blob: 6e2661e8d9c569c35af3aff29361b785d7371079 [file] [log] [blame]
Gael Guennebaud86ccd992008-11-05 13:47:55 +00001// This file is part of Eigen, a lightweight C++ template library
Benoit Jacob6347b1d2009-05-22 20:25:33 +02002// for linear algebra.
Gael Guennebaud86ccd992008-11-05 13:47:55 +00003//
Gael Guennebaud22c76092011-03-22 11:58:22 +01004// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
Gael Guennebaud86ccd992008-11-05 13:47:55 +00005// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
Desire NUENTSA4cd82452013-06-11 14:42:29 +02006// Copyright (C) 2013 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
Gael Guennebaud86ccd992008-11-05 13:47:55 +00007//
Benoit Jacob69124cf2012-07-13 14:42:47 -04008// This Source Code Form is subject to the terms of the Mozilla
9// Public License v. 2.0. If a copy of the MPL was not distributed
10// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
Gael Guennebaud86ccd992008-11-05 13:47:55 +000011
Gael Guennebaud8214cf12018-10-11 10:27:23 +020012#ifndef EIGEN_SPARSE_TEST_INCLUDED_FROM_SPARSE_EXTRA
Gael Guennebaudc43154b2015-03-04 10:16:46 +010013static long g_realloc_count = 0;
14#define EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN g_realloc_count++;
15
Gael Guennebaudeec0dfd2018-10-10 22:50:15 +020016static long g_dense_op_sparse_count = 0;
17#define EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN g_dense_op_sparse_count++;
18#define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN g_dense_op_sparse_count+=10;
19#define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN g_dense_op_sparse_count+=20;
Gael Guennebaud8214cf12018-10-11 10:27:23 +020020#endif
Gael Guennebaudeec0dfd2018-10-10 22:50:15 +020021
Gael Guennebaud86ccd992008-11-05 13:47:55 +000022#include "sparse.h"
23
Gael Guennebaud178858f2009-01-19 15:20:45 +000024template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
25{
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +010026 typedef typename SparseMatrixType::StorageIndex StorageIndex;
27 typedef Matrix<StorageIndex,2,1> Vector2;
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020028
Gael Guennebaudfc202ba2015-02-13 18:57:41 +010029 const Index rows = ref.rows();
30 const Index cols = ref.cols();
Charles Schlosser44fe5392022-12-01 19:28:56 +000031 const Index inner = ref.innerSize();
32 const Index outer = ref.outerSize();
Christoph Hertzberg0833b822014-10-31 17:12:13 +010033
Gael Guennebaud178858f2009-01-19 15:20:45 +000034 typedef typename SparseMatrixType::Scalar Scalar;
Gael Guennebaud71362672016-12-27 16:34:30 +010035 typedef typename SparseMatrixType::RealScalar RealScalar;
Gael Guennebaud178858f2009-01-19 15:20:45 +000036 enum { Flags = SparseMatrixType::Flags };
Gael Guennebaud9f795582009-12-16 19:18:40 +010037
Gael Guennebaud42e25782011-08-19 14:18:05 +020038 double density = (std::max)(8./(rows*cols), 0.01);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000039 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
40 typedef Matrix<Scalar,Dynamic,1> DenseVector;
41 Scalar eps = 1e-6;
42
Benoit Jacob47160402010-10-25 10:15:22 -040043 Scalar s1 = internal::random<Scalar>();
Gael Guennebaud86ccd992008-11-05 13:47:55 +000044 {
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020045 SparseMatrixType m(rows, cols);
46 DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
47 DenseVector vec1 = DenseVector::Random(rows);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000048
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020049 std::vector<Vector2> zeroCoords;
50 std::vector<Vector2> nonzeroCoords;
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020051 initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000052
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020053 // test coeff and coeffRef
Christoph Hertzberg0833b822014-10-31 17:12:13 +010054 for (std::size_t i=0; i<zeroCoords.size(); ++i)
Gael Guennebaud86ccd992008-11-05 13:47:55 +000055 {
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020056 VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
57 if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
Christoph Hertzberg0833b822014-10-31 17:12:13 +010058 VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[i].x(),zeroCoords[i].y()) = 5 );
Gael Guennebaud86ccd992008-11-05 13:47:55 +000059 }
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020060 VERIFY_IS_APPROX(m, refMat);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000061
Christoph Hertzberg0833b822014-10-31 17:12:13 +010062 if(!nonzeroCoords.empty()) {
63 m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
64 refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
65 }
Gael Guennebaud86ccd992008-11-05 13:47:55 +000066
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020067 VERIFY_IS_APPROX(m, refMat);
Christoph Hertzberg0833b822014-10-31 17:12:13 +010068
Gael Guennebauda915f022013-06-28 16:16:02 +020069 // test assertion
70 VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 );
71 VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 );
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020072 }
Gael Guennebaud86ccd992008-11-05 13:47:55 +000073
Gael Guennebaud28293142009-05-04 14:25:12 +000074 // test insert (inner random)
Gael Guennebaud5015e482008-12-11 18:26:24 +000075 {
76 DenseMatrix m1(rows,cols);
77 m1.setZero();
Gael Guennebaud178858f2009-01-19 15:20:45 +000078 SparseMatrixType m2(rows,cols);
Gael Guennebaudc43154b2015-03-04 10:16:46 +010079 bool call_reserve = internal::random<int>()%2;
80 Index nnz = internal::random<int>(1,int(rows)/2);
81 if(call_reserve)
82 {
83 if(internal::random<int>()%2)
84 m2.reserve(VectorXi::Constant(m2.outerSize(), int(nnz)));
85 else
86 m2.reserve(m2.outerSize() * nnz);
87 }
88 g_realloc_count = 0;
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020089 for (Index j=0; j<cols; ++j)
