blob: 87e171aeb0051c79cb8fc0e7cffc94283184d880 [file] [log] [blame]
Gael Guennebaud86ccd992008-11-05 13:47:55 +00001// This file is part of Eigen, a lightweight C++ template library
Benoit Jacob6347b1d2009-05-22 20:25:33 +02002// for linear algebra.
Gael Guennebaud86ccd992008-11-05 13:47:55 +00003//
Gael Guennebaud22c76092011-03-22 11:58:22 +01004// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
Gael Guennebaud86ccd992008-11-05 13:47:55 +00005// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
Desire NUENTSA4cd82452013-06-11 14:42:29 +02006// Copyright (C) 2013 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
Gael Guennebaud86ccd992008-11-05 13:47:55 +00007//
Benoit Jacob69124cf2012-07-13 14:42:47 -04008// This Source Code Form is subject to the terms of the Mozilla
9// Public License v. 2.0. If a copy of the MPL was not distributed
10// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
Gael Guennebaud86ccd992008-11-05 13:47:55 +000011
Gael Guennebaudc43154b2015-03-04 10:16:46 +010012static long g_realloc_count = 0;
13#define EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN g_realloc_count++;
14
Gael Guennebaudeec0dfd2018-10-10 22:50:15 +020015static long g_dense_op_sparse_count = 0;
16#define EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN g_dense_op_sparse_count++;
17#define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN g_dense_op_sparse_count+=10;
18#define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN g_dense_op_sparse_count+=20;
19
Gael Guennebaud86ccd992008-11-05 13:47:55 +000020#include "sparse.h"
21
Gael Guennebaud178858f2009-01-19 15:20:45 +000022template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
23{
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +010024 typedef typename SparseMatrixType::StorageIndex StorageIndex;
25 typedef Matrix<StorageIndex,2,1> Vector2;
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020026
Gael Guennebaudfc202ba2015-02-13 18:57:41 +010027 const Index rows = ref.rows();
28 const Index cols = ref.cols();
Gael Guennebaud0a537cb2016-02-12 15:58:31 +010029 //const Index inner = ref.innerSize();
30 //const Index outer = ref.outerSize();
Christoph Hertzberg0833b822014-10-31 17:12:13 +010031
Gael Guennebaud178858f2009-01-19 15:20:45 +000032 typedef typename SparseMatrixType::Scalar Scalar;
Gael Guennebaud71362672016-12-27 16:34:30 +010033 typedef typename SparseMatrixType::RealScalar RealScalar;
Gael Guennebaud178858f2009-01-19 15:20:45 +000034 enum { Flags = SparseMatrixType::Flags };
Gael Guennebaud9f795582009-12-16 19:18:40 +010035
Gael Guennebaud42e25782011-08-19 14:18:05 +020036 double density = (std::max)(8./(rows*cols), 0.01);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000037 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
38 typedef Matrix<Scalar,Dynamic,1> DenseVector;
39 Scalar eps = 1e-6;
40
Benoit Jacob47160402010-10-25 10:15:22 -040041 Scalar s1 = internal::random<Scalar>();
Gael Guennebaud86ccd992008-11-05 13:47:55 +000042 {
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020043 SparseMatrixType m(rows, cols);
44 DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
45 DenseVector vec1 = DenseVector::Random(rows);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000046
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020047 std::vector<Vector2> zeroCoords;
48 std::vector<Vector2> nonzeroCoords;
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020049 initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000050
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020051 // test coeff and coeffRef
Christoph Hertzberg0833b822014-10-31 17:12:13 +010052 for (std::size_t i=0; i<zeroCoords.size(); ++i)
Gael Guennebaud86ccd992008-11-05 13:47:55 +000053 {
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020054 VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
55 if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
Christoph Hertzberg0833b822014-10-31 17:12:13 +010056 VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[i].x(),zeroCoords[i].y()) = 5 );
Gael Guennebaud86ccd992008-11-05 13:47:55 +000057 }
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020058 VERIFY_IS_APPROX(m, refMat);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000059
Christoph Hertzberg0833b822014-10-31 17:12:13 +010060 if(!nonzeroCoords.empty()) {
61 m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
62 refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
63 }
Gael Guennebaud86ccd992008-11-05 13:47:55 +000064
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020065 VERIFY_IS_APPROX(m, refMat);
Christoph Hertzberg0833b822014-10-31 17:12:13 +010066
Gael Guennebauda915f022013-06-28 16:16:02 +020067 // test assertion
68 VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 );
69 VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 );
Gael Guennebaudd1d7a1a2013-06-23 19:11:32 +020070 }
Gael Guennebaud86ccd992008-11-05 13:47:55 +000071
Gael Guennebaud28293142009-05-04 14:25:12 +000072 // test insert (inner random)
Gael Guennebaud5015e482008-12-11 18:26:24 +000073 {
