blob: a9fc9fd5a29ce33bbb7f30c2dfa5f315009c9065 [file] [log] [blame]
Gael Guennebaud86ccd992008-11-05 13:47:55 +00001// This file is part of Eigen, a lightweight C++ template library
Benoit Jacob6347b1d2009-05-22 20:25:33 +02002// for linear algebra.
Gael Guennebaud86ccd992008-11-05 13:47:55 +00003//
Gael Guennebaud22c76092011-03-22 11:58:22 +01004// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
Gael Guennebaud86ccd992008-11-05 13:47:55 +00005// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
Desire NUENTSA4cd82452013-06-11 14:42:29 +02006// Copyright (C) 2013 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
Gael Guennebaud86ccd992008-11-05 13:47:55 +00007//
Benoit Jacob69124cf2012-07-13 14:42:47 -04008// This Source Code Form is subject to the terms of the Mozilla
9// Public License v. 2.0. If a copy of the MPL was not distributed
10// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
Gael Guennebaud86ccd992008-11-05 13:47:55 +000011
Gael Guennebaud8214cf12018-10-11 10:27:23 +020012#ifndef EIGEN_SPARSE_TEST_INCLUDED_FROM_SPARSE_EXTRA
Gael Guennebaudc43154b2015-03-04 10:16:46 +010013static long g_realloc_count = 0;
14#define EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN g_realloc_count++;
15
Gael Guennebaudeec0dfd2018-10-10 22:50:15 +020016static long g_dense_op_sparse_count = 0;
17#define EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN g_dense_op_sparse_count++;
18#define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN g_dense_op_sparse_count+=10;
19#define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN g_dense_op_sparse_count+=20;
Gael Guennebaud8214cf12018-10-11 10:27:23 +020020#endif
Gael Guennebaudeec0dfd2018-10-10 22:50:15 +020021
Gael Guennebaud86ccd992008-11-05 13:47:55 +000022#include "sparse.h"
23
Gael Guennebaud178858f2009-01-19 15:20:45 +000024template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
25{
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +010026 typedef typename SparseMatrixType::StorageIndex StorageIndex;
27 typedef Matrix<StorageIndex,2,1> Vector2;
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020028
Gael Guennebaudfc202ba2015-02-13 18:57:41 +010029 const Index rows = ref.rows();
30 const Index cols = ref.cols();
Charles Schlosser44fe5392022-12-01 19:28:56 +000031 const Index inner = ref.innerSize();
32 const Index outer = ref.outerSize();
Christoph Hertzberg0833b822014-10-31 17:12:13 +010033
Gael Guennebaud178858f2009-01-19 15:20:45 +000034 typedef typename SparseMatrixType::Scalar Scalar;
Gael Guennebaud71362672016-12-27 16:34:30 +010035 typedef typename SparseMatrixType::RealScalar RealScalar;
Gael Guennebaud178858f2009-01-19 15:20:45 +000036 enum { Flags = SparseMatrixType::Flags };
Gael Guennebaud9f795582009-12-16 19:18:40 +010037
Gael Guennebaud42e25782011-08-19 14:18:05 +020038 double density = (std::max)(8./(rows*cols), 0.01);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000039 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
40 typedef Matrix<Scalar,Dynamic,1> DenseVector;
41 Scalar eps = 1e-6;
42
Benoit Jacob47160402010-10-25 10:15:22 -040043 Scalar s1 = internal::random<Scalar>();
Gael Guennebaud86ccd992008-11-05 13:47:55 +000044 {
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020045 SparseMatrixType m(rows, cols);
46 DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
47 DenseVector vec1 = DenseVector::Random(rows);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000048
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020049 std::vector<Vector2> zeroCoords;
50 std::vector<Vector2> nonzeroCoords;
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020051 initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000052
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020053 // test coeff and coeffRef
Christoph Hertzberg0833b822014-10-31 17:12:13 +010054 for (std::size_t i=0; i<zeroCoords.size(); ++i)
Gael Guennebaud86ccd992008-11-05 13:47:55 +000055 {
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020056 VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
57 if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
Christoph Hertzberg0833b822014-10-31 17:12:13 +010058 VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[i].x(),zeroCoords[i].y()) = 5 );
Gael Guennebaud86ccd992008-11-05 13:47:55 +000059 }
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020060 VERIFY_IS_APPROX(m, refMat);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000061
Christoph Hertzberg0833b822014-10-31 17:12:13 +010062 if(!nonzeroCoords.empty()) {
63 m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
64 refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
65 }
Gael Guennebaud86ccd992008-11-05 13:47:55 +000066
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020067 VERIFY_IS_APPROX(m, refMat);
Christoph Hertzberg0833b822014-10-31 17:12:13 +010068
Gael Guennebauda915f022013-06-28 16:16:02 +020069 // test assertion
70 VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 );
71 VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 );
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020072 }
Gael Guennebaud86ccd992008-11-05 13:47:55 +000073
Gael Guennebaud28293142009-05-04 14:25:12 +000074 // test insert (inner random)
Gael Guennebaud5015e482008-12-11 18:26:24 +000075 {
76 DenseMatrix m1(rows,cols);
77 m1.setZero();
Gael Guennebaud178858f2009-01-19 15:20:45 +000078 SparseMatrixType m2(rows,cols);
Gael Guennebaudc43154b2015-03-04 10:16:46 +010079 bool call_reserve = internal::random<int>()%2;
80 Index nnz = internal::random<int>(1,int(rows)/2);
81 if(call_reserve)
82 {
83 if(internal::random<int>()%2)
84 m2.reserve(VectorXi::Constant(m2.outerSize(), int(nnz)));
85 else
86 m2.reserve(m2.outerSize() * nnz);
87 }
88 g_realloc_count = 0;
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020089 for (Index j=0; j<cols; ++j)