Gael Guennebaud5015e482008-12-11 18:26:24 +000090 {
Gael Guennebaudc43154b2015-03-04 10:16:46 +010091 for (Index k=0; k<nnz; ++k)
Gael Guennebaud5015e482008-12-11 18:26:24 +000092 {
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020093 Index i = internal::random<Index>(0,rows-1);
Charles Schlosser44fe5392022-12-01 19:28:56 +000094 if (m1.coeff(i, j) == Scalar(0)) {
95 Scalar v = internal::random<Scalar>();
96 if (v == Scalar(0)) v = Scalar(1);
97 m1(i, j) = v;
98 m2.insert(i, j) = v;
99 }
Gael Guennebaud5015e482008-12-11 18:26:24 +0000100 }
101 }
Gael Guennebaudc43154b2015-03-04 10:16:46 +0100102
103 if(call_reserve && !SparseMatrixType::IsRowMajor)
104 {
105 VERIFY(g_realloc_count==0);
106 }
107
Gael Guennebaud28293142009-05-04 14:25:12 +0000108 m2.finalize();
109 VERIFY_IS_APPROX(m2,m1);
110 }
Gael Guennebaud9f795582009-12-16 19:18:40 +0100111
Gael Guennebaud28293142009-05-04 14:25:12 +0000112 // test insert (fully random)
113 {
114 DenseMatrix m1(rows,cols);
115 m1.setZero();
116 SparseMatrixType m2(rows,cols);
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100117 if(internal::random<int>()%2)
118 m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
Gael Guennebaud28293142009-05-04 14:25:12 +0000119 for (int k=0; k<rows*cols; ++k)
120 {
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +0200121 Index i = internal::random<Index>(0,rows-1);
122 Index j = internal::random<Index>(0,cols-1);
Charles Schlosser44fe5392022-12-01 19:28:56 +0000123 if ((m1.coeff(i, j) == Scalar(0)) && (internal::random<int>() % 2)) {
124 Scalar v = internal::random<Scalar>();
125 if (v == Scalar(0)) v = Scalar(1);
126 m1(i, j) = v;
127 m2.insert(i, j) = v;
128 }
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100129 else
130 {
131 Scalar v = internal::random<Scalar>();
Charles Schlosser44fe5392022-12-01 19:28:56 +0000132 if (v == Scalar(0)) v = Scalar(1);
133 m1(i, j) = v;
134 m2.coeffRef(i, j) = v;
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100135 }
Gael Guennebaud28293142009-05-04 14:25:12 +0000136 }
Gael Guennebaudc4c70662009-01-14 14:24:10 +0000137 VERIFY_IS_APPROX(m2,m1);
Gael Guennebaud5015e482008-12-11 18:26:24 +0000138 }
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200139
140 // test insert (un-compressed)
141 for(int mode=0;mode<4;++mode)
142 {
143 DenseMatrix m1(rows,cols);
144 m1.setZero();
145 SparseMatrixType m2(rows,cols);
Gael Guennebaudb47ef142014-07-08 16:47:11 +0200146 VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? int(m2.innerSize()) : std::max<int>(1,int(m2.innerSize())/8)));
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200147 m2.reserve(r);
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100148 for (Index k=0; k<rows*cols; ++k)
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200149 {
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +0200150 Index i = internal::random<Index>(0,rows-1);
151 Index j = internal::random<Index>(0,cols-1);
Charles Schlosser44fe5392022-12-01 19:28:56 +0000152 if (m1.coeff(i, j) == Scalar(0)) {
153 Scalar v = internal::random<Scalar>();
154 if (v == Scalar(0)) v = Scalar(1);
155 m1(i, j) = v;
156 m2.insert(i, j) = v;
157 }
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200158 if(mode==3)
159 m2.reserve(r);
160 }
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100161 if(internal::random<int>()%2)
162 m2.makeCompressed();
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200163 VERIFY_IS_APPROX(m2,m1);
164 }
Gael Guennebaud9f795582009-12-16 19:18:40 +0100165
Charles Schlosser44fe5392022-12-01 19:28:56 +0000166 // test sort
167 if (inner > 1) {
168 bool StorageOrdersMatch = DenseMatrix::IsRowMajor == SparseMatrixType::IsRowMajor;
169 DenseMatrix m1(rows, cols);
170 m1.setZero();
171 SparseMatrixType m2(rows, cols);
172 // generate random inner indices with no repeats
173 Vector<Index, Dynamic> innerIndices(inner);
174 innerIndices.setLinSpaced(inner, 0, inner - 1);
175 for (Index j = 0; j < outer; j++) {
176 std::random_shuffle(innerIndices.begin(), innerIndices.end());
177 Index nzj = internal::random<Index>(2, inner / 2);
178 for (Index k = 0; k < nzj; k++) {
179 Index i = innerIndices[k];
180 Scalar val = internal::random<Scalar>();
181 m1.coeffRefByOuterInner(StorageOrdersMatch ? j : i, StorageOrdersMatch ? i : j) = val;
182 m2.insertByOuterInner(j, i) = val;
183 }
184 }
185
186 VERIFY_IS_APPROX(m2, m1);
187 // sort wrt greater
188 m2.template sortInnerIndices<std::greater<>>();
189 // verify that all inner vectors are not sorted wrt less
190 VERIFY_IS_EQUAL(m2.template innerIndicesAreSorted<std::less<>>(), 0);
191 // verify that all inner vectors are sorted wrt greater
192 VERIFY_IS_EQUAL(m2.template innerIndicesAreSorted<std::greater<>>(), m2.outerSize());
193 // verify that sort does not change evaluation
194 VERIFY_IS_APPROX(m2, m1);
195 // sort wrt less
196 m2.template sortInnerIndices<std::less<>>();
197 // verify that all inner vectors are sorted wrt less
198 VERIFY_IS_EQUAL(m2.template innerIndicesAreSorted<std::less<>>(), m2.outerSize());
199 // verify that all inner vectors are not sorted wrt greater
200 VERIFY_IS_EQUAL(m2.template innerIndicesAreSorted<std::greater<>>(), 0);
201 // verify that sort does not change evaluation
202 VERIFY_IS_APPROX(m2, m1);
203
204 m2.makeCompressed();
205 // sort wrt greater
206 m2.template sortInnerIndices<std::greater<>>();
207 // verify that all inner vectors are not sorted wrt less
208 VERIFY_IS_EQUAL(m2.template innerIndicesAreSorted<std::less<>>(), 0);
209 // verify that all inner vectors are sorted wrt greater
210 VERIFY_IS_EQUAL(m2.template innerIndicesAreSorted<std::greater<>>(), m2.outerSize());
211 // verify that sort does not change evaluation
212 VERIFY_IS_APPROX(m2, m1);
213 // sort wrt less
