blob: 4fd7399efdba81faa50746700debab36783985ca [file] [log] [blame]
drh6f82e852015-06-06 20:12:09 +00001/*
2** 2015-06-06
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This module contains C code that generates VDBE code used to process
13** the WHERE clause of SQL statements.
14**
15** This file was split off from where.c on 2015-06-06 in order to reduce the
16** size of where.c and make it easier to edit. This file contains the routines
17** that actually generate the bulk of the WHERE loop code. The original where.c
18** file retains the code that does query planning and analysis.
19*/
20#include "sqliteInt.h"
21#include "whereInt.h"
22
23#ifndef SQLITE_OMIT_EXPLAIN
24/*
25** This routine is a helper for explainIndexRange() below
26**
27** pStr holds the text of an expression that we are building up one term
28** at a time. This routine adds a new term to the end of the expression.
29** Terms are separated by AND so add the "AND" text for second and subsequent
30** terms only.
31*/
32static void explainAppendTerm(
33 StrAccum *pStr, /* The text expression being built */
34 int iTerm, /* Index of this term. First is zero */
35 const char *zColumn, /* Name of the column */
36 const char *zOp /* Name of the operator */
37){
38 if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5);
39 sqlite3StrAccumAppendAll(pStr, zColumn);
40 sqlite3StrAccumAppend(pStr, zOp, 1);
41 sqlite3StrAccumAppend(pStr, "?", 1);
42}
43
44/*
drhc7c46802015-08-27 20:33:38 +000045** Return the name of the i-th column of the pIdx index.
46*/
47static const char *explainIndexColumnName(Index *pIdx, int i){
48 i = pIdx->aiColumn[i];
drh4b92f982015-09-29 17:20:14 +000049 if( i==XN_EXPR ) return "<expr>";
50 if( i==XN_ROWID ) return "rowid";
drhc7c46802015-08-27 20:33:38 +000051 return pIdx->pTable->aCol[i].zName;
52}
53
54/*
drh6f82e852015-06-06 20:12:09 +000055** Argument pLevel describes a strategy for scanning table pTab. This
56** function appends text to pStr that describes the subset of table
57** rows scanned by the strategy in the form of an SQL expression.
58**
59** For example, if the query:
60**
61** SELECT * FROM t1 WHERE a=1 AND b>2;
62**
63** is run and there is an index on (a, b), then this function returns a
64** string similar to:
65**
66** "a=? AND b>?"
67*/
drh8faee872015-09-19 18:08:13 +000068static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
drh6f82e852015-06-06 20:12:09 +000069 Index *pIndex = pLoop->u.btree.pIndex;
70 u16 nEq = pLoop->u.btree.nEq;
71 u16 nSkip = pLoop->nSkip;
72 int i, j;
drh6f82e852015-06-06 20:12:09 +000073
74 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
75 sqlite3StrAccumAppend(pStr, " (", 2);
76 for(i=0; i<nEq; i++){
drhc7c46802015-08-27 20:33:38 +000077 const char *z = explainIndexColumnName(pIndex, i);
drh2ed0d802015-09-02 16:51:37 +000078 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
79 sqlite3XPrintf(pStr, 0, i>=nSkip ? "%s=?" : "ANY(%s)", z);
drh6f82e852015-06-06 20:12:09 +000080 }
81
82 j = i;
83 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
drhc7c46802015-08-27 20:33:38 +000084 const char *z = explainIndexColumnName(pIndex, i);
drh6f82e852015-06-06 20:12:09 +000085 explainAppendTerm(pStr, i++, z, ">");
86 }
87 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
drhc7c46802015-08-27 20:33:38 +000088 const char *z = explainIndexColumnName(pIndex, j);
drh6f82e852015-06-06 20:12:09 +000089 explainAppendTerm(pStr, i, z, "<");
90 }
91 sqlite3StrAccumAppend(pStr, ")", 1);
92}
93
94/*
95** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
96** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
97** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
98** is added to the output to describe the table scan strategy in pLevel.
99**
100** If an OP_Explain opcode is added to the VM, its address is returned.
101** Otherwise, if no OP_Explain is coded, zero is returned.
102*/
103int sqlite3WhereExplainOneScan(
104 Parse *pParse, /* Parse context */
105 SrcList *pTabList, /* Table list this loop refers to */
106 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
107 int iLevel, /* Value for "level" column of output */
108 int iFrom, /* Value for "from" column of output */
109 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
110){
111 int ret = 0;
112#if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
113 if( pParse->explain==2 )
114#endif
115 {
116 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
117 Vdbe *v = pParse->pVdbe; /* VM being constructed */
118 sqlite3 *db = pParse->db; /* Database handle */
119 int iId = pParse->iSelectId; /* Select id (left-most output column) */
120 int isSearch; /* True for a SEARCH. False for SCAN. */
121 WhereLoop *pLoop; /* The controlling WhereLoop object */
122 u32 flags; /* Flags that describe this loop */
123 char *zMsg; /* Text to add to EQP output */
124 StrAccum str; /* EQP output string */
125 char zBuf[100]; /* Initial space for EQP output string */
126
127 pLoop = pLevel->pWLoop;
128 flags = pLoop->wsFlags;
129 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return 0;
130
131 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
132 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
133 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
134
135 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
136 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
137 if( pItem->pSelect ){
138 sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId);
139 }else{
140 sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName);
141 }
142
143 if( pItem->zAlias ){
144 sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias);
145 }
146 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
147 const char *zFmt = 0;
148 Index *pIdx;
149
150 assert( pLoop->u.btree.pIndex!=0 );
151 pIdx = pLoop->u.btree.pIndex;
152 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
153 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
154 if( isSearch ){
155 zFmt = "PRIMARY KEY";
156 }
157 }else if( flags & WHERE_PARTIALIDX ){
158 zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
159 }else if( flags & WHERE_AUTO_INDEX ){
160 zFmt = "AUTOMATIC COVERING INDEX";
161 }else if( flags & WHERE_IDX_ONLY ){
162 zFmt = "COVERING INDEX %s";
163 }else{
164 zFmt = "INDEX %s";
165 }
166 if( zFmt ){
167 sqlite3StrAccumAppend(&str, " USING ", 7);
168 sqlite3XPrintf(&str, 0, zFmt, pIdx->zName);
drh8faee872015-09-19 18:08:13 +0000169 explainIndexRange(&str, pLoop);
drh6f82e852015-06-06 20:12:09 +0000170 }
171 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
drhd37bea52015-09-02 15:37:50 +0000172 const char *zRangeOp;
drh6f82e852015-06-06 20:12:09 +0000173 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
drhd37bea52015-09-02 15:37:50 +0000174 zRangeOp = "=";
drh6f82e852015-06-06 20:12:09 +0000175 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
drhd37bea52015-09-02 15:37:50 +0000176 zRangeOp = ">? AND rowid<";
drh6f82e852015-06-06 20:12:09 +0000177 }else if( flags&WHERE_BTM_LIMIT ){
drhd37bea52015-09-02 15:37:50 +0000178 zRangeOp = ">";
drh6f82e852015-06-06 20:12:09 +0000179 }else{
180 assert( flags&WHERE_TOP_LIMIT);
drhd37bea52015-09-02 15:37:50 +0000181 zRangeOp = "<";
drh6f82e852015-06-06 20:12:09 +0000182 }
drhd37bea52015-09-02 15:37:50 +0000183 sqlite3XPrintf(&str, 0, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
drh6f82e852015-06-06 20:12:09 +0000184 }
185#ifndef SQLITE_OMIT_VIRTUALTABLE
186 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
187 sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s",
188 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
189 }
190#endif
191#ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
192 if( pLoop->nOut>=10 ){
193 sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
194 }else{
195 sqlite3StrAccumAppend(&str, " (~1 row)", 9);
196 }
197#endif
198 zMsg = sqlite3StrAccumFinish(&str);
199 ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);
200 }
201 return ret;
202}
203#endif /* SQLITE_OMIT_EXPLAIN */
204
205#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
206/*
207** Configure the VM passed as the first argument with an
208** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
209** implement level pLvl. Argument pSrclist is a pointer to the FROM
210** clause that the scan reads data from.
