blob: 87db0e0a2575faf3b7f991d05a043152b21990ea [file] [log] [blame]
drh6f82e852015-06-06 20:12:09 +00001/*
2** 2015-06-06
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This module contains C code that generates VDBE code used to process
13** the WHERE clause of SQL statements.
14**
15** This file was split off from where.c on 2015-06-06 in order to reduce the
16** size of where.c and make it easier to edit. This file contains the routines
17** that actually generate the bulk of the WHERE loop code. The original where.c
18** file retains the code that does query planning and analysis.
19*/
20#include "sqliteInt.h"
21#include "whereInt.h"
22
23#ifndef SQLITE_OMIT_EXPLAIN
24/*
25** This routine is a helper for explainIndexRange() below
26**
27** pStr holds the text of an expression that we are building up one term
28** at a time. This routine adds a new term to the end of the expression.
29** Terms are separated by AND so add the "AND" text for second and subsequent
30** terms only.
31*/
32static void explainAppendTerm(
33 StrAccum *pStr, /* The text expression being built */
34 int iTerm, /* Index of this term. First is zero */
35 const char *zColumn, /* Name of the column */
36 const char *zOp /* Name of the operator */
37){
38 if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5);
39 sqlite3StrAccumAppendAll(pStr, zColumn);
40 sqlite3StrAccumAppend(pStr, zOp, 1);
41 sqlite3StrAccumAppend(pStr, "?", 1);
42}
43
44/*
drhc7c46802015-08-27 20:33:38 +000045** Return the name of the i-th column of the pIdx index.
46*/
47static const char *explainIndexColumnName(Index *pIdx, int i){
48 i = pIdx->aiColumn[i];
drh4b92f982015-09-29 17:20:14 +000049 if( i==XN_EXPR ) return "<expr>";
50 if( i==XN_ROWID ) return "rowid";
drhc7c46802015-08-27 20:33:38 +000051 return pIdx->pTable->aCol[i].zName;
52}
53
54/*
drh6f82e852015-06-06 20:12:09 +000055** Argument pLevel describes a strategy for scanning table pTab. This
56** function appends text to pStr that describes the subset of table
57** rows scanned by the strategy in the form of an SQL expression.
58**
59** For example, if the query:
60**
61** SELECT * FROM t1 WHERE a=1 AND b>2;
62**
63** is run and there is an index on (a, b), then this function returns a
64** string similar to:
65**
66** "a=? AND b>?"
67*/
drh8faee872015-09-19 18:08:13 +000068static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
drh6f82e852015-06-06 20:12:09 +000069 Index *pIndex = pLoop->u.btree.pIndex;
70 u16 nEq = pLoop->u.btree.nEq;
71 u16 nSkip = pLoop->nSkip;
72 int i, j;
drh6f82e852015-06-06 20:12:09 +000073
74 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
75 sqlite3StrAccumAppend(pStr, " (", 2);
76 for(i=0; i<nEq; i++){
drhc7c46802015-08-27 20:33:38 +000077 const char *z = explainIndexColumnName(pIndex, i);
drh2ed0d802015-09-02 16:51:37 +000078 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
79 sqlite3XPrintf(pStr, 0, i>=nSkip ? "%s=?" : "ANY(%s)", z);
drh6f82e852015-06-06 20:12:09 +000080 }
81
82 j = i;
83 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
drhc7c46802015-08-27 20:33:38 +000084 const char *z = explainIndexColumnName(pIndex, i);
drh6f82e852015-06-06 20:12:09 +000085 explainAppendTerm(pStr, i++, z, ">");
86 }
87 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
drhc7c46802015-08-27 20:33:38 +000088 const char *z = explainIndexColumnName(pIndex, j);
drh6f82e852015-06-06 20:12:09 +000089 explainAppendTerm(pStr, i, z, "<");
90 }
91 sqlite3StrAccumAppend(pStr, ")", 1);
92}
93
94/*
95** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
96** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
97** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
98** is added to the output to describe the table scan strategy in pLevel.
99**
100** If an OP_Explain opcode is added to the VM, its address is returned.
101** Otherwise, if no OP_Explain is coded, zero is returned.
102*/
103int sqlite3WhereExplainOneScan(
104 Parse *pParse, /* Parse context */
105 SrcList *pTabList, /* Table list this loop refers to */
106 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
107 int iLevel, /* Value for "level" column of output */
108 int iFrom, /* Value for "from" column of output */
109 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
110){
111 int ret = 0;
112#if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
113 if( pParse->explain==2 )
114#endif
115 {
116 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
117 Vdbe *v = pParse->pVdbe; /* VM being constructed */
118 sqlite3 *db = pParse->db; /* Database handle */
119 int iId = pParse->iSelectId; /* Select id (left-most output column) */
120 int isSearch; /* True for a SEARCH. False for SCAN. */
121 WhereLoop *pLoop; /* The controlling WhereLoop object */
122 u32 flags; /* Flags that describe this loop */
123 char *zMsg; /* Text to add to EQP output */
124 StrAccum str; /* EQP output string */
125 char zBuf[100]; /* Initial space for EQP output string */
126
127 pLoop = pLevel->pWLoop;
128 flags = pLoop->wsFlags;
129 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return 0;
130
131 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
132 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
133 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
134
135 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
136 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
137 if( pItem->pSelect ){
138 sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId);
139 }else{
140 sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName);
141 }
142
143 if( pItem->zAlias ){
144 sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias);
145 }
146 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
147 const char *zFmt = 0;
148 Index *pIdx;
149
150 assert( pLoop->u.btree.pIndex!=0 );
151 pIdx = pLoop->u.btree.pIndex;
152 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
153 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
154 if( isSearch ){
155 zFmt = "PRIMARY KEY";
156 }
157 }else if( flags & WHERE_PARTIALIDX ){
158 zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
159 }else if( flags & WHERE_AUTO_INDEX ){
160 zFmt = "AUTOMATIC COVERING INDEX";
161 }else if( flags & WHERE_IDX_ONLY ){
162 zFmt = "COVERING INDEX %s";
163 }else{
164 zFmt = "INDEX %s";
165 }
166 if( zFmt ){
167 sqlite3StrAccumAppend(&str, " USING ", 7);
168 sqlite3XPrintf(&str, 0, zFmt, pIdx->zName);
drh8faee872015-09-19 18:08:13 +0000169 explainIndexRange(&str, pLoop);
drh6f82e852015-06-06 20:12:09 +0000170 }
171 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
drhd37bea52015-09-02 15:37:50 +0000172 const char *zRangeOp;
drh6f82e852015-06-06 20:12:09 +0000173 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
drhd37bea52015-09-02 15:37:50 +0000174 zRangeOp = "=";
drh6f82e852015-06-06 20:12:09 +0000175 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
drhd37bea52015-09-02 15:37:50 +0000176 zRangeOp = ">? AND rowid<";
drh6f82e852015-06-06 20:12:09 +0000177 }else if( flags&WHERE_BTM_LIMIT ){
drhd37bea52015-09-02 15:37:50 +0000178 zRangeOp = ">";
drh6f82e852015-06-06 20:12:09 +0000179 }else{
180 assert( flags&WHERE_TOP_LIMIT);
drhd37bea52015-09-02 15:37:50 +0000181 zRangeOp = "<";
drh6f82e852015-06-06 20:12:09 +0000182 }
drhd37bea52015-09-02 15:37:50 +0000183 sqlite3XPrintf(&str, 0, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
drh6f82e852015-06-06 20:12:09 +0000184 }
185#ifndef SQLITE_OMIT_VIRTUALTABLE
186 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
187 sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s",
188 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
189 }
190#endif
191#ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
192 if( pLoop->nOut>=10 ){
193 sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
194 }else{
195 sqlite3StrAccumAppend(&str, " (~1 row)", 9);
196 }
197#endif
198 zMsg = sqlite3StrAccumFinish(&str);
199 ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);
200 }
201 return ret;
202}
203#endif /* SQLITE_OMIT_EXPLAIN */
204
205#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
206/*
207** Configure the VM passed as the first argument with an
208** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
209** implement level pLvl. Argument pSrclist is a pointer to the FROM
210** clause that the scan reads data from.