Gael Guennebaud5015e482008-12-11 18:26:24 +000090 {
Gael Guennebaudc43154b2015-03-04 10:16:46 +010091 for (Index k=0; k<nnz; ++k)
Gael Guennebaud5015e482008-12-11 18:26:24 +000092 {
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020093 Index i = internal::random<Index>(0,rows-1);
Charles Schlosser44fe5392022-12-01 19:28:56 +000094 if (m1.coeff(i, j) == Scalar(0)) {
95 Scalar v = internal::random<Scalar>();
96 if (v == Scalar(0)) v = Scalar(1);
97 m1(i, j) = v;
98 m2.insert(i, j) = v;
99 }
Gael Guennebaud5015e482008-12-11 18:26:24 +0000100 }
101 }
Gael Guennebaudc43154b2015-03-04 10:16:46 +0100102
103 if(call_reserve && !SparseMatrixType::IsRowMajor)
104 {
105 VERIFY(g_realloc_count==0);
106 }
107
Gael Guennebaud28293142009-05-04 14:25:12 +0000108 VERIFY_IS_APPROX(m2,m1);
109 }
Gael Guennebaud9f795582009-12-16 19:18:40 +0100110
Gael Guennebaud28293142009-05-04 14:25:12 +0000111 // test insert (fully random)
112 {
113 DenseMatrix m1(rows,cols);
114 m1.setZero();
115 SparseMatrixType m2(rows,cols);
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100116 if(internal::random<int>()%2)
117 m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
Gael Guennebaud28293142009-05-04 14:25:12 +0000118 for (int k=0; k<rows*cols; ++k)
119 {
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +0200120 Index i = internal::random<Index>(0,rows-1);
121 Index j = internal::random<Index>(0,cols-1);
Charles Schlosser44fe5392022-12-01 19:28:56 +0000122 if ((m1.coeff(i, j) == Scalar(0)) && (internal::random<int>() % 2)) {
123 Scalar v = internal::random<Scalar>();
124 if (v == Scalar(0)) v = Scalar(1);
125 m1(i, j) = v;
126 m2.insert(i, j) = v;
127 }
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100128 else
129 {
130 Scalar v = internal::random<Scalar>();
Charles Schlosser44fe5392022-12-01 19:28:56 +0000131 if (v == Scalar(0)) v = Scalar(1);
132 m1(i, j) = v;
133 m2.coeffRef(i, j) = v;
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100134 }
Gael Guennebaud28293142009-05-04 14:25:12 +0000135 }
Gael Guennebaudc4c70662009-01-14 14:24:10 +0000136 VERIFY_IS_APPROX(m2,m1);
Gael Guennebaud5015e482008-12-11 18:26:24 +0000137 }
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200138
139 // test insert (un-compressed)
140 for(int mode=0;mode<4;++mode)
141 {
142 DenseMatrix m1(rows,cols);
143 m1.setZero();
144 SparseMatrixType m2(rows,cols);
Gael Guennebaudb47ef142014-07-08 16:47:11 +0200145 VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? int(m2.innerSize()) : std::max<int>(1,int(m2.innerSize())/8)));
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200146 m2.reserve(r);
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100147 for (Index k=0; k<rows*cols; ++k)
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200148 {
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +0200149 Index i = internal::random<Index>(0,rows-1);
150 Index j = internal::random<Index>(0,cols-1);
Charles Schlosser44fe5392022-12-01 19:28:56 +0000151 if (m1.coeff(i, j) == Scalar(0)) {
152 Scalar v = internal::random<Scalar>();
153 if (v == Scalar(0)) v = Scalar(1);
154 m1(i, j) = v;
155 m2.insert(i, j) = v;
156 }
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200157 if(mode==3)
158 m2.reserve(r);
159 }
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100160 if(internal::random<int>()%2)
161 m2.makeCompressed();
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200162 VERIFY_IS_APPROX(m2,m1);
163 }
Gael Guennebaud9f795582009-12-16 19:18:40 +0100164
Charles Schlosser44fe5392022-12-01 19:28:56 +0000165 // test sort
166 if (inner > 1) {
167 bool StorageOrdersMatch = DenseMatrix::IsRowMajor == SparseMatrixType::IsRowMajor;
168 DenseMatrix m1(rows, cols);
169 m1.setZero();
170 SparseMatrixType m2(rows, cols);
171 // generate random inner indices with no repeats
172 Vector<Index, Dynamic> innerIndices(inner);
173 innerIndices.setLinSpaced(inner, 0, inner - 1);
174 for (Index j = 0; j < outer; j++) {
175 std::random_shuffle(innerIndices.begin(), innerIndices.end());
176 Index nzj = internal::random<Index>(2, inner / 2);
177 for (Index k = 0; k < nzj; k++) {
178 Index i = innerIndices[k];
179 Scalar val = internal::random<Scalar>();
180 m1.coeffRefByOuterInner(StorageOrdersMatch ? j : i, StorageOrdersMatch ? i : j) = val;
181 m2.insertByOuterInner(j, i) = val;
182 }
183 }
184
185 VERIFY_IS_APPROX(m2, m1);
186 // sort wrt greater
187 m2.template sortInnerIndices<std::greater<>>();
188 // verify that all inner vectors are not sorted wrt less
189 VERIFY_IS_EQUAL(m2.template innerIndicesAreSorted<std::less<>>(), 0);
190 // verify that all inner vectors are sorted wrt greater
191 VERIFY_IS_EQUAL(m2.template innerIndicesAreSorted<std::greater<>>(), m2.outerSize());
192 // verify that sort does not change evaluation
193 VERIFY_IS_APPROX(m2, m1);
194 // sort wrt less
195 m2.template sortInnerIndices<std::less<>>();
196 // verify that all inner vectors are sorted wrt less
197 VERIFY_IS_EQUAL(m2.template innerIndicesAreSorted<std::less<>>(), m2.outerSize());
198 // verify that all inner vectors are not sorted wrt greater
199 VERIFY_IS_EQUAL(m2.template innerIndicesAreSorted<std::greater<>>(), 0);
200 // verify that sort does not change evaluation
201 VERIFY_IS_APPROX(m2, m1);
202
203 m2.makeCompressed();
204 // sort wrt greater
205 m2.template sortInnerIndices<std::greater<>>();
206 // verify that all inner vectors are not sorted wrt less
207 VERIFY_IS_EQUAL(m2.template innerIndicesAreSorted<std::less<>>(), 0);
208 // verify that all inner vectors are sorted wrt greater
209 VERIFY_IS_EQUAL(m2.template innerIndicesAreSorted<std::greater<>>(), m2.outerSize());
210 // verify that sort does not change evaluation
211 VERIFY_IS_APPROX(m2, m1);
212 // sort wrt less
213 m2.template sortInnerIndices<std::less<>>();