74 DenseMatrix m1(rows,cols);
75 m1.setZero();
Gael Guennebaud178858f2009-01-19 15:20:45 +000076 SparseMatrixType m2(rows,cols);
Gael Guennebaudc43154b2015-03-04 10:16:46 +010077 bool call_reserve = internal::random<int>()%2;
78 Index nnz = internal::random<int>(1,int(rows)/2);
79 if(call_reserve)
80 {
81 if(internal::random<int>()%2)
82 m2.reserve(VectorXi::Constant(m2.outerSize(), int(nnz)));
83 else
84 m2.reserve(m2.outerSize() * nnz);
85 }
86 g_realloc_count = 0;
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020087 for (Index j=0; j<cols; ++j)
Gael Guennebaud5015e482008-12-11 18:26:24 +000088 {
Gael Guennebaudc43154b2015-03-04 10:16:46 +010089 for (Index k=0; k<nnz; ++k)
Gael Guennebaud5015e482008-12-11 18:26:24 +000090 {
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +020091 Index i = internal::random<Index>(0,rows-1);
Gael Guennebaud5015e482008-12-11 18:26:24 +000092 if (m1.coeff(i,j)==Scalar(0))
Benoit Jacob47160402010-10-25 10:15:22 -040093 m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
Gael Guennebaud5015e482008-12-11 18:26:24 +000094 }
95 }
Gael Guennebaudc43154b2015-03-04 10:16:46 +010096
97 if(call_reserve && !SparseMatrixType::IsRowMajor)
98 {
99 VERIFY(g_realloc_count==0);
100 }
101
Gael Guennebaud28293142009-05-04 14:25:12 +0000102 m2.finalize();
103 VERIFY_IS_APPROX(m2,m1);
104 }
Gael Guennebaud9f795582009-12-16 19:18:40 +0100105
Gael Guennebaud28293142009-05-04 14:25:12 +0000106 // test insert (fully random)
107 {
108 DenseMatrix m1(rows,cols);
109 m1.setZero();
110 SparseMatrixType m2(rows,cols);
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100111 if(internal::random<int>()%2)
112 m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
Gael Guennebaud28293142009-05-04 14:25:12 +0000113 for (int k=0; k<rows*cols; ++k)
114 {
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +0200115 Index i = internal::random<Index>(0,rows-1);
116 Index j = internal::random<Index>(0,cols-1);
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100117 if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2))
Benoit Jacob47160402010-10-25 10:15:22 -0400118 m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100119 else
120 {
121 Scalar v = internal::random<Scalar>();
122 m2.coeffRef(i,j) += v;
123 m1(i,j) += v;
124 }
Gael Guennebaud28293142009-05-04 14:25:12 +0000125 }
Gael Guennebaudc4c70662009-01-14 14:24:10 +0000126 VERIFY_IS_APPROX(m2,m1);
Gael Guennebaud5015e482008-12-11 18:26:24 +0000127 }
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200128
129 // test insert (un-compressed)
130 for(int mode=0;mode<4;++mode)
131 {
132 DenseMatrix m1(rows,cols);
133 m1.setZero();
134 SparseMatrixType m2(rows,cols);
Gael Guennebaudb47ef142014-07-08 16:47:11 +0200135 VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? int(m2.innerSize()) : std::max<int>(1,int(m2.innerSize())/8)));
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200136 m2.reserve(r);
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100137 for (Index k=0; k<rows*cols; ++k)
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200138 {
Gael Guennebaud6d1f5db2013-07-10 23:48:26 +0200139 Index i = internal::random<Index>(0,rows-1);
140 Index j = internal::random<Index>(0,cols-1);
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200141 if (m1.coeff(i,j)==Scalar(0))
142 m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
143 if(mode==3)
144 m2.reserve(r);
145 }
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100146 if(internal::random<int>()%2)
147 m2.makeCompressed();
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200148 VERIFY_IS_APPROX(m2,m1);
149 }
Gael Guennebaud9f795582009-12-16 19:18:40 +0100150
Gael Guennebaud4e602832012-11-16 09:02:50 +0100151 // test basic computations
152 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100153 DenseMatrix refM1 = DenseMatrix::Zero(rows, cols);
154 DenseMatrix refM2 = DenseMatrix::Zero(rows, cols);
155 DenseMatrix refM3 = DenseMatrix::Zero(rows, cols);
156 DenseMatrix refM4 = DenseMatrix::Zero(rows, cols);
157 SparseMatrixType m1(rows, cols);
158 SparseMatrixType m2(rows, cols);
159 SparseMatrixType m3(rows, cols);
160 SparseMatrixType m4(rows, cols);
Gael Guennebaud4e602832012-11-16 09:02:50 +0100161 initSparse<Scalar>(density, refM1, m1);
162 initSparse<Scalar>(density, refM2, m2);
163 initSparse<Scalar>(density, refM3, m3);
164 initSparse<Scalar>(density, refM4, m4);
165
Gael Guennebaud2c1b56f2016-05-31 10:56:53 +0200166 if(internal::random<bool>())
167 m1.makeCompressed();
168
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100169 Index m1_nnz = m1.nonZeros();
170
Gael Guennebaud4aac8722014-07-22 12:54:03 +0200171 VERIFY_IS_APPROX(m1*s1, refM1*s1);
Gael Guennebaud4e602832012-11-16 09:02:50 +0100172 VERIFY_IS_APPROX(m1+m2, refM1+refM2);
173 VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
174 VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2));
175 VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100176 VERIFY_IS_APPROX(m4=m1/s1, refM1/s1);
177 VERIFY_IS_EQUAL(m4.nonZeros(), m1_nnz);
