blob: c35ef295a2c3d4c85657cebe76a6224b3e010656 [file] [log] [blame]
drh6f82e852015-06-06 20:12:09 +00001/*
2** 2015-06-06
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This module contains C code that generates VDBE code used to process
13** the WHERE clause of SQL statements.
14**
15** This file was split off from where.c on 2015-06-06 in order to reduce the
16** size of where.c and make it easier to edit. This file contains the routines
17** that actually generate the bulk of the WHERE loop code. The original where.c
18** file retains the code that does query planning and analysis.
19*/
20#include "sqliteInt.h"
21#include "whereInt.h"
22
23#ifndef SQLITE_OMIT_EXPLAIN
24/*
25** This routine is a helper for explainIndexRange() below
26**
27** pStr holds the text of an expression that we are building up one term
28** at a time. This routine adds a new term to the end of the expression.
29** Terms are separated by AND so add the "AND" text for second and subsequent
30** terms only.
31*/
32static void explainAppendTerm(
33 StrAccum *pStr, /* The text expression being built */
34 int iTerm, /* Index of this term. First is zero */
35 const char *zColumn, /* Name of the column */
36 const char *zOp /* Name of the operator */
37){
38 if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5);
39 sqlite3StrAccumAppendAll(pStr, zColumn);
40 sqlite3StrAccumAppend(pStr, zOp, 1);
41 sqlite3StrAccumAppend(pStr, "?", 1);
42}
43
44/*
45** Argument pLevel describes a strategy for scanning table pTab. This
46** function appends text to pStr that describes the subset of table
47** rows scanned by the strategy in the form of an SQL expression.
48**
49** For example, if the query:
50**
51** SELECT * FROM t1 WHERE a=1 AND b>2;
52**
53** is run and there is an index on (a, b), then this function returns a
54** string similar to:
55**
56** "a=? AND b>?"
57*/
58static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop, Table *pTab){
59 Index *pIndex = pLoop->u.btree.pIndex;
60 u16 nEq = pLoop->u.btree.nEq;
61 u16 nSkip = pLoop->nSkip;
62 int i, j;
63 Column *aCol = pTab->aCol;
64 i16 *aiColumn = pIndex->aiColumn;
65
66 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
67 sqlite3StrAccumAppend(pStr, " (", 2);
68 for(i=0; i<nEq; i++){
69 char *z = aiColumn[i] < 0 ? "rowid" : aCol[aiColumn[i]].zName;
drh2ed0d802015-09-02 16:51:37 +000070 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
71 sqlite3XPrintf(pStr, 0, i>=nSkip ? "%s=?" : "ANY(%s)", z);
drh6f82e852015-06-06 20:12:09 +000072 }
73
74 j = i;
75 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
76 char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName;
77 explainAppendTerm(pStr, i++, z, ">");
78 }
79 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
80 char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName;
81 explainAppendTerm(pStr, i, z, "<");
82 }
83 sqlite3StrAccumAppend(pStr, ")", 1);
84}
85
86/*
87** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
88** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
89** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
90** is added to the output to describe the table scan strategy in pLevel.
91**
92** If an OP_Explain opcode is added to the VM, its address is returned.
93** Otherwise, if no OP_Explain is coded, zero is returned.
94*/
95int sqlite3WhereExplainOneScan(
96 Parse *pParse, /* Parse context */
97 SrcList *pTabList, /* Table list this loop refers to */
98 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
99 int iLevel, /* Value for "level" column of output */
100 int iFrom, /* Value for "from" column of output */
101 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
102){
103 int ret = 0;
104#if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
105 if( pParse->explain==2 )
106#endif
107 {
108 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
109 Vdbe *v = pParse->pVdbe; /* VM being constructed */
110 sqlite3 *db = pParse->db; /* Database handle */
111 int iId = pParse->iSelectId; /* Select id (left-most output column) */
112 int isSearch; /* True for a SEARCH. False for SCAN. */
113 WhereLoop *pLoop; /* The controlling WhereLoop object */
114 u32 flags; /* Flags that describe this loop */
115 char *zMsg; /* Text to add to EQP output */
116 StrAccum str; /* EQP output string */
117 char zBuf[100]; /* Initial space for EQP output string */
118
119 pLoop = pLevel->pWLoop;
120 flags = pLoop->wsFlags;
121 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return 0;
122
123 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
124 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
125 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
126
127 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
128 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
129 if( pItem->pSelect ){
130 sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId);
131 }else{
132 sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName);
133 }
134
135 if( pItem->zAlias ){
136 sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias);
137 }
138 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
139 const char *zFmt = 0;
140 Index *pIdx;
141
142 assert( pLoop->u.btree.pIndex!=0 );
143 pIdx = pLoop->u.btree.pIndex;
144 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
145 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
146 if( isSearch ){
147 zFmt = "PRIMARY KEY";
148 }
149 }else if( flags & WHERE_PARTIALIDX ){
150 zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
151 }else if( flags & WHERE_AUTO_INDEX ){
152 zFmt = "AUTOMATIC COVERING INDEX";
153 }else if( flags & WHERE_IDX_ONLY ){
154 zFmt = "COVERING INDEX %s";
155 }else{
156 zFmt = "INDEX %s";
157 }
158 if( zFmt ){
159 sqlite3StrAccumAppend(&str, " USING ", 7);
160 sqlite3XPrintf(&str, 0, zFmt, pIdx->zName);
161 explainIndexRange(&str, pLoop, pItem->pTab);
162 }
163 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
drhd37bea52015-09-02 15:37:50 +0000164 const char *zRangeOp;
drh6f82e852015-06-06 20:12:09 +0000165 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
drhd37bea52015-09-02 15:37:50 +0000166 zRangeOp = "=";
drh6f82e852015-06-06 20:12:09 +0000167 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
drhd37bea52015-09-02 15:37:50 +0000168 zRangeOp = ">? AND rowid<";
drh6f82e852015-06-06 20:12:09 +0000169 }else if( flags&WHERE_BTM_LIMIT ){
drhd37bea52015-09-02 15:37:50 +0000170 zRangeOp = ">";
drh6f82e852015-06-06 20:12:09 +0000171 }else{
172 assert( flags&WHERE_TOP_LIMIT);
drhd37bea52015-09-02 15:37:50 +0000173 zRangeOp = "<";
drh6f82e852015-06-06 20:12:09 +0000174 }
drhd37bea52015-09-02 15:37:50 +0000175 sqlite3XPrintf(&str, 0, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
drh6f82e852015-06-06 20:12:09 +0000176 }
177#ifndef SQLITE_OMIT_VIRTUALTABLE
178 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
179 sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s",
180 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
181 }
182#endif
183#ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
184 if( pLoop->nOut>=10 ){
185 sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
186 }else{
187 sqlite3StrAccumAppend(&str, " (~1 row)", 9);
188 }
189#endif
190 zMsg = sqlite3StrAccumFinish(&str);
191 ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);
192 }
193 return ret;
194}
195#endif /* SQLITE_OMIT_EXPLAIN */
196
197#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
198/*
199** Configure the VM passed as the first argument with an
200** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
201** implement level pLvl. Argument pSrclist is a pointer to the FROM
202** clause that the scan reads data from.
