blob: 0a9d7b35be104355e75dc46f838334cc79b5fbbc [file] [log] [blame]
drh6f82e852015-06-06 20:12:09 +00001/*
2** 2015-06-06
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This module contains C code that generates VDBE code used to process
13** the WHERE clause of SQL statements.
14**
15** This file was split off from where.c on 2015-06-06 in order to reduce the
16** size of where.c and make it easier to edit. This file contains the routines
17** that actually generate the bulk of the WHERE loop code. The original where.c
18** file retains the code that does query planning and analysis.
19*/
20#include "sqliteInt.h"
21#include "whereInt.h"
22
23#ifndef SQLITE_OMIT_EXPLAIN
24/*
25** This routine is a helper for explainIndexRange() below
26**
27** pStr holds the text of an expression that we are building up one term
28** at a time. This routine adds a new term to the end of the expression.
29** Terms are separated by AND so add the "AND" text for second and subsequent
30** terms only.
31*/
32static void explainAppendTerm(
33 StrAccum *pStr, /* The text expression being built */
34 int iTerm, /* Index of this term. First is zero */
35 const char *zColumn, /* Name of the column */
36 const char *zOp /* Name of the operator */
37){
38 if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5);
39 sqlite3StrAccumAppendAll(pStr, zColumn);
40 sqlite3StrAccumAppend(pStr, zOp, 1);
41 sqlite3StrAccumAppend(pStr, "?", 1);
42}
43
44/*
drhc7c46802015-08-27 20:33:38 +000045** Return the name of the i-th column of the pIdx index.
46*/
47static const char *explainIndexColumnName(Index *pIdx, int i){
48 i = pIdx->aiColumn[i];
49 if( i==(-2) ) return "<expr>";
50 if( i==(-1) ) return "rowid";
51 return pIdx->pTable->aCol[i].zName;
52}
53
54/*
drh6f82e852015-06-06 20:12:09 +000055** Argument pLevel describes a strategy for scanning table pTab. This
56** function appends text to pStr that describes the subset of table
57** rows scanned by the strategy in the form of an SQL expression.
58**
59** For example, if the query:
60**
61** SELECT * FROM t1 WHERE a=1 AND b>2;
62**
63** is run and there is an index on (a, b), then this function returns a
64** string similar to:
65**
66** "a=? AND b>?"
67*/
68static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop, Table *pTab){
69 Index *pIndex = pLoop->u.btree.pIndex;
70 u16 nEq = pLoop->u.btree.nEq;
71 u16 nSkip = pLoop->nSkip;
72 int i, j;
drh6f82e852015-06-06 20:12:09 +000073
74 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
75 sqlite3StrAccumAppend(pStr, " (", 2);
76 for(i=0; i<nEq; i++){
drhc7c46802015-08-27 20:33:38 +000077 const char *z = explainIndexColumnName(pIndex, i);
drh6f82e852015-06-06 20:12:09 +000078 if( i>=nSkip ){
79 explainAppendTerm(pStr, i, z, "=");
80 }else{
81 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
82 sqlite3XPrintf(pStr, 0, "ANY(%s)", z);
83 }
84 }
85
86 j = i;
87 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
drhc7c46802015-08-27 20:33:38 +000088 const char *z = explainIndexColumnName(pIndex, i);
drh6f82e852015-06-06 20:12:09 +000089 explainAppendTerm(pStr, i++, z, ">");
90 }
91 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
drhc7c46802015-08-27 20:33:38 +000092 const char *z = explainIndexColumnName(pIndex, j);
drh6f82e852015-06-06 20:12:09 +000093 explainAppendTerm(pStr, i, z, "<");
94 }
95 sqlite3StrAccumAppend(pStr, ")", 1);
96}
97
98/*
99** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
100** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
101** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
102** is added to the output to describe the table scan strategy in pLevel.
103**
104** If an OP_Explain opcode is added to the VM, its address is returned.
105** Otherwise, if no OP_Explain is coded, zero is returned.
106*/
107int sqlite3WhereExplainOneScan(
108 Parse *pParse, /* Parse context */
109 SrcList *pTabList, /* Table list this loop refers to */
110 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
111 int iLevel, /* Value for "level" column of output */
112 int iFrom, /* Value for "from" column of output */
113 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
114){
115 int ret = 0;
116#if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
117 if( pParse->explain==2 )
118#endif
119 {
120 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
121 Vdbe *v = pParse->pVdbe; /* VM being constructed */
122 sqlite3 *db = pParse->db; /* Database handle */
123 int iId = pParse->iSelectId; /* Select id (left-most output column) */
124 int isSearch; /* True for a SEARCH. False for SCAN. */
125 WhereLoop *pLoop; /* The controlling WhereLoop object */
126 u32 flags; /* Flags that describe this loop */
127 char *zMsg; /* Text to add to EQP output */
128 StrAccum str; /* EQP output string */
129 char zBuf[100]; /* Initial space for EQP output string */
130
131 pLoop = pLevel->pWLoop;
132 flags = pLoop->wsFlags;
133 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return 0;
134
135 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
136 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
137 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
138
139 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
140 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
141 if( pItem->pSelect ){
142 sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId);
143 }else{
144 sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName);
145 }
146
147 if( pItem->zAlias ){
148 sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias);
149 }
150 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
151 const char *zFmt = 0;
152 Index *pIdx;
153
154 assert( pLoop->u.btree.pIndex!=0 );
155 pIdx = pLoop->u.btree.pIndex;
156 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
157 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
158 if( isSearch ){
159 zFmt = "PRIMARY KEY";
160 }
161 }else if( flags & WHERE_PARTIALIDX ){
162 zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
163 }else if( flags & WHERE_AUTO_INDEX ){
164 zFmt = "AUTOMATIC COVERING INDEX";
165 }else if( flags & WHERE_IDX_ONLY ){
166 zFmt = "COVERING INDEX %s";
167 }else{
168 zFmt = "INDEX %s";
169 }
170 if( zFmt ){
171 sqlite3StrAccumAppend(&str, " USING ", 7);
172 sqlite3XPrintf(&str, 0, zFmt, pIdx->zName);
173 explainIndexRange(&str, pLoop, pItem->pTab);
174 }
175 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
176 const char *zRange;
177 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
178 zRange = "(rowid=?)";
179 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
180 zRange = "(rowid>? AND rowid<?)";
181 }else if( flags&WHERE_BTM_LIMIT ){
182 zRange = "(rowid>?)";
183 }else{
184 assert( flags&WHERE_TOP_LIMIT);
185 zRange = "(rowid<?)";
186 }
187 sqlite3StrAccumAppendAll(&str, " USING INTEGER PRIMARY KEY ");
188 sqlite3StrAccumAppendAll(&str, zRange);
189 }
190#ifndef SQLITE_OMIT_VIRTUALTABLE
191 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
192 sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s",
193 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
194 }
195#endif
196#ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
197 if( pLoop->nOut>=10 ){
198 sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
199 }else{
200 sqlite3StrAccumAppend(&str, " (~1 row)", 9);
201 }
202#endif
203 zMsg = sqlite3StrAccumFinish(&str);
204 ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);
205 }
206 return ret;
207}
208#endif /* SQLITE_OMIT_EXPLAIN */
209
210#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
211/*
212** Configure the VM passed as the first argument with an
213** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
214** implement level pLvl. Argument pSrclist is a pointer to the FROM
215** clause that the scan reads data from.