Gael Guennebaud4e602832012-11-16 09:02:50 +0100178
Gael Guennebaud4e602832012-11-16 09:02:50 +0100179 if(SparseMatrixType::IsRowMajor)
180 VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0)));
181 else
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100182 VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.col(0)), refM1.col(0).dot(refM2.col(0)));
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100183
Gael Guennebaud3573a102014-02-17 13:46:17 +0100184 DenseVector rv = DenseVector::Random(m1.cols());
185 DenseVector cv = DenseVector::Random(m1.rows());
186 Index r = internal::random<Index>(0,m1.rows()-2);
187 Index c = internal::random<Index>(0,m1.cols()-1);
188 VERIFY_IS_APPROX(( m1.template block<1,Dynamic>(r,0,1,m1.cols()).dot(rv)) , refM1.row(r).dot(rv));
189 VERIFY_IS_APPROX(m1.row(r).dot(rv), refM1.row(r).dot(rv));
190 VERIFY_IS_APPROX(m1.col(c).dot(cv), refM1.col(c).dot(cv));
Gael Guennebaud4e602832012-11-16 09:02:50 +0100191
192 VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate());
193 VERIFY_IS_APPROX(m1.real(), refM1.real());
194
195 refM4.setRandom();
196 // sparse cwise* dense
197 VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4));
Gael Guennebaud90275082015-11-04 17:42:07 +0100198 // dense cwise* sparse
199 VERIFY_IS_APPROX(refM4.cwiseProduct(m3), refM4.cwiseProduct(refM3));
Gael Guennebaud4e602832012-11-16 09:02:50 +0100200// VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
201
Gael Guennebaudeec0dfd2018-10-10 22:50:15 +0200202 // mixed sparse-dense
Gael Guennebaud15084cf2016-01-29 22:09:45 +0100203 VERIFY_IS_APPROX(refM4 + m3, refM4 + refM3);
204 VERIFY_IS_APPROX(m3 + refM4, refM3 + refM4);
205 VERIFY_IS_APPROX(refM4 - m3, refM4 - refM3);
206 VERIFY_IS_APPROX(m3 - refM4, refM3 - refM4);
Gael Guennebaud71362672016-12-27 16:34:30 +0100207 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
208 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
209 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3.cwiseProduct(m3)).eval(), RealScalar(0.5)*refM4 + refM3.cwiseProduct(refM3));
210
211 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
212 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
213 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
214 VERIFY_IS_APPROX(((refM3+m3)+RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM3 + (refM3+refM3));
215 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (refM3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
216 VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+refM3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
217
Gael Guennebaud15084cf2016-01-29 22:09:45 +0100218
Gael Guennebaud2c1b56f2016-05-31 10:56:53 +0200219 VERIFY_IS_APPROX(m1.sum(), refM1.sum());
220
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100221 m4 = m1; refM4 = m4;
222
Gael Guennebaud2c1b56f2016-05-31 10:56:53 +0200223 VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100224 VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
Gael Guennebaud2c1b56f2016-05-31 10:56:53 +0200225 VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100226 VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
Gael Guennebaud2c1b56f2016-05-31 10:56:53 +0200227
228 VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
229 VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);
230
Gael Guennebaudeec0dfd2018-10-10 22:50:15 +0200231 refM3 = refM1;
232
233 VERIFY_IS_APPROX(refM1+=m2, refM3+=refM2);
234 VERIFY_IS_APPROX(refM1-=m2, refM3-=refM2);
235
236 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =m2+refM4, refM3 =refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,10);
237 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=m2+refM4, refM3+=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
238 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=m2+refM4, refM3-=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
239 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =refM4+m2, refM3 =refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
240 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=refM4+m2, refM3+=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
241 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=refM4+m2, refM3-=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
242
243 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =m2-refM4, refM3 =refM2-refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,20);
244 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=m2-refM4, refM3+=refM2-refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
245 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=m2-refM4, refM3-=refM2-refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
246 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =refM4-m2, refM3 =refM4-refM2); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
247 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=refM4-m2, refM3+=refM4-refM2); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
