blob: 95bbfab0eed3f1d7157f3d3fb093bbfa3e97d9ea [file] [log] [blame]
Gael Guennebaud86ccd992008-11-05 13:47:55 +00001// This file is part of Eigen, a lightweight C++ template library
Benoit Jacob6347b1d2009-05-22 20:25:33 +02002// for linear algebra.
Gael Guennebaud86ccd992008-11-05 13:47:55 +00003//
Gael Guennebaud22c76092011-03-22 11:58:22 +01004// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
Gael Guennebaud86ccd992008-11-05 13:47:55 +00005// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
Desire NUENTSA4cd82452013-06-11 14:42:29 +02006// Copyright (C) 2013 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
Gael Guennebaud86ccd992008-11-05 13:47:55 +00007//
Benoit Jacob69124cf2012-07-13 14:42:47 -04008// This Source Code Form is subject to the terms of the Mozilla
9// Public License v. 2.0. If a copy of the MPL was not distributed
10// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
Gael Guennebaud86ccd992008-11-05 13:47:55 +000011
Gael Guennebaudc43154b2015-03-04 10:16:46 +010012static long g_realloc_count = 0;
13#define EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN g_realloc_count++;
14
Gael Guennebaud86ccd992008-11-05 13:47:55 +000015#include "sparse.h"
16
Gael Guennebaud178858f2009-01-19 15:20:45 +000017template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
18{
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +010019 typedef typename SparseMatrixType::StorageIndex StorageIndex;
20 typedef Matrix<StorageIndex,2,1> Vector2;
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020021
Gael Guennebaudfc202ba2015-02-13 18:57:41 +010022 const Index rows = ref.rows();
23 const Index cols = ref.cols();
Christoph Hertzberg0833b822014-10-31 17:12:13 +010024 const Index inner = ref.innerSize();
25 const Index outer = ref.outerSize();
26
Gael Guennebaud178858f2009-01-19 15:20:45 +000027 typedef typename SparseMatrixType::Scalar Scalar;
28 enum { Flags = SparseMatrixType::Flags };
Gael Guennebaud9f795582009-12-16 19:18:40 +010029
Gael Guennebaud42e25782011-08-19 14:18:05 +020030 double density = (std::max)(8./(rows*cols), 0.01);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000031 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
32 typedef Matrix<Scalar,Dynamic,1> DenseVector;
33 Scalar eps = 1e-6;
34
Benoit Jacob47160402010-10-25 10:15:22 -040035 Scalar s1 = internal::random<Scalar>();
Gael Guennebaud86ccd992008-11-05 13:47:55 +000036 {
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020037 SparseMatrixType m(rows, cols);
38 DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
39 DenseVector vec1 = DenseVector::Random(rows);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000040
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020041 std::vector<Vector2> zeroCoords;
42 std::vector<Vector2> nonzeroCoords;
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020043 initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000044
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020045 // test coeff and coeffRef
Christoph Hertzberg0833b822014-10-31 17:12:13 +010046 for (std::size_t i=0; i<zeroCoords.size(); ++i)
Gael Guennebaud86ccd992008-11-05 13:47:55 +000047 {
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020048 VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
49 if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
Christoph Hertzberg0833b822014-10-31 17:12:13 +010050 VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[i].x(),zeroCoords[i].y()) = 5 );
Gael Guennebaud86ccd992008-11-05 13:47:55 +000051 }
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020052 VERIFY_IS_APPROX(m, refMat);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000053
Christoph Hertzberg0833b822014-10-31 17:12:13 +010054 if(!nonzeroCoords.empty()) {
55 m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
56 refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
57 }
Gael Guennebaud86ccd992008-11-05 13:47:55 +000058
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020059 VERIFY_IS_APPROX(m, refMat);
Christoph Hertzberg0833b822014-10-31 17:12:13 +010060
Gael Guennebauda915f022013-06-28 16:16:02 +020061 // test assertion
62 VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 );
63 VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 );