214 m2.template sortInnerIndices<std::less<>>();
215 // verify that all inner vectors are sorted wrt less
216 VERIFY_IS_EQUAL(m2.template innerIndicesAreSorted<std::less<>>(), m2.outerSize());
217 // verify that all inner vectors are not sorted wrt greater
218 VERIFY_IS_EQUAL(m2.template innerIndicesAreSorted<std::greater<>>(), 0);
219 // verify that sort does not change evaluation
220 VERIFY_IS_APPROX(m2, m1);
221 }
222
Gael Guennebaud4e602832012-11-16 09:02:50 +0100223 // test basic computations
224 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100225 DenseMatrix refM1 = DenseMatrix::Zero(rows, cols);
226 DenseMatrix refM2 = DenseMatrix::Zero(rows, cols);
227 DenseMatrix refM3 = DenseMatrix::Zero(rows, cols);
228 DenseMatrix refM4 = DenseMatrix::Zero(rows, cols);
229 SparseMatrixType m1(rows, cols);
230 SparseMatrixType m2(rows, cols);
231 SparseMatrixType m3(rows, cols);
232 SparseMatrixType m4(rows, cols);
Gael Guennebaud4e602832012-11-16 09:02:50 +0100233 initSparse<Scalar>(density, refM1, m1);
234 initSparse<Scalar>(density, refM2, m2);
235 initSparse<Scalar>(density, refM3, m3);
236 initSparse<Scalar>(density, refM4, m4);
237
Gael Guennebaud2c1b56f2016-05-31 10:56:53 +0200238 if(internal::random<bool>())
239 m1.makeCompressed();
240
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100241 Index m1_nnz = m1.nonZeros();
242
Gael Guennebaud4aac8722014-07-22 12:54:03 +0200243 VERIFY_IS_APPROX(m1*s1, refM1*s1);
Gael Guennebaud4e602832012-11-16 09:02:50 +0100244 VERIFY_IS_APPROX(m1+m2, refM1+refM2);
245 VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
246 VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2));
247 VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100248 VERIFY_IS_APPROX(m4=m1/s1, refM1/s1);
249 VERIFY_IS_EQUAL(m4.nonZeros(), m1_nnz);
Gael Guennebaud4e602832012-11-16 09:02:50 +0100250
Gael Guennebaud4e602832012-11-16 09:02:50 +0100251 if(SparseMatrixType::IsRowMajor)
252 VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0)));
253 else
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100254 VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.col(0)), refM1.col(0).dot(refM2.col(0)));
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100255
Gael Guennebaud3573a102014-02-17 13:46:17 +0100256 DenseVector rv = DenseVector::Random(m1.cols());
257 DenseVector cv = DenseVector::Random(m1.rows());
258 Index r = internal::random<Index>(0,m1.rows()-2);
259 Index c = internal::random<Index>(0,m1.cols()-1);
260 VERIFY_IS_APPROX(( m1.template block<1,Dynamic>(r,0,1,m1.cols()).dot(rv)) , refM1.row(r).dot(rv));
261 VERIFY_IS_APPROX(m1.row(r).dot(rv), refM1.row(r).dot(rv));
262 VERIFY_IS_APPROX(m1.col(c).dot(cv), refM1.col(c).dot(cv));
Gael Guennebaud4e602832012-11-16 09:02:50 +0100263
264 VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate());
265 VERIFY_IS_APPROX(m1.real(), refM1.real());
266
267 refM4.setRandom();
268 // sparse cwise* dense
269 VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4));
Gael Guennebaud90275082015-11-04 17:42:07 +0100270 // dense cwise* sparse
271 VERIFY_IS_APPROX(refM4.cwiseProduct(m3), refM4.cwiseProduct(refM3));
Gael Guennebaud4e602832012-11-16 09:02:50 +0100272// VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
273
Gael Guennebaudeec0dfd2018-10-10 22:50:15 +0200274 // mixed sparse-dense
Gael Guennebaud15084cf2016-01-29 22:09:45 +0100275 VERIFY_IS_APPROX(refM4 + m3, refM4 + refM3);
276 VERIFY_IS_APPROX(m3 + refM4, refM3 + refM4);
277 VERIFY_IS_APPROX(refM4 - m3, refM4 - refM3);
278 VERIFY_IS_APPROX(m3 - refM4, refM3 - refM4);
Gael Guennebaud71362672016-12-27 16:34:30 +0100279 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
280 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
281 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3.cwiseProduct(m3)).eval(), RealScalar(0.5)*refM4 + refM3.cwiseProduct(refM3));
282
283 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
284 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
285 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
286 VERIFY_IS_APPROX(((refM3+m3)+RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM3 + (refM3+refM3));
287 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (refM3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
288 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+refM3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
289
Gael Guennebaud15084cf2016-01-29 22:09:45 +0100290
Gael Guennebaud2c1b56f2016-05-31 10:56:53 +0200291 VERIFY_IS_APPROX(m1.sum(), refM1.sum());
292
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100293 m4 = m1; refM4 = m4;
294
Gael Guennebaud2c1b56f2016-05-31 10:56:53 +0200295 VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100296 VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
Gael Guennebaud2c1b56f2016-05-31 10:56:53 +0200297 VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100298 VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
Gael Guennebaud2c1b56f2016-05-31 10:56:53 +0200299
300 VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
301 VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);
302
Gael Guennebaudeec0dfd2018-10-10 22:50:15 +0200303 refM3 = refM1;
304
305 VERIFY_IS_APPROX(refM1+=m2, refM3+=refM2);
306 VERIFY_IS_APPROX(refM1-=m2, refM3-=refM2);
307
308 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =m2+refM4, refM3 =refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,10);
309 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=m2+refM4, refM3+=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
310 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=m2+refM4, refM3-=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
311 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =refM4+m2, refM3 =refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