216**
217** If argument addrExplain is not 0, it must be the address of an
218** OP_Explain instruction that describes the same loop.
219*/
220void sqlite3WhereAddScanStatus(
221 Vdbe *v, /* Vdbe to add scanstatus entry to */
222 SrcList *pSrclist, /* FROM clause pLvl reads data from */
223 WhereLevel *pLvl, /* Level to add scanstatus() entry for */
224 int addrExplain /* Address of OP_Explain (or 0) */
225){
226 const char *zObj = 0;
227 WhereLoop *pLoop = pLvl->pWLoop;
228 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){
229 zObj = pLoop->u.btree.pIndex->zName;
230 }else{
231 zObj = pSrclist->a[pLvl->iFrom].zName;
232 }
233 sqlite3VdbeScanStatus(
234 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
235 );
236}
237#endif
238
239
240/*
241** Disable a term in the WHERE clause. Except, do not disable the term
242** if it controls a LEFT OUTER JOIN and it did not originate in the ON
243** or USING clause of that join.
244**
245** Consider the term t2.z='ok' in the following queries:
246**
247** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
248** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
249** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
250**
251** The t2.z='ok' is disabled in the in (2) because it originates
252** in the ON clause. The term is disabled in (3) because it is not part
253** of a LEFT OUTER JOIN. In (1), the term is not disabled.
254**
255** Disabling a term causes that term to not be tested in the inner loop
256** of the join. Disabling is an optimization. When terms are satisfied
257** by indices, we disable them to prevent redundant tests in the inner
258** loop. We would get the correct results if nothing were ever disabled,
259** but joins might run a little slower. The trick is to disable as much
260** as we can without disabling too much. If we disabled in (1), we'd get
261** the wrong answer. See ticket #813.
262**
263** If all the children of a term are disabled, then that term is also
264** automatically disabled. In this way, terms get disabled if derived
265** virtual terms are tested first. For example:
266**
267** x GLOB 'abc*' AND x>='abc' AND x<'acd'
268** \___________/ \______/ \_____/
269** parent child1 child2
270**
271** Only the parent term was in the original WHERE clause. The child1
272** and child2 terms were added by the LIKE optimization. If both of
273** the virtual child terms are valid, then testing of the parent can be
274** skipped.
275**
276** Usually the parent term is marked as TERM_CODED. But if the parent
277** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
278** The TERM_LIKECOND marking indicates that the term should be coded inside
279** a conditional such that is only evaluated on the second pass of a
280** LIKE-optimization loop, when scanning BLOBs instead of strings.
281*/
282static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
283 int nLoop = 0;
284 while( pTerm
285 && (pTerm->wtFlags & TERM_CODED)==0
286 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
287 && (pLevel->notReady & pTerm->prereqAll)==0
288 ){
289 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
290 pTerm->wtFlags |= TERM_LIKECOND;
291 }else{
292 pTerm->wtFlags |= TERM_CODED;
293 }
294 if( pTerm->iParent<0 ) break;
295 pTerm = &pTerm->pWC->a[pTerm->iParent];
296 pTerm->nChild--;
297 if( pTerm->nChild!=0 ) break;
298 nLoop++;
299 }
300}
301
302/*
303** Code an OP_Affinity opcode to apply the column affinity string zAff
304** to the n registers starting at base.
305**
306** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the
307** beginning and end of zAff are ignored. If all entries in zAff are
308** SQLITE_AFF_BLOB, then no code gets generated.
309**
310** This routine makes its own copy of zAff so that the caller is free
311** to modify zAff after this routine returns.
312*/
313static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
314 Vdbe *v = pParse->pVdbe;
315 if( zAff==0 ){
316 assert( pParse->db->mallocFailed );
317 return;
318 }
319 assert( v!=0 );
320
321 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning
322 ** and end of the affinity string.
323 */
324 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){
325 n--;
326 base++;
327 zAff++;
328 }
329 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){
330 n--;
331 }
332
333 /* Code the OP_Affinity opcode if there is anything left to do. */
334 if( n>0 ){
335 sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
336 sqlite3VdbeChangeP4(v, -1, zAff, n);
337 sqlite3ExprCacheAffinityChange(pParse, base, n);
338 }
339}
340
341
342/*
343** Generate code for a single equality term of the WHERE clause. An equality
344** term can be either X=expr or X IN (...). pTerm is the term to be
345** coded.
346**
347** The current value for the constraint is left in register iReg.
348**
349** For a constraint of the form X=expr, the expression is evaluated and its
350** result is left on the stack. For constraints of the form X IN (...)
351** this routine sets up a loop that will iterate over all values of X.
352*/
353static int codeEqualityTerm(
354 Parse *pParse, /* The parsing context */
355 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
356 WhereLevel *pLevel, /* The level of the FROM clause we are working on */
357 int iEq, /* Index of the equality term within this level */
358 int bRev, /* True for reverse-order IN operations */
359 int iTarget /* Attempt to leave results in this register */
360){
361 Expr *pX = pTerm->pExpr;
362 Vdbe *v = pParse->pVdbe;
363 int iReg; /* Register holding results */
364
365 assert( iTarget>0 );
366 if( pX->op==TK_EQ || pX->op==TK_IS ){
367 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
368 }else if( pX->op==TK_ISNULL ){
369 iReg = iTarget;
370 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
371#ifndef SQLITE_OMIT_SUBQUERY
372 }else{
373 int eType;
374 int iTab;
375 struct InLoop *pIn;
376 WhereLoop *pLoop = pLevel->pWLoop;
377
378 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
379 && pLoop->u.btree.pIndex!=0
380 && pLoop->u.btree.pIndex->aSortOrder[iEq]
381 ){
382 testcase( iEq==0 );
383 testcase( bRev );
384 bRev = !bRev;
385 }
386 assert( pX->op==TK_IN );
387 iReg = iTarget;
388 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0);
389 if( eType==IN_INDEX_INDEX_DESC ){
390 testcase( bRev );
391 bRev = !bRev;
392 }
393 iTab = pX->iTable;
394 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
395 VdbeCoverageIf(v, bRev);
396 VdbeCoverageIf(v, !bRev);
397 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
398 pLoop->wsFlags |= WHERE_IN_ABLE;
399 if( pLevel->u.in.nIn==0 ){
400 pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
401 }
402 pLevel->u.in.nIn++;
403 pLevel->u.in.aInLoop =
404 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
405 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
406 pIn = pLevel->u.in.aInLoop;
407 if( pIn ){
408 pIn += pLevel->u.in.nIn - 1;
409 pIn->iCur = iTab;
410 if( eType==IN_INDEX_ROWID ){
411 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
412 }else{
413 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
414 }
415 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;
416 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v);
417 }else{
418 pLevel->u.in.nIn = 0;
419 }
420#endif
421 }
422 disableTerm(pLevel, pTerm);
423 return iReg;
424}
425
426/*
427** Generate code that will evaluate all == and IN constraints for an
428** index scan.