203**
204** If argument addrExplain is not 0, it must be the address of an
205** OP_Explain instruction that describes the same loop.
206*/
207void sqlite3WhereAddScanStatus(
208 Vdbe *v, /* Vdbe to add scanstatus entry to */
209 SrcList *pSrclist, /* FROM clause pLvl reads data from */
210 WhereLevel *pLvl, /* Level to add scanstatus() entry for */
211 int addrExplain /* Address of OP_Explain (or 0) */
212){
213 const char *zObj = 0;
214 WhereLoop *pLoop = pLvl->pWLoop;
215 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){
216 zObj = pLoop->u.btree.pIndex->zName;
217 }else{
218 zObj = pSrclist->a[pLvl->iFrom].zName;
219 }
220 sqlite3VdbeScanStatus(
221 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
222 );
223}
224#endif
225
226
227/*
228** Disable a term in the WHERE clause. Except, do not disable the term
229** if it controls a LEFT OUTER JOIN and it did not originate in the ON
230** or USING clause of that join.
231**
232** Consider the term t2.z='ok' in the following queries:
233**
234** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
235** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
236** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
237**
238** The t2.z='ok' is disabled in the in (2) because it originates
239** in the ON clause. The term is disabled in (3) because it is not part
240** of a LEFT OUTER JOIN. In (1), the term is not disabled.
241**
242** Disabling a term causes that term to not be tested in the inner loop
243** of the join. Disabling is an optimization. When terms are satisfied
244** by indices, we disable them to prevent redundant tests in the inner
245** loop. We would get the correct results if nothing were ever disabled,
246** but joins might run a little slower. The trick is to disable as much
247** as we can without disabling too much. If we disabled in (1), we'd get
248** the wrong answer. See ticket #813.
249**
250** If all the children of a term are disabled, then that term is also
251** automatically disabled. In this way, terms get disabled if derived
252** virtual terms are tested first. For example:
253**
254** x GLOB 'abc*' AND x>='abc' AND x<'acd'
255** \___________/ \______/ \_____/
256** parent child1 child2
257**
258** Only the parent term was in the original WHERE clause. The child1
259** and child2 terms were added by the LIKE optimization. If both of
260** the virtual child terms are valid, then testing of the parent can be
261** skipped.
262**
263** Usually the parent term is marked as TERM_CODED. But if the parent
264** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
265** The TERM_LIKECOND marking indicates that the term should be coded inside
266** a conditional such that is only evaluated on the second pass of a
267** LIKE-optimization loop, when scanning BLOBs instead of strings.
268*/
269static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
270 int nLoop = 0;
271 while( pTerm
272 && (pTerm->wtFlags & TERM_CODED)==0
273 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
274 && (pLevel->notReady & pTerm->prereqAll)==0
275 ){
276 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
277 pTerm->wtFlags |= TERM_LIKECOND;
278 }else{
279 pTerm->wtFlags |= TERM_CODED;
280 }
281 if( pTerm->iParent<0 ) break;
282 pTerm = &pTerm->pWC->a[pTerm->iParent];
283 pTerm->nChild--;
284 if( pTerm->nChild!=0 ) break;
285 nLoop++;
286 }
287}
288
289/*
290** Code an OP_Affinity opcode to apply the column affinity string zAff
291** to the n registers starting at base.
292**
293** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the
294** beginning and end of zAff are ignored. If all entries in zAff are
295** SQLITE_AFF_BLOB, then no code gets generated.
296**
297** This routine makes its own copy of zAff so that the caller is free
298** to modify zAff after this routine returns.
299*/
300static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
301 Vdbe *v = pParse->pVdbe;
302 if( zAff==0 ){
303 assert( pParse->db->mallocFailed );
304 return;
305 }
306 assert( v!=0 );
307
308 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning
309 ** and end of the affinity string.
310 */
311 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){
312 n--;
313 base++;
314 zAff++;
315 }
316 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){
317 n--;
318 }
319
320 /* Code the OP_Affinity opcode if there is anything left to do. */
321 if( n>0 ){
322 sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
323 sqlite3VdbeChangeP4(v, -1, zAff, n);
324 sqlite3ExprCacheAffinityChange(pParse, base, n);
325 }
326}
327
328
329/*
330** Generate code for a single equality term of the WHERE clause. An equality
331** term can be either X=expr or X IN (...). pTerm is the term to be
332** coded.
333**
334** The current value for the constraint is left in register iReg.
335**
336** For a constraint of the form X=expr, the expression is evaluated and its
337** result is left on the stack. For constraints of the form X IN (...)
338** this routine sets up a loop that will iterate over all values of X.
339*/
340static int codeEqualityTerm(
341 Parse *pParse, /* The parsing context */
342 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
343 WhereLevel *pLevel, /* The level of the FROM clause we are working on */
344 int iEq, /* Index of the equality term within this level */
345 int bRev, /* True for reverse-order IN operations */
346 int iTarget /* Attempt to leave results in this register */
347){
348 Expr *pX = pTerm->pExpr;
349 Vdbe *v = pParse->pVdbe;
350 int iReg; /* Register holding results */
351
352 assert( iTarget>0 );
353 if( pX->op==TK_EQ || pX->op==TK_IS ){
354 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
355 }else if( pX->op==TK_ISNULL ){
356 iReg = iTarget;
357 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
358#ifndef SQLITE_OMIT_SUBQUERY
359 }else{
360 int eType;
361 int iTab;
362 struct InLoop *pIn;
363 WhereLoop *pLoop = pLevel->pWLoop;
364
365 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
366 && pLoop->u.btree.pIndex!=0
367 && pLoop->u.btree.pIndex->aSortOrder[iEq]
368 ){
369 testcase( iEq==0 );
370 testcase( bRev );
371 bRev = !bRev;
372 }
373 assert( pX->op==TK_IN );
374 iReg = iTarget;
375 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0);
376 if( eType==IN_INDEX_INDEX_DESC ){
377 testcase( bRev );
378 bRev = !bRev;
379 }
380 iTab = pX->iTable;
381 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
382 VdbeCoverageIf(v, bRev);
383 VdbeCoverageIf(v, !bRev);
384 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
385 pLoop->wsFlags |= WHERE_IN_ABLE;
386 if( pLevel->u.in.nIn==0 ){
387 pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
388 }
389 pLevel->u.in.nIn++;
390 pLevel->u.in.aInLoop =
391 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
392 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
393 pIn = pLevel->u.in.aInLoop;
394 if( pIn ){
395 pIn += pLevel->u.in.nIn - 1;
396 pIn->iCur = iTab;
397 if( eType==IN_INDEX_ROWID ){
398 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
399 }else{
400 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
401 }
402 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;
403 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v);
404 }else{
405 pLevel->u.in.nIn = 0;
406 }
407#endif
408 }
409 disableTerm(pLevel, pTerm);
410 return iReg;
411}
412
413/*
414** Generate code that will evaluate all == and IN constraints for an
415** index scan.