312 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=refM4+m2, refM3+=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
313 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=refM4+m2, refM3-=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
314
315 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =m2-refM4, refM3 =refM2-refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,20);
316 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=m2-refM4, refM3+=refM2-refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
317 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=m2-refM4, refM3-=refM2-refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
318 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =refM4-m2, refM3 =refM4-refM2); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
319 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=refM4-m2, refM3+=refM4-refM2); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
320 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=refM4-m2, refM3-=refM4-refM2); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
321 refM3 = m3;
322
Gael Guennebaudba3f9772017-01-23 22:06:08 +0100323 if (rows>=2 && cols>=2)
324 {
325 VERIFY_RAISES_ASSERT( m1 += m1.innerVector(0) );
326 VERIFY_RAISES_ASSERT( m1 -= m1.innerVector(0) );
327 VERIFY_RAISES_ASSERT( refM1 -= m1.innerVector(0) );
328 VERIFY_RAISES_ASSERT( refM1 += m1.innerVector(0) );
329 }
Gael Guennebaud26a2c6f2017-12-14 15:11:04 +0100330 m1 = m4; refM1 = refM4;
Gael Guennebaudba3f9772017-01-23 22:06:08 +0100331
Gael Guennebaud4e602832012-11-16 09:02:50 +0100332 // test aliasing
333 VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1));
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100334 VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
335 m1 = m4; refM1 = refM4;
Gael Guennebaud4e602832012-11-16 09:02:50 +0100336 VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval()));
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100337 VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
338 m1 = m4; refM1 = refM4;
Gael Guennebaud4e602832012-11-16 09:02:50 +0100339 VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval()));
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100340 VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
341 m1 = m4; refM1 = refM4;
Gael Guennebaud4e602832012-11-16 09:02:50 +0100342 VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1));
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100343 VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
344 m1 = m4; refM1 = refM4;
Gael Guennebaud7e029d12016-08-29 12:06:37 +0200345
346 if(m1.isCompressed())
347 {
348 VERIFY_IS_APPROX(m1.coeffs().sum(), m1.sum());
349 m1.coeffs() += s1;
350 for(Index j = 0; j<m1.outerSize(); ++j)
351 for(typename SparseMatrixType::InnerIterator it(m1,j); it; ++it)
352 refM1(it.row(), it.col()) += s1;
353 VERIFY_IS_APPROX(m1, refM1);
354 }
Gael Guennebaud2e334f52016-11-14 18:47:02 +0100355
356 // and/or
357 {
358 typedef SparseMatrix<bool, SparseMatrixType::Options, typename SparseMatrixType::StorageIndex> SpBool;
359 SpBool mb1 = m1.real().template cast<bool>();
360 SpBool mb2 = m2.real().template cast<bool>();
361 VERIFY_IS_EQUAL(mb1.template cast<int>().sum(), refM1.real().template cast<bool>().count());
362 VERIFY_IS_EQUAL((mb1 && mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count());
363 VERIFY_IS_EQUAL((mb1 || mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() || refM2.real().template cast<bool>()).count());
364 SpBool mb3 = mb1 && mb2;
365 if(mb1.coeffs().all() && mb2.coeffs().all())
366 {
367 VERIFY_IS_EQUAL(mb3.nonZeros(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count());
368 }
369 }
Gael Guennebaud4e602832012-11-16 09:02:50 +0100370 }
371
Gael Guennebaudeedb87f2016-11-14 14:05:53 +0100372 // test reverse iterators
373 {
374 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
375 SparseMatrixType m2(rows, cols);
376 initSparse<Scalar>(density, refMat2, m2);
377 std::vector<Scalar> ref_value(m2.innerSize());
378 std::vector<Index> ref_index(m2.innerSize());
379 if(internal::random<bool>())
380 m2.makeCompressed();
381 for(Index j = 0; j<m2.outerSize(); ++j)
382 {
383 Index count_forward = 0;
384
385 for(typename SparseMatrixType::InnerIterator it(m2,j); it; ++it)
386 {
387 ref_value[ref_value.size()-1-count_forward] = it.value();
388 ref_index[ref_index.size()-1-count_forward] = it.index();
389 count_forward++;
390 }
391 Index count_reverse = 0;
392 for(typename SparseMatrixType::ReverseInnerIterator it(m2,j); it; --it)
393 {
394 VERIFY_IS_APPROX( std::abs(ref_value[ref_value.size()-count_forward+count_reverse])+1, std::abs(it.value())+1);
395 VERIFY_IS_EQUAL( ref_index[ref_index.size()-count_forward+count_reverse] , it.index());
396 count_reverse++;
397 }
398 VERIFY_IS_EQUAL(count_forward, count_reverse);
399 }
400 }
401
Gael Guennebaud4e602832012-11-16 09:02:50 +0100402 // test transpose
403 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100404 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
405 SparseMatrixType m2(rows, cols);
Gael Guennebaud4e602832012-11-16 09:02:50 +0100406 initSparse<Scalar>(density, refMat2, m2);
407 VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
408 VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
409
410 VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint());
Gael Guennebaudff46ec02014-09-22 23:33:28 +0200411
412 // check isApprox handles opposite storage order
413 typename Transpose<SparseMatrixType>::PlainObject m3(m2);
414 VERIFY(m2.isApprox(m3));
Gael Guennebaud4e602832012-11-16 09:02:50 +0100415 }
416
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000417 // test prune
418 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100419 SparseMatrixType m2(rows, cols);