211**
212** If argument addrExplain is not 0, it must be the address of an
213** OP_Explain instruction that describes the same loop.
214*/
215void sqlite3WhereAddScanStatus(
216 Vdbe *v, /* Vdbe to add scanstatus entry to */
217 SrcList *pSrclist, /* FROM clause pLvl reads data from */
218 WhereLevel *pLvl, /* Level to add scanstatus() entry for */
219 int addrExplain /* Address of OP_Explain (or 0) */
220){
221 const char *zObj = 0;
222 WhereLoop *pLoop = pLvl->pWLoop;
223 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){
224 zObj = pLoop->u.btree.pIndex->zName;
225 }else{
226 zObj = pSrclist->a[pLvl->iFrom].zName;
227 }
228 sqlite3VdbeScanStatus(
229 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
230 );
231}
232#endif
233
234
235/*
236** Disable a term in the WHERE clause. Except, do not disable the term
237** if it controls a LEFT OUTER JOIN and it did not originate in the ON
238** or USING clause of that join.
239**
240** Consider the term t2.z='ok' in the following queries:
241**
242** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
243** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
244** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
245**
246** The t2.z='ok' is disabled in the in (2) because it originates
247** in the ON clause. The term is disabled in (3) because it is not part
248** of a LEFT OUTER JOIN. In (1), the term is not disabled.
249**
250** Disabling a term causes that term to not be tested in the inner loop
251** of the join. Disabling is an optimization. When terms are satisfied
252** by indices, we disable them to prevent redundant tests in the inner
253** loop. We would get the correct results if nothing were ever disabled,
254** but joins might run a little slower. The trick is to disable as much
255** as we can without disabling too much. If we disabled in (1), we'd get
256** the wrong answer. See ticket #813.
257**
258** If all the children of a term are disabled, then that term is also
259** automatically disabled. In this way, terms get disabled if derived
260** virtual terms are tested first. For example:
261**
262** x GLOB 'abc*' AND x>='abc' AND x<'acd'
263** \___________/ \______/ \_____/
264** parent child1 child2
265**
266** Only the parent term was in the original WHERE clause. The child1
267** and child2 terms were added by the LIKE optimization. If both of
268** the virtual child terms are valid, then testing of the parent can be
269** skipped.
270**
271** Usually the parent term is marked as TERM_CODED. But if the parent
272** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
273** The TERM_LIKECOND marking indicates that the term should be coded inside
274** a conditional such that is only evaluated on the second pass of a
275** LIKE-optimization loop, when scanning BLOBs instead of strings.
276*/
277static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
278 int nLoop = 0;
279 while( pTerm
280 && (pTerm->wtFlags & TERM_CODED)==0
281 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
282 && (pLevel->notReady & pTerm->prereqAll)==0
283 ){
284 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
285 pTerm->wtFlags |= TERM_LIKECOND;
286 }else{
287 pTerm->wtFlags |= TERM_CODED;
288 }
289 if( pTerm->iParent<0 ) break;
290 pTerm = &pTerm->pWC->a[pTerm->iParent];
291 pTerm->nChild--;
292 if( pTerm->nChild!=0 ) break;
293 nLoop++;
294 }
295}
296
297/*
298** Code an OP_Affinity opcode to apply the column affinity string zAff
299** to the n registers starting at base.
300**
301** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the
302** beginning and end of zAff are ignored. If all entries in zAff are
303** SQLITE_AFF_BLOB, then no code gets generated.
304**
305** This routine makes its own copy of zAff so that the caller is free
306** to modify zAff after this routine returns.
307*/
308static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
309 Vdbe *v = pParse->pVdbe;
310 if( zAff==0 ){
311 assert( pParse->db->mallocFailed );
312 return;
313 }
314 assert( v!=0 );
315
316 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning
317 ** and end of the affinity string.
318 */
319 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){
320 n--;
321 base++;
322 zAff++;
323 }
324 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){
325 n--;
326 }
327
328 /* Code the OP_Affinity opcode if there is anything left to do. */
329 if( n>0 ){
drh9b34abe2016-01-16 15:12:35 +0000330 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
drh6f82e852015-06-06 20:12:09 +0000331 sqlite3ExprCacheAffinityChange(pParse, base, n);
332 }
333}
334
335
336/*
337** Generate code for a single equality term of the WHERE clause. An equality
338** term can be either X=expr or X IN (...). pTerm is the term to be
339** coded.
340**
341** The current value for the constraint is left in register iReg.
342**
343** For a constraint of the form X=expr, the expression is evaluated and its
344** result is left on the stack. For constraints of the form X IN (...)
345** this routine sets up a loop that will iterate over all values of X.
346*/
347static int codeEqualityTerm(
348 Parse *pParse, /* The parsing context */
349 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
350 WhereLevel *pLevel, /* The level of the FROM clause we are working on */
351 int iEq, /* Index of the equality term within this level */
352 int bRev, /* True for reverse-order IN operations */
353 int iTarget /* Attempt to leave results in this register */
354){
355 Expr *pX = pTerm->pExpr;
356 Vdbe *v = pParse->pVdbe;
357 int iReg; /* Register holding results */
358
359 assert( iTarget>0 );
360 if( pX->op==TK_EQ || pX->op==TK_IS ){
361 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
362 }else if( pX->op==TK_ISNULL ){
363 iReg = iTarget;
364 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
365#ifndef SQLITE_OMIT_SUBQUERY
366 }else{
367 int eType;
368 int iTab;
369 struct InLoop *pIn;
370 WhereLoop *pLoop = pLevel->pWLoop;
371
372 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
373 && pLoop->u.btree.pIndex!=0
374 && pLoop->u.btree.pIndex->aSortOrder[iEq]
375 ){
376 testcase( iEq==0 );
377 testcase( bRev );
378 bRev = !bRev;
379 }
380 assert( pX->op==TK_IN );
381 iReg = iTarget;
382 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0);
383 if( eType==IN_INDEX_INDEX_DESC ){
384 testcase( bRev );
385 bRev = !bRev;
386 }
387 iTab = pX->iTable;
388 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
389 VdbeCoverageIf(v, bRev);
390 VdbeCoverageIf(v, !bRev);
391 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
392 pLoop->wsFlags |= WHERE_IN_ABLE;
393 if( pLevel->u.in.nIn==0 ){
394 pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
395 }
396 pLevel->u.in.nIn++;
397 pLevel->u.in.aInLoop =
398 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
399 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
400 pIn = pLevel->u.in.aInLoop;
401 if( pIn ){
402 pIn += pLevel->u.in.nIn - 1;
403 pIn->iCur = iTab;
404 if( eType==IN_INDEX_ROWID ){
405 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
406 }else{
407 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
408 }
409 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;
410 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v);
411 }else{
412 pLevel->u.in.nIn = 0;
413 }
414#endif
415 }
416 disableTerm(pLevel, pTerm);
417 return iReg;
418}
419
420/*
421** Generate code that will evaluate all == and IN constraints for an
422** index scan.
423**
424** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
425** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
426** The index has as many as three equality constraints, but in this
427** example, the third "c" value is an inequality. So only two
428** constraints are coded. This routine will generate code to evaluate
429** a==5 and b IN (1,2,3). The current values for a and b will be stored
430** in consecutive registers and the index of the first register is returned.
431**
432** In the example above nEq==2. But this subroutine works for any value
433** of nEq including 0. If nEq==0, this routine is nearly a no-op.
434** The only thing it does is allocate the pLevel->iMem memory cell and
435** compute the affinity string.
436**
437** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints
438** are == or IN and are covered by the nEq. nExtraReg is 1 if there is
439** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
440** occurs after the nEq quality constraints.
441**
442** This routine allocates a range of nEq+nExtraReg memory cells and returns
443** the index of the first memory cell in that range. The code that
444** calls this routine will use that memory range to store keys for
445** start and termination conditions of the loop.