416**
417** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
418** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
419** The index has as many as three equality constraints, but in this
420** example, the third "c" value is an inequality. So only two
421** constraints are coded. This routine will generate code to evaluate
422** a==5 and b IN (1,2,3). The current values for a and b will be stored
423** in consecutive registers and the index of the first register is returned.
424**
425** In the example above nEq==2. But this subroutine works for any value
426** of nEq including 0. If nEq==0, this routine is nearly a no-op.
427** The only thing it does is allocate the pLevel->iMem memory cell and
428** compute the affinity string.
429**
430** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints
431** are == or IN and are covered by the nEq. nExtraReg is 1 if there is
432** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
433** occurs after the nEq quality constraints.
434**
435** This routine allocates a range of nEq+nExtraReg memory cells and returns
436** the index of the first memory cell in that range. The code that
437** calls this routine will use that memory range to store keys for
438** start and termination conditions of the loop.
439** key value of the loop. If one or more IN operators appear, then
440** this routine allocates an additional nEq memory cells for internal
441** use.
442**
443** Before returning, *pzAff is set to point to a buffer containing a
444** copy of the column affinity string of the index allocated using
445** sqlite3DbMalloc(). Except, entries in the copy of the string associated
446** with equality constraints that use BLOB or NONE affinity are set to
447** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
448**
449** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
450** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
451**
452** In the example above, the index on t1(a) has TEXT affinity. But since
453** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
454** no conversion should be attempted before using a t2.b value as part of
455** a key to search the index. Hence the first byte in the returned affinity
456** string in this example would be set to SQLITE_AFF_BLOB.
457*/
458static int codeAllEqualityTerms(
459 Parse *pParse, /* Parsing context */
460 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
461 int bRev, /* Reverse the order of IN operators */
462 int nExtraReg, /* Number of extra registers to allocate */
463 char **pzAff /* OUT: Set to point to affinity string */
464){
465 u16 nEq; /* The number of == or IN constraints to code */
466 u16 nSkip; /* Number of left-most columns to skip */
467 Vdbe *v = pParse->pVdbe; /* The vm under construction */
468 Index *pIdx; /* The index being used for this loop */
469 WhereTerm *pTerm; /* A single constraint term */
470 WhereLoop *pLoop; /* The WhereLoop object */
471 int j; /* Loop counter */
472 int regBase; /* Base register */
473 int nReg; /* Number of registers to allocate */
474 char *zAff; /* Affinity string to return */
475
476 /* This module is only called on query plans that use an index. */
477 pLoop = pLevel->pWLoop;
478 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
479 nEq = pLoop->u.btree.nEq;
480 nSkip = pLoop->nSkip;
481 pIdx = pLoop->u.btree.pIndex;
482 assert( pIdx!=0 );
483
484 /* Figure out how many memory cells we will need then allocate them.
485 */
486 regBase = pParse->nMem + 1;
487 nReg = pLoop->u.btree.nEq + nExtraReg;
488 pParse->nMem += nReg;
489
drhe9107692015-08-25 19:20:04 +0000490 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
drh6f82e852015-06-06 20:12:09 +0000491 if( !zAff ){
492 pParse->db->mallocFailed = 1;
493 }
494
495 if( nSkip ){
496 int iIdxCur = pLevel->iIdxCur;
497 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
498 VdbeCoverageIf(v, bRev==0);
499 VdbeCoverageIf(v, bRev!=0);
500 VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
501 j = sqlite3VdbeAddOp0(v, OP_Goto);
502 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
503 iIdxCur, 0, regBase, nSkip);
504 VdbeCoverageIf(v, bRev==0);
505 VdbeCoverageIf(v, bRev!=0);
506 sqlite3VdbeJumpHere(v, j);
507 for(j=0; j<nSkip; j++){
508 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
509 assert( pIdx->aiColumn[j]>=0 );
510 VdbeComment((v, "%s", pIdx->pTable->aCol[pIdx->aiColumn[j]].zName));
511 }
512 }
513
514 /* Evaluate the equality constraints
515 */
516 assert( zAff==0 || (int)strlen(zAff)>=nEq );
517 for(j=nSkip; j<nEq; j++){
518 int r1;
519 pTerm = pLoop->aLTerm[j];
520 assert( pTerm!=0 );
521 /* The following testcase is true for indices with redundant columns.
522 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
523 testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
524 testcase( pTerm->wtFlags & TERM_VIRTUAL );
525 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
526 if( r1!=regBase+j ){
527 if( nReg==1 ){
528 sqlite3ReleaseTempReg(pParse, regBase);
529 regBase = r1;
530 }else{
531 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
532 }
533 }
534 testcase( pTerm->eOperator & WO_ISNULL );
535 testcase( pTerm->eOperator & WO_IN );
536 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
537 Expr *pRight = pTerm->pExpr->pRight;
538 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
539 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
540 VdbeCoverage(v);
541 }
542 if( zAff ){
543 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
544 zAff[j] = SQLITE_AFF_BLOB;
545 }
546 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
547 zAff[j] = SQLITE_AFF_BLOB;
548 }
549 }
550 }
551 }
552 *pzAff = zAff;
553 return regBase;
554}
555
556/*
557** If the most recently coded instruction is a constant range contraint
558** that originated from the LIKE optimization, then change the P3 to be
559** pLoop->iLikeRepCntr and set P5.
560**
561** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
562** expression: "x>='ABC' AND x<'abd'". But this requires that the range
563** scan loop run twice, once for strings and a second time for BLOBs.
564** The OP_String opcodes on the second pass convert the upper and lower
565** bound string contants to blobs. This routine makes the necessary changes
566** to the OP_String opcodes for that to happen.
