blob: 208a66f12a24f3e6b66b05aba0d4d9a04ed68a8a [file] [log] [blame]
Gael Guennebaud86ccd992008-11-05 13:47:55 +00001// This file is part of Eigen, a lightweight C++ template library
Benoit Jacob6347b1d2009-05-22 20:25:33 +02002// for linear algebra.
Gael Guennebaud86ccd992008-11-05 13:47:55 +00003//
Gael Guennebaud22c76092011-03-22 11:58:22 +01004// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
Gael Guennebaud86ccd992008-11-05 13:47:55 +00005// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
Desire NUENTSA4cd82452013-06-11 14:42:29 +02006// Copyright (C) 2013 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
Gael Guennebaud86ccd992008-11-05 13:47:55 +00007//
Benoit Jacob69124cf2012-07-13 14:42:47 -04008// This Source Code Form is subject to the terms of the Mozilla
9// Public License v. 2.0. If a copy of the MPL was not distributed
10// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
Gael Guennebaud86ccd992008-11-05 13:47:55 +000011
Gael Guennebaudc43154b2015-03-04 10:16:46 +010012static long g_realloc_count = 0;
13#define EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN g_realloc_count++;
14
Gael Guennebaud86ccd992008-11-05 13:47:55 +000015#include "sparse.h"
16
Gael Guennebaud178858f2009-01-19 15:20:45 +000017template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
18{
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +010019 typedef typename SparseMatrixType::StorageIndex StorageIndex;
20 typedef Matrix<StorageIndex,2,1> Vector2;
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020021
Gael Guennebaudfc202ba2015-02-13 18:57:41 +010022 const Index rows = ref.rows();
23 const Index cols = ref.cols();
Gael Guennebaud0a537cb2016-02-12 15:58:31 +010024 //const Index inner = ref.innerSize();
25 //const Index outer = ref.outerSize();
Christoph Hertzberg0833b822014-10-31 17:12:13 +010026
Gael Guennebaud178858f2009-01-19 15:20:45 +000027 typedef typename SparseMatrixType::Scalar Scalar;
Gael Guennebaud71362672016-12-27 16:34:30 +010028 typedef typename SparseMatrixType::RealScalar RealScalar;
Gael Guennebaud178858f2009-01-19 15:20:45 +000029 enum { Flags = SparseMatrixType::Flags };
Gael Guennebaud9f795582009-12-16 19:18:40 +010030
Gael Guennebaud42e25782011-08-19 14:18:05 +020031 double density = (std::max)(8./(rows*cols), 0.01);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000032 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
33 typedef Matrix<Scalar,Dynamic,1> DenseVector;
34 Scalar eps = 1e-6;
35
Benoit Jacob47160402010-10-25 10:15:22 -040036 Scalar s1 = internal::random<Scalar>();
Gael Guennebaud86ccd992008-11-05 13:47:55 +000037 {
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020038 SparseMatrixType m(rows, cols);
39 DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
40 DenseVector vec1 = DenseVector::Random(rows);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000041
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020042 std::vector<Vector2> zeroCoords;
43 std::vector<Vector2> nonzeroCoords;
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020044 initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000045
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020046 // test coeff and coeffRef
Christoph Hertzberg0833b822014-10-31 17:12:13 +010047 for (std::size_t i=0; i<zeroCoords.size(); ++i)
Gael Guennebaud86ccd992008-11-05 13:47:55 +000048 {
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020049 VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
50 if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
Christoph Hertzberg0833b822014-10-31 17:12:13 +010051 VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[i].x(),zeroCoords[i].y()) = 5 );
Gael Guennebaud86ccd992008-11-05 13:47:55 +000052 }
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020053 VERIFY_IS_APPROX(m, refMat);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000054
Christoph Hertzberg0833b822014-10-31 17:12:13 +010055 if(!nonzeroCoords.empty()) {
56 m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
57 refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
58 }
Gael Guennebaud86ccd992008-11-05 13:47:55 +000059
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020060 VERIFY_IS_APPROX(m, refMat);
Christoph Hertzberg0833b822014-10-31 17:12:13 +010061
Gael Guennebauda915f022013-06-28 16:16:02 +020062 // test assertion