429**
430** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
431** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
432** The index has as many as three equality constraints, but in this
433** example, the third "c" value is an inequality. So only two
434** constraints are coded. This routine will generate code to evaluate
435** a==5 and b IN (1,2,3). The current values for a and b will be stored
436** in consecutive registers and the index of the first register is returned.
437**
438** In the example above nEq==2. But this subroutine works for any value
439** of nEq including 0. If nEq==0, this routine is nearly a no-op.
440** The only thing it does is allocate the pLevel->iMem memory cell and
441** compute the affinity string.
442**
443** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints
444** are == or IN and are covered by the nEq. nExtraReg is 1 if there is
445** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
446** occurs after the nEq quality constraints.
447**
448** This routine allocates a range of nEq+nExtraReg memory cells and returns
449** the index of the first memory cell in that range. The code that
450** calls this routine will use that memory range to store keys for
451** start and termination conditions of the loop.
452** key value of the loop. If one or more IN operators appear, then
453** this routine allocates an additional nEq memory cells for internal
454** use.
455**
456** Before returning, *pzAff is set to point to a buffer containing a
457** copy of the column affinity string of the index allocated using
458** sqlite3DbMalloc(). Except, entries in the copy of the string associated
459** with equality constraints that use BLOB or NONE affinity are set to
460** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
461**
462** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
463** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
464**
465** In the example above, the index on t1(a) has TEXT affinity. But since
466** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
467** no conversion should be attempted before using a t2.b value as part of
468** a key to search the index. Hence the first byte in the returned affinity
469** string in this example would be set to SQLITE_AFF_BLOB.
470*/
471static int codeAllEqualityTerms(
472 Parse *pParse, /* Parsing context */
473 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
474 int bRev, /* Reverse the order of IN operators */
475 int nExtraReg, /* Number of extra registers to allocate */
476 char **pzAff /* OUT: Set to point to affinity string */
477){
478 u16 nEq; /* The number of == or IN constraints to code */
479 u16 nSkip; /* Number of left-most columns to skip */
480 Vdbe *v = pParse->pVdbe; /* The vm under construction */
481 Index *pIdx; /* The index being used for this loop */
482 WhereTerm *pTerm; /* A single constraint term */
483 WhereLoop *pLoop; /* The WhereLoop object */
484 int j; /* Loop counter */
485 int regBase; /* Base register */
486 int nReg; /* Number of registers to allocate */
487 char *zAff; /* Affinity string to return */
488
489 /* This module is only called on query plans that use an index. */
490 pLoop = pLevel->pWLoop;
491 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
492 nEq = pLoop->u.btree.nEq;
493 nSkip = pLoop->nSkip;
494 pIdx = pLoop->u.btree.pIndex;
495 assert( pIdx!=0 );
496
497 /* Figure out how many memory cells we will need then allocate them.
498 */
499 regBase = pParse->nMem + 1;
500 nReg = pLoop->u.btree.nEq + nExtraReg;
501 pParse->nMem += nReg;
502
drhe9107692015-08-25 19:20:04 +0000503 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
drh6f82e852015-06-06 20:12:09 +0000504 if( !zAff ){
505 pParse->db->mallocFailed = 1;
506 }
507
508 if( nSkip ){
509 int iIdxCur = pLevel->iIdxCur;
510 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
511 VdbeCoverageIf(v, bRev==0);
512 VdbeCoverageIf(v, bRev!=0);
513 VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
514 j = sqlite3VdbeAddOp0(v, OP_Goto);
515 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
516 iIdxCur, 0, regBase, nSkip);
517 VdbeCoverageIf(v, bRev==0);
518 VdbeCoverageIf(v, bRev!=0);
519 sqlite3VdbeJumpHere(v, j);
520 for(j=0; j<nSkip; j++){
521 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
522 assert( pIdx->aiColumn[j]>=0 );
523 VdbeComment((v, "%s", pIdx->pTable->aCol[pIdx->aiColumn[j]].zName));
524 }
525 }
526
527 /* Evaluate the equality constraints
528 */
529 assert( zAff==0 || (int)strlen(zAff)>=nEq );
530 for(j=nSkip; j<nEq; j++){
531 int r1;
532 pTerm = pLoop->aLTerm[j];
533 assert( pTerm!=0 );
534 /* The following testcase is true for indices with redundant columns.
535 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
536 testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
537 testcase( pTerm->wtFlags & TERM_VIRTUAL );
538 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
539 if( r1!=regBase+j ){
540 if( nReg==1 ){
541 sqlite3ReleaseTempReg(pParse, regBase);
542 regBase = r1;
543 }else{
544 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
545 }
546 }
547 testcase( pTerm->eOperator & WO_ISNULL );
548 testcase( pTerm->eOperator & WO_IN );
549 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
550 Expr *pRight = pTerm->pExpr->pRight;
551 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
552 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
553 VdbeCoverage(v);
554 }
555 if( zAff ){
556 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
557 zAff[j] = SQLITE_AFF_BLOB;
558 }
559 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
560 zAff[j] = SQLITE_AFF_BLOB;
561 }
562 }
563 }
564 }
565 *pzAff = zAff;
566 return regBase;
567}
568
569/*
570** If the most recently coded instruction is a constant range contraint
571** that originated from the LIKE optimization, then change the P3 to be
572** pLoop->iLikeRepCntr and set P5.
573**
574** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
575** expression: "x>='ABC' AND x<'abd'". But this requires that the range
576** scan loop run twice, once for strings and a second time for BLOBs.
577** The OP_String opcodes on the second pass convert the upper and lower
578** bound string contants to blobs. This routine makes the necessary changes
579** to the OP_String opcodes for that to happen.