248 g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=refM4-m2, refM3-=refM4-refM2); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
249 refM3 = m3;
250
Gael Guennebaudba3f9772017-01-23 22:06:08 +0100251 if (rows>=2 && cols>=2)
252 {
253 VERIFY_RAISES_ASSERT( m1 += m1.innerVector(0) );
254 VERIFY_RAISES_ASSERT( m1 -= m1.innerVector(0) );
255 VERIFY_RAISES_ASSERT( refM1 -= m1.innerVector(0) );
256 VERIFY_RAISES_ASSERT( refM1 += m1.innerVector(0) );
257 }
Gael Guennebaud26a2c6f2017-12-14 15:11:04 +0100258 m1 = m4; refM1 = refM4;
Gael Guennebaudba3f9772017-01-23 22:06:08 +0100259
Gael Guennebaud4e602832012-11-16 09:02:50 +0100260 // test aliasing
261 VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1));
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100262 VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
263 m1 = m4; refM1 = refM4;
Gael Guennebaud4e602832012-11-16 09:02:50 +0100264 VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval()));
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100265 VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
266 m1 = m4; refM1 = refM4;
Gael Guennebaud4e602832012-11-16 09:02:50 +0100267 VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval()));
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100268 VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
269 m1 = m4; refM1 = refM4;
Gael Guennebaud4e602832012-11-16 09:02:50 +0100270 VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1));
Gael Guennebaudc86911a2017-01-30 13:38:24 +0100271 VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
272 m1 = m4; refM1 = refM4;
Gael Guennebaud7e029d12016-08-29 12:06:37 +0200273
274 if(m1.isCompressed())
275 {
276 VERIFY_IS_APPROX(m1.coeffs().sum(), m1.sum());
277 m1.coeffs() += s1;
278 for(Index j = 0; j<m1.outerSize(); ++j)
279 for(typename SparseMatrixType::InnerIterator it(m1,j); it; ++it)
280 refM1(it.row(), it.col()) += s1;
281 VERIFY_IS_APPROX(m1, refM1);
282 }
Gael Guennebaud2e334f52016-11-14 18:47:02 +0100283
284 // and/or
285 {
286 typedef SparseMatrix<bool, SparseMatrixType::Options, typename SparseMatrixType::StorageIndex> SpBool;
287 SpBool mb1 = m1.real().template cast<bool>();
288 SpBool mb2 = m2.real().template cast<bool>();
289 VERIFY_IS_EQUAL(mb1.template cast<int>().sum(), refM1.real().template cast<bool>().count());
290 VERIFY_IS_EQUAL((mb1 && mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count());
291 VERIFY_IS_EQUAL((mb1 || mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() || refM2.real().template cast<bool>()).count());
292 SpBool mb3 = mb1 && mb2;
293 if(mb1.coeffs().all() && mb2.coeffs().all())
294 {
295 VERIFY_IS_EQUAL(mb3.nonZeros(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count());
296 }
297 }
Gael Guennebaud4e602832012-11-16 09:02:50 +0100298 }
299
Gael Guennebaudeedb87f2016-11-14 14:05:53 +0100300 // test reverse iterators
301 {
302 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
303 SparseMatrixType m2(rows, cols);
304 initSparse<Scalar>(density, refMat2, m2);
305 std::vector<Scalar> ref_value(m2.innerSize());
306 std::vector<Index> ref_index(m2.innerSize());
307 if(internal::random<bool>())
308 m2.makeCompressed();
309 for(Index j = 0; j<m2.outerSize(); ++j)
310 {
311 Index count_forward = 0;
312
313 for(typename SparseMatrixType::InnerIterator it(m2,j); it; ++it)
314 {
315 ref_value[ref_value.size()-1-count_forward] = it.value();
316 ref_index[ref_index.size()-1-count_forward] = it.index();
317 count_forward++;
318 }
319 Index count_reverse = 0;
320 for(typename SparseMatrixType::ReverseInnerIterator it(m2,j); it; --it)
321 {
322 VERIFY_IS_APPROX( std::abs(ref_value[ref_value.size()-count_forward+count_reverse])+1, std::abs(it.value())+1);
323 VERIFY_IS_EQUAL( ref_index[ref_index.size()-count_forward+count_reverse] , it.index());
324 count_reverse++;
325 }
326 VERIFY_IS_EQUAL(count_forward, count_reverse);
327 }
328 }
329
Gael Guennebaud4e602832012-11-16 09:02:50 +0100330 // test transpose
331 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100332 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
333 SparseMatrixType m2(rows, cols);
Gael Guennebaud4e602832012-11-16 09:02:50 +0100334 initSparse<Scalar>(density, refMat2, m2);
335 VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
336 VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
337
338 VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint());
Gael Guennebaudff46ec02014-09-22 23:33:28 +0200339
340 // check isApprox handles opposite storage order
341 typename Transpose<SparseMatrixType>::PlainObject m3(m2);
342 VERIFY(m2.isApprox(m3));
Gael Guennebaud4e602832012-11-16 09:02:50 +0100343 }
344
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000345 // test prune
346 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100347 SparseMatrixType m2(rows, cols);
348 DenseMatrix refM2(rows, cols);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000349 refM2.setZero();
350 int countFalseNonZero = 0;
351 int countTrueNonZero = 0;
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200352 m2.reserve(VectorXi::Constant(m2.outerSize(), int(m2.innerSize())));