567*/
568static void whereLikeOptimizationStringFixup(
569 Vdbe *v, /* prepared statement under construction */
570 WhereLevel *pLevel, /* The loop that contains the LIKE operator */
571 WhereTerm *pTerm /* The upper or lower bound just coded */
572){
573 if( pTerm->wtFlags & TERM_LIKEOPT ){
574 VdbeOp *pOp;
575 assert( pLevel->iLikeRepCntr>0 );
576 pOp = sqlite3VdbeGetOp(v, -1);
577 assert( pOp!=0 );
578 assert( pOp->opcode==OP_String8
579 || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
580 pOp->p3 = pLevel->iLikeRepCntr;
581 pOp->p5 = 1;
582 }
583}
584
585
586/*
587** Generate code for the start of the iLevel-th loop in the WHERE clause
588** implementation described by pWInfo.
589*/
590Bitmask sqlite3WhereCodeOneLoopStart(
591 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
592 int iLevel, /* Which level of pWInfo->a[] should be coded */
593 Bitmask notReady /* Which tables are currently available */
594){
595 int j, k; /* Loop counters */
596 int iCur; /* The VDBE cursor for the table */
597 int addrNxt; /* Where to jump to continue with the next IN case */
598 int omitTable; /* True if we use the index only */
599 int bRev; /* True if we need to scan in reverse order */
600 WhereLevel *pLevel; /* The where level to be coded */
601 WhereLoop *pLoop; /* The WhereLoop object being coded */
602 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
603 WhereTerm *pTerm; /* A WHERE clause term */
604 Parse *pParse; /* Parsing context */
605 sqlite3 *db; /* Database connection */
606 Vdbe *v; /* The prepared stmt under constructions */
607 struct SrcList_item *pTabItem; /* FROM clause term being coded */
608 int addrBrk; /* Jump here to break out of the loop */
609 int addrCont; /* Jump here to continue with next cycle */
610 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
611 int iReleaseReg = 0; /* Temp register to free before returning */
612
613 pParse = pWInfo->pParse;
614 v = pParse->pVdbe;
615 pWC = &pWInfo->sWC;
616 db = pParse->db;
617 pLevel = &pWInfo->a[iLevel];
618 pLoop = pLevel->pWLoop;
619 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
620 iCur = pTabItem->iCursor;
621 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
622 bRev = (pWInfo->revMask>>iLevel)&1;
623 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
624 && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0;
625 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
626
627 /* Create labels for the "break" and "continue" instructions
628 ** for the current loop. Jump to addrBrk to break out of a loop.
629 ** Jump to cont to go immediately to the next iteration of the
630 ** loop.
631 **
632 ** When there is an IN operator, we also have a "addrNxt" label that
633 ** means to continue with the next IN value combination. When
634 ** there are no IN operators in the constraints, the "addrNxt" label
635 ** is the same as "addrBrk".
636 */
637 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
638 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
639
640 /* If this is the right table of a LEFT OUTER JOIN, allocate and
641 ** initialize a memory cell that records if this table matches any
642 ** row of the left table of the join.
643 */
drh8a48b9c2015-08-19 15:20:00 +0000644 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
drh6f82e852015-06-06 20:12:09 +0000645 pLevel->iLeftJoin = ++pParse->nMem;
646 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
647 VdbeComment((v, "init LEFT JOIN no-match flag"));
648 }
649
650 /* Special case of a FROM clause subquery implemented as a co-routine */
drh8a48b9c2015-08-19 15:20:00 +0000651 if( pTabItem->fg.viaCoroutine ){
drh6f82e852015-06-06 20:12:09 +0000652 int regYield = pTabItem->regReturn;
653 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
654 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
655 VdbeCoverage(v);
656 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
657 pLevel->op = OP_Goto;
658 }else
659
660#ifndef SQLITE_OMIT_VIRTUALTABLE
661 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
662 /* Case 1: The table is a virtual-table. Use the VFilter and VNext
663 ** to access the data.
664 */
665 int iReg; /* P3 Value for OP_VFilter */
666 int addrNotFound;
667 int nConstraint = pLoop->nLTerm;
668
669 sqlite3ExprCachePush(pParse);
670 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
671 addrNotFound = pLevel->addrBrk;
672 for(j=0; j<nConstraint; j++){
673 int iTarget = iReg+j+2;
674 pTerm = pLoop->aLTerm[j];
675 if( pTerm==0 ) continue;
676 if( pTerm->eOperator & WO_IN ){
677 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
678 addrNotFound = pLevel->addrNxt;
679 }else{
680 sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget);
681 }
682 }
683 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
684 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
685 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
686 pLoop->u.vtab.idxStr,
687 pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC);
688 VdbeCoverage(v);
689 pLoop->u.vtab.needFree = 0;
690 for(j=0; j<nConstraint && j<16; j++){
691 if( (pLoop->u.vtab.omitMask>>j)&1 ){
692 disableTerm(pLevel, pLoop->aLTerm[j]);
693 }
694 }
695 pLevel->op = OP_VNext;
696 pLevel->p1 = iCur;
697 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
698 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
699 sqlite3ExprCachePop(pParse);
700 }else
701#endif /* SQLITE_OMIT_VIRTUALTABLE */
702
703 if( (pLoop->wsFlags & WHERE_IPK)!=0
704 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
705 ){
706 /* Case 2: We can directly reference a single row using an
707 ** equality comparison against the ROWID field. Or
708 ** we reference multiple rows using a "rowid IN (...)"
709 ** construct.
710 */
711 assert( pLoop->u.btree.nEq==1 );
712 pTerm = pLoop->aLTerm[0];
713 assert( pTerm!=0 );
714 assert( pTerm->pExpr!=0 );
715 assert( omitTable==0 );
716 testcase( pTerm->wtFlags & TERM_VIRTUAL );
717 iReleaseReg = ++pParse->nMem;
718 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
719 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
720 addrNxt = pLevel->addrNxt;
721 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v);
722 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
723 VdbeCoverage(v);
724 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
725 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
726 VdbeComment((v, "pk"));
727 pLevel->op = OP_Noop;
728 }else if( (pLoop->wsFlags & WHERE_IPK)!=0
729 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
730 ){
731 /* Case 3: We have an inequality comparison against the ROWID field.