214 // verify that all inner vectors are sorted wrt less
215 VERIFY_IS_EQUAL(m2.template innerIndicesAreSorted<std::less<>>(), m2.outerSize());
216 // verify that all inner vectors are not sorted wrt greater
217 VERIFY_IS_EQUAL(m2.template innerIndicesAreSorted<std::greater<>>(), 0);
218 // verify that sort does not change evaluation
219 VERIFY_IS_APPROX(m2, m1);
220 }
221
Gael Guennebaud4e602832012-11-16 09:02:50 +0100222 // test basic computations
223 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100224 DenseMatrix refM1 = DenseMatrix::Zero(rows, cols);
225 DenseMatrix refM2 = DenseMatrix::Zero(rows, cols);
226 DenseMatrix refM3 = DenseMatrix::Zero(rows, cols);
227 DenseMatrix refM4 = DenseMatrix::Zero(rows, cols);
228 SparseMatrixType m1(rows, cols);
229 SparseMatrixType m2(rows, cols);
230 SparseMatrixType m3(rows, cols);
231 SparseMatrixType m4(rows, cols);
Gael Guennebaud4e602832012-11-16 09:02:50 +0100232 initSparse<Scalar>(density, refM1, m1);
233 initSparse<Scalar>(density, refM2, m2);
234 initSparse<Scalar>(density, refM3, m3);
235 initSparse<Scalar>(density, refM4, m4);
236
Gael Guennebaud2c1b56f2016-05-31 10:56:53 +0200237 if(internal::random<bool>())
238 m1.makeCompressed();
239
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100240 Index m1_nnz = m1.nonZeros();
241
Gael Guennebaud4aac8722014-07-22 12:54:03 +0200242 VERIFY_IS_APPROX(m1*s1, refM1*s1);
Gael Guennebaud4e602832012-11-16 09:02:50 +0100243 VERIFY_IS_APPROX(m1+m2, refM1+refM2);
244 VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
245 VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2));
246 VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100247 VERIFY_IS_APPROX(m4=m1/s1, refM1/s1);
248 VERIFY_IS_EQUAL(m4.nonZeros(), m1_nnz);
Gael Guennebaud4e602832012-11-16 09:02:50 +0100249
Gael Guennebaud4e602832012-11-16 09:02:50 +0100250 if(SparseMatrixType::IsRowMajor)
251 VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0)));
252 else
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100253 VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.col(0)), refM1.col(0).dot(refM2.col(0)));
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100254
Gael Guennebaud3573a102014-02-17 13:46:17 +0100255 DenseVector rv = DenseVector::Random(m1.cols());
256 DenseVector cv = DenseVector::Random(m1.rows());
257 Index r = internal::random<Index>(0,m1.rows()-2);
258 Index c = internal::random<Index>(0,m1.cols()-1);
259 VERIFY_IS_APPROX(( m1.template block<1,Dynamic>(r,0,1,m1.cols()).dot(rv)) , refM1.row(r).dot(rv));
260 VERIFY_IS_APPROX(m1.row(r).dot(rv), refM1.row(r).dot(rv));
261 VERIFY_IS_APPROX(m1.col(c).dot(cv), refM1.col(c).dot(cv));
Gael Guennebaud4e602832012-11-16 09:02:50 +0100262
263 VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate());
264 VERIFY_IS_APPROX(m1.real(), refM1.real());
265
266 refM4.setRandom();
267 // sparse cwise* dense
268 VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4));
Gael Guennebaud90275082015-11-04 17:42:07 +0100269 // dense cwise* sparse
270 VERIFY_IS_APPROX(refM4.cwiseProduct(m3), refM4.cwiseProduct(refM3));
Gael Guennebaud4e602832012-11-16 09:02:50 +0100271// VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
272
Gael Guennebaudeec0dfd2018-10-10 22:50:15 +0200273 // mixed sparse-dense
Gael Guennebaud15084cf2016-01-29 22:09:45 +0100274 VERIFY_IS_APPROX(refM4 + m3, refM4 + refM3);
275 VERIFY_IS_APPROX(m3 + refM4, refM3 + refM4);
276 VERIFY_IS_APPROX(refM4 - m3, refM4 - refM3);
277 VERIFY_IS_APPROX(m3 - refM4, refM3 - refM4);
Gael Guennebaud71362672016-12-27 16:34:30 +0100278 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
279 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
280 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3.cwiseProduct(m3)).eval(), RealScalar(0.5)*refM4 + refM3.cwiseProduct(refM3));
281
282 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
283 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
284 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
285 VERIFY_IS_APPROX(((refM3+m3)+RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM3 + (refM3+refM3));
286 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (refM3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
287 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+refM3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
288
Gael Guennebaud15084cf2016-01-29 22:09:45 +0100289
Gael Guennebaud2c1b56f2016-05-31 10:56:53 +0200290 VERIFY_IS_APPROX(m1.sum(), refM1.sum());
291
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100292 m4 = m1; refM4 = m4;
293
Gael Guennebaud2c1b56f2016-05-31 10:56:53 +0200294 VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100295 VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
Gael Guennebaud2c1b56f2016-05-31 10:56:53 +0200296 VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100297 VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
Gael Guennebaud2c1b56f2016-05-31 10:56:53 +0200298
299 VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
300 VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);
301
Gael Guennebaudeec0dfd2018-10-10 22:50:15 +0200302 refM3 = refM1;
303
304 VERIFY_IS_APPROX(refM1+=m2, refM3+=refM2);
305 VERIFY_IS_APPROX(refM1-=m2, refM3-=refM2);
306
307 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =m2+refM4, refM3 =refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,10);
308 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=m2+refM4, refM3+=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
309 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=m2+refM4, refM3-=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
310 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =refM4+m2, refM3 =refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