211**
212** If argument addrExplain is not 0, it must be the address of an
213** OP_Explain instruction that describes the same loop.
214*/
215void sqlite3WhereAddScanStatus(
216 Vdbe *v, /* Vdbe to add scanstatus entry to */
217 SrcList *pSrclist, /* FROM clause pLvl reads data from */
218 WhereLevel *pLvl, /* Level to add scanstatus() entry for */
219 int addrExplain /* Address of OP_Explain (or 0) */
220){
221 const char *zObj = 0;
222 WhereLoop *pLoop = pLvl->pWLoop;
223 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){
224 zObj = pLoop->u.btree.pIndex->zName;
225 }else{
226 zObj = pSrclist->a[pLvl->iFrom].zName;
227 }
228 sqlite3VdbeScanStatus(
229 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
230 );
231}
232#endif
233
234
235/*
236** Disable a term in the WHERE clause. Except, do not disable the term
237** if it controls a LEFT OUTER JOIN and it did not originate in the ON
238** or USING clause of that join.
239**
240** Consider the term t2.z='ok' in the following queries:
241**
242** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
243** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
244** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
245**
246** The t2.z='ok' is disabled in the in (2) because it originates
247** in the ON clause. The term is disabled in (3) because it is not part
248** of a LEFT OUTER JOIN. In (1), the term is not disabled.
249**
250** Disabling a term causes that term to not be tested in the inner loop
251** of the join. Disabling is an optimization. When terms are satisfied
252** by indices, we disable them to prevent redundant tests in the inner
253** loop. We would get the correct results if nothing were ever disabled,
254** but joins might run a little slower. The trick is to disable as much
255** as we can without disabling too much. If we disabled in (1), we'd get
256** the wrong answer. See ticket #813.
257**
258** If all the children of a term are disabled, then that term is also
259** automatically disabled. In this way, terms get disabled if derived
260** virtual terms are tested first. For example:
261**
262** x GLOB 'abc*' AND x>='abc' AND x<'acd'
263** \___________/ \______/ \_____/
264** parent child1 child2
265**
266** Only the parent term was in the original WHERE clause. The child1
267** and child2 terms were added by the LIKE optimization. If both of
268** the virtual child terms are valid, then testing of the parent can be
269** skipped.
270**
271** Usually the parent term is marked as TERM_CODED. But if the parent
272** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
273** The TERM_LIKECOND marking indicates that the term should be coded inside
274** a conditional such that is only evaluated on the second pass of a
275** LIKE-optimization loop, when scanning BLOBs instead of strings.
276*/
277static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
278 int nLoop = 0;
279 while( pTerm
280 && (pTerm->wtFlags & TERM_CODED)==0
281 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
282 && (pLevel->notReady & pTerm->prereqAll)==0
283 ){
284 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
285 pTerm->wtFlags |= TERM_LIKECOND;
286 }else{
287 pTerm->wtFlags |= TERM_CODED;
288 }
289 if( pTerm->iParent<0 ) break;
290 pTerm = &pTerm->pWC->a[pTerm->iParent];
291 pTerm->nChild--;
292 if( pTerm->nChild!=0 ) break;
293 nLoop++;
294 }
295}
296
297/*
298** Code an OP_Affinity opcode to apply the column affinity string zAff
299** to the n registers starting at base.
300**
301** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the
302** beginning and end of zAff are ignored. If all entries in zAff are
303** SQLITE_AFF_BLOB, then no code gets generated.
304**
305** This routine makes its own copy of zAff so that the caller is free
306** to modify zAff after this routine returns.
307*/
308static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
309 Vdbe *v = pParse->pVdbe;
310 if( zAff==0 ){
311 assert( pParse->db->mallocFailed );
312 return;
313 }
314 assert( v!=0 );
315
316 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning
317 ** and end of the affinity string.
318 */
319 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){
320 n--;
321 base++;
322 zAff++;
323 }
324 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){
325 n--;
326 }
327
328 /* Code the OP_Affinity opcode if there is anything left to do. */
329 if( n>0 ){
330 sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
331 sqlite3VdbeChangeP4(v, -1, zAff, n);
332 sqlite3ExprCacheAffinityChange(pParse, base, n);
333 }
334}
335
336
337/*
338** Generate code for a single equality term of the WHERE clause. An equality
339** term can be either X=expr or X IN (...). pTerm is the term to be
340** coded.
341**
342** The current value for the constraint is left in register iReg.
343**
344** For a constraint of the form X=expr, the expression is evaluated and its
345** result is left on the stack. For constraints of the form X IN (...)
346** this routine sets up a loop that will iterate over all values of X.
347*/
348static int codeEqualityTerm(
349 Parse *pParse, /* The parsing context */
350 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
351 WhereLevel *pLevel, /* The level of the FROM clause we are working on */
352 int iEq, /* Index of the equality term within this level */
353 int bRev, /* True for reverse-order IN operations */
354 int iTarget /* Attempt to leave results in this register */
355){
356 Expr *pX = pTerm->pExpr;
357 Vdbe *v = pParse->pVdbe;
358 int iReg; /* Register holding results */
359
360 assert( iTarget>0 );
361 if( pX->op==TK_EQ || pX->op==TK_IS ){
362 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
363 }else if( pX->op==TK_ISNULL ){
364 iReg = iTarget;
365 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
366#ifndef SQLITE_OMIT_SUBQUERY
367 }else{
368 int eType;
369 int iTab;
370 struct InLoop *pIn;
371 WhereLoop *pLoop = pLevel->pWLoop;
372
373 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
374 && pLoop->u.btree.pIndex!=0
375 && pLoop->u.btree.pIndex->aSortOrder[iEq]
376 ){
377 testcase( iEq==0 );
378 testcase( bRev );
379 bRev = !bRev;
380 }
381 assert( pX->op==TK_IN );
382 iReg = iTarget;
383 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0);
384 if( eType==IN_INDEX_INDEX_DESC ){
385 testcase( bRev );
386 bRev = !bRev;
387 }
388 iTab = pX->iTable;
389 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
390 VdbeCoverageIf(v, bRev);
391 VdbeCoverageIf(v, !bRev);
392 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
393 pLoop->wsFlags |= WHERE_IN_ABLE;
394 if( pLevel->u.in.nIn==0 ){
395 pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
396 }
397 pLevel->u.in.nIn++;
398 pLevel->u.in.aInLoop =
399 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
400 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
401 pIn = pLevel->u.in.aInLoop;
402 if( pIn ){
403 pIn += pLevel->u.in.nIn - 1;
404 pIn->iCur = iTab;
405 if( eType==IN_INDEX_ROWID ){
406 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
407 }else{
408 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
409 }
410 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;
411 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v);
412 }else{
413 pLevel->u.in.nIn = 0;
414 }
415#endif
416 }
417 disableTerm(pLevel, pTerm);
418 return iReg;
419}
420
421/*
422** Generate code that will evaluate all == and IN constraints for an
423** index scan.
424**
425** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
426** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
427** The index has as many as three equality constraints, but in this
428** example, the third "c" value is an inequality. So only two
429** constraints are coded. This routine will generate code to evaluate
430** a==5 and b IN (1,2,3). The current values for a and b will be stored
431** in consecutive registers and the index of the first register is returned.
432**
433** In the example above nEq==2. But this subroutine works for any value
434** of nEq including 0. If nEq==0, this routine is nearly a no-op.
435** The only thing it does is allocate the pLevel->iMem memory cell and
436** compute the affinity string.
437**
438** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints
439** are == or IN and are covered by the nEq. nExtraReg is 1 if there is
440** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
441** occurs after the nEq quality constraints.