446** key value of the loop. If one or more IN operators appear, then
447** this routine allocates an additional nEq memory cells for internal
448** use.
449**
450** Before returning, *pzAff is set to point to a buffer containing a
451** copy of the column affinity string of the index allocated using
452** sqlite3DbMalloc(). Except, entries in the copy of the string associated
453** with equality constraints that use BLOB or NONE affinity are set to
454** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
455**
456** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
457** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
458**
459** In the example above, the index on t1(a) has TEXT affinity. But since
460** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
461** no conversion should be attempted before using a t2.b value as part of
462** a key to search the index. Hence the first byte in the returned affinity
463** string in this example would be set to SQLITE_AFF_BLOB.
464*/
465static int codeAllEqualityTerms(
466 Parse *pParse, /* Parsing context */
467 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
468 int bRev, /* Reverse the order of IN operators */
469 int nExtraReg, /* Number of extra registers to allocate */
470 char **pzAff /* OUT: Set to point to affinity string */
471){
472 u16 nEq; /* The number of == or IN constraints to code */
473 u16 nSkip; /* Number of left-most columns to skip */
474 Vdbe *v = pParse->pVdbe; /* The vm under construction */
475 Index *pIdx; /* The index being used for this loop */
476 WhereTerm *pTerm; /* A single constraint term */
477 WhereLoop *pLoop; /* The WhereLoop object */
478 int j; /* Loop counter */
479 int regBase; /* Base register */
480 int nReg; /* Number of registers to allocate */
481 char *zAff; /* Affinity string to return */
482
483 /* This module is only called on query plans that use an index. */
484 pLoop = pLevel->pWLoop;
485 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
486 nEq = pLoop->u.btree.nEq;
487 nSkip = pLoop->nSkip;
488 pIdx = pLoop->u.btree.pIndex;
489 assert( pIdx!=0 );
490
491 /* Figure out how many memory cells we will need then allocate them.
492 */
493 regBase = pParse->nMem + 1;
494 nReg = pLoop->u.btree.nEq + nExtraReg;
495 pParse->nMem += nReg;
496
drhe9107692015-08-25 19:20:04 +0000497 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
drh6f82e852015-06-06 20:12:09 +0000498 if( !zAff ){
499 pParse->db->mallocFailed = 1;
500 }
501
502 if( nSkip ){
503 int iIdxCur = pLevel->iIdxCur;
504 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
505 VdbeCoverageIf(v, bRev==0);
506 VdbeCoverageIf(v, bRev!=0);
507 VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
508 j = sqlite3VdbeAddOp0(v, OP_Goto);
509 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
510 iIdxCur, 0, regBase, nSkip);
511 VdbeCoverageIf(v, bRev==0);
512 VdbeCoverageIf(v, bRev!=0);
513 sqlite3VdbeJumpHere(v, j);
514 for(j=0; j<nSkip; j++){
515 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
drh4b92f982015-09-29 17:20:14 +0000516 testcase( pIdx->aiColumn[j]==XN_EXPR );
drhe63e8a62015-09-18 18:09:28 +0000517 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
drh6f82e852015-06-06 20:12:09 +0000518 }
519 }
520
521 /* Evaluate the equality constraints
522 */
523 assert( zAff==0 || (int)strlen(zAff)>=nEq );
524 for(j=nSkip; j<nEq; j++){
525 int r1;
526 pTerm = pLoop->aLTerm[j];
527 assert( pTerm!=0 );
528 /* The following testcase is true for indices with redundant columns.
529 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
530 testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
531 testcase( pTerm->wtFlags & TERM_VIRTUAL );
532 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
533 if( r1!=regBase+j ){
534 if( nReg==1 ){
535 sqlite3ReleaseTempReg(pParse, regBase);
536 regBase = r1;
537 }else{
538 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
539 }
540 }
541 testcase( pTerm->eOperator & WO_ISNULL );
542 testcase( pTerm->eOperator & WO_IN );
543 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
544 Expr *pRight = pTerm->pExpr->pRight;
545 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
546 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
547 VdbeCoverage(v);
548 }
549 if( zAff ){
550 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
551 zAff[j] = SQLITE_AFF_BLOB;
552 }
553 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
554 zAff[j] = SQLITE_AFF_BLOB;
555 }
556 }
557 }
558 }
559 *pzAff = zAff;
560 return regBase;
561}
562
drh41d2e662015-12-01 21:23:07 +0000563#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
drh6f82e852015-06-06 20:12:09 +0000564/*
565** If the most recently coded instruction is a constant range contraint
566** that originated from the LIKE optimization, then change the P3 to be
567** pLoop->iLikeRepCntr and set P5.
568**
569** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
570** expression: "x>='ABC' AND x<'abd'". But this requires that the range
571** scan loop run twice, once for strings and a second time for BLOBs.
572** The OP_String opcodes on the second pass convert the upper and lower
573** bound string contants to blobs. This routine makes the necessary changes
574** to the OP_String opcodes for that to happen.
drh41d2e662015-12-01 21:23:07 +0000575**
576** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
577** only the one pass through the string space is required, so this routine
578** becomes a no-op.
drh6f82e852015-06-06 20:12:09 +0000579*/
580static void whereLikeOptimizationStringFixup(
581 Vdbe *v, /* prepared statement under construction */
582 WhereLevel *pLevel, /* The loop that contains the LIKE operator */
583 WhereTerm *pTerm /* The upper or lower bound just coded */
584){
585 if( pTerm->wtFlags & TERM_LIKEOPT ){
586 VdbeOp *pOp;
587 assert( pLevel->iLikeRepCntr>0 );
588 pOp = sqlite3VdbeGetOp(v, -1);
589 assert( pOp!=0 );
590 assert( pOp->opcode==OP_String8
591 || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
592 pOp->p3 = pLevel->iLikeRepCntr;
593 pOp->p5 = 1;
594 }
595}
drh41d2e662015-12-01 21:23:07 +0000596#else
597# define whereLikeOptimizationStringFixup(A,B,C)
598#endif
drh6f82e852015-06-06 20:12:09 +0000599
drhbec24762015-08-13 20:07:13 +0000600#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh2f2b0272015-08-14 18:50:04 +0000601/*
602** Information is passed from codeCursorHint() down to individual nodes of
603** the expression tree (by sqlite3WalkExpr()) using an instance of this
604** structure.
605*/
606struct CCurHint {
607 int iTabCur; /* Cursor for the main table */
608 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */
609 Index *pIdx; /* The index used to access the table */
610};
611
612/*
613** This function is called for every node of an expression that is a candidate
614** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference
615** the table CCurHint.iTabCur, verify that the same column can be
616** accessed through the index. If it cannot, then set pWalker->eCode to 1.
617*/
618static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
619 struct CCurHint *pHint = pWalker->u.pCCurHint;
620 assert( pHint->pIdx!=0 );
621 if( pExpr->op==TK_COLUMN
622 && pExpr->iTable==pHint->iTabCur
623 && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0
624 ){
625 pWalker->eCode = 1;
626 }
627 return WRC_Continue;
628}
629
drhbec24762015-08-13 20:07:13 +0000630
631/*
632** This function is called on every node of an expression tree used as an
633** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
drh2f2b0272015-08-14 18:50:04 +0000634** that accesses any table other than the one identified by
635** CCurHint.iTabCur, then do the following:
drhbec24762015-08-13 20:07:13 +0000636**
637** 1) allocate a register and code an OP_Column instruction to read
638** the specified column into the new register, and
639**
640** 2) transform the expression node to a TK_REGISTER node that reads
641** from the newly populated register.
drh2f2b0272015-08-14 18:50:04 +0000642**
643** Also, if the node is a TK_COLUMN that does access the table idenified
644** by pCCurHint.iTabCur, and an index is being used (which we will
645** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
646** an access of the index rather than the original table.
drhbec24762015-08-13 20:07:13 +0000647*/
648static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
649 int rc = WRC_Continue;
drh2f2b0272015-08-14 18:50:04 +0000650 struct CCurHint *pHint = pWalker->u.pCCurHint;
651 if( pExpr->op==TK_COLUMN ){
652 if( pExpr->iTable!=pHint->iTabCur ){
653 Vdbe *v = pWalker->pParse->pVdbe;
654 int reg = ++pWalker->pParse->nMem; /* Register for column value */
655 sqlite3ExprCodeGetColumnOfTable(
656 v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg
657 );
658 pExpr->op = TK_REGISTER;
659 pExpr->iTable = reg;
660 }else if( pHint->pIdx!=0 ){
661 pExpr->iTable = pHint->iIdxCur;
662 pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn);
663 assert( pExpr->iColumn>=0 );
664 }
drhbec24762015-08-13 20:07:13 +0000665 }else if( pExpr->op==TK_AGG_FUNCTION ){
666 /* An aggregate function in the WHERE clause of a query means this must
667 ** be a correlated sub-query, and expression pExpr is an aggregate from
668 ** the parent context. Do not walk the function arguments in this case.