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020064 }
Gael Guennebaud86ccd992008-11-05 13:47:55 +000065
Gael Guennebaud28293142009-05-04 14:25:12 +000066 // test insert (inner random)
Gael Guennebaud5015e482008-12-11 18:26:24 +000067 {
68 DenseMatrix m1(rows,cols);
69 m1.setZero();
Gael Guennebaud178858f2009-01-19 15:20:45 +000070 SparseMatrixType m2(rows,cols);
Gael Guennebaudc43154b2015-03-04 10:16:46 +010071 bool call_reserve = internal::random<int>()%2;
72 Index nnz = internal::random<int>(1,int(rows)/2);
73 if(call_reserve)
74 {
75 if(internal::random<int>()%2)
76 m2.reserve(VectorXi::Constant(m2.outerSize(), int(nnz)));
77 else
78 m2.reserve(m2.outerSize() * nnz);
79 }
80 g_realloc_count = 0;
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020081 for (Index j=0; j<cols; ++j)
Gael Guennebaud5015e482008-12-11 18:26:24 +000082 {
Gael Guennebaudc43154b2015-03-04 10:16:46 +010083 for (Index k=0; k<nnz; ++k)
Gael Guennebaud5015e482008-12-11 18:26:24 +000084 {
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020085 Index i = internal::random<Index>(0,rows-1);
Gael Guennebaud5015e482008-12-11 18:26:24 +000086 if (m1.coeff(i,j)==Scalar(0))
Benoit Jacob47160402010-10-25 10:15:22 -040087 m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
Gael Guennebaud5015e482008-12-11 18:26:24 +000088 }
89 }
Gael Guennebaudc43154b2015-03-04 10:16:46 +010090
91 if(call_reserve && !SparseMatrixType::IsRowMajor)
92 {
93 VERIFY(g_realloc_count==0);
94 }
95
Gael Guennebaud28293142009-05-04 14:25:12 +000096 m2.finalize();
97 VERIFY_IS_APPROX(m2,m1);
98 }
Gael Guennebaud9f795582009-12-16 19:18:40 +010099
Gael Guennebaud28293142009-05-04 14:25:12 +0000100 // test insert (fully random)
101 {
102 DenseMatrix m1(rows,cols);
103 m1.setZero();
104 SparseMatrixType m2(rows,cols);
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100105 if(internal::random<int>()%2)
106 m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
Gael Guennebaud28293142009-05-04 14:25:12 +0000107 for (int k=0; k<rows*cols; ++k)
108 {
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +0200109 Index i = internal::random<Index>(0,rows-1);
110 Index j = internal::random<Index>(0,cols-1);
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100111 if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2))
Benoit Jacob47160402010-10-25 10:15:22 -0400112 m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100113 else
114 {
115 Scalar v = internal::random<Scalar>();
116 m2.coeffRef(i,j) += v;
117 m1(i,j) += v;
118 }
Gael Guennebaud28293142009-05-04 14:25:12 +0000119 }
Gael Guennebaudc4c70662009-01-14 14:24:10 +0000120 VERIFY_IS_APPROX(m2,m1);
Gael Guennebaud5015e482008-12-11 18:26:24 +0000121 }
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200122
123 // test insert (un-compressed)
124 for(int mode=0;mode<4;++mode)
125 {
126 DenseMatrix m1(rows,cols);
127 m1.setZero();
128 SparseMatrixType m2(rows,cols);
Gael Guennebaudb47ef142014-07-08 16:47:11 +0200129 VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? int(m2.innerSize()) : std::max<int>(1,int(m2.innerSize())/8)));
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200130 m2.reserve(r);
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100131 for (Index k=0; k<rows*cols; ++k)
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200132 {
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +0200133 Index i = internal::random<Index>(0,rows-1);
134 Index j = internal::random<Index>(0,cols-1);
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200135 if (m1.coeff(i,j)==Scalar(0))
136 m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
137 if(mode==3)
138 m2.reserve(r);
139 }
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100140 if(internal::random<int>()%2)
141 m2.makeCompressed();
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200142 VERIFY_IS_APPROX(m2,m1);
143 }
Gael Guennebaud9f795582009-12-16 19:18:40 +0100144
Gael Guennebaud4e602832012-11-16 09:02:50 +0100145 // test basic computations
146 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100147 DenseMatrix refM1 = DenseMatrix::Zero(rows, cols);
148 DenseMatrix refM2 = DenseMatrix::Zero(rows, cols);
149 DenseMatrix refM3 = DenseMatrix::Zero(rows, cols);