63 VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 );
64 VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 );
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020065 }
Gael Guennebaud86ccd992008-11-05 13:47:55 +000066
Gael Guennebaud28293142009-05-04 14:25:12 +000067 // test insert (inner random)
Gael Guennebaud5015e482008-12-11 18:26:24 +000068 {
69 DenseMatrix m1(rows,cols);
70 m1.setZero();
Gael Guennebaud178858f2009-01-19 15:20:45 +000071 SparseMatrixType m2(rows,cols);
Gael Guennebaudc43154b2015-03-04 10:16:46 +010072 bool call_reserve = internal::random<int>()%2;
73 Index nnz = internal::random<int>(1,int(rows)/2);
74 if(call_reserve)
75 {
76 if(internal::random<int>()%2)
77 m2.reserve(VectorXi::Constant(m2.outerSize(), int(nnz)));
78 else
79 m2.reserve(m2.outerSize() * nnz);
80 }
81 g_realloc_count = 0;
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020082 for (Index j=0; j<cols; ++j)
Gael Guennebaud5015e482008-12-11 18:26:24 +000083 {
Gael Guennebaudc43154b2015-03-04 10:16:46 +010084 for (Index k=0; k<nnz; ++k)
Gael Guennebaud5015e482008-12-11 18:26:24 +000085 {
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020086 Index i = internal::random<Index>(0,rows-1);
Gael Guennebaud5015e482008-12-11 18:26:24 +000087 if (m1.coeff(i,j)==Scalar(0))
Benoit Jacob47160402010-10-25 10:15:22 -040088 m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
Gael Guennebaud5015e482008-12-11 18:26:24 +000089 }
90 }
Gael Guennebaudc43154b2015-03-04 10:16:46 +010091
92 if(call_reserve && !SparseMatrixType::IsRowMajor)
93 {
94 VERIFY(g_realloc_count==0);
95 }
96
Gael Guennebaud28293142009-05-04 14:25:12 +000097 m2.finalize();
98 VERIFY_IS_APPROX(m2,m1);
99 }
Gael Guennebaud9f795582009-12-16 19:18:40 +0100100
Gael Guennebaud28293142009-05-04 14:25:12 +0000101 // test insert (fully random)
102 {
103 DenseMatrix m1(rows,cols);
104 m1.setZero();
105 SparseMatrixType m2(rows,cols);
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100106 if(internal::random<int>()%2)
107 m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
Gael Guennebaud28293142009-05-04 14:25:12 +0000108 for (int k=0; k<rows*cols; ++k)
109 {
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +0200110 Index i = internal::random<Index>(0,rows-1);
111 Index j = internal::random<Index>(0,cols-1);
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100112 if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2))
Benoit Jacob47160402010-10-25 10:15:22 -0400113 m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100114 else
115 {
116 Scalar v = internal::random<Scalar>();
117 m2.coeffRef(i,j) += v;
118 m1(i,j) += v;
119 }
Gael Guennebaud28293142009-05-04 14:25:12 +0000120 }
Gael Guennebaudc4c70662009-01-14 14:24:10 +0000121 VERIFY_IS_APPROX(m2,m1);
Gael Guennebaud5015e482008-12-11 18:26:24 +0000122 }
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200123
124 // test insert (un-compressed)
125 for(int mode=0;mode<4;++mode)
126 {
127 DenseMatrix m1(rows,cols);
128 m1.setZero();
129 SparseMatrixType m2(rows,cols);
Gael Guennebaudb47ef142014-07-08 16:47:11 +0200130 VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? int(m2.innerSize()) : std::max<int>(1,int(m2.innerSize())/8)));
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200131 m2.reserve(r);
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100132 for (Index k=0; k<rows*cols; ++k)
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200133 {
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +0200134 Index i = internal::random<Index>(0,rows-1);
135 Index j = internal::random<Index>(0,cols-1);
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200136 if (m1.coeff(i,j)==Scalar(0))
137 m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
138 if(mode==3)
139 m2.reserve(r);
140 }
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100141 if(internal::random<int>()%2)
142 m2.makeCompressed();
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200143 VERIFY_IS_APPROX(m2,m1);
144 }
Gael Guennebaud9f795582009-12-16 19:18:40 +0100145
Gael Guennebaud4e602832012-11-16 09:02:50 +0100146 // test basic computations
147 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100148 DenseMatrix refM1 = DenseMatrix::Zero(rows, cols);
149 DenseMatrix refM2 = DenseMatrix::Zero(rows, cols);
150 DenseMatrix refM3 = DenseMatrix::Zero(rows, cols);