580*/
581static void whereLikeOptimizationStringFixup(
582 Vdbe *v, /* prepared statement under construction */
583 WhereLevel *pLevel, /* The loop that contains the LIKE operator */
584 WhereTerm *pTerm /* The upper or lower bound just coded */
585){
586 if( pTerm->wtFlags & TERM_LIKEOPT ){
587 VdbeOp *pOp;
588 assert( pLevel->iLikeRepCntr>0 );
589 pOp = sqlite3VdbeGetOp(v, -1);
590 assert( pOp!=0 );
591 assert( pOp->opcode==OP_String8
592 || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
593 pOp->p3 = pLevel->iLikeRepCntr;
594 pOp->p5 = 1;
595 }
596}
597
598
599/*
600** Generate code for the start of the iLevel-th loop in the WHERE clause
601** implementation described by pWInfo.
602*/
603Bitmask sqlite3WhereCodeOneLoopStart(
604 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
605 int iLevel, /* Which level of pWInfo->a[] should be coded */
606 Bitmask notReady /* Which tables are currently available */
607){
608 int j, k; /* Loop counters */
609 int iCur; /* The VDBE cursor for the table */
610 int addrNxt; /* Where to jump to continue with the next IN case */
611 int omitTable; /* True if we use the index only */
612 int bRev; /* True if we need to scan in reverse order */
613 WhereLevel *pLevel; /* The where level to be coded */
614 WhereLoop *pLoop; /* The WhereLoop object being coded */
615 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
616 WhereTerm *pTerm; /* A WHERE clause term */
617 Parse *pParse; /* Parsing context */
618 sqlite3 *db; /* Database connection */
619 Vdbe *v; /* The prepared stmt under constructions */
620 struct SrcList_item *pTabItem; /* FROM clause term being coded */
621 int addrBrk; /* Jump here to break out of the loop */
622 int addrCont; /* Jump here to continue with next cycle */
623 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
624 int iReleaseReg = 0; /* Temp register to free before returning */
625
626 pParse = pWInfo->pParse;
627 v = pParse->pVdbe;
628 pWC = &pWInfo->sWC;
629 db = pParse->db;
630 pLevel = &pWInfo->a[iLevel];
631 pLoop = pLevel->pWLoop;
632 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
633 iCur = pTabItem->iCursor;
634 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
635 bRev = (pWInfo->revMask>>iLevel)&1;
636 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
637 && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0;
638 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
639
640 /* Create labels for the "break" and "continue" instructions
641 ** for the current loop. Jump to addrBrk to break out of a loop.
642 ** Jump to cont to go immediately to the next iteration of the
643 ** loop.
644 **
645 ** When there is an IN operator, we also have a "addrNxt" label that
646 ** means to continue with the next IN value combination. When
647 ** there are no IN operators in the constraints, the "addrNxt" label
648 ** is the same as "addrBrk".
649 */
650 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
651 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
652
653 /* If this is the right table of a LEFT OUTER JOIN, allocate and
654 ** initialize a memory cell that records if this table matches any
655 ** row of the left table of the join.
656 */
drh8a48b9c2015-08-19 15:20:00 +0000657 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
drh6f82e852015-06-06 20:12:09 +0000658 pLevel->iLeftJoin = ++pParse->nMem;
659 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
660 VdbeComment((v, "init LEFT JOIN no-match flag"));
661 }
662
663 /* Special case of a FROM clause subquery implemented as a co-routine */
drh8a48b9c2015-08-19 15:20:00 +0000664 if( pTabItem->fg.viaCoroutine ){
drh6f82e852015-06-06 20:12:09 +0000665 int regYield = pTabItem->regReturn;
666 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
667 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
668 VdbeCoverage(v);
669 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
670 pLevel->op = OP_Goto;
671 }else
672
673#ifndef SQLITE_OMIT_VIRTUALTABLE
674 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
675 /* Case 1: The table is a virtual-table. Use the VFilter and VNext
676 ** to access the data.
677 */
678 int iReg; /* P3 Value for OP_VFilter */
679 int addrNotFound;
680 int nConstraint = pLoop->nLTerm;
681
682 sqlite3ExprCachePush(pParse);
683 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
684 addrNotFound = pLevel->addrBrk;
685 for(j=0; j<nConstraint; j++){
686 int iTarget = iReg+j+2;
687 pTerm = pLoop->aLTerm[j];
688 if( pTerm==0 ) continue;
689 if( pTerm->eOperator & WO_IN ){
690 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
691 addrNotFound = pLevel->addrNxt;
692 }else{
693 sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget);
694 }
695 }
696 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
697 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
698 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
699 pLoop->u.vtab.idxStr,
700 pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC);
701 VdbeCoverage(v);
702 pLoop->u.vtab.needFree = 0;
703 for(j=0; j<nConstraint && j<16; j++){
704 if( (pLoop->u.vtab.omitMask>>j)&1 ){
705 disableTerm(pLevel, pLoop->aLTerm[j]);
706 }
707 }
708 pLevel->op = OP_VNext;
709 pLevel->p1 = iCur;
710 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
711 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
712 sqlite3ExprCachePop(pParse);
713 }else
714#endif /* SQLITE_OMIT_VIRTUALTABLE */
715
716 if( (pLoop->wsFlags & WHERE_IPK)!=0
717 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
718 ){
719 /* Case 2: We can directly reference a single row using an
720 ** equality comparison against the ROWID field. Or
721 ** we reference multiple rows using a "rowid IN (...)"
722 ** construct.
723 */
724 assert( pLoop->u.btree.nEq==1 );
725 pTerm = pLoop->aLTerm[0];
726 assert( pTerm!=0 );
727 assert( pTerm->pExpr!=0 );
728 assert( omitTable==0 );
729 testcase( pTerm->wtFlags & TERM_VIRTUAL );
730 iReleaseReg = ++pParse->nMem;
731 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
732 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
733 addrNxt = pLevel->addrNxt;
734 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v);
735 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
736 VdbeCoverage(v);
737 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
738 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
739 VdbeComment((v, "pk"));
740 pLevel->op = OP_Noop;
741 }else if( (pLoop->wsFlags & WHERE_IPK)!=0
742 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
743 ){
744 /* Case 3: We have an inequality comparison against the ROWID field.