442**
443** This routine allocates a range of nEq+nExtraReg memory cells and returns
444** the index of the first memory cell in that range. The code that
445** calls this routine will use that memory range to store keys for
446** start and termination conditions of the loop.
447** key value of the loop. If one or more IN operators appear, then
448** this routine allocates an additional nEq memory cells for internal
449** use.
450**
451** Before returning, *pzAff is set to point to a buffer containing a
452** copy of the column affinity string of the index allocated using
453** sqlite3DbMalloc(). Except, entries in the copy of the string associated
454** with equality constraints that use BLOB or NONE affinity are set to
455** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
456**
457** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
458** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
459**
460** In the example above, the index on t1(a) has TEXT affinity. But since
461** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
462** no conversion should be attempted before using a t2.b value as part of
463** a key to search the index. Hence the first byte in the returned affinity
464** string in this example would be set to SQLITE_AFF_BLOB.
465*/
466static int codeAllEqualityTerms(
467 Parse *pParse, /* Parsing context */
468 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
469 int bRev, /* Reverse the order of IN operators */
470 int nExtraReg, /* Number of extra registers to allocate */
471 char **pzAff /* OUT: Set to point to affinity string */
472){
473 u16 nEq; /* The number of == or IN constraints to code */
474 u16 nSkip; /* Number of left-most columns to skip */
475 Vdbe *v = pParse->pVdbe; /* The vm under construction */
476 Index *pIdx; /* The index being used for this loop */
477 WhereTerm *pTerm; /* A single constraint term */
478 WhereLoop *pLoop; /* The WhereLoop object */
479 int j; /* Loop counter */
480 int regBase; /* Base register */
481 int nReg; /* Number of registers to allocate */
482 char *zAff; /* Affinity string to return */
483
484 /* This module is only called on query plans that use an index. */
485 pLoop = pLevel->pWLoop;
486 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
487 nEq = pLoop->u.btree.nEq;
488 nSkip = pLoop->nSkip;
489 pIdx = pLoop->u.btree.pIndex;
490 assert( pIdx!=0 );
491
492 /* Figure out how many memory cells we will need then allocate them.
493 */
494 regBase = pParse->nMem + 1;
495 nReg = pLoop->u.btree.nEq + nExtraReg;
496 pParse->nMem += nReg;
497
drhe9107692015-08-25 19:20:04 +0000498 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
drh6f82e852015-06-06 20:12:09 +0000499 if( !zAff ){
500 pParse->db->mallocFailed = 1;
501 }
502
503 if( nSkip ){
504 int iIdxCur = pLevel->iIdxCur;
505 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
506 VdbeCoverageIf(v, bRev==0);
507 VdbeCoverageIf(v, bRev!=0);
508 VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
509 j = sqlite3VdbeAddOp0(v, OP_Goto);
510 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
511 iIdxCur, 0, regBase, nSkip);
512 VdbeCoverageIf(v, bRev==0);
513 VdbeCoverageIf(v, bRev!=0);
514 sqlite3VdbeJumpHere(v, j);
515 for(j=0; j<nSkip; j++){
516 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
drh4b92f982015-09-29 17:20:14 +0000517 testcase( pIdx->aiColumn[j]==XN_EXPR );
drhe63e8a62015-09-18 18:09:28 +0000518 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
drh6f82e852015-06-06 20:12:09 +0000519 }
520 }
521
522 /* Evaluate the equality constraints
523 */
524 assert( zAff==0 || (int)strlen(zAff)>=nEq );
525 for(j=nSkip; j<nEq; j++){
526 int r1;
527 pTerm = pLoop->aLTerm[j];
528 assert( pTerm!=0 );
529 /* The following testcase is true for indices with redundant columns.
530 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
531 testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
532 testcase( pTerm->wtFlags & TERM_VIRTUAL );
533 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
534 if( r1!=regBase+j ){
535 if( nReg==1 ){
536 sqlite3ReleaseTempReg(pParse, regBase);
537 regBase = r1;
538 }else{
539 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
540 }
541 }
542 testcase( pTerm->eOperator & WO_ISNULL );
543 testcase( pTerm->eOperator & WO_IN );
544 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
545 Expr *pRight = pTerm->pExpr->pRight;
546 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
547 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
548 VdbeCoverage(v);
549 }
550 if( zAff ){
551 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
552 zAff[j] = SQLITE_AFF_BLOB;
553 }
554 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
555 zAff[j] = SQLITE_AFF_BLOB;
556 }
557 }
558 }
559 }
560 *pzAff = zAff;
561 return regBase;
562}
563
564/*
565** If the most recently coded instruction is a constant range contraint
566** that originated from the LIKE optimization, then change the P3 to be
567** pLoop->iLikeRepCntr and set P5.
568**
569** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
570** expression: "x>='ABC' AND x<'abd'". But this requires that the range
571** scan loop run twice, once for strings and a second time for BLOBs.
572** The OP_String opcodes on the second pass convert the upper and lower
573** bound string contants to blobs. This routine makes the necessary changes
574** to the OP_String opcodes for that to happen.
575*/
576static void whereLikeOptimizationStringFixup(
577 Vdbe *v, /* prepared statement under construction */
578 WhereLevel *pLevel, /* The loop that contains the LIKE operator */
579 WhereTerm *pTerm /* The upper or lower bound just coded */
580){
581 if( pTerm->wtFlags & TERM_LIKEOPT ){
582 VdbeOp *pOp;
583 assert( pLevel->iLikeRepCntr>0 );
584 pOp = sqlite3VdbeGetOp(v, -1);
585 assert( pOp!=0 );
586 assert( pOp->opcode==OP_String8
587 || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
588 pOp->p3 = pLevel->iLikeRepCntr;
589 pOp->p5 = 1;
590 }
591}
592
drhbec24762015-08-13 20:07:13 +0000593#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh2f2b0272015-08-14 18:50:04 +0000594/*
595** Information is passed from codeCursorHint() down to individual nodes of
596** the expression tree (by sqlite3WalkExpr()) using an instance of this
597** structure.
598*/
599struct CCurHint {
600 int iTabCur; /* Cursor for the main table */
601 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */
602 Index *pIdx; /* The index used to access the table */
603};
604
605/*
606** This function is called for every node of an expression that is a candidate
607** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference
608** the table CCurHint.iTabCur, verify that the same column can be
609** accessed through the index. If it cannot, then set pWalker->eCode to 1.
610*/
611static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
612 struct CCurHint *pHint = pWalker->u.pCCurHint;
613 assert( pHint->pIdx!=0 );
614 if( pExpr->op==TK_COLUMN
615 && pExpr->iTable==pHint->iTabCur
616 && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0
617 ){
618 pWalker->eCode = 1;
619 }
620 return WRC_Continue;
621}
622
drhbec24762015-08-13 20:07:13 +0000623
624/*
625** This function is called on every node of an expression tree used as an
626** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
drh2f2b0272015-08-14 18:50:04 +0000627** that accesses any table other than the one identified by
628** CCurHint.iTabCur, then do the following:
drhbec24762015-08-13 20:07:13 +0000629**
630** 1) allocate a register and code an OP_Column instruction to read
631** the specified column into the new register, and
632**
633** 2) transform the expression node to a TK_REGISTER node that reads
634** from the newly populated register.
drh2f2b0272015-08-14 18:50:04 +0000635**
636** Also, if the node is a TK_COLUMN that does access the table idenified
637** by pCCurHint.iTabCur, and an index is being used (which we will
638** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
639** an access of the index rather than the original table.
drhbec24762015-08-13 20:07:13 +0000640*/
641static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
642 int rc = WRC_Continue;
drh2f2b0272015-08-14 18:50:04 +0000643 struct CCurHint *pHint = pWalker->u.pCCurHint;
644 if( pExpr->op==TK_COLUMN ){
645 if( pExpr->iTable!=pHint->iTabCur ){
646 Vdbe *v = pWalker->pParse->pVdbe;
647 int reg = ++pWalker->pParse->nMem; /* Register for column value */
648 sqlite3ExprCodeGetColumnOfTable(
649 v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg
650 );
651 pExpr->op = TK_REGISTER;
652 pExpr->iTable = reg;
653 }else if( pHint->pIdx!=0 ){
654 pExpr->iTable = pHint->iIdxCur;
655 pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn);
656 assert( pExpr->iColumn>=0 );
657 }
drhbec24762015-08-13 20:07:13 +0000658 }else if( pExpr->op==TK_AGG_FUNCTION ){
659 /* An aggregate function in the WHERE clause of a query means this must
660 ** be a correlated sub-query, and expression pExpr is an aggregate from
661 ** the parent context. Do not walk the function arguments in this case.