151 DenseMatrix refM4 = DenseMatrix::Zero(rows, cols);
152 SparseMatrixType m1(rows, cols);
153 SparseMatrixType m2(rows, cols);
154 SparseMatrixType m3(rows, cols);
155 SparseMatrixType m4(rows, cols);
Gael Guennebaud4e602832012-11-16 09:02:50 +0100156 initSparse<Scalar>(density, refM1, m1);
157 initSparse<Scalar>(density, refM2, m2);
158 initSparse<Scalar>(density, refM3, m3);
159 initSparse<Scalar>(density, refM4, m4);
160
Gael Guennebaud2c1b56f2016-05-31 10:56:53 +0200161 if(internal::random<bool>())
162 m1.makeCompressed();
163
Gael Guennebaud4aac8722014-07-22 12:54:03 +0200164 VERIFY_IS_APPROX(m1*s1, refM1*s1);
Gael Guennebaud4e602832012-11-16 09:02:50 +0100165 VERIFY_IS_APPROX(m1+m2, refM1+refM2);
166 VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
167 VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2));
168 VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
169
Gael Guennebaud4e602832012-11-16 09:02:50 +0100170 if(SparseMatrixType::IsRowMajor)
171 VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0)));
172 else
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100173 VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.col(0)), refM1.col(0).dot(refM2.col(0)));
Gael Guennebaud3573a102014-02-17 13:46:17 +0100174
175 DenseVector rv = DenseVector::Random(m1.cols());
176 DenseVector cv = DenseVector::Random(m1.rows());
177 Index r = internal::random<Index>(0,m1.rows()-2);
178 Index c = internal::random<Index>(0,m1.cols()-1);
179 VERIFY_IS_APPROX(( m1.template block<1,Dynamic>(r,0,1,m1.cols()).dot(rv)) , refM1.row(r).dot(rv));
180 VERIFY_IS_APPROX(m1.row(r).dot(rv), refM1.row(r).dot(rv));
181 VERIFY_IS_APPROX(m1.col(c).dot(cv), refM1.col(c).dot(cv));
Gael Guennebaud4e602832012-11-16 09:02:50 +0100182
183 VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate());
184 VERIFY_IS_APPROX(m1.real(), refM1.real());
185
186 refM4.setRandom();
187 // sparse cwise* dense
188 VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4));
Gael Guennebaud90275082015-11-04 17:42:07 +0100189 // dense cwise* sparse
190 VERIFY_IS_APPROX(refM4.cwiseProduct(m3), refM4.cwiseProduct(refM3));
Gael Guennebaud4e602832012-11-16 09:02:50 +0100191// VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
192
Gael Guennebaud15084cf2016-01-29 22:09:45 +0100193 VERIFY_IS_APPROX(refM4 + m3, refM4 + refM3);
194 VERIFY_IS_APPROX(m3 + refM4, refM3 + refM4);
195 VERIFY_IS_APPROX(refM4 - m3, refM4 - refM3);
196 VERIFY_IS_APPROX(m3 - refM4, refM3 - refM4);
Gael Guennebaud71362672016-12-27 16:34:30 +0100197 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
198 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
199 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3.cwiseProduct(m3)).eval(), RealScalar(0.5)*refM4 + refM3.cwiseProduct(refM3));
200
201 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
202 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
203 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
204 VERIFY_IS_APPROX(((refM3+m3)+RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM3 + (refM3+refM3));
205 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (refM3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
206 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+refM3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
207
Gael Guennebaud15084cf2016-01-29 22:09:45 +0100208
Gael Guennebaud2c1b56f2016-05-31 10:56:53 +0200209 VERIFY_IS_APPROX(m1.sum(), refM1.sum());
210
211 VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
212 VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
213
214 VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
215 VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);
216
Gael Guennebaudba3f9772017-01-23 22:06:08 +0100217 if (rows>=2 && cols>=2)
218 {
219 VERIFY_RAISES_ASSERT( m1 += m1.innerVector(0) );
220 VERIFY_RAISES_ASSERT( m1 -= m1.innerVector(0) );
221 VERIFY_RAISES_ASSERT( refM1 -= m1.innerVector(0) );
222 VERIFY_RAISES_ASSERT( refM1 += m1.innerVector(0) );
223 }
224
Gael Guennebaud4e602832012-11-16 09:02:50 +0100225 // test aliasing
226 VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1));
227 VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval()));
228 VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval()));
229 VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1));