732 */
733 int testOp = OP_Noop;
734 int start;
735 int memEndValue = 0;
736 WhereTerm *pStart, *pEnd;
737
738 assert( omitTable==0 );
739 j = 0;
740 pStart = pEnd = 0;
741 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
742 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
743 assert( pStart!=0 || pEnd!=0 );
744 if( bRev ){
745 pTerm = pStart;
746 pStart = pEnd;
747 pEnd = pTerm;
748 }
749 if( pStart ){
750 Expr *pX; /* The expression that defines the start bound */
751 int r1, rTemp; /* Registers for holding the start boundary */
752
753 /* The following constant maps TK_xx codes into corresponding
754 ** seek opcodes. It depends on a particular ordering of TK_xx
755 */
756 const u8 aMoveOp[] = {
757 /* TK_GT */ OP_SeekGT,
758 /* TK_LE */ OP_SeekLE,
759 /* TK_LT */ OP_SeekLT,
760 /* TK_GE */ OP_SeekGE
761 };
762 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
763 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
764 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
765
766 assert( (pStart->wtFlags & TERM_VNULL)==0 );
767 testcase( pStart->wtFlags & TERM_VIRTUAL );
768 pX = pStart->pExpr;
769 assert( pX!=0 );
770 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
771 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
772 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
773 VdbeComment((v, "pk"));
774 VdbeCoverageIf(v, pX->op==TK_GT);
775 VdbeCoverageIf(v, pX->op==TK_LE);
776 VdbeCoverageIf(v, pX->op==TK_LT);
777 VdbeCoverageIf(v, pX->op==TK_GE);
778 sqlite3ExprCacheAffinityChange(pParse, r1, 1);
779 sqlite3ReleaseTempReg(pParse, rTemp);
780 disableTerm(pLevel, pStart);
781 }else{
782 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
783 VdbeCoverageIf(v, bRev==0);
784 VdbeCoverageIf(v, bRev!=0);
785 }
786 if( pEnd ){
787 Expr *pX;
788 pX = pEnd->pExpr;
789 assert( pX!=0 );
790 assert( (pEnd->wtFlags & TERM_VNULL)==0 );
791 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
792 testcase( pEnd->wtFlags & TERM_VIRTUAL );
793 memEndValue = ++pParse->nMem;
794 sqlite3ExprCode(pParse, pX->pRight, memEndValue);
795 if( pX->op==TK_LT || pX->op==TK_GT ){
796 testOp = bRev ? OP_Le : OP_Ge;
797 }else{
798 testOp = bRev ? OP_Lt : OP_Gt;
799 }
800 disableTerm(pLevel, pEnd);
801 }
802 start = sqlite3VdbeCurrentAddr(v);
803 pLevel->op = bRev ? OP_Prev : OP_Next;
804 pLevel->p1 = iCur;
805 pLevel->p2 = start;
806 assert( pLevel->p5==0 );
807 if( testOp!=OP_Noop ){
808 iRowidReg = ++pParse->nMem;
809 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
810 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
811 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
812 VdbeCoverageIf(v, testOp==OP_Le);
813 VdbeCoverageIf(v, testOp==OP_Lt);
814 VdbeCoverageIf(v, testOp==OP_Ge);
815 VdbeCoverageIf(v, testOp==OP_Gt);
816 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
817 }
818 }else if( pLoop->wsFlags & WHERE_INDEXED ){
819 /* Case 4: A scan using an index.
820 **
821 ** The WHERE clause may contain zero or more equality
822 ** terms ("==" or "IN" operators) that refer to the N
823 ** left-most columns of the index. It may also contain
824 ** inequality constraints (>, <, >= or <=) on the indexed
825 ** column that immediately follows the N equalities. Only
826 ** the right-most column can be an inequality - the rest must
827 ** use the "==" and "IN" operators. For example, if the
828 ** index is on (x,y,z), then the following clauses are all
829 ** optimized:
830 **
831 ** x=5
832 ** x=5 AND y=10
833 ** x=5 AND y<10
834 ** x=5 AND y>5 AND y<10
835 ** x=5 AND y=5 AND z<=10
836 **
837 ** The z<10 term of the following cannot be used, only
838 ** the x=5 term:
839 **
840 ** x=5 AND z<10
841 **
842 ** N may be zero if there are inequality constraints.
843 ** If there are no inequality constraints, then N is at
844 ** least one.
845 **
846 ** This case is also used when there are no WHERE clause
847 ** constraints but an index is selected anyway, in order
848 ** to force the output order to conform to an ORDER BY.
849 */
850 static const u8 aStartOp[] = {
851 0,
852 0,
853 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
854 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
855 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */
856 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */
857 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */
858 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */
859 };
860 static const u8 aEndOp[] = {
861 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */
862 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */
863 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */
864 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */
865 };
866 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */
867 int regBase; /* Base register holding constraint values */
868 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
869 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
870 int startEq; /* True if range start uses ==, >= or <= */
871 int endEq; /* True if range end uses ==, >= or <= */
872 int start_constraints; /* Start of range is constrained */
873 int nConstraint; /* Number of constraint terms */
874 Index *pIdx; /* The index we will be using */
875 int iIdxCur; /* The VDBE cursor for the index */
876 int nExtraReg = 0; /* Number of extra registers needed */
877 int op; /* Instruction opcode */
878 char *zStartAff; /* Affinity for start of range constraint */
879 char cEndAff = 0; /* Affinity for end of range constraint */
880 u8 bSeekPastNull = 0; /* True to seek past initial nulls */
881 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */
882
883 pIdx = pLoop->u.btree.pIndex;
884 iIdxCur = pLevel->iIdxCur;
885 assert( nEq>=pLoop->nSkip );
886
887 /* If this loop satisfies a sort order (pOrderBy) request that
888 ** was passed to this function to implement a "SELECT min(x) ..."
889 ** query, then the caller will only allow the loop to run for
890 ** a single iteration. This means that the first row returned
891 ** should not have a NULL value stored in 'x'. If column 'x' is
892 ** the first one after the nEq equality constraints in the index,
893 ** this requires some special handling.
894 */
895 assert( pWInfo->pOrderBy==0
896 || pWInfo->pOrderBy->nExpr==1
897 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
898 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
899 && pWInfo->nOBSat>0
900 && (pIdx->nKeyCol>nEq)
901 ){
902 assert( pLoop->nSkip==0 );
903 bSeekPastNull = 1;
904 nExtraReg = 1;
905 }
906
907 /* Find any inequality constraint terms for the start and end
908 ** of the range.
909 */
910 j = nEq;
911 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
912 pRangeStart = pLoop->aLTerm[j++];
913 nExtraReg = 1;
914 /* Like optimization range constraints always occur in pairs */
915 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
916 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
917 }
918 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
919 pRangeEnd = pLoop->aLTerm[j++];
920 nExtraReg = 1;
921 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
922 assert( pRangeStart!=0 ); /* LIKE opt constraints */
923 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */
924 pLevel->iLikeRepCntr = ++pParse->nMem;
925 testcase( bRev );
926 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
927 sqlite3VdbeAddOp2(v, OP_Integer,
928 bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC),
929 pLevel->iLikeRepCntr);
930 VdbeComment((v, "LIKE loop counter"));
931 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
932 }
933 if( pRangeStart==0
934 && (j = pIdx->aiColumn[nEq])>=0
935 && pIdx->pTable->aCol[j].notNull==0
936 ){
937 bSeekPastNull = 1;
938 }
939 }
940 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
941
942 /* Generate code to evaluate all constraint terms using == or IN
943 ** and store the values of those terms in an array of registers
944 ** starting at regBase.