745 */
746 int testOp = OP_Noop;
747 int start;
748 int memEndValue = 0;
749 WhereTerm *pStart, *pEnd;
750
751 assert( omitTable==0 );
752 j = 0;
753 pStart = pEnd = 0;
754 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
755 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
756 assert( pStart!=0 || pEnd!=0 );
757 if( bRev ){
758 pTerm = pStart;
759 pStart = pEnd;
760 pEnd = pTerm;
761 }
762 if( pStart ){
763 Expr *pX; /* The expression that defines the start bound */
764 int r1, rTemp; /* Registers for holding the start boundary */
765
766 /* The following constant maps TK_xx codes into corresponding
767 ** seek opcodes. It depends on a particular ordering of TK_xx
768 */
769 const u8 aMoveOp[] = {
770 /* TK_GT */ OP_SeekGT,
771 /* TK_LE */ OP_SeekLE,
772 /* TK_LT */ OP_SeekLT,
773 /* TK_GE */ OP_SeekGE
774 };
775 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
776 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
777 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
778
779 assert( (pStart->wtFlags & TERM_VNULL)==0 );
780 testcase( pStart->wtFlags & TERM_VIRTUAL );
781 pX = pStart->pExpr;
782 assert( pX!=0 );
783 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
784 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
785 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
786 VdbeComment((v, "pk"));
787 VdbeCoverageIf(v, pX->op==TK_GT);
788 VdbeCoverageIf(v, pX->op==TK_LE);
789 VdbeCoverageIf(v, pX->op==TK_LT);
790 VdbeCoverageIf(v, pX->op==TK_GE);
791 sqlite3ExprCacheAffinityChange(pParse, r1, 1);
792 sqlite3ReleaseTempReg(pParse, rTemp);
793 disableTerm(pLevel, pStart);
794 }else{
795 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
796 VdbeCoverageIf(v, bRev==0);
797 VdbeCoverageIf(v, bRev!=0);
798 }
799 if( pEnd ){
800 Expr *pX;
801 pX = pEnd->pExpr;
802 assert( pX!=0 );
803 assert( (pEnd->wtFlags & TERM_VNULL)==0 );
804 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
805 testcase( pEnd->wtFlags & TERM_VIRTUAL );
806 memEndValue = ++pParse->nMem;
807 sqlite3ExprCode(pParse, pX->pRight, memEndValue);
808 if( pX->op==TK_LT || pX->op==TK_GT ){
809 testOp = bRev ? OP_Le : OP_Ge;
810 }else{
811 testOp = bRev ? OP_Lt : OP_Gt;
812 }
813 disableTerm(pLevel, pEnd);
814 }
815 start = sqlite3VdbeCurrentAddr(v);
816 pLevel->op = bRev ? OP_Prev : OP_Next;
817 pLevel->p1 = iCur;
818 pLevel->p2 = start;
819 assert( pLevel->p5==0 );
820 if( testOp!=OP_Noop ){
821 iRowidReg = ++pParse->nMem;
822 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
823 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
824 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
825 VdbeCoverageIf(v, testOp==OP_Le);
826 VdbeCoverageIf(v, testOp==OP_Lt);
827 VdbeCoverageIf(v, testOp==OP_Ge);
828 VdbeCoverageIf(v, testOp==OP_Gt);
829 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
830 }
831 }else if( pLoop->wsFlags & WHERE_INDEXED ){
832 /* Case 4: A scan using an index.
833 **
834 ** The WHERE clause may contain zero or more equality
835 ** terms ("==" or "IN" operators) that refer to the N
836 ** left-most columns of the index. It may also contain
837 ** inequality constraints (>, <, >= or <=) on the indexed
838 ** column that immediately follows the N equalities. Only
839 ** the right-most column can be an inequality - the rest must
840 ** use the "==" and "IN" operators. For example, if the
841 ** index is on (x,y,z), then the following clauses are all
842 ** optimized:
843 **
844 ** x=5
845 ** x=5 AND y=10
846 ** x=5 AND y<10
847 ** x=5 AND y>5 AND y<10
848 ** x=5 AND y=5 AND z<=10
849 **
850 ** The z<10 term of the following cannot be used, only
851 ** the x=5 term:
852 **
853 ** x=5 AND z<10
854 **
855 ** N may be zero if there are inequality constraints.
856 ** If there are no inequality constraints, then N is at
857 ** least one.
858 **
859 ** This case is also used when there are no WHERE clause
860 ** constraints but an index is selected anyway, in order
861 ** to force the output order to conform to an ORDER BY.
862 */
863 static const u8 aStartOp[] = {
864 0,
865 0,
866 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
867 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
868 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */
869 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */
870 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */
871 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */
872 };
873 static const u8 aEndOp[] = {
874 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */
875 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */
876 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */
877 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */
878 };
879 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */
880 int regBase; /* Base register holding constraint values */
881 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
882 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
883 int startEq; /* True if range start uses ==, >= or <= */
884 int endEq; /* True if range end uses ==, >= or <= */
885 int start_constraints; /* Start of range is constrained */
886 int nConstraint; /* Number of constraint terms */
887 Index *pIdx; /* The index we will be using */
888 int iIdxCur; /* The VDBE cursor for the index */
889 int nExtraReg = 0; /* Number of extra registers needed */
890 int op; /* Instruction opcode */
891 char *zStartAff; /* Affinity for start of range constraint */
892 char cEndAff = 0; /* Affinity for end of range constraint */
893 u8 bSeekPastNull = 0; /* True to seek past initial nulls */
894 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */
895
896 pIdx = pLoop->u.btree.pIndex;
897 iIdxCur = pLevel->iIdxCur;
898 assert( nEq>=pLoop->nSkip );
899
900 /* If this loop satisfies a sort order (pOrderBy) request that
901 ** was passed to this function to implement a "SELECT min(x) ..."
902 ** query, then the caller will only allow the loop to run for
903 ** a single iteration. This means that the first row returned
904 ** should not have a NULL value stored in 'x'. If column 'x' is
905 ** the first one after the nEq equality constraints in the index,
906 ** this requires some special handling.
907 */
908 assert( pWInfo->pOrderBy==0
909 || pWInfo->pOrderBy->nExpr==1
910 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
911 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
912 && pWInfo->nOBSat>0
913 && (pIdx->nKeyCol>nEq)
914 ){
915 assert( pLoop->nSkip==0 );
916 bSeekPastNull = 1;
917 nExtraReg = 1;
918 }
919
920 /* Find any inequality constraint terms for the start and end
921 ** of the range.
922 */
923 j = nEq;
924 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
925 pRangeStart = pLoop->aLTerm[j++];
926 nExtraReg = 1;
927 /* Like optimization range constraints always occur in pairs */
928 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
929 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
930 }
931 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
932 pRangeEnd = pLoop->aLTerm[j++];
933 nExtraReg = 1;
934 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
935 assert( pRangeStart!=0 ); /* LIKE opt constraints */
936 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */
937 pLevel->iLikeRepCntr = ++pParse->nMem;
938 testcase( bRev );
939 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
940 sqlite3VdbeAddOp2(v, OP_Integer,
941 bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC),
942 pLevel->iLikeRepCntr);
943 VdbeComment((v, "LIKE loop counter"));
944 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
945 }
946 if( pRangeStart==0
947 && (j = pIdx->aiColumn[nEq])>=0
948 && pIdx->pTable->aCol[j].notNull==0
949 ){
950 bSeekPastNull = 1;
951 }
952 }
953 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
954
955 /* Generate code to evaluate all constraint terms using == or IN
956 ** and store the values of those terms in an array of registers
957 ** starting at regBase.
