:22:13 +00004428/* Opcode: Last P1 P2 * * *
drh9562b552002-02-19 15:00:07 +00004429**
drh8af3f772014-07-25 18:01:06 +00004430** The next use of the Rowid or Column or Prev instruction for P1
drh9562b552002-02-19 15:00:07 +00004431** will refer to the last entry in the database table or index.
4432** If the table or index is empty and P2>0, then jump immediately to P2.
4433** If P2 is 0 or if the table or index is not empty, fall through
4434** to the following instruction.
drh8af3f772014-07-25 18:01:06 +00004435**
4436** This opcode leaves the cursor configured to move in reverse order,
4437** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004438** configured to use Prev, not Next.
drh9562b552002-02-19 15:00:07 +00004439*/
drh9cbf3422008-01-17 16:22:13 +00004440case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004441 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004442 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004443 int res;
drh9562b552002-02-19 15:00:07 +00004444
drh653b82a2009-06-22 11:10:47 +00004445 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4446 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004447 assert( pC!=0 );
drha05a7222008-01-19 03:35:58 +00004448 pCrsr = pC->pCursor;
drh7abc5402011-10-22 21:00:46 +00004449 res = 0;
drh3da046d2013-11-11 03:24:11 +00004450 assert( pCrsr!=0 );
4451 rc = sqlite3BtreeLast(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004452 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004453 pC->deferredMoveto = 0;
4454 pC->cacheStatus = CACHE_STALE;
drh8af3f772014-07-25 18:01:06 +00004455#ifdef SQLITE_DEBUG
4456 pC->seekOp = OP_Last;
4457#endif
drh688852a2014-02-17 22:40:43 +00004458 if( pOp->p2>0 ){
4459 VdbeBranchTaken(res!=0,2);
4460 if( res ) pc = pOp->p2 - 1;
drh9562b552002-02-19 15:00:07 +00004461 }
4462 break;
4463}
4464
drh0342b1f2005-09-01 03:07:44 +00004465
drh9cbf3422008-01-17 16:22:13 +00004466/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004467**
4468** This opcode does exactly the same thing as OP_Rewind except that
4469** it increments an undocumented global variable used for testing.
4470**
4471** Sorting is accomplished by writing records into a sorting index,
4472** then rewinding that index and playing it back from beginning to
4473** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4474** rewinding so that the global variable will be incremented and
4475** regression tests can determine whether or not the optimizer is
4476** correctly optimizing out sorts.
4477*/
drhc6aff302011-09-01 15:32:47 +00004478case OP_SorterSort: /* jump */
drh9cbf3422008-01-17 16:22:13 +00004479case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00004480#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00004481 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00004482 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00004483#endif
drh9b47ee32013-08-20 03:13:51 +00004484 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
drh0342b1f2005-09-01 03:07:44 +00004485 /* Fall through into OP_Rewind */
4486}
drh9cbf3422008-01-17 16:22:13 +00004487/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004488**
drhf0863fe2005-06-12 21:35:51 +00004489** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00004490** will refer to the first entry in the database table or index.
4491** If the table or index is empty and P2>0, then jump immediately to P2.
4492** If P2 is 0 or if the table or index is not empty, fall through
4493** to the following instruction.
drh8af3f772014-07-25 18:01:06 +00004494**
4495** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00004496** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004497** configured to use Next, not Prev.
drh5e00f6c2001-09-13 13:46:56 +00004498*/
drh9cbf3422008-01-17 16:22:13 +00004499case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004500 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004501 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00004502 int res;
drh5e00f6c2001-09-13 13:46:56 +00004503
drh653b82a2009-06-22 11:10:47 +00004504 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4505 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004506 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00004507 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
dan2411dea2010-07-03 05:56:09 +00004508 res = 1;
drh8af3f772014-07-25 18:01:06 +00004509#ifdef SQLITE_DEBUG
4510 pC->seekOp = OP_Rewind;
4511#endif
dan689ab892011-08-12 15:02:00 +00004512 if( isSorter(pC) ){
drh958d2612014-04-18 13:40:07 +00004513 rc = sqlite3VdbeSorterRewind(pC, &res);
dana205a482011-08-27 18:48:57 +00004514 }else{
4515 pCrsr = pC->pCursor;
4516 assert( pCrsr );
danielk19774adee202004-05-08 08:23:19 +00004517 rc = sqlite3BtreeFirst(pCrsr, &res);
drha11846b2004-01-07 18:52:56 +00004518 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004519 pC->cacheStatus = CACHE_STALE;
drhf4dada72004-05-11 09:57:35 +00004520 }
drh9c1905f2008-12-10 22:32:56 +00004521 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004522 assert( pOp->p2>0 && pOp->p2<p->nOp );
drh688852a2014-02-17 22:40:43 +00004523 VdbeBranchTaken(res!=0,2);
drha05a7222008-01-19 03:35:58 +00004524 if( res ){
drhf4dada72004-05-11 09:57:35 +00004525 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00004526 }
4527 break;
4528}
4529
drh0fd61352014-02-07 02:29:45 +00004530/* Opcode: Next P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004531**
4532** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00004533** table or index. If there are no more key/value pairs then fall through
4534** to the following instruction. But if the cursor advance was successful,
4535** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00004536**
drh5dad9a32014-07-25 18:37:42 +00004537** The Next opcode is only valid following an SeekGT, SeekGE, or
4538** OP_Rewind opcode used to position the cursor. Next is not allowed
4539** to follow SeekLT, SeekLE, or OP_Last.
drh8af3f772014-07-25 18:01:06 +00004540**
drhf93cd942013-11-21 03:12:25 +00004541** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
4542** been opened prior to this opcode or the program will segfault.
drh60a713c2008-01-21 16:22:45 +00004543**
drhe39a7322014-02-03 14:04:11 +00004544** The P3 value is a hint to the btree implementation. If P3==1, that
4545** means P1 is an SQL index and that this instruction could have been
4546** omitted if that index had been unique. P3 is usually 0. P3 is
4547** always either 0 or 1.
4548**
dana205a482011-08-27 18:48:57 +00004549** P4 is always of type P4_ADVANCE. The function pointer points to
4550** sqlite3BtreeNext().
4551**
drhafc266a2010-03-31 17:47:44 +00004552** If P5 is positive and the jump is taken, then event counter
4553** number P5-1 in the prepared statement is incremented.
4554**
drhf93cd942013-11-21 03:12:25 +00004555** See also: Prev, NextIfOpen
4556*/
drh0fd61352014-02-07 02:29:45 +00004557/* Opcode: NextIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00004558**
drh5dad9a32014-07-25 18:37:42 +00004559** This opcode works just like Next except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00004560** open it behaves a no-op.
drh8721ce42001-11-07 14:22:00 +00004561*/
drh0fd61352014-02-07 02:29:45 +00004562/* Opcode: Prev P1 P2 P3 P4 P5
drhc045ec52002-12-04 20:01:06 +00004563**
4564** Back up cursor P1 so that it points to the previous key/data pair in its
4565** table or index. If there is no previous key/value pairs then fall through
4566** to the following instruction. But if the cursor backup was successful,
4567** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00004568**
drh8af3f772014-07-25 18:01:06 +00004569**
drh5dad9a32014-07-25 18:37:42 +00004570** The Prev opcode is only valid following an SeekLT, SeekLE, or
4571** OP_Last opcode used to position the cursor. Prev is not allowed
4572** to follow SeekGT, SeekGE, or OP_Rewind.
drh8af3f772014-07-25 18:01:06 +00004573**
drhf93cd942013-11-21 03:12:25 +00004574** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
4575** not open then the behavior is undefined.
drhafc266a2010-03-31 17:47:44 +00004576**
drhe39a7322014-02-03 14:04:11 +00004577** The P3 value is a hint to the btree implementation. If P3==1, that
4578** means P1 is an SQL index and that this instruction could have been
4579** omitted if that index had been unique. P3 is usually 0. P3 is
4580** always either 0 or 1.
4581**
dana205a482011-08-27 18:48:57 +00004582** P4 is always of type P4_ADVANCE. The function pointer points to
4583** sqlite3BtreePrevious().
4584**
drhafc266a2010-03-31 17:47:44 +00004585** If P5 is positive and the jump is taken, then event counter
4586** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00004587*/
drh0fd61352014-02-07 02:29:45 +00004588/* Opcode: PrevIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00004589**
drh5dad9a32014-07-25 18:37:42 +00004590** This opcode works just like Prev except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00004591** open it behaves a no-op.
4592*/
4593case OP_SorterNext: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004594 VdbeCursor *pC;
drha3460582008-07-11 21:02:53 +00004595 int res;
drh8721ce42001-11-07 14:22:00 +00004596
drhf93cd942013-11-21 03:12:25 +00004597 pC = p->apCsr[pOp->p1];
4598 assert( isSorter(pC) );
drh323913c2014-03-23 16:29:23 +00004599 res = 0;
drhf93cd942013-11-21 03:12:25 +00004600 rc = sqlite3VdbeSorterNext(db, pC, &res);
4601 goto next_tail;
4602case OP_PrevIfOpen: /* jump */
4603case OP_NextIfOpen: /* jump */
4604 if( p->apCsr[pOp->p1]==0 ) break;
4605 /* Fall through */
4606case OP_Prev: /* jump */
4607case OP_Next: /* jump */
drh70ce3f02003-04-15 19:22:22 +00004608 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh9b47ee32013-08-20 03:13:51 +00004609 assert( pOp->p5<ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00004610 pC = p->apCsr[pOp->p1];
drhe39a7322014-02-03 14:04:11 +00004611 res = pOp->p3;
drhf93cd942013-11-21 03:12:25 +00004612 assert( pC!=0 );
4613 assert( pC->deferredMoveto==0 );
4614 assert( pC->pCursor );
drhe39a7322014-02-03 14:04:11 +00004615 assert( res==0 || (res==1 && pC->isTable==0) );
4616 testcase( res==1 );
drhf93cd942013-11-21 03:12:25 +00004617 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4618 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4619 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
4620 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
drh8af3f772014-07-25 18:01:06 +00004621
4622 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
4623 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
4624 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
4625 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
drhcefc87f2014-08-01 01:40:33 +00004626 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
drh8af3f772014-07-25 18:01:06 +00004627 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
4628 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
4629 || pC->seekOp==OP_Last );
4630
drhf93cd942013-11-21 03:12:25 +00004631 rc = pOp->p4.xAdvance(pC->pCursor, &res);
4632next_tail:
drha3460582008-07-11 21:02:53 +00004633 pC->cacheStatus = CACHE_STALE;
drh688852a2014-02-17 22:40:43 +00004634 VdbeBranchTaken(res==0,2);
drha3460582008-07-11 21:02:53 +00004635 if( res==0 ){
drhf93cd942013-11-21 03:12:25 +00004636 pC->nullRow = 0;
drha3460582008-07-11 21:02:53 +00004637 pc = pOp->p2 - 1;
drh9b47ee32013-08-20 03:13:51 +00004638 p->aCounter[pOp->p5]++;
drh0f7eb612006-08-08 13:51:43 +00004639#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00004640 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00004641#endif
drhf93cd942013-11-21 03:12:25 +00004642 }else{
4643 pC->nullRow = 1;
drh8721ce42001-11-07 14:22:00 +00004644 }
drh49afe3a2013-07-10 03:05:14 +00004645 goto check_for_interrupt;
drh8721ce42001-11-07 14:22:00 +00004646}
4647
danielk1977de630352009-05-04 11:42:29 +00004648/* Opcode: IdxInsert P1 P2 P3 * P5
drh81316f82013-10-29 20:40:47 +00004649** Synopsis: key=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004650**
drhef8662b2011-06-20 21:47:58 +00004651** Register P2 holds an SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00004652** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00004653** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00004654**
drhaa9b8962008-01-08 02:57:55 +00004655** P3 is a flag that provides a hint to the b-tree layer that this
drhe4d90812007-03-29 05:51:49 +00004656** insert is likely to be an append.
4657**
mistachkin21a919f2014-02-07 03:28:02 +00004658** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
4659** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
4660** then the change counter is unchanged.
drh0fd61352014-02-07 02:29:45 +00004661**
mistachkin21a919f2014-02-07 03:28:02 +00004662** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
4663** just done a seek to the spot where the new entry is to be inserted.