Gael Guennebaud7e029d12016-08-29 12:06:37 +0200230
231 if(m1.isCompressed())
232 {
233 VERIFY_IS_APPROX(m1.coeffs().sum(), m1.sum());
234 m1.coeffs() += s1;
235 for(Index j = 0; j<m1.outerSize(); ++j)
236 for(typename SparseMatrixType::InnerIterator it(m1,j); it; ++it)
237 refM1(it.row(), it.col()) += s1;
238 VERIFY_IS_APPROX(m1, refM1);
239 }
Gael Guennebaud2e334f52016-11-14 18:47:02 +0100240
241 // and/or
242 {
243 typedef SparseMatrix<bool, SparseMatrixType::Options, typename SparseMatrixType::StorageIndex> SpBool;
244 SpBool mb1 = m1.real().template cast<bool>();
245 SpBool mb2 = m2.real().template cast<bool>();
246 VERIFY_IS_EQUAL(mb1.template cast<int>().sum(), refM1.real().template cast<bool>().count());
247 VERIFY_IS_EQUAL((mb1 && mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count());
248 VERIFY_IS_EQUAL((mb1 || mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() || refM2.real().template cast<bool>()).count());
249 SpBool mb3 = mb1 && mb2;
250 if(mb1.coeffs().all() && mb2.coeffs().all())
251 {
252 VERIFY_IS_EQUAL(mb3.nonZeros(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count());
253 }
254 }
Gael Guennebaud4e602832012-11-16 09:02:50 +0100255 }
256
Gael Guennebaudeedb87f2016-11-14 14:05:53 +0100257 // test reverse iterators
258 {
259 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
260 SparseMatrixType m2(rows, cols);
261 initSparse<Scalar>(density, refMat2, m2);
262 std::vector<Scalar> ref_value(m2.innerSize());
263 std::vector<Index> ref_index(m2.innerSize());
264 if(internal::random<bool>())
265 m2.makeCompressed();
266 for(Index j = 0; j<m2.outerSize(); ++j)
267 {
268 Index count_forward = 0;
269
270 for(typename SparseMatrixType::InnerIterator it(m2,j); it; ++it)
271 {
272 ref_value[ref_value.size()-1-count_forward] = it.value();
273 ref_index[ref_index.size()-1-count_forward] = it.index();
274 count_forward++;
275 }
276 Index count_reverse = 0;
277 for(typename SparseMatrixType::ReverseInnerIterator it(m2,j); it; --it)
278 {
279 VERIFY_IS_APPROX( std::abs(ref_value[ref_value.size()-count_forward+count_reverse])+1, std::abs(it.value())+1);
280 VERIFY_IS_EQUAL( ref_index[ref_index.size()-count_forward+count_reverse] , it.index());
281 count_reverse++;
282 }
283 VERIFY_IS_EQUAL(count_forward, count_reverse);
284 }
285 }
286
Gael Guennebaud4e602832012-11-16 09:02:50 +0100287 // test transpose
288 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100289 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
290 SparseMatrixType m2(rows, cols);
Gael Guennebaud4e602832012-11-16 09:02:50 +0100291 initSparse<Scalar>(density, refMat2, m2);
292 VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
293 VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
294
295 VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint());
Gael Guennebaudff46ec02014-09-22 23:33:28 +0200296
297 // check isApprox handles opposite storage order
298 typename Transpose<SparseMatrixType>::PlainObject m3(m2);
299 VERIFY(m2.isApprox(m3));
Gael Guennebaud4e602832012-11-16 09:02:50 +0100300 }
301
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000302 // test prune
303 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100304 SparseMatrixType m2(rows, cols);
305 DenseMatrix refM2(rows, cols);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000306 refM2.setZero();
307 int countFalseNonZero = 0;
308 int countTrueNonZero = 0;
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200309 m2.reserve(VectorXi::Constant(m2.outerSize(), int(m2.innerSize())));
310 for (Index j=0; j<m2.cols(); ++j)
Gael Guennebaud28293142009-05-04 14:25:12 +0000311 {
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200312 for (Index i=0; i<m2.rows(); ++i)
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000313 {
Benoit Jacob47160402010-10-25 10:15:22 -0400314 float x = internal::random<float>(0,1);
Christoph Hertzbergdacb4692016-05-05 13:35:45 +0200315 if (x<0.1f)
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000316 {
317 // do nothing
318 }
Christoph Hertzbergdacb4692016-05-05 13:35:45 +0200319 else if (x<0.5f)
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000320 {
321 countFalseNonZero++;
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200322 m2.insert(i,j) = Scalar(0);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000323 }
324 else
325 {
326 countTrueNonZero++;