420 DenseMatrix refM2(rows, cols);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000421 refM2.setZero();
422 int countFalseNonZero = 0;
423 int countTrueNonZero = 0;
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200424 m2.reserve(VectorXi::Constant(m2.outerSize(), int(m2.innerSize())));
425 for (Index j=0; j<m2.cols(); ++j)
Gael Guennebaud28293142009-05-04 14:25:12 +0000426 {
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200427 for (Index i=0; i<m2.rows(); ++i)
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000428 {
Benoit Jacob47160402010-10-25 10:15:22 -0400429 float x = internal::random<float>(0,1);
Christoph Hertzbergdacb4692016-05-05 13:35:45 +0200430 if (x<0.1f)
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000431 {
432 // do nothing
433 }
Christoph Hertzbergdacb4692016-05-05 13:35:45 +0200434 else if (x<0.5f)
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000435 {
436 countFalseNonZero++;
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200437 m2.insert(i,j) = Scalar(0);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000438 }
439 else
440 {
441 countTrueNonZero++;
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200442 m2.insert(i,j) = Scalar(1);
443 refM2(i,j) = Scalar(1);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000444 }
445 }
Gael Guennebaud28293142009-05-04 14:25:12 +0000446 }
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200447 if(internal::random<bool>())
448 m2.makeCompressed();
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000449 VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200450 if(countTrueNonZero>0)
451 VERIFY_IS_APPROX(m2, refM2);
Hauke Heibeld204ec42010-11-02 14:33:33 +0100452 m2.prune(Scalar(1));
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000453 VERIFY(countTrueNonZero==m2.nonZeros());
454 VERIFY_IS_APPROX(m2, refM2);
455 }
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100456
Gael Guennebaud87138072012-01-28 11:13:59 +0100457 // test setFromTriplets
458 {
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100459 typedef Triplet<Scalar,StorageIndex> TripletType;
Gael Guennebaud87138072012-01-28 11:13:59 +0100460 std::vector<TripletType> triplets;
Gael Guennebaudb47ef142014-07-08 16:47:11 +0200461 Index ntriplets = rows*cols;
Gael Guennebaud87138072012-01-28 11:13:59 +0100462 triplets.reserve(ntriplets);
Gael Guennebaudb4c79ee2015-10-13 11:30:41 +0200463 DenseMatrix refMat_sum = DenseMatrix::Zero(rows,cols);
464 DenseMatrix refMat_prod = DenseMatrix::Zero(rows,cols);
465 DenseMatrix refMat_last = DenseMatrix::Zero(rows,cols);
466
Gael Guennebaudb47ef142014-07-08 16:47:11 +0200467 for(Index i=0;i<ntriplets;++i)
Gael Guennebaud87138072012-01-28 11:13:59 +0100468 {
Gael Guennebaudaa6c5162015-02-16 13:19:05 +0100469 StorageIndex r = internal::random<StorageIndex>(0,StorageIndex(rows-1));
470 StorageIndex c = internal::random<StorageIndex>(0,StorageIndex(cols-1));
Gael Guennebaud87138072012-01-28 11:13:59 +0100471 Scalar v = internal::random<Scalar>();
Gael Guennebaud18e3ac02012-01-31 09:14:01 +0100472 triplets.push_back(TripletType(r,c,v));
Gael Guennebaudb4c79ee2015-10-13 11:30:41 +0200473 refMat_sum(r,c) += v;
474 if(std::abs(refMat_prod(r,c))==0)
475 refMat_prod(r,c) = v;
476 else
477 refMat_prod(r,c) *= v;
478 refMat_last(r,c) = v;
Gael Guennebaud87138072012-01-28 11:13:59 +0100479 }
Charles Schlosser81172cb2023-01-07 22:09:42 +0000480
Gael Guennebaud87138072012-01-28 11:13:59 +0100481 SparseMatrixType m(rows,cols);
482 m.setFromTriplets(triplets.begin(), triplets.end());
Gael Guennebaudb4c79ee2015-10-13 11:30:41 +0200483 VERIFY_IS_APPROX(m, refMat_sum);
Charles Schlosser81172cb2023-01-07 22:09:42 +0000484 VERIFY_IS_EQUAL(m.innerIndicesAreSorted(), m.outerSize());
Gael Guennebaudb4c79ee2015-10-13 11:30:41 +0200485
486 m.setFromTriplets(triplets.begin(), triplets.end(), std::multiplies<Scalar>());
487 VERIFY_IS_APPROX(m, refMat_prod);
Charles Schlosser81172cb2023-01-07 22:09:42 +0000488 VERIFY_IS_EQUAL(m.innerIndicesAreSorted(), m.outerSize());
Gael Guennebaudb4c79ee2015-10-13 11:30:41 +0200489 m.setFromTriplets(triplets.begin(), triplets.end(), [] (Scalar,Scalar b) { return b; });
490 VERIFY_IS_APPROX(m, refMat_last);
Charles Schlosser81172cb2023-01-07 22:09:42 +0000491 VERIFY_IS_EQUAL(m.innerIndicesAreSorted(), m.outerSize());
492
493 // test setFromSortedTriplets
494
495 struct triplet_comp {
496 inline bool operator()(const TripletType& a, const TripletType& b) {
497 return SparseMatrixType::IsRowMajor ? ((a.row() != b.row()) ? (a.row() < b.row()) : (a.col() < b.col()))
498 : ((a.col() != b.col()) ? (a.col() < b.col()) : (a.row() < b.row()));
499 }
500 };
501
502 // stable_sort is only necessary when the reduction functor is dependent on the order of the triplets
503 // this is the case with refMat_last
504 // for most cases, std::sort is sufficient and preferred
505 std::stable_sort(triplets.begin(), triplets.end(), triplet_comp());
506
507 m.setZero();
508 m.setFromSortedTriplets(triplets.begin(), triplets.end());
509 VERIFY_IS_APPROX(m, refMat_sum);
510 VERIFY_IS_EQUAL(m.innerIndicesAreSorted(), m.outerSize());
511
512 m.setFromSortedTriplets(triplets.begin(), triplets.end(), std::multiplies<Scalar>());
513 VERIFY_IS_APPROX(m, refMat_prod);
514 VERIFY_IS_EQUAL(m.innerIndicesAreSorted(), m.outerSize());
515
516 m.setFromSortedTriplets(triplets.begin(), triplets.end(), [](Scalar, Scalar b) { return b; });
517 VERIFY_IS_APPROX(m, refMat_last);
518 VERIFY_IS_EQUAL(m.innerIndicesAreSorted(), m.outerSize());
Gael Guennebaud87138072012-01-28 11:13:59 +0100519 }
Gael Guennebaud3af29ca2015-02-09 10:23:45 +0100520
521 // test Map
522 {
523 DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
524 SparseMatrixType m2(rows, cols), m3(rows, cols);
525 initSparse<Scalar>(density, refMat2, m2);
526 initSparse<Scalar>(density, refMat3, m3);