4664** This flag avoids doing an extra seek.
drh0fd61352014-02-07 02:29:45 +00004665**
drhf0863fe2005-06-12 21:35:51 +00004666** This instruction only works for indices. The equivalent instruction
4667** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00004668*/
drhca892a72011-09-03 00:17:51 +00004669case OP_SorterInsert: /* in2 */
drh9cbf3422008-01-17 16:22:13 +00004670case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00004671 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004672 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004673 int nKey;
4674 const char *zKey;
4675
drh653b82a2009-06-22 11:10:47 +00004676 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4677 pC = p->apCsr[pOp->p1];
4678 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00004679 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
drh3c657212009-11-17 23:59:58 +00004680 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00004681 assert( pIn2->flags & MEM_Blob );
drh653b82a2009-06-22 11:10:47 +00004682 pCrsr = pC->pCursor;
drh6546af12013-11-04 15:23:25 +00004683 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh3da046d2013-11-11 03:24:11 +00004684 assert( pCrsr!=0 );
4685 assert( pC->isTable==0 );
4686 rc = ExpandBlob(pIn2);
4687 if( rc==SQLITE_OK ){
4688 if( isSorter(pC) ){
drh958d2612014-04-18 13:40:07 +00004689 rc = sqlite3VdbeSorterWrite(pC, pIn2);
drh3da046d2013-11-11 03:24:11 +00004690 }else{
4691 nKey = pIn2->n;
4692 zKey = pIn2->z;
4693 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4694 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4695 );
4696 assert( pC->deferredMoveto==0 );
4697 pC->cacheStatus = CACHE_STALE;
danielk1977d908f5a2007-05-11 07:08:28 +00004698 }
drh5e00f6c2001-09-13 13:46:56 +00004699 }
drh5e00f6c2001-09-13 13:46:56 +00004700 break;
4701}
4702
drh4308e342013-11-11 16:55:52 +00004703/* Opcode: IdxDelete P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00004704** Synopsis: key=r[P2@P3]
drh5e00f6c2001-09-13 13:46:56 +00004705**
drhe14006d2008-03-25 17:23:32 +00004706** The content of P3 registers starting at register P2 form
4707** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00004708** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00004709*/
drhe14006d2008-03-25 17:23:32 +00004710case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00004711 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004712 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00004713 int res;
4714 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00004715
drhe14006d2008-03-25 17:23:32 +00004716 assert( pOp->p3>0 );
dan3bc9f742013-08-15 16:18:39 +00004717 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
drh653b82a2009-06-22 11:10:47 +00004718 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4719 pC = p->apCsr[pOp->p1];
4720 assert( pC!=0 );
4721 pCrsr = pC->pCursor;
drh3da046d2013-11-11 03:24:11 +00004722 assert( pCrsr!=0 );
drh4308e342013-11-11 16:55:52 +00004723 assert( pOp->p5==0 );
drh3da046d2013-11-11 03:24:11 +00004724 r.pKeyInfo = pC->pKeyInfo;
4725 r.nField = (u16)pOp->p3;
dan1fed5da2014-02-25 21:01:25 +00004726 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00004727 r.aMem = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004728#ifdef SQLITE_DEBUG
drh3da046d2013-11-11 03:24:11 +00004729 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
drh2b4ded92010-09-27 21:09:31 +00004730#endif
drh3da046d2013-11-11 03:24:11 +00004731 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
4732 if( rc==SQLITE_OK && res==0 ){
4733 rc = sqlite3BtreeDelete(pCrsr);
drh5e00f6c2001-09-13 13:46:56 +00004734 }
drh3da046d2013-11-11 03:24:11 +00004735 assert( pC->deferredMoveto==0 );
4736 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004737 break;
4738}
4739
drh2133d822008-01-03 18:44:59 +00004740/* Opcode: IdxRowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004741** Synopsis: r[P2]=rowid
drh8721ce42001-11-07 14:22:00 +00004742**
drh2133d822008-01-03 18:44:59 +00004743** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00004744** the end of the index key pointed to by cursor P1. This integer should be
4745** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00004746**
drh9437bd22009-02-01 00:29:56 +00004747** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00004748*/
drh4c583122008-01-04 22:01:03 +00004749case OP_IdxRowid: { /* out2-prerelease */
drh8721ce42001-11-07 14:22:00 +00004750 BtCursor *pCrsr;
drhdfe88ec2008-11-03 20:55:06 +00004751 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004752 i64 rowid;
drh8721ce42001-11-07 14:22:00 +00004753
drh653b82a2009-06-22 11:10:47 +00004754 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4755 pC = p->apCsr[pOp->p1];
4756 assert( pC!=0 );
4757 pCrsr = pC->pCursor;
drh3da046d2013-11-11 03:24:11 +00004758 assert( pCrsr!=0 );
drh3c657212009-11-17 23:59:58 +00004759 pOut->flags = MEM_Null;
drh3da046d2013-11-11 03:24:11 +00004760 assert( pC->isTable==0 );
drhc22284f2014-10-13 16:02:20 +00004761 assert( pC->deferredMoveto==0 );
4762
4763 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
4764 ** out from under the cursor. That will never happend for an IdxRowid
4765 ** opcode, hence the NEVER() arround the check of the return value.
4766 */
4767 rc = sqlite3VdbeCursorRestore(pC);
4768 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4769
drh3da046d2013-11-11 03:24:11 +00004770 if( !pC->nullRow ){
drh2dc06482013-12-11 00:59:10 +00004771 rowid = 0; /* Not needed. Only used to silence a warning. */
drhd3b74202014-09-17 16:41:15 +00004772 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
drh3da046d2013-11-11 03:24:11 +00004773 if( rc!=SQLITE_OK ){
4774 goto abort_due_to_error;
danielk19773d1bfea2004-05-14 11:00:53 +00004775 }
drh3da046d2013-11-11 03:24:11 +00004776 pOut->u.i = rowid;
4777 pOut->flags = MEM_Int;
drh8721ce42001-11-07 14:22:00 +00004778 }
4779 break;
4780}
4781
danielk197761dd5832008-04-18 11:31:12 +00004782/* Opcode: IdxGE P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00004783** Synopsis: key=r[P3@P4]
drh8721ce42001-11-07 14:22:00 +00004784**
danielk197761dd5832008-04-18 11:31:12 +00004785** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00004786** key that omits the PRIMARY KEY. Compare this key value against the index
4787** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
4788** fields at the end.
drhf3218fe2004-05-28 08:21:02 +00004789**
danielk197761dd5832008-04-18 11:31:12 +00004790** If the P1 index entry is greater than or equal to the key value
4791** then jump to P2. Otherwise fall through to the next instruction.
drh4a1d3652014-02-14 15:13:36 +00004792*/
4793/* Opcode: IdxGT P1 P2 P3 P4 P5
4794** Synopsis: key=r[P3@P4]
drh772ae622004-05-19 13:13:08 +00004795**
drh4a1d3652014-02-14 15:13:36 +00004796** The P4 register values beginning with P3 form an unpacked index
4797** key that omits the PRIMARY KEY. Compare this key value against the index
4798** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
4799** fields at the end.
4800**
4801** If the P1 index entry is greater than the key value
4802** then jump to P2. Otherwise fall through to the next instruction.
drh8721ce42001-11-07 14:22:00 +00004803*/
drh3bb9b932010-08-06 02:10:00 +00004804/* Opcode: IdxLT P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00004805** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00004806**
danielk197761dd5832008-04-18 11:31:12 +00004807** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00004808** key that omits the PRIMARY KEY or ROWID. Compare this key value against
4809** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
4810** ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004811**
danielk197761dd5832008-04-18 11:31:12 +00004812** If the P1 index entry is less than the key value then jump to P2.
4813** Otherwise fall through to the next instruction.
drhc045ec52002-12-04 20:01:06 +00004814*/
drh4a1d3652014-02-14 15:13:36 +00004815/* Opcode: IdxLE P1 P2 P3 P4 P5
4816** Synopsis: key=r[P3@P4]
4817**
4818** The P4 register values beginning with P3 form an unpacked index
4819** key that omits the PRIMARY KEY or ROWID. Compare this key value against
4820** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
4821** ROWID on the P1 index.
4822**
4823** If the P1 index entry is less than or equal to the key value then jump
4824** to P2. Otherwise fall through to the next instruction.
4825*/
4826case OP_IdxLE: /* jump */
4827case OP_IdxGT: /* jump */
drh93952eb2009-11-13 19:43:43 +00004828case OP_IdxLT: /* jump */
drh4a1d3652014-02-14 15:13:36 +00004829case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004830 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004831 int res;
4832 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00004833
drh653b82a2009-06-22 11:10:47 +00004834 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4835 pC = p->apCsr[pOp->p1];
4836 assert( pC!=0 );
drhd4187c72010-08-30 22:15:45 +00004837 assert( pC->isOrdered );
drh3da046d2013-11-11 03:24:11 +00004838 assert( pC->pCursor!=0);
4839 assert( pC->deferredMoveto==0 );
4840 assert( pOp->p5==0 || pOp->p5==1 );
4841 assert( pOp->p4type==P4_INT32 );
4842 r.pKeyInfo = pC->pKeyInfo;
4843 r.nField = (u16)pOp->p4.i;
drh4a1d3652014-02-14 15:13:36 +00004844 if( pOp->opcode<OP_IdxLT ){
4845 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
dan1fed5da2014-02-25 21:01:25 +00004846 r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00004847 }else{
drh4a1d3652014-02-14 15:13:36 +00004848 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
dan1fed5da2014-02-25 21:01:25 +00004849 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00004850 }
4851 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00004852#ifdef SQLITE_DEBUG
drh3da046d2013-11-11 03:24:11 +00004853 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
drh2b4ded92010-09-27 21:09:31 +00004854#endif
drh2dc06482013-12-11 00:59:10 +00004855 res = 0; /* Not needed. Only used to silence a warning. */
drhd3b74202014-09-17 16:41:15 +00004856 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
drh4a1d3652014-02-14 15:13:36 +00004857 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
4858 if( (pOp->opcode&1)==(OP_IdxLT&1) ){
4859 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
drh3da046d2013-11-11 03:24:11 +00004860 res = -res;
4861 }else{
drh4a1d3652014-02-14 15:13:36 +00004862 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
drh3da046d2013-11-11 03:24:11 +00004863 res++;
4864 }
drh688852a2014-02-17 22:40:43 +00004865 VdbeBranchTaken(res>0,2);
drh3da046d2013-11-11 03:24:11 +00004866 if( res>0 ){
4867 pc = pOp->p2 - 1 ;
drh8721ce42001-11-07 14:22:00 +00004868 }
4869 break;
4870}
4871
drh98757152008-01-09 23:04:12 +00004872/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004873**
4874** Delete an entire database table or index whose root page in the database
4875** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00004876**
drh98757152008-01-09 23:04:12 +00004877** The table being destroyed is in the main database file if P3==0. If
4878** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00004879** that is used to store tables create using CREATE TEMPORARY TABLE.
4880**
drh205f48e2004-11-05 00:43:11 +00004881** If AUTOVACUUM is enabled then it is possible that another root page
4882** might be moved into the newly deleted root page in order to keep all
4883** root pages contiguous at the beginning of the database. The former
4884** value of the root page that moved - its value before the move occurred -
drh9cbf3422008-01-17 16:22:13 +00004885** is stored in register P2. If no page
drh98757152008-01-09 23:04:12 +00004886** movement was required (because the table being dropped was already
4887** the last one in the database) then a zero is stored in register P2.
4888** If AUTOVACUUM is disabled then a zero is stored in register P2.
drh205f48e2004-11-05 00:43:11 +00004889**
drhb19a2bc2001-09-16 00:13:26 +00004890** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00004891*/
drh98757152008-01-09 23:04:12 +00004892case OP_Destroy: { /* out2-prerelease */
danielk1977a0bf2652004-11-04 14:30:04 +00004893 int iMoved;
drh3765df42006-06-28 18:18:09 +00004894 int iCnt;
drh5a91a532007-01-05 16:39:43 +00004895 Vdbe *pVdbe;
drh856c1032009-06-02 15:21:42 +00004896 int iDb;
drh3a949872012-09-18 13:20:13 +00004897
drh9e92a472013-06-27 17:40:30 +00004898 assert( p->readOnly==0 );
drh856c1032009-06-02 15:21:42 +00004899#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk1977212b2182006-06-23 14:32:08 +00004900 iCnt = 0;
drh856c1032009-06-02 15:21:42 +00004901 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
danc0537fe2013-06-28 19:41:43 +00004902 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader
4903 && pVdbe->inVtabMethod<2 && pVdbe->pc>=0
4904 ){
danielk1977212b2182006-06-23 14:32:08 +00004905 iCnt++;
4906 }
4907 }
drh3765df42006-06-28 18:18:09 +00004908#else
danc0537fe2013-06-28 19:41:43 +00004909 iCnt = db->nVdbeRead;
danielk1977212b2182006-06-23 14:32:08 +00004910#endif
drh3c657212009-11-17 23:59:58 +00004911 pOut->flags = MEM_Null;
danielk1977212b2182006-06-23 14:32:08 +00004912 if( iCnt>1 ){
danielk1977e6efa742004-11-10 11:55:10 +00004913 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00004914 p->errorAction = OE_Abort;
danielk1977e6efa742004-11-10 11:55:10 +00004915 }else{
drh856c1032009-06-02 15:21:42 +00004916 iDb = pOp->p3;
danielk1977212b2182006-06-23 14:32:08 +00004917 assert( iCnt==1 );
drha7ab6d82014-07-21 15:44:39 +00004918 assert( DbMaskTest(p->btreeMask, iDb) );
drh2dc06482013-12-11 00:59:10 +00004919 iMoved = 0; /* Not needed. Only to silence a warning. */
drh98757152008-01-09 23:04:12 +00004920 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00004921 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00004922 pOut->u.i = iMoved;
drh3765df42006-06-28 18:18:09 +00004923#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977e6efa742004-11-10 11:55:10 +00004924 if( rc==SQLITE_OK && iMoved!=0 ){
drhcdf011d2011-04-04 21:25:28 +00004925 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
4926 /* All OP_Destroy operations occur on the same btree */
4927 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
4928 resetSchemaOnFault = iDb+1;
danielk1977e6efa742004-11-10 11:55:10 +00004929 }
drh3765df42006-06-28 18:18:09 +00004930#endif
danielk1977a0bf2652004-11-04 14:30:04 +00004931 }
drh5e00f6c2001-09-13 13:46:56 +00004932 break;
4933}
4934
danielk1977c7af4842008-10-27 13:59:33 +00004935/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00004936**
4937** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00004938** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00004939** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00004940**
drhf57b3392001-10-08 13:22:32 +00004941** The table being clear is in the main database file if P2==0. If
4942** P2==1 then the table to be clear is in the auxiliary database file
4943** that is used to store tables create using CREATE TEMPORARY TABLE.