662 **
663 ** todo: It should be possible to replace this node with a TK_REGISTER
664 ** expression, as the result of the expression must be stored in a
665 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
666 rc = WRC_Prune;
667 }
668 return rc;
669}
670
671/*
672** Insert an OP_CursorHint instruction if it is appropriate to do so.
673*/
674static void codeCursorHint(
drhb413a542015-08-17 17:19:28 +0000675 WhereInfo *pWInfo, /* The where clause */
676 WhereLevel *pLevel, /* Which loop to provide hints for */
677 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */
drhbec24762015-08-13 20:07:13 +0000678){
679 Parse *pParse = pWInfo->pParse;
680 sqlite3 *db = pParse->db;
681 Vdbe *v = pParse->pVdbe;
drhbec24762015-08-13 20:07:13 +0000682 Expr *pExpr = 0;
drh2f2b0272015-08-14 18:50:04 +0000683 WhereLoop *pLoop = pLevel->pWLoop;
drhbec24762015-08-13 20:07:13 +0000684 int iCur;
685 WhereClause *pWC;
686 WhereTerm *pTerm;
drhb413a542015-08-17 17:19:28 +0000687 int i, j;
drh2f2b0272015-08-14 18:50:04 +0000688 struct CCurHint sHint;
689 Walker sWalker;
drhbec24762015-08-13 20:07:13 +0000690
691 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
drh2f2b0272015-08-14 18:50:04 +0000692 iCur = pLevel->iTabCur;
693 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
694 sHint.iTabCur = iCur;
695 sHint.iIdxCur = pLevel->iIdxCur;
696 sHint.pIdx = pLoop->u.btree.pIndex;
697 memset(&sWalker, 0, sizeof(sWalker));
698 sWalker.pParse = pParse;
699 sWalker.u.pCCurHint = &sHint;
drhbec24762015-08-13 20:07:13 +0000700 pWC = &pWInfo->sWC;
701 for(i=0; i<pWC->nTerm; i++){
702 pTerm = &pWC->a[i];
703 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
704 if( pTerm->prereqAll & pLevel->notReady ) continue;
705 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
drhb413a542015-08-17 17:19:28 +0000706
707 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
drhbcf40a72015-08-18 15:58:05 +0000708 ** the cursor. These terms are not needed as hints for a pure range
709 ** scan (that has no == terms) so omit them. */
710 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
711 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
712 if( j<pLoop->nLTerm ) continue;
drhb413a542015-08-17 17:19:28 +0000713 }
714
715 /* No subqueries or non-deterministic functions allowed */
drhbec24762015-08-13 20:07:13 +0000716 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
drhb413a542015-08-17 17:19:28 +0000717
718 /* For an index scan, make sure referenced columns are actually in
719 ** the index. */
drh2f2b0272015-08-14 18:50:04 +0000720 if( sHint.pIdx!=0 ){
721 sWalker.eCode = 0;
722 sWalker.xExprCallback = codeCursorHintCheckExpr;
723 sqlite3WalkExpr(&sWalker, pTerm->pExpr);
724 if( sWalker.eCode ) continue;
725 }
drhb413a542015-08-17 17:19:28 +0000726
727 /* If we survive all prior tests, that means this term is worth hinting */
drhbec24762015-08-13 20:07:13 +0000728 pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
729 }
730 if( pExpr!=0 ){
drhbec24762015-08-13 20:07:13 +0000731 sWalker.xExprCallback = codeCursorHintFixExpr;
drhbec24762015-08-13 20:07:13 +0000732 sqlite3WalkExpr(&sWalker, pExpr);
drh2f2b0272015-08-14 18:50:04 +0000733 sqlite3VdbeAddOp4(v, OP_CursorHint,
734 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
735 (const char*)pExpr, P4_EXPR);
drhbec24762015-08-13 20:07:13 +0000736 }
737}
738#else
drhb413a542015-08-17 17:19:28 +0000739# define codeCursorHint(A,B,C) /* No-op */
drhbec24762015-08-13 20:07:13 +0000740#endif /* SQLITE_ENABLE_CURSOR_HINTS */
drh6f82e852015-06-06 20:12:09 +0000741
742/*
743** Generate code for the start of the iLevel-th loop in the WHERE clause
744** implementation described by pWInfo.
745*/
746Bitmask sqlite3WhereCodeOneLoopStart(
747 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
748 int iLevel, /* Which level of pWInfo->a[] should be coded */
749 Bitmask notReady /* Which tables are currently available */
750){
751 int j, k; /* Loop counters */
752 int iCur; /* The VDBE cursor for the table */
753 int addrNxt; /* Where to jump to continue with the next IN case */
754 int omitTable; /* True if we use the index only */
755 int bRev; /* True if we need to scan in reverse order */
756 WhereLevel *pLevel; /* The where level to be coded */
757 WhereLoop *pLoop; /* The WhereLoop object being coded */
758 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
759 WhereTerm *pTerm; /* A WHERE clause term */
760 Parse *pParse; /* Parsing context */
761 sqlite3 *db; /* Database connection */
762 Vdbe *v; /* The prepared stmt under constructions */
763 struct SrcList_item *pTabItem; /* FROM clause term being coded */
764 int addrBrk; /* Jump here to break out of the loop */
765 int addrCont; /* Jump here to continue with next cycle */
766 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
767 int iReleaseReg = 0; /* Temp register to free before returning */
768
769 pParse = pWInfo->pParse;
770 v = pParse->pVdbe;
771 pWC = &pWInfo->sWC;
772 db = pParse->db;
773 pLevel = &pWInfo->a[iLevel];
774 pLoop = pLevel->pWLoop;
775 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
776 iCur = pTabItem->iCursor;
777 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
778 bRev = (pWInfo->revMask>>iLevel)&1;
779 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
780 && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0;
781 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
782
783 /* Create labels for the "break" and "continue" instructions
784 ** for the current loop. Jump to addrBrk to break out of a loop.
785 ** Jump to cont to go immediately to the next iteration of the
786 ** loop.
787 **
788 ** When there is an IN operator, we also have a "addrNxt" label that
789 ** means to continue with the next IN value combination. When
790 ** there are no IN operators in the constraints, the "addrNxt" label
791 ** is the same as "addrBrk".
792 */
793 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
794 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
795
796 /* If this is the right table of a LEFT OUTER JOIN, allocate and
797 ** initialize a memory cell that records if this table matches any
798 ** row of the left table of the join.
799 */
drh8a48b9c2015-08-19 15:20:00 +0000800 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
drh6f82e852015-06-06 20:12:09 +0000801 pLevel->iLeftJoin = ++pParse->nMem;
802 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
803 VdbeComment((v, "init LEFT JOIN no-match flag"));
804 }
805
806 /* Special case of a FROM clause subquery implemented as a co-routine */
drh8a48b9c2015-08-19 15:20:00 +0000807 if( pTabItem->fg.viaCoroutine ){
drh6f82e852015-06-06 20:12:09 +0000808 int regYield = pTabItem->regReturn;
809 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
810 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
811 VdbeCoverage(v);
812 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
813 pLevel->op = OP_Goto;
814 }else
815
816#ifndef SQLITE_OMIT_VIRTUALTABLE
817 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
818 /* Case 1: The table is a virtual-table. Use the VFilter and VNext
819 ** to access the data.