527 {
528 Map<SparseMatrixType> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
529 Map<SparseMatrixType> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr());
530 VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
531 VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
532 }
Gael Guennebaud757971e2016-07-26 09:40:19 +0200533
534 Index i = internal::random<Index>(0,rows-1);
535 Index j = internal::random<Index>(0,cols-1);
536 m2.coeffRef(i,j) = 123;
537 if(internal::random<bool>())
538 m2.makeCompressed();
539 Map<SparseMatrixType> mapMat2(rows, cols, m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
540 VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(123));
541 VERIFY_IS_EQUAL(mapMat2.coeff(i,j),Scalar(123));
542 mapMat2.coeffRef(i,j) = -123;
543 VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(-123));
Gael Guennebaud3af29ca2015-02-09 10:23:45 +0100544 }
Gael Guennebaud87138072012-01-28 11:13:59 +0100545
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100546 // test triangularView
547 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100548 DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
549 SparseMatrixType m2(rows, cols), m3(rows, cols);
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100550 initSparse<Scalar>(density, refMat2, m2);
551 refMat3 = refMat2.template triangularView<Lower>();
552 m3 = m2.template triangularView<Lower>();
553 VERIFY_IS_APPROX(m3, refMat3);
554
555 refMat3 = refMat2.template triangularView<Upper>();
556 m3 = m2.template triangularView<Upper>();
557 VERIFY_IS_APPROX(m3, refMat3);
558
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100559 {
560 refMat3 = refMat2.template triangularView<UnitUpper>();
561 m3 = m2.template triangularView<UnitUpper>();
562 VERIFY_IS_APPROX(m3, refMat3);
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100563
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100564 refMat3 = refMat2.template triangularView<UnitLower>();
565 m3 = m2.template triangularView<UnitLower>();
566 VERIFY_IS_APPROX(m3, refMat3);
567 }
Desire NUENTSA4cd82452013-06-11 14:42:29 +0200568
569 refMat3 = refMat2.template triangularView<StrictlyUpper>();
570 m3 = m2.template triangularView<StrictlyUpper>();
571 VERIFY_IS_APPROX(m3, refMat3);
572
573 refMat3 = refMat2.template triangularView<StrictlyLower>();
574 m3 = m2.template triangularView<StrictlyLower>();
575 VERIFY_IS_APPROX(m3, refMat3);
Gael Guennebaudf6b1dee2015-11-04 17:02:32 +0100576
Gael Guennebaudba3f9772017-01-23 22:06:08 +0100577 // check sparse-triangular to dense
Gael Guennebaudf6b1dee2015-11-04 17:02:32 +0100578 refMat3 = m2.template triangularView<StrictlyUpper>();
579 VERIFY_IS_APPROX(refMat3, DenseMatrix(refMat2.template triangularView<StrictlyUpper>()));
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100580 }
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200581
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100582 // test selfadjointView
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100583 if(!SparseMatrixType::IsRowMajor)
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100584 {
585 DenseMatrix refMat2(rows, rows), refMat3(rows, rows);
586 SparseMatrixType m2(rows, rows), m3(rows, rows);
587 initSparse<Scalar>(density, refMat2, m2);
588 refMat3 = refMat2.template selfadjointView<Lower>();
589 m3 = m2.template selfadjointView<Lower>();
590 VERIFY_IS_APPROX(m3, refMat3);
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100591
Gael Guennebaud11b492e2016-12-14 17:53:47 +0100592 refMat3 += refMat2.template selfadjointView<Lower>();
593 m3 += m2.template selfadjointView<Lower>();
594 VERIFY_IS_APPROX(m3, refMat3);
595
596 refMat3 -= refMat2.template selfadjointView<Lower>();
597 m3 -= m2.template selfadjointView<Lower>();
598 VERIFY_IS_APPROX(m3, refMat3);
599
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100600 // selfadjointView only works for square matrices:
601 SparseMatrixType m4(rows, rows+1);
602 VERIFY_RAISES_ASSERT(m4.template selfadjointView<Lower>());
603 VERIFY_RAISES_ASSERT(m4.template selfadjointView<Upper>());
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100604 }
605
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200606 // test sparseView
607 {
608 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
609 SparseMatrixType m2(rows, rows);
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100610 initSparse<Scalar>(density, refMat2, m2);
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200611 VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval());
Gael Guennebaud8456bbb2016-05-18 16:53:28 +0200612
613 // sparse view on expressions:
614 VERIFY_IS_APPROX((s1*m2).eval(), (s1*refMat2).sparseView().eval());
615 VERIFY_IS_APPROX((m2+m2).eval(), (refMat2+refMat2).sparseView().eval());
616 VERIFY_IS_APPROX((m2*m2).eval(), (refMat2.lazyProduct(refMat2)).sparseView().eval());
617 VERIFY_IS_APPROX((m2*m2).eval(), (refMat2*refMat2).sparseView().eval());
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200618 }
Gael Guennebaud82f9aa12011-12-04 21:49:21 +0100619
620 // test diagonal
621 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100622 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
623 SparseMatrixType m2(rows, cols);
Gael Guennebaud82f9aa12011-12-04 21:49:21 +0100624 initSparse<Scalar>(density, refMat2, m2);
625 VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval());
Gael Guennebaud296d24b2017-01-25 17:39:01 +0100626 DenseVector d = m2.diagonal();
627 VERIFY_IS_APPROX(d, refMat2.diagonal().eval());
628 d = m2.diagonal().array();
629 VERIFY_IS_APPROX(d, refMat2.diagonal().eval());
Gael Guennebaudb26e6972014-12-01 14:41:39 +0100630 VERIFY_IS_APPROX(const_cast<const SparseMatrixType&>(m2).diagonal(), refMat2.diagonal().eval());
631