353 for (Index j=0; j<m2.cols(); ++j)
Gael Guennebaud28293142009-05-04 14:25:12 +0000354 {
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200355 for (Index i=0; i<m2.rows(); ++i)
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000356 {
Benoit Jacob47160402010-10-25 10:15:22 -0400357 float x = internal::random<float>(0,1);
Christoph Hertzbergdacb4692016-05-05 13:35:45 +0200358 if (x<0.1f)
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000359 {
360 // do nothing
361 }
Christoph Hertzbergdacb4692016-05-05 13:35:45 +0200362 else if (x<0.5f)
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000363 {
364 countFalseNonZero++;
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200365 m2.insert(i,j) = Scalar(0);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000366 }
367 else
368 {
369 countTrueNonZero++;
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200370 m2.insert(i,j) = Scalar(1);
371 refM2(i,j) = Scalar(1);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000372 }
373 }
Gael Guennebaud28293142009-05-04 14:25:12 +0000374 }
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200375 if(internal::random<bool>())
376 m2.makeCompressed();
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000377 VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
Gael Guennebauda44d91a2015-10-13 10:53:38 +0200378 if(countTrueNonZero>0)
379 VERIFY_IS_APPROX(m2, refM2);
Hauke Heibeld204ec42010-11-02 14:33:33 +0100380 m2.prune(Scalar(1));
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000381 VERIFY(countTrueNonZero==m2.nonZeros());
382 VERIFY_IS_APPROX(m2, refM2);
383 }
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100384
Gael Guennebaud87138072012-01-28 11:13:59 +0100385 // test setFromTriplets
386 {
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100387 typedef Triplet<Scalar,StorageIndex> TripletType;
Gael Guennebaud87138072012-01-28 11:13:59 +0100388 std::vector<TripletType> triplets;
Gael Guennebaudb47ef142014-07-08 16:47:11 +0200389 Index ntriplets = rows*cols;
Gael Guennebaud87138072012-01-28 11:13:59 +0100390 triplets.reserve(ntriplets);
Gael Guennebaudb4c79ee2015-10-13 11:30:41 +0200391 DenseMatrix refMat_sum = DenseMatrix::Zero(rows,cols);
392 DenseMatrix refMat_prod = DenseMatrix::Zero(rows,cols);
393 DenseMatrix refMat_last = DenseMatrix::Zero(rows,cols);
394
Gael Guennebaudb47ef142014-07-08 16:47:11 +0200395 for(Index i=0;i<ntriplets;++i)
Gael Guennebaud87138072012-01-28 11:13:59 +0100396 {
Gael Guennebaudaa6c5162015-02-16 13:19:05 +0100397 StorageIndex r = internal::random<StorageIndex>(0,StorageIndex(rows-1));
398 StorageIndex c = internal::random<StorageIndex>(0,StorageIndex(cols-1));
Gael Guennebaud87138072012-01-28 11:13:59 +0100399 Scalar v = internal::random<Scalar>();
Gael Guennebaud18e3ac02012-01-31 09:14:01 +0100400 triplets.push_back(TripletType(r,c,v));
Gael Guennebaudb4c79ee2015-10-13 11:30:41 +0200401 refMat_sum(r,c) += v;
402 if(std::abs(refMat_prod(r,c))==0)
403 refMat_prod(r,c) = v;
404 else
405 refMat_prod(r,c) *= v;
406 refMat_last(r,c) = v;
Gael Guennebaud87138072012-01-28 11:13:59 +0100407 }
408 SparseMatrixType m(rows,cols);
409 m.setFromTriplets(triplets.begin(), triplets.end());
Gael Guennebaudb4c79ee2015-10-13 11:30:41 +0200410 VERIFY_IS_APPROX(m, refMat_sum);
411
412 m.setFromTriplets(triplets.begin(), triplets.end(), std::multiplies<Scalar>());
413 VERIFY_IS_APPROX(m, refMat_prod);
414#if (defined(__cplusplus) && __cplusplus >= 201103L)
415 m.setFromTriplets(triplets.begin(), triplets.end(), [] (Scalar,Scalar b) { return b; });
416 VERIFY_IS_APPROX(m, refMat_last);
417#endif
Gael Guennebaud87138072012-01-28 11:13:59 +0100418 }
Gael Guennebaud3af29ca2015-02-09 10:23:45 +0100419
420 // test Map
421 {
422 DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
423 SparseMatrixType m2(rows, cols), m3(rows, cols);
424 initSparse<Scalar>(density, refMat2, m2);
425 initSparse<Scalar>(density, refMat3, m3);
426 {
427 Map<SparseMatrixType> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
428 Map<SparseMatrixType> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr());
429 VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
430 VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
431 }
432 {
Gael Guennebaudfe513192015-02-13 10:03:53 +0100433 MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
434 MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr());
Gael Guennebaud3af29ca2015-02-09 10:23:45 +0100435 VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
436 VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
437 }
Gael Guennebaud757971e2016-07-26 09:40:19 +0200438
439 Index i = internal::random<Index>(0,rows-1);
440 Index j = internal::random<Index>(0,cols-1);
441 m2.coeffRef(i,j) = 123;
442 if(internal::random<bool>())
443 m2.makeCompressed();
444 Map<SparseMatrixType> mapMat2(rows, cols, m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
445 VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(123));
446 VERIFY_IS_EQUAL(mapMat2.coeff(i,j),Scalar(123));