4944**
shanebe217792009-03-05 04:20:31 +00004945** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00004946** intkey table (an SQL table, not an index). In this case the row change
4947** count is incremented by the number of rows in the table being cleared.
4948** If P3 is greater than zero, then the value stored in register P3 is
4949** also incremented by the number of rows in the table being cleared.
4950**
drhb19a2bc2001-09-16 00:13:26 +00004951** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00004952*/
drh9cbf3422008-01-17 16:22:13 +00004953case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00004954 int nChange;
4955
4956 nChange = 0;
drh9e92a472013-06-27 17:40:30 +00004957 assert( p->readOnly==0 );
drha7ab6d82014-07-21 15:44:39 +00004958 assert( DbMaskTest(p->btreeMask, pOp->p2) );
danielk1977c7af4842008-10-27 13:59:33 +00004959 rc = sqlite3BtreeClearTable(
4960 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
4961 );
4962 if( pOp->p3 ){
4963 p->nChange += nChange;
4964 if( pOp->p3>0 ){
drh2b4ded92010-09-27 21:09:31 +00004965 assert( memIsValid(&aMem[pOp->p3]) );
4966 memAboutToChange(p, &aMem[pOp->p3]);
drha6c2ed92009-11-14 23:22:23 +00004967 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00004968 }
4969 }
drh5edc3122001-09-13 21:53:09 +00004970 break;
4971}
4972
drh65ea12c2014-03-19 17:41:36 +00004973/* Opcode: ResetSorter P1 * * * *
drh079a3072014-03-19 14:10:55 +00004974**
drh65ea12c2014-03-19 17:41:36 +00004975** Delete all contents from the ephemeral table or sorter
4976** that is open on cursor P1.
drh079a3072014-03-19 14:10:55 +00004977**
drh65ea12c2014-03-19 17:41:36 +00004978** This opcode only works for cursors used for sorting and
4979** opened with OP_OpenEphemeral or OP_SorterOpen.
drh079a3072014-03-19 14:10:55 +00004980*/
drh65ea12c2014-03-19 17:41:36 +00004981case OP_ResetSorter: {
drh079a3072014-03-19 14:10:55 +00004982 VdbeCursor *pC;
4983
4984 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4985 pC = p->apCsr[pOp->p1];
4986 assert( pC!=0 );
drh65ea12c2014-03-19 17:41:36 +00004987 if( pC->pSorter ){
4988 sqlite3VdbeSorterReset(db, pC->pSorter);
4989 }else{
4990 assert( pC->isEphemeral );
4991 rc = sqlite3BtreeClearTableOfCursor(pC->pCursor);
4992 }
drh079a3072014-03-19 14:10:55 +00004993 break;
4994}
4995
drh4c583122008-01-04 22:01:03 +00004996/* Opcode: CreateTable P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004997** Synopsis: r[P2]=root iDb=P1
drh5b2fd562001-09-13 15:21:31 +00004998**
drh4c583122008-01-04 22:01:03 +00004999** Allocate a new table in the main database file if P1==0 or in the
5000** auxiliary database file if P1==1 or in an attached database if
5001** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00005002** register P2
drh5b2fd562001-09-13 15:21:31 +00005003**
drhc6b52df2002-01-04 03:09:29 +00005004** The difference between a table and an index is this: A table must
5005** have a 4-byte integer key and can have arbitrary data. An index
5006** has an arbitrary key but no data.
5007**
drhb19a2bc2001-09-16 00:13:26 +00005008** See also: CreateIndex
drh5b2fd562001-09-13 15:21:31 +00005009*/
drh4c583122008-01-04 22:01:03 +00005010/* Opcode: CreateIndex P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005011** Synopsis: r[P2]=root iDb=P1
drhf57b3392001-10-08 13:22:32 +00005012**
drh4c583122008-01-04 22:01:03 +00005013** Allocate a new index in the main database file if P1==0 or in the
5014** auxiliary database file if P1==1 or in an attached database if
5015** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00005016** register P2.
drhf57b3392001-10-08 13:22:32 +00005017**
drhc6b52df2002-01-04 03:09:29 +00005018** See documentation on OP_CreateTable for additional information.
drhf57b3392001-10-08 13:22:32 +00005019*/
drh4c583122008-01-04 22:01:03 +00005020case OP_CreateIndex: /* out2-prerelease */
5021case OP_CreateTable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00005022 int pgno;
drhf328bc82004-05-10 23:29:49 +00005023 int flags;
drh234c39d2004-07-24 03:30:47 +00005024 Db *pDb;
drh856c1032009-06-02 15:21:42 +00005025
5026 pgno = 0;
drh234c39d2004-07-24 03:30:47 +00005027 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005028 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00005029 assert( p->readOnly==0 );
drh234c39d2004-07-24 03:30:47 +00005030 pDb = &db->aDb[pOp->p1];
5031 assert( pDb->pBt!=0 );
drhc6b52df2002-01-04 03:09:29 +00005032 if( pOp->opcode==OP_CreateTable ){
danielk197794076252004-05-14 12:16:11 +00005033 /* flags = BTREE_INTKEY; */
drhd4187c72010-08-30 22:15:45 +00005034 flags = BTREE_INTKEY;
drhc6b52df2002-01-04 03:09:29 +00005035 }else{
drhd4187c72010-08-30 22:15:45 +00005036 flags = BTREE_BLOBKEY;
drhc6b52df2002-01-04 03:09:29 +00005037 }
drh234c39d2004-07-24 03:30:47 +00005038 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
drh88a003e2008-12-11 16:17:03 +00005039 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00005040 break;
5041}
5042
drh22645842011-03-24 01:34:03 +00005043/* Opcode: ParseSchema P1 * * P4 *
drh234c39d2004-07-24 03:30:47 +00005044**
5045** Read and parse all entries from the SQLITE_MASTER table of database P1
drh22645842011-03-24 01:34:03 +00005046** that match the WHERE clause P4.
drh234c39d2004-07-24 03:30:47 +00005047**
5048** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00005049** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00005050*/
drh9cbf3422008-01-17 16:22:13 +00005051case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00005052 int iDb;
5053 const char *zMaster;
5054 char *zSql;
5055 InitData initData;
5056
drhbdaec522011-04-04 00:14:43 +00005057 /* Any prepared statement that invokes this opcode will hold mutexes
5058 ** on every btree. This is a prerequisite for invoking
5059 ** sqlite3InitCallback().
5060 */
5061#ifdef SQLITE_DEBUG
5062 for(iDb=0; iDb<db->nDb; iDb++){
5063 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5064 }
5065#endif
drhbdaec522011-04-04 00:14:43 +00005066
drh856c1032009-06-02 15:21:42 +00005067 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00005068 assert( iDb>=0 && iDb<db->nDb );
dan6c154872011-04-02 09:44:43 +00005069 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
drhbdaec522011-04-04 00:14:43 +00005070 /* Used to be a conditional */ {
drh856c1032009-06-02 15:21:42 +00005071 zMaster = SCHEMA_TABLE(iDb);
danielk1977a8bbef82009-03-23 17:11:26 +00005072 initData.db = db;
5073 initData.iDb = pOp->p1;
5074 initData.pzErrMsg = &p->zErrMsg;
5075 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00005076 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
danielk1977a8bbef82009-03-23 17:11:26 +00005077 db->aDb[iDb].zName, zMaster, pOp->p4.z);
5078 if( zSql==0 ){
5079 rc = SQLITE_NOMEM;
5080 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00005081 assert( db->init.busy==0 );
5082 db->init.busy = 1;
5083 initData.rc = SQLITE_OK;
5084 assert( !db->mallocFailed );
5085 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5086 if( rc==SQLITE_OK ) rc = initData.rc;
5087 sqlite3DbFree(db, zSql);
5088 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00005089 }
drh3c23a882007-01-09 14:01:13 +00005090 }
drh81028a42012-05-15 18:28:27 +00005091 if( rc ) sqlite3ResetAllSchemasOfConnection(db);
danielk1977261919c2005-12-06 12:52:59 +00005092 if( rc==SQLITE_NOMEM ){
danielk1977261919c2005-12-06 12:52:59 +00005093 goto no_mem;
5094 }
drh234c39d2004-07-24 03:30:47 +00005095 break;
5096}
5097
drh8bfdf722009-06-19 14:06:03 +00005098#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00005099/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00005100**
5101** Read the sqlite_stat1 table for database P1 and load the content
5102** of that table into the internal index hash table. This will cause
5103** the analysis to be used when preparing all subsequent queries.
5104*/
drh9cbf3422008-01-17 16:22:13 +00005105case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00005106 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5107 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh497e4462005-07-23 03:18:40 +00005108 break;
5109}
drh8bfdf722009-06-19 14:06:03 +00005110#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00005111
drh98757152008-01-09 23:04:12 +00005112/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005113**
5114** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005115** the table named P4 in database P1. This is called after a table
drh5dad9a32014-07-25 18:37:42 +00005116** is dropped from disk (using the Destroy opcode) in order to keep
5117** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005118** schema consistent with what is on disk.
5119*/
drh9cbf3422008-01-17 16:22:13 +00005120case OP_DropTable: {
danielk19772dca4ac2008-01-03 11:50:29 +00005121 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005122 break;
5123}
5124
drh98757152008-01-09 23:04:12 +00005125/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005126**
5127** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005128** the index named P4 in database P1. This is called after an index
drh5dad9a32014-07-25 18:37:42 +00005129** is dropped from disk (using the Destroy opcode)
5130** in order to keep the internal representation of the
drh956bc922004-07-24 17:38:29 +00005131** schema consistent with what is on disk.
5132*/
drh9cbf3422008-01-17 16:22:13 +00005133case OP_DropIndex: {
danielk19772dca4ac2008-01-03 11:50:29 +00005134 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005135 break;
5136}
5137
drh98757152008-01-09 23:04:12 +00005138/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005139**
5140** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005141** the trigger named P4 in database P1. This is called after a trigger
drh5dad9a32014-07-25 18:37:42 +00005142** is dropped from disk (using the Destroy opcode) in order to keep
5143** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005144** schema consistent with what is on disk.
5145*/
drh9cbf3422008-01-17 16:22:13 +00005146case OP_DropTrigger: {
danielk19772dca4ac2008-01-03 11:50:29 +00005147 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005148 break;
5149}
5150
drh234c39d2004-07-24 03:30:47 +00005151
drhb7f91642004-10-31 02:22:47 +00005152#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98757152008-01-09 23:04:12 +00005153/* Opcode: IntegrityCk P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00005154**
drh98757152008-01-09 23:04:12 +00005155** Do an analysis of the currently open database. Store in
5156** register P1 the text of an error message describing any problems.
5157** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00005158**
drh98757152008-01-09 23:04:12 +00005159** The register P3 contains the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00005160** At most reg(P3) errors will be reported.