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200327 m2.insert(i,j) = Scalar(1);
328 refM2(i,j) = Scalar(1);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000329 }
330 }
Gael Guennebaud28293142009-05-04 14:25:12 +0000331 }
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200332 if(internal::random<bool>())
333 m2.makeCompressed();
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000334 VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200335 if(countTrueNonZero>0)
336 VERIFY_IS_APPROX(m2, refM2);
Hauke Heibeld204ec42010-11-02 14:33:33 +0100337 m2.prune(Scalar(1));
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000338 VERIFY(countTrueNonZero==m2.nonZeros());
339 VERIFY_IS_APPROX(m2, refM2);
340 }
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100341
Gael Guennebaud87138072012-01-28 11:13:59 +0100342 // test setFromTriplets
343 {
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100344 typedef Triplet<Scalar,StorageIndex> TripletType;
Gael Guennebaud87138072012-01-28 11:13:59 +0100345 std::vector<TripletType> triplets;
Gael Guennebaudb47ef142014-07-08 16:47:11 +0200346 Index ntriplets = rows*cols;
Gael Guennebaud87138072012-01-28 11:13:59 +0100347 triplets.reserve(ntriplets);
Gael Guennebaudb4c79ee2015-10-13 11:30:41 +0200348 DenseMatrix refMat_sum = DenseMatrix::Zero(rows,cols);
349 DenseMatrix refMat_prod = DenseMatrix::Zero(rows,cols);
350 DenseMatrix refMat_last = DenseMatrix::Zero(rows,cols);
351
Gael Guennebaudb47ef142014-07-08 16:47:11 +0200352 for(Index i=0;i<ntriplets;++i)
Gael Guennebaud87138072012-01-28 11:13:59 +0100353 {
Gael Guennebaudaa6c5162015-02-16 13:19:05 +0100354 StorageIndex r = internal::random<StorageIndex>(0,StorageIndex(rows-1));
355 StorageIndex c = internal::random<StorageIndex>(0,StorageIndex(cols-1));
Gael Guennebaud87138072012-01-28 11:13:59 +0100356 Scalar v = internal::random<Scalar>();
Gael Guennebaud18e3ac02012-01-31 09:14:01 +0100357 triplets.push_back(TripletType(r,c,v));
Gael Guennebaudb4c79ee2015-10-13 11:30:41 +0200358 refMat_sum(r,c) += v;
359 if(std::abs(refMat_prod(r,c))==0)
360 refMat_prod(r,c) = v;
361 else
362 refMat_prod(r,c) *= v;
363 refMat_last(r,c) = v;
Gael Guennebaud87138072012-01-28 11:13:59 +0100364 }
365 SparseMatrixType m(rows,cols);
366 m.setFromTriplets(triplets.begin(), triplets.end());
Gael Guennebaudb4c79ee2015-10-13 11:30:41 +0200367 VERIFY_IS_APPROX(m, refMat_sum);
368
369 m.setFromTriplets(triplets.begin(), triplets.end(), std::multiplies<Scalar>());
370 VERIFY_IS_APPROX(m, refMat_prod);
371#if (defined(__cplusplus) && __cplusplus >= 201103L)
372 m.setFromTriplets(triplets.begin(), triplets.end(), [] (Scalar,Scalar b) { return b; });
373 VERIFY_IS_APPROX(m, refMat_last);
374#endif
Gael Guennebaud87138072012-01-28 11:13:59 +0100375 }
Gael Guennebaud3af29ca2015-02-09 10:23:45 +0100376
377 // test Map
378 {
379 DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
380 SparseMatrixType m2(rows, cols), m3(rows, cols);
381 initSparse<Scalar>(density, refMat2, m2);
382 initSparse<Scalar>(density, refMat3, m3);
383 {
384 Map<SparseMatrixType> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
385 Map<SparseMatrixType> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr());
386 VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
387 VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
388 }
389 {
Gael Guennebaudfe513192015-02-13 10:03:53 +0100390 MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
391 MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr());
Gael Guennebaud3af29ca2015-02-09 10:23:45 +0100392 VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
393 VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
394 }
Gael Guennebaud757971e2016-07-26 09:40:19 +0200395
396 Index i = internal::random<Index>(0,rows-1);
397 Index j = internal::random<Index>(0,cols-1);
398 m2.coeffRef(i,j) = 123;
399 if(internal::random<bool>())
400 m2.makeCompressed();
401 Map<SparseMatrixType> mapMat2(rows, cols, m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
402 VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(123));
403 VERIFY_IS_EQUAL(mapMat2.coeff(i,j),Scalar(123));
404 mapMat2.coeffRef(i,j) = -123;
405 VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(-123));
Gael Guennebaud3af29ca2015-02-09 10:23:45 +0100406 }
Gael Guennebaud87138072012-01-28 11:13:59 +0100407