669 **
670 ** todo: It should be possible to replace this node with a TK_REGISTER
671 ** expression, as the result of the expression must be stored in a
672 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
673 rc = WRC_Prune;
674 }
675 return rc;
676}
677
678/*
679** Insert an OP_CursorHint instruction if it is appropriate to do so.
680*/
681static void codeCursorHint(
drhb413a542015-08-17 17:19:28 +0000682 WhereInfo *pWInfo, /* The where clause */
683 WhereLevel *pLevel, /* Which loop to provide hints for */
684 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */
drhbec24762015-08-13 20:07:13 +0000685){
686 Parse *pParse = pWInfo->pParse;
687 sqlite3 *db = pParse->db;
688 Vdbe *v = pParse->pVdbe;
drhbec24762015-08-13 20:07:13 +0000689 Expr *pExpr = 0;
drh2f2b0272015-08-14 18:50:04 +0000690 WhereLoop *pLoop = pLevel->pWLoop;
drhbec24762015-08-13 20:07:13 +0000691 int iCur;
692 WhereClause *pWC;
693 WhereTerm *pTerm;
drhb413a542015-08-17 17:19:28 +0000694 int i, j;
drh2f2b0272015-08-14 18:50:04 +0000695 struct CCurHint sHint;
696 Walker sWalker;
drhbec24762015-08-13 20:07:13 +0000697
698 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
drh2f2b0272015-08-14 18:50:04 +0000699 iCur = pLevel->iTabCur;
700 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
701 sHint.iTabCur = iCur;
702 sHint.iIdxCur = pLevel->iIdxCur;
703 sHint.pIdx = pLoop->u.btree.pIndex;
704 memset(&sWalker, 0, sizeof(sWalker));
705 sWalker.pParse = pParse;
706 sWalker.u.pCCurHint = &sHint;
drhbec24762015-08-13 20:07:13 +0000707 pWC = &pWInfo->sWC;
708 for(i=0; i<pWC->nTerm; i++){
709 pTerm = &pWC->a[i];
710 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
711 if( pTerm->prereqAll & pLevel->notReady ) continue;
712 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
drhb413a542015-08-17 17:19:28 +0000713
714 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
drhbcf40a72015-08-18 15:58:05 +0000715 ** the cursor. These terms are not needed as hints for a pure range
716 ** scan (that has no == terms) so omit them. */
717 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
718 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
719 if( j<pLoop->nLTerm ) continue;
drhb413a542015-08-17 17:19:28 +0000720 }
721
722 /* No subqueries or non-deterministic functions allowed */
drhbec24762015-08-13 20:07:13 +0000723 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
drhb413a542015-08-17 17:19:28 +0000724
725 /* For an index scan, make sure referenced columns are actually in
726 ** the index. */
drh2f2b0272015-08-14 18:50:04 +0000727 if( sHint.pIdx!=0 ){
728 sWalker.eCode = 0;
729 sWalker.xExprCallback = codeCursorHintCheckExpr;
730 sqlite3WalkExpr(&sWalker, pTerm->pExpr);
731 if( sWalker.eCode ) continue;
732 }
drhb413a542015-08-17 17:19:28 +0000733
734 /* If we survive all prior tests, that means this term is worth hinting */
drhbec24762015-08-13 20:07:13 +0000735 pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
736 }
737 if( pExpr!=0 ){
drhbec24762015-08-13 20:07:13 +0000738 sWalker.xExprCallback = codeCursorHintFixExpr;
drhbec24762015-08-13 20:07:13 +0000739 sqlite3WalkExpr(&sWalker, pExpr);
drh2f2b0272015-08-14 18:50:04 +0000740 sqlite3VdbeAddOp4(v, OP_CursorHint,
741 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
742 (const char*)pExpr, P4_EXPR);
drhbec24762015-08-13 20:07:13 +0000743 }
744}
745#else
drhb413a542015-08-17 17:19:28 +0000746# define codeCursorHint(A,B,C) /* No-op */
drhbec24762015-08-13 20:07:13 +0000747#endif /* SQLITE_ENABLE_CURSOR_HINTS */
drh6f82e852015-06-06 20:12:09 +0000748
749/*
750** Generate code for the start of the iLevel-th loop in the WHERE clause
751** implementation described by pWInfo.
752*/
753Bitmask sqlite3WhereCodeOneLoopStart(
754 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
755 int iLevel, /* Which level of pWInfo->a[] should be coded */
756 Bitmask notReady /* Which tables are currently available */
757){
758 int j, k; /* Loop counters */
759 int iCur; /* The VDBE cursor for the table */
760 int addrNxt; /* Where to jump to continue with the next IN case */
761 int omitTable; /* True if we use the index only */
762 int bRev; /* True if we need to scan in reverse order */
763 WhereLevel *pLevel; /* The where level to be coded */
764 WhereLoop *pLoop; /* The WhereLoop object being coded */
765 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
766 WhereTerm *pTerm; /* A WHERE clause term */
767 Parse *pParse; /* Parsing context */
768 sqlite3 *db; /* Database connection */
769 Vdbe *v; /* The prepared stmt under constructions */
770 struct SrcList_item *pTabItem; /* FROM clause term being coded */
771 int addrBrk; /* Jump here to break out of the loop */
772 int addrCont; /* Jump here to continue with next cycle */
773 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
774 int iReleaseReg = 0; /* Temp register to free before returning */
775
776 pParse = pWInfo->pParse;
777 v = pParse->pVdbe;
778 pWC = &pWInfo->sWC;
779 db = pParse->db;
780 pLevel = &pWInfo->a[iLevel];
781 pLoop = pLevel->pWLoop;
782 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
783 iCur = pTabItem->iCursor;
784 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
785 bRev = (pWInfo->revMask>>iLevel)&1;
786 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
787 && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0;
788 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
789
790 /* Create labels for the "break" and "continue" instructions
791 ** for the current loop. Jump to addrBrk to break out of a loop.
792 ** Jump to cont to go immediately to the next iteration of the
793 ** loop.
794 **
795 ** When there is an IN operator, we also have a "addrNxt" label that
796 ** means to continue with the next IN value combination. When
797 ** there are no IN operators in the constraints, the "addrNxt" label
798 ** is the same as "addrBrk".
799 */
800 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
801 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
802
803 /* If this is the right table of a LEFT OUTER JOIN, allocate and
804 ** initialize a memory cell that records if this table matches any
805 ** row of the left table of the join.
806 */
drh8a48b9c2015-08-19 15:20:00 +0000807 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
drh6f82e852015-06-06 20:12:09 +0000808 pLevel->iLeftJoin = ++pParse->nMem;
809 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
810 VdbeComment((v, "init LEFT JOIN no-match flag"));
811 }
812
813 /* Special case of a FROM clause subquery implemented as a co-routine */
drh8a48b9c2015-08-19 15:20:00 +0000814 if( pTabItem->fg.viaCoroutine ){
drh6f82e852015-06-06 20:12:09 +0000815 int regYield = pTabItem->regReturn;
816 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
817 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
818 VdbeCoverage(v);
819 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
820 pLevel->op = OP_Goto;
821 }else
822
823#ifndef SQLITE_OMIT_VIRTUALTABLE
824 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
825 /* Case 1: The table is a virtual-table. Use the VFilter and VNext
826 ** to access the data.