311 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=refM4+m2, refM3+=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
312 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=refM4+m2, refM3-=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
313
314 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =m2-refM4, refM3 =refM2-refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,20);
315 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=m2-refM4, refM3+=refM2-refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
316 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=m2-refM4, refM3-=refM2-refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
317 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =refM4-m2, refM3 =refM4-refM2); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
318 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=refM4-m2, refM3+=refM4-refM2); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
319 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=refM4-m2, refM3-=refM4-refM2); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
320 refM3 = m3;
321
Gael Guennebaudba3f9772017-01-23 22:06:08 +0100322 if (rows>=2 && cols>=2)
323 {
324 VERIFY_RAISES_ASSERT( m1 += m1.innerVector(0) );
325 VERIFY_RAISES_ASSERT( m1 -= m1.innerVector(0) );
326 VERIFY_RAISES_ASSERT( refM1 -= m1.innerVector(0) );
327 VERIFY_RAISES_ASSERT( refM1 += m1.innerVector(0) );
328 }
Gael Guennebaud26a2c6f2017-12-14 15:11:04 +0100329 m1 = m4; refM1 = refM4;
Gael Guennebaudba3f9772017-01-23 22:06:08 +0100330
Gael Guennebaud4e602832012-11-16 09:02:50 +0100331 // test aliasing
332 VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1));
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100333 VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
334 m1 = m4; refM1 = refM4;
Gael Guennebaud4e602832012-11-16 09:02:50 +0100335 VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval()));
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100336 VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
337 m1 = m4; refM1 = refM4;
Gael Guennebaud4e602832012-11-16 09:02:50 +0100338 VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval()));
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100339 VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
340 m1 = m4; refM1 = refM4;
Gael Guennebaud4e602832012-11-16 09:02:50 +0100341 VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1));
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100342 VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
343 m1 = m4; refM1 = refM4;
Gael Guennebaud7e029d12016-08-29 12:06:37 +0200344
345 if(m1.isCompressed())
346 {
347 VERIFY_IS_APPROX(m1.coeffs().sum(), m1.sum());
348 m1.coeffs() += s1;
349 for(Index j = 0; j<m1.outerSize(); ++j)
350 for(typename SparseMatrixType::InnerIterator it(m1,j); it; ++it)
351 refM1(it.row(), it.col()) += s1;
352 VERIFY_IS_APPROX(m1, refM1);
353 }
Gael Guennebaud2e334f52016-11-14 18:47:02 +0100354
355 // and/or
356 {
357 typedef SparseMatrix<bool, SparseMatrixType::Options, typename SparseMatrixType::StorageIndex> SpBool;
358 SpBool mb1 = m1.real().template cast<bool>();
359 SpBool mb2 = m2.real().template cast<bool>();
360 VERIFY_IS_EQUAL(mb1.template cast<int>().sum(), refM1.real().template cast<bool>().count());
361 VERIFY_IS_EQUAL((mb1 && mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count());
362 VERIFY_IS_EQUAL((mb1 || mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() || refM2.real().template cast<bool>()).count());
363 SpBool mb3 = mb1 && mb2;
364 if(mb1.coeffs().all() && mb2.coeffs().all())
365 {
366 VERIFY_IS_EQUAL(mb3.nonZeros(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count());
367 }
368 }
Gael Guennebaud4e602832012-11-16 09:02:50 +0100369 }
370
Gael Guennebaudeedb87f2016-11-14 14:05:53 +0100371 // test reverse iterators
372 {
373 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
374 SparseMatrixType m2(rows, cols);
375 initSparse<Scalar>(density, refMat2, m2);
376 std::vector<Scalar> ref_value(m2.innerSize());
377 std::vector<Index> ref_index(m2.innerSize());
378 if(internal::random<bool>())
379 m2.makeCompressed();
380 for(Index j = 0; j<m2.outerSize(); ++j)
381 {
382 Index count_forward = 0;
383
384 for(typename SparseMatrixType::InnerIterator it(m2,j); it; ++it)
385 {
386 ref_value[ref_value.size()-1-count_forward] = it.value();
387 ref_index[ref_index.size()-1-count_forward] = it.index();
388 count_forward++;
389 }
390 Index count_reverse = 0;
391 for(typename SparseMatrixType::ReverseInnerIterator it(m2,j); it; --it)
392 {
393 VERIFY_IS_APPROX( std::abs(ref_value[ref_value.size()-count_forward+count_reverse])+1, std::abs(it.value())+1);
394 VERIFY_IS_EQUAL( ref_index[ref_index.size()-count_forward+count_reverse] , it.index());
395 count_reverse++;
396 }
397 VERIFY_IS_EQUAL(count_forward, count_reverse);
398 }
399 }
400
Gael Guennebaud4e602832012-11-16 09:02:50 +0100401 // test transpose
402 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100403 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
404 SparseMatrixType m2(rows, cols);
Gael Guennebaud4e602832012-11-16 09:02:50 +0100405 initSparse<Scalar>(density, refMat2, m2);
406 VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
407 VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
408
409 VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint());
Gael Guennebaudff46ec02014-09-22 23:33:28 +0200410
411 // check isApprox handles opposite storage order
412 typename Transpose<SparseMatrixType>::PlainObject m3(m2);
413 VERIFY(m2.isApprox(m3));
Gael Guennebaud4e602832012-11-16 09:02:50 +0100414 }
415
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000416 // test prune
417 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100418 SparseMatrixType m2(rows, cols);