958 */
959 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
960 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
961 if( zStartAff ) cEndAff = zStartAff[nEq];
962 addrNxt = pLevel->addrNxt;
963
964 /* If we are doing a reverse order scan on an ascending index, or
965 ** a forward order scan on a descending index, interchange the
966 ** start and end terms (pRangeStart and pRangeEnd).
967 */
968 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
969 || (bRev && pIdx->nKeyCol==nEq)
970 ){
971 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
972 SWAP(u8, bSeekPastNull, bStopAtNull);
973 }
974
975 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
976 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
977 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
978 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
979 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
980 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
981 start_constraints = pRangeStart || nEq>0;
982
983 /* Seek the index cursor to the start of the range. */
984 nConstraint = nEq;
985 if( pRangeStart ){
986 Expr *pRight = pRangeStart->pExpr->pRight;
987 sqlite3ExprCode(pParse, pRight, regBase+nEq);
988 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
989 if( (pRangeStart->wtFlags & TERM_VNULL)==0
990 && sqlite3ExprCanBeNull(pRight)
991 ){
992 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
993 VdbeCoverage(v);
994 }
995 if( zStartAff ){
996 if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_BLOB){
997 /* Since the comparison is to be performed with no conversions
998 ** applied to the operands, set the affinity to apply to pRight to
999 ** SQLITE_AFF_BLOB. */
1000 zStartAff[nEq] = SQLITE_AFF_BLOB;
1001 }
1002 if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
1003 zStartAff[nEq] = SQLITE_AFF_BLOB;
1004 }
1005 }
1006 nConstraint++;
1007 testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1008 }else if( bSeekPastNull ){
1009 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1010 nConstraint++;
1011 startEq = 0;
1012 start_constraints = 1;
1013 }
1014 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1015 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1016 assert( op!=0 );
1017 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1018 VdbeCoverage(v);
1019 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
1020 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
1021 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT );
1022 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
1023 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
1024 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT );
1025
1026 /* Load the value for the inequality constraint at the end of the
1027 ** range (if any).
1028 */
1029 nConstraint = nEq;
1030 if( pRangeEnd ){
1031 Expr *pRight = pRangeEnd->pExpr->pRight;
1032 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
1033 sqlite3ExprCode(pParse, pRight, regBase+nEq);
1034 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1035 if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1036 && sqlite3ExprCanBeNull(pRight)
1037 ){
1038 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1039 VdbeCoverage(v);
1040 }
1041 if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_BLOB
1042 && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff)
1043 ){
1044 codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff);
1045 }
1046 nConstraint++;
1047 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1048 }else if( bStopAtNull ){
1049 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1050 endEq = 0;
1051 nConstraint++;
1052 }
1053 sqlite3DbFree(db, zStartAff);
1054
1055 /* Top of the loop body */
1056 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1057
1058 /* Check if the index cursor is past the end of the range. */
1059 if( nConstraint ){
1060 op = aEndOp[bRev*2 + endEq];
1061 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1062 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
1063 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
1064 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
1065 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
1066 }
1067
1068 /* Seek the table cursor, if required */
1069 disableTerm(pLevel, pRangeStart);
1070 disableTerm(pLevel, pRangeEnd);
1071 if( omitTable ){
1072 /* pIdx is a covering index. No need to access the main table. */
1073 }else if( HasRowid(pIdx->pTable) ){
1074 iRowidReg = ++pParse->nMem;
1075 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1076 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1077 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */
1078 }else if( iCur!=iIdxCur ){
1079 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1080 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1081 for(j=0; j<pPk->nKeyCol; j++){
1082 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1083 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1084 }
1085 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1086 iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1087 }
1088
1089 /* Record the instruction used to terminate the loop. Disable
1090 ** WHERE clause terms made redundant by the index range scan.
1091 */
1092 if( pLoop->wsFlags & WHERE_ONEROW ){
1093 pLevel->op = OP_Noop;
1094 }else if( bRev ){
1095 pLevel->op = OP_Prev;
1096 }else{
1097 pLevel->op = OP_Next;
1098 }
1099 pLevel->p1 = iIdxCur;
1100 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1101 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1102 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1103 }else{
1104 assert( pLevel->p5==0 );
1105 }
1106 }else
1107
1108#ifndef SQLITE_OMIT_OR_OPTIMIZATION
1109 if( pLoop->wsFlags & WHERE_MULTI_OR ){
1110 /* Case 5: Two or more separately indexed terms connected by OR
1111 **
1112 ** Example:
1113 **
1114 ** CREATE TABLE t1(a,b,c,d);
1115 ** CREATE INDEX i1 ON t1(a);
1116 ** CREATE INDEX i2 ON t1(b);
1117 ** CREATE INDEX i3 ON t1(c);
1118 **
1119 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1120 **
1121 ** In the example, there are three indexed terms connected by OR.
1122 ** The top of the loop looks like this:
1123 **
1124 ** Null 1 # Zero the rowset in reg 1
1125 **
1126 ** Then, for each indexed term, the following. The arguments to
1127 ** RowSetTest are such that the rowid of the current row is inserted
1128 ** into the RowSet. If it is already present, control skips the
1129 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
1130 **
1131 ** sqlite3WhereBegin(<term>)
1132 ** RowSetTest # Insert rowid into rowset
1133 ** Gosub 2 A
1134 ** sqlite3WhereEnd()
1135 **
1136 ** Following the above, code to terminate the loop. Label A, the target
1137 ** of the Gosub above, jumps to the instruction right after the Goto.
1138 **
1139 ** Null 1 # Zero the rowset in reg 1
1140 ** Goto B # The loop is finished.
1141 **
1142 ** A: <loop body> # Return data, whatever.
1143 **
1144 ** Return 2 # Jump back to the Gosub
1145 **
1146 ** B: <after the loop>
1147 **
1148 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
1149 ** use an ephemeral index instead of a RowSet to record the primary
1150 ** keys of the rows we have already seen.