820 */
821 int iReg; /* P3 Value for OP_VFilter */
822 int addrNotFound;
823 int nConstraint = pLoop->nLTerm;
824
825 sqlite3ExprCachePush(pParse);
826 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
827 addrNotFound = pLevel->addrBrk;
828 for(j=0; j<nConstraint; j++){
829 int iTarget = iReg+j+2;
830 pTerm = pLoop->aLTerm[j];
831 if( pTerm==0 ) continue;
832 if( pTerm->eOperator & WO_IN ){
833 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
834 addrNotFound = pLevel->addrNxt;
835 }else{
836 sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget);
837 }
838 }
839 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
840 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
841 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
842 pLoop->u.vtab.idxStr,
843 pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC);
844 VdbeCoverage(v);
845 pLoop->u.vtab.needFree = 0;
846 for(j=0; j<nConstraint && j<16; j++){
847 if( (pLoop->u.vtab.omitMask>>j)&1 ){
848 disableTerm(pLevel, pLoop->aLTerm[j]);
849 }
850 }
drh6f82e852015-06-06 20:12:09 +0000851 pLevel->p1 = iCur;
dan354474a2015-09-29 10:11:26 +0000852 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
drh6f82e852015-06-06 20:12:09 +0000853 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
854 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
855 sqlite3ExprCachePop(pParse);
856 }else
857#endif /* SQLITE_OMIT_VIRTUALTABLE */
858
859 if( (pLoop->wsFlags & WHERE_IPK)!=0
860 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
861 ){
862 /* Case 2: We can directly reference a single row using an
863 ** equality comparison against the ROWID field. Or
864 ** we reference multiple rows using a "rowid IN (...)"
865 ** construct.
866 */
867 assert( pLoop->u.btree.nEq==1 );
868 pTerm = pLoop->aLTerm[0];
869 assert( pTerm!=0 );
870 assert( pTerm->pExpr!=0 );
871 assert( omitTable==0 );
872 testcase( pTerm->wtFlags & TERM_VIRTUAL );
873 iReleaseReg = ++pParse->nMem;
874 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
875 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
876 addrNxt = pLevel->addrNxt;
877 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v);
878 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
879 VdbeCoverage(v);
880 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
881 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
882 VdbeComment((v, "pk"));
883 pLevel->op = OP_Noop;
884 }else if( (pLoop->wsFlags & WHERE_IPK)!=0
885 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
886 ){
887 /* Case 3: We have an inequality comparison against the ROWID field.
888 */
889 int testOp = OP_Noop;
890 int start;
891 int memEndValue = 0;
892 WhereTerm *pStart, *pEnd;
893
894 assert( omitTable==0 );
895 j = 0;
896 pStart = pEnd = 0;
897 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
898 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
899 assert( pStart!=0 || pEnd!=0 );
900 if( bRev ){
901 pTerm = pStart;
902 pStart = pEnd;
903 pEnd = pTerm;
904 }
drhb413a542015-08-17 17:19:28 +0000905 codeCursorHint(pWInfo, pLevel, pEnd);
drh6f82e852015-06-06 20:12:09 +0000906 if( pStart ){
907 Expr *pX; /* The expression that defines the start bound */
908 int r1, rTemp; /* Registers for holding the start boundary */
909
910 /* The following constant maps TK_xx codes into corresponding
911 ** seek opcodes. It depends on a particular ordering of TK_xx
912 */
913 const u8 aMoveOp[] = {
914 /* TK_GT */ OP_SeekGT,
915 /* TK_LE */ OP_SeekLE,
916 /* TK_LT */ OP_SeekLT,
917 /* TK_GE */ OP_SeekGE
918 };
919 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
920 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
921 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
922
923 assert( (pStart->wtFlags & TERM_VNULL)==0 );
924 testcase( pStart->wtFlags & TERM_VIRTUAL );
925 pX = pStart->pExpr;
926 assert( pX!=0 );
927 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
928 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
929 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
930 VdbeComment((v, "pk"));
931 VdbeCoverageIf(v, pX->op==TK_GT);
932 VdbeCoverageIf(v, pX->op==TK_LE);
933 VdbeCoverageIf(v, pX->op==TK_LT);
934 VdbeCoverageIf(v, pX->op==TK_GE);
935 sqlite3ExprCacheAffinityChange(pParse, r1, 1);
936 sqlite3ReleaseTempReg(pParse, rTemp);
937 disableTerm(pLevel, pStart);
938 }else{
939 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
940 VdbeCoverageIf(v, bRev==0);
941 VdbeCoverageIf(v, bRev!=0);
942 }
943 if( pEnd ){
944 Expr *pX;
945 pX = pEnd->pExpr;
946 assert( pX!=0 );
947 assert( (pEnd->wtFlags & TERM_VNULL)==0 );
948 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
949 testcase( pEnd->wtFlags & TERM_VIRTUAL );
950 memEndValue = ++pParse->nMem;
951 sqlite3ExprCode(pParse, pX->pRight, memEndValue);
952 if( pX->op==TK_LT || pX->op==TK_GT ){
953 testOp = bRev ? OP_Le : OP_Ge;
954 }else{
955 testOp = bRev ? OP_Lt : OP_Gt;
956 }
957 disableTerm(pLevel, pEnd);
958 }
959 start = sqlite3VdbeCurrentAddr(v);
960 pLevel->op = bRev ? OP_Prev : OP_Next;
961 pLevel->p1 = iCur;
962 pLevel->p2 = start;
963 assert( pLevel->p5==0 );
964 if( testOp!=OP_Noop ){
965 iRowidReg = ++pParse->nMem;
966 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
967 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
968 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
969 VdbeCoverageIf(v, testOp==OP_Le);
970 VdbeCoverageIf(v, testOp==OP_Lt);
971 VdbeCoverageIf(v, testOp==OP_Ge);
972 VdbeCoverageIf(v, testOp==OP_Gt);
973 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
974 }
975 }else if( pLoop->wsFlags & WHERE_INDEXED ){
976 /* Case 4: A scan using an index.
977 **
978 ** The WHERE clause may contain zero or more equality
979 ** terms ("==" or "IN" operators) that refer to the N
980 ** left-most columns of the index. It may also contain
981 ** inequality constraints (>, <, >= or <=) on the indexed
982 ** column that immediately follows the N equalities. Only
983 ** the right-most column can be an inequality - the rest must
984 ** use the "==" and "IN" operators. For example, if the
985 ** index is on (x,y,z), then the following clauses are all
986 ** optimized:
987 **
988 ** x=5
989 ** x=5 AND y=10
990 ** x=5 AND y<10
991 ** x=5 AND y>5 AND y<10
992 ** x=5 AND y=5 AND z<=10
993 **
994 ** The z<10 term of the following cannot be used, only
995 ** the x=5 term:
996 **
997 ** x=5 AND z<10
998 **
999 ** N may be zero if there are inequality constraints.
1000 ** If there are no inequality constraints, then N is at
1001 ** least one.
1002 **
1003 ** This case is also used when there are no WHERE clause
1004 ** constraints but an index is selected anyway, in order
1005 ** to force the output order to conform to an ORDER BY.