419 DenseMatrix refM2(rows, cols);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000420 refM2.setZero();
421 int countFalseNonZero = 0;
422 int countTrueNonZero = 0;
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200423 m2.reserve(VectorXi::Constant(m2.outerSize(), int(m2.innerSize())));
424 for (Index j=0; j<m2.cols(); ++j)
Gael Guennebaud28293142009-05-04 14:25:12 +0000425 {
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200426 for (Index i=0; i<m2.rows(); ++i)
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000427 {
Benoit Jacob47160402010-10-25 10:15:22 -0400428 float x = internal::random<float>(0,1);
Christoph Hertzbergdacb4692016-05-05 13:35:45 +0200429 if (x<0.1f)
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000430 {
431 // do nothing
432 }
Christoph Hertzbergdacb4692016-05-05 13:35:45 +0200433 else if (x<0.5f)
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000434 {
435 countFalseNonZero++;
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200436 m2.insert(i,j) = Scalar(0);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000437 }
438 else
439 {
440 countTrueNonZero++;
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200441 m2.insert(i,j) = Scalar(1);
442 refM2(i,j) = Scalar(1);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000443 }
444 }
Gael Guennebaud28293142009-05-04 14:25:12 +0000445 }
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200446 if(internal::random<bool>())
447 m2.makeCompressed();
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000448 VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200449 if(countTrueNonZero>0)
450 VERIFY_IS_APPROX(m2, refM2);
Hauke Heibeld204ec42010-11-02 14:33:33 +0100451 m2.prune(Scalar(1));
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000452 VERIFY(countTrueNonZero==m2.nonZeros());
453 VERIFY_IS_APPROX(m2, refM2);
454 }
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100455
Gael Guennebaud87138072012-01-28 11:13:59 +0100456 // test setFromTriplets
457 {
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100458 typedef Triplet<Scalar,StorageIndex> TripletType;
Gael Guennebaud87138072012-01-28 11:13:59 +0100459 std::vector<TripletType> triplets;
Gael Guennebaudb47ef142014-07-08 16:47:11 +0200460 Index ntriplets = rows*cols;
Gael Guennebaud87138072012-01-28 11:13:59 +0100461 triplets.reserve(ntriplets);
Gael Guennebaudb4c79ee2015-10-13 11:30:41 +0200462 DenseMatrix refMat_sum = DenseMatrix::Zero(rows,cols);
463 DenseMatrix refMat_prod = DenseMatrix::Zero(rows,cols);
464 DenseMatrix refMat_last = DenseMatrix::Zero(rows,cols);
465
Gael Guennebaudb47ef142014-07-08 16:47:11 +0200466 for(Index i=0;i<ntriplets;++i)
Gael Guennebaud87138072012-01-28 11:13:59 +0100467 {
Gael Guennebaudaa6c5162015-02-16 13:19:05 +0100468 StorageIndex r = internal::random<StorageIndex>(0,StorageIndex(rows-1));
469 StorageIndex c = internal::random<StorageIndex>(0,StorageIndex(cols-1));
Gael Guennebaud87138072012-01-28 11:13:59 +0100470 Scalar v = internal::random<Scalar>();
Gael Guennebaud18e3ac02012-01-31 09:14:01 +0100471 triplets.push_back(TripletType(r,c,v));
Gael Guennebaudb4c79ee2015-10-13 11:30:41 +0200472 refMat_sum(r,c) += v;
473 if(std::abs(refMat_prod(r,c))==0)
474 refMat_prod(r,c) = v;
475 else
476 refMat_prod(r,c) *= v;
477 refMat_last(r,c) = v;
Gael Guennebaud87138072012-01-28 11:13:59 +0100478 }
Charles Schlosser81172cb2023-01-07 22:09:42 +0000479
Gael Guennebaud87138072012-01-28 11:13:59 +0100480 SparseMatrixType m(rows,cols);
481 m.setFromTriplets(triplets.begin(), triplets.end());
Gael Guennebaudb4c79ee2015-10-13 11:30:41 +0200482 VERIFY_IS_APPROX(m, refMat_sum);
Charles Schlosser81172cb2023-01-07 22:09:42 +0000483 VERIFY_IS_EQUAL(m.innerIndicesAreSorted(), m.outerSize());
Gael Guennebaudb4c79ee2015-10-13 11:30:41 +0200484
485 m.setFromTriplets(triplets.begin(), triplets.end(), std::multiplies<Scalar>());
486 VERIFY_IS_APPROX(m, refMat_prod);
Charles Schlosser81172cb2023-01-07 22:09:42 +0000487 VERIFY_IS_EQUAL(m.innerIndicesAreSorted(), m.outerSize());
Gael Guennebaudb4c79ee2015-10-13 11:30:41 +0200488 m.setFromTriplets(triplets.begin(), triplets.end(), [] (Scalar,Scalar b) { return b; });
489 VERIFY_IS_APPROX(m, refMat_last);
Charles Schlosser81172cb2023-01-07 22:09:42 +0000490 VERIFY_IS_EQUAL(m.innerIndicesAreSorted(), m.outerSize());
491
492 // test setFromSortedTriplets
493
494 struct triplet_comp {
495 inline bool operator()(const TripletType& a, const TripletType& b) {
496 return SparseMatrixType::IsRowMajor ? ((a.row() != b.row()) ? (a.row() < b.row()) : (a.col() < b.col()))
497 : ((a.col() != b.col()) ? (a.col() < b.col()) : (a.row() < b.row()));
498 }
499 };
500
501 // stable_sort is only necessary when the reduction functor is dependent on the order of the triplets
502 // this is the case with refMat_last
503 // for most cases, std::sort is sufficient and preferred
504 std::stable_sort(triplets.begin(), triplets.end(), triplet_comp());
505
506 m.setZero();
507 m.setFromSortedTriplets(triplets.begin(), triplets.end());
508 VERIFY_IS_APPROX(m, refMat_sum);
509 VERIFY_IS_EQUAL(m.innerIndicesAreSorted(), m.outerSize());
510
511 m.setFromSortedTriplets(triplets.begin(), triplets.end(), std::multiplies<Scalar>());
512 VERIFY_IS_APPROX(m, refMat_prod);
513 VERIFY_IS_EQUAL(m.innerIndicesAreSorted(), m.outerSize());
514
515 m.setFromSortedTriplets(triplets.begin(), triplets.end(), [](Scalar, Scalar b) { return b; });
516 VERIFY_IS_APPROX(m, refMat_last);
517 VERIFY_IS_EQUAL(m.innerIndicesAreSorted(), m.outerSize());
Gael Guennebaud87138072012-01-28 11:13:59 +0100518 }
Gael Guennebaud3af29ca2015-02-09 10:23:45 +0100519
520 // test Map
521 {
522 DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
523 SparseMatrixType m2(rows, cols), m3(rows, cols);
524 initSparse<Scalar>(density, refMat2, m2);
525 initSparse<Scalar>(density, refMat3, m3);