5161** In other words, the analysis stops as soon as reg(P1) errors are
5162** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00005163**
drh79069752004-05-22 21:30:40 +00005164** The root page numbers of all tables in the database are integer
drh60a713c2008-01-21 16:22:45 +00005165** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
drh98757152008-01-09 23:04:12 +00005166** total.
drh21504322002-06-25 13:16:02 +00005167**
drh98757152008-01-09 23:04:12 +00005168** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00005169** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00005170**
drh1dcdbc02007-01-27 02:24:54 +00005171** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00005172*/
drhaaab5722002-02-19 13:39:21 +00005173case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00005174 int nRoot; /* Number of tables to check. (Number of root pages.) */
5175 int *aRoot; /* Array of rootpage numbers for tables to be checked */
5176 int j; /* Loop counter */
5177 int nErr; /* Number of errors reported */
5178 char *z; /* Text of the error report */
5179 Mem *pnErr; /* Register keeping track of errors remaining */
drh9e92a472013-06-27 17:40:30 +00005180
drh1713afb2013-06-28 01:24:57 +00005181 assert( p->bIsReader );
drh98757152008-01-09 23:04:12 +00005182 nRoot = pOp->p2;
drh79069752004-05-22 21:30:40 +00005183 assert( nRoot>0 );
drh633e6d52008-07-28 19:34:53 +00005184 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
drhcaec2f12003-01-07 02:47:47 +00005185 if( aRoot==0 ) goto no_mem;
dan3bc9f742013-08-15 16:18:39 +00005186 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005187 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00005188 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00005189 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00005190 pIn1 = &aMem[pOp->p1];
drh79069752004-05-22 21:30:40 +00005191 for(j=0; j<nRoot; j++){
drh9c1905f2008-12-10 22:32:56 +00005192 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
drh1dd397f2002-02-03 03:34:07 +00005193 }
5194 aRoot[j] = 0;
drh98757152008-01-09 23:04:12 +00005195 assert( pOp->p5<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005196 assert( DbMaskTest(p->btreeMask, pOp->p5) );
drh98757152008-01-09 23:04:12 +00005197 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
drh9c1905f2008-12-10 22:32:56 +00005198 (int)pnErr->u.i, &nErr);
drhc890fec2008-08-01 20:10:08 +00005199 sqlite3DbFree(db, aRoot);
drh3c024d62007-03-30 11:23:45 +00005200 pnErr->u.i -= nErr;
drha05a7222008-01-19 03:35:58 +00005201 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00005202 if( nErr==0 ){
5203 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00005204 }else if( z==0 ){
5205 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00005206 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00005207 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00005208 }
drhb7654112008-01-12 12:48:07 +00005209 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00005210 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00005211 break;
5212}
drhb7f91642004-10-31 02:22:47 +00005213#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00005214
drh3d4501e2008-12-04 20:40:10 +00005215/* Opcode: RowSetAdd P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005216** Synopsis: rowset(P1)=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00005217**
drh3d4501e2008-12-04 20:40:10 +00005218** Insert the integer value held by register P2 into a boolean index
5219** held in register P1.
5220**
5221** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00005222*/
drh93952eb2009-11-13 19:43:43 +00005223case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00005224 pIn1 = &aMem[pOp->p1];
5225 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00005226 assert( (pIn2->flags & MEM_Int)!=0 );
5227 if( (pIn1->flags & MEM_RowSet)==0 ){
5228 sqlite3VdbeMemSetRowSet(pIn1);
5229 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00005230 }
drh93952eb2009-11-13 19:43:43 +00005231 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00005232 break;
5233}
5234
5235/* Opcode: RowSetRead P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00005236** Synopsis: r[P3]=rowset(P1)
drh3d4501e2008-12-04 20:40:10 +00005237**
5238** Extract the smallest value from boolean index P1 and put that value into
5239** register P3. Or, if boolean index P1 is initially empty, leave P3
5240** unchanged and jump to instruction P2.
5241*/
drh93952eb2009-11-13 19:43:43 +00005242case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00005243 i64 val;
drh49afe3a2013-07-10 03:05:14 +00005244
drh3c657212009-11-17 23:59:58 +00005245 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00005246 if( (pIn1->flags & MEM_RowSet)==0
5247 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00005248 ){
5249 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00005250 sqlite3VdbeMemSetNull(pIn1);
drh3d4501e2008-12-04 20:40:10 +00005251 pc = pOp->p2 - 1;
drh688852a2014-02-17 22:40:43 +00005252 VdbeBranchTaken(1,2);
drh3d4501e2008-12-04 20:40:10 +00005253 }else{
5254 /* A value was pulled from the index */
drh3c657212009-11-17 23:59:58 +00005255 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh688852a2014-02-17 22:40:43 +00005256 VdbeBranchTaken(0,2);
drh17435752007-08-16 04:30:38 +00005257 }
drh49afe3a2013-07-10 03:05:14 +00005258 goto check_for_interrupt;
drh5e00f6c2001-09-13 13:46:56 +00005259}
5260
drh1b26c7c2009-04-22 02:15:47 +00005261/* Opcode: RowSetTest P1 P2 P3 P4
drh81316f82013-10-29 20:40:47 +00005262** Synopsis: if r[P3] in rowset(P1) goto P2
danielk19771d461462009-04-21 09:02:45 +00005263**
drhade97602009-04-21 15:05:18 +00005264** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00005265** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00005266** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00005267** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00005268** next opcode.
danielk19771d461462009-04-21 09:02:45 +00005269**
drh1b26c7c2009-04-22 02:15:47 +00005270** The RowSet object is optimized for the case where successive sets
danielk19771d461462009-04-21 09:02:45 +00005271** of integers, where each set contains no duplicates. Each set
5272** of values is identified by a unique P4 value. The first set
drh1b26c7c2009-04-22 02:15:47 +00005273** must have P4==0, the final set P4=-1. P4 must be either -1 or
5274** non-negative. For non-negative values of P4 only the lower 4
5275** bits are significant.
danielk19771d461462009-04-21 09:02:45 +00005276**
5277** This allows optimizations: (a) when P4==0 there is no need to test
drh1b26c7c2009-04-22 02:15:47 +00005278** the rowset object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00005279** (b) when P4==-1 there is no need to insert the value, as it will
5280** never be tested for, and (c) when a value that is part of set X is
5281** inserted, there is no need to search to see if the same value was
5282** previously inserted as part of set X (only if it was previously
5283** inserted as part of some other set).
5284*/
drh1b26c7c2009-04-22 02:15:47 +00005285case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00005286 int iSet;
5287 int exists;
5288
drh3c657212009-11-17 23:59:58 +00005289 pIn1 = &aMem[pOp->p1];
5290 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005291 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00005292 assert( pIn3->flags&MEM_Int );
5293
drh1b26c7c2009-04-22 02:15:47 +00005294 /* If there is anything other than a rowset object in memory cell P1,
5295 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00005296 */
drh733bf1b2009-04-22 00:47:00 +00005297 if( (pIn1->flags & MEM_RowSet)==0 ){
5298 sqlite3VdbeMemSetRowSet(pIn1);
5299 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00005300 }
5301
5302 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00005303 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00005304 if( iSet ){
drhd83cad22014-04-10 02:24:48 +00005305 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
drh688852a2014-02-17 22:40:43 +00005306 VdbeBranchTaken(exists!=0,2);
danielk19771d461462009-04-21 09:02:45 +00005307 if( exists ){
5308 pc = pOp->p2 - 1;
5309 break;
5310 }
5311 }
5312 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00005313 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005314 }
5315 break;
5316}
5317
drh5e00f6c2001-09-13 13:46:56 +00005318
danielk197793758c82005-01-21 08:13:14 +00005319#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00005320
drh0fd61352014-02-07 02:29:45 +00005321/* Opcode: Program P1 P2 P3 P4 P5
dan165921a2009-08-28 18:53:45 +00005322**
dan76d462e2009-08-30 11:42:51 +00005323** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00005324**
dan76d462e2009-08-30 11:42:51 +00005325** P1 contains the address of the memory cell that contains the first memory
5326** cell in an array of values used as arguments to the sub-program. P2
5327** contains the address to jump to if the sub-program throws an IGNORE
5328** exception using the RAISE() function. Register P3 contains the address
5329** of a memory cell in this (the parent) VM that is used to allocate the
5330** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00005331**
5332** P4 is a pointer to the VM containing the trigger program.
drh0fd61352014-02-07 02:29:45 +00005333**
5334** If P5 is non-zero, then recursive program invocation is enabled.
dan165921a2009-08-28 18:53:45 +00005335*/
dan76d462e2009-08-30 11:42:51 +00005336case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00005337 int nMem; /* Number of memory registers for sub-program */
5338 int nByte; /* Bytes of runtime space required for sub-program */
5339 Mem *pRt; /* Register to allocate runtime space */
5340 Mem *pMem; /* Used to iterate through memory cells */
5341 Mem *pEnd; /* Last memory cell in new array */
5342 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5343 SubProgram *pProgram; /* Sub-program to execute */
5344 void *t; /* Token identifying trigger */
5345
5346 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00005347 pRt = &aMem[pOp->p3];
dan165921a2009-08-28 18:53:45 +00005348 assert( pProgram->nOp>0 );
5349
dan1da40a32009-09-19 17:00:31 +00005350 /* If the p5 flag is clear, then recursive invocation of triggers is
5351 ** disabled for backwards compatibility (p5 is set if this sub-program
5352 ** is really a trigger, not a foreign key action, and the flag set
5353 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00005354 **
5355 ** It is recursive invocation of triggers, at the SQL level, that is
5356 ** disabled. In some cases a single trigger may generate more than one
5357 ** SubProgram (if the trigger may be executed with more than one different
5358 ** ON CONFLICT algorithm). SubProgram structures associated with a
5359 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00005360 ** variable. */
5361 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00005362 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00005363 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5364 if( pFrame ) break;
5365 }
5366
danf5894502009-10-07 18:41:19 +00005367 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00005368 rc = SQLITE_ERROR;
5369 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
5370 break;
5371 }
5372
5373 /* Register pRt is used to store the memory required to save the state
5374 ** of the current program, and the memory required at runtime to execute
5375 ** the trigger program. If this trigger has been fired before, then pRt
5376 ** is already allocated. Otherwise, it must be initialized. */
5377 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00005378 /* SubProgram.nMem is set to the number of memory cells used by the
5379 ** program stored in SubProgram.aOp. As well as these, one memory
5380 ** cell is required for each cursor used by the program. Set local
5381 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5382 */
dan65a7cd12009-09-01 12:16:01 +00005383 nMem = pProgram->nMem + pProgram->nCsr;
5384 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00005385 + nMem * sizeof(Mem)
dan1d8cb212011-12-09 13:24:16 +00005386 + pProgram->nCsr * sizeof(VdbeCursor *)
5387 + pProgram->nOnce * sizeof(u8);
dan165921a2009-08-28 18:53:45 +00005388 pFrame = sqlite3DbMallocZero(db, nByte);
5389 if( !pFrame ){
5390 goto no_mem;
5391 }
5392 sqlite3VdbeMemRelease(pRt);
5393 pRt->flags = MEM_Frame;
5394 pRt->u.pFrame = pFrame;
5395
5396 pFrame->v = p;
5397 pFrame->nChildMem = nMem;
5398 pFrame->nChildCsr = pProgram->nCsr;
5399 pFrame->pc = pc;
5400 pFrame->aMem = p->aMem;
5401 pFrame->nMem = p->nMem;
5402 pFrame->apCsr = p->apCsr;
5403 pFrame->nCursor = p->nCursor;
5404 pFrame->aOp = p->aOp;
5405 pFrame->nOp = p->nOp;
5406 pFrame->token = pProgram->token;
dan1d8cb212011-12-09 13:24:16 +00005407 pFrame->aOnceFlag = p->aOnceFlag;
5408 pFrame->nOnceFlag = p->nOnceFlag;
dan165921a2009-08-28 18:53:45 +00005409
5410 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5411 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
drha5750cf2014-02-07 13:20:31 +00005412 pMem->flags = MEM_Undefined;
dan165921a2009-08-28 18:53:45 +00005413 pMem->db = db;
5414 }
5415 }else{
5416 pFrame = pRt->u.pFrame;
5417 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5418 assert( pProgram->nCsr==pFrame->nChildCsr );
5419 assert( pc==pFrame->pc );
5420 }
5421
5422 p->nFrame++;
5423 pFrame->pParent = p->pFrame;
drh99a66922011-05-13 18:51:42 +00005424 pFrame->lastRowid = lastRowid;
dan76d462e2009-08-30 11:42:51 +00005425 pFrame->nChange = p->nChange;
dan2832ad42009-08-31 15:27:27 +00005426 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00005427 p->pFrame = pFrame;
drha6c2ed92009-11-14 23:22:23 +00005428 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
dan165921a2009-08-28 18:53:45 +00005429 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00005430 p->nCursor = (u16)pFrame->nChildCsr;
drha6c2ed92009-11-14 23:22:23 +00005431 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
drhbbe879d2009-11-14 18:04:35 +00005432 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00005433 p->nOp = pProgram->nOp;
dan1d8cb212011-12-09 13:24:16 +00005434 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5435 p->nOnceFlag = pProgram->nOnce;
dan165921a2009-08-28 18:53:45 +00005436 pc = -1;
dan1d8cb212011-12-09 13:24:16 +00005437 memset(p->aOnceFlag, 0, p->nOnceFlag);
dan165921a2009-08-28 18:53:45 +00005438
5439 break;
5440}
5441
dan76d462e2009-08-30 11:42:51 +00005442/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00005443**
dan76d462e2009-08-30 11:42:51 +00005444** This opcode is only ever present in sub-programs called via the
5445** OP_Program instruction. Copy a value currently stored in a memory
5446** cell of the calling (parent) frame to cell P2 in the current frames
5447** address space. This is used by trigger programs to access the new.*
5448** and old.* values.
dan165921a2009-08-28 18:53:45 +00005449**
dan76d462e2009-08-30 11:42:51 +00005450** The address of the cell in the parent frame is determined by adding
5451** the value of the P1 argument to the value of the P1 argument to the
5452** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00005453*/
dan76d462e2009-08-30 11:42:51 +00005454case OP_Param: { /* out2-prerelease */
dan65a7cd12009-09-01 12:16:01 +00005455 VdbeFrame *pFrame;
5456 Mem *pIn;
5457 pFrame = p->pFrame;
5458 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00005459 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5460 break;
5461}
5462
danielk197793758c82005-01-21 08:13:14 +00005463#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00005464
dan1da40a32009-09-19 17:00:31 +00005465#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00005466/* Opcode: FkCounter P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005467** Synopsis: fkctr[P1]+=P2
dan1da40a32009-09-19 17:00:31 +00005468**
dan0ff297e2009-09-25 17:03:14 +00005469** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5470** If P1 is non-zero, the database constraint counter is incremented
5471** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00005472** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00005473*/
dan32b09f22009-09-23 17:29:59 +00005474case OP_FkCounter: {
drh648e2642013-07-11 15:03:32 +00005475 if( db->flags & SQLITE_DeferFKs ){
5476 db->nDeferredImmCons += pOp->p2;
5477 }else if( pOp->p1 ){
dan0ff297e2009-09-25 17:03:14 +00005478 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00005479 }else{
dan0ff297e2009-09-25 17:03:14 +00005480 p->nFkConstraint += pOp->p2;
5481 }
5482 break;
5483}
5484
5485/* Opcode: FkIfZero P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005486** Synopsis: if fkctr[P1]==0 goto P2
dan0ff297e2009-09-25 17:03:14 +00005487**
5488** This opcode tests if a foreign key constraint-counter is currently zero.