150 DenseMatrix refM4 = DenseMatrix::Zero(rows, cols);
151 SparseMatrixType m1(rows, cols);
152 SparseMatrixType m2(rows, cols);
153 SparseMatrixType m3(rows, cols);
154 SparseMatrixType m4(rows, cols);
Gael Guennebaud4e602832012-11-16 09:02:50 +0100155 initSparse<Scalar>(density, refM1, m1);
156 initSparse<Scalar>(density, refM2, m2);
157 initSparse<Scalar>(density, refM3, m3);
158 initSparse<Scalar>(density, refM4, m4);
159
Gael Guennebaud4aac8722014-07-22 12:54:03 +0200160 VERIFY_IS_APPROX(m1*s1, refM1*s1);
Gael Guennebaud4e602832012-11-16 09:02:50 +0100161 VERIFY_IS_APPROX(m1+m2, refM1+refM2);
162 VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
163 VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2));
164 VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
165
166 VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
167 VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
168
169 VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
170 VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);
171
172 if(SparseMatrixType::IsRowMajor)
173 VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0)));
174 else
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100175 VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.col(0)), refM1.col(0).dot(refM2.col(0)));
Gael Guennebaud3573a102014-02-17 13:46:17 +0100176
177 DenseVector rv = DenseVector::Random(m1.cols());
178 DenseVector cv = DenseVector::Random(m1.rows());
179 Index r = internal::random<Index>(0,m1.rows()-2);
180 Index c = internal::random<Index>(0,m1.cols()-1);
181 VERIFY_IS_APPROX(( m1.template block<1,Dynamic>(r,0,1,m1.cols()).dot(rv)) , refM1.row(r).dot(rv));
182 VERIFY_IS_APPROX(m1.row(r).dot(rv), refM1.row(r).dot(rv));
183 VERIFY_IS_APPROX(m1.col(c).dot(cv), refM1.col(c).dot(cv));
Gael Guennebaud4e602832012-11-16 09:02:50 +0100184
185 VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate());
186 VERIFY_IS_APPROX(m1.real(), refM1.real());
187
188 refM4.setRandom();
189 // sparse cwise* dense
190 VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4));
191// VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
192
193 // test aliasing
194 VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1));
195 VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval()));
196 VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval()));
197 VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1));
198 }
199
200 // test transpose
201 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100202 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
203 SparseMatrixType m2(rows, cols);
Gael Guennebaud4e602832012-11-16 09:02:50 +0100204 initSparse<Scalar>(density, refMat2, m2);
205 VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
206 VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
207
208 VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint());
Gael Guennebaudff46ec02014-09-22 23:33:28 +0200209
210 // check isApprox handles opposite storage order
211 typename Transpose<SparseMatrixType>::PlainObject m3(m2);
212 VERIFY(m2.isApprox(m3));
Gael Guennebaud4e602832012-11-16 09:02:50 +0100213 }
214
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000215 // test prune
216 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100217 SparseMatrixType m2(rows, cols);
218 DenseMatrix refM2(rows, cols);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000219 refM2.setZero();
220 int countFalseNonZero = 0;
221 int countTrueNonZero = 0;
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200222 m2.reserve(VectorXi::Constant(m2.outerSize(), int(m2.innerSize())));
223 for (Index j=0; j<m2.cols(); ++j)
Gael Guennebaud28293142009-05-04 14:25:12 +0000224 {
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200225 for (Index i=0; i<m2.rows(); ++i)
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000226 {
Benoit Jacob47160402010-10-25 10:15:22 -0400227 float x = internal::random<float>(0,1);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000228 if (x<0.1)
229 {
230 // do nothing
231 }
232 else if (x<0.5)
233 {
234 countFalseNonZero++;
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200235 m2.insert(i,j) = Scalar(0);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000236 }