945 */
946 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
947 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
948 if( zStartAff ) cEndAff = zStartAff[nEq];
949 addrNxt = pLevel->addrNxt;
950
951 /* If we are doing a reverse order scan on an ascending index, or
952 ** a forward order scan on a descending index, interchange the
953 ** start and end terms (pRangeStart and pRangeEnd).
954 */
955 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
956 || (bRev && pIdx->nKeyCol==nEq)
957 ){
958 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
959 SWAP(u8, bSeekPastNull, bStopAtNull);
960 }
961
962 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
963 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
964 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
965 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
966 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
967 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
968 start_constraints = pRangeStart || nEq>0;
969
970 /* Seek the index cursor to the start of the range. */
971 nConstraint = nEq;
972 if( pRangeStart ){
973 Expr *pRight = pRangeStart->pExpr->pRight;
974 sqlite3ExprCode(pParse, pRight, regBase+nEq);
975 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
976 if( (pRangeStart->wtFlags & TERM_VNULL)==0
977 && sqlite3ExprCanBeNull(pRight)
978 ){
979 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
980 VdbeCoverage(v);
981 }
982 if( zStartAff ){
983 if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_BLOB){
984 /* Since the comparison is to be performed with no conversions
985 ** applied to the operands, set the affinity to apply to pRight to
986 ** SQLITE_AFF_BLOB. */
987 zStartAff[nEq] = SQLITE_AFF_BLOB;
988 }
989 if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
990 zStartAff[nEq] = SQLITE_AFF_BLOB;
991 }
992 }
993 nConstraint++;
994 testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
995 }else if( bSeekPastNull ){
996 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
997 nConstraint++;
998 startEq = 0;
999 start_constraints = 1;
1000 }
1001 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1002 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1003 assert( op!=0 );
1004 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1005 VdbeCoverage(v);
1006 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
1007 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
1008 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT );
1009 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
1010 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
1011 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT );
1012
1013 /* Load the value for the inequality constraint at the end of the
1014 ** range (if any).
1015 */
1016 nConstraint = nEq;
1017 if( pRangeEnd ){
1018 Expr *pRight = pRangeEnd->pExpr->pRight;
1019 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
1020 sqlite3ExprCode(pParse, pRight, regBase+nEq);
1021 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1022 if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1023 && sqlite3ExprCanBeNull(pRight)
1024 ){
1025 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1026 VdbeCoverage(v);
1027 }
1028 if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_BLOB
1029 && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff)
1030 ){
1031 codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff);
1032 }
1033 nConstraint++;
1034 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1035 }else if( bStopAtNull ){
1036 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1037 endEq = 0;
1038 nConstraint++;
1039 }
1040 sqlite3DbFree(db, zStartAff);
1041
1042 /* Top of the loop body */
1043 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1044
1045 /* Check if the index cursor is past the end of the range. */
1046 if( nConstraint ){
1047 op = aEndOp[bRev*2 + endEq];
1048 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1049 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
1050 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
1051 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
1052 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
1053 }
1054
1055 /* Seek the table cursor, if required */
1056 disableTerm(pLevel, pRangeStart);
1057 disableTerm(pLevel, pRangeEnd);
1058 if( omitTable ){
1059 /* pIdx is a covering index. No need to access the main table. */
1060 }else if( HasRowid(pIdx->pTable) ){
1061 iRowidReg = ++pParse->nMem;
1062 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1063 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1064 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */
1065 }else if( iCur!=iIdxCur ){
1066 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1067 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1068 for(j=0; j<pPk->nKeyCol; j++){
1069 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1070 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1071 }
1072 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1073 iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1074 }
1075
1076 /* Record the instruction used to terminate the loop. Disable
1077 ** WHERE clause terms made redundant by the index range scan.
1078 */
1079 if( pLoop->wsFlags & WHERE_ONEROW ){
1080 pLevel->op = OP_Noop;
1081 }else if( bRev ){
1082 pLevel->op = OP_Prev;
1083 }else{
1084 pLevel->op = OP_Next;
1085 }
1086 pLevel->p1 = iIdxCur;
1087 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1088 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1089 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1090 }else{
1091 assert( pLevel->p5==0 );
1092 }
1093 }else
1094
1095#ifndef SQLITE_OMIT_OR_OPTIMIZATION
1096 if( pLoop->wsFlags & WHERE_MULTI_OR ){
1097 /* Case 5: Two or more separately indexed terms connected by OR
1098 **
1099 ** Example:
1100 **
1101 ** CREATE TABLE t1(a,b,c,d);
1102 ** CREATE INDEX i1 ON t1(a);
1103 ** CREATE INDEX i2 ON t1(b);
1104 ** CREATE INDEX i3 ON t1(c);
1105 **
1106 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1107 **
1108 ** In the example, there are three indexed terms connected by OR.
1109 ** The top of the loop looks like this:
1110 **
1111 ** Null 1 # Zero the rowset in reg 1
1112 **
1113 ** Then, for each indexed term, the following. The arguments to
1114 ** RowSetTest are such that the rowid of the current row is inserted
1115 ** into the RowSet. If it is already present, control skips the
1116 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
1117 **
1118 ** sqlite3WhereBegin(<term>)
1119 ** RowSetTest # Insert rowid into rowset
1120 ** Gosub 2 A
1121 ** sqlite3WhereEnd()
1122 **
1123 ** Following the above, code to terminate the loop. Label A, the target
1124 ** of the Gosub above, jumps to the instruction right after the Goto.
1125 **
1126 ** Null 1 # Zero the rowset in reg 1
1127 ** Goto B # The loop is finished.
1128 **
1129 ** A: <loop body> # Return data, whatever.
1130 **
1131 ** Return 2 # Jump back to the Gosub
1132 **
1133 ** B: <after the loop>
1134 **
1135 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
1136 ** use an ephemeral index instead of a RowSet to record the primary
1137 ** keys of the rows we have already seen.