5489** If so, jump to instruction P2. Otherwise, fall through to the next
5490** instruction.
5491**
5492** If P1 is non-zero, then the jump is taken if the database constraint-counter
5493** is zero (the one that counts deferred constraint violations). If P1 is
5494** zero, the jump is taken if the statement constraint-counter is zero
5495** (immediate foreign key constraint violations).
5496*/
5497case OP_FkIfZero: { /* jump */
5498 if( pOp->p1 ){
drh688852a2014-02-17 22:40:43 +00005499 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
drh648e2642013-07-11 15:03:32 +00005500 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
dan0ff297e2009-09-25 17:03:14 +00005501 }else{
drh688852a2014-02-17 22:40:43 +00005502 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
drh648e2642013-07-11 15:03:32 +00005503 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
dan32b09f22009-09-23 17:29:59 +00005504 }
dan1da40a32009-09-19 17:00:31 +00005505 break;
5506}
5507#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5508
drh205f48e2004-11-05 00:43:11 +00005509#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00005510/* Opcode: MemMax P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005511** Synopsis: r[P1]=max(r[P1],r[P2])
drh205f48e2004-11-05 00:43:11 +00005512**
dan76d462e2009-08-30 11:42:51 +00005513** P1 is a register in the root frame of this VM (the root frame is
5514** different from the current frame if this instruction is being executed
5515** within a sub-program). Set the value of register P1 to the maximum of
5516** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00005517**
5518** This instruction throws an error if the memory cell is not initially
5519** an integer.
5520*/
dan76d462e2009-08-30 11:42:51 +00005521case OP_MemMax: { /* in2 */
dan76d462e2009-08-30 11:42:51 +00005522 VdbeFrame *pFrame;
5523 if( p->pFrame ){
5524 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5525 pIn1 = &pFrame->aMem[pOp->p1];
5526 }else{
drha6c2ed92009-11-14 23:22:23 +00005527 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00005528 }
drhec86c722011-12-09 17:27:51 +00005529 assert( memIsValid(pIn1) );
drh98757152008-01-09 23:04:12 +00005530 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00005531 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00005532 sqlite3VdbeMemIntegerify(pIn2);
5533 if( pIn1->u.i<pIn2->u.i){
5534 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00005535 }
5536 break;
5537}
5538#endif /* SQLITE_OMIT_AUTOINCREMENT */
5539
drh98757152008-01-09 23:04:12 +00005540/* Opcode: IfPos P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005541** Synopsis: if r[P1]>0 goto P2
danielk1977a2dc3b12005-02-05 12:48:48 +00005542**
drh98757152008-01-09 23:04:12 +00005543** If the value of register P1 is 1 or greater, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005544**
drh98757152008-01-09 23:04:12 +00005545** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005546** not contain an integer. An assertion fault will result if you try.
danielk1977a2dc3b12005-02-05 12:48:48 +00005547*/
drh9cbf3422008-01-17 16:22:13 +00005548case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005549 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005550 assert( pIn1->flags&MEM_Int );
drh688852a2014-02-17 22:40:43 +00005551 VdbeBranchTaken( pIn1->u.i>0, 2);
drh3c84ddf2008-01-09 02:15:38 +00005552 if( pIn1->u.i>0 ){
drhec7429a2005-10-06 16:53:14 +00005553 pc = pOp->p2 - 1;
5554 }
5555 break;
5556}
5557
drh4336b0e2014-08-05 00:53:51 +00005558/* Opcode: IfNeg P1 P2 P3 * *
5559** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2
drh15007a92006-01-08 18:10:17 +00005560**
drhbc5cf382014-08-06 01:08:07 +00005561** Register P1 must contain an integer. Add literal P3 to the value in
drh4336b0e2014-08-05 00:53:51 +00005562** register P1 then if the value of register P1 is less than zero, jump to P2.
drh15007a92006-01-08 18:10:17 +00005563*/
drh9cbf3422008-01-17 16:22:13 +00005564case OP_IfNeg: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005565 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005566 assert( pIn1->flags&MEM_Int );
drh4336b0e2014-08-05 00:53:51 +00005567 pIn1->u.i += pOp->p3;
drh688852a2014-02-17 22:40:43 +00005568 VdbeBranchTaken(pIn1->u.i<0, 2);
drh3c84ddf2008-01-09 02:15:38 +00005569 if( pIn1->u.i<0 ){
drh15007a92006-01-08 18:10:17 +00005570 pc = pOp->p2 - 1;
5571 }
5572 break;
5573}
5574
drh9b918ed2009-11-12 03:13:26 +00005575/* Opcode: IfZero P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00005576** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2
drhec7429a2005-10-06 16:53:14 +00005577**
drh9b918ed2009-11-12 03:13:26 +00005578** The register P1 must contain an integer. Add literal P3 to the
5579** value in register P1. If the result is exactly 0, jump to P2.
drhec7429a2005-10-06 16:53:14 +00005580*/
drh9cbf3422008-01-17 16:22:13 +00005581case OP_IfZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005582 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005583 assert( pIn1->flags&MEM_Int );
drh9b918ed2009-11-12 03:13:26 +00005584 pIn1->u.i += pOp->p3;
drh688852a2014-02-17 22:40:43 +00005585 VdbeBranchTaken(pIn1->u.i==0, 2);
drh3c84ddf2008-01-09 02:15:38 +00005586 if( pIn1->u.i==0 ){
drha2a49dc2008-01-02 14:28:13 +00005587 pc = pOp->p2 - 1;
5588 }
5589 break;
5590}
5591
drh98757152008-01-09 23:04:12 +00005592/* Opcode: AggStep * P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005593** Synopsis: accum=r[P3] step(r[P2@P5])
drhe5095352002-02-24 03:25:14 +00005594**
drh0bce8352002-02-28 00:41:10 +00005595** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00005596** function has P5 arguments. P4 is a pointer to the FuncDef
5597** structure that specifies the function. Use register
5598** P3 as the accumulator.
drhe5095352002-02-24 03:25:14 +00005599**
drh98757152008-01-09 23:04:12 +00005600** The P5 arguments are taken from register P2 and its
5601** successors.
drhe5095352002-02-24 03:25:14 +00005602*/
drh9cbf3422008-01-17 16:22:13 +00005603case OP_AggStep: {
drh856c1032009-06-02 15:21:42 +00005604 int n;
drhe5095352002-02-24 03:25:14 +00005605 int i;
drhc54a6172009-06-02 16:06:03 +00005606 Mem *pMem;
5607 Mem *pRec;
drh9bd038f2014-08-27 14:14:06 +00005608 Mem t;
danielk197722322fd2004-05-25 23:35:17 +00005609 sqlite3_context ctx;
danielk19776ddcca52004-05-24 23:48:25 +00005610 sqlite3_value **apVal;
drhe5095352002-02-24 03:25:14 +00005611
drh856c1032009-06-02 15:21:42 +00005612 n = pOp->p5;
drh6810ce62004-01-31 19:22:56 +00005613 assert( n>=0 );
drha6c2ed92009-11-14 23:22:23 +00005614 pRec = &aMem[pOp->p2];
danielk19776ddcca52004-05-24 23:48:25 +00005615 apVal = p->apArg;
5616 assert( apVal || n==0 );
drh6810ce62004-01-31 19:22:56 +00005617 for(i=0; i<n; i++, pRec++){
drh2b4ded92010-09-27 21:09:31 +00005618 assert( memIsValid(pRec) );
danielk1977c572ef72004-05-27 09:28:41 +00005619 apVal[i] = pRec;
drh2b4ded92010-09-27 21:09:31 +00005620 memAboutToChange(p, pRec);
drhe5095352002-02-24 03:25:14 +00005621 }
danielk19772dca4ac2008-01-03 11:50:29 +00005622 ctx.pFunc = pOp->p4.pFunc;
dan3bc9f742013-08-15 16:18:39 +00005623 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005624 ctx.pMem = pMem = &aMem[pOp->p3];
drhabfcea22005-09-06 20:36:48 +00005625 pMem->n++;
drhd3b74202014-09-17 16:41:15 +00005626 sqlite3VdbeMemInit(&t, db, MEM_Null);
drh9bd038f2014-08-27 14:14:06 +00005627 ctx.pOut = &t;
drh1350b032002-02-27 19:00:20 +00005628 ctx.isError = 0;
drha15cc472014-09-25 13:17:30 +00005629 ctx.pVdbe = p;
5630 ctx.iOp = pc;
drh7a957892012-02-02 17:35:43 +00005631 ctx.skipFlag = 0;
drhee9ff672010-09-03 18:50:48 +00005632 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh1350b032002-02-27 19:00:20 +00005633 if( ctx.isError ){
drh9bd038f2014-08-27 14:14:06 +00005634 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&t));
drh69544ec2008-02-06 14:11:34 +00005635 rc = ctx.isError;
drh1350b032002-02-27 19:00:20 +00005636 }
drh7a957892012-02-02 17:35:43 +00005637 if( ctx.skipFlag ){
5638 assert( pOp[-1].opcode==OP_CollSeq );
5639 i = pOp[-1].p1;
5640 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5641 }
drh9bd038f2014-08-27 14:14:06 +00005642 sqlite3VdbeMemRelease(&t);
drh5e00f6c2001-09-13 13:46:56 +00005643 break;
5644}
5645
drh98757152008-01-09 23:04:12 +00005646/* Opcode: AggFinal P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00005647** Synopsis: accum=r[P1] N=P2
drh5e00f6c2001-09-13 13:46:56 +00005648**
drh13449892005-09-07 21:22:45 +00005649** Execute the finalizer function for an aggregate. P1 is
5650** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00005651**
5652** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00005653** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00005654** argument is not used by this opcode. It is only there to disambiguate
5655** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00005656** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00005657** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00005658*/
drh9cbf3422008-01-17 16:22:13 +00005659case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00005660 Mem *pMem;
dan3bc9f742013-08-15 16:18:39 +00005661 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005662 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00005663 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00005664 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00005665 if( rc ){
drhf089aa42008-07-08 19:34:06 +00005666 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
drh90669c12006-01-20 15:45:36 +00005667 }
drh2dca8682008-03-21 17:13:13 +00005668 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00005669 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00005670 if( sqlite3VdbeMemTooBig(pMem) ){
5671 goto too_big;
5672 }
drh5e00f6c2001-09-13 13:46:56 +00005673 break;
5674}
5675
dan5cf53532010-05-01 16:40:20 +00005676#ifndef SQLITE_OMIT_WAL
dancdc1f042010-11-18 12:11:05 +00005677/* Opcode: Checkpoint P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00005678**
5679** Checkpoint database P1. This is a no-op if P1 is not currently in
dancdc1f042010-11-18 12:11:05 +00005680** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
drh30aa3b92011-02-07 23:56:01 +00005681** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
5682** SQLITE_BUSY or not, respectively. Write the number of pages in the
5683** WAL after the checkpoint into mem[P3+1] and the number of pages
5684** in the WAL that have been checkpointed after the checkpoint
5685** completes into mem[P3+2]. However on an error, mem[P3+1] and
5686** mem[P3+2] are initialized to -1.
dan7c246102010-04-12 19:00:29 +00005687*/
5688case OP_Checkpoint: {
drh30aa3b92011-02-07 23:56:01 +00005689 int i; /* Loop counter */
5690 int aRes[3]; /* Results */
5691 Mem *pMem; /* Write results here */
5692
drh9e92a472013-06-27 17:40:30 +00005693 assert( p->readOnly==0 );
drh30aa3b92011-02-07 23:56:01 +00005694 aRes[0] = 0;
5695 aRes[1] = aRes[2] = -1;
dancdc1f042010-11-18 12:11:05 +00005696 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5697 || pOp->p2==SQLITE_CHECKPOINT_FULL
5698 || pOp->p2==SQLITE_CHECKPOINT_RESTART
5699 );
drh30aa3b92011-02-07 23:56:01 +00005700 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
dancdc1f042010-11-18 12:11:05 +00005701 if( rc==SQLITE_BUSY ){
5702 rc = SQLITE_OK;
drh30aa3b92011-02-07 23:56:01 +00005703 aRes[0] = 1;
dancdc1f042010-11-18 12:11:05 +00005704 }
drh30aa3b92011-02-07 23:56:01 +00005705 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5706 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5707 }
dan7c246102010-04-12 19:00:29 +00005708 break;
5709};
dan5cf53532010-05-01 16:40:20 +00005710#endif
drh5e00f6c2001-09-13 13:46:56 +00005711
drhcac29a62010-07-02 19:36:52 +00005712#ifndef SQLITE_OMIT_PRAGMA
drh0fd61352014-02-07 02:29:45 +00005713/* Opcode: JournalMode P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00005714**
5715** Change the journal mode of database P1 to P3. P3 must be one of the
5716** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5717** modes (delete, truncate, persist, off and memory), this is a simple
5718** operation. No IO is required.