237 else
238 {
239 countTrueNonZero++;
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200240 m2.insert(i,j) = Scalar(1);
241 refM2(i,j) = Scalar(1);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000242 }
243 }
Gael Guennebaud28293142009-05-04 14:25:12 +0000244 }
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200245 if(internal::random<bool>())
246 m2.makeCompressed();
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000247 VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200248 if(countTrueNonZero>0)
249 VERIFY_IS_APPROX(m2, refM2);
Hauke Heibeld204ec42010-11-02 14:33:33 +0100250 m2.prune(Scalar(1));
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000251 VERIFY(countTrueNonZero==m2.nonZeros());
252 VERIFY_IS_APPROX(m2, refM2);
253 }
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100254
Gael Guennebaud87138072012-01-28 11:13:59 +0100255 // test setFromTriplets
256 {
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100257 typedef Triplet<Scalar,StorageIndex> TripletType;
Gael Guennebaud87138072012-01-28 11:13:59 +0100258 std::vector<TripletType> triplets;
Gael Guennebaudb47ef142014-07-08 16:47:11 +0200259 Index ntriplets = rows*cols;
Gael Guennebaud87138072012-01-28 11:13:59 +0100260 triplets.reserve(ntriplets);
261 DenseMatrix refMat(rows,cols);
262 refMat.setZero();
Gael Guennebaudb47ef142014-07-08 16:47:11 +0200263 for(Index i=0;i<ntriplets;++i)
Gael Guennebaud87138072012-01-28 11:13:59 +0100264 {
Gael Guennebaudaa6c5162015-02-16 13:19:05 +0100265 StorageIndex r = internal::random<StorageIndex>(0,StorageIndex(rows-1));
266 StorageIndex c = internal::random<StorageIndex>(0,StorageIndex(cols-1));
Gael Guennebaud87138072012-01-28 11:13:59 +0100267 Scalar v = internal::random<Scalar>();
Gael Guennebaud18e3ac02012-01-31 09:14:01 +0100268 triplets.push_back(TripletType(r,c,v));
269 refMat(r,c) += v;
Gael Guennebaud87138072012-01-28 11:13:59 +0100270 }
271 SparseMatrixType m(rows,cols);
272 m.setFromTriplets(triplets.begin(), triplets.end());
273 VERIFY_IS_APPROX(m, refMat);
274 }
Gael Guennebaud3af29ca2015-02-09 10:23:45 +0100275
276 // test Map
277 {
278 DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
279 SparseMatrixType m2(rows, cols), m3(rows, cols);
280 initSparse<Scalar>(density, refMat2, m2);
281 initSparse<Scalar>(density, refMat3, m3);
282 {
283 Map<SparseMatrixType> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
284 Map<SparseMatrixType> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr());
285 VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
286 VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
287 }
288 {
Gael Guennebaudfe513192015-02-13 10:03:53 +0100289 MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
290 MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr());
Gael Guennebaud3af29ca2015-02-09 10:23:45 +0100291 VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
292 VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
293 }
294 }
Gael Guennebaud87138072012-01-28 11:13:59 +0100295
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100296 // test triangularView
297 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100298 DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
299 SparseMatrixType m2(rows, cols), m3(rows, cols);
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100300 initSparse<Scalar>(density, refMat2, m2);
301 refMat3 = refMat2.template triangularView<Lower>();
302 m3 = m2.template triangularView<Lower>();
303 VERIFY_IS_APPROX(m3, refMat3);
304
305 refMat3 = refMat2.template triangularView<Upper>();
306 m3 = m2.template triangularView<Upper>();
307 VERIFY_IS_APPROX(m3, refMat3);
308
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100309 if(inner>=outer) // FIXME this should be implemented for outer>inner as well
310 {
311 refMat3 = refMat2.template triangularView<UnitUpper>();
312 m3 = m2.template triangularView<UnitUpper>();
313 VERIFY_IS_APPROX(m3, refMat3);
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100314
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100315 refMat3 = refMat2.template triangularView<UnitLower>();
316 m3 = m2.template triangularView<UnitLower>();
317 VERIFY_IS_APPROX(m3, refMat3);
318 }
Desire NUENTSA4cd82452013-06-11 14:42:29 +0200319