526 {
527 Map<SparseMatrixType> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
528 Map<SparseMatrixType> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr());
529 VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
530 VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
531 }
Gael Guennebaud757971e2016-07-26 09:40:19 +0200532
533 Index i = internal::random<Index>(0,rows-1);
534 Index j = internal::random<Index>(0,cols-1);
535 m2.coeffRef(i,j) = 123;
536 if(internal::random<bool>())
537 m2.makeCompressed();
538 Map<SparseMatrixType> mapMat2(rows, cols, m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
539 VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(123));
540 VERIFY_IS_EQUAL(mapMat2.coeff(i,j),Scalar(123));
541 mapMat2.coeffRef(i,j) = -123;
542 VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(-123));
Gael Guennebaud3af29ca2015-02-09 10:23:45 +0100543 }
Gael Guennebaud87138072012-01-28 11:13:59 +0100544
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100545 // test triangularView
546 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100547 DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
548 SparseMatrixType m2(rows, cols), m3(rows, cols);
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100549 initSparse<Scalar>(density, refMat2, m2);
550 refMat3 = refMat2.template triangularView<Lower>();
551 m3 = m2.template triangularView<Lower>();
552 VERIFY_IS_APPROX(m3, refMat3);
553
554 refMat3 = refMat2.template triangularView<Upper>();
555 m3 = m2.template triangularView<Upper>();
556 VERIFY_IS_APPROX(m3, refMat3);
557
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100558 {
559 refMat3 = refMat2.template triangularView<UnitUpper>();
560 m3 = m2.template triangularView<UnitUpper>();
561 VERIFY_IS_APPROX(m3, refMat3);
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100562
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100563 refMat3 = refMat2.template triangularView<UnitLower>();
564 m3 = m2.template triangularView<UnitLower>();
565 VERIFY_IS_APPROX(m3, refMat3);
566 }
Desire NUENTSA4cd82452013-06-11 14:42:29 +0200567
568 refMat3 = refMat2.template triangularView<StrictlyUpper>();
569 m3 = m2.template triangularView<StrictlyUpper>();
570 VERIFY_IS_APPROX(m3, refMat3);
571
572 refMat3 = refMat2.template triangularView<StrictlyLower>();
573 m3 = m2.template triangularView<StrictlyLower>();
574 VERIFY_IS_APPROX(m3, refMat3);
Gael Guennebaudf6b1dee2015-11-04 17:02:32 +0100575
Gael Guennebaudba3f9772017-01-23 22:06:08 +0100576 // check sparse-triangular to dense
Gael Guennebaudf6b1dee2015-11-04 17:02:32 +0100577 refMat3 = m2.template triangularView<StrictlyUpper>();
578 VERIFY_IS_APPROX(refMat3, DenseMatrix(refMat2.template triangularView<StrictlyUpper>()));
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100579 }
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200580
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100581 // test selfadjointView
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100582 if(!SparseMatrixType::IsRowMajor)
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100583 {
584 DenseMatrix refMat2(rows, rows), refMat3(rows, rows);
585 SparseMatrixType m2(rows, rows), m3(rows, rows);
586 initSparse<Scalar>(density, refMat2, m2);
587 refMat3 = refMat2.template selfadjointView<Lower>();
588 m3 = m2.template selfadjointView<Lower>();
589 VERIFY_IS_APPROX(m3, refMat3);
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100590
Gael Guennebaud11b492e2016-12-14 17:53:47 +0100591 refMat3 += refMat2.template selfadjointView<Lower>();
592 m3 += m2.template selfadjointView<Lower>();
593 VERIFY_IS_APPROX(m3, refMat3);
594
595 refMat3 -= refMat2.template selfadjointView<Lower>();
596 m3 -= m2.template selfadjointView<Lower>();
597 VERIFY_IS_APPROX(m3, refMat3);
598
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100599 // selfadjointView only works for square matrices:
600 SparseMatrixType m4(rows, rows+1);
601 VERIFY_RAISES_ASSERT(m4.template selfadjointView<Lower>());
602 VERIFY_RAISES_ASSERT(m4.template selfadjointView<Upper>());
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100603 }
604
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200605 // test sparseView
606 {
607 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
608 SparseMatrixType m2(rows, rows);
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100609 initSparse<Scalar>(density, refMat2, m2);
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200610 VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval());
Gael Guennebaud8456bbb2016-05-18 16:53:28 +0200611
612 // sparse view on expressions:
613 VERIFY_IS_APPROX((s1*m2).eval(), (s1*refMat2).sparseView().eval());
614 VERIFY_IS_APPROX((m2+m2).eval(), (refMat2+refMat2).sparseView().eval());
615 VERIFY_IS_APPROX((m2*m2).eval(), (refMat2.lazyProduct(refMat2)).sparseView().eval());
616 VERIFY_IS_APPROX((m2*m2).eval(), (refMat2*refMat2).sparseView().eval());
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200617 }
Gael Guennebaud82f9aa12011-12-04 21:49:21 +0100618
619 // test diagonal
620 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100621 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
622 SparseMatrixType m2(rows, cols);
Gael Guennebaud82f9aa12011-12-04 21:49:21 +0100623 initSparse<Scalar>(density, refMat2, m2);
624 VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval());
Gael Guennebaud296d24b2017-01-25 17:39:01 +0100625 DenseVector d = m2.diagonal();
626 VERIFY_IS_APPROX(d, refMat2.diagonal().eval());
627 d = m2.diagonal().array();
628 VERIFY_IS_APPROX(d, refMat2.diagonal().eval());
Gael Guennebaudb26e6972014-12-01 14:41:39 +0100629 VERIFY_IS_APPROX(const_cast<const SparseMatrixType&>(m2).diagonal(), refMat2.diagonal().eval());
630