827 */
828 int iReg; /* P3 Value for OP_VFilter */
829 int addrNotFound;
830 int nConstraint = pLoop->nLTerm;
831
832 sqlite3ExprCachePush(pParse);
833 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
834 addrNotFound = pLevel->addrBrk;
835 for(j=0; j<nConstraint; j++){
836 int iTarget = iReg+j+2;
837 pTerm = pLoop->aLTerm[j];
838 if( pTerm==0 ) continue;
839 if( pTerm->eOperator & WO_IN ){
840 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
841 addrNotFound = pLevel->addrNxt;
842 }else{
843 sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget);
844 }
845 }
846 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
847 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
848 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
849 pLoop->u.vtab.idxStr,
850 pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC);
851 VdbeCoverage(v);
852 pLoop->u.vtab.needFree = 0;
853 for(j=0; j<nConstraint && j<16; j++){
854 if( (pLoop->u.vtab.omitMask>>j)&1 ){
855 disableTerm(pLevel, pLoop->aLTerm[j]);
856 }
857 }
drh6f82e852015-06-06 20:12:09 +0000858 pLevel->p1 = iCur;
dan354474a2015-09-29 10:11:26 +0000859 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
drh6f82e852015-06-06 20:12:09 +0000860 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
861 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
862 sqlite3ExprCachePop(pParse);
863 }else
864#endif /* SQLITE_OMIT_VIRTUALTABLE */
865
866 if( (pLoop->wsFlags & WHERE_IPK)!=0
867 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
868 ){
869 /* Case 2: We can directly reference a single row using an
870 ** equality comparison against the ROWID field. Or
871 ** we reference multiple rows using a "rowid IN (...)"
872 ** construct.
873 */
874 assert( pLoop->u.btree.nEq==1 );
875 pTerm = pLoop->aLTerm[0];
876 assert( pTerm!=0 );
877 assert( pTerm->pExpr!=0 );
878 assert( omitTable==0 );
879 testcase( pTerm->wtFlags & TERM_VIRTUAL );
880 iReleaseReg = ++pParse->nMem;
881 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
882 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
883 addrNxt = pLevel->addrNxt;
884 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v);
885 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
886 VdbeCoverage(v);
887 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
888 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
889 VdbeComment((v, "pk"));
890 pLevel->op = OP_Noop;
891 }else if( (pLoop->wsFlags & WHERE_IPK)!=0
892 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
893 ){
894 /* Case 3: We have an inequality comparison against the ROWID field.
895 */
896 int testOp = OP_Noop;
897 int start;
898 int memEndValue = 0;
899 WhereTerm *pStart, *pEnd;
900
901 assert( omitTable==0 );
902 j = 0;
903 pStart = pEnd = 0;
904 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
905 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
906 assert( pStart!=0 || pEnd!=0 );
907 if( bRev ){
908 pTerm = pStart;
909 pStart = pEnd;
910 pEnd = pTerm;
911 }
drhb413a542015-08-17 17:19:28 +0000912 codeCursorHint(pWInfo, pLevel, pEnd);
drh6f82e852015-06-06 20:12:09 +0000913 if( pStart ){
914 Expr *pX; /* The expression that defines the start bound */
915 int r1, rTemp; /* Registers for holding the start boundary */
916
917 /* The following constant maps TK_xx codes into corresponding
918 ** seek opcodes. It depends on a particular ordering of TK_xx
919 */
920 const u8 aMoveOp[] = {
921 /* TK_GT */ OP_SeekGT,
922 /* TK_LE */ OP_SeekLE,
923 /* TK_LT */ OP_SeekLT,
924 /* TK_GE */ OP_SeekGE
925 };
926 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
927 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
928 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
929
930 assert( (pStart->wtFlags & TERM_VNULL)==0 );
931 testcase( pStart->wtFlags & TERM_VIRTUAL );
932 pX = pStart->pExpr;
933 assert( pX!=0 );
934 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
935 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
936 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
937 VdbeComment((v, "pk"));
938 VdbeCoverageIf(v, pX->op==TK_GT);
939 VdbeCoverageIf(v, pX->op==TK_LE);
940 VdbeCoverageIf(v, pX->op==TK_LT);
941 VdbeCoverageIf(v, pX->op==TK_GE);
942 sqlite3ExprCacheAffinityChange(pParse, r1, 1);
943 sqlite3ReleaseTempReg(pParse, rTemp);
944 disableTerm(pLevel, pStart);
945 }else{
946 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
947 VdbeCoverageIf(v, bRev==0);
948 VdbeCoverageIf(v, bRev!=0);
949 }
950 if( pEnd ){
951 Expr *pX;
952 pX = pEnd->pExpr;
953 assert( pX!=0 );
954 assert( (pEnd->wtFlags & TERM_VNULL)==0 );
955 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
956 testcase( pEnd->wtFlags & TERM_VIRTUAL );
957 memEndValue = ++pParse->nMem;
958 sqlite3ExprCode(pParse, pX->pRight, memEndValue);
959 if( pX->op==TK_LT || pX->op==TK_GT ){
960 testOp = bRev ? OP_Le : OP_Ge;
961 }else{
962 testOp = bRev ? OP_Lt : OP_Gt;
963 }
964 disableTerm(pLevel, pEnd);
965 }
966 start = sqlite3VdbeCurrentAddr(v);
967 pLevel->op = bRev ? OP_Prev : OP_Next;
968 pLevel->p1 = iCur;
969 pLevel->p2 = start;
970 assert( pLevel->p5==0 );
971 if( testOp!=OP_Noop ){
972 iRowidReg = ++pParse->nMem;
973 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
974 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
975 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
976 VdbeCoverageIf(v, testOp==OP_Le);
977 VdbeCoverageIf(v, testOp==OP_Lt);
978 VdbeCoverageIf(v, testOp==OP_Ge);
979 VdbeCoverageIf(v, testOp==OP_Gt);
980 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
981 }
982 }else if( pLoop->wsFlags & WHERE_INDEXED ){
983 /* Case 4: A scan using an index.
984 **
985 ** The WHERE clause may contain zero or more equality
986 ** terms ("==" or "IN" operators) that refer to the N
987 ** left-most columns of the index. It may also contain
988 ** inequality constraints (>, <, >= or <=) on the indexed
989 ** column that immediately follows the N equalities. Only
990 ** the right-most column can be an inequality - the rest must
991 ** use the "==" and "IN" operators. For example, if the
992 ** index is on (x,y,z), then the following clauses are all
993 ** optimized:
994 **
995 ** x=5
996 ** x=5 AND y=10
997 ** x=5 AND y<10
998 ** x=5 AND y>5 AND y<10
999 ** x=5 AND y=5 AND z<=10
1000 **
1001 ** The z<10 term of the following cannot be used, only
1002 ** the x=5 term:
1003 **
1004 ** x=5 AND z<10
1005 **
1006 ** N may be zero if there are inequality constraints.
1007 ** If there are no inequality constraints, then N is at
1008 ** least one.
1009 **
1010 ** This case is also used when there are no WHERE clause
1011 ** constraints but an index is selected anyway, in order
1012 ** to force the output order to conform to an ORDER BY.
1013 */
1014 static const u8 aStartOp[] = {
1015 0,
1016 0,
1017 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
1018 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
1019 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */
1020 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */
1021 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */
1022 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */
1023 };
1024 static const u8 aEndOp[] = {
1025 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */
1026 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */
1027 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */
1028 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */
1029 };
1030 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */
1031 int regBase; /* Base register holding constraint values */
1032 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
1033 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
1034 int startEq; /* True if range start uses ==, >= or <= */
1035 int endEq; /* True if range end uses ==, >= or <= */
1036 int start_constraints; /* Start of range is constrained */
1037 int nConstraint; /* Number of constraint terms */
1038 Index *pIdx; /* The index we will be using */
1039 int iIdxCur; /* The VDBE cursor for the index */
1040 int nExtraReg = 0; /* Number of extra registers needed */
1041 int op; /* Instruction opcode */
1042 char *zStartAff; /* Affinity for start of range constraint */
1043 char cEndAff = 0; /* Affinity for end of range constraint */
1044 u8 bSeekPastNull = 0; /* True to seek past initial nulls */
1045 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */
1046
1047 pIdx = pLoop->u.btree.pIndex;
1048 iIdxCur = pLevel->iIdxCur;
1049 assert( nEq>=pLoop->nSkip );
1050
1051 /* If this loop satisfies a sort order (pOrderBy) request that
1052 ** was passed to this function to implement a "SELECT min(x) ..."