447 mapMat2.coeffRef(i,j) = -123;
448 VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(-123));
Gael Guennebaud3af29ca2015-02-09 10:23:45 +0100449 }
Gael Guennebaud87138072012-01-28 11:13:59 +0100450
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100451 // test triangularView
452 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100453 DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
454 SparseMatrixType m2(rows, cols), m3(rows, cols);
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100455 initSparse<Scalar>(density, refMat2, m2);
456 refMat3 = refMat2.template triangularView<Lower>();
457 m3 = m2.template triangularView<Lower>();
458 VERIFY_IS_APPROX(m3, refMat3);
459
460 refMat3 = refMat2.template triangularView<Upper>();
461 m3 = m2.template triangularView<Upper>();
462 VERIFY_IS_APPROX(m3, refMat3);
463
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100464 {
465 refMat3 = refMat2.template triangularView<UnitUpper>();
466 m3 = m2.template triangularView<UnitUpper>();
467 VERIFY_IS_APPROX(m3, refMat3);
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100468
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100469 refMat3 = refMat2.template triangularView<UnitLower>();
470 m3 = m2.template triangularView<UnitLower>();
471 VERIFY_IS_APPROX(m3, refMat3);
472 }
Desire NUENTSA4cd82452013-06-11 14:42:29 +0200473
474 refMat3 = refMat2.template triangularView<StrictlyUpper>();
475 m3 = m2.template triangularView<StrictlyUpper>();
476 VERIFY_IS_APPROX(m3, refMat3);
477
478 refMat3 = refMat2.template triangularView<StrictlyLower>();
479 m3 = m2.template triangularView<StrictlyLower>();
480 VERIFY_IS_APPROX(m3, refMat3);
Gael Guennebaudf6b1dee2015-11-04 17:02:32 +0100481
Gael Guennebaudba3f9772017-01-23 22:06:08 +0100482 // check sparse-triangular to dense
Gael Guennebaudf6b1dee2015-11-04 17:02:32 +0100483 refMat3 = m2.template triangularView<StrictlyUpper>();
484 VERIFY_IS_APPROX(refMat3, DenseMatrix(refMat2.template triangularView<StrictlyUpper>()));
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100485 }
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200486
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100487 // test selfadjointView
Gael Guennebaud9353bba2011-12-04 14:39:24 +0100488 if(!SparseMatrixType::IsRowMajor)
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100489 {
490 DenseMatrix refMat2(rows, rows), refMat3(rows, rows);
491 SparseMatrixType m2(rows, rows), m3(rows, rows);
492 initSparse<Scalar>(density, refMat2, m2);
493 refMat3 = refMat2.template selfadjointView<Lower>();
494 m3 = m2.template selfadjointView<Lower>();
495 VERIFY_IS_APPROX(m3, refMat3);
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100496
Gael Guennebaud11b492e2016-12-14 17:53:47 +0100497 refMat3 += refMat2.template selfadjointView<Lower>();
498 m3 += m2.template selfadjointView<Lower>();
499 VERIFY_IS_APPROX(m3, refMat3);
500
501 refMat3 -= refMat2.template selfadjointView<Lower>();
502 m3 -= m2.template selfadjointView<Lower>();
503 VERIFY_IS_APPROX(m3, refMat3);
504
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100505 // selfadjointView only works for square matrices:
506 SparseMatrixType m4(rows, rows+1);
507 VERIFY_RAISES_ASSERT(m4.template selfadjointView<Lower>());
508 VERIFY_RAISES_ASSERT(m4.template selfadjointView<Upper>());
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100509 }
510
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200511 // test sparseView
512 {
513 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
514 SparseMatrixType m2(rows, rows);
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100515 initSparse<Scalar>(density, refMat2, m2);
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200516 VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval());
Gael Guennebaud8456bbb2016-05-18 16:53:28 +0200517
518 // sparse view on expressions:
519 VERIFY_IS_APPROX((s1*m2).eval(), (s1*refMat2).sparseView().eval());
520 VERIFY_IS_APPROX((m2+m2).eval(), (refMat2+refMat2).sparseView().eval());
521 VERIFY_IS_APPROX((m2*m2).eval(), (refMat2.lazyProduct(refMat2)).sparseView().eval());
522 VERIFY_IS_APPROX((m2*m2).eval(), (refMat2*refMat2).sparseView().eval());
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200523 }
Gael Guennebaud82f9aa12011-12-04 21:49:21 +0100524
525 // test diagonal
526 {
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100527 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
528 SparseMatrixType m2(rows, cols);
Gael Guennebaud82f9aa12011-12-04 21:49:21 +0100529 initSparse<Scalar>(density, refMat2, m2);
530 VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval());
Gael Guennebaud296d24b2017-01-25 17:39:01 +0100531 DenseVector d = m2.diagonal();
532 VERIFY_IS_APPROX(d, refMat2.diagonal().eval());
533 d = m2.diagonal().array();
534 VERIFY_IS_APPROX(d, refMat2.diagonal().eval());
Gael Guennebaudb26e6972014-12-01 14:41:39 +0100535 VERIFY_IS_APPROX(const_cast<const SparseMatrixType&>(m2).diagonal(), refMat2.diagonal().eval());
536
537 initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag);