631 initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag);
632 m2.diagonal() += refMat2.diagonal();
633 refMat2.diagonal() += refMat2.diagonal();
634 VERIFY_IS_APPROX(m2, refMat2);
Gael Guennebaud82f9aa12011-12-04 21:49:21 +0100635 }
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200636
Gael Guennebaud62f21e22015-06-24 17:55:00 +0200637 // test diagonal to sparse
638 {
639 DenseVector d = DenseVector::Random(rows);
640 DenseMatrix refMat2 = d.asDiagonal();
Gael Guennebaudf489f442019-01-28 17:29:50 +0100641 SparseMatrixType m2;
Gael Guennebaud62f21e22015-06-24 17:55:00 +0200642 m2 = d.asDiagonal();
643 VERIFY_IS_APPROX(m2, refMat2);
Gael Guennebaud4c8cd132015-06-24 18:11:06 +0200644 SparseMatrixType m3(d.asDiagonal());
645 VERIFY_IS_APPROX(m3, refMat2);
Gael Guennebaud62f21e22015-06-24 17:55:00 +0200646 refMat2 += d.asDiagonal();
647 m2 += d.asDiagonal();
648 VERIFY_IS_APPROX(m2, refMat2);
Gael Guennebaudf489f442019-01-28 17:29:50 +0100649 m2.setZero(); m2 += d.asDiagonal();
650 refMat2.setZero(); refMat2 += d.asDiagonal();
651 VERIFY_IS_APPROX(m2, refMat2);
652 m2.setZero(); m2 -= d.asDiagonal();
653 refMat2.setZero(); refMat2 -= d.asDiagonal();
654 VERIFY_IS_APPROX(m2, refMat2);
655
656 initSparse<Scalar>(density, refMat2, m2);
657 m2.makeCompressed();
658 m2 += d.asDiagonal();
659 refMat2 += d.asDiagonal();
660 VERIFY_IS_APPROX(m2, refMat2);
661
662 initSparse<Scalar>(density, refMat2, m2);
663 m2.makeCompressed();
664 VectorXi res(rows);
665 for(Index i=0; i<rows; ++i)
666 res(i) = internal::random<int>(0,3);
667 m2.reserve(res);
668 m2 -= d.asDiagonal();
669 refMat2 -= d.asDiagonal();
670 VERIFY_IS_APPROX(m2, refMat2);
Gael Guennebaud62f21e22015-06-24 17:55:00 +0200671 }
672
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200673 // test conservative resize
674 {
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100675 std::vector< std::pair<StorageIndex,StorageIndex> > inc;
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100676 if(rows > 3 && cols > 2)
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100677 inc.push_back(std::pair<StorageIndex,StorageIndex>(-3,-2));
678 inc.push_back(std::pair<StorageIndex,StorageIndex>(0,0));
679 inc.push_back(std::pair<StorageIndex,StorageIndex>(3,2));
680 inc.push_back(std::pair<StorageIndex,StorageIndex>(3,0));
681 inc.push_back(std::pair<StorageIndex,StorageIndex>(0,3));
Adam Shapiro2ac0b782021-02-23 21:32:39 +0000682 inc.push_back(std::pair<StorageIndex,StorageIndex>(0,-1));
683 inc.push_back(std::pair<StorageIndex,StorageIndex>(-1,0));
684 inc.push_back(std::pair<StorageIndex,StorageIndex>(-1,-1));
685
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200686 for(size_t i = 0; i< inc.size(); i++) {
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100687 StorageIndex incRows = inc[i].first;
688 StorageIndex incCols = inc[i].second;
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200689 SparseMatrixType m1(rows, cols);
690 DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols);
691 initSparse<Scalar>(density, refMat1, m1);
Adam Shapiro2ac0b782021-02-23 21:32:39 +0000692
693 SparseMatrixType m2 = m1;
694 m2.makeCompressed();
695
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200696 m1.conservativeResize(rows+incRows, cols+incCols);
Adam Shapiro2ac0b782021-02-23 21:32:39 +0000697 m2.conservativeResize(rows+incRows, cols+incCols);
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200698 refMat1.conservativeResize(rows+incRows, cols+incCols);
699 if (incRows > 0) refMat1.bottomRows(incRows).setZero();
700 if (incCols > 0) refMat1.rightCols(incCols).setZero();
Adam Shapiro2ac0b782021-02-23 21:32:39 +0000701
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200702 VERIFY_IS_APPROX(m1, refMat1);
Adam Shapiro2ac0b782021-02-23 21:32:39 +0000703 VERIFY_IS_APPROX(m2, refMat1);
704
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200705 // Insert new values
706 if (incRows > 0)
Gael Guennebaud7ee378d2013-07-12 16:40:02 +0200707 m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1;
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200708 if (incCols > 0)
Gael Guennebaud7ee378d2013-07-12 16:40:02 +0200709 m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1;
Adam Shapiro2ac0b782021-02-23 21:32:39 +0000710
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200711 VERIFY_IS_APPROX(m1, refMat1);
Adam Shapiro2ac0b782021-02-23 21:32:39 +0000712
713
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200714 }
715 }
Desire NUENTSA4cd82452013-06-11 14:42:29 +0200716
717 // test Identity matrix
718 {
719 DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows);
720 SparseMatrixType m1(rows, rows);
721 m1.setIdentity();
722 VERIFY_IS_APPROX(m1, refMat1);
Gael Guennebaud8a211bb2015-10-25 22:01:58 +0100723 for(int k=0; k<rows*rows/4; ++k)
724 {
725 Index i = internal::random<Index>(0,rows-1);
726 Index j = internal::random<Index>(0,rows-1);
Gael Guennebaud73f692d2015-10-27 11:01:37 +0100727 Scalar v = internal::random<Scalar>();
Gael Guennebaud8a211bb2015-10-25 22:01:58 +0100728 m1.coeffRef(i,j) = v;
729 refMat1.coeffRef(i,j) = v;
730 VERIFY_IS_APPROX(m1, refMat1);
731 if(internal::random<Index>(0,10)<2)
732 m1.makeCompressed();
733 }
734 m1.setIdentity();
735 refMat1.setIdentity();
736 VERIFY_IS_APPROX(m1, refMat1);
Desire NUENTSA4cd82452013-06-11 14:42:29 +0200737 }
Gael Guennebaudec469702016-02-01 15:04:33 +0100738
739 // test array/vector of InnerIterator
740 {
741 typedef typename SparseMatrixType::InnerIterator IteratorType;
742
743 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
744 SparseMatrixType m2(rows, cols);
745 initSparse<Scalar>(density, refMat2, m2);
746 IteratorType static_array[2];
747 static_array[0] = IteratorType(m2,0);
748 static_array[1] = IteratorType(m2,m2.outerSize()-1);
749 VERIFY( static_array[0] || m2.innerVector(static_array[0].outer()).nonZeros() == 0 );