1053 ** query, then the caller will only allow the loop to run for
1054 ** a single iteration. This means that the first row returned
1055 ** should not have a NULL value stored in 'x'. If column 'x' is
1056 ** the first one after the nEq equality constraints in the index,
1057 ** this requires some special handling.
1058 */
1059 assert( pWInfo->pOrderBy==0
1060 || pWInfo->pOrderBy->nExpr==1
1061 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
1062 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
1063 && pWInfo->nOBSat>0
1064 && (pIdx->nKeyCol>nEq)
1065 ){
1066 assert( pLoop->nSkip==0 );
1067 bSeekPastNull = 1;
1068 nExtraReg = 1;
1069 }
1070
1071 /* Find any inequality constraint terms for the start and end
1072 ** of the range.
1073 */
1074 j = nEq;
1075 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1076 pRangeStart = pLoop->aLTerm[j++];
1077 nExtraReg = 1;
1078 /* Like optimization range constraints always occur in pairs */
1079 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1080 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1081 }
1082 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1083 pRangeEnd = pLoop->aLTerm[j++];
1084 nExtraReg = 1;
drh41d2e662015-12-01 21:23:07 +00001085#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
drh6f82e852015-06-06 20:12:09 +00001086 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1087 assert( pRangeStart!=0 ); /* LIKE opt constraints */
1088 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */
1089 pLevel->iLikeRepCntr = ++pParse->nMem;
1090 testcase( bRev );
1091 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1092 sqlite3VdbeAddOp2(v, OP_Integer,
1093 bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC),
1094 pLevel->iLikeRepCntr);
1095 VdbeComment((v, "LIKE loop counter"));
1096 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1097 }
drh41d2e662015-12-01 21:23:07 +00001098#endif
drh6f82e852015-06-06 20:12:09 +00001099 if( pRangeStart==0
1100 && (j = pIdx->aiColumn[nEq])>=0
1101 && pIdx->pTable->aCol[j].notNull==0
1102 ){
1103 bSeekPastNull = 1;
1104 }
1105 }
1106 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1107
drh6f82e852015-06-06 20:12:09 +00001108 /* If we are doing a reverse order scan on an ascending index, or
1109 ** a forward order scan on a descending index, interchange the
1110 ** start and end terms (pRangeStart and pRangeEnd).
1111 */
1112 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1113 || (bRev && pIdx->nKeyCol==nEq)
1114 ){
1115 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1116 SWAP(u8, bSeekPastNull, bStopAtNull);
1117 }
1118
drhbcf40a72015-08-18 15:58:05 +00001119 /* Generate code to evaluate all constraint terms using == or IN
1120 ** and store the values of those terms in an array of registers
1121 ** starting at regBase.
1122 */
1123 codeCursorHint(pWInfo, pLevel, pRangeEnd);
1124 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1125 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1126 if( zStartAff ) cEndAff = zStartAff[nEq];
1127 addrNxt = pLevel->addrNxt;
1128
drh6f82e852015-06-06 20:12:09 +00001129 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1130 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1131 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1132 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1133 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1134 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1135 start_constraints = pRangeStart || nEq>0;
1136
1137 /* Seek the index cursor to the start of the range. */
1138 nConstraint = nEq;
1139 if( pRangeStart ){
1140 Expr *pRight = pRangeStart->pExpr->pRight;
1141 sqlite3ExprCode(pParse, pRight, regBase+nEq);
1142 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1143 if( (pRangeStart->wtFlags & TERM_VNULL)==0
1144 && sqlite3ExprCanBeNull(pRight)
1145 ){
1146 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1147 VdbeCoverage(v);
1148 }
1149 if( zStartAff ){
1150 if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_BLOB){
1151 /* Since the comparison is to be performed with no conversions
1152 ** applied to the operands, set the affinity to apply to pRight to
1153 ** SQLITE_AFF_BLOB. */
1154 zStartAff[nEq] = SQLITE_AFF_BLOB;
1155 }
1156 if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
1157 zStartAff[nEq] = SQLITE_AFF_BLOB;
1158 }
1159 }
1160 nConstraint++;
1161 testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1162 }else if( bSeekPastNull ){
1163 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1164 nConstraint++;
1165 startEq = 0;
1166 start_constraints = 1;
1167 }
1168 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1169 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1170 assert( op!=0 );
1171 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1172 VdbeCoverage(v);
1173 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
1174 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
1175 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT );
1176 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
1177 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
1178 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT );
1179
1180 /* Load the value for the inequality constraint at the end of the
1181 ** range (if any).
1182 */
1183 nConstraint = nEq;
1184 if( pRangeEnd ){
1185 Expr *pRight = pRangeEnd->pExpr->pRight;
1186 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
1187 sqlite3ExprCode(pParse, pRight, regBase+nEq);
1188 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1189 if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1190 && sqlite3ExprCanBeNull(pRight)
1191 ){
1192 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1193 VdbeCoverage(v);
1194 }
1195 if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_BLOB
1196 && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff)
1197 ){
1198 codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff);
1199 }
1200 nConstraint++;
1201 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1202 }else if( bStopAtNull ){
1203 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1204 endEq = 0;
1205 nConstraint++;
1206 }
1207 sqlite3DbFree(db, zStartAff);
1208
1209 /* Top of the loop body */
1210 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1211
1212 /* Check if the index cursor is past the end of the range. */
1213 if( nConstraint ){
1214 op = aEndOp[bRev*2 + endEq];
1215 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1216 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
1217 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
1218 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
1219 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
1220 }
1221
1222 /* Seek the table cursor, if required */
1223 disableTerm(pLevel, pRangeStart);
1224 disableTerm(pLevel, pRangeEnd);
1225 if( omitTable ){
1226 /* pIdx is a covering index. No need to access the main table. */
1227 }else if( HasRowid(pIdx->pTable) ){
1228 iRowidReg = ++pParse->nMem;
1229 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1230 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
drhb0264ee2015-09-14 14:45:50 +00001231 if( pWInfo->eOnePass!=ONEPASS_OFF ){
danc6157e12015-09-14 09:23:47 +00001232 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
drh66336f32015-09-14 14:08:25 +00001233 VdbeCoverage(v);
danc6157e12015-09-14 09:23:47 +00001234 }else{
1235 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */
1236 }
drh6f82e852015-06-06 20:12:09 +00001237 }else if( iCur!=iIdxCur ){
1238 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1239 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1240 for(j=0; j<pPk->nKeyCol; j++){
1241 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1242 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1243 }
1244 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1245 iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1246 }
1247
1248 /* Record the instruction used to terminate the loop. Disable
1249 ** WHERE clause terms made redundant by the index range scan.
1250 */
1251 if( pLoop->wsFlags & WHERE_ONEROW ){
1252 pLevel->op = OP_Noop;
1253 }else if( bRev ){
1254 pLevel->op = OP_Prev;
1255 }else{
1256 pLevel->op = OP_Next;
1257 }
1258 pLevel->p1 = iIdxCur;
1259 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1260 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1261 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1262 }else{
1263 assert( pLevel->p5==0 );
1264 }
1265 }else
1266
1267#ifndef SQLITE_OMIT_OR_OPTIMIZATION
1268 if( pLoop->wsFlags & WHERE_MULTI_OR ){
1269 /* Case 5: Two or more separately indexed terms connected by OR
1270 **
1271 ** Example:
1272 **
1273 ** CREATE TABLE t1(a,b,c,d);
1274 ** CREATE INDEX i1 ON t1(a);
1275 ** CREATE INDEX i2 ON t1(b);
1276 ** CREATE INDEX i3 ON t1(c);
1277 **
1278 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1279 **
1280 ** In the example, there are three indexed terms connected by OR.