5719**
5720** If changing into or out of WAL mode the procedure is more complicated.
5721**
5722** Write a string containing the final journal-mode to register P2.
5723*/
drhd80b2332010-05-01 00:59:37 +00005724case OP_JournalMode: { /* out2-prerelease */
dane04dc882010-04-20 18:53:15 +00005725 Btree *pBt; /* Btree to change journal mode of */
5726 Pager *pPager; /* Pager associated with pBt */
drhd80b2332010-05-01 00:59:37 +00005727 int eNew; /* New journal mode */
5728 int eOld; /* The old journal mode */
mistachkin59ee77c2012-09-13 15:26:44 +00005729#ifndef SQLITE_OMIT_WAL
drhd80b2332010-05-01 00:59:37 +00005730 const char *zFilename; /* Name of database file for pPager */
mistachkin59ee77c2012-09-13 15:26:44 +00005731#endif
dane04dc882010-04-20 18:53:15 +00005732
drhd80b2332010-05-01 00:59:37 +00005733 eNew = pOp->p3;
dane04dc882010-04-20 18:53:15 +00005734 assert( eNew==PAGER_JOURNALMODE_DELETE
5735 || eNew==PAGER_JOURNALMODE_TRUNCATE
5736 || eNew==PAGER_JOURNALMODE_PERSIST
5737 || eNew==PAGER_JOURNALMODE_OFF
5738 || eNew==PAGER_JOURNALMODE_MEMORY
5739 || eNew==PAGER_JOURNALMODE_WAL
5740 || eNew==PAGER_JOURNALMODE_QUERY
5741 );
5742 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drh9e92a472013-06-27 17:40:30 +00005743 assert( p->readOnly==0 );
drh3ebaee92010-05-06 21:37:22 +00005744
dane04dc882010-04-20 18:53:15 +00005745 pBt = db->aDb[pOp->p1].pBt;
5746 pPager = sqlite3BtreePager(pBt);
drh0b9b4302010-06-11 17:01:24 +00005747 eOld = sqlite3PagerGetJournalMode(pPager);
5748 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5749 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
dan5cf53532010-05-01 16:40:20 +00005750
5751#ifndef SQLITE_OMIT_WAL
drhd4e0bb02012-05-27 01:19:04 +00005752 zFilename = sqlite3PagerFilename(pPager, 1);
dane04dc882010-04-20 18:53:15 +00005753
drhd80b2332010-05-01 00:59:37 +00005754 /* Do not allow a transition to journal_mode=WAL for a database
drh6e1f4822010-07-13 23:41:40 +00005755 ** in temporary storage or if the VFS does not support shared memory
drhd80b2332010-05-01 00:59:37 +00005756 */
5757 if( eNew==PAGER_JOURNALMODE_WAL
drh057fc812011-10-17 23:15:31 +00005758 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
drh6e1f4822010-07-13 23:41:40 +00005759 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
dane180c292010-04-26 17:42:56 +00005760 ){
drh0b9b4302010-06-11 17:01:24 +00005761 eNew = eOld;
dane180c292010-04-26 17:42:56 +00005762 }
5763
drh0b9b4302010-06-11 17:01:24 +00005764 if( (eNew!=eOld)
5765 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5766 ){
danc0537fe2013-06-28 19:41:43 +00005767 if( !db->autoCommit || db->nVdbeRead>1 ){
drh0b9b4302010-06-11 17:01:24 +00005768 rc = SQLITE_ERROR;
5769 sqlite3SetString(&p->zErrMsg, db,
5770 "cannot change %s wal mode from within a transaction",
5771 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5772 );
5773 break;
5774 }else{
5775
5776 if( eOld==PAGER_JOURNALMODE_WAL ){
5777 /* If leaving WAL mode, close the log file. If successful, the call
5778 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5779 ** file. An EXCLUSIVE lock may still be held on the database file
5780 ** after a successful return.
dane04dc882010-04-20 18:53:15 +00005781 */
drh0b9b4302010-06-11 17:01:24 +00005782 rc = sqlite3PagerCloseWal(pPager);
drhab9b7442010-05-10 11:20:05 +00005783 if( rc==SQLITE_OK ){
drh0b9b4302010-06-11 17:01:24 +00005784 sqlite3PagerSetJournalMode(pPager, eNew);
drh89c3f2f2010-05-15 01:09:38 +00005785 }
drh242c4f72010-06-22 14:49:39 +00005786 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5787 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5788 ** as an intermediate */
5789 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
drh0b9b4302010-06-11 17:01:24 +00005790 }
5791
5792 /* Open a transaction on the database file. Regardless of the journal
5793 ** mode, this transaction always uses a rollback journal.
5794 */
5795 assert( sqlite3BtreeIsInTrans(pBt)==0 );
5796 if( rc==SQLITE_OK ){
dan731bf5b2010-06-17 16:44:21 +00005797 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
dane04dc882010-04-20 18:53:15 +00005798 }
5799 }
5800 }
dan5cf53532010-05-01 16:40:20 +00005801#endif /* ifndef SQLITE_OMIT_WAL */
dane04dc882010-04-20 18:53:15 +00005802
dand956efe2010-06-18 16:13:45 +00005803 if( rc ){
dand956efe2010-06-18 16:13:45 +00005804 eNew = eOld;
5805 }
drh0b9b4302010-06-11 17:01:24 +00005806 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
dan731bf5b2010-06-17 16:44:21 +00005807
dane04dc882010-04-20 18:53:15 +00005808 pOut = &aMem[pOp->p2];
5809 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
danb9780022010-04-21 18:37:57 +00005810 pOut->z = (char *)sqlite3JournalModename(eNew);
dane04dc882010-04-20 18:53:15 +00005811 pOut->n = sqlite3Strlen30(pOut->z);
5812 pOut->enc = SQLITE_UTF8;
5813 sqlite3VdbeChangeEncoding(pOut, encoding);
5814 break;
drhcac29a62010-07-02 19:36:52 +00005815};
5816#endif /* SQLITE_OMIT_PRAGMA */
dane04dc882010-04-20 18:53:15 +00005817
drhfdbcdee2007-03-27 14:44:50 +00005818#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh98757152008-01-09 23:04:12 +00005819/* Opcode: Vacuum * * * * *
drh6f8c91c2003-12-07 00:24:35 +00005820**
5821** Vacuum the entire database. This opcode will cause other virtual
5822** machines to be created and run. It may not be called from within
5823** a transaction.
5824*/
drh9cbf3422008-01-17 16:22:13 +00005825case OP_Vacuum: {
drh9e92a472013-06-27 17:40:30 +00005826 assert( p->readOnly==0 );
danielk19774adee202004-05-08 08:23:19 +00005827 rc = sqlite3RunVacuum(&p->zErrMsg, db);
drh6f8c91c2003-12-07 00:24:35 +00005828 break;
5829}
drh154d4b22006-09-21 11:02:16 +00005830#endif
drh6f8c91c2003-12-07 00:24:35 +00005831
danielk1977dddbcdc2007-04-26 14:42:34 +00005832#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00005833/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00005834**
5835** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00005836** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00005837** P2. Otherwise, fall through to the next instruction.
5838*/
drh9cbf3422008-01-17 16:22:13 +00005839case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00005840 Btree *pBt;
5841
5842 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005843 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00005844 assert( p->readOnly==0 );
drhca5557f2007-05-04 18:30:40 +00005845 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00005846 rc = sqlite3BtreeIncrVacuum(pBt);
drh688852a2014-02-17 22:40:43 +00005847 VdbeBranchTaken(rc==SQLITE_DONE,2);
danielk1977dddbcdc2007-04-26 14:42:34 +00005848 if( rc==SQLITE_DONE ){
5849 pc = pOp->p2 - 1;
5850 rc = SQLITE_OK;
5851 }
5852 break;
5853}
5854#endif
5855
drh98757152008-01-09 23:04:12 +00005856/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00005857**
drh25df48d2014-07-22 14:58:12 +00005858** Cause precompiled statements to expire. When an expired statement
5859** is executed using sqlite3_step() it will either automatically
5860** reprepare itself (if it was originally created using sqlite3_prepare_v2())
5861** or it will fail with SQLITE_SCHEMA.
danielk1977a21c6b62005-01-24 10:25:59 +00005862**
5863** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
drh25df48d2014-07-22 14:58:12 +00005864** then only the currently executing statement is expired.
danielk1977a21c6b62005-01-24 10:25:59 +00005865*/
drh9cbf3422008-01-17 16:22:13 +00005866case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00005867 if( !pOp->p1 ){
5868 sqlite3ExpirePreparedStatements(db);
5869 }else{
5870 p->expired = 1;
5871 }
5872 break;
5873}
5874
danielk1977c00da102006-01-07 13:21:04 +00005875#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00005876/* Opcode: TableLock P1 P2 P3 P4 *
drh81316f82013-10-29 20:40:47 +00005877** Synopsis: iDb=P1 root=P2 write=P3
danielk1977c00da102006-01-07 13:21:04 +00005878**
5879** Obtain a lock on a particular table. This instruction is only used when
5880** the shared-cache feature is enabled.
5881**
danielk197796d48e92009-06-29 06:00:37 +00005882** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00005883** on which the lock is acquired. A readlock is obtained if P3==0 or
5884** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00005885**
5886** P2 contains the root-page of the table to lock.
5887**
drh66a51672008-01-03 00:01:23 +00005888** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00005889** used to generate an error message if the lock cannot be obtained.
5890*/
drh9cbf3422008-01-17 16:22:13 +00005891case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00005892 u8 isWriteLock = (u8)pOp->p3;
5893 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5894 int p1 = pOp->p1;
5895 assert( p1>=0 && p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005896 assert( DbMaskTest(p->btreeMask, p1) );
danielk1977e0d9e6f2009-07-03 16:25:06 +00005897 assert( isWriteLock==0 || isWriteLock==1 );
5898 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5899 if( (rc&0xFF)==SQLITE_LOCKED ){
5900 const char *z = pOp->p4.z;
5901 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
5902 }
danielk1977c00da102006-01-07 13:21:04 +00005903 }
5904 break;
5905}
drhb9bb7c12006-06-11 23:41:55 +00005906#endif /* SQLITE_OMIT_SHARED_CACHE */
5907
5908#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005909/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005910**
danielk19773e3a84d2008-08-01 17:37:40 +00005911** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5912** xBegin method for that table.
5913**
5914** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00005915** within a callback to a virtual table xSync() method. If it is, the error
5916** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00005917*/
drh9cbf3422008-01-17 16:22:13 +00005918case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00005919 VTable *pVTab;
5920 pVTab = pOp->p4.pVtab;
5921 rc = sqlite3VtabBegin(db, pVTab);
dan016f7812013-08-21 17:35:48 +00005922 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
danielk1977f9e7dda2006-06-16 16:08:53 +00005923 break;
5924}
5925#endif /* SQLITE_OMIT_VIRTUALTABLE */
5926
5927#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005928/* Opcode: VCreate P1 * * P4 *
danielk1977f9e7dda2006-06-16 16:08:53 +00005929**
drh66a51672008-01-03 00:01:23 +00005930** P4 is the name of a virtual table in database P1. Call the xCreate method
danielk1977f9e7dda2006-06-16 16:08:53 +00005931** for that table.