750 VERIFY( static_array[1] || m2.innerVector(static_array[1].outer()).nonZeros() == 0 );
751 if(static_array[0] && static_array[1])
752 {
753 ++(static_array[1]);
754 static_array[1] = IteratorType(m2,0);
755 VERIFY( static_array[1] );
756 VERIFY( static_array[1].index() == static_array[0].index() );
757 VERIFY( static_array[1].outer() == static_array[0].outer() );
758 VERIFY( static_array[1].value() == static_array[0].value() );
759 }
760
761 std::vector<IteratorType> iters(2);
762 iters[0] = IteratorType(m2,0);
763 iters[1] = IteratorType(m2,m2.outerSize()-1);
764 }
Gael Guennebaud25424d92020-08-26 12:32:20 +0200765
766 // test reserve with empty rows/columns
767 {
768 SparseMatrixType m1(0,cols);
769 m1.reserve(ArrayXi::Constant(m1.outerSize(),1));
770 SparseMatrixType m2(rows,0);
771 m2.reserve(ArrayXi::Constant(m2.outerSize(),1));
772 }
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000773}
774
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100775
Christoph Hertzbergc5a37772014-10-31 17:19:05 +0100776template<typename SparseMatrixType>
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100777void big_sparse_triplet(Index rows, Index cols, double density) {
778 typedef typename SparseMatrixType::StorageIndex StorageIndex;
779 typedef typename SparseMatrixType::Scalar Scalar;
780 typedef Triplet<Scalar,Index> TripletType;
781 std::vector<TripletType> triplets;
Erik Schultheisd271a7d2022-01-26 18:16:19 +0000782 double nelements = density * static_cast<double>(rows*cols);
Antonio Sanchez543e34a2021-03-05 12:54:26 -0800783 VERIFY(nelements>=0 && nelements < static_cast<double>(NumTraits<StorageIndex>::highest()));
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100784 Index ntriplets = Index(nelements);
785 triplets.reserve(ntriplets);
786 Scalar sum = Scalar(0);
787 for(Index i=0;i<ntriplets;++i)
788 {
789 Index r = internal::random<Index>(0,rows-1);
790 Index c = internal::random<Index>(0,cols-1);
Gael Guennebaudcd25b532018-12-08 00:13:37 +0100791 // use positive values to prevent numerical cancellation errors in sum
792 Scalar v = numext::abs(internal::random<Scalar>());
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100793 triplets.push_back(TripletType(r,c,v));
794 sum += v;
795 }
796 SparseMatrixType m(rows,cols);
797 m.setFromTriplets(triplets.begin(), triplets.end());
798 VERIFY(m.nonZeros() <= ntriplets);
799 VERIFY_IS_APPROX(sum, m.sum());
Christoph Hertzbergc5a37772014-10-31 17:19:05 +0100800}
801
Gael Guennebauddff3a922018-07-17 15:52:58 +0200802template<int>
803void bug1105()
804{
805 // Regression test for bug 1105
806 int n = Eigen::internal::random<int>(200,600);
807 SparseMatrix<std::complex<double>,0, long> mat(n, n);
808 std::complex<double> val;
809
810 for(int i=0; i<n; ++i)
811 {
812 mat.coeffRef(i, i%(n/10)) = val;
813 VERIFY(mat.data().allocatedSize()<20*n);
814 }
815}
Christoph Hertzbergc5a37772014-10-31 17:19:05 +0100816
Gael Guennebaud8214cf12018-10-11 10:27:23 +0200817#ifndef EIGEN_SPARSE_TEST_INCLUDED_FROM_SPARSE_EXTRA
818
Gael Guennebaud82f0ce22018-07-17 14:46:15 +0200819EIGEN_DECLARE_TEST(sparse_basic)
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000820{
Rasmus Munk Larsen954b4ca2018-10-22 13:48:56 -0700821 g_dense_op_sparse_count = 0; // Suppresses compiler warning.
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000822 for(int i = 0; i < g_repeat; i++) {
Gael Guennebaudc43154b2015-03-04 10:16:46 +0100823 int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200);
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100824 if(Eigen::internal::random<int>(0,4) == 0) {
825 r = c; // check square matrices in 25% of tries
826 }
827 EIGEN_UNUSED_VARIABLE(r+c);
828 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(1, 1)) ));
Gael Guennebaud91fe1502011-06-07 11:28:16 +0200829 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) ));
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100830 CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(r, c)) ));
831 CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(r, c)) ));
Charles Schlosser44fe5392022-12-01 19:28:56 +0000832 CALL_SUBTEST_2(( sparse_basic(SparseMatrix<float, RowMajor>(r, c))));
833 CALL_SUBTEST_2(( sparse_basic(SparseMatrix<float, ColMajor>(r, c))));
834 CALL_SUBTEST_3(( sparse_basic(SparseMatrix<double, ColMajor>(r, c))));
835 CALL_SUBTEST_3(( sparse_basic(SparseMatrix<double, RowMajor>(r, c))));
836 CALL_SUBTEST_4(( sparse_basic(SparseMatrix<double, ColMajor,long int>(r, c)) ));
837 CALL_SUBTEST_4(( sparse_basic(SparseMatrix<double, RowMajor,long int>(r, c)) ));
Gael Guennebaud47e89022013-06-10 10:34:03 +0200838
Gael Guennebaudc43154b2015-03-04 10:16:46 +0100839 r = Eigen::internal::random<int>(1,100);
840 c = Eigen::internal::random<int>(1,100);
841 if(Eigen::internal::random<int>(0,4) == 0) {
842 r = c; // check square matrices in 25% of tries
843 }
844
Charles Schlosser44fe5392022-12-01 19:28:56 +0000845 CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) ));
846 CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) ));
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000847 }
Christoph Hertzbergc5a37772014-10-31 17:19:05 +0100848
849 // Regression test for bug 900: (manually insert higher values here, if you have enough RAM):
Charles Schlosser44fe5392022-12-01 19:28:56 +0000850 CALL_SUBTEST_5(( big_sparse_triplet<SparseMatrix<float, RowMajor, int>>(10000, 10000, 0.125)));
851 CALL_SUBTEST_5(( big_sparse_triplet<SparseMatrix<double, ColMajor, long int>>(10000, 10000, 0.125)));
Gael Guennebaudbfd6ee62015-11-06 15:05:37 +0100852
Charles Schlosser44fe5392022-12-01 19:28:56 +0000853 CALL_SUBTEST_5(bug1105<0>());
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000854}
Gael Guennebaud8214cf12018-10-11 10:27:23 +0200855#endif