1006 */
1007 static const u8 aStartOp[] = {
1008 0,
1009 0,
1010 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
1011 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
1012 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */
1013 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */
1014 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */
1015 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */
1016 };
1017 static const u8 aEndOp[] = {
1018 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */
1019 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */
1020 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */
1021 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */
1022 };
1023 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */
1024 int regBase; /* Base register holding constraint values */
1025 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
1026 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
1027 int startEq; /* True if range start uses ==, >= or <= */
1028 int endEq; /* True if range end uses ==, >= or <= */
1029 int start_constraints; /* Start of range is constrained */
1030 int nConstraint; /* Number of constraint terms */
1031 Index *pIdx; /* The index we will be using */
1032 int iIdxCur; /* The VDBE cursor for the index */
1033 int nExtraReg = 0; /* Number of extra registers needed */
1034 int op; /* Instruction opcode */
1035 char *zStartAff; /* Affinity for start of range constraint */
1036 char cEndAff = 0; /* Affinity for end of range constraint */
1037 u8 bSeekPastNull = 0; /* True to seek past initial nulls */
1038 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */
1039
1040 pIdx = pLoop->u.btree.pIndex;
1041 iIdxCur = pLevel->iIdxCur;
1042 assert( nEq>=pLoop->nSkip );
1043
1044 /* If this loop satisfies a sort order (pOrderBy) request that
1045 ** was passed to this function to implement a "SELECT min(x) ..."
1046 ** query, then the caller will only allow the loop to run for
1047 ** a single iteration. This means that the first row returned
1048 ** should not have a NULL value stored in 'x'. If column 'x' is
1049 ** the first one after the nEq equality constraints in the index,
1050 ** this requires some special handling.
1051 */
1052 assert( pWInfo->pOrderBy==0
1053 || pWInfo->pOrderBy->nExpr==1
1054 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
1055 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
1056 && pWInfo->nOBSat>0
1057 && (pIdx->nKeyCol>nEq)
1058 ){
1059 assert( pLoop->nSkip==0 );
1060 bSeekPastNull = 1;
1061 nExtraReg = 1;
1062 }
1063
1064 /* Find any inequality constraint terms for the start and end
1065 ** of the range.
1066 */
1067 j = nEq;
1068 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1069 pRangeStart = pLoop->aLTerm[j++];
1070 nExtraReg = 1;
1071 /* Like optimization range constraints always occur in pairs */
1072 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1073 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1074 }
1075 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1076 pRangeEnd = pLoop->aLTerm[j++];
1077 nExtraReg = 1;
1078 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1079 assert( pRangeStart!=0 ); /* LIKE opt constraints */
1080 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */
1081 pLevel->iLikeRepCntr = ++pParse->nMem;
1082 testcase( bRev );
1083 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1084 sqlite3VdbeAddOp2(v, OP_Integer,
1085 bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC),
1086 pLevel->iLikeRepCntr);
1087 VdbeComment((v, "LIKE loop counter"));
1088 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1089 }
1090 if( pRangeStart==0
1091 && (j = pIdx->aiColumn[nEq])>=0
1092 && pIdx->pTable->aCol[j].notNull==0
1093 ){
1094 bSeekPastNull = 1;
1095 }
1096 }
1097 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1098
drh6f82e852015-06-06 20:12:09 +00001099 /* If we are doing a reverse order scan on an ascending index, or
1100 ** a forward order scan on a descending index, interchange the
1101 ** start and end terms (pRangeStart and pRangeEnd).
1102 */
1103 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1104 || (bRev && pIdx->nKeyCol==nEq)
1105 ){
1106 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1107 SWAP(u8, bSeekPastNull, bStopAtNull);
1108 }
1109
drhbcf40a72015-08-18 15:58:05 +00001110 /* Generate code to evaluate all constraint terms using == or IN
1111 ** and store the values of those terms in an array of registers
1112 ** starting at regBase.
1113 */
1114 codeCursorHint(pWInfo, pLevel, pRangeEnd);
1115 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1116 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1117 if( zStartAff ) cEndAff = zStartAff[nEq];
1118 addrNxt = pLevel->addrNxt;
1119
drh6f82e852015-06-06 20:12:09 +00001120 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1121 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1122 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1123 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1124 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1125 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1126 start_constraints = pRangeStart || nEq>0;
1127
1128 /* Seek the index cursor to the start of the range. */
1129 nConstraint = nEq;
1130 if( pRangeStart ){
1131 Expr *pRight = pRangeStart->pExpr->pRight;
1132 sqlite3ExprCode(pParse, pRight, regBase+nEq);
1133 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1134 if( (pRangeStart->wtFlags & TERM_VNULL)==0
1135 && sqlite3ExprCanBeNull(pRight)
1136 ){
1137 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1138 VdbeCoverage(v);
1139 }
1140 if( zStartAff ){
1141 if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_BLOB){
1142 /* Since the comparison is to be performed with no conversions
1143 ** applied to the operands, set the affinity to apply to pRight to
1144 ** SQLITE_AFF_BLOB. */
1145 zStartAff[nEq] = SQLITE_AFF_BLOB;
1146 }
1147 if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
1148 zStartAff[nEq] = SQLITE_AFF_BLOB;
1149 }
1150 }
1151 nConstraint++;
1152 testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1153 }else if( bSeekPastNull ){
1154 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1155 nConstraint++;
1156 startEq = 0;
1157 start_constraints = 1;
1158 }
1159 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1160 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1161 assert( op!=0 );
1162 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1163 VdbeCoverage(v);
1164 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
1165 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
1166 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT );
1167 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
1168 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
1169 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT );
1170
1171 /* Load the value for the inequality constraint at the end of the
1172 ** range (if any).
1173 */
1174 nConstraint = nEq;
1175 if( pRangeEnd ){
1176 Expr *pRight = pRangeEnd->pExpr->pRight;
1177 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
1178 sqlite3ExprCode(pParse, pRight, regBase+nEq);
1179 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1180 if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1181 && sqlite3ExprCanBeNull(pRight)
1182 ){
1183 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1184 VdbeCoverage(v);
1185 }
1186 if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_BLOB
1187 && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff)
1188 ){
1189 codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff);
1190 }
1191 nConstraint++;
1192 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1193 }else if( bStopAtNull ){
1194 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1195 endEq = 0;
1196 nConstraint++;
1197 }
1198 sqlite3DbFree(db, zStartAff);
1199
1200 /* Top of the loop body */
1201 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1202
1203 /* Check if the index cursor is past the end of the range. */
1204 if( nConstraint ){
1205 op = aEndOp[bRev*2 + endEq];
1206 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1207 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
1208 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
1209 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
1210 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
1211 }
1212
1213 /* Seek the table cursor, if required */
1214 disableTerm(pLevel, pRangeStart);
1215 disableTerm(pLevel, pRangeEnd);
1216 if( omitTable ){
1217 /* pIdx is a covering index. No need to access the main table. */
1218 }else if( HasRowid(pIdx->pTable) ){
1219 iRowidReg = ++pParse->nMem;
1220 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1221 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
drhb0264ee2015-09-14 14:45:50 +00001222 if( pWInfo->eOnePass!=ONEPASS_OFF ){
danc6157e12015-09-14 09:23:47 +00001223 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
drh66336f32015-09-14 14:08:25 +00001224 VdbeCoverage(v);
danc6157e12015-09-14 09:23:47 +00001225 }else{
1226 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */
1227 }
drh6f82e852015-06-06 20:12:09 +00001228 }else if( iCur!=iIdxCur ){
1229 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1230 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1231 for(j=0; j<pPk->nKeyCol; j++){
1232 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1233 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1234 }
1235 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1236 iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1237 }
1238
1239 /* Record the instruction used to terminate the loop. Disable
1240 ** WHERE clause terms made redundant by the index range scan.
1241 */
1242 if( pLoop->wsFlags & WHERE_ONEROW ){
1243 pLevel->op = OP_Noop;
1244 }else if( bRev ){
1245 pLevel->op = OP_Prev;
1246 }else{
1247 pLevel->op = OP_Next;
1248 }
1249 pLevel->p1 = iIdxCur;
1250 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1251 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1252 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1253 }else{
1254 assert( pLevel->p5==0 );
1255 }
1256 }else
1257
1258#ifndef SQLITE_OMIT_OR_OPTIMIZATION
1259 if( pLoop->wsFlags & WHERE_MULTI_OR ){
1260 /* Case 5: Two or more separately indexed terms connected by OR
1261 **
1262 ** Example:
1263 **
1264 ** CREATE TABLE t1(a,b,c,d);
1265 ** CREATE INDEX i1 ON t1(a);
1266 ** CREATE INDEX i2 ON t1(b);
1267 ** CREATE INDEX i3 ON t1(c);
1268 **
1269 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1270 **
1271 ** In the example, there are three indexed terms connected by OR.