1138 **
1139 */
1140 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
1141 SrcList *pOrTab; /* Shortened table list or OR-clause generation */
1142 Index *pCov = 0; /* Potential covering index (or NULL) */
1143 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */
1144
1145 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
1146 int regRowset = 0; /* Register for RowSet object */
1147 int regRowid = 0; /* Register holding rowid */
1148 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */
1149 int iRetInit; /* Address of regReturn init */
1150 int untestedTerms = 0; /* Some terms not completely tested */
1151 int ii; /* Loop counter */
1152 u16 wctrlFlags; /* Flags for sub-WHERE clause */
1153 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */
1154 Table *pTab = pTabItem->pTab;
1155
1156 pTerm = pLoop->aLTerm[0];
1157 assert( pTerm!=0 );
1158 assert( pTerm->eOperator & WO_OR );
1159 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
1160 pOrWc = &pTerm->u.pOrInfo->wc;
1161 pLevel->op = OP_Return;
1162 pLevel->p1 = regReturn;
1163
1164 /* Set up a new SrcList in pOrTab containing the table being scanned
1165 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
1166 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
1167 */
1168 if( pWInfo->nLevel>1 ){
1169 int nNotReady; /* The number of notReady tables */
1170 struct SrcList_item *origSrc; /* Original list of tables */
1171 nNotReady = pWInfo->nLevel - iLevel - 1;
1172 pOrTab = sqlite3StackAllocRaw(db,
1173 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
1174 if( pOrTab==0 ) return notReady;
1175 pOrTab->nAlloc = (u8)(nNotReady + 1);
1176 pOrTab->nSrc = pOrTab->nAlloc;
1177 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
1178 origSrc = pWInfo->pTabList->a;
1179 for(k=1; k<=nNotReady; k++){
1180 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
1181 }
1182 }else{
1183 pOrTab = pWInfo->pTabList;
1184 }
1185
1186 /* Initialize the rowset register to contain NULL. An SQL NULL is
1187 ** equivalent to an empty rowset. Or, create an ephemeral index
1188 ** capable of holding primary keys in the case of a WITHOUT ROWID.
1189 **
1190 ** Also initialize regReturn to contain the address of the instruction
1191 ** immediately following the OP_Return at the bottom of the loop. This
1192 ** is required in a few obscure LEFT JOIN cases where control jumps
1193 ** over the top of the loop into the body of it. In this case the
1194 ** correct response for the end-of-loop code (the OP_Return) is to
1195 ** fall through to the next instruction, just as an OP_Next does if
1196 ** called on an uninitialized cursor.
1197 */
1198 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1199 if( HasRowid(pTab) ){
1200 regRowset = ++pParse->nMem;
1201 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
1202 }else{
1203 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1204 regRowset = pParse->nTab++;
1205 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
1206 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
1207 }
1208 regRowid = ++pParse->nMem;
1209 }
1210 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
1211
1212 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
1213 ** Then for every term xN, evaluate as the subexpression: xN AND z
1214 ** That way, terms in y that are factored into the disjunction will
1215 ** be picked up by the recursive calls to sqlite3WhereBegin() below.
1216 **
1217 ** Actually, each subexpression is converted to "xN AND w" where w is
1218 ** the "interesting" terms of z - terms that did not originate in the
1219 ** ON or USING clause of a LEFT JOIN, and terms that are usable as
1220 ** indices.
1221 **
1222 ** This optimization also only applies if the (x1 OR x2 OR ...) term
1223 ** is not contained in the ON clause of a LEFT JOIN.
1224 ** See ticket http://www.sqlite.org/src/info/f2369304e4
1225 */
1226 if( pWC->nTerm>1 ){
1227 int iTerm;
1228 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
1229 Expr *pExpr = pWC->a[iTerm].pExpr;
1230 if( &pWC->a[iTerm] == pTerm ) continue;
1231 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
1232 if( (pWC->a[iTerm].wtFlags & TERM_VIRTUAL)!=0 ) continue;
1233 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
1234 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
1235 pExpr = sqlite3ExprDup(db, pExpr, 0);
1236 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
1237 }
1238 if( pAndExpr ){
1239 pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0);
1240 }
1241 }
1242
1243 /* Run a separate WHERE clause for each term of the OR clause. After
1244 ** eliminating duplicates from other WHERE clauses, the action for each
1245 ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
1246 */
1247 wctrlFlags = WHERE_OMIT_OPEN_CLOSE
1248 | WHERE_FORCE_TABLE
1249 | WHERE_ONETABLE_ONLY
1250 | WHERE_NO_AUTOINDEX;
1251 for(ii=0; ii<pOrWc->nTerm; ii++){
1252 WhereTerm *pOrTerm = &pOrWc->a[ii];
1253 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
1254 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
1255 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
1256 int j1 = 0; /* Address of jump operation */
1257 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
1258 pAndExpr->pLeft = pOrExpr;
1259 pOrExpr = pAndExpr;
1260 }
1261 /* Loop through table entries that match term pOrTerm. */
1262 WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
1263 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
1264 wctrlFlags, iCovCur);
1265 assert( pSubWInfo || pParse->nErr || db->mallocFailed );
1266 if( pSubWInfo ){
1267 WhereLoop *pSubLoop;
1268 int addrExplain = sqlite3WhereExplainOneScan(
1269 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
1270 );
1271 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
1272
1273 /* This is the sub-WHERE clause body. First skip over
1274 ** duplicate rows from prior sub-WHERE clauses, and record the
1275 ** rowid (or PRIMARY KEY) for the current row so that the same
1276 ** row will be skipped in subsequent sub-WHERE clauses.
1277 */
1278 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1279 int r;
1280 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
1281 if( HasRowid(pTab) ){
1282 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
1283 j1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, r,iSet);
1284 VdbeCoverage(v);
1285 }else{
1286 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1287 int nPk = pPk->nKeyCol;
1288 int iPk;
1289
1290 /* Read the PK into an array of temp registers. */
1291 r = sqlite3GetTempRange(pParse, nPk);
1292 for(iPk=0; iPk<nPk; iPk++){
1293 int iCol = pPk->aiColumn[iPk];
drhd3e3f0b2015-07-23 16:39:33 +00001294 int rx;
1295 rx = sqlite3ExprCodeGetColumn(pParse, pTab, iCol, iCur,r+iPk,0);
1296 if( rx!=r+iPk ){
1297 sqlite3VdbeAddOp2(v, OP_SCopy, rx, r+iPk);
1298 }
drh6f82e852015-06-06 20:12:09 +00001299 }
1300
1301 /* Check if the temp table already contains this key. If so,
1302 ** the row has already been included in the result set and
1303 ** can be ignored (by jumping past the Gosub below). Otherwise,
1304 ** insert the key into the temp table and proceed with processing
1305 ** the row.