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100408 // test triangularView
409 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100410 DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
411 SparseMatrixType m2(rows, cols), m3(rows, cols);
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100412 initSparse<Scalar>(density, refMat2, m2);
413 refMat3 = refMat2.template triangularView<Lower>();
414 m3 = m2.template triangularView<Lower>();
415 VERIFY_IS_APPROX(m3, refMat3);
416
417 refMat3 = refMat2.template triangularView<Upper>();
418 m3 = m2.template triangularView<Upper>();
419 VERIFY_IS_APPROX(m3, refMat3);
420
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100421 {
422 refMat3 = refMat2.template triangularView<UnitUpper>();
423 m3 = m2.template triangularView<UnitUpper>();
424 VERIFY_IS_APPROX(m3, refMat3);
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100425
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100426 refMat3 = refMat2.template triangularView<UnitLower>();
427 m3 = m2.template triangularView<UnitLower>();
428 VERIFY_IS_APPROX(m3, refMat3);
429 }
Desire NUENTSA4cd82452013-06-11 14:42:29 +0200430
431 refMat3 = refMat2.template triangularView<StrictlyUpper>();
432 m3 = m2.template triangularView<StrictlyUpper>();
433 VERIFY_IS_APPROX(m3, refMat3);
434
435 refMat3 = refMat2.template triangularView<StrictlyLower>();
436 m3 = m2.template triangularView<StrictlyLower>();
437 VERIFY_IS_APPROX(m3, refMat3);
Gael Guennebaudf6b1dee2015-11-04 17:02:32 +0100438
Gael Guennebaudba3f9772017-01-23 22:06:08 +0100439 // check sparse-triangular to dense
Gael Guennebaudf6b1dee2015-11-04 17:02:32 +0100440 refMat3 = m2.template triangularView<StrictlyUpper>();
441 VERIFY_IS_APPROX(refMat3, DenseMatrix(refMat2.template triangularView<StrictlyUpper>()));
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100442 }
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200443
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100444 // test selfadjointView
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100445 if(!SparseMatrixType::IsRowMajor)
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100446 {
447 DenseMatrix refMat2(rows, rows), refMat3(rows, rows);
448 SparseMatrixType m2(rows, rows), m3(rows, rows);
449 initSparse<Scalar>(density, refMat2, m2);
450 refMat3 = refMat2.template selfadjointView<Lower>();
451 m3 = m2.template selfadjointView<Lower>();
452 VERIFY_IS_APPROX(m3, refMat3);
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100453
Gael Guennebaud11b492e2016-12-14 17:53:47 +0100454 refMat3 += refMat2.template selfadjointView<Lower>();
455 m3 += m2.template selfadjointView<Lower>();
456 VERIFY_IS_APPROX(m3, refMat3);
457
458 refMat3 -= refMat2.template selfadjointView<Lower>();
459 m3 -= m2.template selfadjointView<Lower>();
460 VERIFY_IS_APPROX(m3, refMat3);
461
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100462 // selfadjointView only works for square matrices:
463 SparseMatrixType m4(rows, rows+1);
464 VERIFY_RAISES_ASSERT(m4.template selfadjointView<Lower>());
465 VERIFY_RAISES_ASSERT(m4.template selfadjointView<Upper>());
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100466 }
467
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200468 // test sparseView
469 {
470 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
471 SparseMatrixType m2(rows, rows);
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100472 initSparse<Scalar>(density, refMat2, m2);
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200473 VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval());
Gael Guennebaud8456bbb2016-05-18 16:53:28 +0200474
475 // sparse view on expressions:
476 VERIFY_IS_APPROX((s1*m2).eval(), (s1*refMat2).sparseView().eval());
477 VERIFY_IS_APPROX((m2+m2).eval(), (refMat2+refMat2).sparseView().eval());
478 VERIFY_IS_APPROX((m2*m2).eval(), (refMat2.lazyProduct(refMat2)).sparseView().eval());
479 VERIFY_IS_APPROX((m2*m2).eval(), (refMat2*refMat2).sparseView().eval());
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200480 }
Gael Guennebaud82f9aa12011-12-04 21:49:21 +0100481
482 // test diagonal
483 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100484 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
485 SparseMatrixType m2(rows, cols);
Gael Guennebaud82f9aa12011-12-04 21:49:21 +0100486 initSparse<Scalar>(density, refMat2, m2);