1151 **
1152 */
1153 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
1154 SrcList *pOrTab; /* Shortened table list or OR-clause generation */
1155 Index *pCov = 0; /* Potential covering index (or NULL) */
1156 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */
1157
1158 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
1159 int regRowset = 0; /* Register for RowSet object */
1160 int regRowid = 0; /* Register holding rowid */
1161 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */
1162 int iRetInit; /* Address of regReturn init */
1163 int untestedTerms = 0; /* Some terms not completely tested */
1164 int ii; /* Loop counter */
1165 u16 wctrlFlags; /* Flags for sub-WHERE clause */
1166 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */
1167 Table *pTab = pTabItem->pTab;
1168
1169 pTerm = pLoop->aLTerm[0];
1170 assert( pTerm!=0 );
1171 assert( pTerm->eOperator & WO_OR );
1172 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
1173 pOrWc = &pTerm->u.pOrInfo->wc;
1174 pLevel->op = OP_Return;
1175 pLevel->p1 = regReturn;
1176
1177 /* Set up a new SrcList in pOrTab containing the table being scanned
1178 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
1179 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
1180 */
1181 if( pWInfo->nLevel>1 ){
1182 int nNotReady; /* The number of notReady tables */
1183 struct SrcList_item *origSrc; /* Original list of tables */
1184 nNotReady = pWInfo->nLevel - iLevel - 1;
1185 pOrTab = sqlite3StackAllocRaw(db,
1186 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
1187 if( pOrTab==0 ) return notReady;
1188 pOrTab->nAlloc = (u8)(nNotReady + 1);
1189 pOrTab->nSrc = pOrTab->nAlloc;
1190 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
1191 origSrc = pWInfo->pTabList->a;
1192 for(k=1; k<=nNotReady; k++){
1193 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
1194 }
1195 }else{
1196 pOrTab = pWInfo->pTabList;
1197 }
1198
1199 /* Initialize the rowset register to contain NULL. An SQL NULL is
1200 ** equivalent to an empty rowset. Or, create an ephemeral index
1201 ** capable of holding primary keys in the case of a WITHOUT ROWID.
1202 **
1203 ** Also initialize regReturn to contain the address of the instruction
1204 ** immediately following the OP_Return at the bottom of the loop. This
1205 ** is required in a few obscure LEFT JOIN cases where control jumps
1206 ** over the top of the loop into the body of it. In this case the
1207 ** correct response for the end-of-loop code (the OP_Return) is to
1208 ** fall through to the next instruction, just as an OP_Next does if
1209 ** called on an uninitialized cursor.
1210 */
1211 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1212 if( HasRowid(pTab) ){
1213 regRowset = ++pParse->nMem;
1214 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
1215 }else{
1216 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1217 regRowset = pParse->nTab++;
1218 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
1219 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
1220 }
1221 regRowid = ++pParse->nMem;
1222 }
1223 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
1224
1225 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
1226 ** Then for every term xN, evaluate as the subexpression: xN AND z
1227 ** That way, terms in y that are factored into the disjunction will
1228 ** be picked up by the recursive calls to sqlite3WhereBegin() below.
1229 **
1230 ** Actually, each subexpression is converted to "xN AND w" where w is
1231 ** the "interesting" terms of z - terms that did not originate in the
1232 ** ON or USING clause of a LEFT JOIN, and terms that are usable as
1233 ** indices.
1234 **
1235 ** This optimization also only applies if the (x1 OR x2 OR ...) term
1236 ** is not contained in the ON clause of a LEFT JOIN.
1237 ** See ticket http://www.sqlite.org/src/info/f2369304e4
1238 */
1239 if( pWC->nTerm>1 ){
1240 int iTerm;
1241 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
1242 Expr *pExpr = pWC->a[iTerm].pExpr;
1243 if( &pWC->a[iTerm] == pTerm ) continue;
1244 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
1245 if( (pWC->a[iTerm].wtFlags & TERM_VIRTUAL)!=0 ) continue;
1246 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
1247 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
1248 pExpr = sqlite3ExprDup(db, pExpr, 0);
1249 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
1250 }
1251 if( pAndExpr ){
1252 pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0);
1253 }
1254 }
1255
1256 /* Run a separate WHERE clause for each term of the OR clause. After
1257 ** eliminating duplicates from other WHERE clauses, the action for each
1258 ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
1259 */
1260 wctrlFlags = WHERE_OMIT_OPEN_CLOSE
1261 | WHERE_FORCE_TABLE
1262 | WHERE_ONETABLE_ONLY
1263 | WHERE_NO_AUTOINDEX;
1264 for(ii=0; ii<pOrWc->nTerm; ii++){
1265 WhereTerm *pOrTerm = &pOrWc->a[ii];
1266 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
1267 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
1268 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
1269 int j1 = 0; /* Address of jump operation */
1270 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
1271 pAndExpr->pLeft = pOrExpr;
1272 pOrExpr = pAndExpr;
1273 }
1274 /* Loop through table entries that match term pOrTerm. */
1275 WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
1276 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
1277 wctrlFlags, iCovCur);
1278 assert( pSubWInfo || pParse->nErr || db->mallocFailed );
1279 if( pSubWInfo ){
1280 WhereLoop *pSubLoop;
1281 int addrExplain = sqlite3WhereExplainOneScan(
1282 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
1283 );
1284 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
1285
1286 /* This is the sub-WHERE clause body. First skip over
1287 ** duplicate rows from prior sub-WHERE clauses, and record the
1288 ** rowid (or PRIMARY KEY) for the current row so that the same
1289 ** row will be skipped in subsequent sub-WHERE clauses.
1290 */
1291 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1292 int r;
1293 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
1294 if( HasRowid(pTab) ){
1295 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
1296 j1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, r,iSet);
1297 VdbeCoverage(v);
1298 }else{
1299 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1300 int nPk = pPk->nKeyCol;
1301 int iPk;
1302
1303 /* Read the PK into an array of temp registers. */
1304 r = sqlite3GetTempRange(pParse, nPk);
1305 for(iPk=0; iPk<nPk; iPk++){
1306 int iCol = pPk->aiColumn[iPk];
drhd3e3f0b2015-07-23 16:39:33 +00001307 int rx;
1308 rx = sqlite3ExprCodeGetColumn(pParse, pTab, iCol, iCur,r+iPk,0);
1309 if( rx!=r+iPk ){
1310 sqlite3VdbeAddOp2(v, OP_SCopy, rx, r+iPk);
1311 }
drh6f82e852015-06-06 20:12:09 +00001312 }
1313
1314 /* Check if the temp table already contains this key. If so,
1315 ** the row has already been included in the result set and
1316 ** can be ignored (by jumping past the Gosub below). Otherwise,
1317 ** insert the key into the temp table and proceed with processing
1318 ** the row.