5932*/
drh9cbf3422008-01-17 16:22:13 +00005933case OP_VCreate: {
danielk19772dca4ac2008-01-03 11:50:29 +00005934 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
drhb9bb7c12006-06-11 23:41:55 +00005935 break;
5936}
5937#endif /* SQLITE_OMIT_VIRTUALTABLE */
5938
5939#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005940/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005941**
drh66a51672008-01-03 00:01:23 +00005942** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00005943** of that table.
drhb9bb7c12006-06-11 23:41:55 +00005944*/
drh9cbf3422008-01-17 16:22:13 +00005945case OP_VDestroy: {
danielk1977212b2182006-06-23 14:32:08 +00005946 p->inVtabMethod = 2;
danielk19772dca4ac2008-01-03 11:50:29 +00005947 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
danielk1977212b2182006-06-23 14:32:08 +00005948 p->inVtabMethod = 0;
drhb9bb7c12006-06-11 23:41:55 +00005949 break;
5950}
5951#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00005952
drh9eff6162006-06-12 21:59:13 +00005953#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005954/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00005955**
drh66a51672008-01-03 00:01:23 +00005956** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00005957** P1 is a cursor number. This opcode opens a cursor to the virtual
5958** table and stores that cursor in P1.
5959*/
drh9cbf3422008-01-17 16:22:13 +00005960case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00005961 VdbeCursor *pCur;
5962 sqlite3_vtab_cursor *pVtabCursor;
5963 sqlite3_vtab *pVtab;
5964 sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005965
drh1713afb2013-06-28 01:24:57 +00005966 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00005967 pCur = 0;
5968 pVtabCursor = 0;
danielk1977595a5232009-07-24 17:58:53 +00005969 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00005970 pModule = (sqlite3_module *)pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005971 assert(pVtab && pModule);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005972 rc = pModule->xOpen(pVtab, &pVtabCursor);
dan016f7812013-08-21 17:35:48 +00005973 sqlite3VtabImportErrmsg(p, pVtab);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005974 if( SQLITE_OK==rc ){
shane21e7feb2008-05-30 15:59:49 +00005975 /* Initialize sqlite3_vtab_cursor base class */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005976 pVtabCursor->pVtab = pVtab;
5977
mistachkin48864df2013-03-21 21:20:32 +00005978 /* Initialize vdbe cursor object */
danielk1977d336e222009-02-20 10:58:41 +00005979 pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
danielk1977be718892006-06-23 08:05:19 +00005980 if( pCur ){
5981 pCur->pVtabCursor = pVtabCursor;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005982 }else{
drh17435752007-08-16 04:30:38 +00005983 db->mallocFailed = 1;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005984 pModule->xClose(pVtabCursor);
danielk1977be718892006-06-23 08:05:19 +00005985 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005986 }
drh9eff6162006-06-12 21:59:13 +00005987 break;
5988}
5989#endif /* SQLITE_OMIT_VIRTUALTABLE */
5990
5991#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00005992/* Opcode: VFilter P1 P2 P3 P4 *
drh831116d2014-04-03 14:31:00 +00005993** Synopsis: iplan=r[P3] zplan='P4'
drh9eff6162006-06-12 21:59:13 +00005994**
5995** P1 is a cursor opened using VOpen. P2 is an address to jump to if
5996** the filtered result set is empty.
5997**
drh66a51672008-01-03 00:01:23 +00005998** P4 is either NULL or a string that was generated by the xBestIndex
5999** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00006000** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00006001**
drh9eff6162006-06-12 21:59:13 +00006002** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00006003** by P1. The integer query plan parameter to xFilter is stored in register
6004** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00006005** xFilter method. Registers P3+2..P3+1+argc are the argc
6006** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00006007** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00006008**
danielk19776dbee812008-01-03 18:39:41 +00006009** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00006010*/
drh9cbf3422008-01-17 16:22:13 +00006011case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00006012 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00006013 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006014 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00006015 Mem *pQuery;
6016 Mem *pArgc;
drh4dc754d2008-07-23 18:17:32 +00006017 sqlite3_vtab_cursor *pVtabCursor;
6018 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00006019 VdbeCursor *pCur;
6020 int res;
6021 int i;
6022 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006023
drha6c2ed92009-11-14 23:22:23 +00006024 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00006025 pArgc = &pQuery[1];
6026 pCur = p->apCsr[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00006027 assert( memIsValid(pQuery) );
drh5b6afba2008-01-05 16:29:28 +00006028 REGISTER_TRACE(pOp->p3, pQuery);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006029 assert( pCur->pVtabCursor );
drh4dc754d2008-07-23 18:17:32 +00006030 pVtabCursor = pCur->pVtabCursor;
6031 pVtab = pVtabCursor->pVtab;
6032 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006033
drh9cbf3422008-01-17 16:22:13 +00006034 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00006035 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00006036 nArg = (int)pArgc->u.i;
6037 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006038
drh644a5292006-12-20 14:53:38 +00006039 /* Invoke the xFilter method */
6040 {
drh856c1032009-06-02 15:21:42 +00006041 res = 0;
6042 apArg = p->apArg;
drh4be8b512006-06-13 23:51:34 +00006043 for(i = 0; i<nArg; i++){
danielk19776dbee812008-01-03 18:39:41 +00006044 apArg[i] = &pArgc[i+1];
danielk19775fac9f82006-06-13 14:16:58 +00006045 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00006046
danielk1977be718892006-06-23 08:05:19 +00006047 p->inVtabMethod = 1;
drh4dc754d2008-07-23 18:17:32 +00006048 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
danielk1977be718892006-06-23 08:05:19 +00006049 p->inVtabMethod = 0;
dan016f7812013-08-21 17:35:48 +00006050 sqlite3VtabImportErrmsg(p, pVtab);
danielk1977a298e902006-06-22 09:53:48 +00006051 if( rc==SQLITE_OK ){
drh4dc754d2008-07-23 18:17:32 +00006052 res = pModule->xEof(pVtabCursor);
danielk1977a298e902006-06-22 09:53:48 +00006053 }
drh688852a2014-02-17 22:40:43 +00006054 VdbeBranchTaken(res!=0,2);
danielk1977a298e902006-06-22 09:53:48 +00006055 if( res ){
danielk1977b7a7b9a2006-06-13 10:24:42 +00006056 pc = pOp->p2 - 1;
6057 }
6058 }
drh1d454a32008-01-31 19:34:51 +00006059 pCur->nullRow = 0;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006060
drh9eff6162006-06-12 21:59:13 +00006061 break;
6062}
6063#endif /* SQLITE_OMIT_VIRTUALTABLE */
6064
6065#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006066/* Opcode: VColumn P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00006067** Synopsis: r[P3]=vcolumn(P2)
drh9eff6162006-06-12 21:59:13 +00006068**
drh2133d822008-01-03 18:44:59 +00006069** Store the value of the P2-th column of
6070** the row of the virtual-table that the
6071** P1 cursor is pointing to into register P3.
drh9eff6162006-06-12 21:59:13 +00006072*/
6073case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00006074 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006075 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00006076 Mem *pDest;
6077 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006078
drhdfe88ec2008-11-03 20:55:06 +00006079 VdbeCursor *pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00006080 assert( pCur->pVtabCursor );
dan3bc9f742013-08-15 16:18:39 +00006081 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00006082 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00006083 memAboutToChange(p, pDest);
drh2945b4a2008-01-31 15:53:45 +00006084 if( pCur->nullRow ){
6085 sqlite3VdbeMemSetNull(pDest);
6086 break;
6087 }
danielk19773e3a84d2008-08-01 17:37:40 +00006088 pVtab = pCur->pVtabCursor->pVtab;
6089 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006090 assert( pModule->xColumn );
6091 memset(&sContext, 0, sizeof(sContext));
drh9bd038f2014-08-27 14:14:06 +00006092 sContext.pOut = pDest;
6093 MemSetTypeFlag(pDest, MEM_Null);
drhde4fcfd2008-01-19 23:50:26 +00006094 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
dan016f7812013-08-21 17:35:48 +00006095 sqlite3VtabImportErrmsg(p, pVtab);
drh4c8555f2009-06-25 01:47:11 +00006096 if( sContext.isError ){
6097 rc = sContext.isError;
6098 }
drh9bd038f2014-08-27 14:14:06 +00006099 sqlite3VdbeChangeEncoding(pDest, encoding);
drh5ff44372009-11-24 16:26:17 +00006100 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00006101 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006102
drhde4fcfd2008-01-19 23:50:26 +00006103 if( sqlite3VdbeMemTooBig(pDest) ){
6104 goto too_big;
6105 }
drh9eff6162006-06-12 21:59:13 +00006106 break;
6107}
6108#endif /* SQLITE_OMIT_VIRTUALTABLE */
6109
6110#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006111/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00006112**
6113** Advance virtual table P1 to the next row in its result set and
6114** jump to instruction P2. Or, if the virtual table has reached
6115** the end of its result set, then fall through to the next instruction.
6116*/
drh9cbf3422008-01-17 16:22:13 +00006117case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00006118 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006119 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00006120 int res;
drh856c1032009-06-02 15:21:42 +00006121 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006122
drhc54a6172009-06-02 16:06:03 +00006123 res = 0;
drh856c1032009-06-02 15:21:42 +00006124 pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00006125 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00006126 if( pCur->nullRow ){
6127 break;
6128 }
danielk19773e3a84d2008-08-01 17:37:40 +00006129 pVtab = pCur->pVtabCursor->pVtab;
6130 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006131 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00006132
drhde4fcfd2008-01-19 23:50:26 +00006133 /* Invoke the xNext() method of the module. There is no way for the
6134 ** underlying implementation to return an error if one occurs during
6135 ** xNext(). Instead, if an error occurs, true is returned (indicating that
6136 ** data is available) and the error code returned when xColumn or
6137 ** some other method is next invoked on the save virtual table cursor.
6138 */
drhde4fcfd2008-01-19 23:50:26 +00006139 p->inVtabMethod = 1;
6140 rc = pModule->xNext(pCur->pVtabCursor);
6141 p->inVtabMethod = 0;
dan016f7812013-08-21 17:35:48 +00006142 sqlite3VtabImportErrmsg(p, pVtab);
drhde4fcfd2008-01-19 23:50:26 +00006143 if( rc==SQLITE_OK ){
6144 res = pModule->xEof(pCur->pVtabCursor);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006145 }
drh688852a2014-02-17 22:40:43 +00006146 VdbeBranchTaken(!res,2);
drhde4fcfd2008-01-19 23:50:26 +00006147 if( !res ){
6148 /* If there is data, jump to P2 */
6149 pc = pOp->p2 - 1;
6150 }
drh49afe3a2013-07-10 03:05:14 +00006151 goto check_for_interrupt;
drh9eff6162006-06-12 21:59:13 +00006152}
6153#endif /* SQLITE_OMIT_VIRTUALTABLE */
6154
danielk1977182c4ba2007-06-27 15:53:34 +00006155#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006156/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00006157**
drh66a51672008-01-03 00:01:23 +00006158** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00006159** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00006160** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00006161*/
drh9cbf3422008-01-17 16:22:13 +00006162case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00006163 sqlite3_vtab *pVtab;
6164 Mem *pName;
6165
danielk1977595a5232009-07-24 17:58:53 +00006166 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00006167 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00006168 assert( pVtab->pModule->xRename );
drh2b4ded92010-09-27 21:09:31 +00006169 assert( memIsValid(pName) );
drh9e92a472013-06-27 17:40:30 +00006170 assert( p->readOnly==0 );
drh5b6afba2008-01-05 16:29:28 +00006171 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00006172 assert( pName->flags & MEM_Str );
drh98655a62011-10-18 22:07:47 +00006173 testcase( pName->enc==SQLITE_UTF8 );
6174 testcase( pName->enc==SQLITE_UTF16BE );
6175 testcase( pName->enc==SQLITE_UTF16LE );
6176 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
6177 if( rc==SQLITE_OK ){
6178 rc = pVtab->pModule->xRename(pVtab, pName->z);
dan016f7812013-08-21 17:35:48 +00006179 sqlite3VtabImportErrmsg(p, pVtab);
drh98655a62011-10-18 22:07:47 +00006180 p->expired = 0;
6181 }
danielk1977182c4ba2007-06-27 15:53:34 +00006182 break;
6183}
6184#endif
drh4cbdda92006-06-14 19:00:20 +00006185
6186#ifndef SQLITE_OMIT_VIRTUALTABLE
drh0fd61352014-02-07 02:29:45 +00006187/* Opcode: VUpdate P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00006188** Synopsis: data=r[P3@P2]
danielk1977399918f2006-06-14 13:03:23 +00006189**
drh66a51672008-01-03 00:01:23 +00006190** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00006191** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00006192** are contiguous memory cells starting at P3 to pass to the xUpdate
6193** invocation. The value in register (P3+P2-1) corresponds to the
6194** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00006195**
6196** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00006197** The argv[0] element (which corresponds to memory cell P3)
6198** is the rowid of a row to delete. If argv[0] is NULL then no
6199** deletion occurs. The argv[1] element is the rowid of the new
6200** row. This can be NULL to have the virtual table select the new
6201** rowid for itself. The subsequent elements in the array are
6202** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00006203**
6204** If P2==1 then no insert is performed. argv[0] is the rowid of
6205** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00006206**
6207** P1 is a boolean flag. If it is set to true and the xUpdate call
6208** is successful, then the value returned by sqlite3_last_insert_rowid()
6209** is set to the value of the rowid for the row just inserted.
drh0fd61352014-02-07 02:29:45 +00006210**
6211** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6212** apply in the case of a constraint failure on an insert or update.