487 VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval());
Gael Guennebaudb26e6972014-12-01 14:41:39 +0100488 VERIFY_IS_APPROX(const_cast<const SparseMatrixType&>(m2).diagonal(), refMat2.diagonal().eval());
489
490 initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag);
491 m2.diagonal() += refMat2.diagonal();
492 refMat2.diagonal() += refMat2.diagonal();
493 VERIFY_IS_APPROX(m2, refMat2);
Gael Guennebaud82f9aa12011-12-04 21:49:21 +0100494 }
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200495
Gael Guennebaud62f21e22015-06-24 17:55:00 +0200496 // test diagonal to sparse
497 {
498 DenseVector d = DenseVector::Random(rows);
499 DenseMatrix refMat2 = d.asDiagonal();
500 SparseMatrixType m2(rows, rows);
501 m2 = d.asDiagonal();
502 VERIFY_IS_APPROX(m2, refMat2);
Gael Guennebaud4c8cd132015-06-24 18:11:06 +0200503 SparseMatrixType m3(d.asDiagonal());
504 VERIFY_IS_APPROX(m3, refMat2);
Gael Guennebaud62f21e22015-06-24 17:55:00 +0200505 refMat2 += d.asDiagonal();
506 m2 += d.asDiagonal();
507 VERIFY_IS_APPROX(m2, refMat2);
508 }
509
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200510 // test conservative resize
511 {
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100512 std::vector< std::pair<StorageIndex,StorageIndex> > inc;
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100513 if(rows > 3 && cols > 2)
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100514 inc.push_back(std::pair<StorageIndex,StorageIndex>(-3,-2));
515 inc.push_back(std::pair<StorageIndex,StorageIndex>(0,0));
516 inc.push_back(std::pair<StorageIndex,StorageIndex>(3,2));
517 inc.push_back(std::pair<StorageIndex,StorageIndex>(3,0));
518 inc.push_back(std::pair<StorageIndex,StorageIndex>(0,3));
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200519
520 for(size_t i = 0; i< inc.size(); i++) {
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100521 StorageIndex incRows = inc[i].first;
522 StorageIndex incCols = inc[i].second;
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200523 SparseMatrixType m1(rows, cols);
524 DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols);
525 initSparse<Scalar>(density, refMat1, m1);
526
527 m1.conservativeResize(rows+incRows, cols+incCols);
528 refMat1.conservativeResize(rows+incRows, cols+incCols);
529 if (incRows > 0) refMat1.bottomRows(incRows).setZero();
530 if (incCols > 0) refMat1.rightCols(incCols).setZero();
531
532 VERIFY_IS_APPROX(m1, refMat1);
533
534 // Insert new values
535 if (incRows > 0)
Gael Guennebaud7ee378d2013-07-12 16:40:02 +0200536 m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1;
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200537 if (incCols > 0)
Gael Guennebaud7ee378d2013-07-12 16:40:02 +0200538 m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1;
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200539
540 VERIFY_IS_APPROX(m1, refMat1);
541
542
543 }
544 }
Desire NUENTSA4cd82452013-06-11 14:42:29 +0200545
546 // test Identity matrix
547 {
548 DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows);
549 SparseMatrixType m1(rows, rows);
550 m1.setIdentity();
551 VERIFY_IS_APPROX(m1, refMat1);
Gael Guennebaud8a211bb2015-10-25 22:01:58 +0100552 for(int k=0; k<rows*rows/4; ++k)
553 {
554 Index i = internal::random<Index>(0,rows-1);
555 Index j = internal::random<Index>(0,rows-1);
Gael Guennebaud73f692d2015-10-27 11:01:37 +0100556 Scalar v = internal::random<Scalar>();
Gael Guennebaud8a211bb2015-10-25 22:01:58 +0100557 m1.coeffRef(i,j) = v;
558 refMat1.coeffRef(i,j) = v;
559 VERIFY_IS_APPROX(m1, refMat1);
560 if(internal::random<Index>(0,10)<2)
561 m1.makeCompressed();
562 }
563 m1.setIdentity();
564 refMat1.setIdentity();
565 VERIFY_IS_APPROX(m1, refMat1);
Desire NUENTSA4cd82452013-06-11 14:42:29 +0200566 }
Gael Guennebaudec469702016-02-01 15:04:33 +0100567
568 // test array/vector of InnerIterator
569 {
570 typedef typename SparseMatrixType::InnerIterator IteratorType;
571
572 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
573 SparseMatrixType m2(rows, cols);
574 initSparse<Scalar>(density, refMat2, m2);
575 IteratorType static_array[2];
576 static_array[0] = IteratorType(m2,0);
577 static_array[1] = IteratorType(m2,m2.outerSize()-1);
578 VERIFY( static_array[0] || m2.innerVector(static_array[0].outer()).nonZeros() == 0 );