1281 ** The top of the loop looks like this:
1282 **
1283 ** Null 1 # Zero the rowset in reg 1
1284 **
1285 ** Then, for each indexed term, the following. The arguments to
1286 ** RowSetTest are such that the rowid of the current row is inserted
1287 ** into the RowSet. If it is already present, control skips the
1288 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
1289 **
1290 ** sqlite3WhereBegin(<term>)
1291 ** RowSetTest # Insert rowid into rowset
1292 ** Gosub 2 A
1293 ** sqlite3WhereEnd()
1294 **
1295 ** Following the above, code to terminate the loop. Label A, the target
1296 ** of the Gosub above, jumps to the instruction right after the Goto.
1297 **
1298 ** Null 1 # Zero the rowset in reg 1
1299 ** Goto B # The loop is finished.
1300 **
1301 ** A: <loop body> # Return data, whatever.
1302 **
1303 ** Return 2 # Jump back to the Gosub
1304 **
1305 ** B: <after the loop>
1306 **
1307 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
1308 ** use an ephemeral index instead of a RowSet to record the primary
1309 ** keys of the rows we have already seen.
1310 **
1311 */
1312 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
1313 SrcList *pOrTab; /* Shortened table list or OR-clause generation */
1314 Index *pCov = 0; /* Potential covering index (or NULL) */
1315 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */
1316
1317 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
1318 int regRowset = 0; /* Register for RowSet object */
1319 int regRowid = 0; /* Register holding rowid */
1320 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */
1321 int iRetInit; /* Address of regReturn init */
1322 int untestedTerms = 0; /* Some terms not completely tested */
1323 int ii; /* Loop counter */
1324 u16 wctrlFlags; /* Flags for sub-WHERE clause */
1325 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */
1326 Table *pTab = pTabItem->pTab;
1327
1328 pTerm = pLoop->aLTerm[0];
1329 assert( pTerm!=0 );
1330 assert( pTerm->eOperator & WO_OR );
1331 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
1332 pOrWc = &pTerm->u.pOrInfo->wc;
1333 pLevel->op = OP_Return;
1334 pLevel->p1 = regReturn;
1335
1336 /* Set up a new SrcList in pOrTab containing the table being scanned
1337 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
1338 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
1339 */
1340 if( pWInfo->nLevel>1 ){
1341 int nNotReady; /* The number of notReady tables */
1342 struct SrcList_item *origSrc; /* Original list of tables */
1343 nNotReady = pWInfo->nLevel - iLevel - 1;
1344 pOrTab = sqlite3StackAllocRaw(db,
1345 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
1346 if( pOrTab==0 ) return notReady;
1347 pOrTab->nAlloc = (u8)(nNotReady + 1);
1348 pOrTab->nSrc = pOrTab->nAlloc;
1349 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
1350 origSrc = pWInfo->pTabList->a;
1351 for(k=1; k<=nNotReady; k++){
1352 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
1353 }
1354 }else{
1355 pOrTab = pWInfo->pTabList;
1356 }
1357
1358 /* Initialize the rowset register to contain NULL. An SQL NULL is
1359 ** equivalent to an empty rowset. Or, create an ephemeral index
1360 ** capable of holding primary keys in the case of a WITHOUT ROWID.
1361 **
1362 ** Also initialize regReturn to contain the address of the instruction
1363 ** immediately following the OP_Return at the bottom of the loop. This
1364 ** is required in a few obscure LEFT JOIN cases where control jumps
1365 ** over the top of the loop into the body of it. In this case the
1366 ** correct response for the end-of-loop code (the OP_Return) is to
1367 ** fall through to the next instruction, just as an OP_Next does if
1368 ** called on an uninitialized cursor.
1369 */
1370 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1371 if( HasRowid(pTab) ){
1372 regRowset = ++pParse->nMem;
1373 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
1374 }else{
1375 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1376 regRowset = pParse->nTab++;
1377 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
1378 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
1379 }
1380 regRowid = ++pParse->nMem;
1381 }
1382 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
1383
1384 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
1385 ** Then for every term xN, evaluate as the subexpression: xN AND z
1386 ** That way, terms in y that are factored into the disjunction will
1387 ** be picked up by the recursive calls to sqlite3WhereBegin() below.
1388 **
1389 ** Actually, each subexpression is converted to "xN AND w" where w is
1390 ** the "interesting" terms of z - terms that did not originate in the
1391 ** ON or USING clause of a LEFT JOIN, and terms that are usable as
1392 ** indices.
1393 **
1394 ** This optimization also only applies if the (x1 OR x2 OR ...) term
1395 ** is not contained in the ON clause of a LEFT JOIN.
1396 ** See ticket http://www.sqlite.org/src/info/f2369304e4
1397 */
1398 if( pWC->nTerm>1 ){
1399 int iTerm;
1400 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
1401 Expr *pExpr = pWC->a[iTerm].pExpr;
1402 if( &pWC->a[iTerm] == pTerm ) continue;
1403 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
drh3b83f0c2016-01-29 16:57:06 +00001404 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
1405 testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
1406 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
drh6f82e852015-06-06 20:12:09 +00001407 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
1408 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
1409 pExpr = sqlite3ExprDup(db, pExpr, 0);
1410 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
1411 }
1412 if( pAndExpr ){
drh1167d322015-10-28 20:01:45 +00001413 pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr, 0);
drh6f82e852015-06-06 20:12:09 +00001414 }
1415 }
1416
1417 /* Run a separate WHERE clause for each term of the OR clause. After
1418 ** eliminating duplicates from other WHERE clauses, the action for each
1419 ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
1420 */
1421 wctrlFlags = WHERE_OMIT_OPEN_CLOSE
1422 | WHERE_FORCE_TABLE
1423 | WHERE_ONETABLE_ONLY
1424 | WHERE_NO_AUTOINDEX;
1425 for(ii=0; ii<pOrWc->nTerm; ii++){
1426 WhereTerm *pOrTerm = &pOrWc->a[ii];
1427 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
1428 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
1429 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
drh728e0f92015-10-10 14:41:28 +00001430 int jmp1 = 0; /* Address of jump operation */
drh6f82e852015-06-06 20:12:09 +00001431 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
1432 pAndExpr->pLeft = pOrExpr;
1433 pOrExpr = pAndExpr;
1434 }
1435 /* Loop through table entries that match term pOrTerm. */
1436 WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
1437 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
1438 wctrlFlags, iCovCur);
1439 assert( pSubWInfo || pParse->nErr || db->mallocFailed );
1440 if( pSubWInfo ){
1441 WhereLoop *pSubLoop;
1442 int addrExplain = sqlite3WhereExplainOneScan(
1443 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
1444 );
1445 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
1446
1447 /* This is the sub-WHERE clause body. First skip over
1448 ** duplicate rows from prior sub-WHERE clauses, and record the
1449 ** rowid (or PRIMARY KEY) for the current row so that the same
1450 ** row will be skipped in subsequent sub-WHERE clauses.
1451 */
1452 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1453 int r;
1454 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
1455 if( HasRowid(pTab) ){
1456 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
drh728e0f92015-10-10 14:41:28 +00001457 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
1458 r,iSet);
drh6f82e852015-06-06 20:12:09 +00001459 VdbeCoverage(v);
1460 }else{
1461 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1462 int nPk = pPk->nKeyCol;
1463 int iPk;
1464
1465 /* Read the PK into an array of temp registers. */
1466 r = sqlite3GetTempRange(pParse, nPk);
1467 for(iPk=0; iPk<nPk; iPk++){
1468 int iCol = pPk->aiColumn[iPk];
drhce78bc62015-10-15 19:21:51 +00001469 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk);
drh6f82e852015-06-06 20:12:09 +00001470 }
1471
1472 /* Check if the temp table already contains this key. If so,
1473 ** the row has already been included in the result set and
1474 ** can be ignored (by jumping past the Gosub below). Otherwise,
1475 ** insert the key into the temp table and proceed with processing
1476 ** the row.