320 refMat3 = refMat2.template triangularView<StrictlyUpper>();
321 m3 = m2.template triangularView<StrictlyUpper>();
322 VERIFY_IS_APPROX(m3, refMat3);
323
324 refMat3 = refMat2.template triangularView<StrictlyLower>();
325 m3 = m2.template triangularView<StrictlyLower>();
326 VERIFY_IS_APPROX(m3, refMat3);
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100327 }
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200328
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100329 // test selfadjointView
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100330 if(!SparseMatrixType::IsRowMajor)
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100331 {
332 DenseMatrix refMat2(rows, rows), refMat3(rows, rows);
333 SparseMatrixType m2(rows, rows), m3(rows, rows);
334 initSparse<Scalar>(density, refMat2, m2);
335 refMat3 = refMat2.template selfadjointView<Lower>();
336 m3 = m2.template selfadjointView<Lower>();
337 VERIFY_IS_APPROX(m3, refMat3);
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100338
339 // selfadjointView only works for square matrices:
340 SparseMatrixType m4(rows, rows+1);
341 VERIFY_RAISES_ASSERT(m4.template selfadjointView<Lower>());
342 VERIFY_RAISES_ASSERT(m4.template selfadjointView<Upper>());
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100343 }
344
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200345 // test sparseView
346 {
347 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
348 SparseMatrixType m2(rows, rows);
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100349 initSparse<Scalar>(density, refMat2, m2);
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200350 VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval());
351 }
Gael Guennebaud82f9aa12011-12-04 21:49:21 +0100352
353 // test diagonal
354 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100355 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
356 SparseMatrixType m2(rows, cols);
Gael Guennebaud82f9aa12011-12-04 21:49:21 +0100357 initSparse<Scalar>(density, refMat2, m2);
358 VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval());
Gael Guennebaudb26e6972014-12-01 14:41:39 +0100359 VERIFY_IS_APPROX(const_cast<const SparseMatrixType&>(m2).diagonal(), refMat2.diagonal().eval());
360
361 initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag);
362 m2.diagonal() += refMat2.diagonal();
363 refMat2.diagonal() += refMat2.diagonal();
364 VERIFY_IS_APPROX(m2, refMat2);
Gael Guennebaud82f9aa12011-12-04 21:49:21 +0100365 }
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200366
Gael Guennebaud62f21e22015-06-24 17:55:00 +0200367 // test diagonal to sparse
368 {
369 DenseVector d = DenseVector::Random(rows);
370 DenseMatrix refMat2 = d.asDiagonal();
371 SparseMatrixType m2(rows, rows);
372 m2 = d.asDiagonal();
373 VERIFY_IS_APPROX(m2, refMat2);
Gael Guennebaud4c8cd132015-06-24 18:11:06 +0200374 SparseMatrixType m3(d.asDiagonal());
375 VERIFY_IS_APPROX(m3, refMat2);
Gael Guennebaud62f21e22015-06-24 17:55:00 +0200376 refMat2 += d.asDiagonal();
377 m2 += d.asDiagonal();
378 VERIFY_IS_APPROX(m2, refMat2);
379 }
380
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200381 // test conservative resize
382 {
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100383 std::vector< std::pair<StorageIndex,StorageIndex> > inc;
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100384 if(rows > 3 && cols > 2)
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100385 inc.push_back(std::pair<StorageIndex,StorageIndex>(-3,-2));
386 inc.push_back(std::pair<StorageIndex,StorageIndex>(0,0));
387 inc.push_back(std::pair<StorageIndex,StorageIndex>(3,2));
388 inc.push_back(std::pair<StorageIndex,StorageIndex>(3,0));
389 inc.push_back(std::pair<StorageIndex,StorageIndex>(0,3));
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200390
391 for(size_t i = 0; i< inc.size(); i++) {
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100392 StorageIndex incRows = inc[i].first;
393 StorageIndex incCols = inc[i].second;
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200394 SparseMatrixType m1(rows, cols);
395 DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols);
396 initSparse<Scalar>(density, refMat1, m1);
397