579 VERIFY( static_array[1] || m2.innerVector(static_array[1].outer()).nonZeros() == 0 );
580 if(static_array[0] && static_array[1])
581 {
582 ++(static_array[1]);
583 static_array[1] = IteratorType(m2,0);
584 VERIFY( static_array[1] );
585 VERIFY( static_array[1].index() == static_array[0].index() );
586 VERIFY( static_array[1].outer() == static_array[0].outer() );
587 VERIFY( static_array[1].value() == static_array[0].value() );
588 }
589
590 std::vector<IteratorType> iters(2);
591 iters[0] = IteratorType(m2,0);
592 iters[1] = IteratorType(m2,m2.outerSize()-1);
593 }
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000594}
595
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100596
Christoph Hertzbergc5a37772014-10-31 17:19:05 +0100597template<typename SparseMatrixType>
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100598void big_sparse_triplet(Index rows, Index cols, double density) {
599 typedef typename SparseMatrixType::StorageIndex StorageIndex;
600 typedef typename SparseMatrixType::Scalar Scalar;
601 typedef Triplet<Scalar,Index> TripletType;
602 std::vector<TripletType> triplets;
603 double nelements = density * rows*cols;
604 VERIFY(nelements>=0 && nelements < NumTraits<StorageIndex>::highest());
605 Index ntriplets = Index(nelements);
606 triplets.reserve(ntriplets);
607 Scalar sum = Scalar(0);
608 for(Index i=0;i<ntriplets;++i)
609 {
610 Index r = internal::random<Index>(0,rows-1);
611 Index c = internal::random<Index>(0,cols-1);
612 Scalar v = internal::random<Scalar>();
613 triplets.push_back(TripletType(r,c,v));
614 sum += v;
615 }
616 SparseMatrixType m(rows,cols);
617 m.setFromTriplets(triplets.begin(), triplets.end());
618 VERIFY(m.nonZeros() <= ntriplets);
619 VERIFY_IS_APPROX(sum, m.sum());
Christoph Hertzbergc5a37772014-10-31 17:19:05 +0100620}
621
622
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000623void test_sparse_basic()
624{
625 for(int i = 0; i < g_repeat; i++) {
Gael Guennebaudc43154b2015-03-04 10:16:46 +0100626 int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200);
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100627 if(Eigen::internal::random<int>(0,4) == 0) {
628 r = c; // check square matrices in 25% of tries
629 }
630 EIGEN_UNUSED_VARIABLE(r+c);
631 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(1, 1)) ));
Gael Guennebaud91fe1502011-06-07 11:28:16 +0200632 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) ));
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100633 CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(r, c)) ));
634 CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(r, c)) ));
635 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(r, c)) ));
Gael Guennebaudd7698c12015-03-19 15:11:05 +0100636 CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,ColMajor,long int>(r, c)) ));
637 CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,RowMajor,long int>(r, c)) ));
Gael Guennebaud47e89022013-06-10 10:34:03 +0200638
Gael Guennebaudc43154b2015-03-04 10:16:46 +0100639 r = Eigen::internal::random<int>(1,100);
640 c = Eigen::internal::random<int>(1,100);
641 if(Eigen::internal::random<int>(0,4) == 0) {
642 r = c; // check square matrices in 25% of tries
643 }
644
Gael Guennebaudd7698c12015-03-19 15:11:05 +0100645 CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) ));
646 CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) ));
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000647 }
Christoph Hertzbergc5a37772014-10-31 17:19:05 +0100648
649 // Regression test for bug 900: (manually insert higher values here, if you have enough RAM):
650 CALL_SUBTEST_3((big_sparse_triplet<SparseMatrix<float, RowMajor, int> >(10000, 10000, 0.125)));
651 CALL_SUBTEST_4((big_sparse_triplet<SparseMatrix<double, ColMajor, long int> >(10000, 10000, 0.125)));
Gael Guennebaudbfd6ee62015-11-06 15:05:37 +0100652
653 // Regression test for bug 1105
Christoph Hertzberg7268b102016-05-11 19:41:53 +0200654#ifdef EIGEN_TEST_PART_7
Gael Guennebaudbfd6ee62015-11-06 15:05:37 +0100655 {
656 int n = Eigen::internal::random<int>(200,600);
657 SparseMatrix<std::complex<double>,0, long> mat(n, n);
658 std::complex<double> val;
659
660 for(int i=0; i<n; ++i)
661 {
662 mat.coeffRef(i, i%(n/10)) = val;
663 VERIFY(mat.data().allocatedSize()<20*n);
664 }
665 }
666#endif
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000667}