632 initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag);
633 m2.diagonal() += refMat2.diagonal();
634 refMat2.diagonal() += refMat2.diagonal();
635 VERIFY_IS_APPROX(m2, refMat2);
Gael Guennebaud82f9aa12011-12-04 21:49:21 +0100636 }
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200637
Gael Guennebaud62f21e22015-06-24 17:55:00 +0200638 // test diagonal to sparse
639 {
640 DenseVector d = DenseVector::Random(rows);
641 DenseMatrix refMat2 = d.asDiagonal();
Gael Guennebaudf489f442019-01-28 17:29:50 +0100642 SparseMatrixType m2;
Gael Guennebaud62f21e22015-06-24 17:55:00 +0200643 m2 = d.asDiagonal();
644 VERIFY_IS_APPROX(m2, refMat2);
Gael Guennebaud4c8cd132015-06-24 18:11:06 +0200645 SparseMatrixType m3(d.asDiagonal());
646 VERIFY_IS_APPROX(m3, refMat2);
Gael Guennebaud62f21e22015-06-24 17:55:00 +0200647 refMat2 += d.asDiagonal();
648 m2 += d.asDiagonal();
649 VERIFY_IS_APPROX(m2, refMat2);
Gael Guennebaudf489f442019-01-28 17:29:50 +0100650 m2.setZero(); m2 += d.asDiagonal();
651 refMat2.setZero(); refMat2 += d.asDiagonal();
652 VERIFY_IS_APPROX(m2, refMat2);
653 m2.setZero(); m2 -= d.asDiagonal();
654 refMat2.setZero(); refMat2 -= d.asDiagonal();
655 VERIFY_IS_APPROX(m2, refMat2);
656
657 initSparse<Scalar>(density, refMat2, m2);
658 m2.makeCompressed();
659 m2 += d.asDiagonal();
660 refMat2 += d.asDiagonal();
661 VERIFY_IS_APPROX(m2, refMat2);
662
663 initSparse<Scalar>(density, refMat2, m2);
664 m2.makeCompressed();
665 VectorXi res(rows);
666 for(Index i=0; i<rows; ++i)
667 res(i) = internal::random<int>(0,3);
668 m2.reserve(res);
669 m2 -= d.asDiagonal();
670 refMat2 -= d.asDiagonal();
671 VERIFY_IS_APPROX(m2, refMat2);
Gael Guennebaud62f21e22015-06-24 17:55:00 +0200672 }
673
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200674 // test conservative resize
675 {
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100676 std::vector< std::pair<StorageIndex,StorageIndex> > inc;
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100677 if(rows > 3 && cols > 2)
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100678 inc.push_back(std::pair<StorageIndex,StorageIndex>(-3,-2));
679 inc.push_back(std::pair<StorageIndex,StorageIndex>(0,0));
680 inc.push_back(std::pair<StorageIndex,StorageIndex>(3,2));
681 inc.push_back(std::pair<StorageIndex,StorageIndex>(3,0));
682 inc.push_back(std::pair<StorageIndex,StorageIndex>(0,3));
Adam Shapiro2ac0b782021-02-23 21:32:39 +0000683 inc.push_back(std::pair<StorageIndex,StorageIndex>(0,-1));
684 inc.push_back(std::pair<StorageIndex,StorageIndex>(-1,0));
685 inc.push_back(std::pair<StorageIndex,StorageIndex>(-1,-1));
686
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200687 for(size_t i = 0; i< inc.size(); i++) {
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100688 StorageIndex incRows = inc[i].first;
689 StorageIndex incCols = inc[i].second;
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200690 SparseMatrixType m1(rows, cols);
691 DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols);
692 initSparse<Scalar>(density, refMat1, m1);
Adam Shapiro2ac0b782021-02-23 21:32:39 +0000693
694 SparseMatrixType m2 = m1;
695 m2.makeCompressed();
696
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200697 m1.conservativeResize(rows+incRows, cols+incCols);
Adam Shapiro2ac0b782021-02-23 21:32:39 +0000698 m2.conservativeResize(rows+incRows, cols+incCols);
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200699 refMat1.conservativeResize(rows+incRows, cols+incCols);
700 if (incRows > 0) refMat1.bottomRows(incRows).setZero();
701 if (incCols > 0) refMat1.rightCols(incCols).setZero();
Adam Shapiro2ac0b782021-02-23 21:32:39 +0000702
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200703 VERIFY_IS_APPROX(m1, refMat1);
Adam Shapiro2ac0b782021-02-23 21:32:39 +0000704 VERIFY_IS_APPROX(m2, refMat1);
705
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200706 // Insert new values
707 if (incRows > 0)
Gael Guennebaud7ee378d2013-07-12 16:40:02 +0200708 m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1;
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200709 if (incCols > 0)
Gael Guennebaud7ee378d2013-07-12 16:40:02 +0200710 m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1;
Adam Shapiro2ac0b782021-02-23 21:32:39 +0000711
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200712 VERIFY_IS_APPROX(m1, refMat1);
Adam Shapiro2ac0b782021-02-23 21:32:39 +0000713
714
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200715 }
716 }
Desire NUENTSA4cd82452013-06-11 14:42:29 +0200717
718 // test Identity matrix
719 {
720 DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows);
721 SparseMatrixType m1(rows, rows);
722 m1.setIdentity();
723 VERIFY_IS_APPROX(m1, refMat1);
Gael Guennebaud8a211bb2015-10-25 22:01:58 +0100724 for(int k=0; k<rows*rows/4; ++k)
725 {
726 Index i = internal::random<Index>(0,rows-1);
727 Index j = internal::random<Index>(0,rows-1);
Gael Guennebaud73f692d2015-10-27 11:01:37 +0100728 Scalar v = internal::random<Scalar>();
Gael Guennebaud8a211bb2015-10-25 22:01:58 +0100729 m1.coeffRef(i,j) = v;
730 refMat1.coeffRef(i,j) = v;
731 VERIFY_IS_APPROX(m1, refMat1);
732 if(internal::random<Index>(0,10)<2)
733 m1.makeCompressed();
734 }
735 m1.setIdentity();
736 refMat1.setIdentity();
737 VERIFY_IS_APPROX(m1, refMat1);
Desire NUENTSA4cd82452013-06-11 14:42:29 +0200738 }
Gael Guennebaudec469702016-02-01 15:04:33 +0100739
740 // test array/vector of InnerIterator
741 {
742 typedef typename SparseMatrixType::InnerIterator IteratorType;
743
744 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
745 SparseMatrixType m2(rows, cols);
746 initSparse<Scalar>(density, refMat2, m2);
747 IteratorType static_array[2];
748 static_array[0] = IteratorType(m2,0);
749 static_array[1] = IteratorType(m2,m2.outerSize()-1);
750 VERIFY( static_array[0] || m2.innerVector(static_array[0].outer()).nonZeros() == 0 );