538 m2.diagonal() += refMat2.diagonal();
539 refMat2.diagonal() += refMat2.diagonal();
540 VERIFY_IS_APPROX(m2, refMat2);
Gael Guennebaud82f9aa12011-12-04 21:49:21 +0100541 }
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200542
Gael Guennebaud62f21e22015-06-24 17:55:00 +0200543 // test diagonal to sparse
544 {
545 DenseVector d = DenseVector::Random(rows);
546 DenseMatrix refMat2 = d.asDiagonal();
547 SparseMatrixType m2(rows, rows);
548 m2 = d.asDiagonal();
549 VERIFY_IS_APPROX(m2, refMat2);
Gael Guennebaud4c8cd132015-06-24 18:11:06 +0200550 SparseMatrixType m3(d.asDiagonal());
551 VERIFY_IS_APPROX(m3, refMat2);
Gael Guennebaud62f21e22015-06-24 17:55:00 +0200552 refMat2 += d.asDiagonal();
553 m2 += d.asDiagonal();
554 VERIFY_IS_APPROX(m2, refMat2);
555 }
556
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200557 // test conservative resize
558 {
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100559 std::vector< std::pair<StorageIndex,StorageIndex> > inc;
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100560 if(rows > 3 && cols > 2)
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100561 inc.push_back(std::pair<StorageIndex,StorageIndex>(-3,-2));
562 inc.push_back(std::pair<StorageIndex,StorageIndex>(0,0));
563 inc.push_back(std::pair<StorageIndex,StorageIndex>(3,2));
564 inc.push_back(std::pair<StorageIndex,StorageIndex>(3,0));
565 inc.push_back(std::pair<StorageIndex,StorageIndex>(0,3));
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200566
567 for(size_t i = 0; i< inc.size(); i++) {
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100568 StorageIndex incRows = inc[i].first;
569 StorageIndex incCols = inc[i].second;
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200570 SparseMatrixType m1(rows, cols);
571 DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols);
572 initSparse<Scalar>(density, refMat1, m1);
573
574 m1.conservativeResize(rows+incRows, cols+incCols);
575 refMat1.conservativeResize(rows+incRows, cols+incCols);
576 if (incRows > 0) refMat1.bottomRows(incRows).setZero();
577 if (incCols > 0) refMat1.rightCols(incCols).setZero();
578
579 VERIFY_IS_APPROX(m1, refMat1);
580
581 // Insert new values
582 if (incRows > 0)
Gael Guennebaud7ee378d2013-07-12 16:40:02 +0200583 m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1;
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200584 if (incCols > 0)
Gael Guennebaud7ee378d2013-07-12 16:40:02 +0200585 m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1;
Benjamin Piwowarski6bf49ce2012-07-19 00:07:06 +0200586
587 VERIFY_IS_APPROX(m1, refMat1);
588
589
590 }
591 }
Desire NUENTSA4cd82452013-06-11 14:42:29 +0200592
593 // test Identity matrix
594 {
595 DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows);
596 SparseMatrixType m1(rows, rows);
597 m1.setIdentity();
598 VERIFY_IS_APPROX(m1, refMat1);
Gael Guennebaud8a211bb2015-10-25 22:01:58 +0100599 for(int k=0; k<rows*rows/4; ++k)
600 {
601 Index i = internal::random<Index>(0,rows-1);
602 Index j = internal::random<Index>(0,rows-1);
Gael Guennebaud73f692d2015-10-27 11:01:37 +0100603 Scalar v = internal::random<Scalar>();
Gael Guennebaud8a211bb2015-10-25 22:01:58 +0100604 m1.coeffRef(i,j) = v;
605 refMat1.coeffRef(i,j) = v;
606 VERIFY_IS_APPROX(m1, refMat1);
607 if(internal::random<Index>(0,10)<2)
608 m1.makeCompressed();
609 }
610 m1.setIdentity();
611 refMat1.setIdentity();
612 VERIFY_IS_APPROX(m1, refMat1);
Desire NUENTSA4cd82452013-06-11 14:42:29 +0200613 }
Gael Guennebaudec469702016-02-01 15:04:33 +0100614
615 // test array/vector of InnerIterator
616 {
617 typedef typename SparseMatrixType::InnerIterator IteratorType;
618
619 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
620 SparseMatrixType m2(rows, cols);
621 initSparse<Scalar>(density, refMat2, m2);
622 IteratorType static_array[2];
623 static_array[0] = IteratorType(m2,0);
624 static_array[1] = IteratorType(m2,m2.outerSize()-1);
625 VERIFY( static_array[0] || m2.innerVector(static_array[0].outer()).nonZeros() == 0 );
626 VERIFY( static_array[1] || m2.innerVector(static_array[1].outer()).nonZeros() == 0 );
627 if(static_array[0] && static_array[1])
628 {
629 ++(static_array[1]);
630 static_array[1] = IteratorType(m2,0);
631 VERIFY( static_array[1] );
632 VERIFY( static_array[1].index() == static_array[0].index() );
633 VERIFY( static_array[1].outer() == static_array[0].outer() );
634 VERIFY( static_array[1].value() == static_array[0].value() );
635 }
636
637 std::vector<IteratorType> iters(2);
638 iters[0] = IteratorType(m2,0);
639 iters[1] = IteratorType(m2,m2.outerSize()-1);
640 }
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000641}
642
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100643
Christoph Hertzbergc5a37772014-10-31 17:19:05 +0100644template<typename SparseMatrixType>
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100645void big_sparse_triplet(Index rows, Index cols, double density) {
Rasmus Munk Larsen0ed811a2018-10-12 13:41:57 -0700646 g_dense_op_sparse_count = 0; // Suppresses compiler warning.