1477 **
1478 ** Use some of the same optimizations as OP_RowSetTest: If iSet
1479 ** is zero, assume that the key cannot already be present in
1480 ** the temp table. And if iSet is -1, assume that there is no
1481 ** need to insert the key into the temp table, as it will never
1482 ** be tested for. */
1483 if( iSet ){
drh728e0f92015-10-10 14:41:28 +00001484 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
drh6f82e852015-06-06 20:12:09 +00001485 VdbeCoverage(v);
1486 }
1487 if( iSet>=0 ){
1488 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
1489 sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0);
1490 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1491 }
1492
1493 /* Release the array of temp registers */
1494 sqlite3ReleaseTempRange(pParse, r, nPk);
1495 }
1496 }
1497
1498 /* Invoke the main loop body as a subroutine */
1499 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
1500
1501 /* Jump here (skipping the main loop body subroutine) if the
1502 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
drh728e0f92015-10-10 14:41:28 +00001503 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
drh6f82e852015-06-06 20:12:09 +00001504
1505 /* The pSubWInfo->untestedTerms flag means that this OR term
1506 ** contained one or more AND term from a notReady table. The
1507 ** terms from the notReady table could not be tested and will
1508 ** need to be tested later.
1509 */
1510 if( pSubWInfo->untestedTerms ) untestedTerms = 1;
1511
1512 /* If all of the OR-connected terms are optimized using the same
1513 ** index, and the index is opened using the same cursor number
1514 ** by each call to sqlite3WhereBegin() made by this loop, it may
1515 ** be possible to use that index as a covering index.
1516 **
1517 ** If the call to sqlite3WhereBegin() above resulted in a scan that
1518 ** uses an index, and this is either the first OR-connected term
1519 ** processed or the index is the same as that used by all previous
1520 ** terms, set pCov to the candidate covering index. Otherwise, set
1521 ** pCov to NULL to indicate that no candidate covering index will
1522 ** be available.
1523 */
1524 pSubLoop = pSubWInfo->a[0].pWLoop;
1525 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
1526 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
1527 && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
1528 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
1529 ){
1530 assert( pSubWInfo->a[0].iIdxCur==iCovCur );
1531 pCov = pSubLoop->u.btree.pIndex;
1532 wctrlFlags |= WHERE_REOPEN_IDX;
1533 }else{
1534 pCov = 0;
1535 }
1536
1537 /* Finish the loop through table entries that match term pOrTerm. */
1538 sqlite3WhereEnd(pSubWInfo);
1539 }
1540 }
1541 }
1542 pLevel->u.pCovidx = pCov;
1543 if( pCov ) pLevel->iIdxCur = iCovCur;
1544 if( pAndExpr ){
1545 pAndExpr->pLeft = 0;
1546 sqlite3ExprDelete(db, pAndExpr);
1547 }
1548 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
drh076e85f2015-09-03 13:46:12 +00001549 sqlite3VdbeGoto(v, pLevel->addrBrk);
drh6f82e852015-06-06 20:12:09 +00001550 sqlite3VdbeResolveLabel(v, iLoopBody);
1551
1552 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
1553 if( !untestedTerms ) disableTerm(pLevel, pTerm);
1554 }else
1555#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1556
1557 {
1558 /* Case 6: There is no usable index. We must do a complete
1559 ** scan of the entire table.
1560 */
1561 static const u8 aStep[] = { OP_Next, OP_Prev };
1562 static const u8 aStart[] = { OP_Rewind, OP_Last };
1563 assert( bRev==0 || bRev==1 );
drh8a48b9c2015-08-19 15:20:00 +00001564 if( pTabItem->fg.isRecursive ){
drh6f82e852015-06-06 20:12:09 +00001565 /* Tables marked isRecursive have only a single row that is stored in
1566 ** a pseudo-cursor. No need to Rewind or Next such cursors. */
1567 pLevel->op = OP_Noop;
1568 }else{
drhb413a542015-08-17 17:19:28 +00001569 codeCursorHint(pWInfo, pLevel, 0);
drh6f82e852015-06-06 20:12:09 +00001570 pLevel->op = aStep[bRev];
1571 pLevel->p1 = iCur;
1572 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
1573 VdbeCoverageIf(v, bRev==0);
1574 VdbeCoverageIf(v, bRev!=0);
1575 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1576 }
1577 }
1578
1579#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1580 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
1581#endif
1582
1583 /* Insert code to test every subexpression that can be completely
1584 ** computed using the current set of tables.
1585 */
1586 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1587 Expr *pE;
1588 int skipLikeAddr = 0;
1589 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1590 testcase( pTerm->wtFlags & TERM_CODED );
1591 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1592 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
1593 testcase( pWInfo->untestedTerms==0
1594 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
1595 pWInfo->untestedTerms = 1;
1596 continue;
1597 }
1598 pE = pTerm->pExpr;
1599 assert( pE!=0 );
1600 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
1601 continue;
1602 }
1603 if( pTerm->wtFlags & TERM_LIKECOND ){
drh41d2e662015-12-01 21:23:07 +00001604#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1605 continue;
1606#else
drh6f82e852015-06-06 20:12:09 +00001607 assert( pLevel->iLikeRepCntr>0 );
1608 skipLikeAddr = sqlite3VdbeAddOp1(v, OP_IfNot, pLevel->iLikeRepCntr);
1609 VdbeCoverage(v);
drh41d2e662015-12-01 21:23:07 +00001610#endif
drh6f82e852015-06-06 20:12:09 +00001611 }
1612 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
1613 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
1614 pTerm->wtFlags |= TERM_CODED;
1615 }
1616
1617 /* Insert code to test for implied constraints based on transitivity
1618 ** of the "==" operator.
1619 **
1620 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
1621 ** and we are coding the t1 loop and the t2 loop has not yet coded,
1622 ** then we cannot use the "t1.a=t2.b" constraint, but we can code
1623 ** the implied "t1.a=123" constraint.
1624 */
1625 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1626 Expr *pE, *pEAlt;
1627 WhereTerm *pAlt;
1628 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1629 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
1630 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
1631 if( pTerm->leftCursor!=iCur ) continue;
1632 if( pLevel->iLeftJoin ) continue;
1633 pE = pTerm->pExpr;
1634 assert( !ExprHasProperty(pE, EP_FromJoin) );
1635 assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
1636 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
1637 WO_EQ|WO_IN|WO_IS, 0);
1638 if( pAlt==0 ) continue;
1639 if( pAlt->wtFlags & (TERM_CODED) ) continue;
1640 testcase( pAlt->eOperator & WO_EQ );
1641 testcase( pAlt->eOperator & WO_IS );
1642 testcase( pAlt->eOperator & WO_IN );
1643 VdbeModuleComment((v, "begin transitive constraint"));
1644 pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt));
1645 if( pEAlt ){
1646 *pEAlt = *pAlt->pExpr;
1647 pEAlt->pLeft = pE->pLeft;
1648 sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL);
1649 sqlite3StackFree(db, pEAlt);
1650 }
1651 }
1652
1653 /* For a LEFT OUTER JOIN, generate code that will record the fact that
1654 ** at least one row of the right table has matched the left table.
1655 */
1656 if( pLevel->iLeftJoin ){
1657 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
1658 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
1659 VdbeComment((v, "record LEFT JOIN hit"));
1660 sqlite3ExprCacheClear(pParse);
1661 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
1662 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1663 testcase( pTerm->wtFlags & TERM_CODED );
1664 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1665 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
1666 assert( pWInfo->untestedTerms );
1667 continue;
1668 }
1669 assert( pTerm->pExpr );
1670 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
1671 pTerm->wtFlags |= TERM_CODED;
1672 }
1673 }
1674
1675 return pLevel->notReady;
1676}