1306 **
1307 ** Use some of the same optimizations as OP_RowSetTest: If iSet
1308 ** is zero, assume that the key cannot already be present in
1309 ** the temp table. And if iSet is -1, assume that there is no
1310 ** need to insert the key into the temp table, as it will never
1311 ** be tested for. */
1312 if( iSet ){
1313 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
1314 VdbeCoverage(v);
1315 }
1316 if( iSet>=0 ){
1317 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
1318 sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0);
1319 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1320 }
1321
1322 /* Release the array of temp registers */
1323 sqlite3ReleaseTempRange(pParse, r, nPk);
1324 }
1325 }
1326
1327 /* Invoke the main loop body as a subroutine */
1328 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
1329
1330 /* Jump here (skipping the main loop body subroutine) if the
1331 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
1332 if( j1 ) sqlite3VdbeJumpHere(v, j1);
1333
1334 /* The pSubWInfo->untestedTerms flag means that this OR term
1335 ** contained one or more AND term from a notReady table. The
1336 ** terms from the notReady table could not be tested and will
1337 ** need to be tested later.
1338 */
1339 if( pSubWInfo->untestedTerms ) untestedTerms = 1;
1340
1341 /* If all of the OR-connected terms are optimized using the same
1342 ** index, and the index is opened using the same cursor number
1343 ** by each call to sqlite3WhereBegin() made by this loop, it may
1344 ** be possible to use that index as a covering index.
1345 **
1346 ** If the call to sqlite3WhereBegin() above resulted in a scan that
1347 ** uses an index, and this is either the first OR-connected term
1348 ** processed or the index is the same as that used by all previous
1349 ** terms, set pCov to the candidate covering index. Otherwise, set
1350 ** pCov to NULL to indicate that no candidate covering index will
1351 ** be available.
1352 */
1353 pSubLoop = pSubWInfo->a[0].pWLoop;
1354 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
1355 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
1356 && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
1357 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
1358 ){
1359 assert( pSubWInfo->a[0].iIdxCur==iCovCur );
1360 pCov = pSubLoop->u.btree.pIndex;
1361 wctrlFlags |= WHERE_REOPEN_IDX;
1362 }else{
1363 pCov = 0;
1364 }
1365
1366 /* Finish the loop through table entries that match term pOrTerm. */
1367 sqlite3WhereEnd(pSubWInfo);
1368 }
1369 }
1370 }
1371 pLevel->u.pCovidx = pCov;
1372 if( pCov ) pLevel->iIdxCur = iCovCur;
1373 if( pAndExpr ){
1374 pAndExpr->pLeft = 0;
1375 sqlite3ExprDelete(db, pAndExpr);
1376 }
1377 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
drh076e85f2015-09-03 13:46:12 +00001378 sqlite3VdbeGoto(v, pLevel->addrBrk);
drh6f82e852015-06-06 20:12:09 +00001379 sqlite3VdbeResolveLabel(v, iLoopBody);
1380
1381 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
1382 if( !untestedTerms ) disableTerm(pLevel, pTerm);
1383 }else
1384#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1385
1386 {
1387 /* Case 6: There is no usable index. We must do a complete
1388 ** scan of the entire table.
1389 */
1390 static const u8 aStep[] = { OP_Next, OP_Prev };
1391 static const u8 aStart[] = { OP_Rewind, OP_Last };
1392 assert( bRev==0 || bRev==1 );
drh8a48b9c2015-08-19 15:20:00 +00001393 if( pTabItem->fg.isRecursive ){
drh6f82e852015-06-06 20:12:09 +00001394 /* Tables marked isRecursive have only a single row that is stored in
1395 ** a pseudo-cursor. No need to Rewind or Next such cursors. */
1396 pLevel->op = OP_Noop;
1397 }else{
1398 pLevel->op = aStep[bRev];
1399 pLevel->p1 = iCur;
1400 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
1401 VdbeCoverageIf(v, bRev==0);
1402 VdbeCoverageIf(v, bRev!=0);
1403 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1404 }
1405 }
1406
1407#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1408 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
1409#endif
1410
1411 /* Insert code to test every subexpression that can be completely
1412 ** computed using the current set of tables.
1413 */
1414 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1415 Expr *pE;
1416 int skipLikeAddr = 0;
1417 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1418 testcase( pTerm->wtFlags & TERM_CODED );
1419 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1420 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
1421 testcase( pWInfo->untestedTerms==0
1422 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
1423 pWInfo->untestedTerms = 1;
1424 continue;
1425 }
1426 pE = pTerm->pExpr;
1427 assert( pE!=0 );
1428 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
1429 continue;
1430 }
1431 if( pTerm->wtFlags & TERM_LIKECOND ){
1432 assert( pLevel->iLikeRepCntr>0 );
1433 skipLikeAddr = sqlite3VdbeAddOp1(v, OP_IfNot, pLevel->iLikeRepCntr);
1434 VdbeCoverage(v);
1435 }
1436 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
1437 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
1438 pTerm->wtFlags |= TERM_CODED;
1439 }
1440
1441 /* Insert code to test for implied constraints based on transitivity
1442 ** of the "==" operator.
1443 **
1444 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
1445 ** and we are coding the t1 loop and the t2 loop has not yet coded,
1446 ** then we cannot use the "t1.a=t2.b" constraint, but we can code
1447 ** the implied "t1.a=123" constraint.
1448 */
1449 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1450 Expr *pE, *pEAlt;
1451 WhereTerm *pAlt;
1452 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1453 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
1454 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
1455 if( pTerm->leftCursor!=iCur ) continue;
1456 if( pLevel->iLeftJoin ) continue;
1457 pE = pTerm->pExpr;
1458 assert( !ExprHasProperty(pE, EP_FromJoin) );
1459 assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
1460 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
1461 WO_EQ|WO_IN|WO_IS, 0);
1462 if( pAlt==0 ) continue;
1463 if( pAlt->wtFlags & (TERM_CODED) ) continue;
1464 testcase( pAlt->eOperator & WO_EQ );
1465 testcase( pAlt->eOperator & WO_IS );
1466 testcase( pAlt->eOperator & WO_IN );
1467 VdbeModuleComment((v, "begin transitive constraint"));
1468 pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt));
1469 if( pEAlt ){
1470 *pEAlt = *pAlt->pExpr;
1471 pEAlt->pLeft = pE->pLeft;
1472 sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL);
1473 sqlite3StackFree(db, pEAlt);
1474 }
1475 }
1476
1477 /* For a LEFT OUTER JOIN, generate code that will record the fact that
1478 ** at least one row of the right table has matched the left table.
1479 */
1480 if( pLevel->iLeftJoin ){
1481 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
1482 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
1483 VdbeComment((v, "record LEFT JOIN hit"));
1484 sqlite3ExprCacheClear(pParse);
1485 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
1486 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1487 testcase( pTerm->wtFlags & TERM_CODED );
1488 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1489 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
1490 assert( pWInfo->untestedTerms );
1491 continue;
1492 }
1493 assert( pTerm->pExpr );
1494 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
1495 pTerm->wtFlags |= TERM_CODED;
1496 }
1497 }
1498
1499 return pLevel->notReady;
1500}