1272 ** The top of the loop looks like this:
1273 **
1274 ** Null 1 # Zero the rowset in reg 1
1275 **
1276 ** Then, for each indexed term, the following. The arguments to
1277 ** RowSetTest are such that the rowid of the current row is inserted
1278 ** into the RowSet. If it is already present, control skips the
1279 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
1280 **
1281 ** sqlite3WhereBegin(<term>)
1282 ** RowSetTest # Insert rowid into rowset
1283 ** Gosub 2 A
1284 ** sqlite3WhereEnd()
1285 **
1286 ** Following the above, code to terminate the loop. Label A, the target
1287 ** of the Gosub above, jumps to the instruction right after the Goto.
1288 **
1289 ** Null 1 # Zero the rowset in reg 1
1290 ** Goto B # The loop is finished.
1291 **
1292 ** A: <loop body> # Return data, whatever.
1293 **
1294 ** Return 2 # Jump back to the Gosub
1295 **
1296 ** B: <after the loop>
1297 **
1298 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
1299 ** use an ephemeral index instead of a RowSet to record the primary
1300 ** keys of the rows we have already seen.
1301 **
1302 */
1303 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
1304 SrcList *pOrTab; /* Shortened table list or OR-clause generation */
1305 Index *pCov = 0; /* Potential covering index (or NULL) */
1306 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */
1307
1308 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
1309 int regRowset = 0; /* Register for RowSet object */
1310 int regRowid = 0; /* Register holding rowid */
1311 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */
1312 int iRetInit; /* Address of regReturn init */
1313 int untestedTerms = 0; /* Some terms not completely tested */
1314 int ii; /* Loop counter */
1315 u16 wctrlFlags; /* Flags for sub-WHERE clause */
1316 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */
1317 Table *pTab = pTabItem->pTab;
1318
1319 pTerm = pLoop->aLTerm[0];
1320 assert( pTerm!=0 );
1321 assert( pTerm->eOperator & WO_OR );
1322 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
1323 pOrWc = &pTerm->u.pOrInfo->wc;
1324 pLevel->op = OP_Return;
1325 pLevel->p1 = regReturn;
1326
1327 /* Set up a new SrcList in pOrTab containing the table being scanned
1328 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
1329 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
1330 */
1331 if( pWInfo->nLevel>1 ){
1332 int nNotReady; /* The number of notReady tables */
1333 struct SrcList_item *origSrc; /* Original list of tables */
1334 nNotReady = pWInfo->nLevel - iLevel - 1;
1335 pOrTab = sqlite3StackAllocRaw(db,
1336 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
1337 if( pOrTab==0 ) return notReady;
1338 pOrTab->nAlloc = (u8)(nNotReady + 1);
1339 pOrTab->nSrc = pOrTab->nAlloc;
1340 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
1341 origSrc = pWInfo->pTabList->a;
1342 for(k=1; k<=nNotReady; k++){
1343 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
1344 }
1345 }else{
1346 pOrTab = pWInfo->pTabList;
1347 }
1348
1349 /* Initialize the rowset register to contain NULL. An SQL NULL is
1350 ** equivalent to an empty rowset. Or, create an ephemeral index
1351 ** capable of holding primary keys in the case of a WITHOUT ROWID.
1352 **
1353 ** Also initialize regReturn to contain the address of the instruction
1354 ** immediately following the OP_Return at the bottom of the loop. This
1355 ** is required in a few obscure LEFT JOIN cases where control jumps
1356 ** over the top of the loop into the body of it. In this case the
1357 ** correct response for the end-of-loop code (the OP_Return) is to
1358 ** fall through to the next instruction, just as an OP_Next does if
1359 ** called on an uninitialized cursor.
1360 */
1361 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1362 if( HasRowid(pTab) ){
1363 regRowset = ++pParse->nMem;
1364 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
1365 }else{
1366 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1367 regRowset = pParse->nTab++;
1368 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
1369 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
1370 }
1371 regRowid = ++pParse->nMem;
1372 }
1373 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
1374
1375 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
1376 ** Then for every term xN, evaluate as the subexpression: xN AND z
1377 ** That way, terms in y that are factored into the disjunction will
1378 ** be picked up by the recursive calls to sqlite3WhereBegin() below.
1379 **
1380 ** Actually, each subexpression is converted to "xN AND w" where w is
1381 ** the "interesting" terms of z - terms that did not originate in the
1382 ** ON or USING clause of a LEFT JOIN, and terms that are usable as
1383 ** indices.
1384 **
1385 ** This optimization also only applies if the (x1 OR x2 OR ...) term
1386 ** is not contained in the ON clause of a LEFT JOIN.
1387 ** See ticket http://www.sqlite.org/src/info/f2369304e4
1388 */
1389 if( pWC->nTerm>1 ){
1390 int iTerm;
1391 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
1392 Expr *pExpr = pWC->a[iTerm].pExpr;
1393 if( &pWC->a[iTerm] == pTerm ) continue;
1394 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
1395 if( (pWC->a[iTerm].wtFlags & TERM_VIRTUAL)!=0 ) continue;
1396 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
1397 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
1398 pExpr = sqlite3ExprDup(db, pExpr, 0);
1399 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
1400 }
1401 if( pAndExpr ){
drh1167d322015-10-28 20:01:45 +00001402 pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr, 0);
drh6f82e852015-06-06 20:12:09 +00001403 }
1404 }
1405
1406 /* Run a separate WHERE clause for each term of the OR clause. After
1407 ** eliminating duplicates from other WHERE clauses, the action for each
1408 ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
1409 */
1410 wctrlFlags = WHERE_OMIT_OPEN_CLOSE
1411 | WHERE_FORCE_TABLE
1412 | WHERE_ONETABLE_ONLY
1413 | WHERE_NO_AUTOINDEX;
1414 for(ii=0; ii<pOrWc->nTerm; ii++){
1415 WhereTerm *pOrTerm = &pOrWc->a[ii];
1416 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
1417 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
1418 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
drh728e0f92015-10-10 14:41:28 +00001419 int jmp1 = 0; /* Address of jump operation */
drh6f82e852015-06-06 20:12:09 +00001420 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
1421 pAndExpr->pLeft = pOrExpr;
1422 pOrExpr = pAndExpr;
1423 }
1424 /* Loop through table entries that match term pOrTerm. */
1425 WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
1426 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
1427 wctrlFlags, iCovCur);
1428 assert( pSubWInfo || pParse->nErr || db->mallocFailed );
1429 if( pSubWInfo ){
1430 WhereLoop *pSubLoop;
1431 int addrExplain = sqlite3WhereExplainOneScan(
1432 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
1433 );
1434 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
1435
1436 /* This is the sub-WHERE clause body. First skip over
1437 ** duplicate rows from prior sub-WHERE clauses, and record the
1438 ** rowid (or PRIMARY KEY) for the current row so that the same
1439 ** row will be skipped in subsequent sub-WHERE clauses.
1440 */
1441 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1442 int r;
1443 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
1444 if( HasRowid(pTab) ){
1445 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
drh728e0f92015-10-10 14:41:28 +00001446 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
1447 r,iSet);
drh6f82e852015-06-06 20:12:09 +00001448 VdbeCoverage(v);
1449 }else{
1450 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1451 int nPk = pPk->nKeyCol;
1452 int iPk;
1453
1454 /* Read the PK into an array of temp registers. */
1455 r = sqlite3GetTempRange(pParse, nPk);
1456 for(iPk=0; iPk<nPk; iPk++){
1457 int iCol = pPk->aiColumn[iPk];
drhce78bc62015-10-15 19:21:51 +00001458 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk);
drh6f82e852015-06-06 20:12:09 +00001459 }
1460
1461 /* Check if the temp table already contains this key. If so,
1462 ** the row has already been included in the result set and
1463 ** can be ignored (by jumping past the Gosub below). Otherwise,
1464 ** insert the key into the temp table and proceed with processing
1465 ** the row.