1319 **
1320 ** Use some of the same optimizations as OP_RowSetTest: If iSet
1321 ** is zero, assume that the key cannot already be present in
1322 ** the temp table. And if iSet is -1, assume that there is no
1323 ** need to insert the key into the temp table, as it will never
1324 ** be tested for. */
1325 if( iSet ){
1326 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
1327 VdbeCoverage(v);
1328 }
1329 if( iSet>=0 ){
1330 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
1331 sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0);
1332 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1333 }
1334
1335 /* Release the array of temp registers */
1336 sqlite3ReleaseTempRange(pParse, r, nPk);
1337 }
1338 }
1339
1340 /* Invoke the main loop body as a subroutine */
1341 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
1342
1343 /* Jump here (skipping the main loop body subroutine) if the
1344 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
1345 if( j1 ) sqlite3VdbeJumpHere(v, j1);
1346
1347 /* The pSubWInfo->untestedTerms flag means that this OR term
1348 ** contained one or more AND term from a notReady table. The
1349 ** terms from the notReady table could not be tested and will
1350 ** need to be tested later.
1351 */
1352 if( pSubWInfo->untestedTerms ) untestedTerms = 1;
1353
1354 /* If all of the OR-connected terms are optimized using the same
1355 ** index, and the index is opened using the same cursor number
1356 ** by each call to sqlite3WhereBegin() made by this loop, it may
1357 ** be possible to use that index as a covering index.
1358 **
1359 ** If the call to sqlite3WhereBegin() above resulted in a scan that
1360 ** uses an index, and this is either the first OR-connected term
1361 ** processed or the index is the same as that used by all previous
1362 ** terms, set pCov to the candidate covering index. Otherwise, set
1363 ** pCov to NULL to indicate that no candidate covering index will
1364 ** be available.
1365 */
1366 pSubLoop = pSubWInfo->a[0].pWLoop;
1367 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
1368 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
1369 && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
1370 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
1371 ){
1372 assert( pSubWInfo->a[0].iIdxCur==iCovCur );
1373 pCov = pSubLoop->u.btree.pIndex;
1374 wctrlFlags |= WHERE_REOPEN_IDX;
1375 }else{
1376 pCov = 0;
1377 }
1378
1379 /* Finish the loop through table entries that match term pOrTerm. */
1380 sqlite3WhereEnd(pSubWInfo);
1381 }
1382 }
1383 }
1384 pLevel->u.pCovidx = pCov;
1385 if( pCov ) pLevel->iIdxCur = iCovCur;
1386 if( pAndExpr ){
1387 pAndExpr->pLeft = 0;
1388 sqlite3ExprDelete(db, pAndExpr);
1389 }
1390 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
1391 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
1392 sqlite3VdbeResolveLabel(v, iLoopBody);
1393
1394 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
1395 if( !untestedTerms ) disableTerm(pLevel, pTerm);
1396 }else
1397#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1398
1399 {
1400 /* Case 6: There is no usable index. We must do a complete
1401 ** scan of the entire table.
1402 */
1403 static const u8 aStep[] = { OP_Next, OP_Prev };
1404 static const u8 aStart[] = { OP_Rewind, OP_Last };
1405 assert( bRev==0 || bRev==1 );
drh8a48b9c2015-08-19 15:20:00 +00001406 if( pTabItem->fg.isRecursive ){
drh6f82e852015-06-06 20:12:09 +00001407 /* Tables marked isRecursive have only a single row that is stored in
1408 ** a pseudo-cursor. No need to Rewind or Next such cursors. */
1409 pLevel->op = OP_Noop;
1410 }else{
1411 pLevel->op = aStep[bRev];
1412 pLevel->p1 = iCur;
1413 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
1414 VdbeCoverageIf(v, bRev==0);
1415 VdbeCoverageIf(v, bRev!=0);
1416 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1417 }
1418 }
1419
1420#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1421 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
1422#endif
1423
1424 /* Insert code to test every subexpression that can be completely
1425 ** computed using the current set of tables.
1426 */
1427 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1428 Expr *pE;
1429 int skipLikeAddr = 0;
1430 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1431 testcase( pTerm->wtFlags & TERM_CODED );
1432 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1433 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
1434 testcase( pWInfo->untestedTerms==0
1435 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
1436 pWInfo->untestedTerms = 1;
1437 continue;
1438 }
1439 pE = pTerm->pExpr;
1440 assert( pE!=0 );
1441 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
1442 continue;
1443 }
1444 if( pTerm->wtFlags & TERM_LIKECOND ){
1445 assert( pLevel->iLikeRepCntr>0 );
1446 skipLikeAddr = sqlite3VdbeAddOp1(v, OP_IfNot, pLevel->iLikeRepCntr);
1447 VdbeCoverage(v);
1448 }
1449 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
1450 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
1451 pTerm->wtFlags |= TERM_CODED;
1452 }
1453
1454 /* Insert code to test for implied constraints based on transitivity
1455 ** of the "==" operator.
1456 **
1457 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
1458 ** and we are coding the t1 loop and the t2 loop has not yet coded,
1459 ** then we cannot use the "t1.a=t2.b" constraint, but we can code
1460 ** the implied "t1.a=123" constraint.
1461 */
1462 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1463 Expr *pE, *pEAlt;
1464 WhereTerm *pAlt;
1465 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1466 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
1467 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
1468 if( pTerm->leftCursor!=iCur ) continue;
1469 if( pLevel->iLeftJoin ) continue;
1470 pE = pTerm->pExpr;
1471 assert( !ExprHasProperty(pE, EP_FromJoin) );
1472 assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
1473 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
1474 WO_EQ|WO_IN|WO_IS, 0);
1475 if( pAlt==0 ) continue;
1476 if( pAlt->wtFlags & (TERM_CODED) ) continue;
1477 testcase( pAlt->eOperator & WO_EQ );
1478 testcase( pAlt->eOperator & WO_IS );
1479 testcase( pAlt->eOperator & WO_IN );
1480 VdbeModuleComment((v, "begin transitive constraint"));
1481 pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt));
1482 if( pEAlt ){
1483 *pEAlt = *pAlt->pExpr;
1484 pEAlt->pLeft = pE->pLeft;
1485 sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL);
1486 sqlite3StackFree(db, pEAlt);
1487 }
1488 }
1489
1490 /* For a LEFT OUTER JOIN, generate code that will record the fact that
1491 ** at least one row of the right table has matched the left table.
1492 */
1493 if( pLevel->iLeftJoin ){
1494 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
1495 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
1496 VdbeComment((v, "record LEFT JOIN hit"));
1497 sqlite3ExprCacheClear(pParse);
1498 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
1499 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1500 testcase( pTerm->wtFlags & TERM_CODED );
1501 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1502 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
1503 assert( pWInfo->untestedTerms );
1504 continue;
1505 }
1506 assert( pTerm->pExpr );
1507 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
1508 pTerm->wtFlags |= TERM_CODED;
1509 }
1510 }
1511
1512 return pLevel->notReady;
1513}