Christoph Hertzberge8cdbed2014-12-04 22:48:53 +0100647 typedef typename SparseMatrixType::StorageIndex StorageIndex;
648 typedef typename SparseMatrixType::Scalar Scalar;
649 typedef Triplet<Scalar,Index> TripletType;
650 std::vector<TripletType> triplets;
651 double nelements = density * rows*cols;
652 VERIFY(nelements>=0 && nelements < NumTraits<StorageIndex>::highest());
653 Index ntriplets = Index(nelements);
654 triplets.reserve(ntriplets);
655 Scalar sum = Scalar(0);
656 for(Index i=0;i<ntriplets;++i)
657 {
658 Index r = internal::random<Index>(0,rows-1);
659 Index c = internal::random<Index>(0,cols-1);
660 Scalar v = internal::random<Scalar>();
661 triplets.push_back(TripletType(r,c,v));
662 sum += v;
663 }
664 SparseMatrixType m(rows,cols);
665 m.setFromTriplets(triplets.begin(), triplets.end());
666 VERIFY(m.nonZeros() <= ntriplets);
667 VERIFY_IS_APPROX(sum, m.sum());
Christoph Hertzbergc5a37772014-10-31 17:19:05 +0100668}
669
Gael Guennebauddff3a922018-07-17 15:52:58 +0200670template<int>
671void bug1105()
672{
673 // Regression test for bug 1105
674 int n = Eigen::internal::random<int>(200,600);
675 SparseMatrix<std::complex<double>,0, long> mat(n, n);
676 std::complex<double> val;
677
678 for(int i=0; i<n; ++i)
679 {
680 mat.coeffRef(i, i%(n/10)) = val;
681 VERIFY(mat.data().allocatedSize()<20*n);
682 }
683}
Christoph Hertzbergc5a37772014-10-31 17:19:05 +0100684
Gael Guennebaud82f0ce22018-07-17 14:46:15 +0200685EIGEN_DECLARE_TEST(sparse_basic)
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000686{
687 for(int i = 0; i < g_repeat; i++) {
Gael Guennebaudc43154b2015-03-04 10:16:46 +0100688 int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200);
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100689 if(Eigen::internal::random<int>(0,4) == 0) {
690 r = c; // check square matrices in 25% of tries
691 }
692 EIGEN_UNUSED_VARIABLE(r+c);
693 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(1, 1)) ));
Gael Guennebaud91fe1502011-06-07 11:28:16 +0200694 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) ));
Christoph Hertzberg0833b822014-10-31 17:12:13 +0100695 CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(r, c)) ));
696 CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(r, c)) ));
697 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(r, c)) ));
Gael Guennebaudd7698c12015-03-19 15:11:05 +0100698 CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,ColMajor,long int>(r, c)) ));
699 CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,RowMajor,long int>(r, c)) ));
Gael Guennebaud47e89022013-06-10 10:34:03 +0200700
Gael Guennebaudc43154b2015-03-04 10:16:46 +0100701 r = Eigen::internal::random<int>(1,100);
702 c = Eigen::internal::random<int>(1,100);
703 if(Eigen::internal::random<int>(0,4) == 0) {
704 r = c; // check square matrices in 25% of tries
705 }
706
Gael Guennebaudd7698c12015-03-19 15:11:05 +0100707 CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) ));
708 CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) ));
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000709 }
Christoph Hertzbergc5a37772014-10-31 17:19:05 +0100710
711 // Regression test for bug 900: (manually insert higher values here, if you have enough RAM):
712 CALL_SUBTEST_3((big_sparse_triplet<SparseMatrix<float, RowMajor, int> >(10000, 10000, 0.125)));
713 CALL_SUBTEST_4((big_sparse_triplet<SparseMatrix<double, ColMajor, long int> >(10000, 10000, 0.125)));
Gael Guennebaudbfd6ee62015-11-06 15:05:37 +0100714
Gael Guennebauddff3a922018-07-17 15:52:58 +0200715 CALL_SUBTEST_7( bug1105<0>() );
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000716}