danielk1977399918f2006-06-14 13:03:23 +00006213*/
drh9cbf3422008-01-17 16:22:13 +00006214case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00006215 sqlite3_vtab *pVtab;
6216 sqlite3_module *pModule;
6217 int nArg;
6218 int i;
6219 sqlite_int64 rowid;
6220 Mem **apArg;
6221 Mem *pX;
6222
danb061d052011-04-25 18:49:57 +00006223 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
6224 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6225 );
drh9e92a472013-06-27 17:40:30 +00006226 assert( p->readOnly==0 );
danielk1977595a5232009-07-24 17:58:53 +00006227 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00006228 pModule = (sqlite3_module *)pVtab->pModule;
6229 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00006230 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00006231 if( ALWAYS(pModule->xUpdate) ){
danb061d052011-04-25 18:49:57 +00006232 u8 vtabOnConflict = db->vtabOnConflict;
drh856c1032009-06-02 15:21:42 +00006233 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00006234 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00006235 for(i=0; i<nArg; i++){
drh2b4ded92010-09-27 21:09:31 +00006236 assert( memIsValid(pX) );
6237 memAboutToChange(p, pX);
drh9c419382006-06-16 21:13:21 +00006238 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00006239 pX++;
danielk1977399918f2006-06-14 13:03:23 +00006240 }
danb061d052011-04-25 18:49:57 +00006241 db->vtabOnConflict = pOp->p5;
danielk19771f6eec52006-06-16 06:17:47 +00006242 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
danb061d052011-04-25 18:49:57 +00006243 db->vtabOnConflict = vtabOnConflict;
dan016f7812013-08-21 17:35:48 +00006244 sqlite3VtabImportErrmsg(p, pVtab);
drh35f6b932009-06-23 14:15:04 +00006245 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00006246 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
drh99a66922011-05-13 18:51:42 +00006247 db->lastRowid = lastRowid = rowid;
danielk19771f6eec52006-06-16 06:17:47 +00006248 }
drhd91c1a12013-02-09 13:58:25 +00006249 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
danb061d052011-04-25 18:49:57 +00006250 if( pOp->p5==OE_Ignore ){
6251 rc = SQLITE_OK;
6252 }else{
6253 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6254 }
6255 }else{
6256 p->nChange++;
6257 }
danielk1977399918f2006-06-14 13:03:23 +00006258 }
drh4cbdda92006-06-14 19:00:20 +00006259 break;
danielk1977399918f2006-06-14 13:03:23 +00006260}
6261#endif /* SQLITE_OMIT_VIRTUALTABLE */
6262
danielk197759a93792008-05-15 17:48:20 +00006263#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6264/* Opcode: Pagecount P1 P2 * * *
6265**
6266** Write the current number of pages in database P1 to memory cell P2.
6267*/
6268case OP_Pagecount: { /* out2-prerelease */
drhb1299152010-03-30 22:58:33 +00006269 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00006270 break;
6271}
6272#endif
6273
drh60ac3f42010-11-23 18:59:27 +00006274
6275#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6276/* Opcode: MaxPgcnt P1 P2 P3 * *
6277**
6278** Try to set the maximum page count for database P1 to the value in P3.
drhc84e0332010-11-23 20:25:08 +00006279** Do not let the maximum page count fall below the current page count and
6280** do not change the maximum page count value if P3==0.
6281**
drh60ac3f42010-11-23 18:59:27 +00006282** Store the maximum page count after the change in register P2.
6283*/
6284case OP_MaxPgcnt: { /* out2-prerelease */
drhc84e0332010-11-23 20:25:08 +00006285 unsigned int newMax;
drh60ac3f42010-11-23 18:59:27 +00006286 Btree *pBt;
6287
6288 pBt = db->aDb[pOp->p1].pBt;
drhc84e0332010-11-23 20:25:08 +00006289 newMax = 0;
6290 if( pOp->p3 ){
6291 newMax = sqlite3BtreeLastPage(pBt);
drh6ea28d62010-11-26 16:49:59 +00006292 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
drhc84e0332010-11-23 20:25:08 +00006293 }
6294 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
drh60ac3f42010-11-23 18:59:27 +00006295 break;
6296}
6297#endif
6298
6299
drhaceb31b2014-02-08 01:40:27 +00006300/* Opcode: Init * P2 * P4 *
6301** Synopsis: Start at P2
6302**
6303** Programs contain a single instance of this opcode as the very first
6304** opcode.
drh949f9cd2008-01-12 21:35:57 +00006305**
6306** If tracing is enabled (by the sqlite3_trace()) interface, then
6307** the UTF-8 string contained in P4 is emitted on the trace callback.
drhaceb31b2014-02-08 01:40:27 +00006308** Or if P4 is blank, use the string returned by sqlite3_sql().
6309**
6310** If P2 is not zero, jump to instruction P2.
drh949f9cd2008-01-12 21:35:57 +00006311*/
drhaceb31b2014-02-08 01:40:27 +00006312case OP_Init: { /* jump */
drh856c1032009-06-02 15:21:42 +00006313 char *zTrace;
drhc3f1d5f2011-05-30 23:42:16 +00006314 char *z;
drh856c1032009-06-02 15:21:42 +00006315
drhaceb31b2014-02-08 01:40:27 +00006316 if( pOp->p2 ){
6317 pc = pOp->p2 - 1;
6318 }
6319#ifndef SQLITE_OMIT_TRACE
drh37f58e92012-09-04 21:34:26 +00006320 if( db->xTrace
6321 && !p->doingRerun
6322 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6323 ){
drhc3f1d5f2011-05-30 23:42:16 +00006324 z = sqlite3VdbeExpandSql(p, zTrace);
6325 db->xTrace(db->pTraceArg, z);
6326 sqlite3DbFree(db, z);
drh949f9cd2008-01-12 21:35:57 +00006327 }
drh8f8b2312013-10-18 20:03:43 +00006328#ifdef SQLITE_USE_FCNTL_TRACE
6329 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
6330 if( zTrace ){
6331 int i;
6332 for(i=0; i<db->nDb; i++){
drha7ab6d82014-07-21 15:44:39 +00006333 if( DbMaskTest(p->btreeMask, i)==0 ) continue;
drh8f8b2312013-10-18 20:03:43 +00006334 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
6335 }
6336 }
6337#endif /* SQLITE_USE_FCNTL_TRACE */
drhc3f1d5f2011-05-30 23:42:16 +00006338#ifdef SQLITE_DEBUG
6339 if( (db->flags & SQLITE_SqlTrace)!=0
6340 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6341 ){
6342 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6343 }
6344#endif /* SQLITE_DEBUG */
drhaceb31b2014-02-08 01:40:27 +00006345#endif /* SQLITE_OMIT_TRACE */
drh949f9cd2008-01-12 21:35:57 +00006346 break;
6347}
drh949f9cd2008-01-12 21:35:57 +00006348
drh91fd4d42008-01-19 20:11:25 +00006349
6350/* Opcode: Noop * * * * *
6351**
6352** Do nothing. This instruction is often useful as a jump
6353** destination.
drh5e00f6c2001-09-13 13:46:56 +00006354*/
drh91fd4d42008-01-19 20:11:25 +00006355/*
6356** The magic Explain opcode are only inserted when explain==2 (which
6357** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6358** This opcode records information from the optimizer. It is the
6359** the same as a no-op. This opcodesnever appears in a real VM program.
6360*/
6361default: { /* This is really OP_Noop and OP_Explain */
drh13573c72010-01-12 17:04:07 +00006362 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh5e00f6c2001-09-13 13:46:56 +00006363 break;
6364}
6365
6366/*****************************************************************************
6367** The cases of the switch statement above this line should all be indented
6368** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6369** readability. From this point on down, the normal indentation rules are
6370** restored.
6371*****************************************************************************/
6372 }
drh6e142f52000-06-08 13:36:40 +00006373
drh7b396862003-01-01 23:06:20 +00006374#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00006375 {
drha01c7c72014-04-25 12:35:31 +00006376 u64 endTime = sqlite3Hwtime();
6377 if( endTime>start ) pOp->cycles += endTime - start;
drh8178a752003-01-05 21:41:40 +00006378 pOp->cnt++;
drh8178a752003-01-05 21:41:40 +00006379 }
drh7b396862003-01-01 23:06:20 +00006380#endif
6381
drh6e142f52000-06-08 13:36:40 +00006382 /* The following code adds nothing to the actual functionality
6383 ** of the program. It is only here for testing and debugging.
6384 ** On the other hand, it does burn CPU cycles every time through
6385 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6386 */
6387#ifndef NDEBUG
drha6110402005-07-28 20:51:19 +00006388 assert( pc>=-1 && pc<p->nOp );
drhae7e1512007-05-02 16:51:59 +00006389
drhcf1023c2007-05-08 20:59:49 +00006390#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +00006391 if( db->flags & SQLITE_VdbeTrace ){
6392 if( rc!=0 ) printf("rc=%d\n",rc);
drh3c657212009-11-17 23:59:58 +00006393 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
drh84e55a82013-11-13 17:58:23 +00006394 registerTrace(pOp->p2, &aMem[pOp->p2]);
drh75897232000-05-29 14:26:00 +00006395 }
drh3c657212009-11-17 23:59:58 +00006396 if( pOp->opflags & OPFLG_OUT3 ){
drh84e55a82013-11-13 17:58:23 +00006397 registerTrace(pOp->p3, &aMem[pOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00006398 }
drh75897232000-05-29 14:26:00 +00006399 }
danielk1977b5402fb2005-01-12 07:15:04 +00006400#endif /* SQLITE_DEBUG */
6401#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00006402 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00006403
drha05a7222008-01-19 03:35:58 +00006404 /* If we reach this point, it means that execution is finished with
6405 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00006406 */
drha05a7222008-01-19 03:35:58 +00006407vdbe_error_halt:
6408 assert( rc );
6409 p->rc = rc;
drha64fa912010-03-04 00:53:32 +00006410 testcase( sqlite3GlobalConfig.xLog!=0 );
6411 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
6412 pc, p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00006413 sqlite3VdbeHalt(p);
danielk19777eaabcd2008-07-07 14:56:56 +00006414 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6415 rc = SQLITE_ERROR;
drhcdf011d2011-04-04 21:25:28 +00006416 if( resetSchemaOnFault>0 ){
drh81028a42012-05-15 18:28:27 +00006417 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
drhbdaec522011-04-04 00:14:43 +00006418 }
drh900b31e2007-08-28 02:27:51 +00006419
6420 /* This is the only way out of this procedure. We have to
6421 ** release the mutexes on btrees that were acquired at the
6422 ** top. */
6423vdbe_return:
drh99a66922011-05-13 18:51:42 +00006424 db->lastRowid = lastRowid;
drh77dfd5b2013-08-19 11:15:48 +00006425 testcase( nVmStep>0 );
drh9b47ee32013-08-20 03:13:51 +00006426 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
drhbdaec522011-04-04 00:14:43 +00006427 sqlite3VdbeLeave(p);
drhb86ccfb2003-01-28 23:13:10 +00006428 return rc;
6429
drh023ae032007-05-08 12:12:16 +00006430 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6431 ** is encountered.
6432 */
6433too_big:
drhf089aa42008-07-08 19:34:06 +00006434 sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00006435 rc = SQLITE_TOOBIG;
drha05a7222008-01-19 03:35:58 +00006436 goto vdbe_error_halt;
drh023ae032007-05-08 12:12:16 +00006437
drh98640a32007-06-07 19:08:32 +00006438 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00006439 */
6440no_mem:
drh17435752007-08-16 04:30:38 +00006441 db->mallocFailed = 1;
drhf089aa42008-07-08 19:34:06 +00006442 sqlite3SetString(&p->zErrMsg, db, "out of memory");
drhb86ccfb2003-01-28 23:13:10 +00006443 rc = SQLITE_NOMEM;
drha05a7222008-01-19 03:35:58 +00006444 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006445
drhb86ccfb2003-01-28 23:13:10 +00006446 /* Jump to here for any other kind of fatal error. The "rc" variable
6447 ** should hold the error number.
6448 */
6449abort_due_to_error:
drha05a7222008-01-19 03:35:58 +00006450 assert( p->zErrMsg==0 );
6451 if( db->mallocFailed ) rc = SQLITE_NOMEM;
danielk19777eaabcd2008-07-07 14:56:56 +00006452 if( rc!=SQLITE_IOERR_NOMEM ){
drhf089aa42008-07-08 19:34:06 +00006453 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
danielk19777eaabcd2008-07-07 14:56:56 +00006454 }
drha05a7222008-01-19 03:35:58 +00006455 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006456
danielk19776f8a5032004-05-10 10:34:51 +00006457 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00006458 ** flag.
6459 */
6460abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00006461 assert( db->u1.isInterrupted );
drh7e8b8482008-01-23 03:03:05 +00006462 rc = SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00006463 p->rc = rc;
drhf089aa42008-07-08 19:34:06 +00006464 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
drha05a7222008-01-19 03:35:58 +00006465 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006466}