1466 **
1467 ** Use some of the same optimizations as OP_RowSetTest: If iSet
1468 ** is zero, assume that the key cannot already be present in
1469 ** the temp table. And if iSet is -1, assume that there is no
1470 ** need to insert the key into the temp table, as it will never
1471 ** be tested for. */
1472 if( iSet ){
drh728e0f92015-10-10 14:41:28 +00001473 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
drh6f82e852015-06-06 20:12:09 +00001474 VdbeCoverage(v);
1475 }
1476 if( iSet>=0 ){
1477 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
1478 sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0);
1479 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1480 }
1481
1482 /* Release the array of temp registers */
1483 sqlite3ReleaseTempRange(pParse, r, nPk);
1484 }
1485 }
1486
1487 /* Invoke the main loop body as a subroutine */
1488 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
1489
1490 /* Jump here (skipping the main loop body subroutine) if the
1491 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
drh728e0f92015-10-10 14:41:28 +00001492 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
drh6f82e852015-06-06 20:12:09 +00001493
1494 /* The pSubWInfo->untestedTerms flag means that this OR term
1495 ** contained one or more AND term from a notReady table. The
1496 ** terms from the notReady table could not be tested and will
1497 ** need to be tested later.
1498 */
1499 if( pSubWInfo->untestedTerms ) untestedTerms = 1;
1500
1501 /* If all of the OR-connected terms are optimized using the same
1502 ** index, and the index is opened using the same cursor number
1503 ** by each call to sqlite3WhereBegin() made by this loop, it may
1504 ** be possible to use that index as a covering index.
1505 **
1506 ** If the call to sqlite3WhereBegin() above resulted in a scan that
1507 ** uses an index, and this is either the first OR-connected term
1508 ** processed or the index is the same as that used by all previous
1509 ** terms, set pCov to the candidate covering index. Otherwise, set
1510 ** pCov to NULL to indicate that no candidate covering index will
1511 ** be available.
1512 */
1513 pSubLoop = pSubWInfo->a[0].pWLoop;
1514 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
1515 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
1516 && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
1517 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
1518 ){
1519 assert( pSubWInfo->a[0].iIdxCur==iCovCur );
1520 pCov = pSubLoop->u.btree.pIndex;
1521 wctrlFlags |= WHERE_REOPEN_IDX;
1522 }else{
1523 pCov = 0;
1524 }
1525
1526 /* Finish the loop through table entries that match term pOrTerm. */
1527 sqlite3WhereEnd(pSubWInfo);
1528 }
1529 }
1530 }
1531 pLevel->u.pCovidx = pCov;
1532 if( pCov ) pLevel->iIdxCur = iCovCur;
1533 if( pAndExpr ){
1534 pAndExpr->pLeft = 0;
1535 sqlite3ExprDelete(db, pAndExpr);
1536 }
1537 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
drh076e85f2015-09-03 13:46:12 +00001538 sqlite3VdbeGoto(v, pLevel->addrBrk);
drh6f82e852015-06-06 20:12:09 +00001539 sqlite3VdbeResolveLabel(v, iLoopBody);
1540
1541 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
1542 if( !untestedTerms ) disableTerm(pLevel, pTerm);
1543 }else
1544#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1545
1546 {
1547 /* Case 6: There is no usable index. We must do a complete
1548 ** scan of the entire table.
1549 */
1550 static const u8 aStep[] = { OP_Next, OP_Prev };
1551 static const u8 aStart[] = { OP_Rewind, OP_Last };
1552 assert( bRev==0 || bRev==1 );
drh8a48b9c2015-08-19 15:20:00 +00001553 if( pTabItem->fg.isRecursive ){
drh6f82e852015-06-06 20:12:09 +00001554 /* Tables marked isRecursive have only a single row that is stored in
1555 ** a pseudo-cursor. No need to Rewind or Next such cursors. */
1556 pLevel->op = OP_Noop;
1557 }else{
drhb413a542015-08-17 17:19:28 +00001558 codeCursorHint(pWInfo, pLevel, 0);
drh6f82e852015-06-06 20:12:09 +00001559 pLevel->op = aStep[bRev];
1560 pLevel->p1 = iCur;
1561 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
1562 VdbeCoverageIf(v, bRev==0);
1563 VdbeCoverageIf(v, bRev!=0);
1564 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1565 }
1566 }
1567
1568#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1569 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
1570#endif
1571
1572 /* Insert code to test every subexpression that can be completely
1573 ** computed using the current set of tables.
1574 */
1575 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1576 Expr *pE;
1577 int skipLikeAddr = 0;
1578 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1579 testcase( pTerm->wtFlags & TERM_CODED );
1580 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1581 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
1582 testcase( pWInfo->untestedTerms==0
1583 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
1584 pWInfo->untestedTerms = 1;
1585 continue;
1586 }
1587 pE = pTerm->pExpr;
1588 assert( pE!=0 );
1589 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
1590 continue;
1591 }
1592 if( pTerm->wtFlags & TERM_LIKECOND ){
1593 assert( pLevel->iLikeRepCntr>0 );
1594 skipLikeAddr = sqlite3VdbeAddOp1(v, OP_IfNot, pLevel->iLikeRepCntr);
1595 VdbeCoverage(v);
1596 }
1597 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
1598 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
1599 pTerm->wtFlags |= TERM_CODED;
1600 }
1601
1602 /* Insert code to test for implied constraints based on transitivity
1603 ** of the "==" operator.
1604 **
1605 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
1606 ** and we are coding the t1 loop and the t2 loop has not yet coded,
1607 ** then we cannot use the "t1.a=t2.b" constraint, but we can code
1608 ** the implied "t1.a=123" constraint.
1609 */
1610 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1611 Expr *pE, *pEAlt;
1612 WhereTerm *pAlt;
1613 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1614 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
1615 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
1616 if( pTerm->leftCursor!=iCur ) continue;
1617 if( pLevel->iLeftJoin ) continue;
1618 pE = pTerm->pExpr;
1619 assert( !ExprHasProperty(pE, EP_FromJoin) );
1620 assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
1621 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
1622 WO_EQ|WO_IN|WO_IS, 0);
1623 if( pAlt==0 ) continue;
1624 if( pAlt->wtFlags & (TERM_CODED) ) continue;
1625 testcase( pAlt->eOperator & WO_EQ );
1626 testcase( pAlt->eOperator & WO_IS );
1627 testcase( pAlt->eOperator & WO_IN );
1628 VdbeModuleComment((v, "begin transitive constraint"));
1629 pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt));
1630 if( pEAlt ){
1631 *pEAlt = *pAlt->pExpr;
1632 pEAlt->pLeft = pE->pLeft;
1633 sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL);
1634 sqlite3StackFree(db, pEAlt);
1635 }
1636 }
1637
1638 /* For a LEFT OUTER JOIN, generate code that will record the fact that
1639 ** at least one row of the right table has matched the left table.
1640 */
1641 if( pLevel->iLeftJoin ){
1642 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
1643 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
1644 VdbeComment((v, "record LEFT JOIN hit"));
1645 sqlite3ExprCacheClear(pParse);
1646 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
1647 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1648 testcase( pTerm->wtFlags & TERM_CODED );
1649 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1650 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
1651 assert( pWInfo->untestedTerms );
1652 continue;
1653 }
1654 assert( pTerm->pExpr );
1655 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
1656 pTerm->wtFlags |= TERM_CODED;
1657 }
1658 }
1659
1660 return pLevel->notReady;
1661}