398 m1.conservativeResize(rows+incRows, cols+incCols);
399 refMat1.conservativeResize(rows+incRows, cols+incCols);
400 if (incRows > 0) refMat1.bottomRows(incRows).setZero();
401 if (incCols > 0) refMat1.rightCols(incCols).setZero();
402
403 VERIFY_IS_APPROX(m1, refMat1);
404
405 // Insert new values
406 if (incRows > 0)
Gael Guennebaud7ee378d2013-07-12 16:40:02 +0200407 m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1;
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200408 if (incCols > 0)
Gael Guennebaud7ee378d2013-07-12 16:40:02 +0200409 m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1;
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200410
411 VERIFY_IS_APPROX(m1, refMat1);
412
413
414 }
415 }
Desire NUENTSA4cd82452013-06-11 14:42:29 +0200416
417 // test Identity matrix
418 {
419 DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows);
420 SparseMatrixType m1(rows, rows);
421 m1.setIdentity();
422 VERIFY_IS_APPROX(m1, refMat1);
423 }
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000424}
425
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100426
Christoph Hertzbergc5a37772014-10-31 17:19:05 +0100427template<typename SparseMatrixType>
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100428void big_sparse_triplet(Index rows, Index cols, double density) {
429 typedef typename SparseMatrixType::StorageIndex StorageIndex;
430 typedef typename SparseMatrixType::Scalar Scalar;
431 typedef Triplet<Scalar,Index> TripletType;
432 std::vector<TripletType> triplets;
433 double nelements = density * rows*cols;
434 VERIFY(nelements>=0 && nelements < NumTraits<StorageIndex>::highest());
435 Index ntriplets = Index(nelements);
436 triplets.reserve(ntriplets);
437 Scalar sum = Scalar(0);
438 for(Index i=0;i<ntriplets;++i)
439 {
440 Index r = internal::random<Index>(0,rows-1);
441 Index c = internal::random<Index>(0,cols-1);
442 Scalar v = internal::random<Scalar>();
443 triplets.push_back(TripletType(r,c,v));
444 sum += v;
445 }
446 SparseMatrixType m(rows,cols);
447 m.setFromTriplets(triplets.begin(), triplets.end());
448 VERIFY(m.nonZeros() <= ntriplets);
449 VERIFY_IS_APPROX(sum, m.sum());
Christoph Hertzbergc5a37772014-10-31 17:19:05 +0100450}
451
452
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000453void test_sparse_basic()
454{
455 for(int i = 0; i < g_repeat; i++) {
Gael Guennebaudc43154b2015-03-04 10:16:46 +0100456 int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200);
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100457 if(Eigen::internal::random<int>(0,4) == 0) {
458 r = c; // check square matrices in 25% of tries
459 }
460 EIGEN_UNUSED_VARIABLE(r+c);
461 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(1, 1)) ));
Gael Guennebaud91fe1502011-06-07 11:28:16 +0200462 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) ));
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100463 CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(r, c)) ));
464 CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(r, c)) ));
465 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(r, c)) ));
Gael Guennebaudd7698c12015-03-19 15:11:05 +0100466 CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,ColMajor,long int>(r, c)) ));
467 CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,RowMajor,long int>(r, c)) ));
Gael Guennebaud47e89022013-06-10 10:34:03 +0200468
Gael Guennebaudc43154b2015-03-04 10:16:46 +0100469 r = Eigen::internal::random<int>(1,100);
470 c = Eigen::internal::random<int>(1,100);
471 if(Eigen::internal::random<int>(0,4) == 0) {
472 r = c; // check square matrices in 25% of tries
473 }
474
Gael Guennebaudd7698c12015-03-19 15:11:05 +0100475 CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) ));
476 CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) ));
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000477 }
Christoph Hertzbergc5a37772014-10-31 17:19:05 +0100478
479 // Regression test for bug 900: (manually insert higher values here, if you have enough RAM):
480 CALL_SUBTEST_3((big_sparse_triplet<SparseMatrix<float, RowMajor, int> >(10000, 10000, 0.125)));
481 CALL_SUBTEST_4((big_sparse_triplet<SparseMatrix<double, ColMajor, long int> >(10000, 10000, 0.125)));
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000482}