751 VERIFY( static_array[1] || m2.innerVector(static_array[1].outer()).nonZeros() == 0 );
752 if(static_array[0] && static_array[1])
753 {
754 ++(static_array[1]);
755 static_array[1] = IteratorType(m2,0);
756 VERIFY( static_array[1] );
757 VERIFY( static_array[1].index() == static_array[0].index() );
758 VERIFY( static_array[1].outer() == static_array[0].outer() );
759 VERIFY( static_array[1].value() == static_array[0].value() );
760 }
761
762 std::vector<IteratorType> iters(2);
763 iters[0] = IteratorType(m2,0);
764 iters[1] = IteratorType(m2,m2.outerSize()-1);
765 }
Gael Guennebaud25424d92020-08-26 12:32:20 +0200766
767 // test reserve with empty rows/columns
768 {
769 SparseMatrixType m1(0,cols);
770 m1.reserve(ArrayXi::Constant(m1.outerSize(),1));
771 SparseMatrixType m2(rows,0);
772 m2.reserve(ArrayXi::Constant(m2.outerSize(),1));
773 }
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000774}
775
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100776
Christoph Hertzbergc5a37772014-10-31 17:19:05 +0100777template<typename SparseMatrixType>
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100778void big_sparse_triplet(Index rows, Index cols, double density) {
779 typedef typename SparseMatrixType::StorageIndex StorageIndex;
780 typedef typename SparseMatrixType::Scalar Scalar;
781 typedef Triplet<Scalar,Index> TripletType;
782 std::vector<TripletType> triplets;
Erik Schultheisd271a7d2022-01-26 18:16:19 +0000783 double nelements = density * static_cast<double>(rows*cols);
Antonio Sanchez543e34a2021-03-05 12:54:26 -0800784 VERIFY(nelements>=0 && nelements < static_cast<double>(NumTraits<StorageIndex>::highest()));
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100785 Index ntriplets = Index(nelements);
786 triplets.reserve(ntriplets);
787 Scalar sum = Scalar(0);
788 for(Index i=0;i<ntriplets;++i)
789 {
790 Index r = internal::random<Index>(0,rows-1);
791 Index c = internal::random<Index>(0,cols-1);
Gael Guennebaudcd25b532018-12-08 00:13:37 +0100792 // use positive values to prevent numerical cancellation errors in sum
793 Scalar v = numext::abs(internal::random<Scalar>());
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100794 triplets.push_back(TripletType(r,c,v));
795 sum += v;
796 }
797 SparseMatrixType m(rows,cols);
798 m.setFromTriplets(triplets.begin(), triplets.end());
799 VERIFY(m.nonZeros() <= ntriplets);
800 VERIFY_IS_APPROX(sum, m.sum());
Christoph Hertzbergc5a37772014-10-31 17:19:05 +0100801}
802
Gael Guennebauddff3a922018-07-17 15:52:58 +0200803template<int>
804void bug1105()
805{
806 // Regression test for bug 1105
807 int n = Eigen::internal::random<int>(200,600);
808 SparseMatrix<std::complex<double>,0, long> mat(n, n);
809 std::complex<double> val;
810
811 for(int i=0; i<n; ++i)
812 {
813 mat.coeffRef(i, i%(n/10)) = val;
814 VERIFY(mat.data().allocatedSize()<20*n);
815 }
816}
Christoph Hertzbergc5a37772014-10-31 17:19:05 +0100817
Gael Guennebaud8214cf12018-10-11 10:27:23 +0200818#ifndef EIGEN_SPARSE_TEST_INCLUDED_FROM_SPARSE_EXTRA
819
Gael Guennebaud82f0ce22018-07-17 14:46:15 +0200820EIGEN_DECLARE_TEST(sparse_basic)
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000821{
Rasmus Munk Larsen954b4ca2018-10-22 13:48:56 -0700822 g_dense_op_sparse_count = 0; // Suppresses compiler warning.
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000823 for(int i = 0; i < g_repeat; i++) {
Gael Guennebaudc43154b2015-03-04 10:16:46 +0100824 int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200);
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100825 if(Eigen::internal::random<int>(0,4) == 0) {
826 r = c; // check square matrices in 25% of tries
827 }
828 EIGEN_UNUSED_VARIABLE(r+c);
829 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(1, 1)) ));
Gael Guennebaud91fe1502011-06-07 11:28:16 +0200830 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) ));
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100831 CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(r, c)) ));
832 CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(r, c)) ));
Charles Schlosser44fe5392022-12-01 19:28:56 +0000833 CALL_SUBTEST_2(( sparse_basic(SparseMatrix<float, RowMajor>(r, c))));
834 CALL_SUBTEST_2(( sparse_basic(SparseMatrix<float, ColMajor>(r, c))));
835 CALL_SUBTEST_3(( sparse_basic(SparseMatrix<double, ColMajor>(r, c))));
836 CALL_SUBTEST_3(( sparse_basic(SparseMatrix<double, RowMajor>(r, c))));
837 CALL_SUBTEST_4(( sparse_basic(SparseMatrix<double, ColMajor,long int>(r, c)) ));
838 CALL_SUBTEST_4(( sparse_basic(SparseMatrix<double, RowMajor,long int>(r, c)) ));
Gael Guennebaud47e89022013-06-10 10:34:03 +0200839
Gael Guennebaudc43154b2015-03-04 10:16:46 +0100840 r = Eigen::internal::random<int>(1,100);
841 c = Eigen::internal::random<int>(1,100);
842 if(Eigen::internal::random<int>(0,4) == 0) {
843 r = c; // check square matrices in 25% of tries
844 }
845
Charles Schlosser44fe5392022-12-01 19:28:56 +0000846 CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) ));
847 CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) ));
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000848 }
Christoph Hertzbergc5a37772014-10-31 17:19:05 +0100849
850 // Regression test for bug 900: (manually insert higher values here, if you have enough RAM):
Charles Schlosser44fe5392022-12-01 19:28:56 +0000851 CALL_SUBTEST_5(( big_sparse_triplet<SparseMatrix<float, RowMajor, int>>(10000, 10000, 0.125)));
852 CALL_SUBTEST_5(( big_sparse_triplet<SparseMatrix<double, ColMajor, long int>>(10000, 10000, 0.125)));
Gael Guennebaudbfd6ee62015-11-06 15:05:37 +0100853
Charles Schlosser44fe5392022-12-01 19:28:56 +0000854 CALL_SUBTEST_5(bug1105<0>());
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000855}
Gael Guennebaud8214cf12018-10-11 10:27:23 +0200856#endif